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Abstract 

The two- and three-dimensional flow of a low Prandtl number liquid metal in a 

cylindrical crucible is investigated including effects of heating, crucible and crystal ro- 

tation and axial magnetic fields. The crucible shape and aspect ratio were varied to 

study their effect on the stability of the flow. A spectral element numerical approach, 

specifically designed for axisymmetric geometries, is employed; this approach maintains 

spectral accuracy by removing the geometric singularity at the axis of symmetry, with 

the use of special Jacobi polynomials in the radial direction. Using this approach in 

the simulation of two- and three-dimensional flows in typical crucible configurations, 

we found that, as expected, reducing the crucible aspect ratio and rounding its shape 

results in flow stabilization; crucible rotation and crystal differential rotation at speeds 

comparable to buoyancy also lead to flow stabilization. However, axisymmetric flows 

stabilized with the use of rotation, were found to be unstable to three-dimensional 

disturbances resulting in chaotic behavior. Therefore, solving the axisymmetric prob- 

lem to find ranges of rotation speeds which stabilize the flow is not adequate for the 

stabilization of 3-D flows. Moreover, even with strong crystal differential rotation, the 

resulting flow obtained is typically three-dimensional with reduced fluctuation ampli- 

tudes and less chaotic structure than in the non-rotating case. In addition, the use of a 

magnetic field aligned with the direction of the crucible rotation was also investigated 

in conjunction with rotation and differential rotation. It was found that the magnetic 

field can have a stabilizing effect on the flow, and for some strengths even renders the 

flow axisymmetric. However, for large values of the magnetic interaction parameter it 

can lead to the strengthening of the axial vorticity component and, therefore, to more 

three-dimensionality. Analysis of a model problem involving Rayleigh-Benard convec- 

tion in the presence of rotation and magnetic field shows that the combined action of 

rotation and magnetic field may lead to the generation of new instabilities. More work 

is required in order to understand the effect of high values of magnetic field strength. 

PACS classification: 81.10, 47.32, 47.65, 02.70.H. 

Keywords: Crystal growth, spectral methods, thermally driven rotational flows, 

MHD control. 



1    Introduction 

The growth of silicon, indium phosphide and other semi-conductor crystals involves a number 

of major challenges because of the different processes involved, e.g. convection in the liquid 

melt and the surrounding gas, heat and mass transfer among the system components and 

the sensitivity of the grown crystals to defects, twinning, and other imperfections.   The 

most attractive methods to grow crystals in practice are the Czochralski technique and its 

extension which involves use of magnetic fields, the magnetic liquid encapsulated Kyropoulos 

(MLEK) process. The complexity of these processes limits the opportunity to use trial-and- 

error experimental techniques to optimize crystal growth. In most cases, the flow in the liquid 

melt is unsteady and three-dimensional due to instabilities caused by thermal convection, 

and the use of crucible and/or cystal rotation, or of magnetic fields have been shown to reduce 

fluctuation amplitudes. Thus, there is a need for three-dimensional numerical simulations 

which can accurately simulate the processes involved.   Early 3-D simulations have been 

reported by Bottaro & Zebib (1989), Mihelcic k Wingerath (1989), Jones (1989), Leister 

& Pric (1992), Kakimoto et al.  (1993), and are mainly concerned with the onset of three- 

dimensionality and flow structure with only thermal convection. 3-D melt flows during the 

Czochralski growth of oxide materials were reported by Xiao & Derby (1995), and effects 

of ampoule tilting on melt convection during Bridgman growth were studied by Xiao et al. 

(1996).   More recently, results from 3-D simulations have been reported at international 

workshops, Ben Hadid et al.   (1997), Tanaka et al.   (1997).   Most numerical approaches 

are based on finite-difference or low-order finite-element methods.   Tanaka et al.   (1997) 

investigated pattern transitions in Si melts using a finite difference approach, for a fixed 

value of Grashof number, Gr, and a range of crucible rotation speeds.   Ben Hadid et al. 

(1997) used a Legendre spectral element approach for the simulation of the damping of 3-D 

thermal convection of a low Prandtl number liquid in a Bridgman configuration, for Gr of 

the order of 105. 

Here, we report two- and three-dimensional numerical simulations of the flow involved 

in the MLEK and related growth processes, including numerical simulations in low Prandtl 

number melt convection with rotation, differential rotation, and magnetic fields. Our numer- 

ical approach is based on spectral type methods (described below) specifically designed for 

axisymmetric configurations. In the following section we review the conservation equations 



and their non-dimensionalization which gives rise to several important non-dimensional pa- 

rameters. In section 3 we go over our numerical approach; in section 4 we report results from 

axisymmetric simulations in different crucible configurations, whereas in section 5 we report 

results from full 3-D simulations, including the effects of heating, rotation and differential 

rotation. Finally, in section 6 we study the effect of an axial magnetic field on the stability 

of the flow and make a first attempt to explain our findings using stability analysis. 

2    Problem Description 

As a first approximation, the crystal-melt interface is assumed to be fiat and a typical con- 

figuration is shown in Fig. 1. We have studied flows in crystal melts in several situations. 

First, we consider a model problem consisting of a cylindrical crucible of radius R and height 

H (see Fig. 1). Here we have a prototype crystal with radius r, with r/R varying from 0.25 

to 0.5, being pulled from the top surface of the melt. The crystal is allowed to rotate at an 

angular velocity O2 different from that of the crucible Q,\. The solid vertical and bottom 

boundaries of the crucible are maintained at a constant non-dimensional temperature T\ = 1, 

whereas the crystal-melt interface is kept at a fixed temperature T2 = 0. The top free surface 

is assumed to have negligible heat flux to the surrounding gas (i.e. radiation and convection 

to the gas is neglected; we note that both assumptions can easily be removed). The equa- 

tions of motion are the incompressible Navier-Stokes equations, written in a rotating frame, 

together with the Boussinesq approximation for the effect of the heating. The length used 

for non-dimensionalization is the radius of the crucible R, whereas the non-dimensionalizing 

temperature is the difference Tx — T2. 

The process of crystal growth could potentially be represented by a suction velocity vc 

at the crystal-melt interface, but this velocity is usually negligible when compared to the 

motion of the fluid. Assuming that we always work in the frame of reference of the rotating 

crucible, and that the Boussinesq approximation is valid, the non-dimensionalized equations 

of motion are 

9v „ „ k x v     m      1 ,_„ ., 
_ + v.W   =   -Vp-2—+T + -W (1) 



f+ V'VT = skv2r (2) 

where k is the direction of rotation fij (here aligned with the z axis), and Re is equal to 

Re = Gr1/2. The velocity used for the non-dimensionalization is U = (v/R)Gr1/2, and 

the non-dimensional parameters appearing in the equations are the Grashof number, Gr, 

Prandtl number, Pr, and the Ekman number, E, defined as: 

vl a R2ili 

When there is also differential rotation between the crucible Qi and the crystal fl2, the 

Rossby number, Ro, is an additional parameter: 

Ro~ (n1 + n2) 
(4) 

We note that Ro influences the flow only through the boundary conditions at the crystal-melt 

interface. 

Typically, Jones (1983), Ristorcelli & Lumley (1992), heating of the crucible gives rise 

to unsteadiness and in most cases three-dimensionality as well, because natural convection 

ensues since Gr is large. For most crystal growing applications, Gr is typically of 0(1O7 — 

1010). On the other hand, with rotation of the crucible, the magnitude of which is described 

by the value of E, the amplitude of fluctuations is typically reduced due to centrifugal 

forces which are maximum along the crucible walls, which is also where thermal convection 

originates. However, in the presence of rotation, baroclinic instabilities can develop which 

can still render the flow three-dimensional, Williams (1971). To reduce heat flux fluctuations 

along the gas-liquid interface, the crystal can be rotated independently of the crucible, with 

strength determined by Ro. In this case, new instabilities can arise due to the dynamics of 

the shear layer between the rotating crystal and the crucible melt. In addition, rounding the 

shape of the crucible to reduce sharp corners, can also reduce unsteadiness. The objective 

is to find the optimal rotation frequencies, i.e. E, Ro, and crucible shapes for a given Gr 

that maximally suppress thermal convection instabilities, and lead to minimum fluctuation 

amplitudes inside the melt. 



3    Numerical Methodology 

The numerical technique used in this work is an extension of the approach described in 

Tomboulides (1993) and Tomboulides et al. (1993). It consists of a spectral element/Fourier 

spatial discretization of the equations of motion (1), (2) in cylindrical coordinates, and a 

splitting approach using a second order backward differentiation scheme for time integration. 

Fourier decomposition in the azimuthal direction gives the representation 

M-l 

u(z,r,<ß,t)= $>m(r,z,i)eim* (5) 
m=0 

where m is the azimuthal wavenumber. Substituting (5) in the governing equations, and 

applying the change of variables 

vm = vm + iwm;   wm = vm- iwm (6) 

gives 

*"^.(vVvl   =   -% + .L|V^W (7b) 

dv. 
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1 
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where 

d2      1 d  (   d \ 



and Tm refers to a Fourier transform in <f>. The coordinate singularity at r = 0 is removable, 

since it can be shown that the behavior of the Fourier coefficients of the velocity components 

close to the axis are 

(um,vm,wm) oc (ßrm, 1rm-\i1rm-1) (9) 

where ß and 7 are constants, Orszag (1974), Batchelor (1967). It can be verified that 

vm = vm + iwm is zero at r = 0 for all m and scales like vm + iwm oc rm+1, a result 

equivalent to the fact that the vorticity is regular at r = 0. On the other hand, the variable 

wm = vm — ivJm has a non-zero value at r = 0 for m — 1; however, the coefficient of the 1/r2 

terms in  (7d) for m = 1 is zero and so the singularity is removed. 

Numerically, however, there are still terms in the equations where both the numerator and 

the denominator goes to zero at the same rate close to the axis, which means that quantities 

of indeterminate form have to be treated. To do this, a special form of Jacobi polynomials 

is used as an expansion basis in the r direction adjacent to the axis, which in conjunction 

with L'Höpital's rule results in a removal of the geometrical singularity, thus preserving the 

spectral convergence rate, Leonard k Wray (1982), R0nquist (1991), Tomboulides (1993). 

The set of polynomials employed close to the axis correspond to the Jacobi polynomials 

p(o.i)) with associated weights which are zero at r = 0. 

For the time integration of equations (7a)-(7d), we use a fractional step method, in 

conjunction with a mixed explicit/implicit stiffly stable scheme of second order of accuracy 

in time, Karniadakis et al. (1991). A consistent Neumann boundary condition is used for the 

pressure, based on the rotational form of the viscous term, which nearly eliminates splitting 

errors at solid (Dirichlet) velocity boundaries, Tomboulides et al. (1989). A total of 4 

Helmholtz equations have to be solved every time step in 2-D (5 in 3-D), one for each of the 

velocity components, and one for the pressure and temperature, respectively. The resulting 

Helmholtz equations are of the form 

I d ( dum\     m2 2 .    . 
—5-   r—— -um -X um = g, (10) 
r or \   or J      rz 

where um stands for either the velocity, temperature or pressure azimuthal Fourier mode. 

The constant A2 is 0 for the pressure equation, j0Re/At for the velocity equations (70 being 



a coefficient associated with the order of the time-integrating scheme used), and j0RePr/At 

for the temperature equation. 

The spatial discretization of Helmholtz equation (10) is performed using two-dimensional 

spectral elements, Patera (1984). Because of the geometric singularity at r = 0, p(0,1) 

interpolants are used in the radial direction in the elements adjacent to the axis of symmetry. 

In elements not on the axis, Legendre interpolants are used. This kind of procedure is 

necessary to achieve spectrally accurate approximations in the whole computational domain, 

including r = 0. The non-linear terms are evaluated using collocation in physical space by 

performing inverse Fourier transforms on all velocity components and temperature, whereas 

the rest of the computation proceeds in Fourier space. 

The numerical approach is specifically designed for axisymmetric geometries and its effi- 

ciency relies on the use of fast Fourier transforms in the azimuthal direction, and fast banded 

direct methods or conjugate gradient based iterative methods in the other two directions. 

The resulting matrix equations are solved efficiently by a static condensation technique (with 

operation count approximately Ke x M x N2, where N is the number of grid points inside a 

single element, M is an appropriate bandwidth, and Ke the total number of elements (typi- 

cally Ke < 200 and N < 15). This approach was used only for the zeroth pressure Fourier 

mode pa because of slow convergence properties when iterative techniques were used. The 

Helmholtz equations for the rest of the unknowns, i.e. all pm, for m ^ 0, Tm and velocity 

modes, were solved using preconditioned conjugate gradient iterative solvers. The code is 

efficiently parallelized. 

4    Crystal melt flow - axisymmetric simulations 

We report here results from numerical experiments performed for crucibles of various aspect 

ratios and shapes. This section includes results from 2-D (axisymmetric) simulations and 

range from flows with only natural convection, to flows which include heating and rotation. 

Numerous resolution studies have been performed to ensure the accuracy and reliability of 

the results presented here. 



4.1    High aspect ratio crucible H/D=l 

The Prandtl number, Pr, is equal to 0.03, and the Grashof number, Gr, is kept equal to 

2.8 x 106, which is on the low end of the range of Gr numbers obtained in practice. Other 

numerical work on buoyancy driven flows in Si melts at similar values of Gr was reported 

by Mihelcic & Wingerath (1989). The aspect ratio of the crucible for this set of simulations 

is H/D = 1. The flow starts from rest and Gr is gradually increased from 10,000 to 40, 000 

and then to 2.8 x 106. The first two simulations reach a steady state and then the flow 

and temperature field at Gr = 40,000 is used as an initial condition for the calculation 

at Gr = 2.8 x 106. The time history of several flow variables for this run is plotted in 

Fig. 2. It is apparent that for non-dimensional times t < 87.5 even with axisymmetry, the 

flow is unsteady with moderate amplitude fluctuations. The result that, in many flows, the 

axisymmetric mode is typically stable, while the first or second azimuthal Fourier mode is 

unstable, suggests instability of the three-dimensional flow as well. 

After the buoyancy driven flow reaches a statistically steady state, rotation is introduced 

in order to study its effect on stabilization of the flow. The Ekman number is chosen to be 

E — Gr~l/2 « 1.67 x 10~3, which is typical of rotation frequencies in practice and makes 

rotational effects of the same order as buoyancy effects. The effect of rotation on the flow is 

quite significant, since it immediately reduces the amplitude of the fluctuations as plotted 

in Fig. 2, for times t > 87.5. 

The effect of rotation becomes more pronounced when isocontours of vorticity are com- 

pared between the two cases. The results plotted in Fig. 3(a) show that without rotation 

the flow develops two strong recirculating cells within which the non-dimensional vorticity 

is of order O(10) and the cold fluid is able to convect all the way to the bottom of the 

crucible. On the other hand, the results plotted in Fig. 3(b) show that when rotation is 

turned on, the two vortical cells disappear and the maximum non-dimensional vorticity in 

the bulk of the flow (away from walls) is reduced to order 0(1), representing small amplitude 

fluctuations. For both cases the global maxima of vorticity occur on the side walls of the 

crucible, as expected for high Grashof numbers. The fact that the flow is stabilized with 

rotation in the axisymmetric regime, does not mean that the fluctuation levels will remain 

small if the flow is allowed to be three-dimensional at these Gr numbers. To study this 

question, three-dimensional simulations were performed by using the quasi-steady state two 



dimensional field with rotation at t = 172.5 as an initial condition. These simulations are 

described in section 5. 

4.2    Effect of crucible aspect ratio and shape 

To analyze the effect of crucible aspect ratio on the suppression of unsteadiness caused 

by thermal convection, simulations were carried out for a crucible with an aspect ratio of 

H/D = 0.25. Crucibles with aspect ratios less than 1 are common in practice. The same 

range of Grashof number was investigated for the case of a crucible with aspect ratio of 

H/D — 0.25. Both 2-D and 3-D simulations were performed for this aspect ratio, including 

heating and rotation, however, only axisymmetric simulations will be reported here. The Gr 

number in this case was chosen in a way that a comparison between the high (H/D — 1) and 

the low (H/D — 0.25) aspect ratio crucibles is meaningful. Due to the horizontal as well as 

vertical temperature gradient, the length scale used for non-dimensionalization can be either 

L = (HR)l/2 or L = (HR2)1?3, which results in an equivalent Gr number, for the low aspect 

ratio crucible, equal to 2.8 x 106 or 4.4 x 106, respectively. This value is equal or higher than 

the one used for the high aspect ratio crucible, and one might expect a more chaotic flow to 

be present. In addition, one has to take into account that now the total volume of the liquid 

metal contained in the crucible is twice the one in the high aspect ratio crucible, with the 

same diameter crystal grown on top of it. 

As can be observed from the time histories of flow components at several points inside the 

crucible, plotted in Fig. 4, the axisymmetric flow in the low aspect ratio crucible, reaches a 

steady state at long times. Comparing this result with the 2-D flow for the high aspect ratio 

crucible H/D = 1, which is strongly time dependent with 0(1) fluctuations, it implies that 

the flow in the low aspect ratio crucible is more stable. Moreover, isocontours of azimuthal 

vorticity indicate the presence of only one vortical cell structure in the crucible, whereas 

two such structures are present in the axisymmetric simulations for the high aspect ratio 

crucible. This can be observed in Fig. 5 where isocontours of flow variables from the steady 

state field are plotted. As can be observed in the latter figure, a small pocket of stagnant 

fluid, i.e. a small secondary recirculation, exists close to the lower right hand corner of the 

crucible, which can be a potential source of instability. 

10 



As shown in Fig. 7, this secondary recirculation disappears when rounding the bottom 

corner of the crucible in a way that follows the streamlines. The flow again consists of only 

one recirculating cell, but now the crucible rounded wall follows closely the flow streamline 

structure. Since crucibles used in practice are rounded at the bottom without abrupt corners, 

our current and future studies are focusing on crucible shapes similar to the one in Fig. 7 

which is a combination of a cylindrical part on top and an ellipsoid part at the bottom. The 

flow for the rounded low-aspect ratio crucible also reaches a steady state as plotted in Fig. 6. 

5    Crystal melt flow: 3-D simulations 

In this section we report results from 3-D simulations which range from flows with only 

natural convection, to flows which include heating, crucible rotation and crystal differential 

rotation. The long time solution of the axisymmetric flow for the high-aspect ratio crucible, 

at t = 172.5, was used as an initial condition for a set of 3-D simulations. These simulations 

started with a perturbation on the first azimuthal mode, m — 1, of total energy of the order 

of 10-6. 3-D simulations are reported here only for the high aspect ratio crucible, H/D = 1. 

5.1    Case I: Heating, Crucible Rotation, Crystal Rotation 

The growing crystal is usually rotated as it is pulled. The objective is to improve uniformity 

by providing a viscous shear layer that tends to isolate the growth interface from the turmoil 

deeper in the melt. The crucible is also rotated to smooth out thermal asymmetries that 

might arise from irregularities in the heating. In these simulations, the crystal rotates in 

the same direction as the crucible but with a Rossby number of Ro = 2 with respect to 

the crucible. These simulations show that the flow gradually develops three-dimensionality 

which peaks in the m = 2 azimuthal mode, and is caused by shear layer instabilities due to 

the differential rotation. On the other hand, the perturbation on the m = 1 mode (and all 

other odd modes) decays in time indicating absence of baroclinic instability. In general, the 

transition to three-dimensionality, involves only even azimuthal modes (m = 2,4,6,..). The 

time history of the energy of the first three even azimuthal modes are plotted as solid line 

in Fig. 8; the first three odd modes are plotted as solid lines in Fig. 9. A typical azimuthal 

11 



energy spectrum is plotted in Fig. 10 where the difference between the amplitudes of the 

even versus odd modes is several orders of magnitude. 

Axial vorticity isocontours are plotted in Figure (13); as can be observed from this figure, 

the flow has even symmetry with the m = 2 mode being the dominant one, and with one 

main cyclonic vortex and two counter-rotating ones. These results demonstrate that the 

combination of rotation and differential rotation actually suppress thermal convection fluc- 

tuations. However, the dynamics of the shear layer created at the crystal-melt interface gives 

rise to a new ordered flow structure. This structure is similar to experimental observations 

reported in Hide &; Titman (1967). In this set of experiments, involving isothermal flow, 

rotation of a disk inside a rotating crucible results in a two- or higher-fold flow symmetry, 

depending on the ratio of rotating speeds between the disk and the crucible. Therefore, the 

observed structure in the melt flow is likely due to the shear layer dynamics which dominate 

over thermal convection and baroclinic instability. 

Instantaneous isocontours of axial velocity and temperature are plotted in Figs. ll(a,b) 

and 12(a,b) in the r—z and r—(f> planes, respectively, and as can be observed - especially from 

the temperature isocontours - the flow demonstrates an even m = 2 symmetry. Although 

the resulting flow is not axisymmetric, the presence of more order in the flow allows for the 

simulation of higher Grashof numbers since the range of excited scales is not as large as in 

pure thermal convection. For example, as can be seen from the results plotted in Fig. 10, 

only about 16 azimuthal modes are required to fully capture all scales in the flow (to an 

energy of about 10~9). 

5.2    Case II: Heating, Crucible Rotation 

To investigate the effect of crystal differential rotation on the stability of the flow, the crystal 

rotation was turned off at t = 232.5. The time history of azimuthal mode energies, plotted 

with dashed lines in Figs. 8-9 for t > 232.5, shows that three-dimensionality rapidly increases 

and, moreover, that all (both even and odd) non-axisymmetric modes grow in time. The 

amplitude of observed fluctuations in this case seems to be much larger than for case I, 

which corresponds to both crucible and crystal rotation, especially for the odd modes since 

the scale of the vertical axes in the figures is logarithmic. In addition, the flow structure for 

12 



the case with crucible rotation only, plotted in Figs. ll(c,d) and   12(c,d), is more chaotic 

than in case I, showing no evidence of symmetries in the flow. 

5.3    Case III: Heating 

The effect of crucible rotation was studied in another numerical experiment. This experiment 

was performed by turning off rotation of the crucible as well as of the crystal at t = 80.0, 

and after case I developed some initial three-dimensionality. Time histories of azimuthal 

energies for this case, shown as dotted lines starting at t = 80.0 in Figs. 8 and 9, show that 

as soon as rotation is stopped, all non-axisymmetric modes increase sharply in energy. This 

is an indication that for the range of parameters used in practice, pure thermal convection 

is strongly three-dimensional and unsteady, as expected, whereas rotation stabilizes the flow 

and reduces fluctuation levels. In some cases it may even be that rotation prevents three- 

dimensionality. As can be observed from Figs. ll(e,f) and 12(e,f) which show isocontours of 

axial velocity and temperature on the r - z and r - <f> planes, the flow is chaotic and without 

evidence of any symmetries. Also, although the Prandtl number is very low, low temperature 

fluid from the top of the crucible convects almost to the bottom of the crucible, indicative 

of the large amplitude fluctuations present in the flow. This case was not investigated any 

further since the objective here is not to study the details of turbulent thermal convection, 

but rather to identify ways to stabilize the flow. It should be noted that simulations for case 

III are very costly in terms of computational time and memory because of the wide range of 

excited scales. 

6    Magnetic field simulations 

In some crytal growing applications the crystal melt is stabilized by the use of a magnetic 

field. The use of a magnetic field, aligned with the rotation axis, for the stabilization of 

the flow was investigated in a series of numerical experiments. Since the magnetic Reynolds 

number is very low, the "induction-less" approximation is used which leads to a simplified set 

of equations. The non-dimensionalized governing equations at the low magnetic Reynolds 

number limit are 

13 



_ + v.Vv = -Vp- —+ -VV + T + JVJXBO 

j = -V^ + vxB0 

V20 = V • (v x B0) 

^ = n.(vxB0) 

Here, Re is again defined as Re = Gr1/2, B0 is the imposed axial magnetic field, and 0 

is the electric potential corresponding to the induced electric field. The non-dimensionalized 

magnetic field strength, B0, is equal to the unit vector k in the axial direction. The boundary- 

conditions used for the electric potential are vanishing normal components of the electric cur- 

rent density j at the crucible walls as well as at the crystal interface. The additional parame- 

ter which appears in the equations is the magnetic interaction parameter, N = B2Rem/pU2. 

N is related to the Hartmann number by 

R2 

Ha2 = NRe = -£rRemRe 
pU2 

Various simulations were performed with the main focus being the understanding of the 

influence of an axial magnetic field on the melt flow. All simulations were performed starting 

from case I, which involves crucible rotation and crystal differential rotation. After case I 

reaches a quasi-steady state, the magnetic field is turned on and its influence on the flow 

is monitored in time. In Fig. 14, the time history of azimuthal mode energies is plotted 

for the cases with N = 0, 1, and 20. As can be observed, at N = 1, all non-axisymmetric 

modes are damped resulting in an almost axisymmetric flow. On the other hand, at N = 20, 

the amplitude of non-axisymmetric modes increases. In fact, at an intermediate value, e.g. 

N = 5, the amplitude of the non-axisymmetric modes is reduced but not to zero. In order to 

visualize the effect of the magnetic field on the flow field, streamwise vorticity isocontours at 

z = 1 are plotted in Figs. 15(a-d). As can be seen in these figures, the resulting vortex shape 

for N = 1 (Fig. 15(a)) is almost a circle, corresponding to an axisymmetric flow; on the 

other hand, for N = 5 (Fig. 15(b)), the shape of the main vortex is only slightly distorted 
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from axisymmetry, whereas for N = 10 (Fig. 15(c)) and 20 (Fig. 15(d)) the main central 

vortex is distorted from a circular shape to an ellipse with a higher aspect ratio than for 

the case without magnetic field, plotted in Fig. 13. In addition, the vortex structure rotates 

with respect to the rotating crucible, resulting in an almost periodic flow in all cases. 

Our simulations indicate that the imposed axial magnetic field, can either dampen three- 

dimensionality, or, in certain parameter regimes, enhance it, and thereby destabilize the 

flow. In the following subsection, we present a simplified model that illustrates this effect 

of magnetic fields in the presence of rotation. In this model, we have extended the analysis 

in Chandrasekhar (1961) to analyze the effects of magnetic fields on the stability of Benard 

convection. This analysis which involves the solution of a 12th order boundary value problem, 

leads to interesting insights on the mechanisms by which magnetic fields can be destabilizing, 

as shown in the following subsection. 

6.1    Influence of rotation and magnetic field on the stability of 

thermal convection 

Crystal rotation and magnetic fields individually may suppress certain instabilities, however, 

combined together they may lead to the generation of new instabilities. Here, we analyze 

an example of such new instabilities which can arise by the combined use of rotation and 

magnetic field. We consider, following Chandrasekhar (1961), the case of Rayleigh-Benard 

convection in the presence of rotation and magnetic field. As described in section 2, the flow 

is characterized by the Rayleigh number, Ra, Prandtl number, Pr, Taylor, T, or Ekman, E, 

numbers, with the Taylor number being T = l/E2, and the Hartmann number, Ha. 

Separately both rotation and magnetic field inhibit the onset of instability and they both 

elongate the cells which appear at marginal stability. These effects have a common origin: 

the flow becomes more two-dimensional. Acting together, however, they may lead to a 

new instability. To understand the origin of this paradoxical behavior, we note that rotation 

induces a component of vorticity in the direction of rotation resulting in streamlines becoming 

closely wound spirals with motions principally confined to planes transverse to the rotation. 

On the other hand, magnetic fields suppress motions transverse to their direction so motion 

along magnetic field lines becomes dominant.   In addition, instability in the presence of 
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rotation alone is a Hopf bifurcation, although it appears as exchange of stability (stationary 

convection) when a magnetic field is present alone. Acting together, the conflicting behavior 

of the effects of rotation and axial magnetic field may lead to a reinforcement of each other, i.e. 

instability, under certain conditions. This complex behavior leading to instability requires 

full mathematical analysis; an example is given below. 

In the simplest case of two free boundaries the characteristic equation for the critical 

Rayleigh number takes the form 

ffn-T4(l+ »){[(!+x)a + ffaa12 + r1fl + x)> 
x[(l + x)2 + Ha2} (n> 

where 
£4 T 

x = -4;        and        T1 = - (12) 

and £ is the characteristic scale of the onset of instability. These equations determine the 

instability threshold in the case of the onset of instability as stationary convection. In the 

case of the onset of instability as overstability the characteristic equations take the form 

D       o 41 + x (l+x)2 + Ha2 r 
Ra = 2"~ (1 + ,).(! -Pr) - PrH* ft1 + *>  + **A ™ 

where 

r2 _ _ Ji     (1 + x)2(l - Pr) - PrHa? 

1+x (l + x)2(l + Pr) + PrHa2 
Ha2"2 

l + x + 
1 + x (14) 

These equations are accurate in the case of low magnetic Prandtl number which is the case 

for crystal growth. 

The solution of these equations for Ekman number equal to E = 1CT3 (or Taylor number 

T = 106) and Prandtl number Pr = 0.2 is shown in Fig. (16). Let us consider the stability 

of the flow with increasing magnetic field, starting from Rayleigh numbers for which the flow 

is stable in the absence of the magnetic field. As can be observed, the flow may become 

unstable at a certain level of the magnetic field. For this model problem, if we increase the 

strength of the magnetic field even further the flow stabilizes once again. 

The model problem is meant to illustrate the complex combined effect of rotation and 

magnetic fields in the case of Rayleigh-Benard convection in an infinite layer. In other more 

complex systems, the effect of the destabilization of thermal convection by the action of a 
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magnetic field in the presence of rotation is sensitive to the geometry, Prandtl number and 

configuration of temperature gradients. More complex configurations cannot be analyzed 

using such simple models, and the stability of flows in crystal melts in the presence of 

magnetic field and rotation can only be studied using three-dimensional direct numerical 

simulation. 

7    Conclusions 

The 2-D and 3-D flow of a low Prandtl number liquid metal in a cylindrical crucible were 

investigated including effects of heating, crucible and crystal rotation and axial magnetic 

fields using a spectral element numerical approach, specifically designed for axisymmetric 

geometries. It was found that, as expected, reducing the crucible aspect ratio and rounding 

its shape results in flow stabilization. Crucible rotation and crystal differential rotation, at 

speeds comparable to buoyancy, enhance flow stabilization in 2-D as well as in 3-D. However, 

axisymmetric flows stabilized with the use of rotation, were found to be unstable to three- 

dimensional disturbances resulting in chaotic behavior. Therefore, solving the axisymmetric 

problem to find ranges of rotation speeds which stabilize the flow is not adequate for the sta- 

bilization of 3-D flows. Moreover, even with strong crystal differential rotation, the resulting 

flow obtained is typically three-dimensional with reduced fluctuation amplitudes and less 

chaotic structure compared to the non-rotating case. In addition, the use of a magnetic field 

aligned with the direction of the crucible rotation was also investigated in conjunction with 

rotation and differential rotation. It was found that the magnetic field can have a stabilizing 

effect on the flow, and for some strengths even render the flow axisymmetric. However, for 

large values of the magnetic interaction parameter it can lead to the strengthening of the 

axial vorticity component and, therefore, to more three-dimensionality. Analysis of a model 

problem involving Rayleigh-Benard convection in the presence of rotation and magnetic field 

shows that the combined action of rotation and magnetic field may lead to the generation 

of new instabilities. More work is required in order to understand the effect of high values 

of magnetic field strength. 
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9    Figure Captions 

• Figure  1: Geometric configuration of a crystal melt crucible. 

• Figure 2: Time history of u,v,T for Gr = 2.8 x 106, without rotation until t > 87.5, 

and with rotation with E = Gr~ll2 = 1.67 x 10"3 after t > 87.5. Axisymmetric flow 

simulation. 

• Figure 3: Instantaneous vorticity field (a) without rotation and (b) with rotation, for 

a crucible with H/D = 1. Axisymmetric flow simulation. Note that this figure was 

generated by transformation of color plots to grey scale, so the darkest tone does not 

correspond to the highest value. 

• Figure 4: Time history of velocity, pressure and temperature for axisymmetric flow in 

a low aspect ratio crucible at Gr = 2.8 x 106. 

• Figure 5: Isocontours of (a) temperature, and (b) vorticity for the steady state flow 

field in a crucible with aspect ratio H/D = 0.25, and Gr — 2.8 x 106. Note that this 

figure was generated by transformation of color plots to grey scale, so the darkest tone 

does not correspond to the highest value. 

• Figure 6: Time history of velocity, pressure and temperature for axisymmetric flow in 

a rounded crucible at Gr = 2.8 x 106. 

• Figure 7: Isocontours of (a) temperature, and (b) vorticity for the steady state flow 

field in a rounded crucible with aspect ratio H/D = 0.25, and Gr = 2.8 x 106. Note 

that this figure was generated by transformation of color plots to grey scale, so the 

darkest tone does not correspond to the highest value. 

• Figure 8: Time history of even azimuthal mode energies. 

• Figure 9: Time history of odd azimuthal mode energies. 

• Figure 10: A typical azimuthal energy spectrum for flow with rotation and differential 

rotation. 

• Figure 11: Instantaneous isocontours of axial velocity (left) and temperature (right) 

on a r — z plane for cases (a),(b) with heating rotation, and differential rotation, (c), 
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(d) with heating and rotation only, (e), (f) with heating only. Note that this figure 

was generated by transformation of color plots to grey scale, so the darkest tone does 

not correspond to the highest value. 

• Figure 12: Instantaneous isocontours of axial velocity (left) and temperature (right) 

on a r — <f> plane for cases (a),(b) with heating rotation, and differential rotation, (c),(d) 

with heating and rotation only, (e),(f) with heating only. All axial velocity isocontours 

are at z = 1, whereas all temperature isocontours are at z = 1.75. Note that this figure 

was generated by transformation of color plots to grey scale, so the darkest tone does 

not correspond to the highest value. 

• Figure 13: Isocontours of axial vorticity at z = 1 for flow with heating rotation, and 

differential rotation. Note that this figure was generated by transformation of color 

plots to grey scale, so the darkest tone does not correspond to the highest value. 

• Figure 14: Time history of the even azimuthal modal energies when different strength 

magnetic fields are applied. 

• Figure 15: Isocontours of axial vorticity at z = 1 for flow with a magnetic field with 

a) N = 1, b) N = 5, c) N = 10, and d) N = 20. Note that this figure was generated 

by transformation of color plots to grey scale, so the darkest tone does not correspond 

to the highest value. 

• Figure 16: The stability diagram of critical Rayleigh number as a function of Hartmann 

number for Ekman number 10~3 
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Czochralski melt, Gr=2,777,777, boyancy and rotation after t > 87.5 
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Low aspect ratio crucible, Gr=2.8xl06, Axisymmetric 
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Rounded crucible, Gr=2.8xl06, Axisymmetric 
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Azimuthai even mode time history 
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Azimuthai odd mode time history 
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Figure 13: 
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