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Abstract

The MAARC project developed a sound framework for algorithmic configurable com-
puting and for exploiting this technology for embedded signal and image processing appli-
cations. The project was executed by the MAARC research group at USC in collaboration
with the ReaCT-ILP lab at New York University. The USC efforts developed fundamen-
tal configurable computing models and performance metrics to evaluate the scalability of
configurable hardware. The developed models and the performance metrics were utilized
to analyze dynamic reconfiguration and design model based algorithm mapping techniques
for signal processing dpplications. Mapping techniques were developed to identify the core
computational kernels of signal processing applications and map them onto configurable
hardware. The mapping techniques are efficient and yield significant performance speed-
ups and logic utilization. An interpretive simulation framework was proposed to analyze
and visualize dynamic reconfiguration and the proposed mapping techniques. A proto-
type of the framework, Dynamically Reconfigurable Systems Interpretive Simulation and
Visualization Environment (DRIVE) was developed and demonstrated. As part of the col-
laborative effort the NYU group designed a model based compiler framework and compiler
optimization technologies targeting reconfigurable platforms. This report summarizes the
accomplishments of these efforts and the details are provided in the manuscripts submitted
as part of the report. The first part of the report describes the accomplishments by the USC
MAARC group and the second part describes the accomplishments of the NYU ReaCT-ILP

group.




Part I |
USC Efforts

1 Summary of Accomplishments

1.1 Models for Configurable Computing

One major problem in using FPGAs to speed-up a computation is the design process.
The “standard CAD approach” used for digital design is typically employed. The required
functionality is specified at a high level of abstraction via an HDL or a schematic. FPGA
libraries specific to a given device (e.g. Xilinx, Altera, etc.) and time consuming placement
and routing steps are required to perform the logic mapping. This approach of logic synthesis
as opposed to algorithm synthesis allows the user to specify the design using a behavioral
model. But this abstraction is achieved at the expense of performance. The semantics and
nature of the algorithm are lost in the mapping phases.

The model based mapping environment takes into account the capabilities and limita-
tions of current as well as projected hardware technologies. In this effort parameterized
models for algorithm design and analysis have been developed which possess the following

characteristics:

e Cost models for analysis of reconfigurable architectures.

Techniques for partitioning and placement of designs exploiting algorithm and input
structure. :

Cost analysis incorporating the cost of reconfiguration and partial and dynamic re-

configurability.

Impact of off-chip communication in designing reconfigurable computing solutions.

Tradeoffs between reconfigurability and redundancy of hardware.

A Configurable Linear Array model of coarse grained architectures has been developed.
The model consists of identical powerful PEs, where the datapaths as well as the functional-
ity of the PEs can be dynamically configured. 1/O is performed only at the boundaries which
limits the required memory bandwidth. The model has been utilized to map homogeneous
computations onto coarse grained architectures [9].

Hybrid System Architecture Model (HySAM), a parameterized model of reconfigurable
architectures has been developed. The model encompasses systems with configurable logic

attached to a traditional microprocessor. HySAM is a compilation model and facilitates




development of architecture independent mapping algorithms. The model has been utilized
to develop mapping algorithms for various problems [1, 2, 3]. ‘

1.2 Performance Metrics for Evaluating Configurable Systems

A configurable computing solution can be based on generic implementation of the problem
in a HDL. But for efficient designs, the nature of the algorithm and the specific input have
to be exploited. In designing such configurations, the mapping from a specific instance to
actual configuration plays an important role. A configurable computing solution has three

components:

1. Design compilation to generate the configurations.
2. Configuring the logic on the device.

3. Execution of the computation tasks on the configured hardware.

The performance of the configurable computing solution can be measured by the total

" time:
T= Td"+‘Tc+Te

T,, T. and T, correspond to the three steps mentioned above. Ty is the design time, 7. is
the configuration time (including the reconfiguration time), and T, is the actual execution
time on configurable logic.

The design time, Ty, is the time needed to map a description of the design in a HDL to
low level netlist format by using various high level synthesis tools and technology mapping
tools. In current configurable computing designs the design time, Ty, varies anywhere from
hours to weeks of computation time on a traditional workstation. The configuration time,
T., varies from milli-seconds to seconds. The execution time, T, varies from nano-seconds
to milli-seconds for typical tasks. The execution time in hardware (once the hardware is
configured) is usually much lower than that in software because of hardware efficiency. To
obtain high performance, techniques are being developed to exploit the structure in the
input instance. In such cases, the configurations are generated for each input instance.

The total time to compute a solution has to include the time elapsed from the time the
input data is submitted to the time all the the outputs are obtained. This total latency
is the metric used in traditional performance measures. But, existing framework takes
into account only the actual execution time, T, of the developed design in evaluating the

performance of the design. It is incorrect to compare only the execution time, especially




when the design compilation time is many orders of magnitude greater than the execution
time (typical designs take hours to weeks on workstations to compile). In this effort the
performance comparison was based on the total time elapsed rather than just the execution

time.

1.3 Algorithmic Techniques
1.3.1 Algorithm Specialization

Configurable architectures have architectural characteristics different from traditional com-
puting architectures. It is necessary to explore the space of algorithms for a given problem
to map onto configurable architectures. This effort proposed a fast parallel implementation
of Discrete Fourier Transform (DFT) using FPGAs. The design is based on the Arithmetic
Fourier Transform (AFT) using zero-order interpolation. For a given problem of size N,
AFT requires only O(N?) additions and O(N) real multiplications with constant factors.
The design employs 2p+ 1 PEs (1 < p < N), O(N) memory and fixed I/O with the host.
It is scalable over p (1 < p < N) and can solve larger problems with the same hardware by
increasing the memory. All the PEs have fixed architecture. The proposed implementation
is faster than most standard DSP designs for FFT. It also outperforms other FPGA-based
implementations for FFT, in terms of speed and adaptability to larger problems [8].

1.3.2 Mapping onto Coarse Grained Configurable Architectures

Some configurable architectures address the problem of reconfiguration cost by using coarse
grain reconfigurable logic blocks. This reduces the flexibility but also significantly decreases
the reconfiguration cost. This effort developed an efficient design for 2D-DCT on dynami-
cally configurable coarse grained architectures. A novel technique for deriving computation
structures for two dimensional homogeneous computations was developed. In this technique,
the speed of the data channels is dynamically controlled to perform the desired computation
as the data flows along the array. This results in a space efficient design for 2D-DCT that
fully utilizes the available computational resources. Compared with the state-of-the-art
designs, the amount of local memory required is reduced by 33% while achieving the same
high throughput [9].

1.3.3 Mapping Computations onto Hybrid Reconfigurable Architectures

Loop statements in traditional programs consist of regular, repetitive computations which

are the most likely candidates for performance enhancement using configurable hardware.




This effort developed a formal methodology for mapping loops onto reconfigurable archi-
tectures. The HySAM parameterized abstract model of reconfigurable architectures devel-

oped in this effort (see Section 1.1) is used to define and solve the problem of mapping

_ loop statements onto reconfigurable architectures. A polynomial time algorithm was devel-

oped to compute the optimal sequence of configurations for one important variant of the
problem [2]. These techniques were also utilized to develop algorithms for mapping loop

computations onto multi-context devices [4].

1.3.4 Dynamic Precision Computations

Reconfigurable architectures promise significant performance benefits by customizing the
configurations to suit the computations. Variable precision for computations is one impor-
tant method of customization for which reconfigurable architectures are well suited. This
effort developed a formal methodology to manage the variable precision computations. For
managing dynamic precision in loop computations, intelligent choices on the use of appro-
priate modules from the available set of modules with different precision need to be made.
These configurations then have to be scheduled to achieve optimal execution schedule. An
optimal schedule is based on the metrics defined in Section 1.2. Exploiting dynamic preci-
sion using the proposed Dynamic Precision Management Algorithm (DPMA) resulted in a
33% reduction in the computation of a multiplication operation on Xilinx FPGA architec-
ture [3] (see Table 1).

Algorithm | Execution | Reconfiguration | Total
Time (ns) Time (ns) (ns)

Standard 655360 20480 675840

Static 532480 17920 550400

Greedy 468010 56320 524330

DPMA 471160 33280 504440

DPMA-run | 409600 15360 424960

Table 1: Execution times using various approaches

1.3.5 String Matching and Genetic Programming

An efficient design for string matching on multi-context FPGAs was derived. A novel
technique for deriving data-dependent configurations was demonstrated. Based on this,

speedups of the order of 10° over the conventional CAD tools design flow were obtained




(including both the mapping time and the execution time on hardware) [11]. The speed-up
obtained using the multi-context FPGA is illustrated in Table 2.

Approach T+ T.+ T Speedup .

n=10" [n=10° ] n=10°[n=10"[n=10° [ n=10°
Multicontext FPGA | 1.8 ms | 18.3 ms | 183.1 ms 1.0 1.0 1.0
CAD tool mapping 76.0s | 76.0s 762s| =~10°| =~10*| =10°
Software mapping 21.8 ms | 39.3 ms | 204.1 ms 12.1 2.1 1.1
Sun Ultra 1 30 ms 80 ms 680 ms 16.6 44 3.7

Table 2: Speedups for string matching different string sizes, n

The solution to string matching was extended to the area of genetic programming (GP).
A fast, compact representation of the tree structures in FPGA logic was developed which
can be evolved as well as executed without external intervention. The tree representation
permits execution of all tree nodes in a parallel, pipelined fashion. Furthermore, the com-
pact layout enables multiple trees to execute concurrently, dramatically speeding up the
fitness evaluation phase. Compared with software implementations, a speedup of 19 for
an arithmetic intensive problem and a speedup of almost three orders of magnitude for a
logic operation intensive problem were achieved by implementations on a XC6264 FPGA
device [10].

1.3.6 Instance-dependent Mapping Techniques

Configurable architectures can achieve performance improvement compared to ASICs by
exploiting the structure in the algorithm and the input. Developing designs based on
the structure of the input is Instance-dependent mapping. Mapping techniques for such an
approach were developed and utilized in mapping graph problems to configurable hardware.
High-level designs are synthesized for graph problems and adapted to the input graph
instance at run-time. The proposed approach leads to reconfigurable solutions with superior
time performance. The time performance metric includes both the mapping time and the
execution time as defined in Section 1.2. For example, in the case of the single-source
shortest path problem, the estimated run-time speed-up is 10 compared with the state-of-
the-art. In comparison with software implementations, the estimated run-time speed-up is
asymptotically 3.75 and can be improved by further optimization of the hardware design or
improvement of the configuration time [7] (see Table 3).




Problem Size Clock Rate Execution Time Mapping Time Speed-up
veticesxedges | Current | Proposed | Current | Proposed | Current | Proposed

16 x 64 1.79 15 8.94 21.42 | 4 hours | 22 msec | 6.5 x 10°

64 x 256 1.14 15 56.14 79.02 | 4 hours | 82 msec | 1.7 x 10°

128 x 515 0.78 15 164.10 199.72 | 8 hours | 161 msec | 1.8 x 10°

256 x 1140 0.34 15 752.94 493.17 | 16 hours | 319 msec | 1.8 x 10°

‘Table 3: Performance comparison with the state-of-the-art approach

1.3.7 Model-based ATR on Configurable Hardware

Model-based ATR uses geometric hashing as a technique for object recognition in occluded
scenes. In this effort a design technique for parallelizing geometric hashing on an FPGA-
based platform was developed. The hash table used in this approach is first transformed
into a bit-level representation. By regularizing the data flow and exploiting bit-level par-
allelism in hardware, the proposed design achieves high performance. Using the proposed
approach, given a scene consisting of 256 feature points, a probe can be performed in 1.65
milliseconds on an FPGA-based platform having 32 Xilinx 4062s. In earlier implementa-
tions, the same probe operation was performed in 240 milliseconds on a 32K-node CM2 and
in 382 milliseconds on a 32-node CM5. Also, the same operation takes 40 milliseconds on
a 32-node IBM SP-2. By parameterizing the application and the device characteristics, an
area-time efficient design based on these parameters has been derived. Furthermore, the
proposed approach can be applied to many geometric hashing methods and is portable to
other FPGA devices [6].

1.3.8 Mapping Irregular Applications onto Configurable Hardware

Most intermediate and high-level vision tasks manipulate symbolic data. A kernel operation
in these vision tasks is to search symbolic data satisfying certain geometric constraints.
Such operations are data-dependent and their memory access patterns are irregular. In this
effort a fast parallel design for symbolic search operations using configurable hardware has
been developed. The symbolic data is manipulated using a pointer array and a bit-level
index array. Depending on the input data, a corresponding search window is calculated and
symbolic search operations are performed in parallel. Performance estimates using 16 Xilinx
XC6216s and memory modules are very promising. Given 3519 line segments (extracted
from an 1024 x 1024 pixel image), the operation can be performed in 1.11 milliseconds on an
FPGA-based platform. On a Sun UltraSPARC Model 140, the same operation implemented




using C takes 690 milliseconds [5].

1.4 DRIVE Software

Current simulation tools for reconfigurable architectures are based on existing CAD design
flow and perform mapping of designs to low level hardware for simulation. Furthermore,
there are very few tools which provide any ability to study the dynamic behavior of reconfig-
urable hardware. Most of the existing simulation environments are based on simulation of
High-level Description Language(HDL) or schematic designs that implement an application.

As part of this effort, a novel interpretive simulation and visualization environment
based on modeling and module level mapping approach was developed. The Dynamically
Reconfigurable systems Interpretive simulation and Visualization Environment(DRIVE)
can be utilized as a vehicle to study the system and application design space and perfor-
mance analysis. Reconfigurable hardware is characterized by using a high level parame-
terized model. Applications are analyzed to develop an abstract application task model.
Interpretive simulation measures the performance of the abstract application tasks on the
parameterized abstract system model. This is in contrast to simulating the exact behavior
of the hardware by using HDL models of the hardware devices.

The DRIVE framework can be used to perform interactive analysis of the architec-
ture and design parameter space. Performance characteristics such as total execution time,
data access bandwidth characteristics and resource utilization can be studied using the
DRIVE framework. The simulation effort and time are reduced and systems and designs
can be explored without time consuming low level implementations. The proposed approach
reduces the semantic gap between the application and the hardware and facilitates the per-
formance analysis of reconfigurable hardware. This approach also captures the simulation
and visualization of dynamically reconfigurable architectures. The HySAM model (see Sec-
tion 1.1) is currently utilized by the framework to map applications to a system model. The
proposed approach can be utilized to analyze reconfigurable architectures and application

performance and facilitate adoption of such architectures by a larger spectrum of users.
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Abstract

Configurable computing has recently gained much attention with the promise of delivering an
order of magnitude performance improvement over general purpose processors. In this paper
we contrast the abstract models of reconfigurable architectures and actual hardware available
for configurable computing systems.

There is a wealth of ideas related to abstract models of reconfigurable architectures and
fast parallel algorithms which exploit the reconfiguration potential in non-trivial ways. We
summarize these abstract models and illustrate the power of these models using several ex-
ample algorithms. We identify the practical problems in implementing these models in VLSI
and describe some prototype implementations. Commercial FPGA devices which are be-
ing touted as the solution for building configurable computing systems are also examined.
The MAARC? project at USC endeavors to bridge this gap between the abstract and the real
worlds.

1This work was supported by DARPA under contract DABT63-96-C-0049 monitored by Fort Hauchuca.
2Models, Algorithms and Architectures for Reconfigurable Computing, http://maarc.usc.edu




1 Introduction

Configurable computing has recently gained much attention with the promise of delivering an
order of magnitude performance improvement over general purpose processors. The paradigm
of computing in space, i.e., laying out a series of computations on several functional units, as
opposed to computing in time, i.e., a series of computations executed in sequence on a single
functional unit, is being actively explored. There are several directions in which research is
being carried out to realize the potential of configurable computing.

The idea of a VLSI array of processors overlaid with a reconfigurable bus system and
an abstract model based on this architecture was proposed in [23]. Several abstract mod-
els of reconfigurable architectures and fast parallel algorithms for many problems have been
described in the literature. These models include the bus automaton [30], content address-
able array parallel processor (CAAPP) [33], polymorphic processor array (PPA) [21], among
others. Efficient algorithms for fundamental data movement operations [23, 24], sorting [2,
11, 27, 28], arithmetic [15, 29], graph problems [24], image processing [14, 16] and com-
putational geometry [12] have been developed on reconfigurable meshes. There have been
several research prototype implementations of reconfigurable architectures which are related
to the abstract models. Such architectures include the GCN [33], YUPPIE [22], CLIP [10],
PADDI [7], ABACUS [5], DPGA [8].

Currently the architectures which are being utilized to design reconfigurable systems
have their root in Field Programmable Gate Array (FPGA). FPGAs consist of a matrix of
fine grain computational elements, usually implemented using lookup tables, with a hierar-
chy of programmable interconnect. Traditionally, FPGAs have been used for logic design
and hardware emulation. Their suitability as computing engines for reconfigurable architec-
tures is being explored in SPLASH [6], DEC PeRLe [3], Teramac [1], among others. But
FPGA architectures have been primarily designed to emulate random logic without frequent
reconfiguration. Also, on-chip memory capacities are too small, reconfiguration times are
relatively long (several milliseconds) and partial reconfiguration is difficult.

The advent of static RAM based FPGA devices has given rise to new opportunities in
reconfigurable computing area. These devices provide features which allow changing the de-
vice configuration on the fly. But reconfiguration cost is still the prohibitive factor in using
them for configurable computing. The other major factor is the lack of software tools which
allow synthesis of applications exploiting dynamic reconfiguration. Research is also being
carried out in designing coarser grain architectures which incorporate reconfigurable features
such as MATRIX [25], BRASS Garp [36], RaPiD [9], CMU CVH [37], COLT [4].

This paper looks at the two extremes of the configurable computing world, the abstract
models and actual devices. Though the abstract models have been shown to be very pow-
erful, they are difficult to realize in VLSI. There have been several research prototypes of
devices that show promise of implementing reconfigurability. But configurable computing
cannot deliver the promise until commercial devices strive to deliver the reconfiguration po-
tential possible with current VLSI technology.

In Section 2 we describe and characterize several variants of the reconfigurable mesh
model. In Section 3 we illustrate the power of reconfiguration by describing algorithms for
EXOR, Addition, Sorting, Prefix operations and Component labeling. We examine the tech-
nical issues in implementing these models and give brief descriptions of several implemen-
tations in Section 4. Some commercial devices which look promising for designing config-
urable systems are also explored in this section. Concluding remarks are made in Section 5.




2 Reconfigurable Meshes

A reconfigurable-bus architecture consists of a multi-dimensional array of processing ele-
ments (PEs) connected to a bus through a fixed number of I/O ports. This bus architecture
is capable, on a per instruction basis, of configuring a topology that contributes to solving the
problem at hand. Bus reconfiguration is achieved by locally configuring the switches within
each PE. Different shapes of buses such as rows, columns, diagonals, zig-zag, and staircase
can be formed by configuring the switches/ports.

A two dimensional processor array with a reconfigurable-bus system of size M N con-
sisting of identical processors connected as a M x N rectangular mesh system is called a
reconfigurable mesh. An example of a 4 x 4 reconfigurable mesh is shown in Figure 1. A set
of four I/O ports labeled N, E, W and S, connect each PE to its four neighbors to the north,
east, west and south, respectively. Each PE has locally controllable switches which config-
ure the connection patterns between the four I/O ports. The switches allow the broadcast bus
to be divided into sub-buses, providing smaller reconfigurable meshes. The bus and all /O
ports are assumed to be m-bit wide. The connection patterns are represented as {g1,92,---}
where each of g; represents a group of switches connected together. For example {NS,E,W}
represents the connection pattern with N and S connected and E and W unconnected.

(8]

B: switch

Figure 1: Reconfigurable Mesh.

The basic computational unit of the reconfigurable mesh is the Processing element (PE)
which consists of a switch, local storage and an ALU (Fig. 1). In a unit time, a PE can perform:

1. Setting up of a connection pattern.
2. Read from or write onto a bus or local storage.

3. Logical or arithmetic operations on local data.

Various models of reconfigurable meshes have been proposed in the literature. Most of
these models are synchronous in nature and permit unconditional global switch setting in ad-
dition to local switch control. Unconditional global switch setting is performed by the broad-
cast of a global instruction from a central controller. Reconfigurable mesh models can be
characterized by the following parameters:




o Width It refers to the data width of the PE. The two classes of models which have
been proposed are bit and word models. The main difference is the width of the input
operands of the PE. Also, log n bits (where n is the size of the reconfigurable mesh)
need to be accessed when the processor needs to know its position before setting its
configuration. Note that the Width parameter is not directly related to the bus width of
the reconfigurable mesh.

o Delay One critical factor in the analysis of reconfigurable algorithms is the time needed
to propagate a signal. Some models assume this to be a unit-time operation no matter
how far the signal has to travel, while other models assume this to be a function of the
number of processors. Time analyses which assume constant time are called unir-delay
models and logarithmic time are called logarithmic-delay models.

o Bus Access Each PE connects to the bus through its ports and will either read or write to
it. Similar to shared memory machines the models can be classified as CRCW, CREW,
ERCW, and EREW based on how the bus is accessed. The most common models are
the ERCW models but the CRCW models have also been extensively studied. The
CRCW models typically assume that a wired-or operation is performed on a concur-
rent write by multiple PEs onto the bus.

o Connection Patterns Each PE can set the connection between its four ports based on
local data or global instruction. There are a total of 15 different connection patterns
possible. Different models differ in the number of connection patterns(a subset of 15)
which they allow. These models can also be classified based on whether they allow
cross-over of the port connections. The models which allow cross-over of connec-
tions(such as N-S and E-W) have been shown to be more powerful than the non-cross-
over models.

2.1 Various Models

Since the introduction of the reconfigurable mesh [23], several models have appeared in the
literature. Following variations of the models have been studied extensively and efficient al-
gorithms have been developed for several problems:

o PARBS The most general and the most powerful is the PARBS model [32]. In this
model no restriction is placed on the allowed connections among the 4 1/O ports in each
PE. Thus, all 15 connection patterns are possible and algorithms for a variety of appli-
cations have been developed on this model [11, 14, 29, 32].

¢ RMESH This consists of two-dimensional mesh of size n x n, with each PE connected
to a broadcast bus [23]. This bus, like the mesh, is also constructed as an n x n grid,
where PEs are located at the intersection of the grid lines. Further each bus link between
adjacent PEs has a switch embedded in it, where the two PEs at either end of the link
can control the switch. When all the switches are closed, all the n? PEs are connected
together. If all the PEs disconnect the switches to the north, then we obtain row buses.
Similarly column buses can be obtained. The connection patterns allowed in RMESH
are shown in Figure 2.

e MRN/LRN The Reconfigurable Network (RN) [2] is a general model in which no re-
striction is placed on the bus segments that connect the PE or on the placement of the
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Figure 2: Connection patterns allowed in RMESH.

PEs. Le. PEs may not lie at grid points and a bus segment may join an arbitrary pair of
PEs. Variants of this model under the mesh restriction are the MRN and LRN. Con-
nection patterns allowed in MRN are shown in Figure 3. In LRN a bus may consist of
any connected path of edges. However, only linear buses are composed, so that a bus
component is attached to at most one other bus component at each end.
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Figure 3: Connection patterns allowed in MRN.

¢ Polymorphic Torus A polymorphic torus architecture [18, 22] is identical to the PARBS
architecture except that the rows and columns of the underlying mesh wrap around.

Jang et. al. proposed a Bit Model [13] of reconfigurable mesh which can simulate (asymp-
totically) most of the word based models of the reconfigurable mesh in the same amount of




time using the same VLSI area. The basic PE in the Bit Model consists of a switch, local
storage and a 1-bit ALU. The switch consists of six bit-level switches which can be closed
or opened using local information within the PEs. The switch can realize any of the possible
15 connection patterns among its 4 /O ports. The bus architecture is similar to the RMESH
architecture and can carry O(1) bits of data. '

2.2 Related Models

¢ REBSIS

In the reconfigurable buses with shift switching (REBSIS) [20] model, each word level
switch consists of several bit level switches. In each connection pattern each of the bit
level switches share a common connection pattern to control the bit level buses in a uni-
form way. Based on a control bit pattern the switch performs rotate-shift on the input
bit pattern. It has been proved that that the REBSIS model is more powerful than sev-
eral word models [20] but the Bit Model [13] of reconfigurable mesh has been shown
to be able to simulate the REBSIS model using the same area.

¢ RMBM A more general reconfigurable network model called the reconfigurable mul-
tiple bus machine (RMBM) [31] was proposed to investigate effects of switch mod-
els on relative computational power of reconfigurable network models. This model
separates the computational aspects from the connection configuration aspects. The
RMBM model has processors, buses, fuse lines and sets of switches. Each processor
has one write port and several read ports. The switches can be classiffied into connect
switches, segment switches and fuse switches. The connect switches connect a partic-
ular port of a processor to one of the buses, the segment switches segment the bus and
the fuse switches connect two or more buses together. There are restricted versions of
this model which differ in the classes of switches which they allow.

3 Some Illustrative Algorithms

Lot of work has been done in exploiting the power of reconfigurable meshes. Algorithms for
basic computations such as Or, And, Exor, Addition, Multiplication etc. have been designed
and shown to be optimal on several variants of the reconfigurable mesh models. Using these
basic data operations and additional non-trivial techniques of exploiting reconfiguration, al-
gorithms for problems in image processing, computational geometry, graphs etc. have been
designed. In this section some algorithms are described to illustrate the power of these archi-
tectures.

3.1 EXOR Computation

The EXOR of N bits of data can be computed on a reconfigurable mesh of size 2n x 3 in §(1)
time using the unit-time delay model and in f(log ») time using the log-time delay model [24].
The basic idea behind the algorithm is described here.

Based on a single input bit a 3 x 2 array of PEs set their local switch configurations to one
of the two patterns as shown in Figure 4. If the input bit is 1 the top two rows cross-over and
the 1-signal toggles to the other row and if the input bit is O then the 1-signal passes through




the PEs, in the same row. When a 1-signal is applied to the top row input of the first processor
of the system the EXOR of all the inputs appears at the last processor in the mesh. A 1-signal
out of the top row indicates a result of 0 and a 1-signal out of the middle row indicates a result
of 1.

An example EXOR computation of 3 input bits with 18 PEs is shown in Figure 4. The
highlighted path shows the flow of the 1-signal from the left to the right. The result of the
EXOR computation appears at the output after a constant delay in the unit-time delay model.

%5 24+ 2 2+l

1-signal

.........
.“.."

(b) I .XOR.0 .XOR. =0

input bits

Figure 4: EXOR computation

3.2 Addition

Addition of two n-bit numbers can be carried out in a similar way as EXOR computation.
Each PE sets its switch pattern based on either a carry generate or a carry propagate config-
uration. If the two input bits a; and b; are different then the PE connects its West input to the
East output port, which is a carry propagate configuration. If the input bits are the same then
none of the switches are connected. The carry generate at a PE is implemented by the PE
writing a 1 on its East port when both the bits a; and b; are 1.

An example addition of two 5-bit numbers is shown in Figure 5. The bits c; indicate the
intermediate carry bits and z; are the result bits.

Using a similar idea and constructing a k-stage ripple carry adder it was shown that ad-
dition of n k-bit numbers (1 < k < n) can be performed in constant time using a n x nk bit
model of reconfigurable mesh [11].

3.3 Parallel Prefix

Parallel Prefix is an important operation that can be used to sum values, broadcast data, solve
problems in image processing and graph problems etc. [24]. Assume processor p;, 0 < 7 <
n—1, initially contains the data element a;. The parallel prefix problem requires p; to compute
a®a; ®...R® a;, where ® is an associative operator such as addition (+).
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Figure 5: Addition of two 5-bit numbers.

The given n values are assumed to be distributed one per processor on a reconfigurable
mesh of size n. The binary associative operation ), is assumed to be a unit-time operation.
First, parallel prefix is performed along the rows so that each processor knows the initial prefix
of those values restricted to its row. Next, in the last column the parallel prefix is performed
to determine row-wise prefix solutions. Finally, within each row, the prefix of previous of
the previous rows is broadcast so that all the processors can update their entry appropriately.
Parallel prefix can be computed in every row simultaneously in log n!/? iterations by appro-
priately setting switches, broadcasting and updating values at each iteration.

3.4 Sorting

There are several sorting algorithms on reconfigurable mesh models. We describe here the
algorithm presented in [11]. Sorting of a sequence can be decomposed into sort of its sub-
sequences and data movement between the sorted subsequences. The reconfigurable mesh
algorithm uses a variation of Leighton’s eight-stage column sort [17]. The stages are a com-
bination of stages of n!/* sorters, each capable of sorting n3/* numbers, and n'/-shuffle net-
work stages.

The input sequence of n numbers is assumed to be initially stored in the top row of the
reconfigurable mesh. The sequence is partitioned into subsequences of n*/# numbers each.
Sorting of a subsequence is done by computing the ranks of all the numbers and then storing
each number according to its rank by using shuffie networks [11]. Sorting of #%/* numbers in
constant time is carried out using a n x n3/4 reconfigurable mesh. In the first step, each of the
n3/* PEs broadcast their numbers along each column of n PEs. Then the mesh is divided into
n3/* submeshes each of size n1/* x n3*. The rank of number z; is computed by submesh
¢ using row broadcasts. The results of the comparisons made after this row broadcasts are
added to give the rank of each number. The addition can be done in constant time as stated in
Section 3.2. The n!/*-shuffle stage can also be implemented in constant time using a sequence
of broadcast operations.

3.5 Component Labeling

The problem is to label the connected components of a digitized image. Given an n X n image
which is distributed as a pixel per processor onto the processors of a reconfigurable mesh of
size n X n, the connected components can be labeled in §(log n) time under the unit-time
delay model [24].

In the first step each processor examines the pixels in each of its four neighbors and




sets its four switches so that a connection is maintained only between neighboring black pix-
els. This (1) operation creates a subbus over each component. Given a linked list of pro-
cessors overlaid by a reconfigurable subbus, the minimum(maximum) of the value stored in
these processors can be computed in O(log n) iterations. Each iteration computes the lo-
cal minima(maxima) and discards the other elements. Each iteration uses a constant number
of broadcast steps and comparison operations, and hence the total running time is as stated
above.

3.6 Summary of Results

We present a brief summary of algorithms on the reconfigurable mesh models. A comprehen-
sive bibliography of results can be found in [26]. All results are with respect to the unit-time
delay reconfigurable mesh model.

Problem Mesh Size Time
EXOR of n bits 2n x 3* Constant
Prefix-And of n 1-bit numbers 1 xn* Constant
Maximum(Minimum) of n log n-bit numbers nxn Constant
Addition of n k-bitnumbers, 1 < k < n n X nk* Constant
Multiplication of two n-bit numbers n x n* Constant
Division of two n-bit numbers n xn* Constant
Histogram of an n x n image (h gray levels) nxn O(min(\/i;-i— log(%), n))
Sort of n O(log n) bit numbers nXn Constant
Convex Hull of » points nXxXn Constant
Smallest enclosing rectangle of n points nxXn Constant
Triangulation of n planar points nZxn Constant
All-pairs nearest neighbors of n points nxXn Constant
Two-set dominance counting of n points nxn Constant
Connected components of an n X n image nxn O(log n)

* - the bit model of reconfigurable mesh is used.

4 Practical Considerations and Architectures

The choice of an architecture is strongly influenced by physical fabrication constraints. The
reconfigurable mesh has nearly constant diameter and a dynamically reconfigurable bus sys-
tem. It is very attractive in terms of implementation because of the two dimensional topology,
low pin requirement and highly regular structure, which are well suited for today’s VLSI and
packaging technology.

There are several physical constraints that have to be overcome to successfully imple-
ment these architectures. Some of the features of the reconfigurable mesh models which should
be examined in the context of hardware technology are:

¢ Reconfiguration The ability to set the local configurations of switches is one of the key
aspects of reconfigurable meshes which is exploited in designing efficient algorithms.
Assumptions made in the model impact the design since more flexibility in allowed




switch patterns usually implies more area because of larger control memory etc. Most
implementations support global control signals but implementing dynamic change of
configuration based on local data is very expensive and is difficult to provide in general
purpose implementations.

o Signal Delay There is potentially a large signal delay due to a long chain of shorted
path, set up because of configuration. The signal propagation time grows linearly with
the length of the wire carrying the signal. There are also unpredictable delays in VLSI
because the wire capacitance is affected by the number of processors connected to the
wire carrying the signal.

Recent VLSI implementations have addressed these issues and suggest that the broad-
cast delay, although not constant, is very small. For example, only 16 machine cycles
are required to broadcast on a 10° processor YUPPIE. GCN has shorter delays by adopt-
ing all-active and pre-charged circuit for local switches. ABACUS architecture prop-
agates a signal through 18 PEs in a single 8ns clock cycle. Broadcast delay can be fur-
ther reduced by using optical fibers for reconfigurable bus system and using electrically
controlled directional coupler switches for connecting and disconnecting two fibers.

¢ Clock Timing In reconfigurable meshes variable length shorted path can be established
based on the algorithm. If a fixed length clock is designed to accommodate the worst
case shorted path, the clock for the system will be degraded. The constant time al-
gorithms in the literature do not consider the clock implementation. Many clocking
schemes are possible to accommodate the worst case path while not affecting the av-
erage clock performance. One such proposal is variable length clock that adjusts the
length of clock to the length of the path. Global distribution of control signals also af-
fects the clock signals. Detailed discussion of such issues is beyond the scope of this

paper.

4.1 Architectures

We look at two variants of reconfigurable architectures. One class of architectures are based
on the abstract models and try to approximate the features of the models. We describe the
YUPPIE and the ABACUS architectures which are representative research prototypes. The
other class consists of architectures which have evolved from commercial FPGA designs.
We look at the features offered by two FPGAs, namely, XILINX 6200 and the NSC CLAy.
Though these devices have not been designed for reconfigurable computing engines, they are
a result of demand for fast reconfigurable components.

4.1.1 Polymorphic Torus Architecture - YUPPIE

The Polymorphic Torus [22] consists of a physical network (PNET) and a programmable in-
ternal network (INET) at each node of the PNET. The PNET is global while the INET is local.
In a Polymorphic Torus consisting of n x n processors, the PNET is an n x n mesh with its
boundary connected in either torus mode or spiral mode. Except for selection of torus or spi-
ral mode, the PNET is a hard-wired, fixed, non-programmable network. In contrast INET is
totally programmable. Each of the four ports of the INET can be connected to any port.

The VLSI implementation of the 2D Polymorphic Torus is called YUPPIE (Yorktown
Ultra Parallel Polymorphic Image Engine). YUPPIE follows a regular SIMD model of com-




putation with a central controller (CC) generating a stream of instructions. A processor array
(PA), made up of many bit-serial PEs connected by a Polymorphic Torus receives the instruc-
tion stream from the CC and executes it. PEs can be selectively disabled based on local condi-
tion, but all enabled PEs carry out the same operations on their own data. Data Memory (DM)
consists of on-chip 256 fast-access one-bit registers for each PE, termed local data memory
(LDM), and off-chip external data memory (EDM). The YUPPIE chip consists of 16 nodes
arranged as a 4 x 4 mesh. A programmable length clock generator (PLCG) generates the
timing signals for YUPPIE, since it needs to be driven by a variable length clock.

The YUPPIE PE has a 1-bit ALU, carry register (CY), data registers (A, TR) and two
control registers (EN, CCR). All registers are 1-bit wide and one of the data registers func-
tions as the accumulator. The ALU can carry out basic addition and boolean operations with
operands from physical links, local or external memory and/or the data registers. The INET
switching is established by choosing one of two patterns broadcast by the CC. This choice is
made depending on the data in one of the control registers, namely, CCR.

Implementation using a 2 micron CMOS technology with two metal layers has shown
a less than 20% overhead for the programmable interconnect and the ability to propagate the
signal through 16 PEs in a single clock cycle. \

412 ABACUS

ABACUS [5]is a distributed bit-parallel (DBP) architecture based on the reconfigurable mesh.
The ABACUS processing element (PE) contains 64 bits of dual-ported memory in two banks
and two 3-input ALUs, each of which takes two inputs from its memory bank and one input
from the other bank. Part of the memory bank is utilized as control registers for enabling PE
and network operation.

At each PE, the network is composed of a wired-OR bus and four isolating switches.
When all switches are open, two network control bits specify which of the four nearest neigh-
bors is connected to the PE input. Each PE can also close the switch in the read direction, the
other three switches remain open unless closed by a neighboring PE. Connected processors
form a multiple-writer wired-OR bus. VLSI implementation of the network consists of a pre-
charged bus which is pulled down by any PE writing a one. Additional delays are reduced by
using local accelerator circuits.

There are additional circuits for reading and writing to on-chip distributed memory and
interface circuitry to external data memory. A VLSIimplementation in 0.8/1 micron technol-
ogy is expected to sustain a 8 ns cycle time. Simulations show that in worst case the signal
can propagate through 18 PEs in a single clock cycle. A single ABACUS IC is expected to
deliver 1-5 giga-operations per second (GOPS) on 16-bit arithmetic operations. This is ap-
proximately 20 to 100 times faster than microprocessors implemented in comparable VLSI
technology.

4.1.3 XILINX XC6200

The XC6200 FPGA [41] architecture from Xilinx is the first SRAM based FPGA architecture
designed for implementing reconfigurable coprocessors. The XC6200 architecture features
a fine-grained cell structure, abundant routing, built-in processor interface and supports fast
partial reconfiguration.

The programmable logic of an XC6200 consists of large array of reconfigurable logic




cells each of which contains both programmable logic and routing resources. Each cell con-
tains a flip-flop and combinatorial logic capable of implementing any two-input function or
any type of 2-to-1 multiplexer. Cells are arranged in 4-by-4 blocks and 16-by-16 tiles. The
interconnection network consists of a hierarchy of programmable routing wires. Each cell
can be used for logic or memory functions. When cells are configured as memory, each cell
provides two bytes of ROM or RAM memory which can be accessed externally or internally.

The most important feature in the new XC6200 device is the FastMap interface, designed
to connect directly to an external processor’s system bus. The FastMap interface places the
whole FPGA into the processors address space. The processor can read and write the logic
and the configuration memory by using normal load and store. This parallel interface allows
the entire configuration memory to be programmed in under 100 micro-seconds.

A random access feature allows arbitrary areas of the FPGA memory to be changed.
This provides a fast partial reconfiguration capability. This partial reconfiguration can be per-
formed without disturbing circuits running in other parts of the device. This facilitates shar-
ing of hardware space by swapping in and out designs at runtime. A reconfigurable hardware
platform based on the XC6200 architecture has been designed and is being offered as a com-
mercial product by Virtual Computer Corporation [40].

4.14 NSC CLAy

The National Semiconductor CLAy [39] architecture is an SRAM based Configurable Logic
Array. CLAy was designed to support real-time algorithm and logic sharing by using dynamic
partial reconfiguration.

The logic cell layout is similar to existing FPGA devices, with a flip-flop and 5-input
lookup tables. The interconnection network is made up of nearest neighbor connections, local
and express bus wires. The full device can be configured in 640 micro-seconds. Larger de-
signs are supported by an integrated Field Configurable Multi-Chip Module (FCMCM) which
consists of a 2 x 2 array of CLAy devices.

CLAy supports partial reconfiguration by which a single cell’s functionality can be changed.
This is much faster than programming the complete device and reconfiguration time is the
order of 1 micro-second. This partial reconfiguration can be done without functional inter-
ruption of the remaining parts of the device. These features of the CLAy devices have been
exploited in designing novel applications [35].

5 Conclusion

Configurable computing holds lot of promise for the future. To realize this potential we need
a variety of system architectures, algorithmic techniques and software tools. We have dis-
cussed the abstract models of reconfigurable architectures and algorithms using these models.
The technology constraints in realizing these architectures have been examined and prototype
implementations which try to overcome these constraints have been described.

Currently, the designs of configurable computing systems are based on fine-grained com-
mercial devices like Field Programmable Gate Arrays. Since FPGAs were primarily designed
for logic emulation there has not been much progress in trying to achieve fast reconfiguration
times. Recent SRAM based devices have started addressing this issue and we examine some
of these devices. We believe that the wealth of ideas in the abstract world can be leveraged in




designing systems and algorithms which exploit the available reconfiguration potential. The
MAARC [38] project at USC explores these opportunities.
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Abstract:

Currently, reconfigurable computing solutions are developed by writing High level Descrip-
tion Language (HDL) code and compiling it onto hardware. Though this approach is suitable
for static reconfigurable devices, tools using this approach do not analyze the runtime behavior
of the application. Hence designing tools which exploit dynamic reconfigurability is not an easy
task. This paper presents a new approach to developing dynamically reconfigurable computing
solutions. Computing models are developed which bridge the semantic gap between the algo-
rithm and the actual hardware. A General Reconfigurable Computing Model (GRECOM) is
used to capture the ability to change both the interconnections and the logic at runtime based
on intermediate results. Two specific instances of GRECOM, the Reconfigurable Mesh and the
FPGA Model are derived and applications are demonstrated using these models.

1This work was supported by DARPA under contract DABT63-96-C-0049 monitored by Fort Hauchuca.




1 Introduction

The advent of static RAM based Field Programmable Gate Arrays (FPGAs) has given rise
to new opportunities in the reconfigurable computing area. An FPGA consists of an array
of combinational logic blocks each with a flip-flop. The logic blocks are interconnected using
a hierarchy of buses. The logic blocks at the periphery of the device also perform the 1/O
operations. The functions computed, the interconnection network and I/O block can be con-
figured using external data. FPGAs also permit unlimited reconfiguration. These versatile
devices have been used to build processors and coprocessors whose internal architecture as well
as interconnections can be configured to match the needs of a given application. For a detailed
architectural survey of FPGAs, see [4, 16].

FPGAs have been mostly used for rapid prototyping and emulation. Some of the designs
based on reconfigurable logic have shown an order of magnitude price/performance advantage.
But the prohibitive cost in using these devices as configurable computing engines has been
the time for reconfiguration. Configuration of an FPGA is carried out by downloading the
configuration information from a host processor often using bit-serial lines. The time required
for this step is usually of the order of msec. An additional problem with existing FPGAs is that
the complete device has to be reconfigured every time even if the new configuration is almost
similar to the existing one.

Current and future generation devices such as CLAy, XC6200, DPGA etc. ameliorate the
above cost by providing partial and dynamic reconfigurability [14, 21]. It is possible to modify
the configuration of a part of the device while the configuration of the remaining part is retained.
Some devices permit this partial reconfiguration even while other logic blocks are performing
computations. Devices in which multiple contexts of the configuration of a logic block can be
stored in the logic block and the context switched dynamically have also been proposed [5].
To distinguish the FPGAs which do not provide partial and dynamic reconfigurability we shall
hereafter refer to them as static configurable devices.

Traditional approach to utilizing static configurable devices has been to use automated
synthesis tools such as FPGA Express, OrCAD Express, Leonardo, Warp2, PL-Link etc. De-
signs are first specified using a hardware description language such as VHDL or Verilog, at the
register transfer or gate level (Figure 1). This design is usually analyzed and verified using
technology independent tools and is then submitted to logic synthesis for logic minimization
and technology dependent mapping. Finally, physical design tools are used for placement and
routing. To avoid designing solutions from scratch every time, components from a Library of
Parameterized Modules (LPM) are used in the design. Some work is also being performed
in mapping behavioral descriptions in high-level languages (C, C++, Occam etc.) to hard-
ware [8, 9].

This approach of logic synthesis as opposed to algorithm synthesis allows the user to specify
the design using a behavioral model. But this abstraction is achieved at the cost of significant
performance. To obtain better timing and layout characteristics, users fine tune the solution by
editing the physical design [6]. Also, reconfiguration is performed by analyzing the application
at compile time and the synthesis tools do not support analyzing the runtime behavior to take
advantage of dynamic reconfigurability. By collapsing the abstraction layers we can expect to
extract significant performance. Also, potentially this can lead to tools which exploit runtime
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Figure 1: Traditional Design Synthesis Approach and the Modeling Approach

reconfiguration.

In our approach, we model the hardware features of reconfigurable devices which allows
the user to think of dynamically reconfigurable computing at a high level during application
development phase (Figure 1). Bridging the semantic gap between the algorithm and the
hardware by using such a model allows the user to develop reconfigurable computing solutions
in a natural manner. With our model the algorithm synthesis approach can be used and the
algorithm can be specified as a computation performed on the input data. The computations
performed by each element can be chosen from a set of operations supported by the model.

We first abstract the reconfigurable computing devices using General Reconfigurable Com-
puting Model. We derive the Reconfigurable Mesh model and an FPGA based model and
illustrate how algorithms can be mapped onto the latter model by using a simple example.
This manuscript is a preliminary summary of ongoing experiment under the Models, Architec-
ture and Algorithms for Reconfigurable Computing (MAARC) project.

2 Reconfigurable Machine Models

In this section we abstract various features of configurable computing devices which differentiate
between various models. These parameters form the basis of the general model. By varying
the values for these parameters we derive two specific variants of the general model.

2.1 A General Model

The General Reconfigurable Computer Model (GRECOM) covers most reconfigurable devices.
It consists of a number of Processing Elements (PEs) linked together by an Interconnection




Network (IN) as in Figure 2. The operations performed by the PEs as well as the topology
of the IN can be configured. PEs operate synchronously and have a fixed amount of local
storage. The configuration information specifies the operation performed by each PE and the
IN topology.

Processing Elements (PEs)

Input Output
Interconnection
Network (IN)
RS Rr pe =
New Current Global State
Configuration Old configuration plus)
PE memory contents

Configuration
Control

BB R W R R R A T

Program
Figure 2: The General Reconfigurable Computer Model.

Since the PEs operate synchronously, the machine has a well defined global state. The
global state is completely specified by the current configuration and contents of the local stor-
age of all the PEs. The machine can also be reconfigured either partially or completely. In
partial reconfiguration the existing configuration of some part of the device is retained while the
configuration of the remaining part can be changed. This is modeled in GRECOM by the con-
figuration control block. As shown in Figure 2, the new configuration is generated based on the
program as well as the current state. The ability to use information about the current state to
reconfigure is analogous to the conditional branch instructions of a traditional microprocessor.

The four basic parameters of the model are the PE granularity, IN topology, the method
of reconfiguration and the reconfiguration time.

e PE granularity: This parameter is a measure of how coarse or fine grained the com-
putations performed in the PE are. As an example, we can distinguish between word
oriented models and bit oriented models.

e IN topology: The Interconnection Network is an important aspect of the model since
the communication to computation ratio is very high in most configurable computing
applications. This parameter models the organization of the connections between the
PEs.

e Method of reconfiguration: The computation performed by the PE and/or the in-
terconnection network can be reconfigured. This reconfiguration can be achieved either




by explicit transfer of control information from an external control unit or by using in-
termediate computational results. This parameter determines how the algorithm can be
implemented on the model. When reconfiguration can be achieved only by using external
control information, a dedicated unit such as a processor is needed to do this control
information transfer.

¢ Reconfiguration Time: After a new configuration is specified by using the above
method of reconfiguration, the delay before the next computation can start is a criti-
cal parameter. Reconfiguration Time determines how much the algorithm can make use
of the reconfiguration potential. When Reconfiguration Time is very high usually the
applications do a single reconfiguration at the beginning which does not change through-
out the computation. If the model supports partial reconfiguration this time can be
overlapped with computation to design efficient solutions.

By varying these parameters, we derive the Reconfigurable Mesh model and the FPGA
model in the following sections.

2.2 Reconfigurable Mesh Model

The reconfigurable mesh model [13, 18] has its origins in SIMD machines. The reconfigurable
mesh is a two dimensional variant of the multi-dimensional reconfigurable bus architecture.
The model consists of an array of processing elements embedded in a very flexible intercon-
nection network (Figure 3). The processing elements locally decide upon the IN configuration
and operation to be performed. A number of efficient algorithms for diverse areas have been
developed for this model of computation [10, 15, 19, 20]. Machines have been built based on
the reconfigurable mesh models. These include the CLIP series [7], YUPPIE [12] based on the
Polymorphic Torus Network model, Gated Connection Network [17], etc.

e Processing Element: Each PE can perform standard arithmetic and logic operations on
one bit operands in unit time. Each PE has four ports, one each for the four connections
to neighboring PEs, and fixed amount of local storage (Figure 3).

e Interconnection Network: The IN is a 2D mesh with each PE linked to its four nearest
neighbors as in Figure 3. These links can be connected together to form buses of arbitrary
shapes. This is achieved by using the link switches in each PE. By using the local switches
a bus can be configured into several distinct components of varying shapes such as rows,
columns, diagonals, zig-zag and staircase. All PEs connected to the same bus can read
from or write to the bus in unit time.

e Method of Reconfiguration: Reconfiguration can be achieved by either using control
signals broadcast globally or by using local state. Local state is defined by the four port
configurations and the local storage.

e Reconfiguration Time: The Reconfiguration Time of the reconfigurable mesh model
is of the order of the computation time. This allows for a potential reconfiguration every
cycle.




Figure 3: The reconfigurable mesh model and the PE architecture

This ability of the reconfigurable mesh model to allow single cycle reconfiguration, arbitrary
IN topologies, and use of local data to determine configuration has led to the development
of several efficient algorithms. Examples include sorting N numbers, multiplying two N bit
numbers and N x N matrix multiplication all in O(1) time on an N X N reconfigurable mesh [15,
20]. Efficient algorithms for this model of computation have been found for problems such as
maze routing, Voronoi diagrams, histogram computation [10, 19].

2.3 FPGA Model

The FPGA model consists of a N x N array of processing elements embedded in an Interconnec-
tion Network. Most FPGA architectures have a similar structure [1, 2, 3, 14, 21]. Connections
to 1/O pins are provided along the perimeter of the array. The operations performed by the
PEs as well as the IN topology can be configured.

e Processing Element: We model a PE as a configurable combinational logic block with
an optional flip-flop at the single output. The combinational logic block can compute
a function of X;, number of inputs producing a one bit result. In current devices X;,
usually varies from 2 to 4. Almost all FPGAs employ this basic arrangement in their PE
designs. The configurable logic is usually implemented using LUTs or the sea-of-gates
approach. LUT based PEs can also be configured as a 1 bit word RAM; that is, the
look-up tables can also be written, using the inputs as the memory address. The input
as well as the outputs can be connected to various wires of the IN. These connections are
controlled by multiplexers whose control signals are specified as a part of the configuration
information. The Figure 4 shows the proposed PE model.

— Teoms: It is the time taken for the signal to propagate from the input of the input
multiplexer to the output of the output multiplexer.

— Tseq: It is time taken for the signal to propagate from the output of combinational
logic to the output of the output multiplexer.
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Figure 4: FPGA model.

e Interconnection Network: Typically, the IN topology in FPGA architectures is hier-
archical. The IN consists of unit length wires connecting each PE to its four neighbors
and wires of length N along each row and column. Most architectures also have wires of
shorter length forming intermediate levels of the IN hierarchy. The connectivity offered
by the IN is configured using switches situated at the end of each wire which can connect
different wires, at possibly different levels in the hierarchy, and the PE input and output
multiplexers.

The precise propagation delay of a signal traveling along a path of the IN depends on
various factors. The main factor is the number of switches and wires in the signal path.
Also, as the device gets routed, the resources to make these connections may get used up,
so depending on the design complexity and the architecture the delay can vary. Neighbor
connections are almost always faster but also can be influenced by existing routing, i.e.
logic block A is to the left of logic block B, and the route goes from left side of A to right
side of B. The delay could be 4 times the delay from the right side of A to the left side of
B. Fanout of the signals also affects the delays. Wires of long length are usually far less
sensitive to multiple loads compared to the neighbor connections. To simplify the model
and to retain it as a general model, we neglect these low level factors affecting the delay.
For the purposes of algorithm mapping, these effects play a secondary role.

In our model the IN has a two level hierarchy having two different delays, Ti,car and
Tglobal-

— Tioear: The time taken for a signal to propagate from the output of one logic block
to the input of the neighboring block.

— Tyiobar: The time taken for a signal to propagate from the output of one logic block
to the input of the block which is at a distance of at most IV along the same row or
column. In current systems the ratio of Tyiopar t0 Tiocer Varies from 5 to 10.

e Method of Reconfiguration: The reconfiguration information stored in SRAM cells of
the FPGA determines its functionality. This information specifies the logic performed by
the PEs, the connectivity of the IN, and the operation of the I/O pins. Among current




FPGA architectures. the amount of information needed to configure a logic block is a
few bytes. Additional bits are required for IN configuration. Thus, the total amount of
information required to configure an entire array is a few hundred kilobits. In our FPGA
model the configuration is only supported by external transfer of control information.

e Reconfiguration Time: We define the following parameters for the reconfiguration
times in our model -

— T.-: The time required to reconfigure the complete device.
— T,: The time required for reconfiguring a single logic block.

— Tir: The time required to reconfigure one line i.e. a row or a column of logic blocks.

In current generation FPGAs the time required for complete reconfiguration is in the
range of a few usec to a few msec.

Several FPGA architectures offer partial reconfiguration capability; that is, some part of
the device can be reconfigured while the rest of keeps is performing computations based
on prior configuration. The time required to reconfigure a single PE is in the range of
100nsec to 10usec. Some vendors have recently announced devices which can be memory-
mapped into the control processor address space and hence can efficiently support single
block reconfiguration and reconfiguration of a complete row or column.

3 An Illustrative Application

This section illustrates the mapping of an algorithm onto the FPGA model and its analysis
using the model parameters. The algorithm exploits partial reconfigurability to dynamically
reconfigure parts of the FPGA at various stages of computation.

The algorithm that we consider is counting the number of 1s in an n X n bit image of Os
and 1s. This is a key operation required in image processing algorithms for median row [11]
and histogram determination [19]. The operation is carried out in two phases. We first outline
the required FPGA configuration and then describe the two phases.

3.1 FPGA configuration and algorithm overview

As described in Section 2.3, a PE can be configured as 1-bit word RAM. To store the n X n
bits, [}] rows of PEs in n columns are configured as RAM, k being the number of bits a single
PE can store . In the next two rows are PEs are configured as a serial half adder (see Figure
5). A 2:1 multiplexer is used to select one of the two adder outputs that is to be written back
to the RAM (see Figure 6). Based on the PE model described in section 2.3, the adder and
multiplexer can be mapped into 4 PEs - two for the adder and flip-flops,one for the OR gate and
one for the 2:1 multiplexer. Thus the RAM and adders can be configured using n x ([%] 4+ 4)
PEs.

Computation proceeds by selecting appropriate bits from of the RAM, adding them and
storing back the result. The address and control generator is responsible for generating the
appropriate control signals each clock cycle. This can be done using a synchronous counter and




some additional logic, which can be implemented using a small number of PEs. These signals
are applied to each 1-bit RAM column and adder, since they all operate in parallel.

The algorithm consists of two phases. In the first phase, the number of 1s in each column
of the array are added. Next, the column sums are added to determine the total number of 1s.
The following section describes the two phases.
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Figure 5: FPGA configuration.
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Figure 6: Configuration for a single RAM column.

3.2 Exploiting Partial and Dynamic Reconfiguration

Each serial adder is used to compute the sum of the bits stored in the column above it. The
computation for a single column proceeds as follows. Initially, the column stores n 1-bit num-
bers. In the first iteration, bits ¢ and ¢ + 1, ¢ = 0...n — 1 are added to obtain % 2-bit numbers
which are stored in the same positions. In general, in iteration j, 7+ j-bit numbers are added in




[ Clock cycle | Address | Rd/Wr | Clear/CarrySum I Action |

0 0 1 0 Read bit

1 1 1 0 Read bit

2 0 0 0 Write sum

3 1 0 1 Write carry

4 2 1 0 Read bit

) 3 1 0 Read bit

6 2 0 0 Write sum

7 3 0 1 Write carry

Reconfigure

8. 0 1 0 Read bit

9 2 1 0 Read bit

10 0 0 0 Write sum
11 1 1 0 Read bit
12 3 1 0 Read bit
13 1 0 0 Write sum
14 2 0 1 Write carry

Table 1: Address and Control signals for column addition.

pairs, j = 0...logn. Thus, le"fl" %} ~ O(n) bit addition operations are required to add the bits
in one column. The above steps occur in parallel for all n columns resulting in the computation

of the column sums.

Table 1 shows the addresses and control signals required for the first two iterations (as-
suming n = 4). The address and control signal generator would need to be reconfigured every
iteration. This would involve reconfiguring only a few PEs; the PEs configured as RAM and
adders would not be affected. Thus the dynamic reconfiguration required each iteration can be
done quickly using the partial reconfiguration capability of FPGAs.

The next phase is the summation of the n column sums of (logn + 1) bits to obtain the
2logn + 1 bit result of the number of 1s in the n X n array. At the beginning of this phase the
adders are reconfigured as full adders so that they can receive one bit each from two separate
RAM columns. Assuming the number of inputs to a PE, X;, > 3, no extra PEs would be
required for full adder operation.

The summation is performed in log n iterations as follows. In the first iteration, adder 2:
will add the two numbers (logn bits each) in columns 2¢ and 2i 4+ 1,7 = 0...n — 1. In iteration
7, adder 27 will add the two numbers (logn + j — 1 bits each) 275 and 27(i + 1), j = 1...logn,
i = 0..n — 1 (the i additions in iteration j occur in parallel). Thus the total number of bit
addition steps required is Zlf:gln (logn +j) = %log2 n+ 3logn.

Note that for each iteration, at least one of the memory columns feeding a serial adder is
different from the one in the previous iteration. Thus the reconfiguration of the connections
between RAM columns and adders would be required before each iteration of this lpha,se of

ogn n

computation. 75 connections need to be reconfigured in iteration j. Thus in all, ZJ-:l 4=
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2n — 1 connection reconfigurations would be required. The partial reconfigurability feature can
be used to make these selective changes to the IN at the beginning of every iteration.

The total number of steps (and hence the number of clock cycles) required in the two
phases have been derived. We can use the FPGA model parameters to obtain an estimate of
the clock period. The following operations occur each clock cycle. Address and control signals
are generated (T.,), the signals are propagated to the RAM columns (Top01), RAM data is read
(Teoms). the data is propagated to the adders (T1ocat), sum and carry are computed and latched
in flip-flops (Tseq), output passes through multiplexer (Teoms) to the RAM (Tioc) and is finally
stored in the RAM (T.oms). Thus the clock period is Teiock = 3Tcomd + 2T seq + 2T 10cal + Tgiobai-

Let T,.s, be the time required for a single reconfiguration of the address and control signal
generator and T,, be the reconfiguration time for a single RAM column to adder connection.
Then the total reconfiguration time is Treconf = 2Tacsg l0g 7 + Teon (20 — 1).

4 Conclusions

In this paper we have presented a new approach to designing configurable computing solutions
which is better suited to exploiting dynamic reconfiguration than traditional approach. Our
approach of modeling allows the algorithm synthesis approach which is a more natural way of
developing applications.

We described a general model of reconfigurable computing and derived two specific variants.
The reconfigurable mesh model is a very powerful model with efficient algorithms for several
computations. Restricted variants of this model have been implemented and the model provides
interesting ideas as to the directions in which reconfigurable devices should evolve. The FPGA
model abstracts current generation devices and can be used to map algorithms. We illustrate
our approach by implementing an algorithm that exploits dynamic reconfiguration on the FPGA
model.
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Abstract. In this paper we propose a fast parallel implementation of
Discrete Fourier Transform (DFT) using FPGAs. Our design is based on
the Arithmetic Fourier Transform (AFT) using zero-order interpolation.
For a given problem of size N, AFT requires only O(N?) additions and
O(N) real multiplications with constant factors. Our design emploies
2p+1 PEs (1 < p < N), O(N) memory and fixed /O with the host.
It is scalable over p (1 < p < N) and can solve larger problems with
the same hardware by increasing the memory. All the PEs have fixed
architecture. Our implementation is faster than most standard DSP de-
signs for FFT. It also outperforms other FPGA-based implementations
for FFT, in terms of speed and adaptability to larger problems.

1 Introduction

The Discrete Fourier Transform (DFT) plays a fundamental role in digital sig-
nal processing. The complexity and computation time of algorithmic approaches
for forward computation of DFT, are essential issues in algorithms where many
forward DFTs are required while one inverse Fourier transform must be per-
formed at the end. For a problem of size N, the sequential computation time of
a straightforward approach is O(N?) and is characterized mainly by the large
number of complex multiplications and additions. This fact limits the compu-
tational performance of the approach as well as the algorithmic efficiency of
implementations using Field Programmable Gate Arrays (FPGAs).

The FPGA based implementations for computing the DFT, proposed in [12,
8, 11], use the Fast Fourier Transform (FFT) to reduce the computation time
and complexity to O(N log, N). The basic computation unit is the butterfly.
Butterfly is a repetitive structure that has 2 inputs and 2 outputs. It involves

* This research was performed as part of the MAARC project (Models, Algorithms
and Architectures for Reconfigurable Computing, http://maarc.usc.edu). This work
is supported by DARPA Adaptive Computing Systems program under contract no.
DABT63-96-C-00049 monitored by Fort Hauchuca.




one complex multiplication, one complex addition and one complex subtraction.
For a problem of size N, the algorithm requires log, N stages with N/2 butterflies
in each stage. Even though these designs optimize the structure of the butterfly,
the complexity still remains high. All these designs are solutions optimized for
a particular problem size. For larger problems, re-design is required resulting in
area penalty. Parallelism is not exploited and the designs are not scalable except
the one proposed in [11]. In [8], the idea of FPGAs with an external multiplier is
used to overcome the critical issue of complex multiplication. This solution has
still problems since it adds extra control/complexity and requires a large number
of 1/O pins for interfacing the multiplier chip. In spite of this, the computation
time is not attractive. The implementation in [11] uses the CORDIC approach
for optimizing the butterfly by eliminating multiplications. Again, the resulting
performance is not attractive.

In this paper we propose a novel parallel, scalable, partitioned solution for
computing the DFT using FPGAs, based on the Arithmetic Fourier Transform
(AFT). Using this approach, we can solve larger problems with fixed hardware,
simply by increasing the memory size. We can linearly speed-up the computa-
tion proportionally to the number of PEs employed and achieve superior per-
formance compared with previous FPGA-based solutions. Also, it offers faster
solution compared with most standard DSP designs for computing the DFT.
The key idea of our design is the use of an algorithmic approach to the prob-
lem. Contrary to traditional approaches, we perform an algorithmic design for
reconfigurable devices, based upon the architecture/features of the device. While
known techniques map an algorithm for DFT onto the device and perform de-
" vice dependent optimizations, our methodology emploies algorithm synthesis
techniques instead of logic synthesis. This alleviates the FPGA’s restriction of
fast/compact adders vs slow/area-consuming multipliers. Complex multiplica-
tion is a critical issue in DSP applications and can lead to poor performance
of FPGA-based solutions. AFT turns to be a suitable algorithmic approach for
FPGAs since it is less complex than the FFT and performs real multiplications
with constant factors instead of complex multiplications.

The Arithmetic Fourier Transform is based on the Mobius inversion formula
of series and has been shown to be competitive with the conventional FFT in
terms of accuracy, complexity and speed [9]. It needs O(N?) additions and O(N)
real multiplications by constant coefficients. It reduces the computation time of
DFT to O(N). In our design, two sets of p PEs (1 < p < N) and an additional
PE are used for computing 2N + 1 Fourier coefficients [7]. Our design is scalable
over p (1 < p < N), thus it can achieve O(p) speed-up. It is also a partitioned
solution since it can solve larger problems by increasing the memory size in pro-
portion to the N the size of the problem. In each set, all PEs have the same
architecture and perform additions and zero-order interpolation. The additional
PE performs the scaling of the intermediate values by constant factors. All the
PEs are cascaded using pipelining. The data as well as the control signals move
from left to right. The complete design requires O(N) memory and has fixed
1/0 bandwidth. External memory is used for storing the scaling factors as well




as intermediate Fourier coefficients. Constant coefficients multiplier (KCM) [2],
is used for performing the scaling operation. KCMs use the Distributed Arith-
metic approach (DA) and turn out to be a very efficient choice for digital signal
processing in terms of speed and area. The compact size and high performance
of the KCMs compared with standard full multipliers, are promising features
that make the AFT algorithm an efficient solution for computing the DFT using
FPGAs. In addition, the parallel/modular structure, the regular architecture as
well as the fixed, independent of the problem size I/O bandwidth, make our
approach an attractive solution for implementation in FPGAs.

Preliminary estimations shows that our design achieves speed-up of 2-10 over
most standard DSP designs for 256-FFT. Compared with the Fastest FFT in the
West [12], the CORDIC approach [11] and the implementation in [8], our design
outperforms these solutions in terms of speed and adaptability to larger size
problems. Our preliminary implementation reported here using Xilinx devices,
can be further optimized resulting in higher speed and less area.

This paper is organized as follows. In Section 2 we describe the Arithmetic
Fourier Transform while in Section 3 we introduce our scalable architecture for
AFT. In Section 4 the computation time and area estimations are shown. Finally
in Section 5 comparisons are discussed and concluding remarks are made.

2 Arithmetic Fourier Transform

The Arithmetic Fourier Transform (AFT) is based on the Mdbius inversion for-
mula of series. Since it involves only additions and real multiplications by con-
stant factors, it is computationally less complex than FFT while it achieves
O(log, N) speed-up over it. An introduction to AFT is given below and detailed
descriptions of it can be found in [7, 9].

Given 2N input samples A(m),m =0,1,...,2N — 1, we compute an average
and 2N alternating averages over them. All these averages are scaled by constant
factors and then the Mobius inversion formula is applied for the computation
of 2N + 1 Fourier coefficients. The M&bius inversion formula theorem [5] and
the definition of the alternating average, are the key mathematical tools for the
AFT algorithm.

Theorem (The Mobius inversion formula) Let f(n) be a non vanishing
function in the interval 1 < n < N and f(n) = 0 for n > N, where n, N are
positive integers. If

LN/n]
g(n) = > f(mn)
m=1

then
LN/n]

fn)= Y u(k)g(kn)
k=1
where |...| denotes the integer part of a real number and p(k) is the Mobius
function.




The Mobius function is defined as
pn)=1 ifn=1
p(n) = (1) if n = pypa...pr where p;(i=1,2,...r) distinct primes
p(n) =0 if p? | n for some prime p
Definition (Alternating Average) The 2nth alternating average B(2n, )
of the 2n values A(mT/2n + oT),0 < m < 2n — 1, is defined as:

2n-1
> (=)™ A(mT/2n + oT)

m=0

1

B(?n,cv) = 5;1-

where « is a shifting factor, —1 < a < 1. Assuming now a finite Fourier series
A(t) with period T', we can represent it as:

N N
At) = ag + Z a, cos 2mn fot + Z by, sin 27n fot

n=1 n=1
where fo = 1/T, a, and b, are the real and imaginary parts of the Fourier
coefficients of the non vanishing function in the interval —N < n < N and ao
is the mean of A(t). Applying the Mdbius inversion formula to A(t), we can
compute the 2N + 1 Fourier coefficients in terms of the alternating averages as

follows:

1 2N IN/nj
m=1 1=1,3,..
LN/n} - 1
bo= Y wu(l)(-1)7 B(2n, ﬂ)
1=1,3,...

wheren=1,2,..,.Nand m=0,1,...,2N — 1.

For computing the alternating averages B(2n,0), B(2n, z&;) from the input

samples A(m), we use zero-order interpolation for computational efficiency [9] .
In this method we interpolate an unknown value A(mT/2n + oT) to a known
input sample A(i), where ¢ is the integer part of mT/2n + oT. The resulting
error due to this approximation is shown to be tolerable [9, 10]. The AFT com-
putation method presented above, requires (2N + 1)? additions and (2N + 1)
multiplications with constant factors, for computing 2N + 1 Fourier coefficients.
The reduced complexity, the use of scaling by constant factors instead of com-
plex multiplications and the amenability to parallel processing makes AFT more
desirable computationally than FFT [10].
In Figure 1 we can show the structure of the AFT algorithm. In Part I the non-
scaled alternating averages are computed while in Part II the scaling operation
and the computation of ag take place. Finally, in Part III the 2N Fourier coef-
ficients are computed. Multiplications with constant factors are performed only
in Part II while in the other parts additions and zero-order interpolation are
performed. The Mobius values in the last part define the sign of the alternating
averages.
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Fig. 1. Structure of AFT

3 A Scalable Architecture for AFT

In this section we show a scalable architecture to map the AFT algorithm (see
Figure 2). Each part of the architecture corresponds to a part of the AFT struc-
ture in Figure 1. Data and control signals flow from left to right.

In Part I, p PEs are employed to compute the alternating averages. An input
buffer By of size 2N x w is used for storing the input window of 2N samples,
where w denotes the number of bits in each input sample. Assuming that p
divides N, each window is fed N/p times into the pipe. Let PE; ; denote the
ithPEin Part I, 1 <p< Nand n=12,..,N.In PE} nmodp, the alternating
averages B(2n,0) and B(2n, 75;) are computed during the [n/p]th feeding of the
input data window into the pipe. Each PE checks if the received data is needed
for its computation based on the zero-order interpolation. The interpolation is
implemented using local registers and a comparator for checking the index of the
received sample. Every 2N units, p alternating averages are computed. Thus, the
total computation time for 2V alternating averages is %’—2 + 2p — 1 units. All
the PEs in this part have the same architecture and consist of one adder, one
comparator and local registers. The local registers are used for performing the
interpolation as well as for interconnection with other PEs.

In Part II, one PE is employed for scaling the averages computed in the
previous part and for computing the mean ag. This PE is denoted as PEp,,;.
Totally 2p scaled averages are computed every 2N time units. P Ep,,; employes
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Fig. 2. Overall Architecture

one Constant Coefficient Multiplier (KCM) [2] for computing ao as well as for
scaling B(2n,0), B(2n, ;) by constant factors during each step. Using the
hybrid technique described in [2], we have to precalculate 16 values for each
scaling factor. The hybrid technique of multiplication is a hexademical equivalent
of the long hand method. Since a single hex digit represents four bits, the look-
up table for each constant factor has entries for 0 to 15(F). Thus, the size of
the external memory Mg would be 16 N x (w + log, w). The set of precalculated
values of constant factor 51,- is stored in 16 consecutive locations of the memory,
starting from the ith memory location where 1 < i < N. PEp,,; also employes
local registers for interconnection with other stages.

In Part III, p PEs are employed to compute the Fourier coefficients. Similar
to Part I, the PEs in this part are denoted as PFEs;. All the PEs have the
same architecture. Each of them consists of one adder, one comparator and local
registers. As in the first group, each processing element checks if the received
average is needed in its partial sum. This checking is performed using the index
of the incoming average. The Mdbius values required for the computation of
the partial sums are provided by an external memory Mjps. The memory size
s [—1,_\,1] and the stored values are {-1,0,1}. Few local registers are employed
for controlling the data flow between consecutive PEs. A buffer B; is employed
for storing the intermediate results of the computation. When a new set of 2p
alternating averages are available to Part III, the intermediate results of the
computation and the Mdbius function values are fed back from the rightmost




to the leftmost PE. The size of By is 2p x (w + 2log, w) where w denotes the
number of bits of each input sample. In this part, only the Fourier coefficients
ay.b1.as.ba. ..., any3, by/s are computed since for n > N/3, a, and b,, are equal
to alternating averages B(2n.a).

Since the computation time of 2N alternating averages is -2%-2- +2p—1 units,

the total computation time for 2N +1 Fourier coefficients becomes :”;l+3p+ 51
units. The throughput rate of KCM critically affects the overall performance
since it determines the minimum time unit. The architecture employes 2p adders,
1 KCM. few local registers and external memories. The total size of the external
memories is O(N). A key advantage of the design is that it is scalable over p,
1 < p < N, thus it can linearly speed-up the computation by increasing p. It can
also solve larger size problems (at a lower throughput rate) by simply increasing
the memory but still using the same number and structure of PEs.

4 Performance Estimates

Table 1 lists the estimated area for various components of our architecture. We
estimated the area of each of the functional blocks and the total area for each
PE was then derived. All the PEs in a group (I or II) have the same architecture.
Thus, each of them occupies the same constant area. We have assumed 16-bit
input data and that our design is mapped onto Xilinx XC4000 series of FPGAs.

CLBs per Function|PE, ;|PEs;|PEmyu
Registers 110 | 140 | 50
16-bit comparator | 2 2 -
16-bitadder 16 16 -
16-bit KCM - - 230
Control 2 2 2
Total CLBs 130 | 160 | 282

Table 1. PE area requirements in terms of number of CLBs to realize the
function

Our design consists of p PE} ;, p PE»; and one PEyy;. Assuming 2N input
samples, the total time for computing the 2N +1 Fourier coefficients is %’—2—+3p+
[£] time units. The time unit is determined by the performance of the KCM
since Part II is the most time-consuming stage of our design. The pipelined
performance of a 16-bit operand KCM (after place and route) is 50M Hz [2]
using the —3 speed grade components. The performance of a 16-bit adder is in the
range of 100M H z using —3 speed grade components [6]. Thus, there is enough
time for the PEs in parts I and III to complete their operations using 50 M H z




clock rate. Currently, —2 speed grade devices are available. Thus, 50 M H z system
clock rate is an achievable goal for the entire design. Table 2 shows the area
requirements and estimate of the computation time for two designs. We assume
256 input samples and 50M H z system clock rate.

Hardware | Area Requirements Computation Time
p=28 |2602 CLBs, 3 XC4025[4124 time units (82.48 usec)
p=16 [4922 CLBs, 5 XC4025(2104 time units (42.08 usec)

Table 2. Area and performance estimates

5 Comparisons and Conclusions

In this paper, we have proposed a novel parallel, scalable, partitioned solution
for computing the DFT using FPGAs. Our solution based on the AFT turns
out to be more efficient than the FFT based approach in terms of area and
speed. Our design is scalable over 1 < p < N, where p is the number of PEs
employed. We can also linearly speed-up the computation proportionally to p.
The architecture of the PEs and the 1/O bandwidth are fixed and independent
~ of the problem size. The required memory is O(N). Our design can solve larger
problems (with reduced throughput) with fixed hardware.

In Figure 3 and in Table 3 the execution times of various designs for 256-
FFT are shown. The input samples are 16-bit data for all the designs. Figure
3 shows the results of a benchmark evaluation [12] of DSP-based and Xilinx
FPGA-based designs. Our design achieves speed-up of 2 — 10 over most single
chip DSP designs for 256-FFT.

Implementation |Area Requirements/Computation Time
Xilinx 3 nodes {12] 1 XC4025 102.4 psec
Xilinx 70MHz[12] 1 XC4025 223 psec
Xilinx 60MHz [12] 1 XC4025 312.5 psec
PDSPI6116/A [8] 2 Chips 61.4 psec

CORDIC ' [11] 10 XC4010 5000 psec

Table 3. Performance of FPGA-based designs for 256-FFT

! 1000-FFT




EXECUTION TIME (me)

| Fig. 3. Performance of DSP-based and FPGA-based designs for 256-FFT

(from[12])

In Table 3 the performance of five FPGA-based implementations are shown.
Three of them are from “The Fastest FFT in the West” [12]. In that work a
radix-2 butterfly FFT design was used. The implementation in [8] makes use
of one Altera FPGA and a PDS P16116/A 16-bit complex multiplier to over-
come the critical problem of performing complex multiplication in FPGAs. A
radix-4 design and necessary control were mapped onto the Altera FPGA. The
implementation in [11] uses the CORDIC approach to eliminate the complex
multiplications. Even though it computes a 1000-point FFT, the performance is
not attractive compared with our approach. Table 3 also shows the area require-
ments of these implementations.

Our design is faster than the earlier FPGA-based implementations. The im-
plementations in Table 3 are designs optimized for a particular problem size
and device features and need to be redesigned for larger problems. Our design
can also handle larger problems with the same fixed hardware by increasing the
memory. Known implementations exploit the power of a single chip while we
have developed a scalable and partitioned solution with high performance and
adaptability to larger problems. Our performance estimation has been based
on a preliminary implementation and no optimizations have been performed.
Further improvement of the performance of our design is possible. Parallelism
can be exploited; for example parallel /O can improve the performance signif-
icantly. Many registers can be eliminated by efficiently performing zero-order




interpolation. Other interpolation approaches (such as first-order) can also be
exploited.

The work reported here is part of the USC MAARC project. This project is
developing algorithmic techniques for realising scalable and portable applications
using configurable computing devices and architectures. Contrary to traditional
approaches to configurable computing, in our approach the user “sees” the archi-
tecture/device features and uses algorithm synthesis techniques instead of logic
synthesis. We are developing computational models and algorithmic techniques
based on these models to exploit dynamic reconfiguration. In addition, compi-
lation onto reconfigurable hardware is also addressed. Some related results can
be found in [1], [3], [4].
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Abstract

Object recognition involves identifying known ob-
jects in a given scene. It plays a key role in image
understanding. Geometric hashing has been proposed
as a technique for model-based object recognition in oc-
cluded scenes. However, parallel techniques are needed
to realize real-time vision systems employing geomet-
ric hashing.

In this paper, we develop a design technique for par-
allelizing geometric hashing on an FPGA-based plat-
form. We first transform the hash table which con-
tains symbolic data into a bit-level representation. By
regularizing the data flow and ezxploiting bit-level par-
allelism in hardware, our design achieves high perfor-
mance. Using our approach, given a scene consist-
ing of 256 feature points, a probe can be performed
in 1.65 milliseconds on an FPGA-based platform hav-
ing 32 Xilinz J062s. In earlier implementations, the
same probe operation was performed in 240 millisec-
onds on a 82K-node CM2 and in 382 milliseconds on
a 32-node CM5. Also, the same operation takes 40
milliseconds on a 32-node IBM SP-2. By parameter-

*This research was performed as part of the MAARC
(Models, Algorithms, and Architectures for Reconfigurable
Computing) project. This work is supported by DARPA Adap-
tive Computing Systems program under contract no. DABT63-
96-C-0049 monitored by Fort Hauchuca.

izing the application and the device characteristics, we
derive an area-time efficient design based on these pa-
rameters. Furthermore, our approach can be applied
to many geometric hashing methods and is portable to
other FPGA devices.

1 Introduction

Object recognition is a key step in computer vi-
sion. Most model-based recognition systems work
by hypothesizing matches between scene features and
model features, predicting new matches, and verifying
or changing the hypotheses through a search process.
Geometric hashing [12] has been proposed as an alter-
nate approach for object recognition. However, paral-
lel techniques are needed to use geometric hashing in
real-time applications.

In geometric hashing, a set of models is specified
using their feature points [12]. For each model, all
possible pairs of feature points are designated as a ba-
sis set. The coordinates of the features points of each
model are computed relative to each of its basis. These
coordinates are then used to hash into a hash table.
The entries in the hash table comprise of (model, basis)
pairs and are precomputed as follows: using a chosen
basis, if a feature point in a model hashes into a bin,
then the model and the basis are recorded in the bin.




In the recognition phase, an arbitrary pair of feature
points in the scene is chosen as a basis and the coordi-
nates of the feature points in the scene are computed
relative to this basis. The new coordinates are used
to hash into the hash table. Votes are accumulated
for the (model, basis) pairs stored in the hashed loca-
tion. The pair winning the maximum number of votes
is chosen as a candidate for matching. The execution
of the recognition phase corresponding to a basis pair
is termed as a probe.

There have been some prior efforts in parallelizing
geometric hashing on HPC platforms [4, 16, 18]. A
major problem in these implementations is that their
performance degrades significantly due to the irregu-
lar communication in accessing the hash bins and in
voting because the hash table and the vote boxes are
distributed among the processing nodes. We refer to
the congestion in accessing the bins as well as in voting
as “memory congestion problems”.

Recently, configurable computing ideas [3, 8] have
shown attractive speedups for many applications.
They offer large scale parallelism and highly cus-
tomized solutions. Field Programmable Gate Arrays
(FPGAs) are becoming one of the major configurable
computing devices which offer low development cost,
rapid prototyping, and user controlled reconfigurabil-
ity.

In this paper, we develop a design technique to par-
allelize the probe operation on an FPGA-based plat-
form. We first transform the hash table which contains
symbolic data into a “bit-level” representation. By
regularizing the data flow and exploiting large scale
bit-level parallelism in hardware, our design avoids
the memory congestion problems. This leads to high
performance. Since we employ a bit-level hash table,
there is no hash bin access between the processing
nodes although the hash table is distributed among
the processing nodes. All operations are performed
locally in each processing node except for finding a
maximum value over the processing nodes. Further-
more, we parameterize the application as well as the
device characteristics. Based on these parameters, we
derive an area-time efficient design. The implementa-
tion is simplified using a modular approach.

We have synthesized our design using Xilinx 4062
devices. Using a clock rate of 10MHz, the execution
time for the probe operation on a scene consisting of
256 feature points is estimated to be 1.65 milliseconds
using 32 FPGAs and 128M bytes of memory. In
this design, as in the earlier experiments, we assume
that the model database has 1024 models and each
model is represented using 16 feature points. For the

sake of comparison, a parallel algorithm was imple-
mented on a 32-node IBM SP-2. In our implementa-
tion, each processing node has the entire set of vote
boxes to reduce the communication cost and to re-
duce memory congestion. However, the hash table
was partitioned such that each hash bin is evenly dis-
tributed among the processing nodes. This balances
the load on the processing nodes during the voting
process. All operations are performed locally except
for finding the global maximum. Using between 64
and 512M bytes of memory in each processing node
operating at 66 MHz, the execution time was about 40
milliseconds. In earlier implementations, the same
probe operation was performed in 240 milliseconds
on a 32K-node CM2 [16] and in 382 milliseconds on
a 32-node CM5 [18].

The organization of the paper is as follows. In Sec-
tion 2, configurable computing is briefly introduced.
The geometric hashing technique is outlined in Sec-
tion 3. Section 4 discusses parallelization of geomet-
ric hashing. In Section 5, implementation details are
shown and the performance of the proposed design is
compared with earlier results. Concluding remarks are
made in Section 6.

2 Configurable Computing

Configurable computing has recently gained much
attention with the promise of delivering an order of
magnitude performance improvement over general-
purpose processors. The paradigm of computing in
space (i.e., a series of computations on several func-
tional units), as opposed to computing in time (i.e., a
series of computations executed in sequence on a sin-
gle functional unit), is being actively explored. There
are several directions in which research is being carried
out to realize the potential of configurable computing.

The idea of a VLSI array of processors overlaid with
a reconfigurable bus system, and an abstract model
based on this architecture was proposed in {15]. Based
on this initial work, several abstract models of recon-
figurable architectures and fast parallel algorithms for
many problems have been described in the literature.
For example, efficient algorithms for fundamental data
movement operations [15], sorting [11], and image pro-
cessing [10] have been developed on the reconfigurable
meshes. There have been several prototype implemen-
tations of such abstract models. Such architectures
include Abacus [2] and YUPPIE [14].

Recently, the advent of Field Programmable Gate
Arrays (FPGAs) has given rise to new opportunities
in the configurable computing area. Traditionally, FP-
GAs have been used for rapid prototyping and emu-




lation. The main bottleneck in using these devices
as configurable computing engines has been the time
for reconfiguration. Current and future generation de-
vices such as CLAy, XC6200, DPGA etc. alleviate
the above problem by providing partial and dynamic
reconfigurability [8]. In these devices, it is possible
to modify the configuration of a part of the device
while the configuration of the remaining part is un-
changed. Some devices permit this partial reconfig-
uration even while other logic blocks are performing
computations. Unlike such fine-grain devices, coarse
grain devices in which multiple contexts of the con-
figuration can be stored in the logic block and the
context is dynamically switched have been proposed
(for example, see [8]). Also, there are efforts under
way to develop coupled architectures in which a re-
configurable array and a processor core cooperate on
a computational task, exploiting the strengths of both
architectures (for example, see [9]). Wormhole run-
time reconfiguration has been proposed in [1]. In this
approach, as the stream of data moves through the
reconfigurable hardware, it rapidly creates and modi-
fies datapaths and computing resources along the way.
There have been some efforts to exploit dynamic re-
configuration {3, 13]. In these, the connections are
configured based on the input data or the intermedi-
ate result of the computation.

Configurable computing provides the ability to re-
define the hardware/software boundary in computing
systems. This paradigm change results in new com-
putation models, new programming methods, and new
approaches to implementation of applications. Some
of the greatest gains in this field may well come from
providing appropriate abstractions of this technology
to algorithm developers and compiler designers to al-
low them control over hardware that has not been pre-
viously exploited [13].

3 Object Recognition Using
Geometric Hashing

In a model-based recognition system, a set of ob-
Jjects is given and the task is to find instances of these
objects in a given scene. The objects are represented
as sets of geometric features, such as points or lines,
and their geometric relations are encoded using a min-
imal set of such features. The task becomes more com-
plex if the objects overlap in the scene and/or other
occluded unfamiliar objects exist in the scene.

Many model-based recognition systems are based
on hypothesizing matches between scene features and
mode] features, predicting new matches, and verify-

ing or changing the hypotheses through a search pro-
cess. Geometric hashing, introduced by Lamdan and
Wolfson [12], offers a different approach It can be
used to recognize flat objects under weak perspec-
tive. Because of such robustness, geometric hashing
has been employed in the DARPA next-generation,
model-based ATR (Automatic Target Recognition)
system [6]. In the following, for the sake of complete-
ness, we briefly outline the geometric hashing tech-
nique. Additional details can be found in [12].

Figure 1 illustrates the geometric hashing algo-
rithm. The algorithm consists of two procedures, pre-
processing and recognition.

Preprocessing:

The preprocessing procedure is executed off-line
and only once. In this procedure, the model fea-
tures are encoded and are stored in a hash table.
The information is stored in a highly redundant
multiple-viewpoint way. Assume each model in
the database has n feature points. For each or-
dered pair of feature points in the model chosen
as a basis, the coordinates of all other points in
the model are computed in the orthogonal coor-
dinate frame defined by the basis pair. Then,
(model,basis) pairs are entered into the hash ta-
ble bins by applying a given hash function f to
the transformed coordinates.

Recognition:

In the recognition procedure, a scene consisting of
S feature points is given as input. An arbitrary
ordered pair of feature points in the scene is cho-
sen. Taking this pair as a basis, the coordinates of
the remaining feature points are computed. Using
the hash function on the transformed coordinates,
a bin in the hash table (constructed in the pre-
processing phase) is accessed. For every recorded
(model,basis) pair in the bin, a vote is collected
for that pair. The pair winning the maximum
number of votes is taken as a matching candi-
date. The execution of the recognition phase cor-
responding to one basis pair is termed as probe.
If no (model,basis) pair scores high enough, an-
other basis from the scene is chosen and a probe
is performed.

Note that, the basis set can be chosen as a set of
single points, point pairs, or triple points depending
on the required functionality for occlusion, rotation,
translation, and perspective. The object features can
also be represented by other geometric features such
as lines [17].
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Figure 1: Illustration of the geometric hashing technique.

4 Parallel Geometric Hashing on an
FPGA-based Configurable Comput-
ing Platform

In this section, we describe our parallel technique
to implement the recognition phase. We first explain
our bit-level hash table. Then, our parallel probe al-
gorithm and its FPGA-based design are proposed. Fi-
nally, an analysis of our design is described.

We will not elaborate on parallelizing the prepro-
cessing phase, since it is a one time process and can
be carried out off-line. In the following, we ignore the
initialization costs, such as loading the scene points
to the processors and loading the hash table into the
processor array. These assumptions were also made in
the previous algorithms and in the implementations
reported in [4, 16, 18].

The major difficulty in parallelizing the probe op-
eration is that the performance depends on the parti-
tioning and distribution of hash bins, the distribution
of the votes generated, and the total number of votes
generated. We refer to the congestion in accessing the
bins as well as in voting as “memory congestion prob-
lems”. '

There have been several prior efforts in parallelizing

the geometric hashing algorithms [4, 16, 18]. The im-
plementations in [4, 16] have been performed on SIMD
hypercube-based machines. A major problem in both
the implementations is the requirement of large num-
ber of processing nodes. In [4], the number of pro-
cessing nodes used is the same as the number of bins
in the hash table. Thus, O(Mn®) processing nodes
are needed. In implementations reported [16, 18], the
(model, basts) entries in a hash bin were represented
as a linked list. Note that, the number of such entries
in each hash bin can vary over the hash bins. By par-
titioning the hash table and the vote boxes statically
among the processing nodes, the memory congestion
in bin access as well as in voting significantly degrades
the performance . In [18], these problems were solved
using a sort-based approach. This approach handles
congestion in bin access as well as in voting. How-
ever, additional overhead caused in implementing such
a technique makes it attractive only if the computa-
tional cost associated with accessing the hash bin and
processing the generated votes is high.

4.1 Bit-level Hash Table

In this paper, we propose a simple memory struc-
ture which can be accessed in parallel without memory




congestion. By regularizing the data flow and exploit-
ing a high degree of bit-level parallelism in hardware.
large speedup is achieved. For the sake of explana-
tion, we assume that there are no multiple entries of
the same (model, basis) pair in a hash bin. Note that,
the number of (model, basis) pairs recorded in a hash
bin is upper bounded by w

The hash bin which has the linked list structure is
converted to a bit-level hash bin. Figure 2 shows this
hash table conversion. Let UID(model,basis) denote
an unique number, between 1 and w, assigned
to each (model, basis) pair. Then, each hash bin is
converted into our “bit-level” representation of size

M—"—(—._,"—_—l) bits as follows.

1. Initialize each of the M_"L;_-_l_l locations to “0”.

2. For each (model,basis) pair recorded in a hash
bin, enter a “1” in the location
UID(model, basis).

The corresponding (model, basis) pair in the hash
table is marked as '1’ in the bit-level hash table. Thus,
a hash table in which the number of entries for each
hash bin may not be uniformly distributed across the
hash bins is mapped to a bit-level hash table having a
regular structure. Using this bit-level hash table, we
can exploit a high degree of parallelism and eliminate
the congestion in hash bin access.

Bin length = 512

wher
] I I
UID(O,D) U’D(I'H-') PR T N ~ﬂ0,"D«(I;;:‘.*i)_g<~§w PESRERAT e

Mn(n-1)/2 bits

Figure 2: Hash table conversion.

4.2 Parallel Probe Algorithm

The basic strategy of our design is to access the
%ﬂ_l) bit locations in a hash bin in parallel and
then update the corresponding vote boxes in parallel
(See Figure 3(a)). Thus, we can perform a probe op-
eration without any memory congestion. Note that
a single FPGA chip may not have enough number of

Combinational Logic Blocks (CLBs) to handle the bit
streams in parallel. Therefore, multiple FPGA chips
are required. Finding the maximum among the vote
boxes distributed in multiple FPGA chips is performed
in 2 steps: find the local mazimum in each FPGA chip
and then find the global mazimum across the FPGA
chips.

To obtain a modular design, we partition our de-
sign into three modules: pre-processing module, main-
processing module, and post-processing module. The
pre-processing module generates the bin address of the
bit-level hash table. Given (z,y), the coordinates of
a scene point, the co-ord transformer first converts it
into basis-relative coordinates (u,v). Then, the bin
address generator converts (u,v) into a corresponding
hash bin address. These two operations can be easily
implemented using table look-up even though they in-
volve complex arithmetic operations. Then, the main-
processing module accesses the hash table using the
computed bin address and detects local maximums in
each FPGA chip. Finally, a global maximum across
the FPGA chips is detected by the post-processing
module using a comparator tree (See Figure 3(b)).
Since parallelism is exploited in the main-processing
module, in the following, we focus on designing that
module. :

A basic unit for the main-processing module con-
sists of a pair of FPGA and local memory modules,
and is denoted as Processing Element (PE). In gen-
eral, trade-offs between area and time are possible
when a specific function is implemented in hardware.
Especially, the available sizes of Commercial Off-The-
Shelf (COTS) devices may not match well with the
basic unit of our design. Thus, the virtual PEs in our
design need to be mapped onto physical PEs which
can be implemented using COTS devices. To derive
an area-time efficient design using COTS devices, we
define parameters which characterize our design with
respect to area and time (See Figure 4). Using P
PEs, our design accesses PN bits of the hash table
in parallel. Since Mzﬁll-l bits need to be accessed

in each hash bin and since typically, ¥2=1 > pN,
the number of time multiplexing required to map vir-
tual PEs to physical PEs is [t = M_g(P"T—lI‘I Details of
the time multiplexing to realize an area-time efficient
design using COTS devices are described in the next

section.

4.3 Design Analysis

The execution time for a probe using P PEs can
be analyzed as follows. Throughout this paper, we
assume that a memory access and an arithmetic or
logic operation (such as ADD, MUX, COMPARE) can be
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Figure 3: Parallel probe algorithm and its FPGA-based design.

performed in unit time. The hash bin address can
be generated in O(1) times using table look-up. The
generated hash bin address can be distributed to P
PEs in O(log P!) time. The hash bin accesses for
S — 2 feature points can be performed concurrently
with the operation to detect local maximums from
the preceding hash bin accesses. Thus, the time
to detect the local maximums over ¢ multiplexing is
(S—2) xt+log N = O(242 4 log N). The hash bin
access and the operation to detect a local maximum
are pipelined. The final operation to detect a global
maximum can be performed in O(log P) time.

Theorem 1 Given a model database having M mod-
els where each model is represented using n feature
points, a probe on a scene consisting of S feature

points can be performed in O(S%\’,‘2 + log N + log P)

L All logarithms in this paper are to base 2.

time on an FPGA-based platform having P PEs,
1 < P < M—"z(;:,—_—ll where N denotes the width

-_— ?

of FPGA-memory datapath in a PE.

5 Implementation Details and Perfor-

mance Estimate

In this section, we first discuss various issues in im-
plementing the design technique developed in Section
4 on an FPGA-based platform. Then, we describe a
design using Xilinx 4062 FPGA devices. Our design
is motivated to achieve large speedup for typical size
of images and models used by the vision community.
We have chosen not to perform device dependent op-
timizations to improve performance. Figure 5 shows
our development environment. We have synthesized
our design using Synopsis FPGA compiler. Place and
route was performed using Xilinx tools (XACT Devel-
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Figure 4: Parameters used for deriving an area-time efficient design.

opment System) to create a configuration file for an
FPGA on a Sun Ultra Enterprise. Then, configuration
file is downloaded onto the FPGA development board
which consists of FPGAs and memory modules. The
board is connected to a PC through PCI Local Bus.

Sun Ultra Enterprise PC (Pentium Pro, 200MHz)

N 4 A

Synopsys FPGA Development Board |
FPGA Compiler

XACT Conﬁggratlon FPGAs Memories|
File 4

Development Y. o ‘-
System — 34

Figure 5: Our development environment

For the sake of illustration and evaluation of the
resulting design, we consider a typical scenario as fol-
lows: We used a synthesized model database contain-
ing 1024 models. Each model consists of 16 randomly
generated feature points in 2 dimensions. This results
in a hash table having 4 x 220 entries. These feature
points were generated according to a Gaussian distri-
bution with zero mean and unit standard deviation as
in [16, 18]. Similarly, 256 scene points were synthe-
sized using a normal distribution. The equalization
technique in [16, 18] was applied to quantize the trans-
formed coordinates, i.e., for each transformed point
(u,v), the following hash function (where o denotes
the standard deviation of the set of model points) is
applied [18]:

flu,v) = (1- e 57 ,atan2(v, u))

According to constraints imposed by Commercial

Off-The-Shelf (COTS) devices, we first determine
both the structure of each PE and the configuration of
the PEs to synthesize an area-time efficient solution.
Based on the configuration of the PEs in the main-
processing module, the logic for the pre-processing and
post-processing modules are determined.

5.1 Design Trade-offs

To illustrate feasibility of implementation and
demonstrate resulting speedup, we assume that Xilinx
4062 FPGA chips and 512K x 32 bit memory modules
are used for the implementation. The scenario consid-
ered above results in a hash table having 8K hash
bins [16, 18]. To represent the same hash table us-
ing our bit-level design, we need 8K x 120K bits (See
Figure 6 (a)). For the sake of explanation, let M EM
denote the number of memory modules needed to store
the hash table. To implement this bit-level hash table
with commercially available 512K X 32 bit memory
modules, MEM, N, and t must satisfy the following
constraints:

o 512K x 32 bits x MEM > 8K x 120K bits,
o 32K > 8K, and
o 32 bits x MEM > 120E bits > PN bits.

We can implement 64 vote boxes and the logic
to find a local maximum among the vote boxes in
an FPGA. Thus, the width of FPGA-memory data-
path, N, becomes 64 and this amount of parallelism
is achieved in a PE.

From the above constraints, a feasible configura-
tion is MEM = 60, ¢t = 64, and P = 30. Designs
with large P (> 30) are not area efficient due to large
number of memory modules. Also, note that the num-
ber of memory modules is 60 and the number of PEs
is 30. Thus, two 512K x 32 bit memory modules are
assigned to each PE to support 64-bit parallelism.




Figure 6 shows the actual mapping of the hash
table onto the memory modules in our design. In
this example, the size of the bit-level hash table is
8K x 120K bits. A smaller sub-table whose size is
8K x 4K bits is assigned to a PE (See Figure 6 (b)).
Since the width of a hash bin in the sub-table is
4K bits and N = 64 bits can be read from the sub-
table simultaneously, one hash bin access results in 64
reads to the memory module. When we map the sub-
table into an actual memory module, a column major
order is used. Thus, the first 8 A" x 64 bits are placed
in the beginning of the memory module. The next
8K x 64 bits are placed immediately after this (See
Figure 6 (c)). Figure 6 (c)).

Mn(n-1)2 = 120 Kbits

4 Kbits

8K MEMOARY 1,2+

Offset (0) —»~ i
by

b2y

631
. -
LB

. ' Offset (SK)—m %)

8K
¥ bax 1 bg.2 ~ bax.a
- :
64 bits Ban.6e Y
- - -
4 Kbits 64 bits
() (c)

Figure 6: Memory organization. (a) Bit-level hash
table, (b) Memory module (sub-table), and (c) The
sequence of hash bins in a memory module.

Some details of the FPGA implementation of a PE
is shown in Figure 7. It consists of 64 vote boxes, eight
8-to-1 multiplexors, and the logic to find a local max-
imum. The logic to find the local maximum consists
of 8-input comparator tree and logic to update the
local maximum. When a hash bin address is gener-
ated, 64 bits of the hash bin are fed into FPGAs from
the memory modules. The corresponding vote boxes

count the number of 'I’s. Once the voting operation
is completed, the votes are stored in registers and are
multiplexed to be fed into the comparator tree. Using
the comparator tree, a maximum is found and 1s com-
pared with the previous local maximum. If necessary,
the local maximum is updated. In the design of the
PE, we can also use a 64-input comparator tree to find
the local maximum directly from 64 vote boxes. Since
the execution time for the voting operation is longer
than that for finding the local maximum, we multiplex
the votes in the registers and feed them to a smaller

_comparator tree. Thus, we can reduce the amount of

logic to find the local maximum.
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Figure 7: FPGA-based implementation of a PE.

For the above configuration, the logic for finding a
maximum globally across the 30 PEs can be imple-
mented in a single FPGA. Also, the generation of the
transformed co-ordinates as well as hashing the ad-
dresses can be performed using 1 FPGA chip by using
table look-up. In the above design using 30 PEs, since
the total number of PEs is relatively small, the gen-
erated hash bin address is distributed directly over a
bus to each PE rather than using a tree topology.

5.2 Performance Estimate

Our FPGA-based design has been developed using
VHDL and synthesized using Synopsys synthesis tools
to generate a gate-level design. Then, Xilinx devel-
opment tools were used for placing and routing our
design using FPGAs. Since all the PEs are identical
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Figure 8: Comparison of our FPGA-based implemen-
tation with previous parallel implementations on HPC
platforms

except for the contents of memory, we synthesized a
PE.

Our design runs at a clock rate of 10MHz and
the estimated execution time for a probe is 1.65
milliseconds using 32 PEs. Each PE consists of an
FPGA and a local memory. Two additional FPGA
chips and memory modules are required to implement
the pre- and post-processing modules.

For the sake of comparison, a sequential algorithm
has been implemented using C. On an UltraSPARC
Model 140 (143MHz clock, 128M byte memory, 7.44
SPECint 95, 10.40 SPEC fp95), it takes about 300
milliseconds to perform a probe operation. We im-
plemented a parallel algorithm on a 32-node IBM SP-
2. Each node of SP-2 had 66MHz processors and
64 up to 512M bytes of memory. The performance
benchmarks of the processors were 3.14 SPECint 95
and 7.50 SPEC fp95. In our parallel algorithm, we
evenly distribute the hash table (which is vertically
partitioned) to 32 processing nodes. However, un-
like the previous implementations [18], each processing
node has the complete set of vote boxes. Initially, all
scene points are sent to each processing node. Each
node performs a voting operation locally using the dis-
tributed hash table. The results of voting are sent to
other processing nodes using an “all-to-all” commu-
nication so that all the data corresponding to a vote
box is combined and stored in a single PE. Based on
the collected votes, local maximums are computed in
each processing node and a global maximum is com-
puted over the 32 processing nodes. The implementa-
tion on SP-2 was performed using MPI. The execution
time was about 40 milliseconds. Using one process-
ing node of SP-2, the execution time was about 500

milliseconds. Therefore, our FPGA-based solution
can achieve a speedup of close to 176 and 24, respec-
tivelv. A comparison with parallel implementations
on HPC platforms is shown in Figure 8.

Note that, the memory requirement per PE in our
design is only 4M bytes, whereas the size of local mem-
ory in each node of SP-2 is between 64 and 512M bytes.
Also, our design assumes 10MHz clock while the pro-
cessors in SP-2 run at 66MHz.

Although we use 32 PEs, our design is scalable.
Note that, as the number of PEs increases, the re-
quired number of time multiplexing decreases. How-
ever, the internal structure of each PE, such as the
width of FPGA-memory datapath, is not affected by
the number of PEs used. The upper limit on the num-
ber of PEs is obtained by setting ¢ = 1 (no time mul-
tiplexing). As we mentioned earlier, however, designs
with large P are not area efficient due to the number
of memory modules used and low FPGA utilization.

Previously, we have assumed that in any hash bin
there is no more than one (model, basis) pair. Thus,
we need only one bit to mark UID(model, basis) in our
bit-level hash bin. However, if there are more than one
identical (model, basis) pair in a hash bin, then our de-
sign can be easily modified to handle this. To allow K
identical (model, basis) pairs, [log K] bits are needed
for each UID(model,basis) in a bit-level hash bin.
The memory size of the hash table also increases by a
factor of [log K]. To generate the bit-level hash bin,
the number of identical (model, basis) pairs is counted
and is stored in the corresponding U I D(model, basis)
location. The design for vote boxes needs to be mod-
ified. An additional [log K']-bit adder is required for
each vote box.

6 Conclusion

We have shown an area-time efficient FPGA-based
design for the probe step in geometric hashing. In
our design, we first transform a hash table which con-
tains symbolic data into a bit-level representation. By
regularizing the data flow and exploiting bit-level par-
allelism in hardware, our design avoids memory con-
gestion. In addition, the implementation is simplified
using a modular approach.

Performance estimates are very encouraging. Given
a model database having 1024 models where each
model is represented using 16 feature points, a probe
operation on a scene consisting of 256 feature points
can be performed in 1.65 milliseconds on an FPGA-
based platform (32 FPGAs and 128M bytes of mem-
ory). This result does not assume any distribution of
hash bin lengths or scene points. For the same probe




operation, a parallel algorithm on a 32-node IBM SP-2
required 40 milliseconds, and the earlier implementa-
tion required 240 milliseconds on a 32K-node CM2
and 382 milliseconds on a 32-node CM5.

The work reported here is part of the USC MAARC
{Models, Algorithms, and Architectures for Recon-
figurable Computing) project for algorithmic config-
urable computing [13]. In this project, characteris-
tics of state-of-the-art configurable hardware are ab-
stracted to capture their capabilities. Using such rep-
resentations of configurable devices, system-level mod-
els that allow the development of new algorithms for
mapping applications on configurable systems are for-
mulated. Using the models and metrics for config-
urable computing, high-performance algorithms for
these architectures are designed.
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Abstract

Most intermediate and high-level vision tasks ma-
nipulate symbolic data. A kernel operation in these
vision tasks is to search symbolic data satisfying cer-
tain geometric constraints. Such operations are data-
dependent and their memory access patterns are irreg-
ular.

In this paper, we propose a fast parallel design
for symbolic search operations using configurable hard-
ware. Using a pointer array and a bit-level inder ar-
ray, we manipulate the symbolic data and show high
performance can be achieved. Depending on the input
data. a corresponding search window 1s calculated and
symbolic search operations are performed in parallel.
Performance estimates using 16 Xilint XC6216s and
memory modules are very promising. Given 3519 line
segments (extracted from an 1024 x 1024 pizel image),
the operation can be performed in 1.11 milliseconds
on our FPGA-based platform. On a Sun UltraSPARC
Model 140, the same operation implemented using C
takes 690 milliseconds. Although we illustrate our de-
sign for a specific search operation, our design tech-
nique can be applied to related search operations with
minor modifications. Also, it can be ported to other
FPGA devices.

*This research was performed as part of the MAARC
(Models, Algorithms, and Architectures for Reconfigurable
Computing) project. This work is supported by DARPA Adap-
tive Computing Systems program under contract no. DABT63-
96-C-0049 monitored by Fort Hauchuca.

1 Introduction

Vision systems consist of low, intermediate, and
high-level tasks, each with different computational
characteristics. Over the years, low-level vision tasks
have been parallelized using parallel machines or cus-
tom VLSI. Since these tasks are characterized by reg-
ular, local, and pixel-based computations, such vision
tasks can be easily parallelized [1, 2, 22]. However, in
parallelizing intermediate- and high-level vision tasks,
additional issues must be considered:

¢ The computations are performed on symbolic data
(For example, the image data is represented by
points, lines, and area).

e The computations are highly data dependent (For
example, the size and the shape of a search win-
dow depend on the input data).

Many vision systems require real-time performance
so that they can interact with humans or invoke
other machines in real-time. For these vision sys-
tems, high performance computing machines such as
Cray T3E, IBM SP-2, and Intel Paragon have been
used {23]. However, because of the irregular nature of
intermediate- and high-level vision tasks, the speed-
ups achieved on these machines are low.

Recently, configurable computing ideas [5, 9] have
shown attractive speed-ups for many applications.
They offer large scale parallelism by exploiting cus-
tomized hardware. Field Programmable Gate Arrays




(FPGAs) are emerging as one of the major config-
urable devices which offers rapid prototyping, user
reconfigurability. and low development cost. How-
ever, most research efforts have focused on map-
ping regular and non data-dependent applications
such as convolution operations, median filtering, and
FFT [2, 6. 20. 22] onto such devices. Parallelizing sym-
bolic search operations which are irregular and data-
dependent operations on FPGAs is challenging since
non-trivial design techniques are required.

In this paper. we propose a paralle] and config-
urable solution for a kernel operation in symbolic vi-
sion computations. We develop a design technique for
symbolic search. a kernel operation, which search for
symbolic data satisfving certain geometric constraints.
For example, in perceptual grouping [12], a set of
symbolic data satisfying certain geometric constraints
are grouped to form structural hypotheses. In im-
age matching, correspondences between symbolic data
extracted from two different images are determined
based on geometrical relationships [18].

In our design, we employ a pointer array and a
bit-level index array to manipulate the symbolic data
and to achieve high performance. Depending on the
input data, a corresponding search window is gen-
erated and the symbolic search operations are per-
formed in parallel. Although the symbolic search
operation involves multiplication and division oper-
ations, we obtain an area-efficient design by employ-
ing a lookup table. Since the computations are highly
data-dependent, we employ a sophisticated load distri-
bution scheme to realize load balancing. Furthermore,
in a typical vision system, various symbolic search op-
erations are performed. Our design can be reconfig-
ured dynamically to suit these operations. To the best
of our knowledge, there has been no previous work in
mapping symbolic vision computations onto FPGAs.

We have synthesized our design using Xilinx
XC6216 devices. Using a 10MHz clock, the esti-
mated execution time for symbolic search on an im-
age consisting 3519 line segments (extracted from an
1024 x 1024 pixel image) is 1.11 milliseconds on a plat-
form having 16 FPGAs. The same operation can be
performed in 690 milliseconds on a Sun UltraSPARC
Model 140 operating at 143MHz.

The rest of the paper is organized as follows. In Sec-
tion 2, configurable computing is briefly introduced.
In Section 3, characteristics of symbolic search oper-
ations in vision are explained. Mapping of such sym-
bolic search operations onto configurable hardware is
discussed in Section 4. In Section 5, implementation
details are presented, and the performance is analyzed.

Concluding remarks are made in Section 6.

2 Configurable Computing

Configurable computing has recently gained much
attention (See, for example, Reconfigurable Architec-
ture Workshop held annually at International Parallel
Processing Symposium [13]). The paradigm of com-
puting in space (i.e., a series of computations on sev-
eral functional units), as opposed to computing in time
(i.e., a series of computations executed in sequence on
a single functional unit), is being actively explored.
There are several directions in which research is be-
ing carried out to realize the potential of configurable
computing [10].

The idea of a VLSI array of processors overlaid with
a reconfigurable bus system, and an abstract model
based on this architecture was proposed in [19]. Based
on this initial work, several abstract models of recon-
figurable architectures and fast parallel algorithms for
many problems have been described in the literature.
For example, efficient algorithms for fundamental data
movement operations [19], sorting [14], and image pro-
cessing [15] have been developed on the reconfigurable
meshes. There have been several prototype implemen-
tations of such abstract models. Such architectures
include Abacus [4] and YUPPIE [17].

Recently, the advent of Field Programmable Gate
Arrays (FPGAs) has given rise to new opportunities
in the configurable computing area. Traditionally, FP-
GAs have been used for rapid prototyping and emu-
lation. The main bottleneck in using these devices
as configurable computing engines has been the time
for reconfiguration. Current generation devices such
as CLAy, XC6200, DPGA etc. alleviate the above
problem by providing partial and dynamic reconfig-
urability [9]. In these devices, it is possible to partially
modify the configuration of the device. Some devices
permit this partial reconfiguration even while other
logic blocks are performing computations. Unlike such
fine-grain devices, coarse grain devices in which multi-
ple contexts of the configuration can be stored in the
logic block and the context is dynamically switched
have been proposed (For example, see [9]). Also, there
are efforts under way to develop coupled architec-
tures in which a reconfigurable array and a processor
core cooperate on a computational task, exploiting the
strengths of both architectures (For example, see [11]).
Wormbhole run-time reconfiguration has been proposed
in [3]. In this approach, as the stream of data moves
through the reconfigurable hardware, it rapidly cre-
ates and modifies datapaths and computing resources
along the way. There have been some efforts to exploit




dynamic reconfiguration [5, 16]. In these, the connec-
tions are configured based on the input data or the
intermediate result of the computation.

Configurable computing provides the ability to re-
define the hardware/software boundary in computing
systems. This paradigm change results in new com-
putation models, new programming methods, and new
approaches to implementation of applications. Some
of the greatest gains in this field may well come from
providing appropriate abstractions of this technology
to algorithm developers and compiler designers to al-
low them control over hardware that has not been pre-
viously exploited [16].

3 Symbolic Search Operations in
Vision

Searching symbolic data satisfying certain geomet-
ric constraints is a kernel operation used in many in-
termediate and high-level vision tasks. Such an oper-
ation can be modeled as a search operation within a
window of the image plane. We assume that the sym-
bolic data is already stored in the image plane before
performing the search operations.

To illustrate our idea, we use line segments ex-
tracted from raw images as symbolic data [18]. The
line segments are represented by their end-point coor-
dinates, lengths, and orientations. Note that low-level
processing ensures that line segments do not cross.

Image

for (each source line segment)
construct search window
for (each position in search window)
if (target line segment is found)
strore the target line segment

(a) Example code (b) Search Window

Figure 1: Typical symbolic search operation.

In Figure 1, we show a typical search operation
for line segment A. A search operation is performed
within a region on both sides of a source line segment
to find target line segments for further processing. The
search operation can refer to either a grouping process

or an image matching process. Details of the grouping
process and the image matching process can be found
in [12, 18].

Each source line segment has a unique line number,
LID(3), associated with it. The end-point coordinate,
the orientation, the length, and L1D(i) of a source line
segment are given as input. Also, the width of search
window is specified. The search operations produce
the target line segments in the search window. For
each target line, a record is output which consists of
LID(i) and the mid-point coordinates of the target
line segments in the window.

Note that the definition of search windows is differ-
ent for each vision task. For instance, in Line Fold-
ing [12], a region on both sides of the source line seg-
ment is searched to find target line segments approx-
imately parallel to it as shown in Figure 1. In Cor-
ner Detection [12], however, a fixed size region near
two end-points of the source line segment is searched
to find target line segments which may jointly form
right-angled corners.

4 Parallel Symbolic Search on a
Configurable Computing Platform -
Key Ideas

In this section, we describe our technique for map-
ping symbolic search operations onto an FPGA-based
platform. To illustrate our idea, in the rest of the
paper, the search operation refers to the operation
shown in Figure 1(b). The major issues in paral-
lelizing the symbolic search operation are: 1) sym-
bolic data from an image must be manipulated, and
2) data-dependent and irregular memory access pat-
tern must be efficiently handled. We first describe the
data structures used in our design to manipulate the
symbolic data. Based on these data structures, our
architecture for symbolic search operation is shown.
Finally, a performance analysis of our design is de-
scribed.

4.1 Data Structures for Symbolic Search

We employ two data structures: a pointer array and
a “bit-level” index array. For an N x N pixel image ,
there is a corresponding N x N pointer array. For ev-
ery line segment, its mid-point coordinates, (Zm, Ym),
in the pixel image is mapped onto the pointer array. If
(z,y) is a mid-point of a line segment, then a pointer
which points the symbolic data structure of the line
segment is stored in the corresponding entry . Such
symbolic data structure contains information for the
line segment as shown in Figure 2. All other locations
in the pointer array are set to “null”.
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Figure 2: Symbolic search operation using a pointer array and a bit-level index array.

A search window is constructed by using an end-
point (z,y), the orientation (), and the length (d) of
the source line segment. To perform the search, we ini-
tially create a bit-level index array which contains the
same data as the pointer array does except pointers.
Instead of pointers in the pointer array, the bit-level
index array contains a “1” for the existing pointers
(i.e., a line segment exists there) and a “0” for all null
pointers. Since the mapping between the pointer ar-
ray and the bit-level index array is one-to-one, all 1’s
found in the bit-level index array have corresponding
pointers to the symbolic data in the pointer array.

4.2 An Architecture for Symbolic Search

In the following, we ignore the initialization cost
such as loading the bit-level index array since it is a
one time process. We assume that the pointer array
is maintained in a host, while the bit-level index array
is maintained in the Processing Elements (PEs). Such
PE consists of FPGAs and memory modules (See Fig-

ure 3). Each local memory has a copy of the bit-level
index array. Between the host and all the PEs, there
are a configurable network and a FPGA (Xnet). Xnet
can be connected to any of the PEs through the con-
figurable network. The configurable network consists
of Field Programmable Interconnect Devices (FPIDs).
Xnet performs two operations: 1) configure the net-
work, and 2) control the data transfer between the
host and the PEs through the network.

The basic strategy of our design is as follows. The
host sends the source line segments to X,e;. It has a
FIFO which stores the received source line segments
from the host. X,e: configures the network and sends
the line segments to PEs through the network.

Using the source line segment, each PE performs a
symbolic search. It generates the corresponding search
window, accesses the bit-level index array, and con-
verts the 1’s found in the search window into cor-
responding mid-point coordinates of target line seg-
ments. Then the mid-point coordinates are stored in a
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Figure 3: Overall architecture for symbolic search op-
eration.

FIFO of the PE and are sent to X,,¢; through the con-
figurable network. X,.; also has a FIFO for incoming
data from the PEs. The host then takes the mid-point
coordinates from X,.; and performs further process-
ing depending on the vision task to be executed.

Figure 4(a) shows a search window. It is a paral-
lelogram with a four-pixel width on both sides of each
source line segment. The search window consists of
several rows of equal length. The search operation is
performed for each row. We define each such row to
be a thread and its starting coordinate in the bit-level
index array to be the thread address. The search oper-
ation is iterated for each thread in the search window
and it consists of the following four steps:

1. Calculate the thread address in the bit-level index
array.

2. Read the data corresponding to the thread from
the bit-level index array.

3. Search for “1”s in the thread.

4. Calculate the mid-point coordinates for the de-
tected “1”s in a thread.

Figure 4(b) shows the organization of the PEs The
input data, (z,y,6,d), is sent to a PE (e.g. source line
segment A in Figure 1). The number of threads in the
search window is calculated from the values of § and

Thread Addresses

Number of

Threads Thread

00:0000:01:00}

(a) Search window for a line segment

NxN
Bit-level

Memory
Module

Index Array

n

Xme¥Ym)
Mid-point
Coordinate
Generator

Thread Addres
Generator for
Index Array

FPGA

(Xm,Ym) Midpoint
Coordinate of
Target Line Segment

(x,y,0,d) of
Source
Line Segment

(b) Organization of the Processing Element

Figure 4: Search window and processing element for
symbolic search operation.

d. To calculate the thread address for the first row, a
f-based lookup table is used. The table also contains
information needed to generate thread addresses for
subsequent rows (i.e., amount of shift per subsequent
row). Since the symbolic search operation depends
on (z,y,0,d) of the source line segment, arithmetic
computations such as multiplication or division are re-
quired to calculate the thread addresses. However, the
size and shape of each search window is a function of
@ and d of the source line segment. Therefore, instead
of implementing complex logic to perform arithmetic
using FPGAs, the thread address generation logic is




implemented by the f-based lookup table and a sim-
ple logic to perform arithmetic. The implementation
details are explained in Section 5.

Once the thread address is generated, the thread is
read from the bit-level index array. Using the thread
and the thread address, the mid-point coordinate of
the target line segment (e.g., the mid-point coordinate
(zam, y2m) of line segment B in Figure 2) is computed.

Since the workload of a PE depends on the length
of the line segment, a search operation assigned to a
PE can be completed earlier or later than that of other
PEs. In order to handle this, we employ the following
load distribution scheme:

1. The host scans the list of search operations and
finds the smallest task in terms of the area of the
search window. The smallest task (measured in
terms of the area of the search window) is consid-
ered as one operation unit, OU.

[\

The search windows are partitioned and assigned
to PEs using OU as a basic unit. For example,
if OU = 100 pixels and a search window is 350
pixels in area, the search is assigned to 4 PEs.

The execution time for a symbolic search opera-
tion using P PEs can be analyzed as follows. We
assume that a memory access and an arithmetic or
logic operation (such as ADD, MUX, COMPARE) can be
performed in unit time. Let S denote the total num-
ber of source lines. Let A; denote the area of the
search window for a source line segment. Let Apin =
min{A;}. The serial execution time is O(z:isz1 A =
o, [Zé,;'.: ) X tmin. In a multiple PE configura-
tion, Step 1 above takes O(S) time. Therefore, the
execution time for a symbolic search operation of the
proposed solution using P PEs is

S .
S+'}5><(Z=:[ A ])] Xtmin)a

Ami
i=1 min

of
\

where 1,,ir, 1s the time to execute an operation unit in
a PE.

The above analysis assumes that the PEs do not
starve due to overheads in load distribution. Also, the
above time does not include the time for collecting the
target line segments.

5 Implementation Details and Perfor-
mance Estimate

In this section, we first discuss various issues in im-
plementing the design developed in Section 4 on an

FPGA-based platform. Then, we describe a design
using Xilinx 6216 FPGAs. Our design is motivated
to achieve large speed-ups for typical size of images
used by the vision community. We have chosen not to
perform device dependent optimizations to improve
performance. Figure 5 shows our development envi-
ronment. The design was synthesized using Synopsis
FPGA compiler. Place and route was performed using
Xilinx tools (XACT Development System) to create a

“configuration file for an FPGA on a Sun Ultra Enter-

prise server. The configuration file is downloaded onto
the FPGA development board which consists of FP-
GAs and memory modules. The board is connected
to a PC through PCI Local Bus.

Sun Ultra Enterprise PC (Pentium Pro, 200MHz)

~

FPGA Development Board |

Synopsys { ]
FPGA Compiler |i§

v

. [Configuration

XACT : L FPGAs Memories
- F File ]
Development [
System [ |

e ges e s L

Figure 5: Our development environment.

Figure 6 shows the source line segments extracted
from an 1024 x 1024 modelboard image and the cor-
responding search windows for each line segment. The
number of source line segments was 3519, and the sym-
bolic search operation was performed within the region
on both sides of each line segment with a four-pixel
width to find target line segments.

Both the address generator for the bit-level index
array and the mid-point coordinate generator fit in
one XC6216. A 512KB memory module was used to
store the bit-level index array and the -based lookup
table.

5.1 Implementation Details

In this section, we discuss various issues in imple-
menting the design. We first show organization of a
bit-level index array and a 6-based lookup table. Fi-
nally, a design for a PE using an FPGA is shown.

When the bit-level index array is stored in the lo-
cal memory of a PE, the shape of the search win-
dow is considered. Figure 7 shows the shapes of the
search windows depending on 6. To ease the mem-
ory access patterns of the search windows, two bit-
level index arrays are employed in each PE: one of




Figure 6: Extracted line segments from an 1024 x 1024 Modelboard image (left) and search windows generated

by a symbolic search operation (right).

them, BLIRg, stores the index array in row-major or-
der and the other, BLI¢, stores it in column-major
order. If 45° < # < 135°, the row-major index ar-
ray is used to access the threads. If 0° < 8 < 45°
or 135° < @ < 180°, the column-major index array is
used. Note that the thread which was defined in Fig-
ure 4(a) is defined to be a vertical line segment in the
case of column-major index array.

————+—> Thread

(@) (b)

Figure 7: Shapes of search windows depending on 6,
(a) 45° < 0 < 135°, (b) 0° < 8 < 45° or 135° < 6 <
180°.

Another design issue is organization of the #-based
lookup table. For a given line segment, the height and
the width of its search window is determined using 8
and the length of the line segment. The search win-
dow is stored in the index array. To read the threads
in a search window, thread addresses are calculated

using the #-based lookup table and a simple logic for
arithmetic.

Second Thread Address L— First Thread Address
Oy

- i~

Description

O, x axis offset from the end-point of a line segment to the beginning of the first thread

Oy y axis offset troﬁ? the end-point oan line segment to the beginning owlﬂthe'first lhread
A, i: Amount of shift per subsequent thread along x axis
Ay ! Amount of shift per subsequent thread along y axis
i 24 Distance from the end-point of é fine segment to the wiﬁdov;l béundary.
‘M C Mask .
Figure 8: Parameters stored in the f-based lookup
table.

Figure 8 shows the parameters of the 6-based
lookup table. For a given 6, the first thread address is
calculated by adding the end-point coordinate, (z,y)
to the offset, (Oz,0y). This offset is stored in the
lookup table. Note that thread addresses can be com-
puted by simply adding the amount of shift per sub-
sequent thread, (A, Ay). Since (Az, Ay) depends on
the value of #, we also keep the values of (A, Ay)




in the #-based lookup table. We can notice that for
a thread in the row-major index array, Ay, = 1 and
A, depends on 6 (See Figure 7(a)). However, for the
thread in the column-major index array, A; = 1 and
A, depends on 6 (See Figure 7(b)). To compute the
number of threads (i.e., the height of the search win-
dow), the height of a line segment, d, and A; are used.

Finally, in the lookup table, a mask, M, is stored. A
32-bit data bus was used between the FPGAs and the
memory modules in our design. However, the length of
the threads varies depending on §. For a given thread
address, a 32-bit data is read from the bit-level index
array and a thread is extracted by masking the data
using M.

Using the #-based lookup table and two bit-level
index arrays, the implementation details of a PE are
shown in Figure 9.

A source line segment comes from Xp.; through
the configurable network. The end-point coordinate
(z,y), the orientation (#), and the length (d) of the
source line segment are fed to a PE. To compute the
first thread address, the offset, (O, 0y), is added to
the end-point coordinate, (z,y). The 6 test unit gen-
erates an additional bit for the first thread address
to decide on one of the two bit-level index arrays to
be accessed. Using this thread address, the bit-level
index array is accessed and the data is fed to the
mask operation unit. To obtain a thread, the data
from the bit-level index array is masked out by us-
ing M. If the thread has a ’1’, the distance between
the thread address and the ’1’ in the thread, (Aqq),
is produced. Note that to obtain the mid-point of a
target line segment, the thread address is used. By
adding A,g to the thread address, the mid-point co-
ordinate, (zm, Ym), is finally extracted and is fed to a
FIFO.

To read the next thread, its address is generated
by adding the amount of shift per subsequent thread,
(Az, Ay), to the previous thread address. For a given
search, the amount of computation depends on the
number of threads. It can be computed by adding
the length of the line segment, d, and the distance
from the end-point of a line segment to the boundary
of the search window, (24;). The number of threads
determines the number of iterations.

We have explained our design in the case of us-
ing the threads in the row-major index array. For a
thread in the column-major index array, z and y of
the end-point coordinate are exchanged depending on
f. If 0° < 8 < 45° or 135° < 6 < 180°, we need
to exchange them to access the correct address in the
column-major index array. The 0 test unit gives a

control signal for the exchanger.

5.2 Performance Estimate

Our FPGA-based design has been developed using
VHDL and synthesized using Synopsys synthesis tools
to generate a gate-level design. Then, Xilinx develop-
ment tools were used for placing and routing our de-
sign using FPGAs. Since all the PEs are identical, we
synthesized a PE. Xilinx XC6216 devices were used.
Our design operates using a 10MHz clock and the ex-
ecution time for the symbolic search operation with
3519 source line segments is estimated as 1.11 mil-
liseconds on our 16-PE FPGA-based platform. Each
PE consists of one XC6216 and one memory module
of size 512KB. One additional FPGA is used for con-
trolling the configurable network and the FIFOs. We

‘have assumed that the f-based lookup table and the

bit-level index arrays are already stored in the memory
module.

For the sake of comparison, a sequential algorithm
was implemented using C. On a Sun UltraSPARC
Model 140 (143MHz clock, 128MB memory, 7.44
SPECint95,10.40 SPEC fp.95), it took 690 millisec-
onds to perform the search operation. We used “gcc”
compiler with level-2 optimization (-02) for compiling
our sequential code. Therefore, the speed-ups of close
to 622 can be achieved (See Figure 10). The same
operation took 1820 milliseconds on an IBM RS/6000
(67TMHz clock, 32MB memory, 3.14 SPECint 95 and
7.50 SPEC fp95).

Note that, the memory requirement in our design
is only 8MB, whereas the size of the main memory
in a Sun UltraSPARC was 128MB. Also, our design
operates at 10MHz while the UltraSPARC operates
at 143MHz.

Execution Time
Piatform (for 3519 Line Segments)
IBM RS/6000 (67 MHz, 32 MB) 1820 msec
Sun UltraSPARC (143 MHz, 128 MB) 690 msec
Our Design using 16 PEs (10 MHz, 8 MB) 1.11 msec

Figure 10: Performance comparison between our
FPGA-based implementation and a serial implemen-
tation on general-purpose machines.
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6 Conclusion

We have shown a configurable hardware design for
parallelizing a symbolic search operation which is a
kernel operation in intermediate- and high-level vision.

We first transformed the symbolic data structure
into a bit-level representation. Then, depending on
the input data, search windows were generated and
the search operation was performed in parallel using
multiple FPGAs and memory modules. Performance
estimates of our design are very encouraging. Given
3519 line segments, speed-ups for the symbolic search
operation using 16 PEs was close to 622 over a sequen-
tial implementation on Sun UltraSPARC Model 1490.

Although we illustrated our design for a specific
search operation, our design technique can be ap-
plied to many symbolic search operations in interme-
diate and high-level vision to satisfy real-time perfor-

mance requirements. Examples of such vision tasks
are hypothesis verification, image matching, percep-
tual grouping, and stereo matching, among others.

The work reported here is part of the USC MAARC
(Models, Algorithms, and Architectures for Recon-
figurable Computing) project for algorithmic config-
urable computing [16]. In this project, characteris-
tics of state-of-the-art configurable hardware are ab-
stracted to capture their capabilities. Using such rep-
resentations of configurable devices, system-level mod-
els that allow the development of new algorithms for
mapping applications onto configurable systems are
formulated. Using the models and metrics for con-
figurable computing, high-performance algorithms for
these architectures are designed.
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The Problem

Conventional FPGAs are fine-grained architectures,
mainly designed for implementing bit-level tasks and ran-
dom logic functions. Their performance is limited for
computationally demanding applications over large word
length data. A highly promising avenue that is being ex-
plored by many research groups is coarse-grained config-
urable architectures. These architectures are datapath-
oriented structures and consist of a small number of pow-
erful, word-based configurable processing elements (PEs).
Such architectures can result in greater computational effi-
ciency and high throughput for coarse-grained computing
tasks.

The key for achieving high performance solutions is ef-
ficient mapping of tasks onto above architectures. In addi-
tion to achieving high computational rates, partitionabil-
ity is a desirable characteristic of the mapping. Moreover,
the computational efficiency must scale with the size of
the architecture. Finally, it must result in a simple PE
structure, regular/balanced dataflow and sustainable 1/0O
requirements so that it can be realized in hardware.

In this paper we show a methodology for deriving dy-
namic computation structures for 2 dimensioned homoge-
neous computations. Homogeneous computations lead to
all PEs having the same functionality. The derived dy-
namic structures match the datapath-oriented nature of
coarse-grained architectures and lead to efficient mapping
schemes. Our solutions require constant [/O and smaller
amount of local memory/PE compared with known solu-
tions.

Our Approach

Our design methodology is based on a simple model of
typical coarse-grained configurable architectures. It is a
configurable linear array of identical powerful PEs. Adja-
cent PEs are connected in a pipelined fashion with word
parallel links. The data/control channels can be config-
ured to communicate with each other at different speeds
(datapath configuration). The PEs can also be configured
to have different internal structures (functional configura-

*This research was performed as part of the MAARC project.
This work is supported by the DARPA Adaptive Computing
Systems program under contract no. DABT63-96-C-0049 mon-
itored by Fort Hauchuca.

tion). This can be exploited to map heterogeneous com-
putations [3] where different computations are performed
by different sets of PEs. The parameters of the model in-
clude p, the number of PEs, m the amount of total mem-
ory in each PE and w the data word width. An external
controller/memory system provides the required data and
control signals and can store the results computed by the
array. I/O operations can only be performed at the left
and right boundary of the array.

The key idea of our approach is dynamic datapath con-
figuration. By configuring the datapaths, we essentially
schedule the dataflow along the array and the computa-
tions that each data stream participates in. The data
operands are transported and aligned through the array
via differential speed data channels. Furthermore, the
functionality of the PFEs is changed by reconfiguring the
connectivity (datapaths) among the functional units and
local memories. The design methodology consists of three
major steps:

e Step 1 (Dynamic datapath configuration): First, we de-
rive a full size solution for the given algorithm. The so-
lution does not depend on the parameters p and m. The
derived computation structure is a linear array and deter-
mines:

~ Basic PE structure - Speed of Data/Control channels.
— Control/Communication scheme for the array.

— Schedule of Data/Control streams.

e Step 2 (Memory management): Efficient utilization of
the local memory in the PEs can improve the solution de-
rived in Step 1 with respect to time performance and/or
the needed resources. Again, at this stage the solution
does not depend on the parameters p and m.

e Step 3 (Partitioning): Finally, partitioned schemes for
the solution in Step 2 are derived. The solution now de-
pends on the parameters p and m. This is a critical step
that “fits” the solution derived in Step 2 into the target
architecture.

An Example: Matrix Multiplication

To illustrate our ideas we consider N x N matrix mul-
tiplication. Due to space limitations, we show the final
partitioned solution. Although we assume N > p, similar
solutions can be derived for smaller problem sizes.

For performing C = A x B, where each matrix is of
size N x N, p PEs with m = 2p storage in each PFE are




required. Using such an array. a subproblem of size (p x
N} x (N x p) can be solved. We can perform a N x N
matrix multiplication using at most [N/p]? iterations of
the subproblem. In each PE (see Figure 1a), p rows from a
{p x N) submatrix of 4 commute with exactly one column
from a (N x p) submatrix of B resulting in p elements of
matrix C.

Submatrices A, ~ are fed into the array through a slow
data channel (2 clock cycles delay per PE) in column ma-
jor order. Submatrices By xp are fed through a fast data
channel (1 clock cycle delay per PE)in row major order. A
fast output data channel is used to carry the results from
the local memories out of the PEs.

Two p-word banks of local memory are used for stor-
ing the intermediate results. During each iteration, the
contents of one memory bank are uploaded onto the OUT
data channel, while the intermediate results are stored in
the other one. The uploading mechanism is performed in
a repetitive manner along the array, starting from the left-
most PE.

Using the speed differential between the data channels
and the uploading mechanism, regular data flow and full
utilization of the array are achieved. The regular structure
of the computation makes the control of the array simple
and uniform. The control signals travel through the array
via fast and slow channels as well.

The clock cycle is determined by the multiply-add-
update operation performed in each PE (see Figure la).
By pipelining the datapath for this operation, the clock
cycle time can be decreased. [N/p]?pN +p® —1 clock cy-
cles are required to perform N x N matrix multiplication
{p results are computed per clock cycle on the average).
On the average, the derived structure requires 2 external
memory accesses and p local memory accesses per clock
cycle (i.e. one local access in each PE).

For the sake of illustration, we apply the above ap-
proach to perform matrix multiplication on RaPiD (a
coarse-grained configurable architecture) {2]. Our solution
results in full utilization of the PEs and asymptotically the
same time performance as in [2]. However, our mapping
uses m = 2p memory/ PE for storing intermediate results.
In [2] additional local memory is required for storing data
operands as well. It is easy to verify that our solution
reduces the total number of local memory accesses. In
addition, it can result in potential area savings.

Figure 1b compares the memory performance of the two
approaches. The difference in the asymptotic average #
of memory accesses per cycle is drawn as a function of
a = 2. The value m = ap is the amount of local memory
in each of the p PEs. Note that, @ = 2 and 6 represent
the minimum and the available size of the local memory
in [2]. Figure 1c shows the ratio of the local memory used
in [2] over that needed in our approach as a function of
a. Our approach reduces the overhead due to local mem-
ory accesses. For a > 3, the solution in [2] requires less
external memory accesses than our approach. However,
in order to achieve this, larger amount of local memory is
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Figure 1: PE Organization and memory performance.

used (see Figure 1c) resulting in increased area and control
overheads. In addition, the time performance remains the
same since the execution time depends on the number of
available multipliers in both the approaches.

Conclusions

By using our design methodology, scalable mapping
schemes having high computational rates can be derived.
These schemes do not depend on the problem size and
require constant 1/O. These require lower amount of lo-
cal memory/PE. Also, it results in lower number of local
memory accesses compared with known solutions.

Our methodology can also lead to efficient mapping for
various other matrix-oriented computations, including 2-
D DCT and 2-D FIR. Similar techniques can be applied
to 1-D problems as well [1]. A technique to perform DFT
using the Arithmetic Fourier Transform (which uses less
number of multiplications) is shown in [1]. Techniques to
map heterogeneous computations are shown in [3].
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Abstract. This paper shows an efficient design for 2D-DCT on dynam-
ically configurable coarse-grained architectures. Such coarse-grained ar-
chitectures can provide improved performance for computationally de-
manding applications as compared to fine-grained FPGAs. We have de-
veloped a novel technique for deriving computation structures for two
dimensional homogeneous computations. In this technique, the speed
of the data channels is dynamically controlled to perform the desired
computation as the data flows along the array. This results in a space ef-
ficient design for 2D-DCT that fully utilizes the available computational
resources. Compared with the state-of-the-art designs, the amount of lo-
cal memory required is reduced by 33% while achieving the same high
throughput.

1 The Problem

Coarse-grained configurable architectures consist of a small number of powerful
configurable units. These units form datapath-oriented structures and can per-
form critical word-based operations (e.g. multiplication) with high performance.
This can result in greater efficiency and high throughput for coarse-grained com-
puting tasks.

The 2D-DCT of a N x N image U is defined as [8]:

2N-1 2N-1

v(k,l) = Z Z u(m, n)ek 1 (m,n)

mn=0m,n=0

* This research was performed as part of the MAARC project (Models, Algorithms
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where C = ¢k j(m, n) is the N x N cosine transform matrix and 0 < k,I< N.
The 8 x 8 2D-DCT is a fundamental computation kernel of still-picture and
video compression standards. Efficient solutions (mapping schemes) must achieve
high computational rates. In addition, since in coarse-grained configurable archi-
tectures, the functional units are word-based, the amount of chip area available
for local storage is limited. Hence, the designs should be space-efficient as well.
In this work we derive computation structures for 8 x 8 2D-DCT. These

structures match the datapath-oriented nature of the target architectures and

lead to efficient mapping. The characteristics of the derived structures are:

o Scalability with the size of 2D-DCT,

o Partitionability with the image size N x N,

o Maximum utilization of computational resources, and
o Space efficiency.

2 Our Approach

The design methodology is based on a model of a configurable linear array.
The array consists of identical powerful PEs, connected in a pipeline fashion
with word parallel links between adjacent PEs. The data/control channels can
be configured to communicate with each other at different speeds. The PEs
can also be configured to have various internal organization (functionality). The
parameters of the model include p, the number of PEs, m the amount of total
memory in each PE and w the data width. An external controller/memory
system is assumed to provide the required data/control signals and can store
results computed by the array. I/O operations can only be performed at the left
and right boundary of the array. Several research groups are currently building
such configurable coarse-grained architectures [2, 6, 7, 9].

The key idea of our approach is dynamic interaction between data streams.
The dataflow is determined by the speed and the connectivity of the datapaths.
The configuration of the data paths schedules the computations to be performed
onto a data stream along the array. Furthermore, the functionality of the PE's
can be changed by reconfiguring the connectivity among their functional units,
local memories and data channels.

The parameters of the target architecture p, m, and w are given as input and
are assumed to be independent of the problem size. The three major steps of the
approach are:

Step 1 (Algorithm selection): Selection of an appropriate algorithm for the con-
sidered task.

Step 2 (Primitive structure): Derivation of a “primitive” computation structure
which is independent of the parameters p and m. The derived multirate linear
array determines:

o Internal structure of the PE,

e Control/communication scheme,

o Schedule of Data/Control streams, and
e Speed of Data/Control channels.




Step 3 (Partitioning): “Fitting” the solution obtained in Step 2 into the target
architecture. Partitioned schemes are derived by efficient utilization of the local
memory in the PEs. The new solution depends on the parameters p and m.

3 2D-DCT on Coarse-grained Architectures

Given a N x N image U, we partition it into 8 x 8 submatrices (Ugxg) and then
compute the 2D-DCT of each of them as Vagxg = CUsxsCT = [C(CUsxs)T]" [8].
C is the 8 x 8 cosine transform matrix. This approach reduces the complexity
of the problem from O(N*) to O(N3) {8]. It also leads to decomposition of the
2D-DCT into two ID-DCT blocks. Each block performs the 1D-DCT transform
and transposes the computed matrix as well.

Correspondingly, the 2D-DCT array (Fig. 1a) consists of two identical com-
putational blocks of 8 PE's each. Each block computes and transposes the result
of a 8 x 8 matrix multiplication (Fig. 1a). Data and control travel through the
PEs via differential speed channels (fast/slow channels). The regular nature of
the computation makes the control of the array uniform and simple.
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Fig.1. The 2D-DCT array (1a) and the PE organization (1b).

Figure 1b shows the PE structure. In each PE, one column of the input
submatrix commutes with all the 8 rows of the cosine transform matrix C.
Thus, 8 results are computed per PE. Two 8-word banks of local memory are
used per PE for storing the intermediate results. The contents of each memory
bank are updated for 64 cycles alternatively. The memory contents are read in
order 8 times during this time period via Mem OUT_1l. The values read by
Mem OUT_1 get updated by the incoming data values and are stored back via




Mem IN. The memory bank that is not updated, uploads in order its contents
on OUT via Mem OUT_2. Each memory bank is flushed every 128 cycles for
8 consecutive cycles. The memory contents are uploaded in a repetitive manner
along the array, starting from the leftmost to the rightmost PE.

The cosine transform matrix C is fed into the slow data channel (Fig. 1a)
in column-major order. The submatrix Usxs is fed into the fast data channel
in row-major order. Figure la shows the way in which the data and control
streams are transferred between the two computational blocks. The matrices C
and (C sts)T are fed to the second block via the slow and fast data channels
respectively. In addition, a delay (D) of 56 clock cycles is added to the datastream
of matrix C. By inserting this delay, the datastreams of the two matrices are
synchronized at the input of the second block. This synchronization can also be
performed by using a new data channel. This new channel transports matrix
C from the leftmost PE of the array to the second block. The delay is now
distributed among the first 8 PEs (9 clock cycles per PE). Similar delays are
inserted in the control channels as well.

The order in which the results are computed in each block, assures that the
output matrix is the desirable one. No additional block for transposing the result
of matrix multiplication is needed. Moreover, the uploading mechanism leads to
full utilization of the computational resources of the array. //O operations are
performed only at the right/left boundary of the array. Thus, the required /0
bandwidth is constant.

The latency of the resulting array is 144 clock cycles while its throughput
is same as the clock rate of the array. The multiply-add-update operation in-
side the PEs (Fig. 1b), is the most time consuming part of the computation
and determines the clock rate of the array. By pipelining the datapath of this
operation, the clock rate can be increased up to the computational rate of the
slowest functional unit (multiplier, adder, memory). By replacing matrix C' with
its transpose C7, the same structure can compute the inverse 2D-DCT transform
without any additional changes. On the average, the array requires 3 external
memory accesses and 18 local memory accesses per clock cycle (i.e. 1.13 local
accesses in each PE on the average).

For the sake of illustration, we compare our solution with that proposed
for RaPiD (a coarse-grained configurable architecture) [6]. Both solutions are
based on the row/column decomposition of 2D-DCT to two 1D-DCTs. The time
performance is asymptotically the same. The key difference is the amount of
local memory required and the number of local memory references.

In [6], matrix C is stored locally among the PEs and additional memory
is needed for matrix-transpose operations. A total of 384 words of memory is
used (i.e. m = 24 per PE). On the average, 20 local memory accesses/cycle are
required. Qur solution uses 256 words of local memory for storing intermediate
results. On the average, it requires 18 local memory accesses/cycle. However, it
also requires 3 (compared with 2 in [6]) external memory accesses/cycle. This is
not a limiting factor since RaPiD can support at most two reads and one write
to the external memory per cycle [6].




4 Conclusion

Coarse-grained configurable architectures offer the potential for high compu-
tational efficiency and throughput for coarse-grained computing tasks. In this
paper, a 2D-DCT structure for such architectures was derived, using our dy-
namic data path interaction technique. Space efficiency, high throughput and
constant /0 requirements, are the main advantages of the derived array.

Our technique is based on dynamic interaction of data streams via differential
speed data channels. It also leads to scalable and partitioned mapping schemes
for similar matrix-oriented computations (e.g. matrix-multiplication [4]). These
schemes achieve high computational rates while the required I/O bandwidth is
constant (independent of the size of the array). Moreover, their space efficiency
makes them an attractive solution for coarse-grained configurable architectures.

The work reported here is part of the USC MAARC project. This project
is developing algorithmic techniques for realising scalable and portable appli-
cations using configurable computing devices and architectures. Computational
models and algorithmic techniques based on these models are being developed
to exploit dynamic reconfiguration. In addition, partitioning and mapping issues
in compiling onto reconfigurable hardware are also addressed {1, 3, 4, 5].

References

1. K. Bondalapati and V. K. Prasanna, “Mapping Loops onto Reconfigurable Ar-
chitectures”, Int. Workshop on Field Programmable Logic and Applications, Sep.
1998.

2. D. C. Chen and J. M. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid
Prototyping of Algorithmic-Specific High-Speed DSP Paths”, JEEE Journal of
Solid-State Circuits, 27(12):1985-1904, Dec. 1992.

3. Y. Chung, S. Choi and V. K. Prasanna, “Parallel Object Recognition on an FPGA-
based Configurable Computing Platform”, Int. Workshop on Computer Architec-
tures for Machine Perception, Oct. 1997,

4. A. Dandalis and V. K. Prasanna, “Mapping Homogeneous Computations onto
Dynamically Configurable Coarse-Grained Architectures”, IEEE Symposium on
Field- Programmable Custom Computing Machines, Apr. 1998.

5. A.Dandalis and V. K. Prasanna, “Fast Parallel Implementation of DFT using Con-
figurable Devices”, Int. Workshop on Field Programmable Logic and Applications,
Sep. 1997.

6. C. Ebeling, D. C. Cronquist, P. Franklin and C. Fisher, “RaPiD - A configurable
computing architecture for compute-intensive applications”, Technrical Report UW-
CSE-96-11-03, Nov. 1996.

. R. W. Hartenstein, R. Kress, H. Reinig, “A Scalable, Parallel, and Reconfigurable
Datapath Architecture”, 6th Int. Symposium on IC Technology, Systems € Appli-
cations, Sept. 1995.

8. A. K. Jain, “Fundamentals of Digital Image processing”, Prentice-Hall Inc., En-

glewood Cliffs, NJ, 1989.

9. A. Agarwal et al., “Baring it all to Software: The Raw Machine”, MIT/LCS Tech-

nical Report TR-709, March 1997.

This article was processed using the I#TEX macro package with LLNCS style

=1




High-Performance Embedded Computing Workshop, September 1998
Mapping Signal Processing Loops onto Reconfigurable Hardware'

Kiran Bondalapati and Viktor K. Prasanna
Department of Electrical Engineering Systems
University of Southern California

Los Angeles, CA 90089-2562
{kiran, prasanna}@ceng.usc.edu

Introduction

Configurable systems have evolved from logic emulators and special purpose logic circuits to embedded
system components and general purpose application accelerators. Various reconfigurable architectures are
being explored by several research groups to develop a general purpose configurable system.
Reconfigurable architectures vary from systems which have FPGAs and glue logic attached to a host
computer to systems which include configurable logic on the same die as a microprocessor. Such systems-
on-a-chip have enormous application potential in high performance embedded computing.

Application development using such configurable hardware still necessitates expertise in low level
hardware details. In this paper, we address some of the issues in the development of techniques for
automatic compilation of applications. We develop algorithmic techniques for mapping applications in a
platform independent fashion.

Reconfigurable architectures with their regular structure, adaptive functionality and fine granularity are
well suited for signal processing applications. Regular and repetitive byte-wise or bit-wise operations
which occur in signal processing can be mapped onto reconfigurable architectures to achieve high speed-
up. Most signal processing applications consist of core routines such as FFT, DCT and QRD among others.
Loop constructs which occur in such routines provide an opportunity to develop effective mapping
techniques.

We address the problem of mapping a loop construct onto reconfigurable architectures. We define
problems, based on the Hybrid System Architecture Model (HySAM), which address the issue of
minimizing reconfiguration overheads by scheduling the configurations. A polynomial time solution for
generating the optimal configuration sequence for one important variant of the mapping problem is
presented.

Loop Synthesis

Computations which operate on a large set of data using the same set of operations are most likely to
benefit from configurable computing. Hence, loop structures will be the most likely candidates for
performance improvement using configurable logic. Configurations which execute each task can be
generated for the operations in a loop. Since each operation is executed on a dedicated hardware
configuration, the execution time for the task is expected to be lower than that in software.

Hybrid System Architecture Model (HySAM)

We have developed a parameterized model of a configurable computing system, which consists of
configurable logic attached to a traditional microprocessor. The Hybrid System Architecture is a general
architecture consisting of a traditional RISC microprocessor with additional Configurable Logic
Unit(CLU). The architecture consists of a traditional RISC microprocessor, standard memory, configurable

! This work was supported by the DARPA Adaptive Computing Systems Program under contract
DABT63-96-C-0049 monitored by Fort Hauchuca.




logic, configuration memory and data buffers communicating through an interconnection network. The
parameterized HySAM can model a wide range of systems from board level architectures to systems on a
chip. Such systems include SPLASH, Berkeley Garp and NSC NAPA 1000 among others.

Linear Loop Synthesis

Scheduling a general sequence of tasks, with a set of dependencies, to minimize the total execution time is
known to be an NP-complete problem. We consider the problem of generating this sequence of
configurations for loop constructs which have a sequence of statements to be executed in linear order.
There is a linear data or control dependency between every pair of adjacent tasks. Most loop constructs,
including those occurring in signal processing applications, fall into such a class.

Find an optimal sequence of configurations to execute a linear sequence of statements in a loop.

Problem: Given a sequence of tasks of a loop, T, through T, to be executed in linear order (T, T ... T,),
for N number of iterations, find an optimal sequence of configurations S (=C,C; ...Cy), where §; €
{C;,C3....,Cn} which minimizes the execution time cost E, where E = =123 (tsi + Ajie)- tsi is the execution
time in configuration S; and A ;,, is the reconfiguration cost which is given by R;i..

Optimal Solution for Loop Synthesis

The input consists of a sequence of statements T;...T, and the number of iterations N. We can compute the
execution times t; for executing each of the tasks T; in configuration C;. The reconfiguration costs R;; can
be pre-computed since the configurations are known beforehand. In addition there is a loop setup cost
which is the cost for loading the initial configuration, memory access costs for accessing the required data
and the costs for the system to initiate computation by the Configurable Logic Unit. Though the memory
access costs are not modeled in this work, it is possible to statically determine the loop setup cost. We
present the mapping results without the proofs below:

Lemma 1
Given a sequence of tasks T', T, ...T; and the set of possible configurations {Ci,....Cn} an optimal

sequence of configurations for executing these tasks once can be computed in O( rm’) time.

Lemma 2
An optimal configuration sequence for the tasks for N iterations can be computed by unrolling the loop
only m times.

Theorem 1
The optimal sequence of configurations for N iterations of a loop statement with p tasks, when each task

can be executed in one of m possible configurations, can be computed in O, pr’) time.

The complexity of the algorithm is O(pm’) which is better than fully unrolling the loop (O(Npm’)) by a
factor of O(N/m). This solution can be used even when the number of iterations N is not known at compiie
time and is determined at runtime. The decision to use this sequence of configurations to execute the loop
can be taken at runtime from the statically known loop setup and single iteration execution costs and the
runtime determined N.

Illustrative Example

The Discrete Fourier Transform(DFT) is a very important component of many signal processing systems.
Typical implementations use the Fast Fourier Transform(FFT) to compute the DFT in O(N logN) time. The
basic computation unit is the butterfly unit which has 2 inputs and 2 outputs. It involves one complex
multiplication, one complex addition and one complex subtraction.




We describe an analysis of the implementation to highlight the key features of our mapping technique and
model. The aim is to highlight the technique of mapping a sequence of operations onto a sequence of
configurations. This technique can be utilized to map onto any configurable architecture. We use the timing
and area information from BRASS Garp architecture as representative values. The Garp architecture has a
traditional RISC CPU (MIPS variant) attached to a reconfigurable array of logic blocks on the same die.

For the given architecture we first determine the model parameters. We calculated the model parameters
from published values and have tabulated them in Table 1 below.

Operation Configuration Reconfiguration Time | Execution Time
Multiplication C, 14.4 ps 375 ns
(Fast)
Multiplication C; 6.4 us 52.5ns
(Slow)
Addition C; 1.6 us 7.5 ns
Subtraction Cs 1.6 us 7.5 ns
Shift Cs 3.2 s 7.5 ns

Table 1: Representative Model Parameters for Garp Reconfigurable Architecture ( m =35).

The input application, which is the FFT innermost loop, is analyzed and decomposed. First, the loop
statements have to be decomposed into functions which can be executed on the CLU, given the list of
functions in Table 1. One complex multiplication consists of four multiplies, one addition and one
subtraction. Each complex addition and subtraction consist of two additions and subtractions respectively.
The statements in the loop are mapped to multiplication, addition and subtraction and linearized resulting in
a task sequence T, T, T Ty Tas Ty Tay Tay T, Ts. Here, Ty, is the multiplication task, T, is the addition
task and T is the subtraction task.

When we find the optimal sequence of configurations for this task sequence using our algorithm, the
solution is the configuration sequence C,,C3,C4,C3,C,4 repeated for all the iterations. The most important
aspect of the solution is that the multiplier configuration in the solution is actually the slower configuration.
The reconfiguration overhead is lower for C, and hence the higher execution cost is amortized over all the
iterations of the loop. The total execution time is given by N*13.055 ps where N is the number of iterations.
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Abstract. Reconfigurable circuits and systems have evolved from ap-
plication specific accelerators to a general purpose computing paradigm.
But the algorithmic techniques and software tools are also heavily based
on the hardware paradigm from which they have evolved. Loop state-
ments in traditional programs consist of regular, repetitive computa-
tions which are the most likely candidates for performance enhancement
using configurable hardware. This paper develops a formal methodol-
ogy for mapping loops onto reconfigurable architectures. We develop a
parameterized abstract model of reconfigurable architectures which is
general enough to capture a wide range of configurable systems. Our
abstract model is used to define and solve the problem of mapping loop
statements onto reconfigurable architectures. We show a polynomial time
algorithm to compute the optimal sequence of configurations for one im-
portant variant of the problem. We illustrate our approach by showing
the mapping of an example loop statement.

1 Introduction

Configurable systems are evolving from systems designed to accelerate a specific
application to systems which can achieve high performance for general purpose
computing. Various reconfigurable architectures are being explored by several
research groups to develop a general purpose configurable system. Reconfigurable
architectures vary from systems which have FPGAs and glue logic attached to
a host computer to systems which include configurable logic on the same die as
a MICroprocessor.

Application development onto such configurable hardware still necessitates
expertise in low level hardware details. The developer has to be aware of the
intricacies of the specific reconfigurable architecture to achieve high performance.
Automatic mapping tools have also evolved from high level synthesis tools. Most
tools try to generate hardware configurations from user provided descriptions of

* This work was supported by the DARPA Adaptive Computing Systems Program
under contract DABT63-96-C-0049 monitored by Fort Hauchuca.




circuits in various input formats such as VHDL, OCCAM, variants of C, among
others.

Automatic compilation of applications involves not only configuration gener-
ation, but also configuration management. CoDe-X [8] is one environment which
aims to provide an end-to-end operating system for applications using the Xputer
paradigm. General techniques are being developed to exploit the characteristics
of devices such as partial and dynamic reconfiguration by using the concepts of
Dynamic Circuit Switching [11], Virtual Pipelines [10] etc. But there is no frame-
work which abstracts all the characteristics of configurable hardware and there
is no unified methodology for mapping applications to configurable hardware.

In this paper we address some of the issues in the development of techniques
for automatic compilation of applications. We develop algorithmic techniques
for mapping applications in a platform independent fashion. First, we develop
an abstract model of reconfigurable architectures. This parameterized abstract
model is general enough to capture a wide range of configurable systems. These
include board level systems which have FPGAs as configurable computing logic
to systems on a chip which have configurable logic arrays on the same die as the
MiCroprocessor.

Configurable logic is very effective in speeding up regular, repetitive com-
putations. Loop constructs in general purpose programs are one such class of
computations. We address the problem of mapping a loop construct onto config-
urable architectures. We define problems based on the model which address the
issue of minimizing reconfiguration overheads by scheduling the configurations.
A polynomial time solution for generating the optimal configuration sequence
for one important variant of the mapping problem is presented.

Our mapping techniques can be utilized to analyze application tasks and
develop the choice of configurations and the schedule of reconfigurations. Given
the parameters of an architecture and the applications tasks the techniques can
be used statically at compile time to determine the optimal mapping. The tech-
niques can also be utilized for runtime mapping by making static compile time
analysis. This analysis can be used at runtime to make a decision based on the
parameters which are only known at runtime.

Section 2 describes our Hybrid System Architecture Model(HySAM) in de-
tail. Several loop mapping problems are defined and the optimal solution for one
important variant is presented in Section 3. We show an example mapping in
Section 4 and discuss future work and conclusions in Section 5.

1.1 Related Work

The question of mapping structured computation onto reconfigurable architec-
tures has been addressed by several researchers. We very briefly describe some
related work and how our research is different from their work. The previous
work which addresses the related issues is Pipeline Generation for Loops [17],
CoDe-X Framework [8], Dynamic Circuit Simulation [11], Virtual Pipelines [10],
TMFPGA [14]. Though most of the projects address similar issues, the frame-




work of developing an abstract model for solving general mapping problems 1s
not fully addressed by any specific work.

2 Model

We present a parameterized model of a configurable computing system, which
consists of configurable logic attached to a traditional microprocessor. This
model can be utilized for analyzing application tasks, as regards to their suit-
ability for execution on configurable logic and also for developing the actual
mapping and scheduling of these tasks onto the configurable system.

We first describe our model of configurable architectures and then discuss
the components of the model and how they abstract the actual features of con-
figurable architectures.

2.1 Hybrid System Architecture Model(HySAM)

RISC Memory
RISC Memory
} BUS {
Interconnection Data Buffers
Network 1 }
Corlif;l),cggl;‘r:able Configuration Cor;fio gx;zablc Configuration
Unit Cache O Cache

Fig. 1. Hybrid System Architecture and an example architecture

The Hybrid System Architecture is a general architecture consisting of a tra-
ditional RISC microprocessor with additional Configurable Logic Unit(CLU).
Figure 1 shows the architecture of the HyYSAM model and an example of an
actual architecture. The architecture consists of a traditional RISC micropro-
cessor, standard memory, configurable logic, configuration memory and data
buffers communicating through an interconnection network.

We outline the parameters of the Hybrid System Architecture Model(HySAM)
below.

F : Set of functions Fj ... F, which can be performed on configurable logic.
C : Set of possible configurations Cj ...Cy, of the Configurable Logic Unit.
ti; : Execution time of function F; in configuration Cj.
R;i; : Reconfiguration cost in changing configuration from C; to Cj.




N. : The number of configuration contexts which can be stored in the configu-
ration cache. V
k, K : The reconfiguration time spent in configuring from the cache and external
memory respectively.
W, D : The Width and Depth of the configurable logic which describe the amount
of configurable logic available.
w : The granularity of the configurable logic which is the width of an individual
functional unit.
S : The schedule of configurations which execute the input tasks.
E : Execution time of a sequence of tasks, which is the sum of execution time
of tasks in the various configurations and the reconfiguration time.

The parameterized HySAM which is outlined above can model a wide range
of systems from board level architectures to systems on a chip. Such systems in-
clude SPLASH [3], DEC PeRLE [16], Oxford HARP [9], Berkeley Garp [7], NSC
NAPA1000 [15] among others. The values for each of the parameters establish
the architecture and also dictate the class of applications which can be effec-
tively mapped onto the architecture. For example, a system on a chip would
have smaller size configurable logic(lower W and D) than an board level ar-
chitecture but would have potentially faster reconfiguration times(lower k and
K).

The model does not encompass the memory access component of the com-
putation in terms of the memory access delays and communication bandwidth
supported. Currently, it is only assumed that the interconnection network has

~ enough bandwidth to support all the required data and configuration access. For
a detailed description of the model and its parameters see [2].

3 Loop Synthesis

It is a well known rule of thumb that 90% of the execution time of a program
is spent in 10% of the code. This code usually consists of repeated executions of
the same set of instructions. The typical constructs used for specifying iterative
computations in various programming languages are DO, FOR and WHILE,
among others. These are generally classified as LOOP constructs.
Computations which operate on a large set of data using the same set of
operations are most likely to benefit from configurable computing. Hence, loop
structures will be the most likely candidates for performance improvement using
configurable logic. Configurations which execute each task can be generated
for the operations in a loop. Since each operation is executed on a dedicated
hardware configuration, the execution time for the task is expected to lower
than that in software. Each of the operations in the loop statement might be a
simple operation such as an addition of two integers or can be a more complex
operation such as a square root of a floating point number. The problems and
solutions that we present are independent of the complexity of the operation.




3.1 Linear Loop Synthesis

The problem of mapping operations(tasks) of a loop to a configurable system
involves not only generating the configurations for each of the operations, but
also reducing the overheads incurred. The sequence of tasks to be executed have
to be mapped onto a sequence of configurations that are used to execute these
tasks. The objective is to reduce the total execution time.

Scheduling a general sequence of tasks with a set of dependencies to minimize
the total execution time is known to be an NP-complete problem. We consider
the problem of generating this sequence of configurations for loop constructs
which have a sequence of statements to be executed in linear order. There is a
linear data or control dependency between the tasks. Most loop constructs, in-
cluding those which are mapped onto high performance pipelined configurations,
fall into such a class.

The total execution time includes the time taken to execute the tasks in the
chosen configurations and the time spent in reconfiguring the logic between suc-
cessive configurations. We have to not only choose configurations which execute
the given tasks fast, but also have to reduce the reconfiguration time. It is possi-
ble to choose one of many possible configurations for each task execution. Also,
. the reconfiguration time depends on the choice of configurations that we make.
Since reconfiguration times are significant compared to the task execution times,
our goal is to minimize this overhead.

Problem : Given a sequence of tasks of a loop, T} through T, to be exe-
cuted in linear order( 7y T3 ... Tp), where T; € F, for N number of iterations,
find an optimal sequence of configurations S (=C; C> ... Cy), where S; € C
(={C1,Cs,- . .,Cm}) which minimizes the execution time cost E. E is defined as

g
E= Z tS + An+1
i=1

where ts, is execution time in configuration S; and Aj;4; is the reconfigura-
tion cost which is given by Rii41.

3.2 Optimal Solution for Loop Synthesis

The input consists of a sequence of statements Tj...T,, where each T; € F
and the number of iterations N. We can compute the execution times ¢;; for
executing each of the tasks T; in configuration C;. The reconfiguration costs R;;
can be pre-computed since the configurations are known beforehand. In addition
there is a loop setup cost which is the cost for loading the initial configuration,
memory access costs for accessing the required data and the costs for the system
to initiate computation by the Configurable Logic Unit. Though, the memory
access costs are not modeled in this work, it is possible to statically determine
the loop setup cost.

A simple greedy approach of choosing the best configuration for each task will
not work since the reconfiguration costs for later tasks are affected by the choice




of configuration for the current task. We have to search the whole solution space
by considering all possible configurations in which each task can be executed.
Once an optimal solution for executing up to task T; is computed the cost for

- executing up to task ;41 can be incrementally computed.

Lemmal. Given a sequence of tasks T\T;...T}, an optimal sequence of con-
figurations for executing these tasks once can be computed in O(rm?) time.

Proof: Using the execution cost definition we define the optimal cost of
executing up to task T ending in a configuration C; as Ej;. We initialize the E
values as Fp; =0, Vj: 1<j<m.

Now for each of the possible configurations in which we can execute T}, ; we
have to compute an optimal sequence of configurations ending in that configu-
ration. We compute this by the recursive equation:

Eiy1j =tizij+ming(Egx + Rej) Vj: 1<j3j<m

We have examined all possible ways to execute the task T}, ; once we have fin-
ished executing 7. If each of the values Ejx is optimal then the value E;;; is op-
timal. Hence we can compute an optimal sequence of configurations by comput-
ing the E;; values. The minimum cost for the complete task sequence(7{T5 ... T;)
is given by min;[E,;]. The corresponding optimal configuration sequence can be
computed by using the E matrix.

We can use dynamic programming to compute the E;; values. Computation
of each value takes O(m) time as there are m configurations. Since there are
O(rm) values to be computed, the total time complexity is O(rm?). O)

Lemma 1 provides a solution for an optimal sequence of configurations to
compute one iteration of the loop statement. But repeating this sequence of
configurations is not guaranteed to give an optimal execution for N iterations.
Figure 2 shows the configuration space for two tasks 77 and T5 and four possible
configurations Cj, C2,C3,Cs. Ty can be executed in C; or C3 and task 7> can
be executed in Cy or Cs. The edges are labeled with the reconfiguration costs
and cost for the edges and configurations not shown is very high. We can see
that an optimal sequence of execution for more than two iterations will be the
sequence C; Cy C3 Cy repeated N/2 times. The repeated sequence of C; Cy
which is an optimal solution for one iteration does not give an optimal solution
for N iterations.

(T (Ty) (Tp (T2

Fig. 2. Example reconfiguration cost graph and optimal configuration sequence




One simple solution is to fully unroll the loop and compute an optimal se-
quence of configurations for all the tasks. But the complexity of algorithm will be
O(Npm?), where N is the number of iterations. Typically the value of N would
be very high(which is desirable since higher value of N gives higher speedup
compared to software execution). We assume N > m and N 3> p. We show that
an optimal configuration sequence can be computed in O(pm3) time.

Lemma2. An optimal configuration sequence can be computed by unrolling the
loop only m times.

Proof: Let us denote the optimal sequence of configurations for the fully
unrolled loop by CiCs...C.. Since there are p tasks and N iterations z =
N x p. Configuration C; executes Ti, C2 executes T» and so on. Now after one
iteration execution, configuration Cp41 executes task Ty again. Therefore, task
T, is executed in each of configurations Ci, Cpt1, Caxp41, - -~ Cr—ps1. Since
there are at most m configurations for each task, if the number of configurations
in Cy, Cpt1, Coxps1, + -+ Cz—p41 is more than m then some configuration will
repeat. Therefore, 3 y s.t. Cyspt1 = Ci.

Let the next occurrence of configuration C; for task Ti after Cy.p41 be
C.sp+1- The subsequence C; C2 C3... Cyups1 should be identical to Cyupi1
Cysp+2 - - - Caxpt1. Otherwise, we can replace the subsequence with higher per
iteration cost by the subsequence with lower per iteration cost yielding a bet-
ter solution. But this contradicts our initial assumption that the configuration
sequence is optimal. Hence the two subsequences should be identical. This does
not violate the correctness of execution since both subsequences are executing
a fixed number of iterations of the same sequence of input tasks. Applying the
same argument to the complete sequence C1C5...Cq, it can be proved that all
subsequences should be identical.

The longest possible length of such a subsequence is m * p(p possible tasks
each with m possible configurations). This subsequence of m * p configurations
is repeated to give the optimal configuration sequence for N * p tasks. Hence, we
need to unroll the loop only m times. O]

Theorem 3. The optimal sequence of configurations for N iterations of a loop
statement with p tasks, when each task can be executed in one of m possible
configurations, can be computed in O(pm®) time.

Proof: From Lemma 2 we know that we need to unroll the loop only m times
to compute the required sequence of configurations. The solution for the unrolled
sequence of m * p tasks can be computed in O(pm®) by using Lemma 1. This
sequence can then be repeated to give the required sequence of configurations
for all the iterations. Hence, the total complexity is O(pm3). )

The complexity of the algorithm is O(pm?®) which is better than fully un-
rolling (O(Npm?)) by a factor of O(N/m). This solution can also be used when
the number of iterations N is not known at compile time and is determined
at runtime. The decision to use this sequence of configurations to execute the




loop can be taken at runtime from the statically known loop setup and single
iteration execution costs and the runtime determined N.

4 Illustrative Example

The techniques that we have developed in this paper can be evaluated by using
our model. The evaluation would take as input the model parameter values
and the applications tasks and can solve the mapping problem and output the
sequence of configurations. We are currently building such a tool and show results
obtained by manual evaluation in this section.

The Discrete Fourier Transform(DFT) is a very important component of
many signal processing systems. Typical implementations use the Fast Fourier
Transform(FFT) to compute the DFT in O(N log N) time. The basic computa-
tion unit is the butterfly unit which has 2 inputs and 2 outputs. It involves one
complex multiplication, one complex addition and one complex subtraction.

There have been several implementations of FFT in FPGAs [12, 13]. The
computation can be optimized in various ways to suit the technology and achieve
high performance. We describe here an analysis of the implementation to high-
light the key features of our mapping technique and model. The aim is to high-
light the technique of mapping a sequence of operations onto a sequence of
configurations. This technique can be utilized to map onto any configurable ar-
chitecture. We use the timing and area information from Garp [7] architecture
as representative values.

For the given architecture we first determine the model parameters. We cal-
culated the model parameters from published values and have tabulated them
in Table 1 below. The set of functions(F) and the configurations(C) are out-
lined in Table 1 below. The values of n and m are 4 and 5 respectively. The
Configuration Time column gives the reconfiguration values R. We assume the
reconfiguration values are same for same target configuration irrespective of the
initial configuration. The Execution Time column gives the t;; values for our
model.

Function Operation Configuration{Configuration|Execution
Time Time
F;  |[Multiplication(Fast) Cy 14.4 ps 37.5 ns
Multiplication(Slow) Cs 6.4 ps 52.5 ns
Fy Addition Cs 1.6 us 7.5 ns
F; Subtraction Cy 1.6 ps 7.5 ns
Fy Shift Cs 3.2 us 7.5 ns

Table 1. Representative Model Parameters for Garp Reconfigurable Architec-
ture

The input sequence of tasks to be executed is is the FFT butterfly operation.
The butterfly operation consists of one complex multiply, one complex addition




and one complex subtraction. First, the loop statements were decomposed Into
functions which can be executed on the CLU, given the list of functions in Ta-
ble 1. One complex multiplication consists of four multiplications, one addition
and one subtraction. Each complex addition and subtraction consist of two addi-
tions and subtractions respectively. The statements in the loop were mapped to
multiplications, additions and subtractions which resulted in the task sequence
T+ Ty Ty Tony Tay Te, T, Ta, Ty, Ts. Here, Tp, is the multiplication task
mapped to function Fy, T, is the addition task mapped to function F> and T,
is the subtraction task mapped to function F3.

The optimal sequence of configurations for this task sequence, using our algo-
rithm, was C;,C3,C4,C3,C4 repeated for all the iterations. The most important
aspect of the solution is that the multiplier configuration in the solution is actu-
ally the slower configuration. The reconfiguration overhead is lower for C, and
hence the higher execution cost is amortized over all the iterations of the loop.
The total execution time is given by N x 13.055 us where N is the number of
iterations.

5 Conclusions

Mapping of applications in an architecture independent fashion can provide a
framework for automatic compilation of applications. Loop structures with reg-
ular repetitive computations can be speeded-up by using configurable hardware.
In this paper, we have developed techniques to map loops from application pro-
grams onto configurable hardware. We have developed a general Hybrid System
Architecture Model(HySAM). HySAM is a parameterized abstract model which
captures a wide range of configurable systems. The model also facilitates the
formulation of mapping problems and we defined some important problems in
mapping of traditional loop structures onto configurable hardware. We demon-
strated a polynomial time solution for one important varfant of the problem.
We also showed an example mapping of the FFT loop using our techniques. The
mode] can be extended to solve other general mapping problems. The applica-
tion development phase itself can be enhanced by using the model to develop
solutions using algorithm synthesis rather than logic synthesis.

The work reported here is part of the USC MAARC project. This project
is developing algorithmic techniques for realizing scalable and portable applica-
tions using configurable computing devices and architectures. We are developing
computational models and algorithmic techniques based on these models to ex-
ploit dynamic reconfiguration. In addition, partitioning and mapping issues in
compiling onto reconfigurable hardware are also addressed. Some related results
can be found in [1], [4], [5], [6].
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Abstract

FPGAs can perform better than ASICs if the logic mapped onto
them is optimized for each problem instance. Unfortunately, this
advantage is often canceled by the long time needed by CAD tools
to generate problem instance dependent logic and the time required
to configure the FPGAs.

In this paper, a novel approach for runtime mapping is proposed
that utilizes self-reconfigurability of multicontext FPGAs to achieve
very high speedups over existing approaches. The key idea is to
design and map logic onto a multicontext FPGA that in turn maps
problem instance dependent logic onto other contexts of the same
FPGA. As a result, CAD tools need to be used just once for each
problem and not once for every problem instance as is usually done.

To demonstrate the feasibility of our approach, a detailed imple-
mentation of the KMP string matching algorithm is presented which
involves runtime construction of a finite state machine. We im-
plement the KMP algorithm on a conventional FPGA (Xilinx XC
6216) and use it to obtain accurate estimates of performance on
a multicontext device. Speedups in mapping time of = 108 over
CAD tools and more than 1800 over a program written specifically
for FSM generation were obtained. Significant speedups were ob-
tained in overall execution time as well, including a speedup rang-
ing from 3 to 16 times over a software implementation of the KMP
algorithm running on a Sun Ultra 1 Model 140 workstation.

1 Introduction

By exploiting the reconfigurability of FPGAs, significant perfor-
mance improvements have been obtained over other modes of com-

This work was supported by the DARPA Adaptive Computing Systems
Program under contract DABT63-96-C-0049 monitored by Fort Hauchuca.
Alessandro Mei is with the Department of Mathematics of the University of
Trento, Italy. This work has been done during his stay at the USC.

putation for several applications. However, there are two serious
problems that prevent FPGAs from being utilized to their fullest
potential:

e long mapping time;
¢ long reconfiguration time.

Mapping time refers to the time to compile, place and route the logic
to be used on the FPGA; reconfiguration time is the time needed to
load the configuration data into the FPGA. Mapping computation
onto FPGA:s is typically done using CAD tools. It is a time con-
suming process and can take anywhere from a few minutes to a few
days. In order to take advantage of the reconfigurability of FPGAs,
a new mapping should be created for every problem instance. As a
result, the mapping time becomes very critical and it is extremely
important to reduce it.

The time required to completely reconfigure an FPGA is typically
about 1 ms. Since reconfiguration time needs to be amortized over
computation time, frequent run-time reconfiguration is not possible.
It should be noted that even partial reconfiguration is not a com-
plete solution to this problem. Since reconfigurability is the key
advantage of FPGAs over other modes of computation, reduction
of reconfiguration time is very important.

In this paper we show how to significantly reduce both mapping
and reconfiguration times through self-reconfiguration. By self-
reconfiguration we mean that not only does the FPGA load the con-
figuration information itself, but also that it generates the configu-
ration. We show how self-reconfiguration can be efficiently imple-
mented using multicontext FPGAs (FPGAs having more than one
configuration context on-chip). Although, such devices have been
primarily designed to reduce reconfiguration times, we show how
they can be used for self-reconfiguration as well.

Self-reconfiguration reduces mapping time because all logic to be
configured is generated by previously configured logic. The map-
ping logic is designed to generate highly specific mapped logic and
is therefore much simpler than general purpose CAD tools. Also, it
executes on an FPGA. For these reasons, the mapping time is con-
siderably lesser than mapping via software running on a host ma-
chine. Self-reconfiguration reduces reconfiguration time because
configurations are generated and stored on-chip which is much
faster than loading it from an external source. Also, multicontext
FPGAs can very quickly switch between stored configurations. As
aresult of these improvements, self-reconfiguration allows runtime
generation of logic and its use to be interwoven in ways that would
be impractical otherwise. We demonstrate this power and flexibil-
ity by a string matching algorithm implementation. Even though
our early results are very promising, a deep investigation is needed
to fully understand what can be achieved by using this approach
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Figure 1:

to reconfigurable computing, and it seems to be a challenging and
wide open research area. .

In the first part of the paper, we introduce self-reconfiguration and
its advantages (Section 2) and how it is achieved using multicon-
text FPGAs (Section 3). In the second part, we introduce the KMP
algorithm (Section 4) and present detailed implementation descrip-
tion and performance analysis (Section 5). The conclusion is in
Section 6.

2 Introduction to Self-Reconfiguration

2.1 Problem instance dependence and hard-
ware compiling

The effectiveness of reconfigurable computing is better exploited by
building hardware solutions for each single instance of a given prob-
lem. That essentially means that a good application for reconfig-
urable devices should read the input of the problem (the instance),
compute instance dependent logic, i.e. logic optimized for that par-
ticular instance, and load it into a reconfigurable device to solve the
problem. Applications which produce instance independent logic
to be loaded onto a reconfigurable device are simply not exploit-
ing the power of reconfiguration. In that case the logic mapped is
static, depends only on the algorithm used, and is not conceptually
different from ASIC approach.

A large class of applications developed for reconfigurable devices
can thus be modeled in the following way (see Figure 1(a)). A pro-
cess M reads the input problem instance. Depending on the instance
a logic E, ready to be loaded, is computed such that it is optimized
to solve that single problem instance. This process is usually ex-
ecuted by the host computer. Let T denote the time to perform
this.

After reconfiguring the device. E is executed. Let Ta g denote
the time to reconfigure. The time T required for the execution
includes the time needed for reading the inputs from the memory
and producing the output. Therefore, the time required by the ex-
ecution of a single iteration of the computation described above is
T1 =Ty +Tume + TE.

The actual execution time on the reconfigurable device is Te. It is
often very low compared with the time needed to solve the same
problem by using a software solution, due to hardware efficiency.
This has been used to claim that very high speed-up can be achieved
by reconfigurable computing. It should be clear that this is not a fair
way to compare the performance of reconfigurable systems. How-
ever. this is frequently done. We believe that all times involved in
computing the solution to a given instance of a problem should be
taken into account.

The time Tas required by M varies considerably among applica-
tions, and usually ranges from a few minutes to several hours, and,
for some particularly complex logic, even days! The reason lies in
the fact that usually CAD tools are used. CAD tools are very pow-
erful and general applications, but their flexibility is obtained at the
expense of large computing time. In fact, what is actually done,
is to compile, using a CAD tool, each single instance to derive the
logic E to be used to solve the problem.

The fact that T is usually large limits the effectiveness of recon-
figurable computing. In [1], for example, a shortest paths algorithm
is implemented. In that case, the execution time T for a problem
instance is order of microseconds, while the mapping time Ty is or-
der of hours. Also in [15], the proposed algorithm for SAT usually
takes hours to be mapped. SAT is NP-complete, and thus a good
candidate to make T affordable since T’ is usually very high. In
spite of that, when mapping time is taken into account, only mod-
est speedups are obtained. The time Tv g depends on to the device
used. For FPGAs, for example, it is typically around 1 millisecond,
and it is related to the bottle-neck represented by the bus connecting
the host computer to the FPGA board. Even if the reconfiguration
time T g is often much lower than the mapping time, it can still
be unacceptable for most real-time applications.

Some efforts have been made to overcome these problems. For ex-
ample, in [7] CAD Tools are used only once to compute a generic
skeleton logic. Then, for each problem instance, some limited
changes are made by the host computer to build an instance depen-
dent circuit and load it into the FPGA board. This is an interesting
technique that can be useful to lower the mapping time T, but
cannot avoid the bottle-neck represented by the bus connecting the
host computer to the FPGA board. In {7], Tp + T g is around 3
seconds, still too high for a large class of applications.

This paper presents a novel approach to reconfigurable computing
which is able to dramatically reduce T and Targ. Since M has to
be speeded up, what we propose is to let fast reconfigurable devices
to be able to execute it (see Figure 1(b)). In case a single FPGA is
being used, this essentially means that the FPGA should be able to
read from a memory the problem instance, configure itself, or a part
of it, and execute the logic built by it to solve the problem instance.
Evidently, in this case M is itself a logic circuit, and cannot be as
complex and general as CAD tools are.

Letting FPGA system execute both M and E on the same chip gives
the clear advantage that CAD tools are used only once, in spite of
classical solutions where they are needed for computing a logic
for each problem instance. This is possible since the adaptations,




needed to customize the circuit to the requirements of the actual
input, are performed dynamically by the FPGA itself, taking advan-
tage of hardware efficiency.

Another central point is that the bus connecting the FPGA system to
the host computer is now only used to input the problem instance,
since the reconfiguration data are generated locally. In this way, the
bottle-neck problem is also handled.

These ideas are shown to be realistic and effective by presenting a
novel implementation of a string matching algorithm. String match-
ing is one of the most important problems in Computer Science,
both from a theoretical and from a practical point of view. In Sec-
tion 5, a detailed implementation is described, and T + TimE is
shown to be around 28us, for patterns 16 character long, achieving
a dramatic speed-up over classical FPGA computations.

2.2 Self-reconfiguration

The main feature needed by an FPGA device to fulfill the require-
ments needed by the technique shown in the previous section is self-
reconfigurability. This concept has been mentioned few times in the
literature on reconfigurable architectures in the last few years [6][5].
In spite of that, to the best of our knowledge not only no one de-
vised an application that actually used that feature, but no one even
investigated to understand how self-reconfiguration could be used
to achieve superior performance.

The concept of self-reconfiguration was earliest presented in [6],
where a small amount of static logic is added to a reconfigurable
device based on an FPGA in order to build a seif-reconfiguring pro-
cessor. Being an architecture oriented work, no application of this
concept is shown.

The recent Xilinx XC6200 is also a self-reconfiguring device, and
this ability has been used in [5] to define an abstract model of
virtual circuitry, the Flexible URISC. This model still has a self-
configuring capability, even though it is not used by the simple ex-
ample presented in [5]. '

All these devices are potentially capable of self-reconfiguring, and
are thus able of implementing the ideas presented in this paper.
However, moving the process of building the reconfigurable logic
into the device itself requires a larger amount of configuration mem-
ory in the device with respect to traditional approaches. For this
reason, multi-context FPGAs seem to answer better to these re-
quirements, since they have been shown to be able to store a large
amount of different contexts (see [12], for example, where a self-
reconfiguring 256-context FPGA is presented).

3 Multicontext FPGAs

As described in the Introduction, the time required to reconfigure a
traditional FPGA is very high. To reduce the reconfiguration time, a
device having more than one configuration context was proposed in
[4]. Several such multicontext FPGAs have been recently proposed

[13)(11](14] {8][3].

These devices have on-chip RAM to store a number of configura-
tion contexts, varying from 8 to 256. At any given time, one context

governs the logic functionality and is referred to as the active con-
text. Switching contexts takes 5-100 ns. This is several orders of
magnitude faster than the time required to reconfigure a conven-
tional FPGA (=1 ms).

For self-reconfiguration to be possible, the following two additional
features are required of multicontext FPGAs:

o The active context should be able to initiate a context switch—
no external intervention should be necessary.

o The active context should be able to read and write the config-
uration memory corresponding to other contexts.

The multicontext FPGAs described in [13}{11][14] satisfy the
above requirements and hence are capable of self-reconfiguration’.

4 The KMP Algorithm for String Matching

The String Matching problem consists of finding all occurrences of
a pattern P, of length m, in atext T, of length n, m < n, with P
and T being strings over a finite alphabet .

Besides being a fundamental problem in Computer Science from a
theoretical point of view, String Matching is of paramount practi-
cal relevance. Important examples of its application can be easily
found in the areas of Text Processing, Pattern Recognition, Image
Understanding, Databases, and Biology, to name a few. In partic-
ular, applications of String Matching in Biology are of utmost im-
portance, since finding patterns of DNA inside longer sequences is
becoming central in the analysis of human genome.

A naive algorithm that can be used to solve String Matching con-
sists in trying to match the pattern at each position in the text by a
“brute force” search. Meaning that for each position ¢ in the text,
we perform a do-loop operation to check whether all m characters
of P match m characters of T starting from position ¢. If we found
a mismatch, say at position 7 + h, we can stop this search and try at
position ¢ + 1. This leads to a simple, but slow, algorithm, whose
time complexity is O(mn), in the worst case, and thus quite far
from optimality.

It can be remarked, however, that if we find a mismatch at position
i, it makes sense to try at position ¢ + 1 only if the pattern is such
that its first A — 1 characters, which are equal to the A — 1 charac-
ters starting at position 7 in the text, are exactly equal to the h — 1
characters starting at position 2 in the pattern itself. If this is not
the case, we waste our time looking for a match at position 7 + 1;
moreover, if this is the case, we also waste time comparing the first
h — 1 characters of the pattern, from position ¢ + 1 to position i + h
excluded in the text, since we already know that we are going to
find all matches.

More generally, after finding a mismatch at position ¢ + h, we can
jump in the pattern at the end of the longest prefix that is also a
suffix of the first & character in the pattern, and keep on comparing
the character at position i + h in the text. There is no way to find an

The string matching implementation described later also requires con-
figuration memory writes to take only a few clock cycles. At least one of the
devices [11] allows this and others may also.




Procedure TextSearch(P. T)

n = length(T):

= length(P):.
7w = ComputePrefixFunction(P);
g=0;i=0:

while (i < n) do
if (T'[¢] # P[g])and(g == 0) then
++H:
else if (T'[¢] # Plg])and(g # 0) then

g = mqj;
elseif (T[1] ==
++i++¢g
else if (T'[:] == Pg])and(g == m — 1) then
print “match found™;
++i++q;
end if
end while

[ghand(g # m — 1) then

Function ComputePrefixFunction(P)

= length(P);
w[l] = 0;
1=1,9=0;

while (i < m) do
if (P[:] # Plg})and(g == 0) then

++i;
wfi) = 0;

else if (P[i] # P|[g])and(g # 0) then
g = [q];

else if (P[i] == P[g]) then
++i++4q
il = g;

end if

end while

Figure 2: KMP algorithm Phase 2 (Text search) and Phase 1
(Prefix function Computation).

occurrence of the pattern before that point, and, at the same time, we
can take advantage of internal symmetries of the pattern avoiding
checking characters in the text more than needed.

This is the key idea of the Knuth-Morris-Pratt algorithm, which
computes, for each position h in the pattern, the longest prefix that
is also a suffix of the first k character of the pattern itself. This in-
formation is encapsulated in a function 7 such that w[h] = j if and
only if the first j characters of P are the longest proper prefix that
is also a suffix of the first h characters of P. Note that = does not
depend on the text, and can be thus precomputed by looking at the
pattern only.

The KMP algorithm is a classical 2-phase computation. It takes
in input the pattern P, performs a precomputation on P to get
the function =, and then, in the second phase, uses 7 to speed-up
the search inside the text. Using terminology introduced earlier,
Twn + Tamg is the time taken by Phase 1 while the time taken by
Phase 2 is Tg. The algorithms used for Phase 1 (Prefix function
computation) and Phase 2 (Text search) are shown in detail in Fig-
ure 2. The algorithms shown have been written such that they cor-
respond closely to their hardware implementation. It can be proved
that KMP is optimal, requiring O(m + n) to perform both phases
(see [2] for a proof and a detailed description of the KMP algo-
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Figure 3: Example of 7 function for a pattern p = ababca. The
index g of the algorithms in Figure 2 can be implemented as a
pointer to a node, and an edge from the node h to the node j is
present if and only if =[] = j.

rithmy).

KMP seems to be an ideal candidate to be implemented on recon-
figurable devices. Indeed, thanks to reconfigurability, the function
, depending on the input of each single instance of the problem,
can be implemented in hardware, thus considerably speeding-up the
searching phase. A good way to visualize the function 7 is given in
Figure 3, where each node indicate a position in the pattern, and an
edge is present between nodes h and j if and only if #[h] = j. In
this way, the value of the index ¢ in the the KMP-Matcher, shown
in Figure 2, can be stored as a pointer to a node, and at each step
of computation the pointer g moves either to the next node g + 1, if
a match is found, or to the node «[g] indicated by the edge starting
from node g, otherwise. This behavior is very similar to that of a
finite state machine, and it is well suited for hardware implementa-
tion, as will be shown in the next section.

Our implementation is devised to handle an on-line version of

"String Matching. Meaning that our FPGA system is able to read

an incoming pattern, configure itself depending on it, and solve the
problem on an incoming text. Moreover, it is possible to change the
problem instance by furnishing a new pattern to the system. In this
case, the FPGA reconfigures itself to optimize depending on the
new pattern, and is ready to solve the new instance on an incom-
ing text. All these operations (including reconfiguration) are per-
formed inside the FPGA system itself, without involving the host
computer.

5 Implementation of the KMP algorithm

In this section, we present the details of how the KMP algorithm
exploiting self-reconfiguration would be implemented on a multi-
context FPGA. Unfortunately, multicontext FPGAs are not com-
mercially available. Therefore, we implement the logic on a con-
ventional FPGA and simulate self-reconfiguration via software. We
begin by describing in Section 5.1 how the algorithm is realized in
hardware without discussing any FPGA specific features. Since the
FSM is the most important component, its structure and runtime
construction are described in detail. Section 5.2 presents the details
of how it would be implemented on a multicontext FPGA. The ac-
tual implementation on a conventional FPGA (Xilinx XC6216) is
presented in Section 5.3. Finally, performance is evaluated in Sec-
tion 5.4.




5.1 Hardware Realization

We describe Phase 2 of the algorithm first. Logic is.constructed at
runtime in Phase 1 and used in Phase 2. Knowing what the con-
structed logic looks like and how it works makes it easier to under-
stand the subsequent description of Phase 1.

5.1.1 Phase 2: Text Search

The datapath used for Phase 2 (see Figure 2) is shown in Figure
4. The text T is stored in external memory. The index 7 in the
algorithm is essentially an address counter used to fetch the next text
character. The entire pattern P is stored on-chip. The comparator
is used to compare the appropriate text and pattern characters. The
last major logic block implements the prefix function = .

The operation of the datapath can be easily understood by looking
at Figure 4. Each clock cycle, the four if conditions are evaluated
in paralle] but only one of the statements is executed. The values
of the signals char match, state_zero and state.final
determine which of the four paths is selected. The controller gen-
erates appropriate values for the signals inc_.i, inc.match,
next_state and inc_state. If next_state is 0, g remains
unchanged for the clock cycle. Otherwise, + + g (state_inc=1)
or ¢ = wlg] (state_inc=0) is performed. To improve perfor-
mance, the implementation overlaps fetching T'[¢] with datapath op-
eration.

Prefix Function FSM  As described in Section 4, the prefix func-
tion 7 can be implemented as a FSM. The FSM contains m states,
0 to m — 1. The state corresponding to the value of g is the current
state.

There are two standard techniques for implementing FSMs using
programmable logic [9]. One way is using a LUT that stores the
FSM states in a (typically binary) encoded form. As the FSM size
increases, the speed decreases and area required increases because
of the wider and deeper decoding logic and the associated routing.
Also, in the our case two comparators would be required for gener-
ating the state_zero and state_final signals.

The other approach is to use the One-Hot Encoding (OHE)
scheme—one flip-flop is associated with each state. At anytime
exactly one flip-flop has a 1 bit signifying the current state. This
approach is simpler and more efficient as it requires lesser decoding
logic and suits the flip-flop rich architecture of FPGAs.

We exploit properties of 7 to develop a particularly compact and
simple implementation of the FSM. There are exactly two possible
transitions from each state. One of these is to the following state
(forward edge) and the other is to one of the previous states (back-
ward edge). These properties simplify the routing considerably.
In addition, the signals initial_state and final_state are
simply the outputs of the initial and final state flip-flops respectively,
eliminating the need for any comparators.

5.1.2 Phase 1: Prefix Function Construction

As can be seen from Figure 2, Phase 1 is similar to Phase 2. Two
minor differences are that ¢ is initialized to 1 and the pattemn P is

compared with itself instead of text T'. The only major difference
is additional steps for constructing the prefix function 7 through
assignments to w[z]. In terms of logic. these assignments translate
to constructing the back edges of all the states of the FSM. Con-
struction of the FSM at runtime and the logic required to do so are
described below.

Online FSM Construction The FSM for the given pattern is con-
structed using a preconfigured template. The FSM template, shown
in Figure 5 is independent of the pattern and constructed before-
hand. Flip-outputs go to the next flip-flop (forward edges) and to
horizontal wires (which runtime back edge construction described
below). At any time during execution, only the flip-flop for state
g has a 1-bit. The template also has storage for the pattern P with
P[g] available as the output of the rightmost mux.

At runtime, the first step is to customize the template for the input
pattern size m. This is done by connecting the output of flip-fiop
for state m — 1 to the horizontal wire that is the lower input to
the state O flip-flop. This is followed by loading and storing the
pattern on-chip. Next Phase 1 starts, and the execution of statements
w[i + 1] = g and x[¢ + 1] = 0 in the Phase 1 algorithm results in
the construction a back edge from state 7 + 1 to state g or state 0
respectively. As can be seen from Figure 6, this is only a matter of
inserting an OR gate at the appropriate position. The piece of logic
that constructs back edges takes g and 7 as inputs and computes the

position (ith row and qth column) at which the OR gate is to be
inserted. See Section 5.3 for implementation details of this logic.

In this manner, problem instance dependent logic is mapped within
clock cycles, instead of minutes or hours that would be required if
software was in the loop. Another interesting feature is that in FSM
construction alternates with FSM use (whenever m is read in Phase
1). Such a fine grained interleaving would not be possible without
self-reconfiguration.

5.2 Proposed Implementation on a multicon-
text FPGA

Before computation begins, the pattern P, pattern length m, text T
and text length n are stored in external memory that can be accessed
by the multicontext FPGA. The following logic is configured onto
four contexts of the FPGA. Context O contains control logic that
governs overall execution of the algorithm. Context 1 has logic for
customizing the FSM for given m. Context 2 contains datapath for
Phase 1 of the KMP algorithm as well as logic for runtime FSM
construction. Hardwired into this logic are configuration bits for
the OR-gate and its connections (referred to as or_gate). The num-
ber of configuration memory writes needed for OR-gate insertion is
Sor_gate- The FSM is constructed on context 3 in Phase 1. During
Phase 2 it includes the datapath required for Phase 2 as well.

Figure 7 shows the computation performed in each context (compu-
tation done in context 3 during Phase 1 and Phase 2 is shown as con-
text 3a and context 3b respectively). At the end of each statement
is the time required by the logic to execute it. The times are ex-
pressed in terms of ¢.m (configuration memory read or write time),
tem (external memory read or write time), t.x (one clock cycle
time), ¢.s (time required to switch contexts) and sor_gate. Compu-
tation starts with context 0 switching to context 1 which customizes
the FSM size. The FSM is constructed on a separate context since




Zero

: Data reg Comparator
ﬁ‘temal > TTY [ Tk
emory '
; char_match — 1 [
T[O...n-1] Address
<: Counter i Pattern
' P[0...m-1]
. FPGA ] [q
E Prefix function
: {0...m-1]
H state_zero et
E Control next_state
! state_final logic
. inc_state
i char_match ———= inc_match
E I—— Match Counter

Figure 4: Datapath for Phase 2.

state 5

state 4

state 3

state 2

state 1

V state 0

1
-

. State 0

[ state 1

state 2

DB

state 3

D T H

state 4

state 5

inc_state

pl0]

pli]

pl2]

pl3]

pl4}

pis]

Figure 5: FSM template. The OR-gate implements #[1] = 0.




1<

G

state 0 _ state 1 - state 2 L

VP D

state 3 state 4 state 5

i inc_state

f

a b a

Figure 6: Back edges built through OR-gate insertion. Corresponds to FSM in Figure 3.

the currently executing context cannot modify itself. Doing do re-
quires data sharing between contexts which is possible on multicon-
text FPGAs [13]. In Figure 7, read_em and write_em refer to an
external memory access while read_cm and write.cm refer to a
context memory access. Note that no external intervention by the
host machine is required in constructing the FSM.

Next, the logic on context 2 performs Phase 1 of the KMP algo-
rithm. Self-reconfiguration is performed via configuration mem-
ory writes to construct the appropriate back edges. Note how the
FSM back edge construction alternates with use of the partially con-
structed FSM (by switching to context_3) alternates every few clock
cycles. Finally context O connects the FSM to the text search dat-
apath already present on context 2. Since their positions are fixed
beforehand, the datapath can be interfaced with the runtime gener-
ated FSM to form the complete logic required for performing Phase
2 of the KMP algorithm.

The context switching is similar to context switching of processes
on a uniprocessor. At a time only one of the FPGA contexts exe-
cutes and switching to a context resumes its execution from where
it had stopped earlier due to a context switch. This is possible be-
cause the state of the active context (bits stored in all the flip-flops)
are saved before switching to a different context.

We now derive Ts, Ta e and Tk in terms of the times in Figure
7. T is the time spent in write_cm operations. From the times in
Figure 7,

Tvme = (m - 1)30r_gatetcm (1)

The remaining time spent in contexts 1, 2 and 3a is T, the time
required to compute the FSM mapping and is given by 2

Tra = (dm — tes + (M + Dtem + (Tm — 4t (2)

Finally, the execution time Tg is the time spent in Phase 2 which

2This is the worst case T which corresponds to a pattern containing all
identical characters except the last one.

Te = (2n — —)tax )]
m

A few remarks on how the above times were determined— read_em
P and write_.cm P are pipelined and take (m + 1)tem time. In
context 3b, only one if statement is executed each iteration taking
tcix time. Similarly context 3a also takes ¢cix time. The execution
time of context 2 depends upon the input pattern and the worst case
occurs when all characters are identical and the last if statement is
executed each iteration. The worst case time is used in T',, above.

5.3 Actual implementation on a conventional
FPGA

We implement logic described for contexts 2, 3a and 3b in the previ-
ous section on a Xilinx XC 6216 device. From the implementation
we determine ¢y, and tem and tem*. And by using at.s value based
on published context switching times, we obtain using equations 1,
2 and 3, an accurate performance estimate of the KMP algorithm
implemented on an abstract multicontext version of the XC 6216.
The feasibility of such a device should not be in doubt since the ex-
tensions we assume have been demonstrated in various multicontext
devices built so far.

The VCC Hotworks board was used for the implementation. Re-
quired logic was specified in structural VHDL and translated to
EDIF format using velab. XACT 6000 was used for place, route and
configuration file generation. For debugging and runtime support,
XC 6200 Inspector and PCI Test were used. The 128 KB of SRAM
(referred to as external memory henceforth) on the VCC board was
used to simulate the configuration memory of a multicontext device.

3This is the worst case Tz which corresponds to text containing m char-
acter repetitions in each of which the first m —1 characters match the pattern
and the last one does not.

4We make the conservative assumption that term = tem.




context_0

/*Stage 1 of FSM construction.*/
switch context._1; ¢.s

/*Stage 2 and Phase 1.*/

switch context_2; .

/*Phase 2.%/

connect Phase 2 datapath; t.ix
switch context.3; tcs

+ + i inc_state = 1; ik
switch context.3; {cs
/*Create back edge for n[i] = g.*/
compute OR gate insertion position; tcx
write.cm or_gate; Sor_gatetcm
end if
end while
switch context.0; ¢cs

context_1

read_em m; tem

/*Connect final state output to state 0 input.*/
connect flip-flopm — 1; tcix

/*Store pattern characters in pattern registers.*/
read_em P; micnm

write_.cm P; mten,

switch context 0; ¢,

context_3a

if (inc_state == 1) then

if (g ==m — 1) then g = 0; else + + ¢; tcix
end if
if (inc_state # 1) then

q = g]; teik
end if
switch context_0; £.s

context_2
1=1,9=0,0
read_em m; tem
while (: < m) do
7* One if statment executed every iteration.*/
if (P[i] # Plg])and(g == 0) then
++i; Lok
/*Create back edge for n[i] = 0.%/
compute OR gate insertion position; £cix
write.cm or_gate; Sor_gatetem
end if
if (P[] # Plg})and(g # 0) then

/*Switch to FSM context and perform g = w[g].*/

state_inc=0; ¢
switch context_3; ¢,
end if
if (P[i] == PJq]) then

/*Switch to FSM context and perform + + ¢.*/

context_3b
1=0,¢=0;0
read_em n; tem
while (: < n) do
/* One if statment executed every iteration.*/
if (T[z] # Plg))and(g == 0) then
++i; etk
end if
if (T[] # Plg])and(g # 0) then
q = 7ig]; teix
end if
if (T'[{] == Plg))and(q # m — 1) then
++ i+ 4+ g tar
end if
if (T'[i] == Plg))and(g == m — 1) then
/*Pattern match found.*/
+ + ¢ + + ¢; + + matches; tox
end if
end while

Figure 7: KMP algorithm implementation on a multicontext FPGA.
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For Phase 1 we implement on the XC 6216 the Phase 1 datapath,
OR-gate construction logic and the FSM template. All this logic
corresponds to contexts 2 and 3a in Figure 7. For each back edge,
the address in configuration memory where the OR-gate is to be in-
serted is written out to external memory (in one clock cycle). This
information is used to modify the configuration file which is used to
reconfigure the FPGA for computing the next back edge. Knowing
row and column of a logic cell, it is trivial to compute the corre-
sponding configuration addresses since the row and column num-
bers directly form a part of the 6200 address. The logic for OR-gate
computation is thus quite simple and is shown in Figure 8. Insert-
ing the OR-gate and making the appropriate connections needs just
24 bits of configuration data which is embedded in the logic itself.
Three separate writes are required however since each byte needs to
be written to a separate address. Thus sor_gate = 3. For Phase 2 we
implement logic corresponding to context 3b on the XC 6216. The
logic searches through text stored in the external memory just as a
multicontext FPGA would since no context switching is involved in
this phase.

5.4 Performance Evaluation

From the implementation description in Section 5.3 it should be
clear that ¢, = tem = tox. Based on published literature, we
make the conservative assumption that t.s = 100ns. We deter-
mine t.x as follows. For a given pattern size, we increase the
clock frequency till any further increase makes the implemented
logic stop working correctly. The corresponding clock period is the
value of toix. teir increases somewhat with pattern size since the
corresponding FSM is bigger and hence the critical path is longer.
Plugging all the above values into equations 1, 2 and 3 for pattern
size m varying from 4 to 16, and text size n = 10* characters, we
obtain the results shown in Table 1.

(m]  tax | Tum | Tue Tg | Total time |
4| 8l1.6ns 37pus | 0.7 us | 1428 us 1432 ps
8 97.6ns | 9.0us | 2.1 us | 1830 us 1841 us
16 | 129.6ns | 22.4 us | 58 us | 2511 us 2539 ps

Table 1: Performance of the implementation for various values
of m with n = 10%.

We now compare the mapping time (T + Tam ) of the proposed
multicontext FPGA approach with other approaches. Consider the
case where CAD tools are used to perform the FSM construction.
To find T for this approach, we determine the time taken to com-
pile a structural VHDL description® for m = 8 using velab (4 s)

5We ignore the time required to generate the VHDL code for the given

and route it using XACT 6000 (68 s) giving Tayy = 72s. Ty =1
ms is the time required to download the configuration onto the XC
6216 via the PCI bus. To make T as small as possible. we ex-
plicitly specify placement of logic and use XACT 6000 only for
routing. Even then, as can be seen from row 2 Table 2, the pro-
posed approach is six orders of magnitude faster than the naive use
of CAD tools. Of course a multicontext FPGA is needed to obtain
the speedup. A smarter approach would be to write a program that
directly modifies the binary configuration file based on the input
pattern. This approach is essentially doing in software what we do
on the FPGA itself. Row 3 of Table 2 shows the performance of this
approach®. Although much faster than the CAD tools approach, it
is still more than 1800 times slower than the proposed approach.

Table 3 shows the total execution time speedups over other ap-
proaches. We also compare the performance with a software imple-
mentation of the KMP algorithm running on a Sun Ultra 1 Model
140. As can be seen from row 4 of Table 3, reasonable speedups are
obtained. A key point to note is that the multicontext FPGA is better
than others for all values of n. This is in contrast to most reported
results where the problem size must be very large to amortize the
high mapping time.

Comparison of the implementation with other FPGA based string
matching implementations is unfortunately not possible due to dif-
ferences in the FPGA architectures and the algorithms used. We
note however, that in [7] T = 0.16s and Ty = 3.05s.
These times are for a naive string matching implementation on 16
CAL1024 FPGAs that runs at 20 MHz. Thus, in [7], speedups
will be obtained only for very large problem sizes due to the high
Ty +Tume.-

6 Conclusion

We have shown dramatic speedups in the time required to map logic
at runtime onto FPGAs. This is done by the novel approach of de-
veloping logic that maps logic and putting the former on the FPGA
itself. As a result CAD tools need to be used just once for each
problem (to build logic that builds logic and some template logic)
and not once for every problem instance as is usually done. The
reduction in mapping time achieved is extremely important because
FPGAs can do better than ASICs only if the mapping is problem
instance dependent, which means that the runtime mapping time is
a part of the overall execution time.

We show how self-reconfiguration can be performed using multi-

context FPGAs and how to efficiently realize the above approach’
through self-reconfiguration. We demonstrate our approach by pre-

senting a detailed implementation of the KMP string matching al-

gorithm which utilizes the above approach to construct a FSM at

runtime. An interesting feature of the implementation is that FSM

construction and use of the FSM alternate every few clock cycles.

Such a fine grained interleaving of mapping logic and using it would

not be possible with software in the loop.

Finally, we implement the KMP algorithm on a conventional FPGA
and use it to obtain accurate estimates of performance on a multi-
context device. Our results show high speedups in mapping time

input pattern as it would be quite small. In any case, accounting for this
time would only improve our speedup. The times are obtained on an IBM
PC with a 200 MHz Pentium Pro and 64 MB RAM.

6The time T}y is for a C program running on a Sun Ultra 1 Model 140.




l Approach l Ty Tme ; Tyv +Tue l SpeedupJ
Multicontext FPGA | 9.0 us | 2.1 us 11.1 ps 1.0
CAD tool mapping 76s | 1ms 76s | ~6 x 10°
Software mapping 20 ms 1 ms . 2lms 1892

Table 2: Speedup in mapping time (m = 8).

Approach Tv +Tue + Tk Speedup

n=10" [n=10° | n=10° | n=10" [n=10° | n=10°
Multicontext FPGA 1.8ms | 183 ms | 183.1 ms 1.0 1.0 1.0
CAD tool mapping 76.0s 76.0's 76.2s ~ 10° =107 ~ 103
Software mapping 21.8ms | 393 ms | 204.1 ms 12.1 2.1 1.1
Sun Ultra 1 30 ms 80 ms 680 ms 16.6 44 37

Table 3: Speedups over other approaches for various values of n, with m=8.

and reasonable speedups in overall execution time over various ex-
isting approaches.

This work has been done as a part of the MAARC (Models, Algo-
rithms and Architectures for Reconfigurable Computing) project.
The MAARC project is developing a framework of algorithmic
techniques for reconfigurable computing and exploiting this tech-
nology for embedded signal and image processing applications.
Please see [10] for more information.
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Abstract. Conventional mapping approaches to Reconfigurable Com-
puting (RC) utilize CAD tools to perform the technology mapping of a
high-level design. In comparison with the execution time on the hard-
ware, extensive amount of time is spent for compilation by the CAD
tools. However, the long compilation time is not always considered when
evaluating the time performance of RC solutions. In this paper, we pro-
pose a domain specific mapping approach- for solving graph problems.
The key idea is to alleviate the intervention of the CAD tools at map-
ping time. High-level designs are synthesized with respect to the specific
domain and are adapted to the input graph instance at run-time. The
domain is defined by the algorithm and the reconfigurable target. The
proposed approach leads to predictable RC solutions with superior time
performance. The time performance metric includes both the mapping
time and the execution time. For example, in the case of the single-source
shortest path problem, the estimated run-time speed-up is 10° compared
with the state-of-the-art. In comparison with software implementations,
the estimated run-time speed-up is asymptotically 3.75 and can be im-
proved by further optimization of the hardware design or improvement
of the configuration time.

1 Introduction

Reconfigurable Computing (RC) solutions have shown superior execution times
for several application domains (e.g. signal & image processing, genetic algo-
rithms, graph algorithms, cryptography), compared with software and DSP
based approaches. However, an efficient RC solution must achieve not only min-
imal execution time, but also minimal time for mapping onto the hardware [5,
7].

Conventional mapping approaches to RC (see Fig. 1) utilize CAD tools to
generate hardware designs optimized with respect to execution time and area.

* This research was performed as part of the MAARC project. This work is supported
by the DARPA Adaptive Computing Systems program under contract no. DABT63-
96-C-0049 monitored by Fort Hauchuca.

** A. Met is with the Department of Mathematics of the University of Trento, Italy.
This work was performed while he was visiting the University of Southern California.
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Fig. 1. Conventional (left) and Domain Specific (right) Mapping Approaches

The resulting mappings incur several overheads due to the dominant role of the
CAD tools. The clock rate and the required area of the RC solution depend
heavily on the CAD tools used and cannot be estimated reliably at compile
time. Moreover, the technology mapping phase requires extensive compilation
time. Usually, several hours of compilation time is required to achieve execution
time in the range of msec [1,7]. In the case of mappings that are reused over
time, compilation occurs only once and is not a performance bottleneck. But, for
mappings that depend on the input problem instance, the mapping time cannot
be ignored and often becomes a serious performance limitation.

In this paper we propose a novel RC mapping approach for solving graph
problems. For each input graph instance, a new mapping is derived. The objective
is to derive RC solutions with superior time performance. The time performance
metric is the running time which is defined as the sum of the mapping time
and the execution time. The key idea of the proposed approach is to reduce the
intervention of the CAD tools at mapping time. A technology dependent design is
synthesized based on the specific domain [algorithm, target]. The reconfigurable
target is now visible to the application developer (see Fig. 1). At run-time, the
derived design is adapted to the input graph instance. The proposed mapping
approach eliminates the dominant role of the CAD tools and leads to “real-time”
RC solutions. Furthermore, the time performance and the area requirements can
be accurately estimated before compilation. This is particularly important in
run-time environments where the parameters of the problem are not known a
priori but time and area constraints must be satisfied.

In Section 2, the proposed mapping approach is briefly described. In Section
3, to illustrate our approach, we demonstrate a solution for the single-source
shortest path problem. Finally, in Section 4, concluding remarks are made.




2 Domain Specific Mapping

A simple and natural model is assumed for application development. It consists
of a host processor, an array of FPGAs, and external memory. The FPGAs
are organized as a 2D-mesh. The memory stores the configuration data to be
downloaded to the array and the data required during execution. The role of
the memory is analogous to the role of the cache memory in a memory system
in terms of providing a high-speed link between the host and the array. To
illustrate our ideas, we consider an adaptive logic board from Virtual Computer
Corporation to map our designs. This board is based on the XC6200 architecture.

In this paper, we consider graph problems as the application domain. Each
graph instance leads to a different mapping. Thus, the mapping overhead cannot
be ignored. Given a specific domain [algorithm,target], the objective is to derive a
working implementation with superior time performance. The time performance
metric is the running time which is defined as the sum of the mapping time
and the execution time (see Fig. 1). To obtain the hardware implementation,
an algorithm specific skeleton is synthesized based on the specific domain and
is dynamically adapted to the input graph instance at run-time. The proposed
mapping approach consists of three major steps (see Fig. 1):

1. Skeleton design For a given graph problem, a general structure (skeleton)

is derived based on the characteristics of the specific domain. The skeleton
consists of modules that correspond to elementary features of the graph
(i.e. graph vertex). The modules are optimized hardware designs and their
functionality is determined by the algorithm. Configurations for the modules
and their interconnection are derived based on the target architecture.
The interconnection of the modules is fixed and is defined to be general
enough to capture the individual connectivity of different graph instances.
Hence, the placement and routing of the modules are less optimized than
in conventional CAD tools based approaches. The skeleton is derived before
compilation and its derivation does not affect the running time. In addition,
the skeleton exploits low-level hardware details of the reconfigurable target
in terms of logic, placement, and routing.

2. Adaptation to graph input instance Functional and structural modi-
fications are performed to the skeleton at run-time. Such modifications are
dictated by the characteristics of the problem instance based on which the
configuration of the final layout is derived.

The functional modifications dynamically add or alter module logic to adapt
the modules to the input data precision and problem size. The structural
modifications shape the interconnection of the skeleton based on the char-
acteristics of the problem instance.

A software program (Control Program) is also derived to manage the execu-
tion in the FPGAs. This program schedules the operations and the on-chip
data flow based on the computational requirements of the problem instance.
In addition, it coordinates the data flow to/from the hardware implemen-
tation. Since the interconnection of the skeleton is well established in Step




1, the execution scheduling essentially corresponds to a software routing for
the adapted skeleton.

3. Configuration Finally, the reconfigurable target is configured based on
the adapted structure derived in Step 2. After the completion of the config-
uration, the control program is executed on the host to initiate and manage
the execution on the hardware.

The proposed approach leads to RC solutions with superior time performance
compared with conventional mapping approaches. Furthermore, in our approach,
the skeleton mainly determines the clock rate and the area requirements. Hence,
reliable time and area estimates are possible before compilation.

3 The Single-Source Shortest Path problem

To illustrate our ideas, we demonstrate a mapping scheme for the single-source
shortest path problem. It is a classical combinatorial problem that arises in many
optimization problems (e.g. problems of heuristic search, deterministic optimal
control problems, data routing within a computer communication network) [2].
Given a weighted, directed graph and a source vertex, the problem is to find a
shortest path from the source to every other vertex.

3.1 The Bellman-Ford Algorithm

For solving the single-source shortest path problem, we consider the Bellman-
Ford algorithm. Figure 2 shows the pseudocode of the algorithm [3]. The edge
weights can be negative. The complexity of the algorithm is O(ne), where n is
the number of vertices and e is the number of edges.

The Bellman-Ford algorithm Problem Size | # iterations|
Initialize G (V.E) fverices x 8 odgos | (aewrage)
FOR each vertex ieV 16x 128 240
DO label(i) « :x :g ::’s;
label(source) + 0 T “oe
Belax edges_ 64x1024 4.03
128x 512 5.32
FORk=1.n-1 128x 1024 4.96
DO FOR each edge (i,j)c E 1zsx?84¢4a ;,z:
DO label(j) +-min {labei(j), iabel(l) + w(i.p)} 210 o
Check for negative-weight cycles | 266x4006 | 58 |
512 x 2048 7.02
FOR each edge (1)) ¢ E 512 4006 o7
DO IF label(j) > label(i) + w(k,}) S12x8192 | e
THEN return FALSE j0oix =
return 7RUE 1024 x 16384 7.80

Fig. 2. The Bellman-Ford Algorithm and experimental results for m*

For graphs with no negative-weight cycles reachable from the source, the
algorithm may converge in less than n — 1 iterations [2]. The number of required
iterations m*, is the height of the shortest path tree of the input graph. This




height is equal to the maximum number of edges in a shortest path from the
source. In the worst case m* = n — 1, where n is the number of the vertices.

We performed extensive software simulations to determine the relation be-
tween m* and n — 1 for graphs with no negative-weight cycles. Note that known
RC solutions [1] always perform n — 1 iterations of the algorithm, regardless
the value of m*. Figure 2 shows the experimental results for different problem
sizes. For each problem size, 10° — 108 graph instances were randomly generated.
Then, the value of m* for each graph instance was found and the average over
all graph instances was calculated. For the considered problem sizes, the number
of required iterations grows logarithmically as the number of vertices increases.
For values of e/n smaller than those in the table in Fig. 2, m* starts converging
ton— 1. :

3.2 Mapping the Bellman-Ford algorithm

The skeleton The skeleton corresponds to a general graph G(V,E) with n
vertices and e edges. A weight w(¢, ) is assigned for each edge (i,j) € E (i.e.
edge from vertex i to vertex j). The derived structure (see Fig. 3) consists of
n modules connected in a pipelined fashion. An index id = 0,1,..,n— 1 and a
label are uniquely associated with each module. Module 7 corresponds to vertex
i. The weight of the edges is stored in the memory. No particular ordering of the
weights is required. Each memory word consists of the weight w(3, j) and the
associated indices ¢ and j.

Memory: w(ij),i,j  Start/Stop Modules corresponding to n vertices

w(ij) _"""__H_H_]I‘—__

i w(i,j)=w(i,j)+abel(i)
—-

trel
i — il o MRl S _3.;| l . l - Fadd
T T

label(j)=min{tabel(3),w(i.j}

Fig. 8. The skeleton architecture for the Bellman-Ford algorithm

The Start/Stop module initiates execution on the hardware. An iteration
corresponds to the e cycles needed to feed once the contents of the memory to the
modules. The weights w(i, j) are repetitively fed to the modules every e cycles.
The algorithm terminates after m* iterations. One extra iteration is required
for the Start/Stop module to detect this termination. If no labels are modified
during an iteration and m* < n, the graph contains no negative-weight cycles
reachable from the source and a solution exists. Otherwise, the graph contains
a negative-weight cycle reachable from the source and no solution exists.

In each module (see Fig. 4), the values id and label are stored and the re-
laxation of the corresponding edges is performed. In the upper part, the label is




added to each incoming weight w(z, j). The index ¢ is compared with id to deter-
mine if the edge (i, ) is incident from vertex id. The weight w(z, j) is updated
only if i = id. In the lower part, the weight w(7, j) is relaxed according to the
min operation of the algorithm as shown in Figure 2. The index j is compared
with id to determine if the edge (3, j) is incident to the vertex id. The label of the
vertex id is updated only if j = id and w(z, j) < label. When label is updated, a
flag U is asserted.

L] ,._‘ ’_ H

LU YUY LI

“cut”

Fig. 4. The structure of the modules (left) and the placement of the skeleton into the
FPGA array (right)

At the beginning of each iteration, the signal R is set to 1 by the Start/Stop
module to reset all the flags. In addition, R resets a register that contains the
signal Stop in module n — 1. The signal Stop travels through the modules and
samples all the flags. At the end of each iteration, the Stop signal is sampled by
the Start/Stop module. If Stop = 0 and m* < n, the execution terminates and
a solution exists. Otherwise, if Stop = 1 after n iterations, no solution exists.

The skeleton placement and routing onto the FPGAs array (see Fig. 4) is
simple and regular. The communication between consecutive modules is uniform
and differs only at the boundaries of the array. Depending on the number of the
required modules, a “cut” (Fig. 4) is formed that corresponds to the communi-
cation links of the last module (Fig. 3). During the adaptation of the skeleton
the “cut” is formed and the labels in the allocated modules are initialized. The
execution is managed by a control program executed on the host. This program
controls the memory for feeding the required weights to the array. In addition,
it initiates and terminates the execution via the Start/Stop module.

Area and running time estimates The above module was created based on
the parametrized libraries for Xilinx 6200 series of FPGAs [9]. The footprint of
each module was (p+ [logn]) x (4p+2[logn]+ 10), where p denotes the number
of bits in each weight/label, and n is the number of vertices. For p = logn = 16,4
modules can be placed in the largest device of the XC6200 family. The memory




space required was (p + 2[logn]) x e bits, where e is the number of edges.
The needed memory-array bandwidth is p + 2logn bits/cycle to support the
execution. To fully utilize the benefits of the FastMAPT# interface, 140 MB/sec
bandwidth is required. Under this assumption, the largest XC6200 device can
be configured in 165 usec using wildcards [8].

The algorithm terminates after (m* + 1) x e + 2n cycles, where m* is the
number of required iterations for a given graph. One cycle corresponds to the
clock period of the skeleton. The clock rate for the skeleton was estimated to be
at least 15 MHz for p=16 bits, and at least 25 MHz for p==8 bits. In the clock
rate analysis, all the overheads caused by the routing were considered. The clock
rate was determined mainly by the carry-chain adder of the modules. By using a
faster adder, improvements in the clock rate are possible. The mapping time was
in the range of msec. The above mapping time analysis is based on the timings
for the FastMAPTM interface in the Xilinx 6200 series of FPGAs databook [8].

3.3 Performance Comparison

In [1], the shortest path problem is solved by using Dynamic Computation Struc-
tures (DCSs). The key characteristic of the solution is the mapping of each edge
onto a physical wire. The experiments considered only problems with an average
out-degree of 4 and a maximum in-degree of 8. For the instances considered, the
compilation time was 4-16 hours assuming that a network of 10 workstations
was available. Extensive time was spent for placement and routing. Hence, the
resulting mapping time eliminated any gains achieved by fast execution time. To
make fair comparisons with our solution, we assumed that the available band-
width for configuring the array is 4 MB/sec as in [1]. Even though, the mapping
time for our solution was estimated to be in the msec range (see Fig. 5).

Check for Magping time Execution time A . s
" : rea requirement
negative-weight cycles # of iterations | # of cycles Clock rate ¢
Solution in (1] NO >4 hours * n-1 n1 Q(1n?) o(rt)
Our Solution ves -100mseC | mt [(mratjeszn| NOSPERdENt] o )

+ a network of 10 workslations was used
++ memory-array bandwidth 4MBVsec is assumed as in {1]

Fig. 5. Performance comparisons with the solution in {1]

Besides the mapping overhead, the mapping of edges into physical wires
resulted in several limitations in [1], with respect to the clock rate and the area
requirements. The clock rate depended on the longest wire which is £2(n?) in
the worst case, where n is the number of vertices. This remark is supported by
well-known theoretical results [6] which show that in the worst case, a graph
takes £2(n?) area to be laid out, where n is the number of vertices, and that the
longest wire is £2(n?) long. Therefore, as n increases, the execution time of their
solution drops dramatically. For n = 16,64, 128, the execution time was on the




average 1.5-2 times faster than our approach while it became 1.3 times slower
for n = 256. For larger n, the degradation of performance in {1] is expected
to be more severe. Considering both the execution and the mapping time, the
resulting speed-up comparing with the solution in [1] was 108.

Also, in [1], n — 1 iterations were always executed and negative-weight cycles
could not be detected. If checking for algorithm convergence and negative-weight
cycles were included in the design, the resulting longest wire would increase
further drastically affecting the clock rate and the excution time. Finally, the
time performance and the area requirements in [1] are determined completely
by the efficiency of the CAD tools and no reliable estimates can be made before
compilation.

o: # of edges

b
- ®_
: M

2500

n: # of vertices

Fig. 6. Comparison of running time: our approach v.s. software implementation.

Area comparisons are difficult to make since different FPGAs were used in
[1]. Furthermore, the considered graph instances in [1] were not indicative of
the entire problem space since e/n = 4. For the considered instances in [1], one
XC4013 FPGA was allocated per vertex but, as e/n increases, the area required
grows rapidly. In our solution, O(n) area for FPGAs and O(e) memory were
required. Moreover, our design is a modular design and can be easily adapted to
different graph instances without complete redesign.

Software simulations were also performed to make time performance compar-
isons with uniprocessor-based solutions. The algorithm that was mapped onto
the hardware was also implemented in C language. The software experiments
were performed on a Sun ULTRA 1 with 64 MB of memory and a clock rate of
143 MHz. No limitations on the in/out-degree of the vertices were assumed. For
each problem instance, 10* — 10® graph instances were randomly generated and
the average running time was calculated. The compilation time on the uniproces-
sor to obtain the executable was not considered in the comparisons. Moreover,
the data were assumed to be in the memory before execution and no cache effects
were considered. Under these assumptions, on the average, an edge was relaxed
every 250 nsec.




For the hardware implementation, it was assumed that p=16 bits. The map-
ping time was proportional to the number of vertices of the input graph. Both
the mapping and the execution time were considered in the comparisons. The
achieved run-time speed-up was asymptotically 3.75. However, for the consid-
ered problem sizes (see Fig. 6), lower speed-up was observed. As e/n increases,
the mapping time overhead is amortized over the corresponding execution time.
Hence, shorter configuration time would result in convergence to the speed-up
bound (3.75) for smaller ¢/n and n.

4 Conclusions

In this paper, a domain specific mapping approach was introduced to solve graph
problems on FPGAs. Such problems depend on the input graph instance and
constitute a suitable application domain to exploit reconfigurability. The pro-
posed approach reduces the dominant role of CAD tools and leads to RC solu-
tions with superior time performance. For example, for the single-source shortest
path problem, a speed-up of 10® was shown compared with [1]. In comparison
with software solutions, an asymptotic speed-up of 3.75 was also shown.

Future work includes more graph problems examples to further validate our
mapping approach. In addition, we will focus on specific instances of NP-hard
problems where the execution time is comparable to the corresponding mapping
time provided by general purpose CAD tools based approaches. We believe that
the proposed approach combined with a software/hardware co-design framework
can efficiently attack specific instances of NP-hard problems.
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Abstract

Reconfigurable architectures promise significant
performance benefits by customizing the configurations
to suit the computations. Variable precision for com-
putations is one important method of customization
for which reconfigurable architectures are well suited.
The precision of the operations can be modified dy-
namically at run-time to match the precision of the
operands. Though the advantages of reconfigurable ar-
chitectures for dynamic precision have been discussed
before, we are not aware of any work which analyzes
the qualitative and quantitative benefits which can be
achieved. This paper develops a formal methodology
for dynamic precision management. We show how
the precision requirements can be analyzed for typi-
cal computations in loops by computing the precision
variation curve. We develop algorithms to generate
optimal schedules of configurations using the precision
variation curves. Using our approach, we demonstrate
25%-37% improvement in the total execution time of
an ezample loop computation on the XC6200 device.

1 Introduction

Reconfigurable hardware has the potential to en-
hance the performance of many computer applica-
tions. The hardware resources can be tuned to the
algorithm and the software overhead can be avoided
to achieve superior performance compared to conven-
tional microprocessors. Reconfigurable hardware also
possesses more flexibility than ASIC hardware and can
be utilized for a more diverse set of computations.

*This work was supported by the DARPA Adaptive Comput-
ing Systems Program under contract DABT63-96-C-0049 mon-
itored by Fort Hauchuca.

There are several methods of generating custom hard-
ware configurations suited to the computations to be
performed. The ability to perform variable precision
arithmetic is one of the significant advantages of re-
configurable hardware.

Reconfigurable hardware such as FPGAs (14, 16]
and various custom computing machines (CCMs) (2,
4, 9, 15] contain fine-grained configurable resources.
Such fine-grained configurable logic can be utilized to
build computing modules of various sizes. The mod-
ules can be built to perform computations on various
bit-widths. For example, it is possible to build a stan-
dard 16-bit x 16-bit multiplier or a 8-bitx 12-bit multi-
plier using reconfigurable hardware. The 8-bitx12-bit
multiplier would consume less area and execute faster
than the standard 16-bitx16-bit multiplier. In con-
figurable hardware, using higher precision usually re-
sults in wastage of resources such as logic area, time
and power. For example, performing 32-bit multi-
plications when the operands have only 8 significant
bits will typically require 16 times more area and 4
times more execution time. Redundant computations
also expend more clock cycles and increase the power
consumption. The ability to construct modules of re-
quired precision is one of the key advantages of recon-
figurable hardware. Variable precision computations
can be implemented by using a static approach. In
the static approach, the precision of the operands and
operation is fixed at compile time and can be different
from the standard precision(e.g. 8-bit, 16-bit, 32-bit,
etc.) used on microprocessors. Reconfigurable archi-
tectures also support dynamic precision, which is the
ability of the hardware to change its precision at run-
time in response to variant precision demands of the
algorithm.

Applications are typically developed to perform op-
erations on standard 32-bit variables. The precision of
the operands and the operations is sufficient to guar-
antee the correctness of the operations in the worst




case. But in most applications, the actual precision
required for computations is usually much lower than
the precision implemented. This is typically the case
in computations which accumulate values as the com-
putations progress, as in iterative computations such
as loops. The precision of the operands increases as
the iterations of the loops progress. Loop computa-
tions offer the most potential for pipelining and paral-
lelizing in most applications. Configurable hardware
is an excellent match for computations with fine-grain
pipelining and parallelism. In addition to the perfor-
mance benefits obtained by mapping of computations
in a loop onto configurable hardware, loops can also
take advantage of variable precision.

Applications are currently mapped to reconfig-
urable hardware either by high level behavioral com-
pilers or exhaustive hand-tooled designs. To extract
the performance advantages of configurable hardware
for variable precision, the trade-offs in performing
computations using a very high precision versus chang-
ing the precision of computations as the execution pro-
gresses need to be evaluated. Performing this analysis
by hand and tuning the implementation to the require-
ments of the application entails significant effort on
the part of the designer. Dynamic precision manage-
ment can result in implementations with lower exe-
cution times, logic area and power consumption com-
pared to previous approaches.

For managing dynamic precision in loop compu-
tations, intelligent choices on the use of appropriate
modules from the available set of modules with differ-
ent precision need to be made. These configurations
then have to be scheduled to achieve optimal execu-
tion schedule. We consider a schedule to be optimal if
the schedule has minimum total execution time, which
includes both the execution time in various configura-
tions and the reconfiguration time between configura-
tions. Automatic computation of the actual precision
and configurations to be utilized in the computations
is the focus of this paper. Currently, a framework
for managing dynamic precision computations for any
class of computations does not exist. We develop such
a framework for loop computations in this paper.

In Section 2 we give an overview of our approach to
the dynamic precision management problem. Each of
the steps in our approach are then described in de-
tail in the later sections. Analysis of the required
precision for loop computations is discussed in Sec-
tion 4. Section 5 describes our Hybrid System Ar-
chitecture Model(HySAM) of reconfigurable architec-
tures. The variable precision loop mapping problem is
defined and our Dynamic Precision Management Al-

gorithm(DPMA) for computing the optimal schedule
is presented in Section 6. We illustrate the utility of
our approach by showing an example mapping in Sec-
tion 7. Conclusions and some related problems are
discussed in Section 8.

2 Overview of Our Approach

Application Loop Sample ) Variable
Computations Data Sets Precision

Configurations;
Y } Y
Theoretical Run-time
Analysis Analysis
I g ]

Precision HySAM
‘Variation Architecture
Curve Model

A Y Y
( Dynamic Precision Management Algorithm (DPMA))

A
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Figure 1: Overview of our approach for dynamic preci-
sion management in loops(shaded and rounded regions
indicate our contributions)

This paper details an approach to managing the
task of adapting the precision of the implementation
to that of the application. An overview of our ap-
proach is shown in Figure 1. We focus our efforts on
dynamic precision management for loop computations
since they are the most compute intensive tasks in
typical applications. For the loop computations in ap-
plications, we describe an approach to determine the
required precision using theoretical analysis and run-
time instrumentation. The required precision for the
computations in a loop can be expressed as the varia-
tion in precision as the iterations of the loop progress.
We introduce the concept of the precision variation
curve to represent this variation. The prectsion varia-
tion curve for the operations and operands in the loop
can be identified either by theoretical analysis or by
run-time analysis as described in Section 4.

Given the required precision for the iterations of
the loop, we need to determine the mapping of the
iterations to a set of configurations which are used to




execute the operations in the loop. For each itera-
tion the precision of the configuration which executes
the iteration should be equal to or greater than the
required precision for that iteration. The configura-
tions are chosen from the set of library components
or parameterized modules that are provided for the
architecture.

Given the requirements for the precision of the com-
putations and the available module configurations,
we compute the set of configurations and the sched-
ule of reconfigurations. We compute these by de-
veloping algorithmic techniques for precision manage-
ment. First, we develop an abstract model of reconfig-
urable architectures, the Hybrid System Architecture
Model(HySAM). This parameterized abstract model
1s general enough to capture a wide range of config-
urable systems. We define the precision management
problem in loop computations using our model. A
dynamic precision management algorithm is then de-
veloped to compute the optimal sequence of configura-
tions for minimizing the total execution time including
the reconfiguration time.

3 Related Work

There has been significant research in the area of
mapping applications to configurable computing in the
last decade {2, 5, 8, 15]. Customizing configurable
hardware to suit the computations has been acknowl-
edged as the most significant advantage of such archi-
tectures. Some researchers have adapted the hardware
to perform computations with exactly the required
precision for the computations [11, 13]. Such static
approaches do not exploit the ability of configurable
hardware to be adapted to the exact required precision
as the computations progress. The maximum possi-
ble precision of variables which is determined in the
static approach can still involve execution with super-
fluous precision and unnecessary overheads. Several
efforts have also focused on developing parameterized
libraries and components, precision being one of the
parameters. Most FPGA device vendors provide such
highly optimized parameterized libraries for their ar-
chitectures. Efforts have also been made to generate
such modules using high level descriptions [3, 6].

We are not aware of any formal framework to study
and analyze the dynamic precision variation in appli-
cations. Algorithmic techniques to utilize configurable
computing to dynamically vary the precision of com-
putations have not been demonstrated previously.

4 Precision Requirement Analysis

The precision required for the computations in an
application might not only vary with the specific op-
eration but also change as the execution progresses.
For iterative computations in which values are accu-
mulated over the execution time of the application,
the precision varies as the iterations progress. Loop
computations are. the most typical iterative computa-
tions which show such behavior. In addition to the
varying precision, loops are the most compute inten-
sive tasks in a program. In this paper we focus on
the varying precision of operations in loop computa-
tions. This variation can be measured by analyzing
the variation of the precision of the operands and the
operations as the iterations progress. We represent
this variation in terms of the loop iterations by using
the precision vartation curve.

4.1 Precision Variation Curve

The precision variation curve facilitates the repre-

sentation of the notion of the variation in the precision
of the operands and the operation as the execution
of the loop progresses. A simple method to repre-
sent such a variation is to indicate the precision of the
operand for each iteration so that the precision is de-
fined for the whole iteration space. But as we shall
show in the subsequent sections, the precision usually
varies very slowly as the iterations progress. Thus the
precision variation curve can be represented by spec-
ifying the points where the precision of the operands
or the operation changes.
Definition: The precision variation curve for a given
operation or operand in a loop computation can be
represented by the sequence <L;, P;>, where 1<i<u+
land Ly4; = N+ 1. For 1 <7< u, P; is the min-
imum precision required for the computing the itera-
tions L;...L;3+1 — 1. Note that the hardware has to
support at least a precision of P; to execute the itera-
tions L; ... L;y; — 1 and produce the correct result.

Examples of precision variation curves are shown
in Figure 3. We develop theoretical and run-time in-
strumentation methods for determining the precision
variation curve in the next two sections.

4.2 Theoretical Analysis of Loops

We can theoretically determine the precision varia-
tion curve for the operations in a given computation.
The precision of computed variables in a loop is de-
termined by the precision of the variables before the
iteration, the number of iterations and the operations




DO 10 I=1,N
DO 20 J=1,N
RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J)
20 IF (MAXQ.LT.RSQ(J)) THEN
MAXQ = RSQ(J)
POVERR = POVERR / MAXQ
10 VIRTXY = VIRTXY + MAXQ * SCALE(I)

Figure 2: Example code for simulations

performed on the variable. For each type of arithmetic
operation, the maximum possible precision of the re-
sult can be expressed using the above values. For ex-
ample, the precision of a variable X (initially 0) after

N iterations of a loop which contains the statement
X = X + C is bounded by

Pr(X) < Pr(C) +log(N +1)

where Pr{X) denotes the bit size of the variable X.
The analysis is not limited to simple expressions, but
extends to complex arithmetic expressions in loops.
For recursive expressions in loops where the value of
the variable X in iteration 7 is given by Xj, if

Xi=e1*+Xj, +ear Xj+. . 4 *xXj, = TiEke x X,

then the upper bound on the precision of X; is given
by

Pr(Xi)<(i—1)xlogC+ (i — 1) *logk + Pr(X,)

where C' = maz[ey,ca, . .., ck], the maximum of the
constant coefficients. Similarly, for the expression
X = X x C, the upper bound of precision for X with
an initial value 1 and after N iterations is given by

Pr(X) < N=* Pr(C)

The precision variation curve can be computed the-
oretically for all expressions in loops which are polyno-
mials of variables and constants. Since most scientific
applications consist of many such computations, the-
oretical analysis can be performed for all such compu-
tations. It is to be noted however, that such an anal-
vsis is not entirely feasible for floating point computa-
tions. But the analysis can be performed for integer
and fixed point data and computations. This does not
limit the applicability of the analysis or the algorithms
we present later as many signal and image processing
computations and several benchmark problems oper-
ate on integer and fixed point data. The remaining
computations can be implemented with their default
maximum precision.

Precision Variation Curve
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Figure 3: Precision Variation Curves for RSQ using
theoretical and run-time analysis ‘

4.3 Run-time Analysis

Theoretical analysis of expressions in loops com-
putes the upper bounds on the precision of the vari-
ables and computations. This determines the mini-
mum precision required to represent these variables.
The estimates using theoretical analysis are conser-
vative and can usually be much higher than the ac-
tual precision of the operands. For example, us-
ing the above analysis for the Fibonacci series X; =
Xi-1+ Xi_3, we obtain Pr(X;) = ¢ — 1 and hence,
Pr(X;s5) = 14. But, X;5 = 610 which needs only
10 bits. Even in the case when the bound is actually
tight for expressions, the actual precision might be
lower than theoretical estimate. This can occur when
the data inputs are assumed to have maximum preci-
sion, but are actually randomly distributed over the
complete input range. Using theoretical analysis can
provide significant performance benefits by dynamic
precision management. We discuss below how these
benefits can be augmented by using profiling based
analysis.

For example, consider the code segment shown in
Figure 2. We performed simulations with uniformly
distributed random values for the 8-bit non-negative
data inputs XDIFF and Y DIFF. The precision of
the RSQ variable was measured by tracing the ear-
liest iteration in which a new higher significant bit
was set. Since the maximum bits in the result of
XDIFF(I,J)y*YDIFF(I,J) are 16, the iteration in
which the kth most significant bit of the result is set
is given by 216, The precision variation curves ob-
tained using the theoretical and run-time analysis are
plotted in Figure 3. The actual precision required for
the computations is significantly lower than the theo-
retical estimate as evident from the graph.




This run-time measurements illustrate a very im-
portant advantage in exploiting variable precision
computations. The actual XDIFF and YDIFF val-
ues have significantly lower precision than the max-
imum possible precision of 8 bits. The assumption
of maximum precision for all the input X DIFF and
Y DIFF values has a rolling effect on precision of
other operands and operations. The repeated accu-
mulation of the product of these numbers results in a
precision difference in the final values which is much
larger than the precision difference for one value. It
is clearly revealed in simulations where the actual re-
quired precision is much lower than the theoretical
precision.

For computations which do not have a tight bound
on the precision and for computations with complex
control flow, computing the required precision by us-
ing run-time statistics is a viable alternative. The ap-
plication can be instrumented to measure the precision
of the different variables and the knowledge can be
utilized by the mapping tool or the compiler to iden-
tify the required precision at various program points.
Though we do not address the run-time mapping is-
sues in this paper, it is also possible to determine
the precision of the operands and the operations by
examining the values at run-time and modifying the
precision of the operations on the fly. In this pa-
per we focus on run-time precision management based
on the knowledge of the required precision at com-
pile(mapping) time. The required precision can either
be analyzed automatically or can be user specified.

5 Hybrid System Architecture Model
(HySAM)

To realize a formal framework for algorithm devel-
opment, we developed the Hybrid System Architecture
Model(HySAM) of reconfigurable architectures. The
Hybrid System Architecture is a general architecture
consisting of a conventional microprocessor with addi-
tional Configurable Logic Unit(CLU). Figure 4 shows
the architecture of the HySAM model. The architec-
ture consists of a conventional microprocessor, stan-
dard memory, configurable logic, configuration mem-
ory and data buffers communicating through an inter-
connection network.

Key parameters of the Hybrid System Architecture
Model(HySAM) are outlined below.

F : Set of functions Fj...F, which can be per-
formed on configurable logic.

RISC Memory

Interconnection
Network

A

Coriflixixzable Configuration
Unit Cache
Figure 4: Hybrid  System  Architecture
Model(HySAM)

C : Set of possible configurations Ci ...Cy, of the
Configurable Logic Unit.

Pr(Cj) : Precision of the configuration Cj.

t;; : Execution time of function F; in configuration
C;.

Rij : Reconfiguration cost in changing configuration
from C; to Cj.

The parameterized HySAM models a wide range
of systems from board level architectures to systems
on a chip. Such systems include SPLASH [2], DEC
PeRLE [15], Oxford HARP [5], Berkeley Garp [4],
NSC NAPA1000 [9], Sanders CSRC [10] among others.
The values for each of the parameters establish the
architecture and also dictate the class of applications
which can be effectively mapped onto the architecture.
For example, a system on a chip architecture would
have potentially faster reconfiguration times(lower k
and K) than a board level architecture.

The set of functions(F') is the set of modules or li-
brary components which are available or implemented
for the given architecture. Configurations(C) are de-
veloped by mapping one or more of such functions
onto the available hardware architecture. A single
function can have multiple configurations which can
potentially execute the function. Each of the config-
urations might have different algorithm, area, preci-
sion, time and power characteristics. For example, a
function such as division can be implemented using
different algorithms such as iterative multiplication or
iterative subtraction in different configurations. The
execution time of a function F; in a configuration Cj
is given by ¢;;. The cost of reconfiguring the hardware
from a configuration C; to a configuration Cj is given
by Ri;. The reconfiguration cost includes the cost of




memory access for the configurations, the configura-
tion data transfer cost and the cost of activating the
configuration on the hardware.

5.1 Configurations for Variable Precision

Efficient modules are being developed by hand de-
sign, by automatic mapping and by generators (3, 6].
Modules for executing computations with a specified
precision have also been explored. Some of the mod-
ules are parameterized which facilitate the construc-
tion of a configuration which can execute a compu-
tation of any given precision within a range of val-
ues. They are usually either statically developed de-
signs such as the Xilinx LogicBlox or dynamically con-
structed using generators [3, 6]. The modules are usu-
ally optimized to exploit the nature of the computa-
tion for any given precision. Modules designed for
specific architectures also exploit the hardware fea-
tures which are available to enhance performance. For
example, addition and multiplication modules exploit
the carry chains available at nibble or byte boundaries
in many FPGA architectures.

In this paper we assume that the set of modules
which can execute the required arithmetic operations
are available. Each function(such as multiplication)
can have several configurations, each of which exe-
cutes the operation with different precision. It is not
necessary that a given operation have configurations
which execute the operation with all the possible pre-
cision values. Note that each configuration is limited
to the execution of one function in this paper though
the HySAM model is actually more powerful. Hence,
we represent t;; as tc; is the rest of the paper.

6 Dynamic Precision Management

Given the precision variation curve for the loop, we
need to determine the mapping of the iterations to a
set of configurations which are used to execute the op-
erations in the loop. For each iteration, the precision
of the corresponding configuration which executes the
iteration should be equal to or greater than the re-
quired precision for that iteration. But, reconfiguring
the hardware whenever the required precision changes
can result in significant reconfiguration overheads. For
architectures in which the reconfiguration times are
much higher than the execution times, the reconfig-
uration overhead might be prohibitive. Thus, it is
necessary to identify the optimal set of configurations
which result in minimization of the overall execution
cost, including the reconfiguration cost. Also, the set

of configurations which are available for executing an
operation might not encompass all the possible preci-
sion values that are required. Some of the operations
will have to be executed with more precision than is
necessary in the absence of configurations with the ex-
act precision.

We present the Precision Management Problem and
the Dynamic Precision Management Algorithm based
on the following assumptions:

e Higher precision computations require more re-
sources such as power, logic area and computa-
tion time(tc;).

e The required precision for the computations
varies monotonically. This is true for most com-
putations which accumulate values as the loop it-
erations progress. The algorithms we describe can
be applied to monotonic subsequences with opti-
mal schedules for each subsequence individually.

e The algorithm determines the optimal schedule
for a given precision variation curve. When the
actual variation is different from the precision
variation curve, the schedule might not be op-
timal.

Precision Management Problem(PMP)

Input: An operation in a loop with N iterations of
the loop body and the precision variation curve for
the operation. The precision variation curve is given
as a sequence of pairs <L;, P;>, where 1<i<u+1 and
Lyy1 = N + 1. For 1<i<u, P; is the minimum preci-
sion required for computing the operation in iterations
Li...Liy1— 1.

Output: An optimal schedule of configurations
S =<Q;,C;>, where 1<j<v+1and Qy41 = N + 1.
For 1<j<v, C} is the configuration used for iterations

Qj"'Q,H-l - 1.

A schedule S is said to be valid if it satisfies the preci-
sion requirement for all the iterations of the loop, i.e.,
VK st. 1< K <N, if

Pr; = P;, forsomeist L; <K <Lip
Pro = Pr(Cj) for some j st. Q; < K < Qj41

then Pr; < Pro (see Figure 5).

An optimal schedule has the minimum total execution
cost E which includes the reconfiguration cost among
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Figure 5: Constraint on required and scheduled Pre-
cision Variation Curves

all valid schedules. The cost of a schedule is given by

E=73 [(Qj+1~ Q) x tc, + Rj1j]

=1

where ¢, is time for executing one iteration of the
loop in configuration C; and R;_;; is the reconfigura-
tion cost between configurations Cj_; and C;. (O

To minimize the total execution cost, both the exe-
cution cost and the reconfiguration cost have to be ex-
amined. The set of configurations and the schedule of
reconfigurations need to be determined. We first show
that the points of reconfiguration are the subset of the
points where the required precision changes, i.e., @ C

L, where Q = {Q1,...,Qv} and L ={Ly,...,Lu}.

Lemma 1. Given the definitions in the PMP prob-
lem, the schedule S of configurations satisfies the prop-
erty @ C L.

Proof: Assume that @ € L in the optimal schedule S.
Then there exists at least one point of reconfiguration
which is not a point of change of required precision.

Fi:Q:i¢ L
Without loss of generality,
3 :Qi-1<Ljm1<Qi<Lj £Qina

Consider the schedule S’ where the configurations are
the same as S but the reconfiguration points are dif-
ferent:

S=[@1...Qi-1QiQi+1Qit2 - .- Qn)
S =[Q1...Qi-1LjQi+1Qit+2 .. .Qn)

tc, is the cost of executing one iteration in configu-
ration C;. Since we assume precision variation to be
monotonic, Pr(Ciz1) > Pr(C;) and tc,,, > tc,. The
difference in execution cost of the two schedules is

S-S = (te,(Lj—Qic1) +tc, ., (Qiv1 — Lj))
—(tc,(Qi — Qi-1) +1cia Qi1 — Qi)
= te,(Lj — Qi-1— Qi + Qi-1)
+teia (Qig1 — Lj — Qig1 + Qi)
= (tc, —tci)(Li — @)
< 0

Since L;>Q; and t¢,<tc,,, S’ — §<0. The new
schedule has lower cost and hence a schedule with re-
configuration points which is the subset of the preci-
sion change points has lower execution cost. Since S
is the optimal schedule our assumption must be incor-
rect. Hence, @ C L. ©)

6.1 Precision Management Algorithms

To determine the choice of configuration at each L;,
we can use a greedy approach where the best configu-
ration with the required precision is chosen at each L;.
The best configuration C;(C; € Ci,...,Cn) is given
by the configuration which has the lowest execution
cost tc;. But the greedy algorithm will not provide
the optimal solution due to two reasons:

o The greedy approach does not consider the recon-
figuration costs which are incurred at future re-
configuration points. A configuration with higher
execution cost might have a lower reconfiguration
cost at the next step, making it a better choice
for executing the given iterations.

o With significant reconfiguration costs, it is possi-
ble that we use a higher precision configuration
than required(even if exact precision configura-
tion is available in C), to avoid a reconfiguration
step in future. The greedy approach does not con-
sider this case and thus can result in non-optimal
schedule.

In the following, we present an algorithm based
on dynamic programming which computes an optimal
schedule having the minimum execution cost including
the reconfiguration cost.

Dynamic Precision Management Algorithm
(DPMA)

Let E;; be the execution cost for executing up to L;
iterations with C; being the last configuration. The




initial values of £ are assigned as Eg; = 0,1 < j < m.
For each of the possible configurations C; which can
execute iterations from L; we have to compute the
optimal sequence of configurations ending in Cj. For
1 < j < m. we compute E;; by using the recursive
equation: - ’

(Lig1 — L;) x tc; + ming(Eix + Rij)
1<k<m

Eif1; =
if Pr(C;) > P

= oc otherwise

For each configuration, we have examined all the
possible paths in executing the iterations L; ... Ly —
1 once we have executed iterations 1...L; — 1. Note
that we examine all configurations such that Pr(C;) >
P; which assures that we consider the case of using a
higher precision than required(Pr{C;) = F;). If each
of the values Fjx is optimal then the value Ejy;; is
optimal. Hence we can compute the optimal schedule
of configurations S by computing the E;; values. The
minimum cost for execution of the loop is given by
min;[Ey;].

We can use dynamic programming to compute the
E;; values. Computing one Ej; value takes O(m) time
since there are m configurations. The total number of
values to be computed is O(um), therefore the total
time complexity of the algorithm is O(um?). ©)

7 An Illustrative Example
We illustrate our approach by mapping the mul-

tiplication operation from the example code segment
presented in Figure 2.

DO 10 I=1,N

10 VIRTXY = VIRTXY + MAXQ * SCALE(I)

The input data SCALE(I) is an 8-bit integer. The
precision of M AX @ has been analyzed in Section 4.3.
We present the same result in the form of a table in
Table 1.

We have abstracted the Xilinx XC6200 series de-
vice by using our model. The parameters specified
are for the HySAM model and have been evaluated
from XC6200 documentation [16, 7]. The footprint of
each precision is given by the equation 4 x row x col,
where row and col are the precisions of the two in-
puts. For the configurations relevant to mapping the

P; L; L; P; L; L;
Pr | Theore- | Simu- Pr | Theore- | Simu-

tical | lated tical | lated
16. 1 1 22 64 195
17 2 2 23 128 412
18 4 5 24 256 897
19 8 14 25 512 -
20 16 35 26 1024 -
21 32 87

Table 1: Theoretical and simulated iteration numbers
for N = 1024

Configuration | Precision Time | Reconfig.
C; Pr(Cy) tc, (ns) | Roi (ns)
Cy 8x8 140 5120
Cs 8 x 16 250 10240
Cs 8 x 20 300 12800
Cs 8 x 24 400 15360
Cs 8 x 28 520 17920
Cs 8 x 32" 640 20480

Table 2: HySAM model parameters for XC6200 mul-
tiplier configurations(* values are estimates based on
XC6264 device)

given operation, row is 8. Reconfiguration times are
based on a 32-bit data bus running at 50MHz. It is
possible to design modular configurations which can
be reconfigured in lesser time using partial reconfigu-
ration. For this mapping, we assumed that complete
reconfiguration is needed for each configuration. The
parameters for various multiplier configurations with
different precisions are listed in Table 2.

We measured the total execution time for the loop
computations using five different approaches. The
first two approaches do not exploit the dynamic pre-
cision by varying the precision of the operation at
run-time. The different approaches and the schedule
of configurations(<@;,C;>) in each approach are de-
scribed below.

e Raw: The first approach uses a static configura-
tion of 8bit x 32bit precision for all the iterations
of the loop.

Schedule: <1,Ce>

e Static: We utilize the theoretical analysis where
we determine that the highest precision required
for 1024 iterations is only 8bit x 28bit. But the
configuration is still static and is used for all the
iterations.

Schedule: <1,C5>




¢ Greedy: We used the greedy algorithm (see Sec-
tion 6.1) to compute the schedule of configura-
tions to be utilized for the computations. The
precision of the operation is varied dynamically
but the greedy choice is based on the lowest exe-
_cution time for each configuration.
Schedule: <1,.Cy>,<2,C3>.<32,C4>,<512,C5>

o DPMA: Our dynamic precision management al-
gorithm was utilized to compute the optimal
schedule using the precision variation curve. This
approach uses higher execution cost configura-
tions for some of the computations but reduces
the overall execution cost by performing lesser

number of reconfigurations.
Schedule: <1,C4>,<512,C5>

e DPMA-run: In this approach we performed
run-time analysis of the loop and utilized the pre-
cision vartation curve from the run-time analysis
as the input to the algorithm. This approach can
be implemented easily by adding a run-time check
of the precision, which needs very small amount
of additional logic and no extra clock-cycles if the
precision remains within the run-time statistics.
Schedule: <1,C4>

Algorithm | Execution | Reconfiguration | Total
Time (ns) Time (ns) {(ns)

Raw 655360 20480 675840

Static 532480 17920 550400

Greedy 468010 56320 524330

DPMA 471160 33280 504440

DPMA-run 409600 15360 424960

Table 3: Execution times using different approaches

The execution times including the reconfiguration
times are summarized in Table 3. The approaches us-
ing dynamic precision achieve significantly lower ex-
ecution times compared to the Raw and Static ap-
proaches. We noticed that our DPMA algorithm ex-
ecuted all the iterations of the loop in the minimum
time for the theoretical and run-time precision vari-
ation curves. The DPMA-run achieves significant
speed-up by exploiting the fact that 28-bit precision
is never required.

8 Conclusions

This paper has developed a framework for dynamic
precision management for loop computations. We

have shown how the variable precision in computa-
tions can be captured by using the precision variation
curve. The paper described our approach to com-
puting the precision variation curve using theoreti-
cal and run-time analysis. The information obtained
from these analyses is used to develop optimal sched-
ules for dynamic precision management. The DPMA
algorithm that we have developed can compute the
required optimal schedule for a given operation in a
loop using the precision variation curve and the set of
variable precision configurations. Our Hybrid System
Model(HySAM) of reconfigurable architectures facili-
tates the development of these algorithms using a high
level abstract model. The paper illustrated the per-
formance benefits achievable for an example loop com-
putation using our approach. We expect that the pro-
posed approach can lead to significant improvement in
performance and automatic mapping of variable pre-
cision computations on reconfigurable architectures.

The dynamic precision management framework
gives rise to a wealth of issues which can potentially
provide enormous benefits to mapping computations
onto configurable hardware. Bit-serial and digit-serial
computations are one class of computations which can
exploit dynamic precision without large overheads.
The control component of the design needs to exe-
cute the configurations for a variable number of steps
based on the required precision. Run-time precision
management where the control modifies the precision
of the computations are being explored. Configurable
logic can be utilized to execute multiple iterations of
loops in parallel in the absence of dependencies. Re-
duction of the logic resources due to dynamic precision
management can. be exploited to execute more num-
ber of iterations in parallel. Multi-context devices and
configuration caches can be utilized to reduce the re-
configuration overheads by storing variable precision
configurations.

The work reported here is part of the USC MAARC
project(http://maarc.usc.edu). This project is devel-
oping algorithmic techniques for realizing scalable and
portable applications using configurable computing
devices and architectures. We are developing com-
putational models and algorithmic techniques based
on these models to exploit dynamic reconfiguration.
Some recent related results can be found in [1, 12].
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Abstract

Reconfigurable circuits and systems have
evolved from application specific accelerators
to a general purpose computing paradigm. Re-
configuring the logic is still an expensive op-
eration and precludes frequent configuration
changes. To reduce the overheads involved
in reconfiguration, devices with configuration
caches and multiple contexts are being de-
signed. Reconfigurable computing solutions
are typically designed by composing lower level
modules or library components. Each opera-
tion in an application can be implemented by
using any one among several of these modules
or hardware objects. This gives rise to the
problem of choosing an optimal set of modules
for utilizing the cache or the multiple contexts.
This paper develops a formal methodology for
selection of these modules to minimize the to-
tal execution time. The total execution time
includes the reconfiguration time and the com-
putation time in various configurations. We
focus on loop computations since they are the
most compute intensive parts of applications.
We utilize a parameterized abstract model of
reconfigurable architectures which is general

*This work was supported by the DARPA Adaptive
Computing Systems Program under contract DABT63-
96-C-0049 monitored by Fort Hauchuca.

enough to capture a wide range of configurable
systems. Qur abstract model is used to de-
fine the problem of mapping loop statements
onto reconfigurable architectures. We show a
polynomial time algorithm to compute the op-
timal sequence of configurations(modules) for
one important variant of the problem.

1 Introduction

Configurable systems are evolving from sys-
tems designed to accelerate a specific applica-
tion to systems which can achieve high perfor-
mance for general purpose computing. Vari-
ous reconfigurable architectures are being ex-
plored by several research groups to develop
a general purpose configurable system. Re-
configurable architectures vary from systems
which have FPGAs and glue logic attached to
a host computer to systems which include con-
figurable logic on the same die as a micropro-
Cessor.

The performance achievable on reconfig-
urable architectures is limited by the costs in-
volved in reconfiguring the logic. Currently,
this overhead is very high and discourages the
reconfiguration of the logic during the execu-
tion of a single application. To address this
problem architectures which support configu-
ration caches and multiple contexts on the de-
vices have been proposed [7, 5, 6, 8, 9. In
devices with configuration caches, the cost of




loading a configuration from the cache is much
lower than loading a configuration from off-
chip memory. In multi-context devices, the
overhead for switching between contexts is very
low. In some devices this can be done in a few
clock cycles.

Development of reconfigurable computing
solutions is typically based on hierarchical de-
signs. Modules or library components are uti-
lized to compose and construct larger designs.
Utilizing such hardware objects makes the de-
sign development easier and promotes reuse of
optimized modules. For executing a given op-
eration, various modules can be utilized. These
modules can differ in their performance char-
acteristics such as area, execution time, power
consumption, reconfiguration time etc.

In this paper we address the problem of
automatic selection of optimal modules or
hardware objects to be utilized in cached-
configuration or multi-context devices. We fo-
cus our efforts on loop statements since they
provide the maximum opportunity for perfor-
mance improvement. Loop statements have
regular and repetitive computations which are
well-suited to reconfigurable architectures. We
had previously developed an abstract model of
reconfigurable architectures, the Hybrid Sys-
tem Architecture Model (1, 2, 3, 4]. This pa-
rameterized abstract model is general enough
to capture a wide range of configurable sys-
tems. We define the problem of optimal mod-
ule selection using the HySAM model. We con-
sider one variation of the problem when the
multiple configurations in the cache or the con-
texts can be pre-loaded but cannot be modified
during execution. We present an efficient algo-
rithm to compute the solution for this variant.

Section 2 described multi-context devices
and their operation. Section 3 describes our
Hybrid System Architecture Model(HySAM).
The optimal module selection problem for a
loop is defined and the optimal solution is pre-
sented in Section 4. We present conclusions
and future research in Section 5.

2 Reconfigurable
Architectures

Typical reconfigurable devices have high recon-
figuration times in the order of milli-seconds.
Reconfiguration in such devices involves down-
loading the bit stream for the complete de-
vice configuration. Some reconfigurable de-
vices permit partial and dynamic reconfigura-
tion [10]. These devices permit reconfiguration
of a part of the device while the configuration
of the remaining device is unchanged. Many of
the reconfigurable devices are based on SRAM
controlled configuration of the logic and the in-
terconnection network. Configuration of a de-
vice involves configuring the SRAM cells in the
device.

External
Configuration Data

Control
3 ——»|  Logic

Active
Context

Configuration Cache/
Multiple Contexts

Figure 1: Device logic control model

In devices with configuration caches or mul-
tiple contexts, the SRAM cells controlling the
functionality of the logic cell can be configured
using any one of the multiple configurations.
Figure 1 illustrates the abstract view of such
devices. Configuration of the multi-context
device is performed by loading the configura-
tions of the various contexts onto the device.
Loading all the contexts onto the device takes
reconfiguration time similar to the reconfigu-
ration times of typical reconfigurable devices.
But, once the configurations are loaded onto
the chip, switching between the configurations
is very inexpensive. Switching times for such
devices are expected to be in the range of 5-
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Figure 2: Hybrid System Architecture Model

100 ns. This is several orders of magnitude
faster than configuring the active context by
using external data.

3 Hybrid System Architec-
ture Model(HySAM)

A high level model of reconfigurable hardware
is needed to abstract the low level details.
Existing models supplied by the CAD tools
have either multiple abstraction layers or are
very device specific. We present a parameter-
ized model of a configurable computing system,
which consists of configurable logic attached
to a traditional microprocessor. Qur model
cleanly partitions the capabilities of the hard-
ware from the implementations and presents a
very clean interface to the user. We describe
the model below briefly since it is not the main
focus of the paper. Details of the HySAM
model and some prior algorithms for mapping
based on the model are available in [1, 2, 3, 4].

The Hybrid System Architecture Model is a
general model consisting of a traditional micro-
processor with additional Configurable Logic
Unit(CLU). Figure 2 shows the architecture of
the HySAM model and Figure 3 shows an ex-
ample of an actual architecture. The architec-
ture consists of a traditional microprocessor,
standard memory, configurable logic, configu-
ration memory and data buffers communicat-
ing through an interconnection network.

CPU Memory

Bus  }

(/ \ \)
N\ A A
Data Buffers
\
i(;l;icgurable Configuration
Unit (CLU) Cache

Figure 3: Example hybrid system architecture

We outline some of the parameters of the
Hybrid System Architecture Model(HySAM)

below.

F : Set of functions Fy...F, which can be
performed on configurable logic. (capabil-
ities)

C : Set of possible configurations Cy...Cp,
of the Configurable Logic Unit. (imple-
mentations)

t;j : Cost of executing function F; in config-
uration C}.

R;; : Reconfiguration cost in changing config-
uration from C; to C;.

N. : The number of configuration which can
be stored in the cache or the multiple con-
texts in the CLU.

k. : The cost of switching to one of the con-
text from among those resident on the
CLU.

The hardware objects or modules are rep-
resented by the Functions and the Configu-
rations. The functions F and configurations
C have a many-to-many relationship. Each
configuration C;, can potentially contain more
than one function F;. For example, a config-
uration can contain both addition and logical
OR, given enough logic resources. The execu-
tion cost of a function F; in configuration Cj is
specified as one of ¢;;. In the HySAM model,




only function can be active in a configuration
at any given time. Each function F; can be ex-
ecuted bv using any one configuration from a
subset of the configurations.

The different configurations might be gener-
ated by different tools, libraries or algorithms.
These configurations might have different area,
time, reconfiguration, precision, power, etc.
characteristics. For example, it is possible to
design multipliers of various area/time charac-
teristics by choosing various degrees of pipelin-
ing and carry look ahead techniques. The mul-
tiplier can have different values for the area,
pipeline stages, cycle time and number of cy-
cles for finishing the computation. Similarly,
floating point operation configurations can be
designed with various degrees of precision.

The execution model that we consider con-
tains N, configurations resident on the chip in
the cache or the multiple contexts. There is
one active context which can be based on one
of the N, configurations or can be configured
from external memory. Switching to a configu-
ration C; from a configuration C; takes k. time
if C; is one of the N, configurations or R;; if
the configuration has to be fetched from out-
side the chip. We assume that only the active
context can be configured externally during the
execution of the application. Before the appli-
cation has started execution, the multiple con-
figurations can be loaded onto the device.

The reconfiguration costs R define the costs
involved in changing the configuration of the
CLU between two configurations. This cost
can be statically evaluated based on the con-
figuration information for different configura-
tions. The cost can also be computed dynam-
ically when the configurations are constructed
dynamically. The cost defines the amount of
logic reconfigured and the time spent in recon-
figuring the logic between any two configura-
tions belonging to C. This cost incorporates
the factors when partial and dynamic reconfig-
uration is exploited.

4 Mapping Configurations
onto Contexts

Computations which operate on a large set of
data using the same set of operations are most
likely to benefit from configurable computing.
Hence, loop structures will be the most likely
candidates for performance improvement using
configurable logic. Configurations which exe-
cute each task can be generated for the oper-
ations in a loop. Since each operation is exe-
cuted on a dedicated hardware configuration,
the execution time for the task is expected to
lower than that in software. We solve the re-
stricted version of the problem which imposes
a linear order on the list of tasks to be exe-
cuted in a loop. Any given list of tasks with
directed acyclic dependencies can be converted
to a linear list by using topological sorting.

Each of the operations in the loop statement
might be a simple operation such as an ad-
dition of two integers or can be a more com-
plex operation such as a square root of a float-
ing point number. The problems and solu-
tions that we present are independent of the
complexity of the operation. As we described
in Section 3, a single operation can be im-
plemented using various optimizations to pro-
vide several implementations. These different
configurations can have different performance
characteristics.

The mapping problem is to select the con-
figuration to be utilized for each function and
the configurations which are stored in the con-
texts. To select the configuration for exe-
cuting a given function we can employ the
greedy strategy. The greedy algorithm chooses
the best possible configuration for executing a
given function, i.e., the configuration with the
lowest execution cost. But this configuration
might have a large reconfiguration cost which
increases the total execution time and gives a
sub-optimal solution. For selecting the config-
urations to be pre-loaded the greedy strategy
is still sub-optimal. Pre-loading the configura-
tion with the highest reconfiguration cost gives
a sub-optimal solution. Selecting a different




configuration to be pre-loaded and using a con-
figuration with lower execution cost can give a
better solution. We assume the following re-
garding the model as explained in Section 3:

1. The N, configurations are loaded on to the
device at the start of the computation.

2. The active context can be configured from
any of the N, configurations with a cost k..

3. The pre-loaded configurations can not be
modified during the execution of the com-
plete application. Only the active context
can be reconfigured externally.

Hardware Object Selection Problem

Input : A sequence of tasks of a loop, T}
through T, to be executed in linear order( Ty
T, ...T,), where T; € F, for N number of iter-
ations, and the number of configurations which
can be cached or stored in contexts N..

Output : An optimal schedule of configu-
rations S (=C, Cz ... (), and the set X of
configurations to be stored in the N, contexts.
An optimal schedule has the minimum total
execution cost E, which includes the reconfig-
uration cost. The cost of a schedule is given
by

g
E= Z te; + Rj_1j]
=1
where t¢, is time for executing one iteration
of the loop in configuration C; and R;_,;
is the reconfiguration cost between configura-
tions Cj_; and C;. R;; is defined as

Ry = k.ifCjeX

= R;; otherwise

©

Solution: We compute the optimal schedule
S and the set of contexts X by using a dy-
namic programming approach. We first discuss
how the optimal solution can be computed for
a fully unrolled loop. All the iterations of the
loop are unrolled to give a linear task sequence.
We define the following variables:

e E;;, 1 < j £ m: the cost of executing
tasks T to T; with T; being executed using
configuration C; and the configuration C;
is added to the contexts in X if not already
in X.

e E;j, m+1 < j < 2xm: the cost of execut-
ing tasks T to T; with 7; being executed
using configuration C; and the configura-
tion C; is not added to the contexts in X
if not already in X.

e X;;, 1 <7 < 2xm: the set of contexts
which are added to X for executing tasks
Ty to T; with T; being executed using con-
figuration Cj.

e |X;;|: the number of contexts in set X;.

The Ej; and the X;; values are computed
using dynamic programming. The recursive
equations for computing them are given below:

mink=1<k<2xm: min[Eik—}—(Skj]

dx; denotes the reconfiguration cost and can
be evaluated based on the various possible sce-
narios:

e Configuration Cj is already in cache. The
reconfiguration cost is the cost of perform-
ing a context switch, k..

e Configuration C; has not been cached.
The reconfiguration cost is based on the
set |X;k|. If there is space in this set of
configurations to be pre-loaded, then the
configuration C; is added to the set and
reconfiguration cost is k.. If the cache is
already full then the full reconfiguration
cost R;; is incurred.

The value of dx; is computed at each step as

if (Cj € )(ik)

okj = ke
else if (| Xkl < N and 1< j < m)

(Skj = k.

else

S = Ry




Given the value of mink. the E;y;; and the
Xit+1; values are computed as follows:

Eit1j = tit1j + Ei mink + Omink ;

Xit1; = Ximink UG

lf ‘/X—iminkl < A'C and 1 S] < m)

= X, mink Otherwise

The minimum execution cost F and the cor-
responding set of contexts X for executing
tasks Ty to T. for any z are given by:

jmin=1<j < 2%m:min[E;]
E=FE. jmin
X=X jmin
The required optimal schedule and the set
of contexts can be computed by fully unrolling
the loop and computing F' and X forz = pxN

where N is the number of the iterations and p
is the number of tasks in the loop. O]

5 Conclusions

Mapping of applications in an architecture in-
dependent fashion can provide a framework for
automatic compilation of applications. Loop
structures with regular repetitive computa-
tions can be speeded-up by using configurable
hardware. In this paper, we have developed
techniques to map loops from application pro-
grams onto configurable hardware. The low re-
configuration costs of multi-context devices are
exploited to reduce the reconfiguration over-
heads in mapping. We described an efficient
algorithm to select modules to be mapped onto
the available contexts.

The problem that we solve assumes that the
pre-loaded configurations can not be modified
during the application execution. A more gen-
eral version of the problem to be addressed is
optimizing the execution time when the config-
urations can be replaced and the replacement
can overlap with execution in a configuration.
The work reported here is part of the USC
MAARC project. This project is developing al-
gorithmic techniques for realizing scalable and

portable applications using configurable com-
puting devices and architectures. Some related
results can be found at http://maarc.usc.edu.
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Abstract. Current simulation tools for reconfigurable systems are based
on low level simulation of application designs developed in a High-level
Description Language(HDL) on HDL models of architectures. This ne-
cessitates expertise on behalf of the user to generate the low level design
before performance analysis can be accomplished. Most of the current
simulation tools also are based on static designs and do not support
analysis of dynamic reconfiguration.

We propose a novel interpretive simulation and visualization environment
which alleviates these problems. The Dynamically Reconfigurable sys-
tems Interpretive simulation and Visualization Environment(DRIVE)
framework can be utilized for performance evaluation and architecture
and design space exploration. Interpretive simulation measures the per-
formance of an application by executing an abstract application model
on an abstract parameterized system architecture model. The simula-
tion and visualization framework is being developed in Java language
and supports modularity and extensibility. A prototype version of the
DRIVE framework has been implemented and the complete framework
will be available to the community.

1 Introduction

Reconfigurable systems are evolving from rapid prototyping and emulation plat-
forms to a general purpose computing platforms. The systems being designed
using reconfigurable hardware range from FPGA boards attached to a micro-
processor to systems-on-a-chip having programmable logic on the same die as
the microprocessor. Reconfigurable systems have been utilized to demonstrate
large speed-ups for various classes of applications. Architectures are being de-
signed which support partial and dynamic reconfiguration. The reconfiguration
overhead to change the functionality of the hardware is also being diminished by
the utilization of configuration caches and multiple contexts on the same device.

* This work was supported by the DARPA Adaptive Computing Systems Program
under contract DABT63-96-C-0049 monitored by Fort Hauchuca.




Compilation of user level programs onto reconfigurable hardware is also being
explored.

The general purpose computing area is the most promising to achieve sig-
nificant performance improvement for a wide spectrum of applications using
reconfigurable hardware. But, research in this area is hindered by the absence
of appropriate techniques and tools. Current design tools are based on ASIC
CAD software and have multiple layers of design abstractions which hinder
high level optimizations based on reconfigurable system characteristics. Existing
frameworks are either based on simulation of HDL based designs [1, 11, 13] or
they are tightly coupled to specific architectures [5, 9, 14](See Section 1.1). It is
also difficult to incorporate dynamic reconfiguration into the current CAD tools
framework. Simulation tools provide a means to explore the architecture and
the design space in real time at a very low resource and time cost. The absence
of mature design tools also impacts the simulation environments that exist for
studying reconfigurable systems and the benefits that they offer. System level
tools which analyze and simulate the interactions between various components
of the system such as memory and configurable logic are limited and are mostly
tightly coupled to specific system architectures.

In this paper we present a novel interpretive simulation and visualization en-
vironment based on modeling and module level mapping approach. The Dynamically
Reconfigurable systems Interpretive simulation and Visualization Environment(DRIVE)
can be utilized as a vehicle to study the system and application design space and
performance analysis. Reconfigurable hardware is characterized by using a high
level parameterized model. Applications are analyzed to develop an abstract ap-
plication task model. Interpretive simulation measures the performance of the
abstract application tasks on the parameterized abstract system model. This
is in contrast to simulating the exact behavior of the hardware by using HDL
models of the hardware devices.

The DRIVE framework can be used to perform interactive analysis of the ar-
chitecture and design parameter space. Performance characteristics such as total
execution time, data access bandwidth characteristics and resource utilization
can be studied using the DRIVE framework. The simulation effort and time
are reduced and systems and designs can be explored without time consuming
low level implementations. Qur approach reduces the semantic gap between the
application and the hardware and facilitates the performance analysis of recon-
figurable hardware. Our approach also captures the simulation and visualization
of dynamically reconfigurable architectures. We have developed the Hybrid Sys-
tem Architecture Model(HySAM) of reconfigurable architectures. This model is
currently utilized by the framework to map applications to a system model.

An overview of our framework is given in Section 2. Various aspects of the
simulation and visualization framework including our Hybrid System Architec-
ture Model(HySAM) are described in detail in Section 3. Conclusions and future
work are discussed in Section 4.




1.1 Related Work

Several simulation tools have been developed for reprogrammable FPGAs. Most
tools are device based simulators and are not system level simulators. The most
significant effort in this area has been the Dynamic Circuit Switching(DCS)
based simulation tools by Lysaght et.al. [13]. Luk et.al. describe a visualization
tool for reconfigurable libraries [11]. They developed tools to simulate behavior
and illustrate design structure. CHASTE [5] was a toolkit designed to experiment
with the XC6200 at a low level. There are other software environments such as
CoDe-X [9], JHDL [1], HOTWorks [7], Riley-2 [14], etc.

These tools study the dynamically reconfigurable behavior of FPGAs and are
integrated into the CAD framework. Though the simulation tools can analyze
the dynamic circuit behavior of FPGAs, the tools are still low level. The sim-
ulation is based on CAD tools and requires the input design of the application
to be specified in VHDL. The parameters for the design are obtained only after
processing by the device specific tools. Most of the software frameworks do not
support system level analysis and are utilized for for low level hardware design
and evaluation.

2 DRIVE Overview

Architectures Library Modules Applications

/
Analysis and
Transformation

Y

System
Abstraction

Performance
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Algorithmic
Mapping Techniques

[ Interpretive Simulation )

Performance Analysis
Design Exploration

Fig.1. DRIVE framework




Figure 1 shows an overview of our framework. The system architecture can be
characterized to capture the parameter space which affects the performance. The
implementations of various optimized modules can be encapsulated by charac-
terizing the performance of the module with respect to the architecture. This
characterization is partitioned into the capabilities of the system and the actual
implementations of these capabilities. The application is not mapped onto a low
level design but is analyzed to develop an application task model. The application
model can exploit the knowledge available in the form of the system capabilities
provided by the module characterization. Algorithmic techniques are utilized to
map the application task model to the system models, to perform interpretive
simulation and obtain performance results for a given set of parameter values.

Interpretive simulation is performed on the system model which permits a
higher level abstract simulation. The application does not need to be actually ex-
ecuted by using device level simulators like HDL models of the architectures. The
performance measures can be obtained in terms of the application and model pa-
rameters and system characteristics. An interpretive simulation framework will
permit design exploration in terms of the architectural choices, application algo-
rithm options, various mapping techniques and possible problem decomposition
onto the system components. Development of all the full blown designs which
exercise these options is a non-realizable engineering task. Simulation, estima-
tion and visualization tools can be designed to automate this exploration and
obtain tangible results in reasonable time. :

The abstractions and the techniques that are developed are enclosed in the
dashed box in Figure 1. Verification of the models, mapping techniques and
simulation framework can be performed by mapping some designs onto actual
architectures. This verification process can be utilized to expand on the abstrac-
tion knowledge and refine the various models and techniques that are developed.
The verification and refinement process completes the feedback loop of the de-
sign cycle to result in final accurate models and efficient techniques for optimal
designs.

3 Simulation Framework

The simulation framework consists of abstractions and algorithmic techniques
as discussed in Section 2(Fig. 1). A high level model of reconfigurable hardware
is needed to abstract the low level details. Existing models supplied by the CAD
tools have either multiple abstraction layers or are very device specific. We have
developed a parameterized model of configurable computing system, which con-
sists of configurable logic attached to a traditional microprocessor. Our model
cleanly partitions the capabilities of the hardware from the implementations and
presents a very clean interface to the user. The algorithmic techniques for map-
ping are not the focus of this paper. Some algorithms for mapping based on the
HySAM model are described in our prior work [3, 4].
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3.1 Hybrid System Architecture Model(HySAM)

The Hybrid System Architecture Model is a general model consisting of a tradi-

tional microprocessor with additional Configurable Logic Unit(CLU). Figure 2

shows the architecture of the HySAM model and an example of an actual ar-
chitecture. The architecture consists of a traditional microprocessor, standard
memory, configurable logic, configuration memory and data buffers communi-

cating through an interconnection network.

We outline some of the parameters of the Hybrid System Architecture Model(HySAM)

below.

F : Set of functions F) ...F, which can be performed on configurable logic.
(capabilities)
C' : Set of possible configurations Cj ...Cy, of the Configurable Logic Unit.
{implementations)
Aij : Set of attributes for implementation of function F; using configuration Cj.
R;; : Reconfiguration cost in changing configuration from C; to Cj.
G : Set of generators which abstract the composition of configurations to gen-
erate more configurations.
B : Bandwidth of the interconnection network (bytes/cycle).
N, : The number of configuration contexts which can be stored in the configu-
ration cache.
k., K. : The cost of accessing configuration data from the cache and external mem-
ory respectively (cycles/byte).
k4, Ky : The cost of accessing data from the cache and external memory respectively
{cycles/byte).

The functions F and configurations C have a many-to-many relationship.
Each configuration Cj, can potentially contain more than one function Fj. In
the HySAM model, only function can be active in a configuration at any given
time. Each function F; can be executed by using any one configuration from a
subset of the configurations. The different configurations might be generated by




@ User
Application Tasks

Adaptation
Schedule

Mapping
Techniques

Library of
Modules
Model Parameters
<=
Reconfigurable
HySAM Model Architecture

Fig. 3. Major components in the DRIVE framework and the information flow

. different tools, libraries or algorithms. These configurations might have different
area, time, reconfiguration cost, precision, power, etc. characteristics.

The attributes A define the relationship between the functions and the con-
figurations. The attributes define values such as the execution time and the data
accessed during execution of a function in a configuration etc. For example, the
different execution times and the different data input patterns when a multi-
plier is implemented as a bit parallel versus a bit serial multiplier are defined by
the attributes. The reconfiguration costs R define the costs involved in chang-
ing the configuration of the CLU between two configurations. This cost can be
statically evaluated based on the configuration information for different config-
urations. The cost can also be computed dynamically when the configurations
are constructed dynamically.

3.2 DRIVE Framework Implementation

An overview of the major components in the DRIVE framework and their
interactions is given in Figure 3. The framework utilizes high level models of re-
configurable hardware. The current prototype uses the HyYSAM model described
in Section 3.1.

The main input requirements to the DRIVE framework are the model pa-
rameters and the application tasks. The model parameters supply information
about the Functions, Configurations, Attributes and the Reconfiguration costs.




The user can visualize and update any of the instantiated parameters to ex-
plore the design space. For a given model parameters, performance results can
be obtained for any set of application tasks with various algorithmic mapping
techniques.

The high level model partitions the description of the hardware into two
components: the Functions(capabilities) of the hardware and the Configura-
tions(implementations). For example, ability of the hardware to perform multi-
plication is a capability. The implementations are the different multiplier designs
available with varying characteristics such as area, time, precision, structure, etc.
Components from a library or modules form the implementations in the model
and can be determined for different architectures. Vendors and researchers have
developed parameterized libraries and modules optimized for a specific archi-
tectures. The proposed framework can exploit the various efforts in design of
efficient and portable modules [6, 12, 15]. The framework can incorporate such
knowledge as the parameters for the HySAM model.

The user only needs to have a knowledge of the capabilities. The application
task model consists of specification of the application in terms of the Func-
tions(capabilities). The input to the framework consists of a directed acyclic
_ graph of the application tasks specified with the Functions as the nodes of the
graph. The edges denote the dependencies between the tasks. This technique
reduces the effort and expertise needed on the part of the user. The application
need not be implemented as an HDL design by the user to study the perfor-
mance on various reconfigurable architectures. Automatic compilation efforts [2]
can be leveraged to generate the Functions from high level language application
programs.

Algorithmic mapping techniques are then utilized to map the application
specification to actual implementations. These techniques map the capabilities
to the implementations and generate a sequence of configuration, execution,
and reconfiguration steps. This is the adaptation schedule which specifies how
the hardware is adapted during the execution of the application. The schedule
contains a sequence of configurations(C} ...Cy) where each configuration C; €
C. This adaptation schedule can be computed statically for some applications by
using algorithmic techniques. Also, the simulation framework can interact with
the model and the mapping algorithms to determine the adaptation schedule at
run-time.

The interpretive simulation framework is based on module level parameteri-
zation of the hardware. The user can analyze the performance of the architecture
for a given application by supplying the parameters of the model and the appli-
cation task. Typically the architectural parameters for the model are supplied
by the architecture designer and the library designer. But, the user can modify
the model parameters and explore the architecture design space. This provides
the ability to study design alternatives without the need for actual hardware.
The simulation and the performance analysis are presented to the user through
a Graphical User Interface. The framework supports incorporation of additional
information in the configurations(C) which can be utilized for actual execution




or simulation. It can contain configuration bitstreams or class descriptions which
can be utilized to perform actual configuration of hardware or simulation using
low level models. Using this information, it is possible to link the abstract defi-
nitions to actual implementations to verify and refine the abstract models.

The parameters and attributes of the model can also be evaluated and
adapted at run-time to compute the required information for scheduling and
visualization. For example, reconfiguration costs can be determined by comput-
ing the difference in the configuration information and configurations can even
be generated dynamically by future integration of tools like JBits [10]. It is as-
sumed currently that the attributes for configurations are available a priori. It is
easy to integrate simulation tools which evaluate the attributes such as execu-
tion time by performing simulations as in various module generators [1, 6, 15].
These simulations are based on module generators which do not require mapping
using time consuming CAD tools. Once the attribute information for low level
modules are obtained by initial simulations and implementations, the attributes
for higher level modules can be simulated or computed without the intervention
of CAD tools.

The DRIVE framework has been designed using object-oriented methodol-
ogy to support modification and addition to the existing components. The frame-
work facilitates addition of new architectural models, algorithmic mapping tech-
niques, performance analysis tools, etc. in a seamless manner. The framework
can also be interfaced to existing tools such as parameterized libraries(Xilinx
XBLOX, Luk et. al. [12]), module generators(PAM-Blox [15], Berkeley Object
Oriented Modules [6], JHDL [1]), configuration generators(JBits [10]), module
interfaces(FLexible API for Module-based Environments [8]), etc. The compo-
nents of the framework will be made available to the community to facilitate
application mapping and modular extensions.

3.3 Visualization

The visualizer for the framework has been developed using the Java language
AWT toolkit. A previous version of the visualizer was developed using Tcl/Tk.
The C programming language was utilized for implementing the simulation en-
gine. The current prototype has been developed in Java to utilize the object
oriented framework and make the framework modular and easily extensible. Im-
plementing the visualizer and the interpretive simulation in the same language
provides for a clearer interface between the components. Java is becoming the
language of choice for several research and implementation efforts in hardware
design and development [1, 6, 10]. Incorporating the results and abstractions
from other research efforts is simplified using the current version.

The visualizer acts as a graphical user interface to support the full function-
ality of the framework. It is implemented as a separate Java class communicat-
ing with the remaining classes. Any component of the simulation or visualizer
framework can be completely replaced with a different component supporting
the same interface. The visualizer is oblivious of the algorithmic techniques and
implementation details. It accesses information from the different components
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Fig. 4. Sample DRIVE visualization

in the simulation framework on an event by event basis and displays the state
of the various architecture components and the performance characteristics. A
sample view of the visualizer is shown in Figure 4.

4 Conclusions

Software tools are an important component of reconfigurable hardware devel-
opment platforms. Simulation tools which permit performance analysis and de-
sign space exploration are needed. The utility of current tools for reconfigurable
hardware design is limited by the required user expertise in multiple domains.
We have proposed a novel interpretive simulation and visualization environment
which supports system level analysis. The DRIVE framework supports a param-
eterized system architecture model. Algorithmic mapping techniques have been
incorporated into the framework and can be extended easily. The framework
can be utilized for performance analysis, design space exploration and visual-
ization. It is implemented in the Java language and supports flexible extensions
and modifications. A prototype version has been implemented and is currently
available. The USC Models, Algorithms and Architectures project is developing
algorithmic techniques for realizing scalable and portable applications using con-




figurable computing devices and architectures. Details on DRIVE and related
research results can be found at http://maarc.usc.edu.
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Abstract. This paper presents a novel approach that utilizes FPGA self-reconfiguration
for efficient computation in the context of Genetic Programming (GP). GP in-
volves evolving programs represented as trees and evaluating their fitness, the
latter operation consuming most of the time.

We present a fast, compact representation of the tree structures in FPGA logic
which can be evolved as well as executed without external intervention. Execution
of all tree nodes occurs in parallel and is pipelined. Furthermore, the compact
layout enables multiple trees to execute concurrently, dramatically speeding up
the fitness evaluation phase. An elegant technique for implementing the evolution
phase, made possible by self-reconfiguration, is also presented.

We use two GP problems as benchmarks to compare the performance of logic
mapped onto a Xilinx XC6264 FPGA against a software implementation running
on a 200 MHz Pentium Pro PC with 64 MB RAM. Our results show a speedup of
19 for an arithmetic intensive problem and a speedup of three orders of magnitude
for a logic operation intensive problem.

1 Introduction to Self-Reconfiguration

1.1 Problem Instance Dependence and Hardware Compiling

Building logic depending on a single problem instance is the key advantage of reconfigurable
computing versus ASICs. That essentially means that a good application for reconfigurable de-
vices should read the input of the problem (the instance), compute instance dependent logic,
i.e. logic optimized for that particular instance, and load it into a reconfigurable device to solve
the problem. Applications which produce instance independent logic to be loaded onto a recon-
figurable device are simply not exploiting the power of reconfiguration. In that case the logic
mapped is static, depends only on the algorithm used, and is not conceptually different from
ASIC approach.

* This work was supported by the DARPA Adaptive Computing Systems Program under con-
tract DABT63-96-C-0049 monitored by Fort Hauchuca. Alessandro Mei is with the Depart-
ment of Mathematics of the University of Trento, Italy.




A large class of applications developed for reconfigurable devices can thus be modeled in
the following way (see Figure 1(a)). A process M reads the input problem instance. Depending
on the instance a logic E, ready to be loaded, is computed such that it is optimized to solve that
single problem instance. This process is usually executed by the host computer. Let Tas denote
the time to perform this.

After reconfiguring the device, E is ex-
HOST FPGA ecuted. Let Tas g denote the time to recon-
W figure. The time Te required for the execu-
Pt #@ Configaraton \/E\ - tion‘includes the time needed for reading
instance Tz &/ the inputs from the memory and produc-
T Te ing the output and/or intermediate results
sent back to the mapping module. There-
fore, the time required by the execution of
a single iteration of the computation de-
scribed above is Tt = Ty + Tme + TE.
This process can be iterated. The interme-
FPGA diate results returned by E can be used by
M to compute and map new logic toward
the final solution of the problem instance.
Problen Cotput A large number of applications fit this
e \:? e Ki/ model. In some of them, a small amount of
parallelism can be obtained by running M
and E in parallel. However, the best speed-
(b) Mapping and execution on a self-  up that can be obtained this way is a factor
reconfigurable device. of 2. Thus, we can suppose that only one of
the two modules runs at a given time, with-
out loss of generality. Of course, this factor
cannot be ignored in performance analy-
sis.

Self-Reconfiguration is a novel approach to reconfigurable computing presented in [12]. It
has been shown to be able to dramatically reduce Tar and Tam g With respect to classical CAD
tool approach. Since M has to be speeded up, the basic idea is to let fast reconfigurable devices
to be able to execute it (see Figure 1(b)). In case a single FPGA is being used, the FPGA should
be able to read from a memory the problem instance, configure itself, or a part of it, and execute
the logic built by it to solve the problem instance. Evidently, in this case M is itself a logic circuit,
and cannot be as complex and general as CAD tools.

Letting FPGA system execute both M and E on the same chip gives the clear advantage that
CAD tools are used only once, in spite of classical solutions where they are needed for computing
a logic for each problem instance. This is possible since the adaptations, needed to customize the
circuit to the requirements of the actual input, are performed dynamically by the FPGA itself,
taking advantage of hardware efficiency.

Another central point is that the bus connecting the FPGA system to the host computer is
now only used to input the problem instance, since the reconfiguration data are generated locally.
In this way, the bottle-neck problem is also handled.

These ideas have been shown to be realistic and effective by presenting a novel implementa-
tion of a string matching algorithm in {12]. In that paper, however, a simpler version of the above
model was introduced which consists of a single iteration of the map-execute loop. Nevertheless,
speedups in mapping time of about 108 over CAD tools were shown.

Since self-reconfiguration has been proved to be very effective in reducing mapping and host
to FPGA communication time, we expect that mapping and communication intensive applications

(a) Mapping and execution on a conventional
reconfigurable device.

Intennediate results

Configuration

Fig. 1. Problem instance dependent mapping.




can get the maximum advantage from this techniques. A very important example of this kind
of an application is Genetic Programming. Section 3 briefly introduces GP and shows how GP
applications can fit our model, proving this way they can be dramatically speeded up by using

. reconfigurable computing enhanced with Self-Reconfiguration.

1.2 Previous Work Related to Self-Reconfiguration

The main feature needed by an FPGA device to fulfill the requirements needed by the technique
shown in the previous section is self-reconfigurability. This concept has been mentioned few
times in the literature on reconfigurable architectures in the last few years [5][4].

In [5], a small amount of static logic is added to a reconfigurable device based on an FPGA in
order to build a self-reconfiguring processor. Being an architecture oriented work, no application
of this concept is shown. The recent Xilinx XC6200 is also a self-reconfiguring device, and this
ability has been used in [4] to define an abstract model of virtual circuitry, the Flexible URISC.
This model still has a self-configuring capability, even though it is not used by the simple example
presented in [4]). The concept of self-reconfiguration has also been used in the reconfigurable
mesh [6]—a theoretical model of computation—to develop efficient algorithms. However, there
has been no demonstration (except in {12]) of a practical application utilizing self-reconfiguration
of FPGAs to improve performance. This paper shows how self-reconfiguration can be used to
obtain significant speedups for Genetic Programming problems.

Devices like the XC6200 can self-reconfigure and are thus potentially capable of implement-
ing the ideas presented in this paper. However, moving the process of building the reconfigurable
logic into the device itself requires a larger amount of configuration memory in the device com-
pared to traditional approaches. For this reason, multi-context FPGAs are better suited since they
can store several contexts (see [10], for example, where a self-reconfiguring 256-context FPGA
is presented).

2 Multicontext FPGAs

As described in the Introduction, the time required to reconfigure a traditional FPGA is very
high. To reduce the reconfiguration time, several such multicontext FPGAs have been recently
proposed [11][101[13] [7][3].
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Fig. 2. Self Reconfiguration and context switching in a Multicontext FPGA.

These devices have on-chip RAM to store a number of configuration contexts, varying from
8 to 256. At any given time, one context governs the logic functionality and is referred to as the
active context. Switching contexts takes 5-100 ns. This is several orders of magnitude faster than
the time required to reconfigure a conventional FPGA (=1 ms). For self-reconfiguration to be
possible, the following two additional features are required of multicontext FPGAs:




— The active context should be able to initiate a context switch—no external intervention
should be necessary.

~ The active context should be able to read and write the configuration memory corresponding
to other contexts.

The multicontext FPGAs described in [11][10][13] satisfy the above requirements and hence
are capable of self-reconfiguration. Figure 2 illustrates how a multicontext FPGA with above fea-
tures can modify its own logic. As shown in Figure 2(a), the active context initially is context
1 which has logic capable of configuring an AND gate. Figure 2(b) shows this logic using the
configuration memory interface to write bits corresponding to an AND gate at appropriate loca-
tions in the configuration memory corresponding to Context 2. Finally the logic on the context
1 initiates a context switch to Context 2 which now has an AND gate configured at the desired
location.

3 Introduction to Genetic Programming

Genetic Programming [8] is an adaptive and learning system evolving a population of individual

computer programs. The evolution process generates a new population from the existing one us-

ing analogs of Darwinian principle and genetic operations such as mutation and sexual recombi-

nation. In Genetic Programming, each individual is obtained by recursively composing functions

taken fromaset F = {fi,. .., fNpunc }» @nd terminals from T = {a1, ..., @N,..m, } Each of the
individuals has an associated fitness value, usually evaluated over a set of fitness cases.

A natural way of representing an individual is thus as a

tree, where a leaf contains a terminal and an internal node

@ a function whose arity is exactly equal to the number of its

children (see Figure 3). The evolution process, starting from

a randomly generated population of individuals, iteratively

transforms it into a new population by applying the following

genetic operations:

reproduction Reproduce an existing individual by copying
it into the new population.

crossover Create two new individuals by genetically recom-
bining two existing ones. This is done by exchanging

the subtrees rooted at two randomly chosen crossover
points, one per parental tree.

mutation Create a new individual from an existing one by

) randomly changing a randomly chosen subtree.
Fig. 3. Example of individual tree

structure in Genetic Program- The genetic operations are applied to individuals in the
ming. population selected with a probability based on their fitness

value, simulating the driving force of Darwinian natural se-
lection: survival and reproduction of the fittest. Computing the fitness value of each individual
is a central computational task of GP applications, usually taking around 95-99% of the overall
computation time.

It is thus not surprising that the main effort aimed to speedup a Genetic Programming ap-
plication is focused on the fitness evaluation. For example, in [2] an FPGA is used to accelerate
the computation of the fitness value of a population of sorting networks achieving much faster
execution.




It is worth noting that the reconfigurable computing application presented in [2] nicely fits
our model shown in Figure 1(a). Indeed, M is the process responsible for managing and storing
the population, computing the logic E to fitness test each individual, mapping it onto the device,
and reading the output value. This operation is repeated for each individual in the population and
for each generation in the evolutionary process, resulting in a considerable mapping and host to
FPGA communication overhead. Our performance evaluation (see Section 7) shows that reconfig-
uration time (T £) is greater than the fitness evaluation time (T¢) and thus self-reconfiguration
is essential.

Moreover. in [2] only a rather specific application is shown to benefit from FPGA computing.
and it is not clear how the same approach can be extended to an arbitrary GP application.

This paper presents important improvements toward in directions. First, it is shown how a
generic GP application can be mapped onto an FPGA system, taking advantage of the massive
parallelism of contemporary devices in several ways. Second, how Self Reconfiguration can dra-
matically speed it up, by handling long mapping and reconfiguration times, and by allowing the
evolution phase, as well as the fitness evaluation phase, to be mapped onto the FPGA. The FPGA
executes the complete GP algorithm and does not require any external control.

We begin by describing the mapping of the program trees onto FPGA logic in the following
section. Section 5 presents the proposed operation of a GP algorithm on FPGAs. The two GP
problems used as benchmarks are discussed in Section 6 and the results obtained are presented in
Section 7. We summarize the contributions of this paper in Section 8.

4 Tree Template

Before execution begins, 2 number of tree %/
templates are configured onto various con-

texts of the FPGA. Each template holds ‘g( %
!

the tree representing an individual pro- / 7
gram throughout its lifetime. As evolu- ’7 \ / \
tion progresses, the nodes of the tree tem- /S/ /g/ »g
plate are appropriately configured to repre- \ \ \

i i A A\
sent the program—the interconnection re 3 4 - 7N

main fixed. By configuring the nodes to re-
flect the actual program, efficient execution
results through pipelined execution of all (a)
nodes of the tree in parallel (see Section
5.2). By employing a template with static

interconnect, fitness evaluation is speeded i i ) I = =
up and implementation of the mutation, re- [dfo cjo oV o(Ul 0.0y 0
production and crossover operators is sim-

plified (see Sections 5.2 and 5.3). The tem- (b)

plate tree is a complete binary tree of height
k (having » = 2¥ — 1 nodes). Number of
levels of the tree is restricted to the number  Fig. 4. Compact tree layout using hierarchical in-
of levels of the template tree. (Restricting terconnect structure.
the number of levels is a common technique
used in GP implementations to limit tree size.) Below we discuss its mapping onto FPGA logic
cells and interconnect.

We map the nodes of the tree along a single row or column of logic cells. The sequence of
nodes is the same as obtained through an in-order traversal of the binary tree. The width of each




node is a power of 2 while its height is arbitrary—it depends upon the complexity of the functions
in the function set. All nodes have the same size.

Figure 4(a) shows a complete 15 node binary tree. Also shown in Figure 4(b) is the mapping
of the template tree edges onto wires of the interconnect of the Xilinx XC6200 FPGA archi-
tecture'. The compact mapping of the tree structure is possible because the interconnect of the
XC6200 FPGAs. like that of most other FPGA architectures, is hierarchical. Moreover, most
newer generation FPGA architectures (including the Xilinx XC4000 and Virtex, and the Atmel
AT40K) have richer and more flexible interconnects than the XC6200. Thus the tree template can
be easily mapped onto such FPGAs.

5 Operation

5.1 Initialization

A number of tree templates (equal to the required population size) are configured on one or more
contexts of the FPGA. These templates are then initialized with trees generated using standard GP
techniques [1]. The size of the nodes in the template is chosen to accommodate the largest area
occupied by a function implementation. The size of the template itself is chosen to accommodate
the desired maximum number of levels in the trees. Also configured is logic required for the
fitness evaluation and evolution phases (explained in the following two sections).

5.2 Fitness Evaluation Phase

Figure 5 shows the datapath configured onto each context. The test case generator iterates through
all the test cases. It uses a part of the context memory to store the test cases. For each case it also
generates the expected output. A set of values corresponding to the members of the terminal set
(described in Section 3) forms a test case. The crossbars are required to map these terminal set val-
ues onto leaf nodes of the tree templates. The crossbars are configured using self-reconfiguration
in the evolution phase. All nodes of the template trees process the test case in parallel. There is
concurrent execution of all nodes in each tree level and pipelined execution along each path. The
test case generation and fitness computation are also pipelined and thus do not incur additional
overhead. As shown in Figure 5, the fitness computation logic compares the output of the tree for
atest case with the corresponding expected valtue. The resulting measure of fitness is accumulated
in the cumulative fitness register. The two benchmark GP problems described in Section 7 give
concrete examples of test cases, test case generation logic and fitness computation logic.

We now compute the time required to perform fitness evaluation using the above: approach.
The total time required to evaluate the fitness of a single generation is:

n
Tre = (tnode X Tiests + trestgen + terossbar + Ktnode + thitcomp + titreg) |- ees -| (1)
Titcontext

where

k = number of levels in the tree templates

tnode = latency of a node

! 1t should be noted that the XC6200 is used purely for illustration and the proposed mapping
in no way depends on any XC6200 specific features. Its choice here was motivated by the
authors’ familiarity with its CAD tools rather than any architectural considerations.
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5.3 Evolution Phase

Evolution involves modifying some of the programs, letting a portion of the programs die (based
on their fitness), and generating new programs to replace the dead ones. In this phase, self-
reconfiguration is utilized to modify some of the trees and generate new ones. The modification is
achieved through the genetic operations of mutation and crossover while reproduction is used to
create new programs. Below we discuss how the ability of self-reconfigurable FPGAs to modify
their own configuration is used to implement the genetic operators that manipulate the trees. It
should be noted that the evolution phase consumes only 1-5% of the total execution time. Hence
the discussion below is qualitative in nature and illustrates how self-reconfiguration elegantly
implements the three genetic operations on the FPGA, without any external intervention.

Figure 6 shows the major logic blocks required to perform evolution. This logic operates in
bit-serial fashion and is configured on a separate context. The random number generators shown
can be efficiently implemented as discussed in [9]. The tree template shown has the same number
of nodes as other templates but node contents differ. Each node of the template stores its own
offset address. For e.g. the root node stores . These can be efficiently stored in each node using
log, n flip-flops. The offset—added to a tree base address—is used by the configuration memory
interface to access a node of that tree. Each node also has an active bit which when set causes it
shift out its address in bit-serial fashion. The logic shown solves in an elegant manner the problem
of subtree traversal which is used for all the three operations as described below.

Reproduction The active bit of the root node of the tree template is set. Next the increment
signal is applied for & (number of levels in template) clock cycles. In response to the increment
signal all active nodes (while remaining active themselves) set the active bits of their child nodes.
Thus after k clock cycles, all nodes are active. Next, one bit of the shift register is set (rest are
0). The offset address of the corresponding node is read out and is used to read a node from the
source tree and write it into the destination tree template. Next the shift register advances one
location and another node gets copied. In this manner, after n shifts, a tree is reproduced.
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Fig. 6. Logic for the evolution phase. The tree template shown is used to map the node numbers
onto the linear configuration memory address space. Each node stores its own offset address.

Crossover The problem is to swap (randomly chosen) subtrees of two (randomly chosen) par-
ents. The key operation is the subtree traversal which is elegantly done. The output of the random
node number generator is used to set the active bit of one node which forms the root of the sub-
tree. Next (as in reproduction), the increment signal is applied for & clocks after which the active
bits of all the nodes of the subtree are set. The shift register (with a single bit set) is then shifted n
times. On each shift, the address of the corresponding node (if active) is read out. In this manner,
after n shifts, the subtree is traversed. The crossover operation requires four such traversals, two
for each of the subtrees. In the first two traversals, the subtrees are read into scratchpad configu-
ration memory. In the next two traversals, they are written into each others’ original locations.

Mutation Mutation involves replacing a randomly selected subtree with a randomly generated
subtree. The subtree selection and traversal are performed as for crossover above. For each node
visited during the traversal, its current configuration is replaced by the contents corresponding to
the output of the random function number generator.

6 Implementation

We evaluated the performance of our approach in the following manner. We chose two GP prob-
lems as benchmarks. Both problems were selected from Koza’s Genetic Programming(8]. For
each we implemented the fitness evaluation logic (as discussed in Section 5.2) onto a conven-
tional FPGA. This implementation was used to obtain the minimum clock cycle time and the
maximum number of trees that fit on a single context. Using this information and Equation 1 the
time required by our approach to perform fitness evaluation was computed. Next, a software im-
plementation of the two benchmarks was run and the time spent on fitness evaluation measured.




s
Y T e Y o T ey B A St Sy S S S, e M LS P e LAY M S AN AV R SX e R e aeATatun o

‘
i

Fig.7. A section of the layout for the multiplexer problem with 127 node tree templates.

The speedup obtained using our approach was then computed from the fitness evaluation times
of both the approaches and Equation 1.

The choice of the two problems was motivated by the nature of their function sets (explained
in Section 3). For one of the problems (multiplexer), all the members of its function set were
bit-level logic functions. For the other (regression) all function set members were arithmetic
functions operating on integers. Clearly, FPGAs would provide a greater speedup over a micro-
processor for the former problem compared with the latter. Typically, the function set of a GP
problem contains a mix of arithmetic and logic functions. Therefore, performance evaluation of
the chosen problems would yield an estimate of the range of speedups that can be obtained over
a microprocessor.

The following two GP problems were chosen:

Multiplexer The problem is to evolve a program that exhibits the same behavior as a multiplexer
having 8 data inputs and 3 control inputs. The test cases are all 2'' possible inputs. The
corresponding expected values are the boolean outputs a multiplexer would produce. The
function set consists of logic functions and, or and not, and the if function which is
essentially a multiplexer with 2 data inputs and a control input. The functions are much
simpler than needed by many GP applications. But real problems such as evolution of BDDs
also employ such simple functions. The terminal set has 11 members—the 8 data inputs and

. the 3 control inputs.

Regression the problem is to evolve a function that “fits” a number of known (z,y) points.
The z coordinates are used as the fitness cases while the corresponding y is the expected
value. We use 200 test cases (niests=200). The function set consists of add, subtract and
multiply. The terminal set consists of the input value z and integer constants in the range

[-1,1).

7 Performance Evaluation

The Xilinx XC 6264 was used as the target FPGA. Required logic was specified in structural
VHDL and translated to EDIF format using velab. XACT 6000 was used for place, route and
configuration file generation. Software implementation of the benchmarks was carried out using
the lil-gp kernel [14]. The resulting executable was run on a PC with a 200 MHz Pentium Pro
processor and 64 MB RAM. The population size for both approaches was fixed at 100 individuals.

7.1 Multiplexer

Area Requirements Figure 7 shows the layout on a Xilinx XC 6264 (128 x 128 logic cells)
of two trees (each having 127 nodes) and the associated (simulated) crossbar for the multiplexor




problem—it is similar to Figure 5 (except for the test case generator which appears on the right
side). For this problem, the fitness computation logic reduces to an XOR gate and the cumulative
fitness register is just a counter controlled by the XOR gate output (these appear on the top and
bottom of the trees). To model the worst case delay through an actual crossbar, all inputs to each
tree originate from the crossbar row furthest from it. Since two trees (and cross bar) fit in 20 rows,
the 128 row FPGA can accommodate 12 127 node trees on it. The layout for the 63 node trees is
similar except they occupy half the number of columns—thus twice as many 63 node trees fit on
to the FPGA.

From the above mapped logic, the minimum clock cycle time (¢.jx) for both tree sizes was
determined which is shown in Table 1. It should be noted that the major component of t;jis the
crossbar—the critical paths through the 127 and 63 node trees were just 14.31 ns and 12.47 ns.
Thus an efficient crossbar can provide even further improvements. Also shown are the number
of clock cycles required which are computed using Equation 1 for 7irees=100 and nicontext=12
and 24. It should be clear from Figure 7 that all the times in Equation 1 (including #,04.) are
equal to tx. Finally multiplying by t.yields the time Tr£ required to fitness evaluate a single
generation of 100 trees using the proposed approach. It should be noted that Tr g is for fitness
evaluation of all trees on all contexts.

Table 1. Area requirements for the multiplexor problem for tree templates having 127 and 63
nodes. Each context has 128 x 128 logic cells.

[Structure | Area (in logic cells) |

n = 127 nodes{n = 63 nodes
Tree template 127 x 3 63 x 3
Crossbar 127 x 11 63 x 11
Test case generator 1x11 1x11
Fitness logic 12 x 3 12x3
lNumber of trees per context (ntcomext)| 12] 24]

Table 2. Time required to fitness evaluate Table 3. Fitness evaluation times for a

100 trees using proposed approach. generation of 100 individuals.

Area (in logic cells) {Approach] Tre |

n = 127 nodes|n = 63 nodes n = 127 nodes|n = 63 nodes

Clock cycle (2ck) 48.96 ns 37.08 ns Proposed 907.3 us 381.6 us
Clock cycles 18531 10290 Software 930 ms 440 ms
Time taken (TrE) 907.3 us 381.6 us iSpeedup 1 1025| 1153|

Time Requirements To obtain T»g for the software implementation, it was executed for a
population size of a 100 individuals. This experiment was conducted twice with the maximum
nodes per tree restricted to 127 and 63 thus ensuring that the tree size limits are the same as in
our approach. Each time, execution was carried out for a 100 generations and the total time spent
on fitness evaluation was noted. From this, the average fitness evaluation time per generation was
obtained which is shown in Table 3. As can be seen, the proposed approach is almost three orders
of magnitude faster than a software implementation (for fitness evaluation).




7.2 Regression

Area Requirements Regression requires much greater area compared to the multiplexer prob-
lem due to the (bit-serial) multiply operation—each node requires 4 x 16 logic cells. Table 4
shows the area requirements. Note that since the terminal set consists of just one variable (z), in
contrast to 11 for the multiplexer, the crossbar reduces to 124 x 1 logic cells. The other termi-
nal set members (integer constants) are implemented by embedding them in the corresponding
terminal nodes. Two 31 node trees and the associated circuitry fit into 35 rows of the XC 6264.
Thus 6 trees can be accommodated. The fitness computation and accumulation logic consists of
bit-serial comparator and adder.

Table 4. Area requirements for the regression problem for a tree template 31 nodes. Each context
has 128 x 128 logic cells.

[Structure Area (in logic cells)|
* n = 31 nodes
Tree template 124 x 16
Crossbar 124 x 1
Test case generator 1x16
Fitness logic 20 x 2
[Number of trees per context (rucontext) 6]
Table 5. Time required to fitness evaluate Table 6. Fitness evaluation times for a
100 trees using proposed approach. generation of 100 individuals.
Area (in logic cells) |Appr0ach| Tr E'
n = 31 nodes n = 31 nodes
Clock cycle (t.x) 28.86 ns Proposed 3321.0 ps
Clock cycles 115073 Software 62.9 ms
Time taken (TrE) 3321.0 us |Speedup , 19,0]

Time Requirements Operands are 16-bit values and all operations are performed in a bit-
serial fashion. Latency #p04e=33 clock cycles due to the multiply (only 16 MSB used). As can
be seen from Table 5, the latency (in number of clock cycles) is higher but the clock cycle time
is lower (since the “crossbar” is smaller and remains fixed) compared to the multiplexor. Clock
cycles are computed for 7ests=200. Table 6 shows that the proposed approach achieves a speedup
of 19 (in fitness evaluation) over a software implementation for the regression problem. This is a
significant speedup for a single FPGA considering the arithmetic intensive nature of the problem.

8 Conclusion

We have demonstrated dramatic speedups—of upto three orders of magnitude—for fitness eval-
uation, the GP phase that consumes 95-99% of execution time. This speedup is achieved due to
the fast, compact representation of the program trees on the FPGA. The representation enables
parallel, pipelined execution of all nodes in parallel and also concurrent execution of multiple
trees.




It should be noted that self-reconfiguration is essential for the above speedup. In the absence
of self-reconfiguration, the evolution phase would be performed off-chip, and the resulting trees
would have to be reconfigured onto the FPGA doing which would consume about 1 ms per
context (much more if configuration done over a slow /O bus). As can be seen from Section 7 our
approach fitness evaluates a several contexts of trees in less than 1 ms. Since the reconfiguration
time is greater than the execution time, the speedups obtained would be greatly reduced.

Self-reconfiguration eliminates external intervention and the associated penalty by allowing
the chip to modify its own configuration and thus perform the evolution phase on-chip. We have
also shown an elegant technique for performing the evolution phase using self-reconfiguration.
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Introduction

Reconfigurable architectures vary from systems which have FPGAs and glue logic attached to
a host computer to systems which include configurable logic on the same die as a micropro-
cessor. Automatic compilation of applications onto reconfigurable architectures involves not
only configuration generation, but also configuration management. Currently, there is no uni-
fied methodology for mapping applications to configurable hardware.

In this paper we describe algorithmic techniques for automatic mapping of applications in a
platform independent fashion. We have developed an abstract model of reconfigurable archi-
tectures. This parameterized abstract model is general enough to capture a wide range of con-
figurable systems. These include board level systems which have FPGAs as configurable com-
puting logic to systems on a chip which have configurable logic arrays on the same die as the
MiCroprocessor.

Configurable logic is very effective in speeding up regular, repetitive computations. Loop con-
structs in general purpose programs are one such class of computations. In this paper, we ad-
dress the problem of mapping a loop construct onto configurable architectures. The Hybrid
System Architecture Model(HySAM) that we have developed is utilized to define the mapping
problems. Efficient techniques based on dynamic programming are used to develop an optimal
schedule for important variants of the problem. The problem of utilizing on-chip reconfigura-
tion cache resources is addressed in this paper. The techniques are illustrated by mapping an
example FFT loop onto the Berkeley Garp architecture.

Hybrid System Architecture Model(HySAM)

*This work was supported by the DARPA Adaptive Computing Systems Program under contract DABT63-96-
C-0049 monitored by Fort Hauchuca.




To realize a formal framework for algorithm development, we developed the Hybrid System
Architecture Model of reconfigurable architectures. The Hybrid System Architecture is a gen-
eral architecture consisting of a conventional microprocessor with an additional Configurable
Logic Unit(CLU). The architecture consists of a conventional microprocessor, standard mem-
ory, configurable logic, configuration memory and data buffers communicating through an in-
terconnection network. Key parameters of the Hybrid System Architecture Model(HySAM)
are outlined below.

F : Set of functions F; ... F,, which can be performed on configurable logic.
C : Set of possible configurations C . .. C,, of the Configurable Logic Unit.

A;; : Set of attributes for implementation of function F; using configuration C;(execution
time, precision etc.).

R;; : Reconfiguration cost in changing configuration from C; to C;.

G : Set of generators which abstract the composition of configurations to generate more
configurations.

B : Bandwidth of the interconnection network(bytes/cycle).

The parameterized HySAM models a wide range of systems from board level architectures to
systems on a chip. The values for each of the parameters establish the architecture and also
dictate the class of applications which can be effectively mapped onto the architecture. For ex-
ample, a system on a chip architecture would have potentially faster reconfiguration times than
a board level architecture.

Mapping Loop Statements _

Scheduling a general sequence of tasks with a set of dependencies to minimize the total execu-
tion time is known to be an NP-complete problem. We consider the problem of generating this
sequence of configurations for loop constructs which have a sequence of statements to be exe-
cuted in linear order. There is a linear data or control dependency between the tasks. Most loop
constructs, including those which are mapped onto high performance pipelined configurations,
fall into such a class.

The total execution time includes the time taken to execute the tasks in the chosen configurations
and the time spent in reconfiguring the logic between successive configurations. We have to
not only choose configurations which execute the given tasks fast, but also have to reduce the
reconfiguration time. It is possible to choose one of many possible configurations for each task
execution. Also, the reconfiguration time depends on the choice of configurations that we make.

Problem: Given a sequence of tasks of a loop, Ty through T, to be executed in linear order( T3
T,...T,), where T; € F,for N number of iterations, find an optimal sequence of configurations
S(=C, C;...C,), where S; € C (={C1,C3,. . .,Crm }) which minimizes the execution time cost
E. E is defined as




g

E =) (ts, + Ri-1i)

=1

where ¢ s, is execution time in configuration S; and R;_,; is reconfiguration cost.

Optimal Solution for Mapping Loops

A simple greedy approach of choosing the best configuration for each task will not work since
the reconfiguration costs for later tasks are affected by the choice of configuration for the current
task. We outline our dynamic programming based approach below without proofs:

Lemma 1: Given a sequence of tasks 7T} ... T,, an optimal sequence of configurations for
executing these tasks once can be computed in O(pm?) time.

Lemma 1 provides a solution for an optimal sequence of configurations to compute one iteration
of the loop statement. But repeating this sequence of configurations is not guaranteed to give
an optimal execution for NV iterations.

Lemma 2 An optimal configuration sequence can be computed by unrolling the loop only m
times.

Theorem 1 The optimal sequence of configurations for NV iterations of a loop statement with p
tasks, when each task can be executed in one of m possible configurations, can be computed in
O(pm?®) time. O]
Theorem 1 is derived from Lemma 1 and Lemma 2 and the complexity of the algorithm is
O(pm?). This approach can also be used when the number of iterations N is not known at com-
pile time and is determined at runtime. The decision to use this sequence of configurations to
execute the loop can be taken at runtime from the statically known loop setup and single itera-
tion execution costs and the runtime determined V.

Multiple Contexts and Configuration Caches

The performance achievable on reconfigurable architectures is limited by the costs involved
in reconfiguring the logic. Currently, this overhead is very high and discourages the reconfig-
uration of the logic during the execution of a single application. To address this problem ar-
chitectures which support configuration caches and multiple contexts on the devices are being
developed. We extend the above approach for these devices with the following assumptions
regarding the HySAM model:

1. N.number of configurations can be loaded on to the device at the start of the computation.

2. There is one active context which can be configured from any of the N, configurations
with a cost k..

3. The pre-loaded configurations can not be modified during the execution of the complete
application. Only the active context can be reconfigured externally.

3




We define an additional variable X;;, 1 < 7 < 2% m, which is the set of contexts which are
cached for executing tasks 7} to T; with T; being executed using configuration C;. The E;; and
the X;; (1 < 7 < 2% m) values are computed using dynamic programming. The recursive
- equations for computing them are given below(d;; denotes the reconfiguration cost):

mink =k s.t. min[Ey 4+ 0] 1 <k <2xm

Zf (CJ € Xik)

(Skj = kc

elseif (| Xkl < N. and 1 <7 <m)
6kj = kc

else
5kj = R,’j

Given the value of mink, the E;1,; and the X,;,; values are computed as follows:

Fitij = tiy1j + Ei mink + Omink j
Xiv1; = Ximink UC;
Zf |Xz'mink| < Nc and 1 SJ < m)

= X; mink Otherwise

The minimum execution cost F and the corresponding set of contexts X for executing tasks T;
to 7, are given by:

minj =jst.min[Ey] 1<7<2xm

E= Ep minj
X = Xp minj

The required optimal execution cost and the set of contexts can be computed by using dynamic
programming. O)
Illustrative Example

We illustrate the techniques by mapping the loop containing FFT butterfly operations. The but-
terfly operation consists of one complex multiply, one complex addition and one complex sub-
traction. First, the loop statements were decomposed into functions which can be executed on
the CLU, given the list of functions in Table 1. One complex multiplication consists of four
multiplications, one addition and one subtraction. Each complex addition and subtraction con-
sist of two additions and subtractions respectively. The statements in the loop were mapped
to multiplications, additions and subtractions which resulted in the task sequence 1',, T, Tr,
T, 1o, 15, Ty, Ty, T, Ts. Here, T,, is the multiplication task mapped to function Fi, T, is the
addition task mapped to function F;, and T’ is the subtraction task mapped to function F3.
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Function Operation Configuration | Configuration | Execution
Time Time
F Multiplication(Fast) Ch 14.4 us 37.5ns
Multiplication(Slow) Cs 6.4 us 52.5ns
F, Addition Cs l6us | 7.5ns
F3 Subtraction Cs 1.6 us 7.5 ns
F, Shift Cs 3.2 us 7.5 ns

Figure 1: Representative Model Parameters for Garp Reconfigurable Architecture

The optimal sequence of configurations for this task sequence, using our algorithm, was C;,C3,C4,C3,Cy
repeated for all the iterations. The most important aspect of the solution is that the multiplier
configuration in the solution is actually the slower configuration. The reconfiguration overhead
is lower for C, and hence the higher execution cost is amortized over all the iterations of the
loop. The total execution time is given by N * 13.055 us where NN is the number of iterations.

Conclusions

Mapping of applications in an architecture independent fashion can provide a framework for
automatic compilation of applications. Loop structures with regular repetitive computations
can be speeded-up by using configurable hardware. We developed dynamic programming based
approaches to efficiently map tasks in a loop to a sequence of configurations. We illustrated our
approach by developing algorithms for some variants of the mapping problem.
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The Problem

During the past few years, the rapid advances in fab-
rication technology has led to the development of pro-
grammable devices (e.g., FPGAs) with substantial com-
putational power. As a result, reconfigurable hardware is
being used beyond the initial applications of rapid pro-
totyping and emulation into several areas of general pur-
pose computation. Existing evidence suggests that using
programmable devices for DoD applications will result in
performance capabilities that are 2-3 orders of magnitude
better than technologies currently being used [2].

Currently used military platforms are mainly based
on ASICs to meet the real-time constraints and compu-
tational demands in battlefield environments. Reconfig-
urable Computing (i.e., computing using programmable
hardware) can “outperform” ASICs by exploiting its abil-
ity to create hardware at runtime based on input param-
eters. If the logic remains static for all the instances of
the problem, then an ASIC implementation would pro-
vide superior time performance. In addition, the essential
struggle against time in the battlefield necessitates that
the hardware adaptation has to be performed very fast.
However, existing mapping techniques require extensive
mapping time which is a major bottleneck in the case of
any mapping that needs to be performed at runtime based
upon the problem instance.

Existing mapping techniques for FPGAs have adopted
the ASIC-based design flow and tools that prevent the Re-
configurable Computing paradigm from achieving its full
potential: provide the performance benefits of ASICs and
the flexibility of microprocessors. For one thing, current
design compilation times are too long and preclude any
run-time, dynamic modification of the configurations. For
another, the characteristics of the application are not uti-

*This research was performed as part of the MAARC project
(http://maarc.usc.edu). This work is supported by the DARPA
Adaptive Computing Systems program under contract no.
DABT®$63-96-C-0049 monitored by Fort Hauchuca.

lized, resulting in sub-optimal designs with respect to area
and delay performance unless the designs are optimized by
hand.

Our Approach to Run-time Mapping

Most of the mapping techniques proposed in the litera-
ture ignore the extensive overhead of the CAD tools at run-
time. We believe however, that addressing this overhead
is the key to fully exploit the Reconfigurable Computing
advantages over ASICs and software based approaches.

Our approach to run-time mapping is to handle the
mapping problem as an algorithm synthesis problem as
opposed to “stuffing logic into a black box.” Our key
idea is to develop problem-specific configurations off-line
to facilitate run-time mapping. These configurations are
specific to the problem to be solved and are based on the
algorithm that is used to solve the problem. At runtime,
a mapping algorithm adapts the hardware to the input
problem-instance. Our performance metric includes the
time to compute the logic to be mapped, the time to con-
figure the hardware, and the execution time on hardware.

The novelty of our approach is that the CAD tools bot-
tleneck is alleviated from the critical path to the solution.
The mapping process is driven by problem-specific con-
figurations that are derived off-line. Thereby, there is no
need for a complete redesign for each problem-instance.
Equally important, the mapping process is aware of the
characteristics of both the problem and the target archi-
tecture. Not only does the approach significantly speed up
run-time mapping but also produces fast, compact logic
reducing execution time as well. Preliminary results indi-
cate that our approach can result in a speedup of at least
two orders of magnitude comparing with the state-of-the-
art.

A Case Study: Single-Source Shortest
Path Problem

In our current efforts, we are focusing on map-
ping graph-problem instances onto multi-FPGA systems.




Problem size Clock rate Execution time Mapping time
#vertices x # edges (MHz) (usec) Effective Speed-up
1) Our M Our 1l + OUI’ had
solution solution solution
16 x 64 179 15 894 2142 | - 4hous -~ 22msec 6.5% 108
64 x 256 1.14 15 56.14 79.02 ~ 4 hours ~ 82msec 1.7x 108
128 x 515 0.78 15 164.10 199.72 ~ 8 hours ~ 161 msec 1.8x 108
256 x 1140 0.34 15 752.94 493.17 ~16 hours ~ 319 msec 1.8x 106
+ acluster of 10 workstations was used
++ memory-array 4MB/sec is asin[1]

Table 1: Performance comparison with the state-of-the-art

Graph problems are the most frequently solved class of
optimization problems (e.g., problems of heuristic search,
deterministic optimal control problems, or data routing
within a computer communication network).

In the state-of-the-art technique for solving graph prob-
lems using FPGAs [1], the input graph instance is embed-
ded in the FPGAs by using general purpose CAD tools. A
complete redesign is required for a new problem instance
and the resulting implementation lacks modularity. Par-
titioning and place-and-route take several hours while the
corresponding execution time on hardware is in the range
of usec. However, the mapping time is usually ignored and
only the execution time is considered as runtime.

Besides the mapping overhead, the mapping of edges
onto the physical wires of a device results in extremely
slow clock rate and very high area requirements. The clock
rate depends on the longest wire in the layout. As the
number of vertices increases, the longest wire length in-
creases rapidly resulting in fast degradation of the clock
rate. Also, the area requirements depend on the connec-
tivity of the input graph and increase rapidly for dense
graph instances. Therefore, the clock rate and the area
requirements cannot be reliably estimated before actually
mapping onto hardware.

To illustrate the superiority of our ideas, we briefly de-
scribe a solution for the single-source shortest path prob-
lem using our approach and compare it against the state-
of-the-art (based on CAD tools). Given a weighted, di-
rected graph and a source vertex, the problem is to find a
shortest path from the source to every other vertex.

A problem-specific configuration is developed based on
the Bellman-Ford algorithm. The configuration corre-
sponds to a general graph with n vertices and e edges and
consists of n modules connected in a pipelined fashion.
Each module corresponds to a vertex. At runtime, the
problem-specific configuration is adapted to the character-
istics of the input graph instance. At the module level, the
precision of the functional units is adapted to the precision
requirements and the number of vertices and edges of the
input graph instance. Moreover, at the layout level, the
number of the modules mapped onto hardware is deter-
mined by the number of vertices in the input instance. Fi-

nally, the clock speed is determined by the computational
rate of the modules and the available 1/O bandwidth. The
resulting implementation is a modular design that can be
easily adapted to any input instance without the need for
complete redesign.

Our solution is asymptotically faster than the state-of-
the-art [1]. The mapping time is six orders of magnitude
smaller (see Table 1). As a result, the effective speed-
up (e.g., considering both the execution and the mapping
time) comparing with the solution in [1] is 108. Moreover,
the clock speed only depends on the data precision of the
input graph instance and not on the size and the connec-
tivity of the graph instance as in [1]. Also, the hardware
requirements increase as a linear function of the number
of vertices. Consequently, the on-chip execution time and
the area requirements can be accurately estimated based
on the problem-specific configuration.

Conclusions

In this paper we demonstrated a case-study solution
that achieves 6 orders of magnitude speedup over the state-
of-the art for mapping graph-problem instances onto FP-
GAs. The novelty of our approach is that the mapping
process performs an incremental adaptation of problem-
specific configurations to the input problem instance in-
stead of a complete redesign. Not only does the approach
significantly speedup run-time mapping but also produces
fast, compact logic which reduces the execution time on
hardware as well.

Our approach can also be applied to other application
domains (e.g., image and signal processing, cryptography)
where adaptivity to problem instance is required. We be-
lieve that by addressing the run-time mapping problem,
Reconfigurable Computing can become an attractive com-
puting paradigm for specific military applications.
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1 Introduction

In typical VLSI and processor based architectures, the computational units have fixed precision which can
not be modified during computation. The precision of operands implemented in such architectures is based
on the worst case bounds for the precision of the input values. Some applications also need precision much
higher than that available in typical hardware architectures [3]. For such long-precision arithmetic, software
algorithms are employed to obtain the desired precision. Long-precision computations typically operate digit
by digit, serially. The iterative computations mean that the execution time of an operation increases as the
required precision increases. Performing computations using the exact precision required for accurate results
can reduce the resources utilized.

One of the significant advantages of reconfigurable hardware is the ability to perform variable precision com-
putations [4]. Reconfigurable hardware contains fine-grained configurable resources which can be utilized
to build computing modules of various sizes. For example, it is possible to build a standard 16-bitx 16-bit
multiplier or a 8-bitx 12-bit multiplier using reconfigurable hardware. The 8-bitx 12-bit multiplier would
consume less area and execute faster than the standard 16-bitx 16-bit multiplier. Reconfigurable architec-
tures also support dynamic precision, which is the ability of the hardware to change its precision at run-time
in response to variant precision demands of the algorithm.

In this paper we outline our framework for managing the dynamic precision variation. We represent the vari-
ation in the required precision for an operation by using a precision variation curve. The precision variation
curve quantifies the variation in the required precision for an operation over time. The concept of time can
represented by using various measures such as execution time, program counter, loop counter, etc.

In this paper we analyze the variation of precision in loop computations as the iterations of the loops progress.
Compile-time and run-time techniques to determine the precision variation curve for a given computation
are described. Various algorithmic techniques are developed for optimal mapping of the computations onto
reconfigurable hardware [1, 2]. We illustrate the utility of our approach by demonstrating the performance
improvement for an example operation.

2 Quantifying the Precision Variation

For iterative computations in which values are accumulated over the execution time of the application, the

*This work was supported by the DARPA Adaptive Computing Systems Program under contract DABT63-96-C-0049 monitored
by Fort Hauchuca.




precision varies as the iterations progress. We represent this variation in terms of the loop iterations by using
the precision variation curve.

2.1 Precision Variation Curve

The precision variation curve facilitates the representation of the notion of the variation in the precision of
the operands and the operation as the execution of the loop progresses. A simple method to represent such a
variation is to indicate the precision of the operand for each iteration so that the precision is defined for the
complete iteration space. But, the precision usually varies very slowly as the iterations progress. Thus the
precision variation curve can be represented by specifying the points where the precision of the operands or
the operation changes.

Definition: The precision variation curve for a given operation or operand in a loop computation can be
represented by the sequence (/;, p;), 1<i<u. [; denotes the iteration number at which a change in precision
takes place due to the computation. /; < N where N is the total number of iterations. p; denotes the precision
required for performing iterations /; to l;4; — 1 for 1 < ¢ < u and p, denotes the precision required for
performing iterations [, to N.

2.2 Compile-time Analysis of Loops

We can theoretically determine the precision variation curve for the operations in a given computation. The
precision of computed variables in a loop is determined by the precision of the variables before the iteration,
the number of iterations and the operations performed on the variable. For each type of arithmetic operation,
the maximum possible precision of the result can be expressed using the above values. For example, the
precision of an integer variable X (initially 0) after IV iterations of a loop which contains the statement X =
X + C is bounded by

Pr(X) < Pr(C) + [log(N + 1)]

where Pr(X) denotes the bit size of the variable X. The analysis is not limited to simple expressions, but
extends to complex arithmetic expressions in loops. For recursive expressions in loops where the value of
the variable X in iteration 7 is given by X, if

Xi=caxXj, +ea*x X5+ 4 *x X, :Ef;’fcl*Xj,
then the upper bound on the precision of X; is given by
Pr(X;) < (i—=1)xlogC+ (1 — 1) xlogk + Pr(X;)

where C' = maz|cy, ¢z, . . ., k], the maximum of the constant coefficients. The analysis is valid for integer
and fixed-point computations and is not necessarily valid for floating point computations. But, the analysis
still covers a large class of signal and image processing applications.

2.3 Run-time Analysis

Theoretical analysis of expressions in loops computes the upper bounds on the precision of the variables and
computations. This determines the minimum precision required to represent these variables. The estimates
using theoretical analysis are conservative and can usually be much higher than the actual precision of the
operands. For example, using the above analysis for the Fibonacci series X; = X;-; + X;_2, we obtain
Pr(X;) = ¢ — 1 and hence, Pr(X;5) = 14. But, X;5 = 610 which needs only 10 bits. Even when a
tight bound can be computed, the actual precision might be lower than theoretical estimate. This can occur
when the data inputs are assumed to have maximum precision, but are actually randomly distributed over the
complete input range.




Theoretical analysis can provide significant performance benefits which can be augmented by using profiling
based analysis. For computations which do not have a tight beund on the precision and for computations with
complex control flow, computing the required precision by using run-time statistics is a viable alternative.
The application can be instrumented to measure the precision of the different variables and the knowledge can
be utilized by the mapping tool or the compiler to identify the required precision at various program points.

3 Dynamic Precision Management

Given the precision variation curve for a loop, we need to determine the mapping of the iterations to a set of
configurations which are used to execute the operations in the loop. For each iteration, the precision of the
corresponding configuration which executes the iteration should be equal to or greater than the required pre-
cision for that iteration. The greedy strategy of reconfiguring the hardware whenever the required precision
changes can result in significant reconfiguration overheads. For architectures in which the reconfiguration
times are much higher than the execution times, the reconfiguration overhead might be prohibitive. Also,
the set of configurations which are available for executing an operation might not encompass all the possible
precision values that are required. Some of the operations will have to be executed with more precision than
is necessary in the absence of configurations with the exact precision.

Thus, it is necessary to identify an optimal set of configurations which minimizes the overall execution cost,
including the reconfiguration cost. We have developed efficient techniques to map application tasks onto
available configurations using dynamic programming. Our algorithmic techniques consider the reconfigura-
tion overheads in minimizing the total execution time for a given operation in a loop.

4 An INustrative Example

We illustrate our approach by mapping the multiplication operation from the example code segment given be-
low. We measured the total execution time for the M AX @« SC AL E(I) computation on Xilinx XC6200 [5]
using five different approaches. The first two approaches do not exploit the dynamic precision variation.

DO 10 I=1,N
DO 20 J=1,N ,
RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J)
20 IF (MAXQ.LT.RSQ(J)) THEN
MAXQ = RSQ(J)
POVERR POVERR / MAXQ
10 VIRTXY = VIRTXY + MAXQ * SCALE(I)

The execution times including the reconfiguration times are summarized in Table 1. The approaches using
dynamic precision achieve significantly lower execution times compared to the fixed precision approaches.
Our dynamic programming based algorithm(DPMA) executed all the iterations of the loop in the minimum
time for the theoretical(DPMA) and run-time precision variation curves(DPMA-run). The resultant optimal
schedules have up to 30% lower execution cost compared with other approaches.

5 Conclusions and Future Research

Reconfigurable hardware can be utilized to exploit the dynamic precision variation in applications. We have
shown how the variable precision in computations can be captured by using the precision variation curve.
The information obtained from the precision variation is used to develop optimal schedules for dynamic pre-
cision management. As illustrated using the example, reconfigurable hardware can provide significant ben-
efits in application performance by using dynamic precision management.




Table 1: Execution times using different approaches

Algorithm | Execution | Reconfiguration | Total
Time (ns) Time (ns) (ns)
Standard 655360 20480 675840
Static 532480 17920 550400
Greedy 468010 56320 524330
DPMA 471160 33280 504440
DPMA-run | 409600 15360 424960

The reduction of the resources by using dynamic precision can be utilized to achieve higher speed-up by
realizing more parallelization and pipelining of the application. The given analysis represents the variation
and optimization for a single operation in a loop. The application of such techniques for multiple operations
and generic programs in addition to loops is under investigation.
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public class Drive extends Frame {

Hysam myHysam;
Device myDevice;

CLUWin myCluWin;
Scheduler mySchedule;

private int params_loaded;
private int appl_loaded;

private int sched_loaded;

/** The font style */

DRIVE: Dynamically Reconfigurable Systems Interpretive Simulation

The main framework class which maintains the different components being
shown in the visualizer. Uses Mylistener to invoke actions for the menus.
The visualizer maintains many internal classes for different visual
components which are not accessible externally. It does not provide any
methods since it is the controller entity. The only public methods are
for displaying messages in the Log window. Drive can be instantiated by
another class and messages can be displayed using these methods.

For latest information see <A HREF="http://maarc.usc.edu/">

static final String fontName = "SansSerif";
static final int fontStyle = Font.BOLD;

static final int fontSize = 12;

static final int driveWidth = 1200;
static final int driveHeight = 700;

private int cluWidth = 500;
private int cluHeight = 420;

static final int xoffset = 10;
static final int yoffset 10;

/* the time progress bar defaults */
static final int progressWidth = 400;
static final int progressHeight = 20;

Panel tpanel;
Panel bpanel;
Panel cpanel;
Panel ipanel;
Panel lpanel;

static final String timeFontName = "SansSerif";
static final int timeFontStyle = Font.BOLD;




static final int timeFontSize = 12;

Label timeTitle;

Label timeSpace;

Label timeCurrentLabel;
Label timeStartLabel;
Canvas timeProgressWrap;
ProgressBar timeProgress;
Label timeFinishLabel;

Label funcLabel;
Label funcIdLabel;
Label funcNameLabel;
Label conflLabel;
Label confIdLabel;
Label confNamelLabel;
Label bwLabel;

Label bwValueLabel;

TextArea logText;

MyMenuBar menuBar;

EventHandler eh = new EventHandler();
MessageDialog dialog;

FileDialog fdialog;

DialogHandler dh = new DialogHandler();

public static void main(String args[]) {

Drive tool = new Drive();

}
public Drive() {

super ("DRIVE 2.0");
this.setTitle("DRIVE 2.0");
setTitle("DRIVE 2.0");

myHysam = new Hysam();
myDevice = new Device();
myDevice.resetCLU() ;

setFont (new Font (fontName, fontStyle, fontSize));

setupMenuBar () ;
setupWidgets () ;

}
void setupWidgets() {

GridBagLayout drivelLay = new GridBagLayout/();
GridBagConstraints driveConst = new GridBagConstraints();

setLayout (drivelLay) ;

tpanel = new Panel();
bpanel = new Panel();
cpanel = new Panel();
ipanel = new Panel();
lpanel = new Panel();

|
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// driveConst .weightx
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driveConst.anchor = GridBagConstraints.NORTHWEST;

driveConst.gridwidth = GridBagConstraints.REMAINDER;
drivelay.setConstraints(tpanel, driveConst);
add(tpanel) ;

driveConst.anchor = GridBagConstraints.NORTHWEST;
driveConst.gridx = 0;

driveConst.gridy = 2;

driveConst.gridwidth = GridBagConstraints.RELATIVE;
// driveConst.weightx = 0.75;

// driveConst.weighty = 1.0;
driveLay.setConstraints(cpanel, driveConst);

add (cpanel) ;

driveConst.gridx = 1;

driveConst.gridy = 2;

// driveConst.weightx 1.0;

// driveConst.weighty = 1.0;

driveConst.anchor = GridBagConstraints.NORTH;
driveConst.gridwidth = GridBagConstraints.REMAINDER;
drivelLay.setConstraints(ipanel, driveConst);
add(ipanel);

driveConst.anchor = GridBagConstraints.NORTHWEST;
driveConst.gridx = 0;

driveConst.gridy = 3;

/7 driveConst.weightx = 1;

// driveConst.weighty = 0.5;
driveLlay.setConstraints{(lpanel, driveConst);
add(1lpanel);

// setupButtons () ;
setupTimeWidgets () ;
setupCluWidgets() ;
setupInfoWidgets () ;
setupLogWidgets () ;

setSize(driveWidth,driveHeight);
addwindowListener (eh) ;

pack () ;
show () ;

}

/* Set up the shortcut buttons

void setupButtons() {
bpanel.setFont (new Font (buttonFontName, buttonFontStyle,
loadParamButton = new Button("Step");
loadParamButton = new Button("Run'");

}

*/

/* Set up the time panel */
void setupTimeWidgets() {

tpanel.setLayout (new FlowLayout (FlowLayout.LEFT));

buttonFontSize)) ;

tpanel.setFont (new Font (timeFontName, timeFontStyle, timeFontSize));

timeTitle = new Label ("Time: ");
timeCurrentLabel = new Label ("0.000");




timeCurrentLabel.setSize(100,20);

timeSpace = new Label (" ")

timeStartLabel = new Label("0.000");
timeStartLabel.setSize(100,20);

timeProgress = new ProgressBar (200, 0, progressWidth, progressHeight) ;
timeFinishlLabel = new Label("0.000");
timeFinishLabel.setSize(100,20);

|

|

tpanel.add(timeTitle);
tpanel .add (timeCurrentLabel) ;
tpanel.add(timeSpace) ;
tpanel.add(timeStartLabel) ;
tpanel.add(timeProgress) ;
tpanel .add(timeFinishLabel) ;

tpanel.setVisible(true);
timeProgress.repaint () ;

}

/* Set up the CLU Windows */
void setupCluWidgets() {

cpanel.setLayout (new BorderLayout());

Label clulLabel = new Label(" CLU");
cpanel.add("North", cluLabel);

myCluWin = new CLUWin (myDevice.getCLURows (),myDevice.getCLUCols());

cluHeight = myDevice.getCLURows() * (CLUWin.cell _size+CLUWin.cell_space) + 2 * CLUWin.
yoffset + 2*CLUWin.cell_size;

cluWidth = myDevice.getCLUCols() * (CLUWin.cell_size+CLUWin.cell_space) + 2 * CLUWin.x
offset;

myCluWin.setSize(cluwidth, cluHeight);
cpanel.setSize(cluHeight+ 2*CLUWin.yoffset, cluWidth+2*CLUWin.xoffset);
cpanel.add("South", myCluWin);

cpanel.setVisible(true);

}

/* Set up the windows for the information widgets */
void setupInfoWidgets() {

GridBaglayout infolLay = new GridBagLayout () ;
GridBagConstraints infoC = new GridBagConstraints();

ipanel.setSize(600,400);
ipanel.setLayout (infolay) ;

infoC.£i11 = GridBagConstraints.NONE;
infoC.anchor = GridBagConstraints.NORTHWEST;

funcLabel = new Label ("Function: ");
infolay.setConstraints (funclLabel, infoC);
ipanel.add(funcLabel) ;

infoC.gridx = 1;

funcIdLabel = new Label("0");
infolay.setConstraints (funcIdLabel, infoC);
ipanel.add(funcIdLabel) ;

infoC.gridx = 2;




}

infoC.gridwidth = GridBagConstraints.REMAINDER;
funcNameLabel = new Label (" ")
infolLay.setConstraints (funcNameLabel, infoC);
ipanel.add(funcNameLabel) ;

infoC.gridy 1;

infoC.gridx = 0;

infoC.gridwidth = GridBagConstraints.RELATIVE;
conflabel = new Label ("Configuration: ");
infolLay.setConstraints(conflLabel, infoC):;
ipanel .add (confLabel) ;

infoC.gridx 2;

conflIdlLabel = new Label("O0 "),
infolay.setConstraints(confIdLabel, infoC);
ipanel.add(confIdLabel) ;

infoC.gridx = 4;

infoC.gridwidth = GridBagConstraints.REMAINDER;
confNamelLabel = new Label("Initial ")
infolLay.setConstraints (confNameLabel, infoC);
ipanel.add(confNameLabel) ;

infoC.gridy = 2;

infoC.gridx = 0;

infoC.gridwidth = GridBagConstraints.RELATIVE;
bwLabel = new Label ("Bandwidth: ");
infolay.setConstraints(bwLabel, infoC);
ipanel.add (bwLabel) ;

infoC.gridx = 2;

infoC.gridwidth = GridBagConstraints.REMAINDER;
bwvalueLabel = new Label("32 ");
infoLay.setConstraints (bwValueLabel, infoC);
ipanel .add (bwValueLabel) ;

/* Set up the windows for the log widgets */

void setupLogWidgets() {

H) ;

new GridBagLayout();
new GridBagConstraints();

GridBagLayout logLayout
GridBagConstraints logC

lpanel.setLayout (logLayout) ;
logC.fill = GridBagConstraints.BOTH;

logC.gridwidth = GridBagConstraints.REMAINDER;
logC.gridheight = 1;

Label logTitle = new Label("Log");
logLayout .setConstraints(logTitle, logC);
lpanel.add(logTitle) ;

logC.gridx
logC.gridy

0;
1;

logC.weightx = 0.0;
logText = new TextArea("******* DRIVE 2.0 Log ********\n" 7,680, TextArea.SCROLLBARS_BOT




logLayout.setConstraints(logText, logC);
lpanel.add(logText) ;

}

void setupMenuBar () {
String computemenul(] {"Compute", "Linear", "~Precision"};
Object menultems[][] = {{"File","Load Parameters","Load Application","Load Configurati
on", "Save Configuration", "Exit"},

{"Edit", "Parameters", "Application"},
{"Schedule", "Load Schedule",computemenu},
{"Simulate", "~Step", "~Run", *~Reset"},
{"Help", "About DRIVE"}

};

menuBar = new MyMenuBar (menultems,eh,eh);
setMenuBar (menuBar) ;

}

/** paint routine which calls CLU and time progress bar paints to make sure
they draw themselves */
public void paint (Graphics g) {
myCluWin.repaint () ;
timeProgress.repaint();

}

/** Used in the menu bar selections */
class EventHandler extends WindowAdapter implements ActionListener,
ItemListener {
public void actionPerformed(ActionEvent e){

String selection=e.getActionCommand();

if ("Load Parameters".equals(selection)) {
cmd_load_params () ;

} else if ("Load Application".equals(selection)) {
cmd_load_appl();

} else if ("Exit".equals(selection)) {
System.exit (0) ;

} else if ("Linear".equals(selection)) ({
cmd_compute_linear():;

} else if ("Step".equals(selection)) ({
cmd_step_simul();

} else if ("Run".equals(selection)) {
cmd_run_simul () ;

} else if ("Reset".equals(selection)) {
cmd_reset_simul () ;

} else if ("About DRIVE'".equals(selection)) {
cmd_about () ;

public void itemStateChanged(ItemEvent e) {
}

public void windowClosing(WindowEvent e) {
System.exit (0) ;
}




void cmd_load_params() {

fdialog = new FileDialog(Drive.this, "Model Parameters File", fdialog.LOAD) ;

fdialog.show();
String filename = fdialog.getFile():
System.out.print (filename+"\n");

try {

pstream.commentChar (’'#');

|
l StreamTokenizer pstream = new StreamTokenizer (new FileReader (filename)) ;
l pstream.eolIsSignificant(false);

if (myHysam.readParams (pstream) == 1) {
params_loaded = 1;
sched_loaded = 0;

logText .append(“Paramaters loaded from file: "+filename+"\n");

}
} catch (Exception IOException) ({
logText .append ("Error: Opening parameters file: "+filename+*\n");

}

if ( (params_loaded == 1) && (appl_loaded == 1)) {
menuBar.getMenu ("Schedule") .getItem("Linear") .setEnabled(true);

}
}
void cmd_load_appl () {
int type =1;
int result;
int token;
fdialog = new FileDialog(Drive.this, "Application Tasks File",fdialog.LOAD) ;
. fdialog.show() ;

String filename = fdialog.getFile();

try {
StreamTokenizer astream = new StreamTokenizer (new FileReader (filename));

token = astream.nextToken() ;
type = (int)astream.nval;

result = myHysam.readAppl (type,astream);

if (result > 0) {
appl_loaded = 1;
sched_loaded = 0;

logText.append("Application loaded from file: "+filename+"\n");

}
else {
errorMessage(l, "Application file: "+filename+" has errors.\n");
}
} catch (Exception IOException) ({




errorMessage (1, "Error: Could not open application file: "+filename+"\n");

}

/*
if ({appl_loaded == 1) && (params_loaded == 1}) {
| if (type == 1)} {
| menuBar .getMenu ("Schedule") .getItem("Linear") .setEnabled(true);
menuBar.getMenu(“Schedule").getItem("Precision").setEnabled(true);
}
else if (type == 2) {
menuBar .getMenu ( "Schedule") .getItem("Linear") .setEnabled(false);
menuBar .getMenu ("Schedule") .getItem("Precision”) .setEnabled(true);
}
}
*/

}

/* Computes the linear schedule and gets the value of mySchedule */
void cmd_compute_linear () {

if ((params_loaded == 1) && (appl_loaded == 1)) {
mySchedule = myHysam.computeSchedule(1l);

if (mySchedule != null ) {
sched_loaded = 1;

logMessage ("Computed schedule\n");

menuBar.getMenu("Simulate") .getItem("Step") .setEnabled(true);
menuBar.getMenu ("Simulate®) .getItem("Run") .setEnabled(true);
menuBar.getMenu("Simulate") .getItem("Reset") .setEnabled(true);
}
else {
errorMessage (1, "Error in computing schedule\n");
}
}
else {
/* flag error message saying load params and appl first */

errorMessage(l, "Error: Parameters or Application not loaded\n");

}
}

/* Reset the simulation */
void cmd_reset_simul() {
if (sched_loaded == 0) {
errorMessage (1, "Schedule not computed or loaded\n");
}

else {

setFuncId("0");
setFuncName("") ;
setConfId("0");
setConfName ("Initial") ;
mySchedule.reset () ;
myCluWin.reset();
resetTime () ;
logMessage ("Simulation Reset\n");
}
}

/* Run the simulation */




void cmd_run_simul() {
if (sched_loaded == 0) {
errorMessage (1, "Schedule not computed or loaded\n");

}
else {
logMessage ("Running Simulation\n");
setFinishTime( (new Float (mySchedule.getFinishTime())).toString() };

Event ev = mySchedule.getNextEvent () ;

while (ev != null) {
show_one_step({ev) ;

try {

wait (1000000,0);
} catch (Exception InterruptedException) {
}

ev = mySchedule.getNextEvent() ;

}

/* Step through one event in the simulation */
void cmd_step_simul () {
if (sched_loaded == 0) {
errorMessage(1l, "Schedule not computed or loaded\n");
}

else {
setFinishTime( (new Float (mySchedule.getFinishTime())).toString() );
Event ev = mySchedule.getNextEvent();

if (ev!= null)
show_one_step(ev) ;
}
}

void show_one_step(Event ev) ({
if (ev.getType() == Scheduler.EXECUTE) {

logMessage ("Execute " +ev.getIdl()+ " in " + ev.getId2()+"\n");

int fid = ev.getIdl():
setFuncId( (new Integer(fid)).toString() );
setFuncName ( myHysam.getFuncName (£id) );

int cid = ev.getId2();
setConfId( (new Integer(cid)).toString() );
setConfName ( myHysam.getConfName (cid));

setCurrentTime( (new Float(ev.getStartTime())).toString() );
setTimeProgress (ev.getStartTime() / mySchedule.getFinishTime());

ConfigBit[] cbits = myHysam.getConfig(cid);

if (cbits != null) {
System.out.print("numbits in conf "+cid+" is "+cbits.length+"\n");

for(int i=0; i< cbits.length; i++) {
cbits([i] .setState(ConfigBit.ACTIVE) ;

}

myDevice.updateCLUConfig(cbits) ;




myCluWin.updateDisplay(cbits);

}

else ({
System.out.print ("Not able to access data for conf "+cid+"\n");
logMessage ("Could not find configuration data for C"+cid+"\n");

}
} else if (ev.getType() == Scheduler.RECONFIG) ({
logMessage ("Reconfig from " +ev.getIdl()+ " to " + ev.getId2()+"\n");

setFuncId("0");
setFuncName ("") ;
int cidl = ev.getIdl():;
int cid2 = ev.getId2();
setConfId( (new Integer(cidl)) .toString()
+ " >0
+ (new Integer(cid2)).toString()
)
setConfName ( myHysam.getConfName (cidl)
+ " >
+ myHysam.getConfName (cid2)
):

setCurrentTime( (new Float(ev.getStartTime())).toString() );
setTimeProgress (ev.getStartTime() / mySchedule.getFinishTime());

ConfigBit[] cbits = myHysam.getConfig(cid2);

if (cbits != null) {
System.out.print("numbits in conf "+cid2+" is "+cbits.length+"\n");

for(int i=0; i< cbits.length; i++) {
cbits{i] .setState(ConfigBit.RECONFIG) ;

}

myDevice.updateCLUConfig(cbits);

myCluWin.updateDisplay (cbits) ;

}
else {
System.out.print {"Not able to access data for conf "+cid2+"\n");
logMessage ("Could not find configuration data for C"+cid2+"\n");
}
}
setCurrentTime( (new Float(ev.getFinishTime())).toString() );

setTimeProgress(ev.getFinishTime() / mySchedule.getFinishTime());

}
void cmd_about () {

String about[] = {" ",
"DRIVE: Dynamically Reconfigurable-systems Interpretive-simulation a
nd Visualization Environment", -
"Version 2.0",
"Kiran Bondalapati",
"University of Southern California",
"Copyright (c) 1995."
}:
String buttons([] = {"OK"};

dialog = new MessageDialog(Drive.this, "About DRIVE", false,about,buttons,dh,dh);
dialog.setLocation(200,200); ‘
dialog.show () ;




}

class DialogHandler extends WindowAdapter implements ActionListener [

public void windowClosing(WindowEvent e) ({
Drive.this.show();
dialog.dispose();

}

public void actionPerformed(ActionEvent e) {
Drive.this.show();
dialog.dispose();

}

/** Sets the label value for Function ID */

void setFuncId(String func) {
funcIdLabel.setText (func);

}

/** Sets the label value for Function Name */
void setFuncName (String func) {

funcNameLabel .setText (func) ;
}

/** Sets the label value for Configuration ID */
void setConfId(String conf) {
confIdLabel.setText (conf);

}

/** Sets the label value for Configuration Name */
void setConfName(String conf) {

confNameLabel .setText (conf) ;
}

/** Sets the label value for current time */
void setCurrentTime (String time) {
timeCurrentLabel .setText (time) ;

}

/** Sets the label value for finish time */

void setFinishTime(String time) {
timeFinishLabel.setText (time) ;

}

/** Updates the time progress bar */
void setTimeProgress(float percent) {
timeProgress.setPercent (percent) ;

}

/** Resets the time texts and bar displays.
*/
void resetTime() {
setTimeProgress (0) ;
if (mySchedule != null) {
setFinishTime( (new Float (mySchedule.getFinishTime())) .toString() );
}
else
setFinishTime("0.000");
setCurrentTime("0.000") ;
}

/** Displays error message.




The first parameters denotes the severity of the error and can be used
to filter messages.
Second parameter is the error message. */
public void errorMessage(int level, String message) {
logText .append("Error["+level+"]: "+message);

}

/** Displays log message. */

public void logMessage(String message) {
logText .append(message) ;

}




/*
* @(#)Application.java
*

*/

import java.io.*;
import java.util.*;

/**

* The class Application implements the Application Tasks and supports
* read/write and other access functions.

*

* @author Kiran Bondalapati

* @see Hysam

* @see Configuration

* @see Function

*/

public class Application {
|

private int id; /* Id of the task */
private int type; /* type of application tasks */
private int num_tasks; /* Number of tasks in the list */
private int[] taskid; /* Id number of the task read from input */
| private int[] list; /* List of function Ids or Iteration numbers */

private int[] precision;/* precision values for Precision problem */

/** Reads the application tasks as a linear sequence from the file
handle. File has next value as the number of tasks.
Returns 0 on error, #tasks on success */

public int readLinear (StreamTokenizer 1lst) {

int tok;

try {
tok = lst.nextToken();
num_tasks = (int)lst.nval;

taskid = new int[num_tasks];
list = new int[num_tasks];

for(int i=0; i<num_tasks; i++) {
tok = lst.nextToken();

taskid[i] = (int)lst.nval;
tok = lst.nextToken();
list[i] = (int)lst.nval;

}
System.out.print ("Read Tasks: "+num_tasks+"\n");
return num_tasks;

} catch (Exception IOException) {
return 0;

/** Reads the application tasks as precision curve from the file
handle. File has next value as the number of tasks.
Returns 0 on error, #tasks on success */

public int readPrecision(StreamTokenizer pst) {

int tok;

try {
tok = pst.nextToken():
num_tasks = (int)pst.nval;

list = new int[num_tasks];




precision = new int[num_tasks];

for(int i=0; i<num_tasks; i++) {
tok = pst.nextToken() ;
list[i] = (int)pst.nval;
tok = pst.nextToken();
precision([i] = (int)pst.nval;
}

return num_tasks;

} catch (Exception IOException) {
return 0;
}
}

/** Returns number of tasks in the task list */
public int getNumTasks() {
return num_tasks;

}

/** Returns the index’th element. Returns 0 on out of range index */
public int getFuncId(int index) ({
if ((0 <= index) && (index < num_tasks))
return list[index];
else
return 0;




/*
* @(#)Attributes.java

*

*/

import java.io.*;

*

~

* % ok %k ok %k ¥ ¥

@author Kiran Bondalapati
@see Hysam

@see Configuration

@see Function

~

public class Attributes {

private int numA;
private Map[] attr;

/** Constructor */
public Attributes(int num_attr)

The class Attributes contains the properties when one Function is
implemented in one configuration. ’

{

numA = num_attr;
// attr = new Map[numAl];
}

public Attributes() ({
numA = 0;
}

/** Internal class which stores mapping of attributes for one function
in one configurations. Attributes is an array of Maps */

private class Map {
private int func_id;
private int conf_id;
private float extime;
private int seqinp;
private int parinp;
private int[] precision;

/* Id of the function */

public int readData(StreamTokenizer ast) {
try {

int tok = ast.nextToken();
func_id = (int)ast.nval;
tok = ast.nextToken();
conf_id = (int)ast.nval;

System.out.print ("\nReading Attr for func ");
System.out.print (func_id) ;

System.out.print(" config ");
System.out.print (conf_id);

tok = ast.nextToken();
extime = (float)ast.nval;
tok = ast.nextToken();
seqinp = (int)ast.nval;
tok = ast.nextToken();
parinp = (int)ast.nval;

precision = new int([parinpl;




for(int i=0; i<parinp; i++) {
tok = ast.nextToken();

precision[i] = (int)ast.nval;
}
return 1;
} catch (Exception IOException) {
return 0;

}

/** Returns the Function Id */
public int getFuncId() {
return func_id;

}

/** Returns the Configuration Id */
public int getConfId() {

return conf_id;
}

/** Returns the execution time */
public float getExTime() {
return extime;
}
}

/** Initialize the number of attributes to num */
public int setNum(int num) {

NUumA = num;

return numA;
}

/** Returns the number of attributes stored in the matrix */
public int getNum() {

return numi;
}

/** Reads the attributes data from the file */
public int readbData(StreamTokenizer stream) ({

try {

int tok = stream.nextToken();
numA = (int)stream.nval;

attr = new Map![numA]l;

for(int i=0; i<numA; i++) {
attr[i] = new Map():
attr[i] .readData (stream) ;
}
return 1;
} catch (Exception IOException) {
return 0;

}

/** Returns the execution time of a given function in a given configuration.
Returns Hysam.INFINITY if there is no stored value */
public float getExecCost(int fid, int cid) {

for(int i=0; i<numA; i++) {
if ((attr[i].getFuncIid() == fid) && (attr[i].getConfId() == cid)) {




}

return attr[i].getExTime();
}
}

return Hysam.INFINITY;




/*
* @(#)CLU.java

*

*/
import java.io.*;

/**

* The class CLU implements the CLU in the HySAM model.

* Tnitialized with row and column sizes. The default size is 32 x 32.
Warning: Resizing the CLU results in loss of previous state as the
configuration matrix is reallocated and not copied.

@author Kiran Bondalapati
‘@see Hysam

@see Configuration

@see Function

@see Attributes

@see ConfigBit

/

public class CLU {

* % % % A o % % F *

private int status;

private int rows;

private int columns;

private ConfigBit[][] config; /* stores the config bits for the CLU */

/** Constructor which initializes the rows and columns and allocates
the memory for the cells. */
public CLU(int r, int c) {
rows = Ir;
columns = c;

config = new ConfigBitl(r][c];

for(int 1i=0; i<rows; i++) {
for(int j=0; j<columns; j++) {
configlil[j] = new ConfigBit(i,j,0,ConfigBit.INIT);
}
}

System.gc () ;
}

/** Constructor which initializes to the default rows and columns of 32.

public CLU () {

rows = 32;
columns = 32;

config = new ConfigBit[32][32];

for(int i=0; i<rows; i++) {
for(int j=0; j<columns; j++) {
config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT);
}

/** Initializes all the configuration bits of the CLU to 0 */
public void reset () {
for (int i=0; i<rows; i++)

*/




for (int j=0; j<columns; j++) { v
config[i] [j] = new ConfigBit(i,j,0,ConfigBit.INIT);
}
}

/** Reads the configuration matrix from a file.
The first two numbers in the file are the rows and columns.
The remaining rows*columns numbers are the configuration bit
values for each cell. They are formatted as per ConfigBit class. */
public int readData(StreamTokenizer bstream) ({

int tok;

try {
tok = bstream.nextToken():;
rows = (int)bstream.nval;
tok = bstream.nextToken();
columns = (int)bstream.nval;

config = new ConfigBit[rows] [columns];

for(int i=0; i< rows; i++) {
for(int j=0; j<columns; j++) {
config(i][j] = new ConfigBit():;
config[i] [j].readData(bstream) ;
}
}
return 1;
} catch (Exception IOException) {
return 0;

}

/** Writes the configuration matrix to a file. (TO BE IMPLEMENTED).
The first two numbers in the file are the rows and columns.
The remaining rows*columns numbers are the configuration bit values
and state for each cell */
public int writeData() {
try {
return 1;
} catch (Exception IOException) {
return 0;
}
}

/** Sets the number of rows and columns in CLU */
public void setSize{int row, int col) {

YOWS = YOWw;

columns = col;

config = new ConfigBit[rows] [columns];

}

/** Returns the number of rows in CLU */
public int getRows () {
return rows;

}

/** Returns the number of columns in CLU */
public int getCols() {
return columns;

}




/** Sets configuration and state data of a CLU cell.
Returns the previous configuration.
If the row and column are out of range returns -1. */
public int setCellConfig(int row, int col, int cfg, int st) {
if ((row <= rows) && (col <= columns)) {
int tmp = configlrow] [col].getBit();
configl[row] [col] .setValue(row,col,cfg, st);
return tmp; "
}
else
return -1;

}

/** Returns configuration data of a CLU cell.
Returns -1 for out of range cells. */
public int getCellConfig(int row, int col) ¢
if ({(row <= rows) && (col <= columns))
return configl[row] [col] .getBit();

else
return -1;

}

/** Sets configuration and state data of the complete CLU. */
public int updateConfig(ConfigBit[] cfg) {

int num = cfg.length;

for (int i=0; i<num; i++) {
configlcfgl[i].getRow()][cfg[i].getColumn()].setValue(cfgl[i].getRow(),
cfgl[i].getColumn{(),
cfgli] .getBit(),
cfgl[i] .getState()
)
}

return 1;

}

/** Returns the configuration data of the complete CLU. */
public ConfigBit[][] getConfig() {

return config;

}

/** Returns state data of a CLU cell.
Returns -1 for out of range cells. */
public int getState(int row, int col) {
if ((row <= rows) && (col <= columns))
return configirow] [coll.getState();
else
return -1;




/*
* @(#)CLUWin.java

*

*/

import java.io.*;
import java.awt.*;

*

/
The class CLUWin implements the CLU display in DRIVE.
Initialized with row and column sizes. The default size is 32 x 32.

@author Kiran Bondalapati
@see Drive

@see Device

@see Hysam

@see Configuration

@see ConfigBit
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*

*/
public class CLUWin extends Canvas {

private int rows;
private int columns;

ConfigBit[][] config;

/* Some colors for the CLU */

static final Color cluCellColor = Color.black;
static final Color clulInitColor = Color.gray:;

static final Color cluActiveColor Color.red;
static final Color cluReconfColor Color.green;

/* The graphics constants */

private int width = 500;

private int height = 420;

static final int cell_size = 10;
static final int cell_space = 2;
static final int xoffset = 10;
static final int yoffset = 10;

private Graphics cluGraphics;
private Image clulImage;

/** Default constructor which has 32 rows and 32 columns.
Initializes the cells to ConfigBit.INIT state.
*x/
public CLUWin() {
rows = 32;
columns = 32;

config = new ConfigBit[rows] [columns];

for(int i=0; i<rows; i++) {
for (int j=0; j<columns; j++) {
config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT);
}
}

repaint() ;




/** Constructor which initializes the number of rows and columns.
@param rows integer number of rows
@param cols integer number of columns
*/
public CLUWin(int r, int c) {
rOWS = I;
columns = c;

config = new ConfigBit[rows] [columns];

for(int i=0; i<rows; i++) {
for (int j=0; j<columns; j++) {
config[i][j) = new ConfigBit(i,j,0,ConfigBit.INIT);
}
}

repaint();
}
public void paint(Graphics g) {

if (cluGraphics == null) {
cluImage = createlImage{(width, height);
cluGraphics = clulmage.getGraphics();
}

cluGraphics.clearRect (0, 0,width, height);

for(int i=0; i<rows; i++) {
for(int j=0; j<columns; j++) {

if (config[i][j].getState() == ConfigBit.INIT) {
cluGraphics.setColor(cluCellColor) ;
cluGraphics.fillRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+
xoffset, cell_size, cell_size);

cluGraphics.setColor(cluInitColor) ;
cluGraphics.drawRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell space)+
xoffset, cell_size, cell_size);
}
else if (config([il[j].getState() == ConfigBit.ACTIVE) {
cluGraphics.setColor(cluCellColor);
cluGraphics.fillRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell space)+
xoffset, cell_size, cell_size);

cluGraphics.setColor(cluActiveColor);
cluCGraphics.drawRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+
xoffset, cell_size, cell_size);
}
else if (config([i][j].getState() == ConfigBit.RECONFIG) {
cluGraphics.setColor(cluCellColor) ;
cluGraphics.fillRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+
xoffset, cell_size, cell_size);

cluGraphics.setColor (cluReconfColor) ;
cluGraphics.drawRect (i* (cell_size+cell_space)+yoffset, j*(cell_size+cell space)+
xoffset, cell_size, cell_size);
}
}
}

cluGraphics.setColor(cluInitColor) ;
cluGraphics.drawRect (23,403,cell_size, cell_size);




cluGraphics.setColor(cluActiveColor);
cluGraphics.drawRect (120,403,cell_size, cell_size);

cluGraphics.setColor (cluReconfColor) ;
cluGraphics.drawRect (220,403,cell_size, cell_size);

cluGraphics.setColor (Color.black) ;

cluGraphics.drawString("Inactive", 45, 413);
cluGraphics.drawString{("Active", 140, 413);
cluGraphics.drawString("Reconf", 240, 413);

g.drawImage (cluImage, 0, 0, null);

}

/** Sets the complete CLU display to the matrix of configuration info that

is passed.
@param cfg is a matrix of configurations for the full CLU.

*/
public void setDisplay(ConfigBit[][] cfg) {

config = cfg;

repaint () ;
}

/** Resets the display to nothing loaded.
*/
public void reset() {

config = new ConfigBit[rows] [columns];

for(int i=0; i<rows; i++) {
for (int j=0; j<columns; j++) {
configlil[j] = new ConfigBit(i,j,0,ConfigBit.INIT};
}
}

repaint();

}

/** Updates the CLU display with the new configuration information.
Only the updated info is passed and previous cells retain the old
configuration.

@param cfg is an array of ConfigBit stream.

*/

public void updateDisplay(ConfigBit[] cfg) {

System.out.print ("Updating display with "+cfg.length+" bits data\n");
for(int i=0; i<cfg.length; i++) {
configlcfg[i].getRow()][cfg[i].getColumn{()].setBit(cfg[i].getBit());

configl[cfgli].getRow()][cfg[il].getColumn()].setState(cfgli].getState(});
}

repaint () ;




/*
* @(#)CacheBlock.java

*

*/

import java.io.*;

*

/
The class CacheBlock implements one Configuration Cache unit.
Stores only meta information such as the configurations. The actual
configuration data can be fetched from the model to initialize the
CLU for a specific cache unit.

@author Kiran Bondalapati
@see Drive

@see Hysam

@see System

@see Configuration

@see Function
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*

*/
public class CacheBlock {

private int confid;

/** Constructor which initializes the CacheBlock with the configuration */
public CacheBlock(int cid) {

confid = cid;

} .

/** Constructor which initializes to the default NULL conf */
public CacheBlock () {
confid = 0;

}




/*
* @(#)ConfigBit.java

*

*/

import java.io.*;

/**
* The class ConfigBit implements the configuration bitstream of the CLU.
* It encapsulates the configuration of one unit of the CLU which is one
* cell on device. Can be used to store and transform hardware bitstreams.
*
* @author Kiran Bondalapati
* @version 2.0 1999
* @see Hysam
* @see Configuration
*/

public class ConfigBit {
static final int INIT = O; /* Configuration in Initial state. */
static final int ACTIVE = 1; /* Currently in Active state */
static final int RECONFIG = 2; /* Currently being reconfigured */

private int row;
private int column;
private int bit;
private int state;

/** Default constructor. */
public ConfigBit () {
}

/** Constructor to initialize the values for the bit. */
public ConfigBit{int r, int ¢, int b, int s) {

Tow = Tr;

column = c;

bit = b;

state =s;

}

/** Sets the value of the bit. */
public void setValue(int r, int ¢, int b, int s) {
row = r;
column = c;
bit = b;
state =s;

}

/** Reads the private variables of a ConfigBit.
* Returns 0 on error, 1 on success */
public int readData (StreamTokenizer cst) ({

try {
int tok = cst.nextToken();
row = {(int)cst.nval;
tok = cst.nextToken();
column = (int)cst.nval;
tok = cst.nextToken();
bit = (int)cst.nval;
tok = cst.nextToken();
state = {(int)cst.nval;
return 1;

} catch (Exception IOException) {
return 0;




}

/** Returns row of bit */

public int getRow() {
return row;

}

/** Returns column of bit */
public int getColumn() {
return .column;

}

/** Returns value of bit */
public int getBit() {
return bit;

}

/** Returns state of bit */

public int getState() {
return state;

}

/** Sets the value of the bit. The value returned is the previous value.
@param b is the bit value.
@returns old value of bit. */
public int setBit(int b) {
int temp = bit;
bit = b;
return temp;

}

/** Sets the state of bit */
public int setState(int s) {
int temp = state;
state = s;
return temp;

}




/*
* @(#)Configuration.java
*

*/

import java.io.*;

»

/
The class Configuration implements the Configuration in HySAM model.

@author Kiran Bondalapati
@see Hysam

@see ConfigBit

@see Function

@see Attributes

@see Reconfiguration

* ook F % % % ¥ R

*

*/
public class Configuration {

private int id; /* Id of the function */

private String name; /* Name for storage/display purpose */

private int numbits; /* Number of cells for which configuration data is
stored in the configuration file */

private ConfigBit[] cbits; /* The bits which store the information */

public Configuration() {
id =0;
name ="";
numbits = 0;

}

public Configuration(int cid, String cname, int nbits, ConfigBit[] config) (.
id = cid;
name = cname;

numbits = nbits;

if (numbits > 0) {
cbits = new ConfigBit[numbits];

for(int i=0; i<numbits; i++) {

cbits{i] = new ConfigBit({configl[i].getRow(), config[i].getColumn(), configli].getB

it(), config[i].getState());

}

}

/** Reads the private variables of a Configuration from file.
Opens the input file if specified and reads the configuration data into
cbits (of type ConfigBits).
Returns 0 on error, 1 on success.
Returns 2 on problem reading config data. numbits is reset in this case*/
public int readData(StreamTokenizer fstream) {

try {
int token = fstream.nextToken() ;
id = (int)fstream.nval;
token = fstream.nextToken();
name = (String)fstream.sval;
token = fstream.nextToken() ;
numbits = (int)fstream.nval;




if (numbits > 0) {
/* make sure this directory character doesnt break filename */
fstream.wordChars(’'/’,"/’);

token = fstream.nextToken();
String cfilename = (String)fstream.sval;

try {
StreamTokenizer cstream = new StreamTokenizer (new FileReader (cfilename));

cstream.commentChar('#');
cstream.eolIsSignificant(false);

System.out.print ("Reading "+numbits+" bits configuration info from: "+cfilenam

e+ll\n");

/* The file also has row and column numbers. Discard them ?? */

token = cstream.nextToken() ;

token = cstream.nextToken() ;

/* The number in file is assumed to be more accurate */

token = cstream.nextToken();

numbits = (int)cstream.nval;

System.out.print (*Reading "+numbits+" bits configuration info from: "+cfilenam
e+"\n"); '

}

cbits = new ConfigBit [numbits];

for (int i=0; i < numbits; i++) {
cbits[i] = new ConfigBit();
cbits([i] .readData(cstream) ;

}
} catch (Exception IOException) {

numbits = 0;
return 2;
}
}
return 1;

} catch (Exception IOQOException) ({
return 0;

}

/** Returns name of configuration */
public String getName() {

}

return name;

/** Returns Id of configuration */
public int getId() ({

}

return id;

/** Returns the number of bits of config data available */
public int getNumbits() {

}

return numbits;




/** Returns the ConfigBits data which stores the configuration */
public ConfigBit[] getConfig() {

System.out.print ("Constructing configuration data for "+name+" C"+id+" with "+numbits+
" bits\n"});

ConfigBit[] temp =

= new ConfigBit[numbits];
for(int i=0;

i< numbits;

i++) {
temp[i] = new ConfigBit (cbits([i].getRow(),cbits[i].getColumn(),
cbits[i].getBit(), cbits[i].getState()
)
}
return temp;

}




import java.io.*;

*

/
Device.java

The system component of the framework. This maintains the various
components of the system and their state. These components consists of the
CLU, the Cache, etc. To be extended to the interconnection network,

memory etc. in future upgrades and versions.

@author Kiran Bondalapati
@version 2.0 1999

@see Function

@see Configuration

@see Attributes

@see Reconfiguration

@see Scheduler

@see EventList

@see Event
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*/
public class Device {

private CacheBlock[] cCache;
private int cacheSize;

private CLU myCLU;

/** Constructor */
public Device() {
myCLU = new CLU();
int cacheSize = 0;
}

/** Reads the parameters??? Currently not used */
public int readParams (StreamTokenizer pstream) ({
return 1;

}

/** Initializes all the configuration bits of the CLU to 0 */
public void resetCLU() ({

myCLU.reset () ;
}

/** Reads the CLU configuration matrix from a file.
The first two numbers in the file are the rows and columns.
The remaining rows*columns numbers are the configuration bit
values for each cell. They are formatted as per ConfigBit class. */
public int readCLUData{StreamTokenizer bstream) ({

return myCLU.readData(bstream) ;

}

/** Writes the CLU configuration matrix to a file. (TO BE IMPLEMENTED) .
The first two numbers in the file are the rows and columns.
The remaining rows*columns numbers are the configuration bit values
and state for each cell */
public int writeCLUData() {
return myCLU.writeDatal();
}

/** Sets the number of rows and columns in CLU */
public void setCLUSize(int row, int col) {
myCLU = new CLU(row,col);




}

/** Returns the number of rows in CLU */
public int getCLURows () {

return myCLU.getRows () ;
}

/** Returns the number of columns in CLU */
public int getCLUCols() {

return myCLU.getCols();
}

/** Sets configuration and state data of a CLU cell.
Returns the previous configuration.
If the row and column are out of range returns -1. */
public int setCLUCellConfig(int row, int col, int cfg, int st) {
return myCLU.setCellConfig(row,col,cfg,st);
}

/** Returns configuration data of a CLU cell.
Returns -1 for out of range cells. */
public int getCLUCellConfig(int row, int col) {
return myCLU.getCellConfig(row,col);
}

/** Sets configuration and state data of the CLU.

The input is an array ConfigBit[] and the number of data points.

public int updateCLUConfig(ConfigBit[] cfg) {
return myCLU.updateConfig(cfg);
}

/** Returns configuration data of the complete CLU. */
public ConfigBit([][] getCLUConfig() ({

return myCLU.getConfig();
}

/** Returns state data of a CLU cell.
Returns -1 for out of range cells. */
public int getCLUCellState(int row, int col) {
return myCLU.getState(row,col);
}

*/




/**

* The class Event is used to as a placeholder for events.

* WARNING: Internal class only. Do not extend!

* It has to be synchronized with the EventList in all versions!!
* Tt is mainly used to transfer events between modules.

* The methods are also duplicates of EventList without the wrappers.
*

* @author Kiran Bondalapati

* @see Hysam

* @see Configuration

* @see Function

* @see Scheduler

* @see EventList

*

~

public class Event {

private int type;
private float start_time;
private float fin_time; /* The finish time of the event */

private int id_one; /* The semantics of the ids depend on type */
private int id_two;

/** Constructor that initializes the Event */
public Event() {
}

/** Constructor that initializes the Event */
public Event({int t, float stime, float ftime, int idi, int id2) {
type = t;
start_time = stime;
fin_time = ftime;
id_one = idl;
id_two = id2;
}

/** Gets the type of the event */
public int getType() {
return type;

}

/** Gets the start time of the event */
public float getStartTime() {
return start_time;

}

/** Gets the Finish Time of the event */
public float getFinishTime() {
return fin_time;

}

/** Gets the first id of the event */
public int getIdl() {
return id_one;

}

/** Gets the second id of the event */
public int getId2() {
return id_two;

}




/*
* @(#)EventList.java
*

*/

import java.util.*;

*

/

to maintain the eventlist.

@author Kiran Bondalapati
@see Hysam

@see Configuration

@see Function

@see Scheduler

@see Event
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*/
public class EventList {

private int num events; /* number of events in the list */

private Vector type; /* type of the event currently EXECUTE = 1
and RECONFIG = 2 */
private Vector start_time; /* The starting time of the event */
private Vector fin_time; /* The finish time of the event */
private Vector id_one; /* The semantics of the ids depend on type */

private Vector id_two;

/** Constructor that initializes the EventList */
public EventList() {
num_events = 0;

type = new Vector();
start_time = new Vector();
fin_time = new Vector();
id_one = new Vector{);
id_two = new Vector();

System.out.print ("Constructer called\n");

}

/** Adds an event at the end to the EventList. The semantics of idl and id2

parameters are based on the event type */
public int addEvent (int event_type, int idl, int id2, float s_time,
float f_time) {

type.insertElementAt (new Integer (event_type), num_events);
id_one.insertElementAt (new Integer(idl), num_events);
id_two.insertElementAt (new Integer (id2), num_events);
start_time.insertElementAt (new Float (s_time), num_events);
fin_time.insertElementAt (new Float(f_time), num_events);

num_events++;

return 1;
}

/** Gets the type of the index’th event */
public int getType(int ind) ({

return ((Integer) type.elementAt(ind)).intValue();
}

The class EventList is used to maintain a vector of events. Dynamically
adapts size using java.lang.Vector class. Is mainly used by the scheduler




/** Gets the start time of the index’th event */
public float getStartTime(int ind) {

return ((Float)start_time.elementAt(ind)) .£floatValue();
}

/** Gets the Finish Time of the index’th event */
public float getFinishTime(int ind) {

return ((Float)fin_time.elementAt(ind)) .floatValue();
}

/** Gets the first id of the index’th event */
public int getIdl(int ind) {

return ((Integer)id_one.elementAt(ind)).intValue();
}

/** Gets the second id of the index’th event */
public int getId2{int ind) {

return ((Integer)id_two.elementAt(ind)).intValue();
}

/** Constructs and returns an Event node */
public Event getEvent (int ind) {
if (ind > num_events) {
return null;
}
else {
return (new Event (getType(ind), getStartTime(ind), getFinishTime(ind), getIdl(ind),
getId2(ind)));
}
}




/*
* @(#)Function.java
*

*/

import java.io.*;

*

/
The class Function implements the Function in HySAM model.

@author Kiran Bondalapati
@see Hysam

@see Configuration

@see Attributes
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public class Function {

private int id; /* Id of the function */
private String name; /* Name for storage/display purpose */

/** Constructor intializes the data of the Function */
public Function() {

id = 0;

name = "";
}

/** Reads the private variables of a Function from DataInput argument.
* Returns 0 on error, 1 on success */
public int readData(StreamTokenizer fstream) ({

System.out.print ("Reading a fn data\n");

try {

int token = fstream.nextToken();
id = (int) fstream.nval;

System.out.print("id = ");
System.out.print(id);
System.out.print("\n");

token = fstream.nextToken();
name (String) fstream.sval;

System.out.print(" name = "};
System.out.print (name) ;
System.out.print ("\n");

return 1;
} catch (Exception IOException) {

System.out.print ("Read Error in Function\n");
return 0;

}

/** Returns name of function */
public String getName() {
return name;

}

/** Returns Id of function */
public int getId() {




/** HySAM : Hybrid System Architecture Model */

import java.io.*;

*

/
Hysam : Hybrid System Architecture Model.

The main class which describes and implements the model. Contains the
various components of the hybrid system architecture.

The components are the CPU, CLU, Configuration Cache, Interconnection
Network.

The components of the model are described by the Functions, Configurations,
Attributes, Reconfiguration, etc.

@author Kiran Bondalapati
@version 2.0 1999

@see Function

@see Configuration

@see Attributes

@see Reconfiguration

@see Scheduler

@see EventList

@see Event
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public class Hysam {

static final int INFINITY = 1000000000; /* Some large number */
private int numRows;

private int numCols;

private int numF;

private int numC;

private int numA;

private int numT;

private int numR;

private Function[] F;
private Configuration{] C;
private Attributes A;
private Application T;
private Reconfiguration R;

/** Constructor */
public void Hysam() {
}

/** Reads the model parameters by calling the readData functions of each
of the components. */
public int readParams (StreamTokenizer pstream) ({

int res = 0;
int i, 3J;

System.out.print ("Reading Data\n");

/* force garbage collection just to make sure we have max memory */
System.gc() ;

try {
int token = pstream.nextToken();

numF = (int)pstream.nval;

System.out.print ("Read functions = ");




System.out.print (numF) ;
System.out.print("\n");

F = new Function[numF];
for (i=0; i<numF; i++) {

F[i] = new Function();
System.out.print ("Reading function ");
System.out.print(i);
System.out.print("\n");

res = (F[i]).readData(pstream) ;

System.out.print("res =");
System.out.print (res);
System.out.print("\n");

}
System.out.print ("Finished\n");
token = pstream.nextToken() ;

nunC = (int)pstream.nval;
numC = numC + 1; /** CO0 is a dummy configuration **/
C = new Configuration[numC];

/* Set up some initial configuration pattern here in the config
and pass it to the CO configuration */

ConfigBit[] cbits = new ConfigBit[numRows*numCols];

for (i=0; i<numRows; i++) {
for (j=0; j<numCols; j++) {
cbits[i] = new ConfigBit(i,j.,0, ConfigBit.INIT);
}
}

C[0] = new Configuration(0, "Initial", numRows*numCols, cbits);

for (i=1; i<numC; i++) {
C[i] = new Configuration();
res = C[i].readData(pstream);

}

System.out.print("Read configurations =");
System.out.print (numC) ;
System.out.print("\n"):;

A = new Attributes();
res = A.readData(pstream) ;

System.out.print ("Read Attributes =");
System.out.print (A.getNum()) ;
System.out.print (*\n");

R = new Reconfiguration();
res = R.readData(pstream);

return res;
catch (Exception IOException) {
return 0;




}

/** Reads the application data from a file. The type of data read is based
on the type parameter. Currently 1 Linear, 2 Precision */
public int readappl(int type, StreamTokenizer astream) {

int res = 0;

if (type == 1) {
T = new Application();
res = T.readLinear (astream);

}

return res;

}

/** Computes the schedule using various algorithms based on the type
of application input */
public Scheduler computeSchedule(int type) {
Scheduler S = new Scheduler();

if (type == 1) {
int res = S.Linear(numF, F, numC, C, A, R, T);
if (res > 0)
return S;
else
return null;
} else if (type == 2) {
}

return null;

}

/** Gets the name of a function.
@param functionID
@returns functionName or "X" if Id not found
*/
public String getFuncName (int fid) {
for (int i=0; i<numF; i++) {
if (F[i].getId() == fid) {
return F[i].getName() ;
}
}
return "X";

}

/** Gets the name of a configuration.
@param configuration ID
@returns configurationName or "Y" if Id not found
*/
public String getConfName (int cid) {
for (int i=0; i<numC; i++) {
if (C[i].getId() == cid) {
return C{i].getName() ;
}
}
return "Y";

}

/** Gets the configuration data for a configuration.
@param configuration ID
@returns configuration data as ConfigBit[]




*/
public ConfigBit{] getConfig(int cid) {
for (int 1i=0; i<numC; i++) {
if (C[i].getId() == cid) {
System.out.print ("Found configuration "+cid+"\n");
return C[i].getConfig();
}
}

System.out.print {"Did not find configuration "+cid+"\n");
return null;

}




import java.awt.*;
import java.awt.event.*;

public class MessageDialog extends Dialog {

public MessageDlalog(Frame parent,String title,boolean modal,String text(],
String buttons[], WindowListener wh, ActionListener bh) {

super (parent, title,modal) ;

int textLines = text.length;

int numButtons = buttons.length;

Panel textPanel = new Panel();

Panel buttonPanel = new Panel();
textPanel.setlayout (new GridLayout (textLines,1));

for{int i=0;i<textLines;++i) textPanel.add(new Label({text([il])):

for(int i=0;i<numButtons;++1i) {
Button b = new Button(buttons([i]);
b.addActionListener (bh) ;
buttonPanel.add(b) ;

}

add("North", textPanel) ;

add("South",buttonPanel) ;

setBackground (Color.lightGray) ;

setForeground (Color.black) ;

pack();

addWindowListener (wh) ;




import java.awt.*;
import java.awt.event.*;

public class MyMenu extends Menu {
public MyMenu(Object labels[],ActionListener al,ItemListener il) {
super ( (String)labels[0]);

String menuName = (String) labels{0];
char firstMenuChar = menuName.charAt (0);

if (firstMenuChar == ‘~’ || firstMenuChar =='1!"){
setLabel (menuName.substring(1l));
if (firstMenuChar == ’‘~') setEnabled(false);

}

for (int i=1l;i<labels.length;++i) {
if(labels[i] instanceof String){
if("-".equals(labels[i])) addSeparator();
else{

String label = (String)labels[i];

char firstChar = label.charAt(0);

switch(firstChar) {

case ‘+':
CheckboxMenultem checkboxItem = new CheckboxMenuItem(label.substring(1l));
checkboxItem.setState(true);

- add (checkboxItem) ;
checkboxItem.addItemListener{il) ;
break;

case '#’':
checkboxItem = new CheckboxMenulItem(label.substring(l)):
checkboxItem.setState(true);
checkboxItem.setEnabled(false);
add (checkboxItem) ;
checkboxItem.addItemListener (il);
break;

case '-':
checkboxItem = new CheckboxMenulItem(label.substring(l));
checkboxItem.setState(false);
add (checkboxItem) ;
checkboxItem.addItemListener (il) ;
break;

case ’'=':
checkboxItem = new CheckboxMenuItem(label.substring(l));
checkboxItem.setState(false);
checkboxItem.setEnabled(false) ;
add (checkboxItem) ;
checkboxItem.addItemListener (il);
break;

case ’'~’':
MenuItem menultem = new MenuItem(label.substring(l));
menultem.setEnabled(false);
add (menultem) ;
menultem.addActionListener(al);
break;

case '!’:
menultem = new Menultem(label.substring(1l));
add (menultem) ;
menultem.addActionListener(al);
break;

default:
menultem = new Menultem(label);
add (menultem) ;




}

}
}

menultem.addActionListener(al);
}
}
lelse{
add (new MyMenu( (Object[])labels[i],al,il));
}

public MenulItem getItem(String menultem) {

}

int numItems = getItemCount();
for(int i=0;i<numItems;++1i)

if (menultem.equals (getItem(i) .getLabel())) return getItem(i);
return null;




import java.awt.*;
import java.awt.event.*;

public class MyMenuBar extends MenuBar {
public MyMenuBar (Object labels[][],ActionListener al, ItemListener il) {
super () ;
for(int i=0;i<labels.length;++1i)
add (new MyMenu(labels{i],al,il));
}
public MyMenu getMenu(String menuName) {
int numMenus = getMenuCount () ;
for(int i=0;i<numMenus;++1i)
if (menuName.equals{getMenu (i) .getLabel())) return((MyMenu)getMenu(i));
return null;




import java.awt.?*;

/
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ProgressBar: A canvas widget to display the progress of some task.

It is similar to the Swing progressbar widget but is

Can be extended to display percent value as String.

@author Kiran Bondalapati
/

public class ProgressBar extends Canvas {

int %, y, width, height;
float percent;

static final int borderWidth = 2 ;

Graphics graphics;

Image image;

Color barColor = Color.blue;

Color textColor = Color.white;

Color backColor = new Color(50,50,50);
Color borderColor = new Color(200,10,10);

/** Default constructor.

much simpler currently.

Initializes width and height to 100 and 20 and percent to 0 */

public ProgressBar() {

x =0; .
y = 0;

width = 100;
height = 20;
setSize(100,20);
percent = 0;
repaint();

}

/** Parameterized Constructor.
Sets the values for the bar */

public ProgressBar(int xpos, int ypos,

X = XpOSs;

Y = YPOs;

width = w;

height = h;

setSize(width, height);

percent = 0;

repaint () ;

/**
* Paint the ProgressBar bar.
* .

public void paint (Graphics g) {
if (graphics == null) {

image = createImage(width, height);
graphics = image.getGraphics();

}

int left = (int) ((float) (width)

int right = width;

//

int w,

* percent);

int h)

{

System.out.print ("Time "+percent+"% left "+left+" right "+right+"\n");




graphics.setColor (borderColor) ;
graphics.drawRect (0, 0, width, height);

if (left > 0) {
graphics.setColor (barColor);
graphics.fillRect (0, borderWidth, left, height -borderWidth);

}

if (right > 0) {
graphics.setColor (backColor) ;
graphics.fillRect (left, borderWidth, right, height - borderWidth);

}

graphics.setColor(textColor);

graphics.drawString( (new Integer((int) (percent*100))).toString()+"%$", width/2 - 20, he
ight-3);

g.drawImage (image, 0, 0, null);

}

/** Set the various colors for the bar */
public void setColors(Color bar, Color back, Color border) {
barColor = bar;
backColor = back;
borderColor = border;
repaint () ;

}

/** Sets the percent value of the bar and redraws it. */
public void setPercent (float per) {

percent = per;

repaint () ;
}




/*
* @(#)Reconfiguration.java
*

*/

import java.io.*;

/** -
* The class Reconfiguration contains the cost of chaging configurations
*
* @author Kiran Bondalapati
* @see Hysam
* @see Configuration
* @see Function
*/

public class Reconfiguration ({
private int ﬁumR; /* the number of data pairs stored */
private int[] from_cid; /* source configuration id */
private int[] to_cid; /* target configuration id */
private float[] cost; : /* reconfiguration cost */
private int partial; /* not used currently */

public int readData(StreamTokenizer rst) {

int tok;

try {
tok = rst.nextToken();
numR = (int)rst.nval;

from_cid = new int[numR];
to_cid = new int [numR];
cost = new float[numR];

for(int 1i=0; i<numR; i++) {
tok = rst.nextToken();

from_cid[i] = (int)rst.nval;
tok = rst.nextToken();
to_cid[i] = {int)rst.nval;
tok = rst.nextToken();
cost[i] = (float)rst.nval;

}

return 1;

} catch (Exception IOException) {
return 0;

}

/** Returns the Source configuration Id at [ind] */
public int getFromId(int ind) {

return from_cid[ind];
}

/** Returns the target Configuration Id at [ind] */
public int getToId{(int ind) {
return to_cid[ind];

}

/** Returns the cost of reconfiguration between two configurations.

If the pair does not exist then Hysam.INFINITY is returned */
public float getReconfCost(int frmid, int toid) ({




}

for(int i=0; i<numR; i++) {
if ((from_cid[i] == frmid) && (to_cid[i]
return cost{i];
}
}

return Hysam.INFINITY;

== toid))

{




/*
* @(#)Scheduler.java

¥*

*/

import java.io.*;

*

/
Scheduler

This class incorporates the scheduling components of the DRIVE framework.
Various scheduling algorithm routines are available in this class.

This class interacts dynamically with the other classes by providing
mechanisms to query current event and compute the next scheduled event.
These mechanisms facilitate dynamic scheduling algorithms.

@author Kiran Bondalapati
_@version 2.0 1999

@see Hysam

@see ConfigBit

@see Function

@see Attributes

@see Reconfiguration
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*/
public class Scheduler {

static final int EXECUTE
static final int RECONFIG

l
N

private int computed = 0;
private int numEvents;
private int currEvent = -1;

private EventList list;
private float([][] matrix;
public void Scheduler() {

computed = 0;
numEvents = 0;
currEvent = -1;

list = new EventList();

}

/** Resets the schedule to the beginning of the event list.
If schedule has not been computed returns 0.
Returns 1 on success. */ ‘
public int reset() {
if (computed == 1) {
currEvent = -1;
return 1;
}
else
‘return 0;

}

/** Returns the next event in the schedule */
public Event getNextEvent () ({

if (computed == 1) {
currEvent++;




if (currEvent == numEvents) {
currEvent = -1;
return null;
} else { .
return list.getEvent (currEvent);
}
}

return null;

}

/** Returns the current event in the schedule */
public Event getCurrentEvent() {
if (computed == 1) {
if ((currEvent > -1) && (currEvent < numEvents)) {
return list.getEvent (currEvent);
} else {
return null;
}
}
return null;

}

/** Returns the finish time of schedule.
If the schedule is a static schedule then the finishing time of the
schedule can be extracted for display purposes. */
public float getFinishTime() {
if (computed == 1) ({
return list.getFinishTime (numEvents -1);
}
return 0;

}
/** Computes the schedule for a linear dependent list of tasks.
Uses dynamic programming to compute the matrix of execution timings. */
public int Linear(int numF, Function(] F, int numC, Configuration[] C, Attributes A, Rec
onfiguration R, Application_T) {

int i,3j, k;
int numT = T.getNumTasks();

matrix = new float[numT] [numC];
int[][] Sol = new int[numT] [numC];
System.out.print("\nInitializing\n");
/* First initialize everything to INFINITY */
for(i=0; i<numT; i++) {

for(j=0; j<numC; j++) {

matrix[i)][j] = Hysam.INFINITY;

}
}
System.out.print ("First Step\n");

for(j=0; j<numC; j++) {

matrix (0] [j] = A.getExecCost(T.getFuncld(0), C[j].getId()) +
R.getReconfCost (0,C[3j] .getId());

Sol[0][j] = O;




System.out.print("Cost ["+j+"] is "+matrix[0][jl+"\n");
}

System.out.print("Step "+i+"\n");
for(j=0; j<numC; Jj++) {

int mink = 0; :
for (k=0; k<numC; k++) {

if (matrix[i-1]({k] + R.getReconfCost(C[k].getId(),C[]j].getId()) < matrix[i-1][mi
nk] + R.getReconfCost(C[mink].getId(),C[j].getId())) {
mink = k;
}
}

Sol{i][j] = mink;

,
\
for(i=1; i<numT; i++) {
matrix[i][j] = A.getExecCost(T.getFuncId(i), C[j].getId()) + matrix[i-1] [mink] + R
.getReconfCost (C[mink] .getId(),C[j]l.getId());
System.out.print("Cost ["+i+* "+3j+"] is "+matrix[i][j]+"\n");

}
}

int minj = 1;
for(j=0; j<numC; j++) {
System.out.print ("Cost of ["+j+"] is "+matrix[numT-1][j]+"\n");
if (matrix[numT-1]([j] < matrix[numT-1][minjl )
minj = j;
}

int cnum = minj;

System.out.print ("Minimum cost found ending in conf ");
System.out.print (Clminj].getId()+" cost "+matrix[numT-1][minj]+"\n");

/* reverse the Sol matrix first to obtain an ordered list */

int prev;
int next = -1;

for (i=numT-1; i> -1; i--) {
prev = Sol[i] [cnum];

Sol[i] [cnum] = next;
next = cnum;
cnum = prev;
}
cnum = next; /* the first configuration */

list = new EventList();
float s_time, f_time;
f_time = 0;

int curr = C[0].getId();
int to_cid;




for(i=0; i<numT; i++) {

to_cid = C{cnum].getId();
s_time = f_time;
f _time = s_time + R.getReconfCost(curr, to_cid);

list.addEvent (RECONFIG, curr, to_cid, s_time, f_time);
numEvents++; '

System.out.print ("Reconf "+curr+" "+to_cid+" Time "+s_time+" to "+f_time+"\n");

s_time = f_time;
f_time = s_time + A.getExecCost(T.getFuncId(i), C[cnum].getId());

list.addEvent (EXECUTE, T.getFuncId(i), to_cid, s_time, f_time);
numEvents++;

System.out.print ("Execute "+T.getFuncId(i)+" "+to_cid+" Time "+s_time+" to "+f_time+
"\n");

to_cid;
Sol[i] [cnum];

curr
cnum

}
computed = 1;

return 1;
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g Project MAARC
MAARC

» 3 year effort
+ USC and NYU
* Project start date: September 10, 1996




E Annual Review Outline

Reconfigurable Architectures (DRIVE):
Overview and Demo (K. Bondalapati)

« NYU Efforts
» Discussion

MAARC
« USC Efforts

— Project Overview 15

— Year 3 Key Technical Accomplishments
« Problem-Instance Dependent Mapping (R.P.S. Sidhu) 20
« Dynamic Logic Synthesis for Reconfigurable HW (A. Dandalis) 20
Break 15’
+ HySAM Model and Dynamic Precision Management (K. Bondalapati) 30

+ An Interpretive Simulation and Visualization Environment for Dynamically

20’
Break 15

60’
15

g Project Overview Outline

MAARC

Background

— State of technology and theory

— Traditional design approach

Overall Goals and Approach

— MAARC objectives

— Our approach to configurable computing

USC Key Research Areas Summary - YR 3

Project Status




E Traditional Design Approach

MAARC
P . Technology
Application | t [ VFDL { Independent
Developer 5;( Verilog
o[ High-evel ||}
171 Synthesis
" [Ri7gatedevel | |i
l‘ﬂ Library of | s Logc l Technology
Modules Synthesis | “}i Dependent
T Netlist L
;| Place/Routing } -} Devices
4

E Key Features of Traditional Approach
MAARC

« Many abstraction layers
» Non-interactive algorithms
» Static configuration control

. " Compie

Load file
onto Hardware




E MAARC Objectives
MAARC

« Scalable algorithms and performance analysis
« Power of dynamic reconfiguration [logic and connections]

Configurable computing,

FPGA computing TRULY dynamic

(static) configurable' computing

Run-time mapping
- Dynamic reconfiguration

« Models [computational, compilation]

Tools using Tools using
VHDL synthesis Models

A-EPIC & compiler (NYU)
DRIVE (USC) 6

E Dynamic Reconfiguration (Our View)
MAARC

» Data dependent reconfiguration
» Frequent reconfiguration
* Distributed control

Compute

+ Configure logic } at runtime
« Configure connections /

Reconfiguration cost ?
Performance predictability ?
Dynamic precision adaptation ?




E Our Approach

MAARC
Application
Developer:.
Optimized hardware
Computational Model — - architectures/algorithms
Compilation Model for generic problems

and applications

I Devices Architectures I
G

E Our Reconfigurable Mesh Model*
MAARC

» A model for understanding dynamic configuration
— NxN mesh of processing elements
— Processing Element
» Configurable logic
« Configurable switches

» Synchronous Model
+ Communication Cost
— Constant delay
— Log delay
* Abstract Model

(regier ]

* MIT Advanced Research in VLSI, 1988 °




Reconfigurable Meshes:
g Dynamic Reconfiguration

MAARC

Computation (e.g. Program)

Reoonﬁgurable
Mesh Model

Vks

. Instance Based -
.. -Configuration - -

v

Computation and
Reconfiguration

l |

Result

Intermediate
Results

Problem Instance (e.g. Input Data)

10

g Our HySAM Model:
d Scheduled Reconfiguration

MAARC

Computation (e.g. Program)

Hybrid System
Architecture Modetl

A\ A 4

Configurations
and Schedule

V;

Computation and
Reconfiguration

l | I

Result

Intermediate
Results

Problem Instance (e.g. Input Data)

1




E Advantages of Our Approach

MAARC

« Algorithmic design methodology

« Application developer “sees” the device and
architectural features in the algorithm design
phase

 Runtime interaction between algorithm and
hardware

« Better exploitation of dynamic reconfiguration

 Scalable algorithm development

12

E USC Team Members

MAARC

« Faculty

— Viktor Prasanna (PI)
« Students

— Kiran Bondalapati

— Seonil Choi

— Andreas Dandalis

— Reetinder Sidhu

13




g Research Accomplishments Summary

MAARC

(Conference Publications)

K. Bondalapati, V. K. Prasanna, and P. loannou, “Managing Dynamic Precision on Reconfigurable Hardware”, High-
Performance Embedded Computing, September 1939

2 A. Dandalis, J. L. Gaudiot, and V. K. Prasanna, “Run-time Mapping of Graph-Problem Instances onto Reconfigurable
Hardware”, Military and Aerospace Applications of Programmable Devices and Technologies, September 1999.
3 K. Bondalapati, G. Papavassilopoulos, and V. K. Prasanna, “Mapping Applications onto Reconfigurable Architectures using
Dynamic Programming”, Military and Aerospace Applications of Programmable Devices and Technologies, September 1999,
4 R.P.Sidhu, A. Mei, and V. K. Prasanna, "Genetic Programming using Self-Reconfigurable FPGAs", International Workshop
on Field Programmable Logic and Applications, September 1999.
5 K. Bondalapati and V. K. Prasanna, "DRIVE: An Interpretive Simulation and Visualization Environment for Dynamically
Reconfigurable Architectures®, International Workshop on Field Programmable Logic and Applications, September 1999.
6 K.Bondalapati and V. K. Prasanna, "Hardware Object Selection for Mapping Loops onto Reconfigurable Architectures®,
International Conference on Parallel and Distributed Processing Techniques and Applications, June 1999 .
7 K. Bondalapati and V. K. Prasanna, "Dynamic Precision Management for Loop Computations on Reconfigurable
Architectures”, IEEE Symposium on FPGAs for Custom Computing Machines, April 1998.
8 A. Dandalis, A., and V. K. Prasanna, "Domain Specific Mapping for Solving Graph Problems on Reconfigurable Devices®,
Reconfigurable Architectures Workshop, April 1998,
9 R.P.Sidhu, A. Mei, and V. K. Prasanna, " String Matching on Multicontext FPGAs using Self-Reconfiguration™, International
Symposium on Field-Programmable Gate Arrays, February 1999.
10 K. Bondalapati and V. K. Prasanna, "Mapping Signal Processing Loops onto Reconfigurable Hardware®, High-Performance
Embedded Computing Workshop, September 1998 .
14
.
» Research Accomplishments Summary
MAARC
11 K. Bondalapati and V. K. Prasanna, " Mapping Loops onto Reconfigurable Architectures”, International Workshop on Field
Programmable Logic and Applications, September 1998,
12 A. Dandalis and V. K. Prasanna, "Space-Efficient Mapping of 2D-DCT onto Dynamicaily Configurable Coarse-Grained
Architectures™ International Workshop on Field Programmable Logic and Apptications, September 1998.
13 A. Dandalis and V. K. Prasanna, "Mapping Homogeneous Computations onto Dynamically Configurable Coarse-Grained
Architectures”, IEEE Symposium on Field-Programming Custom Computing Machines, April 1998.
14 S.Choi, Y. Chung and V. K. Prasanna, "Configurable Hardware for Symbolic Search Operations”, International Conference
on Parallel and Distributed Systems, December 1997.
15 Y. Chung, S. Choi and V. K. Prasanna, "Parallel Object Recognition on an FPGA-based Configurable Computing Platform”,
International Workshop on Computer Architecture for Machine Perception, October 1997,
16 A. Dandalis and V. K. Prasanna, "Fast parallel implementation of DFT using configurable devices™, International Workshop on
Field Programmable Logic and Applications, September 1997.
17 K. Bondalapati and V. K. Prasanna, " Reconfigurable Meshes: Theory and Practice®, Reconfigurable Architectures Workshop,
Intemnational Parallel Processing Symposium, April 1997.
18 R. P. Sidhu, K. Bondalapati, S. Choi, and V. K. Prasanna, * Computation Models for Reconfigurable Machines®, Intemational

Symposium on Field-Programmable Gate Arrays, February 1997.

http://maarc.usc.edu
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E Key Research Areas Summary - YR 3

MAARC

« Problem-Instance Dependent Mapping
— Reetinder Sidhu

« Dynamic Logic Synthesis for Reconfigurable HW
— Andreas Dandalis

» HySAM Model and Dynamic Precision Management
— Kiran Bondalapati

» An Interpretive Simulation and Visualization
Environment for Dynamically Reconfigurable
Architectures (DRIVE): Overview and Demo
— Kiran Bondalapati

16

g Problem-Instance Dependent Mapping

MAARC

» Basic Approach * Replace CAD tools with
— Fast, efficient, problem specific
Problem Instance algorithms implemented in
software

— Implement the algorithm itself in

reconfigurable logic

Configuration ~ Tue Problem Problem
Instance Instance

Ty

Output

Software Mapping Self-Reconfiguration

17




» Problem-Instance Dependent Mapping

MAARC

3 orders of magnitude speedup in mapping time

 Order of magnitude speedup in overall execution
time compared to a microprocessor

Text size n=10*

Pattern size m=8

implementation
 Successful validation of feasibility of our approach
-~ Dynamic String Matching
Approach Tu+Tue +Te | Speedup
Proposed 1.8 ms 1.0
CAD tool mapping 76.0s ~10°
Software mapping 21.8 ms 12.1
Sun Ultra 1 30.0 ms 16.6

Overall Execution Time

18

E Dynamic Logic Synthesis for
) 4 Reconfigurable Hardware

MAARC

Computation (e.g. Program)

» Application developer “sees” the
device and architectural features in

the algorithm design phase Hybrid Syster
Off-line process Architecture Model
A S 4
Configurations

and Schedule

» Runtime interaction between algorithm

and hardware
. . v ;
Run-time mapping -
Computation and
Reconfiguration
l

Result

Problem Instance
(e.g. Input Data)

Intermediate
Results

19




Dynamic Logic Synthesis for
E Reconfigurable Hardware MAARC

« Case study: graph problems

+ 6 orders of magnitude speedup in overall
execution time
— compared with the state-of-the-art (MIT DCS)

« Order of magnitude speedup in overall execution
time
— compared with uniprocessor implementation

g Dynamic Precision Management

MAARC

» Dynamic precision

— Modify precision on the fly

— Match implementation to algorithm requirements

— Reconfigurable architectures can support dynamic precision
» Lower precision requires less resources

— Logic area

— Execution time
— Power consumption

* Run-time precision management

— dynamic modification
— algorithmic optimization

21




E Example: Mapping onto XC6200
MAARC

Mapping a multiply operation in a loop computation

Algorithm %ﬁgu(’%gr)\ $§$§ ?gg) #rgael (ns)
Raw 655360 20480 675840
Static 532480 17920 550400
Greedy 468010 56320 524330
DPMA 471160 33280 504440
DPMA-run 409600 15360 424960

More than 30% improvement for one multiply operation

22

g Interpretive Simulation Framework

Architectures '

System
Abstraction

MAARC

Library Modules Applications

Performance

Analysis and
~.Q[|aracterization/

System N Task
Models Models

Interpretive Simulation

Performance Analysis

—_Design Exploration »




ﬁ Project Status

MAARC

* Models
— Reconfigurable Mesh, HySAM, RCSP
 Scalable Algorithms ,

— Dynamic Precision Management, FFT, 2D-DCT,
Geometric Hashing, Symbolic Search, String Matching,
Genetic Programming, Graph Problems

« Compiler Optimization Techniques (NYU)

— Adaptive-EPIC Architectures

» DRIVE Software

— Interpretive Simulation and Visualization Environment
for Dynamically Reconfigurable Architectures

Completion by September 9

24

E Annual Review Outline
MAARC
« USC Efforts

— Project Overview 15’

~ Year 3 Key Technical Accomplishments
 Problem-Instance Dependent Mapping (R.P.S. Sidhu) 20
» Dynamic Logic Synthesis for Reconfigurable HW (A. Dandalis) 20
Break 15’
» HySAM Model and Dynamic Precision Management (K. Bondalapati) 30

« An Interpretive Simulation and Visualization Environment for Dynamically
Reconfigurable Architectures (DRIVE):

Overview and Demo (K. Bondalapati) 20

Break 1%’

« NYU Efforts 60’
» Discussion 15'

25




£

MAARC

Problem-Instance Dependent Mapping

Student: Reetinder Sidhu

K

Outline

MAARC

* Motivation
Algorithm
Implementation
Results
Conclusion

27




E Problem-Instance Dependent Logic

MAARC

» FPGAs can outperform ASICs
only if logic mapped onto them
is optimized for each problem

Problem Instance

HOST T,

instance

Configuration  Tue

FPGA T,
Problem Tu Tue Te
Satisfiability 2904 s 1-10s |566s
Shortest path |14400s |1-10s {100 us Output
Text filtering [0.16s 3s 50 ms
28
g No CAD tools at runtime
MAARC

« CAD tools can be used to offline (compile time) to

generate optimized logic
* No CAD tools at runtime




E Replace CAD tools with what?
MAARC

« Fast, efficient, problem < Implement the algorithm
specific algorithms itself in reconfigurable
implemented in software  logic

Problem Instance Problem instance

HOST T,

Configuration  Twe

FPGA T,

Output

30

E Outline
MAARC

» Motivation
Algorithm
Implementation
Results
Conclusion

31




E Proposed Approach: Parameterized
) g - Computation Structures (PCS)uaarc

r l'-‘
18 8

[

Parameters
(Problem size, Precision)

i1

r
Lo e

TR [RUVEE R

oo o oo
: 1

=kl e
instantiated CS s

: 30 ‘5D

o dor Configuration bis R —’.3 )
ngubtracter ek

32
g KMP Algorithm
MAARC

 Problem: Find all occurrences of
text T (length n) in pattern P (length
m)

Problem Instance

Tu
« KMP (Knuth, Morris, Pratt)
algorithm searches in O(m+n) time Tt
— Phase I: Construct FSM by looking at
the pattern in O(m) time T,

— Phase II: Search text using FSM in
O(n) time




g KMP Algorithm
MAARC

v . — Char. match
* Phase | (FSM construction) —+ Char. mismatch

N

< ~ N

OZORORORORORO

Pattern a b a b c a match
PatterfPattarPatteen b b & b a a

» Phase | (Text search)

e ~
Pattern C@:C?_ o h
Text a b a b

ﬁ Outline
MAARC

Motivation
Algorithm
Implementation
Results
Conclusion




E Implementation Approach
MAARC

« Clock cycle level analysis of proposed multicontext FPGA
implementation to obtain |

Ty,Tye and T, in terms of

t.,. |Clock cycle time

t.. |Config. memory access time

t,, |External memory access time

m |Pattern length

n |Textlength

« Implemented most logic on a Xilinx XC 6216
to obtain above parameters

36

ﬁ Implementation
MAARC
External :> Dagﬁ? eg. > Comparator char_match
Memory . R >
(T.P.n.m) + I Address _next state
’N—Couniter i
l’ LN Backedge

| Constructor
A

| Contexto,1,2
D Context 2

bi| Context3

37




E FSM Templaté
| MAARC

zego
4
3
2
1
0

HoH ]

ol %me

© 0 OO OO0
Pattern a b a b c a maich
& Backedge Construction
MAARC

ZGSI’OI
4 @ I
3 ¥
2 L7
T

Ho - H]

Pattern

DB

ﬁi@a\ﬁo

a a malch

39




OR-gate Insertion Logic

MAARC

OR-gate address generation logic

XC6216 config. Memory format

40

g Outline

MAARC

Motivation
Algorithm
Implementation
Results
Conclusion

41




E Results
MAARC
« Clock cycle level analysis
Ty =(4m-2)t., +(m+Nt,, + (Tm-4)t,,
TME =(m- 1)sw_gatetcm
n
Te= (2'7 - {E‘Dtcu«
42
& Results
MAARC

 Implementation on XC6216

tom = Lo
tm = o
sor_gate =3
m o Ty Tue T. | Totaltime
4 81.6ns| 3.7us| 0.7us| 1428 us 1432 us
8/ 976ns| 9.0us| 2.1us| 1830 us 1841 us
16] 129.6ns| 224 us{ 58 us| 2511 us 2539 us

Text size n=10*

43




Performance Comparison
E (Mapping Time)

MAARC

« CAD tool mapping
— Place and route using XACT 6000 for each pattern

 Software mapping
— KMP phase | in software

» Proposed approach

Approach Tu Tue Ty +Tue |Speedup
Multicontext FPGA {9.0us |2.1us |11.1us {1.0
CAD tool mapping |76 s 1ms |(76s ~B6x1076
Software mapping {20ms |{1ms [21ms 1892
Pattern size m=8
a4
g Performance Comparison
£ ]
(Total Time) MAARGC

CAD tool mapping
Software mapping
Proposed approach

Sun Ultra | Model 140
— C implementation of KMP algorithm

Approach Tu+Tue +7: | Speedup

Proposed 1.8 ms 1.0
CAD tool mapping 76.0s ~10%
Software mapping 21.8 ms 12.1
Sun Ultra 1 30.0 ms 16.6

Text size n=10*

Pattern size m=8

45




E Outline
MAARC

Motivation
Algorithm
Implementation
Results
Conclusion

E Publications
MAARC

« R P. Sidhu, A. Mei, and V. K. Prasanna
“Genetic Programming using Self-Reconfigurable FPGAs”

 R. P. Sidhu, A. Mei, and V. K. Prasanna

“String Matching on Multicontext FPGAs using Self-
Reconfiguration”

47




E Conclusion
MAARC

High mapping and reconfiguration times
3 orders of magnitude speedup in mapping time

Order of magnitude speedup in overall execution
time compared to a microprocessor
implementation

Successful validation of approach feasibility

48

g MAARC

Dynamic Logic Synthesis for
Reconfigurable Hardware

Andreas Dandalis




g Outline
MAARC

* Introduction

— Dynamic Logic Synthesis for Reconfigurable Hardware
» Accomplishments (Year lll)

— Mapping Graph Problems

— Example

— Summary
« Conclusions

g Computation Structures on FPGAs?
MAARC

.’
_’
» Library-based modules » Library-based array
configurations configurations
* Problem
— optimization across — well specified boundaries
module boundaries
— reconfiguration cost — less reconfiguration cost ?
« Problem

— PEs computational power ?
— space vs performance ?

51




g Dynamic Logic Synthesis

MAARC

Problem
Instance

1‘

Dynamic
Logic Synthesis
~

52

g Conventional Configuration Design

MAARC

v
VHDL
Verilog

Design
Validation

OK

Logic
Synthesis

A
Partitioning

not OK

not OK

53




E Motivation: FPGA CAD Tools Bottleneck

MAARC

+ J. Babb, M.

+ Single-Source Shortest Path Problem
— MIT Dynamic Computation Structures

Frank, and A. Agarwal. “Solving Graph Problems

with Dynamic Computation Structures”, SPIE Nov. 1996.

Execution Time (msec) Mapping Time (msec)

Hardware
Software

0.752 0.6 * 108

40 O (executable)

Speedup

92X t

E Performance Metrics

MAARC

A

y

'Corglgqratlon T : time taken to design a configuration
esign

h 4

Hardware . ] '
Configuration Tye : time taken to configure the device(s)

A

y

Execution Te : time taken to execute on the device(s)

55




An Example: Single-Source Shortest
g Path Problem MAARC

“‘Bellman-Ford” Loop
FOR k=1..n-1
DO FOR each edge (i,3)
DO 1(j)* min{l(j), 1(i)+w(i,j)}

56
E An Example: Single-Source Shortest
’ Path Problem MAARC
l(j)t;;kl(j) ’ 1_(;):‘4;1,)) }
DCS l» Qur
mapping mapping

57




ﬁ Skeleton
MAARC

1(i)+w(i,3)

L

freed e — pred
e —q prmmed e
ed e — bt

povend st prmsemand et
et i e -

I

<

1(5) «— min{1(3),1 (i) +w(i,§)}

» Parameters
— # of vertices n
— data precision p
— 1/O bandwidth available B

58

E Parameterized modules for XC6xxx
MAARC

« Width v -
— (pHlog n)) - T
» Height
— 4p+2[log n 10
« Clock rate

- 15 MHz

* p=16, logn =16
- 25MHz

* p=8, log n=16

xXc=

59




E Placement and Routing for XC6xxx

MAARC

» Placement

— pre-defined

« Routing

— nearest neighbors

60

g Run-time Adaptation

MAARC

» Module-level

— data precision

— width of {i, ]} buses
» Layout-level

— # of modules

— placement

61




E Implementation

MAARC

+ Platform

— Xilinx XC 6200 based

— VCC HOT Works PCI board
* Tools

— Velab VHDL compiler

— XACT6000 (place-and-route)
* Area

— the same as estimated
» Clock rate

— 14 MHz (p=16, log n=16)

— 23 MHz (p= 8, log n=16)

62
g Comparison with MIT DCS*
MAARC

Problem | Clock Rate Te Tu+ Tue Te+ Ty + Tue

Size MHz usec

DCS Our | DCS our | DCS Our Speedup

16x 64 | 1.79 14 894 2295 |~ 4h ~ 22msec| 6.5x108
64x 256 | 114 14 | 56.14 8466 |~ 4h ~ 82msec| 1.7x108
128x 515 | 0.78 14 [164.10 21398 |~ 8h ~161 msec| 1.8x108
256x1140 | 0.34 14 |752.94 528.39 |~16h ~319msec| 1.8x108

*
“Soiving graph problems with dynamic computation structures” J. Babb et al., SPIE, Nov. 1996 63




E Qualitative Comparison

MAARC
»  Our Mapping + DCS Mapping
— module-based - cell & wire-based
* regular layout « irregular layout

incremental designs complete redesign

area/timing estimates area/timing estimates

 determined by the  determined by “tools”
computation structure

# of iterations

# of iterations

» height of the shortest path « # of vertices
tree — correct only for non-negative
- negative cycle detection cycle graphs

g Comparison with SW Implementation™
MAARC

Te (SW)

Tyt Tyet Te (HW)

e/n=16
e/n=8
e/n=4

12 404

2048

n: # of vertices
e: # of edges

*
SUN ULTRA1 64MB/143MHz 65




E Implementation on VIRTEX
MAARC

66

g Summary
MAARC

« A. Dandalis, J. L. Gaudiot, and V. K. Prasanna

“Run-time Mapping of Graph-Problem Instances onto
Reconfigurable Hardware”

» A. Dandalis, A. Mei, and V. K. Prasanna
“Domain Specific Mapping for Solving Graph Problems on
Reconfigurable Devices”

» A. Dandalis
“Dynamic Logic Synthesis for Reconfigurable Hardware”

67




E Conclusions
MAARC

« Dynamic Logic Synthesis
— unique way to “outperform” ASIC solutions
— alleviates the FPGA CAD tools bottleneck
» Case-study: graph problems

— 6 orders of magnitude speedup compared with the
state-of-the-art

68

E MAARC

HySAM Model and
Dynamic Precision Management

Kiran Bondalapati




E Hybrid Architectures
MAARC

Hybrid
Architectures

« Feasible architectures with the availability of nearly billion
transistors on a chip

+ Availability of on-chip configuration and data storage
memory

 Potential for fast and dynamic reconfiguration

70

ﬁ BRASS - Garp

» Reconfigurable array unit with a RISC
processor

» Gate array of 32x24 logic blocks
 Partial configuration of gate array in row

increments e
, . : ruction
« Configuration cache for fast i | cache | datacache f | |
reconfiguration | Lo el | |

4 cycles on-chip and 12 cycle off-chip
reconfiguration time

configurable
array

71




E Hybrid System Architecture Model
MAARC

* Parameterized model

+ Architecture independent
algorithm development

+ Algorithmic analysis of
mapping techniques

72

E CLU Functions and Configurations
MAARC

Functions (F)

— Computational units (e.g. Add, Multiply, Select)

— Library Modules

+ A Function can be executed by different Configurations
» Configurations (C)

— Area, Configuration time, Execution time, Precision, Power consumption, I/O
requirement

* t; - execution time for function F;in configuration G
* R; - reconfiguration cost from C; to C;

— depends on both C;and C;

- partial reconfiguration

— reconfiguration cost matrix

73




E Tasks and Configurations

MAARC

Input Application Tasks

T1 T2 T3
: - p
I | Mapping m
Configurations
Reconfiguration 74
g Example :
; Garp Architecture Parameters  yaarc
Function Operation | Configuration %mg Ro; %’:ﬁg' t;
F, Multiplication(Fast) C, 14.4 us 37.5ns
Multiplication(Slow) C, 6.4 us 52.5ns
F, Addition C; 1.6 us 7.5ns
Fs Subtraction C, 1.6 us 7.5ns
Fq ~ Shift Cs 32us 75ns

75




Example :
E XC 6200 Multipier Conflguratlons MAARC

For the multiplier function F;
Precision is bit-sizes of the two inputs to multiplier

. . Conf. Exec.
Configuration C|Precision Pr(C)| Time Roi| Time t;

C, 8x8 5120 ns | 140ns

G, 8x16 10240 ns | 250 ns

C; 8x20 12800 ns | 300 ns

C, 8x24 15360 ns | 400 ns

Cs 8 x28 17920 ns | 520 ns

Ce 8 x 32 20480 ns | 640 ns

76
ﬁ Outline
MAARC

* |ntroduction
+ HySAM Model

Variable Precision Computations
Dynamic Precision Management
Example Results




g Precision Variation in Loop Computati

ons
MAARC

Ex: DO 10 I=1,N

RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J)

(e

ITF (MRXQ.LT.RS8Q(J}! THEN
MAXQ = RSQ{J)
VIRTYXY = VIRTXY + MAXQ * SCALE(I)

|28

‘,..l
<

+ 8-bit inputs XDIFF(!.J) and YDIFF(i.J)

+  MAXQ operand and * operation
— precision changes with iterations of I
— lower than maximum possible precision (for most iterations)

78

g Variable Precision Computations

MAARC

Precision requirement is lower than implemented

Match implementation to algorithm requirements

» Less resources
— Logic area
— Execution time
-~ Power consumption

» Run-time precision management

— dynamic modification

79




E Dynamic Precision Management
MAARC

Precision variation analysis
— Loop computations

— Theoretical analysis

— Run-time analysis

— precision variation curve

Utilize variable precision library

Dynamic Precision Management Algorithm

Optimal configuration sequence

80

E Precision Variation in Loop Computations
MAARC

Ex: DO 10 I=1,N
DO 26 J=1,N
RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J)
20 IF (MAXQ.LT.R8Q{J}) THEN
HMAXD REQ (T}

10 VIRTXY = VIRTXY + MAXQ * SCALE(I)

« MAXQ operand and * operation
— precision changes with iterations of I
— lower than maximum possible precision (for most iterations)

Does not change every iteration

81




Precision Variation Curve(PVC)
E for Loops MAARGC

» Precision Variation Curve

— Change in required precision of an operand or an operation over the
given iteration space

* PVC Points
— lterations in which precision changes
— Subset of iteration space of loop
* Definition
- <L,P> 1<isu+, L, =N
— P,is the minimum precision required to execute iterations L; ... L;,, -1
— N = number of iterations

82

ﬁ Precision Variation Curve
MAARC

Precision Variation Curve

-
N

>
(-]

Precision
(bits above 16)
N E -] -]

I/
-~ [—Pvc]

(=]

|||||||||||||||||||||||||||||||||||||||

iteration Number

83




E Theoretical Analysis
MAARC

 Precision of a variable
— precision of the variable before loop
— operations performed on the variable
— number of iterations
« Accumulation of constant C X=X +C
— X initial value O
— Addition operation
— N iterations

mm) Pr(X) <Pr(C)+log N+1

84

g Theoretical Analysis Limitations
MAARC

* Theoretical analysis is conservative
— worst case upper bound for minimum precision required
— not always a tight upper bound
— based on worst case input values
— Ex: Fibonacci numbers Pr(X;s)

« theoretical precision = 14 bits
« actual X,; = 610, precision = 10 bits

85




E Run-time Analysis
MAARC

* Run-time profiling
— Precision analysis
— Instrumented code
— Simulations with typical data sets
— Measure precision in all iterations
— Estimate required precision

« Execution

— Use estimated precision values

— run-time verification
* low cost precision check
* check not in critical path

86

g Precision Variation Curve
: MAARC

Precision Variation Curve

-
N

it

= — theoretical

~= run-time

Precision
(bits above 16)
Qo N H -] -]

lteration Number
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E - Precision Management Problem

MAARC
« Given
— PVC for a given operation in the loop
» Find
— A valid optimal schedule which minimizes total execution
time

Valid schedule
— satisfies the precision requirements of the computation

Total execution time
— execution time + reconfiguration time

88

ﬁ Precision Management Problem
MAARC

Valid schedule for a given PVC
- For every iteration K (1 s K sN) the precision of scheduled configuration
is less than the required precision given by the PVC

Scheduled

A I
! Given PVC
Precision
1 K N

Iteration Number
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E Assumptions
| MAARC

 Higher precision requires more resources

- execution time
— logic area

« Monotonic variation in precision

— several image processing and signal processing
applications

— split non-monotonic PVC into monotonic
subsequences

 Optimal solution for the given PVC

— near optimal if actual precision variation is different

S0

E Dynamic Precision Management

Lemma: The reconfiguration points are a subset of the
PVC points
Greedy algorithm

~ best configuration for each PVC interval
- subjoptimal schedule

DPMA algorithm
- Dynamic programming based
— Explores non-optimal configurations

« for some iterations
« reduces reconfiguration overhead

— O(um?) complexity
« u = #of PVC points, m = # of configurations
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Example :
ﬁ XC 6200 Multipier Configurations yaarc

For the multiplier function F;
Precision is bit-sizes of the two inputs to multiplier

Configuration C;|Precision Pr(C) %c,’;,t Ro; %’;ﬁg' t

C, 8x8 5120ns | 140ns

C, 8x 16 10240 ns | 250 ns

C; 8 x20 12800 ns | 300 ns

C, 8x24 15360 ns | 400 ns

Cs 8x28 17920 ns | 520 ns

Cs 8x32 20480 ns | 640ns

92
E Results: Ad-hoc approaches
MAARC
Precision Variation Curve
16
14
_ 12 theoretical
S < 10 7 run-time
g _§ 8 - % -Raw
s g T —— Static
a2 4 I'JT'_IW et Greedy
S, =
0 Jmﬁw"ﬁw
- < W O (2] n~ ['ed N
TS S 25358

Iteration Number
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Results: DPMA Approach

Precision
(bits above 16)

MAARC
Precision Variation Curve
16
14
12
10 7 theoretical
8 run-time
6 _/‘J/—‘ —=—DPMA
25—
2
O'W
< (-] (7} w0 [ w0y N |
T8 e3g

lteration Number

94

Results: DPMA Run-time Approach

MAARC
Precision Variation Curve
16
14
12
g g 10 theoretical
B % 8 ,—/  run-time
52
B: o e~ — pewasun
o s -
o
2
0 'W
< (-~ o w0 ~ wn N

Iteration Number
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E Example: Mapping onto XC6200
MAARC |
Mapping the multiplier operation in MAXQ * SCALE (I)
; Execution Reconfig. | Total
Algorithm Time (ns) Time (ns) | Time (ns)
Raw 655360 20480 675840
Static 532480 17920 550400
Greedy 468010 56320 524330
DPMA 471160 33280 504440
DPMA-run 409600 15360 424960
» Raw - 8x32 precision for all iterations
» Static - 8x28 precision for all iterations
» Greedy - schedule using greedy algorithm
» DPMA - schedule using theoretical PVC
» DPMA-run - schedule using run-time PVC
96
g Publications
MAARC

+ K. Bondalapati, G. Papavassilopoulos and V. K. Prasanna
“Mapping Applications onto Reconfigurable Architectures using Dynamic Programming "
Military and Aerospace Applications of Programmable Devices and Technologies, Sept 1999.

« K. Bondalapati, V. K. Prasanna and P. loannou
“Managing Dynamic Precision on Reconfigurable Hardware”
High Performance Embedded Computing Workshop, Sept 1999. (Poster)

« K. Bondalapati and V. K. Prasanna
“Hardware Object Selection for Mapping Loops onto Reconfigurable Architectures”
Parallel and Distributed Processing Techniques and Applications, June 1999.

» K. Bondalapati and V. K. Prasanna

“Dynamic Precision Management for Loop Computations on Reconfigurable
Architectures”

FPGAs for Custom Computing Machines (FCCM), April 1999.

» (Collaboration with I1SI DEFACTO)
“DEFACTO: A Design Environment for Adaptive Computing Technology”
Reconfigurable Architectures Workshop 1999, April 1999
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E Dynamic Precision Management
- MAARC

Precision variation in loop computation
Run-time adaptation of configurable hardware
Efficient dynamic precision management algorithm

Potential for speeding-up large class of
applications

98

E MAARC

DRIVE

_An Interpretive Simulation and Visualization
Environment for Dynamically Reconfigurable Systems

Kiran Bondalapati




E Traditional Design Approach MAARC

........................ Technology

: ! Independent
Application : i P
Developer :

..................

! Technology
i Dependent

v-b| Devices I
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ﬁ Simulation Tools
MAARC

» Performance Analysis
— execution time, memory access, power, ...

« Algorithmic Analysis
— various mapping and scheduling algorithms

« Architectural Exploration
— device and architectural alternatives

101




E EDA Simulation Tools
MAARC

- Simulation of VHDL designs
— high level behavioral simulation
— verifies correctness
— does not provide performance characteristics
» Simulation of netlist/placed and routed design
— low level timing simulation
— fixed to specific implementation on specific device
— needs final design for each alternative device/algorithm

Application developer needs to understand low level
device and architecture details

102

ﬁ DRIVE Goals
MAARC

High level performance analysis
— based on module level performance characterization

Architecture abstraction

— insulate application developer from hardware intricacies
Algorithm analysis

— extensible tools to study various algorithmic techniques

Architecture exploration
— parameterized architectural model for exploration

L]
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g Related Work
MAARC

« Dynamic Circuit Switching, Lysaght et. al.
— Integrate VHDL modules for dynamic reconfiguration by
using multiplexers for inputs and outputs
« CHASTE, Brebner et. al.
— Low level simulation tool for a specific FPGA(XC6200)

- JHDL, BOOM, JBits etc.

— Languages and libraries for CAD with simulation
embedded into the framework

104

g Interpretive Simulation Framework

Architectures | ;‘\I;,fbr"ary Modules

System Performance
Abstraction .Characterizatiol

MAARC

Applications

~ ‘Analysis and

System -
Models Maodels

Interpretive Simulation

Performance Analysis

: Design Exploration 105




E Interpretive Simulation
MAARC

« Simulate the application model on the system model
« Performance is based on module characterization

» Advantages
— Exploits the design methodology
— Elimination of actual execution
— Interactive and real-time simulation

» Disadvantages
— Analysis only as accurate as module analysis

— Approximates module interactions
106

E Capabilities vs. Implementations
MAARC

Application is transformed to capabilities

— Application tasks are Functions
Implementations transparent to user

— Application does not need to know configurations
Algorithmic techniques for mapping

— Capabilities are mapped to implementations

— Functions are mapped to Configurations

Facilitates Drag-n-Drop construction of applications

107




E Drive Components

| USER

f E System State

MAARC

Simulator

108

ﬁ Simulator Core
MAARC

Execution of functions

— by dynamic loading of Java classes

— Java class specified in input for each configuration
Uniform interface to dynamic Java classes

— data input and output as Strings

— internal data type conversion

Storage of intermediate results

— for data dependent scheduling

Easy integration of libraries

— BOOM, JHDL, etc. Java classes can be utilized

109




g Scheduler Component

MAARC

Event based scheduler
— execution, reconfiguration, memory events

Dynamic scheduling

— events accessed dynamically from the scheduler

component
Schedules the simulator core operations
Scheduling algorithms

— implements current algorithms
— easy extensibility to add new algorithms

110

E Application Input Format

MAARC

» Task Specification

task# type_id <condition> function_id <function parameters>

lseﬁal number_ |\

Function to be executed |

» Dependency Specification

111




E Syéfem State Component

MAARC
« Status of various components of the system
« CLU configuration information
« Configuration cache status
» Memory access information

112
g Visualizer
MAARC

« Human Computer Interface to the simulator
« Java based GUI and components

« Independent of other components

« Performance analysis data

113




g Publications

MAARC

K. Bondalapati and V. K. Prasanna

“DRIVE: An Interpretive Simulation and Visualization Environment for Dynamically

Reconfigurable Systems”
Int. Workshop on Field Programmable Logic and Applications, Aug-Sept 1999.

114

E DRIVE Summary

Exploits the design methodology

Analysis of architectural parameters
— Reconfiguration costs (partial and dynamic)
— Configuration caches etc.

Performance analysis of mapping algorithms

estimation

MAARC

Interactive and real-time interpretive simulation

Facilitates application mapping and performance
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E Sidhu’s Contribution
MAARC

Problem
Instance

« Higher performance through reconfigurable
computing than custom VLSI

» Problem instance dependent mapping
« String matching (KMP) algorithm

— Order of magnitude speedup in overall execution
time :

— 3 orders of magnitude speedup in mapping time
(software)

— 6 orders of magnitude speedup in mapping time
(self-reconfigurable device)

+ 1 to 3 orders of magnitude speedup in overal
execution time for Genetic Programming

Output

Problem
Instance

FPGA

guration

e

Output
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E Impact
MAARC

« Sanders
« JPL
 Encouraging feedback from the community
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E Andreas’ Contribution

MAARC

« Mapping based on algorithmic design
— new performance metric
+ scalability & partitionability
- FFT
« 2-8 times faster than the “Fastest FFT in the West” (1997)

— Matrix Operations
 50% memory savings compared to the state-of-the-art

‘  Run-time mapping
— new performance metric

» mapping time is critical

| » predictable performance is essential

| — case study: graph problems

|

r

+ 10° speed-up compared to the state-of-the-art 118
‘ ﬁ Impact
MAARC
« Advance state-of-the-art

— RAPID (Univ. of Washington)
« Provide evidence to the community about the

necessity of

— scalable and partitioned solutions

— new performance metric for run-time mapping
« Preliminary development of efficient techniques for

run-time mapping

— expected speed-up: 2-6 orders of magnitude compared to

the state-of-the-art

© — RAW (MIT)
\
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E Kiran's Contribution
MAARC

« HySAM: Hybrid System Architecture Model of
reconfigurable architectures

« Mapping of application loops onto configurable
architectures

* Dynamic precision management to epr0|t run-
time reconfiguration

« DRIVE: Module based interpretive simulation
framework
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Part II
NYU Efforts

1 Summary of Accomplishments

This effort was focused towards developing a model consistent with the constraints of adap-
tive hardware on the one hand, and the need to compile and optimize applications developed
to execute them on the other. The primary technical goals for the NYU portion of the sub-

contract were:

e Develop a model that can serve as a target for the compiler.

e Innovate the framework of an optimizing compiler to target the adaptive processor
model.

e Achieve fast compilation times.

e Develop and validate instruction scheduling optimizations as a proof-of-concept that
the compilation framework can be used in the context of the paticular model developed
as part of this effort.

e Develop language support techniques that can serve as a basis for interactive specifi-

catoin of partititioning and mapping.

1.1 Model for Compilation onto Adaptive Systems

The initial proposal for a Reduced Configuration Space Processor developed and presented
in 1997 served as the basis for the final model which is referred to as the Adaptive EPIC or
A-EPIC architecture. The A-EPIC architecture is parametric and achieves the stated goals
in the following sense. It provides an abstract representation of adaptive logic that can used
as a basis for compilation. Experimental validation (sketched below) has demonstranted
the feasibility of using the model to help achieve speedups for challenge applications. A
novel feature of an A-EPIC class processor is the ability to use features in the EPIC core
notably speculation to help prefetch configurations, and thus reduce configuration switching
times with the intent of supporting dynamic configurability. Another interesting feature is

an adaptive configuration cache also intended to help with dynamic switching times.

1.2 Compilation Framework

The framework for compilation utilizes interactive partitioning and mapping techniques,

that the programmer is intended to specify to the compiler front-end. In this context, the




application is divided into a portion that is meant to be executed on the EPIC core (part of
the A-EPIC) which is typically the control skeleton part of the computation. The compute
intensive kernels—identified via profiling, for example, the IDCT kernel in the context
of MPEG2—are executed on the adaptive part of the processor. Scheduling and related
compiler optimizations will help optimize the issuing of such “adaptive instructions”.

1.3 Compilation Techniques

Instruction scheduling algorithms have been developed, and when tractable, proven to be
optimum within the context of the A-EPIC framework. A language-independent notation
TimeC has been developed for specifying time-constraints in applications. The goal of this
notation is to specify time constraints in a base language such as C or C++ using TimeC.
The structure of this notation in terms of its language independent aspects is applicable
to be applicable in the partitioning and mapping contexts as well. Speedups for challenge
applications in the range of 5-35 have been obtained within the context of the A-EPIC

model and the compilation framework innovated here.




3foad DYVVIA DS 24} 19pun pouriojiad
6¥00-D-96-€9.LAVd "ON 10enu0) VIIVJ Aq pajioddns seam y1om siyy,

“AJIsJaAIUN YJOA MBN
npa nAu-so-dji-joeal//:dyy

Aojeloge d71-LOesy
wajed ‘A euysiy

MOIAY [eulq

NAN




MBIAIDAQ }29l0ud




€ 6661/LL/8 OSN ‘MalAdY |enuuy Yduva NAN ‘qeT d1I-Loeay ‘ejje] uaing ‘wajed euysiy|

alnjonJisequl JajiIdwon) e
salpn)s uoneolddy e
suoneziwndo Jajidwon) e

uone|idwod 10J Sjopow [BIN}oalIyolYy e

NAN

1
)

sjuswysijdwoody jo Aiewwuns y




¥ 666L/LL/8 OSSN ‘MdIAdY |enuuy vdiva NAN ‘qe di-L0esy ‘eljel uaing ‘wajed euysuy

awl} uone|idwod
a]geuoseal ul sjeob aosuewuopad ay) seAsIyoe —

suoineoljdde
abus||eyo 1o} sjuswanoidwi aduewlopad sajessuowsp —
1ey} ainjoaliyole paulep ay) bunabie)
10} ylomawel) Jajidwod buiziwndo ue j08)IYoly e

0160] aAndepe jo sebejueape ay) sobelons| —
aAIND ymmoub ABojouyoa) ayj Jo abejueape soye) —

1ey) ‘J9jidwod buiziwndo ue 10j
1804e] B Se SaAISS Jey) [opow J0ssaooid B auo( e

s|eoo unp

NAN

|
P




S 666L/LL/8 DSN ‘MaNeY [BNUUY YduVa NAN ‘qe7 di-Loeay ‘ejjel uaing ‘wajed Buysuy

S|9POI\ |eiN}o8}IYDIY

NAN

]
P




Gayuone|iduwod SOV 404 S[9PO [einNjdd)YIIYY

RN\t g7

9 6661/LL/8 SN ‘MmdIAdY Jenuuy vdiva NAN ‘e di-1oeay ‘ejjel uaing ‘wajed euysuy

‘6661 Alenuep ‘@oualsjuod
ainjoajiyolyy Jaindwo) uelsejelisny ‘Asuensq-d ‘ellel’'s ‘wajed A'M
‘Bunpndwon uoionisu| jajjelded Apoldxg aAndepy

/661 ‘1des ‘1IN ‘sqe ujodul ‘26,03dH ‘Bllel 'S ‘wajed A
‘Juawuoaiaug buiwweabouad

S}I puk 10SS920.1d 92edg uoljeinbiyuo) pasnpay v : dSOY

s10ss920.1d D43

aAndepe jobie) 0] yJomawed) uondiuosap aulyoew
JUBJJND 0] SUOISUB)Xd 8|gelns Jo ubisap |eniu|
AS|UDMON ‘PB2JBIA : SJ0Sssao0ud DT —

0160] 9|qeinbiuodal Yjim papualxe

S10Ssa204d D143 10} s|jepow Jajidwod padojana(

NAN

1
D




L 666L/L1/8 OSN ‘M3lAay jenuuy Yduva NAN ‘qeT d11i-LoBay ‘ejjel uaing ‘wajed euysiy

suoneziwndo J9j1dwon

puy
}Jioddng abenbue

NAN

<




8 666L/LL/8 ISN ‘MalAdY jenuuy Vduva NAN ‘qeT di-10edy ‘ejjel uains ‘wajed euysuy

buiddew pue Buiuoniued
onjewo)lne Joj yoddns Buidojaasp 0} adueAsjal Jo —

suononJjsul
|eonuo awy bulnpayas Joj swiyliobje padojarsp —

sydelb ajeipawis)ul UO SJUIBIISUOD
0} suoneoynads Juleljsuod 82INos aje|suel} —

aw) bulAjoads Joy D-awi| padojens(q e

SjuIeljSuUoO awl payioads Jasn Jepun —
suononuisul Aousie| Buoj Jo souasaid ayy Ul —

Bulnpayos uononsul 1oy
swyjlobje awi jelwouAjod jse) padojorsq e

NAN

D-awij] pue buinpayass |
D




6 666L/LL/18 OSN ‘MaiAdY jenuuy VdivQ NAN ‘qeT d7I-10eay ‘ejje) uaing ‘wajed euysliy

‘(uoiston Aueuiwaid) ,D|43V UO suoloNsu|
pauleJjsuod-awi] Bulnpayog 1oy wyLobly 1se4 v, ejlel 'S ‘Inaud'y ‘ weed )y ‘bunaty

ot
aandepy

alemp.lel ajqeinbiyjuo)
104 suojjezjwndo bulnpayss uononisuj \\vv




0L 666L/LL/8 OSN ‘M3lAdy |enuuy Vdyva NAN ‘qeq d71I-L0eay ‘ejje] uaing ‘wajed euysLy

86.1L0Vd ‘llonud 'V ‘Buna v ‘wiajed ‘A "M
uoneidwo) 47 104 abenbue sjulensuo) swi| y : D-awi|

SjulBssSuod
owl)-|eas Buinjoaul suonedidde peppaquiy e

4D ‘D YIM pasnaque) e

opelsbdn
Jybram jybi|, 10} xejuhs juspuadopul abenbue] e

joel] awij pue H-awi|

NAN

.
P




Ll 666L/LL/I8 DSN ‘MdIAdY jenuuy vdiva NAN ‘qeT dI-10eay ‘ejjel uaing ‘wajed euysiiy

suoljejuasaldal ajeipawislU|

uonoslas uoneinbyuody A
uoneoo||e 82Inosal pue bulnpayds uoneinbyuoy A
aw} uoneinbyuoosy M

2160] a|qeinbiyjuodal 0] suoiied Buidde|y e
Buiuoniued apon) e

NAN

|
D

sabuajjeys uonejiduwion




. CL 6661/L1/8 ISN ‘MalAdY [enuuy Vduvad NAN ‘qeT d1i-10edy ‘ejjelL uaing ‘wajed Buysisy

selpmg uopesyddy

|
P




€L 6661/LL/8 OSN ‘MalAdy jenuuy Ydyvad NAN ‘qe dTi-1Loeay ‘ejjel uaing ‘wajed BUYSLY

urewop a1|qnd ‘ggoadg wodl sivyl0 —
(lemueby Jueuy) | |IN wol sylewyouag MY —
(Uws suoibue-lig) V1ON Wolj yousgelpajy —
SHIBWSSANS SOV ||PMABUOH —
SyJewyouaq Buimo|jo) WoJj patapisuod suoneoliddy e

yobie) O|1d3
anljdepe pasodoud 0} paddew sulewop Buissaoso.d

eipaw pue abew ‘[eubis wolj suoneoldde |elonaS e

solpm)S aauewlioliod uoneaddy :._>.z
P

-

<
G
A
N




VL 666LILLIE SN ‘MOIAG [ENULY YduYQ QAN ‘927 dTFLOTN ‘BljEL USING Waled BUYSIY)

([ suoneansyuo)) ay) 193311, pue speor| . Suipjoysaay I, 7 3uifed§ Jo uopnIAXY _H_
3 g suofe
OldaY) uIpjoysaIy |, 7 SuIedg Jo uonndIXY a LAd 3o uopndaxy [IF Ad-1dH
uo LAV Jo uonnyxy [KH WINJ IIUI0)) JO UOHINIIXT m
WinJI2WI0)) JO UonnIdXY m uonezijeiay Y.LAN .
< < 10ss3204d g1 9409 uo uoneziwndo Yim dwr} [enOY _
- ad-"1dH
B aang

< DIdAV U0 dw) pajewpsy




SL  666L/LL/8 DSN ‘MBIAGY [ENUUY VdHVQ NAN ‘qeT d1-LOBSY ‘Eliel uaing ‘wajed BUYSLIY
‘6661 Alenue[ ‘90UdIdJuo)) 2In3oa)Iyolry 9indwo)) ueiseensny ‘e[je], 'S ‘AsueAd(J " ‘WoRd A
‘Sunndwo) uononnsuj [djered Apordxyg sandepy
3000 8100 SE awes aq 0} ¥00|0 Aelle a|geinbljuodal pawnNssy e

0029DX Se ainjosliyole 34 awes suoddns
Aelle ‘snq Alowaw ajeledss 1iq 9 e uo Alowaw ybnouiy) Aelse a|qeinBijuodsl 0) SS90y e

904n0sal a|qeinbiyuooal paywiun e

A RaLs ££99 12121 - - 19al

8'G¢e 0082€S  €.61€.¢€) 8662522 (sawny
0} pajdwes jndur) Y1aN

GE 8¢ L6VEL €EG1LE |4 dey-ze.
7’9 8l 8l 8l (punou suo)
uondA1oug v3qi

A 20998908 86198V6EY e 18p028p Z93dIN
dnpaads  (Vans) OIdd anssi-6 10J D[ JH nssi-4 uonedddy

O1dA-V  DIdA-V uonepdwod pazundQ

NAN

Sa9IpMS 8doUeWLIOLIdd 3]|dwes |

P




9L 666L/LL/8 ISN ‘MalAdY [enuuy Vduva ~ NAN ‘qe1 d1iF10eay ‘eliel uaing ‘wajed eUysH)y

ainjonJisedju] Jajidwon

|
P




Ll 666L/L1L/8 OSN ‘M3IA3Y [enuuy vdivda NAN ‘qeT dI-Loray ‘ejjel uaing ‘wajed euysiiy

sJo)jawueled
90IASp 9jgelnbiyuodal Jo A)aLieA e alojdxg e

108loid DHVYVIN DSN dU} 104 SNO0} B —
Buiddew pue Buiuoniied uiejuo) e

speayJano uoneinbiyjuodsal olweuAp —
Speo| uoneinblyuod apoe| e

sylomauwel) uoneidwod juaund pusixs —
uolnedwoo Jaises pue Jo)se] e

NAN

]
o

S|eo9 ain)onijseljuf




8L 6661/L1L/8 OSN ‘M3lA8Yy |enuuy Vdyva NAN ‘qe d1i-10eady ‘ejjel uaing ‘wajed euysiy

yoeqpoay

daueulIolidd

J9[npayas
old3

joneziupdo..| suonezuupdo : uofja9j3s ;
| old3 :o.:ﬁ:m.e:oo( (
£ fousdy suoneziundo
.I.Il‘ -
. : jaA9-ybiIy 82.4nog
G :. € usioiereg [ BIOHRIES
L jauia)y penx3 S
| la i _...A‘..EEmoE/...,V I\
: e 7 Usang
Vi ol . 9409 Jid3 ol S
| paseg ydeio

NAN

|
P

S. 9143V 404 Yiomawelj uone[iduwo)




6L 666L/LL/8 DSN ‘MaIARY |ENULY VdNVQ NAN ‘qeT d7i-LOB3Y ‘BljeL Uaing ‘wajed BUYSL)

AdVHEIT
NOILVHNOIANOD I i

uorod[as
uorjeansyyuo)

surddew
. Y JUAWUNISUL-9Y
uoneIngdiyuo)
aseqere(q
uondrosaq
SUIYOBIA .. 1WJ4W“m i
H | — =[
weaSoad ‘Sye)S douewIO}Iad P e
32an0g | 1duwo) :
91BIJUAN) ey
) ueJeuwili] buisn |

Abojopoyjayy uonejidwo) )




0Z 6661/LL/8 OSN ‘MelAay [enuuy Yduva

tisijojjeied [oAaj-uononisuj
Ui Yyoa1easay 10j aimonisedjul ueiewll |

NAN ‘qe7 d1I-L0eay ‘ejjel uaing ‘wajed euysiy

NAN

P




IZ 666L/L1L/8 OSN ‘M3lAsY |enuuy Vdyvd NAN ‘qeq di-L0esy ‘ejjel uaing ‘wajed euysiy

‘6661 Alenuer
‘90UalI8juo) aInjoslyaly Jayndwo) ueisejensny ‘ejjel 'S ‘Asueas(
d ‘waled Ay ‘Bunndwo) uononisui [gjjeied Apolidx3 sandepy

(Miey payaul)

8661 “1deg ‘ellesnsny ‘aplejopy ‘e|leL S ‘wsjed ‘A "M ‘4odwo)
S} puB 3INJO8JIYdJY |BAON VY : 8|qeinblyuooay + 47| = bunndwon
psppaqu3 aouewlopad ybiH :bunndwos ajqeinbijuodsay

‘8661 100

‘senbiuyos | uone|dwo) pue sainjosliydly [9jjeled Uo adualajuo)
leuoljeussiu] ‘ilIsnud 'y ‘wajed ‘A M ‘Buns 'y ‘4l UM S1oSSa00.d
UO suonoNIIsu| paulesisuo) aswi] Bulnpayosg Joj wyjlioby 1sed v

‘8661 ‘1deg ‘swa)sAg awil-leay UO BdUBIBIUOY) URISE|RSNY
lenuuy Uig ‘llsnud 'y ‘wisjed ‘A "y ‘buneT 'y ‘uonejidwo)
10Ss8201d 47| 10} @benbue uoneoyivedg awi| v :Hswi|

(uoneyussald so1s0d) 2661 “1doS ‘1IN ‘sgeT
ujooul ‘26.03dH ‘ellel 'S ‘weled A ‘luswuoliAug buiwwesboid
S}l pue 10SsS8201d 8oedg uoieinbiyuo) paonpay v : 4SOY

suonealiqngd

NAN



ZZ 666L/L1/8 OSN ‘M3lAaY jenuuy Yduvd NAN ‘qe7 di-10eay ‘ejjel uaing ‘wajed euysiiy

‘ejllel 'S ‘wsled
‘A "M ‘S10SS8204d D43V 10} Ylomawel4 uondiuosaq aulyoe| e

‘e|le] 'S ‘Ueqqey Y ‘wiy "H ‘Buna v ‘uesewu ] Buisn uonepljen
pue ('} CO_Hmo_u—_omo_w |ednjoaliyoly .w._owwmoo._n_ Old3 ®>_”_Qm_u< °

‘Bllel 'S ‘lIonud 'y ‘waled ‘A
"y ‘Buna 'y ‘S10SS820.1d D|d3 aAndepy Joj bulinpayog uoionijsu| e

NAN

]
P

ssaubo.d uj Ji1oMm




PZ 666L/LL/I8 ISN ‘MaIAdY _m:rr:< vdiva . NAN ‘e di-10ray ‘ejjel udJng ‘wajed euysiy
SaIpn)s ylewyouayg e

uoneoojje pue Buinpayoss uoneinbijuod sjelodiodul —
salnies) D43y aretodiooul 0} SN @oueyus —

alnjonJiseljul JajiIdwo)) e

SJUIBJISUOD awi} Japun Bulnpayoss —
Buiinpayos uononasul awi} [elwouijod jse) —
suoneziwndo Ja|idwon) e

uone|idwod 1o} Sjepow jeinjosiyole —

(O1d3v) bundwo)d
uononasu| |9jjesed Apoidx3 sandepy e

NAN

|
P

sjuawysidwooay jo Aiewuung vy




SGZ 6661L/LL/18 OSSN ‘MaIASY [enuuy Vdiva NAN ‘qe1 d1I-L0eay ‘ejjel uaing ‘wajed euysiiy

Sa.1N)o9)IYdIy

I
»




9Z 6661/L1/8 OSN ‘MalAsy [enuuy vdyvdad NAN ‘qe7 d1I-10edy ‘ejje) uaing ‘wajed euysi)

UONEBJIUNWWOD J11e)S 1S —
Sa.4njes} |ein}os}iyale-04oiw JOAO |0JuU0D 1I01|dxg —
wsio|jesed paulelb aul{ —
0160] 8|qeInbiu0ody / YOd *
ABojouyos) uoneidwod umouy| —
salnjoaliyole soldwig —
MITA/Dldd ®
SHUN |0Ju0d X3|dwod —
sie|edastadns Jo Alljige|eods 1004 e
}9yJew 0} sswl} Jauoys —
slossado.d Jadeayo ‘1s)seq —

Bunndwo) pappagquwg JO SpuBWa(] e

NAN

|
P

) uoneAop




LZ 6661/LL/8 ISN ‘M3lAdY [enuuy yYduva NAN ‘qeT dI-10edy ‘ejjel uaing ‘wajed euysiy

Ajisusp diyQ e
JIYS poppaquis/eipaw mau ay| e
subisap mau JO 1S8) pue UONBIIJIIBA JO }S0)) e

Aelop [eubis uo 109)J8 ay) pue azis ainjea e

NAN

|
)

spual] uonesiddy pue Abojouyoa|




8Z 666L/LL/8 OSN ‘M3IAdY |enuuy vdiva NAN ‘qeT di-10eay ‘ejjel uaing ‘wajed euystLy

(19)1dw02) S|00) |9A8] Jaybiy 0} Jossado.d
wouj o160| Bujew uoisiosap xajdwod aAow —

lejnbau pue a|dwis ainjoaliydie ay) dody —
S]S02 ]S9) pue uonesljlaA buisu Jo jJoedw| e

0160] Buissaooud ejep pue |04ju0d 8a)ngusip —
uolB2IUNWWOD 8due]sIp Buo| 8AJOAUI JOU Op —

Jey) sainjoaliyole
UO sSno0j ‘Juediiublg swooag sAed( alIp SY e

spua.] ABojouysa] jo 1oeduwj ayy |




6Z 6661/L1L/8 OSN ‘MalAgy jenuuy vYdavad NAN ‘qe d1I-10edy ‘ejjel uains ‘wajed euysiiy

isanbiuyos)
uone|idwod pue sain)odliydJe MaU J0) PoaN e

abelaAe uo (| > 47| ue sp|alh |spow gladns, ay) usAa —
suoneoljdde ul wslojesed ybnous asodxs jouued —

uone[idwod pue sainjoaliydle |BUOIJUSAUO)) e

‘JOAOMOH

sJeak g ul alp auo uo swniuad g ‘xoidde sjepowwiodde ued —
a|ge|ieAe wsl|a||eled aiempiey JO S]0] e

NAN

@y (‘ppuoo) spuaiy ABojouydsay jo joedwyayy |

=72 \\Mv




0€ 6661/L1L/8 OSN ‘MalAsY jenuuy Ydva NAN ‘Qe7 dI-10e8y ‘ejjel uaing ‘wajed euysiy

Ajl|eoo| [eneds ybiH e

asnal jelodwa)] MO e

(9zIS 9p09 ||BWS) S|BUI8Y UOWWO)) e
sdn-)00| a|ge} ‘onawuylie sabajul Buo] e
wisijajjeled uielb auiq e

SwieaJ}s ejep snonuiuoy) e

ejep Jabajul JIg-g¢ pue -g| ‘-g payoed e
buissaoo.d awi-|eay e

Aewwng spualj uoneaiddy :.».z
P




L€ 6661/L1L/8 OSSN ‘malnay enuuy Ydiva NAN ‘qeT di-10eay ‘ejjel uaing ‘wajed euysuy

asnal |enjeds ybiy ‘esnal |eijodwa} mo| —
iIndybnouyy ybiy ‘Apqgeroipald jo syjuswalinbal —
ABojouyoa) Buiyoed Jamau paau —

S|ouJa) eipaw J0J paun) ale jey) asoy) —
buissaosoid QI JO S10] 1o} 8doos —
9|geJIsap aJe sainjoajyole Jejnbal sjdwis e

NAN

spuaij uoneoiddy eipaj jo yoeduwy| ay| |
| | | )

\\\\' v/

et

/‘ l\.\\




Z€ 666L/LL/18 OSN ‘MalAaY |enuuy VduVa NAN ‘qe7] d1i-10eay ‘ejjel uaing ‘wajed euysuy

¢SIYL IV oL
91aymas|g asuodsay ay] S| Ieum

NAN

P




€€ 6661/LL/8 OSN ‘MIIAGY |enuuy vdyva NAN ‘qe7 di-Loesy ‘ejjel uaing ‘wajed euysiy

Buissaooud-nw diyo-up -
BuipeaJy}-ijjnw snosug)NWIS —
SjuelleA pue NVl —
s10ssa20.d a|geinbiyuoosy —

soyoeoidde (Juaiaylp) |DAON e

S.MITA JO sjuelieA pajnpayos Ajjeonels —
(saselje ‘sayouelq) uonoipald Jjapeq —
buissaooud uononyisul panosdwl —
9NSSI/Yyo}a) uononasul Japeq —
sayoeoidde (JeuonusAuod) jsed e

sayorolddy yoieoasay ai1nyoa)iyaly |




V€ 666L/L1/18 OSN ‘MalAdY [enuuy vdyvd NAN ‘qe7 dI-10BaY ‘BljeL uaing ‘wajed BuysLiy

308usNoqg
uone|idwod piepuejs ayj ybnouyy Buiyesiq toy Ajjiqissod —

onbiuyos) uone(idwos ojewolne pue JusIdiyd umouy ou —
Salnjosyiydle Juslayip Ajjeoipel 4o uoneidwon e

.uolje[Idwod [euonuaAuod, JO OBUBNOq HOBgMEID —
| ABojouyos} umouy jjlom —
sjuelien jsed Joj uoneidwon) e

e S EEE—
Abojouyoss ) uonejdwos jo aje)s :»z

P




GE€ 666L/L1L/8 OSN ‘M3lAdY jenuuy Vdiva NAN ‘qeT dI-Loeay ‘eliel uaing ‘wajed euysiiy

Sain)2a)iyoe pajjosuod Apoijdxa Jo 19sqgns —
(D1d3) Bunndwod uononyisul |9jjeted Apoldxg —
co_%,oo___mv ‘Bulinpayos ‘enssi j0.3uod Aploldxe —
Buiyew uoisioap s Jossaooud Jo 10| e so|puey J9|Idwod —
BUO |BUOIJUSAUOD ‘UMOUY B SI a)ejdwa] [eunjos)iyoie —
9jqissod se yonw se sainjoajiyole Apjdwis —

S9.1NJ08)IY2IY Pajjosuo) Ajpioldxg e

}1 10} P02 pue ain}oayyole sajelausb Jo|Idwod —
9.Nnjoa}iydJe Jejnoijed e 0] JusW]iWWod ou —
BuiyjAiens sjpuey Jajidwoo 19| —

SJ10SS820.1d 9|qeJnbijuodoy e

NAN

|
)

suonoaliqg AyjiomajoN om|




9€ 666L/LL/18 OSN ‘M3IAdY |enuuy Ydivd NAN ‘qer di-Loeay ‘Bjjel uaing ‘wajed Buysuy

S,'1dH se XO_QEOO se jouing —
uoljew.oUl [eanjonJ)s alempJey Joj woddns ebenbue| —

(d11-10eay) syebuey Jojidwoo Joy sjppow —
(DYVVYIN-OSN ‘HSINY "6°8) Juswdojarsp wuyjoble Joj sfppow —
Jpoddns abenbue| ‘sjopow 10BJSOE JUSIUBAUOD JO HOET e

A1s09 AJaA ale Sayd}JIMS JX8juod saljdwil os|e siy) —
$1S00 uoneinblyuooal ybiy sandwi 8zis uoneinbyuod abie| —
SpeaylaA0o swijuni [eUCIIppY e

xa|dwod Ajjuaiayul ajnos pue aoeld —
suoneinBiIuod jeul) pue Y| pJepuels ussmjaq aouspuodssalloo Jo yoe| —
sowl} uone|idwod 1004 e

NAN

!
D

¢ Sajpiny ay} aie Jeym




LE 666L/L1/8 OSN ‘MaladYy |enuuy Vduva

WI< WI-3001

az1s jo30ed uononysur ajewnrxorddy
MOI-M1 (41741 ¥9 (4> 91 b

vDdd

vOdd

98X Aliey]

/pautpadig

OLDdA
amopere(q

AAl MI'TA/OLIdA apiendadgradng

LIS

(1e[easnnjA) 7
D14 2andepy [EasBIMA) HOVULL

dHOBINN yvn nﬂwm

MVY

OISV x3jdwo)

o

¢ Aepoy 1oy pajidwod Appusiolys aq ued jeym

NAN ‘geT dI-LOeay ‘ejjel uaing ‘wajed Buysliy

wsIjo[[eIed

NAN

|
)




8€ 6661/L1/8 DSN ‘MBIAdY |enuuy Ydiva NAN ‘geT di-L0eay ‘eljel uains ‘wajed Buystiy

;bunndwon uonanasuj jsjjesed Apraidxg aandepy

i)

,sainjoayyole aandepy —
suonedwos asodind |eoads/paziwoisn) -
uone|idwos pJepuels ybnoiyy 471 ybnous joN

Ajiqeloipaid jeiodwa) ‘uoneziwolsnd ‘sadA) sebajul
Auew ‘Buissasoid aaisuaiul 8)ndwod Aybiy ‘indybnoayy yobiH —

Buissaoo.ud pappaquis pue BIPS|N e
SUOIJOBIBJUI [BDO] ¢ SUOIJOBUUOD JOUOYS —
sAejop |eubis
salnjoayyole Jenbal ‘ol dwig —
S)S09 uoineoiuaa/ubisa

NAN

]
P

ZA9jul am ued jeym




6€ 6661/LL/8 ISN ‘MalAsY |enuuy Vdyvd NAN ‘qe1 di-10edy ‘ejjel uaing ‘wajed euysiy

ITE RUEYIL Ty

]
P




OF 6661/LL/8 OSN ‘M3IASY |enuuy vYdiva NAN ‘e dI-1oeay ‘ejjel Uaing ‘wajed Buysty

$9.1N}239}1Yy2.4y buindwo’n
uol}onJsuj |9jjeded Apiondxg aandepy

1
D




Ly 6661/LL/8 DSN ‘M3IASY |enuuy VYdNva NAN ‘qeT d7i-Loeay ‘ejjel uaing ‘wajed euysiy

ad-1dH uim Buiues aoeds atempley azuajoweled —

sain)oaliyole
10ss900.d ajqeinbijuooal Jo AjsleA e alo|dxg e

uoiedwod o:mEoSm 1SB{ e

o160] a|geinblyuodal pue s,0|d3 10 sabejueApe aulquio)

$8.1n}08}1Yoly Old3 aAndepy

s|eos unQ “\W




Zr 6661/LL/8 OSN ‘M3IA8Y |eNuUY VdyVYQ NAN ‘e di-LoeaY ‘eljel uding ‘wajed _uysiiy

¢-Oldd

(]| -+

A

¢-DIdHd 0} [-DIdH Woly
golIms 0} 4o0da uorjeIngyuoday

I

I
I

S

i

UOIINIIXI JO PIOJFY

NAN

1
)

[apow uonnaaxa Hidg arndepy




€V 6661/LL/18 OSN ‘M3lAdY |enuuy vdiva

NAN ‘ge d1I-10eay ‘ejjeL Uaing ‘wajed BUYSH)

Alows|\  ulep

Y : §
ayoe) Aows N °yoed-d
uoneinbiyuon |e207 3
H H H H so|l4 Jo)sibay
HIH ERZ L L)
Aeary 201607 a|geinbiuooay SHuUM |euolduNn4 paxi4

Y

y

101e20||V
90IN0S9Y

nun
|0JJuo)

A

Jayng uononJsuj

A

dHOVO-

91n)23)1Yya.1y J|d3 arndepyy inQ

NAN

|
D




Py 666L/LL/8 OSN ‘M3lAdY |enuuy ydiva NAN ‘ge di-LOedY ‘ejjel uaing ‘wajed _uysuy

/2, SHun [euonouny paJnbiuod woly
pue 0} Pa)JedIuUNWWOoD S)nsaJ pue spuelado jndul sy} aie MOH —

ipajenuelsul 8q
uopeinbyuod e pinoys Aelle 2160j a|geJnbijuodal 8y} ul s18Yp\ —

2101A8 0] yoiym pue daay 03 suoneinbiyuod YoIypn —

¢ 24nblyuooal 0} Usypn —

S. 9143V 0] enbiun pue jsaiajul 01J108ds JO SHSel ay| e

108s8904d ay) pue J9|1Idwod ay} usamiaq
syse) Jo Buiuoniued ayj Buipiosp Jo sianssiay | e

NAN

|
D

SaNss| JId3v




S 666L/LL/8 OSN ‘M3IAdY |enuuy vdiva NAN ‘geT di-L0eay ‘ejje) uaing ‘wajed euysi)j
spueiado spueiado spueiado spueiddo
yorjdxg yorduy yordxyg yorjduy

uoneo0[[€ 9130] "JIJU0IAI UonBo0][[e 9130] “JIJU0IAI
SOp1o9p M/H soproop weidoid

uoneIn3iyuooal uonRINGIJU0IAI
souTuIL}p M/H sorj1oads weidoid
s.0Idd eAndepy

S84N129)1Yy24Y did3V J0 Awouoxe] v \\W«

-




9% 6661/L1L/8 OSN ‘MalAdY jenuuy Vduvd

sayoed uoieinbiyuod pajjosuod Ajo1dx3
suononsul peo| puesado Buisn papeoj-aud spueisdo —

19)0ed uonoNySuUl
WwoIsno 8y} Jo Jed jou ale SuoIjonAIsul wosnd o0y spuesado —

spueltado Joljduwi aAey suononJsul woisn)d

Aelse 2160] a|qeinbiyuodsal sy} ul Jun jeuoilouny
(woisno) painbyuoo 8}eJ0||e 0} 948YM SaPIdaP J0SSad04d —

pajeoo||e Ajjesiweuiq
9]N29Xd pue Yyoye} uoneinbiyuod pajdnoosp
2.nbljuodal 0] JeYM pue uaym saynads wesboid —

pajnpayos Ajjednels

JsaJajuj jo a2eds Jjd3 aAndepy ay |

NAN ‘ge di-10edy ‘ejjel ualng ‘wajed BUYSH

NAN

|
P




Ly 6661/LL/8 OSN ‘M3IABY jenuuy Yduva NAN ‘geT dTI-Loeay ‘ejjel uaing ‘wajed euysiiy

suoisioag ubisaqg juepodui 104 ajeuoney
old3v

NAN

P




8y 6661/L1/8 ISN ‘M3IABY [enuuy vduvq NAN ‘qeT di-Loeay ‘ejjel uding ‘wdjed Buysly

uoibal |00 WOl Aeme Jej S}O[S UOIoNIIsuUl 9|pl asnal —
Janeq Buipeo| uoneinbiyuod aiNpayos ued —
ain)oid [eqojb ay) aney si9iIdwo) e
uoibal |eOO] Ul JUBSWSAOW BPO0J JOJ WOOJ Yyonwi jou —
6ig 00) aJe suoneinbyuo) e
SUOIJONJISUI JO MOPUIM ||[eWS B 88s AJuo ueo Asy) souls —

suoljeziwndo |e20] Je poob aie S10SS8201d e

AUM

aJnBiyuooal 0] J1eym pue usym salyioads welboid —

pajnpayos Ajjeonels e

_ NAN

S.0ld3Vv pajnpayos Ajjeane;s |
D




6F 6661/LL/8 OSN ‘MalAdYy jenuuy vVdiva NAN ‘qe di-10edy ‘ejjel uaing ‘wajed euysiuy

sjiun painbijuod
uo suononJsul Bunnosxs pue suoneinbijuod
Buiyolaj J0j suononisul s)eiedoas suesw SIYy| o

uononpas awf} yoja) ajqeus jey} subisap uo snooj 0} pesu adusy —
oW} 8)Nd2aXa UoioNJISUl 8Y) uey)
Jabie| spnjiubew Jo S18pJo 89 Ued awl} Y239} uononssul
(suoneinbiyuod Agq paquosap) suolonsul WOoIsSnd Io) —

“ apnjubew Jo JapJio awes ay) Jo ale
oW} 81N08X8 puUB B UY2)8) ‘SUOIONISUl [BUOIUSAUOD IO} —

9)Noaxa pue yojs) uoneinbiyuod pajdnooap e

NAN

]
P

a)noax3g puy yaja4 buiydnoossqg




0S5 6661/.1L/8 SN ‘M3lAdY |enuuy Vdivad NAN ‘qe dI-10edy ‘ejjel uaing ‘wajed euysiy

UOINIIXS JO PI0dY
spue1ado Indino aAeg

uornndAIXa 4. 193311],

=

UOIINO9XH

[IX [IX DID I14d99%3
b a3

uonemn3yuod 1.4 peo ) — Wé |v

< Y, —Z

o1 \\ \ S—

sarouapuadap

= F

sonjea puerado ndur peo|

spuexado o1 10] 9oeds 91ed0[| VY

—~

uonein3yuod 4. 10} 2oeds 91830[[V /

NAN

1
»

sda)S : uonnasaxg uonoINIIsuj Woisno




IS 666L/LL/8 OSN ‘MaAGY [ENULY VdNVQ NAN ‘e d7I-LOR8Y ‘Bljel Uaing ‘wajed BUYSLIY

| 2
s. | | _—
i ww ouII) UOTINOIXY
= A [IX DID LAd 99%9
Foun Yoo, = x
_ | |II|I V.l v
: S— Z
" ﬁomﬁ—ooxo mo ﬁ.ﬁooovm

NAN

]
D

Ajjeuonuaauon pajpueH jj




2GS 6661/L1/8 OSN ‘M3lAdY jenuuy Ydiva NAN ‘qe di-L0eay ‘ejjel uaing ‘wajed BUYSL)

spueiado ndjno aAeg

uonnoaxa 44 103311, | UOINOSXY

sonjeA puexddo ndur peo|

uorneIngyuod 20T |
HEMSLUO9 144 Peol ‘g|qissod se Ajies se saljiAnoe

yoje} wuouad ued  auo
oo 0S "suoijonujsul buipasaid Aue
uo jJuspuadap jou ale saljiAloe
yole) 1leyy ajou ‘I9ASMOH

spuexado o/1 10} doeds 91eI0[| Y

—

uonein3iyuod I, 10J aoeds 91ed0[[V /

NAN

I
P

uoIN23xg UoINIISU| WOISN?H




€5 666L/LL/8 OSN ‘MalAgy |enuuy vduva NAN ‘qe d1i-10edy ‘ejjel uaing ‘wajed _uysi)y

= "

= =%

g__ﬂ ettt - (A [OX DAD Ldd 99%s
— =1 —
— —— X

IT = |..\

—— \“\ — - —

. ﬁoﬁ,_vn/g\mmv UOIIONNSUI [YOJ9,] .

UOTINJIXD JO PI0dY

NAN

]
P

Aouaje] yoja Buiysep




¥S 6661/LL/8 OSSN ‘MdlAdY [enuuy vdiva NAN ‘qe7 dTI-10eay ‘ejjel Uding ‘wajed euysiy

uofnoaxs uoneinbiyuod buebbuy 1o) oexs B —
suoijeinbiyuos Buipeoj Joj suononJisul sp|” Bjo ‘p| Bjo —
uoI}NOaXxa uoeInbijuod
pue Buiyolay uoneinbipuod ajdnodep ‘edusH e
UOI}ONJISUI LWOISND JO BWI} UOIINISXD DAI}08)J0 seonpal —
ua3 e} Jou S| youelq Jl }S09 eaixa Inoul Aew j1 ‘pajenoads JI —
Ajojes JailJes pawlopad aq ues —
suoljonJsul
snoinaid uo Juspuadap jou si aseyd yojo4 e

8)noax3g puy Yyosja- uoneinbyuos

NAN

I
P




SS  6661/L1L/8 OSN ‘MalAdy enuuy Vdiuva NAN ‘qen d1i-Loeay ‘ejjel uaing ‘wajed euysiiy

Aeuie 2160| a|gesnbiyuoosal sy} ui Jun jeuonouny
(woisnd) pasnblyuod 81eo0||e 0} a1aym saplosp Jossadold —

S, D43V pa1edojie Ajjediweulp : @dl0yo InQ e

aoeds ap0odo 40 Ja|Idwod uo joedwi ou —

awl} 91949 joedwi pinod ‘xa|dwod aiow asempiey sayew —
10ss920.d a8y} Aq suop I —
SUOI}ONJJSUI UONJEDO]|e(-9p) 82IN0Sa JO} PAWINSUOD S} UORONISUl —
olj10ads auiyoew 00} sjeb )l —
Joidwoo ay) Aq suop JI —
SHUN |jeuoljouny
paJnbiyuod Joj 2160] a|geinbijuodal JO UOBIO||Y e

NAN

uoneIo||y |
924nosay uoneinbiyuos siweulq )




9SG 6661/L1/8 OSN ‘MalAdy jenuuy vdivad NAN ‘qe dTI-10edy ‘ejjel uaing ‘wajed eUYSIH

suononJsul peoj puelado buisn papeol-aid spuesado —

19)0ed UONONJIISUl WO)SND
oy} Jo Led jJou ale suononJIsul wolsnd 0) spuessdo —

spuelado Joijduwi aABY suoijoNJISUl WolsSnN) e

NAN

|
P

SUOI}oNJISU| WOISNY 10 S)euwlio-




LS 666L/LL/18 OSN ‘MalAay |enuuy ydiva NAN ‘qe diI-L0esy ‘ejjel uaing ‘wajed euysiy|

SUONONJISUI WOJSND ||B J0J JBWIO) WIOoJIUN B 8YI] PINOM SA\

sjewloy indjnosndul Aleljigie aABY UBD SUOIIONASUI WOJSND) e

[1Z ‘A ‘[IX 9d0 INOLSND
ZA ‘IA ‘€X ‘X ‘I1X VvdO INOLSND
o lg[lv  dO Y0OLDIAA

dzI1S “[A ‘[Ix dO 144

NAN

_
o

S)eulLios uonoannsu|




85 6661/LL/8 ISN ‘M3lA8Y |enuuy Yduva NAN ‘e dI-L0edy ‘ejjel uaing ‘wajed euysiy

spueJado s})i sa10)s 9)e)s J0ss820.d JO Jed ydiym SMouy Jun wojsno —
payoads Apiolidwi spuesado indul —
a|qissod se Ajes se spuesado (ndul peo| —
Ajddns ejep wouj
UOI1ND9XS UOI1ONASUl WOISND 9|dN0Jop ‘O0USH e

¢ 1aljiea spuelado ndul Alddns jou Aym —
Yipimpueq yoja} uononasul syoedwi osje —
Jap0osp uononsul xa|dwoo sueaw suolonyisul Xxa|dwoo —
S]ew.Oo} uononJsul 8|qissod ||e moj|e 0} a|qises) Jou —
189S paulwla)ap-aid B JoU aJe SuUOolonJIsul woisny e

NAN

sSuonoNIISuU| |
wiojsny 104 spuesado uonduwy )




65 666L/LL/8 OSN ‘M3lAdY jenuuy Vduva

ZA d1NO DA
IX dLNO DIAD

vdO INOLSND DIAXH DAD

€X dNI_DAD
ZX dNI DAD

NAN ‘qe dli-LOeey ‘ejje] uaing ‘wajed BUYsl

b ¢ ZX TR EX TX IX VO INOLSND

IX dNI DJO |

[NJA d1NO DD
[1]JA dLNO DD
dO Ldd OFXd DD

——

& gzIs‘ A [IX  do 144

dZIS dNI_DAD
INIX NI DdD
[1]X dNI DAD ¥
NAN
sjewiio4 uonaonsuj wiojiun |

D




09 6661/L1L/8 ISN ‘MalndYy jenuuy Yduva

NAN ‘qe dI-10e+ ‘ejjel uaing ‘wajed BUYSLIY

uoneasiy1oads ai1nyoa)iyoaly
old3v




19 6661/LL/8 OSN ‘M3IA3Y |enuuy vduvda

p

s)jun jeuonouny painbiyuoo Buowe 824nosal

o160| ajqesnbiuooal Buibeuew Joj Jobeuew a2ino0sal

9|l} J8)sibal uoneinbiyuod

SUOI}oNJ}sul wojsno Jo spuelado 1o} Alowsw [BI0|
ayoeo uoneinbiyuod

Aeuse 2160] a|geinbiyuooal

UoIsSua)xa aAljdepy e

SJ9Y}0 |Belonas
ue uononpal ues|ooq juaiols ‘Buiuljadid aiemyos
‘sayoeo pajjoJjuod Apoldxe ‘uonejnoads elep pue

uoneay1oads |84n)2a31yoiy

|0JJu0d ‘uoledipald 1o poddns |einjosyiyole sejelodiooul —

aInjos)ydIe Jld3 Ad-TdH Uo peseq -
9109 10SS920.d Jo Jusuodwod paxid

NAN ‘qeT d1i-10eay ‘ejjeL uaing ‘wajed euysiy)

NAN

D




29 666L/LL/18 DSN ‘MaIA3Y lenuuy vYduvad NAN ‘qe di-10eay ‘ejjel uaing ‘wajed euysisy
9|geziwo)snd jou }8s uononJjsul —

S9ZIS 43D pue salowaW |Bo0|
‘s921n0sal 9|geinbijuodal ale S82IN0sal 9|gezIwo}snd —

uonduosap aulydoew yoes ul 9ziwoisnod —
2in)08}IyoJe pazusjoweled e

Bl 8injoejnUEW JB UMOUY JOU S}Iun [euodun) WOISND —

jo9ds ainjoaliyote ayj jo ued jou sepoodo
J1I8y] pue sjun |euonioun) Woisno JO suoniuya( e

sjiun painbiyuod woysnd
UO suoloNsul Jo uondaxa bulpuadsns/buliabbl) —

S}uUN WojsSnNo woJj synsal payndwod bulols —
spuelsado jndul buiAlddns —
suonelnbijuod Buipeo| pue saainosal buneosoje —

10J SUOIONJIISUI MON e

uonesy1dads [einjoa)yodly A



€9 6661/LL/8 OSN ‘MalAdYy |enuuy VYdiva

pueiado se Js)sibal uoneinbiuod aye) SUooNJISUl ]SO
sadA} ejep juaJal)ip JOj SJUBLIBA e

NAN ‘qeT d1i-LOeay ‘ejjel Uaing ‘wajed BUYSLIH

133s1bai uoneinbyuod e ‘pi uoneinbyuod ajedofe J0||e b)p
JIUN WO3ISNd Uuo uonndaxa puadsns dsns b)o|

jJuswinb.ie Jndino aAes dino b

juswinbJie jndui peoj dur bp

S924N0S3aJ WiejdaJ pue jun |euofldun) painbyuod 339|9p I b
(pPo121A9 3q J0U ||IM) JIUNn [_UOIIUN painbiyuod APNS YRS b
uoI3oNJ3sul Wwoasnd 1abbin J9X9 Do

ayded uopelnblyjuod ojul yoyasald Jdp| bjp

Aj9A1I}R|ND3dS Blep uoieINDbIJUOD peo| Sp| bjo

an uoijeinbyuod peo| p| by

uonduUISapf%adAy uoronasul

SUoisu9a)xg oS uonannsul dd-1dH

NAN

|
P




9 666L/LL/18 ISN ‘MalAaY jenuuy Vdivd

NAN ‘qe di-LOeey ‘ejjel Uaing ‘wajed BUYSLIH

ondinssg

SodA} pue4ado INdINo J10j MSe woou |
spuetado Indino Jo Joquinn oou
sodA} puetado Jndui J10J MSel woiu
SpueJado jndul JO JBquinN olu
9zIS uoneinbyuo) 9ZIS
uoneinbyuod painbyuod Ajjeiued Jo 19syo Juaun)|  19syo
90eds Ssalppe ssa004d ul ejep uoneinbiyuod JO Sssalppe asegq aseq
9_ asn mco_uu:bmc_ M3U ||e) uoIIdNIIsul Wolsnd 10j selly pIo

Pled

ﬁ

1915109y uopelnbyuo)

sla)sibal uonjeinbijuoo ayepdn/Adoo 0} suononJsul [eUOIPPY
suoljeinBbiyuod pajenuelsul Jnoge UoljeuwIOUIl S810]S 449
suofelnBbiuod Buneindiuew 1oy suononsul mau ayj Ag pasn
(440) al14 1938169y uopeinbyuoy : 8je)s 8|qIsIA Ajjeinjos)yoly

uoneaioads [ein)o9iyoiy

NAN




G9 666L/L1/8 OSN ‘M3IAdY jenuuy vdava NAN ‘qeT d1I-L0edy ‘ejjel uaing ‘wajed euysuy

-09ds ainjoajiyo.e Jo ued jou 2160 sjgelnbiyuoosal
JO aJinjoaliydue o10ads ‘aiels a|qISIA A||einjos)iyoie-UuoN e

0L uonesyoads 8Inodlydly Jld3Y 8y} ul usalb
- suoloNnJIsul mau Jo abesn 824n0sal pue Aouaje| ‘Sjewllo) joexy e

[2]40 ul 18sy0‘aseq) uoneinbiyuod | 44 // -

JO pJoMm JxBU 8y} peoj AjaAnejnoads // [2]lio sp| By —

‘ds "Jppe ul uoneinbyuod | 44 Jo ssaippe // —

S| 144 Juejsuod ‘uoneinbyuod 144 peol// 144 ‘[zlo ooje Bo —
o|dwexy e

NAN

suoIsua)xg }8s uonanasuj dd-1dH |

P




99 6661/L1/8 OSN ‘M3lA9Y |enuuy Vdyva : NAN ‘qe di-10eay ‘ejlel Uaing ‘wajed euysiy)

noaxyg

P 1 11

sassng 0} suodsuel], pulg

\ A A > S ,Uﬁmmaﬂ

sju) uonouny 0 suoneradQ purg

- —

saduapuadapu] U yory “dopuj saouapuadapu] auIULIdI(J
Pt _ t 4
s9ouapuada(q surualag moygeIeq saouapuada(] U]
, —— F T 1
Te[eds1adns IaziundQ pue pudjuol
rempiel 1dwo)

NAN

]
P

10SS990.d "SA J9jidwo)




aJmyonaysejuj sao/idwo?d




89 6661/L1/8 OSN ‘MalAdY [enuuy VYduva NAN ‘qe1 d1i-L0edy ‘ejjel uaing ‘wajed euysiy]

SJ11S13e)1S IDUBWLIOLNIR]
A
( uonjejnwis
ER
uonesdusb apo)
R
buijnpayds ssed-1s0d
.
uonduosap uoledo|[e 324N0SdY
aulyoen EAN
ﬁ buijnpayos ssed-aud
do (310 D|d3)
(2Andepy) suopeziwndo |«
butdden |2A3}-ybIH
Aleaqi —
uoneinbiuo?) buiuoniied »

EA
buissadoud pus-1uoa4

1

welboid 921n0S

NAN
sajnpoyy J9/1dwoH |

)




69 6661/LL/8 OSN ‘MaIAdY |enuuY VdiVA

suoljejuasaldal ajelpawlia)uj

uol09|as uoneinbyuo)

uoIjed0||e 82I1nosal pue Bulnpayos uoneinbiyuoH
awli} uoneinblyuoosy

0160] a|geinbilyjuooal 0] suonied buidde

Buiuoniued spo)

sabuajjeys uonejidwor

NAN ‘qeT dI-LOesy ‘ejfel uaing ‘wajed BUYsuy

NAN

]
P




0L G66L/LLI8 DSN ‘MaIAGY [ENULY YdHYd AN ‘981 dTi-LOE0Y ‘BlleL USINS ‘We[Bd BUYSLY)

.. dSOY Uo suoponisu|
paulesysuod-awi] Bulnpayss 10j wyob|y Ise4 V,.ejel 'S ‘iinaud'y ‘ wajed )y ‘Bunay

9100) 210D

dSOd

NAN

]
P




LL 666L/LL/I8 DSN ‘MalAdYy jenuuy yduva

W) UOIINIIXI
uonean3yuo))

oul} peoj A
uone.angyuo)

wir] uol

JU0J33Y bUO]
YM wajqoid oy

NAN ‘qeT d1i-10e8Y ‘ejje) uaing ‘wajed euysiy




ZL 666L/LL/8 DOSN ‘MIIASY [BNULY VduVA NAN ‘qe di-LOeey ‘e|je] UBINS ‘Waled BUYSLIY

10[s peo[ Aydwd _ pa1,, 0 91e[NIAdSs 10U Op TJ<<F JI o
91e[N2ads 01 219UM PUR UIYM MOUY O} PN
| SOWIT) UOTIRINSIJUOIAI JSBIA]

—

auir) uonnddxXo | |&
uone.ingyguo)) | i

NAN

|
)




€L 666L/LL/18 ISN ‘M3lAdY |enuuy Vduvad NAN ‘gen dI-L0edY ‘elje] uaing ‘wajed euysiy

1931e[ yonu sI g JOo 9zis uonemngiyuod J1 o [[ids
) Se 9ZIS Jwes SI g Jo 9zIs uoneIngiyuod ji g [ids

NI0MIWRIJ UOT)BIO[[B
19)S1391 0} PAdNPIY

J0SS300.1(d uoigai
sSuer-oa] | |
T duiddejroaQ A
*/
A[snoauejnuirs — —
suoneIndiyuod 9 q
oM} AJuo
2)epoWWOIIL ULBD UOTINIIXI JO PIOIY

0130] 9[qeINSIFU0IY
NAN

|
P

suoneinbijuod 1oj UoIIeI0|[|e 321N0SdY




L 666L/LL/8 DSN ‘M3IAY [enuuy Vdiva NAN ‘qe di-10eay ‘ejjel uaing ‘wajed euysiy

| 19318 YonuI SI g JO 9zIs uoneIn3yuod J1 o [jidg _
) Se JZIS dwWes SI g JO JzIs uonen3iyuod Ji g [(1ds :

abesn pue sozis uoneinbiyuos uo paseq azijuond —
suoneinbiyuod Jualapip 10} JUBIBYIP S}SO0I peo] — :
(sBuiddew BuiAjipow-jjos ou) jjids 0} padu oN — _
siojoweled MON e

wajqo.id uoijeosojje 1aysibal 0} sajejal Ajjoaliq e _

sabuey aAlI7 uoneinbyuon e

NAN

|
D




S.91d3V 104 Sjuswvsoueyug
uondiriasaq aulyaep




9L 666L/LL/8 ISN ‘MalAaYy [enuuy Vdivad NAN ‘qe d7i-10eay ‘ejiel uaing ‘wajed euysiy

‘sg|npow (Jajidwod)
|eula)xa 0} saoepajul Alanb juaioiye 1oddng e
'0]0 'SJ9|9POW-}S0D ‘SIBIJLIBA ‘SlOo)e|nwiS ‘sia|quuasse
9Y1] S|00} Jo uonelauab onewolne poddng e
‘Sa4njoalIyaJe Jo
Ayauen apim e Jo uonesuinads mojje Jsnw sbenbue] e

'Jod}IydJe 10ssao0.4d pue
Jajum J9idwoo Ag yjoq Ajipowi/pueisiopun 0} ASe e

j491dwoo ay) ul sulyoew
Jnoge suondwnsse ui }jing op : Alljigeleblie)ay e

NAN

i
P

sjuswalinbay uondiLiosaqg auiysey




LL 666L/L1L/8 OSN ‘MalAaY |Bnuuy vYdivd NAN ‘qe’ di-10edy ‘ejjel uaing ‘wajed euysiy|

Ja|1Idwoo ay)
0} S| buibueyd (awin ajidwod Buunp) Ajjesiweuip e
9piAnoJd pinoys wisjueydosw uondiudsap aulyoew ay| e

924nosaJ 2160| a|qeinbyucdal sy} 0] 8oBUSIUI [BUIS)XS UB —

92Jnosal a|qeinbiyuooal aquosap 0y Aljige ue —

aplAold pinoys }1 ‘10ssas0.d 9|43 ue 1o} uonduosap

aulydew e Jo palinbal si jeym 0} uonippe u| e

]
P




8L 666L/L1/8 DSN ‘MalAdY |enuuy Ydyva

sa[1J de[dwdy uonean3yYuod woay %

{91 ‘v¥c}
Arewwng Aouale7 10Ql

A

.59y 104l

NAN ‘qe7 dI-LOeay ‘Bjfel U3INg ‘wajed BUYSU)

{8:8A "“SITASIA
‘18X TU8ITX S IX (LI
88: A ‘8°8:X ‘LOd1}

sjewlod O/ 1Odl

{uy sAs 10al ‘yiy Bsia” 1oai}

{ 2014 RUBIS qI 1

‘Be|4su] woysn) } udo 10ai

—

uopelado 10ql

‘PIUOI) SUOISUd)X] pasodo.id




‘6L 666L/L1L/8 OSN ‘MalAay [enuuy Vd¥va NAN ‘qe di-Loeay ‘ejjel uaing ‘wajed euysuy

pI0  DAXA HID T Z€ 8ZT HHOVUD D

TX ‘TId dNI 54D Z 82T $9 SWVIVd VTI
Jaavy ‘zao a1 o4dd Z SLINO ILVOTId
€X ‘Zx TD°LS Z SIINN INI

ZI ‘TI @AV = T $9 HZIS ¥dd
ZI TA*ZO°M"T = TX ¥9 HZIS dud

MEEN :
> E—
———

NAN

]
P




08 6661/LL/8 OSN ‘MalAdy jenuuy vYdyva NAN ‘qeT d1i-10eay ‘ejje) uaing ‘wajed euysyy)

sa|l-uoljeinByuos o} sisjuiod aq [Im sebesn

90JN0SBJ UOIONIISUI WOJSND ‘SUOIINIISUI 9SE] BYI[UN
Alejiwis

PalpUBY Bq ||IM SUOKONJISUI BSEQ PUE SUOHONASU| WOISNY

!
- 5.0Id3 @Andepyy 1oj suoisua)x3g SIAN

NAN

D




Aewwung




Z8 6661/L1/8 ISN ‘MalAdY |enuuy vduvad NAN 'qe7 dI-10e8Yy ‘ejjeL uaing ‘wajeqd euysiy|

(s|00} Jayjo pue) Jsjidwos 1oy yjed uonelbiw Ases —
uoneso|dxs |einjosyyole Joy Alessassu —
Alligelsbiejal Joy suonduosap aulyoe\ e
Swia|jqoud uoneziwndo umouy ||om 0} pajejal 8Qq UBd uoneoo|e
pue Bulinpayos uonenBbiuos se yons swajqo.d 18yjo —

paseq Ateuqy| Apuanind - pooysispun Apood
Inq Juepodw Ajswalixs : Buiddew pue Buiuonied onewoine —

suoneziwndo Jajidwod aywads Buindwos anndepy e
sainjosyiyole sjdwis —
dousliadxa 41| Jo yjeem abesons| —
uone|idwod psjewojne 1oy Ajejnuelb Jybu ayy je —

SOIdaVv e
/ NAN
Arewwing v : s,9143v \\w




suonoalig ain)n4




Y8 666L/LL/8 DSN ‘MOIASY ENULY VaalY G NAN ‘9e7 dT1-LoRey ‘elje) Uing ‘weled eulsyy
suoneuea S3QAN 0) sydepe JuswuoIAUS uole|INWIS —
uoisusjxs aaidepe uo uonnosaxs 03 oi0ads sofsie)s Jayjeb —
bunoyuow souewsopad pue uone|nws ‘uonenwIS e
Aselq) uoneinbiyuos o) syooy —
S8imes) |einjos)iyose Jld3v Yim SIN pusixe —
Ylomauwlely uonduossp auiyoey e
S3AN Aq psezusjeweled aq 0} sejnpow uoneziwndo —
Xoeqpasg) ejyjoid asn o) pssu ssjnpow uoneziwndo —
(onewojne-jwes) buiddew pue Buiuoniued sppoe) —

suonezjwndo uonedso)e/bulnpayds
uoneInblyuod |esanas sjepljea pue ajesodiooul —

suoneziwndo Ja|idwod oyads H|qay e

S.0Id3V 4104 qiomauwei sojidwior \\W«




S8 6661/L1/8 OSN ‘MalAaYy jenuuy vdiva NAN ‘Ge7 di-10eay ‘eljel uaing ‘wajed euysuy

dd-1dH Ul se sayoeo jo |043u09 }oljdxa puokaq seob —
Sayoeo ajqesjjew ‘0160] |04u02 ayoed sAldepe —
(S}un jeuonduUNy JO UOIBZIWOISND
}snfjou) ainjosyyole jo seale Jayjo ul Ajiandepe aiojdxg e
JoBuuodI8luUl AloWwaw-108$820.4d Ul SUOIIBAOUU| SPadu —

@ouewlopad Jossaooud ssies pue 2160| 8|qeinbijuosal esxe ppe
souewlopad Alowaw aAoidwi 0} pappe SI Ay BJjxe se isnf —

$,0ld3V 2Ige|eds 0} I9POW DTV Pusixy e
$8100 J|d3 0} Joadsal yum aouewlopad}soo aledwos —

Jld3V Ul S8102 J|d3 JO pes)sul Salod DSy J0 dSd ossn —

$8100 DSIH/dSa yim siabiey sandepy e
e NAN

$3.4N)29)1Yyauy \\_\.v




98 6661/L1L/8 ISN ‘M3lAdYy |enuuy vdiuva NAN ‘qeq di-10eay ‘Blje) uaing ‘wajed euysi|

swa)sAs pappaquwa ui Joedwi ybiy Joy enuayod —
Jamod/souewopad Joj sun) —
sulewop uoineoijdde oyoads 10j ainjosyyole aun} auly —
ubisap-00 ainjoa)yole-1a|idwo) e
WybBram pue azis ‘Buiwi : sjuressuod BUYO
uonejdepe aAlisuas Jamod ajqeus 0} SJUBLLBOUBYUS [BINJOS)IYDIE PadU —
Bulnpayos aAnisuas Jjamod Joj jnyasn uopewlojul —
Alpualy Jamod a.e ey suoneuIqIOd UOHONASU] JO) SOL}BW nmmc -

juoneaidde usalb e oy lamod
(moy) [lewndo swinsuod o0} ainjosyyose jdepe o) sanbjuyos) dojonsp am ued —

sulef souewlopad spiemoy paseab uonejdepe jsow ‘iey os —
uoneydepe aAlISUSS IOMO e

e ——————————————— .., NAN
sjuieysuo) buibiowig |

P




I8 666LILLIB DSN “MaIAY [ENUY VauYQ NAN ‘G871 d7-LO®Y ‘Elie using ‘woled euysyy)
suoneziwndo aAnisuas ease/lomod 10y suoljjejouue —
Sjulelysuod Bujwiy ajpuey o} —
(Y1) suonejussa.idal 9)eIpawia)ul 0} SUOISUBIXT e
| ¥9-V| 10} siojelsusab apoo B —
S8INjosjiyole |elosawiwod jabie| e

uoneziwolsno oyioeds uiewop —
T 'ela)ly ‘xulix Bunabuey 104 sj00) 93n0l pue 9oe|d 0} yjed —
sajewisa Jjamod ‘eale ioj —

sjabue} uetew | Joy suonduosap |eanjonu)s BojuaA/TQHA —

("yos eib1099) yum) ubisap-0o 91Njoa)Iyose - Jo|Idwo) e
sinonJselul Ja)idwod sy) ojul Jjing Ayjiqejebielas —
Alpides suoneuea s3qpy sjessuab o) Ases —
IESP! [SPOW [eINjoslIydle pue ainjonyselul uelewl| e |
a/nyonaysequl sa(idwion :.».z
D




Arewwng




68 666L/LL/18 ISN ‘M3IAaY |enuuy YdHvQ NAN ‘qe dI-L0esy ‘ejjel uaing ‘wajed euysiiy

I9poW J1d3V payijdwis Ioj s)sa8) souewopad payonpuod —
S108s820.d |47 10} ainonyseljul Jajidwod poases|oy
suononyisul [eanld awi Bulinpayos 1oj swyobie padojonsp —

sydeib ajelpswiajui Uo
Sjulel}suoo o} suonedloads juiessuod (swi) 82IN0s sjejsuel} —

owl bulAyoads 1oy D-awi| padojera(

Sjuleljsuod swi) payioads Jasn Jjspun —

suononysul Aousie| Buoj Jo asuasald ayj ul —

Bulinpayos uononysui Joj swyyiobie JusIioiyg
S10ss9204d |43V 1961} 0} ylomawely uonduosap
SUIYDEW JUBIIND O} SUOISUB)X3 8|qe}ns Jo ubisap |eniu|

o160] s|geinblyuodsal yjim papusaixa
$10ss8204d |43 10} sjppow Jajidwoo padojarsq

!
SJUBWIBABIYIY [BIIUYID |

NAN

)




06 6661/L1/8 ISN ‘M3jAdY jenuuy vdayva NAN ‘qeq dl-10eay ‘ejle) using ‘wajed euysuy|

(suop aq o) buiddew pue Bujuoyued —
Buiwnp —
Sjuielysuod buissaidxa Joj uonejoN e
uonenoads ‘68 suoneziwndo Jajidwos —
sayoed uoneinbyuoo —
uoneinBbiyuod olweuAq e
uone|idwod jse} —
sjuswanoldwi ssuewlsopad jo joosd —
10ss820.d oujsweled |esjnau JOpuaA —
J9|1dwod Buiziwndo ulepow e Bunsbie) oy |OPON e

. NAN
Ajunwwo) ay) o yoedwy |

P




16 6661/L1L/8 DSN ‘malAdy [enuuy vdyva

NAN ‘e d7I-L0eay ‘ejjel uaing ‘wajed euysiiy

npe nAuso djr-jorau
€000T AN "SJI0X M3N

‘ABRMPRBOIE

L61L

AJNSISATU ) JIOK MO N

uonew.ojuj }oejtuon |

d TI=LO®Ba

NAN

P




93foad DYVVIA DSN AW J9pun pourioyiad

6¥00-D-96-€9.0L.dVd "ON 3enuo) vdadvd Aq pajioddns sem yaom siy,

AjIs1aniun IO A MBN
npa nAuso-dji-joeals.dpy
Alojeiogen 4|-L0esy
wajed A euysuy

MOIAIY [eul]




MBIAIDAQ Jo08louy




€ 6661/LL/8 DSN ‘M3lAdY jenuuy ydyva NAN ‘qe7 dI-10eay ‘ejjel uaing ‘wejed euysiy

ainonuiseljul Jo|Idwon) e
salpms uoneoddy e
suonezjwnpdo Js|idwon) e

uone|idwoo 1o S|apow |einjos)Iyoly e

Sjuswysidwooody jo Aiewuing v :..».z
| P




¥ 6661/LL/18 OSN ‘MdlAdY |enuuy vdyva NAN ‘qeT] dTi-10eey ‘ejlel using ‘wajed euysy)

awl} uoneidwod
9|qeuosead ui s|eob aouew.opad ay) seAsiyoe —

suoieoiidde
abuajjeyo 1o sjuswanoidwi souewlopad sejensuowsp —

Jey) ainjosyyole paulysp sy bunebie)
10} Ylomawely Jojidwod Buiziwundo ue 108)yoly e

oI60] aAndepe jo sabejuenpe ay) sebelons| —
aAINd yimolb ABojouyosy ay jo abejueape saye} —

Jey) “J8jidwod Buiziwndo ue Joj
Jobie} e se saAIas jey) |opow J0ssao0id B auya( e

| S/eo9 4nQ U\W




S 666L/LL/8 OSN ‘M8lASY |enuuy vduvq NAN ‘Ge7 - LoeeY ‘eljeL usIng ‘wejeq euysiy

S|SPO [einjoda)iydly

NAN

]
P




9 6661/L1/8 DSN ‘MajAdY |enuuy vdyva | NAN ‘qe d7i-10e8y ‘ejje) uaing ‘wajed euysi)y

‘6661 Atenuepr ‘@ouaiajuo)
91nJ08)IYdiy JeIndwo) ueisejensny ‘Aauersq-d ‘ejlel’sS ‘wajed’'A'M
‘Bupndwo) uononusuj jajjesed Apoidxg aAndepy

/661 “1das ‘1N ‘sqe ujoour] ‘26,03dH ‘BlleL 'S ‘Weled A
‘Juswuosiaug Bujwweaboud

S}i pue 10ssa201d adedg uoljeinbiuoy paonpay v : dSOY

- slossao0.id D143
onndepe 186ie) 0} iomawely uonduosep aulyoew
JUs1INd 0} suolIsus)xa a|qeyns Jo ubisap |eiu] e
As|unyjopy ‘padtay : slosseooud D143 —
0160] a|qeinbyuodsal yum papusixa
SJ0ss820.1d J|d3 40} sjopow Ja|idwoo padojora(g e

NAN

P




L 6661/LL/8 DSN ‘MalAsy |enuuy vdyva NAN ‘qe dTi-L0eay ‘ejje] uding ‘wejed Buysiy

suoneziwndQ J9p1dwon

puy
Joddng abenbue

D




8 666L/L1L/8 OSN ‘malAdYy |enuuy YduvQa NAN ‘qeT di-1Loesy ‘ejley uaing ‘wajed euyspy

Buiddew pue Buiuoped
onewone uoj woddns Buidojaasp o} asueasial Jo —

suofnonJsul
|eanuod awy bulinpayos 1oy swypobie padojensp —
syde.b ajeipowislul UO SjUIBIISUOD
0} suoneodyoads jules}suod adInos aje|suel) —

swl BulApoads Joy D-awi) padojorag e

Sjulel}suod swyy payioads Jasn Jjepun —
suononuisul Aousye| Buoj jo aoussaud ayj ul —

Bulinpayos uononysui 1oy
swiyjuoble awi [elwouAjod ise) padojonag e

D-awij pue buinpayss |

D




6 666L/LL/18 OSN ‘MajAdY |enuuy vduva NAN ‘qe7 dI-L0edy ‘ejje] uaing ‘wejed euysiy

"(uoissen Aeuiwiaid) ,D1d3y Uo suoRonsu|
paulensuod-swi Buinpayog Joy wyiuoby ised v, elel 'S ‘Insudg’y ‘ waled: M ‘BunaTy

210D 210D

?_5%4

alemp.JeH ajqeinbljuo?) "

104 suonezjwndo buiinpayas uononysuy _ \\Wv




0L 666L/LL/18 DSN ‘MalAdYy jenuuy vduva

86.L0Vd ‘llonud 'y ‘BunaT 'y ‘wajed ‘A M
uonejidwo) 47 104 abenbue SjulesJsuoD awl] v : D-awi|

Sjuieljsuod
swij-|eas BuiajoAul suonesiidde psppaqug e

4D D YUMm pasnaq ue)) e

opelsbdn
Jybrem yybiy, Joy xejuAs juspuadapul obenbue] e

B ——————— .
Joel] 8wl pue H-awi|

NAN ‘qe dI-LOesy ‘ejje) uaing ‘wajed euysuy|

NAN

1
D




Ll 666L/LL/8 DSN ‘MalAdY |enuuy vdyvQa NAN ‘qeq di-10eay ‘ejjel uaing ‘wajed euysiy

suonejussaidal ajeipaswisiu| e

uopos|es uoneinbyuody A

uonedo|e 8a1nosal pue Buiinpayos uoneinbiyuo) I\
{ awl} uoneinbijuooay M
o160| ajgeinbyuooal 9 suoned buiddely e
Buluoniued spoy e

! NAN
sabuajieys uonejidwos 1
D




Cl 6661/L1/18 ISN ‘Majady |enuuy vduvd NAN ‘qen di-L0e8y ‘ejje) uaing ‘wajed tuys|a)

s8lpnj}g uonesiddy

P




€L 666L/LL/18 DSN ‘MajAdy jenuuy vduva NAN ‘qe dI-LOoesy ‘ejje) uaing ‘wejed euysiy

utewop 21jqnd ‘Ggoads wol) siayio
(lemueby Jueuy) | N wouy syiewyouag pAVYY

(Unws auoibuen-g) v1onN wouy youageipsiy
S}lewssalls SOV ||omAsuoH

7l S

o, "
Gt
& 7,

DNy,

S}Jewydouaq Buimoj|0) WO} PaIspISUOD suoneol|ddy e

- Jobue} O1d3
aAldepe pssodoud o0} paddew sulewop buissasoid

eipsw pue abew ‘|eubis wo.ly suonesydde |BJonDS e

Sajpms aaueuw.ioLiad uoljeaiddy

NAN

1
P




Pl 666L/LL/I8 DSN ‘MdjAeY |enuuy Vdyva NAN ‘qeT dli-Loeey ‘ejje] uaing ‘wejed euysy)

[ suonean8yuo) ayy 408311 pue speo] . dupjoysaay L, 7p Supjedg yo uopndaxy D

duipjoysaay y, 2 Surjesg yo uonniaxy [kl L44 Jo uopmoaxy B ouore

Dlddv) ! ! . ik . Y (qg-1am
uo LAYV Jo uonnaaxy E UIN 131100 JO UOIINIIXF m
UAN I3WI0D) JO UOHNIAXY m uonezijeniu] YLAN .
< 10s5300.1d J'T] 3400 uo uonezpupndo Wi uy [en)oy _
A
L _ I 1 aIng

< < DIdAV uo dwip) pajewn)syy

VTV 03 s198311 |, Ad-"1dH




Sl 666L/LLI8 DSN ‘MalAGY [enuUY YayvQ NAN ‘qe dli-LOe9Y ‘ejje) ueins ‘wajed euysyy
'6661 Alenuef ‘90ua19JU00) 21NOANIYIIY 1ndwo) ueisejensny ‘ee], 'S ‘Aduera( “d ‘wated A
| ‘Bunndwo) uononnsuy [ajjereyg Aprordxyg sandepy
%900 8100 se swes aq 0} %00}0 Aeuse ajqeinbiyuodol pawnssy e

00290X se aunjos)yole 34 swes spoddns
Aeuse ‘snq Alowow ajeledss }1q 9 e uo Aiowsw ybnouy) Aesse s|qeinbyuooss 0} SS800Y

93Inosal s|qeinbyuooal paywiun - e

a4 4% ££99 12121 10ai
8'G¢ 0082€G  €/G18/¢€1 81662522 (sawn
01 pejdwes jndur) y1gN

GE 8¢ 16VEL £eGLe did dey-z¢
7’9 81 8Ll 8Ll (punou auo)
uondAioug y3aq|

7'g 20998908 86198¥6¢Y eju 18p023p Z93d4N
dnpaadg  (vqDs) OIdH 2nsst-6 10] g Inssi-g uonedddy

OIdI-V ~ DIdd-V uonepdwod pazumd

Salpms 8ouew.ioLiad adwes I

P




9L 6661/L1/8 OSN ‘M8|AdY jenuuy Vdyvad

ainjonujsedju] s9|1dwon

NAN ‘qeT d1I-L0eeY ‘Bjle] uaing ‘wejed euysuy

NAN

|
P




Ll 666L/LL/8 ISN ‘MajneYy [enuuy yduvQg NAN ‘qeT di-Loeay ‘ejjel uaing ‘wajed euysiy|

slajaweled
92IA8p 8|qeinbiuooal Jo AjoueA e aio|dxg e

Josloid DHVYVIN OSN 8yy 4oy snooy e —
buiddew pue Bujuoniied uiejuor e

SpeayJano uoneinbiyuodal ojweulp —
Speo| uoneinbiyuod sppe| e

S}JoMawely uoie|idwod Jusung pug)xe —
uone|idwoo Jaises pue Js)se{ e

]e0S ainjoniyseijul i

D




8L 6661/LL/8 ISN ‘melnay lenuuy vdava

ai0)
old3

NAN ‘qe di-10eaY ‘ejje] ueing ‘wajed euysyy)

yoeqpasy

aaueuliojiad

Ja|npaya “ AL ; :
\owm“ m “,Allln-llnnu-lll-l- .ptonhumusamk:o -l---ll"
| pazjupndo-aid .
R T 4 " m
:oamnEEQ m:o.awN..Etao : uonoalag ;
| old3 PPN :o:&:mc:oo(
£ 1ous3y B suonezjwndo
4 | jons-ybiy 22In0S
G _H_A i € ‘wsyepesey Gosuoriiitg L
1 jausay m wbﬁkwkm ~
L ld4 . { hm _
: ‘we o.i | moso .
vioL  © e10)9jd3 0L
Yl paseg ydeis

S.JIld3V 404 yiomauwielj uonejiduior

A




6L 6661/L1/8 OSN ‘melAay [enuuy vduvQa

AAVHEIT
NOILYNOIINOD

@_  uonoopes
L :o:ﬁ:wmsou

.HUA: ‘

NAN ‘qe1 di-LOeeYy ‘ejjel using ‘wejed euysiy

suiddew
uoneIngiyuo)

aseqeje(
uondriosa(y

SUIYORIA

1

weaSod '$)e)S 9oueULIONIod Jj,..n
3.:5/L Iopidwo) i J . -
S 9JeIduan)

NAN
uesewli] buisn |

ABojopoyyay uonedwos P




NAN ‘qe d1-LOe8y ‘Bjjel Ueing ‘waled euysuy

0Z 6661/LL/8 DSN ‘MajAdY [enuuy vduva

a3 ) ) LY

NAN

wisijojjeied [oAS[-UONINIISU]
Ul ydoieasay 1oj ainjoniseljul uelewil | P




LZ 666L/LL/I8 OSN ‘MajAdY jenuuy Vduva NAN ‘qe dI-LOe8y ‘ejje uaing ‘wejed Buys|y

‘6661 Aenuep
‘@dualsjuon ©1nj08}Iyoly Jeindwon ueisejelisny ‘ejje] ‘g ‘Asuera(
d ‘wajled A'M ‘Bundwon uononijsuj |9jjeied Apiondx3 aAndepy

(3ie3 pajiAul)

8661 “1dag ‘eljensny ‘epiejepy ‘eje] ‘g ‘wajed “A "y ‘J8|idwo)
S}l pue aInjoaliyoly [9AON VY : 81qeinbiyuodey + 4| = Bunyndwon
Pappaqw3 souewlopad ybiH :bunndwon 9|qeinblyuooay

‘8661 190

‘sanbjuyos ) uonedwos pue S8INJo8)yolY |9]|eJed UO 8ouUaI8ju0))
|BUOREUIBIU| ‘l]anud 'Y ‘waljed "A "M ‘Buna v ‘gl uim SJ0SS820.1d
Uo suononysu| pautensuo) swij Buiinpayog 1oy wiyob)y Jsed v
‘8661 “1doS ‘swa)sAg swin-jeay uo 90UaIvju0) ueisejensny
[ENUUY YIG “Ilanud 'y ‘weled "A "y ‘BunaT 'y ‘uoliejidwo)
10S$820.1d 471 J0o} 8benbueT uoneoypeds swi) v 08wl |
‘(uonejussaud Joysod) /661 “1das ‘1IN ‘sgeT

ujooui] °26,03dH ‘ellel 'S ‘wajed Ay Juswuosiaug Bujwiwesbold
S} pue 10ss800.1d 8dedg uoneinbyuo) peosnpey v : dSOy

i

suonealiqng




CC 6661/L1L/18 ISN ‘MejAsY |enuuy vduva NAN ‘qe di-10e8y ‘ejje) uaing ‘wajed euysiy|

‘ejlel 'S ‘wajed
'\ M 'S10SS8201d DIV 10} Yiomawelq uonduosa( aulyoey e

BlleL 'S ‘Ueqgey Y ‘wiy "H ‘BunaT 'y ‘uesew) Buisn uonepiep
pue 0’| uonedypads |einjos)YdlY ‘S10SS8001d D4 oAndepy e

‘BlleL 'S ‘llenud Y ‘wajed ‘A
M ‘BunaT 'y ‘si0ss8001d O1d3 aandepy 1oy Bulinpayos uoponsu| e

ssaibo.d uj yiopm :»z

P




MBIADY
€ - IO




¥Z 6661/L1L/8 OSN ‘MajAdY |enuuy vdNVQ NAN ‘qe7 di-L0oesy ‘ejjel uaing ‘wajed euysiiy
soIpn}s ylewyouag e

uoneoojie pue buiinpayos uoneinbyuoo sjesodioou; —
Sainmes) O|d3Vv djelodioou; 0) SN 8doueyus —
| ainjonsiselyul Jajidwon e

Sjuies}suod aw) Japun Bulnpayos —
Bulnpayos uoponysur swiy jerwoukjod 1sej —
suoneziwido Joidwon e

uone(idwoo 1oy sjppow [einjosjIydle —

(Q1d3v) Bundwon
uononJsul |9jjesed Apondx3 aandepy e

EEN, ! NAN
& Ssjpuswiysiiduwiooddy jo Aiewwing v i
, '

\ "4




ST 6661/L1/18 ISN ‘MelAeYy [enuuy vYduvd NAN ‘geT dTI-10eay ‘ejjel uaing ‘wejed euysyy

S9.1N})23}IYo4y

|
P




9Z 6661/LL/8 OSN ‘MmajAaY jenuuy vVdyva NAN ‘qe7 d-10edYy ‘ejje) uaing ‘wejeq euysuy|

uonedIUNWWOD J1je)s jse —
Sa.1njes) [eInjds)iydoie-01oiw JOAO [0JjU09 JIoldXg —
wsi|o|jesed paujelb aul{ —
d160] 81qeInNbyu02aY / YO 4
ABojouyos) uonedwos umouy| —
salnjosyiyose Jojdwig —
MITIA/Dld3 o

sjun joJjuoo xajdwoos -
siejeosiadns Jo A)jIqe|eoss 100 e
}Jaylew o) sawy) Jopoysg —
siossado.d Jadeayo ‘ig)se{ —
bunndwo) pappaqug jo spuewa(] e

uoneAjop




LZ 6661/L1L/8 ISN ‘MaiAeY |enuuy v4uva NAN ‘qe dI-L0esYy ‘eljeL using ‘wajed euyspy

Ayisusp diyp e
HIYS psppaquis/eipsw mau ay e
subisap mau Jo }s8) pue uonesya JO1S0D) o

Aejap |eubis uo 10988 ay) pue 9ZIS ain}ea e

i_
Spuaij uoneaddy pue Abojouyosa | :Hz
N

1A




82 6661/LL/18 ISN ‘MajAsY |enuuy ydNvQa NAN ‘qeT d|-L0esYy ‘ejje) using ‘wejed euysiy

(48]1dwo9) sj00) 98] J8ybiy 0} Jossaooid
woJj o160] Bupyew uoisioap xojdwod arow —

leinbas pue sjdwis ainjosyyose ayj desy —
$]S09 )8} pue uoneodiusA buisl jo jJoedw| e

0160 Buissaooud ejep pue jouod a)nqL)sIp —
uofnedlunwwod ssuejsip Buoj aAjoAuUl Jou Op —

Jey} sainjoayiyole
uo SNdJo0j ‘yJuedyiubig mEoomm_ sAejog alIp SY e

. —— NAN
spuaij Abojouysaj jo joeduwy ayy 1
o)




@B (‘ppuos) spusij ABojouyosa] o joedwjoyy |

6Z 6661/L1L/8 DSN ‘MalAaY [enuuy vdivQ NAN ‘qe7 dl-L0eeYy ‘ejjel uaing ‘wajed euysuy

iSanbiuyoa)
uone|idwod pue sainjos8)iydie Mau J0) pOSN e

abelaAe uo Q| > 47| ue sp|oik jepow g4edns, ay) usns —
suonedijdde ul wsiejjesed ybnous ssodxs jouued —

uone[idwod pue sainjosHydIe [BUOIJUSALUOY) e

‘JOAOMOH

sieal g ul alp suo uo swnpuad oG "xoidde sjepowwode ues —
9|gejieAe wsi|a|jeled aiempley JO S}oT e

P




0t 666L/L1/8 DSN ‘MeIAsY |enuuy vduva NAN ‘qe7 dI-Loeey ‘ejjel uaing ‘wejed euysiy

Ayjeoo] [eneds ybiH e

asnal |eijodwa) MO e

(8z1s apo2 |lews) sjouia)y uowliwo’) e
sdn-300] 8|qe) ‘onawyie Jabajul BUoT e
wisi|o|jesed uielb aul] e

sweals ejep snonunuo’) e

ejep Jabsjul )1g-z¢ pue ‘-g| ‘-g paxoed e
buissaooid awi-jeay e

e —————— e S NAN
Aiewwng spuaij uorneanddy |

P




L€ 6661/LL/18 DSN ‘MmeiAdy jenuuy Ydyvad NAN ‘qe7 dT1-10eay ‘ejie) ueing ‘wajed euysiy

osnal |eljeds ybiy ‘esnai jejodwa) mo| —
indybnouyy ybiy ‘Aypgejoipaud jo sjuswasnbal —

ABojouyoe} Buiyoeos samau pasu —

S|9uJay eipawl Joj paunj} ale jey) asoy) —

Buissaooid QI Jo S)0] 10} 8doos —
9|qeJissp aJe sainjosliyole Jejnbal ajdwig e

NAN

@ spuail uoneaiddy eipayy jo joeduwy ay | |
| p




CE 666L/L1/8 OSN ‘MajnaYy |enuuy yduva NAN ‘qe d-10eey ‘ejjel uaing ‘wejed euysuy)

¢SIYL v ol
91aymas|g asuodsay ayl S| jeymp




€€ 6661/L1/18 ISN ‘MdjAvYy |enuuy vduva NAN ‘qeT dI-L0e8Y ‘ejje uaing ‘wajed euysiy

Buissaooid-pinw diyo-up -

Buipeauy-ninw snosueynwig —

SjueleA pue NVY| —

s10ss800.d ajqeinblyuoday —
sayoeoudde (Juaioyip) [BAON e

S.MITA JO sjuelLieA pajnpayos Ajjesijels —
(seselje ‘seyoueliq) uonoipaid Jepaq —
Buissaooud uoponssul paaosdwy —
ONssi/ydje) uononJsul Ja)aq —
sayoeolidde (jeuonuanuod) jsed e

B — NAN
sayoeosddy yoieasay ainyoo)iyoiy I

P




V€ 6661/LL/8 DSN ‘M3JAaY |enuuy vdyva NAN ‘qeT dI-10eey ‘ejje) using ‘wajed euysiy

4o9usioq
uonejidwod piepue)s ayy ybnodyy Buyesuq oy Ayjqissod —

anbjuyos} uone(idwos djjewolne pue JusIdiys UMOUY ou —
Sainjos)iyole juaiayip Ajjeaipel 1oy uoneidwon) e

uole|Idwod [BUOHUSBAUOD, JO XO8USNOQ HoBgMEIP —
ABojouyoa} umouy] [jom —
sjueleA jsed Joj uonejidwon e

!
ABojouysa uoneydwos Jo ajels :Mz
D




SE 666L/LL/8 ISN ‘MalAdY [enuuy vduvQ NAN ‘qe7 di-10eay ‘ejlel uaing ‘wajed euysuy

sa.njoayyole pa|josjuod Apoldxa Jo jasqgns —
(O1d3) Bundwog uononusuy [ejjeled Apoidxg —
uoleoojje ‘Bulnpayos ‘enssi |013u0d Apiondxs —
Bujew uoisioap s osssooid Jo j0) B so|puey Jajidwod —
SUO |[BUONUBAUOD ‘umouy e si alejdwa) |einjoa)iyole —
o|qissod se yonw se sainjosjiyole Ayjdwis —

S84NJ09)IYdIY Po|j01U0) Apondxg e

}1 10§ ©p02 pue ainjos)iyole sajesausb Jajdwod —
21njos}iydJe Jejnoiued e 0} Jusw)iwod ou —
Buiyifians s|puey Jojidwoo jo| —

S10SS8201d 9|qeinbijuoosy e

suonoalIqg AyrIomajoN om |

P




|

9€ 666L/LL/8 ISN ‘Mairay Jenuuy vdiva NAN ‘qe d1-LOesY ‘ejje) uaing ‘wejed euysuy

S.1dH se x8|dwoo se jou Jnq —
uoliewJojul jeinjonus asempiey 10j yoddns abenbue| —

(d1I-LOeaY) sjebuey 18)1dwoo .oy sjepow —
(OYVYVIN-OSN ‘HSINY "69) Juswdojensp wyyuobie 1oy sjppow —
Joddns abenbug 'S|SpoW Joe1Sqe JUSIUBAUOD JO YoeT

A3soo Auen ase seyoyms }IX8ju0o saidwi osje siyy —
S}sS09 uoneinbiyuosal ybiy sal|dwi 8z1s uoesnbyuos obie| —

SPesyJan0 awnuns jeuolippy e

xo|dwoo Apuasayu; ayno; pue aoe|d —
suoneinbyuoo jeuy pue y; plepuels usemyeq aouspuodsaliod Jooe| —

Sawj uone|idwod Joo4 e

ZSaIpIny oy} o€ Jeypy n
P

e ————




L& 6661/LL/8 ISN ‘MmalAsy |enuuy vdyvQ

9z1s 193oed uononnsur ojewrxorddy

NAN ‘qe di-LOe8Y ‘ejjeL uaing ‘wejed euysuy

WI< WI-)001 MO T1S-821 b9 (£ 91 b 0
JISYV ddung
ppaquiy 08x Apaeq
/pauipadig
Jdung
O1D3A
mogeieq aepedgsadng
A o
\£ MI'TA/DIdE udrenasdgiadng =
o
LINS @
[y
N
(dejeasni) 4DVI.L =
D144 dandepy
dwyOnmp HAO
ddvO aiaey
MV
vodd
VOdd OISV xajdwo)

éAepoy uoy papidwoa Apuaiolye aq ues jeym

|
)




8€ 6661/L1/8 OSN ‘MalAdYy [enuuy Vdva NAN ‘qeT di-L0eay ‘ejle) ueing ‘weled euysi)

bunndwoy uonannsuy jajjeseq Apiondxg sandepy

i}

¢, s8injoajiyole aadepy —
¢uonejdwos asodind |eioads/paziwoisny —
uone|idwos piepue)s ybnoiyy 47 ybnouo JoN e

Ajngeloipauld ._EOQEQ ‘uonjeziwolsno ‘sadA) Jabayul
Auew ‘Buissacoid aaisusyul ayndwiod Alybiy ‘indybnouyy ybiH4 -

buisseooud pappaquws pue eipajy e
SUOIjOBIdIUI [BOO] : SUOI}OBUUOD JBUOYS —
sAejap |eubig e
sainjoajiyale Jeinbas ‘eiduig -
S)S00 uoleoiIaA/ubisa e

i —————————_—, e ., NAN
é494u1 am ued Jeym |

»




6E 6661/LL/18 SN ‘MelAdY enuuy Yduvad

}10J43 JUa.LINg

NAN ‘e dI-LOe8Y ‘Bjjel ueing ‘weled Buysuy

NAN

]
P




OF 666L/LL/18 DSN ‘MdIAdY |enuuy Yduva NAN ‘qeT] dI-L0eey ‘ejjel using ‘wejed euysuy

sa.Injod)iyaly Hunndwon
uoljoniisuj |ajjeled Ajoldxg aandepy

|
)




iV 666L/LL/18 DSN ‘MalAeY jenuuy Vdyva . NAN ‘qeT dI-LOeey ‘ejjel Uaing ‘wajed euysiy|

dd-1dH uim Buniels eoeds alempiey azusjoweled —

sa.injoajiyole
10ssa00.d s|geinbiyuodal Jo AjolieA e alojdxg e

uone|idwod onewolne jseq e

2160] 8|qeinBiyuooal pue s,0|d3 Jo sabejueape suiquiod

S84njo9)Iydly J|d3 aAindepy

e ——— NAN
Sjeos inQp \\._x.v




@

J
NYU

3
S
@)
S
-
S
“d
=
&
3
Q
Q
W
2
Y
<
o
<

Record of execution

EPIC-1

Reconfiguration epoch to switch

from EPIC-1 to EPIC-2

T

IR
1011
T

‘_

I

111
I

EPIC-2




€V 6661/L1/8 OSN ‘M3lAeY |enuuy Vdyva NAN ‘qeT dI-10eey ‘ejjef uaing ‘wojed euysuy)

_ Aowsapy uep
3 ) X
ayoe) fowapy sydsed-d
uoneinblyuo) |e20T] 3
% So|i{ Jo)sibay
II*» ~x vi r vt
Aenry 21607 a|qeinByuosey S)juN [euonoun4 paxi4
X | 3
lojeodo||y PR nun
92IN0S9Yy |0Jjuo)
A
lajjng uononJsuj
—A
JdHOVO- “—
R — NAN
94MmId}1Yyaly Jld3 aAndepy ino |

P




¥ 6661/LL/18 DSN ‘MaiA8Yy |enuuy vYdyva NAN ‘qe d1i-10eey ‘ejlje) uaing ‘wejed euysiy

¢S)un [euoouny painbiuod wouy
Pue 0} pajesjunwwod sjnsal pue spuesado jndul oY) a1e MOH —

¢pajenuelsul aq
uoneinbyuoo e pinoys Aewe 2160 ajqesnbyuosal 9y} ul alayp\ —

$I01A8 0] yoym pue desy 0} suonelnbiyuod Yyoiypy —
$ainblyuooal 0} usypy —

$,01d3V 0} anbiun pue jsaiajul oy10ads Jo SYSE) BY| e

10ssad04d 8y} pue J9|Idwoo ay) usamiaq
S)sej Jo buluonnued ay) Buipiosp Jo s anssi ay| e

., :>,z
sanss| OId3v \\w




Sv 666L/LL/8 OSN ‘Malrey Jenuuy vdyva

spueiado spueiado
ynordxyg yorduy

uoneoo[[e o130[ "Syuosar
SOPII3p M/H

NAN ‘Qe7 di-10e0y ‘ejje) uaing ‘wejed euysiy

spuerado spueitado
o1 dxyg o1 duy

uoneoo[[e o130] ‘S1ju0oaI
Sop109p wrei3org

uoneIn3iyuooal uoneINSIFu0oal
SQUIULIdNP M/H so1J10ads weidor
S.DIdd 2andepy

i NAN
$81m29)iyaiy Jid3V jo Awouoxe| v

1
D




9% 6661/41/8 DSN ‘MalAdY jenuuy ydyva NAN ‘qe7 di-L0eeYy ‘ejjel uaing ‘wajed euyspy|

Sayoeod uojelnbipuod pajjosuod Apoidxg e
suononysul peoj puelado buisn papeol-aid spuesado —

}J9)oed uononJsul
Wwojsnd ayj Jo ped jou ale suoydnsul Wwojsno o) spuesado —

SpueJtado oljdwi 8ABY SUORONIISUl WOJSND) e

Aeuse 0160] ajqeinBiyuooal ay) U yun |euolouny
(woysno) painbiuos syesole o) alaym sapioap Jossseooud —

pajedo|je Ajjesiweulq e

8inbluodal 0} Jeym pue usym saypads weiboid —

painpayos Ajjeoijels e

i
Jseuajuj Jo adeds Jjd3 aAndepy ay

9Jndaxe pue yoja} uoneinbiyuod pajdnossp e

NAN

I
P




¥ 666L/L1/18 DOSN ‘Mainey jenuuy vdyvqg

NAN ‘qe] di-10eey ‘ejjel uaing ‘wejed euysiy

Suols1oaq ubisaq juepioduwy 104 sjeuorney]

old3IVv

NAN

I
P




8y 666L/L1/8 ISN ‘MelAeYy jenuuy vduva NAN ‘qeT dI-10eey ‘ejje) uaing ‘wajed euysiy

uojbal [e20| wouy Aeme ey sjojs uononsul B|pI 8SNBI —
1ey1aq bBuipeo| uopeinbiuoo sjnpsyos ues —
21njoid |eqo|b ay) aney siajidwion) e
uoibaJ |eO0| ul JUSWBAOW BPO2 JOJ WOOJ YdNW Jou —
Bi1q 00} a1e suoneinbiyuo) e
suondniisul Jo Mopuim jlews e 8as Ajuo ued Asy) souis —
suonezjwndo |eaoj je poob ale S10SS82014 e

SAUM

2inbluoogal 0 Jeym pue usym sayoads wesbord —

paInpayds Ajleonels e
S.0Id3V pajnpayas Ajjeanels

NAN

I
P




6V 666L/LL/18 DSN ‘MalAey Jenuuy VdivQa NAN ‘qe dI-10e8y ‘ejje) ueing ‘wejed euysiy

syun painbiyuod
Uo suononysul Bunnosxs pue suoneinbyuo?
Buiyojey 1o} suononiysul syesedss suesw SIY| e

uononpal awin yaola} sjqeus jey) wcm_wmb uo sSNd0j 0} paau o0uay —
Swil} 8Ind8xa uonoNJsul ay) uey)
196.1e] apnyubew Jo siapio aq ues awn 4o)a) uononJjsui
(suoneinbyuos Aq paquosap) suofjonJIsul wojsno Joj —

opnjlubew jo Jepio awes ay) Jo ale
S} 8)NdSXd pue awil} Yd)a) ‘SUOAINIISUI [EUOIUSAUOD JO) —

9)Nd8xe pue ydje} uoneinbyuood pajdnossp e

i
9)ndaxyg puy yaje- buidnoosaqg e.,z

P




0S 6661/LL/8 OSN ‘majrey |enuuy vduva

spueiado ndino sAeg -

uonndoxa .44 19337y,

sonjea pueiado jndur peo|

uoneig3yuods 1. peo "

spueiado o1 10§ 99eds a3e00[Y |

uonemgyyuod [ .44 1oJ aoeds a0y

NAN ‘qeT dI-LOe8y ‘ejje) ueing ‘wejed euysuy

UOT)NOIXI JO PIOIIY

= =%

[IX [IX DID LAq ooxo

D

e V4

:Mz
D




IS 666L/LL/18 DSN ‘MalAeYy jenuuy vauva - NAN ‘G271 di-LOReY ‘BlfeL using ‘wejeq euysiy

[I" .
‘ QUIT) UONNOOXF |.
E =
W Ir/l % |
G [1X [IX DdD 144 29x2
¢ own) Yoo, «q Hm _
: — ——
— —Z]

Gomazooxo mo U.ﬁooo,m

i / :>z

Ajjeuonuanuon pajpuey j 1
P




S 6661/LL/18 ISN ‘malAsy |enuuy yduva

spue1ado ndino aaeg

uonnoaxa 1.4, 108317y,

sanfea puerado ndur peoy )

uonengyuod 1. peo

spuerado o/1 10} 9oeds ayeo0[y )

uoneI3yuod 1,44 1o} aoeds ajesoqy

V Uonnoaxy

Uolo

NAN ‘qe7 di-L08Y ‘ejje) uaing ‘wejed euysiy

"8]qissod se Ajes se saniAnoe
ydyey wuopad ued  auo
0S ‘suofonysul buipaoaid Aue
uo juspuadap jou ale saliAloe
Uole} leyy ajou  ‘I9AeMOH




€6 666L/LL/8 ISN ‘mairey |enuuy vdyvQq NAN ‘qeT dI-10eey ‘ejjel uaing ‘wajed euysiiy

= .
| QW) UOTINDIX ~ @I ]
ﬁw ) HOBNosxy @ 1 [x 940 Ldd 99X
= — —=
- — - \N - - ——
= PoINQLy) \ SIP UONONIISUI YO)9 ] "

UOIINO9XI JO PIOODY

NAN

1
D

Aoudje] ysyo4 Bunysep




¥S 6661/LL/8 DSN ‘MajaeYy |enuuy vduva NAN ‘qe di-10eey ‘ejjel using ‘wejed euysiay|

uonnosxa uoneinbiyuos Bupabbiy Joj sexa By —
suoneinbyuoo Buipeo 1oy suononsul sp| B6jo ‘p| Bjo —
uoljndaxa uoneinbyuod
pue Buiyojay uoneinbyuoo sjdnosep ‘eousH e
UoRINIISUI WOJSNI JO SWI) UORNISXD BAIJDBYS SeINpal —
uaye} Jou S| youeuq JI }S0d eljxa So,c_ Aew } ‘pajejnoads ji —
Ajejes Jailies pawlopad aq ueo —
suononJsul
snojaaid uo juspuadap jou si aseyd oo e

!
9)NnJax3g puy yaja- uoneinbiuos DMZ
P




R

SS 666L/LL/18 OSN ‘malray jenuuy vdiva NAN ‘qe di-10esy ‘ejje) ueing ‘wejed euysyy

Ke.ise 2160 9|qesnbyuodas ay) ul un |euonouny
(woysno) painbiyuoo ©}Ed0||e 0} alaym sapioap Jossasold —

S.0ld3V pajedo)ie AjjesjweuAp ; adIoyo INnQO e

9deds apoado o JojIdwos uo Joedw ou —
Wi 81942 y0edWi PIN0Y ‘x8|dWo9 al0w alempiey seyew —

lossadoud ay) Aq suop j —
suononysul uoneooje(-ap) eoinosal 10} pswinsuod sjiq uononysul —
dy1dads suiyoew ooy sjeb -

19]1dwoo ayy Aq suop j1 —

S}un jeuonouny
Painbiyuos 1oy 2160 9]geinbliuodal Jo uoneso|y e

% D»z
924nosey uoneinbyuoy snueulq )

e EEE———




9S 666L/LL/8 ISN ‘MajneYy jenuuy vdiva NAN ‘qe7 dI-L0esY ‘ejje) ueing ‘wejed euysiiy

suondnJsul peoj puesado Buisn papeoj-aid spuesado —

}J@y0ed uoljonyjsul woysno
8y} Jo Jed Jou ale suopnonJsul Woisnd o} spuesado —

SpueJsado }oldwi Ay suoiONJSUl WOISNY) e

B e ——————————— RIS, :>_z
suononsul wojysny 1o+ sjeulio |
P




LS 6661/LL/8 ISN ‘MalAay [enuuy Yauva . NAN ‘qeT d1I-10edy ‘ejje) uaing ‘wejed euysuy

SUOIONJISUL WOJSND ||e J0J JEWLIO) WOJIUN B )] PINOM S\ e

Sjewuo} Jndinoandu; Alenigse aaey ueo suonoNJIsSuUl Woisn) e

[1Z ‘X ‘[IX 9d0 WOLSND
CA TR €X ‘X ‘I1X VdO WOLSND
D Oallv  do ¥o1dIA

q4ZIs “[1X “ [Ix dO Ldd

sjew.io4 uononasuj ¥

D




85 666L/L1L/8 OSN ‘MalAsy |enuuy vdyva NAN ‘qeT di-10eey ‘ejjel uaing ‘wejed euysuy

spuesado s)| $810}s aje)s 10ssa00.d Jo Wed Yyoiym SMouy| Jiun Wojsno —
payioads Apoldwi spuesado jndur —
9|qissod se Ajies se spuelado jndul peo| —
Alddns ejep wouJj
UOoINJ8Xad UOIONIISUl WO)SNI 8|dNooap ‘@ousH e

s18llies spuesado jndul Ajlddns jou Aym —
Uipimpueq yoja} uononujsul sjoedwi osje —
18p0odap uononisul xajdwoo sueaw suononsul xajdwos —

sjew.o} uononJjsul a|qissod ||e Mojje 0) a|qisesy Jou —

}JoS pauiwlialap-aid e Jou ale SUonRoNASUl WOoISND) e

E—————————————, ., NAN
suononsuj

I
wojsny 404 spuesado poiduy )




65 6661/LL/18 ISN ‘MeiAdY |enuuy YdvQ NAN ‘e dI-Lovay ‘ejjel uaing ‘wejed _uysy)

ZA dLNO DAD
1A dLNO D4D

VdO INOLSND DX DAD e _

& TATTAEX TX IX VA0 WOLSND
€X dNI D4D
ZX dNI_DdD
IX dNI DD |

[N]A 4100 D40
[11A d1nO D40
dO 1dd JFXHd DdD

dZIS dNI_DJAD
[INIX dNI D4

[11X dNT D40 |

e — NAN
SJew.Io0 uonRINSU| WU 1
o

& gzIs A ‘X do 1ad




09 6661/LL/8 OSN ‘melAeYy |enuuy vdyvd

uonesy1oads a1njov)Iyaly
old3Vv

NAN ‘qeT] d1i-10esy ‘ejjel uaing ‘wejed euysyy|

NAN

I
P




19 6661/LL/18 OSN ‘M3jAdy enuuy vdyva NAN ‘GeT diI-L0eey ‘ejje) using ‘waejed euysi)

sjun jeuonouny painbiyuod Buowe 821nosal
2160| 8jqeinbyuooal Buibeuew oy sabeuew 821nosss —

9|l} J8)s1bas uoneinbyuod —

suononJisul woysnd Jo spuesado 1o} Alowsw |eso| —
ayoeo uonelnbiyuoo —

Aeuse 0160| a|qeinblyuosses —

UoISua)xa aAljdepy e

S19YJo |elonss
pue uonionpai uesjooq juaiolys ‘bululadid asemyjos
'S8Yoed pajjosu0d Apiolidxa ‘uonejnoads ejep pue
|01)u0d ‘uonedipaud Joj poddns |einjosyiyole sejesodioou) —

91ModIydIe Jld3 Ad-T1dH uo paseq —
9109 10Ssa20.d Jo Jusuodwod paxiq e

- uoneayroads jeinyosiyoly |

P




29 666L/L1/18 ISN ‘malAsy jenuuy vdivda NAN ‘qeT dI-10eaY ‘ejjel uaing ‘wejed euysiy
9|qeziwoisnd Jou }8s uoionsul —

S9ZIS 43D pue saloWwaW [BI0|
‘$921n0sal 8|qeinbyuodal ale s82Inosal 8|geziwo}snd —

uonduosaep aulyoew Yyoes uj 8zIWwojsnd —
24n)odjIydle paziiejaweled e

9w} aInjoejnuBW Je UMOUY| JOU S}IUn [BUONOUN) WO)SND —

joads ainjoa)iyole ay) Jo ped jou sepoodo
JI8y} pue sjiun jeuoijouny Wojsno JO suoiuya(] e

sjyun painbiyuod wosno
Uo suononyisul Jo uonnoaxa bBuipuadsns/buuabbly —

SHUN wojsnd wouy synsal pasyndwod buuols —
spueiado jndul buiAjddns —
suoneinbiyuoo Buipeo| pue saoinosal Bunesoje —
10OJ SUOIONJISUI MBN e |
RN, NAN
uoneoy12ads [e1n)o291yaiy |

D




€9 666L/LL/8 OSN ‘MalAY |enuuy Yduva NAN ‘qe di-L0esYy ‘ejje) using ‘wajed euysisy

puetado se Ja)sibal uoneinbyuod aye)} suonoN)SUl JSOlN e
sadA} ejep juaiayip Joj SjueLie), e

193s1bal uoneinbyuod e ’pi uoneinbyuod 2)ed0||e J0||e b)o
JluUn wojsnd uo uopndaxa puadsns dsns™ b

Juswinbae 3ndino aAes dyno bp

juswnbJe nduj peoj dui bp

592IN0Sal wiedal pue jun jeuonduny painbyuod a339p I by
(P930IAS 3q J0U ||IM) JIUN [_UORDUN) paINBYUGD AYDRS 31Is bp
uoionJsul woisnod 1abbiy J9X9 bJo

9Yded uoneinbyuod ojul yoyayald Jdp| bp

Al9A1le|ndads ejep uoneinbyuod peoj Sp| b

ejep uoneinbyuod peoj P| b

T Hy 2 rruonduosap | FadAy uononnsui

L —
Suoisusixy jesS uonannsu] qd-1dH

NAN

1
P




¥9 666L/L1/18 ISN ‘MelAsy |enuuy Vduva

sadA} puesado ndino J1oj Msepy woou

Spuetado Indino Jo JaquinN oou

sadA} puesado ndur 1o MSep woiu

SpueJado yndut JO JaquinN olu

9ZIS uoleinbyuo) 9ZIS

uojjeinbyuod painbyuod Ajjenied jo 19sy0 jusun)|  39syo

S0eds ssauppe ssa0o.d u ejep uoreInbyum JO Ssalppe aseg aseq
(31 @sn suoPN.AsUl MaU |je Wwo3snd J10j seljy pID
e ARSI Suniauondidseq) i peY

NAN ‘qe d1I-L0e8y ‘ejjeL using ‘wejed euysiay

NdD

€dd
4,
T4

PA3109yiuoneInbyuoy

)

ST e

o4 191s1bo

Ly RGE

5y

sJaj)sibal uoneinbyuos syepdn/Ados o) SuOlJoNJJsSul |leuonippy e
suoneinbyuod psjenue)sul Jnoge UOHBWLIOUI SBI0)S 44D e
suoneinbyuoo Bunejndiuew oy suononisur mau oy} Aq pasn e
(440) 8)14 1938160y uoneInbyuon : 9Jels 9|qISIA Ajjeinjos)iyoly e

!
uoneon1dads jeinyoayiyoiy




S9 666L/L1L/8 DSN ‘MeIAgY |enuuy Ydyvq

NAN ‘qe dI-10eay ‘BlleL UBING ‘wejed Buys .y

"0ads ainjosyyo.e Jo Hed jou 2160| s|qeinbiyuoosl

J0 aInd8|)IydUe dYloads ‘slels a|qISIA Ajjeinjosjyoie-UuoN e

0'L uoneoyoads aIN1P8)YSIY DdTY oY) Ul UsAID

suoponsul Mau jo abesn aainosal pue Aousie| ‘sjewlo) joexy e

[2lo ur jesyo*aseq) uoneinbyuod | 44 | -

JO plom }xau 8y} peo| AjaAienoads // [clio sp| B -

"ds "uppe ul co_um_:mccoo 144 Jo ssalppe // -~
S! 144 juejsuod ‘uoneinbyuod | 44 peoj s, 144 ‘[glo oo b —

o|dwexy e

Suolsualxy jog uonondysul Ad-1dH

I
P




99 6661/L1/8 DSN ‘MalAsy [enuuy Ydyva NAN ‘qe] dI-10eey ‘ejjeL using ‘wajed euysyy

2IN0aXH

Lttt

sassng 0} spodsuel], purg

. T 5.01ddY

sjup) uonduny o3 suoneradQ purg
! ! [N

saouspuadapuy suruuala(] o1y "dopup

saouapuadapuy suIuLIa(J

P4 - P4

S9ouapuada(] auiuLIR)a( Amoygereq souspuada( auruuRla(
, — 1 {1
Tejeostadng JdziundQ pue pusjuoly
arempley Iordwo)

10SS920.d "SA 49jidwion |

<)




aimonayseljuj 4ajidwon




89 6661/LL/8 ISN ‘MejAdY jenuuy vduva NAN ‘qe dli-1oeey ‘ejjel using ‘wejed euysi)|

SDI1S1121S 3DURWIIO0LIRJ
A
( uone|nwis
A
uonesauab apo)H
N
buiinpayds ssed-1sod
i p— _
uondussap uolled0j|e 32IN0SIY
aulyoep E-ON
\ buinpayos ssed-aug
\I/EW Jld3)
(3Andepy) suoneziwndo  |e
buiddep 12A3]-yBIH
Areign P
uoneunbiuo)) buiuonnied <

A
buissad01d pua-juol4

{

wesboud 3131nos |

se/npoyy J49j1dwio) \\Wv




69 6661/LL/8 OSN ‘Malrey jenuuy vduva NAN 'qe7 d-LOeeYy ‘ejjel uaing ‘wejed euysiy|

suoljejussaidal ajeipawisiu| e

uonodles uopeinbyuoy A

uoieso|je 8dunosal pue Bulinpayos uoneinbyuon A
W} uoneinbiyuoosy M

2160] 8jqeinbiyuosal 0} suoped Buiddely e

Buiuonied epon e

!
sabuajjeys uonejiduwor :Mz
D




0L 6661/LL/8 OSN ‘MajAdY jenuuy vduvQ NAN ‘qe dI-L0e8Yy ‘ejje) using ‘wejed tuysiy

"«dSIY uo m__.o_uosbm:_
pautessuod-awi] Bulinpayss Joy wyiobly jse4 v,ejel 'S ‘linaud'y ‘ wajed-y ‘bBuna'y

310D 210D

Surqiyoxd ySnoxyy sa[oko v

910D m 210D

L/

dSOY

NAN

|
P

suonezjwndo buljnpayss a|qeinbiyuoy




bL 6661/LL/8 DSN ‘MalA8Y |enuuy YduvQ ! NAN ‘qeq d1-10eay ‘ejlel uaing ‘waejed euysuy

, JWII) UOIINIIXI
uoneangyjuo))

U} peoj A
uoneangdyyuo))

NAN

|
D




CL 6661/LL/8 ISN ‘MajAdY |enuuy Yduva NAN ‘qeT] di-10esy ‘ejjel uaing ‘wajed euysi))

10[s peo] Aydwo  pa1,, 03 are[noads 10U Op ZI<<[J I o
91e[noads 01 219YM pUB USYM MOUY O) PIIN] »
| SOUWIT) UONRINSIJUOII SBIA o

JUII) UOIINIIXI
uone.angyguo)

paje[noadg T

Speo’ uoneinbyuo) buieindads




€L 6661/L1/8 OSN ‘MBIABY jenuuyY Yduva NAN ‘qe7 d1-10eay ‘ejje) uaing ‘wejed euysiy|

1931e] yonui s1 g Jo oz1s uoneInSyuod JIondsg
D Se 9ZIs swies sI g Jo az1s uonem3yuod Ji g [ids

YI0MIWBI] UOT)BIO[[B
191S1331 0} PAONPIY

JOSS3201] uoigal
‘ oSuer-oarf | |
_ T SurddezonQ N |
—
A[snoaue)nuus ) — —
suonemgyuos D q
oMm) AJuo
3)ePOWIIOIIL URD UOIINIIXI JO PIOIAY

0130[ 9]qeINSIJU003Y

suoneinblyyuoo 104 uones0o|E 821N0S0Y I

P




¥L 666L/LL/8 OSN ‘MalAdY |enuuy YduvQ NAN ‘qeq dI-10eey ‘ejje) ueing ‘wejed Buys|I)

198.1e[ yonw s1 g Jo azis uonemsyuoo Ji 5 dg : _
O Se 9zIs Jwes s g Jo 9z1s uonem3uoo Ji g (ids

abesn pue sezis uoneinbyuos uo paseq aznuonud — _ _
suoneinblyuoa Justayip 10} Jussaylp S}S0d peo] —
(sbuiddew Buifypowr-jjas ou) |pids 03 pasu oy — _
siojowiesed MoON e _ _
wajqo.id uoneoojje 1a)sibal 0} sajejas Ajooaq e _

sabuey aAI7 uoneinBiyuoy e

:Mz
o




S, 0ld3V 404 sjuswasueyusy
uondiiaosaqg auiyoepy




9L 6661/LL/8 ISN ‘MelAdY [enuuy Vdiuva NAN ‘qe7) di-Loeey ‘ejje) ueing ‘wejed euysiiy

‘sginpow (Ja1dwo?)

|leuld)xa 03 sadepsyul Asanb jusioiys poddng

"0}O ‘SI9[8POW-IS0D ‘SIBILIBA ‘SIOJRINWIS ‘SI9|qUUBSSE
91| |00} JOo uonesauab onewojne poddng
'Salnjos)liydle Jo

AyaLieA spim e Jo uopneoyioads mojje jsnw abenbue

'Jo8)IyoJe J0ssao0.d pue
19)um Jsjidwod Aq yjoq Aypow/puelsiapun 0} Aseg

i48]1dwo2 8y} ul suiyoew
Jnoge suondwnsse uj jing oN : Aljigelebiejay

NAN

P




LL 666L/LL/18 ISN ‘Mejaey |enuuy vduva NAN ‘QeT d-LOrey ‘ejiel uaing ‘wejed euysuy

Ja|iIdwod ay}
0} ¥S| buibueyo (swp sidwoo Buunp) AjjesiweuAip e
apinoid pinoys wsiueyosw uonduosep sulyoew ay| e

92.inosal 2160| 8|qeinbyuodal ay} 0} 8ouBIUI [EUISIXE UB —
824nosal a|qeinbijuodal aquUasap o} Ajjige ue —

opinoid pinoys 11 ‘10ss8001d 9|43 ue Joj uondiuosap
aulyoew e Jo palinbai s| jeym o) uoppe uj e

S.0ld3 aAndepy 4oy sjusawaliinbay |

P
-

NAN



8L 6661/LL/8 DSN ‘MalAaY jenuuy Ydyva NAN ‘qe di-1oeay ‘ejjel ueing ‘wejed euysyy

so[yy dejdwd) uonean3yuod wouj %

{8:8X" " ‘8:TA‘S 1K

S ‘I8XTTTUSITXUS IX CLOdI
{91 ‘p¥S} HH 88:X ‘8°8:X ‘1LOAI}
«$9Y 10a| sjewlso4 O/ LOdl

Aewwng AousjeT | Ol

A

{uy sAs 10al ‘wuy aisia”Loaid

{0014 TeubisTqr ]
‘be|4 nsu|” woisn) } udo 104l

T 1

uonesadQ 19d|

NAN

|
P

‘PIUOI) suoisud}xg pasodoid




6L 6661/L1/8 ISN ‘Mmalady [enuuy Ydyva

$I0 DHAXHE 9HID

TIX ‘TID dNI 54D
daay ‘zao @1 94D
€X ‘Zax TD°1S

ZI ‘Tx day = 14
ZI TA°ZO°M°T = 12

NAN ‘qeT] dI-10eey ‘ejiel uaing ‘wajed euysu)|

T 2€ 82T HHOVUD D

Z 8CZT $#9 SWYIVYd VTY

Z SLINN LVO'Id

Z SLINO INI
¥9 HZIS ¥dd
¥9 HZIS d¥D

NAN

P




08 666L/L1L/8 OSSN ‘MaiAsy |enuuy vduva NAN ‘qe dTi-LOeaY ‘ejje] uaing ‘wejed euysuy

Sa|y-uoneinbiyuod o0} sisyuiod aq [|Im sabesn

92JN0saJ UoiONJISUI WOISNI ‘SUOONIISUl 8SBJ )IjU)
Aepwis

P3ajpuey 8q ||Im suofoniisul 8seq pue SuoidNJSul oSN e

S.0ld3 aAndepy 1oy suoisua)xy S3AW




Aewwng




C8 6661/LL/18 ISN ‘MajAeYy [enuuy Yduva NAN ‘Qe d1-L0ee8y ‘ejje) ueing ‘wajed euysuy

(sj00} Jayjo pue) Jajidwood Joj Yred uonelBbiw Ases —
uoljelojdxa jesnjos)iyole oy Aiessadau —
ANjige)abie)al Jo) suonduosap aulyoey e
swajqoud uoneziwndo umouy ||om 0} pajejal 8q Ued uoijedo||e
pue Buiinpayos uoneinbiyuod se yons swajqoud Joyjo —

paseq Aseiq|| Ajjuaaind - poojsiapun Apood
Inq Juepodwi Ajpwanxs : buiddew pue Buiuoniued sewoine —

suofeziwndo Jajidwod oyads Bunndwod aandepy e
salnjoa)iyole s|dwis —
|oualadxa 47| Jo yjjeam abesans| —
uonedwod UmamEQ:m Joj Ajrejnuedsb jybu ayy 1 —

SOId3av e

e ———————— NAN
, Aewwng v : s,91d3Y 1
P




suonoaliq ainin-




Ve GBBLILLIE SN ‘MOIAGY eRULY VdNYQ NAN ‘G dI-LOERY ‘Elje] UsIng ‘wiejeq euysyy
suofjelleA S3QIN 0} sjdepe JuswuoliAUS uone|nwis —
uoisua)xa anjjdepe uo uonndaxa o} oiads sonsnels Joyeb —
buuoyuow souewlopad pue uonenws ‘uoneNWIS e
| Aseiq) uoneinbiyuod o) syooy —
Sainjesy [ednjosiiyole J|d3v Ym SIAIN pusixe —
Miomauwely uonduosap aulyoey e
S3AWN Aq pazusisweled aq 0) wm_:coE uoneziwndo —
Yoegpaa) ajijoid asn 0) Ummc sa|npow uoneziwndo —
(onewojne-jwes) buiddew pue Buiuomiped spoe} —

suonezjwndo uoneosojie/bulnpayos
uoneinbiyuod |e1aAas ajepijeA pue ajelodiooul —

suoneziwndo Ja|idwod oyads D|day e
S.0Ild3V 104 yiomauwei sajidwio) \\Wg




S8 6661/LL/18 ISN ‘MalAsy |enuuy Yduva NAN ‘qeT di-1oedy ‘ejje] uaing ‘wejed euysuy)

dd-1dH Ui se sayoeo Jo [013u0d }o1jdxa puoAaq saob —
Sayoed ajqes|jew ‘o16oj |ou0d ayoeo aAndepe —
(syun jeuonouny Jo uoneziwol}snd
}snljou) ainjosjiyole jo seale Jayjo ul Auandepe aiojdxg e
}oduu0dIB)UI AloWwBWw-10SS820.1d Ul SUOIIBAOUUI SPOBU —

souewJopuad Josseoold ssiel pue 2160| ajgeinbiyuoosal enxe ppe
aouewlopad Alowaw aaoidw 0) pappe s| NVY eljxe se jsn[ —

S.Old3V 9IQeJeds 0] [spowl DIV pPudlxy e
$8100 J|d3 0} Joadsas yum aouewlopadsoo asedwos —
Jld3V Ul $8103 J|d3 JO pes)sul sal0d ISy 10 S ash —

$8100 OSI14/dSA Yim siabie) sandepy e
., NAN

$8.4Nn)29)1Y2.1Yy \\Wv




98 6661/L1/8 DSN ‘MelAdYy |enuuy Vdyva NAN ‘qe7 di-1oeay ‘ejjel using ‘wajed euysyiy

swa)sAs pappaquwa ui yoedw ybiy Joy jenusjod —
Jamod/aouewuopad 1oy auny —
sulewop uoneoldde oyoads 10} ainjo8yIyoLe aun) auly —
ubisep-02 ainjoa)yole-sa|Idwo) e
Jybltam pue azis ‘Buiwg : SJUIRLSUOD JIBY)O  ®
uoijejdepe aAfIsuas Jamod d|qeua 0} sjusWBdURYUS [eINjOB}IYOIE PoaU —
mc__zﬁmcow IAllISUSS Jomod 10§ |njBsn uoljewliojul —
Alpuauy 1emod ale jey) suoeuIqUIOD UOIONIISUI 1O} SOLJOW pasu —

guoneojdde uaaib e 1oj Jamod
(mo)) jewndo swnsuod 0} ainjoa)yale jdepe 0} senbiuyos} dojaaap am ued —

suleb aouewuopad spiemo) paseab uoneidepe jsow ‘iej os —
uojjeydepe aAlISUSS JOMOd o

sjulrenysuo?) buibiawiz 1
M




18 666L/L1/18 DSN ‘MmelAsY |enuuy YduvQ NAN ‘qeT di-L0oeey ‘ejjet using ‘wajed euysyy
suoljezjwido sAl)isuas eale/lomod Joj suonejouue —
Sjuleljsuod Buiwip sjpuey o) —
(Y1) suonejussaidal sjeipawisiul 0] SUOISUBIXT e
9-V| 404 siojelsuab apod “Ho —
S81NJ08}IydJe [eloJawwoD Jobie] e
uonjeziwolisnd oloads ulewop —
" ‘esa)y ‘xullix Bunebie) oy sj00) aynol pue aoeid 0 yied —
sajewyss Jamod ‘eale J0j —
sjeble} uelew) 1o} suonduosap |einjonss BojusA/TQHA —

("yos | e1bi1oag yym) ubisep-0o ainjos}yole - lojidwon e
ainjonJjselyul Ja)idwod ayj ojul jing Ajljiqe)abiejes —
Alpides suopeuen s3I eiesauab o) Asea —

|ESPI [8pOW |BJnjO8)iydJe pue ainjonJjSeljul uejewl| e

e e e — NAN
aimonyseyuj saj1duwion 1
D




Arewwunsg




68 6661/LL/8 OSN ‘MajAsy |enuuy Ydyva : NAN ‘qeT dI-10eey ‘ejjel uaing ‘widjed euyspyy

|opow D|d3V pauidwis Joj S}s8) 8ouewlopad psjonpuod —
S10ss8201d J|d3 J0) ainonyisequl JoIdwod pases|ay e
suononJjsul [eand swiy Buinpayos 1o} swypobie padojorep —

sydelb ajeipswiisiul Uo
Sjuieljsuod 0} suoljedlyioads juleljsuod (awiy) 82Inos a)e|suel) —

awl) BuiAjioads 10 D-awi| padojors(q e
SJuleJisuod awl} pauoads Jasn Jepun —
suoonJsul Aouaje| buoj Jo soussald ay) ul —
Buiinpayos uononJjsul 1oy swylioble Juaoiyg e
sl0ssao0.d O|d43V 186.e) 0} yuomawel) uonduosap
aulydeuw jusaiind 0} SUOISUB)Xd d|geyns Jo ubisap |eu] e
0160] a|geinbiyuooal Yyjim papus)xa
S10Ss8204d 9|43 J0} sjopow Jajidwod padojaraq e

I NAN
SJUDWIBABIYIY [RIIUYID | 1
P




06 666L/LL/8 DSN ‘MalAdYy [enuuy YdyYQ NAN ‘qeq dI-10e8y ‘ejje] uaing ‘wajed euysiy

(suop aq 03) buiddew pue Buluonued —
Buiwnp —
SjuleJjsuod buissaldxs 1o} UoRION e
uolnjenoads ‘6 suoneziwndo Jajidwos —
sayoeo uoneinbiyuod —
uoneinbyuod olweuAq e
uonejidwoo jsej —
sjuswano.idwi souewsopad jo jooid —
lossao0ud oujaweled |einau JOPUsSA —
19)1dwod Buiziwndo uispow e Bunabie) 10) |SPOIN e
T, NAN

Aunwwo? ayj o} yoeduwy 1
M




16 666L/LLI8 OSN ‘me|AeY jenuuy Ydiva NAN ‘qe d1i-10e8y ‘ejje) using ‘wejed BUYS)

npe niuso djr-joesl

CO00T AN ‘JIox MON
‘AR MPROIG G/

AJISISATU ) NIOX MIN
d TI=LO'=2d

NAN

I
P

uoneuwiojuj JoeJUOY




