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ABSTRACT 

Damage reduces the flexural stiffness of a structure, thereby altering its dynamic 

response. Considerable effort has been put into obtaining a correlation between the changes in 

modal parameters and the location and amount of the damage within the structure. Most 

numerical research employed elements with reduced beam stiffness to simulate damage in the 

beam. This approach to damage simulation neglects the non-linear effect that a crack has on the 

structural dynamic response. In the present study, finite element modeling techniques are 

utilized to directly represent an embedded crack. The results of the dynamic analysis of the 

present model are then compared to the results of the dynamic analysis of the reduced modulus 

finite element model. Different modal parameters are investigated to determine the most 

sensitive indicator of damage and its location. Nonlinear effects, such as crack closure and 

opening, of an embedded crack on the structural dynamic response were also studied from 

transient nonlinear analysis. The modeling technique is then applied to sandwich composite 

beams with simulated delamination to investigate damage detection techniques through the use 

of damping caused by frictional dissipation of energy on the crack surface. 
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I.  INTRODUCTION 

The ability to monitor a structure and detect damage at 

the earliest possible stage is a very important asset in all 

realms of civil, mechanical, and aerospace engineering 

disciplines. Many existing methods of damage detection use 

various non-destructive techniques such as visual, acoustic 

emission, ultrasounds, magnetic fields, radiographs, eddy- 

currents, C-scan, and vibration thermographs. Almost all of 

these methods are inherently localized and require prior 

knowledge of the possible damage location in order to avoid 

wasting time during useless data collection. Using these 

methods for large scale or global areas can be quite 

expensive as well as require large amounts of labor and 

time. Therefore, an alternate approach that incorporates the 

evaluation of a single global parameter or combination of 

global parameters to detect, localize, and monitor damage 

would greatly enhance the safety and efficient maintenance 

of structures. 

More recent work in the area of global damage detection 

techniques has involved the use of relative shifts or 

changes in the modal parameters. Modal parameters such as 

modal frequency,  modal damping,  and mode shapes are a 



function of the mass-inertia and elastic properties of the 

structure. Therefore, the dynamic response of a system can 

be a sensitive indicator of change in the integrity of the 

system's elastic structure. Damage in any form reduces the 

local flexural stiffness in the vicinity of the damage. 

Reduced stiffness leads to a decrease in modal frequencies 

and an increase modal damping coefficients as well as 

changes in the corresponding mode shapes. 

Damage can affect the dynamic response of a structure 

either linearly or nonlinearly. Changes in the dynamic 

response of the structure subject to linear damage can be 

related to uniform changes in the geometry or the material 

properties of the structure. However, in most cases damage 

is predominantly in the form of micro-scale or macro-scale 

cracks or voids. Such cracks or voids behave nonlinearly 

under dynamic excitation as in the case where embedded 

cracks subsequently open and close. In some nonlinear cases, 

the global effect of damage on the dynamic response of the 

structure can be considered to be small and local in nature. 

In such cases, the damage can be modeled linearly. However, 

in the case where the nonlinear local behavior significantly 

affects the global structural response, the damage can no 

longer be modeled linearly. 



Most of the previous research has concentrated on 

linearized modeling of damage. In these linear eigenvalue 

analyses using the finite element method, using either 

reduced material properties or reduced geometric dimensions 

within the damaged section simulated damage. The focus of 

these studies was aimed at establishing a modal parameter or 

method of manipulating modal parameters to obtain the 

highest sensitivity to damage in the structure. However, in 

linearizing crack damage in this fashion most researchers 

must reduce the flexural stiffness in the damaged elements 

in large amounts to produce relatively small changes in the 

modal parameters. Little thought has been centered on the 

effects of linearization of local crack response or in the 

direct representation of an embedded local crack in a finite 

element model. 

One of the objectives of this study is to evaluate the 

previous modeling technique, which smeared a crack into a 

reduced material or geometric properties. To this end, the 

present study includes an embedded crack modeled directly 

instead of smearing the crack through reduced material or 

geometric properties. Linear eigenvalue analysis was 

performed for this model to compare the present modeling 

technique with previous smearing techniques used in damage 



detection research. In this study, the crack behavior was 

linearized. 

The second objective was to investigate the modal 

parameter or combination of modal parameters that was more 

sensitive to a local embedded crack using the present 

modeling technique. For example, modal frequency, mode shape 

displacement, mode shape curvature, etc. were examined for a 

possible modal parameter, which would provide accurate 

information regarding the presence of a crack and its 

location. 

The final objective was to examine the local nonlinear 

behavior (such as crack opening and closure) of a crack 

using transient nonlinear analysis. The effort was made to 

evaluate the linear eigenvalue analysis conducted in the 

first portion of the study. Furthermore, the transient 

nonlinear analysis was utilized to investigate damage 

detection and localization through a new modal damping 

(energy dissipation) parameter. 



II. LITERATURE REVIEW 

There is quite a large amount of literature generated 

on global damage detection and localization by use of 

changes in modal parameters. The majority of literature 

reviewed for the current research has been focused on damage 

modeling techniques, the modal parameters being utilized for 

damage detection and localization, and the level of 

sensitivity to the presence of damage. 

The amount of literature related to damage detection 

using relative shifts in modal frequencies is quite large. 

Most results summarize a relatively low sensitivity of 

frequency shifts to damage and the need for very precise 

measurements for damage detection. This is mainly due to the 

reduction in flexural stiffness being local in nature, 

thereby resulting in modal frequency shifts that are hardly 

detectable with the current test equipment. Spyrakos (1990) 

found a modal frequency shift of less than 5% corresponding 

to a 50% reduction in flange cross-sectional area. Rehm 

(1987) also found large-scale reduction in cross-sectional 

area (over 30%) only produced small and less detectable 

shifts in the modal frequency (less than 1%) . Because a 

shift in modal frequency is a global parameter of the 



structure, it provides no clear and precise means of 

identifying more than damage existence. Damage of the same 

size but in different locations of the structure may produce 

the same amount of frequency change. This has led many 

researchers to investigate the use of more sensitive modal 

parameters to detect and locate damage. 

Formulas.and algorithms using displacement mode shapes 

and curvature mode shapes have been used to better locate 

the damage. Yuen (1985) in his paper investigated the first 

five mode shapes of a damaged cantilever beam, varying the 

location and the degree of damage within the beam. He 

modeled the crack as a reduction in the modulus of 

elasticity. He borrowed this procedure of reducing the 

modulus of elasticity from Adams (1978), who reduced the 

modulus of elasticity to zero in the damaged area. Yuen 

(1985) found that a reduction in the modulus of elasticity 

of 50% produced a small but measurable change in both the 

first modal frequency and mode shape. He further added that 

the expected change in vibration amplitude was measurable 

and would demand the same order of accuracy as the frequency 

measurement. In this study, he failed to mention the exact 

order of accuracy required. In a study conducted by Pandey 

(1994), changes in mode shape curvature were used to 

identify and locate damage in a simply supported beam and a 



cantilever beam model. Pandey (1994) reverted to the common 

practice of reducing the modulus of elasticity to model the 

damaged section. However, he showed that damages detected by 

changes in mode shape curvature were localized to the region 

of damage while changes in the mode shape displacement were 

not localized. 

The carrying precedence in the majority of articles 

reviewed was crack damage continuously being modeled as a 

reduction in the flexural stiffness (El) of the damaged 

elements. In almost all cases, there was no considerable 

effort provided to explain the linearization of dynamic 

response for neither crack damage nor sufficient evidence to 

support the amount of material property or geometric 

property reduction used in the analysis. Following this 

procedure, there is no clear relationship between the 

geometrical dimensions of the crack and the amount of 

reduced flexural stiffness incurred within the structure. 

This method also provides no exact correlation between the 

damaged section's effect on the global and local dynamic 

response of the structure among the different modes of 

vibration. Therefore, there is a need to clarify the 

differences between the linearization in dynamic response of 

embedded local crack damage and the direct representation of 

embedded local crack damage in a finite element model. 
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Ill. FINITE ELEMENT MODELING AND ANALYSIS 

A finite element model was generated using beam 

elements with displacement degrees of freedom only. The 

detailed derivation is given by Kwon and Bang (1997) and is 

therefore omitted in the following sections. As seen in 

Fig. 1, each element has six degrees of freedom. There are 

four axial displacement dofs at the corner points and two 

transverse displacement dof's at the endpoints of the 

element. 

L y 

i 
v2 

i 

u2
t 

w w 

—>  —►  —► 
"1 u2 

Figure 1.  Four-Noded Beam Element with Six Dof's 

The displacement field of the element is 

«■{S^-^J (1) 



where [N] is the linear shape function matrix and {de} is 

the vector of nodal displacements. The axial normal strain 

can.be written as 

du     3N, TT b    5N,   ,  ÖN2   b    dN2   ,     ,  . 
s r = — = LH,w1 + 

LH,i/, + LH,a, + -ELw,     (2> X *-\ o        *       * ^        Z  i       ^        1  Z       ** Z  1 
ox  ax      ax       ox ox 

and the shear strain is 

övöcqv oy ay ay ax        ax 

The element stiffness matrix was obtained by minimizing the 

total strain energy which contains both bending and 

transverse shear energy. 

[Ke] = [Ke]b+ [Ke]s (4) 

The subscripts *b' and 's' indicate bending and transverse 

shear,- respectively. The bending and transverse shear 

stiffness matrices are 

/ h 

[Ke
b]=jJ{Bb}E{Bb}dxdy (5) 

o o 
T 

[K:]=JJ{Bs}E{Bs}dxdy (6) 
o o 

10 



where E and G are the elastic and shear modulii of the beam 

and the vectors {Bb} and {Bs} are derived from the strain- 

displacement relationship given below. 

^ = {Bb}{de} 

r *y = {Bs}{d
e) 

(7) 

(8) 

By carrying out the integration, the bending and transverse 

shear stiffness matrices are obtained. 

2      1 0   -2 -1   0 

1      2 0   -1 -2   0. 

[K]=- 1  bJ    6/ 

0      0 

-2   -1 

-1   -2 

0      0 

0    0 

0    2 

0     1 

0    0 

0 0 

1 0 

2 0 

0     0 

and 

" G/2 -G/2 2G/Ä G/2 -G/2 -IGlh 

-G/2 G/2 -IGlh -G/2 G/2 IGlh 

M-£ IGlh 

G/2 

-2G/A 
-G/2 

4GÄ2 

IGlh 

IGlh 

G/2 

-IGlh 

-Gl2 

-AGh1 

-IGlh 

-G/2 G/2 -IGlh -G/2 G/2 IGlh 

-IGlh 2G//J -AGh1 -IGlh 2Glh AGh1 

(9) 

(10) 
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The element stiffness matrix, which is obtained by adding 

the bending and transverse shear stiffness matrices, can be 

expressed in the following form 

M- 

(a1+2a3) (-a,+a3) (a-2a)  (-a,-a3) -a4 

(-a,+a3) (a,+2a3) -a4 (-a,-a3) (a1-2a3) a 

-a, -a. -a, 

(a,-2a3) (-a,-a3) (a,+2a3) (-a,+a3) -a4 

(-a,-a3) (a,-2a3) -a4 (-a,+a3) (a,+2a3) 

-a, -a. l2 J 

(11) 

where each symbol denotes 

a,= 
G/ 

4Ä 
a2=- 

G/z EÄ 
a, =—   a4 = — 

/       3     6/      4     2 

In   the   mass   matrix,    a   lumped  mass   was   used   where   the   mass 

was  concentrated at  the  six nodal  degrees of  freedom. 

k]= phlb 

10   0 0   0   0 

0   10 0   0   0 

0   0   2 0   0   0 

0   0   0 10   0 

0   0   0 0   10 

0   0   0 0   0   2 

(12) 

The phljb term is the element mass and is distributed among 

the four axial displacement dof's and two transverse 

displacement dof's. 
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Once the system mass and stiffness matrices are 

computed for the beam, they are substituted into the 

equation of motion of an undamped vibrating system. 

[Mjx}+[K]{x}=0 (13) 

After applying the proper boundary conditions, the above 

equation is solved using the eigenvalue equation given 

below. 

|K]-A,2[M])a>,.=0 '       (14) 

The term X± represents the modal frequencies and Oi 

represents the vector of corresponding displacement mode 

shapes. 

Although damage can be detected from the change in 

displacement mode shapes, finding the location of the damage 

is very difficult. Pandey (1994) found that changes in 

displacement mode shapes are not localized to damage areas. 

Therefore, other parameters which are more sensitive to the 

location of the damage must be utilized. Mode shape 

curvature is related to the flexural stiffness of a beam 

cross-section by the following relationship: 

0" = M (15) 
El v J 

13 



where O" is the curvature at the section, M is the Bending 

moment, and El is the flexural stiffness. From the 

displacement mode shapes, curvature mode shapes were 

obtained numerically by using a weighted central'difference 

approximation. 

<D" = 2 
vxj ~~ xj-i Axj+i ~ xj-i Axj+i ~ xj) 

(16) 

Pandey (1994) successfully showed the benefits of using mode 

shape curvature to detect and locate damage in simply 

supported and cantilever beam, where damage was simulated by 

a 50% reduction in the modulus of elasticity. 

14 



IV. FINITE ELEMENT MODEL COMPARISON 

A.   MODEL 

The material properties for an aluminum alloy (1100- 

H14) were used to generate a mesh for a 48cm x 2.54cm x 

1.27cm beam. The beam was modeled as a single row of eighty 

elements with the majority of elements concentrated around 

the damaged section. A 2.4 cm, through the width, axial 

crack located at the midpoint of the beam was simulated by 

reducing the modulus of elasticity in the elements of the 

damaged section. Another beam was generated, having two 

rows of eighty elements with the majority of elements 

concentrated around the damaged section. A total of 160 

spaced elements were used for this model. Transverse 

displacement degrees of freedom were coupled along the beam 

axis. Axial displacement continuity was enforced along the 

interface of the top and bottom row of elements. An 

embedded, through the thickness, crack was simulated by 

uncoupling the axial and transverse degrees of freedom 

between the top and bottom row of elements. The finite 

element models are included in Figs. 2 and 3. 

15 
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B.   RESULTS 

The eigenvalue problem was solved for the finite 

element model of the undamaged beam and the beam with an 

embedded crack. The first five non-zero modal frequencies 

and corresponding mode shapes were obtained for the damaged 

and undamaged beam using the embedded crack model. Only 

transverse displacement dof's were considered for the mode 

shapes. The absolute shift in the modal frequencies due to 

the presence of the crack was calculated and listed in Table 

1. Once the modal frequency shifts were calculated, the 

modulus of elasticity in the damaged elements of the other 

finite element model were adjusted until the corresponding 

modal frequency shifts were approximately equal to those 

experienced by the finite element model with the embedded 

crack. Simultaneously matching the first five non-zero modal 

frequency shifts was impossible. However, by reducing the 

modulus a very small amount (7xl0"7%), the first non-zero 

modal frequency shift was matched closely as seen in Table 

2. As seen in Table 3, reducing the modulus a very large 

amount (75%) matched the second and the fourth non-zero 

modal frequency shifts between the embedded crack model and 

the reduced modulus model. 

17 



Table 1.  Frequencies for Embedded Crack Model 

Mode Undamaged 
X   (Hz) 

Damaged 
X'    (Hz) 

\X-X' \    (Hz) 

1 28.6688 28.6688 ~0 
2 78.6241 78.4692 .1549 
3 152.8576 152.8549 .0027 
4 250.6039 249.1599 1.4440 
5 369.9797 369.9429 .0368 

Ave=.3277 

Table 2.  Frequencies for 7e-7% Reduced Modulus Model 

Mode Undamaged X 
(Hz) 

Damaged 
X'  (Hz) 

\X-X'  | (Hz) 

1 28.6075 28.6075 ~0 
2 78.2601 78.2601 ~0 
3 151.6761 151.6761 ~0 
4 247.7349 247.7349 ~0 
5 364.2232 364.2231 .0001 

Ave=~0 

Table 3.  Frequencies for 25% Reduced Modulus Model 

Mode Undamaged X 
(Hz) 

Damaged 
X'  (Hz) 

\X-X'| (Hz) 

1 28.6075 24.3586 4.2490 
2 78.2601 78.1053 0.1548 
3 151.6761 137.7113 13.9648 
4 247.7349 246.2816 1.4534 
5 364.2232 336.8181 27.4050 

Ave=9.4454 

An average ;of the first five modal frequencies was 

calculated for the embedded crack model and corresponded to 

the average frequency change of a model with a 6% decrease 

18 



in the modulus of elasticity in the damaged section. The 

values for the modal frequencies are listed below in Table 

4. Although the average change in the first five non-zero 

modal frequencies matched the average change of the embedded 

crack model, the individual changes in modal frequency nor 

their corresponding changes in displacement mode shapes 

matched the changes experienced by the embedded crack model. 

Table 4.  Frequencies for 94% reduced Modulus Model 

Mode Undamaged X   (Hz) Damaged X'(Hz) \X-X' | (Hz) 

1 28.6075 28.4938 .1137 
2 78.2601 78.2568 .0033 
3 151.6761 151.2246 .4515 
4 247.7349 247.7042 .0307 
5 364.2232 336.1971 1.0261 

Ave=.3251 

Although the modal frequency shifts caused by the crack 

presence could be matched separately, matching their 

corresponding changes in the displacement mode shapes was 

rather difficult. Even numbered displacement mode shapes 

matched with close accuracy when matching their 

corresponding change in modal frequency. However, the 

displacement mode shape changes for the first mode shape and 

all other odd numbered modes shapes could not be matched to 

the changes experienced by the embedded crack model by any 

alteration of the modulus of elasticity in the damaged 

section. Altering the modulus of elasticity in the damaged 

19 



section had a more global effect on the change in the odd 

numbered displacement mode shapes than the embedded crack 

model for the given damage scenario. The magnitude of 

displacement change in the reduced section modulus model was 

also found to be significantly lower than the displacement 

change found in the embedded crack model when the first 

modal frequency change was matched. It was very clear that 

there existed some difference between the models that could 

not be corrected by any justifiable alteration in the 

modulus of elasticity in the damaged section. 

20 



V.  LINEAR DYNAMIC ANALYSIS 

A.   MODEL 

The same material properties for the aluminum alloy 

(1100-H14) beam used in the comparison of reduced material 

property damage and the embedded crack damage models were 

used to generate the mesh for the first study in the Linear 

Dynamic Analysis. Having acknowledged the differences 

between the dynamic response of an embedded crack model and 

a reduced modulus of elasticity model, the modal 

frequencies, mode shape displacements, and mode shape 

curvatures were calculated for a free-free beam with and 

without a"2.4 cm embedded crack using the embedded crack 

model. Each modal parameter was compared for sensitivity to 

damage detection and localization. 

The analysis was further carried out on a finite 

element mesh representation of a sandwiched composite beam 

with the following dimensions 48 cm x 4 cm x .8 cm. In the 

finite element model, Syntac 350C foam of .6 cm thickness 

(Young's Modulus=2.21 x 105 N/cm2 Poisson's Ratio=.35, 

Density=9.61 x 10"5 kg/cm3, Modulus of Rigidity= 8.18 x 104 

N/cm2) was reinforced by two .1 cm thick layers of Glass 

Reinforced  Plastic  (Young's  Modulus=2.07  x  106  N/cm2 

21 



Poisson's Ratio=.342, Density=3.06 x 10"3 kg/cm3, Modulus of 

Rigidity= 8.97 x 105 N/cm2) . The finite element model of the 

composite beam is included in Fig. 4. The laminae were 

modeled as perfectly joined at the interface except in the 

damaged section, where delamination was simulated. The size 

of the crack was varied between 2.4 cm and 3.6 cm. The 

location of the crack was also varied between the beam 

midpoint and 10 cm away from the midpoint. Three separate 

boundary conditions were applied to the model. (Free-Free, 

Simply Supported, and Cantilever) 
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Figure 4.  Finite Element Mesh for Composite Beam with Crack 

B.   RESULTS 

The data collected from the embedded crack model was 

used to detect and locate the embedded, through the 

thickness, crack. The maximum values of percent relative 

change for each curvature mode shape and displacement mode 

shape as well as the percent relative change in modal 

frequency are listed below in Table 5. As previously 

mentioned, the modal frequencies are almost insensitive to 

the embedded crack damage. It was also hard to derive the 
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location of the crack from the modal frequency shift due the 

possibility of different cracks producing the same shift in 

modal frequency. Therefore, the analysis was more focused on 

the mode shape displacement and mode shape curvature values. 

In all modes, the maximum values of relative change were 

higher for curvature, mode shapes, displaying a higher 

sensitivity to the presence of damage. 

Table 5.  Maximum Percent Change 

Mode Percent AA, Maximum percent A(|> Max. percent A§'' 
1 ~0 0.0006 0.5912 

2 0.1970 5.4413 297 

3 0.0018 0.2879' 4.2053 

4 0.5762 15.241 291 

5 0.0099 0.3151 10.228 

Plots of the displacement and curvature mode shapes are 

included in Figs. 5 through 14. As seen in the figures, 

changes in curvature mode shapes were more localized to the 

region of damage than changes in displacement mode shapes. 

23 



First Mode (Omega=28.6688Hz) 

0 5       10       15      20      25      30      35      40      45      50 
Position on Beam(cm) 

Figure 5.  First Modal Displacement of Embedded Crack Model 
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Second Mode (Omega=78.6241Hz) 

5       10      15      20      25      30      35      40      45      50 
Position on Beam(cm) 

Figure 6.  Second Modal Displacement of Embedded Crack Model 

25 



Third Mode (Omega=152.8576Hz) 

-0.8 
0        5       10       15      20      25      30       35      40      45      50 

Position on Beam(cm) 

Figure 7.  Third Modal Displacement of Embedded Crack Model 
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Fourth Mode (Omega=250.6039Hz) 

0        5       10       15      20      25      30      35      40      45      50 
Position on Beam(cm) 

Figure 8.  Fourth Modal Displacement of Embedded Crack Model 
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Figure 9.  Fifth Modal Displacement of Embedded Crack Model 
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Figure 10.  First Curvature Mode of Embedded Crack Model 
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Figure 11.  Second Curvature Mode of Embedded Crack Model 
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Figure 12.  Third Curvature Mode of Embedded Crack Model 
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Figure 13.  Fourth Curvature Mode of Embedded Crack Model 
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Figure 14.  Fifth Curvature Mode of Embedded Crack Model 
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Modal response data was collected for three different 

boundary conditions with the size and location of the crack 

varied. The mode shape changes and mode shape curvature 

changes were evaluated for each case with hopes of 

solidifying the change in modal response in terms of crack 

size, location, and boundary condition. 

It was found that the boundary condition applied had a 

less significant effect on the modal response change 

generated by an embedded crack of a fixed size and location. 

This can be attributed to the fact that the odd numbered 

modes of vibration for a cantilever beam are similar to 

those of a free/free beam due to symmetry and the response 

of a simply supported beam is very similar to the response 

of a free/free beam. 

Increasing the crack size increased the amount of 

change in the modal response, whether considering frequency, 

mode shape displacement, or mode shape curvature. However, 

there was not a direct proportional relationship that could 

be established between the crack size and the amount of 

change experienced. The change experienced by each mode was 

significantly different for each case of damage. 

The location of the crack in a given mode of vibration 

affected the amount of crack opening and closure (nonlinear 

effect) experienced in the response which relates to the 
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detectability of damage from changes in the modal response. 

From varying the location of the crack, it was found that 

the local nature of the crack's effect on modal response 

became more significant in modes where.the reduced stiffness 

was more evident through crack opening. These locations were 

around the anti-nodal locations of the mode of vibration. A 

plot of the more sensitive and less sensitive crack 

locations is provided below in Figure 15. 

Mode 2 

less effect 

10 20 30 
Position along beam (cm) 

Figure  15.     Modal  Sensitivity to Damage Plot 
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VI. NONLINEAR DYNAMIC ANALYSIS 

A. INTRODUCTION 

The preceding analysis has concentrated on the 

linearized effects of crack damage through the use of the 

eigenvalue problem. The Finite Element mesh generated thus 

far did not account for contact between the interior 

surfaces of the crack during a dynamic response. The data 

collected therefore considers the problem of modal parameter 

changes due to the effects of crack damage in terms of a 

stiffness reduction in the location of the crack only. 

Therefore, an analysis of the transient response of a 

damaged beam with consideration for the contact surfaces is 

studied for capturing both the effects of crack surfaces 

impacting and the nonlinear opening and closure of the crack 

on the change in dynamic response. 

B. ANALYSIS AND RESULTS 

To this end, LS-DYNA software was incorporated for the 

analysis of the nonlinear transient response. A mesh with 

elements of equal length was generated for the same 

dimension composite beam used in the Linear Analysis portion 
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of the current research. Cantilever boundary conditions were 

applied to the beam which is depicted below in Figure 16. 

Figure 16. Transient Analysis Model 

The location and size of the crack, respectively labeled Aa' 

and yb' in the figure above, were varied for the analysis. 

Natural Frequency values for the first mode of vibration 

were very close to the values obtained in the linearized 

analyis. Frictional impact surfaces were created between the 

surfaces of the crack. The friction coefficient was varied 

to evaluate the amount of frictional dissipation of energy 

involved with crack vibration during a transient response. 

Since the exact value for the friction coefficient for a 

crack surface was unknown, values were chosen in an effort 

to relate the.lack of smoothness that would be found on the 

crack surface. The embedded crack produces an increase in 

damping which can be captured by a decrease in sucessive 

amplitudes during the transient response of the beam. The 

following  logarithmic  decrement  equation  was  used  to 
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calculate the damping ratio values for two consecutive 

cycles in tip deflection of the beam, 

(.. \ 
In 

<;-■ 

\X2j 

In ' 

(17) 

\X2J 
+ 4x2 

where C, is the damping ratio and Xi and x2 are successive 

amplitudes. The results from varying the friction 

coefficient are included below in Table 6. 

Table 6. Damping Ratio According to Friction Coefficient 

Friction 

Coefficient (JJ,) 

Damping ratio 

0 -0.000 

1 0.0222 

2 0.0383 

Note: a=24 cm, b=2.4 cm 

The data shows a nonlinear relationship between the friction 

coefficient and the amount of damping present in the 

response of a composite beam with a 2.4 cm crack embedded at 

the- midpoint of the beam length. The results from increasing 

the crack size are included in Table 7. 

Table 7. Damping Ratio According to Crack Size 

Crack Size 'b' 
(cm) 

Damping Ratio 

2.4 0.0222 

4.0 0.0281 

Note: |a=l,a=24 cm 
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As observed in the preceding table, there was a 21% increase 

in modal damping caused by a 40% increase crack size. The 

effect of crack location on modal damping is summarized in 

Table 8. 

Table 8. Damping Ratio According to Crack Location 

Crack Location >a' 
(cm) 

Damping Ratio 

14 0.0153 
24 0.0222 
34 0.0585 

Note: ii=l,  b=2.4 cm 

Important to the analysis was the nonlinear opening and 

closing of the embedded crack. By plotting the relative 

axial and transverse displacements of two nodes in direct 

contact at the midpoint of the crack surface, a clearer 

picture can be drawn about the periods of contact between 

the crack surfaces and the amount of nonlinear dissipation 

of energy through crack surface friction involved when the 

crack surfaces are in contact. The axial and transverse 

displacement plots of two nodes at the top and bottom of the 

crack surfaces (see nodes A and B in Figure 10) during the 

transient response of a composite beam with a' 4.0 cm crack 

embedded crack at the midpoint of the beam length are 

provided in Figures 17 and 18. 
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x10 Crack Opening vs Time 

0        0.5        1        1.5 
Time (sec) 

Figure 17.  Crack Opening vs Time 

x10 Relative Axial Displacement of Crack Surfaces 

0        0.5        1        1.5        2 
Time (sec) 

Figure 18.  Relative Axial Displacement of Crack Surface 
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In order for the friction surface of a crack to 

dissipate energy, there must be both contact and relative 

motion between the surfaces of the crack. From the plots, it 

can be seen that contact is only experienced during short 

time intervals, the relative axial motion during contact is 

small, and the amount of crack surface separation is also 

very small. Therefore, the damping ratio obtained through 

the logarithmic decrement eguation is an averaged value of 

the nonlinear dissipation of energy experienced by the beam. 

Also, as the crack is placed further away from the 

cantilever wall, the amount of relative crack surface motion 

increases thereby causing more, damping to occur. This 

explains the increase in damping ratio in the values of 

Table 8. 
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VII. CONCLUSIONS AND RECOMMENDATION 

The numerical results of the embedded crack finite 

element model demonstrate the usefulness of the modeling 

technique in characterizing the dynamic response of a beam 

with interior through the thickness crack damage. 

Through the direct comparison of the different finite 

element model dynamic responses, it was shown that there was 

no concrete correlation between the amount of reduction in 

the flexural stiffness used in previous research and the 

response of an embedded crack finite element model. It was 

also found that the change in modal frequency experienced by 

the embedded crack model was quite small and was only 

comparable to a smaller reduced stiffness model vice the 30- 

50% reduction used in previous research. Furthermore, mode 

shape curvature was a more sensitive indicator of damage and 

a better locator of damage than modal frequency or mode 

shape displacement. The direct approach in modeling an 

embedded crack was more accurate in capturing the true 

changes in dynamic response for the different modes of 

vibration. 

From the sandwich composite model analysis, it was 

shown that boundary conditions have a less significant 
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effect on the ability to detect damage from modal response 

changes. It was also shown that crack size was not directly 

proportional to the amount of change in modal response for 

all modes of vibration. However, increasing crack size does 

increase the change in the modal response. Crack location 

affects the ability to detect damage in certain modes of 

vibration. Therefore, evaluating a combination of different 

modes increases the chances of detecting damage from modal 

response. 

The nonlinear transient analysis furthered the study of 

damage detection by capturing the nonlinear crack opening, 

crack closure, and relative crack surface sliding motion 

during the transient response of a cantilever beam with an 

embedded crack. The friction environment between the 

surfaces of an embedded crack dissipates energy proportional 

to the amount of damping experienced by the beam during the 

transient response. The change in the amount of damping 

present can provide a means of detecting crack damage and 

monitoring the extent of crack damage present within the 

structure. 

Recommendations for further study are as follows: 

investigate higher modes of vibration using the transient 

nonlinear analysis and frictional dissipation of energy, 

model  multiple  embedded  cracks  of  various  sizes  and 
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locations, conduct experimentation with both homogenous and 

composite beams with physical damage and compare to results 

generate by numerical methods. 
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