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Abstract 

Packet Fair Queueing (PFQ) algorithms are the most popular and well studied scheduling 

algorithms for integrated services networks for two reasons: (1) With reservation, they 

can provide per-flow encl-to-end delay guarantees for real-time traffic flows. (2) Without 

reservation, they can provide protection among competing best-effort flows while allowing 

dynamic bandwidth sharing. However, PFQ algorithms have two important limitations. 

The first one is that, since only one parameter (a weight) is used to allocate resource for each 

flow, there is a coupling between delay and bandwidth allocation. This can result in network 

under-utilization when real-time flows have diverse delay and bandwidth requirements. The 

second and less well known limitation is that, due to the instantaneous fairness property 

of PFQ algorithms, when used for best-effort service, PFQ algorithms favor continuously- 

backlogged throughput-oriented applications such as FTP over bursty applications such as 

WWW and telnet. 

In a previous study [21], we proposed the Fair Service Curve (FSC) algorithm which enables 

more flexible delay and bandwidth allocation for real-time traffic through the use of non- 

linear service curves. In this paper, we show that, when used for best-effort traffic, FSC 

can improve performance of delay-sensitive bursty applications without negatively affecting 

the performance of throughput-oriented applications. 



1     Introduction 

With the rapid growth of the Internet and the advancement of router technologies, we see 

two important trends. On one hand, best-effort data traffic continues to account for the 

majority of the Internet's traffic. On the other hand, advanced routers with sophisticated 

queue, and buffer management capabilities are becoming available. While there is a huge 

body of literature on using advanced buffer management and packet scheduling algorithms 

to support real-time continuous media traffic, there is relatively less work on how to exploit 

these algorithms to better support best-effort data traffic. This paper is aimed to address 

the latter issue. 

Packet Fair Queueing (PFQ) algorithms (i.e., Weighted Fair Queueing [5, 14] and its 

many variants [1, 7, 8, 18, 16, 20, 23]) have become the most popular algorithms imple- 

mented in today's advanced switches and routers [19, 9] because these algorithms provide 

support for both real-time and best-effort traffic. With bandwidth reservation, PFQ al- 

gorithms are able to provide end-to-end delay guarantees. Without reservation, these 

algorithms can provide best-effort service since they can allocate bandwidth fairly among 

competing flows, protecting well-behaved flows against ill-behaved ones. 

A well known limitation of PFQ is that it couples delay and bandwidth allocation, as 

there is only one parameter, a weight, that specifies the resource allocated to a flow. This 

weight affects both the delay and bandwidth properties of the flow. Consequently, under 

PFQ, it is not possible to differentiate between two flows that ha.ve the same bandwidth 

but different delay requirements without over-reservation. This may result in low network 

utilization when real-time flows have diverse delay and bandwidth requirements. To address 

this problem, we proposed the Fair Service Curve (FSC) [21] algorithm which has the ability 

to decouple delay and bandwidth allocation. This is achieved by properly assigning service 

curves of different shapes to different flows - concave curves for flows with tight per-packet 

delay bounds and convex curves for flows with less stringent per-packet delay bounds. This 

flexibility allows FSC to achieve higher resource utilization for real-time traffic than PFQ. 

When used for best-effort service, PFQ favors continuously backlogged traffic over short 

lived bursty traffic. This is because PFQ is designed to achieve instantaneous bandwidth 

fairness for all flows, irrespective of their delay requirements. In reality, different types of 
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Figure 1: Improving burst delays 

best-effort data traffic, such as Telnet, FTP, and WWW, have different characteristics and 

thus performance objectives. For example, while the burst delay is the performance index 

for interactive services, the average throughput is the performance index for bulk transfer 

applications such as FTP. The key observation is that, since the performance index of 

bulk-transfer applications is determined over relatively long time scales, we may be able 

to exploit these applications' insensitivity to short term service variations to improve the 

performance of delay sensitive bursty applications. 

To illustrate how this may be realized, consider a 2 Mbps link shared by one long flow 

that transfers 1 MB, and several short flows that transfer 50 KB each. Assume that the link 

is managed by PFQ and each flow has a weight of one. For simplicity, assume that all flows 

are continuously backlogged, and that once a short flow finishes, another short flow starts 

immediately. Thus, there are exactly two flows, the long flow and a short flow, backlogged 

at any given time. As a result each backlogged flow is allocated 1 Mbps. Therefore, as 

shown in Figure 1 (a), the long flow takes 8 seconds to finish, while a short flow takes 0.4 

seconds to complete. Now consider the case where all short flows are assigned three times 

the weight of the long flow. Each short flow now receives 1.5 Mbps, which consequently 

reduces its latency by 33% to 0.27 seconds. At the same time, the transfer time of the long 

flow does not change. Thus, by assigning different weights, it is possible to significantly 

speed-up short transfers without affecting the longer flow. 

In order to achieve this performance, a system would either need to estimate the length 

of a flow when it becomes backlogged, or dynamically reduce the flow's weight after the 

length of the transfer exceeds a certain threshold. While it is unclear how this could be 

implemented in a system based on PFQ, the service curve framework in an FSC system 

enables us to clearly specify the burst threshold and the higher relative share that these 



bursts should receive. This enables FSC to provide better performance for delay-oriented 

bursty flows than PFQ, while maintaining the same long term throughput for persistent 

flows. 

In this paper, we show that FSC can out-perform PFQ in supporting best-effort traffic, 

even in the case when we assign the same service curve to all flows.1 We begin with 

simplified traffic sources in order to more easily illustrate the parameter selection for FSC 

when used for best effort traffic. We then show that these basic results remain applicable 

when the sources are more diverse, as is the case in actual data networks. In order to 

quantify the impact on long-lived throughout-oriented traffic sources, we use an experiment 

where the short burst}' traffic sources are specifically designed to extract the maximal 

benefit from FSC. Finally, we use a synthetic workload of FTP flows whose lengths are 

drawn to model the AT&T Internet traffic distributions [6] in order to analyze the tradeoffs 

in parameter selection for realistic data traffic. 

The rest of this paper is organized as follows. In Section 2, we give an overview of 

PFQ algorithms, the service curve model, and the FSC algorithm, and discuss the use of 

FSC for best-effort service. We present and discuss our simulation results in Section 3, and 

expose some implementation issues in Section 4. Related work is discussed in Section 5, 

and finally we summarize our findings in Section 6. 

2    Packet Fair Queueing (PFQ) and Fair Service Curve 

(FSC) Algorithms 

In this section, we first explain the central ideas behind various PFQ algorithms. Then we 

present the concepts behind service curve based algorithms and describe the Fair Service 

Curve (FSC) algorithm we use in this paper for supporting best-effort traffic. 

'Although this requires per flow queueing, it does not require the scheduler to distinguish between 

different types of flows. 



2.1    PFQ Algorithms 

Packet Fair Queueing (PFQ) algorithms are based on the GPS model [15]. In GPS, each 

flow i is characterized by its weight, 4>i- During any time interval when there are exactly n 

non-empty queues, the server serves the n packets at the head of the queues simultaneously, 

in proportion to their weights. 

Each PFQ algorithm maintains a system virtual time vs(-) which represents the nor- 

malized fair amount of service that each flow should have received by time t. In addition, it 

associates to each flow ■/ a virtual start time V{{-), and a virtual finish time /,;(•). Intuitively, 

Vi(t) represents the normalized amount of service that flow i has received by time t, and 

fi(t) represents the sum between Vi(t) and the normalized service that flow i should receive 

for serving the packet at the head of its queue (determined by the flow's weight cf)t). The 

goal of all PFQ algorithms is then to minimize the discrepancies among u;(£)'s and vs(t). 

This is usually achieved by selecting for service the packet with the smallest Vi(t) or fi(t). 

The system virtual time is primarily used to reset Vi(t) whenever an unbacklogged flow i 

becomes backlogged again. More precisely, 

Vi(t)     =     < 
m&x(vs(t),Vi(t—))        i becomes backlogged 

vdt-) + ft Pz finishes 

Mt)    =   «•■(*)+ ^" (2) 
0« 

where ^— is the time instant before time t, pf represents the k-th. packet of flow i, and If 

represents its length. An example of a system virtual time function vs(t) is the minimum 

virtual finish time among all backlogged flows [7]. Various PFQ algorithms differ mainly 

in their computation of the system virtual time function and the packet selection policy. 

Intuitively, PFQ allocates to each backlogged flow a share of service in proportion to its 

weight. This way PFQ achieves instantaneous fairness for backlogged flows. In addition, if 

a flow previously received service beyond its (weighted) fair share, it will not be punished in 

the future. For real-time traffic using reservation, this enables PFQ to provide a bandwidth 

guarantee to these flows. For best-effort traffic, this enables PFQ to provide fair service 

among the flows while protecting them against potentially malicious flows. 

While the instantaneous fairness property is the basis of how PFQ provides these fea- 

tures, it directly couples the delay and bandwidth allocation of the flows PFQ schedules 
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Figure 2: Sample service curves. 

among. More precisely, if flow i is assigned a rate </>,, then it can be shown that the worst 

case queueing delay incurred by a packet pf is 

* , t -n. 
(3) 

6;       C 

where lmax represents the maximum size of a packet, and C represents the capacity of 

the output link. Thus, the only way to reduce the worst case delay is to increase the 

reservation d>{. However, this may lead to inefficient resource utilization in the presence 

of low-bandwidth low-delay flows. As an example, consider a 64 Kbps audio flow with 

160 byte packets. To achieve a worst case delay of 5 ms, according to Eq. (3), one should 

reserve2 256 Kbps, which is four times more than the flow's bandwidth requirements! 

2.2    Service Curve Model 

To address this problem, Cruz has proposed a new service model, called service curve 

(SC) [2, 3], in the context of real-time guaranteed traffic. In this model, each flow is 

associated with a service curve 5',-, which is a continuous non-decreasing function. A flow ?' 

is said to be guaranteed a service curve .$',-(•), if for any time t2 when the flow is backlogged, 

there exists a time t-x < t2, which is the beginning of one of flow ?'s backlogged periods (not 

necessarily including t2), such that the following holds 

Siih-t^^lüiituh), (4) 

2Note that here we ignore the second term l-mQS-, as C is usually very large. 



where 'W^tiJ^) is the amount of service received by flow i during the time interval (ti,t2]- 

For packet systems, we restrict t2 to be packet departure times. One algorithm that 

supports service curve guarantees is the Service Curve Earliest Deadline first (SCED) 

algorithm [17]. SCED can guarantee all the service curves in a system if and only if 

E; Si{t) <C-t holds for any t > 0, where C is the output link capacity. 

Even though any continuous non-decreasing function can be used as a service curve, 

for simplicity, usually only two types of non-linear service curves are considered: two-piece 

linear concave curves (Figure 2(a)), and two-piece linear convex curves (Figure 2(b)). A 

two-piece linear service curve is characterized by four parameters: ???!, the slope of the 

first segment; ???2, the slope of the second segment; ß, the y-projection of the intersection 

point of the two segments; d, the x-projection of the intersection point of the two segments. 

Intuitively, m2 specifies the long term throughput guaranteed to a flow, while ml specifies 

the rate at which a burst of size ß is served. Note that a real-time flow served by PFQ 

can be thought of as having a straight-line service curve that passes through the origin and 

have a slope of the guaranteed rate r,. 

By using two-piece linear service curves, both delay and bandwidth allocation are taken 

into account in an integrated fashion, yet the allocation policies for these two resources are 

decoupled. This increases the resource management flexibility and the resource utilization 

inside the network. To illustrate, consider again the example described in Section 2.1. 

In SCED, the audio flow can be assigned a service curve with the following parameters: 

ml = 256 Kbps, m2 = 64 Kbps, ß = 160 bytes, and d = 5 ms. If the packet arrival 

process is periodic, then it can be shown by using Eq. (4) that this service curve guarantees 

a worst case delay of 5 ms. However, unlike PFQ which requires 256 Kbps of bandwidth 

to be reserved to achieve the same delay, with SCED the long term reserved bandwidth is 

only 64 Kbps. This creates the opportunity to allocate the remaining bandwidth to other 

delay-tolerant traffic, such as FTP. 

The main drawback of SCED is that it punishes a flow that has received service beyond 

its service curve. While the SCED algorithm can guarantee all the service curves simulta- 

neously, it does not have the fairness property. As an example, consider two TCP sessions 

sharing a 10Mbps link scheduled by SCED which start up two seconds apart. Both sessions 

are assigned the same service curve with ml four times larger than m2 and the inflection 
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Figure 3: Measured bandwidth of two TCP sessions, startup 2 seconds apart under SCED. 

point occurs at ß = 6000 bytes. Figure 3 plots the bandwidth received by these two sessions 

under SCED. Under SCED, once the second session starts up, the first session is denied 

any service for approximately 2 seconds. Such behavior clearly discourages adaptive flows 

from sharing the available link capacity. This is the same type of behavior as that exhibited 

by the well known Virtual Clock (VC) service discipline [24]. In fact, if ???.l = m'2, SCED 

reduces to VC. 

A related problem is that, in SCED, the service curve is defined in terms of absolute 

rates and real time. This makes sense only in a system that employs admission control. In 

a best effort system, what matters is relative performance. However, in SCED, the relation 

between two service curves does not uniquely determine the service received by each flow. 

Thus, given the same arrival process, scaling the service curves of the flows will result in 

different service schedules. As a result the absolute values of the weights or reservations 

cannot be arbitrarily set. Furthermore, the fact that these values have no special meaning 

in the context of best effort traffic makes their choice particularly difficult. In contrast, 

in PFQ and Fair Service Curve (FSC), scaling the parameters of each flow by the same 

amount does not change the service received by each flow. This characteristic simplifies 

significantly the process of assigning service curves for best effort traffic. 

2.3    Fair Service Curve Algorithm 

To address these problems, we proposed a new service discipline, called Fair Service Curve 

(FSC) in [21].   The main difference between FSC and SCED is that under FSC a flow 
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Figure 4: Measured bandwidth of two TCP sessions, startup 2 seconds apart under FSC. 

that has received excess service is not punished when other flows become backlogged. As 

noted above, this is also what differentiates PFQ and VC algorithms.3 To illustrate the 

difference in fairness between SCED and FSC, consider again the scenario of two TCP 

with staggered start times sharing a 10Mbps link. Figure 4 plots the bandwidth received 

by these two sessions under FSC. Contrasted with SCED (Figure 3), FSC fairly allocates 

bandwidth to both sessions once the second session has started up. 

The pseudocode for FSC is shown in Figure 5 and 6. Overall, FSC is very similar to 

PFQ in that it also uses the concept of virtual time and a set of virtual start and finish times 

for each flow. FSC uses the smallest virtual start time (vi(t)) as the selection criterion, 

and vs(t) = (vitmin(t) + Vitmax(t))/2 as the system virtual time function, where vi}min(t) and 

Vi,maAt) are the minimum and maximum virtual start times among all backlogged flows at 

time t. 

However, the difference between FSC and PFQ is in the computation of the time stamps. 

In PFQ, 4>t can be viewed as the slope of a straight line service curve. In FSC, however, 

since service curves can be non-linear, we cannot compute the timestamps based on the 

slope of a service curve only. To compute the timestamps, we need to remember what 

part of the service curve was used to compute the timestamp of the previous packet. 

We call the remainder of the service curve the virtual curve Vi(-), it is defined such that 

Vl(t) = y-1(wi{t)), where wi(t) is the total amount of service received by flow i by time 

3However, note that while both PFQ and VC can provide the same real-time guarantees, this is not true 

for FSC and SCED. A detailed discussion and a variant of FSC that is able to provide the same real-time 

guarantees as SCED is given in [21]. 
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receive_packet(?',p) /* flow i has received packet p */ 

enqueue( queue j, p); 

if (/ ^ A) /* if i was not backlogged */ 

update_v(?',p); /* update V(-) for i */ 

A = A U {?}; /* mark- i backlogged */ 

get_packet() /* get next packet to send */ 

i = min,,,. A; /* select backlogged flow with minimum virtual time */ 

p =dequeue(?); 

update_v(/,p) 

if (cjueue; = 0) 

A = A\{i}; 

send .packet (p): 

Figure 5: The Fair Service Curve (FSC) algorithm. The receive_packet function is exe- 

cuted every time a packet arrives; the get_packet function is executed every time a packet 

departs (to select the next packet to send). 

t. When a flow i first becomes backlogged, \'i(v) is initialized to the service curve Si(t). 

Thereafter, every time a flow becomes backlogged, the update.VC function is called in 

which Vj{v) is updated as follows: 

Vi(v) = mm(Vi(v), S,(v - vs(t)) + lutf)),  V v > vs(t), (5) 

This update process is illustrated graphically in Figure 7. Note that when the service 

curve Si{t) is a straight line with slope <^,, from Eq. (5) we have Vi(v) = 4>{V. Then, the 

virtual time Vi(t) is simply V'"_1(t(.',:(i)) = Wi{i)/4>i, which is exactly the virtual time of flow 

i in PFQ algorithms. 

2.4    Fair Service Curve for Best-Effort Service 

The service curve model can easily be extended for best-effort service when no reservation 

or admission control is used.    In this case, the absolute values of ml and m2 are not 

9 



update_v(?,p) 

if (?' $_ A) /* is flow i backlogged '? */ 

V; = max(vi, vs) 

update_VC(i); 

if (backlogged(z) = TRUE) 

return; 

else 

Wi = «»f + length(p); 

vi = Vr1(wi); 

Figure 6: The function which updates the virtual time curves and the virtual times in FSC. 

VS(t) V 

Figure 7: Illustration of the update of the virtual curve. 

important, as they specify only the relative service priorities between bursts of size less 

than ß and the continuously backlogged traffic in the system. We denote the ratio ml/m2 

as the Burst Preference Ratio (BPR) and ß as the Preferred Burst Size (PBS). 

Since admission control is not necessary for best effort service, we can assign every flow 

in the system the same service curve 5(2), a concave curve similar to the one in Figure 2(a). 

The key performance tuning parameters are the burst preference ratio (BPR) rnl/m2, and 

the preferred burst size (PBS) ß. Intuitively, if a flow has idled for a long enough period of 

time, when it becomes backlogged again its first ß bytes are served at a rate proportional 

to ml. However, if the flow remains backlogged for more than ß bytes, its remaining bytes 

are served at a rate proportional to m2, i.e., BPR times lower than ml. Thus, if we set ß 

to accommodate the most common burst sizes generated by applications such as WWW, 

10 
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Figure 8:  The packet arrival and departure times of a flow, with of 32 packet bursts, for 

various service curves. 

we can provide a significantly lower delay for these applications than it is possible with 

PFQ. 

Note that, unlike PFQ, FSC has "memory'' in the sense that it can differentiate between 

flows that have previously idled and flows that are continuously backlogged and treat them 

differently. Also, when the system is congested, the long term rate of a flow, bursty or not, 

is still bounded by the fair share rate because in the long run every flow is serviced at a 

rate proportional to m2. Thus, while packet delay for bulk transfer type applications such 

as FTP may be increased momentarily, they always receive at least their fair share in the 

long run. Finally, it is interesting to note that when BPR = 1, or when PBS = 0, FSC 

degenerates to PFQ. 

To give some intuition on how FSC behaves, consider a link shared by 15 constant-bit- 

rate UDP flows and one ON-OFF flow with a burst size of 32 packets. Figure 8 plots the 

arrival and departure times for each packet belonging to two consecutive burst periods of 

the ON-OFF flow. The plot shows the impact of the preferred burst size (PBS) in packets 

on the departure times, and implicitly on the packet queueing delay, which is given by the 

horizontal distance between a packet's arrival time and its departure time. We associate 

to all flows the same service curve.   In all cases the burst preference ratio (BPR) is 5. 

11 



As expected, the delay decreases as PBS increases. Note that the packet departure times 

follow accurately the shape of the service curve associated with the flows. 

3    Simulation Results 

In this section we evaluate the FSC algorithm through extensive simulations. All simula- 

tions are performed in ns-2 [13], which provides accurate packet-level implementation of 

various network protocols, buffer management and scheduling algorithms. We examine the 

behavior of FSC under a taxonomy of transport protocol and traffic model combinations. 

For transport protocols, we use both TCP4 and UDP. For traffic models, we use peri- 

odic ON-OFF sources, exponentially distributed ON-OFF sources, pseudo WWW traffic 

sources (a periodic ON-OFF source feeding into TCP), pseudo video (an ns-2 packet trace 

generated from a MPEG-1 video stream), Telnet, FTP and continuously backlogged UDP 

sources. The ON-OFF sources are based on our own implementation. We have extended 

ns-2 to support arbitrary traffic sources on top of TCP, and to dynamically create and 

destroy flows. 

Different traffic sources have different performance indices. We measure the performance 

of ON-OFF sources and Telnet using average burst delay, which is define as the difference 

between the time when the last packet of the burst arrives at the destination and the 

time when the first packet of the burst is sent by the source. For continuously backlogged 

sources we use the overall throughput to measure performance, and for video traffic we use 

the frame delay distribution. A potential problem when measuring the burst delay under 

UDP is that some packets may be dropped. For this reason, in the case of UDP sources 

we report both the average burst delay and the packet dropping rate. 

In all simulations, we distinguish between foreground flows which are bursty, and back- 

ground flows which are persistent. The actual number of foreground and background flows 

may vary. Unless otherwise specified, the following parameters are used in all simulations. 

The capacity of each link is 10 Mbps with a latency of 10 ms, and the output buffer size is 

128 KB. We use a per-flow buffer management scheme which drops the second packet from 

the longest queue when the buffer overflows [22]. In addition, the size of all packets is 1000 

Specifically, we use ns-2's implementation of TCP Reno without any protocol hand-shake. 

12 



bytes except for Telnet, which uses 64 byte packets. The simulation time is 20 seconds. 

Each set of the results presented in the following sub-sections is aimed to illustrate 

certain aspects of the FSC algorithm. First, to illustrate the behavior of FSG and to show 

how variations in the system parameters affect its performance, we use a simple network 

topology consisting of one link, and traffic sources such as ON-OFF, FTP, and continuously 

backlogged UDP. In these simulations we also draw comparisons between FSC and PFQ. 

Next, to show how FSC performs under more realistic load, we use more complex network 

topologies and traffic sources, such as exponentially distributed ON-OFF, pseudo video, 

and Telnet. To quantify the impact on long lived throughout oriented traffic sources, we 

use an experiment where the short bursty traffic sources are specifically designed to extract 

the maxima] benefit from FSC. To explain the tradeoffs in optimizing FSCns parameters 

for realistic network traffic, we generate a synthetic workload of FTP flows using data from 

AT&T Labs' recent Internet traffic analysis [6]. 

3.1    Basic Demonstrations 

All simulations presented in this sub-section use periodic ON-OFF foreground sources with 

a period of one second and a peak rate of 4 Mbps. Since the packet size is 1000 bytes, 

the inter-packet arrival time is 2 ms. All flows within the same simulation have the same 

burst size and the bursts occur at the beginning of each period. The average burst delay is 

used as the performance index. To introduce some randomness, the starting times of the 

flows are drawn from an exponential distribution. Although such a simplistic traffic pattern 

might not be an accurate simulation of Internet traffic, it makes it easier to understand and 

analyze the interactions between various parameters, such as the preferred burst size (PBS), 

the burst preference ratio (BPR), and the percentage of the background persistent traffic. 

In Sections 3.3, 3.4 and 3.7, we show that the results obtained by using simple periodic 

ON-OFF traffic are consistent with the ones obtained by using more realistic traffic sources. 

13 
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Figure 9:  The average burst delay vs PBS for 
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3.1.1     Impact of Preferred Burst Size (PBS) 

In this section we study the impact of the preferred burst size (PBS) and the number of 

background flows on the behavior of FSC. Note that when PBS is zero, FSC is equivalent 

to PFQ. as the service curve reduces to a straight line intersecting the origin. We consider 

16 flows sharing a congested link. The number of persistent background flows varies from 

1 to 8. Figure 9 plots the average burst delay as a function of PBS in four different 

scenarios using all possible combinations of foreground TCP and UDP ON-OFF traffic, 

and background FTP and constant bit rate UDP traffic. In the scenarios where UDP 

background is used, the aggregate rate of the background flows is set at twice the link 

capacity in order to create congestion. In all cases the burst size is 16 packets, and the 

burst preference ratio (BPR) is 5. As a baseline comparison, in each figure we also plot the 

average burst delay of an ON-OFF flow that uses an unloaded link. 

As can be seen in Figure 9, in all scenarios the average burst delay decreases as PBS 

increases. This is to be expected since a larger PBS results in a larger percentage of the 

burst of each flow being served at a higher priority. This is because the packets' deadlines 

are computed based on the first slope ml of their service curves. Moreover, in all four 

graphs, the data points for PBS equals zero is the corresponding performance points of 

PFQ under the same scenarios. Clearly, FSC out-performs PFQ in providing low burst 

delay. 

There are three other points worth noting. First, the average delay does not decrease 

after PBS exceeds the burst size of 16 packets. This is because when PBS reaches the burst 

size, all packets are already served at the highest priority. We defer a discussion of the 

implications of setting the PBS too large to Section 3.7. 

Second, as the number of background flows increases, the relative amount of improve- 

ments in the average burst delay also increases. This is because the background flows are 

continuously baeklogged and therefore the deadlines of their packets are computed based 

on the second slope ???2 of their service curves most of the time. This increases the relative 

priority of the ON-OFF flows as the deadlines of their packets are computed based on the 

first slope ml of their service curves, which is greater than m'2. Intuitively, as the percent- 

age of background traffic increases, there are more "opportunities" to shift the delay from 

the ON-OFF traffic towards the continuously baeklogged traffic. 

15 



8 ON-OFF TCPs, 8 UDPs 

0.25 

32 packets burst —- 
16 packets burst ~<—- 

8 packets burst ■■&- 
4 packets burst   

o 
<x> 
CO 0.2 . 
S* 

a 

3 , 
CD 

0.1 
[ > < i. ■Q..Q----G   -a 

0.05 

,IIII 

8 ON-OFF UDPs, 8 UDPs 

0.25 ■ 

32 packets burst   
16 packets burst -+— 

8 packets burst  -&■- 
4 packets burst   

o 
1 

0.2 . 
>» 
CO 

0) 

tfi 0.15 - 
3 

CO 

Dl 

CD > 0.1 ■     + - 
^ 

0.05 ' - 

■               iii 

20 30 40 50 
Preferred Burst Size (pkts) 

20 30 40 50 
Preferred Burst Size (pkts) 

(a) (b) 

Figure 10:   The average burst delay of eight ON-OFF TCP/UDP flows as a function of 

PBS for various burst sizes. 

Third, the relative amount of improvements in the average burst delay is larger when 

the foreground traffic uses UDP (see Figure 9(c),(d)) than when it uses TOP (see Fig- 

ure 9(a),(b)). This is because the TCP protocol makes use of acknowledgements, which 

add a fixed overhead, in terms of round-trip-time, to the burst delay. This is evident from 

the "baseline'' plots, where only one flow is backlogged. It takes roughly three times longer 

to send the same burst under TCP than under UDP. 

Since the simulation scenarios that employ the same foreground traffic exhibit similar 

trends, in the remaining of this section we will limit our study to two scenarios: ON- 

OFF TCP foreground with UDP background, and ON-OFF UDP foreground with UDP 

background. The reason for choosing UDP over FTP as the background traffic is to factor 

out the variations due to FTP dynamics. Finally, unless otherwise specified, we only 

consider the 8 foreground flows / 8 background flows case. 

The next experiment illustrates the impact of the burst size on the behavior of FSC 

(see Figure 10). As a general trend the average burst delay decreases as PBS increases. 

As shown in Figure 10(a), when the ON-OFF traffic is TCP, the decrease in the average 

burst delay is more significant for larger bursts. When the burst size is small, the burst 

delay is dominated by the round-trip-time as the sender waits for acknowledgements, thus 

a reduction in the packet queueing delay due to FSC does not translate into a significant 

reduction of the overall burst delay. When the ON-OFF traffic is UDP, it is interesting to 
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Figure 11: The a.vera.ge burst delay versus BPR for eight flows when the ON-OFF traffic 

is (a) TCP, and (b) UDP, respectively. 

note that for a burst size of 32 packets, there is little improvement in the average burst 

delay between PBS = 0 and PBS = 4 packets (see Figure 10(1))). The reason is that, when 

PBS = 0, 32.5% of the packets are dropped, while when PBS = 4 packets, only 15 % of 

the packets are dropped. Thus, although the average burst delay does not change between 

PBS = 0 and PBS = 4 packets, there are actually more packets delivered when PBS = 4 

packets. The percentage of dropped packets reduces to 1.5 % for PBS = 8 packets, and no 

packet is dropped when PBS > 16 packets. 

3.1.2    Impact of Burst Preference Ratio (BPR) 

In this section we study the effects of the Burst Preference Ratio (BPR) on the behavior 

of FSC. We consider two simulation scenarios: UDP foreground with UDP background, 

and TCP foreground with UDP background. For each experiment we set PBS to be the 

same as the burst size of the flows and vary the BPR. As shown in Figure 11, in both cases 

the average burst delay decreases as the BPR increases. This is expected since increasing 

BPR results in an increase of the relative priority of the bursty traffic. Also, similar to the 

previous experiment (see Figure 10), FSC is more effective for larger burst sizes, especially 

when the ON-OFF traffic is TCP. Again, notice that the data points for BPR= 0 are the 

corresponding performance points of PFQ under the same scenarios. The advantage of 

FSC over PFQ can be seen clearly. 
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Figure 12: The average burst delay versus PBS for eight flows, with burst sizes between 4 

and 32 packets, when the ON-OFF traffic is (a) TCP, and (b) UDP, respectively. 

3.2    Non-homogeneous ON-OFF Sources 

Now that we have demonstrated the basic features of FSC, we begin to consider more 

complex traffic sources. In this section, we consider again a congested link shared by eight 

ON-OFF flows and eight background UDP flows. However, unlike the previous experiments 

in which all flows have bursts of the same size, in this experiment each flow has a different 

burst size. More precisely, the burst size of flow i is 4 x i packets, where 1 < i < 8. Our 

goal is to study how the average burst delay of each flow is affected by the preferred burst 

size (PBS). The results for both TCP and UDP ON-OFF foreground traffic are shown in 

Figure 12. 

In the first scenario (see Figure 12(a)) the average burst delay of each flow decreases as 

PBS increases. As expected, the average burst delay of a flow no longer decreases once PBS 

exceeds the flow's burst size. However, in the second scenario when all flows are UDPs (see 

Figure 12(b)), the average burst delay for flows with large burst sizes actually increases 

initially as PBS increases. This is because more packets are being transmitted as PBS 

increases. For example, when PBS = 0, 33.5% of the packets of flow 8 are being dropped, 

when PBS = 8 packets, the dropping rate reduces to 15%. Finally, for PBS > 16 packets, 

no packet is dropped. 
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Figure 13: The average burst delay versus burst size for eight ON-OFF TCP flows, which 

have burst sizes exponentially distributed with a mean of 16 packets. The flows compete 

with other eight constant-bit-rate UDP flows. 

3.3 Exponential ON-OFF Sources 

In the previous section we have assumed that the ON-OFF traffic is periodic and that each 

flow has a fixed burst size. While this setting makes it easier to understand the behavior of 

FSC, it is not realistic. For this reason, we consider a more realistic ON-OFF traffic source 

whose burst size is exponentially distributed. Since we intend to model WWW-like traffic, 

we assume only TCP ON-OFF foreground traffic. Again we consider eight foreground and 

eight background flows sharing the same link. The mean of the burst size is 16 packets. In 

order to obtain more data points we increase the simulation time to 100 seconds. 

Figure 13 shows the average burst delay versus burst size. In general, the average burst 

delay improves as PBS increases, with the improvements being more significant for larger 

burst sizes. These results are consistent with the ones presented in Sections 3.1.1 and 3.2. 

The prominent peaks in the delays are likely caused by TCP timeouts as a result of packet 

loss. 

3.4 Mixed Application Traffic 

In this section we study how effective FSC is in dealing with a mix of traffic sources. For 

this we consider a more complex simulation scenario in which 20 flows share the same link. 

Out of these 20, two are MPEG-1 video flows sending at their fair rate, three are Telnet 
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Figure 14: (a) The average frame delay for MPEG-1 video traffic and the average packet 

delay for Telnet traffic versus PBS. In this experiment we consider two video flows and 

three Telnet flows that share a link with five FTP flows and 10 background UDP flows, (b) 

The frame delay distribution for the video traffic for different PBS values. 

flows, five are FTP flows, and the last 10 are background UDP flows. The video flows have 

a maximum frame size of 11 packets. The packet size for all flows is 1000 bytes, except for 

Telnet which uses 64 byte packets. 

Figure 14(a) shows the average burst delay versus preferred burst size. For the video 

flows, we assume that a burst consists of one frame, while for the Telnet flows, we assume 

that a burst consists of one packet. FSC is able to significantly reduce the average frame 

delay for the video traffic. When PBS exceeds the maximum frame size, we obtain up to 

50% improvement. However, PBS does not affect the packet delay of the Telnet traffic. This 

is because the Telnet sources are sending at an extremely low rate with very small packet 

size compared to the other flows. Therefore their packets are immediately sent regardless 

of the value of PBS. We expect FSC to have a more significant impact on Telnet when 

the fair share rate is closer to the Telnet session's rate. Finally, Figure 14(b) shows the 

distribution of the frame delay for the video traffic. As expected, the tail of the distribution 

decreases as PBS increases. 
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Figure 15: Topology for analyzing the effects of multiple congested links on the throughput 

of a flow. Each congested link is traversed by ten cross flows (all UDPs). 

3.5 Multiple Links 

In this experiment we study the behavior of FSC when a flow traverses multiple congested 

links. We use the topology in Figure 15. Each congested link is traversed by 10 background 

UDP flows which send at their fair rate. To reduce the effects of the number of hops on 

the round-trip time we fix the end-to-end propagation delay at 10 ms. The link latencies 

are then computed by dividing the end-to-end propagation delay by the number of links. 

However, note that due to the queueing delay the round-trip time will still increase with 

the number of hops. Finally, we assume a periodic ON-OFF flow with 16 packet bursts 

that traverses all congested links. 

Figure 16 shows the average burst delay of the ON-OFF flow versus PBS for 1, 2, 3 and 

4 congested links. We consider two scenarios where the foreground flow is TCP or UDP. 

In both cases the average burst delay decreases as PBS increases. However, as we have 

observed in previous experiments (see for example Section 3.1.1), the improvements are 

larger when the foreground traffic is UDP. Finally, note that the absolute improvements in 

the average burst delay are basically independent of the number of congested links. 

3.6 Impact on Background Traffic 

In the previous experiments, we have shown that FSC is effective in reducing the average 

burst delay of bursty traffic. A natural question to ask is, could this improvement in bursty 

traffic performance negatively affect the background persistent traffic? 

To answer this question, we construct a simulation scenario in which the bursty traffic 
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Figure 16: (a) The average burst delay versus PBS as the number of bottleneck links varies. 

The foreground traffic consists of one ON-OFF TCP. (b) The same experiment when the 

foreground traffic consists of one ON-OFF UDP. 

flows take maximal advantage of the benefit provided by FSC and thus put the persistent 

background traffic in the worst possible position under FSC. To achieve maximal benefit 

in FSC, each bursty flow should send exactly as much data as the PBS, and the bursty 

flows should be back-to-back so that each and every burst is served at the highest priority 

(along the first slope) under FSC. 

In this experiment, we use one persistent background TCP flow and a series of bursty 

foreground UDP flows, each sending 10 packets of 1000 bytes each. Under FSC, we choose 

the PBS to be 10 packets and the BPR to be 5. With a 10 Mbps link, this implies that a 

burst can be served at the maximal rate of 8.33 Mbps under FSC. Therefore, to make the 

bursty flows back-to-back under FSC, the inter-flow arrival time needs to be 9.6 ms. Using 

this traffic arrival pattern, we compare the performance of FSC against PFQ (FSC with 

PBS = 0). Table 1 shows the performance of the bursty flows and the TCP flow under the 

two different algorithms. 

Under FSC, the throughput of the TCP flow is exactly as expected (one-sixth of 10 

Mbps) since the UDP bursty flows are always being served at the highest priority and 

consume 8.33 Mbps. What is somewhat surprising is that the TCP throughput is essentially 

unchanged under PFQ even though the bursty flows are served at the same priority as the 

TCP flow. This seemingly contradictory result is simple to explain. Under FSC, only one 
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Average burst delay TCP throughput 

FSC 

PFQ 

21.81 ins 

54.79 ms 

1.66 Mbps 

1.67 Mbps 

Table 1: Comparison of background TCP throughput using a FSC worst case flow arrival. 

bursty HDP flow is backlogged at any given time; in contrast, under PFQ, five bursty 

UDP flows are simultaneously backlogged throughout the simulation (except during the 

very beginning) because the bursty flows are no longer served at a special high priority 

and they take five times longer to finish. Therefore, with 5 UDP flows and one TCP flow, 

the TCP flow simply gets its fair share under PFQ, which is 1.67 Mbps. The reason why 

this is slightly larger than the TCP throughput under FSC is that during the beginning of 

the simulation, there are less than 6 flows simultaneously backlogged. This result shows 

that even under a worst case bursty flow arrival scenario, FSC provides virtually the same 

performance to a persistent TCP flow as PFQ. 

Without any adverse effect on the performance of the TCP flow, FSC is again able to 

bring the average burst delay of the UDP flows down to 22 ms, of which 10 ms is the link 

propagation delay. In other words, the queueing delay is reduced by almost a factor of 4 

compared to PFQ. 

3.7    Performance for WWW traffic 

So far, we have shown that FSC can reduce the average delay of bursty traffic without ad- 

versely affecting the background persistent traffic. The improvements are most pronounced 

when the number of background sessions is large and when the PBS corresponds to the 

burst size of the sessions in the foreground. However, they leave the question of how to 

configure FSC for realistic traffic largely unanswered. 

As we increase the preferred burst size (PBS), we increase the percentage of flows and 

bytes that will be completely covered by the PBS. The byte-volume of traffic that is not 

covered by the PBS determines the amount of background traffic. As we have shown earlier, 

the delays of short bursts are reduced as the amount of background traffic increases. Thus, 
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Figure 17: Cumulative probability distribution of flow lengths and their portion of the total 

byte volume. 

increasing the PBS will reach a point of diminishing and then negative returns when less 

traffic exists in the "background". At the limit, if we set the PBS to be greater than or 

equal to the length of the longest flow, all data will be serviced along the first slope of the 

service curve and FSC will again be equivalent to PFQ. An analogous problem exists for 

the BPR. As in the limit, if we set the BPR very large, background traffic could see no 

service while bursts are being served. Thus, to maximize the benefit of FSC, we would like 

to choose a PBS that encompasses a relatively large percentage of the flows while covering 

a relatively small percentage of the byte volume and choose a BPR that can significantly 

reduce the delays of these bursts without adverely affecting background traffic. 

In order to answer these questions, we employ flow length data from AT&T Labs' recent 

Internet traffic analysis [6]. Figure 17 shows the probability that a host-level flow has up 

to x bytes, and the contribution of these flows to the cumulative byte count. For example, 

while 60% of the host-level flows are less than 5000 bytes in length, these flows constitutes 

approximately only 7% of the byte volume of the trace. For this traffic distribution, choosing 

a PBS of x bytes will completely cover all the flows up to x bytes in length, and their 

corresponding byte volume. The actual coverage will be larger than this, as longer lived 

flows that consist of periodic short bursts may transmit at a low enough sustained rate so 

that their entire transmission is transmitted along the first slope. 

To determine how to configure FSC's parameters for WWW traffic, we generate a 
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Group Average Flow Length 

0 61 

1 239 

2 539 

3 1349 

4 2739 

5 4149 

6 6358 

7 10910 

8 19878 

9 90439 

Table 2: Average flow length per group (bytes). 

synthetic workload of FTP traffic, whose flow lengths are chosen to model this distribution. 

We divide the flows into 10 groups, each representing 10 % of the flows, and compute the 

average flow length within each group, as shown in Table 2. Based on the average flow 

length of 13. 666 bytes, we generate a synthetic workload of FTP traffic via a Poisson 

process with a mean flow arrival rate corresponding to 95% of the link capacity and select 

among the 10 groups uniformly to determine the flow length. We run these simulations 

for 1 minute of simulation time over a 10Mbps link with a 2 ms latency while setting 

the maximum segment size of the TCP sources to 576 bytes. Figure 18 plots the average 

transfer time experienced by flows in groups 7 through 10 as we vary the BPR from 1 to 

10 and the PBS from 0 KB to 100KB. 

Note that all points with PBS = 0 and/or BPR = 1 correspond to PFQ. Groups 0 

through 3 are sufficiently small and short lived that PFQ and FSC have roughly equivalent 

performance, while groups 4 through 6 have analogous improvements to those shown here. 

While our earlier results have shown minimal impact on background traffic, Figure 18 (d) 

shows that Group 10 in fact sees a noticable impact with large PBS settings. The reason 

is that the buffer resources in this system, while shared, are finite. In this study, when 

the buffer resources are depleted, a packet is pushed out from the longest queue [4]. Thus, 

the longest flows (Group 10) will incur the losses when the link becomes congested.   As 
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Figure 18:  The average flow transfer time as a function of PBR and PBS for simulated 

WAN groups 

our measurements include all packets required to complete the FTP transfer, this explains 

the impact. Because this practical constraint cannot be avoided in actual systems, this 

encourages us to configure the system with conservative settings. 

While a flow's delay is minimal when its length corresponds to the PBS, minimal addi- 

tional improvements are seen with BPR greater than 4. The larger the PBS, the higher the 

percentage of flows that are entirely covered by the first slope and the performance returns 

to that of PFQ. For this simulation set, setting BPR = 4 and PBS = 6000 bytes reduces 

transfer times of most groups (some by over 50%) while only increasing the transfer time 

of the largest group by 1%. 
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4    Implementation Issues 

The implementation complexity of a per-flow queueing system can be divided into three 

separate tasks: classification, buffer management, and the scheduling itself. While these 

components are usually discussed in the context of networks that provide performance 

guarantees to individual flows, the complexity is significantly reduced when they are ap- 

plied for best-effort traffic. Traffic requiring bandwidth and/or delay guarantees need to 

employ a signaling mechanism to request resource capacity from the network. In order 

to identify these guaranteed flows, the classification module needs to uniquely map traffic 

into their allocated queues. As individual guaranteed flows have unique demands for sys- 

tem resources, the scheduling and buffer management options for the queues need to be 

individually programmed. 

While this flexibility is required for reserved traffic, best effort applications have much 

looser constraints. Since our goal is equal treatment for individual flows, a mechanism 

should be employed to persistently map each individual flow into its own queue. Perfect 

isolation and fairness between flows, while desirable, is not as critical for best effort applica- 

tions. McKenney proposed identifying individual flows by means of a probabilistic hashing 

algorithm in [12]. If the number of queues is less than the number of active flows, collisions 

will occur. The hash key can periodically be changed to alleviate the unfairness caused 

by these collisions. Content Addressable Memories (CAMs) or other devices capable of 

dynamically binding flows to queues could also be employed. However, it is preferable that 

the binding be persistent. Otherwise a user could exploit the fact that bursts up to the 

PBS receive an increased share when arriving into a newly assigned queue. We note that 

these or other mechanisms used for flow identification could also be used for the FRED [11] 

scheme, and vice versa. 

For any per-flow management scheme, there is an 0(N) space requirement to maintain 

the state for each flow. As noted in [22], with today's memory prices, and historic trends, it 

appears that this is an insignificant factor in the cost of products for the features that can be 

provided. A more relevant concern is the amount of computational resources required per- 

packet to perform the scheduling. The implementation cost of a scheduling algorithm can 

be divided into three components: (1) computation of the system virtual time function, (2) 



calculation of the session timestamps used for scheduling, and (3) sorting the timestamps 

by the specified criteria. The FSC system virtual time function is simply the average of the 

largest and smallest start time of any flow in the system. The timestamps of the sessions 

in FSC can be sorted using the packet scheduling architecture presented by Stephens et 

al [19]. The one remaining issue we must address is the calculation of the timestamps used 

for scheduling. 

Recall that in both PFQ and FSC, the virtual time of a flow, vt(t), is computed as 

V~l{wj(t)), where iut(t) is the amount of service received by flow i by time t, and V] is the 

virtual curve of flow i. The main difference between PFQ and FSC is that while in PFQ the 

virtual curve is a linear function, i.e., V;(f) = 4>i ' ^ in FSC it is a two-piece linear function 

given by Eq. (5). As a result, computing the virtual time in FSC requires an additional 

comparison to detect whether Wj(t) has exceeded V;\s inflection point. Another difference 

is that in FSC we need to update the virtual curve according to Eq. (5). The important 

thing to note here is that this operation is done only when a flow becomes backlogged, and 

as shown in [21], it takes constant time. Thus, implementing FSC is just marginally more 

complex than PFQ. 

5    Related Work 

Scheduling support for providing low burst delay has been studied in the context of ATM 

VBR traffic scheduling. In [10], Lam and Xie have proposed burst scheduling, which 

includes a new VBR traffic flow model based on bursts. Under this model, each burst is 

described by the burst size and the burst rate. This information is then carried in the 

first packet of a burst to provide resource requirement hints to the scheduler. Admission 

is performed at the burst level. In the event of an admission control failure, the entire 

burst is discarded. For packets admitted into the buffer, the scheduler uses a virtual clock 

server to serve the current admitted bursts at their burst rates. These mechanisms ensure 

that admitted bursts experience low delay. In addition, due to statistical multiplexing, it is 

possible to maintain the burst drop rate to a minimum. When a zero loss rate is required, a 

reservation can be made using the peak burst rate. Although burst scheduling is aimed to 

guarantee burst delay for VBR traffic in ATM, the ideas can certainly be applied to other 
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networking technologies such as IP. 

The FSC algorithm differs from burst scheduling in several ways. First of all, burst 

scheduling was designed for supporting real-time traffic in a connection-oriented network. 

It utilizes signaling information carried in packets and performs admission control. In 

contrast, FSC does not need explicit signaling to specif)' the beginning and the end of a 

burst and can give bursty traffic a lower burst delay. Secondly, burst-scheduling uses the 

Virtual Clock service discipline. While this may be acceptable for video traffic with certain 

intrinsic rates, Virtual Clock does not support adaptive bursty data traffic well due to the 

lack of the fairness property. FSC, on the other hand, provides long term fairness similar 

to PFQ algorithms. In this way, it allows statistical sharing among competing flows, and 

at the same time provides protection. Thus, FSC is more suitable for the diverse traffic 

mix environment in today's Internet. 

Implementing per-flow scheduling in isolation does not necessarily lead to improved per- 

formance over FIFO forwarding without appropriate buffer management. This is because 

the scheduler can only operate on packets that are stored in the system buffers. If the buffer 

management is FCFS, a flow can monopolize the link. To prevent this lockout behaviors, 

Davin and Heybey [4] proposed to push-out a packet from the longest queue. A recent 

simulation study [22] evaluated the benefits of per flow scheduling and buffer management. 

They found that both fair allocation of buffer and link capacity improve application level 

fairness. Furthermore, they illustrated that the benefits were complementary. The buffer 

management algorithm with the best performance was a push-out scheme that chose the 

packet from the front of the longest queue. They picked the "front" packet in order to 

improve the TCP feedback and eliminate the possibility of losing a later acknowledgement. 

Since dropping the actual first packet from the queue would require complex interactions 

with the scheduler, they actually dropped the second packet. We have also adopted this 

buffer management scheme in our study. 

6     Summary 

In this paper we investigate the Fair Service Curve (FSC) algorithm in the context of sup- 

porting best-effort service. We show that it out-performs PFQ algorithms under a variety 
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of traffic conditions. In particular, FSC can significantly improve the delay performance 

for bursty traffic without negatively affecting the throughput performance for continuously 

backlogged traffic. We have conducted extensive simulation experiments that involve a 

large variety of traffic sources, such as periodic and exponentially distributed ON-OFF 

sources, MPEG-1 video sources, FTP, and Telnet. As a general trend the average burst 

delay decreases as: 

1. the Preferred Burst Size (PBS) increases. This is because the portion of the burst 

which is served according to the first slope of the service curve increases. The only 

exception is when the bursty traffic is UDP and the number of packets successfully 

transmitted increases with PBS. Note that although the average burst delay might 

not decrease in this case, the flow still gets better service as fewer packets are being 

dropped. 

2. the Burst Preference Ratio (BPR) increases. This is because the relative priority of 

the packets served according to the first slope of the service curve increases. 

3. the number of background continuously backlogged traffic flows increases. Since the 

traffic of the backlogged flows is served according to the second slope of the service 

curve, the larger the number of background flows, the higher the relative priority of 

the traffic that is served according to the first slope. Intuitively, more background 

traffic provides more "opportunities" to shift the delay from the bursty traffic towards 

the background traffic. 

In order to determine practical settings for FSC for best-effort traffic, we generated a 

synthetic workload of WWW traffic. This exposed the limitations of setting the PBS and 

BPR too large for a given traffic pattern. For this set of web traffic traces, setting BPR = 4 

and PBS = 6000 Bytes provides a significant reduction in the transfer time of the majority 

of flows without noticable impact on the background traffic. 

Our results show that it is possible to significantly improve the delay of short and bursty 

flows without affecting the long term throughput of persistent flows. Since compared to 

PFQ, the added complexity to implement FSC is minimal, we conclude that FSC represents 

a viable alternative to support best effort traffic in today's Internet. 
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