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SOME RECENT RESULTS ON DISCRETE VELOCITY MODEL AND RAMIFICATIONS 

FOR LATTICE BOLTZMANN EQUATION* 

LI-SHI LUO+ 

Abstract. Some rigorous results on discrete velocity models are briefly reviewed and their ramifications 

for the lattice Boltzmann equation (LBE) are discussed. In particular, issues related to thermodynamics 

and ff-theorem of the lattice Boltzmann equation are addressed. It is argued that for the lattice Boltzmann 

equation satisfying the correct hydrodynamic equations, there cannot exist an il-theorem. Nevertheless, 

the equilibrium distribution function of the lattice Boltzmann equation can closely approximate the genuine 

equilibrium which minimizes the iJ-function of the corresponding continuous Boltzmann equation. It is also 

pointed out that the "equilibrium" in the LBE models is an attractor rather than a true equilibrium in the 

rigorous sense of .H-theorem. Since there is no .ff-theorem to guarantee the stability of the LBE models at 

the attractor, the stability of the attractor can only be studied by means other than proving an F-function. 

Key words, discrete velocity model, Boltzmann equation, lattice Boltzmann equation, thermodynamic 

consistency, iJ-theorem 
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1. Introduction. Although the method of the lattice Boltzmann equation (LBE) was developed only a 

decade ago [30, 8, 35], it has attracted significant attention recently [2, 9]. There has been a substantial body 

of evidence accumulated validating the LBE method as a viable alternative to simulate hydrodynamics of 

simple fluids [28, 18, 38], and complex fluids such as multi-phase fluids [29, 17], suspensions in fluids [34], and 

visco-elastic fluids [15]. The lattice Boltzmann equation was introduced to overcome some serious deficiencies 

of its historic predecessor: the lattice gas automata (LGA) [13, 40, 12]. The lattice Boltzmann equation 

circumvents two major shortcomings of the lattice gas automata: intrinsic noise and very limited range of 

transport coefficients, both due to the Boolean nature of the LGA method. However, despite the notable 

success of the LBE method in many computational applications, a thorough theoretical understanding of 

the LBE method within the framework of kinetic theory has been neglected by and large in the LGA and 

LBE research community. One reason is that many people in the community hold the viewpoint that the 

lattice Boltzmann equation is a derivative of the lattice gas automata, and they also ignore the theoretical 

connection between the lattice gas automata and the kinetic theory of the discrete velocity models (DVM). 

This narrow viewpoint isolates the lattice Boltzmann method from other kinetic models and classical theory, 

and is still predominant among researchers in the LBE and LGA methods (see, for instance, Ref. [36, 10]). 

It was only very recently that the formal connections between the lattice Boltzmann equation and the 

continuous Boltzmann equation [19, 20, 1] and other kinetic schemes [41, 23] were established. 

It is interesting and important to note that there was indeed an interplay between the lattice-gas au- 
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tomata and lattice Boltzmann equation [12, 11] and kinetic theory of the discrete velocity models in the 

beginning of the LGA/LBE methods [6, 7]. From the very beginning the LGA and LBE methods put the 

emphasis on hydrodynamic simulations [13, 12]. Therefore, isotropy, Galilean invariance, dissipation and 

dispersion, and consistent thermodynamics were the central concerns to the founders of the lattice gas au- 

tomata [12, 11], nevertheless they were not the focus of those interested on kinetic theory of the discrete 

velocity models. The early work of the lattice gas automata in fact inspired some work related to these 

issues in the field of DVM [6, 7]. However, the question related to the thermodynamic consistency of the 

LGA and LBE methods remains unanswered. In particular, there is a large gap between the theory and the 

application of the methods: there is not much rigorous mathematical work in kinetic theory directly related 

to the lattice gas automata or the lattice Boltzmann equation, and yet, many practitioners who use the 

LGA and LBE methods in various applications either simply believe in the methods and ignore the issues, or 

make claims on the basis of "better physics". One purpose of this review is to re-emphasize the importance 

of theoretical issue concerning the thermodynamic consistency of the LGA and LBE methods, in particular, 

the iJ-theorem of the lattice Boltzmann models. 

Recently it has been explicitly shown that the LBE method is a special finite difference form of the 

Boltzmann equation [19, 20]. The lattice Boltzmann equation is obtained by discretizing the velocity space 

into a small set of fixed discrete velocities, and then by discretizing space and time according to the discrete 

velocity set to form a lattice structure. The lattice Boltzmann equation is related to the discrete velocity 

model of the Boltzmann equation in the sense that the LBE is, first, DVM with finite discrete velocities, and 

second, with fully discretized space and time tied to the discrete velocity set. Therefore, LBE is a discrete 

approximation of DVM. It should be stressed that the discrete velocity set in the lattice Boltzmann equation 

is obtained by enforcing the conservation laws of the system through quadrature in velocity space such that 

the discrete velocity set is sufficient to preserve the conservation laws exactly [19, 20]. Because of the close 

connection between DVM and the LBE method, the results on DVM should have significant relevance to 

the LBE method in theory. 

One early discrete velocity model was due to Broadwell [4, 5]. There is a vast literature on the subject of 

the Broadwell model (see, e.g., [14]). The Broadwell model only has a very small set of discrete velocities and 

yet it can produce shocks and acoustic waves. It serves as an interesting mathematical model in statistical 

mechanics. Previous research on DVM has mostly dealt with models similar to the Broadwell model but 

with more and more complicated collision terms involving more and more particles. This type of DVM 

departs from the field of the Boltzmann equation significantly, and has developed into an interesting subject 

by itself. Only about a decade ago, DVM with a large number of discrete velocities and only two-body 

collisions started to attracted some attention [16, 21]. With a large number of discrete velocities (> 103), 

DVM becomes an accurate approximation of the Boltzmann equation [16, 21]. 

In recent years there has been some rigorous work on DVM to prove the convergence of DVM to the 

Boltzmann equation [3]. We believe these rigorous results on DVM have important implications for the LBE 

method. In next section, recent results of research on DVM are briefly reviewed. There is a vast literature 

on the subject of DVM, and the review presented here is not intended to be thorough or exhaustive. We only 

summarize the important results which we believe to be relevant to the lattice Boltzmann method. In Sec. 3 

the ramifications for the lattice Boltzmann equation, especially for the thermodynamics and .fiT-theorem of 

the LBE, are discussed. Sec. 4 concludes this paper with some comments and discussion. 

2. Some Recent Results on Discrete Velocity Models. In this section, the DVM with an infinite 

number of discrete velocities on Z£> (with lattice spacing h) is described. The theoretical results concerning 



the consistency of the DVM on Z° is reviewed. The DVM with a finite number of discrete velocities is also 

discussed. Finally the thermodynamics of DVMs is briefly presented. 

2.1. Discrete velocity models on Zf. We start with the Boltzmann equation: 

(2.1) dtf + t-Vf = Q(f,f), 

where / = f(x, £, t) is the single particle distribution function, x, £ € RD, D is the dimension of the space, 

and Q(f, /) is the bilinear collision integral: 

(2.2) Q(f, f)= f dU     dC Va(V, C) [/(O/fci) - /(0/Ki)] 

where a(r], £) is the differential collision cross-section, T] = |JJ|; £, £j and £', £j are pre-collision and post- 

collision velocities, respectively: 

(2.3a) £'=i + L + C.K-«il 
2 '       2 

(2.3b) £ = i + !i_C]izJii, 

(2.3c) 7? = ^ - li. 

The conservation laws of momentum and energy impose further constraints on velocities £, £x, £', £j, rj, and 

c 
The velocity space £ can be discretized into a regular cubic lattice with lattice constant h such that the 

Boltzmann equation becomes: 

(2.4) 6tfa(x, t)+Sa-Vfa(x, t) = Qih)({fß}), 

where fa(x, t) = f(x, £a, t) is the distribution function in the discretized velocity space {£Q}, and 

£a G Zj? = KLD = {h (i, j, k)\i, j, k = 0, ±1, ±2, ±3,...} . 

The collision integral in velocity space reduces to a quadrature on Z^: 

(2.5) Q™ =    J2   *Z\SiU-f°fß\> 

where the summation is over a subset of discrete velocities which satisfies the following conservation condi- 

tions: 

(2.6a) $a + $ß = £7 + £„ , 

(2.6b) d + ^ = ^+^> 

and the collision probability possesses the following symmetry: 

{*■<) laß - llß  ~ l ßa ^ U- 

With the assumption that there exit no spurious conserved quantities, it can be shown that the DVM of 

equation (2.4) possesses many properties of the Boltzmann equation, such as conservation laws, an if-theorem 

with a Maxwellian equilibrium, and so on [14]. 



2.2. Consistency of DVM. The DVM with a countable discrete velocities on a regular lattice space 

Z% is considered as approximation to the Boltzmann equation. Consistency of the DVM with the Boltzmann 

equation means that the DVM collision operator Q^ on Zf converges to the Boltzmann collision integral 

Q(f, /) on MD as h —> 0, for any reasonable function /. 

If the following properties of the DVM collision operator are postulated: 

1. Bilinearity (only binary collisions considered); 

2. Translational invariance on the lattice space %%; 

3. Invariance under reflection £a —> — £Q; 

4. Local conservation laws of mass, momentum, and energy; 

5. Microscopic reversibility: the transition probability between two states satisfies 

(2.8) P((£a, £ß) - (C $)) = P{(-&, -?ß) - (-*Q, -€/,)); 

6. Qa = Q+ - Qä, Qj > o, Q- = 0 iff /a = 0; 

then the following Lemma for the uniqueness of Qa   can be proved [33, 3]. 

LEMMA 1. The above specified properties uniquely define the discrete collision operator Qa , of {£a} € 

l?h> with an accuracy up to a function A(£, rj) [= A{—C, rf) = A(£, —rf)], where (, and rf are two orthogonal 

vectors in 1?h. Specifically: 

Q(f, f)\i=ia » Q20 = h3   ]T   A(ip, Q [fa+ßfa+-y " fcU+ß+J 
{/3,7} 

(2.9) =  E *%[fiU-fM, 
{/3,7,M} 

where iß-^ = Q, and T^ß = T^ß{A). 

Furthermore, the convergence of Qa to Q(f, f) in three-dimensional space is proved in the following 

theorem [33]. 

THEOREM 1. Let a(rf, <) be such that ö = a(r\, C/v)/v2 € Ck, and f £ C£(ffi3) with supp(/) C 

B(0, R/2) for some R > 0, for k < 6. T/ien /or every poini in i/ie three-dimensional discrete velocity space 

£a e 2?h, we have: 

(2.10) \Q(f,f)-Q(
a
h)\<c(e,k)\\f\\lR5h^-\ 

where 

k 

nil x 

1=0 \a\=i 

Furthermore, for sufficiently smooth function a and f, the exponent y|g can be improved to -JJ.  The exponent 

can be further improved to h by Ramanujan's conjecture. 

Similar results can also be obtained in two-dimensional space [37]. 

The key to prove the above Theorem relies on the proof that the solutions of Diophantine equation, 

g + £ + --- + &=m2, Zi,m£Z, 

are uniformly dense on the sphere of radius |m|, as \m\ —* oo.  It is interesting to note that this number 

theoretical result was only obtained as recently as 1987 [22]. 



2.3. BGK DVM with a finite number of discrete velocities. The DVM of the BGK Boltzmann 

equation is given by: 

(2.11) dtfa + $a-Vfa = -j[fa-fW], 

where the collision integral is approximated by a single relaxation parameter A. The BGK model equation 

is widely used in the LBE method [8, 35]. The following theorem is for the DVM of the BGK Boltzmann 

equation with a finite number of discrete velocities [31]. 

THEOREM 2. Let the total number of £a be N > {D + 2), and JV» > 1 V t = 1, 2, ■ • •, D, and 3 i such 

that Ni > 2, and if Eq. (S.ll) with strictly positive initial values has a solution f = (/i, • • •, fa, ■ ■ ■, /AT) , 

then it can be formally proved that: 

(2.12a) /a>0, V a, x, t, 

(2.12b) fi0) = exp(o • ha), Va, 

(2.12c) dt{hfa)+V(£ahfa)=0, 

(2.12d) dt(fa log /a> + V(£Q/a log /a) < 0 , 

where (•) = J2a> ha = (1,&*,1, •" ,ta,D,t,l)r, and the vector a G RD+2 can be uniquely determined. 

The above Theorem states that, for a discrete velocity set of a minimum number of discrete velocities 

equal to (D + 2), which is also equal to the number of conserved hydrodynamic moments in £-space of fa 

in £>-dimensional space, satisfying certain symmetry criteria, then the DVM has unique positive solution 

such that the equilibrium is a Maxwellian, the hydrodynamic moments form a hyperbolic system, and there 

exists an if-theorem, provided that the initial data for fa are strictly positive. 

It is interesting to note that the DVM with a finite number of discrete velocities and the LBE models 

share a common feature that they all have a small number of discrete velocities. However, the DVM evolves 

on a continuous space and time whereas the LBE on a highly symmetric discrete space and time. This 

difference has some significant consequences. 

2.4. Thermodynamics of DVM. In general, one can prove that, for the DVM satisfying certain 

conditions mentioned previously, there exists an .ff-Theorem, with a Maxwellian equilibrium: 

l(£a-^)2" (2.13) /<;0) = eexp 
2     RT 

The parameters g, u, and T in jl0) are related to, but are not equal to, the hydrodynamic moments of fa: 

(2.14a) P=J2hf" = Y,hf"0)' 
a a 

(2.14b) Pv = J2h^^ = JLh^fL0), 
a ex 

(2.14c) pe = \ J2 h\Za ~ v\*fa = i £> |€a - v\2W . 
a a 

The relationships between the parameters g, u, and T and the hydrodynamic moments p (density), v (flow 

velocity), and e (specific internal energy) are one-to-one in general. Moreover, in the limit of h —> 0, it can 

be shown that (see details in Appendix A): 

1. For the density, g -> p(2irRT)'0'2 + 0(e-^lh'i), as h -» 0. 



2. For the velocity: pv = (£Q) = pu iff u € Zf, otherwise 

« = ^ + 0(/l-
1e-7r2/''2); 

3. For the temperature: 

(2.15) e=^-RT^{z), 

where z = h/\/2RT, and 

2 

+°°     fn^2ft-(n*)2 
y+°°     (nz)2e 

(2.16) VW = 2-       +oc • 

The function ?/>(z) has the following property: 

(2.17) Mm 4>(z) = lim i/)(z) =  lim V>(z) « 1 + 0{h-2e-^'h2). 
y ' 2 —0        V     ' h->0 T—CO 

Therefore, with a fixed /i, the thermodynamics of DVM differs from the continuous thermodynamics of the 

Boltzmann equation at low temperature limit z = h/\/2RT -> oo. The coincidence of the thermodynamic 

properties between DVM and the Boltzmann equation only occurs at the hight temperature limit z = 

h/y/2RT -> 0. Furthermore, the discrete thermodynamics of DVM has a smooth transition to the continuous 

thermodynamics of the Boltzmann equation as h -> 0 [3], with an exponential speed of convergence (see 

Appendix A). 
The above results imply that the collisions in DVM lead to the equilibrium of the parameters u and T 

in the Maxwellian, but not the hydrodynamic moments v and e. In addition, DVM is only partially Galilean 

invariant (only on Z£), as expected for a lattice velocity space. Moreover, it can be shown that for any 

DVM (independent of specific collision operator) with a finite number of velocities, the macroscopic velocity 

v in the system is bounded by the discrete velocity set: 

(2.18) min£~ * < Vi < max£Qji. 

Similarly, the "temperature" T is also bounded in a range determined by the discrete velocity set: 

(2.19) -^ mm \ia -v\2<T<^ max ßa - vf . 

The upper and lower bound of T are determined by the maximum speed and the resolution of the discrete 

velocity space of the system, respectively: 

(2.20) Tmax ~-^ max |£a|2 , Tmin ~ jj^^f\^c, ~ ^l2 = p^h2 ■ 

It is very apparent that the thermodynamic properties of the DVM with a small number of discrete velocities 

are significantly different from that of the Boltzmann equation. 

3. Consequences for the Lattice Boltzmann Equation. The LBE method is mainly applied to 

simulate hydrodynamic systems. So far the LBE method is only successful in simulations of athermal 

fluid flows. In order to construct viable LBE models for thermal fluids, it is essential to understand the 

thermodynamics of the LBE models. Furthermore, the existence of an F-theorem for the lattice Boltzmann 

equation still remains an open question. The issues of the thermodynamics and .ff-theorem for the lattice 

Boltzmann equation are next addressed and discussed in light of the above results on DVM. 



3.1. Thermodynamics. The above results on DVM have several immediate ramifications for the 

lattice Boltzmann equation. First, because the LBE method uses a lattice in physical space which is coupled 

to the discrete velocity set, the system evolves on a lattice in discrete time. The LBE dynamics which is 

dictated by the symmetry of the underlying lattice inherently possesses some spurious conservation laws. 

Obviously, in order to eliminate spurious conserved quantities due to the lattice symmetry, the minimum 

number of the discrete velocities, (D + 2), must be increased. 

Second, in the LBE method, the equilibrium distribution function /^eq) is a second order Taylor expansion 

of the Maxwellian [19, 20], such that v = u, the equations of state are P = pRT and e = § RT. Consequently, 

the thermodynamic consistency of the system is sacrificed. Specifically, the lattice Boltzmann equation does 

not satisfy Eqs. (2.12) — there is no positivity of the solution, nor the hyperbolic system of equations for 

the hydrodynamic moments, nor an iJ-theorem. 

Third, since there are only very few discrete velocities in LBE models and the resolution in velocity 

space is rather coarse, the temperature range becomes very narrow. For example, for the 9-velocity LBE 

model on a two-dimensional square lattice, 

i < T(x, t) < 1, 

where we set R = 1 and assume u = 0. This severely limits the possibility of applying the LBE model 

to simulate thermo-hydrodynamics. It may also explain the numerical instability observed in many LBE 

thermal models. 

3.2. fl-theorem. Recently, there have been several attempts to prove an iT-theorem for the lattice 

Boltzmann equation [25, 26, 39, 24]. So far, no one has proven the ^-theorem for the LBE systems which 

have the correct hydrodynamics. This is consistent with the above rigorous results on DVM, because, by 

using a second order Taylor expansion of the Maxwellian as the equilibrium, the positivity criterion of the 

system is no longer strictly satisfied. Consequently one cannot obtain an üT-theorem. This conclusion 

also emerges from an analysis of recent work attempting to prove an iJ-theorem for the lattice Boltzmann 

equation. 
First, in reference [25], it is shown that the equilibrium distribution given by quadratic form: 

(3.1) ^=EMR+e-w)2' *4(i+^ 
where M = u/cs is the Mach number, and b is the number of discrete velocities, minimizes the following 

entropy function: 

(3.2) S = -£/3/2. 
a 

An .^-theorem was proved for the under-relaxed lattice BGK Boltzmann equation when the system is 

spatially homogeneous. It should be noted that the equilibrium given by Eq. (3.1) cannot lead to the correct 

Navier-Stokes equations, because Galilean invariance is lost. Furthermore, the H-theorem for spatially 

homogeneous lattice BGK system can be easily obtained without using the elaborated method employed in 

Ref. [25]. 
Subsequently, in reference [26] it was shown that an auxiliary equilibrium which is linear in (ea ■ u) can 

be used to minimize an entropy function S = - £„ /£■ The (linear) auxiliary equilibrium is then extended 

(extrapolated) to a "target equilibrium" which includes higher order velocity-moments (fluxes) such that the 



hydrodynamic constraints are satisfied. Then for the distribution function /„ of which the velocity moments 

are equal to that of the "target equilibrium" up to a given order, a global if-theorem can be obtained for 

a system with proper boundary conditions, such as periodic one. We note that one does not have a local 

//-theorem in this case. 

In reference [39], it was shown that, assuming there exists a convex function ha such that 

(3.3) fieq)=h'-l(a + b-ea + cel), 

where a, b, and c are Lagrange multipliers, then for the under-relaxed BGK LBE model, a global H- 

theorem can be proved. As for the usual lattice Boltzmann equation, it is shown that for the same ha 

the local equilibrium distribution function fieq) has to be a quadratic polynomial, similar to the result of 

reference [25]. Furthermore, there exists no F-theorem for the equilibrium distribution function (a second 

order polynomial in u) commonly used in the BGK LBE model, whereas for a Maxwellian type equilibrium 

distribution similar to the one for DVM, there is an if-theorem. However, such an equilibrium cannot lead 

to desirable hydrodynamic equations exactly. 

In a most recent work concerning the if-theorem for the LBE models [24], it is shown that an exponential 

type (Maxwellian) equilibrium of the Lagrange multipliers due to the conservation constraints can minimize 

a Boltzmann type entropy function 

(3.4) H=J2fa Mwc fa) - Ca] , 
a 

where wa and Ca are constants. In the low Mach number limit up to second order in u, the expansion of 

the Maxwellian-type equilibrium coincides with the equilibrium of polynomial type which leads to correct 

hydrodynamic equations. Incidentally, this result is similar to the result for DVMs, as discussed in the 

previous section. We also note that the equilibrium obtained in [24] can be obtained by discretization of the 

continuous Boltzmann equation by the procedure described in [19, 20]. 

In summary, the results in Refs. [25, 26, 39] clearly lead to the same conclusion that an if-theorem does 

not exist for the BGK LBE models with the equilibrium distribution function taken as the second order 

polynomial in u which yields the hydrodynamic equation only up to the second order in u in the low Mach 

number limit. Furthermore, the choice of entropy function, if exists, is certainly not unique for the lattice 

Boltzmann equation. Also, we cannot help but to note the fact that the aforementioned work on proving 

if-theorem for the lattice Boltzmann equation has no practical impact to the application of the LBE method. 

It is worth noting that there are two salient features of the LBE models which distinguish the LBE 

models from DVMs: 
1. The discrete space and time of the LBE models may lead to spurious conservation laws; 

2. The equilibrium distribution function used in the LBE models is a low order Taylor expansion of 

the Maxwellian distribution function. This compromises the positivity condition which is necessary 

for the proof of an iJ-theorem. 

Therefore, in light of the above rigorous results on DVM and the relevant results on the LBE method, it can 

be concluded that there exists no ff-theorem for the LBE models of which the equilibrium is a polynomial 

in u. Although Eq. (2.11) clearly implies that fieq) is an attractor of the LBE system, it is definitively 

not an equilibrium in the sense of an .H-theorem. It is important to recognize the distinction between an 

attractor and an equilibrium that an attractor only possesses local stability under certain conditions, whereas 

an equilibrium has local as well as global stability guaranteed by if-theorems. Nevertheless, since /a
eq is 

obtained through the Taylor expansion of the true equilibrium — the Maxwellian [19, 20], /a
eq  may remain 



close to the genuine equilibrium if the expansion parameter (usually the Mach number) remains small. Since 

one cannot rely on an H-theorem to guarantee the stability of the LBE method, one must use other means 

such as linear analysis of the evolution operator of the LBE models to study the stability of the LBE method 

[27]. 

4. Conclusion. The discrete velocity models of the Boltzmann equation with continuous space and time 

lead to a hyperbolic system of equations for the hydrodynamic moments, a unique Maxwellian equilibrium 

distribution function, an if-theorem, and positivity of the solution of the initial value problem. The collisions 

in DVM lead to the relaxation of the parameters in the Maxwellian equilibrium, but not the hydrodynamic 

moments. This implies that the equations of state in DVMs are different from the equations of state in 

the Boltzmann equation. Nevertheless, when the lattice constant of the discrete velocity space h -» 0, 

solutions of DVM in Zjp converge to solutions of the Boltzmann equation: DVM in Z^ is consistent with 

the Boltzmann equation. 

In contrast with DVM, the dynamics of the lattice Boltzmann equation with a small set of discrete 

velocities evolves on a highly symmetric lattice space with discrete time. In addition, the so-called equilibrium 

distribution function used in the LBE method is usually a low order Taylor expansion of the Maxwellian, 

if one wants to accurately simulate hydrodynamics. These features of the LBE models prevent them from 

possessing an H-theorem or a consistent thermodynamics in a rigorous and theoretical sense. This is also 

confirmed by recent work attempting to prove an .ff-theorem for LBE models [25, 26, 39, 24]. Since there 

is no H-theorem (or consistent thermodynamics) for the LBE models leading to the correct hydrodynamic 

equations, the best one can do is construct a "faithful" local attractor in the LBE models to approximate 

the genuine equilibrium as accurately as possible [19, 20]. Therefore, it is more appropriate to view the 

"equilibrium" in the LBE models as an attractor. The stability of the attractor defined by fa can be 

determined only by other means than proving an if-theorem [27]. 

In light of the rigorous results on DVM, it is also evident that the LBE models for thermo-hydrodynamics 

generally have a very narrow range of temperature owing to the small set of discrete velocities. This may 

also be a possible source of instability in thermo-LBE models. 

The discrete velocity models of the Boltzmann equation are fully compressible, although their thermo- 

dynamics may be significantly different from that of ideal gases (described by the continuous Boltzmann 

equation), depending on the discrete velocity set. Nevertheless, DVM is a self-consistent system possessing 

an iJ-theorem. In contrast, the LBE method does not have these self-consistent properties. One difficulty en- 

countered in the LBE model for compressible thermal fluids is that the equilibrium distribution function /Q
eq 

which is a Taylor expansion in u has an incorrect asymptotic behavior. The insights gained from the rigorous 

results on DVM should help us to construct better LBE models for compressible thermo-hydrodynamics. 
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Appendix A. Thermodynamics of DVM and Poisson Sum. 

For any non-negative, continuous, decreasing, and Riemann integrable function f(x) on 1, the Fourier 

transform of f(x) is defined as follows: 

(A.l) F{k) = -j=J     dxf(x)eikx. 

The Poisson sum formula relates f(x) and F(k) as follows [32]: 

(A.2) 

The Poisson sum formula is applied to evaluate the hydrodynamic moment of DVM. 

For the sake of simplicity, the one-dimensional case is studied first. The following function and its Fourier 

transform, 

(A.3) /(*) = e-**—°)2 , F(k) =       eik*oe-k*/4 f 
V2 

leads to the following equality according to the Poisson sum formula: 

a   JT   e-2("-)2 = v^  £ „i27rne„—n27T2/a 

where the substitution x0 = ae has been made. By setting a = h, the above equality becomes: 

oo oo 

n=—oo n=—oo 

In the limit of h -> 0, besides the constant term, the leading terms in the right hand side of the above 

equality are those of \n\ = 1. Therefore, 

(A.4) 

oo n 

£   /le-("-£>2''2 M V5F [l + 2cos(27re)e-^/'12] 
n——oo 

_  . />oo 

= [l + 2cos(27r€)e-
7r2/''2J   /     die-f1-10»  . 

That is, the sum in the right hand side of the above equation is accurately approximated by the integral, 

with an exponentially small error. 

Similarly, for the following function and its Fourier transform, 

(A.5) f{x) = xe-(*-*°? , F(k) = -L (e + <*) e^oe-k'/* , 

the corresponding Poisson sum formula in the limit of h —> 0 leads to: 

(A.6) 

J2   ftne-("-£»V«£^ 

h 

l-^sin(&re)e-a/ha 

h 

f J — ( 
dxxe-(x-xo)3 

It should be noted that, due to the periodicity in the sum X^°=-oo f(n + *) = X^L-oo /(n)> 

oo oo 

(A.7) £   hne-(^h2=e   £   he~^\ 
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for e e Z. 
Finally, for the following function /(a;) and its Fourier transform: 

(A.8) /(*) = {x - x0)
2e-<*-*°r ,      F(k) = -L Q - ^ 

the corresponding Poisson sum formula in the limit of h —* 0 gives: 

»-. — _ ™-> r>. = — no    ^ 
/i2 

jkxa^k'/i 

i27rn€   — n 7r  //i 

(A.9) l-^fcos^e-"'/*' 
/oo 

-CO 

(A.lOa) 

(A.lOb) 

(A.lOc) 

By straightforward generalization to D-dimensional space, the following results can be obtained: 

(^  ^-'/^„rfzP, pt7 =     ^    h£aQe       "2RT      = PU + °(^   1<J 

-2,-Tr2//*2 

It is easy to show that, because of the periodicity of the Poisson sum formula, v = u,\/u£ Z?. It should 

be noted that the convergence of the sums to the integrals is exponentially fast. It is also interesting to note 

that the error due to the discretization is independent of the space dimension D. 
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