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1    Introduction 

The state explosion problem remains a major hurdle in applying model checking to large 
industrial designs. Abstraction is certainly the most important technique for handling this 
problem. In fact, it is essential for verifying designs of industrial complexity. Currently, 
abstraction is typically a, manual process, often requiring considerable creativity. In order 
for model checking to be used more widely in industry, automatic techniques are needed for 
generating abstractions. In this paper, we describe an automatic abstraction technique for 
ACTL* specifications which is based on an analysis of the structure of formulas appearing 
in the program. In general, our technique computes an upper approximation of the original 
program. Thus, when a specification is true in the abstract model, it will also be true 
in the concrete design. However, if the specification is false in the abstract model, the 
counterexample may be the result of some behavior in the approximation which is not present 
in the original model. When this happens, it is necessary to refine the abstraction so that the 
behavior which caused the erroneous counterexample is eliminated. The main contribution 
of this paper is an efficient automatic refinement technique which uses information obtained 
from erroneous counterexamples. The refinement algorithm keeps the size of the abstract 
state space small due to the use of abstraction functions which distinguish many degrees of 
abstraction for each program variable. Practical experiments including a large Fujitsu IP 
core design with about 500 latches and 10000 lines of SMV code confirm the competitiveness 
of our implementation. Although our current implementation is based on NuSMV, it is in 
principle not limited to the input language of SMV and can be applied to other languages. 

Our paper follows the general framework established by Clarke, Grumberg, and Long [10]. 
We assume that the reader has some familiarity with that framework. In our methodology, 
atomic formulas are automatically extracted from the program that describes the model. 
The atomic formulas are similar to the predicates used for abstraction by Graf and Saidi [14] 
and later in [11, 20]. However, instead of using the atomic formula- to generate an. abstract 
global transition system, we use them to construct an explicit abstraction function. The 
abstraction function preserves logical relationships among the atomic formulas instead of 
treating them as independent propositions. The initial abstract model is constructed by 
adapting the existential abstraction techniques proposed in [8, 10] to our framework. Then, 
a traditional model checker is used to determine whether ACTL* properties hold in the 
abstract model (ACTL* is a fragment of CTL* which only allows universal quantification 
over paths). If the answer is yes, then the concrete model also satisfies the property. If the 
answer is no, then the model checker generates a counterexample. Since the abstract model 
has more behaviors than the concrete one, the abstract counterexample might not be valid. 
We say that such a counterexample is spurious. 

In our methodology, we provide a new symbolic algorithm to determine whether an ab- 
stract counterexample is spurious. If the counterexample is not spurious, we report it to the 
user and stop. If the counterexample is spurious, the abstraction function must be refined to 
eliminate it. In our methodology, we identify the shortest prefix of the abstract counterex- 
ample that does not correspond to an actual trace in the concrete model. The last abstract 
state in this prefix is split into less abstract states so that the spurious counterexample is 
eliminated.   Thus, a more refined abstraction function is obtained.   Note that there may 



be many ways of splitting the abstract state; each determines a different refinement of the 
abstraction function. It is desirable to obtain the coarsest refinement which eliminates the 
counterexample because this corresponds to the smallest abstract model that is suitable for 
verification. We prove, however, that finding the coarsest refinement is NP-hard. Because 
of this, we use a polynomial-time algorithm which gives a suboptimal but sufficiently good 
refinement of the abstraction function. The applicability of our heuristic algorithm is con- 
firmed by our experiments. Using the refined abstraction function obtained in this manner, a 
new abstract model is built and the entire process is repeated. Our methodology is complete 
for the fragment of ACTL* which has counterexamples that are either paths or loops, i.e., 
we are guaranteed to either find a valid counterexample or prove that the system satisfies 
the desired property. In principle, our methodology can be extended to all of ACTL*. 

Using counterexamples to refine abstract models has been investigated by a number of 
other researchers beginning with the localization reduction of Kurshan [15]. He models a 
concurrent system as a composition of L-processes Z>i,... , Ln (Z-processes are described in 
detail in [15]). The localization reduction is an iterative technique that starts with a small 
subset of relevant L-processes that are topologically close to the specification in the variable 
dependency graph. All other program variables are abstracted away with nondeterministic 
assignments. If the counterexample is found to be spurious, additional variables are added to 
eliminate the counterexample. The heuristic for selecting these variables also uses informa- 
tion from the variable dependency graph. Note that the localization reduction either leaves 
a variable unchanged or replaces it by a nondeterministic assignment. A similar approach 
has been described by Balarin in [2]. In our approach, the abstraction functions exploit 
logical relationships among variables appearing in atomic formulas that occur in the control 
structure of the program. Moreover, the way we use abstraction functions makes it possible 
to distinguish many degrees of abstraction for each variable. Therefore, in the refinement 
step only very small and local changes to the abstraction functions are necessary and the 
abstract model remains comparatively small. 

Another refinement technique has recently been proposed by Lind-Nielson and Ander- 
sen [17]. Their model checker uses upper and lower approximations in order to handle all of 
CTL. Their approximation techniques enable them to avoid rechecking the entire model after 
each refinement step while guaranteeing completeness. As in [2, 15] the variable dependency 
graph is used both to obtain the initial abstraction and in the refinement process. Variable 
abstraction is also performed in a similar manner. Therefore, our abstraction-refinement 
methodology relates to their technique in essentially the same way as it relates to the clas- 
sical localization reduction. 

A number of other papers [16, 18, 19] have proposed abstraction-refinement techniques 
for CTL model checking. However, these papers do not use counterexamples to refine the 
abstraction. We believe that the methods described in these papers are orthogonal to our 
technique and may even be combined with ours in order to achieve better performance. A 
recent technique proposed by Govindaraju and Dill [13] may be a starting point in this 
direction, since it also tries to identify the first spurious state in an abstract counterexample. 
It randomly chooses a concrete state corresponding to the first spurious state and tries to 
construct a real counterexample starting with the image of this state under the transition 
relation.  The paper only talks about safety properties and path counterexamples. It does 



not describe how to check liveness properties with cyclic counterexamples. Furthermore, 
our method does not use random choice to extend the counterexample; instead it analyzes 
the cause of the spurious counterexample and uses this information to guide the refinement 
process. 

Summarizing, our technique has a number of advantages over previous work: 

(i) The technique is complete for an important fragment of ACTL*. 

(it) The initial abstraction and the refinement steps are efficient and entirely automatic. 
All algorithms are symbolic. 

(in) In comparison to methods like the localization reduction, we distinguish more degrees 
of abstraction for each variable. Thus, the changes in the refinement are potentially 
finer in our approach. 

(iv) The refinement procedure is guaranteed to eliminate spurious counterexamples while 
keeping the state space of the abstract model small. 

We have implemented our new methodology in NuSMV [6] and applied it to a number of 
benchmark designs [6]. In addition we have used it to debug a large IP core being developed 
at Fujitsu [1]. The design has about 500 latches and 10000 lines of Verilog code. Before 
using our methodology, we implemented the cone of influence reduction [8] in NuSMV to 
enhance its ability to check large models. Neither our enhanced version of NuSMV nor the 
recent version of SMV developed by Yang [23] were able to verify the Fujitsu IP core design. 
However, by using our new technique, we were able to find a subtle error in the design. Our 
program automatically abstracted 144 symbolic variables and performed three refinement 
steps. Currently, we are evaluating the methodology on other complex industrial designs. 

The paper is organized as follows: Section 2 gives the basic definitions and terminology 
used throughout the paper. A general overview of our methodology is given in Section 3. 
Detailed descriptions of our abstraction-refinement algorithms are provided in Section 4. 
Performance improvements for the implementation are described in Section 5. Experimental 
results are presented in Section 6. Future research is discussed in Section 7. 

2    Preliminaries 

A program P has a finite set of variables V = {v\, ■ ■ ■ ,vn}, where each variable Vi has an 
associated finite domain DVj. The set of all possible states for program P is DVl x ■ • ■ DVn 

which we denote by D. Expressions are built from variables in V, constants in Dv>, and 
function symbols in the usual way, e.g. vi -f 3. Atomic formulas are constructed from 
expressions and relation symbols, e.g. vi + 3 < 5. Similarly, predicate:.? are composed of 
atomic formulas using negation (->), conjunction (A), and disjunction (V). Given a predicate 
p, Atoms(p) is the set of atomic formulas occurring in it. Let p be a predicate containing 
variables from V, and d = (c/i,.. .,</„) be an element from D. Then we write d \= p when 
the predicate obtained by replacing each occurrence of the variable i\ in p by the constant 
d{ evaluates to true. 



Each variable V{ in the program has an associated transition block, which defines both 
the initial value and the transition relation for the variable vt. An example of a transition 
block for the variable i\ is shown in Figure 1, where /,- C DVi is the initial expression for 

init(^) := If, init(^) := 0; init(y) := 1; 
next(t?,-) := case next (a-) := case next(y) := case 

C\ : A}; reset = TRUE 0; reset = TRUE : 0; 

Cf : A]; x < y : x + 1; 
x = y : 0; 

(x = y) A --(y = 2) 
(x = y) : 0; 

y + i; 

C\ : A\; else : x; else : y; 
esac; esac; esac; 

Figure 1: A generic transition block and a typical example 

the variable vt, each condition Cj is a predicate, and A\ is an expression. The semantics 
of the transition block is similar to the semantics of the case statement in the modeling- 
language of SMV, i.e., find the least j such that in the current state condition C\ is true and 
assign the value of the expression A\ to the variable V{ in the next state. Common hardware 
description languages like Verilog and VHDL can easily be compiled into this language. 

We assume that the specifications are written in a fragment of CTL* called ACTL* 
(see [10]), where atomic formulas are used at the lowest level. ACTL* is the fragment of 
CTL*. where negation is restricted to the atomic level, and path quantification is restricted 
to universal path quantification. Assume that we are given an ACTL* specification ip, and 
a program P. For each transition block B{ let Atoms(#;) be the set of atomic formulas 
that appear in the conditions. Let Atoms(t£>) be the set of atomic formulas appearing in the 
specification <p. Atoms(P) is the set of atomic formulas that appear in the specification or 
in the conditions of the transition blocks. 

Each program P naturally corresponds to a labeled Kripke structure M = (S,I,R,L), 
where S = D is the set of states, / C S is a set of initial states, R C S x S is a transition 
relation, and L : 5 ->• 2Atoms^ is a labelling given by L{d) = {/ € Atoms(^) | d \= /}. 
Translating a program into a Kripke structure is straightforward and will not be described 

here. ^ 
An abstraction h for a program P is given by a surjection h : D -» D. Notice that the 

surjection h induces an equivalence relation = on the domain D in the following manner: let 
d, e be states in D, then 

d = e iff h{d) = h(e). 

Since an abstraction can be represented either by a surjection h or by an equivalence relation 
=, we sometimes switch between these representations to avoid notational overhead. 

Assume that we are given a program P and an abstraction function h for P. The abstract 
Kripke structure M = (S, I, R, L) corresponding to the abstraction function h is defined as 

follows: 
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Figure 2: Abstraction of a Traffic Light. 

1. S is the abstract domain D. 

2. 7(rT) iff 3d[h(d) = dM[d)). 

3. £(£,<£) iff 3di3d2(h(di) = dx A h(d2) = d2 A R(di,d2)). 

4. L(c/) = |J/!(rf)_^L(</).      (This definition will be justified in Theorem 2.1.) 

This abstraction technique is called existential abstraction [8]. An atomic formula / 
respects an abstraction function h if for all d and d' in the domain D, (c/ = f/') =4> (c? |= / <=> 

d' |= /). Let c/ be an abstract state. L(d) is consistent, if all concrete states corresponding 

to c? satisfy all labels in L(d), i.e., for all d G h~l(d) it holds that d \= Ajel(d) /• 

Theorem 2.1 Ze/ /? 6e an abstraction and ip be an ACTL* specification where the atomic 
subformulas respect h. Then the following holds: (i) L(d) is consistent for all abstract states 

d in M; (ii) M (= p =»  M \= y. 

In other words, correctness of the abstract model implies correctness of the concrete model. 
On the other hand, if the abstract model invalidates an ACTL* specification, i.e., M \£ (p, 
the actual model may still satisfy the specification. 

Example 2.1 Assume that for a traffic light controller (see Figure 2), we want to prove 
V» = AG AF(state = red) using the abstraction function h(red) = red and h(green) = 

h(yellow) = go. It is easy to see that M \= ;/' while M ^ t/'- Their exists an infinite trace 
(red, go, go,...) that invalidates the specification. 

If an abstract counterexample does not correspond to some concrete counterexample, we call 
it spurious. For example, (red, go, go,...) in the above example is a spurious counterexample. 

When the set of possible states is given as the product D\ x • • • Dn of smaller domains, 
an abstraction h can be described by surjections /?,- : D,; —> D;, such that h{d\,... ,dn) 

is equal to (h\{di),..., hn(dn)), and D is equal to D\ x ■ ■ ■ Dn. In this case, we write 
h = (hi,..., hn). The equivalence relations =,- corresponding to the individual surjections /?„,; 
induce an equivalence relation = over the entire domain D = D\ x • • • x Dn in the obvious 
manner: 

(di, ■ ■ ■ , dn) = (ei, • ■ ■ , e„)  iff di =i ei A • • • A dn =n en 



In previous work on existential abstraction [10], abstractions were defined for each vari- 
able domain, i.e., D,: in the above paragraph was chosen to be DVi, where DVj is the set of pos- 
sible values for variable i\. Unfortunately, many abstraction functions h can not be described 
in this simple manner. For example, let D = {0,1,2} x {0,1,2}, and D = {0,1} x {0,1}. 

Then there are 49 = 262144 functions h from D to D. Next, consider h = (huh2). Since 
there are 23 = 8 functions from {0,1,2} to {0,1}, there are only 64 functions of this form 

from D to D. 
In this paper, we define abstraction functions in a different way. We partition the set 

V of variables into sets of related variables called variable clusters VCi,... ,VCm, where 
each variable cluster VCt has an associated domain Dye, '■= Hvevc, ^- Consequently, 
D = Dvci X - - • Dvcm- We define abstraction functions as surjections on the domains Dye,, 
i.e., D, in the above paragraph is equal to Dvcr Thus, the notion of abstraction used in 
this paper is more general than the one used in [10]. 

3 Overview 

For a program P and an ACTL* formula ip, our goal is to check whether the Kripke structure 
M corresponding to P satisfies p. Our methodology consists of the following steps. 

1. Generate the initial abstraction: We generate an initial abstraction h by examining 
the transition blocks corresponding to the variables of the program. We consider the 
conditions used in the case statements and construct variable clusters for variables 
which interfere with each other via these conditions. Details can be found in Section 4.1. 

2. Model-check the abstract structure: Let M be the^abstract Kripke structure corre- 
sponding to the abstraction h. We check whether M f= ip. If the check is affirmative, 
then we can conclude that M \= ip (see Theorem 2.1). Suppose the check reveals that 

there is a counterexample T. We ascertain whether T is an actual counterexample, 
i.e., a counterexample in the unabstracted structure M. If T turns out to be an actual 
counterexample, we report it to the user, otherwise T is a spurious counterexample, 
and we proceed to step 3. 

3. Refine the abstraction: We refine the abstraction function h by partitioning a single 
equivalence class of = so that after the refinement the abstract structure M correspond- 
ing to the refined abstraction function does not admit the spurious counterexample T. 
We will discuss partitioning algorithms for this purpose in Section 4.3. After refining 
the abstraction function, we return to step 2. 

4 The Abstraction-Refinement Framework 

4.1     Generating The Initial Abstraction 

Assume that we are given a program P with n variables {t>i,--- ,vn}.   Given an atomic 
formula /, let var(f) be the set of variables appearing in /, e.g., var(x = y) is {x,y}. Given 



a, set of atomic formulas U, vetr(U) equals IJ/eC" var(f)- ^n general, for any syntactic entity 
X, var(X) will be the set of variables appearing in A\ We say that two atomic formulas /i 
and f2 interfere iff veir(fi) fl var(f2) ^ 0. Let =/ be the equivalence relation on Atoms(P) 
that is the reflexive, transitive closure of the interference relation. The equivalence class of 
an atomic formula / £ Atoms(P) is called the formula cluster of / and is denoted by [/]. 
Let /] and f2 be two atomic formulas. Then var(fi) fl var(f2) ^ 0 implies that [/i] = [/2]. 
In other words, a variable r,- cannot appear in formulas that belong to two different formula 
clusters. Moreover, the formula clusters induce an equivalence relation =y on the set of 
variables V in the following way: 

V{ =v Vj if and only if v; and Vj appear in atomic formulas that belong to the 
same formula cluster. 

The equivalence classes of =y are called variable clusters. For instance, consider a formula 
cluster FC{ = {t'i > 3, r>i = v2}. The corresponding variable cluster is VCi = {^I,^}- Let 
{FC\,..., FCm} be the set of formula clusters and {VC\,..., VCm} the set of corresponding 
variable clusters. We construct the initial abstraction h = (h\,...,/?m) as follows. For each 

/?.,-, we set Dye, — Ylvevc DV> 
l-e" Dvcu ls ^ie domain corresponding to the variable cluster 

VC;. Since the variable clusters form a partition of the set of variables V, it follows that 
D = Dvci x ' " DyCm- For each variable cluster VCi — {t'i,,...,^.}, the corresponding 
abstraction h; is defined on Dvcu as follows. /?,(f/i, • • • , elk) = Mei< • • • , e/,.) iff for all atomic 
formulas f £ FC;. 

In other words two values are in the same equivalence class if they cannot be "distinguished" 
by atomic formulas appearing in the formula cluster FC;. The following example illustrates 
how we construct the initial abstraction h. 

Example 4.1 Consider the program P with three variables x,y £ {0,1,2}, and reset £ 
{TRUE, FALSE} shown in Figure 1. The set of atomic formulas is Atoms(P) = {(reset = 
TRUE), (a; = y),[x < y),(y = 2)}. There are two formula clusters, FC\ = {(x = y),(x < 
y),(y = 2)} and FC2 = {(reset = TRUE)}. The corresponding variable clusters are {x,y} 
and {reset}, respectively. Consider the formula cluster FC\. Values (0,0) and (1,1) are in 
the same equivalence class because for all the atomic formulas f in the formula cluster FC\ 
it holds that (0,0) |= / iff (I A) \= f. It can be shown that the domain {0,1,2} x {0,1,2} is 
partitioned into a total of five equivalence classes by this criterion. We denote these classes 
by the natural numbers 0,1,2,3,4. and list them below: 

1 = {(0,0),(1,1)}, 2 = {(0,1)}, 3 = {(0,2),(1,2)}, 4 = {(1,0),(2,0),(2,1)}, 5 = {(2,2)} 

The domain {TRUE, FALSE} has two equivalence classes - one containing FALSE and the 
other TRUE. Therefore, we define two abstraction functions hi : {0,1, 2}2 —y {0,1,2,3,4} 
and h2 : {TRUE, FALSE} -» {TRUE, FALSE}.  The first function hi is given by /?i(0,0) = 

MM) = o, M0,i) = i, MO,2) = MU) = 2, MI,O) = M2,0) = M2J) = 3, 
/?. 1 (2,2) = 4.   The second function h2 is just the identity function, i.e., h2(reset) = reset. 



4.2    Model Checking The Abstract Model 

Given an ACTL* specification 99, an abstraction function h (assume that <p respects h), and 

a program P with a finite set of variables V = {vx,- • • ,vn}, let M be the abstract Kripke 
structure corresponding to the abstraction function h. We use standard symbolic model 
checking procedures to determine whether M satisfies the specification if. If it does, then by 
Theorem 2.1 we can conclude that the original Kripke structure also satisfies (p. Otherwise, 
assume that the model checker produces a counterexample T corresponding to the abstract 
model M. In the rest of this section, we will focus on counterexamples which are either 
(finite) paths or loops. 

1. /• ' 
'1'   *. * ■ - 

|; *& 

Figure 3: An abstract counterexample 

4.2.1    Identification Of Spurious Path Counterexamples 

First, we will tackle the case when the counterexample T is a path (su ■ ■ • ,s~n). Given an 
abstract state s, the set of concrete states s such that h(s) = s is denoted by h'1^), i.e., 

h'1^) — {s\h(s) = s}. We extend h'1 to sequences in the following way: h~l(T) is the set 
of concrete paths given by the following expression 

{0 j\h(si) = ^ A I(Sl) A /\ R(Si,si+1)}. 
s=l 

We will occasionally write h \h to emphasize the fact that h 1 is applied to a sequence. 

Next, we give a symbolic algorithm to compute /z_1(T). Let Si = /?_1(si) fl / and R be the 
transition relation corresponding to the unabstracted Kripke structure M. For 1 < i < n, 
we define Si in the following manner: Si := Img(Si-1,R) D h'1^). In the definition of 
Si, Img(Si-i,R) is the forward image of Si-i with respect to the transition relation R. 
The sequence of sets Si is computed symbolically using OBDDs and the standard image 
computation algorithm. The following lemma establishes the correctness of this procedure. 

Lemma 4.1   The following art equivalent: 

(i)  The path T corresponds to a concrete counterexample. 



(ii)  The set of concrete paths h  1(T) is non-empty. 

(Hi) For all l<i<n, 5; ^ 0. 

Suppose that condition (iii) of Lemma 4.1 is violated, and let i be the largest index such 

that Si ^ 0. Then s; is called the failure state of the spurious counterexample T. 

Example 4.2 Consider a program with only one variable with domain D = {1, • • ■ , 12}. As- 
sume that the abstraction function h maps x G D to [{x — 1)/3J + 1. There are four abstract 
states corresponding to the equivalence classes {1,2,3}. {4,5,6}, {7,8,9}, and {10,11,12}. 
We call these abstract states 1. 2, 3, and 4. The transitions between states in the concrete 
model are indicated by the arrows in Figure 3: small dots denote non-reachable states. Sup- 
pose that we obtain an abstract counterexample T = (1,2,3,4). It is easy to see that T 
is spurious. Using the terminology of Lemma Jf.l. toe have Si = {1,2,3}, S-2 = {4,5,6}, 
S3 = {9}, and S4 = 0. Notice that S4 and therefore Img(S3, R) are both empty. Thus, S3 is 
the failure state. 

Algorithm SplitPATH(T) 

S :=h-l{s\)ni 

while (S ^ 0 and j < n)   { 

J ■■= J + 1 

s'ZlmgiS^^Dh-'isj)   } 
if S ^ 0 then output "counterexample exists" 
else output j, Sprev 

Figure 4: SplitPATH checks if an abstract path is spurious. 

It follows from Lemma 4.1 that if h~l(T) is empty (i.e., if the counterexample T is 
spurious), then there exists a minimal i (2 < i < n) such that S{ = 0. The symbolic 
Algorithm SplitPATH in Figure 4 computes this number and the set of states 5'4-—1; the 
states in Si-i are called dead-end states. After the detection of the dead-end states, we 
proceed to the refinement step (see Section 4.3). On the other hand, if the conditions stated 
in Lemma. 4.1 are true, then SplitPATH will report a "real" counterexample and we can 
stop. 

4.2.2    Identification of Spurious Loop Counterexamples 

Now we consider the case when the counterexample T includes a loop, which we write as 
(,?],••• , .s^)(.s7+i, • • • ,.s^)w. The loop starts at the abstract state S7+i and ends at s*n. Since 
this case is more complicated than the path counterexamples, we first present an example 
in which some of the typical situations occur. 

9 



«I S° S2° s? S> s? 
r-T 1—^f . r* 1 

•  - • h.#^ • • 
^    * ^ - • • • • • ' 
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Figure 5: A loop counterexample, and its unwinding. 

Example 4.3 We consider a loop {sl)^,^}" «-s shown in Figure 5. In order to find out 
if the abstract loop corresponds to concrete loops, we unwind the counterexample as demon- 
strated in the figure. There are two situations where cycles occur. In the figure, for each of 
these situations, an example cycle (the first one occurring) is indicated by a fat dashed arrow. 
We make the following important observations: (i) A given abstract loop may correspond to 
several concrete loops of different size, (ii) Each of these loops may staid, at different stages 
of the unwinding, (in) The unwinding eventually becomes periodic (in our case S° = 5'J J, 
but only after several stages of the unwinding. The size of the period is the least common 
multiple of the size of the individual loops, and thus, in general exponential. 

We conclude from the example that a naive algorithm may have exponential time complexity 
due to an exponential number of loop unwindings. The following surprising theorem however 
shows that a polynomial number of unwindings is sufficient. Let min be the minimum size 
of all abstract states in the loop, i.e., min =    min   |/j-1(s})|. Tunw;nd denotes the the finite 

i-\-l<j<n 

abstract path {si,..., sj) {S7+i, • ■ • ,^)"""+\ he., the path obtained by unwinding the loop 

part of T min + 1 times. 

Theorem 4.1   The following are equivalent: 

(i) T corresponds to a concrete counterexample. 

(ü) h~lth{Tmvl-mA) is not empty. 

We conclude that loop counterexamples can be reduced to path counterexamples. In Fig- 
ure 6, we describe the algorithm SplitLOOP which is an extension of SplitPATH. In the 
algorithm, TUnwind is computed by the subprogram unwind. The subprogram Looplndex(j) 
computes the index of the abstract state at position j in the unwound counterexample Tunw;nd, 
i.e. 

Looplndex(j) = 
j if j < n 
{(j — i — 1) mod (n — i)) + (i + 1)   otherwise 

If the abstract counterexample is spurious, then the algorithm SplitLOOP outputs a 
set S'prev and indices k,p, such that the following conditions hold: 

10 



Algorithm SplitLOOP (T) 

m/n = min{|/r1(^1)|,...,|/r
1(4)|} 

unwind = unwind(T, min + 1) 
Compute j and 5prev as in SplitPATH(Tunwjnci) 
k := Looplndex(j) 
p := LoopIndex(j + 1) 
output  S'prev) k,p 

Figure 6: SplitLOOP checks if an abstract loop is spurious 

1. The states in .$'prev correspond to the abstract state £p, i.e., »S'prev C h~x(£p) 

2. All states in ,S'pi.ev are reachable from h~1(s~i) 0 I. 

3. k is the successor index of p within the loop, i.e., if p = n then k = ?' +1, and otherwise 
k = p+l. 

4. There is no transition from a state in 5'prev to /;_1(^.), i.e., Img(SpTev, R) fl h'1^) is 
empty. 

5. Therefore, fp is the failure state of the loop counterexample. 

Thus, the final situation encountered is indeed very similar as in the case of path coun- 
terexamples. Note that the nontrivial feature of the algorithm SplitLOOP is the fact that 
only min unwindings of the loop are necessary. The correctness of this approach is not 
trivial, and details are deferred to the appendix. 

4.3    Refining The Abstraction 

First, we will consider the case when the counterexample T = {s\, ■ • • , s~n) is a path. Let us 
return to a previous example for a closer investigation of failure states. 

Example 4.4 Recall that in the spurious counterexample of Figure 3, the abstract state 3 
was the failure state.   There are three types of concrete states in the failure state 3: 

(i)  The dead-end state 9 is reachable, but there are no outgoing transitions to the next 
state in the counterexample. 

(it)  The bad state 7 is not reachable but outgoing transitions cause the spurious coun- 
terexample.  The spurious counterexamples is caused by the bad state. 

(Hi)  The irrelevant state 8 is neither reachable nor bad. 

The goal of the refinement methodology described in this section is to refine h so that the 
dead-end states and bad states do not belong to the same abstract state. Then the spurious 
counterexample will be eliminated. 
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3 4 5 
7 1 X X 

8 0 X 1 
9 X 0 0 

3/4 5 
7 1 X 

8 0 1 
9 0 0 

3 4/5 
7/9 1 0 

8 0 1 

Equivalence Class Refinement (a) 
Refinement (b) 

Figure 7: Two possible refinements of an Equivalence Class. 

If f does not correspond to a real counterexample, by Lemma 4.1 (iii) there always exists a 
set Si of dead-end states, i.e., St C h'1^) with 1 < i < n such that Img(St, R)f)h-1{s^r1) = 
0 and Si is reachable from initial state set h^(si) D /. Moreover, the set Si of dead-end 
states can be obtained as the output Sprev of SplitPATH or SplitLOOP. Since there is a 
transition from Si to s^ in the abstract model, there is at least one transition from a bad 
state in /?_1(^\) to a state in /7_1(57+i) even though there is no transition from Si to /?_1(s^Ti), 
and thus the set of bad states is not empty. We partition /?_1(^) into three subsets 5,,o, S'i,i, 

and SifT as follows: 

Name Partition    Definition   

dead-end states ,5'tjo 

bad states 5^1 

irrelevant states Si_x /r1(^)\(5,,,oU5i,1) 

Intuitively, 5j,o denotes the set of dead-end states, i.e., states in /?-1(.Sj) that are reachable 
from initial states. S'u denotes the set of bad states,i.e., those states in /^_1(^) that are not 
reachable from initial states, but have at least one transition to some state in /?,_1(.s7^i). The 
set 5'i,i cannot be empty since we know that there is a transition from h'1^) to h~l{s~^i). 
Si,x denotes the set of irrelevant states, i.e., states that are not reachable from initial states, 
and do not have a transition to a state in h~1(s^T1). Since S{,i is not empty, there is a spurious 

transition si —>■ S7+i- This causes the spurious counterexample T. Hence in order to refine 
the abstraction h so that the new model does not allow T, we need a refined abstraction 
function which separates the two sets Siß and S^i, i.e., we need an abstraction function, in 
which no abstract state simultaneously contains states from S'8jo and from Sit\. 

It is natural to describe the needed refinement in terms of equivalence relations: Recall 
that /J

-1
(S) is an equivalence class of = which has the form Ex x • • • x Em, where each Et 

is an equivalence class of =,-. Thus, the refinement =' of = is obtained by partitioning the 
equivalence classes Ej into subclasses, which amounts to refining the equivalence relations 
=j. The size of the refinement is the number of new equivalence classes. Ideally, we would 
like to find the coarsest refinement that separates the two sets, i.e., the separating refinement 
with the smallest size. 

Example 4.5 Assume that we have two variables v1:v2.   The failure state corresponds to 
one equivalence class ElxE2, where Ex = {3,4,5} and E2 = {7, 8,9}. In Figure 7, dead-end 
states Si,0 are denoted by 0, bad states Siti by 1, and irrelevant states by x. 

Let us consider two possible partitions of E\ x E2 ■ 
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.  Case (a) : {(3,4), (5)} x {(7), (8), (9)} (6 classes) 

•  Case (b) : {(3), (4, 5)} x {(7.9), (8)} (4 classes) 

Clearly, case (b) generates a coarser refinement than case (a). It can be easily checked that 
no other refinement is coarser than (b). 

In general, the problem of finding the coarsest refinement problem is computationally 
intractable. 

Theorem 4.2   The problem of finding the coarsest refinement is NP-hard. 

The proof is provided in Appendix B. 
We therefore need to obtain a good heuristics for abstraction refinement. When S'ijX is 

empty, there is a polynomial algorithm which can find the coarsest refinement. The algorithm 
PolyRefine (see Figure 8) corresponds to this case. Let P^,P~ be two projection func- 
tions, such that for ä = {di,..., dm), Pf($) = dj and Pj~{$) = (f/i, • • •, dj-i, <•(,■+1,... ,clm). 
Then proj(Si,o,j,a) denotes the projection set {P~(s)\P*(s) = a,s € »S^o}- Intuitively, 
the condition proj(Sj,o,j,a) ^ proj(Si,o,j,b) in the algorithm means that there exists 
(</i,...,G?j_i,</j+1,...,dm) <E proj[Si!0,j,a) and (du ..., </,•_!, dj+l,..., dm ) & proj{S'ifi,j,b). 
According to the definition of proj($;,o,j, «■), *i = (d\, ■ ■ ■, c?j-i, a, dj+i,... ,</„,) G <5';,o and 
52 = (^i, • ■ ■, dj-i,b, dJ+i,..., dm) ^ Sip, i.e., .s2 £ <5'u. The only way to separate s\ arid ,s2 

into different equivalence classes is that a and b have to be in different equivalence classes of 

=;■, i.e., a ft b. 

Algorithm PolyRefine 

for j := 1 to m { 

-j  := —3 
for every a. b £ Ej { 

if proj{Si.o, j, a) ^ proj {SlXh j- b) 
then=::=4\{(«,6j} }} 

Figure 8: The algorithm PolyRefine 

Lemma 4.2 When SitX = 0, //?.e relation ='■ computed by PolyRefine is an equivalence 
relation which refines =j and separates S'^o and S{_\. Furthermore, the equivalence relation 
='■ is the coarsest refinement of=.r 

The proof of this lemma is provided in Appendix B. 
Note that in symbolic presentation, the projection operation proj(Sifl,j,a) amounts to 

computing a generalized cofactor, which can be easily clone by standard BDD methods. 
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&ijr 

Si,i 

■^;.o 

h-1^) h-'m *i+l, 

Figure 9: Three sets ,S^0, 5u, and Si,x 

Given a function / : D ->• {0,1}, a generalized cofactor of / with respect to g = {/\q
k=p xk = 

4) is the function fg = f(xu ..., xp-Udp,...,dg,xg+u ...,xn). In other words, fg is the 
projection of / with respect to g. Symbolically, the set ,5';,0 is represented by a function 
fs,0 : D -> {0,1}, and therefore, the projection proj(Si,0,j,a) of Sifi to value a of the jth 
component corresponds to a cofactor of fs,0 ■ 

In our implementation, we use an heuristics which is based on the following corollary to 

the proof of Lemma 4.2. 

Corollary 4.1 Even if SiA- is not empty, the relation ='■ computed by PolyRefine is an 

equivalence relation which refines =? and separates Si}0 and ,S'u. 

Refinement Heuristics We merge the states in Si,x into Si,lf and use the algorithm 
PolyRefine to find the coarsest refinement that separates the sets Si:0 and Su U ShT. The 
equivalence relation computed by PolyRefine in this manner is in general not optimal, but 
it is a correct refinement which separates Sifi and Sis, and eliminates the spurious coun- 
terexample.   This heuristic has given good results in our practical experiments. 

Since according to Theorem 4.1, the algorithm SplitLOOP for loop counterexamples 
works analogously as SplitPATH, the refinement procedure for spurious loop counterexam- 
ples works analogously, i.e., it uses SplitLOOP to identify the failure state, and PolyRefine 
to obtain a heurisitc refinement. 

Our refinement procedure continues to refine the abstraction function by partitioning 
equivalence classes until a real counterexample is found, or the ACTL* property is verified. 
The partitioning procedure is guaranteed to terminate since each equivalence class must 
contain at least one element. Thus, our method is complete. 

Theorem 4.3 Given a model M and an ACTL* specification yjuhost counterexample is 
either path or loop, our algorithm will find a model M such that M |= <p <& M (= (p. 
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5    Performance Improvements 

The symbolic methods described in Section 4 can be directly implemented using BDDs. Our 
implementation uses additional heuristics which are outlined in this section. For details, we 
refer to our technical report [7]. 

Two-phase Refinement Algorithms. Consider the spurious loop counterexample T = 
(1,2)"' of Figure 10. Although T is spurious, the concrete states involved in the example 
contain an infinite path (1,1,...) which is a potential counterexample. Since we know that 
our method is complete, such cases could be ignored. Due to practical performance con- 
siderations, however, we came to the conclusion that the relatively small effort to detect 
additional counterexamples is justified as a valuable heuristic. For a general loop counterex- 
ample T = (Si,... ,Sj)(si+i,..., sn)w, we therefore proceed in two phases: 
(i) We restrict the model to the state space 5'iocai := (Ui<(<n ^-1(^')) °f tne counterexample 
and use the standard fixpoint computation for temporal formulas (see e.g. [8]) to check the 
property on the Kripke structure restricted to 5'loca|. If a concrete counterexample is found, 
then the algorithm terminates. 
(ii) If no counterexample is found, we use SplitLOOP and PolyRefine to compute a re- 
finement as described above. 
This two-phase algorithm is slightly slower than the original one if we do not find a con- 
crete counterexample; in many cases however, it can speed up the search for a concrete 
counterexample. An analogous two phase approach is used for finite path counterexamples. 

T 2 

x%~ 
• 

Figure 10: A spurious loop counterexample (1,2) 

Approximation. Despite the use of partitioned transition relations it is often infeasible to 
compute the total transition relation of the model M [8]. Therefore, the abstract model M 
cannot be computed from M directly. In previous work [2, 10], a method which we call early 
approximation has been introduced: first, abstraction is applied to the BDD representation 
of each transition block and then the BDDs for the partitioned transition relation are built 
from the already abstracted BDDs for the transition blocks. The disadvantage of early 
approximation is that it over-approximates the abstract model M [9]. In our approach, a 
heuristic individually determines for each variable cluster V'C;, if early approximation should 
be applied or if the abstraction function should be applied in an exact manner. Our method 
has the advantage that it balances overapproximation and memory usage. Moreover, the 
overall method presented in our paper remains complete with this approximation. 

Lemma 5.1 Let R be the abstract transition relation obtained from existential abstraction. 
Let {Re

t
ary}  be a partitioned transition relation obtained from early approximation.    Let 
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{it*ombined} be the final partitioned transition relation which toe obtain in our approach. Then 
R _j. /\. ^combined  flnrf ^ ^combined _^ ^ yearly 

Thus, the approximation in our approach indeed is intermediate between early approxima- 
tion and exact existential abstraction. Our method remains complete, because during the 
symbolic simulation of the counterexample the algorithms SplitPATH and SplitLOOP 
treat both forms of overapproximations, i.e., virtual transitions and spurious transitions, in 

the same way. 

Abstractions For Distant Variables. In addition to the methods of Section 4.1, we com- 
pletely abstract variables whose distance from the specification in the variable dependency 
graph is greater than a user-defined constant. Note that the variable dependency graph is 
also used for this purpose in the localization reduction [2, 15, 17] in a similar way. How- 
ever, the refinement process of the localization reduction [15] can only turn a completely 
abstracted variable into a completely unabstracted variable, while our method uses interme- 

diate abstraction functions. 
A user-defined integer constant far determines which variables are close to the spec- 

ification Lp. The set NEAR of near variables contains those variables whose distance from 
the specification in the dependency graph is at most far, and FAR = var(P) - NEAR is the 
set of far variables. For variable clusters without far variables, the abstraction function re- 
mains unchanged. For variable clusters with far variables their far variables are completely 
abstracted away, and their near variables remain unabstracted. Note that the initial ab- 
straction for variable clusters with far variables looks similar as in the localization reduction. 
However, the refinement process of the localization reduction [15] can only turn a com- 
pletely abstracted variable into a completely unabstracted variable, while our method uses 
intermediate abstraction functions. 

6    Experimental Results 

We have implemented our methodology in NuSMV [6] which uses the CUDD package [21] for 
symbolic representation. We performed two sets of experiments. One set is on five benchmark 
designs. The other was performed on an industrial design of a multimedia processor from 
Fujitsu [1]. AH the experiments were carried out on a 200MHz PentiumPro PC with 1GB 

RAM memory using Linux. 
The first benchmark designs are publicly available. The PCI example is extracted from 

[5]. The results for these designs are listed in the table. 

Design #Var #Prop NuSMV+COI NuSMV+ABS 
#COI Time \TR\ \MC\ #ABS Time \TR\ \MC\ 

gigamax 10(16) 1 0 0.3 8346 1822 9 0.2 13151 816 

guidance 40(55) 8 30 35 140409 30467 34-39 30 147823 10670 

p-queue 12(37) 1 4 0.5 51651 1155 5 0.4 52472 1114 

waterpress 6(21) 4 0-1 273 34838 129595 4 170 38715 3335 

PCI bus 50(89) 10 4 2343 121803 926443 12-13 546 160129 350226 

In the table, the performance for an enhanced version of NuSMV with cone of influence 
reduction (NuSMV + COI) and our implementation (NuSMV + ABS) are compared. 
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#Var and #Prop are properties of the designs: #Var = x(y) means that x is the number 
of symbolic variables, and y the number of Boolean variables in the design. #Prop is 
the number of verified properties. The columns #COI and #ABS contain the number of 
symbolic variables which have been abstracted using the cone of influence reduction (#COI), 
and our initial abstraction (#ABS). The column "Time" denotes the accumulated running 
time to verify all #Prop properties of the design. \TR\ denotes the maximum number of 
BDD nodes used for building the transition relation. \MC\ denotes the maximum number 
of additional BDI) nodes used during the verification of the properties. Thus, \TR\ + \MC\ 
is the maximum BDD size during the total model checking process. For the larger examples, 
we use partitioned transition relations by setting the BDD size limit to 10000. 

Although our approach in one case uses 50% more memory than the traditional cone of 
influence reduction to build the abstract transition relation, it requires one magnitude less 
memory during model checking. This is an important achievement since the model checking 
process is the most difficult task in verifying large designs. More significant improvement is 
further demonstrated by the Fujitsu IP core design. 

The Fujitsu IP core design is a multimedia assist (MMA-ASIC) processor [1]. The design 
is a system-on-a.-chip that consists of a co-processor for multimedia, instructions, a graphic 
display controller, peripheral I/O units, and five bus bridges. The RTL implementation of 
MM-ASIC is described in about 61,500 lines of Verilog-HDL code. After manual abstrac- 
tion by engineers from Fujitsu in [22], there still remain about 10,600 lines of code with 
roughly 500 registers. We translated this abstracted Verilog code into 9,500 lines of SMV 
code. In [22], the authors verified this design using a "navigated" model checking algo- 
rithm in which state traversal is restricted by navigation conditions provided by the user. 
Therefore, their methodology is not complete, i.e., it may fail to prove the correctness even 
if the property is true. Moreover, the navigation conditions are usually not automatically 
generated. 

In order to compare our model checker to others, we tried to verify this design using two 
state-of-the-art model checkers - Yang's SMV [23] and NuSMV [6]. We implemented the cone 
of influence reduction for NuSMV, but not for Yang's SMV. Both NuSMV+COI and Yang's 
SMV failed to verify the design. On the other hand, our system abstracted 144 symbolic 
variables and with three refinement steps, successfully verified the design, and found a bug 
which has not been discovered before. 

7    Conclusion and Future Work 

We have presented a novel abstraction refinement methodology for symbolic model checking. 
The advantages of our methodology have been demonstrated by experimental results. We 
believe that our technique is general enough to be adapted for other forms of abstraction. 
There are many interesting avenues for future research. First, we want to find efficient 
approximation algorithms for the NP-complete separation problem encountered during the 
refinement step. Moreover, in a recent paper [4], the fragment of ACTL* that admits "trace"- 
like counterexamples (of a potentially more complicated structure than paths and loops) has 
been characterized; we plan to extend our refinement algorithm to this language. Since the 
symbolic methods described in this paper are not tied to representation by BDDs, we will 
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also investigate how they can be applied to recent work on symbolic model checking without 
BDDs [3]. We are currently applying our technique to verify other large examples. 
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APPENDIX 

A    Identification of Spurious Loop Counterexamples 

Let T = {s[,--- , Si) (s~^i, ■ ■ ■ ,sT„y be an abstract loop counterexample.   For an index j, 
let j+ denote its successor index in the counterexample, i.e., n+ = i + 1, and for j < n, 

J ,-+ :j+l. 
Theorem 4.1 The following are equivalent: 

(i) T corresponds to a concrete counterexample. 

(ü) fcpath^unwind) is not empty. 
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Proof. Let us first start with some easy observations. Recall that R is the transition relation 
of the Kripke structure. By definition, the elements of h~^th(Tunv/-md) are all the finite P-paths 
P of the form 

/ U ll imin+l imin+l\ U\ 
\U\, . . . , Uu       fj+i, • • • 7 uni       ■■•1       u( + l       i---iun I y    ' 

for which the following two properties hold: 

1. cij (E h~1(s~j) for all cij in P, and 

2. 6} G /T^s}) for all b] in P. 

Each such path P has length L :— i + (mm + 1) x (n — i), and we can equivalently write P 
in the form 

<<*!,..., <*L> (**) 

with the properties 

1. c/i G /7_1(s^), and 

2. for all j < n, if c/j G /?._1(ifc) then c?j+i € /?,-1(iX+)- 

Recall that min was defined to be the size of the smallest abstract state in the 
loop, i.e., min{|/i-1(5i+i)|,..., |/i-1(s^)|}, and let M be the index of an abstract state % 
s.t. \h~1(sM)\ = min. (Such a state must exist, because the minimum must be obtained 
somewhere.) 

(i) —> (ii) Suppose there exists a concrete counterexample. Since the counterexample con- 
tains a loop, there exists an infinite R-path I = (ci,...} such that c\ € /i-1(si), and for all 
j, if Cj 6 /?_1(5fc), then Cj+i £ h~1(s^+). According to (**), the finite prefix (c\,... ,ci) of / 

is contained in h~lth(Tunwind), and thus h~lth(Tunw-md) is not empty. 

(ii) —>• (i) Suppose that h~*th(Tunw-md) contains a finite Z?-path P. 

Claim:  There exists a state which appears at least twice in P. 
Proof of Claim: Suppose P is in form (*). Consider the states b\lf, b

2
Ml..., br^n+1. By (*), 

all bk
M are contained in /Z

_1
(SM). By definition of M, however, /!_1(%) contains only min 

elements, and thus there must be at least one repetition in the sequence b\f, b2
M,..., b™jn+ . 

Therefore, there exists a repetition in the finite P-path P, and the claim is proved. □ (Claim) 

Let us now write P in form (**), i.e., P = (di,..., di), and let a repetition be given by 
two indices a < ß, s.t. da = dß. Because of the repetition, there must be a transition from 
dß-i to da, and therefore, da is the successor state of dß-\ in a cycle. We conclude that 

(c/i,..., </a_i)(c?a,..., dß-i) 

is a concrete counterexample. □ 
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A.l     Optimal Abstraction Refinement is NP-complete 

Recall that in figure 7, we have visualized the special case of two variables and two equivalence 
relations in terms of matrices: 

3 4 5 
7 1 X X 

8 0 X 1 
9 X 0 0 

3/4 5 
7 1 X 

8 0 1 
9 0 0 

3 4/5 
7/9 1 0 

8 0 I 
m Ti n x /   N Refinement (b) 

Liquivalence ülass Refinement (a) 

In order to formally capture this visualization, let us define the Matrix Squeezing problem. 

Definition A.l Matrix Squeezing 
Given an integer constant V and a finite (»?,m) matrix with entries 0, l,.r, is it possible to 
obtain a matrix with < T entries by iterating the following operations: 

1. Merging two compatible, rows. 

2. Merging two compatible columns. 

Two rows are compatible, if there is no position, where one row contains 1 and the other 
row contains 0. All other combinations are allowed, i.e., x does not affect compatibility. 
Merging two rows means replacing the rows by a new one which contains 1 at those positions 
where at least one of the two columns contained 1, and 0 at those positions, where at least 
one of the two columns contained 0. 

For columns, the definitions are analogous. 

Since Matrix Squeezing is a special case of the refinement problem, it is sufficient to 
show NP-hardness for Matrix Squeezing. Then it follows that the refinement problem is 
NP-hard, too, and thus Theorem 4.2 is proved. 

As mentioned Matrix Squeezing is easy to visualize: If we imagine the symbol x to be 
transparent, then merging two columns can be thought of as putting the two (transparent) 
columns on top of each other. Column Squeezing is a variant of Matrix Squeezing, 
where only columns can be merged, and the number of rows is left unchanged. We will first 
show NP-completeness of Column Squeezing, and then show NP-completeness of Matrix 
Squeezing by a reduction from Column Squeezing. 

Definition A.2 Column Squeezing 
Given an integer constant A and a finite (n,m) matrix with entries 0,1,.T, is it possible to 
obtain a matrix with < A columns by iterated merging of columns ? 

The proof will be by reduction from problem GT15 in [12]: 

Definition A.3 Partition Into Cliques 
Given an undirected graph (V, E) and and a number K > 3, is there a. partition, of V into 
k < A' classes, such that each class induces a clique on (V, E) ? 
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Theorem A.l (Karp 72)  Partition Into Cliques is NP-complete. 

Theorem A.2 Column Squeezing is NP-complete. 

Proof: Membership is trivial. Let us consider hardness. We reduce Partition Into Cliques 
to Column Squeezing. Given a graph (V, E) and a number A', we have to construct a 
matrix M and a number A such that M can be squeezed to size < A iff (V, E) can be 

partitioned in < A' cliques. 
We construct a (|V'|, \V\) matrix (ahj) which is very similar to the adjacency matrix of 

(V,E): 

[l    if»=j 
ay=<0    if(i,j)?E,i?j 

Assume w.l.o.g. that V = {1,...,??}. Then it is not hard to see that for all i,j £ \'\ 
columns i and j are compatible iff (i,j) G A, since the 0 entries in the matrix were chosen 
in such a way that the columns corresponding to two non-adjacent edges cannot be merged. 

By construction, (V, E) contains a clique C with vertices cu ..., c\ iff the columns cu . .., e, 
can all be merged into one.  (Note however that compatibility is not a transitive relation.) 

Thus, (V, E) can be partitioned into < A" cliques, iff the columns of (ahl) can be merged 
into < A' columns. Setting A = K concludes the proof. □ 

Theorem A.3 Matrix Squeezing is NP-complete. 

Proof: Membership is trivial. We show hardness by reducing Column Squeezing to 
Matrix Squeezing. For an integer n, let \bin(n)\ denote the size of the binary representation 
of ??.. Given an (ra,m) matrix M and a number A, it is easy to construct an (n + l,ra + 
\bin{m - 1)|) matrix B(M) by adding additional columns to A in such a way that 

(i) all rows of B(M) become incompatible, and 

(ii) no new column is compatible with any other (new or old) column. 

An easy construction to obtain this is to concatenate the rows of M with the binary 
encodings of the numbers 0,..., m - 1 over alphabet {0,1}, such that the ith row is concate- 
nated with the binary encoding of the number i-1. Since any two different binary encodings 
are distinguished by at least one position, no two rows are compatible. In addition, we add 
an n + lst row which contains 1 on positions in the original columns, and 0 on positions in the 
new columns. Thus, in matrices of the form B(M), only columns which already appeared 
in M (with an additional 0 symbol below) can be compatible. 

It remains to determine I\ We set T := (A + \bin(m - 1)|) x (n + 1).D The summand 
\bin(m - 1)| takes into account that we have added \bin(m - 1)| columns, and the factor 
hi + 1) takes into account that A is counting columns, while T is counting matrix entries.□ 
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1 2 3 4 5 6 

1 1 X X 0 0 0 
2 X 1 X 0 0 X 

3 X X 1 X 0 0 
4 0 0 X 1 X 0 
5 0 0 0 X 1 X 

6 0 X 0 0 X 1 

1 2 3 4 5 6 7 8 9 

1 1 X X 0 0 0 Ü 0 0 
2 X 1 X 0 0 X 0 0 1 
3 X X 1 X 0 0 0 1 0 
4 0 0 X 1 X 0 0 1 1 
5 0 0 0 X 1 X 1 0 0 
6 0 X 0 0 X 1 1 0 1 

7 0 0 0 0 0 0 1 1 1 

Column Squeezing 
Matrix Squeezing 

Figure 11: An instance of Partition into Cliques, and its reduction images. 

Example A.l Figure 11 demonstrates how a graph instance is reduced to a matrix instance. 
Note for example that {1,2,3} is a clique in the graph, and therefore, the columns 1,2,3 of 
the Column Squeezing problem are compatible.   In the Matrix Squeezing Instance, 
Columns 7,8,9 enforce that no rows can be merged. Row 7 guarantees that columns 7,8,9 
can not be merged with columns 1,..., 6. 

B    Proofs about Path Counterexamples 

Lemma 4.1.  The following are equivalent: 

(i)   The path T corresponds to a concrete counterexample. 

(ii)  The set of concrete paths h~l{T) is non-empty. 

(Hi) For all 1 < i < n, St ^ 0. 

Proof: (i) —y (ii) Assume that T corresponds to a concrete counterexample T = (si,..., sn). 

From the definition of T, h{st) = s] and st £ /?_1(^)- Since T is a trace in the concrete 
model, it has to satisfy the transition relation and start from initial state, i.e. R(si,S{+i) 

and si £ I. From the definition of /^(f), it follows that T £ h,-l{f). 

(ii) —y (i) Assume that h~l{T) is non-empty. We pick a trace (si,..., sn) from h~l{T). 

Then (h{si),..., h(Sn)) = T, and therefore T corresponds to a concrete counterexample, 

(ii) —y (iii) Assume that h~l(T) is not empty. Then there exists a path (si,... ,sn) where 
h(s;) = s~i and s\ £ /. Therefore, we have Si £ S\. Let us assume that S{ £ 5,-. By the 

definition of /?,_1(T), s,-+1 £ Img(si,R) and si+i £ /?-1(S^). Therefore, si+1 £ ,5';+i, since 
,S'j+1 = Img(Si, R) Pi h~l(s~^i). By induction, Si ^ 0, for i < n. 
(iii) —y (ii) Assume that Si ^ 0 for 1 < i < n. We choose a state sn £ Sn and inductively 
construct a trace backward. Assume that .s,- £ Si. From the definition of Si, if follows that 
Si £ Img(Si-i, Ä)n/7_1(.sJ) and ,SV—I is not empty. Select s,-_i from S'i_i. From the definition 
of Si-i, Si-i C h~1(s~Tl). Hence, Sj-i £ h~l{s~Ti). By induction, st £ Si = /?_1(.sl) n /. 

Therefore, the trace (.Si,..., sn) that we have constructed satisfies the definition of h~l(T). 

Thus, /?_1(T) is not empty. □ 
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In the following, we prove that when SijX is empty, there exists a polynomial algorithm to 
find the coarsest refinement. Let s G fr-1^) be a state and Pj~,Pj~ be two projection func- 
tions, such that for s = (du..., dm), P-~(s) = d3 and P~{s) = (du ..., d,_x, c/J+x,..., dm). 
Note that this definition is consistent to the definition in Section 4.3. Since 58> is empty, 
S'i.o and Si,! form a partition of /?_1(£)- A refinement of /?_1(^) can be achieved by refining 
each equivalence relations =3 (and thus, simultaneously, the abstraction functions /?..,). 

We will replace each equivalence relation =? by the equivalence relation ='j in the following 
way: We put two elements a, b of DvCj in the same equivalence class (symbolically, a ='j b) if 
and only if the projection sets P3,a = {p-(s)\P+{s) = a, s G SiA} and Pjtb = {p-(s)\P+(s) = 
5? s e Si,i} are equal. Intuitively, this means that any two states which only differ in the jth 
component are either both in S'u or both not in Si,!. As shown in Section 2, the equivalence 
relations ='■ (1 < j < m) define an equivalence relation =' on D. 

Lemma 4.2 When St> = 0, the relation =3 computed by PolyRefine is an equivalence 
relation which refines =j and separates St,0 and SiA. Furthermore, the equivalence relation 

='• is the coarsest refinement of =r 

Proof: First, we argue that ='■ is an equivalence relation: 

• Reflexivity: for any a £ Ej, (a, a) is not removed from =j, therefore, a ='■ a; 

• Symmetry: a ='■ b implies that proj(Sit0,j, a) = proj(Sil0,j, b). According to PolyRe- 
fine, (6, a) is not removed from =j. Therefore, b ='■ a; 

• Transitivity: assume that a ='■ b and b ='■ c, Then proj(Sii(hj,a) = proj(Si,0,j,b) and 
proj(Si,0,j,b) = proj(Si,o,j,c). Hence, proj(Sifi,j,a) = proj{Sifi,j,c). This implies 
that a ='■ c. 

Secondly, we show that =' is a correct refinement, i.e., for any two states si G S*,i and 
s-2 € Si.o, 5i ^' s2. Assume that there are two states sx € Si,! and s2 G Si,0 where si =' s2. 
Also assume that sj = (d1,...,dm) and s2 = (ei,...,em) where dj =] er Without loss 
of generality, we assume that dj ^ e,- for 1 < j < k and dj = e3 for k < j < m where 
1 < k < m. Consider another state s3 - {ex,d2,... ,dm). Since ex G Ei, d3 G Ej for 
1 < j < m, s3 G h^isi). On the other hand, si =' s3 because dx =\ ex and c/j =^- c?j 
for all j. According to our definition of =[, any two states which only differ in the jth 
component are either both in Si,i or both not in 6'^. Since sx G S't)1, it follows that s3 G 5i,i. 
Furthermore, we consider 54 = (ei,e2,c/3, • ■ ■ ,^m)- Following the same argument, s3 =' s4 

and s4 G S',-,1. Therefore, 5X =' s4. By repeating this step k times, we will obtain that 
sx =' s2 and s2 G SiA. Hence, ^i fl Slfi ^ 0- This contradicts our definition of S'ljX and 
S'i.o- Therefore, the equivalence relation =' partitions S'iiX and Sifi into different equivalence 

classes. 
Finally, we prove that the equivalence relation =' defines the coarsest refinement. Towards 

contradiction, we assume that there is another equivalence relation =" which defines a coarser 
refinement than =' and it eliminates the counterexample. Note that a coarser refinement 
implies that there are a fewer number of equivalence classes generated by =" than ='. This 
implies that there exists a j such that ='■ generates fewer equivalence classes than ='j. 
Therefore, there must exist two elements a, be DVCj where a =£'• b but a ='■ b. According to 
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the definition of ='•, a ^'- b if and only if there exist two states sx and s2, s.t. P*(s\) = a, 
Pf{*2) = b and P~(si) = P~{$2), however, either ^ G Si}1/\s2 g Sul or sj G" 5';,i A-s2 G SiA. 
We will first consider the case of .sj G 5';,i A ü2 G" ,5'u- The second case will follow the same 
argument. Because SiiX is empty, s2 G" ,5',-j implies that s2 G 5;.o- On the other hand, a ="■ b 
implies that sy =" s2 according to the definition of =". Therefore, =" cannot partition 
S;,i and 5'(,o into different equivalence classes, i.e., it cannot eliminate the counterexample. 
Hence, =' defines the coarsest refinement. □ 

Theorem 4.3 Given a model M and an ACTL* specification <p whose counterexample is 
cither path or loop, our algorithm will find a model M such that M \= <p <^> M \= p. 

Proof: There are three cases to consider. 

(i) If M \= p, then M \= p according to Theorem 2.1 

(ii) If M Y2 S^ ancl the generated abstract counterexample is not spurious, then there 
exists a concrete counterexample, and hence, M \/= p. 

(in) If M \/= p, and the generated abstract counterexample is spurious, then PolyRefine 
will refine the abstraction. Since each refinement step partitions an existing equiva- 
lence classe into strictly smaller equivalence classes, after a finite number of steps the 
equivalence relation will become the equality relation, and therefore M = M.  Hence 

D 
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