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Summary 

This is the Final Report covering the results of investigations extending over a three- 

year period, 1 Dec 96 - 30 Nov 99. Following a brief summary of early investigations of 

the dynamic behaviour of a plane, plasma-filled diode, a detailed description of physical 

realisations of the system is then presented. The main part of the Report deals with the 

generation of oscillations and control of chaos. This is achieved by first carefully 

analysing the dynamic behaviour of the system as a function of three parameters: the ratio 

of ion/electron charge density at the entrance electrode 6c, the spatial separation of the 

electrodes xL and the load Ze. It is then indicated how the oscillations and the chaotic 

behaviour of the system can be controlled by a suitable adjustment of the above 

parameters. The report ends with suggestions for future work based on the results of the 

above investigations. 

It should be added that the above investigations generated two special issue papers 

and six contributions at various conferences. 



1. Introduction 

The problem of interaction between electron beams and positively charged ions 

acquired some significance in the late fifties of the last century when it was realised that 

the interaction process may lead to the generation and amplification of microwave 

radiation [1-6]), the results of these investigations being extensively summarised by R. J. 

Briggs [7]. Although the interaction process was very efficient (say ~60db/cm TWT 

amplification), actual devices failed to materialise largely due to unacceptable noise 

levels and practical problems associated with input and output coupling. However interest 

in the dynamics of plasma by no means abated, largely due to the related work associated 

with the development of fusion devices. More recently the development of high power 

sources of microwave radiation such as the VIRCATOR, brought the problem of electron 

beam/plasma interaction again into focus [8-10]. 

Let us now consider in more detail the actual system we are going to investigate. In 

principle there are two different models that are referred to as a 'plasma-filled diode'. 

The first model, shown in Fig. 1, comprises three electrodes, the middle one being a 

permeable grid G which is common to both sections. The first section, Region I, acts as a 

space-charge-limited diode, its purpose being to generate a space-charge-limited current, 

the corresponding current density being given by the usual expression 

_j    _le   |2e ♦£ (1.1) 
h do 

spl~9 °"\U df
2 

The second section, the actual 'plasma-filled diode' to be investigated, Region II, uses the 

grid G as an entrance electrode, the electrons being collected by the third electrode 



usually called the anode A. Since the grid G is kept at a constant potential ^ relative to 

the cathode C, the electron velocity at the entrance electrode is given by 

v0=A/2e<t>0/m0 (1-2) 

Frequently, for the sake of brevity, only the second half marked II is shown in the 

literature, the electron beam entering the diode from 'outside' through a permeable 

entrance electrode, but it is worth reminding ourselves that such representation is 

incomplete, the only physically realisable unit being that shown in Fig. 1. 

The second model is shown in Fig. 2. Here we have four electrodes, a cathode C, 

two permeable grids Gl and G2 and an anode A. This arrangement makes it possible to 

separate the DC and AC components of the current, somewhat along the lines of similar 

arrangements in many microwave tubes. Here the C-Gl section, Region I, is again 

intended to act as a space-charge-limited diode, the grid Gl being kept at a constant 

potential ^> relative to the cathode so that the electrons again reach velocity v0 at that 

point. The 'plasma-filled diode' under consideration is now contained between the two 

grids, Gl and G2, Region II, respectively acting as entrance and exit electrodes; both 

grids are assumed to be totally permeable to the electrons. The electron beam now passes 

Region III and is collected by the fourth electrode A. In this arrangement only the AC 

component of the total current can flow through the load Z,, the DC component reaching 

the anode A which acts as a 'collector'; this electrode is directly connected to the battery, 

the connection by-passing the diode load Ze. Here it is assumed that a complete 

separation of the AC and DC components of the total current can be achieved. 

When a plasma-filled diode is short-circuited (Ze= 0), there is little to choose 

between Fig. 1 and 2 [11-15]. However when the diode has a load connected across its 



electrodes, the dynamic behaviour can be substantially different in the two cases. For 

example in the case of Fig. 1 the load Zt must not contain a series capacitance, since that 

would amount to an open circuit for DC currents. There is no such restriction in the case 

of Fig. 2, since the DC path by-passes the load Z(. In our investigations we have used 

both systems in order to be able to compare the results which can be obtained in the two 

cases [16-19,24,25,48]. 

It is generally assumed that due to the difference in mass between ions and 

electrons, the ions remain immobile, at least for the first few nanoseconds of operation of 

the diode. We have accepted this assumption as being quite reasonable. Perhaps one 

ought to add that some authors prefer to assume that electrons and positive ions move 

together so that the DC component of the total current is fully neutralised, or alternatively 

that neutralisation is achieved by external current sources [20-22], but we have avoided 

making such assumptions since they appeared to us to be somewhat artificial, although 

mathematically convenient. 

Finally one should mention that other authors choose to consider a closely related 

system shown in Fig. 3, which in effect is a Q-machine [17,23]. Here both power supplies 

and a load directly connect across a plasma-filled diode. This means that now most of the 

potential drop occurs across the two sheaths situated next to the electrodes. Although in 

some circumstances such a system can be used to model a Pierce diode, we have felt that 

those shown in Figs. 1 and 2 are simpler and therefore preferable for the purpose of our 

investigations. 



2. Possible mathematical models of the diode 

The Report is primarily limited to the investigation of a plasma-filled diode, 

Region II in Figs.l and 2. In analysing the diode we can adopt in principle three different 

mathematical approaches. The oldest is that due to Birdsall et al. [26,27], where the 

electron stream is represented by a series of infinitely thin electron sheets. This approach 

has been discussed by us at some length and used in our earlier investigations of the 

dynamic behaviour of the diode [28]. Although the method is quite effective, it suffers 

from the usual problems associated with discretisation of a continuous flow; this becomes 

particularly awckward when the sheets begin to overtake each other, or change their 

direction of motion, although in some more recent versions of the method attempts have 

been made to overcome this problem [29,30]. The second approach to the problem is that 

initially developed by B. B. Godfrey [14] and then extended to systems lacking charge 

balance at the entrance electrode by others [16]. The method is based on the derivation of 

a pair of coupled integro-differential equations of the Volterra type, their solution 

providing the field at the entrance electrode E0 and the transit time xt as functions of 

time. This information is adequate for the derivation of electric field E as a function of 

the interelectrode distance x, provided the fixed parameters of the system such as the 

electron/ion charge ratio a at the entrance electrode and the electrode separation xL are 

known.  Godfrey's approach has been considered by us to be preferable in our 

investigation of the dynamic behaviour of a plasma-filled diode. The third approach is 

based on a powerful code called MAGIC2D/3D which is a PIC Finite-Difference Time- 

Domain computer code of great versatility [31,32]. Further comments on possible 



applications of the code to the analysis of the whole system, including all three regions of 

Figs 1 and 2 can be found in the last section of the Report where proposals for future 

work are being discussed. 



3. Mathematical derivation of the Godfrey model, including load 

In deriving the integral equations we start, following B.B. Godfrey [14], with the 

usual set of partial differential equations, all in 1-D: 

a.E = a2
iX<j> = pe-a = p Poisson'seq. (3.1) 

d-x = d-v = 3-v + v3-v = E Equation of motion   (3.2) 
tt t        t * 

3*J,ot = 3x(Jc + Jd) = 3x(Pev + 3-.E) = 0 Continuity eq. for     (3.3) 

the total current density 

The 'hat' variables used throughout the Report are defined in Appendix 1. Partial 

derivatives with respect to t are deliberately included in order to allow for possible 

oscillatory and chaotic behaviour of the system. It is to be noted that since the positive 

ions are assumed to be immobile, they affect the Poisson equation (3.1) where 

p = pe + p. = pe - 6c, but not the continuity equation (3.3) where Jc = pev and not pv. 

Consequently our model is valid for the first few nanoseconds, before the ions are able to 

move under the influence of the electric field set up between the electrodes. Substituting 

from (3.1) and remembering that in 1-D 

d;E = 3?E + v3,E (3-4) 
t i * 

we obtain from (3.3): 

a«!,« =3i(p,v+3fE) = 3i{(3iE + Ä)v + aiE} = ai{diE + &dix} = 0     (3.5) 

Integrating with respect to x we now obtain: 

Jt0t = d;(E + ax) = (Jtot)w = pe0v0 +(dfi)t-_o = l + djE0(t) (3.6) 

since at the entrance electrode pe0v = l and (3jE(x, ?))*.<> =d;E(0,t)=d;E0(t). 

Integrating with respect to t and substituting from (3.2) we finally obtain: 

E + ax = d2
Hx + ocx = E0(t) + (t-t1) (3.7) 

Here the boundary conditions have been suitably chosen, so that at x = 0,t = t,, i.e. at the 

entrance electrode, (d2
Hx)i=0 = E0(t,) where, as before, E0(t) = E(0,t) is the time- 

dependent value of the electric field at the entrance electrode. 



In principle (3.2) and (3.7) together with suitable boundary conditions should be 

adequate to define the dynamical properties of the system shown in Figs 1 -and 2. 

However, attempts at numerical solutions of the above equations in their differential form 

were not very effective and therefore it proved better to convert the differential equations 

into a pair of coupled integral equations, as shown elsewhere for a = 1 [14]; this approach 

was then extended to 6c * 1 by others [16, 39]. 

In order to describe the system in terms of integral equations we note, first of all, that 

the homogeneous form of (3.7), i.e. when the driving term E0(t) + (t-t,) = 0, has a 

solution given by 

x = sin{cc^(t-t')} (3-8) 

This suggests that sin{6c^(t-t')} could be used as a kernel in our integral equations. 

Thus multiplying the left hand side of (3.7) by sin{öc^(t-t')} and integrating from 

t'=t, to t'=t we first obtain, using integration by parts, 

p^sinl&^t-t'ttdtW^ (3-9) 

In the process the term 6c1/2 f ^cos{a^(t-t,)}dt' appears twice, but with opposite 
r Jti dt' 

sign. Using simple integration we can also write for the last term on the right hand side of 

(3.7) 

f(t-t0sin{a^(t-t,)}dt•=-4-sin{a^(t-t,)}+-:V(t-t,) (3.10) 
Jt] OC Q[/2 

Collecting all the terms we now obtain in place of (3.7) 

x(t) = I(t-t,)-^sin{&^(t-i)}+^fE0(t')sb{&^(t-t')}dt'       (3.11) 
oc a/2 6/2 Jh 

In order to obtain an expression for the electric field E(t) as a function of time we 

differentiate (3.11) twice with respect to time, substituting at one point from (3.2); we 

then obtain 

E(t) = E0(t) + ^sin{a^(t-tJ}-6c^|40(t0sin{a^(t-t')}dtI (3.12) 
o/2 '' 



Since we are dealing with integral equations it is now necessary to introduce suitable 

boundary conditions: the (reduced) separation of the electrodes given by 

xL = (cope / v0)xL and the (reduced) potential difference between the exit and entrance 

electrodes <j), = (j>L - <j)0. We can express the latter in terms of the electric field. 

*i=*L-*o=f Ed* (3.13) 

In the case of xL we note that at the exit electrode x = xL and t-1, = tL -1, = tL, so 

that we can introduce the boundary conditions directly in (3.11) by simply writing 

isin(&I/2tL) + 4rttL
feo(t,)sin{&1/2rt-t,)}dt' (3.14) 1  „ 1-OC   .    ,„!/->.    . 1 

X,   =—T, -■ LL "~  »   ^L       » 3/2 a       a a 

It is to be noted that although xL is a constant, the reduced transit time of an electron is a 

function of time, %L = TL(t)and depends on the field distribution between the electrodes. 

Thus (3.14) contains two unknown functions of time, TL(t)and E0(t). 

The situation is more complicated in the case of (3.12) since the electric potential (j) 

does not appear in the equation and we have to reinterpret ^ in terms of the electric 

field, as indicated in (3.13). As a first step we substitute (3.7) in (3.13) and write 

^=j;LEdx = };L{E0(t)-ax + (t-tO}dx = E0(t)xL-iax2+j;1- (t-t,)dx    (3.15) 

Differentiating (3.11) with respect to t,, which is the moment an electron passes the 

entrance electrode G or G1, we obtain 

dx=_I+lZacos{&X(t_ti)}_J_E0(t1)sin{a^(t-t1)} (3.16) 
dt,       6c      a ft/2 

Using (3.16) we can now write the last term of (3.15) in the following form 

dx rct-t^f^t-t^dt, 
dt, 

J't-X,     „        *   . 
, (t-t.) 

1    1-a 
6c      6c 

-cosioc^^-t.^H—^Eo^^sinlcc^rt-t,)} 
6c/2 

dt, 

1    «2        I-« 
2a a 

I_IC0S(a^TL)-^sin(6ÄL) 
6c   6c 6c>* 

10 



+ J_f   E0(t')(t-t')sin{a^(t-t')}dt' .(3-17) 

Combining (3.15) and (3.17) we finally obtain 

-     -  . 1 ,»«2       1 o2x     I-« 
-())f+E0(t)xL=-(ax2

L-^^) + -7K- x, sin(cAL) —\r{1 - cos(oÄL)} 
o/2 

_J_f   Eo^Xt-t'J^a^Ct-t'Wdt' (3.18) 

In the case of a short-circuited diode <j>, = 0 and the coupled pair of integral equations 

(3.14), (3.18) fully describe the dynamic behaviour of the system. The equations are of 

the Volterra type with an additional difficulty that not only the variable t but also the 

function xL(t) appear in the limits of integration in both equations. In the absence of 

standard procedures a special computer code has been developed for the solution of the 

equations, as described in Appendix 2. 
ä ä ä 

In the presence of a load the next step is to relate the potential difference (j)f = <(>L - <j>0 

to the external current I using the concept of the continuity of current. The latter requires 

that, bearing in mind the usual sign convention for electron beam currents, the current in 

the circuit must be equal to the total current flowing inside the diode 

-I = I,o, =AJtot (3-19) 

where A is the area of the electrodes. But we know form (3.3) that in a 1-D system Jtot 

remains constant so that 

J,o, = K + Ja = Jco + Jdo = Pv + ecAE = PoV0 + e0d,Eo = J.0,,0 (3-20) 

We can also see from Figs. 1 and 2 that in our case both v0 and Jc0 = p0v0, the initial 

boundary conditions, remain constant so that at the entrance electrode all the AC 

phenomena are solely expressed by time variation of the electric field E0. We can thus 

write 
-dtI = dtItot =dtItot>0 = AdtJtot,0 = AeoattE0 (3.21) 

In the system shown in Fig. 1 both DC and AC components of the current flow through 

the load so that in the case of a series connection we must omit the capacitor. We can 

11 



then write the following expression for the potential difference $, across the diode and 

hence across the external load Zt 

(J), = -Z,I = Z,It0( = Z,AJtot = Zt AJtotj0 

= (LdtJtot,0 + RJtot)0)A (3.22) 

= {(Le09ttE0 +R(Povo +eoa,E0)}A 

where we have used (3.20) and (3.21) in the last line of (3.22). In terms of the reduced 

variables (see Appendix 1) we now have in place of (3.22) 

it = -xLZ,Jt0t = -xL{R + (LD2 + RD)E0} (3.23) 

where L = LCv<,R = RCv(Dpe,Cv = Ae0/d (3.24) 

and D=d-=d/dt; here we use d for the separation of the electrodes in order to 

distinguish it from the inductance L. In the case of Fig. 1 the expression (3.23) should 

now be substituted in (3.18) in place of - (j),. 

In considering the system shown in Fig. 2 we note that only the AC component of the 

current flows through the load Ze so that the load may now contain capacitance, 

resistance and inductance in series. Thus in place of (3.22) we can write 

<j>, = —Z J = Z Jtot = ZfAJ tot = Z, AJtot0 

= (LdtJtot>0 + RJtot,0 +^ Jjtot)0dt)A (3.25) 

= (L£03ttE0 + Re03tE0 +-80E0)A 

where again we have substituted from (3.20) and (3.21) in the last line of (3.25), noting at 

the same time that at the entrance electrode the conduction current Jco = Povo has no AC 

component. In terms of the reduced variables we have in place of (3.25) 

*f =-xLVtot =-xL{LD2 +RD + i}E0 (3.26) 

where C = C/CV (3.27) 

In the case of Fig. 2 the expression (3.26) should now be substituted in (3.18) in place of 

-it- 

12 



4. Steady state solutions 

The coupled pair of integral equations (3.14), (3.18) describing the dynamics of the 

system are by no means easy to interpret, especially in the presence of a load. It seemed 

prudent therefore to consider one of the few cases which can be solved analytically, 

namely that of a steady state. 

At this point it is helpful to consider very briefly the general effect that the 

introduction of positive ions has on the dynamic behaviour of the system, Appendix 3. 

The main conclusion is that for ä = 0 (no ions) the solutions are always nonperiodic, so 

that the system at most can sustain only a single minimum in the potential distribution 

function. When ä * 0(ions present) this is no longer the case, the solutions can now be 

periodic in character and therefore several intercalated minima and maxima in the 

potential function can now exist (see also a much more elaborate discussion of this point 

in ref. [33]). 

In general, the two independent variables x and t must be carefully distinguished, as 

indicated in (3.1)-(3.3), where there is a clear distinction between the partial derivatives 

with respect to x and t. In a steady state t ceases to be independent of x and it can then 

be used in place of x, the corresponding equations frequently acquiring a simpler form 

when expressed in terms of t rather than x. We also find that in the case of a steady state 

both xL and E0 appearing in (3.14) and (3.18) no longer vary with time, but become 

constants of integration. We then find that the integrations indicated in (3.14), (3.18) can 

be carried out without difficulty and we obtain for a = 1 

XL=TL+E0(1-COSTL) (4.1) 

h = E0xL +i(T2
L -x

2
L) + E0(sinxL -TLCOSTL) (4.2) 

Substituting from (4.1) for xL and %\, we find that (4.2) can be further simplified to read 

^ = E0sintL[l + -iE0sintJ (4.3) 

We now note that for a steady state and 6c = 1 the system is fully described by (4.1) and 

(4.3), in place of the more formidable integro-differential equations (3.14), (3.18). Here 

13 



6t = 1 has been chosen for the sake of clarity in interpreting the physical content of the 

equations. 

In the case of a steady state, we have 3- = d* and consequently 

d;E = vdÄE (4.4) 

Multiplying (3.1) by v, substituting from (3.2) and noting that in a steady state 

d.(pev) = d;Jc = 0, we obtain for a = 1 

dnE + E = 0 (4.5) 

Solving (4.5) for d{E0 = 0 we now have 

E = E0sin(t-t,) (4.6) 

since from (3.1) and (4.4) d{E0 = 0 for a = 1 (charge balance at the entrance electrode). 

Writing E = d5x we then obtain from (4.6) by simple integration 

v = dix = l + E0sin(t-t1) (4.7) 

x = (t-t1) + E0{l-cos(t-t1)} (4.8) 

where the corresponding boundary conditions are: x = 0 and v = v0 = 1 at t = ^. At the 

exit electrode we have x = xL and tL -1, = TL, so that (4.8) now becomes (4.1), both 

equations defining the relationship between x and t in the case of a steady state since, as 

we have mentioned, x and t are then no longer independent. It has also been pointed out 

that the use of t in place of x often leads to simpler expressions. In our case eliminating 

t between (4.6) and (4.8) leads to an expression for E(x) which is much more involved 

than E(t) shown in (4.6). 

So far we have briefly summarized the results presented elsewhere [14,34] in order to 

emphasize the physical content of (4.1); let us now consider (4.3) which, in the form 

shown above, arises only in the presence of a load. At this stage it is best to re-derive 

(4.3) directly from the definition of E = d4$, noting at the same time the positive sign 

due to the use of reduced variables, (A 1.1) in Appendix 1. Thus, we can write: 

^=^-^o=J0  Edx = E0Jo  cos(t-t,)dx = E0J. —coS(t-t,)dt 

14 



= E0 [
XL
 {1 + E0 sin(t -1,)} cos(t -1, )dt 

= E0sin;cL{l + -E0sin;cL} (4.9) 

which is the same as (4.3). Thus the two identical expression (4.3) and (4.9), simply 

relate the potential difference between the electrodes <^ to the transit time xL and the 

electric field at the entrance electrode E0. It should be noted that in the case of a steady 

state xL, TL, E0 and ^ are all constants; in the more general case discussed in Section 

3, where the dynamic behaviour of the system is determined by the integro-differential 

equations (3.14) and (3.18), only xL =copeL/v0 is a constant, the remaining variables 

being functions of time: tL(t), E0(t) and (j>f(t). The spatial distribution of E (or 0) 

will then vary as time progresses, each individual snapshot requiring separate 

computations. 

In the case of a steady state the load can only affect the dynamic behaviour of the 

system shown in Fig. 1, the only possible choice being a pure resistance R. In a system 

shown in Fig. 2 the DC component of the current is assumed to by-pass the load so that in 

a steady state, when the AC component of current does no exist by definition, the load 

would have no effect, the system being effectively short-circuited. Omitting the time 

dependent terms in (3.23) we now obtain, substituting for §( in (4.9) 

-xLR = E0sinTL{l + -E0sinfL} (4.10) 

The two equations, (4.1) and (4.10), are sufficient for the computation of a dispersion 

equation shown in Fig. 4. The best procedure in this case is to assume a fixed value for 

R and then eliminate xL; this leaves us with a relationship between E0 and TL given by 

F(E0,xL) = 0. Assuming a value for E0 we can then solve a rather awkward 

transcendetal equation in order to obtain TL; substituting this value back in (4.1) finally 

gives us the required relationship between E0 and xL. 
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In the case of a short-circuited diode R = 0 and, as is well known, the solution of 

(4.10) is given by E0 =0 or sinxL =0. Substitution of these results in (4.1) then gives 

an intercalated set of sloping and vertical straight lines, as is shown in Fig. 4, the 

dispersion curve in this case being periodic with period 2%. The periodicity of the 

dispersion curve mirrors the periodicity of the boundary conditions in a short-circuited 

diode. This is no longer the case in the presence of a load, the potential of the two 

electrodes now being different. Therefore it should not surprise us that the corresponding 

dispersion curves also lack periodicity. It is also clear from (4.10) that in the presence of 

a load the field at the entrance electrode E0 can never be equal to zero, except for 

xL =0. This is simply due to the fact that for oc = 1 we also have (3*E)i=0 =0 at the 

entrance electrode and there is no mechanism for the electrons to be decelerated, in order 

to land on the exit electrode with a velocity vL < v0 = 1, as would be required for 

<k = <k ~ <J>o < ° • 
In addition to the case of a short-circuited diode, we have shown in Fig. 4 the effect 

of a resistive load R = 0.01, 0.05 and 0.1, inductive loads having no effect and capacitive 

loads not being permitted in the case of a steady state, i.e. DC currents, Fig. 1. We now 

find that the new dispersion curves neatly fit into spaces bordered by the straight lines of 

the R = 0 case. As R increases the curves gradually become more obviously non- 

periodic and move further away from the R = 0 straight lines. This trend can be better 

understood with the help of Figs. 5 and 6 where we have respectively a graphical 

representation of the RHS of (4.10) and of E0 as a function of tL rather than xL, as 

shown in Fig. 4. Eliminating xL between (4.1) and (4.10) we obtain 

-R{TL+E0(l-cosTL)} = E0sinTL{l + ^E0sinTL} (4.11) 

Thus the dispersion equation in terms of TL, i.e. E0(xL), can be obtained by finding the 

points of cross-section between the curves shown in Fig. 5 which are the RHS of (4.11) 

and a straight line with a 'wobble' due to the cosine term, the LHS of (4.11), the slope of 

the line being governed by the value of the load R. For a given E0 andR * 0, this line 

can never cut all the loops extending into infinity of the curves shown in Fig. 5, hence the 
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lack of periodicity shown in Figs. 4 and 6. Furthermore, as R increases, the number of 

loops intercepted by the line steadily decreases, steady-state solutions then being possible 

only for successively lower values of x L, i.e. for closer separation of the electrodes or 

lower injection current densities defined by  (öpe  (see A  1.1). Finally steady-state 

solutions cease to exist when R is sufficiently large for a virtual cathode to appear at the 

exit electrode, when <j>L = 0 or (j>£ = —. Once the curves of Fig. 6 have been obtained it 

is quite straightforward with the help of (4.1) to convert them to those of Fig. 4 where E0 

is shown as a function of xL. 

Naturally the above computations provide no information on the stability of the 

various branches of the dispersion curve for R*0, as shown in Fig.4. Judging by 

analogy with dispersion curves forR = 0 (Fig. 3 in ref.14) one would expect stable 

branches for E0 > 0, the apposite being true for E0 < 0. 

17 



5. Oscillatory solutions 

There is one more case which can be considered analytically, viz. that of harmonic 

oscillations. Assuming that the electric field at the entrance electrode varies with time as 

E0(t) = E01cos©t (5.1) 

and substituting (5.1) in (3.14) and (3.18), we can now carry out the necessary 

integrations and obtain 

x, =x, + E 01 
1-c. - + i-c+ ^ r s. 

(]), =xLE01c--AL 

2(1-©)    2(1 + ©) 

1  A 2       1 »2       £. xi+-%l+E0X 

+ s 
2(1-©)    2(1 + ©) 

(5.2) 

S_-(1-©)T;LC_    S+-(1-©)XLC+ 

A.\2 

+ s 

2(1-©)2 2(1 + ©) 

'c_-l + (l-©)tLs_    C+-1 + (1 + ©)TLS+ 

2(1+ ©)2 
(5.3) 

2(1 -©r 

Here for the convenience of notation: 

s = sin ©t        s_ = sin(l - ©)TL        S+ = sin(l + ©)TL 

cscos©t      c_ =COS(1-©)TL       c+^COSO + CO^L (5.4) 

Also, in order to simplify the algebra, we have assumed a = 1. As far as the effect of 

the load is concerned, (3.19)-(3.27) are not affected by the introduction of harmonic 

oscillations and therefore they can be used in the form shown in Section 3. It is to be 

noted that in view of (5.1) we now have only a single unknown function, viz. tL = TL(t), 

which for self-consistent solutions must be the same in (5.2) and (5.3). It is usual to 

assume that the separation of the electrodes xL and the load Zt are given so that E01 

and © must be suitably chosen to assure the same ih in both (5.2) and (5.3). In practice 

this is achieved with some help from the more general numerical computations, the 

exercise acting as an additional check, bearing in mind the algebraic complexity of the 

general case (see Appendix 3). However, in the case of harmonic oscillations we are able 

to derive in detail expressions for the AC and DC components of the total current. 

Dropping the subscript L in (5.2) we now obtain 
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v = x* = 3tx + 3jX = 1 + E01 

( 

2(1-©)    2(1 + ©) 
+ s 

C   -©      -C.-OD __+       +      - 
2(1-©)    2(1 + ©) 

E = v* = a*v + a;v = E 01 
c_ - ©      cx - © 2\ 

-s 
2(1-©)    2(1 + ©) 

(5.5) 

(5.6) 
2(1-©)    2(1 + ©) 

Thus in the interelectrode space we have the following expressions for the reduced 

convection current: 

jc = pV = (3,E + l)v = v3*E + v = djE - 9 jE + v (5.7) 

where we have substituted from (3.1) for a = 1 and used (3.4). We now note from (5.5) 

and (5.6) that 

ajE + aiX = -E01s = d.tE0 = E; (5.8) 

atE+atx = i (5.9) 

Using (5.9) and bearing in mind that in general d{ = d% + d-t we now obtain from (5.7) 

JC = atE+atx+a{x = i+a{x 

1-©E 01 
l-c_       1-c. 

-+•      + -c 
s_ ^ 

2(1-©)    2(1 + ©) 
(5.10) 

2(1-©)    2(1 + ©) 

We can now recognise in (5.10) the d.c. component of the convection current Jc = 1 and 

the a.c. component Jc = d-tx ; since the a.c. component of the convection current at the 

entrance electrode is zero by definition (see (5.10)) we now have 

jc = 1 = Jco = Jtot   = Jtot. The displacement current as usual, is obtained by writing from 

(5.6); 

L = JH =a:E = -©Ef 

( 
s 

c  - ©      c,. - © 2\ 

2(1-©)    2(1 + ©) 
-c 

2(1-©)    2(1 + ©) 
JA 

(5.11) 

It is to be noted that at the entrance electrode Jd = -©E01s = d{E0 = E0 * 0 as would be 

expected due to the fact that the field at the entrance electrode E0 varies with time (see 

(5.1)). Finally we know that in a 1-D system the total current Jtot remains constant with 
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x (or T) and only varies with t. This is confirmed by adding (5.10) and (5.11) when we 

obtain 

Jto«=Jc+Jd=l-ö)E01s = l + djE0=Jc0+Jd0=Jtot,0 (5.12) 

(see also (3.3), (3.5) and (3.6)). 

So far we have considered the reduced currents in the interelectrode space only, viz. 

Jc and Jd, the currents individually depending on both x and t. However in the 

presence of a load we must relate x dependent, i.e.l-D currents to 'circuit' currents 

which are 0-D by definition. We do that by averaging Jc and Jd with respect to x; 

bearing in mind the continuity of the total current Jtot, we obtain: 

Tddx 

XL 

(note the positive sign in (3.15) and (A 1.1)). Thus as is well known, the sum of the two 

'circuit' currents, i.e. the sum of the induced current Jjnd and the capacity charging 

current Jcap, is still equal to Jtot = Jtot>0, although in the presence of space charge we 

have in general Jc^l^  and Jd*Jcap. We find from other consideration that the 

definition of Jind as a space average of the convection current ue\ is quite usual in 1-D 

system [35]. If Jc is expressed in terms of (xL,t) rather than (xL,t)> as it is in our case 

(5.10), then the averaging procedure may be algebraically involved, although we can 

always write 

(jto«) = (jc) + (jd) = Jind +Jcap = J,ot,0 =l + Eo = Jind + (Jind + Jcap)      (5.14) 

In a short-circuited diode we have ^ = 0 so that by definition Jcap = Jcap = 0 and we 

simply have 
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(jtot) = 1 + ES = Jind + Jind = Jtot,0 = Jc0 + Jd0 . -(5.15) 

so that in this special case the induced current 

Jind = Jdo = Eo = -G>E0Is (5.16) 

In the more general case of §e * 0 we find from (5.14) that there are two contributions to 

EQ, one which is due to space-charge effects and the other due to the potential difference 

between the electrodes^. Thus although (5.14) is always valid, the values of E'Q will 

differ, depending on whether (jd} = ° (or it =°)> as is the case in a short circuited 

diode, or whether < Jd >* 0 (or (j>, * 0) in the presence of a load. 

The current inter-relationships indicated in (5.7)-(5.16) are quite general and 

independent of the actual form of E0(t) which in this section was assumed to be 

harmonic, (5.1). In order to clarify matters even further we show the general current 

distribution in the two systems of Figs. 1 and 2 respectively in Figs. 7 and 8. The main 

difference between the two systems is that in Figs. 1 and 7 both DC and AC components 

of the total current Jtot flow through the load Ze, whereas in Figs. 2 and 8 only the AC 

component of the total current Jtot is allowed to interact with the load. Since in general 

« Jtot = 1, in the presence of a load the above difference has a profound effect on 

the dynamic behaviour of the system. One should also add that since on the whole 

, Jind being a spatial average of Jc, the two currents Jc and Jd tend to flow in 

•not 

Jind 

opposite directions in order to preserve the continuity of Jtot, this being the case 

especially in a short-circuited diode. Perhaps one ought to add that the boundary 

conditions at the grid of the two systems of Figs. 1 and 2 are somewhat idealized, 

although in principle the systems are physically realizeable. 

We are now in a better position to test our numerical computations and compare them 

with the analytical results expressed by (5.2) and (5.3). In order to do that we have to 

choose a sensible value of the separation of the electrodes, say 
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xL= 2.8757t = 9.0321 ,(5.17) 

and then obtain the corresponding values for & and E0, by solving (3.14), (3.18) for 

6c = 1. We then obtain 

f = 0.0278 or cö= 2rcf = 0.1745 (5.18) 

E0l =0.112 (5.19) 

Having thus obtained the values of &> & E01, we then substitute them in (5.2) and (5.3) 

with §( = 0 (short-circuited diode). The last step amounts to a somewhat laborious 

solution of the two equations in order to obtain indepently the transit time as a function of 

time, xL = xL(t). The two solutions are shown in Fig. 9 - they differ by less than 0.02%; 

bearing in mind the algebraic complexity of (3.14), (3.18) this is a very satisfactory 

agreement. It also indicates that in this case the oscillatioins are almost harmonic in 

nature, which of course was the initial assumption expressed by (5.1). What is of 

particular interest for our future investigations, especially those presented in Sections 7 & 

8, is the fact that E01 is quite small. Since from (5.14), (5.16) and (5.18) for a short- 

circuited diode 

Jind=l (5-20) 

= cbE01 =0.0195 (5.21) Jind =K 
in this case the electronic efficiency of generating this type of oscillations is very low, the 

AC component being only some 2% of the DC component of the total current 

Jtot = Jind + Jind .However in some cases the efficiency may be as high as 30%, as can be 

seen in Figs. 18 and 19. 
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6. Method of presentation of computational results, using a short-circuited diode as an 

example. 

In general the dynamical behaviour of the system is described by equations (3.14), 

(3.18) derived in Section 3 of the Report; here (3.14) is an integral equation, but in the 

presence of a load (3.18) becomes an itegro-differential equation. Both equations are of 

the Volterra type and are characterized by the fact that the limits of integration are not 

fixed, but include a running variable, in our case t. In the case of (3.14), (3.18) the 

situation is further complicated by the fact that the lower limit of integration in both cases 

contains not only the variable t but also the transit time xL(t), which is one of the 

unknown functions. It is not surprising therefore that no standard solutions or well 

established computer codes are available. It was therefore necessary to devise a special 

code of some complexity to deal with the problem at hand. The code for a short-circuited 

diode has been described in ref. 16 and a more generalized form of the code valid for the 

diode with a load is described in Appendix 2. 

In the case of a short-circuited diode there is no practical difference between the two 

systems respectively shown in Figs. 1 and 2. The dynamic properties of the model can be 

described in several different ways. The simplest is to plot the so-called time history of 

the system, i.e. either E0 and/or xh as functions of time. In Figs 10 a-d we have typical 

plots of E0 = E0(t) for a=l and different values of the parameter xL. Depending on the 

reduced separation of the electrodes xL we obtain, after a transient, either a steady value 

of E0, Fig. 10a, or a time- varying value of E0. For xL = 2.887t the oscillations occur at a 

single frequency, Fig. 10b, but as xL decreases a bifurcation occurs, as can be seen in Fig. 

10c computed for xL = 2.86rc, the system having reached a chaotic state by the time xL= 

2.855K, Fig. lOd. Figs. 11 a-d show the results of our computations when the separation 

of the electrodes xL is fixed and the parameter 6c is varied. Here for the separation of the 

electrodes we have chosen the value of xL = 2.88TC used in Fig. 10b and leading to a 
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Single frequency of oscillations when d = 1. We now find that for 6c = 0.99, Fig.'11a, a 

single frequency still prevails, although the mean value of E0 has become negative. 

However for 6c= 0.988 a bifurcation point has already been passed, Fig. lib and for 

6c =0.986 there are strong indications of chaos, Fig. lie, the dynamic behaviour of the 

system clearly being very sensitive to the value of 6c. This is further confirmed by Fig. 

lid which was plotted for 6c = 1.05, the amplitude of oscillations now being five times 

that of Fig. 10b. Also it should be noted that for 6c < 1, when the net charge at the 

entrance electrode is slightly negative, the mean value of E0 is also negative, Figs. 11 a- 

c. However, when the net charge is positive, 6c> 1, the mean value of E0 is also positive, 

Fig. 1 Id. 

Another method of presenting the dynamic properties of the system is based on the 

concept of the so-called phase trajectories. In our case this amounts to plotting E0 against 

TL -xL, Figs. 12 a-f. Let us first of all consider some simple phase-space trajectories. 

We find from (4.1) that in the absence of oscillations (E0 = const) and for 6c = 1, we 

have 

XL = TL+E0[1-COSTJ (6.1) 

For E0 = 0 (Pierce diode) we have xL = v0xL or in our notation xL = xL; thus in the 

absence of fields there is no acceleration and the initial velocity v0 remains constant, the 

plot of E0 against xL - xL being reduced to a single point at the origin. Since in the 

absence of fields between the electrodes TL-xL = 0, the variable xL(t)-xL can be 

looked at as an instantaneous measure of the departure of the diode from a field-free 

condition. For a steady state, Fig. 10a, where E0 after a transient becomes equal to a 

constant which is different from zero, the plot is still a single point, but it is now situated 

somewhere along a straight line passing through E0 and extending in the horizontal 

direction from -2E0 to 2E0 (see (6.1)), its exact position being governed by the 

parameters of the system. For oscillatory and chaotic states, E0 = E0(t), the single point 
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'opens up' and a more recognisable phase-space trajectory of our dynamical-system 

finally emerges. 

Let us now consider phase-space trajectories corresponding to time histories shown in 

Figs. 10 b - d. In the presence of a single frequency of oscillations the phase-space 

trajectory of the system is shown in Fig. 12a where, after a transient, a limit cycle 

develops. These results are in complete agreement with Fig. 10b which was computed for 

the same values of the parameters xL and 6c. The values of the parameters chosen for 

Fig. 12b are the same as those used in Fig. 10c ~ in both cases we have a clear indication 

that a bifurcation has occurred, the system now exhibiting two frequencies of oscillations, 

the period of the corresponding trajectory now being doubled. In Fig. 12c, which 

corresponds to Fig.lOd, chaos appears to have set in; however, a further reduction in the 

separation of the electrodes leads to the appearance of three different frequencies and a 

tripling of the trajectory period at xL = 2.855jt, as shown in Fig. 12d, the conditions of 

chaos again setting in for xL = 2.8495TC, Fig. 12e. Finally for xL = 2.84887t the phase 

trajectory just 'walks away', the system becoming unstable, Fig. 12f. Similar phase-space 

trajectories could be obtained for Figs. 11 a-d, but they are omitted in order to save space. 

In general time histories are particularly convenient when we wish to establish the 

amplitude and frequency of oscillations, but phase-space trajectories show bifurcations 

and the onset of chaos more clearly. 

In order to condense a large amount of information, which is invariably available in 

numerical computations, it is very convenient to use the so-called bifurcation diagrams 

[37,38]. In our case this amounts to plotting xL - xL, or rather its maximum value, against 

xL for a fixed6c, Figs. 13-15, or the same variable xL - xL against 6c for a fixed xL, Fig. 

16. Since TL now represents each consecutive maximum of TL(t), when the system 

oscillates there will be one such value for a simply periodic motion, two for a doubly 

periodic motion, three for a triply periodic motion and so on; in chaos there will be a very 

large number of such maxima (see Figs. lOd ,1 lc, 12e and 13 - 16). The main advantage 
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of a bifurcation diagram is that it clearly indicates the values of parameters for which the 

system is singly periodic, multiply periodic or chaotic; in fact the construction of a 

bifurcation diagram is essential in order to establish a 'cascade of bifurcations', i.e. 

consecutive frequency doubling, which invariably precedes a truly chaotic behaviour of 

the system. 

Let us now consider Fig. 13 in more detail. We find that for sufficiently large values 

of xjn the system exhibits only a single frequency of oscillations, i.e. there is only one 

maximum value of TL indicated by a dotted line which varies slightly in height (see also 

Figs. 10b and 12a). At xL = 2.86337t a "bifurcation' occurs, from now on the system 

being able to support two different frequencies of oscillations respectively indicated by 

two dotted lines (Figs. 10c and 12b). This situation persists until at xL = 2.8585K when 

another bifurcation occurs, the system now being able to support four different 

frequencies. This process continues until we reach a state of chaos when xL ~ 2.8557t 

(also Figs lOd and 12c). As xL is reduced even further we encounter windows (white 

islands) when the system either reverts to a multiply periodic operation (Fig. 12d), or has 

bursts of chaotic behaviour (Fig. 12e). It is the cascade of bifurcations together with the 

presence of windows that are typical of a system which is capable of chaotic behaviour. 

Having discussed Fig. 13 we are now in a better position to consider bifurcation 

diagrams which have been obtained for values of 6c * 1. In Figs. 14 and 15 are shown 

bifurcation diagrams which in some respects are similar to Fig. 13, but which have been 

computed respectively for 6c = 0.995 and 6c=1.05. It can be seen that even such small 

changes in the value of 6c have quite a profound effect both on the position of the first 

and subsequent bifurcations and on the shape and position of the windows and areas of 

chaos. In Fig. 16 we have therefore reversed the situation by keeping the separation of the 

electrodes constant at xL=2.887t and varied the initial charge ratio 6c over a range of 

values. This leads to a new bifurcation diagram which is characterised by the fact that 

there appear to be two separate branches, indicating that certain maximum values of 
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xL - xL are totally excluded, even in the chaotic state. Somewhat similar branches in Figs 

13-15 appear to overlap. 

The results of many such computations have been finally collected in Fig. 17 where 

the horizontal axis represents the separation of the electrodes xL and the vertical axis the 

initial charge ratio a. We now find that in the case of a short-circuited diode there are 

four distinct regimes of operation of the dynamic system shown in Figs. 1 and 2. For low 

values of xL and for the remaining values of xL when 6c < 1 the system is unstable, well 

in agreement with some earlier observations [14]. For higher values of xL and a > 1 

after a short transient E0 and TL reach constant values. Between these two regimes there 

is a range of xL and 6c parameters for which the system is capable of sustaining stable 

oscillations - clearly this is the range of operation which would be of practical interest in 

the design of microwave devices. However this region is separated from the first 

(unstable) region by a band of chaos. In practice this particular range of xL and 6c 

parameters must be avoided. It should be added that Figs. 13 - 16 can be combined 

together, the parameters xL, 6c and xL -xL forming a Cartesian 3-D space. Figs. 13-15 

then represent plane cross-sections respectively occurring at 6c = 1.0, 0.995 and 1.05, 

whereas Fig. 16 is a plane cross-section at a fixed value of xL= 2.8871. Finally Fig. 17 can 

be looked at as a projection of all such results on the (xL,6c)-plane giving us an overall 

view of the dynamic behaviour of the system. 

Let us now consider in more detail the oscillatory region which is clearly shown in 

Fig. 17. In order to explore the region more closely we have collected the results of 

computations obtained along two straight lines, one for variable 6c and a fixed value of 

xjn =2.88, line A and the other for a variable xjn and a fixed 6c = 1.05, line B, both 

shown in Fig. 17. The variations of amplitude and frequency are shown in Figs. 18 and 

19. We find from Fig. 18 that for a fixed xjn the amplitude of oscillations varies quite 

markedly with 6c, the highest value occurring near the upper edge of the oscillatory 

region, where the charge balance at the entrance electrode is slightly in favour of positive 
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ions. In fact over a narrow range of a the amplitude tends to grow almost exponentially - 

probably due to the fact that our model is short circuited, rather than connected to a load, 

as would be the case in practice. For a < 1 the system rapidly becomes chaotic, as can be 

seen in Fig. 17; for cc > 1.13 the system becomes stable and ceases to oscillate. We can 

see from Fig. 18 that the frequency of oscillations also varies with 6c and reaches its 

maximum again near the edge of the region. The dependence of the amplitude of 

oscillations and their frequency on xL/rc for a fixed value of d = 1.05 is shown in Fig. 

19. We now find that the maximum amplitude of oscillations again occurs near the edge 

of the oscillatory region, just before the system become stable. For the values of XJK 

below 2.7 the operation of the system becomes chaotic and for xL/7U>3.15 the oscillations 

disappear altogether and the system becomes stable. It is interesting to note that the 

frequency of oscillations now remains fairly constant. This should not surprise us, since 

one would expect the ratio of positive and negative charges to have a marked influence 

on the frequency; for 6c = constant this ratio is fixed at the entrance electrode and then 

varies with x probably in a manner which is fairly independent of xL. 

Finally let us consider possible reasons for the development of oscillations near xL=3 

7t. It is well known that for a = 1 the system is stable for E0 = 0, 0 < xL<rc; E0= xL- n, 

xL>7r and also for E0= xL- 3K, 3TC < xL< 3rc +1 (see Fig. 3 in [14]). In the first two ranges 

the corresponding potential function has a single maximum between the electrodes, but in 

the third range there is enough room for a maximum and a minimum, Fig. 20. It is this 

situation which allows the oscillations to develop by the process of continuous shift of the 

two charge bunches from right to left and back again. The formation of charged bunches 

and their oscillatory movements between the electrodes can be clearly observed when the 

electron stream is represented by sheets of charge, as explained elsewhere [28]. Using 

(5.20), (5.21) as a measure of efficiency in generating this type of oscillations, we find 

that the oscillatory current as a fraction of the DC current varies from a few percent to a 

maximum of some 30%. 
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7. Physical interpretation of the results 

The dynamical behaviour of the system using the Lagrangian approach has been 

considered elsewhere [28]. In this report we are primarily concerned with the Eulerian 

approach, the summary of our investigations for a short-circuited diode being presented 

in Fig. 17. In principle there are four different dynamic regimes of the system: stable, 

oscillatory, chaotic and unstable; they are all shown in Fig. 17 where the value of the 

initial charge ratio at the entrance electrode a is plotted vertically and the separation of 

the electrodes xL/rc is plotted horizontally. Each point in Fig. 17 has been obtained by 

subjecting the model to a lengthy numerical analysis in order to establish which of the 

four regimes is the appropriate one. 

Let us now consider the general conditions of the system along the horizontal line 

6t=l in Fig. 17. In the stable region the system, after a brief transient, settles down to 

fixed values of the transit time TL and the corresponding electric field at the entrance 

electrode E0. In the oscillatory and chaotic regions the system is best represented by a 

bifurcation diagram sometime called a Poincare map. In our case we may plot for a=l 

the maximum value of TL -XL against xjn, Fig. 13 (see also Fig. 10 in [14]). Here the 

following physical significance should be attached to the variable TL - xL. In the absence 

of electric fields in the inter-electrode space we have xL = xL/v0, or %L = xL in our 

notation (see 4.1 and A 1.1 in Appendix 1). Thus the value of xL-xL is a measure of 

departure from the field-free condition between the electrodes. In the stable region 

xL-xL must assume a value which is fixed and different from zero if E0 *0. In the 

oscillatory region the value of TL-XL =. TL(t)-xL will vary in synchronism with the 

oscillations. In the chaotic region we only consider the amplitude (max. value) of xL - xL, 

and plot it against, say, xj%. When the system oscillates, there will be one maximum 

value for a simply periodic motion, two for a doubly periodic motion and so on; in chaos 

there will be a very large number of such points. Figs. 13-15 show typical examples of 

chaotic behaviour of the system; starting with a single frequency of oscillations we have a 

series of bifurcations as the crucial parameter changes, until we reach the state of chaos. 

Further changes of x.J% lead to white windows when the system reverts to a multiple 
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frequency state - these are again followed by ranges of chaos. Finally the system enters 

an unstable region, where no convergent solutions of (3.14), (3.18) are possible; this 

seems to indicate that the system is now in a run-away situation, possibly due to the 

appearance of a virtual cathode, when the Eulerian approach breaks down. 

Perhaps one ought to add that in principle two types of oscillations are possible in a 

plasma-filled diode. The first type is generated by successive appearance and 

disappearance of a virtual cathode in the interelectrode space - such oscillations form the 

basis of operation of a vircator tube and cannot be investigated by using mathematical 

techniques presented in this Report. The second type of oscillations is based on a flip-flop 

movement of space charge in the interelectrode space, the mathematical formulation of 

the problem being presented in Section 5 of the Report. 

Let us now discuss the physics of the problem using some simple concepts as a 

guiding principle. In the Eulerian approach the dynamics of the system is described by 

three functions, (j> (or E), v and pe, all three being functions of two independent 

variables x and t. In summarising the results, e.g. as in Fig. 17, we would only consider 

the time history of the electric field at the entrance electrode E0- this provides a clear 

indication of the dynamic state of the system and the way it varies with the control 

parameters xL or 6c [14-16,36]. Now since we are concerned with the actual physics of 

the problem, we must use all the information provided by the hydrodynamic approach 

and follow both the evolution in time and space of the three function E, v and pe. The 

results are presented in the form of 3-D graphs which clearly reveal the physical 

properties of the system in different dynamical states. 

Let us now consider the four possible states, i.e. stable, oscillatory, chaotic and 

unstable, as we move along the line a = 1 in Fig. 17. We start with the stable state of the 

system when xL=2.97787C. The spatial distribution and temporal evolution of the 

(electron) space charge density pe are plotted as a 3-D surface in Fig. 21. Similar 

surfaces can be drawn for $ (or E) and v, but they are omitted for reasons of space. 

Since in this case E0 = 0(see Fig.3 in [14]) it is not surprising that, once the transient has 

died out, the surface is a horizontal plain situated at pe=l. This suggests that ions and 
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electrons are uniformly distributed throughout the inter-electrode space, their .volume 

density being the same, the system thus being in a stable state. As far as the phase 

trajectory is concerned, we must first choose a fixed point, say the middle of the inter- 

electrode space (x = 0.5) in order to observe the evolution of the system with time. In the 

above case the phase trajectory collapses to a single point (1,1,0), where pe, v and E, are 

the state variables. 

We now move to an oscillatory state for, say xL =2.8785TC. The electron charge 

density surface pe is now fully developed consisting of peaks and hollows, Fig. 22a. The 

peaks indicate a surplus and the hollows a deficiency of electrons compared to the fixed 

ion density pio; they form identical arrays along the time axis, implying a single 

frequency of oscillation. Consequently, the corresponding phase trajectory follows a 

single limit cycle shown in Fig. 22b. Looking at the variation of space charge density 

with distance, we find a wave pattern which pulsates in time, the peaks and hollows 

continuously exchanging their position. One may well wonder at this point how the 

system retains its dynamical balance? To answer this point we look at the space charge 

density averaged over the inter-electrode distance, Fig. 22c. Here the solid line represents 

electron charge density averaged over the inter-electrode space (pe) as a function of 

time. We find that the average value of the curve is somewhat above the (pe) = 1 line, i.e. 

that on average there is a surplus of electrons in the interelectrode space, although a 

constant exchange of electrons between the electron cloud and the electrodes takes place, 

as would be expected in the case of steady oscillations. Thus although the initial ratio of 

ions to electrons is set to be 1:1 at the entrance electrode, for some values of xL the 

system develops a slight imbalance which breaks the static equilibrium and leads to 

oscillations. 

Decreasing the separation of the electrodes even further, we find that for 

xL =2.864871 the system moves beyond the first bifurcation point. This is well 

illustrated by a pe surface possessing peaks of two different heights along the time axis, 
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Fig. 23a; the corresponding phase space trajectory shows a typical double limit 'cycle, 

Fig. 23b. Averaging as above, we now find that the corresponding curve shows double 

periodicity, Fig. 23c. It is to be noted that in this case the amplitude of peaks and the 

average charge imbalance have both increased, compared to Fig.22c. 

When xL is further reduced to 2.8549TC the system enters the state of chaos. This 

again is clearly shown by the shape of space charge density surface pe, Fig. 24a which 

has an irregular collection of peaks and hollows of varying amplitude. The corresponding 

phase space trajectory is a typical strange attractor, Fig. 24b. The corresponding curve 

representing the average (pe) as a function of time, Fig. 24c, shows further increase in 

the amplitude of peaks and also in the charge imbalance. 

Finally, the system enters an unstable state when xL passes 2.8488rc. The surface of 

pe, the phase trajectory and the average (pe) are now respectively shown in Figs 25a-c. 

They clearly suggest that the surplus of electrons becomes excessive and it eventually 

breaks down the dynamical balance between ions and electrons, the system reaching a 

run-away situation, possibly via formation of one or more virtual cathodes. 

The physical aspect of the dynamics of a plasma-filled diode is neatly summarized in 

Fig. 26 where we have simple scales supported at a height proportional to the average 

excess of electrons, the two ends going up and down as a given point in the interelectrode 

space acquires or loses electron charge (see Fig. 26). Although the model is hardly 

rigorous, it has the attraction of simplicity. 
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8. Computational results - AC currents and a load 

In the presence of a load Ze we have to distinguish between the two systems 

respectively shown in Figs 1 and 2. For historical reasons we propose to consider in the 

first place the system shown in Fig.2 where only the AC component of the total current 

Jlot is allowed to interact with the load, the electron beam being generated to the left of 

Gl and collected to the right of G2. 

Also, the concept of a load is so broad that one had to decide how to be more 

specific. It seemed reasonable therefore to limit our investigations to a load in the form of 

a simple circuit comprising resistance, inductance and capacitance in series. In the 

circumstances, it is prudent to start with a single element, say a resistance R, and 

consider in more detail its effect on the dynamic behavior of the system. 

8.1 Resistive load 

In the case of a purely resistive load R the potential difference between the exit and 

entrance electrodes due to the flow of an AC component of the total current is given by 

(see (3.6) and (3.26)) 

^=-xLRD;E0 (8.1) 

where DjE0 = d?E0 = 3t-E0(t,0). 

In order to get some idea of the dynamic behaviour of the diode in the presence of a 

load Ze = R we have chosen a single point in Fig. 17 (6c = l,xL/7t = 2.855) and then 

plotted phase-space trajectories for different values of R . We know from Fig. 17 that for 

R = 0 (short-circuited diode) the system is chaotic. We then find from Figs. 27a and b 

that the system still remains chaotic for R = 10^ and 10"3, but it becomes doubly- 

periodic at R = 10~2, Fig. 27c, and finally ceases to oscillate altogether at R = 10""1, the 

phase trajectory approaching a focus at the origin in Fig. 27d; in this case the load losses 

must have become excessive for the oscillations to be sustained. 
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As the next step of computations we have decided to repeat the whole of Fig. .17 but 

for a load R = 0.01. The results of our computations are shown in Table 1 and Fig. 28; a 

composite 3D presentation in color is given in Fig. 29. Comparing the two sets of results 

shown in Figs. 17 and 28, 29 we find that the four important dynamic regions, viz. stable, 

oscillatory, chaotic and unstable are shifted somewhat. In particular, Fig. 28 and Table 1 

clearly indicate that on the whole the chaotic region has broadened somewhat and moved 

to the left, whereas the oscillatory region has expanded to the right. However in the 

immediate vicinity of 6c = 1 the chaotic region has narrowed under the influence of the 

load, as shown in Fig. 28'. The shift of the chaotic regime with a is shown in the 

bifurcation diagrams, Figs. 30 a-c, which are respectively plotted for a = 0.99, 1.0 and 

1.01. These diagrams are quite revealing but the construction of each diagram consumes 

about 5h of computer time on a Sun Ultra Enterprise 3000. However without this 

information Figs. 28 and 29, which summarize the results, could not have been 

constructed. It is worth mentioning at this point that R = 0.01 corresponds to a resistive 

load of R = 0.1Q if we assume A = 25cm2, d = 1cm (hence Cv = 2.2pF), (j)0 = 50kv and 

Jc0 * 9.0 kA/cm2. 

8. 2 Capacitive load 

Let us now consider the dynamic behavior of the system when a purely capacitive 

load is connected across the diode. We find from (3.26) that in this case the potential 

difference between the exit and entrance electrodes due to the AC component of the total 

current flowing through the load is given by 

^=-XL1E0 (8.2) 

Algebraically (8.2) is rather convenient since it does not involve time derivatives on the 

LHSof(3.18). 

We can now investigate the effect of a capacitive load using both phase and 

bifurcation diagrams. Choosing xL = 2.857C, which for a= 1 brings us into the middle of 

the chaotic regime, we find from Figs. 31 a - d that decreasing the value of C gradually 
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suppresses chaos. Starting with C = 106, Fig. 31a, which is virtually equivalent to a short 

circuit, we move via an almost triply-periodic state for C = 175, Fig. 31b, a doubly 

periodic state for C = 55, Fig. 31c to a virtually pure singly-periodic state for C =20, Fig. 

3 Id. For even lower values of C, say C = 5, the oscillations cease altogether, the system 

entering a steady state, no AC current being induced in the system, the phase diagram 

now being reduced to a single point at the origin. Perhaps one ought to add that in the 

absence of electric fields between the electrodes we have from (3.1)xL =xL for & = 1; 

this corresponds to the origin TL -XL =0 in our phase diagram, so that Figs.31a-d, 

where we plot E0 against TL - xL, indicate how the system shown in Fig. 2 departs from 

a steady state. For the diode dimensions mentioned above the tube capacitance Cv ~ 2.2 

pF, so that from (3.27) the reduced capacitance C expresses C in the units of Cv. 

Another way of representing the dynamic behavior of the system is with the help of 

a bifurcation diagram where again we plot the maximum value of TL - xL, but this time 

against C rather than xL, Figs. 32 a and b. This presentation is much more complete 

giving us an overall view of the dynamic behavior of the system, whereas previously, 

Figs. 31 a-d, we only had a series of snapshots, each valid for a particular value of C. We 

find form Figs. 32 a and b, which have been plotted for two overlapping ranges of C, 

that in this case increasing C leads, via the usual cascade of bifurcations, to a state of 

chaos, including typical clear windows when the system suddenly becomes multiply 

periodic. 

Finally it is again of interest to consider the dynamic behaviour of the system as a 

function of a. For R = 0.0 and C = 106, which is virtually equivalent to a short circuit, 

we find from Fig. 33a that for xL = 2.887T and a = 0.9855 the system is clearly in a 

quadruply-periodic state and it becomes chaotic at a=l, Fig. 33b. For a=1.02 the 

system settles down to a single-periodic state with a well defined and quite stable limit 

cycle, Fig. 33c. These results are in agreement with those obtained previously and shown 

in Fig. 17. When a capacitive load of C - 20 is connected across the electrodes, the 

situation changes somewhat. For 6c= 0.9855, Fig. 34a, the system starts almost chaotic, 
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but for a = 1, Fig. 34b, and in particular 6c=1.01 and 1.02, Figs. 34c and d, the system 

settles down to well defined single-period oscillations. 

When the capacitive load is further reduced to C= 10, single period oscillations 

occur for all three values of a, although they start with a somewhat ill shaped limit cycle 

which becomes more regular as a grows; at the same time the amplitude of oscillation 

also increases, as can be seen in Figs. 35a-c. 

Finally Fig. 36 shows a bifurcation diagram constructed for a range of values of a 

and a single value of capacitance, C = 20. Choosing a suitable value for xL we find that 

the system starts in an oscillatory state for 6c = 1 and then progresses via a cascade of 

bifurcations to reach a state of chaos as 6c is being gradually reduced; below 6c = 0.981 

the system becomes unstable. This behavior is quite similar to that indicated in Fig. 17 

which is valid for a short-circuited diode. 

We should add here that our results, comprising 6c = ni0/ne0 * 1, are complementary 

to those of Lawson [22] who limited himself to 6c = 1 and a capacitive load; both sets of 

results are in close agreement where they overlap, e.g. for 6c = 1, C =20 (extrapolated 

Figs. 16 in [2211] and our Fig. 3Id). It is important to note, Figs. 32a and b, that in 

addition to C, the charge balance at the entrance electrode 6c = ni0/ne0 has a strong 

influence on chaos. 

8.3 Inductive load 

As a third example of a simple load let us consider the dynamic behaviour of the 

system when a purely inductive load is connected across the diode. We find from (3.26) 

that in this case the potential difference between the exit and entrance electrodes due to 

the AC component of current flowing through the load is given by 

i,=-ftLLD?E0 (8-3) 

The above expression has now to be substituted in (3.18) converting it from an integral 

into an integro-differential equation. 
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The results of our investigations for a = 1 and three different separations of the 

electrodes, XL=2.85TC, 2.85177t and 2.8525rc are respectively shown in Figs.' 37a-d, 

38a-d and 39a-d. For L = 0.0 i.e. a short circuit, the results are in general in agreement 

with Fig. 17, except possibly for Fig. 38 a, where the system is bordering on chaos. As 

the value of the inductance L is increased, the system goes through a doubly-periodic 

state, L = 0.5 and Figs. 37c, 38c and 39c until it reaches a singly periodic state for 

L = 1.0, Figs 37d, 38d and 39d. In order to get a clearer understanding of the dynamic 

behaviour of the system as a function of L we have plotted three bifurcation diagrams 

respectively for three different values of xL, Figs. 40a-c. We now find from the 

diagrams that the system is extremely sensitive to the separation of the electrodes xL; in 

general the diagrams are shifted to the left as xL increases, i.e. the first bifurcation occurs 

at a steadily decreasing value of xL. The sensitivity of the system to variation in xL is 

further confirmed by bifurcation diagrams shown in Figs. 41a and b where we have used 

the separation of the electrodes xL as an independent variable. We can see that a 1% 

change in xL can move the system form single-period oscillations to chaos, and vice 

versa. Thus the position of chaos can be controlled quite effectively by varying xL (see 

also Figs. 17,28 &29). 

8.4 Inductance, resistance and capacitance in series 

In the case of a load comprising inductance, resistance and capacitance connected in 

series, the number of possible variations is very large indeed. We will therefore attempt 

to provide only an overview of the situation by specifying in fairly general terms how the 

three modes of behaviour, i.e. chaotic, oscillatory and stable are affected by an R ,L, C 

load. We have already noticed in Sections 3.1 - 3.3 that a purely resistive, capacitive or 

inductive load can control chaos and even induce the diode to move into an oscillatory 

regime. We will now extend our investigations by first analyzing the effect of a load 

where R ,C or R,L are connected in pairs, the third component being absent or kept 

constant. 
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8.4.1 Variable R and C 

The results of our investigations for a load consisting of a resistance R  and a 

capacitance C  connected in series are shown in Tables 2a-c. In order to reduce the 

number of parameters we have decided to fix the value of a by putting a = 1 and then 

chose three different values of the capacitance, C =11,20,1000, at the same time shifting 

the value of xL so that for R = 0 the system would always start in a chaotic state. The 

behaviour of the system as the resistance R is varied over a wide range of values is 

shown in Tables 2 a-c. When the capacitance C is relatively small, Table 2a, chaotic 

behaviour ceases when R reaches 0.028. Using the same values for the tube parameters 

(A = 25cm2, xL = 1cm, (j)0 «50kv) this corresponds to R «0.3Q. For larger values of 

R the system breaks out into oscillations, their amplitude decreasing with increasing R, 

until the oscillations cease altogether, the system reaching a stable state for R>0.12. 

Figs,  42a-d  show  the  corresponding phase-space trajectories  for   a = l,   C = ll, 

xL = 2.77rcand R = 0.0001, 0.001, 0.01 and 0.1. 

In Table 2b the capacitance has been virtually doubled to C = 20; at the same time 

xL has been slightly increased from 2.11 n to 2.82rc in order to start with chaos for 

R = 0. We now find that as R increases, the system ceases to be chaotic and enters the 

oscillatory state for R = 0.025; it then ceases to oscillate altogether for R>0.108. A 

graphical representation of these results is shown in Fig. 43a-d. We find from Figs. 43 a-b 

that the system starts by being chaotic for R = 10-4 and 10"\ almost doubly-periodic at 

R - 10"2 and finally singly-periodic at R = 10"1. When the resistive component is 

further increased to R = 1, the phase trajectory approaches a focus at the origin, the 

oscillations ceasing altogether, presumably due to excessive load losses. It is interesting 

to note that again the chaotic behaviour of the system can be quenched by a judicious 

addition to the output load of resistance R. Assuming R = 10"4 * 0 our Fig. 43a agrees 

in principle with Fig. 16 of Lawson [2211] for xL = 2.827t (his a/it = 2.82). 
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So far the behaviour of the system was very similar for C = 11 and C = 20,. This 

situation changes quite drastically when the value of the capacitance is increased to 

C = 1000, Table 2c which corresponds to C«2000pF, assuming the same physical 

dimensions for the diode. Now the chaotic behaviour of the system ceases when the 

resistive component of the load reaches R = 0.01 (R = 0.1Q), the oscillatory state lasting 

only till we reach R = 0.06 (R = 0.6ß); beyond this point the system settles down to a 

stable state. Since for C = 1000 the effect of the capacitance on the system is very small, 

the above results are in agreement with those obtained in Section 8.1 and shown in Figs. 

28 and 29. Not surprisingly the chaos quenching effect of R increases as the effect of the 

capacitance C diminishes. 

8.4.2 Fixed R, Variable L and C 

Having considered the effect of a load consisting of a resistance and a capacitance in 

series, let us now investigate the effect of the third element, viz. an inductance. In order 

to avoid varying too many parameters at the same time, let us keep the resistance constant 

and equal to R = 0.01(R ~ 0AQ) and just vary the capacitance C and the inductance L. 

The results of our investigations are shown in Tables 3 a-c. Here we have chosen 

again three different values of the capacitance, viz. C = 11.0, 20.0 and 1000.0 and 

allowed L to vary over a reasonable range of values. We find from Table 3a that for 

R = 0.01, C = 11.0 and L = 0 the system is in a chaotic state, in agreement with the 

results obtained in section 3.3.1 and shown in Table 2a. The state of chaos persists until 

L = 5.0 (or L=0.25uH using our chosen tube parameters) when a single limit cycle or 

what we call an 'oscillatory state' is reached. In the process the system goes in reverse 

through the usual bifurcation cascade, passing one quadruply, and two doubly-periodic 

limit cycles respectively at L = 2.0, 2.4 and 2.5. For values of L>5.0 the amplitude of 

oscillations steadily decreases and so does the rate of convergence of our computational 

process. One gets the impression that the system is approaching an unstable state. 
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The results shown in Table 3b have been obtained for C = 20.0. As the value of L 

is allowed to vary from zero to ten, the system again remains chaotic until w'e reach 

L = 2.4, when the first bifurcation occurs, the system now exhibiting a clear limit cycle 

between L = 2.4 and 10.0. Beyond L = 10.0 the oscillations begin to fade away and the 

convergence process becomes progressively less well defined; again one suspects the 

approach of an unstable state. 

Finally in Table 3c we have the results for C = 1000.0, at which value the influence 

of the capacitance is very small. We now find that for R = 0.01 and L = 0 the system 

exhibits a doubly-periodic limit cycle and reaches a single limit cycle at L = 10 (or 

L=0.5(iH). Beyond this point further increase in L leads to diminishing amplitude of 

oscillations and possible instability. In general inductance tends to act like resistance and 

appears to hinder chaotic behaviour. 

8.4.3 A Purely Reactive L and C load 

In order to clarify matters somewhat we have investigated a system with a purely 

reactive, L & C load. Here, for the sake of brevity, we have assumed the capacitance to 

be constant and equal to C = 20.0 and varied the inductance between zero and 5.0, as 

shown in Table 4. We find that the results are similar to those presented in Table 3b, 
A 

except that now the system reaches an oscillatory state a little earlier at L = 5.0 rather 

than 10.0; also, without the steadying effect of a resistive component of the load, it has a 

tendency to go unstable a bit earlier. In fact the results appear to be closer to those shown 

in Tables 3a, where removing the resistive component, R = 0.0, appears to require a 

higher capacitive susceptance. 
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9. Computational results - AC+DC currents and a load 

At this point of our investigations it seemed appropriate to consider a system where 

both DC and AC components of the total current Jtot would be allowed to interact with 

the load Ze, as shown in Fig. 1. This means that, in our notation, instead of writing 

J,o, = tot = D?E0 
we have J.ot = Jto« + tot = 1 + D«E0 • Substituting this in an expression 

for <j>f we obtain (3.23) which is repeated here for our convenience 

^=-xLVtot=-xL{R + (LD?+RDi)^0 (9.1) 

It is to be noted that in view of the presence of the DC component of the total current 

Jtot, the load can no longer contain a series capacitance C and at most it can consist of a 

resistance R and an inductance L in series. 

9.1 Resistive load 

In the case of a purely resistive load the potential difference between the exit and 

entrance electrodes due to the flow of the total current Jtot is obtained from (9.1) by 

putting L = 0, 

^=-XLR(I + D;)E0 (9.2) 

It is of interest to compare (8.1) and (9.2). Although the difference merely amounts to the 

addition of an extra term - xLRE0, in practice this, as we shall see, has a profound effect 

on the dynamic behaviours of the system. This happens largely due to the fact that in 

most cases J« » J«ot , thus in the case of oscillations, the conversion of the kinetic 

energy of the electrons into the AC component of the electromagnetic field is rather poor, 

varying between 3-30% (see also Figs. 18 and 19). 

Let us now consider the results of some more detailed investigations. We start with 

oc = l, xL=2.837rc and a range of values of R, the corresponding phase-space 

trajectories being shown in Figs 44a-d. Comparing this with Figs 27a-d, where only the 
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cases J,c, » J« 

AC component of the current was allowed to interact with the load, we find that in the 

presence of the DC component the values of R and their range are much smaller. 

Although for R = 0.001, the corresponding trajectories look somewhat similar (allowing 

for a small change in xL), Figs. 44a and 27b, the system becomes doubly-periodic 

already for R = 0.0018, Fig. 44c as opposed to R = 0.01 in Fig. 27c and singly periodic 

for R = 0.0025, Fig. 44d; for values of R > 0.0025 the system ceases to oscillate 

altogether, whereas in the absence of the DC component of the current this does not 

happen until R ~ 0.1. This extreme sensitivity to the value of R in the presence of the 

DC component of current must be due to the fact that, as usual, for a given load, the 

system losses are proportional to J*ot which now includes Jtot. The fact that in many 

has also been confirmed independently (see Section 5 of this Report). 

The corresponding bifurcation diagram for the range R = (0.8-2.0)xl0~3 is shown in 

Fig. 46a and gives more information about the dynamic behaviour of the system as a 

function of R. 

In order to investigate the system more closely we now repeat our computations for a 

slightly larger separation of the electrodes, xL = 2.84K. The corresponding phase-space 

trajectories, Figs, 45a-d are quite similar to those shown in Figs. 44a-d, except that now 

the system reaches doubly and singly-periodic states even earlier i.e. respectively for 

R = 0.0015 and R = 0.002. This appears to be consistent with (9.1), where <j)f is shown 

to be proportional to - xLR. The corresponding bifurcation diagram is shown in Fig. 46b 

where comparable bifurcation points are respectively shifted to lower values of R 

compared to Fig. 46a. Finally in Fig. 49b we have a bifurcation diagram against the 

separation of the electrodes xL rather than the load R . This presentation will be useful 

when we choose to compare results obtained for values of 6c ^ 1. 

Bearing in mind the strong control that the initial ion/electron charge ratio a exerts 

over the chaotic behaviour of the system we have carried out further computations 

respectively for a = 0.99 and 1.01. In order to make it easier to compare the results, we 
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have now decided to choose the separation of the electrodes xL as a variable parameter, 

as we have already done in Figs. 30a-c, at the same time setting the load at R = 0.001. 

We now find from Figs. 47 a-d that as we reduce xL the system gradually moves from a 

singly-periodic state, Fig. 47a through a doubly-periodic state, Fig. 48b to chaos, Fig. 47c 

and d. These results are further confirmed by a bifurcation diagram shown in Fig. 49a. 

Similar computations for a = 1.01 and R = 0.001 again show a transition from a singly- 

periodic state, Fig. 48a, through a doubly-periodic state, Fig. 48b to chaos, Fig. 48d; here 

Fig. 48c seems to indicate a borderline between a doubly-periodic state and chaos; the 

above results are in agreement with the corresponding bifurcation diagram, Fig. 49c. It 

should be noted that in general an increase in 6c tends to shift bodily the whole 

bifurcation diagram and hence the chaotic region to lower values of xL, without 

substantially changing the pattern. Also comparing Figs. 49a-c with Fig. 30a-c we find 

that a somewhat similar effect can be observed when the DC component of current is not 

allowed to interact with the load. In all cases, however, the state of chaos is approached 

from the right, i.e. bifurcations leading to chaos develop as the separation of the 

electrodes xL is being gradually reduced (see also Figs. 17,28 and 29). 

9.2 Resistance and inductance in series 

In the presence of a DC component of the total current a series capacitance is not 

permitted since it would act as an open circuit; at most we can then have a resistance and 

an inductance in series. We have considered a similar load before in Section 8.4.2, but 

since the DC component of the total current is usually much greater than the 

corresponding AC component, we would now expect a substantially different dynamic 

behaviour of the system. 

The expression for (j>f which now has to be substituted on the LHS of (3.18) is given 

by (9.1). We start our investigations cautiously with a very small value of a series 

resistance, R = 0.0001, the corresponding phase-space trajectories for four different 

values of L being shown in Figs. 50a - d. As was to be hoped Figs. 50a-d a very similar 
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to Figs. 37a-d which have been computed for R = 0. This is an encouraging test of the 

reliability of our computations. We have then repeated our computations for another 

value of xL, this time icL = 2.85257t, Figs. 51 a-d and again have found close similarity 

to the corresponding trajectories shown in Figs. 39 a - d. We then increased tenfold the 

value of the resistive component of the load by putting R = 0.001 and altered xL slightly 

in order to start with chaos, Figs. 52 a - d. We now find that chaos persists a bit longer, 

L = 0.1 and Fig. 52b, the doubly-periodic trajectories being somewhat 'cleaner', L = 0.5 

and Fig. 52c. In order to get a better overview corresponding bifurcation diagrams are 

shown in Figs. 53a-c. The first two diagrams are somewhat similar, but the third one, Fig. 

53c, shows a clear shift to the right, in agreement with our earlier comments. As a cross- 

reference bifurcation diagrams  against   xLand for   R = 0.001   and two  values  of 

inductance, L = 0.1 and 0.5 are respectively shown in Figs 54a and b; they should be 

compared with similar diagrams plotted for R = 0 and shown respectively in Figs. 41a 

and b. The two sets of diagrams are similar in character, but the addition of a resistive 

component to the load shifted the pattern bodily to the left, i.e. chaos now starting at 

slightly lower values of xL. Finally a bifurcation diagram of the system for fixed xL, L 

and variable R is shown in Fig. 55, which agrees with Fig. 53b plotted for the same 

values of the parameters. 

So far we have assumed in this Section that the important ion/electron charge density 

ratio at the entrance electrode a = 1. In order to complete our investigations we have 

carried out our computations for two values of d different from unity, viz. 6c = 0.99 and 

1.01. Here we have primarily considered the dependence of the dynamic behaviour of the 

system on the value of xL, keeping the other parameters constant. We start with 

a = 0.99 i.e. with slight preponderance of electrons at the entrance electrode; as can be 

seen from Figs. 17, 28 and 29 this is always a less stable region. We now find from Figs. 

56a - d and 57a - d that a tenfold increase in the resistive component of the load tends to 

stabilize matters somewhat. This is accompanied by a shift to the left of the 

corresponding bifurcations diagram, as shown in Figs. 58a and b. Similar computations 

have been carried out for a = 1.01, the corresponding phase-space trajectories being 
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shown in Figs. 59a-d and 60a-d. As is often the case the system appears to be more stable 

for 6c> 1 i.e. when there is a preponderance of positive ions at the entrance electrode. 

However this may be a spurious effect since we have assumed throughout that the 

positive ions are immobile, whereas the electrons are not. The corresponding set of 

bifurcation diagrams for a = 1.01 is shown is Figs. 61a and b, where the usual shift to the 

left with increasing R is clearly noticeable. 

Finally bifurcation diagrams for two different values of xL and 6c as an independent 

variable are shown respectively in Figs. 62a and b; they conveniently summarise the 

strong dependence of the dynamic behaviour of the system on the two important 

parameters xL and a, and at the same time act as additional check on the consistency of 

our computations. This is of some importance in view of the complexity of the two 

governing equations (3.14) and (3.18) 
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1 f). Conclusions and suggestions for future work 

In general there are two different approaches to the problem of controlling chaos. 

Some authors are primarily concerned with altering the actual phase-space behavior of 

the system by subtle perturbations [40-43] or by a form of negative feedback [44-45]. 

Other authors are more concerned with the generation or suppression of chaos using 

various techniques, frequently by altering the external parameters of the system [45-47]. 

When we use the term 'control' we have in mind the latter approach to the problem. 

In the past most of the work on a plasma-filled diode, including our own [14-16,24] 

was concentrated on the physics of the space between the entrance and exit electrodes, 

the process of beam generation and its injection being left severely alone. In real life such 

a simplified system is physically unrealisable - clearly some kind of emission surface has 

to precede the entrance electrode (i.e. grid) of a plasma filled diode. Elsewhere [25] we 

have already expressed our reservations of the habit of ignoring the beam generating 

element, when analysing the behaviour of the diode. We were then guided by the thought 

that in electronics it is frequently unsafe to analyse or model systems which are 

physically unrealisable. Having considered the matter further, we have come to the 

conclusion that if we wish to include in our model the appearance of a virtual cathode and 

the possibility of double-stream flow in a plasma-filled diode, then for reasons of 

consistency we must include in our analysis the cathode/grid region. This is of particular 

importance if we choose to treat the diode as a model for the interaction space of a virtual 

cathode oscillator (vircator) since, as we know, the strongest oscillations in such a tube 

are generated precisely by the process of virtual-cathode formation and annihilation. It is 

then essential to know what happens to the beam when it goes back into the cathode/grid 

46 



region, assuming, as usual, that the grid is ideally permeable, its sole purpose being the 

establishment of a fixed potential at the entrance to the plasma-filled diode. We would 

like to suggest that the usual approach is then inadequate since what is required is a 

Lagrangian rather than an Eulerian formulation of the problem where the analysis would 

be extended to the complete system comprising both the beam generating Region I and 

the beam/plasma interaction Region II; in the case of Fig. 2 the collector, Region III, 

should then also be included. 

Conclusions 

Having restated the framework of our investigations let us now consider the main 

conclusions. 

1. It has been shown, that the hydrodynamic model of a short-circuited diode 

initially developed by B. B. Godfrey and based on a coupled pair of integral 

equations [14] can be generalized to include a load. This has been achieved by 

converting one of the integral equations into an intrgro-differential equation and 

then suitably developing the associated computer code (see [48] and Section 3 

and Appendix 2 of this Report). 

2. It has been established by solving the above equations that the system is able to 

support the following four distinct dynamic regimes of operation: stable, 

oscillatory, chaotic and unstable. This applies equally to a short-circuited diode 

and when a load is connected across the diode, as shown in Figs. 1 and 2 (see 

also Figs. 17,28 and 29). 
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3. The transition from one dynamic regime to another, e.g. chaos control, is 

governed by the load and more directly by two important parameters of the 

system: 

a = ni0 /ne0 which is the ratio of ion to electron density at the entrance electrode 

and 

xL which is the reduced separation of the electrodes, G and A in Fig. 1 and Gl 

and G2 in Fig. 2(see also Appendix 1). The strong influence that the two 

parameters a and xL exert on the system is fully revealed by Figs. 17 and 

28 and by numerous bifurcation diagrams, Figs. 13-16, 30, 32, 36, 41, 49, 

54, 58, 61 and 62. 

4. The effect of the load on the dynamic behaviour of the system is less marked but, 

as would be expected, in general the resistive component of the load tends to 

dampen both chaos and oscillations. In order to be more specific one can draw 

the following conclusions from detailed investigations: 

Section 8 - AC current only. 

8.1 Resistive load - increasing R in general suppresses chaos and moves 

the system towards an oscillatory regime; eventually even the 

oscillations are quenched and the system reaches a stable state. 

8.2 Capative load - the influence is more subtle but again in general a 

reduction in C tends to suppress chaos and if anything encourages 

oscillations. 
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8.3 Inductive load - the effect is similar to that of R except that excessive 

values of L tend to destabilise the system, possibly by a momentary 

appearance of a virtual cathode (note the D;jE0 term in (8.3)). 

8.4.1 Variable R and C in series - chaos quenching effect of R increases as 

the effect of the capacitance C diminishes, i.e. as C increases. 

8.4.2 Fixed R, variable L and C - in general excessive values of L again 

tend to push the system towards a dynamically unstable state; the joint 

influence of R and C is as indicated in 8.4.1. 

8.4.3 Purely reactive L and C load (R = 0) - starting from chaos an 

oscillatory state is reached more readily, but so does instability due to 

the presence of L. 

Section 9 - AC + DC currents. 

9.1 Resistive load - due to the fact that now the DC component of Jtot is also 

allowed to interact with the load, the effect of R is at least ten times 

greater than in 8.1; this means that very small variations in R affect the 

system quite strongly. The explanation lies in the fact that in most cases 

the DC component of Jtot' is much greater than the corresponding AC 

component, the transformation of the kinetic energy of the electron beam 

into the electromagnetic energy of the field being rather poor (see also 

Figs. 44a-d and 45a-d). 

9.2 R and L in series - in this case the inductive component L seems to 

help R is moving the system form chaos into an oscillatory state, its 
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tendency to cause instability having disappeared (see also Figs. 50a-d, 

51a-d,52a-dand53). 

5. In most cases the generation of flip-flop oscillations is not very effective. 

Although this type of oscillation based on the lateral movement of the space- 

charge cloud is relatively 'clean', its efficiency is not high, ranging from 3-30% 

(see Section 5, in particular (5.20) (5.21) and Fig. 20). 

Future work 

The following suggestions for future work are based on the results of the 

investigations presented above. 

1. According to current investigations, the electronic efficiency in generating the 

space-charge flip-flop oscillations is quite low. Since most high power microwave 

generators operate at electron beam velocities in excess of 500 kV, it is suggested 

that above investigations should be extended to relativistic kinematics in the hope 

of improving the efficiency. We have reasons to believe that Godfrey's 

formulation of the problem [14] and equations (3.14) (3.18) could be generalized 

to encompass relativistic kinematics. 

2. In systems shown in Figs. 1 and 2 there exists another type of oscillation which is 

typical of vircators and which depends on the appearance and disappearance of a 

virtual cathode. Regrettably such interaction process goes well beyond a 

hydrodynamic model and requires a Lagrangian rather than Eulerian formulation 

of the problem. We would like to suggest that a code call MAGIC would be well 

suited to tackle the problem. 
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3. At present it is assumed that the ions form a stationary background of uniform 

density. Although this assumption is quite realistic when we consider the first few 

nanoseconds in the operation of the device, it is excessively simplistic in the long 

run. In fact it may affect our conclusions concerning the stability of the system 

when a * 1. It is therefore suggested that further investigations should be carried 

out by modelling the actual ionisation process which generates the cloud of 

positive ions in the interelectrode space and then subject them to the usual forces 

of the electromagnetic field. Such task could probably be accomplished using one 

of the more recent versions of the computer code called MAGIC. 
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Appendix 1:  Notation 

In order to reduce the number of independent parameters it is customary to use two 

different sets of variables. 

The first set is a logical development of the reduced variables used by B.B.Godfrey 

[14]. 

x = (cope/v0)x,    t = copet,    v = v/v0,    $ = 4>/24>0,    pe=pe/peo>°> 

P=Pe-& = (Pe+Pi0)/peO>       fe =--—^— E = 3^ (Al.l) 

Jc=PeV = Jc/Jc0,      Jd=3|E = Jd/Jc0,      J,o, =Jc
+Jd=Jtot/JcO 

Here, as usual: 

x - position of an electron 

v - velocity of an electron 

m0 - rest mass of an electron 

pe - electron charge density (negative) 

p. - ion charge density (positive) 

p = pe + p.        - total charge density 

Jc = pev - convection current 

Jd = e09xE        - displacement current 

Jtot = Jc + Jd      - total current 

co e = -(epe0 /m0e0)
1/2 - electron plasma frequency at the entrance electrode 

the subscript zero indicating the value of the corresponding variable at the entrance 

electrode. Similarly, the subscript L indicates the value of the corresponding variable at 

the exit electrode, e.g. the reduced separation of the electrodes is written as 

xL=(cope/v0)xL (A1.2) 

x and x being zero at the entrance electrode. 
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The use of reduced variables (A 1.1-A 1.2) eliminates as separate parameters the initial 

values of electron velocity v0  and electron space charge density pe0, or stating it 

differently, the values of the injection current density Jc0, and the electron plasma 

frequency cope. Since now by definition v0 = pe0 = Jc0 = 1, the only remaining parameters 

are xL, the reduced separation of the electrodes and the initial ratio of the ion/electron 

charge densities a = ni0 / ne0, the charge density of the immobile positive ions being kept 

constant throughout, n; = ni0. An additional advantage of the reduced notation is that E 

is defined as a positive rather than negative slope of $, as shown in (A 1.1); frequently 

this is more convenient in the discussion of field distribution inside a plasma-filled diode. 

In addition to the above 'hat' variables, sometimes it is more convenient to use 'bar' 

variables which have been introduced in the late thirties at the Bell Laboratories, when 

suspected hysteresis effects in screen grid/anode space of a tetrode had to be considered 

[52]. The 'bar' variables can be defined by writing: 

-      d2 

x = x/d,     t = t/t0,     v = v/v0,     $ = 4>/4>o>     Pe=TT"Pe' 
£0Y0 

P = Pe-apeo=-^-(P<+Pio)>    E = AE = -9^ (A1.3) 

d2 -        —       d2 

pev = —-—Jc,    Jd=3tE = —-—Jd,    Jtot = Jc + Jd = ■ tot 

eAvo  e' eo0ov0  "     im     '     "    M>„vc 

Here 

d - separation of the electrodes 

t0 = d / v0 - electron transit time in the absence of fields 

so that x = 1 at the exit electrode; at the entrance electrode x = 0 as before. The injection 

current density is now defined in terms of a reduced current 'iota': 

i = (-Jo)/(-Jspl) <AL4) 

where 

_Ji=l£oIXC = leoML (A1.5) 
spl    9 >0 d2     9 °  d2 

is the current density in an equivalent space-charge limited diode [52]. 
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A table of relations between 'hat' and 'bar' variables is included for the convenience of 

the reader. 

x = -V2i,   x,=-V2i,   t = ^-V2i,    v = v kL    3 

* = {?,     Pe=Pe/peO>0,      P = (Pe / Pe0)"«,     E = -E/|V^ (Al.6) 

JC
==JC'JC0'       Jd = •'d '-"cO'       ^ tot = "* tot ' *• cO 
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Appendix 2: Numerical Solutions of the Integral Equations 

We have already pointed out in Section 3 that the dynamic behaviour of our system 

is going to be expressed in terms of two coupled integral equations of the Volterra type, 

(3.14) and (3.18). The kernels of the two equations are respectively given by 

sin[a1/2(t-t')] and (t-t^sinta^Ct-t')], the first kernel being antisymmetric, 

K(t,|t) = -K(t|t') and the second symmetric K(t'|t) = K(t|t'). The equations have 

several peculiarities which add to the difficulties in obtaining numerical solutions. First 

of all in place of the usual Volterra type limits of integrations (a, t), we have ( t - xL, t ), 

where xL = TL(t) is one of the unknown functions. In addition the function xL(t) also 

appears in a complicated and nonlinear manner outside the integral in both equations. 

The other unknown function E0(t) appears under the integral sign in (3.14) and (3.18) 

and also on the LHS of (3.18). Thus the equations resemble somewhat the Volterra 

equation of the second kind. In general as long as the kernel is bounded, no eigenvalues 

are associated with the equations; equally there is no indication in our case that solutions 

would only exist for some particular values of the important parameters a and xL. 

However, in the presence of a load, one of the equations become integro-differential, see 

(3.23) or (3.26), which further adds to the difficulties in obtaining a solution. 

Not surprisingly there are no readily available standard methods of solution of (3.14), 

(3.18), either analytical or numerical [15,16] and therefore it proved necessary to develop 

our own computer codes. In this we had to assume that the function x(t) is both 

continuous and twice differentiable, as is required by the transition from (3.11) to (3.12). 

Also, following common practice, we have assumed that E0(t) and xL(t) are L2 

functions, i.e. they are Lebesgue square integrable. In our opinion both assumptions are 

quite reasonable in practice. 

As is invariably the case with nonlinear systems of differential equations a great deal 

depends on the accuracy with which an initial solution can be guessed. In linear systems 

the initial accuracy of a trial solution merely affects the rate of convergence, but in 

nonlinear systems it may well affect our ability to obtain any solution at all. Fortunately 

in our case we can be guided by a steady-state solution which, for given xL and a, at 
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least provides an approximate relationship between E0 and xL. Thus, assuming E0 = 

const in (3.11) we can now solve it without too much difficulty obtaining the required 

steady state relationship 

a3/2xL = a1/2E0{l-cos(a1/2xL)}-(l-a)sin(a,/2TL)+a1/2TL (A2.1) 

Let us now turn to Fig. A2.1 which indicates the general computational procedure we 

have to follow. First of all (3.14) and (3.18) must be descretized by using the first two 

terms of Taylor's series and writing 

f(ti+1) = f(ti) + f(ti)5t (A2.2) 

The above equation makes it possible to compute an approximate value for f (ti+1) once 

f(tj) is known. 

As the next step we now have to calculate the derivatives with respect to time of 

(3.14), (3.18). Starting with (j), = 0 and using some simple abbreviations we now obtain 

the following expressions for E0(t) ,xL(t) and their respective derivatives: 

- -{axi--vj + 
of 

f,(t) = E0(t) = - 
1   ,--2        1   «2.       l-ÖCr»       .   ,*%*   v -{ox2 --x} + —y-[xLsin(a/2xL) 
2 a L     A/2 

f1'(t) = djE0(t) = - 

a 

^4—777^F2-F3 
a 

1                 V             1 
17{l-cos(a/2xL)}] ^F, 
71 A/2 0/ 

f2(t) = Mt) = &xL+—j£sm(&^L)-6^F2 
6Y2 

f2'(t) = d{xL(t) = 
a^E0(t-xL)sin(a^xL)-aF4 

l-(l-a)cos(a^xL) + a^E0(t-xL)sin(a^xL) 

where 

F,(t)= f   ^(^(M^in^t-t»)^ 
Jt-TL 

F2(t)=f. E0(t')siii{&^(t-t')}dt' 
Jt-TL 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 
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F3 (t) = f   E0 (t' )(t -1') cos{6c^ (t -t' )}dt' .(A2.9) 

F4(t)=f   E0(t
,)cos{&^(t-t,)}dt' (A2.10) 

Jt-tL 

In practice it proved convenient to separate the t and t' variables by writing, e.g. 

sin{a^(t-t,)} = sin(a^t)cos(a^t,)-cos(a^t)sin(a^t'). In view of the algebraic 

complexity of (A2.3)-(A2.6) the usual Runge-Kutta or predictor-corrector methods of 

integration are not feasible. The four functions f, • • • f2' all contain integrals with a lower 

limit in the form t - TL(t), where TL(t) is one of the unknown functions, as indicated in 

(A2.7) - (A2.10). This means that the values of tL(tj) for the first n steps must be 

guessed until we reach i   = n + 1 , as shown in Fig. A2.1 Here the horizontal axis 

represents the time variable t and the vertical axis the starting time of consecutive trial 

trajectories t', the straight line inclined at 45° simply tracing t'= t. Along this line are 

indicated the values of E0(t) for different values of t = tif whereas in the downward 

vertical direction are plotted the corresponding values of the transit time xL(t{). We now 

use (A2.1) to guide us in the right choice of t L (tn+1) and E0 (t n+1). These values are then 

substituted in F2 on the RHS of (A2.5); in order to be able to carry out the indicated 

integration, we have to assume some values for E0(t,) to E0(tn). Experience has shown 

that the quickest convergence can be obtained when we assume a random distribution of 

E0 for all values of ts from t, to tn. It is now possible to carry out the computations 

indicated on the RHS of (A2.5), in order to obtain tL(tn+1) appearing on the LHS of the 

equation. The new value is then substituted back on the RHS of (A2.5), keeping the 

values E0(t,)-E0(tn) unchanged. This process is repeated until the two values of 

TL(tn+1) converge. We then move to (A2.3), first substituting E0(t,)-E0(tn+1) on the 

RHS of the equation. Carrying out the integration indicated by F,, we are provided with a 

new value for E0(tn+1) which we then substitute back on the RHS of (A2.3). This process 

is again repeated until the two values of E0(tn+1) converge. Once the values of tL(tn+1) 
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and E0(tn+1) have been obtained, we can proceed to the next step, which is the 

calculation of tL(tn+2) and E0(tn+2) using (A2.2) and (A2.3)-(A2.6), the corresponding 

limit of integration t; - TL(tj) being shown as a broken line in Fig.A2.1. This process is 

then continued as long as necessary, i.e. until the solutions settle down. 

In order to complete the description of our computing process we still have to 

agree on a suitable value for the time interval 8t. One might think that the first choice 

would be to write 

8t = tL(t,)/i (A2-U) 

However this would mean that  8t  would have to vary with  TL, which is very 

inconvenient. We have decided therefore to adopt a different approach by choosing a 

reasonable value for 8t and then keeping it constant throughout. This means of course 

that xL could no longer be expressed as a multiple of 8t, but must now be written as 

tL(t„+,) = (n + l-j)5t + £ 

= axL+^sin(aTJ-a^J>,E0(t•)sin{a^(t-t,)}dt, (A2.12) 
o/2 

The corresponding flow diagram for obtaining e is shown in Fig. A2.2. 

We now possess all the information required for setting up a computer code for 

the numerical solution of (3.14), (3.18) in the absence of a load. In general there are three 

different ways in which the functions E0 and TL can settle down - they may reach a 

constant value (stable region), they may oscillate with a fixed frequency or frequencies 

(oscillatory region), or they may become chaotic (chaotic region). Finally, for some 

ranges of the parameters xL and a, no numerically stable solutions of (3.14), (3.18) can 

be obtained (unstable region). In a short-circuited diode we have used the above code 

extensively for a wide range of parameters xL and a, the results of our investigations 

being presented in Section 6 of the Report (see also [15], [16], [24], [36], [49-51]). Since 

our current investigations are primarily concerned with the effect of a load on the 

dynamics of our system, we now have to consider the relevant extension of our 

computational procedure. 
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In the presence of a load, one of the equations, viz. (3.18), becomes integro- 

differential. This is clearly shown in (3.22) and (3.26) where first and even second order 

derivatives of E0 with respect to time appear in corresponding expressions defining <^ in 

terms of R and L. These derivatives are associated with the displacement current which 

in the reduced notation is simply given by Jd0 =a{E(t,0) = d;E0, subscript zero 

indicating the conditions at the entrance electrode. Thus in the presence of a load we must 

discretize the LHS of (3.18) by expressing the derivatives in terms of the corresponding 

differences. In practice it is best to use backward differences and write, say 

fi.5t=Vi+ivf+- 

= -|-(3fI-4fI_I +f,_2) (A2.13) 

f."(8t)2=Vf+••• 

= ^-2^,+^ (A2.14) 

higher order approximations being used when required. The addition of the difference 

expressions on the LHS of (A2.3) further complicates the code, Fig. A2.3, which is 

already quite involved even when the diode is just short-circuited; this in turn increases 

the CPU time, especially in the case of bifurcation diagrams. 
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Appendix 3 General observations on the effect of positive ions 

In view of the complexity of responses of the system and its nonlinearity of 

behaviour it would seem advisable to consider in some detail the simplest case of a 

steady state (uniform flow) and the corresponding effect that the introduction of positive 

ions has on the system. 

Let us start with the Poisson equation combined with the conservation of energy 

equation which in our notation can be written as 

£*!£ = p =   * electrons only (A3.1 a) 
dt2 ^ 

—^ = p-a = -7=-cic electron + positive ions (A3.lb) 
dt2 M 

The difference between the two equations is clearly shown in Figs A3.1 and A3.2. In the 

absence of ions we must have d2<j>/dx2 > 0 for all values of <j> so that the solution of 

(A3.la), i.e.  <j> = (i>(x)  must be concave upwards and therefore  E0 =(d(j>/dt)0 <0, 

subscript zero indicating conditions at the entrance electrode. In the presence of ions this 

is no longer the case, d2$/dx2 can now be positive, negative or even zero when 

(j> = — 6c2. This permits periodic solutions for an appropriate choice of boundary 

conditions, a type of solution which was not possible in the absence of positive ions. 

Let us now consider the first integral of (A3.1 a) and (A3, lb). Multiplying both by 

2d(j>/dx and integrating we obtain: 

E = ^- = ±JlM + c0, c0=E2-2 = -2V2<L (A3.2a) 
dx 

E = ^- = ±j2-M-2aty + c, c = E2-2 + a (A3.2b) 
dx 

Here <j>m in (A3.2a) stands for the value of a single minimum potential between the 

electrodes. In (A3.2b) on the other hand we may have a minimum and a maximum, either 

given by 

60 



bm=-±j{l*Jl + fa} .(A3.3) 
4a 

The above expressions are obtained by putting E = 0 and <}> = (f>m in either (A3.2a) or 

(A3.2b). 

At the entrance electrode  <j> = l/2  by definition. If we wish to avoid the 

appearance of a virtual cathode between the electrodes we must have <}>m>0 in (A3.2a); 

this requires c0 < 0 or - 4l < E0 < 0. In fact it can be shown that the solutions are stable 

only over a narrower range -1<E0 <0, the rest of the range leading to physically 

unrealizable solutions due to hysteresis effects [26]. In the presence of ions the situation 

is more complex, since we have an additional variable in the form of a. Now it is best to 

plot E = d<j)/dx as a function of <j>, (A3.2b) and Fig. A3.3. We find that E = 0 either 

when <j> = 4>min or | = (j)max, the tow values being given by (A3.3). In order to avoid the 

appearance of a virtual cathode between the electrodes, we again must have <j)min > 0 or 

from (A3.3), c < 0. Substituting for c from (A3.2b) we now find that we also have 

Ej><2-a (A3.4) 

which is a general restriction on the values of E0. The curve c = 0 is shown in Fig. A3.4, 

the allowed values of E0 being shaded. It is to be noted that for a = 1 we have 

-1 < E0 < 1 as noted by Godfrey [14]. The limitation on a to values which are less than 

two is simply due to the fact that for 6c> 2 the slope E0 would have to be so large, that it 

would inevitably lead to the appearance of a virtual cathode, or <j>min < 0; this is also 

expressed by the properties of the function E = E(<j>), Eq. (A3.2b) and the corresponding 

Fig. A3.3. In fact since from (A3.2b) and (A3.3) <j> cannot be negative, the electrons 

being initially emitted with zero velocity from a cathode at zero potential, the curve 

shown in Fig. A3.3 fails to cut the horizontal axis for c> 0 and assumes a value E0 * 0 

at (j> = 0 (shown dotted). There is one exception to the above restrictions on the value of 

E0 and a shown in Fig. A3.4. When 0< xL <n only a single min/max is possible 

between the electrodes. Thus if we choose E0> 0, the solutions for E0< 0 being unstable 
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in this case, we can have E0 or ot as large as we like, since there is no limitation on the 

value of (|>max. Also it should be noted that in the absence of ions the curve shown in Fig. 

A3.3 becomes a parabola, Eq. (A3.2a); we then find from (A3.3) that for 6c -^ 0 we have 

(j>max -> oo and |min -» c2 /8 in agreement with (A3.2a). 

This brief discussion shows with the help of very simple algebra that the 

introduction of positive ions can enrich the dynamical behaviour of the system by 

substantially altering its physical properties. 
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a First unstable point(xL/n) First bifurcation point( xL In) First stable point( xLln) 

1.1250 2.54680 2.55385 2.87500 
1.1125 2.54133 2.58714 2.87000 
1.1000 2.58378 2.62345 2.91000 
1.0750 2.66260 2.68955 2.95000 
1.0620 2.70543 2.73750 2.97000 
1.0500 2.72437 2.75273 3.10000 
1.0250 2.79000 2.81416 3.15000 
1.0100 2.82013 2.83875 2.92000 
1.0000 2.84378 2.85817 2.89500 
0.9900 2.86261 2.87160 2.89200 
0.9850 2.87260 2.87940 2.89500 
0.9840 2.97590 2.88100 2.89600 
0.9830 2.87674 2.88286 
0.9820 2.87880 2.88400 

Table 1. Some critical points on the bifurcation diagrams with R = 0.01 
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R Dynamic behaviour 

0-0.028 Chaos 
0.028-0.120 Limit cycle 

(Oscillations) 
As R increases, the amplitude 
of oscillation decreases 

0.120 & above Stable No oscillations 

Table2a. C = ll, xL= 2.777t, 6t = l 

R Dynamic behaviour 

0-0.025 Chaos 
0.025-0.108 Limit cycle 

(Oscillations) 
As R increases, the amplitude 
of oscillation decreases 

0.108 & above Stable No oscillations 

Table2b. C = 20, xL=2.82rc, a = l 

R Dynamic behaviour 

0-0.01 Chaos 
0.01-0.06 Limit cycle 

(Oscillations) 
As R increases, the amplitude 
of oscillation decreases 

0.06 & above Stable No oscillations 

Table2c. C = 1000, xL=2.8577t, 6c = l 

Table 2. 

64 



0.0-1.0 
2.0 
2.4 
2.5 
5.0 

Dynamic behaviour 

Chaos 
Period 4 cycle 
Period 2 cycle 
Period 2 cycle 

Limit cycle 
(Oscillations) 

Amplitude of oscillations steadily decreases, 
 so does the rate of convergence  

Table3a. C = 11.0, xL=2.777t, R = 0.01, a = l 

L Dynamic behaviour 
0-1.0 Chaos 
0.5 Period 3 cycle 
1.0 Period 2 cycle 
2.4 First bifurcation point 
10.0 

and beyond 
Limit cycle 

(Oscillations) 
Amplitude of oscillations steadily decreases, 

so does the rate of convergence 

Table 3b. C = 20.0, XL=2.82TC, R = 0.01, ot = l 

L Dynamic behaviour 
0.0 Period 2 cycle 
10.0 

and beyond 
Limit cycle 

(Oscillations) 
Amplitude of oscillations steadily decreases, 

so does the rate of convergence 

Table 3c. C = 1000.0, xL= 2.8577t, R = 0.01, 6t = l 

Table 3. 
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L Dynamic behaviour 
0.0 Chaos 
1.0 Period 2 cycle 
1.5 Period 2 cycle 
5.0 

and beyond 
Limit cycle 

(Oscillations) 
Amplitude of oscillations steadily decreases, 

so does the rate of convergence 

Table4. x, = 2.82rc, R = 0.0, C = 20.0 
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Fig. 4 Dispersion curves E0(xL) 

(Red: R = 0.01; Blue: R = 0.05; Green: R = 0.1; Black: R = 0) 
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Fig.5 (f = E0 sin tL + -E2 sin2 TL) 

Red:E =1.0; Blue: E =0.5; Black: E0 =0.0;Peach: E0 =-0.5; Green: E0=-1.0 
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Fig 6 Dispersion curves E0(TL ) 

(Red: R = 0.01; Blue: R = 0.05; Green: R = 0.1; Black: R = 0) 
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Fig.7 Distribution of currents in a system shown in Fig. 1; B- battery, Ze - load. 
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Fig. 11. The time history of the system for xL = 2.887C: 

(a) a = 0.990, (b) a = 0.988, (c) a = 0.986 and (d) a = 1.05, 
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Fig. 15 Bifurcation diagram for 6c = 1.05 and a range of xL 
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Fig. 16 Bifurcation diagram for xL = 2.887t and a range of a 
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8 1.1 

Fig. 17 An overall diagram of the dynamical behaviour of our model when short-circuited 
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Fig. 18 The amplitude E0 max and the frequency f = f/cop along line A of Fig. 17. 
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Fig. 19 The amplitude E0 max and the frequency f = f /©_ along line B of Fig. 17. 

<■©- 

Fig.20 A typical potential distribution in the oscillatory regime 
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Fig. 21 Charge density pe as a function of time t and interelectrode distance x 
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Fig.22 (a) Charge density pe as a function of time t and interelectrode distance x; 
(b) Corresponding phase space trajectory of the system; 
(c) Average interelectrode charge density (pe) as a function of time t. 
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Fig. 23 (a) Charge density pe as a function of time t and interelectrode distance x; 
(b) Corresponding phase space trajectory of the system; 
(c) Average interelectrode charge density (pe) as a function of time t. 
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Fig. 24 (a) Charge density pe as a function of time t and interelectrode distance x; 
(b) Corresponding phase space trajectory of the system; 
(c) Average interelectrode charge density (pe) as a function of time t. 
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Fig. 25 (a) Charge density pe as a function of time t and interelectrode distance x; 
(b) Corresponding phase space trajectory of the system; 
(c) Average interelectrode charge density (pe) as a function of time t. 
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Fig. 27 Phase-space trajectories for a = 1, xL = 2.8557t and C =106; 

(a) R = 0.0001, (b) R = 0.001, (c) R = 0.01 and (d) R = 0.1. 
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Fig. 28 An overall diagram of the dynamical behavior of 
the system with a purely resistive load R = 0.01. 
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Fig. 29. A 3D representation of the dynamical behaviour 
of the diode for R = 0 and R = 0.01. 

97 



(a) 

L       XL 

' ■ 

045 -    ■*,; •v, 

04 i* "■'S?"*'».. • 
0.35 -   ,* >is?''j'£'$&>^. - 

0.3 
Cf'ui,   V      Vj*«»'-- 

025 t 
'■■'■•".. '•■ :/';,>;.•. ,.<"""—■- 

""■"--—. 

0.2 
■   '; ■■ .         . .   !i v? 

• 
0.15 • ''"• '*r*ijy.!,-'t 

0.1 ■ 

0 05 

2^ 

• 

62 2.864    2.866    2.868      2.87 2.872 2.874 2.876 

xj% 
*L-2 L 

(b) 

(c) 

Fig. 30 Bifurcation diagrams: R = 0.01 and a range of values of a; 
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98 



Fig. 31 Phase-space trajectories: 6c = 1, xL = 2.8571; 

C =106,(b) C=175,(c) C=55and(d) C=20. 
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Fig.32 Bifurcation diagrams: 6c = 1, xL = 2.85JC ; 

(a) C =60-10 and (b) C =200-10. 
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Fig. 33. Phase-space trajectories: xL = 2.887t, R = 0.0, C=10 ; 
(a) a =0.9855, (b) a =1.0, (c) a =1.02. 
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Fig. 34. Phase-space trajectories: xL = 2.887t, R = 0.0, C =20; 
(a) a=0.9855,(b) a =1.0, (c) a=1.01,(d) a =1.02. 
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Fig. 35. Phase-space trajectories: xL = 2.887t, R = 0.0, C=10; 
(a) a=0.9855, (b) a =1.0, (c) a =1.02. 
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Fig.36. Bifurcation diagram for xL = 2.88rc, R = 0.0, C =20, and d =0.980-0.994. 
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Fig. 37 Phase-space trajectories: a = 1, xL = 2.85TC and R = 0.0; 

(a) L = 0.0,(b) L = 0.3,(c)L = 0.5 and(d) L = 1.0. 
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Fig. 38 Phase-space trajectories: a = 1, xL = 2.8517K and R = 0.0; 

(a) L = 0.0,(b) L = 0.2,(c)L = 0.4 and(d) L = 1.0. 
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Fig. 39 Phase-space trajectories for a = 1, xL = 2.85257C and R = 0.0; 

(a) L = 0.0, (b) L = 0.25, (c)L = 0.3 and (d) L = 1.0. 
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Fig.40 Bifurcation diagrams: a = 1 and R = 0.0; 
(a) xL = 2.857C, (b) xL = 2.8517n, (c) xL = 2.8525K 
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Fig.41 Bifurcation diagrams: a = 1 and R = 0.0; 
(a) L = 0.1 and(b)L = 0.5 
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x, -x. 

(a) 

x, -x, 

(b) 

Fig. 42 Phase-space trajectories for a = 1, xL = 2.11% and C = 11; 

(a) R = 0.0001, (b) R = 0.001, (c) R = 0.01 and (d) R = 0.1. 
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x, -x, 
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x. -x, 

(d) 

Fig. 43. Phase-space trajectories for 6c = 1, xL = 2.827t, C -20; 

(a) R =10"*, (b) R = IQ"3, (c) R =0.01 and (d) R =0.1 

111 



(a) 

0.1        0.2        03        04        0.5 

(b) 

T, -X, 

0.02 • ' 
0 ■ 

-0.02 ■ 

-004 ' 

-0.06 ■ 

-0.08 ■ 
■ 

-0.1 k 

-0.12 )■ 
-0.14 

-0.16 

Ml 

0 0.1 0.2 0 

*L-*L 

(c) (d) 

Fig. 44 Phase-space trajectories: 6c = 1, xL = 2.377t and L = 0.0: 

(a) R = 0.001, (b) R = 0.0015, (c) R = 0.0018 and (d) R = 0.0025. 
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Fig. 45 Phase-space trajectories: 6c = 1, L = 0.0 and xL = 2.847c: 

(a) R = 0.001, (b) R = 0.0011, (c) R = 0.0015 and (d) R = 0.002 
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Fig.46 Bifurcation diagrams: 6c = 1.0 and L = 0.0: 
(a) icL = 2.8377C and (b) xL = 2.84rc 
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Fig. 47 Phase-space trajectories: 6c = 0.99, R = 0.001 and L = 0.0; 
(a) xL = 2.8657C, (b) xL = 2.86bt, (c) xL = 2.85771 and (d) xL = 2.856TC 

115 



0.1        0.2        0.3        04        0.5 

TL-
XL 

(a) 

x, -x, 

(b) 

(c) 
TL-

XL 

(d) 

Fig. 48 Phase-space trajectories: a = 1.01, R = 0.001 and L = 0.0; 
(a) xL = 2.8357t, (b) xL = 2.83ic, (c) xh = 2.825TC and (d) xL = 2.82TU 
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Fig.49 Bifurcation diagrams: R = 0.001 and L = 0.0; 
(a)a = 0.99, (b) a = 1.00 and(c) a = 1.01 
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Fig 50 Phase-space trajectories: 6c = 1, xL = 2.857Ü and ;R = 0.0001: 

(a) L = 0.0, (b) L = 0.2, (c) L = 0.5 and (d) L = 1.0 
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Fig 51 Phase-space trajectories: a = 1, xL = 2.85257t and R = 0.0001: 

(a) L = 0.0, (b) L = 0.1, (c) L = 0.2 and (d) L = 0.5 
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Fig 52 Phase-space trajectories: a = 1, xL = 2.8377C and R = 0.001; 

(a) L = 0.0, (b) L = 0.1, (c) L = 0.5 and (d) L = 1.0 
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Fig. 53 Bifurcation diagrams: a = 1: 

(a) xL= 2.8571 and R = 0.0001 

(b) xL = 2.85257C and R = 0.0001 

(c) xL = 2.8377C and R = 0.001. 
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Fig. 54 Bifurcation diagrams: a = 1 and R = 0.001 
(a) L = 0.1 and(b) L = 0.5 
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Fig. 55 Bifurcation diagram: 6c = 1, xL = 2.85257t andL = 0.1. 
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Fig. 56 Phase-space trajectories: 6c = 0.99, R = 0.0001 and L = 0.1; 
(a) xL = 2.866K, (b) xL = 2.869rc, (C) XL = 2.872TC and (d) xL = 2.875TC 
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Fig. 57 Phase-space trajectories: a = 0.99, R = 0.001 and L = 0.1; 
(a) xL = 2.85468K, (b) xL = 2.856K, (c) icL = 2.859K and (d) xL = 2.864K 
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Fig. 58 Bifurcation diagrams: a = 0.99 and L = 0.1; 
(a) R = 0.0001 and (b) R = 0.001 
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Fig. 59 Phase-space trajectories: a = 1.01, R = 0.0001 and L = 0.1; 
(a) xL = 2.8257t, (b) xL = 2.837t, (c) xL = 2.84TC and xt = 2.857t. 
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Fig. 60 Phase-space trajectories: a = 1.01, R = 0.001 and L = 0.1; 
(a) xL =2.81571, (b) xL = 2.82K, (c) XL=2.828TC and(d) xL=2.84rc. 
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Fig. 61 Bifurcation diagrams: a = 1.01 and L = 0.1; 
(a) R = 0.0001- and (b) R = 0.001 
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Fig. 62 Bifurcation diagrtams: R = 0.001 and L = 0.1; 
(a) xL = 2.847C and (b) xL = 2.852K. 
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Fig. A2.1 Diagram of the numerical procedure used in solving (3.14), (3.18) 
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Fig. A2.2 Flow diagram for evaluating TL(tn+1) 

(k(tj)-integrand of F2 at tj) 
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From the flow diagram Fig. A2.2, 
we obtain x(^). 

1 

Calculate E0(tn+1) using equation 
(3.18). If necessary discretise LHS 
using(A2.13),(A2.14). 

' ' 

Continue until the results 
settle down 
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Repeat the whole procedure to get 

*CU.^<Uandsoon- 

Fig.A 2.3 Flow diagram for evaluating E o(tn+i) 
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Fig. A3.1 The diagram of Eq. (A3.la) 

Fig. A3.2 The diagram of Eq. (A3, lb) 
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Fig. A3.3 The diagram of Eq.(A3.2b) 

Fig. A3.4 The diagram of Eq. (A3.4) 
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