
Supporting Best-Effort Traffic with Fair Service Curve

T.S. Eugene Ng Donpaul C. Stephens Ion Stoica

Hui Zhang

Feburary 2000

CMU-CS-99-169

School of Computer Science

Carnegie Mellon University

Pittsburgh. PA 15213

An earlier version of this paper appeared in Proceedings of IEEE GLOBECOM'99.

This research was sponsored by DAR.PA under contract numbers N66001-96-C-8528 and E30602-97-2-

0287, and by NSF under grant numbers Career Award NCR-9624979 and ANI-9814929. Additional support

was provided by Intel Corp.
Views and conclusions contained in this document are those of the authors and should not be inter-

preted as representing the official policies, either expressed or implied, of DARPA, NSF, Intel, or the U.S.

government.

DISTRIBUTION STATEMENT A
Approved for Public Rele<

Distribution Unlimited
DTIC QUALITY INSPECTED 3 UeU

ApP[Pvedf?rPub,icRelease OfjrtflOX ^ / HC7

Keywords: Resource management, scheduling, best-effort traffic, delay differentiation,

fairness.

Abstract

Packet Fair Queueing (PFQ) algorithms are the most popular and well studied scheduling

algorithms for integrated services networks for two reasons: (1) With reservation, they

can provide per-flow encl-to-end delay guarantees for real-time traffic flows. (2) Without

reservation, they can provide protection among competing best-effort flows while allowing

dynamic bandwidth sharing. However, PFQ algorithms have two important limitations.

The first one is that, since only one parameter (a weight) is used to allocate resource for each

flow, there is a coupling between delay and bandwidth allocation. This can result in network

under-utilization when real-time flows have diverse delay and bandwidth requirements. The

second and less well known limitation is that, due to the instantaneous fairness property

of PFQ algorithms, when used for best-effort service, PFQ algorithms favor continuously-

backlogged throughput-oriented applications such as FTP over bursty applications such as

WWW and telnet.

In a previous study [21], we proposed the Fair Service Curve (FSC) algorithm which enables

more flexible delay and bandwidth allocation for real-time traffic through the use of non-

linear service curves. In this paper, we show that, when used for best-effort traffic, FSC

can improve performance of delay-sensitive bursty applications without negatively affecting

the performance of throughput-oriented applications.

1 Introduction

With the rapid growth of the Internet and the advancement of router technologies, we see

two important trends. On one hand, best-effort data traffic continues to account for the

majority of the Internet's traffic. On the other hand, advanced routers with sophisticated

queue, and buffer management capabilities are becoming available. While there is a huge

body of literature on using advanced buffer management and packet scheduling algorithms

to support real-time continuous media traffic, there is relatively less work on how to exploit

these algorithms to better support best-effort data traffic. This paper is aimed to address

the latter issue.

Packet Fair Queueing (PFQ) algorithms (i.e., Weighted Fair Queueing [5, 14] and its

many variants [1, 7, 8, 18, 16, 20, 23]) have become the most popular algorithms imple-

mented in today's advanced switches and routers [19, 9] because these algorithms provide

support for both real-time and best-effort traffic. With bandwidth reservation, PFQ al-

gorithms are able to provide end-to-end delay guarantees. Without reservation, these

algorithms can provide best-effort service since they can allocate bandwidth fairly among

competing flows, protecting well-behaved flows against ill-behaved ones.

A well known limitation of PFQ is that it couples delay and bandwidth allocation, as

there is only one parameter, a weight, that specifies the resource allocated to a flow. This

weight affects both the delay and bandwidth properties of the flow. Consequently, under

PFQ, it is not possible to differentiate between two flows that ha.ve the same bandwidth

but different delay requirements without over-reservation. This may result in low network

utilization when real-time flows have diverse delay and bandwidth requirements. To address

this problem, we proposed the Fair Service Curve (FSC) [21] algorithm which has the ability

to decouple delay and bandwidth allocation. This is achieved by properly assigning service

curves of different shapes to different flows - concave curves for flows with tight per-packet

delay bounds and convex curves for flows with less stringent per-packet delay bounds. This

flexibility allows FSC to achieve higher resource utilization for real-time traffic than PFQ.

When used for best-effort service, PFQ favors continuously backlogged traffic over short

lived bursty traffic. This is because PFQ is designed to achieve instantaneous bandwidth

fairness for all flows, irrespective of their delay requirements. In reality, different types of

I I lone flow I :!::|!1 short flow I I long flow I I short flow

"2

I h + -i + h H h ■l + H h
0 0.4 0.8 7.2 7.6 8 time (sec) 0 0.4 0.8 7.2 7.6 8 tlme <sec)

(a) Equal Weights for Short and Long Flows (b) Short Flows with 3x the Long Flow's weight

Figure 1: Improving burst delays

best-effort data traffic, such as Telnet, FTP, and WWW, have different characteristics and

thus performance objectives. For example, while the burst delay is the performance index

for interactive services, the average throughput is the performance index for bulk transfer

applications such as FTP. The key observation is that, since the performance index of

bulk-transfer applications is determined over relatively long time scales, we may be able

to exploit these applications' insensitivity to short term service variations to improve the

performance of delay sensitive bursty applications.

To illustrate how this may be realized, consider a 2 Mbps link shared by one long flow

that transfers 1 MB, and several short flows that transfer 50 KB each. Assume that the link

is managed by PFQ and each flow has a weight of one. For simplicity, assume that all flows

are continuously backlogged, and that once a short flow finishes, another short flow starts

immediately. Thus, there are exactly two flows, the long flow and a short flow, backlogged

at any given time. As a result each backlogged flow is allocated 1 Mbps. Therefore, as

shown in Figure 1 (a), the long flow takes 8 seconds to finish, while a short flow takes 0.4

seconds to complete. Now consider the case where all short flows are assigned three times

the weight of the long flow. Each short flow now receives 1.5 Mbps, which consequently

reduces its latency by 33% to 0.27 seconds. At the same time, the transfer time of the long

flow does not change. Thus, by assigning different weights, it is possible to significantly

speed-up short transfers without affecting the longer flow.

In order to achieve this performance, a system would either need to estimate the length

of a flow when it becomes backlogged, or dynamically reduce the flow's weight after the

length of the transfer exceeds a certain threshold. While it is unclear how this could be

implemented in a system based on PFQ, the service curve framework in an FSC system

enables us to clearly specify the burst threshold and the higher relative share that these

bursts should receive. This enables FSC to provide better performance for delay-oriented

bursty flows than PFQ, while maintaining the same long term throughput for persistent

flows.

In this paper, we show that FSC can out-perform PFQ in supporting best-effort traffic,

even in the case when we assign the same service curve to all flows.1 We begin with

simplified traffic sources in order to more easily illustrate the parameter selection for FSC

when used for best effort traffic. We then show that these basic results remain applicable

when the sources are more diverse, as is the case in actual data networks. In order to

quantify the impact on long-lived throughout-oriented traffic sources, we use an experiment

where the short burst}' traffic sources are specifically designed to extract the maximal

benefit from FSC. Finally, we use a synthetic workload of FTP flows whose lengths are

drawn to model the AT&T Internet traffic distributions [6] in order to analyze the tradeoffs

in parameter selection for realistic data traffic.

The rest of this paper is organized as follows. In Section 2, we give an overview of

PFQ algorithms, the service curve model, and the FSC algorithm, and discuss the use of

FSC for best-effort service. We present and discuss our simulation results in Section 3, and

expose some implementation issues in Section 4. Related work is discussed in Section 5,

and finally we summarize our findings in Section 6.

2 Packet Fair Queueing (PFQ) and Fair Service Curve

(FSC) Algorithms

In this section, we first explain the central ideas behind various PFQ algorithms. Then we

present the concepts behind service curve based algorithms and describe the Fair Service

Curve (FSC) algorithm we use in this paper for supporting best-effort traffic.

'Although this requires per flow queueing, it does not require the scheduler to distinguish between

different types of flows.

2.1 PFQ Algorithms

Packet Fair Queueing (PFQ) algorithms are based on the GPS model [15]. In GPS, each

flow i is characterized by its weight, 4>i- During any time interval when there are exactly n

non-empty queues, the server serves the n packets at the head of the queues simultaneously,

in proportion to their weights.

Each PFQ algorithm maintains a system virtual time vs(-) which represents the nor-

malized fair amount of service that each flow should have received by time t. In addition, it

associates to each flow ■/ a virtual start time V{{-), and a virtual finish time /,;(•). Intuitively,

Vi(t) represents the normalized amount of service that flow i has received by time t, and

fi(t) represents the sum between Vi(t) and the normalized service that flow i should receive

for serving the packet at the head of its queue (determined by the flow's weight cf)t). The

goal of all PFQ algorithms is then to minimize the discrepancies among u;(£)'s and vs(t).

This is usually achieved by selecting for service the packet with the smallest Vi(t) or fi(t).

The system virtual time is primarily used to reset Vi(t) whenever an unbacklogged flow i

becomes backlogged again. More precisely,

Vi(t) = <
m&x(vs(t),Vi(t—)) i becomes backlogged

vdt-) + ft Pz finishes

Mt) = «•■(*)+ ^" (2)
0«

where ^— is the time instant before time t, pf represents the k-th. packet of flow i, and If

represents its length. An example of a system virtual time function vs(t) is the minimum

virtual finish time among all backlogged flows [7]. Various PFQ algorithms differ mainly

in their computation of the system virtual time function and the packet selection policy.

Intuitively, PFQ allocates to each backlogged flow a share of service in proportion to its

weight. This way PFQ achieves instantaneous fairness for backlogged flows. In addition, if

a flow previously received service beyond its (weighted) fair share, it will not be punished in

the future. For real-time traffic using reservation, this enables PFQ to provide a bandwidth

guarantee to these flows. For best-effort traffic, this enables PFQ to provide fair service

among the flows while protecting them against potentially malicious flows.

While the instantaneous fairness property is the basis of how PFQ provides these fea-

tures, it directly couples the delay and bandwidth allocation of the flows PFQ schedules

1> .
>

ela

ml/

m2^^^^^

(a) (b)

Figure 2: Sample service curves.

among. More precisely, if flow i is assigned a rate </>,, then it can be shown that the worst

case queueing delay incurred by a packet pf is

* , t -n.
(3)

6; C

where lmax represents the maximum size of a packet, and C represents the capacity of

the output link. Thus, the only way to reduce the worst case delay is to increase the

reservation d>{. However, this may lead to inefficient resource utilization in the presence

of low-bandwidth low-delay flows. As an example, consider a 64 Kbps audio flow with

160 byte packets. To achieve a worst case delay of 5 ms, according to Eq. (3), one should

reserve2 256 Kbps, which is four times more than the flow's bandwidth requirements!

2.2 Service Curve Model

To address this problem, Cruz has proposed a new service model, called service curve

(SC) [2, 3], in the context of real-time guaranteed traffic. In this model, each flow is

associated with a service curve 5',-, which is a continuous non-decreasing function. A flow ?'

is said to be guaranteed a service curve .$',-(•), if for any time t2 when the flow is backlogged,

there exists a time t-x < t2, which is the beginning of one of flow ?'s backlogged periods (not

necessarily including t2), such that the following holds

Siih-t^^lüiituh), (4)

2Note that here we ignore the second term l-mQS-, as C is usually very large.

where 'W^tiJ^) is the amount of service received by flow i during the time interval (ti,t2]-

For packet systems, we restrict t2 to be packet departure times. One algorithm that

supports service curve guarantees is the Service Curve Earliest Deadline first (SCED)

algorithm [17]. SCED can guarantee all the service curves in a system if and only if

E; Si{t) <C-t holds for any t > 0, where C is the output link capacity.

Even though any continuous non-decreasing function can be used as a service curve,

for simplicity, usually only two types of non-linear service curves are considered: two-piece

linear concave curves (Figure 2(a)), and two-piece linear convex curves (Figure 2(b)). A

two-piece linear service curve is characterized by four parameters: ???!, the slope of the

first segment; ???2, the slope of the second segment; ß, the y-projection of the intersection

point of the two segments; d, the x-projection of the intersection point of the two segments.

Intuitively, m2 specifies the long term throughput guaranteed to a flow, while ml specifies

the rate at which a burst of size ß is served. Note that a real-time flow served by PFQ

can be thought of as having a straight-line service curve that passes through the origin and

have a slope of the guaranteed rate r,.

By using two-piece linear service curves, both delay and bandwidth allocation are taken

into account in an integrated fashion, yet the allocation policies for these two resources are

decoupled. This increases the resource management flexibility and the resource utilization

inside the network. To illustrate, consider again the example described in Section 2.1.

In SCED, the audio flow can be assigned a service curve with the following parameters:

ml = 256 Kbps, m2 = 64 Kbps, ß = 160 bytes, and d = 5 ms. If the packet arrival

process is periodic, then it can be shown by using Eq. (4) that this service curve guarantees

a worst case delay of 5 ms. However, unlike PFQ which requires 256 Kbps of bandwidth

to be reserved to achieve the same delay, with SCED the long term reserved bandwidth is

only 64 Kbps. This creates the opportunity to allocate the remaining bandwidth to other

delay-tolerant traffic, such as FTP.

The main drawback of SCED is that it punishes a flow that has received service beyond

its service curve. While the SCED algorithm can guarantee all the service curves simulta-

neously, it does not have the fairness property. As an example, consider two TCP sessions

sharing a 10Mbps link scheduled by SCED which start up two seconds apart. Both sessions

are assigned the same service curve with ml four times larger than m2 and the inflection

1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

Figure 3: Measured bandwidth of two TCP sessions, startup 2 seconds apart under SCED.

point occurs at ß = 6000 bytes. Figure 3 plots the bandwidth received by these two sessions

under SCED. Under SCED, once the second session starts up, the first session is denied

any service for approximately 2 seconds. Such behavior clearly discourages adaptive flows

from sharing the available link capacity. This is the same type of behavior as that exhibited

by the well known Virtual Clock (VC) service discipline [24]. In fact, if ???.l = m'2, SCED

reduces to VC.

A related problem is that, in SCED, the service curve is defined in terms of absolute

rates and real time. This makes sense only in a system that employs admission control. In

a best effort system, what matters is relative performance. However, in SCED, the relation

between two service curves does not uniquely determine the service received by each flow.

Thus, given the same arrival process, scaling the service curves of the flows will result in

different service schedules. As a result the absolute values of the weights or reservations

cannot be arbitrarily set. Furthermore, the fact that these values have no special meaning

in the context of best effort traffic makes their choice particularly difficult. In contrast,

in PFQ and Fair Service Curve (FSC), scaling the parameters of each flow by the same

amount does not change the service received by each flow. This characteristic simplifies

significantly the process of assigning service curves for best effort traffic.

2.3 Fair Service Curve Algorithm

To address these problems, we proposed a new service discipline, called Fair Service Curve

(FSC) in [21]. The main difference between FSC and SCED is that under FSC a flow

session 1 ———

■

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

Figure 4: Measured bandwidth of two TCP sessions, startup 2 seconds apart under FSC.

that has received excess service is not punished when other flows become backlogged. As

noted above, this is also what differentiates PFQ and VC algorithms.3 To illustrate the

difference in fairness between SCED and FSC, consider again the scenario of two TCP

with staggered start times sharing a 10Mbps link. Figure 4 plots the bandwidth received

by these two sessions under FSC. Contrasted with SCED (Figure 3), FSC fairly allocates

bandwidth to both sessions once the second session has started up.

The pseudocode for FSC is shown in Figure 5 and 6. Overall, FSC is very similar to

PFQ in that it also uses the concept of virtual time and a set of virtual start and finish times

for each flow. FSC uses the smallest virtual start time (vi(t)) as the selection criterion,

and vs(t) = (vitmin(t) + Vitmax(t))/2 as the system virtual time function, where vi}min(t) and

Vi,maAt) are the minimum and maximum virtual start times among all backlogged flows at

time t.

However, the difference between FSC and PFQ is in the computation of the time stamps.

In PFQ, 4>t can be viewed as the slope of a straight line service curve. In FSC, however,

since service curves can be non-linear, we cannot compute the timestamps based on the

slope of a service curve only. To compute the timestamps, we need to remember what

part of the service curve was used to compute the timestamp of the previous packet.

We call the remainder of the service curve the virtual curve Vi(-), it is defined such that

Vl(t) = y-1(wi{t)), where wi(t) is the total amount of service received by flow i by time

3However, note that while both PFQ and VC can provide the same real-time guarantees, this is not true

for FSC and SCED. A detailed discussion and a variant of FSC that is able to provide the same real-time

guarantees as SCED is given in [21].

8

receive_packet(?',p) /* flow i has received packet p */

enqueue(queue j, p);

if (/ ^ A) /* if i was not backlogged */

update_v(?',p); /* update V(-) for i */

A = A U {?}; /* mark- i backlogged */

get_packet() /* get next packet to send */

i = min,,,. A; /* select backlogged flow with minimum virtual time */

p =dequeue(?);

update_v(/,p)

if (cjueue; = 0)

A = A\{i};

send .packet (p):

Figure 5: The Fair Service Curve (FSC) algorithm. The receive_packet function is exe-

cuted every time a packet arrives; the get_packet function is executed every time a packet

departs (to select the next packet to send).

t. When a flow i first becomes backlogged, \'i(v) is initialized to the service curve Si(t).

Thereafter, every time a flow becomes backlogged, the update.VC function is called in

which Vj{v) is updated as follows:

Vi(v) = mm(Vi(v), S,(v - vs(t)) + lutf)), V v > vs(t), (5)

This update process is illustrated graphically in Figure 7. Note that when the service

curve Si{t) is a straight line with slope <^,, from Eq. (5) we have Vi(v) = 4>{V. Then, the

virtual time Vi(t) is simply V'"_1(t(.',:(i)) = Wi{i)/4>i, which is exactly the virtual time of flow

i in PFQ algorithms.

2.4 Fair Service Curve for Best-Effort Service

The service curve model can easily be extended for best-effort service when no reservation

or admission control is used. In this case, the absolute values of ml and m2 are not

9

update_v(?,p)

if (?' $_ A) /* is flow i backlogged '? */

V; = max(vi, vs)

update_VC(i);

if (backlogged(z) = TRUE)

return;

else

Wi = «»f + length(p);

vi = Vr1(wi);

Figure 6: The function which updates the virtual time curves and the virtual times in FSC.

VS(t) V

Figure 7: Illustration of the update of the virtual curve.

important, as they specify only the relative service priorities between bursts of size less

than ß and the continuously backlogged traffic in the system. We denote the ratio ml/m2

as the Burst Preference Ratio (BPR) and ß as the Preferred Burst Size (PBS).

Since admission control is not necessary for best effort service, we can assign every flow

in the system the same service curve 5(2), a concave curve similar to the one in Figure 2(a).

The key performance tuning parameters are the burst preference ratio (BPR) rnl/m2, and

the preferred burst size (PBS) ß. Intuitively, if a flow has idled for a long enough period of

time, when it becomes backlogged again its first ß bytes are served at a rate proportional

to ml. However, if the flow remains backlogged for more than ß bytes, its remaining bytes

are served at a rate proportional to m2, i.e., BPR times lower than ml. Thus, if we set ß

to accommodate the most common burst sizes generated by applications such as WWW,

10

120

110

100

90

0) 80
=J
cr
0)
W 70
<D

O ro 60

50 -

40

Arrival Times °
Departure Times (PBS = 64) +
Departure Times (PBS = 32) a
Departure Times (PBS =16) x

Departure Times (PBS = 8) *
Departure Times (PBS = 0) *

„x* A&A w**

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Time (sec)

Figure 8: The packet arrival and departure times of a flow, with of 32 packet bursts, for

various service curves.

we can provide a significantly lower delay for these applications than it is possible with

PFQ.

Note that, unlike PFQ, FSC has "memory'' in the sense that it can differentiate between

flows that have previously idled and flows that are continuously backlogged and treat them

differently. Also, when the system is congested, the long term rate of a flow, bursty or not,

is still bounded by the fair share rate because in the long run every flow is serviced at a

rate proportional to m2. Thus, while packet delay for bulk transfer type applications such

as FTP may be increased momentarily, they always receive at least their fair share in the

long run. Finally, it is interesting to note that when BPR = 1, or when PBS = 0, FSC

degenerates to PFQ.

To give some intuition on how FSC behaves, consider a link shared by 15 constant-bit-

rate UDP flows and one ON-OFF flow with a burst size of 32 packets. Figure 8 plots the

arrival and departure times for each packet belonging to two consecutive burst periods of

the ON-OFF flow. The plot shows the impact of the preferred burst size (PBS) in packets

on the departure times, and implicitly on the packet queueing delay, which is given by the

horizontal distance between a packet's arrival time and its departure time. We associate

to all flows the same service curve. In all cases the burst preference ratio (BPR) is 5.

11

As expected, the delay decreases as PBS increases. Note that the packet departure times

follow accurately the shape of the service curve associated with the flows.

3 Simulation Results

In this section we evaluate the FSC algorithm through extensive simulations. All simula-

tions are performed in ns-2 [13], which provides accurate packet-level implementation of

various network protocols, buffer management and scheduling algorithms. We examine the

behavior of FSC under a taxonomy of transport protocol and traffic model combinations.

For transport protocols, we use both TCP4 and UDP. For traffic models, we use peri-

odic ON-OFF sources, exponentially distributed ON-OFF sources, pseudo WWW traffic

sources (a periodic ON-OFF source feeding into TCP), pseudo video (an ns-2 packet trace

generated from a MPEG-1 video stream), Telnet, FTP and continuously backlogged UDP

sources. The ON-OFF sources are based on our own implementation. We have extended

ns-2 to support arbitrary traffic sources on top of TCP, and to dynamically create and

destroy flows.

Different traffic sources have different performance indices. We measure the performance

of ON-OFF sources and Telnet using average burst delay, which is define as the difference

between the time when the last packet of the burst arrives at the destination and the

time when the first packet of the burst is sent by the source. For continuously backlogged

sources we use the overall throughput to measure performance, and for video traffic we use

the frame delay distribution. A potential problem when measuring the burst delay under

UDP is that some packets may be dropped. For this reason, in the case of UDP sources

we report both the average burst delay and the packet dropping rate.

In all simulations, we distinguish between foreground flows which are bursty, and back-

ground flows which are persistent. The actual number of foreground and background flows

may vary. Unless otherwise specified, the following parameters are used in all simulations.

The capacity of each link is 10 Mbps with a latency of 10 ms, and the output buffer size is

128 KB. We use a per-flow buffer management scheme which drops the second packet from

the longest queue when the buffer overflows [22]. In addition, the size of all packets is 1000

Specifically, we use ns-2's implementation of TCP Reno without any protocol hand-shake.

12

bytes except for Telnet, which uses 64 byte packets. The simulation time is 20 seconds.

Each set of the results presented in the following sub-sections is aimed to illustrate

certain aspects of the FSC algorithm. First, to illustrate the behavior of FSG and to show

how variations in the system parameters affect its performance, we use a simple network

topology consisting of one link, and traffic sources such as ON-OFF, FTP, and continuously

backlogged UDP. In these simulations we also draw comparisons between FSC and PFQ.

Next, to show how FSC performs under more realistic load, we use more complex network

topologies and traffic sources, such as exponentially distributed ON-OFF, pseudo video,

and Telnet. To quantify the impact on long lived throughout oriented traffic sources, we

use an experiment where the short bursty traffic sources are specifically designed to extract

the maxima] benefit from FSC. To explain the tradeoffs in optimizing FSCns parameters

for realistic network traffic, we generate a synthetic workload of FTP flows using data from

AT&T Labs' recent Internet traffic analysis [6].

3.1 Basic Demonstrations

All simulations presented in this sub-section use periodic ON-OFF foreground sources with

a period of one second and a peak rate of 4 Mbps. Since the packet size is 1000 bytes,

the inter-packet arrival time is 2 ms. All flows within the same simulation have the same

burst size and the bursts occur at the beginning of each period. The average burst delay is

used as the performance index. To introduce some randomness, the starting times of the

flows are drawn from an exponential distribution. Although such a simplistic traffic pattern

might not be an accurate simulation of Internet traffic, it makes it easier to understand and

analyze the interactions between various parameters, such as the preferred burst size (PBS),

the burst preference ratio (BPR), and the percentage of the background persistent traffic.

In Sections 3.3, 3.4 and 3.7, we show that the results obtained by using simple periodic

ON-OFF traffic are consistent with the ones obtained by using more realistic traffic sources.

13

ON-OFF TCP, Background: FTP, Burst size = 16 packets

8 background flows
4 backgorund flows
2 backgorund flows

1 backgorund flow
baseline

10 15 20 25
Preferred Burst Size (pkts)

(a)
ON-OFF UDP, Background: FTP, Burst size = 16 packets

8 backgorund flows -e—
4 backgorund flows --•—■
2 backgorund flows -«>---

1 backgorund flow *
baseline -»■—

10 15 20 25
Preferred Burst Size (pkts)

(c)

Figure 9: The average burst delay vs PBS for

flows. Note that the average delay decreases as

16 packets.

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

ON-OFF TCP, Background: UDP, Burst size = 16 packets

• N.

8 background flows -°—
4 backgorund flows ~i—-
2 backgorund flows ■&-

1 backgorund flow «
baseline -■*--

~"~~M-

0
-

-■_::.:8:.T.v:--"------- --.T.:.:.:.:--"-*—:~v ;;;::::^::^;:^:^::::::$

' "

- -

- -

- "

10 15 20 25
Preferred Burst Size (pkts)

35

(b)
ON-OFF UDP, Background: UDP, Burst size = 16 packets

8 backgorund flows -e—
4 backgorund flows --<-—
2 backgorund flows ■»—

1 backgorund flow *
baseline -»--

10 15 20 25
Preferred Burst Size (pkts)

(d)

four simulation scenarios, each having 16

the PBS increases, up to the burst size of

14

3.1.1 Impact of Preferred Burst Size (PBS)

In this section we study the impact of the preferred burst size (PBS) and the number of

background flows on the behavior of FSC. Note that when PBS is zero, FSC is equivalent

to PFQ. as the service curve reduces to a straight line intersecting the origin. We consider

16 flows sharing a congested link. The number of persistent background flows varies from

1 to 8. Figure 9 plots the average burst delay as a function of PBS in four different

scenarios using all possible combinations of foreground TCP and UDP ON-OFF traffic,

and background FTP and constant bit rate UDP traffic. In the scenarios where UDP

background is used, the aggregate rate of the background flows is set at twice the link

capacity in order to create congestion. In all cases the burst size is 16 packets, and the

burst preference ratio (BPR) is 5. As a baseline comparison, in each figure we also plot the

average burst delay of an ON-OFF flow that uses an unloaded link.

As can be seen in Figure 9, in all scenarios the average burst delay decreases as PBS

increases. This is to be expected since a larger PBS results in a larger percentage of the

burst of each flow being served at a higher priority. This is because the packets' deadlines

are computed based on the first slope ml of their service curves. Moreover, in all four

graphs, the data points for PBS equals zero is the corresponding performance points of

PFQ under the same scenarios. Clearly, FSC out-performs PFQ in providing low burst

delay.

There are three other points worth noting. First, the average delay does not decrease

after PBS exceeds the burst size of 16 packets. This is because when PBS reaches the burst

size, all packets are already served at the highest priority. We defer a discussion of the

implications of setting the PBS too large to Section 3.7.

Second, as the number of background flows increases, the relative amount of improve-

ments in the average burst delay also increases. This is because the background flows are

continuously baeklogged and therefore the deadlines of their packets are computed based

on the second slope ???2 of their service curves most of the time. This increases the relative

priority of the ON-OFF flows as the deadlines of their packets are computed based on the

first slope ml of their service curves, which is greater than m'2. Intuitively, as the percent-

age of background traffic increases, there are more "opportunities" to shift the delay from

the ON-OFF traffic towards the continuously baeklogged traffic.

15

8 ON-OFF TCPs, 8 UDPs

0.25

32 packets burst —-
16 packets burst ~<—-

8 packets burst ■■&-
4 packets burst

o
<x>
CO 0.2 .
S*

a

3 ,
CD

0.1
[> < i. ■Q..Q----G -a

0.05

,IIII

8 ON-OFF UDPs, 8 UDPs

0.25 ■

32 packets burst
16 packets burst -+—

8 packets burst -&■-
4 packets burst

o
1

0.2 .
>»
CO

0)

tfi 0.15 -
3

CO

Dl

CD > 0.1 ■ + -
^

0.05 ' -

■ iii

20 30 40 50
Preferred Burst Size (pkts)

20 30 40 50
Preferred Burst Size (pkts)

(a) (b)

Figure 10: The average burst delay of eight ON-OFF TCP/UDP flows as a function of

PBS for various burst sizes.

Third, the relative amount of improvements in the average burst delay is larger when

the foreground traffic uses UDP (see Figure 9(c),(d)) than when it uses TOP (see Fig-

ure 9(a),(b)). This is because the TCP protocol makes use of acknowledgements, which

add a fixed overhead, in terms of round-trip-time, to the burst delay. This is evident from

the "baseline'' plots, where only one flow is backlogged. It takes roughly three times longer

to send the same burst under TCP than under UDP.

Since the simulation scenarios that employ the same foreground traffic exhibit similar

trends, in the remaining of this section we will limit our study to two scenarios: ON-

OFF TCP foreground with UDP background, and ON-OFF UDP foreground with UDP

background. The reason for choosing UDP over FTP as the background traffic is to factor

out the variations due to FTP dynamics. Finally, unless otherwise specified, we only

consider the 8 foreground flows / 8 background flows case.

The next experiment illustrates the impact of the burst size on the behavior of FSC

(see Figure 10). As a general trend the average burst delay decreases as PBS increases.

As shown in Figure 10(a), when the ON-OFF traffic is TCP, the decrease in the average

burst delay is more significant for larger bursts. When the burst size is small, the burst

delay is dominated by the round-trip-time as the sender waits for acknowledgements, thus

a reduction in the packet queueing delay due to FSC does not translate into a significant

reduction of the overall burst delay. When the ON-OFF traffic is UDP, it is interesting to

16

< 0.1 ■

32 packet bursts —
16 packet bursts ——
8 packet bursts -u-
4 packet bursts ■

Burst Preference Ratio (mt/ni2) Burst Preference Ratio (m1/m2)

(a) (b)

Figure 11: The a.vera.ge burst delay versus BPR for eight flows when the ON-OFF traffic

is (a) TCP, and (b) UDP, respectively.

note that for a burst size of 32 packets, there is little improvement in the average burst

delay between PBS = 0 and PBS = 4 packets (see Figure 10(1))). The reason is that, when

PBS = 0, 32.5% of the packets are dropped, while when PBS = 4 packets, only 15 % of

the packets are dropped. Thus, although the average burst delay does not change between

PBS = 0 and PBS = 4 packets, there are actually more packets delivered when PBS = 4

packets. The percentage of dropped packets reduces to 1.5 % for PBS = 8 packets, and no

packet is dropped when PBS > 16 packets.

3.1.2 Impact of Burst Preference Ratio (BPR)

In this section we study the effects of the Burst Preference Ratio (BPR) on the behavior

of FSC. We consider two simulation scenarios: UDP foreground with UDP background,

and TCP foreground with UDP background. For each experiment we set PBS to be the

same as the burst size of the flows and vary the BPR. As shown in Figure 11, in both cases

the average burst delay decreases as the BPR increases. This is expected since increasing

BPR results in an increase of the relative priority of the bursty traffic. Also, similar to the

previous experiment (see Figure 10), FSC is more effective for larger burst sizes, especially

when the ON-OFF traffic is TCP. Again, notice that the data points for BPR= 0 are the

corresponding performance points of PFQ under the same scenarios. The advantage of

FSC over PFQ can be seen clearly.

17

ON-OFFTCP, Background: UDP ON-OFF UDP, Background: UDP

flow 8 (burst: 32 packets)
flow 7 (burst: 28 packets) ■
flow 6 (burst: 24 packets) ■
flow 5 (burst: 20 packets)
flow 4 (burst: 16 packets)
flow 3 (burst: 12 packets) ■
flow 2 (burst: 8 packets) -
flow 1 (burst: 4 packets)

30 40
Preferred Burst Size

60 30 40
Preferred Burst Size

(a) (b)

Figure 12: The average burst delay versus PBS for eight flows, with burst sizes between 4

and 32 packets, when the ON-OFF traffic is (a) TCP, and (b) UDP, respectively.

3.2 Non-homogeneous ON-OFF Sources

Now that we have demonstrated the basic features of FSC, we begin to consider more

complex traffic sources. In this section, we consider again a congested link shared by eight

ON-OFF flows and eight background UDP flows. However, unlike the previous experiments

in which all flows have bursts of the same size, in this experiment each flow has a different

burst size. More precisely, the burst size of flow i is 4 x i packets, where 1 < i < 8. Our

goal is to study how the average burst delay of each flow is affected by the preferred burst

size (PBS). The results for both TCP and UDP ON-OFF foreground traffic are shown in

Figure 12.

In the first scenario (see Figure 12(a)) the average burst delay of each flow decreases as

PBS increases. As expected, the average burst delay of a flow no longer decreases once PBS

exceeds the flow's burst size. However, in the second scenario when all flows are UDPs (see

Figure 12(b)), the average burst delay for flows with large burst sizes actually increases

initially as PBS increases. This is because more packets are being transmitted as PBS

increases. For example, when PBS = 0, 33.5% of the packets of flow 8 are being dropped,

when PBS = 8 packets, the dropping rate reduces to 15%. Finally, for PBS > 16 packets,

no packet is dropped.

18

Burst Size (pkts)

Figure 13: The average burst delay versus burst size for eight ON-OFF TCP flows, which

have burst sizes exponentially distributed with a mean of 16 packets. The flows compete

with other eight constant-bit-rate UDP flows.

3.3 Exponential ON-OFF Sources

In the previous section we have assumed that the ON-OFF traffic is periodic and that each

flow has a fixed burst size. While this setting makes it easier to understand the behavior of

FSC, it is not realistic. For this reason, we consider a more realistic ON-OFF traffic source

whose burst size is exponentially distributed. Since we intend to model WWW-like traffic,

we assume only TCP ON-OFF foreground traffic. Again we consider eight foreground and

eight background flows sharing the same link. The mean of the burst size is 16 packets. In

order to obtain more data points we increase the simulation time to 100 seconds.

Figure 13 shows the average burst delay versus burst size. In general, the average burst

delay improves as PBS increases, with the improvements being more significant for larger

burst sizes. These results are consistent with the ones presented in Sections 3.1.1 and 3.2.

The prominent peaks in the delays are likely caused by TCP timeouts as a result of packet

loss.

3.4 Mixed Application Traffic

In this section we study how effective FSC is in dealing with a mix of traffic sources. For

this we consider a more complex simulation scenario in which 20 flows share the same link.

Out of these 20, two are MPEG-1 video flows sending at their fair rate, three are Telnet

19

4(1 U 1

350
%

PBS = 0 bytes —
PBS = 2750 bytQS -+—
PBS =5500 bytes -□■■

PBS = 11000 bytes "
PBS = 22000 bytes -*--

300 \ -

250
<■-- \'\ -

200 %> ■

150 -

100 Vv~Ei\

ArV "

50 d
\

^
iibfffV-^^ i a Ut-a

Preferred Burst Size (1000 byte phts)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Frame Delay (sec)

(b) Short Flows (a) Entire Range

Figure 14: (a) The average frame delay for MPEG-1 video traffic and the average packet

delay for Telnet traffic versus PBS. In this experiment we consider two video flows and

three Telnet flows that share a link with five FTP flows and 10 background UDP flows, (b)

The frame delay distribution for the video traffic for different PBS values.

flows, five are FTP flows, and the last 10 are background UDP flows. The video flows have

a maximum frame size of 11 packets. The packet size for all flows is 1000 bytes, except for

Telnet which uses 64 byte packets.

Figure 14(a) shows the average burst delay versus preferred burst size. For the video

flows, we assume that a burst consists of one frame, while for the Telnet flows, we assume

that a burst consists of one packet. FSC is able to significantly reduce the average frame

delay for the video traffic. When PBS exceeds the maximum frame size, we obtain up to

50% improvement. However, PBS does not affect the packet delay of the Telnet traffic. This

is because the Telnet sources are sending at an extremely low rate with very small packet

size compared to the other flows. Therefore their packets are immediately sent regardless

of the value of PBS. We expect FSC to have a more significant impact on Telnet when

the fair share rate is closer to the Telnet session's rate. Finally, Figure 14(b) shows the

distribution of the frame delay for the video traffic. As expected, the tail of the distribution

decreases as PBS increases.

20

TCP/t! DP-0
Source

o

UDP-l -UDP-10

Sinks 0
Gateway Gale way

UDP-(10K+1)-UDP-(10(K+1))

0 0
Gateway ■j Gateway

TCP/UDP-0
Sink

-0
Sources •0 0--O 0--O

UDP-l UDP-10 UDP-l 1 UDP-20 UDP-(10K+1) UDP-(10(K+1))

Figure 15: Topology for analyzing the effects of multiple congested links on the throughput

of a flow. Each congested link is traversed by ten cross flows (all UDPs).

3.5 Multiple Links

In this experiment we study the behavior of FSC when a flow traverses multiple congested

links. We use the topology in Figure 15. Each congested link is traversed by 10 background

UDP flows which send at their fair rate. To reduce the effects of the number of hops on

the round-trip time we fix the end-to-end propagation delay at 10 ms. The link latencies

are then computed by dividing the end-to-end propagation delay by the number of links.

However, note that due to the queueing delay the round-trip time will still increase with

the number of hops. Finally, we assume a periodic ON-OFF flow with 16 packet bursts

that traverses all congested links.

Figure 16 shows the average burst delay of the ON-OFF flow versus PBS for 1, 2, 3 and

4 congested links. We consider two scenarios where the foreground flow is TCP or UDP.

In both cases the average burst delay decreases as PBS increases. However, as we have

observed in previous experiments (see for example Section 3.1.1), the improvements are

larger when the foreground traffic is UDP. Finally, note that the absolute improvements in

the average burst delay are basically independent of the number of congested links.

3.6 Impact on Background Traffic

In the previous experiments, we have shown that FSC is effective in reducing the average

burst delay of bursty traffic. A natural question to ask is, could this improvement in bursty

traffic performance negatively affect the background persistent traffic?

To answer this question, we construct a simulation scenario in which the bursty traffic

21

ON-OFF TCP, Background: UDP, Burst size: 16
0.18

0.16

0.14

0.12 lu

0.1

0.08

0.06

0.04

0.02

0

ON-OFF UDP, Background FTP Burst size: 16

4 congested links —
3 congested links -+— .
2 congested links --Q--

1 congested link

+ D
'"-■-. ^

'

-

10 15 20
Preferred Burst Size

10 15 20
Preferred Burst Size

(a) (b)

Figure 16: (a) The average burst delay versus PBS as the number of bottleneck links varies.

The foreground traffic consists of one ON-OFF TCP. (b) The same experiment when the

foreground traffic consists of one ON-OFF UDP.

flows take maximal advantage of the benefit provided by FSC and thus put the persistent

background traffic in the worst possible position under FSC. To achieve maximal benefit

in FSC, each bursty flow should send exactly as much data as the PBS, and the bursty

flows should be back-to-back so that each and every burst is served at the highest priority

(along the first slope) under FSC.

In this experiment, we use one persistent background TCP flow and a series of bursty

foreground UDP flows, each sending 10 packets of 1000 bytes each. Under FSC, we choose

the PBS to be 10 packets and the BPR to be 5. With a 10 Mbps link, this implies that a

burst can be served at the maximal rate of 8.33 Mbps under FSC. Therefore, to make the

bursty flows back-to-back under FSC, the inter-flow arrival time needs to be 9.6 ms. Using

this traffic arrival pattern, we compare the performance of FSC against PFQ (FSC with

PBS = 0). Table 1 shows the performance of the bursty flows and the TCP flow under the

two different algorithms.

Under FSC, the throughput of the TCP flow is exactly as expected (one-sixth of 10

Mbps) since the UDP bursty flows are always being served at the highest priority and

consume 8.33 Mbps. What is somewhat surprising is that the TCP throughput is essentially

unchanged under PFQ even though the bursty flows are served at the same priority as the

TCP flow. This seemingly contradictory result is simple to explain. Under FSC, only one

22

Average burst delay TCP throughput

FSC

PFQ

21.81 ins

54.79 ms

1.66 Mbps

1.67 Mbps

Table 1: Comparison of background TCP throughput using a FSC worst case flow arrival.

bursty HDP flow is backlogged at any given time; in contrast, under PFQ, five bursty

UDP flows are simultaneously backlogged throughout the simulation (except during the

very beginning) because the bursty flows are no longer served at a special high priority

and they take five times longer to finish. Therefore, with 5 UDP flows and one TCP flow,

the TCP flow simply gets its fair share under PFQ, which is 1.67 Mbps. The reason why

this is slightly larger than the TCP throughput under FSC is that during the beginning of

the simulation, there are less than 6 flows simultaneously backlogged. This result shows

that even under a worst case bursty flow arrival scenario, FSC provides virtually the same

performance to a persistent TCP flow as PFQ.

Without any adverse effect on the performance of the TCP flow, FSC is again able to

bring the average burst delay of the UDP flows down to 22 ms, of which 10 ms is the link

propagation delay. In other words, the queueing delay is reduced by almost a factor of 4

compared to PFQ.

3.7 Performance for WWW traffic

So far, we have shown that FSC can reduce the average delay of bursty traffic without ad-

versely affecting the background persistent traffic. The improvements are most pronounced

when the number of background sessions is large and when the PBS corresponds to the

burst size of the sessions in the foreground. However, they leave the question of how to

configure FSC for realistic traffic largely unanswered.

As we increase the preferred burst size (PBS), we increase the percentage of flows and

bytes that will be completely covered by the PBS. The byte-volume of traffic that is not

covered by the PBS determines the amount of background traffic. As we have shown earlier,

the delays of short bursts are reduced as the amount of background traffic increases. Thus,

23

1000 10000 100000
Flow Length [Bytes]

10000 15000
Flow Length [Bytes]

(a) Entire Range (b) Short Flows

Figure 17: Cumulative probability distribution of flow lengths and their portion of the total

byte volume.

increasing the PBS will reach a point of diminishing and then negative returns when less

traffic exists in the "background". At the limit, if we set the PBS to be greater than or

equal to the length of the longest flow, all data will be serviced along the first slope of the

service curve and FSC will again be equivalent to PFQ. An analogous problem exists for

the BPR. As in the limit, if we set the BPR very large, background traffic could see no

service while bursts are being served. Thus, to maximize the benefit of FSC, we would like

to choose a PBS that encompasses a relatively large percentage of the flows while covering

a relatively small percentage of the byte volume and choose a BPR that can significantly

reduce the delays of these bursts without adverely affecting background traffic.

In order to answer these questions, we employ flow length data from AT&T Labs' recent

Internet traffic analysis [6]. Figure 17 shows the probability that a host-level flow has up

to x bytes, and the contribution of these flows to the cumulative byte count. For example,

while 60% of the host-level flows are less than 5000 bytes in length, these flows constitutes

approximately only 7% of the byte volume of the trace. For this traffic distribution, choosing

a PBS of x bytes will completely cover all the flows up to x bytes in length, and their

corresponding byte volume. The actual coverage will be larger than this, as longer lived

flows that consist of periodic short bursts may transmit at a low enough sustained rate so

that their entire transmission is transmitted along the first slope.

To determine how to configure FSC's parameters for WWW traffic, we generate a

24

Group Average Flow Length

0 61

1 239

2 539

3 1349

4 2739

5 4149

6 6358

7 10910

8 19878

9 90439

Table 2: Average flow length per group (bytes).

synthetic workload of FTP traffic, whose flow lengths are chosen to model this distribution.

We divide the flows into 10 groups, each representing 10 % of the flows, and compute the

average flow length within each group, as shown in Table 2. Based on the average flow

length of 13. 666 bytes, we generate a synthetic workload of FTP traffic via a Poisson

process with a mean flow arrival rate corresponding to 95% of the link capacity and select

among the 10 groups uniformly to determine the flow length. We run these simulations

for 1 minute of simulation time over a 10Mbps link with a 2 ms latency while setting

the maximum segment size of the TCP sources to 576 bytes. Figure 18 plots the average

transfer time experienced by flows in groups 7 through 10 as we vary the BPR from 1 to

10 and the PBS from 0 KB to 100KB.

Note that all points with PBS = 0 and/or BPR = 1 correspond to PFQ. Groups 0

through 3 are sufficiently small and short lived that PFQ and FSC have roughly equivalent

performance, while groups 4 through 6 have analogous improvements to those shown here.

While our earlier results have shown minimal impact on background traffic, Figure 18 (d)

shows that Group 10 in fact sees a noticable impact with large PBS settings. The reason

is that the buffer resources in this system, while shared, are finite. In this study, when

the buffer resources are depleted, a packet is pushed out from the longest queue [4]. Thus,

the longest flows (Group 10) will incur the losses when the link becomes congested. As

25

transfer time (sec)

PBS (KB)

transfer time(sec)

0.15

PBS (KB)

(a) 60 to 70th Percentile Flows
(b) 70 to 80th Percentile Flows

transfer time (sec'

0.25

PBS (KB)

transfer time (sec)

1.2

PBS (KB)

d) 90 to 100th Percentile Flows

(c) 80 to 90th Percentile Flows

Figure 18: The average flow transfer time as a function of PBR and PBS for simulated

WAN groups

our measurements include all packets required to complete the FTP transfer, this explains

the impact. Because this practical constraint cannot be avoided in actual systems, this

encourages us to configure the system with conservative settings.

While a flow's delay is minimal when its length corresponds to the PBS, minimal addi-

tional improvements are seen with BPR greater than 4. The larger the PBS, the higher the

percentage of flows that are entirely covered by the first slope and the performance returns

to that of PFQ. For this simulation set, setting BPR = 4 and PBS = 6000 bytes reduces

transfer times of most groups (some by over 50%) while only increasing the transfer time

of the largest group by 1%.

26

4 Implementation Issues

The implementation complexity of a per-flow queueing system can be divided into three

separate tasks: classification, buffer management, and the scheduling itself. While these

components are usually discussed in the context of networks that provide performance

guarantees to individual flows, the complexity is significantly reduced when they are ap-

plied for best-effort traffic. Traffic requiring bandwidth and/or delay guarantees need to

employ a signaling mechanism to request resource capacity from the network. In order

to identify these guaranteed flows, the classification module needs to uniquely map traffic

into their allocated queues. As individual guaranteed flows have unique demands for sys-

tem resources, the scheduling and buffer management options for the queues need to be

individually programmed.

While this flexibility is required for reserved traffic, best effort applications have much

looser constraints. Since our goal is equal treatment for individual flows, a mechanism

should be employed to persistently map each individual flow into its own queue. Perfect

isolation and fairness between flows, while desirable, is not as critical for best effort applica-

tions. McKenney proposed identifying individual flows by means of a probabilistic hashing

algorithm in [12]. If the number of queues is less than the number of active flows, collisions

will occur. The hash key can periodically be changed to alleviate the unfairness caused

by these collisions. Content Addressable Memories (CAMs) or other devices capable of

dynamically binding flows to queues could also be employed. However, it is preferable that

the binding be persistent. Otherwise a user could exploit the fact that bursts up to the

PBS receive an increased share when arriving into a newly assigned queue. We note that

these or other mechanisms used for flow identification could also be used for the FRED [11]

scheme, and vice versa.

For any per-flow management scheme, there is an 0(N) space requirement to maintain

the state for each flow. As noted in [22], with today's memory prices, and historic trends, it

appears that this is an insignificant factor in the cost of products for the features that can be

provided. A more relevant concern is the amount of computational resources required per-

packet to perform the scheduling. The implementation cost of a scheduling algorithm can

be divided into three components: (1) computation of the system virtual time function, (2)

calculation of the session timestamps used for scheduling, and (3) sorting the timestamps

by the specified criteria. The FSC system virtual time function is simply the average of the

largest and smallest start time of any flow in the system. The timestamps of the sessions

in FSC can be sorted using the packet scheduling architecture presented by Stephens et

al [19]. The one remaining issue we must address is the calculation of the timestamps used

for scheduling.

Recall that in both PFQ and FSC, the virtual time of a flow, vt(t), is computed as

V~l{wj(t)), where iut(t) is the amount of service received by flow i by time t, and V] is the

virtual curve of flow i. The main difference between PFQ and FSC is that while in PFQ the

virtual curve is a linear function, i.e., V;(f) = 4>i ' ^ in FSC it is a two-piece linear function

given by Eq. (5). As a result, computing the virtual time in FSC requires an additional

comparison to detect whether Wj(t) has exceeded V;\s inflection point. Another difference

is that in FSC we need to update the virtual curve according to Eq. (5). The important

thing to note here is that this operation is done only when a flow becomes backlogged, and

as shown in [21], it takes constant time. Thus, implementing FSC is just marginally more

complex than PFQ.

5 Related Work

Scheduling support for providing low burst delay has been studied in the context of ATM

VBR traffic scheduling. In [10], Lam and Xie have proposed burst scheduling, which

includes a new VBR traffic flow model based on bursts. Under this model, each burst is

described by the burst size and the burst rate. This information is then carried in the

first packet of a burst to provide resource requirement hints to the scheduler. Admission

is performed at the burst level. In the event of an admission control failure, the entire

burst is discarded. For packets admitted into the buffer, the scheduler uses a virtual clock

server to serve the current admitted bursts at their burst rates. These mechanisms ensure

that admitted bursts experience low delay. In addition, due to statistical multiplexing, it is

possible to maintain the burst drop rate to a minimum. When a zero loss rate is required, a

reservation can be made using the peak burst rate. Although burst scheduling is aimed to

guarantee burst delay for VBR traffic in ATM, the ideas can certainly be applied to other

28

networking technologies such as IP.

The FSC algorithm differs from burst scheduling in several ways. First of all, burst

scheduling was designed for supporting real-time traffic in a connection-oriented network.

It utilizes signaling information carried in packets and performs admission control. In

contrast, FSC does not need explicit signaling to specif)' the beginning and the end of a

burst and can give bursty traffic a lower burst delay. Secondly, burst-scheduling uses the

Virtual Clock service discipline. While this may be acceptable for video traffic with certain

intrinsic rates, Virtual Clock does not support adaptive bursty data traffic well due to the

lack of the fairness property. FSC, on the other hand, provides long term fairness similar

to PFQ algorithms. In this way, it allows statistical sharing among competing flows, and

at the same time provides protection. Thus, FSC is more suitable for the diverse traffic

mix environment in today's Internet.

Implementing per-flow scheduling in isolation does not necessarily lead to improved per-

formance over FIFO forwarding without appropriate buffer management. This is because

the scheduler can only operate on packets that are stored in the system buffers. If the buffer

management is FCFS, a flow can monopolize the link. To prevent this lockout behaviors,

Davin and Heybey [4] proposed to push-out a packet from the longest queue. A recent

simulation study [22] evaluated the benefits of per flow scheduling and buffer management.

They found that both fair allocation of buffer and link capacity improve application level

fairness. Furthermore, they illustrated that the benefits were complementary. The buffer

management algorithm with the best performance was a push-out scheme that chose the

packet from the front of the longest queue. They picked the "front" packet in order to

improve the TCP feedback and eliminate the possibility of losing a later acknowledgement.

Since dropping the actual first packet from the queue would require complex interactions

with the scheduler, they actually dropped the second packet. We have also adopted this

buffer management scheme in our study.

6 Summary

In this paper we investigate the Fair Service Curve (FSC) algorithm in the context of sup-

porting best-effort service. We show that it out-performs PFQ algorithms under a variety

29

of traffic conditions. In particular, FSC can significantly improve the delay performance

for bursty traffic without negatively affecting the throughput performance for continuously

backlogged traffic. We have conducted extensive simulation experiments that involve a

large variety of traffic sources, such as periodic and exponentially distributed ON-OFF

sources, MPEG-1 video sources, FTP, and Telnet. As a general trend the average burst

delay decreases as:

1. the Preferred Burst Size (PBS) increases. This is because the portion of the burst

which is served according to the first slope of the service curve increases. The only

exception is when the bursty traffic is UDP and the number of packets successfully

transmitted increases with PBS. Note that although the average burst delay might

not decrease in this case, the flow still gets better service as fewer packets are being

dropped.

2. the Burst Preference Ratio (BPR) increases. This is because the relative priority of

the packets served according to the first slope of the service curve increases.

3. the number of background continuously backlogged traffic flows increases. Since the

traffic of the backlogged flows is served according to the second slope of the service

curve, the larger the number of background flows, the higher the relative priority of

the traffic that is served according to the first slope. Intuitively, more background

traffic provides more "opportunities" to shift the delay from the bursty traffic towards

the background traffic.

In order to determine practical settings for FSC for best-effort traffic, we generated a

synthetic workload of WWW traffic. This exposed the limitations of setting the PBS and

BPR too large for a given traffic pattern. For this set of web traffic traces, setting BPR = 4

and PBS = 6000 Bytes provides a significant reduction in the transfer time of the majority

of flows without noticable impact on the background traffic.

Our results show that it is possible to significantly improve the delay of short and bursty

flows without affecting the long term throughput of persistent flows. Since compared to

PFQ, the added complexity to implement FSC is minimal, we conclude that FSC represents

a viable alternative to support best effort traffic in today's Internet.

30

7 Acknowledgement

We would like to thank Anja Felclmann, Jennifer Rexford. and Ramon Caceres for providing

us with the Internet traffic distribution data from their study.

References

[1] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In

Proceedings of IEEE INFOCOAE96, pages 120-128, San Francisco, CA, March 1996.

[2] R..L. Cruz. Service burstiness and dynamic burstiness measures: A framework. Journal

of High Speed Networks, 1(2):105-127, 1992.

[3] R.L. Cruz. Quality of service guarantees in virtual circuit switched network. IEEE

Journal on Selected Areas in Communications, 13(6):104S—1056, August 1995.

[4] J. Davin and A. Heybey. A simulation study of fair queueing and policy enforcement.

Computer Communication Review, 20(5):23-29. October 1990.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing al-

gorithm. In Journal of Internetworking Research and Experience, pages 3-26, October

1990. Also in Proceedings of ACM SIGCOMM'89, pp 3-12.

[6] A. Felclmann, J. Rexford, and R. Caceres. Efficient policies for carrying web traffic

overflow-switched networks. IEEE/ACM Transactions on Networking, pages 673-685,

December 1998.

[7] S.J. Golestaui. A self-clocked fair queueing scheme for broadband applications. In

Proceedings of IEEE INFOCOM'94, pages 636-646, Toronto, CA, April 1994.

[8] P. Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A scheduling algorithm

for integrated services. In Proceedings of the ACM-SIGCOMM 96, pages 157-168,

Palo Alto, CA, August 1996.

31

[9] V.P. Kumar, T.V. Lakshman, and D. Stiliadis. Beyond best effort: Router archi-

tectures for the differentiated services of tomorrow's internet. IEEE Communcations

Magazine, May 1998.

[10] S. S. Lam and G. G. Xie. Burst scheduling networks, June 1998. Technical Report

TR-94-20 (3rd revision), University of Texas at Austin.

[11] D. Lin and R. Morris. Dynamics of random early detection. In Proceedings of ACM

SIGCOMM '.97, pages 127-137, Cannes, France, October 1997.

[12] P. McKenney. Stochastic fair queueing. In Proceedings of IEEE INFOCOM'90, San

Francisco, CA, June 1990.

[13] Ucb/lbnl/vint network simulator - ns (version 2).

[14] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control

- the single node case. In Proceedings of the INFOCOM'92, 1992.

[15] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control

- the single node case. ACM/IEEE Transactions on Networking, l(3):344-357, June

1993.

[16] S. Suri and G. Varghese and G. Chandranmenon. Leap Forward Virtual Clock. In

Proceedings of INFOCOM 91, Kobe, Japan, April 1997.

[17] H. Sariowan, R.L. Cruz, and G.G. Polyzos. Scheduling for quality of service guaran-

tees via service curves. In Proceedings of the International Conference on Computer

Communications and Networks (ICCCN) 1995, pages 512-520, September 1995.

[18] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. In

Proceedings of SIGCOMM'95, pages 231-243, Boston, MA, September 1995.

[19] D.C. Stephens, J.C.R. Bennett, and H.Zhang. Implementing scheduling algorithms

in high speed networks. IEEE Journal on Selected Areas in Communications-.Special

Issue on Next-generation IP Switches and Router, 17(6):1145-1158, June 1999.

32

[20] D. Stiliadis and A. Verm a. Design and analysis of frame-based fair queueing: A new

traffic scheduling algorithm for packet-switched networks. In Proceedings of ACM

SIGMETRICS'96, May 1996.

[21] I. Stoica, H. Zhang, and T.S.E. Ng. A Hierarchical Fair Service Curve algorithm for

link-sharing, real-time and priority services. In Proceedings of the ACM-SIGCOMM

.97, Cannes, France, August 1997.

[22] B. Suter, T.V. Lakshman, D. Stiliadis. and A. Choudhury. Design considerations for

supporting tcp with per-flow queueing. In INFOCOAE98, San Francisco, CA, March

1998.

[23] G. Xie and S. Lam. Delay guarantee of virtual clock server. IEEE/ACM Transactions

on Networking, 3(4):683-689, December 1995.

[24] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching networks.

In Proceedings of ACM SIGCOMM'90. pages 19-29, Philadelphia, PA, September

1990.

33

