
AFRL-IF-RS-TR-2000-1
Final Technical Report
January 2000

METAMODELING TECHNIQUES AND
APPLICATIONS

University of Colorado at Colorado Springs

Don Caughlin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000313 043
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

DTIC QUALITY INSPECTED 3

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-1 has been reviewed and is approved for publication.

APPROVED:

ALEX F. SISTI
Project Engineer

GjOi^A^M) U^<-'^X~-
FOR THE DIRECTOR: , ,

JAMES W. CUSACK, Chief
Information Systems Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

JANUARY 2000
3. REPORT TYPE AND DATES COVERED

 Final Mar 96 - Sep 98
4. TITLE AND SUBTITLE

METAMODELING TECHNIQUES AND APPLICATIONS

6. AUTHOR(S)

Donald Caughlin

5. FUNDING NUMBERS

C - F30602-96-C-0040
PE- 62702F
PR- 4594
TA- 15
WU-N6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Colorado at Colorado Springs
PO Box 7150
1420 Austin Bluffs Parkway
Colorado Springs CO 80933-7150

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFSB
525 Brooks Road
Rome NY 13441-4514

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-1

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Alex F. Sisti/IFSB/(315) 330-3983

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 mrdsl

This report represents a compendium of previously published reports generated during the conduct of this contract. They
describe model abstraction techniques in general; reduced order metamodeling as a specific abstraction technique, and other
applications of metamodeling.

14. SUBJECT TERMS

Metamodeling, Reduced Order Modeling, Model Abstraction, System Identification
Techniques, VV&A

15. NUMBER OF PAGES

88
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Contents

Acknowledgements ii

Introduction iii

Model Abstraction Via Solution of a General Inverse Problem to Define a Metamodel1
APPENDIX 28
A Summary of Model Abstraction Techniques 31

A Metamodeling Approach to Model Abstraction 43

Verification, Validation and Accreditation (VV&A) of Models and Simulations
Through Reduced Order Metamodels 53

New Procedures to Metamodel Simulations 61

Automating the Metamodeling Process 69

Acknowledgement

We are most grateful to the Air Force, and in particular to both Al Sisti and Steve Fair of
the Air Force Research Laboratory/Information Directorate (formerly Rome Laboratory).
Our research would not be possible without their financial support. The topic of this
contract was development of a Metamodeling Support System (MSS) to assist in the
metamodeling of complex simulations. The research resulted in a complete set of
specifications: Metamodeling Support System Requirements from Final Report F30602-
94-0110; Metamodeling Support System System/Subsystem Specification (SSS);
Metamodeling Support System System/Subsystem Design Description (S/SDD);
Metamodeling Support System Software Design Description (SDD). In addition to the
specifications, the research also yielded a prototype GUI and a database structure to
support the MSS. Also, the research resulted in several publications and a significant
amount of software engineering relating to the C++ - Expert System interface.

Don Caughlin

Introduction

This report represents a compendium of previously published reports generated during
the conduct of Air Force Research Laboratory contract F30602-96-C-0040. They
describe the use of Metamodeling as a model abstraction technique, provide a process
and procedures to efficiently generate metamodels, and provide the structure of a
software system that can support the construction of metamodels.

Alex F. Sisti
AFRL/IFSB

December 1999

in

Model Abstraction Via Solution of A General Inverse
Problem to Define a Metamodel

Don Caughlin

Space and Flight Systems Laboratory-
University of Colorado at Colorado Springs

Colorado Springs, Colorado, 80918
donc@mozart.uccs.edu

February 13, 1997

Abstract 1 Introduction

Historically, most metamodels were generated by
linear regression to determine the best polynomial fit
to a set of input-output data. This paper presents
a new formulation for definition of the metamodel-
ing problem, a new framework for the solution, and
a structured method to attain that solution. Most im-
portantly, model abstraction via solution of a general
inverse problem expands the available classes of meta-
models by supporting the development of dynamical
models that incorporate memory. This expansion al-
lows the generation of metamodels that include sys-
tem dynamics so that metamodels can be developed
where the past can influence the future. Defining the
metamodeling problem in this manner adds a vast
amount of existing research (realization theory and
system identification methods) to the statistical (re-
gression) methods currently used to approach the prob-
lem. This framework has been successfully applied to a
number of metamodeling problems and is applicable in
all areas of Modeling and Simulation. It can be used
to support simulation analysis by reducing simulation
results to a set of mathematical equations that can be
easily analyzed. This technology can also be used in
the integration of multiple simulations by approximat-
ing one of the simulations (or portions thereof) with a
system of equations. It can also be used in the Verifi-
cation, Validation and Accreditation (VV&A) process
by providing a direct, external and efficient compari-
son of different models or simulations. l

'This work was supported in part by The USAF Rome Lab-
oratory Contract F30602-94-C-0H0

Large simulations, like the tactical simulation mod-
els used by the Department of Defense to assess the
capabilities of combat systems and tactics, are highly
complex. While these simulations can provide specific
information, it is often difficult to determine the re-
lationship of individual factors to the performance of
the modeled process [1]. Consequently, it is not easy
to use the results of the model in another simulation
or couple multiple models to investigate a larger is-
sue. The result is a proliferation of point designed
models and simulations, expensive upgrade and main-
tenance and the inability to efficiently answer many of
the more difficult questions raised by decision makers
[2].

A technique called "metamodeling" offers the abil-
ity to facilitate this type of assessment. A metamodel
is a mathematical approximation of the system rela-
tionships defined by a high fidelity model or simula-
tion. As an abstraction, a metamodel is a projection of
the model onto a subspace defined by new constraints
or regions of interest.

Historically, most metamodels were generated by
linear regression to determine the best polynomial fit
to a set of input-output data. In this paper we present
a new approach where in we do not try to fit data
but concentrate on the identification of the underlying
systems that defined the process. The focus is not on
statistics but on the system theoretic properties of the
manifest behavior.

By focusing on the system theoretic properties of
the manifest behavior, we generate the metamodel via
solution of a general inverse problem and do not re-
strict the solution to an approximation of the input-
output map. This approach expands the available

classes of metamodels by supporting the development
of dynamical models that incorporate memory. This
expansion allows the generation of metamodels that
include system dynamics so metamodels can be devel-
oped that allow the past to influence the future. Defin-
ing the metamodeling problem in this manner adds a
vast amount of existing research (realization theory
and system identification methods) to the statistical
(regression) methods currently used to approach the
problem.

In addition to a new approach to the definition of
the problem we present a new framework for the solu-
tion [3, 4]. The framework centers on the behavior of
the system, the behavioral equations that specify the
behavior and latent variables which may be present
from first principles. The theory, structure and defi-
nitions follow the presentation given in [5] and begins
with the essence of the system and not with a struc-
ture and assumptions that facilitate a solution tech-
nique. Consequently, this theory provides a basis that
includes all of the issues associated with modeling and
modeling from data.

Although the new framework was consistent with
existing metamodeling procedures defined in [1], the
development of the metamodel required too many de-
cisions involving: a priori knowledge; the data; possi-
ble metamodel sets; and rules to determine the best
model set to realize the data. Each decision was a
complex function of a priori information and prior se-
lections in the metamodeling process.

A structured metamodeling method is presented
that addresses this complexity. The structure is based
on the fact that the construction of a metamodel (se-
lection of the parameters used for the projection) is
determined by the metamodel set, method of iden-
tification and identification criteria. The method is
based on a new taxonomy of metamodel sets and iden-
tification methods that allows the separation of the
metamodeling process into a set of sequential decisions
based on a priori information.

This framework has been successfully applied to
a number of metamodeling problems and is applica-
ble in all areas of Modeling and Simulation [3, 4]. It
can be used to support simulation analysis by reduc-
ing simulation results to a set of mathematical equa-
tions that can be easily analyzed. This technology
can also be used in the integration of multiple sim-
ulations by approximating one of the simulations (or
portions thereof) by a system of equations. It can also
be used in the Verification, Validation and Accredita-
tion (VV&A) process by providing a direct, external,
and efficient comparison of different models or simu-
lations [6].

This paper provides the approach, framework, and

metamodeling method. While the paper also presents
possible model sets and identification methods that
can be used with these definitions, it is beyond the
scope of the paper to present all of the details associ-
ated with these sets and methods. Additional infor-
mation on these latter subjects can be found in the
references.

The paper is organized as follows: Section 2 intro-
duces metamodels, and metamodeling via direct and
inverse modeling. Section 3 presents the identification
framework discussing dynamical systems, representa-
tions, the important systems properties of controlla-
bility, observability, and identifiability. Section 4 ad-
dresses metamodeling issues such as the requirements
for metamodeling simulations, limitations of meta-
modeling, representing discrete event systems and the
determining the existence of a true input-output re-
lationship. Section 5 introduces a structured meta-
modeling procedure by presenting an overview of the
revised method that segments metamodeling into a se-
quential process. The remainder of the paper presents
the key steps of the structured metamodeling method:
Problem Definition, Section 6; Selection of the Meta-
model Set, Section 7; Selection of the Identification
Methodology, Section 8; and Generate the Metamodel,
Section 9. Section 10 summarizes the paper. Symbols
and notation used throughout the paper are included
in an Appendix.

2 Metamodels

A model is a structure that can be used for under-
standing the behavior of a system [7]. The model can
be a physical structure such as a wind tunnel model
used to determine the aerodynamics of an aircraft or
it could be a conceptual model represented by inter-
actions, a system of equations or a simulation.

A simulation can be defined an instantiation or re-
alization of a model. In this case the simulation is
different from the model. We will use a more abstract
definition. As stated, a model is a method of express-
ing a theory. The expression of the model - its repre-
sentation - distinguishes sets of models. Therefore, we
consider a simulation to be a particular representation
of a model and will not distinguish between them.

Assume that we have a model of a system that can-
not be used directly. A solution may not exist, it may
be too complicated for a closed-form solution, it may
require too much time to numerically determine a par-
ticular solution, or it may be a high-fidelity simulation
that provides much more detail than we are interested
in. Efficient use of this model requires a "black-box"
approximation of the causal time dependent behavior

of the model - a metamodel.
For our purposes, then, a metamodel is a mathe-

matical approximation of the system relationships de-
fined by another, more detailed model.

As an abstraction, a metamodel is a projection of
the model onto a subspace defined by new constraints
or regions of interest. Selection of the parameters used
for the projection (the construction of a metamodel)
involves: a priori knowledge; the data; a set of meta-
model sets; and rules to determine the best model to
realize the data.

There are two general metamodeling techniques:
the "Direct" and "Inverse" methods.

2.1 Direct Metamodeling

First, a metamodel could be developed by apply-
ing basic principles to generate a more abstract (ap-
proximate) version of the original model. This would
be an example of direct modeling. Direct model-
ing is characterized by a specification of the elements
of the model. Complicated systems are modeled by
"tearing" a system into its components, modeling
these components in a process called "zooming," and
then interconnecting these components to construct a
"physical" realization of the system [5, 8, 9]. The level
of abstraction is controlled by the detail of the specifi-
cation. The model reveals the structure of the theory
and allows the prediction of the response to exogenous
inputs as a function of the state of the system. The
solution of this modeling problem requires an under-
standing of the process being modeled and methods
to express this understanding.

Metamodels developed using this technique are
"stand alone" versions. The relationship between the
real system, the original model and the metamodel
is contained in the two mappings from the under-
lying system to each of the models. There is no
guarantee that a usable correspondence will exist be-
tween the metamodel and the model [10, 11]. Trace-
ability from the high-fidelity model to the more ab-
stract, lower fidelity metamodel becomes a significant
issue. Also, this technique still requires an a priori
understanding of the structure of the elements and
the interconnections between these elements at the
specific level of fidelity selected. This, in fact, could
be a difficult and risky task and lack of this knowl-
edge is often the reason that a high fidelity simulation
was used in the first place.

2.2 Metamodeling via Solution of an "In-
verse Problem"

Inverse modeling begins with the input-output data
generated by the high fidelity model or simulation and

develops the metamodel from the data. In this case,
we have some estimate (measure) of the input and out-
put response but do not have a complete characteriza-
tion of the process by which the outputs are generated.
While a properly posed direct problem generally has a
solution, the inverse problem usually has multiple so-
lutions out of which an acceptable solution (if it exists)
must be selected. This technique explicitly results in a
mathematical approximation between the inputs and
responses.

It should be noted that there is a significant dif-
ference between our approach and much of the prior
research. Most of the previous work that could be
categorized as metamodeling consisted of procedures
to determine the best polynomial fit to a set of input-
output data. The researchers concentrated on the sta-
tistical properties of the data. In our approach, we are
not trying to "fit" data. We are attempting to iden-
tify the underlying processes that define the system
that generated the data (or in our terminology - the
behavior). Therefore, the focus is not on statistics but
on the system theoretic properties of the manifest be-
havior. In other words we are trying to identify the
dynamical system that generated the data.

Dynamical systems acquire their importance from
the fact that they exhibit memory or the potential to
model phenomena where the past influences the fu-
ture. A dynamical system is a family of trajectories
without reference to I/O maps, variables, or behav-
ioral equations. The system is coupled to its environ-
ment and is not defined by any associated model.

The metamodel is defined by the behavior it allows.
This behavior is represented by inequalities or equa-
tions which can be grouped into sets. As we shall see
in Section 7, selection of the proper metamodel set is
critical to generation of an acceptable solution. There
are several system properties that must be considered
in the selection of the model set. These are controlla-
bility, observability and identifiability.

3 Identification Framework

Given a phenomenon that we would like to describe,
we desire a mathematical expression as the model [5]
2. Assume that this phenomenon produces outcomes
that are elements of a set U. A model for this phe-
nomenon will probably generate certain of these out-
comes and exclude others. Consequently the outcomes
recognized by the model B, are a subset of the uni-
versal set U, and are called the behavior of the model.
For the inverse modeling problem, we define a model

2 This framework follows the work presented by Willems.

class M with elements (U, B) where B C U is the
behavior of M.

Therefore, define a mathematical model as the pair
(U, B) with U the universe of outcomes produced by
the underlying phenomenon and B, the behavior of
the model. If possible, we can describe the behavior
of the model by a set of equations that leads to a be-
havioral equation representation of the pair (U, B). To
accommodate this consider an abstract set E, called
the equating space, and f\, f2 : U —»■ E. With this
space, and the functions /i,/2, the behavioral repre-
sentation for the model becomes (U, E, /i, f2).

In summary, the modeling procedure requires that
we specify the variables in the phenomenon that we
want to model (specify the universal set U) and iden-
tify the possible outcomes in the behavior, B. Of-
ten, however, we will require additional variables in
addition to those we seek to model. These other vari-
ables are called latent variables. These variables are
required whenever we develop a metamodel by the
method of tearing where the system is viewed as the
interconnection of subsystems. Consequently we ex-
pand the mathematical model to allow latent variables
by defining a triple (U, L, B\). Here L is the set of la-
tent variables, B\ C U x L, with B\ = {u G U\3l G
L : (u,l) G Bi}. (Note: B\ could also be represented
in an equating space as shown above.)

A mathematical model is linear if U is a vector
space and B is a linear subspace of U. Assume that
U — I xO, where 7 is the input space, O is the output
space, and B is the graph of a system map S : I x O
called an I/O map. These assumptions allow an input-
output model where (U, B) O (7 x O, B) O (I, O, S).
If the past does not contain any information about the
future other than the information in the behavioral
relationships, the map is nonanticipating. A param-
eterization of M consists of a set P and a surjective
map ■K : P —► M. The set P is the parameter set with
p G P determining the behavioral equations.

3.1 Dynamical Systems

Again, the model for a dynamical system is defined
in terms of its behavior. A dynamical system is a
family of trajectories without reference to I/O maps,
variables or behavioral equations. The system is cou-
pled to its environment and is not defined by a model
associated with it. A model for a dynamical system
E is simply a triple £ = (T, W, B) with T C R the
time axis, W the signal space, and B C WT the be-
havior - the set of all maps from T to W - a family
of W-valued time trajectories.

A dynamical system is linear if W is a vector space
(over a field F) and B is a linear subspace of WT. A

dynamical system E = (T, W, B) is said to be time
invariant if <j*5 = B for all t G T. Where <r* is the
time-shift operator: (c*/)(*') - /(*'+<)•

A dynamical system E = (T, W, B) is said to be
complete if {w 6 B) o H[*i,*2] € B[Hit2]yt1,t2 E
T,t\ < t-z}. Completeness is an important property af-
fecting the mathematical structure that defines the be-
havioral equations that represent dynamical systems.

Dynamical systems acquire their importance from
the fact that they exhibit memory or the potential
to model phenomena where the past influences the
future. In this context, a dynamical system is said
to have a finite memory span A(A G T, A > 0) if for
w\,W2 G B, wi(t) = W2(t) for 0 < t < A =$■ {wiAw2 G
B) 3. Where:

(tui Aw2 '(*) = { Wl(t)
w2(t)

for t<0
for t > 0 (1)

If A = 0, the dynamical system is memoryless; if
A = 1 (in discrete time) the system is Markovian.
Therefore, for a system with a finite memory span,
the past is independent of the future. E is A com-
plete (A G T, A > 0) if {w G B} O {(<r*iu)|[o A] €
B\mWt G T}.

Dynamical systems with latent variables and in-
put/output dynamical systems can be defined in an
analogous fashion as before. One method of repre-
senting latent variables is through state variables. A
state-space dynamical system is defined as a dynam-
ical system with latent variables, £; = (T, W, X, Bs)
with X C L, such that the full behavior Bs G W x X
satisfies the axiom of state. In this case the latent vari-
ables, the states, contain sufficient information about
the past so as to determine future autonomous behav-
ior. The behavioral equations such as difference or
differential equations, lead to representations of dy-
namical systems.

3.2 Representations

The model of the dynamical system is defined by
the behavior that it allows. The behavior can be de-
fined by a set of inequalities or equations. The struc-
ture of the equations is a representation of the model.

A representation that is only a function of current
and past signals (outputs) and is called an autore-
gressive (AR) representation and can be written as
R(a L „-1 0. Where

R(aL,a--') = RLsL+RL_1s
L-1 + ...+Rl+1s'+1+R1s'

(2)

Here A denotes concatenation

If the system that we are trying to model suggests
latent variables to describe the behavior, the autore-
gressive representation can be expanded to include a
moving average part of the past latent variables re-
sulting in an autoregressive-moving-average (ARMA)
representation. In this case, the behavioral difference
equations relate the time-series of the manifest vari-
ables w : Z —> Rq to the time-series of the latent
variables x : Z —► Rq. With appropriate definitions,
the ARMA system is defined as:

R(aL,a-')w = M(aL,a~')a (3)

An important class of ARMA systems are those where
R(s,s~1) = I. This yields a moving average (MA)
representation: w = M(<r,cr~1)x

We can combine the above constructs to define a
class of models with all of the advantages of complete-
ness - described by the difference equation; state form
- the memory is displayed through the latent vari-
ables; and nonanticipating input-output - an explicit
cause and effect structure. This representation is an
input/state/output representation and is the model
class most amenable to analysis, synthesis and simu-
lation.

3.3 Controllability,
Identifiability

Observability, and

In a controllable system, the past trajectory does
not have a lasting influence on the far future. Sooner
or later any other trajectory within the controllable
subspace can be attained [12]. All dynamical sys-
tems are not controllable. In an autonomous system,
the past trajectory determines its future completely.
Consequently, the lack of controllability implies pre-
dictability. As we develop the capability to better un-
derstand and control our environments, our ability to
predict that environment can suffer. We are limited
in our ability to predict by our ability to observe.

Observability is the ability to reconstruct the tra-
jectory of latent variables from the manifest set [13].
While controllability is intrinsic to the dynamic sys-
tem, observability is also a function of the represen-
tation of that system. This comes about because ob-
servability is only an issue for dynamical system model
representations that have latent variables (by defini-
tion if the variable is a manifest variable it is observed)
and is a property where an unobserved signal can be
deduced from one which is observed.

Identifiability relates to the ability to reconstruct
the dynamical laws of the system from a given set
of measurements [14]. There are several obstructions
to identifiability. Feedback makes it difficult to sepa-
rate system dynamics from the dynamics of feedback.

Structured inputs can interfere with the structure of
the behavior. The failure of the input to excite all of
the modes will prevent observation (and subsequent
identification) of the unexcited modes. And finally,
over parameterization can result in dependencies that
cause gradients to become singular preventing identi-
fication of the system.

Any persistently exciting unstructured input will
be sufficiently rich to observe a controllable system.
Structured inputs will allow observation and identi-
fication if the AR relations defining the structure of
the input have large lags that do not interfere with
the structure of the system. In other words: if the
structure of the input is not seen by the system [5].

In order to identify a portion of a system, we must
be able to observe the response. Observability spec-
ifies the ability to determine the trajectory of latent
variables from the manifest set. Since controllabil-
ity allows an MA representation, and any control-
lable MA representation can be converted into an AR
representation by increasing the lag, complete con-
trollability implies observability. Lack of controlla-
bility, however, does not imply lack of observability
[15]. For systems that can be reduced to an AR-
representation, Ri(aL,cr~')wi + R2(<T

L,a~')w2 = 0
with Ä![(7

L
,«T-'] G R3Xqi[<TL,a-'] and R2[aL,a-'] £

Rgxg2[(TL,a~l] then u>2 is observable from w\ if and
only if the rank of the matrix R2(&L, c-') is equal to
g2V<r £ 0.

This is why inverse modeling or system identifica-
tion is thought to be difficult - the system and our
selection of a representation is critical in that it con-
strains the behaviors of the model, affects our abil-
ity to observe latent variables, impacts our ability to
represent the outcomes U and defines our ability to
identify the underlying processes.

3.4 Discrete-Event Systems (DES)

The above framework is consistent with the for-
malized discrete-event systems in theoretical computer
science. The behavior is similar to the formal lan-
guage; a state-space system is like an automation; la-
tent variables are replaced by production rules; inter-
connections are communications. The most significant
difference is the lack of behavioral models (equations)
in the theory of DES. Also completeness is usually vi-
olated in a DES by initiation and termination rules
for event strings.

Since the DES is not complete, representation of
these systems requires special consideration. We will
see in Section 4 that completeness is required to rep-
resent a dynamical system by a behavioral difference
equation. Results for representation of complete sys-

tems may be generalized to a class of noncomplete sys-
tems (including DES) that meet specific restrictions.

The linear time-invariant dynamical system,
(Z, Rq, B), is called an /2-system if B is a linear shift-
invariant closed subspace of l2(Z;Rq). Define BP

C
 as

the closure of B with respect to the topology of point-
wise convergence. This corresponds to finite dimen-
sionality. With these definitions, results for complete
systems may be generalized to /2-systems satisfying
B = B~^[\l2(Z;RßY.

4 Metamodeling Issues

With a framework established to characterize sys-
tem models, we now address the key issue of the in-
verse modeling problem: "What properties of the be-
havior allow the system to be represented by a differ-
ence (or differential) equation of a particular type?"
Analysis of these properties will result in rules and
constraints for the setup and design of metamodels.
Since we are no longer fitting data but identifying sys-
tems, the data used to identify the system must meet
certain prescriptions. Explanation and proof of the
following statements can be found in [5].

1. To represent a system by means of a difference
equation it has to be complete (it cannot have ini-
tialization or termination conditions at t = ±00)
with a finite memory span so that observation of
a trajectory on a finite time interval allows con-
clusions about past behavior independent of what
will happen in the future.

2. For a system to be described by AR-equations it
must be linear, complete and time invariant.

3. Since a dynamical system containing latent vari-
ables can be converted into an AR representation
with an increase in the lag, representation of a
dynamical system with latent variables must also
be linear, complete and time invariant.

4. If the dynamical system is controllable (if it is
possible to eventually steer the system to a de-
sired trajectory) then the system will also allow
an MA representation.

5. An input-output dynamical representation can
be defined if, and only if, it can be de-
scribed by an AR-system of behavioral equa-
tions P(a,a~1)y = Q(a,a~1)u with P(s,s~1) £
RP

XI
'[S,S-

1
], Q^.s-1) e AP*"*!«,«"1] and det

P^O.

See [10] and [11] for definitions of lp spaces.

6. The input-output dynamical representation will
be nonanticipating if and only if
P'^s^-^Qis^-1) £ RP*m(s) is a matrix of
proper rational functions.

7. The manifest behavior of the state variable (an
ARMA) representation will belong to Lq. Con-
sequently every system X £ Lq admits a finite-
dimensional state representation, allows a com-
ponentwise I/O representation and admits an In-
put/State/Output representation.

4.1 Metamodeling Simulations

In this paper we consider inverse modeling and con-
centrate on the metamodel sets and rules to determine
the best model.

With respect to metamodeling simulations, the sys-
tems we are trying to identify are complex, nonlinear
and time-varying. They can be continuous, discrete,
sampled-data (continuous systems with discrete mea-
surements) or discrete event systems. In general, for
these cases, the predictor function is a nonlinear func-
tion of past observations and there are too many pos-
sibilities for unstructured "black box" models. Knowl-
edge of the nonlinearities must be built into the model
[16].

Care must be taken in the setup of the Metamod-
eling problem. The experimental design must provide
input-output sequences that correctly represent the
system structure. When the metamodel is determined,
it is not possible to ask "What is the probability that
a particular set of fitted parameters is correct?" be-
cause there is no statistical universe of models from
which the correct one is chosen. There is just one
model and a statistical universe of data sets that are
drawn from it. It is possible, however, to ask "Given
a particular set of parameters, what is the probability
that this data set could have occurred?" We can iden-
tify the probability of the data given the parameters
as the likelihood of the parameters given the data [17].

Fortunately, in our case we have explicit knowledge
of the nature and characteristics of the high fidelity
system. We have the model (the simulation) that ap-
plied the system to the inputs to generate the out-
puts we are interested in. Given this information we
can build the nonlinearities into the structure of the
metamodel and provide the capability to generate a
reduced order approximation of the original model.
This fact makes metamodeling as a method of model
abstraction feasible. We exploit this fact to the fullest
extent possible.

In addition to knowledge of the nonlinearities, other
requirements must be met to allow representation of

the system by a finite dimensional, reduced order ap-
proximation: the system must be complete; the axiom
of state must apply; and the output must be nonan-
ticipating.

Simulations are usually defined to represent real-
world events that have a beginning and an end. Given
that the simulation terminates naturally, results for
complete systems can be applied since the system be-
havior is restricted to a finite dimensional sequence.

In general the axiom of state applies because the
simulation is set up in such a way that the initial con-
ditions contain sufficient information about the past
so as to determine future autonomous behavior.

Also the presence of input and output files indi-
cates that an input-output structure with causality is
assumed in the model represented by the simulation.

In summary, assuming that the underlying system
modeled by the simulation is well behaved, (Marko-
vian, complete with respect to the modeled behavior)
the following is required to metamodel simulations:

1. The data must include the behavior we are trying
to model [18].

2. The latent variables that define the behavior must
be observable [16].

3. The input must be persistently exciting so that
the effects of the latent variables are observed [19].

4. For a stochastic system, the ensemble of trajecto-
ries must span the space [20].

5. Any single trajectory must span both the input
and output space and be sufficiently long so that
the state transition probabilities also span the al-
lowable probability space and the distribution of
these probabilities are the same as the underlying
system [16].

4.2 Metamodeling Limitations

In addition to the problem setup and experimental
design, the metamodel solution comes with limits of its
own. Using the space spanned by the original model as
the full order model, the metamodel is a reduced order
approximation. This reduction inherently limits the
span of the manifest (exogenous) variables associated
with the behavior (input or output - if such a map
exists). Consequently, the behaviors allowed by the
metamodel will exist within a subspace of the original
model.

Assuming that an input-output map exists for the
model, input values will be restricted to a domain
within which the metamodel will be applicable. Out-
side of this hypersurface, application of the metamodel
may provide numbers but will not generate an output

that is representative of the modeled system. Also,
assuming appropriate inputs, the output of the meta-
model can only be guaranteed to be approximately
correct. As a projection, the metamodel will not con-
tain all of the detail of the original model. There are
output error bounds that are a function of both the
metamodel and the input.

4.3 Representing Discrete Event Systems

The discussion above introduced the issues associ-
ated with Discrete Event Systems. Most of system
identification is formulated on continuous, discrete or
continuous-discrete dynamical systems. Many of the
simulations are discrete event or connected discrete-
event dynamical systems. The question arises: "When
can a DES be described by a difference equation?"

Since completeness is usually violated this im-
pact must be expressly considered. If a linear time-
invariant system is not complete then whether or not
w : Z —>• Rq belongs to the behavior depends on w(t)
at ±oo. However, results for complete systems can be
generalized if the system behavior is restricted to a
finite dimensional sequence. From Section 3.4, every
behavior B 6 Lq allows an AR representation. De-
fine a DES as a time-invariant system E = (Z, W, B)
with W a finite set. A DES is internally finite if it
can be realized by a finite automation and/or if there
exists a state-space representation of it with a finite-
state space. An internally finite and complete DES
£ = (Z, W, B) can be described by a behavioral dif-
ference equation /o ((TLw, <T

L
~

1
W, ..., a'w, w) = 0 for

some L G Z and some / : WL+1 -» {0,1}.

4.4 Existence of a true Input-Output Re-
lationship

Assume that we have observed the input and out-
put of a system and computed a set of linear differen-
tial and/or algebraic equations from this data. Have
we identified the system? Do these equations estab-
lish a true input-output relationship suggested by this
identification? For linear systems, answers to these
questions are provided by two sequences of subspaces,
one in the input space u and the other in the output
space y [21].

Consider a system of linear ordinary differential and
algebraic equations with constant coefficients: A{a)£+
B{a)u + C(a)y = 0 where (<r) denotes differentiation
(or the shift operator for discrete time systems) and £
contains all of the latent variables not present in the
input and output spaces. A(s), B(s), and C(s) are
polynomial matrices.

We say that y processes u if the linear space of tra-
jectories {y\(y, 0) e B) is finite dimensional. There-
fore, y processes u if u determines y up to a finite
number of constants. Also u is free if for every trajec-
tory u there exists a trajectory y such that (y, u) £ B.

Recall that if the dynamical system with latent
variables E; = (Z,Rq,Rd,Bi) is linear time invari-
ant and complete, the manifest system which it rep-
resents E = (Z,Rq,B) is also linear time invariant
and complete. Consequently, for a linear time in-
variant and complete system, any behavior given by
A(a)£ + B(a)u + C(a)y = 0 can also be represented
by:

B = [Äi(ff) R2(<r)] = 0 (4)

The behavior of such a set of equations stems from
an input-output system if both conditions of the fol-
lowing proposition hold.

Proposition 1 Let a behavior B be given by equation
4- where [Ri(a) Ä2(o")] is a polynomial matrix of full
row rank. The following statements hold:

1. y processes u if and only if Ri(s) has full column
rank.

2. u is free if and only if, Ri(s) has full row rank.
Therefore, Ri(s) must be invertable and the trans-

fer matrix of the system is defined by T(s) =
-R^(s)R2(s).

Consequently once the identification is accom-
plished, the subspaces generated by the system (equa-
tion 4) can be checked to determine if a true input-
output relationship has been found (Refer to [21] for
additional detail).

5 General Approach

Thus far we have presented the new approach to
addressing metamodeling problems and a framework
for applying that approach. We now discuss a struc-
tured method for implementing the framework that
is based on a new taxonomy of metamodel sets and
identification methods.

The development of this method began with the
following metamodeling procedure presented in [1]:

1. Determine the purpose of the metamodel.
2. Identify the response.
3. Identify important response characteristics.
4. Identify input factors.
5. Identify important input characteristics.
6. Specify the experimental region.

7. Select validity measures.
8. Specify required validity.
9. Postulate a metamodel based on:

Input - Output response characteristics.
Experimental region dimensions.
Required validity.

10. Select an experimental design.
11. Obtain data.
12. Fit the metamodel.
13. Assess the validity of the model.

This procedure was primarily based on the use of
least squares to realize the metamodel. When applied
to our new framework this procedure, especially "Step
9: Postulate a metamodel," resulted in too many com-
plex decisions involving: a priori knowledge; the data;
possible metamodel sets; and rules to determine the
best model set to realize the data.

In order to categorize metamodeling problems and
their solutions in a manner that would allow the sep-
aration of the metamodeling process into a set of se-
quential decisions based on a priori information each
of these areas were analyzed to derive a taxonomy that
would support a structured metamodeling procedure.

The first eight steps of the metamodeling proce-
dure provide the prior knowledge or metamodel re-
quirements that define the problem. The remaining
steps define the experimental setup, the model set, the
method of identification and validity measures used to
develop and verify the metamodel. This fact was used
to separate the procedure into two general areas. The
first eight became the foundation for the problem def-
inition; the remaining steps were grouped as iterative
steps in the metamodeling process shown in Figure 1.

PROBLEM DEFINITION

EXPERIMENTAL DESIGN

+
RUN SIMULATKJN

1
+

COLLECT
DATA

SELECT METAMODEL SET

1, SELECT IDENTIFICATION
METHODOLOGY

■

Figure 1: Iterative Metamodeling Process

In this process "Step 9: Postulate a metamodel"
was decomposed into the two steps "Select a Meta-
model Set" and "Select Identification Methodology."
Both of these steps are a function of both the problem
definition and the data generated by the simulation.

"Step 10" was directly incorporated in the struc-
tured method. Procedures for defining the experimen-
tal design, for pretreatment of the data and for the
verification processes are covered in references such as
[16, 22, 23] and are further discussed in [24].

"Step 11; Obtain Data" is addressed by the two
steps in the revised process: "Run the Simulation" and
"Collect Data." These steps are purely mechanical in
nature and are not discussed further.

We now present the key steps of the structured
metamodeling method: "Problem Definition," Section
6; "Selection of the Metamodel Set," Section 7; "Se-
lection of the Identification Methodology," Section 8;
and "Generate the Metamodel," Section 9.

6 Problem Definition

We define a metamodeling problem as the direct
sum of the metamodel requirements and the model
(simulation). This means that the same simulation
could be part of two different metamodeling prob-
lems if the requirements were different. Conversely
the same set of requirements applied to two differ-
ent (nonsimilar) simulations also leads to two different
metamodeling problems.

Consequently, to define the problem we must con-
sider both elements of the direct sum - the purpose of
the metamodel and the simulation characteristics.

6.1 Metamodel Purpose

As mathematical relationships metamodels can be
developed to support two general purposes: (1) Anal-
ysis; or (2) Hierarchical simulation.

First, a metamodel can be used for analysis. In this
case the metamodel becomes an independent structure
that is used to understand and extract information
from the model. Table 1 depicts the scope and uses of
analytical metamodels.

Table 1: Scope and Uses of Analytical Metamodels.

Table 2: Scope and Uses of Simulation Metamodels.

Scope

Uses

Approximate an Unknown Response

Model a Simulated Process

Sensitivity Analysis
Estimation of Existing States
Predict and Control Future Responses
Optimize Expected Performance
Diagnosis of Faults

Scope

Uses

Develop Atomic Simulation Components

Build Coupled Simulation Components

Execution Speed
Maintainability / Configuration Control
Verification, Validation, and Accreditation

Secondly, a metamodel can be used to support hier-
archical simulation and model reuse (Table 2). In this
case the metamodel is used in conjunction with (cou-
pled to) other simulations or simulation elements to
answer larger questions that are not supported within
the structure of the modeled simulation. This pur-
pose supports simulation based on a hierarchical rep-
resentation. Using metamodels for this purpose is a
two-step process. First a metamodel of a simulation
(or component) is generated to develop more abstract
simulation model. Once developed, interface modules
can be used to couple these metamodels to other sim-
ulations or metamodels to represent a more complex
system.

The selection of scope and use defines the meta-
model purpose and provides clear boundary conditions
for follow-on selections in Steps 2 through 8 which are
also part of Problem Definition.

6.2 Simulation Characteristics

We have discussed the purpose of the metamodel.
Since all of the remaining problem definition decisions
are a function (direct sum) of both the metamodel
requirements and the simulation that is to be mod-
eled, we concentrate on the aggregate space of simula-
tion characteristics. Research has suggested that both
a general (external) description of the simulation or
model as well as further detail on the (internal) pro-
cess structure of the internal components is required
(Refer to [3, 4]).

The classification defined by the "SIMTAX, A Tax-
onomy for Warfare Simulation" was completely ade-
quate for the external description. This taxonomy was
developed by the Military Operational Research Soci-
ety (MORS) and addresses three equally important
relational dimensions: the purpose, the qualities and
the construction of the model or simulation [25]. It
is a descriptive framework designed to guide the de-
velopment, acquisition and use of warfare models and
provides the basis for classifying objects for identifica-
tion, retrieval and research purposes.

Selection of a metamodel set requires detailed in-
formation not contained in the simulation and model
catalogues. Recall that our new approach and frame-
work concentrates on the behavior of the underlying
system that defined the process. The metamodel rep-
resentation of the simulation is realized by the param-
eterization of the selected metamodel set. The perfor-
mance of the metamodel is directly correlated to the
match between the behavior of the underlying system
and the metamodel set. To provide a link between the
simulation behavior as described by the more general
taxonomy outlined above and specific metamodel sets
a more detailed internal taxonomy was appended to
the SIMTAX. The purpose of this additional detail is
to link the behavior (of the simulation) and the rep-
resentation (of the metamodel) and uses system theo-
retic definitions common to control engineering.

Figure 2 depicts the model of a continuous system
with a sampled measurement. In development of a
metamodel we try to isolate and identify each of the
individual elements in this model. Consequently we
must be able to characterize the type of processing
that takes place in each of the blocks.

v(ti)

X *<!!> ^^!^55*J*Q3^^
L-o<J

Figure 2: System Model.

To explain this concept, we will consider the model
of an aircraft. The input, u(t), is the pilot or au-
topilot command. In modern aircraft this would be
a desired acceleration ("g") or angle of attack ("a").
In older aircraft it would be something closer to the
flight control surface such as the torque necessary to
hold the control surface in a given position. This in-
put is acted on by B(t) to provide the input expected
by the plant. In an inertial frame it could be the force
applied. In a more complicated model it could be the
control surface deflection. Another input path accepts
input disturbances w(t) (e.g. turbulence). The plant,
represented by F(t), is the model of the physical sys-
tem. In the case of the aircraft, it could be some-
thing as simple as F = ma (if the simulation was
completely defined in an inertial frame) or it could be
the body axis stability derivatives that make up the
coefficients in the equations of motion [26]. The noise
corrupted output, z(ti), is the measurement available.

The instrumentation system that performs these mea-
surements is represented by H(t). The aircraft would
have accelerometers or an inertial system that mea-
sures the body axis accelerations or inertial position
and attitude. The combination of all of these blocks
represents a single entity in a simulation.

Formulating the metamodeling problem with this
additional detail is important for two reasons. First,
each of these blocks may be represented by a separable
process and it is usually not possible to simultaneously
identify more than one process.

If we try to simultaneously identify two processes
and the processes are independent, a rank deficiency in
the uncoupled equations causes numerical difficulties.
If the processes are dependent, behaviors associated
with both processes will be combined preventing the
identification of either.

If one is successful in simultaneously identifying
multiple process, performance of the resulting meta-
model is usually poor. Unless the model set and or-
der accurately accommodates both systems, the min-
imization process used for identification will generate
a system of equations that represents the combined
behaviors within allowable tolerances but represents
neither system well.

Returning to the internal taxonomy, categories and
selections for these categories that were used to pro-
vide the additional detail on the internal structure are
shown in Table 3 and are described below.

Basis. This is the fundamental basis of the sim-
ulation. The simulation will model either a physical
phenomenon or will model events that simulate human
or system interactions with its environment. Simula-
tions that are a combination of the two, default to
event based (the more complex of the two basis).

System, Input, and Output Processing. This con-
cerns the plant or system that is modeled. It covers
the algebraic structure (Linear or Nonlinear) and real-
izations (Stochastic or Deterministic) used to process
the inputs, describe the plant and the method of gen-
erating the observed output. Each of these elements
is considered independently.

Result/Trajectory. The output of the simulation
can be a single trajectory that maps a series of events
or it can be a result that is incorporated into a statisti-
cal database to determine probabilities of occurrences.

Level. This describes the class of the system and
the types of representations that can be used. SISO
is single-input single-output system. A MISO system
has multiple inputs but still a single output. A MIMO
system is the most complex with multiple inputs and
multiple outputs.

Process description. In a "Complex" simulation
there are inputs to more than one separable process

10

Table 3: Internal Processing Description.

Basis
Physics based

Event based

System

Inputs

Outputs

Linear

Nonlinear

Stochastic

Deterministic

Result/Trajectory
Functional

Statistical base

Level
SISO
MISO
MIMO

Process description
Complex
Simple
Coupled

Interval
Continuous time
Discrete time
Continuous - discrete time
Discrete-event

(system). In a "Simple" simulation there are inputs
to only one process (system). There is no additional
influence on the system (other than predefined param-
eters). In a "Coupled" simulation there are inputs
to only one process (system) but there are additional
non-deterministic impacts on the output.

Interval. There are three ways that a dynamical
system can evolve in time. It may be continuous (ana-
log), discrete or it can be discrete-event. Also there
are two options for measuring (sampling) the output of
a continuous system. It may be sampled continuously
or discretely (at specific time intervals).

6.3 Problem Definition Summary

At this point, we have determined the purpose of
the metamodel. In the definition of this purpose we
have identified the input and response that we are in-
terested in and determined the important character-
istics of these data. Also for this purpose, we have
defined the region of interest, selected validity mea-
sures and specified the required validity.

In addition we have characterized the simulation
that were are trying to model. In keeping with our new
approach, we have not addressed the representation of
the metamodel or assumptions that will be made in
it's realization. However, data generated by this step
provides a clear statement of the metamodel purpose

and the characteristics of the simulation that will be
modeled. As will be seen in the next section, this data
directly matches the decisions that must be made in
the selection of the model set.

7 Selection of the Metamodel Set

Now we discuss decisions associated with "Select a
Metamodel Set." The completion of this step requires
a number of interrelated selections. So many options
are available that the combination of model selection,
error criterion, identification technique, and numerical
methods leads to an overwhelming myriad of "identi-
fication methods."

In fact there seem to be as many system identifica-
tion methods as there are inverse problems. Many spe-
cific identification and statistical methods have been
developed to accommodate the differences in model
structures, data length, measurement error statistics,
etc. Also, the literature contains considerable discus-
sion on particular methods with very little discussion
on the relationship of these techniques to each other
or to a general methodology. The result is a confusing
array of unconnected methods with little or no guid-
ance on the application of the techniques to general
classes of problems.

Since we are looking for procedures to handle gen-
eral metamodeling problems, we discuss these meth-
ods as elements of a more general structure and have
reduced these selections to four (including Selection
of the Identification Methodology - Section 8) that
best match the characterization of the simulation to
the behavior allowed by the metamodel set.

In reality all "real world" systems are complex,
large scale interconnections of continuous-discrete,
nonlinear, infinite-dimensional components. We will
approximate these systems with lumped parameter,
parametric, finite dimensional models that can be
grouped into sets.

A metamodel set is defined by the system descrip-
tion, system class and metamodel structure (represen-
tation). For any given problem, multiple model sets
are available. In each of these model sets a most pow-
erful unfalsified model 5 will exist (given that the re-
quirements of Section 4 are met) [5]. Consequently the
performance of the metamodel will be limited by the
match between the metamodel set and actual system
that generated the behavior.

7.1 System Description

In the definition of the system description, the first
selection concerns the system type that will define the
allowed behavior of the models. Here the most basic

5Defmed in Section 9.

11

Table 4: System Description.
Selection Options

Type
Static
Dynamic - Time Invariant
Dynamic - Time Varying

Algebraic
Structure

Linear
Nonlinear

Randomness
Stochastic

Deterministic

Time
Continuous time
Discrete time
Continuous - discrete time
Discrete-event

Table 5: System Classes and Representations.
MODEL CLASS FORMS OF THE

REPRESENTATION
SISO
MISO
MIMO

Polynomial
Matrix Fraction
State Space

questions must be addressed. How are the parame-
ters described? Is the representation going to include
dynamics or will it be static? Will the model contain
latent variables? If it is dynamic, is it time invariant
or time varying?

Is the algebraic structure linear or nonlinear?
Are disturbances, noise and randomness accommo-
dated? Is the system defined as continuous, discrete,
continuous-discrete or as a discrete-event system? Ta-
ble 4 outlines the possible selections that define the
system description. Note that while both static and
dynamical models can both accommodate nonlinear
and stochastic behavior, only dynamical systems have
time and trajectories associated with them.

7.2 System Class

In addition to the system description, the class of
the representation is also needed to define the overall
model set. This class is defined by the interaction of
the variables and the representation. Table 5 provides
a list of the general system classes and the possible
form of the representations [19, 20].

Comparing Tables 4 and 5 with Table 3 we see that
the characteristics of the behavior we are modeling
define the first two elements of the metamodel set:
the system description and the system class.

7.3 Metamodel Structure

Once a system description and class that match the
underlying behavior have been selected, the next de-

cision is selection of the model structure to use in de-
scribing the response of the system to the inputs (pos-
sibly including latent variables). A metamodel struc-
ture M is defined as a differentiable mapping from a
connected open subset Dm of Rd to a metamodel set
M(0), such that the gradients of the predictor func-
tions are stable. In this definition 6 is the vector used
to parameterize the model and Dm is the values over
which 9 may range in the metamodel set M(6). There
are many metamodel structures available and this area
generates much of the complexity in system identifi-
cation.

We simplify this decision by defining two general
model structures; predictor models and probabilistic
models. A predictor model only defines the predictor
equation(s). These models specify the elements of the
transfer function in terms of some parameter set. The
models generated from these structures are determin-
istic in nature. 6

A probabilistic model accommodates the fact that
many systems are subject to known disturbances that
are not (or cannot be) completely categorized. The
statistics of the noise and disturbances are included
as random variables. Probabilistic models supplement
the parametric description with a description of the
density function (or moments) of the noise (distur-
bance) that acts on the system. The variables of the
system being identified become functions of random
variables. In these situations different realizations of
an experiment (simulation run) may not produce ex-
actly the same results. Consequently the output of a
probabilistic model is the conditional expected value
and the joint or conditional probability density func-
tions (JPDF or CPDF) of the variables.

The following two subsections discuss these two
model structures. Since all models are not appropri-
ate for every system description and class the available
selections are dependent on the description and class
we have selected.

7.3.1 Predictor Models
The selection of the metamodel structure should
match the system description. Since predictor models
are used for deterministic systems we provide models
that match the type and algebraic structure shown in
Table 4.
Static. Static systems can be either linear or non-
linear. The predictor equations for static models are

6 Predictor models do allow for the prediction or measure-
ment error. And since the coefficients were generated via a
minimization of some error criterion with assumed statistics,
the coefficients will be random variables with an error distribu-
tion. Since the estimates are functions of these random vari-
ables, this distribution can be used to compute error bounds of
the estimate.

12

the actual input-output map that comes from the se-
lected representation and are similar to those repre-
senting dynamical systems. Also static models can be
set up using dynamical model structures with a zero
state transition.
Dynamic. For dynamic systems, we use the model
structure to predict the output of the model. The dif-
ferences between this prediction and the actual data
are then used to arrive at the parameter set which
minimizes the error. As the complexity of the system
description increases, the flexibility in the selection
of the representation (polynomial, matrix fraction de-
scription, state space) decreases.

We will consider three types of dynamic models:
linear time-invariant, linear time-varying and nonlin-
ear. To save space, discrete realizations are presented.
However, continuous realizations can also be used. All
nonlinear systems will be assumed to be Markov.

Linear Time-Invariant Predictor Models.
There are a number of ways of defining the trans-
fer function (input-output map) associated with linear
time-invariant predictor models. First, the numerator
and denominator polynomials of the transfer function
can be given explicitly in either discrete or continu-
ous time. This polynomial transfer function can also
be converted into a frequency function that gives the
frequency response of the input-output map. Finally,
the transfer function can also be defined by the zeros
and poles of the model. These descriptions are most
appropriate for SISO systems. [27]

MISO systems are best represented by a state space
or polynomial format that explicitly defines the coef-
ficients of each of the input and output terms.

Our general linear metamodel structure is:

y(ti) = G(q)u(ti) + H(q)e(ti) (5)

where yiti) is the output, u(t{) is the input, and e(tj)
is the error. G(q) is the transfer function between the
input and output, while H(q) is the transfer function
between the error term and the output. Here g_1 is the
backward shift operator so that q~1u(t{) = u(2;_i).
As a result the polynomials have the form G(q) =
1 + ffi?-1+ ••• + »„,?-"'■

From this general model, we can define a SISO or
MISO model structure as:

M<i)y(ti)=IMu(ti) + ^\e(ti) F{q)-""' • D(qy" (6)

The predictor for this general polynomial structure is:

D(q)A(q) mo) = %£M«u)+ 1
C(q)

y{u) (7)
C(q)F(q)

where each of the polynomials are a function of the pa-
rameter set 6. Latent variables (that are not past val-
ues of the input or output) can also be defined in the

polynomial format by augmenting the input-output
relationships to include the additional variables.

Now consider the situation where the input is a m-
dimensional vector, and the output is a p-dimensional
vector - a multiple-input-multiple-output (MIMO)
system. In this case, the term j4|j has no meaning.
While a matrix fraction description (MFD) or state
space representation can be used, MIMO systems are
most amenable to the state space format. (See [14, 28]
for a discussion of MFDs) This format also has the
most flexibility in defining the relationship to latent
variables. In this (discrete) description we add the
state variable x(ti) that is propagated forward in time
by:

x(ti+1\9) = A(6)x(ti,6) + B{9)u(U) (8)

and the measurement equation:

y{ti\9) = C(6)x(ti,9) + D(9)u(ti) (9)

that provides the output.
One of the most flexible state space predictor mod-

els is the directly parameterized innovations form.
Based on the classical steady state Kaiman filter, this
model accommodates the fact that measurement and
process noise are present but does not require knowl-
edge of the disturbance properties. This is accom-
plished by parameterizing and identifying the Kaiman
Gain instead of the process and noise descriptions: 7

x(ti+u9) = A(9)x(ti,9) + B(9)u(ti) + K{9) [e(t,-)]
(10)

Relating this to the general model structure given
above we see that:

G(q,9) = C(9)[qI-A(9)]-1B(9) (11)

H{q,9) = C(9)[qI-A(9)]-1K(9)+I (12)

Linear time-varying models. Linear time-
varying systems are restricted to weighting function
and state space forms. Predictor metamodels for use
with a weighting function have the same form as meta-
models used for time-invariant systems except that the
weighting function is time varying. Time-varying state
space models are similar to the time-invariant state
models with the exception of the time index on the
coefficients [16].

Nonlinear Models. With respect to general dy-
namical nonlinear models the situation is far too flex-
ible. The output may be a function of all of the past
inputs and outputs yet we are going to represent this
system with a finite number of parameters. Usually

7The error e(U\6) = y(t,) - C(0)x(t;,0).

13

considerable insight is required to effectively use a non-
linear model type.

Systems with linear dynamics and static input
nonlinearities can be handled by redefining input of
the system to exclude this nonlinearity (Hammerstein
model). With this new definition the system can be
identified by a linear model. Another powerful pro-
cedure for developing a nonlinear model (given the
required insight into the problem) is to build the non-
linear model as a nonlinear combination of linear sys-
tems (e.g. use the output of a linear system as the
input to another linear system).

Nonlinear systems (that are not approximated by
linearization, perturbation, or combination) are re-
stricted either to a pseudolinear form or state space
descriptions. We define the pseudolinear form as
y(ti\9) — 9T(j>(ti) where 6T is the vector of unknown
coefficients and <j)(ti) contains the nonlinear combi-
nations (functions) of the input data. Although the
structure looks static dynamics can be included in the
pseudolinear model by including nonlinear combina-
tions of past data.

If we want to explicitly consider system dynamics
for nonlinear predictor models there is only one option:
a nonlinear state space or a simulation model. (Note:
Nonlinear state space and simulation models are not
the same for Probabilistic models where disturbances
are explicitly considered.) The nonlinear state space
model is defined as:

x(ti+1\0) = f(t,x(ti),u(ti),6)

y(ti\6) = h(t,x(ti),u(ti),e)

(13)

7.3.2 Probabilistic Models
Models for probabilistic descriptions will be limited
to the state space form. While transfer function and
matrix fraction descriptions are limited to linear time-
invariant systems, a state space system does not share
this restriction. This form also allows the combination
of a continuous system with discrete measurements
(a sampled-data system) to more closely match real
systems.

We cover four types of probabilistic models. The
first type of model is a linear stochastic model devel-
oped by assuming a white noise approximation. The
second model is a general nonlinear stochastic model.
The third type is a linear Ito stochastic model based
on the correct description of the noise as Brownian
motion with an Ito stochastic description and the fi-
nal model is a full nonlinear Ito stochastic model.
Linear Stochastic. Linear stochastic system mod-
eling results in the following model driven by known
inputs and white noise w(t) [29]:

x = F(t)x(t) + G(t)u(t) + L{t)w{t) (14)

starting from a Gaussian x(t0) with a known mean
x0 and covariance PQ. Average performance can of-
ten be described by this simple stochastic differential
equation sometimes referred to as Langevin's equation
[30, 31].

This model is supported by a discrete (or possibly
continuous) linear measurement corrupted by additive
white noise v{ii):

z(U) = H(ti)x(ti) + v(U) (15)

The noise processes were assumed independent of
the initial condition and (at least initially) each other
with zero mean and correlation kernels given by:

E{w(t)wT(t + T)} = = Q(t)S{r) (16)

E{w(t)vT(t + r)} = = S(t)S(r) (17)

EHuVitj)) = = R(ti)6{j (18)

Since the solution of these systems is a stochastic
process with many potential realizations, it is best to
characterize the system by the expected value of its
moments (mean, variance, etc.) The optimal (mini-
mum mean square error, unbiased, consistent) predic-
tor for this system is the classical Kalman-Bucy Filter
[33].

Continuous Time Predictor. The continuous-
time predictor consists of the following set of equa-
tions:

State estimate:

x{t) = F(t)x(t) + G(t)u(t) + K(t) [z(t) - H(t)x(t)]

(19)
Filter gain calculation:

K(t) = [P(t)HT(t) + L(t)S(t)] R-1 (20)

Error covariance propagation (Riccati equation):

P(t) = F(t)P(t) + P(t)FT(t) + L(t)Q(t)LT(t)

-K(t)R(t)KT(t) (21)

Discrete Time Predictor. The discrete-time
predictor includes an additional step beyond those re-
quired for the continuous filter [29, 32, 33]. Given a
state and covariance estimate with discrete noise pro-
cesses Qd and Rj, those estimates are first extrapo-
lated to the next time step (without taking a mea-
surement). These estimates are represented by time
(ij~). At the next time step a measurement is taken
and the estimates are updated. These estimates are
identified by the time (tf).

State estimate extrapolation:

x(t~) = A^i.^xftf^) + 5(ii_i)w(ti_i) (22)

14

Error covariance extrapolation:

P(t~) = A(ti.l)P(tf_l)A
T(ti.1) + QäiU.i) (23)

Filter gain calculation:

K(ti) = P(t-)CT(ti)[0(ti)}-1 (24)

with: °(*0 = C(U)P(t-)CT(ti) + Rd{U) (25)

State estimate update:

x(tf) = x(tr) + K(U) [z(U) - C(U)x(trj\ (26)

Error covariance update:

P(tf) = [I-K(ti)C(ti)]P(t.) (27)

Steady State Solution. If the system and mea-
surement dynamics are linear, constant coefficient
equations and the noise is stationary (Q,R,S not func-
tions of time), the filtering process will reach a steady
state where the value of the error covariance, P, is
constant. For these conditions the Riccati equation
(equation 21) becomes an algebraic relationship:

P = FP+ PFT + LQLT - KRKT = 0 (28)

In this case, the rate at which uncertainty increases is
just balanced by the new information available. The
error covariance extrapolation and update and filter
gain equations are no longer required. The positive
semidefinite solution of the algebraic Riccati equation
is used as the error covariance and to calculate the
constant filter gain.

The discrete steady state solution error covariance
extrapolations (equation 23) and filter gain (equation
24) are calculated from the following two equations:

K{9) = [A(e)P(8)CT(e) + Sd(Ö)]

[C(9)P(9)CT(9) + Rd(9)}'1 (29)

Piß) A(9)P(9)AT(9)+Qd(9)-

[A(9)P(9)CT(9) + Sd(9)]

[C(9)P(9)CT(9) + Rd(9)}-1

[A(9)P(9)CT(0) + Sd(9)} (30)

Nonlinear Stochastic Prediction. If we want
to explicitly consider system dynamics for nonlinear
stochastic predictor models there are two options: a
nonlinear state space model or a simulation model.
For probabilistic models the nonlinear state space
model is defined as:

x(ti+1\9) = f(t,x(ti),u(ti),w(ti),9) (31)

y(ti\9) = h(t,x(ti),u(ti),v(ti),9) (32)

A simulation model, not to be confused with a sim-
ulation as a system description, disregards the process
noise and simulates y(t\9) by simulating a noise free
model using actual inputs and w(ti) = i/(t{) = 0.
Ito Stochastic Prediction. As reasonable as the
linear stochastic model seemed, it is not completely
suitable. Although other models may be derived from
these Langevin type equations, the Markovian descrip-
tion is typically lost. With this loss, complete knowl-
edge of the probability density functions is required
to determine system properties. This information is
usually not available.

In the development of the model, w(t) has been
considered as the derivative of a process with indepen-
dent, stationary increments. Actually the term w(-, ■)
is the hypothetical derivative of Brownian motion (or
the Wiener process). A hypothetical derivative is used
because the correct solution could not be properly de-
veloped with ordinary Riemann integrals.

Linear stochastic differential equations can be prop-
erly developed through the use of Wiener stochastic
integrals [29]. Therefore the properly denned linear
stochastic differential equation is:

dx(t) = F(t)x(t)dt + B(t)u(t)dt + G(t)dß(t) (33)

where /?(•,■) is of diffusion strength Q(t) for all t of
interest given by E{dß(t)dßT(t)} = Q(t)dt.

The solution to this stochastic differential equation
is the stochastic process x(-, •) given by:

X(t) = $(t,to)x(t0)+ [Q(t,T)B(T)u(T)dT

+ I $(t,T)G(T)dß(r) (34)
Jt0

with $(t,to) the state transition matrix associated
with F.

In general, characterization of this process re-
quires the joint probability density (or distribu-
tion if the density cannot be assumed to exist) of
x(t\), x(t2),..., x(tpf) for any number N of time cuts
in the interval of interest by repeated application
of Bayes rule. If x(-, •) is a Markov process, how-
ever, specification of the transition probability den-
sities completely specifies the joint densities and the
transition probabilities can be propagated via the for-
ward Kolmogorov equation.

Linear models. If the system model is (Markov)
linear, solution to the forward Kolmogorov equation
yields the familiar form of the state and covariance
update:

Ax(t) = F(t)rhx(t) (35)

Px(t) = F(t)Px(t) + Px(t)F
T(t) + G(t)Q(t)GT(t)

15

(Note: In the development of error criterion, etc.
derivatives must be computed using the Ito differential
rule.)

Nonlinear models. If we are willing to neglect
the second partial derivatives with respect to x, we
can use the extended Kaiman filter [32]. Consider the
general nonlinear model:

x{t) = f[x(t), u(t),t] + L(t)w(t) (36)

with x(to) modeled as a Gaussian random vector with
mean XQ and covariance Po and a measurement model
of:

z(ti)=h[x(ti),U] + v(ti) (37)

The extended Kaiman filter for this model is the
following set of equations:

State estimate extrapolation by integrating from ti
to ti+i:

x(t/ti) = f[x(t/ti),u(t),t} (38)

Error covariance extrapolation by integrating from
ti to ti + l".

P(t/ti) = F[(t;x(t/ti)]P(t/ti)+ (39)

P{t/U)FT [(t; x(t/ti)] + G(t)Q(t)GT(t)

Filter gain calculation with x{tf) = £(tj|i,-_i):

K{U) = P(tr)HT[ti;x(tr)}

{H[ti;x(tr)}P(t-)HT[ti;x(t-)} +

RiU)}-1 (40)

State estimate update:

Kit) = *(*D + K(U) [z(ti) - h [x(t;),ti]} (41)

Error covariance update:

P(tf) = {l-K(U)H[U;x(tr)]}P(t7)

{l-K(U)H[U;x(tr)]}T

+K{U)R{U)KT (U) (42)

where the following definitions apply:

d[x(t),u(t),t}~
F[{t;x(t/U)]

and

H[U;x(tr)] =

dx

dh [x,t{]

- X~x{tlti)

dx

(43)

(44)
x=x(ti)

In the general case, the nonlinear problem is.not
solvable. There are a number of other approximations
that exploit a Taylor series representation of the dy-
namics and measurement to estimate conditional mo-
ments. One of the more computationally reasonable
is the modified Gaussian second order filter (Refer to
[29]).

7.4 Summary of the Selection of the
Model Set

Selection of the metamodel set is clearly defined by
the system description, system class and a metamodel
structure. Data for all of these selections come directly
from the problem definition step.

Realization of the metamodel comes from the pa-
rameterization of the selected metamodel set. While
the system description and system class constrain
available representations (structures), a number of op-
tions are still available to the analyst. To help in this
process we separated the decision into predictor and
probabilistic models and within each of these general
cases we presented a number of potential representa-
tions. In each case (predictor and probabilistic) the
complexity of the model increases from linear time-
invariant to general nonlinear.

The preferred solution is the simplest model struc-
ture that provides required performance. A decision
not addressed in this paper is the order of the meta-
model (This issue is discussed in [24]). If the selected
structure (and order) does not provide the desired per-
formance there are two options. First, the order of the
model can be increased; secondly, a different (presum-
ably more complex) metamodel structure can be se-
lected. This selection must be driven by the nature of
the performance shortfall and the degree of mismatch
between the simulation model and the metamodel.

8 Selection of the Identification
Methodology

We have selected a model set that we will use for
the identification. We now discuss techniques for gen-
erating the estimate.

Parameter identification methods are used when
the candidate model is to be defined by a set of
parameters. Parameter estimation algorithms men-
tioned in the literature include least squares, sequen-
tial weighted least squares, recursive generalized least
squares, instrumental variables, recursive instrumen-
tal variables, the bootstrap method, sequential corre-
lation and recursive maximum likelihood estimation,
etc. A partial list of algorithms included 32 different
methods. Again, to structure the decision process, we
classify these methods by two elements: the form of
the identifier and the criterion of fit.

8.1 Form of the Identifier

The form of the identifier defines the "experimen-
tal setup" or the manner in which the estimates are
generated and compared. The criterion of fit estab-

16

lishes both the cost function and the method of its
minimization.

8.1.1 Equation Error Method

For the equation error method, Figure 3, we use the
system equations as given. Assume first that we have
the following general description defined by a param-
eter vector 9 and that we know the form of the vector
functions / and h:

x(t) = f(t,x(t),u(t),w(t);9) (45)

y{t) = h{t,x{t),u{t),v{t);9) (46)

Now we assume that we can measure the controls,
ua, the states, xa, and the state derivatives xa. With
all of this information we can determine the error be-
tween the model and the actual data:

e{t,6) = xa - f(xa,ua;0) (47)

The vector e(t, 9) is the equation errors. From these
equation errors, e(t, 9) , we can form some nonnegative

function such as J(9) = JQ eT(t, 9)e(t, 9)dt and search
over 9 to find the minimum.

System States

System
e*

»i*«? >

Model
 a

fylocJ©! States

Figure 3: Equation Error Method

8.1.2 Output Error Method

The equation error method required measurement of
all of the elements of the system. Often this is not pos-
sible. The output error method is based on an output
error criterion and avoids this requirement. Figure 4
depicts the experimental setup for the output error
method. As you see, there is no attempt to measure
the state of the plant. Instead the estimated parame-
ter, 9, is used in the model with the input ua to gener-
ate an estimate of the output ym. Again we can form
some nonnegative function of the difference between
ym and ya.

8.1.3 Prediction Error Method

The prediction error method is the third approach to
developing an error function by which a parameter

search can be structured (Figure 5). Instead of com-
paring states or outputs the estimated parameter, 9,
is used in the model with the input ua and the output
ya to generate an estimate of the output ym. Given a
description:

y(t) = G(q)u(t) + H(q)e(t) (48)

and having observed the output y and the input u, the
prediction errors can be computed as:

e(t) = H-\q) [(y(t) - G(q)u(t)} (49)

UQ
Va System

e*

ym

4 - n
Model

0 egcq) >

Figure 4: Output Error Method

u a
System

e*
+3L eCk.8)

Prediction

 Q__
Vm

Figure 5: Prediction Error Method

8.2 Criterion of Fit

So far, we have defined the metamodel set that will
be parameterized to generate the metamodel, the form
of the identifier that describes how the data is gener-
ated and compared. Now we discuss the criterion of
fit.

By criterion of fit we mean the function or func-
tional that is optimized to determine the parameter
estimates.8.

Our framework is based on the assumption that the
data will contain both measurement errors and system
disturbances not accounted for by the model. Conse-
quently, measurements are realizations of a stochastic
system and are represented by functions of random
variables that have some probability density function.

The probability that a particular random variable
is in the range a < Xi < b is given by: Pr{a < X{ <

We do not know the actual parameter vector 0« and cannot
define an error between 6+ and 8. The error must be computed
from {z(ti)},{u(U)}, and {y(ti)}

17

6} = J fx;(£)d£ where fXi(0 is the probability den-
sity function (PDF) of the set of {a;;}. Therefore, the
PDF is a measure of the "likelihood" of a particular
value.

Assume that the PDF of the measurements ZN

is f(0;zi,z2,...,zN) = fz(9;ZN) where 9 is a d-
dimensional parameter vector determined by the pa-
rameter estimator. This PDF is a joint PDF (JPDF)
that considers the joint (combined) probability of
both 9 and zjv occurring. However, because we
have a function of a random variable and measure-
ments that are available in a specific sequence, we can
also consider the conditional probability distributions
(CPDF). That is, the probability of an event condi-
tioned on the fact that another event has occurred
such as P(z\9) which is the probability of a particular
ZJV conditioned on the fact that 9 = 9.

It is entirely possible that an identification method,
given a model and a particular set of data, has mul-
tiple characteristics. For example, least squares is a
specific case of the prediction error method that min-
imizes a norm of the prediction error. Yet, if the data
meets the assumptions of the method, least squares is
also a maximum likelihood estimator since it also max-
imizes the likelihood of the parameter vector given the
observations fz(9;ZN).

We consider three criterion: minimum mean
square, maximum a posteriori (maximize the CPDF)
and maximum likelihood (maximize the JPDF).

8.2.1 Minimum Mean Square Error

Minimum mean square estimators minimize a cost
function that is a function of the (possibly weighted)
output error only - J(9) = eTWe. The mean square
error matrix MSE for an estimate of 9 of 9 (with b
equal to the bias) is:

MSE = E U§ - 9){9 - 9)T} bb1

Both bias and covariance must both be minimized
to attain the minimum mean square estimate; and in
general, the minimum m.s.e. will be biased. The min-
imum m.s.e. estimator will, however, result in output
errors (residuals) that are orthogonal to the estimate.

8.2.2 Maximum A-Posteriori

The Bayesian approach to parameter estimation as-
sumes a parameter vector with a priori (before the
measurement) probability densities P(9). The obser-
vations ZN are therefore correlated with 9. Measure-
ments are used to determine the most likely value after
the measurement, the Maximum A-Posteriori (MAP)

estimate 9MAP via the application of Bayes rule:

P{z\9) x P{9)
P(9\z) =

P{z)
(51)

Here P{z\9) is the conditional probability; i.e., the
total probability of the measurement conditioned on
the current estimate of 9.

We can rewrite the maximization to be the mini-
mization of the negative logarithm of P(z\9) :

9MAP = arg(9) min - log P(6\z) (52)

where logP(0|z) = logP(z\9) + logP(ö) - logP(z).
Since P(z) is unaffected by 9, it can be ignored in the
minimization.

Assuming the correct a priori probability, the

MAP estimate minimizes the E 1(9 - 9)(9 - 9)T\

and, therefore, is the minimum-quadratic-cost esti-
mate. The MAP estimate also minimizes the expected

absolute error E Uß - 9)\ZN\ .

8.2.3 Maximum Likelihood

Given that the joint probability of the random vec-
tor to be observed is fz(9;ZN), the probability that
the random variable will produce the realization ZN is
proportional to fz(9;ZN). Once a particular realiza-
tion Z$? is inserted into the joint PDF, this becomes
deterministic and is called the likelihood function. A
maximum likelihood estimator maximizes this func-
tion:

9ML = arg(9) max/2(0; ZN) (53)
u

so that the observed event becomes as likely as possi-
ble.

Beginning with the MAP estimate and ignoring the
prior information, we have for the ML estimate 9ML =

(50) arg{9) minö- logP{z\9)\.

Comparing the ML and MAP log likelihood func-
tions (LLFs), we see that LLFMAP = LLFML +
logP(9).

While the MLE has been criticized for poor small
sample properties, the statistical properties of max-
imum likelihood estimators for a "sufficiently long"
data sample are [16]:

1. Parameter errors have an unbiased Gaussian dis-
tribution.

2. Estimates are consistent - unbiased as the data
length increases.

3. Efficient estimates - no unbiased estimator has
lower error variance.

18

8.3 Summary of
Methodology

the Identification

Referring back to Figure 1, we have defined the
problem in terms of the use of the metamodel and the
simulation that will be modeled. We used that infor-
mation along with the data that came from the simu-
lation to select the metamodel set that will be param-
eterized to realize the metamodel. We then presented
three methods and three criterion that can be used to
generate the data and provide the "cost" function for
optimization.

Categorizing the identification method by the form
and the criterion reduces the myriad of identification
methods to only four approaches: Prediction Error
and Correlation, Maximum Likelihood, Optimization
and Approximation Techniques.

9 Generate the Metamodel

There are many taxonomies used in the literature
to categorize identification methods. Methods can be
referred to as off-line or on-line. Also, they can be clas-
sified as either open-loop or closed-loop methods. Fur-
ther classification can be made as nonparametric, fre-
quency domain and as parameter identification meth-
ods. As stated, we have reduced the parameters iden-
tification methods to four approaches. We will now
present some of the techniques that result. A sum-
mary discussion of these elements is included in [34].
Additional details are found in [24].

Assume that a model structure (set of candidate
models) has been selected and parameterized using
some parameter vector 9. We have defined the model
set M{6). The next step is to search for the best
model within the set (determine the parameter vector
6). The objective is to determine the most power-
ful unfalsified model (MPUM) where a model is the
MPUM based on the data D if: (1) M £ M{9) ; (2)
M(9) is unfalsified by D; and (3) M{6) is more pow-
erful than any other model satisfying (1) and (2). We
must determine the mapping from the data set D to
M{9).

9.1 Prediction Error and Correlation Ap-
proaches

Let the prediction error be given by e(t, 9) = y(t) —
y{t\9) with y(t) the output of the simulation and y(t\9)
the output of the metamodel (9 is the parameter vec-
tor). A "good" model will have small prediction er-
rors. There are two general approaches to define a
measure of e. The first is to define a norm that mea-
sures the size of e and minimize that norm. This leads

to the prediction error method (PEM). Another mea-
sure of e is to require that £ be uncorrelated with past
data. This is the correlation approach which contains
the instrumental-variable (IV) method which we dis-
cuss in Section 9.1.3.

In addition to least squares (LS), subsets of the pre-
diction error method also include the maximum likeli-
hood approaches (ML and MAP). Our discussion sep-
arates out the maximum likelihood approaches from
PEM. We do so because when we consider probabilis-
tic models (where ML and MAP estimators apply) the
prediction equations for explicitly using the PEM algo-
rithm are limited to the directly parameterized form.
There are a number of other probabilistic model struc-
tures where the PEM algorithm cannot be used.

We do include, however, the Eigenstructure Real-
ization Algorithm (ERA) under PEM. We do so be-
cause this algorithm uses the least squares approach
to directly identify the Markov parameters of a steady
state Kaiman filter.

9.1.1 General Description of The Prediction
Error Method

Filter the prediction sequence e(t,9) using a stable
linear filter L(q):

eF(t,9) = L(q)e(t,9) (54)

where q is the forward shift operator defined as qu(t) =
u(t + l).

This filtering acts like frequency weighting and can
remove or enhance selected properties of the model.
Using either a fixed or weighted (possibly time vary-
ing) norm /(■):

1 N

VN(9,D) = -J2n^F(t,9),9,t) (55)
t-i

define the estimate 9JJ by the minimization:

9N = 9N{D) = arg min {V(9, D)} (56)

where D is the set allowed by the model.
In general PEM is a technique that approximates

(smoothes) the empirical transfer function estimate
to the model transfer function with a weighted norm
corresponding to the model signal-to-noise at the fre-
quency in question.

9.1.2 Specific PEM Methods

While "equation 56" can be solved numerically in the
general case, specific methods are obtained as special

19

cases with special selections of the filter L(q) and the
scalar valued norm function /(•).

Least Squares. If the predictor is linear, the pre-
diction error becomes e(t,9) = y(t) — <pT(t)6 where
<fi (t) is the vector of regressors that depends on the se-
lected model structure. Also if L(q) = 1 and l(e
then the norm becomes:

2C>

M0,£) = ^E^)-^]:
N ^2

t=i
(57)

This is the least squares criterion for linear regres-
sion. The performance measure J = eTe was based
on the view that all errors are equally important [19].
Weighted least squares weights the errors and is based
on the criterion J = eTWe. Other versions of the
least squares criterion are the Best Linear Unbiased
Estimator where the weight is equal to the inverse of
the measurement noise [35].

If the variance of the parameters is known (or as-
sumed), we can further improve on the Best Linear
Unbiased (Gauss-Markov) Estimator. This improve-
ment is called the minimum variance estimator and
includes the variance of the parameters in the normal
equations [20].

Ridge Regression. The aim of another modifi-
cation of ordinary least squares - ridge regression - is
the reduction of the mean square error [17]. This is
accomplished by the addition of a symmetric matrix K
to the regressor to improve the numerical conditioning
of the estimator.

Chi-Square. In Chi-Square identification we as-
sume that each data point yi has a measurement error
that is independently random and distributed as a nor-
mal distribution around the true model. Suppose the
standard deviation is the same for all points; it follows
that the probability of the data set is the product of
probabilities of each point:

P = n{exp yi -y{xi)
Ay} (58)

Maximizing this is equivalent to maximizing its loga-
rithm, or minimizing the negative of its logarithm:

E [yi -y(xi)]2

2<72
- N log Ay (59)

Since N,(T, and Ay are all constants, minimizing
this equation is equivalent to minimizing:

N

^2bti - y(xr,0i ■ ■ -9M)? (60)

If each data point has its own standard deviation the
probability of the data set is modified by considering
cTj in place of a (Refer to [17] for details).

Eigenstructure Realization Algorithm. The
Eigenstructure Realization Algorithm (ERA) is in-
cluded under the PEM methods because this algo-
rithm uses the least squares approach to directly iden-
tify the Markov parameters of a steady state Kaiman
filter.

Consider a discrete, time-invariant multivariable
linear system:

xti+1 = A(9)x(ti) + B(e)u(U) + M(0)wd(ti)

y(ti) = C(0)x(ti) + D(6)u(U) + v(U) (61)

An observer for the above system can be devel-
oped that will be as stable as desired and the resulting
Markov parameters will be the Markov parameters of
the observer. The system Markov parameters can be
extracted from the observer parameters. The major
assumption is that of ergoticity.

Choose p such that mp > n (where n is the num-
ber of states and m is the number of outputs) and,
beginning at the p+1 measurement, let:

y = [y(p + 1) y{p + 2) y{p + 3)... y(k - 1)] (62)

From the definition of the Kaiman Filter we have:

with

Y= DCBCAB...CAk lB

A = A+MC

B = [B + MD,-M]

(63)

and if

U =

u(p + l) u(p+2) u{k- 1)

u(p)

. y(p) .

u(k - 2)
y(k - 2)

u(p)

. y(p) .

u(k - 3)
. y(k - 3) .

■ u(0)

. J/(0) .
r «(i) -
. y(i) J

u(k -p-2)
y(k-p-2)]

(64)

8 = 1

When CA 13 ftJ 0 for k > p, the system y = YU can
be solved for Y using a weighted least squares. Once
the observer Markov parameters are determined the
system parameters must be extracted. After extract-
ing the system Markov parameters from the observer,
we can recover the state space model by the ERA.
Define the following ?*i x s block data matrix:

20

H(r) =

Yr Yr+1 •• YT+s-i

r+1 YT+2 YT+S

r+2 Yr+3 .. ■ YT+S+1 (65)

The order of the system is determined by the sin-
gular value decomposition of -ff(O):

H(0) = Ui:VT = U1S1V? (66)

where E are all of the singular values. Si is an n x n
diagonal matrix of positive singular values that are
retained and n will become the order of the system:

A

B

C

■V*TTT = ^"Ui HWKSl

= S~1/2ViEm

= E^U1S~1/2

1/2 (67)

[irxr 0rx(ri_m)m] and E^ where Ej
[Imxm 0mx(ri_m)m]. The observer gain can be ex-
tracted in a similar fashion. See [36] for the details of
this method.

9.1.3 Correlation Approaches

Ideally the prediction error e(N, 9) for a "good" model
should be independent of past data ZN~l. If e(W, 9)
is correlated with past data there is more information
available in the data. A true test of the correlation
of e(N, 9) and ZN_1 requires testing every nonlinear
transformation of e(N, 9) with all possible functions
of ZN~1. This is not feasible.

We can, however, select a finite dimensional vector
sequence {CCO} derived from ZN~l and force a cer-
tain transformation of e(N, 9) to be uncorrelated with
this sequence. In general, we can accomplish this by
filtering the prediction errors:

eF(N,9) = L(q)e(N,9)

choosing a sequence of correlation vectors:

{C(t,e)} = {c(t)(t,zN-1,§)}

and a function: a (SF(N,9)) for computing:

1 N

fN(9, ZN-') = - £ <&> §> (eH^, *))
t=i

(68)

(69)

(70)

and then finding #jv such that /AT(#, ZN l) = 0 .
If we define e(N,9) above to be e(N,9) =

y{t) — <f>T(i)9\, we can expand the sequence of the

correlation vectors to include model dependent param-
eters by:

{((t,9)} = Ku(q,6)u(t) (71)

where Ku(q, 9) is a d x m matrix filter and L(q) is of
dimension p x p. With dim£(t) = dim9 = d x p, we
have the instrumental-variable (IV) method:

9iv = «t,0)TX «tjfy (72)

If we allow dim((t) > d and a minimum norm solu-
tion for fN(9,ZN), we have the extended IV method.
(Reference [16] discusses this method in detail.)

9.2 Maximum Likelihood Approaches

If we consider independent, identically distributed
measurements and if an efficient estimate (unbiased
estimate with finite covariance such that no other
unbiased estimate has a lower covariance) exists, it
can always be found through maximum likelihood ap-
proaches. Again if an efficient estimate exists, the
likelihood equation will have a unique solution that
equals the efficient estimate. If any single sufficient
statistic exists, the maximum likelihood estimate will
be sufficient. Although the maximum likelihood esti-
mate will be biased for small samples it will provide
the unique minimum variance estimate attaining the
Cramer-Rao lower bound if this is possible [29].

The objective is to provide a parameter estima-
tor that does not require complete a priori parame-
ter statistics yet still allows the inclusion of a priori
knowledge. Unlike the best linear unbiased estimate
provided by appropriately weighted least squares, this
method propagates the probabilistic information in
time and directly allows the inclusion of known sta-
tistical information.

The key to the identification algorithm will be the
residuals of the state estimator and the most signifi-
cant drawback of the maximum likelihood approaches
is the lack of theoretical knowledge on the behavior of
the estimates for small sample sizes.

The following discussions are limited to linear-time
invariant (discrete time) systems. Nonlinear effects
can be included by appropriately modifying the pre-
diction equations in either of two ways. First, non-
linear system effects can be directly included in the
propagation of the state. Second, nonlinear measure-
ments (with linear propagation) can be handled with
an extended Kaiman filter model.

Beginning with a linear time-invariant discrete
state space model (equation 61) there are a number
of conditional probability destiny functions that could
be used for the likelihood function. Variations include

21

fixed length versus growing length functions, specifica-
tion of a priori statistics, use of the initial conditions
and the sensitivity of the estimate on the identified
parameters. The most appropriate density function
is:

fx(tt),z(tt)\e — fx{tt)\z{t,),e!z{t,)\e (73)

= fx(t,)\z(t,),e^lj=ifx(t,)\z(t,),e

Minimization of the likelihood function with this
density results in the state predicted by the Kalman-
Bucy filter, but there is no closed form solution to
compute the partial derivatives.

9.2.1 Full Scale Estimator

A full scale estimator can be derived that minimizes
the likelihood function in an iterative process. This
estimator uses the last N observations to identify v
uncertain parameters in the system and input matri-
ces A and B. (Note: Uncertainty in these parameters
could not be separated from uncertainties in C and
D. Consequently, the assumption is that C and D are
known and the uncertainty is A and B.)

The iterative estimator for minimization of the like-
lihood equation:

dL \e,z N

de
e(t,)=e.(t,)

using the method of "steepest descent" is:

d2L e,zN

Ö(U) = Hu)

(74)

892

dL 9,Z N

de
(75)

To use this algorithm, the Hessian (second deriva-
tive matrix) must be of full rank. Using a technique
called "scoring," we can approximate the Hessian with
the conditional information matrix. However, consid-
ering the propagation of the values in time, incorpora-
tion of measurements and the summation over the last
N residuals, the implementation of the above equa-
tions is quite complex. Even with the approximations
the full scale estimator requires a large number of cal-
culations (Refer to [29]).

9.2.2 Modified
(MMLE)

Maximum Likelihood

The modified maximum likelihood formulation uses
a discrete state variable representation (equation 61)
where A, B, C, D, and M are estimated and used with
the error covariance, P, to determine the Kaiman gain,

K, from an approximation based on the Ricatti equa-
tion [37]. To provide a parameter estimator we con-
sider the measurement equation. Since we have as-
sumed a Gaussian error model, the Conditional Prob-
ability Density Function (CPDF) for the measurement
becomes:

P(zi\zi-1,e) =
[(2ir)m detP] 1/2

exp -\%{P)-l~*i

where P = E {zz } with dimension m x m and z =
z, — z is the innovations process (residuals) computed
by the Kaiman filter (where all of the matrices could
be functions of 9).

Assuming a constant innovations covariance, use of
a steady state filter results in a constant filter gain.
This allows the CPDF to be written as:

p{z\e) = n?=1] exp (-Iff (P)-4,-}
[(2?r)m detP]1'2 I 2 J

(77)
There are two approaches to the solution depending

on whether a priori information is used.
Maximum Likelihood (ML) Estimation. Given
the above CPDF, the ML LLF becomes:

LLF(§) = ^{ff(P)-1*} (78)
z i=i

N Nm
+ ylogdet(P) + —log27T

A necessary condition at the minimum is that P =
E {zzT} must equal the sample innovations covari-
ance [38]. Therefore since P has dimension m x m,
the first term in the LLF becomes Nm/2, and the
minimization is reduced to a minimization of the de-
terminant of the sample innovations covariance ma-
trix.

When P is known the LLF can be minimized by
minimizing the following cost function:

J{e)=\Y,{zJ{PVzl} (79)

This minimization is usually carried out by the
Gauss-Newton method using the first and second gra-
dients of the cost function.
Maximum A Posteriori (MAP) Estimation. In

the MAP estimator, we continue to require that P =
W]Ci=i zzT but add the term — logP(ö).

Assuming that # is normally distributed with a co-
variance E:

-iogP(ö) = ±(§-e)TY,-l(e-e)+ (so)

ilog((2irrdet£)

22

the LLFMAP becomes:

1 N

LLFMAP(e) = -X^P)-1*} (81)
i = \

which adds a quadratic term that biases the estimates
toward a priori values.

9.3 Optimization

Often we are unable to formulate the problem to
achieve a suitable prediction equation. Therefore we
must resort to either a "nonlinear state space model"
or a "simulation model." In these situations, where we
are unable or unwilling to consider a linearized or per-
turbation approach, the best we can do is take the out-
put of the model, incorporate it into a "cost" function,
and adjust the model parameters to optimize (mini-
mize) that function.

There are several "standard" numerical procedures
that are used to search for the minimum of a func-
tion. These are the iterative optimization methods:
Successive approximation, Newton's method, or the
Gauss-Newton algorithm to name a few.

In addition there are several programs that are
specifically designed to perform parameter estimation.

pEst. A minimum mean square error parame-
ter estimator, pEst is an interactive program for the
parameter estimation of nonlinear dynamic systems
[39]. This program solves a vector set of time-varying,
finite-dimensional, ordinary differential equations that
are separated into a continuous-time state equation
and a discrete-time measurement equation:

x = f[x(t),u(t),6]

z(ti) = g[x(U),u(ti),9'

(82)

pEst uses three separate minimization algorithms
(steepest descent, modified Newton-Raphson and
Davidod-Fletcher-Power) to minimize the following
weighted cost function:

J{6) = —L- JT [z(ti) - z{U)]T W [z{U) - z(U)]

(83)
where npj equals the number of data points, and nz is
the number of response variables.

Simulated Annealing. Using statistical mechan-
ical theories an optimization technique called "sim-
ulated annealing" provides a new option to directly

process nonlinear, discontinuous, stochastic functions
[40]. Given data and a cost function, it will globally
optimize that function by emulating the physical an-
nealing process to arrive at a global minimum. (Ref-
erence [4] and [41] provide a description on how to use
Adaptive Simulated Annealing.)

9.4 Approximation Techniques for Iden-
tification

9.4.1 Stochastic Approximation

Stochastic approximation may be regarded as the ap-
plication of gradient methods to stochastic problems.
It is a scheme for successive approximation of a sought
quantity when the observations involve random errors
due to the stochastic nature of the problem. The main
advantage is the simplicity of the implementation and
the fact that prior knowledge of the noise statistics are
not necessary.

Stochastic approximation can be applied to any
problem which can be formulated as a regression in
which repeated observations are made. This approach
is an exact analog of the deterministic gradient proce-
dure.

9.4.2 Spline Approximation

Polynomials are excellent approximating functions
when a smooth function is to be approximated lo-
cally. Any such smooth piecewise polynomial func-
tion is called a spline and they are commonly used for
fitting data.

The typical use for the spline approximation is to
construct a piecewise polynomial to fit data. An exact
fit involves interpolation; an approximate fit uses least
squares (minimum mean square error) approximation.
To explain the structure and advantages of the spline,
consider a truncated Taylor series (expanded about XQ

where Dl is the ith derivative):

» = 0

(x - x0y rrf(x0) (84)

This polynomial should provide a satisfactory ap-
proximation for f(x) if the function is sufficiently
smooth and x is sufficiently close to XQ. If the func-
tion must be approximated over a larger interval, the
degree of the polynomial may have to be unacceptably
large.

The alternative to a higher order polynomial is to
subdivide the interval into sufficiently small intervals
in order that, on each interval, a polynomial with a
relatively low degree can provide an adequate approx-
imation.

23

The construction of a series of splines over an inter-
val is a stable and straightforward mathematical pro-
cedure [42]. At the breakpoints, derivatives are con-
tinuous. At the end points two conditions are possible.
In the "natural" cubic spline the second derivative is
zero. In the "not-a-knot" end condition the jump in
the third derivative is zero.

Once developed, the spline can be evaluated, inte-
grated, differentiated, augmented or cut.

9.4.3 Canonical Variate Analysis

Another approximation technique is canonical variate
analysis. The canonical variate method is a prediction
error approximation technique that optimally predicts
future responses based on a reduced order state space
system [43].

In the statistical literature the canonical variate
problem is one of maximizing the correlation between
two sets of variables. Here we will use the technique to
choose nonlinear combinations of past data to predict
the future data by considering the fact that the condi-
tional expectation is an optimal projection in Hubert
space. We optimally select k linear combinations of
the past data for prediction of the future.

Observations coming from the behavior we desire
to model are separated into the past p(t) of a vector
process and the future f(t) of another vector process.
They are assumed to be jointly stationary:

PT = (yT(t),yT(t-l),...,uT(t),...f (85)

f = (yT(t + l),yT(t + 2),...,yT(t + l)f

where the vector process p(t) can include both inputs
and outputs.

The optimal kth order linear predictor f(t) of the
past is measured by the prediction error:

^{ll/-/lli-1} = {(/-/)TA-1(/-/)} (86)

where A is arbitrary positive semidefinite, so that A-1

is a quadratic weighting matrix that is possibly singu-
lar. The CVA problem is to determine c(t) = Jkp(t)
and d(t) = Lkf(t) such that the prediction error is
minimized. Each of the terms c(t) and d(t) are com-
binations of k terms and are defined in a new basis.
The algorithm uses the properties of stochastic inde-
pendence to find a canonical form of c(t) and d(t).
This in turn provides Jjt and Lj, which can be used to
predict system performance based on the past data.

The connection between CVA and metamodeling is
not direct and much of the literature is very confusing
or misleading. First recall that the metamodel is a
reduced order model that is the result of an optimal
projection of the higher order model onto a subspace

of reduced dimensions. It can be shown that projec-
tion operators on a Hilbert Space of nonlinear func-
tions can be expressed as a conditional expectation
[43]. It can also be shown that eigenvectors of this con-
ditional expectation have a common eigenvalue which
is equal to the squared maximal correlation. If a pro-
cess has a rational power spectrum (i.e. it is a finite
order Markov process) there are a finite number of
nonzero canonical correlations between the past and
future outputs [44].

The solution to the canonical variate problem is ex-
pressed by putting the covariance structure of the past
and future data in a canonical form such that in this
new basis the norm of the weighted prediction error
is the sum of squares. This is equivalent to finding J
and L such that:

TV T1 — T L-iPPJ — 1Tn

LALT = In

(87)

JZpfL
T = Diag {7l > 72 >,..., > 7q > 0,..., 0}

(88)
where Spp, T,jf, andY,pj are the covariance matrices
of past, future and cross covariance of the past and
future data defined by:

2JDD2J

s =
'pp-^pf

SfnE
(89)

ip^SS

with Diag {ji > j2 >,..., > jg > 0,..., 0} a diagonal
matrix with the singular values on the diagonal. Since
the past and future basis in the new basis are orthonor-
nal and uncorrelated the singular values are also the
correlations between the canonical variates p and f.

In a linear system, independent variables are or-
thogonal. For nonlinear systems stochastic indepen-
dence is required. The maximal correlation is defined
by:

p(p,f) = sup p(p(y),f(y))
p,f

sup E{p(y),f(y)} (90)
p,f

with || p ||= 1 and || / ||= 1.
If p(p, /) = 0, then p(y), f(y) are statistically inde-

pendent. Therefore to find the optimal combination of
past data to predict the future we want the maximal
correlation.

Determining this structure requires multiple steps.
First, given the past and future vectors, the mean
is removed to meet the constraints of the alternating
conditional expectation (ACE) algorithm that will be
used to determine the maximum correlation between
transformed input and output variables c and d [45].
Then a (Epp, A) singular value decomposition of Ep/
will determine a J and L such that after the trans-
formations c(t) = Jkp(t) and d(t) = Lkf(t) and the
covariances Ecc = £<M = I.

24

10 Results and Conclusions

In this paper we presented a new approach where
we did not try to determine the best polynomial fit to
a set of input-output data, but concentrated on the
identification of the underlying systems that defined
the process.

By focusing on the system theoretic properties of
the manifest behavior we generated the metamodel
via solution of a general inverse problem that did not
restrict the solution to an approximation of the input-
output map. This approach expanded the available
classes of metamodels by supporting the development
of dynamical models that incorporate memory. This
expansion allowed the generation of metamodels that
included system dynamics so that metamodels can be
developed where the past could influence the future.

In addition to a new approach to the definition of
the problem we presented a new framework for the
solution. The framework centered on the behavior of
the system, the behavioral equations that specified the
behavior and latent variables which may have been
present from first principles.

A structured metamodeling method was presented
that simplified the metamodeling process to two
phases: problem definition and the metamodeling pro-
cess. In the problem definition we began with an anal-
ysis of the metamodel requirements and the simulation
under study. We then progress to the description of
the system (not the model) so that we will be able
to select a metamodel structure that matches both
the requirements and simulation that we are going to
metamodel.

The structured metamodeling method segmented
the metamodeling process into a set of sequential
decisions: Definition of the Problem; Selection of
the Metamodel Set; Selection of the Identification
Methodology; and Generation of the Metamodel. In
each case we step through decisions that are based
on existing information or follow from prior decisions.
We have added the capability to explicitly model dy-
namical systems and defined the requirements to use
these as metamodels.

This structured metamodeling method was sup-
ported by new taxonomies of metamodel structures
(representations), identification methodologies and
methods to generate the metamodel that allowed sep-
aration of the metamodeling process into a set of se-
quential decisions based on a priori information.

References

[1] M. A. Zeimer, et. al., "Metamodel Procedures
for Air Engagement Simulation Models," IRAE

Technical Report, Jan 1993.

[2] A.F. Sisti, "Large-Scale Battlefield Simulation
Using a Multi-Level Model Integration Method-
ology," RL-TR-92-69, April 1992.

[3] D. Caughlin, "A Metamodeling Approach to
Model Abstraction," Proc. 1994 Fourth Annual
IEEE Dual Use Technologies and Applications
Conference, May 1994.

[4] D. Caughlin, "An Evaluation of Simulated An-
nealing for Modeling Air Combat Simulations,"
Proc. 1994 IEEE Dual-Use Technologies and Ap-
plication Conference, May 1994.

[5] J. C. Willems, "Paradigms and Puzzles in the
Theory of Dynamical Systems," IEEE Trans, on
Automat. Contr., vol. 36, no. 3, pp. 259-294,
March 1991.

[6] D. Caughlin, "Verification, Validation, and Ac-
creditation (VV&A) of Models and Simulations
Through Reduced Order Metamodels," Proc.
1995 Winter Simulation Conference, December
1995.

[7] V. Vemuri, Modeling of Complex Systems, Aca-
demic Press, New York, 1978.

[8] B.P. Zeigler, "Hierarchical Modular Model-
ing/Knowledge Representation," Proc. 1986
Winter Simulation Conf, pp. 120-137, 1986.

[9] A.F. Sisti, "A Model Integration Approach to
Electronic Combat Effectiveness Evaluation,"
RL-TR-89-183, October 1989.

[10] A. W. Naylor and G. R. Sell, Linear Operator
Theory in Engineering and Science, Springer Ver-
lag, New York, 1982.

[11] H.L. Royden, Real Analysis, Macmillan Publish-
ing Company, Ney York, 1988.

[12] G. Franklin, J.D. Powell, and A. Emami-Naeni,
Feedback Control of Dynamic Systems, Addison-
Wesley, New York, 1991.

[13] K. Ogata, Discrete Time Control Systems, Pren-
tice Hall, New Jersey, 1987.

[14] T. Kailath, Linear Systems, Prentice-Hall, New
Jersey, 1987.

[15] H. Kwakernaak and R. Sivan, Linear Optimal
Control Systems, Wiley-Interscience, New York,
1972.

25

[16] L. Ljung, System Identification: Theory for the
User, Prentice-Hall, New Jersey, 1987.

[17] W. H. Press S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes in FOR-
TRAN, Cambridge University Press, New York,
1986.

[18] A. C. Antoulas and J. C. Willems, "A Behav-
ioral Approach to Linear Exact Modeling," IEEE
Trans, on Automat. Contr., Vol. 38, no. 12, De-
cember 1993.

[19] J. P. Norton, An Introduction to and Identifica-
tion, Academic Press, New York, 1988.

[20] N. K. Sinha, and B. Kusta, Modeling and Identifi-
cation of Dynamic Systems, Van Nostrand Rein-
hold, New York, 1983.

[21] M. Kuijper and J. M. Schumacher, "Input-
Output Structure of Linear Differential / Alge-
braic Systems" IEEE Trans, on Automat. Contr.,
vol. 38, no. 3, pp. 404-414, March 1993.

[22] D. C Montgomery, Design and Analysis of Exper-
iments, John Wiley & Sons, New York, 1991.

[23] D. Belsley, E. Kuh, R. Welsch, Regression Diag-
nostics, John Wiley & Sons, New York, 1980.

[24] D. Caughlin, Final Report, Modeling Techniques
and Applications, Volume I. USAF Contract
F30602-94-0110, Rome Laboratory/IRAE, 32
Hangar Rd, Griffis AFB, NY 13441-4114, Decem-
ber 1995.

[25] L.B. Anderson, et al, "SIMTAX, A Taxonomy
for Warfare Simulation," Workshop report taken
from the Catalog of Wargaming and Military
Simulation Models, 11th Edition, Force Struc-
ture, Resource, and Assignment Directorate (J-
8), The Joint Staff, Washington, DC 20318-8000,
September 1989.

[26] J. H. Blakelock, Automatic Control of Aircraft
and Missiles, 2nd Edition, Wiley-Interscience,
New York, 1991.

[27] L. Ljung, System Identification Toolbox for use
with MATLAB, The MathWorks, South Natic,
Mass, 1991.

[28] J. M. Maciejowski, Multivariable Feedback De-
sign, Addison-Wesley, New York, 1989.

[29] P. S. Maybeck, Stochastic Models, Estimation,
and Control, Vol 2, Academic Press, New York,
1982.

[30] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, McGraw-Hill, New York,
1965.

[31] L. Ingber, "Statistical Mechanics of Combat
and Extensions," reprint from Toward a Sci-
ence of Command, Control, and Communica-
tions, AIAA, December 1993.

[32] B. D. O. Anderson, and J. B. Moore, Optimal
Filtering, Prentice-Hall, New Jersey, 1979.

[33] A. Gelb, Applied Optimal Estimation, The M.I.T.
Press, Cambridge. John Wiley & Sons, New York,
1974.

[34] D. Caughlin, "New Procedures to Metamodel
Simulations," Proceedings of the 6th Annual Con-
ference on AI, Simulation, and Planning in High
Autonomy Systems, March 1996.

[35] G. Franklin, J.D. Powell, and M. L. Workman,
Digital Control of Dynamic Systems, Addison-
Wesley, New York, 1990.

[36] J. Juang, et.al. "Identification
of Observer/Kalman Filter Markov Parameters:
Theory and Experiments," pp 320-329, Journal
of Guidance, Vol 16, No. 2, 1993.

[37] R. E. Maine, and K.W. Iliff, "Formulation and
Implementation of a Practical Algorithm for Pa-
rameter Estimation with Process and Measure-
ment Noise," SIAM Journal of Applied Mathe-
matics, Vol. 41, No. 3, 1981.

[38] Goodwin, Payne, Dynamic System Identification.
Academic Press, New York, 1977.

[39] J. E. Murray and R. E. Maine, pEst Version 2.1
Users Manual, NASA Technical Memorandum
88280, Dryden Flight Research Facility, Edwards,
CA, September 1987.

[40] A. L. Ingber, "Simulated Annealing: Practice
versus Theory," Reprint from Journal Mathl.
Comput. Modeling. December 1993.

[41] A. L. Ingber, "Draft of Statistical Mechanical
Aids to Calculating Term Structure Models."
Journal Phys. Rev, Vol 42, 1990

[42] A Practical Guide to Splines, Applied Math Sci-
ences, Vol 27, Springer Verlag, New York, 1978.

[43] W. E. Larimore, "System Identification and Fil-
tering of Nonlinear Controller Markov Processes
by Canonical Variate Analysis," Final Report
for AF Office of Scientific Research, October 27,
1989.

26

[44] W. E. Larimore and J. Baillieul, "Identification
and Filtering of Nonlinear Systems Using Canon-
ical Variate Analysis," pp 635-640. Proceedings
of the 29tft Conference on Decision and Control,
1990.

[45] L. Breiman, and J.H. Friedman. "Estimating Op-
timal Transformations for Multiple Regression
and Correlation," pp 580-598, Journal of the
American Statistical Association, Vol. 80, No.
391, September, 1985.

AUTHOR BIOGRAPHY

DON CAUGHLIN is Acting Director of the Space
and Flight Systems Laboratory at The University of
Colorado at Colorado Springs. He received a BS in
Physics from the Air Force Academy, an MBA from
the University of Utah and MS and Ph.D. degrees in
Electrical Engineering from the University of Florida.
His research interests include modeling and simula-
tion, system identification, pattern recognition and
intelligent control. Dr. Caughlin has over 28 years
experience as an experimental test pilot, chief scien-
tist, research scientist, program manager and was also
Associate Dean of the School of Engineering at the Air
Force Institute of Technology. He is a senior member
of IEEE and AIAA and a member of the Society of
Experimental Test Pilots.

27

Notation

APPENDIX

BCU
BP°

Diag{j! > 72 >,.
E{.)
R(crL,a-')

fuh-U-^E
{U\L}

£
3
o
V
»Q
dx
SU.PPJ
n}=1

Uli
Pr{a < Xi < 6}

Symbols

A(q)
A{0)
B{ö)
B
Bi
Bs

B[tut2]
B(q)
B(t)
C{6)
C(q)
Dm
D
D(9)
D(q)
E
e(t)
F

Hq)
F(9)

G(q)
G(t)
G{ß)

B is a subset of T and B may equal T
Closure of B

., 0} Diagonal matrix with elements {71 > 72 >■■■•, 0}
Expected value
Representation of a polynomial operator in the shift.
Also may use dummy variables P, Q, and M
Polynomial matrix of dimension g, qi
Backward shift operator
The functions f\, /2 transform or map U into E
The set U defined by the property L
Covariance
"such that"
Cartesian product
Congruence
Is in, belongs to
There exists
If and only if
For all
Partial derivative
Supremum
Product of terms from j — 1 to i
Frobenius norm of a matrix
Probability that x^ is grater than a and less than b

Polynomial that multiplies the output variable
Discrete time state transition matrix
Discrete time input matrix
Behaviors - outcomes recognized by the model
Behavior allowed by the inclusion of latent variables
Behavior that satisfies the axiom of state
Behavior over the closed interval [ix, i2]
Numerator polynomial that multiplies the input variable
Stochastic input matrix
Discrete time output matrix
Numerator polynomial that multiplies the error term
The values over which 0 may range in the metamodel set M(0)
The data set used to generate the metamodel
Discrete time feedthrough matrix
Denominator polynomial that multiplies the error term
Abstract set
Time varying error
A Field - a set that satisfies certain algebraic and order properties
Denominator polynomial that multiplies the input variable
Continuous time state transition matrix
Nonlinear state propagation function
Transfer function between the input and output
Stochastic error gain matrix
Continuous time input matrix

28

Symbols (cont.)

Hiß)
K)
I/O

m
K{ß)

Ku(qJ)
L
L*
L{q)
L{6)

/()
M
M
M(ß)

M
MSE
rh
P
P

Piß)
Q(t)
Qd
R
Rd

Rd
R(U)
S
sd
S(t)
T

(*D
(fit) u
u
Ua

(U,B)
WT

w
w
w(t)
Wd(ti)

Transfer function between the error term and the output
Continuous time output matrix
Nonlinear output function
Input - Output
Cost (objective) function based on ß
Discrete time error gain matrix
A matrix filter of dimension dx m
Set of latent variables
Linear shift invariant space
Stable linear filter
Continuous time error gain matrix
Norm for the prediction error used in the Prediction Error Criterion
Metamodel structure (mapping)
Class of models, model set
Set of metamodels that results from the metamodel structure,
For a discrete state space equation, this term multiplies the discrete process noise
Model from the set of metamodels
Mean square error matrix
Derivative of the estimate of the stochastic mean
Parameter space, A set of parameters
State space error covariance
Probability densities
Continuous process noise correlation kernel
Discrete process noise correlation kernel
Set of real numbers
Euclidean d-dimensional space
Discrete measurement noise correlation kernel
Sampled data measurement noise correlation kernel
System map
Discrete cross correlation kernel
Continuous cross correlation kernel
The time axis
Time extrapolated to the next time step
Time after a measurement is taken
Universal set of outcomes produced by a phenomenon
Input space/variable, (t) indicates time varying
Actual control inputs
Elements of the model class
The set of all maps from T to W
Signal space, Weight for an error criterion
Member of the signal space
Additive white process noise
Discrete additive white process noise

29

Symbols (cont.)

X State Variable vector
x State Variable
x State Variable estimate
x Derivative of the state variable
xa Actual states

xa Actual state derivatives

y Output space/variable, (t) indicates time varying
y Estimate/prediction of the output variable
ya Actual output
y-m Model output
Z Set of observation (measurement) vectors of length N
(Z, Rq ,B) Linear time-invariant dynamical system where T = Z+ and W = Rq

z(ti) Sampled data observation
dß(t) Brownian motion of diffusion strength Q(t)
A Finite memory span
Ay Finite change in y
e Prediction error
£F Filtered prediction error
7T Map from the parameter set to the model set
$(t,to) Continuous time state transition matrix
4>(ti) Input (possibly nonlinear) data (functions)
<f> (t) Transpose of the vector of regressors
5 Dynamical system, covariance of 6 in MAP estimation
S; Dynamical system with latent variables
0"' Differentiation or the time-shift operator discrete time systems
<r Standard deviation
6 The vector used to parameterize the model
9* Value of the "true" parameter vector

0 Estimate of the parameter vector

8T Transpose of the parameter vector (note: all (-)T are the transpose except WT

v{ti) Additive white (sampled data) measurement noise
A Concatenation

30

A Summary of Model Abstraction Techniques

A. F. Sistia and D. Caughlin6

0 Rome Laboratory / IRAE
32 Hangar Rd

Rome NY 13441-4114 USA
sistia@rl.af.mil

b Space and Flight Systems Laboratory
University of Colorado at Colorado Springs

Colorado Springs, Colorado 09033-7150 USA
donc@mozart.uccs .edu

ABSTRACT

This paper presents an overview of model abstraction methods. Model abstraction methods are techniques that
derive simpler conceptual models while maintaining the validity of the simulation results. These methods include
variable resolution modeling, combined modeling, multimodeling, and metamodeling. In addition, some taxonomies
include approximation, aggregation, linear function interpolation, and look up tables as model abstraction methods.
We discuss these methods in a general framework to assist in understanding the applicability of the various model

abstraction methods.

Keywords: Simulation, Metamodel, Model, Abstraction

1. INTRODUCTION

A model is a structure that can be used for understanding the behavior of a system.1 The development of the
model then is an abstraction of a "real world" concept or system where we have analyzed the "real world" system,
determined the behaviors that will be addressed by the model and determined a structure for its representation. The
model can be a physical structure such as a wind tunnel model used to determine the aerodynamics of an aircraft, or
it could be a conceptual model represented by interactions, a system of equations, or a simulation. We will restrict
our attention to simulation models.

In a slight variation from Reference [2], we define a model abstraction technique as a method (simplifying trans-
formation) that derives a simpler conceptual model from a more complex model while maintaining the validity of
the simulation results with respect to the behaviors addressed by the simpler model.

There are two general types of model abstraction techniques: these are the "Direct" and "Inverse" methods.

First, a more abstract model could be developed by applying basic principles to generate a more abstract (ap-
proximate) version of the "real world" system. This would be an example of direct modeling. Direct modeling is
characterized by a specification of the elements of the model. Complicated systems are modeled by "tearing" a
system into its components, modeling these components in a process called "zooming," and then interconnecting
these components to construct a "physical" realization of the system.3"5 The level of abstraction is controlled by the
detail of the specification. The model reveals the structure of the theory and allows the prediction of the response
to exogenous inputs as a function of the state of the system. The solution of this modeling problem requires an
understanding of the process being modeled and methods to express this understanding. With the exception of the
metamodeling technique presented in Section 2.6, all of the abstraction techniques discussed are direct methods

Inverse modeling begins with the input-output data generated by the "real world" system or the high fidelity
model or simulation and develops the abstract model from the data. In this case, we have some estimate (measure)
of the input and output response but do not have a complete characterization of the process by which the outputs are
generated. System identification methods are used to generate a mathematical approximation between the inputs
and responses.

31

This paper presents an overview of both direct and inverse model abstraction methods.

The literature identifies variable resolution modeling, combined modeling, multimodeling, and metamodeling as
specific abstraction methods. In addition, some taxonomies include approximation, aggregation, linear function
interpolation, and look up tables as model abstraction methods. In Section 2, we discuss abstraction methods
from a more general perspective that follows the historical development of model abstraction methods. Section 2.1
introduces the subject with Model Based Abstraction Techniques. These methods eventually developed into the
Discrete Event formalism which is discussed in Section 2.2. Section 2.3 moves from the Model Based approach
to Process Based Abstraction techniques. This approach has developed into Multimodeling which is discussed in
Section 2.4. Section 2.5 discussed Qualitative Based techniques, while Section 2.6 discusses the only inverse method
presented - Metamodeling. Section 3 begins with a model Abstraction Taxonomy discussed in [2] and concludes with
a proposed new taxonomy. Section 4 concludes the paper.

2. TAXONOMIES OF ABSTRACTION TECHNIQUES

One of the problems in discussing model abstraction techniques and applications is a lack of uniform terminology.
Closer inspection of the literature, however, indicates that many of the concepts are the same and that the differences
arise from the perspective of, or terminology used by, the author.

Since a discussion of abstraction techniques is a function of perspective, we begin with a discussion of abstraction
techniques provided by the general approach of the author. This discussion leads to several taxonomies of abstraction
techniques which we will attempt to reconcile.

2.1. Model Based Abstraction Techniques

Zeigler's development of the Discrete Event System (DEVS) Formalism was based on a model based simulation
architecture where the model is described by a formal object called a system specification. The elements of the
modeling approach included the real system, experimental frame, base model, lumped model, and the computer.

Zeigler used the term "base model" to express the most detailed model and the term "lumped model" as the
simpler (abstracted) model.6 Being hierarchical in nature, this architecture naturally led to model abstractions and
abstraction techniques.

As stated, the description of the object was through the system specification which involved an abstraction from
the base to the lumped model. The system specification was cast into a hierarchy of levels:

1. I/O relation observation

2. I/O function observation

3. I/O system

4. Iterative specification

5. Structured system specification

6. Network of specifications

with a corresponding hierarchy of preservation relationships (morphisms) that preserve the validity of the model.

The transition from the base mode to the lumped model involved simplification (abstraction). Initially, he
discussed four general categories of abstraction techniques:

1. Dropping Components. Since all factors are not equally important, the first technique is to ingore com-
ponents, descriptive variables, or interaction rules. This is similar to an engineering approximation and is a
reduction in the complexity of a model by eliminating factors which least affect the response of interest.

32

2. Stochastic approximation. This abstraction technique replaces deterministic variables by random variables.
This technique reduces fidelity by representing a higher order deterministic process by possible outcomes that
are selected based on some probability distribution.

3. Coarsening the Ranges of Descriptive Variables. This technique can be as simple as a straight reduction
in variable range or considering a reduced set of allowable values for the variables that results from a many-
to-one mapping of the variable intervals. This reduction can also be implemented by a reclassification of the
variable attribute, such as the replacement of a string variable with a Boolean variable indicating the attribute
as empty or non-empty.

4. Grouping. The final category is grouping components and aggregating their variables. It can be considered
as compounding and then coarsening the resultant compound range.

Along with the simplification or abstraction we must consider the validity of the simpler model. The measure
here is a homomorphism or similar structure, and elements of the measure are the preservation of the time advance
mechanism, preservation of transition functions, and preservation of output functions.

This early structure evolved into DEVS which explicitly includes the level of model abstraction as a parameter
in the definition of the model.

2.2. Discrete Event Based Abstraction Techniques
The DEVS Formalism7'8 provides a systems theoretic basis for modeling and simulation that specifies the system in
terms of the level of abstraction and morphisms. DEVS is based on the relationship between the system, the model,
and the implementation of the model. Since this relationship inherently includes the level of fidelity (abstraction),
model components are organized by their level of abstraction and the degree in which they preserve the relationships
of the model specification. This organization is contained in a framework for structuring the model - the System
Entity Structure.

The System Entity Structure (SES) supports a hierarchy of abstraction levels and is based on modularity and
coupling. Modularity describes the model with its inputs and outputs through which all interaction with the external
world is mediated. Coupling describes the interconnections of the input and output ports of simpler models into
more complex models.

The SES directs the synthesis of models and combines the decomposition, taxonomic, and coupling relationships.
In this formalism, a system has a time base, inputs and outputs, states, and functions that define the relationships
between the system being modeled and the simulation that will represent that system. As such it is a structured
abstraction technique that maps the system into atomic (basic) and coupled (multi-component) models.

Within DEVS there are functions that operate on hierarchical model structures (deep-devs, flat-devs, flat-all,
inverse-transform, etc.). Consequently, the process of developing a DEVS representation explicitly addresses the
question of deriving more abstract models from the specification of the system and as such should be considered as
an abstraction technique.

2.3. Process Based Abstraction Techniques
Fishwick defines an abstraction network as an ordered pair of models and abstraction relationships.9 The ordered set
of models represents the inputs, outputs, and relationships of the underlying system at different levels of abstraction.
The abstraction relationships are based on the processes represented by a model. He describes seven forms of
abstraction:

1. Abstraction by Representation. This form uses a different representation to present the same information

2. Induction. Induction aggregates several behaviors into a single representation.

3. Reduction. Reduction based on ????

4. Total Morphism. Morphisms define mappings between two models. Total morphisms are relationships that
accomplish a complete mapping of the system that preserves the features of the system.

33

5. Partial Morphism. A morphism that does not necessarily preserve all of the relationships and functions
during the mapping.

6. Sensory Abstraction. Is the generation of behavior that visually represents the behavior of the system being
modeled.

7. Cerebral Abstraction. This is the highest level of model abstraction based on intuition.

2.4. Multimodeling Based Abstraction
Fishwick and Lee have continued to develop process based abstraction techniques and have proposed that variable
resolution modeling, combined modeling, multimodeling and metamodeling can be categorized as either behavioral
or structural approaches.10

Variable structure models include in the model description sufficient information that allows the model to change
its own structure. Multimodels contain structurally compatible component models with distinct behaviors that play
a mutually exclusive role. While multimodeling provides for a hierarchical structure, selection of components in each
level is dependent on the lower level component selection. In each of these model abstraction methods, either the
behavior or the structure is addressed.

Behavioral abstraction addresses the level of complexity by approximating the behavior of the system. This
category of abstraction simplifies a component by replacing it with something more generic but produces similar
behavior. In some respects, behavioral abstraction is equivalent to multimodeling but the components are black
boxes defined only by the input-output map.

Structural abstraction defines the levels of abstraction and chooses which model types to use at each level.
Structural abstraction focuses on the structure of the model and not necessarily the resulting behavior. Structural
abstraction isolates the abstraction levels so that each level can be executed independently from the other levels
without requiring knowledge of the detailed internal structure of the other levels. Within structural abstraction we
can address either the values obtained by the model (data) or the model itself.

Data abstraction compresses information obtained from the model. For example, with data abstraction we could
represent a trajectory by its symbolic value, mean, variance, interval, or fuzzy set. Model abstraction addresses the
strucure of the model itself and can be homogeneous or heterogeneous. Homogeneous model abstraction restricts
the structural abstraction to a single representation - conceptual, declarative, functional, constraint, and spatial.
Heterogeneous abstraction allows multiple representations under one structure.

The taxonomy that results from this approach is depicted in Figure 1.

inmnodäiiig

Strict! ial Beiaiioral

Daß Model

Statte Dyian Ic

Homogeieoif Heterageieo«

Figure 1. Multimodel Taxonomy.

34

2.5. Qualitative Simulation Based Abstraction Techniques
Our next approach is based on a qualitative approach to modeling. Qualitative simulation is based on qualitative
differential equations and qualitative processes which describe the relationships that represent the system. These
relationships include a set of variables, a quantity space, a set of variable constraints, and a set of transitions.
Qualitative simulation is distinguished by the fact that the quantity space of the variable is not the domain of
numbers but "landmark" values that have specific meaning (e.g. hot, cold, empty, full, etc.).

Abstraction techniques identified in the qualitative simulations literature include;

1. Behavior Aggregation. Characterizes all possible behaviors at different levels of detail while eliminating
irrelevant distinctions.

2. Structural Abstraction. Aggregates components that are close.

3. Functional Abstraction. Aggregates components that are elements of the same function.

4. Chatter Box Abstraction. A chatter box is a state space region where qualitative derivatives are allowed
to vary while the qualitative values of other variables remain the same. Chatter Box Abstraction eliminates
chatter by reducing the region to a single state.

5. Model Decomposition. Divides the model into loosely connected components that are modeled separately
while specifically addressing component interactions.

6. Time Scale Abstraction. There are two aspects to Time Scale Abstraction. One aspect aggregates behavior
over an interval and represents that behavior at a particular point (start, mid, or end) on the interval. The
second aspect of Time Scale Abstraction is a particular form of model decomposition where the decomposi-
tion of complex inter-related systems is focused on parts of the system that operate at different time scales.
This technique separates the time scales so that to the fast system, the slow system is constant; and to the
slow system, the fact system is instantaneous. These approximations allow a corresponding reduction in the
complexity of the interactions between the two systems.

7. Quantitative Abstraction. Ignores small differences in the value of variables.

2.6. Metamodeling
All of the abstraction methods presented to this point addressed very general modeling issues. Our final abstraction
methodology does not address the entire model space but provides a specific set of methods to support some of the
above methods.

By definition, a metamodel is a model of a model. We restrict the use of the term metamodel, however, to
mathematical approximations of the system relationships defined by a high fidelity model or simulation.

As an abstraction, a metamodel is a projection of the model onto a subspace defined by new constraints or regions
of interest. Abstract models developed using the direct techniques presented above are "stand alone" versions. The
relationship between the real system, a high fidelity model, and the more abstract model is contained in the two map-
pings from the underlying system to each of the models. Also, these techniques require an a priori understanding of
the structure of the elements and the interconnections between these elements at the specific level of fidelity selected.

The metamodeling technique we present here is based on a solution of the inverse problem and is shown in Figure
2. This technique is a structured metamodeling method that simplifies the metamodeling process to two phases:
problem definition and an iterative metamodeling process.

In the problem definition, we begin with an analysis of the metamodel requirements and the simulation under
study. We then progress to the description of the system (not the model) so that we will be able to select a metamodel
structure that matches both the requirements and simulation that we are going to metamodel. We determine the
purpose of the metamodel. In the definition of this purpose, we have identified the input and response that we are
interested in and determined the important characteristics of these data. Also for this purpose, we have defined the
region of interest, selected validity measures, and specified the required validity.

35

In addition to the purpose of the metamodel, we also characterize the simulation that were are trying to model.
In our approach, we do not address the representation of the metamodel or assumptions that will be made in its
realization. However, data generated by this step provides a clear statement of the metamodel purpose and the
characteristics of the simulation that will be modeled. As will be seen in the next section, this data directly matches
the decisions that must be made in the selection of the model set.

2.6.1. Structured Metamodeling Method

Prevalent metamodeling approaches required too many decisions involving: a priori knowledge; the data; possible
metamodel sets; and rules to determine the best model set to realize the data. Each decision was a complex function
of a priori information and prior selections in the metamodeling process.

In reality, all "real world" systems are complex, large scale interconnections of continuous-discrete, nonlinear,
infinite-dimensional components. We will approximate these systems with lumped parameter, parametric, finite
dimensional models that can be grouped into sets.

A new taxonomy of metamodel sets and identification methods was developed that allows the separation of the
metamodeling process into a set of sequential decisions based on a priori information. This decision sequence is
shown in Figure 3. The purpose of the procedure is to match the problem definition and characterization of the
simulation to the behavior allowed by the metamodel set.

PROBLEM DEFINITION

EXPERIMENTAL DESIGN
i i

+
RUN SIMULATION

'

*
' COLLECT

DATA

'

SELECT METAMODEL SET ~~| 1

SELECT IDENTIFICATION
METHODOLOGY

L>

i '
nCMCDATC Ahm 1/CDICVMCTilWnnCI

Figure 2. Iterative Metamodeling Process

36

Heianode tltg
set

siso

-Class- MISO

MIMO

-Description-
Raidomie«

This

Pol/iomBI

—RöpresentatioH- Matr h Fractal

Säte spa«

Predictor

-Structure-

Ueönodellig
Uettodf

Procaillslfc

l Dyiamlc

TuM Lliear

— Static

NoiLliear

COItlllOK

StElaftfc

l— DefeimltbUc

D Ucret

Sampled Date

Discrete Eueit

Figure 3. Metamodeling Set Determination

As seen from Figure 3, selection of the metamodel set is clearly defined by the system description, system class,
representation, and metamodel structure. Data for all of these selections come directly from the problem definition
step.

In each of these model sets, a most powerful unfalsified model will exist (given that the certain requirements are
met).3 Consequently, the performance of the metamodel will be limited by the match between the metamodel set
and the actual system that generated the behavior.

2.6.2. Generation of the Metamodel

We have defined the problem and selected a metamodel set that matches this definition. Now we must select a
method to generate the model parameters.

There are many taxonomies used in the literature to categorize identification methods. Methods can be referred to
as off-line or on-line. Also, they can be classified as either open-loop or closed-loop methods. Further classification can
be made as nonparametric, frequency domain, and as parameter identification methods. The number of methods and
classification schemes complicated method selection, and none of the classifications really addressed the application
of a method based on the metamodel set.

By selecting the metamodel set as shown in Figure 3, a new structured metamodeling method was possible that
addresses this complexity. The structure is based on the fact that the construction of a metamodel (selection of the
parameters used for the projection) is determined by the metamodel set, method of identification, and identification
criteria.

Analyzing the method of identification and identification criteria,we can reduced the parameters identification
methods to four approaches shown in Figure 4. A summary discussion of these elements is included in Reference
[15], additional details are found in [11].

37

Mean ode mg
Metkods

Direct liuerje

Correöüoi
Approacle«

lislnmeitel
Variable

Maxttim
Ltelllood

Fill Seals
Estimator

Modified
Martnim
Ltelllood

Maxlnim A
Postrlorl

Opttnteatloi

Gradiert
Uetto*

Shiilated
Aiieallig

Apprcoclnatloi

Stoclastlc
Appro« In atloi

Splits
Approxln allot

Cat loi leal
Var&fe Aialysls

Predlcfloi Error
Mettods

DeastSq tare« RUge
Regresfbi CHSqiare Elge i Stricfl re

RealtaBoi

Figure 4. Taxonomy of Metamodel Methods

38

3. MODEL ABSTRACTION TAXONOMY

3.1. Initial Model Abstraction Taxonomy
An analysis of the above techniques was accomplished in [2], and is presented in Figure 5.

Model
Abstraction Techniques

Model
Boundary

Modification

Model
Behavior

Modification

Model
Form

Modification

Explicit
Assumptions

Temporal

Unit
Advance

Event
Advance

Entity

..

By
Function

By
Structure

Behavior
Aggregation

Causal
Decomposition

Repeating
Cycles

Numeric
Representation

Hierarchies
oi Models

Delimit
Input Space

Approximations
Boundary &

Selection
by Influence

Random
Number

Generation

Linear
Fractions

Interpolation

Meta-
Modeling

Casual
Approximations

Model Sensitivity-
Analysis

Param. Poly
Response Splines

Kemal
Smoothing

Spatial
Correlation

Models

Frequency
Domain
Approx.

Figure 5. Model Abstraction Taxonomy.

While complete, some simplifications can be made so that the distinctions in types of abstraction come through
more clearly. This taxonomy attempts to display all of the possible abstraction methods and their resulting repre-
sentations in a single flowchart. This construct requires that we consider both the underlying process and how the
process is accomplished. If carried to completion, the resulting two dimensional diagram is excessively complex and
loses it's ability to convey any information.

3.2. Proposed New Model Abstraction Taxonomy
Since the process of abstracting a model usually entails multiple passes operating on the same or derived models, we
will approach a taxonomy of abstraction techniques in the same manner. The methods in the taxonomy we describe
are appliec! iteratively until the desired representation and level of abstraction is obtained.

The taxonomy addresses processes that are available for model abstraction and, with the exception of separating
the model and the data, does not address the component of the model that the method operates on. In the structural

39

techniques we will delineate between the structure of the model and the structure of the data. We divide the problem
space into models and data because the model is the structure that can be used for understanding the behavior, the
data is the interaction of the model with its environment. Structural abstractions can be applied to either space.

The focus on the process means that we do not consider the result of the process as part of the taxonomy. For
example, application of structural abstraction applied to the model (as opposed to the data) can result in different
structural classes that can be used in the same overall model. In Figure 1 above, this results in the Hetrogeneous
Multimodel.

Some portions of the taxonomy, however, are based on the initial condition of the process. Direct behavioral
techniques can be thought of as Object-Oriented (00) or Structured (functional). This distinction is similar to
the distinction between OO Modeling and Design and Systems Engineering. In the OO approaches we analyze the
model from the bottom up looking at the entities that are used to describe the system and their interaction with
the environment. In the Structured Approaches we begin with a top down analysis and decompose or abstract the
system beginning at the highest level.

With these few introductory remarks, Figure 6 presents this new taxonomy of Model Abstraction Techniques.

Structural

Data

r

Boundary Form

Boundary

i |
Selection and

Influence
Approximation

Object
Oriented

_. I
1 1

Model Based DEVS

Metamodeling

Morphism

Form

i
1

Composition Aggregation

Process Based Algebraic

Figure 6. Proposed Model Abstraction Taxonomy.

40

Unfortunately, the length of the paper prevents a complete description of each branch or the specific mention of
every technique in the branches. We do however, provide a general discussion of the major aspects. The Taxonomy
was slightly simplified for presentation. The presentation of Structural Techniques that operate on data do not
continue below "Boundary" and "Form" but the remaining options are identical to Structured Model abstraction
techniques. The inverse metamodeling techniques shown in Figure 4 were not repeated and should be appended to
Figure 6 in the appropriate location.

The primary boundary is between "Structural" and "Behavioral" abstraction. In behavioral abstraction we
address the behaviors that we are going to model and how these behaviors are related to the underlying model that
we are abstracting. We can accomplish this by working directly with the behavior from a Structured or Object
Oriented perspective or we can abstract the behavior indirectly through the data using Metamodeling.

The OO methods are divided into "Model Based" and "DEVS". Although DEVS is an outgrowth of a model based
approach, this distinction was maintained because of the additional constraints placed on DEVS when compared to
the model based approach. An example of an additional constraints is the restriction to a discrete event system. It
is possible to use model based approaches for continuous, discrete or sampled-data models.

Under Direct Structured Behavioral approaches we divide morphisms into those that are purely mathematical in
nature and those that would allow other types of abstractions that are based on process relationships.

Structural Model abstraction techniques can be applied to the data or the form of the model. If we address
the form of the model we can approach the abstraction through composition or aggregation. Both methodologies
can be applied to portions of the model or to the model as a whole. Aggregation is a decomposition of the model
into parts where the sum of all of the parts now represent the model. In composition we do not decompose the
model into mutually exclusive elements but into components that are part of the original model. These components
represent characteristics of the model but there is no assumption that the sum of the components represent the entire
(abstracted) model.

Structural Data abstraction maintains the behavior and the structure of the model but allows the analyst to
address the representation of the input or output. Here we could group variables, modify intervals, etc. as long as
the full behavior is not modified in any manner.

If we address the boundary of the model we are changing the domain and/or range of the model. We can make
this change by direct selection or by approximating the boundary of the model in a different representation.

4. CONCLUSION
We have reviewed various model abstraction techniques and suggested a taxonomy that includes and unifies those
techniques. This new taxonomy was presented in Figure 6 and is based on the following constructs:

1. The taxonomy addresses the processes that are available for model abstraction and does not address the
component of the model that the process operates on.

2. The taxonomy does not consider the result of the process.

3. Taxonomy we describe is applied iteratively until the desired level of abstraction is obtained.

Because the taxonomy does not consider the model components or the result of the abstraction process, it appears
to be quite different from those proposed in the past. It is not possible to use this taxonomy to determine the type
of the resulting (abstract) model.

REFERENCES
1. V. Vemuri, Modeling of Complex Systems, Academic Press 1978.
2. Fredrick K. Frantz and A. John Ellor, "Model Abstraction Techniques," Computer Sciences Corporation , Integrated

Systems Division, One MONY Plaza, Syracuse, New York 13202, 18 August 1995.
3. J. C. Willems, "Paradigms and Puzzles in the Theory of Dynamical Systems," IEEE Trans, on Automat. Contr., vol.

36, no. 3, pp. 259-294, March 1991.

41

4. B.P. Zeigler, "Hierarchical Modular Modeling/Knowledge Representation," Proc. 1986 Winter Simulation Conf., pp.
120-137, 1986.

5. A.F. Sisti, "A Model Integration Approach to Electronic Combat Effectiveness Evaluation," RL-TR-89-183, October
1989.

6. B. Zeigler, Theory of Modeling and Simulation, Wiley and Sons, New York, 1976

7. B. Zeigler, Multifacetted Modeling and Discrete Event Simulation, Academic Press, San Diego, 1984.

8. B. Zeigler, Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems,
Academic Press, San Diego, 1990.

9. Paul A. Fishwick and Kangson Lee, "Two Methods for Exploiting Abstraction in Systems," Proc. AI, Simulation and
Planning in High Autonomy Systems, March 23-27, 1996.

10. Paul Fishwick, "The Role of Process Abstraction in Simulation," IEEE Transactions on Systems, Man, and Cybernetics,
Vol 18, No. 1, January/Febrauary, 1998.

11. D. Caughlin, Final Report, Modeling Techniques and Applications, Volume I. USAF Contract F30602-94-0110, Rome
Laboratory/IRAE, 32 Hangar Rd, Griffis AFB, NY 13441-4114, December 1995.

12. D. Caughlin, "A Metamodeling Approach to Model Abstraction," Proc. 1994 Fourth Annual IEEE Dual Use Technologies
and Applications Conference, May 1994.

13. D. Caughlin, "An Evaluation of Simulated Annealing for Modeling Air Combat Simulations," Proc. 1994 IEEE Dual-Use
Technologies and Application Conference, May 1994.

14. D. Caughlin, "Verification, Validation, and Accreditation (VV&A) of Models and Simulations Through Reduced Order
Metamodels," Proc. 1995 Winter Simulation Conference, December 1995.

15. D. Caughlin, "New Procedures to Metamodel Simulations," Proceedings of the 6th Annual Conference on AI, Simulation,
and Planning in High Autonomy Systems, March 1996.

16. M. A. Zeimer, et. al., "Metamodel Procedures for Air Engagement Simulation Models," IRAE Technical Report, Jan
1993.

17. L. Ljung, System Identification: Theory for the User, Prentice-Hall, New Jersey, 1987.
18. D. C Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, 1991.

19. D. Belsley, E. Kuh, R. Welsch, Regression Diagnostics, John Wiley & Sons, New York, 1980.

20. L.B. Anderson, et al, "SIMTAX, A Taxonomy for Warfare Simulation," Workshop report taken from the Catalog of
Wargaming and Military Simulation Models, 11th Edition, Force Structure, Resource, and Assignment Directorate (J-8),
The Joint Staff, Washington, DC 20318-8000, September 1989.

42

A Metamodeling Approach to Model Abstraction

Don Caughlin
Mission Research Corporation, Colorado Springs, Colorado 80919

Abstract— This paper provides a framework for the
application of System Identification techniques to de-
velop suitable Metamodels for tactical simulations
used by the Department of Defense. We fill in the
framework with concrete definitions and identify spe-
cific issues associated with the representation of dy-
namical systems. Particular attention is given to
the discussion of experimental design requirements
for Metamodeling Tactical Engagement (usually Dis-
crete Event System - DES) simulations. We demon-
strate this approach by outlining the development of
a Metamodel for the "Tactical Electronic Reconnais-
sance Simulation Model."

1 INTRODUCTION

Tactical Simulation models used by the Depart-
ment of Defense to assess the capabilities of combat
systems and tactics are highly complex. It is often
difficult to determine the relationship of individual
factors to the performance of the modeled process
[1]. Consequently, it is not easy to use the results
of the model in another simulation or couple multi-
ple models to investigate a larger issue. The result
is a proliferation of point designed models and sim-
ulations, expensive upgrade and maintenance, and
the inability to efficiently answer many of the more
difficult questions raised by the acquisition and op-
erational communities [2].

A technique called Metamodeling has the ability
to facilitate this type of assessment. As an abstrac-
tion, a metamodel is a projection of the model onto
a subspace defined by new constraints or regions of
interest. Selection of the parameters used for the pro-
jection (the construction of a metamodel) involves: a
priori knowledge; the data; a set of metamodel struc-
tures; and rules to determine the best model to realize
the data. This paper presents a new paradigm and
discusses some of the issues associated with Meta-
modeling tactical simulations.

The paper is organized as follows: Section 2 in-
troduces Metamodels and techniques available to de-
velop them; Section 3 introduces the Framework that
will be used for the Identification of Metamodels from
Combat Simulations; Section 4 identifies some special
issues associated with the Identification of simulation

Metamodels; Section 5 provides an example of us-
ing this approach; and Section 6 concludes the paper
with results and conclusions.

2 METAMODELS

A model is a structure that can be used for under-
standing the behavior of a system [3]. The model can
be a physical structure such as a wind tunnel model
used to determine the aerodynamics of an aircraft, or
it could be a conceptual model represented by inter-
actions, a system of equations, or a simulation.

Assume that we have a model of a system that
cannot be used directly. A solution may not exist, it
may be too complicated for a closed-form solution, it
may require too much time to numerically determine
a particular solution, or it may be a high-fidelity sim-
ulation that provides much more detail than we are
interested in. Efficient use of this model requires a
"black-box" approximation of the causal time depen-
dent behavior of the model - a Metamodel.

A Metamodel is a mathematical approximation of
the system relationships defined by another, more de-
tailed model (in our case - a tactical simulation).

2.1 Metamodeling Techniques

There are two basic techniques available for Meta-
modeling: direct and inverse modeling.

First, a metamodel could be developed by applying
basic principles to generate a more abstract (approx-
imate) version of the original model. This would be
an example of direct modeling. Direct modeling is
characterized by a specification of the elements of
the model. Complicated systems are modeled by
"tearing" a system into its components, modeling
these components in a process called "zooming," and
then interconnecting these components to construct
a "physical" realization of the system [4, 5, 6]. The
level of abstraction is controlled by the detail of the
specification. The model reveals the structure of the
theory and allows the prediction of the response to
exogenous inputs as a function of the state of the sys-
tem. The solution of this modeling problem requires
an understanding of the process being modeled and
methods to express this understanding.

Metamodels developed using this technique are
"standalone" versions. The relationship between the

43

real system, the original model, and metamodel is
contained in the two mappings from the underlying
system to each of the models. There is no guarantee
that a usable correspondence will exist between the
metamodel and the model [7, 8], Traceability from
the high-fidelity model to the more abstract, lower fi-
delity, metamodel becomes a significant issue. Also,
this technique still requires an a priori understanding
of the structure of the elements and the interconnec-
tions between these elements at the specific level of
fidelity selected. This, in fact, could be a difficult
and risky task and lack of this knowledge is often the
reason that a high fidelity simulation was used in the
first place.

The second technique develops the metamodel
from the Input-Output data generated by the orig-
inal model or simulation. This technique is an ex-
ample of the "inverse problem." As difficult as the
direct modeling problem may be, the inverse problem
is much more complex. In this case, we have some
estimate (measure) of the input and output response
but do not have a complete characterization of the
process by which the outputs are generated. While a
properly posed direct problem generally has a solu-
tion, the inverse problem usually has multiple solu-
tions out of which an acceptable solution (if it exists)
must be selected. This technique explicitly results in
a mathematical approximation between the inputs
and responses - this is the technique we consider.

It should be noted that there is a significant dif-
ference between our approach and much of the prior
research. Most of the previous work that could be
categorized as Metamodeling consisted of procedures
to determine the best polynomial fit to a set of Input-
Output data. The researchers concentrated on the
statistical properties of the data. In our approach,
we are not trying to fit data. We are attempting to
identify the underlying processes that define the sys-
tem that generated the data (or in our terminology
- the behavior). The focus is not on statistics but
on the system theoretic properties of the manifest
behavior.

3 IDENTIFICATION FRAMEWORK

Given a phenomenon that we would like to de-
scribe, we desire a mathematical expression as the
model 2 [4]. Assume that this phenomenon produces
outcomes that are elements of a set U. A model
for this phenomenon will probably generate certain
of these outcomes and exclude others. Consequently,
the outcomes recognized by the model, B, are a sub-
set of the universal set U, and are called the behav-
ior of the model. For the inverse modeling problem,
we define a model class M with elements M = (U,B)
where B C U is the behavior of M.

This framework follows the work presented by Willems

Therefore, define a mathematical model as the pair
(U, B) with U the universe of outcomes produced by
the underlying phenomenon, and B, the behavior of
the model. If possible, we can describe the behavior
of the model by a set of equations that leads to a
behavioral equation representation of the pair (U, B).
To accommodate this, consider an abstract set, E,
called the equating space, and f\, f2 : U —*■ E. With
this space, and the functions fi,f2, the behavioral
representation for the model becomes (U,E,fi,f2).

In summary, the modeling procedure requires that
we specify the variables that we want to model (spec-
ify the universal set U), and identify the possible
outcomes in the behavior. Often, however, we will
require additional variables in addition to those we
seek to model. These other variables are called la-
tent variables. These variables are required whenever
we develop a metamodel by the method of tearing
where the system is viewed as the interconnection
of subsystems. Consequently, we expand the math-
ematical model to allow latent variables by defin-
ing a triple (U,L,Bf). Here L is the set of latent
variables, Bf C U x L, with Bf = {u G U\3l g
L such that (u,l) 6 Bf }.

A mathematical model is linear if U is a vector
space and B is a linear subspace of U. Assume
that U = I x O, where I is the input space, O is
the output space, and B is the graph of a system
map F : I x O called an I/O map. These assump-
tions allow an Input-Output model where (U, B) O
(/ x O, B) O (I, O, F). If the past does not contain
any information about the future other than the in-
formation in the behavioral relationships, the map is
nonanticipating. A parametrization of M consists of
a set P and a surjective map w : P —> M. The set P
is the parameter space with p £ P determining the
behavioral equations.

3.1 Dynamical Systems

Again, the model for a dynamical system is de-
fined in terms of its behavior. A dynamical system
is a family of trajectories without reference to I/O
maps, variables, or behavioral equations. The sys-
tem is coupled to its environment and is not defined
by a model associated with it. A model for a dy-
namical system E is simply a triple E = (T, W, B)
with T C R the time axis, W the signal space, and
B C WT the behavior - the set of all maps from T
to W, a family of W-valued time trajectories.

A dynamical system is linear if W is a vector space
(over a field F) and B is a linear subspace of WT. A
dynamical system E = (T, W, B) is said to be time
invariant if alB = B for all t £T. Where a* is the
time-shift operator: (<7*/)(0 = f(? -M).

A dynamical system E = (T, W, B) is said to be
complete if {w e B} O H[*i,t3] £ B[tl:t2],Vtut2 G
T,t\ < t2}. Completeness is an important property

44

affecting the mathematical structure that defines the
behavioral equations that represent dynamical sys-
tems.

Dynamical systems acquire their importance from
the fact that they exhibit memory or the potential
to model phenomena where the past influences the
future. In this context, a dynamical system is said
to have a finite memory span A(A G T, A > 0) if
wi,w2 G B,wi(t) = w2(t) for 0 < t < A =>• {wy A
w2£ B} 3. Where

i A \n\ / ^iM for t<0 m (w1Aw2)(t) = { w^ for t>Q (1)

If A = 0, the dynamical system is memoryless; if
A = 1 (in discrete time) the system is Markovian.
Therefore, for a system with a finite memory span,
the past is independent of the future. S is A com-
plete (A G T, A > 0) if {w G B} & {(<T'W)|[0,A] G
B|[0l,]V*€T}.

Dynamical systems with latent variables and In-
put/Output Dynamical Systems can be defined in an
analogous fashion as before. One method of repre-
senting latent variables is through state variables. A
state-space dynamical system is defined as a dynam-
ical system with latent variables, S = (T, W, X, Bs)
with X C L, such that the full behavior Bs G W x X
satisfies the axiom of state. In this case the latent
variables, the states, contain sufficient information
about the past so as to determine future autonomous
behavior. The behavioral equations, such as differ-
ence or differential equations, lead to representa-
tions of dynamical systems.

3.2 Representations

The model is defined by the behavior that it allows.
The behavior can be defined by a set of inequalities
or equations. The structure of the equations is a
representation of the model.

A representation that is only a function of current
and past signals (outputs) and is called an autore-
gressive (AR) representation and can be written as
R(a,a-1)w = 0. Where

R(s,s-1) = RLsL + RL-1s
L-l + ... + R,+1s

1+1+R,s'

If the system that we are trying to model suggests
latent variables to describe the behavior, the autore-
gressive representation can be expanded to include a
moving average part of the past latent variables re-
sulting in an autoregressive-moving-average (ARMA)
representation. In this case, the behavioral difference
equations relate the time-series of the manifest vari-
ables w : Z —>■ Rq to the time-series of the latent
variables / : Z —> Rq. With appropriate definitions,
the ARMA system is defined as:

Ä(<7,o--1)tü = M(o-,o--1)/
3 Here A denotes concatenation

An important class of ARMA systems are those
where R{s,s~1) = I. This yields a moving average
(MA) representation: w = M(c,cr~l)l

We can combine the above constructs to define a
class of models with all of the advantages of com-
pleteness - described by the difference equation; state
form - the memory is displayed through the latent
variables; and nonanticipating Input-Output - an ex-
plicit cause and effect structure. This representation
is an Input/State/Output representation and is the
model class most amenable to analysis, synthesis and
simulation.

3.3 Controllability and Observability

In a controllable system, the past trajectory does
not have a lasting influence on the far future. Sooner
or later, any other trajectory, within the controllable
subspace, can be attained. In an autonomous system,
the past trajectory determines its future completely.
Consequently, the lack of controllability implies pre-
dictability. As we develop the capability to better
understand and control our environments, our abil-
ity to predict that environment can suffer. We are
limited in our ability to predict by our ability to ob-
serve. All dynamical systems are not controllable.

While controllability is intrinsic to the dynamic
system, observability is also a function of the repre-
sentation of that system. This comes about because
observability is only an issue for dynamical system
model representations that have latent variables
(by definition, if the variable is a manifest variable it
is observed) and is a property where an unobserved
signal can be deduced from one which is observed.

3.4 Discrete-Event Systems (DES)

The above framework is consistent with the formal-
ized discrete-event systems in theoretical computer
science. The behavior is similar to the formal lan-
guage, a state-space system is like an automation,
latent variables are replaced by production rules, in-
terconnections are communications. The most sig-
nificant difference is the lack of behavioral models
(equations) in the theory of DES. Also completeness
is usually violated in a DES by initiation and termi-
nation rules for event strings.

Since the DES is not complete, representation of
these systems requires special consideration. We will
see that completeness is required to represent a dy-
namical system by a behavioral difference equation.
Results for representation of complete systems may
be generalized to a class of noncomplete systems (in-
cluding DES) that meet specific restrictions.

A linear time-invariant dynamical system
(Z, Rq,B) is called an /2-system if B is a linear shift-
invariant closed subspace of l2(Z;Rq). Define B?c as

45

the closure of B with respect to the topology of point-
wise convergence. With these definitions, results for
complete systems may be generalized to /2-systems
satisfying B = BP

C
 f] 12{Z; Ä«)4.

4 METAMODELING ISSUES

7. The manifest behavior of the state variable
(an ARM A) representation will belong to Lq.
Consequently, every system T, £ Lq admits a
finite-dimensional state representation, allows a
componentwise I/O representation, and conse-
quently admits an Input/State/Output repre-
sentation.

With a framework established to characterize sys-
tem models, we now address the key issue of the in-
verse modeling problem: "What properties of the be-
havior allow the system to be represented by a differ-
ence (or differential) equation of a particular type?"
Analysis of these properties will result in rules and
constraints for the setup and design of metamodels.
Since we are no longer fitting data but identifying
systems, the data used to identify the system must
meet certain prescriptions. Explanation and proof of
the following statements can be found in the refer-

1. To represent a system by means of a differ-
ence equation it has to be complete (it cannot
have initialization or termination conditions at
t = ±oo) with a finite memory span so that ob-
servation of a trajectory on a finite time interval
allows conclusions about past behavior indepen-
dent of what will happen in the future.

2. For a system to be described by AR-equations it
must be linear, complete, and time invariant.

3. Since a dynamical system containing latent vari-
ables can be converted into an AR representation
with an increase in the lag, representation of a
dynamical system with latent variables must also
be linear, complete, and time invariant.

4. If the dynamical system is controllable (if it is
possible to eventually steer the system to a de-
sired trajectory) then the system will also allow
an MA representation.

5. An Input-Output dynamical representation can
be defined if, and only if, it can be de-
scribed by an AR-system of behavioral equa-
tions P(cr,cr~1)y — Q(a,a~1)u with P(s,s~1) G
RPxq[s,s-1], Qis^-1) G ÄPxm[s,s-1] and det

6. The Input-Output dynamical representation
will be nonanticipating if, and only if,
P-1(s,s-1)Q(s,s-1) G RJxm(s) is a matrix of
proper rational functions.

See [7] and [8] for definitions of I2 and Lq spaces.

4.1 Identifiability

Identifiability relates to the ability to reconstruct
the dynamical laws of the system from a given set
of measurements [9]. There are several obstructions
to identifiability. Feedback makes it difficult to sepa-
rate system dynamics from the dynamics of feedback.
Structured inputs can interfere with the structure of
the behavior. Lastly, the failure of the input to ex-
cite all of the modes will prevent observation (and
subsequent identification) of the unexcited modes.

Any unstructured input will be sufficiently rich to
observe a controllable system. Structured inputs will
allow observation and identification if the AR rela-
tions defining the structure of the input have large
lags that do not interfere with the structure of the
system. In other words, if the structure of the input
is not seen by the system.

In order to identify a portion of a system, we must
be able to observe the response. Observability spec-
ifies the ability to determine the trajectory of latent
variables from the manifest set. Since controllabil-
ity allows an MA representation, and any control-
lable MA representation can be converted into an
AR representation by increasing the lag, complete
controllability implies observability. Lack of control-
lability, however, does not imply lack of observabil-
ity [10]. For systems that can be reduced to an
AR-representation, R\{(T, cr~x)wi + R2(cr, cr~l)w2 = 0
with Äi^s-1] G R9*^[s,s-1] and Ä2[s,s_1] G
Rgxg2[s,s~1] then w2 is observable from w\ if, and
only if, the rank of the matrix ^2(0", c_1) is equal to
q2\fa ^ 0.

This is why inverse modeling or System Identifica-
tion is so difficult - the system and our selection of
a representation is critical in that it constrains the
behaviors of the model, affects our ability to observe
latent variables, and impacts our ability to represent
the outcomes U.

4.2 Representing Discrete Event Systems

The discussion above introduced the issues as-
sociated with Discrete Event Systems. Most of
System Identification is formulated on continuous,
discrete, or continuous-discrete dynamical systems.
Many of the simulations are discrete event or con-
nected discrete-event dynamical systems. The ques-
tion arises: "When can a DES be described by a

46

difference equation?"
Since completeness is usually violated, this im-

pact must be expressly considered. If a linear time-
invariant system is not complete, then whether or not
w : Z —*■ Rq belongs to the behavior depends on w(t)
at ±00. However, results for complete systems can be
generalized if the system behavior is restricted to a
finite dimensional sequence. From Section 3.4, every
behavior B £ L9 allows an AR representation. De-
fine a DES as a time-invariant system S = (Z, W, B)
with W a finite set. A DES is internally finite if it
can be realized by a finite automation, if there ex-
ists a state-space representation of it with a finite-
state space. An internally finite and complete DES
S = (Z, W, B) can be described by a behavioral dif-
ference equation / o (crLw, aL_1w,..., c'w, w) = 0
for some L G Z and some / o WL+1 -* {0,1}.

4.3 Existence of a true Input-Output Rela-

tionship

Assume that we have observed the input and out-
put of a system and computed a set of linear dif-
ferential and/or algebraic equations from this data.
Have we identified the system? Do these equations
establish a true Input-Output relationship suggested
by this identification? Answers to these questions are
provided by two sequences of subspaces, one in the
input space u and the other in the output space y

Consider a system of linear ordinary differential
and algebraic equations with constant coefficients:
A((T)£ + B(cr)u + C(a)y = 0 where (<r) denotes dif-
ferentiation (or the shift operator for discrete time
systems), and £ contains all of the latent variables
not present in the input and output spaces. A(s),
B(s), and C(s) are polynomial matrices.

We say that y processes u if the linear space of tra-
jectories {y\(y, 0) G -5} is finite dimensional. There-
fore, y processes u if u determines y up to a finite
number of constants. Also, u is free if for every trajec-
tory u there exists a trajectory y such that (y, u) G B.

Recall that if the dynamical system with latent
variables £/ = (Z,R9,Rd,Bf) is linear time invari-
ant and complete, the manifest system which it rep-
resents S = (Z,Rq,B) is also linear time invariant
and complete. Consequently, for a linear time in-
variant and complete system, any behavior given by
A(a)£ + B(<r)u + C(cr)y = 0 can also be represented
by:

B = [Äi(<r) ä2(<T)] = 0 (2)

The behavior of such a set of equations stems from
an Input-Output system if both conditions of the fol-
lowing proposition hold.

Proposition 1 Let a behavior B be given by equa-
tion 2. where [Ri(<r) ^(o-)] is a polynomial matrix
of full row rank. The following statements hold:

1. y processes u if, and only if, Ri{s) has full
column rank

2. u is free if, and only if, Ri(s) has full row rank.
Therefore, R\(s) must be invertible and the trans-

fer matrix of the system is defined by T(s) =
-R^l(s)R2(s)

Also, once the identification is accomplished, the
subspaces generated by the system (equation 2) can
be checked to determine if a true Input-Output rela-
tionship has been found (see [11]).

4.4 Metamodeling Combat Simulations

With respect to Metamodeling Combat Simula-
tions, the systems we are trying to identify are com-
plex, nonlinear, time varying discrete event systems.
In general, for this case, the predictor function is a
nonlinear function of past observations and there are
too many possibilities for unstructured "black box"
models. Knowledge of the nonlinear it ies must
be built into the model [12].

Fortunately, in this case, we have explicit knowl-
edge of the nature and characteristics of the model.
We have the model (the simulation) that applied the
system to the inputs to generate the outputs we are
interested in. Given this information, we can build
the nonlinearities into the structure of the metamodel
and provide the capability to generate a reduced or-
der approximation of the original model. This fact
makes Metamodeling as a method of model abstrac-
tion feasible. We will exploit this fact to the fullest
extent possible.

Care must be taken in the setup of the Metamod-
eling problem. The experimental design must
provide Input-Output sequences that cor-
rectly represent the system structure. When
the metamodel is determined, it is not possible to
ask "What is the probability that a particular set of
fitted parameters is correct" because there is no sta-
tistical universe of models from which the correct one
is chosen. There is just one model and a statistical
universe of data sets that are drawn from it. It is
possible to ask, however, "Given a particular set of
parameters, what is the probability that this data set
could have occurred?" We can identify the probabil-
ity of the data given the parameters as the likelihood
of the parameters given the data [13].

In addition to the problem setup and experimen-
tal design, the metamodel solution comes with limits
of its own. Using the space spanned by the origi-
nal model as the full order model, the metamodel is
a reduced order approximation. This reduction in-
herently limits the span of the manifest (exogenous)

47

variables associated with the behavior (input or out-
put - if such a map exists). Consequently, the be-
haviors allowed by the metamodel will exist
within a subspace of the original model.

Assuming that an Input-Output map exists for the
model, input values will be restricted to a do-
main within which the metamodel will be applica-
ble. Outside of this hypersurface, application of the
metamodel may provide numbers but will not gener-
ate an output that is representative of the modeled
system. Also, assuming appropriate inputs, the out-
put of the metamodel can only be guaranteed
to be approximately correct. As a projection,
the metamodel will not contain all of the detail of
the original model. There are output error bounds
that are a function of both the Metamodel and the
input.

Military Engagement Simulations usually are de-
fined to represent real-world events that have a be-
ginning and an end. Given that the simulation
terminates naturally, results for complete sys-
tems can be applied since the system behavior is
restricted to a finite dimensional sequence.

In general, the axiom of state applies because
the simulation is set up in such a way that the initial
conditions contain sufficient information about the
past so as to determine future autonomous behavior.

Also, the presence of input and output files in-
dicates that an Input-Output structure with
causality is assumed in the simulation.

5 APPLICATION

5.1 Introduction to TERSM

Using the above framework, we applied System
Identification to the TERSM Metamodeling problem.
TERSM (Tactical Electronic Reconnaissance Simu-
lation Model) was designed to provide comparative
performance evaluations of single and multiple-pass
DF (direction-finding) systems. The outputs of the
simulation are the number of bearing measurements
made on each emitter, and the lower bound of the
Circular Error Probable (CEP) of the emitter loca-
tions. Inputs to the simulation include sensor param-
eters, an emitter environment, and aircraft parame-
ters. The program functions as shown in Figure 1.

From this overview, you can see that the simula-
tion is centered on the DF sensor and the operations
that have to take place within the system. As a re-
sult, data generated by the simulation is event driven
as a function of DF sensor processing. The update of
the simulation time and corresponding motion of the
aircraft platform is a function of the time required to
process the data. This in turn, is a function of the
number of channels operating, the number of emit-
ters detected in the channel, the frequency-scanning
technique (continuous serial scanning, parallel scan-
ning, and either serial or parallel priority scanning),
and the channel capacities.

record
rejection

get
next

emitter

temporary
store of

channel data

Figure 1: TERSM Functional Flow

48

sums:

In -]Oyi - ye)2/rta

hi - Yl(Xi ~ Xe^m ~ y^/7"?17

I22 = ^2(Xi - Xe)2/rf(T

The simulation produces a lower bound on emitter
location accuracy based on the assumption that the
bearing errors from measurement to measurement on
the same emitter are normally distributed. During
the simulation, the information matrix of the proba-
bility density function is computed from the following

(3)

where a is the standard deviation of the bearing mea-
surement, X{ and yi are the aircraft coordinates, xe

and ye are the emitter coordinates, and r; is the range
at each DF measurement. At termination of the run,
the covariance of the emitter location is obtained by
inverting the information matrix. The covariance
matrix is then diagonalized to obtain variances along
the major (ox) and minor (as) axes of the location
uncertainty ellipse. The Cramer-Rao lower bound for
the CEP is then computed from:

CEP - .674 + .8 (*A for^f- < 0.5
\OL j J °L —

or
CEP = .587(<TS+(TL)

(4)

5.3 Previous Work

Previous work with this simulation resulted in a
metamodel that provided an estimate of the num-
ber of emitters found with a CEP of 5 nautical miles
(nm) or less [1]. This metamodel was generated by
a Least Squares fit of selected input data and the
number of emitters reported with a CEP of 5 nm or
less. The inputs were aircraft altitude and velocity,
azimuth coverage, and channel capacity of the sensor.
These inputs were combined to generate a nonlinear
system with 22 inputs (up to the fourth order of a
single input) to produce the square root of the num-
ber of emitters with a CEP of 5nm or less. Using a
2 layer Central Composite Experimental Design, the
following model was obtained:

V» 23.567 - 0.669xi - 2.842x2 + 1.298x3 +

3.344x4 - 0.491xix3 + 0.963xix4 +

0.414x2x3 + 1.155x2x4 + 0.231x3x4 +

0.404x!X2x3 + 0.198xiX2X4 - (5)

0.285x2x3x4 + 2.037xi - 0.788x| +

0.201xix3x4 - 2.743x| + 0.714xf +

5.836xf + 0.744x| - 2.947x? - 5.823x|

for^ > 0.5 where

5.2 Emitter Field

The emitter field for this experiment consisted of
2359 emitters as shown in Figure 2. The aircraft
flight path (solid line) is also shown.

Figure 2: TERSM Emitter Field

xi = Altitude

X2 = Velocity

x3 = Azimuth

X4 = Channel Capacity

The model provided an excellent fit with an R2

of 98.9%, Maximum Absolute Error of 73.51 emit-
ters, and an Average Absolute Relative Error of 4.7%.
This is a good example of a Metamodel that can be
used to explore the effect of the different input vari-
ables on the output via Surface Response Methodol-
ogy or Capability Based Analysis. It has not, how-
ever, identified the system simulated by TERSM. As
such, it's utility for simplifying or coupling simula-
tions, further analysis, or updating knowledge bases
in expert systems is limited. Also, the domain of va-
lidity (range of the response) is not guaranteed out-
side of the area of the fit.

5.4 A New Metamodel for TERSM

We will pursue a different approach in line with the
framework suggested in Section 3. Rather than com-
bine inputs to fit the output, we will use our knowl-
edge of the system to identify what is essentially a
reduced order model. This model will concentrate
on identification of the latent variables inherent to
the system. Consequently, the validity of the model
will not be restricted to the data used to build it.

49

We assume that the desired result remains the
number of emitters with a CEP of less that 5 nm.
Therefore, we will build a Metamodel that will actu-
ally compute the CEP (as opposed to other measures
that may be of interest such as the probability of de-
tection, the probability of location within 5nm, etc.).

To use this Metamodel for the kind of analysis dis-
cussed in [1], however, we would have to relate the
input variables of altitude, airspeed, azimuth, and
channel capacity to the latent variables used for this
identification. This would require running the simu-
lation to capture the data or another mapping from
the input variables to the latent variable inputs to
this Metamodel.

5.5 Simulation Parameters and Output

TERSM was initialized to simulate a single aircraft
flying for 1476 seconds at 40,000 feet, 560 knots, with
a sensor that could view on both the left and right.
The sensor used a parallel scan over 5 bands, scan-
ning from 60MHz to 18GHz, with a channel capac-
ity of 20 emitters, a 90 degree viewing angle, and a
40 degree depression. Data from this simulated flight
was collected by slightly modifying (to add a few pa-
rameters) existing write statements that already ex-
isted in the simulation.

In the simulation, 949 of the 2359 emitters were
detected by the sensor. There were 12981 DF mea-
surements. Of these, the sequence of calculations in
2 cases caused the lower bound for the CEP to ex-
ceed the capability of the computer and were thus
undefined. Three of the individual measurements re-
sulted in estimates of the CEPs in excess of 5000nm.
These outliers were removed from the data result-
ing in 12976 data points. (Note that in TERSM,
these calculations did not pose a problem. Since the
information matrix was not inverted until the end
of the run, the numerical effect of these single mea-
surements were not observable.) For the 12976 data
points, the average lower bound for the CEP for the
first half of the data points was 140nm, the average
lower bound for the second half of the data was 32nm
resulting in an overall average of 86nm. The maxi-
mum CEP in the data was 4998nm and the minimum
was 1.2nm. Of the 949 emitters that were detected,
329 were located with a lower bound on the CEP of
less than 5nm.

5.6 Metamodel Structures

At this point, two Metamodels were considered.
First, a dynamical model of the simulation could
have been developed that incorporated both current
and past inputs and outputs in a state-space or Box-
Jenkins model structure:

y(t) mu{t)+me{t) (6) F(q) " ' D(q)
Based on the physics of the situation, this would

clearly be the most accurate model. In fact, given
that the information matrix is a simple sum of in-
puts, a Markov model should be possible. To gen-
erate this Metamodel, the measurement data would
be collated for each of the 949 sensors (with up to 58
measurements each). Data for each sensor would be
used to recursively identify an Autoregressive model
that included past as well as current values of inputs
and outputs. This Metamodel could be used in the
situation when the state of the sensor (number of
measurements for a given emitter, current and past
measurements, and estimates of the CEP) is known.

The second Metamodel considered did not attempt
to actually model the DF estimation process. This
Metamodel was a little more abstract and used the
running total of the elements of the information ma-
trix as inputs. In this way, the state of the sensor is
fully incorporated in the input data and an Output
Error model structure could be used:

v(t)
B(q)

Hi)
u(t) + e(t) (?)

The Output Error structure was selected. First, it
used data that was directly available from TERSM
without additional processing. Second, it would be
simpler to use as a module in another (larger) simu-
lation because the state of the sensor is not required
and it more closely resembles the level of abstraction
in previous work. Third, the resulting model would
be of significantly lower order and consequently con-
tain fewer degrees of freedom to fit the data. Good
results would be more difficult to obtain. At first
this may not seem logical. But, the purpose of the
research was to understand the process of Metamod-
eling, not to Metamodel a particular simulation. Er-
rors in the process of identification are much more
evident in lower order models.

5.7 Metamodels and Results

From the discussion on TERSM and analysis of
the code, we see that the CEPs are functions of the
relative difference between the aircraft and emitter
position and the standard deviation of the bearing
noise. These parameters are used to calculate the
four terms that make up the information matrix. In
TERSM, a running total of the information matrix
is maintained for each emitter and the lower bound
of the CEP is calculated at the end of the run.

The first Metamodel was based on the three pri-
mary inputs: the number of DF cuts available to
the sensor, the range along-track, and the cross-track
range. CEPs calculated with this model were not

50

very accurate. The Maximum Absolute Error was
4984nm, the Average Error was 166nm, and Aver-
age Absolute Relative Error was 385%. Using this
data, 719 emitters with a lower bound on the CEP
of less than 5nm were found. Adding range as an
input reduced the number of emitters found to 670.
In all cases, there was considerable correlation in the
residual terms.

At this time, 1/range, and the combinations of
ranges that were actually used to compute the infor-
mation matrix, were added to the input bringing the
total number of inputs to 6. While the errors for the
additional inputs improved, there was still consider-
able structure in the residuals. Final performance,
the number of emitters with a lower bound of the
CEP, only improved slightly to 653 (well above the
actual number of 329).

Given a known system, every projection of that
system into a subspace will reduce the information
content of the observed behavior. The only exception
is the situation where the kernel of the projection
coincides with the null space of the behavior. In the
usual case of inverse modeling, the structure of the
system is not known. However, if the dynamics of
the system are available (as in a simulation) or can
be assumed, the number of processes present in the
interconnected system can be determined.

During the Metamodeling (inverse modeling) pro-
cess, it is imperative to model only one system. Oth-
erwise, behaviors associated with both processes will
be aliased - preventing the identification of either.

From the above discussion, it is obvious that the
TERSM output is the result of two separate pro-
cesses. This is an important issue. In reality, the
CEP should be a piecewise continuous function of
the number of measurements and the angular sepa-
ration of the measurements - a single process based
on the geometry of the aircraft and emitter and the
statistics of individual measurements. The simulated
model in TERSM, however, was a discontinuous func-
tion of the uncertainty ellipse. Since the purpose of
the metamodel is to represent the simulation, two
separate systems had to be modeled.

Based on the value of ^*- (equation 4), the input
data was separated. Two identifications, one for each
system, were accomplished. The results were imme-
diate, the cross correlation between the output and
inputs were within limits, the Maximum Absolute
Error was 387nm, the Average Error was .3656nm,
the Average Absolute Error was .8508nm, and the
Average Absolute Relative Error was 2.9%. Using
this data, there were 301 emitters with a CEP lower
bound less than 5nm. This Metamodel was based on
the (first) half of the data that had an average CEP
of 140nm. The remaining data was used to determine
the quality of the model.

Since the interest was in emitters with a CEP of

5nm or less, another identification was accomplished
using data from the second half of the simulated run.
During this portion of the profile, the sensor has more
data and can provide a better estimate of the emitter
location. The average lower bound for this half of the
data was 32nm. Again, the residuals for each system
were within limits. For this Metamodel, the Maxi-
mum Absolute Error was significantly less at 142nm.
This improvement came at the cost of a slight bias
with a higher Average Error of l.lnm and Average
Absolute Error of 1.2nm. However, the Average Ab-
solute Relative Error was .8%; also significantly less
than the Metamodel based on the first half of the
data.

The range of the data makes visual presentation of
the results difficult. If all data points are plotted, it
is not possible to determine a difference in the actual
and Metamodeled data. Figure 3 is a plot of the
last 976 data points that had a lower bound of the
CEP between 5 and 6 nm - a range that is much
less than the average of the data (32nm during this
portion of the simulation). Aggregate results with
this Metamodel were even better, of the 329 emitters
with a CEP less than 5nm, this model predicted 326.

6 RESULTS AND CONCLUSIONS

This paper provided a framework for the applica-
tion of System Identification techniques to develop
Metamodels for tactical simulations used by the De-
partment of Defense. Use of this framework was
successfully demonstrated by the development of a
Metamodel for the "Tactical Electronic Reconnais-
sance Simulation Model."

Issues identified under Metamodeling Combat Sim-
ulations must be explicitly addressed: nonlinearities
must be built in; the experimental design must isolate
the system for identification (identification of multi-
ple independent systems results in an ill-posed prob-
lem that fails mathematically); the domain of the
input must be relevant to the issues that are to be
addressed by the Metamodel; and finally, the accu-
racy of the model must be adequate to meet a priori
requirements.

Metamodeling simulations, as opposed to data
from an unknown source, provide the ability to struc-
ture the experimental design so that very accurate
identification of the system or systems is possible.
This knowledge also allows control over the input to
the Identification algorithm so that the domain and
range of the Metamodel can be controlled.

In addition to meaningful results for each Meta-
model, the Identification of system models brings
with it a large library of research generated to ad-
vance the Estimation and Control of linear and non-
linear systems.

51

1 + * «*-
i 1

o
-i-

-fa
^ f*" -t»

o
5.9

o
o

o
+ +■

•+- ..,..

O

O

O
o

•+-

5.8
o
+

■+-
■+

O
e-

o

o

-t-
o o

<»:> -*'l" O ..(..
5.7

o

o

° + O

-H-

O

%
o
o

H-

o
o o

5.6 _ o ..(.. <i>.
£ , ■+- o +. -1* o +

•+• o +0 c: -f-
o t'W o •■(-

Q_
LJJ

5.5 " * 4"
-1-

(£»

o ■+•
« +■ c*> o

O -t-
■\-

Q + ..ho
5.4

9-
o

-1-

O
*

-f-

o
5.3 _

■if-

<B -+-
Sjt -H- + + o -f- +

o
5.2 -

o
o
■4"
o * -

Estimated o * -t- o
5.1

o <:,!
+ 0

*
•+■ -t- -

- Actual o
5 —— ' ' —e— -? '■»

200 400 600
Data Point

800 lOOO

Figure 3: Actual and Metamodel Data for the last 976 data

points that were between 5 and 6 nm CEP

REFERENCES

[1] M. A. Zeimer, et. al., "Metamodel Procedures
for Air Engagement Simulation Models," IRAE
Technical Report, Jan 1993.

[2] A.F. Sisti, "Large-Scale Battlefield Simulation
Using a Multi-Level Model Integration Method-
ology," RL-TR-92-69, April 1992.

[3] V. Vemuri, Modeling of Complex Systems, Aca-
demic Press 1978.

[4] J. C. Willems, "Paradigms and Puzzles in the
Theory of Dynamical Systems," IEEE Trans, on
Automat. Contr., vol. 36, no. 3, pp. 259-294,
March 1991.

[5] B.P. Zeigler, "Hierarchical Modular Model-
ing/Knowledge Representation," Proc. 1986
Winter Simulation Conf., pp. 120-137, 1986.

[6] A.F. Sisti, "A Model Integration Approach to
Electronic Combat Effectiveness Evaluation,"
RL-TR-89-183, October 1989.

[7] .A. W. Naylor, and G. R. Sell, Linear Operator
Theory in Engineering and Science, New York:
Springer Verlag 1982.

[8] H.L. Royden, Real Analysis, Macmillan Publish-
ing Company, 1988.

[9] T. Kailath, Linear Systems, Prentice-Hall, 1980.

[10] H. Kwakernaak and R. Sivan, Linear Optimal
Control Systems, Wiley-Interscience, 1972.

[11] M. Kuijper and J. M. Schumacher, "Input-
Output Structure of Linear Differential / Al-
gebraic Systems" IEEE Trans, on Automat.
Contr., vol. 38, no. 3, pp. 404-414, March 1993.

[12] L. Ljung, System Identification: Theory for the
User, Prentice-Hall, New Jersey, 1987.

[13] Press et all, Numerical Recipes , Cambridge Uni-
versity Press, 1986.

52

VERIFICATION, VALIDATION, AND ACCREDITATION (VV&A) OF MODELS AND
SIMULATIONS THROUGH REDUCED ORDER METAMODELS

Don Caughlin

Mission Research Corporation,
Colorado Springs, Colorado 80903, U.S.A.

ABSTRACT

This paper provides a new approach to support Ver-
ification, Validation, and Accreditation (VV&A) of
models and simulations. The need for efficient and
objective methods to verify, validate and accredit
models and simulations is greater than ever. More
and more decisions are based on computer generated
data that are derived from models and simulations.
The strength of these decisions is a direct function of
the validity of this data. Based on the system identi-
fication of reduced order models, this new approach
approximates a complex high-dimensional model or
simulation by a relatively simple mathematical model
valid over a specified domain and range of inter-
est. Verification or validation is then accomplished
by the straightforward comparison of the reduced or-
der model structure and coefficients with the baseline
data or system. Well-developed identification meth-
ods and a structured procedure make this process
more efficient and objective than existing methods.

1 INTRODUCTION

Increasing computational capability combined with
the rapid response and inherent flexibility has allowed
M&S to replace some of the more conventional design
and analysis methods. Also, our desire to more accu-
rately represent detailed system behavior or to rep-
resent "systems of systems" has lead to highly com-
plex models and simulations. These trends, combined
with the increased use of M&S by decision makers
and designers, demand that M&S results be correct.
Yet, as our ability to model the real-world grows, our
ability to verify or validate these models shrinks.

As the reliance on M&S continues to grow, the
issue of Verification, Validation, and Accreditation
(VV&A) takes on increasing importance. With re-
spect to the overall issue of VV&A, there are two
competing requirements. First, the decision makers

need answers they can trust. This requirement lends
itself to strict configuration control where a limited
number of accredited models form the body of ana-
lytical tools. However, if we restrict our use of mod-
els and simulations to those that are accredited, how
do we encourage innovation on the part of analysts,
accommodate new questions, or respond to the ever-
changing environment?

This leads to the second requirement. Decision
makers must be able to answer specific questions
about very complex environments and phenomenon.
This requires a large body of techniques that can be
appropriately applied to the specific situation. It also
requires an innovative VV&A process that allows in-
dependent development while maintaining the valid-
ity of the results.

The capability that is lacking is the ability to
clearly and efficiently compare a model or simulation
with the phenomenon it is supposed to represent or
to compare two different interpretations of the real-
world. Reduced order metamodels provide this capa-
bility and a new approach to support VV&A of mod-
els and simulations. Although directed primarily at
constructive (man-not-in-the-loop) models, the tech-
nique discussed here can also support the Distributed
Interactive Simulation (DIS) environment.

The paper is organized as follows: Section 2 pro-
vides background on VV&A, definitions for common
understanding, and introduces reduced order meta-
modeling; Section 3 demonstrates how to apply re-
duced order metamodeling to the VV&A process;
Section 4 provides an example of the verification of
two versions of the same simulation; and Section 5
summarizes the paper.

2 BACKGROUND

One of the major users of M&S has been the Depart-
ment of Defense (DoD). DoD has long recognized the
importance of M&S and with reduced budgets has

53

become even more reliant on M&S. This increased
reliance, and a concern for the proliferation of mod-
els and simulations, has led the Secretary of Defense
to direct that each DoD Component shall establish
VV&A policies and procedures for M&S applications
managed by the DoD Component. Also, the "DoD
M&S Executive Agent" shall establish VV&A proce-
dures for their applications.

Current VV&A processes, however, are complex,
time-consuming, expensive, and cannot handle the
workload generated by the above directives. Con-
sequently, there is insufficient time and money to
accredit the models that deserve such status. Fur-
thermore, the process can take so long that changes
are often made to the model or simulation before the
VV&A process is finished, again drawing the results
into question.

The solution to this problem is a consistent, co-
ordinated, requirements-based policy and the ability
to efficiently analyze models and simulations. Both
of these elements are required. Even with the best
policy, it is not possible or desirable to "completely"
accredit every model or simulation in existence. This
is clearly a poor use of resources. Only models and
simulations that need accreditation, for one purpose
or another, need to go through this process. Given
that we have such a policy, how does one go about
the VV&A process so that by the time the simulation
is accredited it is still relevant? This paper focuses
on a technique to efficiently support verification and
validation.

Standard VV&A techniques are not robust and still
leave room for interpretation. They generally involve
looking at the elements of the model or simulation,
dissecting it, and coming to conclusions by analyzing
these elements. If we cut a complex problem into
smaller more manageable pieces while maintaining
the overall complexity, we really do not reduce the
overall complexity of the problem that were are try-
ing to solve. We just make it tractable. If we have a
complex model, analyzing each and every piece does
not make the overall analysis less complex.

This paper provides an alternative solution to this
paradigm that will allow the VV&A process to meet
the competing requirements and workload demands.
This technique is cost effective, timely, and objective.
Rather than look at the parts of the model and at-
tempt to integrate the results, we look at the whole
model or simulation and identify its ability to rep-
resent the behavior of the phenomenon we are inter-
ested in.

We do not maintain the overall complexity of the
model or simulation. We propose that the analysis of
the model or simulation be accomplished via aggre-

gation of the model details into a more manageable
piece that has a reduced order (more abstract) rep-
resentation. This is accomplished by increasing the
level of abstraction (reducing the order) of the model
or simulation until it is consistent with data used to
define the model or simulation. This reduction pro-
vides the ability to clearly and efficiently compare a
model with the phenomenon it is supposed to repre-
sent or to compare two different interpretations of the
real-world.

Since reduced order metamodels provide this aggre-
gation and abstraction, we provide a possible solution
to the VV&A dilemma. Our technique provides the
opportunity to verify or validate a model in a very
short period of time, with few resources, and with
objective results. With this capability, it is also pos-
sible to verify and/or validate (without going through
a formal validation process) models or simulations de-
veloped to adapt existing models and simulations to
new circumstances.

2.1 Definitions

We begin with some definitions to clarify our views
on the relationships between models and simulations,
verification, validation, and accreditation.

2.1.1 Models and Simulations

A simulation can be defined an instantiation or re-
alization of a model. In this case, the simulation is
different from the model. We will use a more abstract
definition.

To begin with, a model is a method of expressing
a theory. The expression of the model - its represen-
tation - distinguishes classes of models. A model can
be physical, such as a wind tunnel model of an air-
craft. It can be conceptual, like the construct of the
Bore atom. Also, the model could be a mathemati-
cal relationship or a method (algorithm) of expressing
that relationship - a simulation. Therefore, we con-
sider a simulation to be a particular representation of
a model and will not distinguish between them.

2.1.2 Verification

Verification is the process of determining that a model
implementation accurately represents the developer's
conceptual description and specifications.

The verification process confirms that the model
functions as it was originally conceived, specified, and
designed. Here we compare the output of the model
to the conceptual description, specifications, or defi-
nitions that were used in its development.

54

There are two elements to verification. If the model
is an original development, it must be verified against
its design specifications. If the model is a revision, up-
date, or modification of an existing (verified) model,
the performance of the model (and its differences) can
be verified with respect to the original specifications
or to the original model.

2.1.3 Validation

Validation is the process of determining the degree
to which a model is an accurate representation of the
real-world from the perspective of the intended uses
of the model.

Validation addresses the credibility of the model in
its depiction of the modeled world. In this case, the
model is not compared to the structure from which it
is developed, but to the behavior that it is supposed
to represent. An important issue in the validation of a
model is its level of fidelity. Our understanding of the
phenomenon that the model is supposed to represent
must be at the same level of fidelity as the model.

2.1.4 Accreditation

Accreditation is the official certification that a model
or simulation is acceptable for a specific purpose.

The accreditation process is the procedure followed
by the application sponsor that culminates in the de-
termination that the model is suitable and acceptable
for its intended application.

We do not specifically address accreditation, only a
method to support accreditation through verification
and validation.

2.2 VV&A Methods

While the growing need is real, procedures for VV&A
have not kept pace. Current VV&A processes gener-
ally involve looking at the elements of the model or
simulation via a functional decomposition, and com-
ing to conclusions by analyzing these elements or by
a direct comparison with other models. This process
is complex, time-consuming, expensive, and still sub-
ject to interpretation. General methods of VV&A
include:

1. Algorithm checks
2. Peer or independent review
3. Computer aided software engineering tools

Verification is usually accomplished by either log-
ical or code verification methods. Validation can be
accomplished either by internal measures (structure
of the model) or a comparison of the output of the
simulation with other (external) data. We discuss
each separately.

2.2.1 Logical Verification Methods

Logical verification requires the identification of a set
of assumptions and interactions for which the M&S
correctly produces intended results. It determines the
appropriateness of the M&S for a particular applica-
tion and ensures that all assumptions and algorithms
are consistent with the conceptual M&S. Methods to
accomplish this determination are:

1. Documentation review
2. Design walk-through
3. Comparison of specifications to requirements
4. Comparison of design to specifications

2.2.2 Code Verification Methods

Code verification methods require a rigorous audit
of all compilable code to ensure that the representa-
tions of verified logic have been properly implemented
in the computer code. This audit is usually accom-
plished by one of the following techniques:

1. Sensitivity analyses and stress tests
2. Code walk-through
3. Algorithm checks
4. Automated test tools
5. Mathematical stability across platforms
6. Units check
7. Statistical test design for stochastic M&S
8. Rule-based systems tools

2.2.3 Validation of the Structure

Validation of the structure analyzes the sensitivity of
the output to the input data. It attempts to deter-
mine how accurately the model represents the real-
world. It ensures that the representation(s) is (are)
balanced and consistent.

2.2.4 Output Validation

Validation of the output begins with the feasibility
of the results. Are they reasonable relative to the
inputs? If the outputs are reasonable, they are com-
pared with historical, test, or laboratory data.

2.3 Metamodels

From the above discussion we see that there is no uni-
fying approach to VV&A. The VV&A process uses
essentially the same methods that would be appro-
priate for design of the model. Without a truly in-
dependent and unified approach, VV&A has become
manpower intensive and is often subject to interpre-
tation. The reliance on subject matter experts makes

55

the results of the VV&A a direct relation to the capa-
bility of the expert, their familiarity with the specific
behavior and representation, and the amount of time
that they have to complete the process. In addition,
VV&A for DIS requires a separate class of experts in
that environment (Lewis 1994).

The problem with VV&A stems from the fact that
the underlying phenomenon is high dimensional and
complex; representation of these systems is difficult.
This is why simulation models are often used. The
modeler takes the part of the phenomenon of interest
that he understands, and develops an algorithm to
represent that part of the behavior. Comparison of
this part of the phenomenon to the actual occurrence
is not always possible.

This is why we propose that part of the VV&A
process consists of an aggregate analysis of the model
or simulation using a reduced order (more abstract)
representation. Metamodeling has the ability to fa-
cilitate this type of abstraction (Zeimer, et al. 1993).

2.3.1 Higher levels of Abstraction - Reduced
Order Metamodels

A model is a method of expressing a theory and the
expression of the model is its representation. Assume
that the representation of a particular model is a sim-
ulation. As such, the representation is an algorithm
that does not have a closed form representation.

The VV&A methods we discussed above are exam-
ples of direct verification or validation of this repre-
sentation. Another approach to verification or vali-
dation of this representation is through a more ab-
stract "black-box" approximation of the causal time
dependent behavior represented by this simulation -
a metamodel.

Metamodels can be used for hierarchical simulation
or for analysis. Used to support hierarchical simula-
tion and model reuse, the metamodel is used in con-
junction with (coupled to) other simulations or sim-
ulation elements. Analytical metamodels are an in-
dependent structure that is used to understand and
extract information from the model. This analysis
can be focused on the VV&A task.

Sometimes metamodeling is confused with sensitiv-
ity analysis. Sensitivity analysis is an analysis of the
data given the model. It can be used to reduce the or-
der of the model by considering the sensitivity of the
output to certain variables. Our approach is similar
but different. In our procedure, we are considering
the sensitivity of the model given the data, behavior,
or the phenomenon we are trying to model.

2.3.2 General Framework

As an abstraction, a metamodel is a projection of the
model onto a subspace defined by new constraints or
regions of interest. It is a projection of the behav-
ior from a higher order to a lower order subspace -
a reduced order model. One of the most important
aspects of this projection is the definition of the basis
of that subspace; i.e., the definition of the variables
that are to be considered.

There are three ways to define these variables. If
we are working with an element of a simulation or if
we are comparing a simulation to an exercise or some
other real-world data, the variables are defined by the
data set. If we are comparing the behavior to the con-
cept used to develop the model, that concept defines
the variables. If we are going to compare two ver-
sions of the same model, we must first determine the
important variables by an analysis of the simulation
under consideration.

The construction of a reduced order metamodel (se-
lection of the parameters used for the projection) in-
volves: a priori knowledge; the data; a set of meta-
model structures; and rules to determine the best
model to realize the data. There are two basic tech-
niques available for reduced order modeling: direct
and inverse modeling.

2.3.3 Direct Methods

First, a reduced order model could be developed by
applying basic principles to generate a more abstract
(approximate) version of the original model. This
would be an example of direct modeling. Direct mod-
eling is characterized by a specification of the ele-
ments of the model. Complicated systems are mod-
eled by "tearing" a system into its components, mod-
eling these components in a process called "zoom-
ing," and then interconnecting these components to
construct a "physical" realization of the system (Sisti
1992, Willems 1991, Sisti 1989). The level of abstrac-
tion is controlled by the detail of the specification.
The model reveals the structure of the theory and
allows the prediction of the response to exogenous in-
puts as a function of the state of the system. The
solution of this modeling problem requires an under-
standing of the process being modeled and methods
to express this understanding at the desired level
of fidelity.

Reduced order models developed using this tech-
nique have been proposed in the VV&A literature
(Phase 3 - Concept Validation in Lewis (1994)). They
are "standalone" versions - completely new models.
The relationship between the real system, the original
model, and reduced order model is contained in the

56

two mappings from the underlying system to each of
the models. Figure 1 depicts this correspondence.

—MMetamoden

Figure 1: Direct Model Correspondence

As seen from the figure, there is no guarantee that a
usable correspondence will exist between the reduced
order model and the high fidelity model (Naylor and
Sell 1982, Royden 1988). Traceability from the high-
fidelity model to the more abstract, lower fidelity, re-
duced order model becomes a significant issue. Also,
this technique still requires an a priori understanding
of the structure of the elements and the interconnec-
tions between these elements at the specific level of
fidelity selected. This could be a difficult and risky
task and lack of this knowledge is often the reason
that a high fidelity simulation was used in the first
place.

Since traceability is not guaranteed, this technique
does not provide any efficiencies beyond standard
VV&A procedures.

2.3.4 Inverse Methods

The second technique develops the reduced order
model from the input-output data generated by the
original model or simulation. This technique is an ex-
ample of the "inverse problem," and is represented by
Figure 2. From the figure, we see that the correspon-
dence between the original model and the reduced
order model is direct. The issues now are the level
of fidelity, range of applicability, and accuracy of the
response. These are a function of the reduced order
modeling technique and data.

Figure 2: Inverse Model Correspondence

Properly developed, a reduced order model derived
from inverse modeling is clearly a mathematical ap-

proximation between a set of input factors and re-
sponses generated by the high fidelity model. Trace-
ability to the high fidelity model is immediate. As
such, it allows the assessment of individual factors
on the performance of the model and can be used to
study system behavior, verify responses with specifi-
cations, or validate the model with respect to real-
world data.

3 REDUCED ORDER
FOR VV&A

METAMODELS

VV&A has many dimensions. Although the proce-
dure is the same, we consider each case separately to
facilitate understanding. Assume that we have a re-
duced order model of an existing simulation and that
we also have a similar description of the real-world
data that can be used for comparison.

3.1 Verification of an Original Model

In our first case, we have a model that was developed
from a specification or conceptual design. Verifica-
tion is straightforward. We directly compare the re-
duced order metamodel structure and coefficients to
"expected values" inherent in the design specification
that came from the real-world experiments, exercises,
or test data used to develop the specification.

3.2 Verification of a Modified Simulation

Here we have an existing accredited simulation that
has been modified for some purpose (improved execu-
tion speed, hosted on a new platform, new capability,
etc.). As stated above, we can verify the model with
respect to the specifications or, for the portions of the
modified simulation that do not add capability, to the
existing (unmodified) simulation. If we use the origi-
nal specification as the baseline, we proceed as above.
If we use the existing simulation as the baseline, verifi-
cation consists of developing a reduced order model of
the original and modified simulations using the same
model structure. Now, since the structure of each
reduced order model is identical, we simply compare
the reduced order metamodel coefficients.

3.3 Validation

This is the most complex use of reduced order meta-
modeling. In order to use reduced order metamod-
eling to validate a model, we must compare the re-
duced order model to real-world data. This requires
that we have a record of the phenomenon that we
have modeled. Also, this record must contain all of

57

the behavioral characteristics that have been incorpo-
rated into the model. Given this record, we develop
a reduced order model of both the real-world event
and the model we are going to validate. Once we
have these reduced models, we simply compare the
reduced order model coefficients.

If additional information was included in the model
that was based on subject matter expertise or anal-
ogy and not available in the real-world data, this ad-
ditional data must be also added to the real-world
data to make the comparison possible.

4 RESULTS AND DISCUSSION

The theory supporting reduced order metamodels
has been developed and successful applications have
been demonstrated. Zeimer, Tew, Sargent, and Sisti
(1993) developed a static least squares metamodel
of the Tactical Electronic Reconnaissance Simula-
tion Model (TERSM) that approximated the num-
ber of emitters reported with a CEP of 5 nm or less.
Caughlin (1994a) outlined a general framework for
approaching the reduced order metamodeling prob-
lem that would support dynamical system models and
presented an output-error dynamical metamodel of
TERSM. In Caughlin (1994b) we expanded the dy-
namics to include Ito stochastic systems and applied
an optimization technique (Adaptive Simulated An-
nealing) to generate a TERSM metamodel that ac-
commodated the stochastic nature of the simulation.

All of the above were examples of analytical meta-
models (although the last two could be used as sim-
ulation metamodels). The first metamodel addressed
the final results of the simulation (in terms of mod-
eled system accuracy). The output-error metamodel
approximated the system behavior as represented by
the simulation. The third metamodel represented the
performance of the system in locating a single emit-
ter and approximated the accuracy of the location
estimate as the number of measurements increased.

We now provide a simple example of reduced order
metamodeling for verification of a modified simula-
tion (the situation described in Section 3.2 above).

The static least squares TERSM metamodel gen-
erated by Zeimer, Tew, Sargent, and Sisti related air-
craft altitude, aircraft velocity, sensor azimuth cov-
erage, and sensor channel capacity to the number of
emitters located within a 5 nautical mile circular er-
ror probable (CEP). This model is shown below:

y/y = 23.567-0.669a;i-2.842^2+1.298iE3 +

3.344z4 - 0.491aii:r3 + 0.963a:i2i4 +

0A14x2x3 + 1.1552:22:4 + 0.2312:32:4 +

0.404a;ia:22:3 + 0.1982:12:22:4 - (1)
0.2852:22:32:4-1-2.037x1

0.2012:12:32:4

5.836a:| + 0.7442:^ - 2.9472:? - 5.8232:!

0.7882:3 +

2.743a;4
; + 0.714a:? +

This model was developed from the Version 1 data
(shown in Table 1) that came from simulation runs
on a Sun workstation. This simulation was optimized
for this workstation and included code to support a
RAMTEK display of the emitter field and results.

Another version of the code (Version 2) was recov-
ered from the archive and hosted on a 100 MHz i486
PC using Lahey Fortran 77L EM/32. Answers pro-
vided by this version of the simulation were similar
but not the same as the results from the experiment
run on the Unix workstation. If the original simula-
tion was accredited, could this second representation
also be considered a "verified" representation of the
tactical electronic reconnaissance system?

Standard VV&A procedures could have been used
to answer this question. This would require an ex-
tensive analysis of the code, the different compilers,
and the effects of the numerical accuracy. Instead,
we used reduced order metamodeling. The same con-
ditions that were run on the workstation were dupli-
cated on the PC. The least squares metamodel (using
the same model structure) generated from this data

y/y = 22.4331 - 0.01482-1 - 2.78222:2 + 0.14322:3 +

3.1432a:4 + 0.3653a:ia;3 + 1.2439a:1a;4 +

0.14832:22:3 + 0.44302:22:4 + 0.26982:32:4 +

0.4369a:ia:2a:3 + 0.32862:12:22:4 + (2)

0.09602:22:32:4 - 0.2791a:? - 0.8326a;| -

0.76422:12:32:4 1.8413a;| + 0.7577a:?+

4.90382:f + 1.0924a:|- 1.1907a:? - 4.84432:?

The angular difference between the subspaces de-
fined by the vectors of coefficients is .15 radians indi-
cating that, while similar, the two metamodels con-
tain different information. With the standard as-
sumptions on the data, the probability of error in
accepting the hypothesis that both of these models
represent the same simulation is approximately 70%.
Clearly, the two versions of the simulation do not rep-
resent the same behavior.

There are two potential reasons for the differences
between the output of the two versions of the "same"
simulation. First, it is possible that the experimental
procedures were different. Since all of the data sets
for the original experiment were not available, one or
more of the 53 other parameters used in TERSM to

58

define the aircraft and sensor performance may have
been set in such a manner that the simulated systems
were not the same. Correcting the differences in the
parameters may result in the same behavior.

If different experimental procedures are ruled out,
the simulated systems should be identical. In this
case, we conclude that the two simulations are not
representations of the same high fidelity model. Ver-
sion 2 should not be considered a "verified" repre-
sentation of the Tactical Electronic Reconnaissance
Simulation Model.

5 CONCLUSION

In this paper we have presented an alternative ap-
proach that will allow the VV&A process to meet
the competing requirements and workload demands.
This approach does not maintain the overall complex-
ity of the model or simulation, but verifies or vali-
dates a simulation through analysis of a reduced or-
der (more abstract) representation of the simulation.
By increasing the level of abstraction (reducing the
order) of the model or simulation, we aggregate the
model details into a more manageable form.

Reduced order metamodeling was then used to ex-
amine two versions of the same simulation. The pro-
cedure clearly demonstrated the probability of error
in accepting the second version of the "same" simu-
lation as representative of the first.

This technique is cost effective, timely, and objec-
tive. Increasing the level of abstraction provides the
ability to clearly and efficiently compare a model with
the phenomenon it represents or to compare two dif-
ferent interpretations of the same behavior.

A reduced order metamodel is a projection onto a
lower order subspace. The parameters that define this
projection are well defined for simulation and analyt-
ical metamodels. Since reduced order metamodeling
for VV&A is a new application of this method, fur-
ther research is required to define the best approach
to define the projection parameters.

REFERENCES

Anderson, et al. 1989. SIMTAX, A Taxonomy for
Warfare Simulation. Workshop report taken from
the Catalog of Wargaming and Military Simulation
Models, 11th Edition, Force Structure, Resource,
and Assignment Directorate (J-8), The Joint Staff,
Washington, DC 20318-8000.

Caughlin, D. 1994. A Metamodeling Approach to
Model Abstraction. Proceedings Fourth Annual
IEEE Dual- Use Technologies & Applications Con-
ference, 387-396. SUNY Institute of Technology,

Utica/Rome, New York.
Caughlin, D. 1994. An Evaluation of Simu-

lated Annealing for Modeling Air Combat Simu-
lations. Proceedings Fourth Annual IEEE Dual-
Use Technologies & Application Conference, 412-
421. SUNY Institute of Technology, Utica/Rome,
New York.

Lewis, R. O. 1994. Verification, Validation, and Ac-
creditation (VV&A) Process for Distributed Inter-
active Simulations (DIS). Proceedings of the 10th
DIS Workshop on Standards for the Interoper-
ability of Defense Simulations, 373-379. Institute
for Simulation and Training, University of Central
Florida, Orlando, Florida

Naylor, A. W., and G. R. Sell. 1982. Linear Opera-
tor Theory in Engineering and Science. New York:
Springer Verlag.

Norton, J. P. 1988. An Introduction to Identification.
San Diego: Academic Press.

Royden, H. L. 1988. Real Analysis. New
York:Macmillan Publishing Company.

Sinha, N. K., and B. Kuszta. 1983. Modeling and
Identification of Dynamic Systems. New York:Van
Nostrand Reinhold.

Sisti, A. F. 1992. Large-Scale Battlefield Simulation
Using a Multi-Level Model Integration Methodol-
ogy. Rome Laboratory Technical Report RL-TR-
92-69.

Sisti, A. F. 1989. A Model Integration Approach to
Electronic Combat Effectiveness Evaluation. Rome
Laboratory Technical Report RL-TR-89-183.

Willems, J. C. 1991. Paradigms and Puzzles in the
Theory of Dynamical Systems. IEEE Transactions
on Automatic Control, 36:259-294.

Zeimer, et al. 1993. Metamodel Procedures for Air
Engagement Simulation Models. Rome Labora-
tory/IRA E Technical Report.

AUTHOR BIOGRAPHY

DON CAUGHLIN is Chief Scientist at Mission Re-
search Corporation, Colorado Springs. He received a
B.S. in Physics from the Air Force Academy, an MBA
from the University of Utah, and M.S. and Ph.D. de-
grees in Electrical Engineering from the University of
Florida. His research interests include system identi-
fication, pattern recognition, and intelligent control.
Dr. Caughlin has over 27 years experience as an
experimental test pilot, research scientist, program
manager, and was also Associate Dean of the School
of Engineering at the Air Force Institute of Technol-
ogy. He is a senior member of IEEE and AIAA and
a member of the Society of Experimental Test Pilots.

59

Table 1: Input-Output Data for Metamodel Construction

ALTITUDE VELOCITY AZIMUTH CHANNEL EMITTERS EMITTERS
COVERAGE CAPACITY VERSION 1 VERSION 2

40000 1150 150 30 615 514
40000 1150 150 4 193 158
40000 1150 60 30 327 329
40000 1150 60 4 53 69
40000 186 150 30 247 278
40000 186 150 4 73 73
40000 186 60 30 111 174
40000 186 60 4 47 61
5000 1150 150 30 436 284
5000 1150 150 4 226 183
5000 1150 60 30 322 250
5000 1150 60 4 138 149
5000 186 150 30 180 180
5000 186 150 4 116 94
5000 186 60 30 98 105
5000 186 60 4 66 66

22500 668 105 17 62 519
5000 668 105 17 439 307

40000 668 105 17 570 523
22500 186 105 17 181 210
22500 1150 105 17 464 412
22500 668 60 17 419 414
22500 668 150 17 607 505
22500 668 105 4 240 252
22500 668 105 30 658 617
31250 909 128 24 621 521
31250 909 128 10 424 361
31250 909 82 24 512 489
31250 909 82 10 347 322
31250 427 128 24 634 579
31250 427 128 10 489 399
31250 427 82 24 570 556
31250 427 82 0 434 396
13750 909 128 24 602 486
13750 909 128 10 441 346
13750 909 82 24 560 469
13750 909 82 10 373 339
13750 427 128 24 651 567
13750 427 128 10 526 404
13750 427 82 24 605 535
13750 427 82 10 471 411
13750 668 105 17 580 495
31250 668 105 17 584 504
22500 427 105 17 575 524
22500 909 105 17 529 446
22500 668 82 17 512 499
22500 668 128 17 597 523
22500 668 105 10 441 406
22500 668 105 24 640 585

60

New Procedures to Metamodel Simulations

Don Caughlin
Mission Research Corporation

Colorado Springs, Colorado, 80903
donc@mrccos.com

Abstract

A metamodel is a mathematical approximation of
the system relationships defined by a high fidelity
model or simulation. This paper presents new results
that expand the set of available metamodel represen-
tations beyond the traditional least squares formula-
tion and adds the capability to use dynamical meta-
models. These results are supported by a new taxon-
omy of metamodel structures and methods that allow
separation of the metamodeling process into a set of
sequential decisions based on a priori information. x

1 Introduction

In [1] we introduced a framework for the application
of System Identification techniques to develop suitable
metamodels for tactical combat simulations used by
the Department of Defense. We filled in the frame-
work with concrete definitions and identified specific
issues associated with the representation of dynamical
systems. Particular attention was given to the dis-
cussion of experimental design requirements for meta-
modeling tactical engagement (usually Discrete Event
System - DES) simulations. We demonstrated this
approach by outlining the development of an output-
error metamodel for the "Tactical Electronic Recon-
naissance Simulation Model."

Although this framework was consistent with meta-
modeling procedures defined in [2], the development
of the metamodel required too many decisions to de-
termine the model structure, method of identifica-
tion, and identification criteria. Each decision was
a complex function of a priori information and prior
selections in the metamodeling process. This paper
presents a new approach to support the development
of metamodels that is based on a new taxonomy of
structures and methods that allows the separation of
the metamodeling process into a set of sequential de-
cisions based on a priori information.

1This work was supported in part by The USAF Rome Lab-
oratory Contract F30602-94-C-0110

The paper is organized as follows: Section 2 intro-
duces metamodels; Section 3 introduces the general
approach to metamodeling; Section 4 outlines a new
approach to the definition of the problem; Section 5
continues with the general approach and discusses the
metamodeling process; Section 6 summarizes the pa-
per with results and conclusions.

2 Metamodels

A model is a structure that can be used for under-
standing the behavior of a system [3]. Assume that
we have a model of a system that cannot be used di-
rectly. A solution may not exist, it may be too com-
plicated for a closed-form solution, it may require too
much time to numerically determine a particular so-
lution, or it may be a high-fidelity simulation that
provides much more detail than we are interested in.
Efficient use of this model requires a "black-box" ap-
proximation of the causal time dependent behavior of
the model - a metamodel.

There are two general metamodeling techniques;
the "Direct" and "Inverse" methods. Direct meta-
modeling is developed by applying basic principles to
generate a more abstract (approximate) version of the
original model. In this paper we consider inverse mod-
eling and concentrate on the metamodel structures
and rules to determine the best model.

2.1 Metamodeling via Solution of an "In-
verse Problem"

Inverse modeling begins with the input-output data
generated by the high fidelity model or simulation and
develops the metamodel (mathematical relationship)
from this data. In this case, we have some measure
of the input and output response and seek an expres-
sion that characterizes the process by which the out-
puts are generated. This type of problem usually has
multiple solutions out of which an acceptable solution
must be selected.

In our approach, we are not trying to "fit" data.
We are attempting to identify the underlying processes
that define the system that generated the data. There-

61

fore, the focus is not on statistics but on the system
theoretic properties of the manifest behavior.

Dynamical systems acquire their importance from
the fact that they exhibit memory or the potential to
model phenomena where the past influences the fu-
ture. A dynamical system is a family of trajectories
without reference to I/O maps, variables, or behav-
ioral equations. The system is coupled to its environ-
ment and is not defined by any associated model.

The metamodel, then, is defined by the behavior it
allows. This behavior is represented by inequalities or
equations which can be grouped into sets. As we shall
see in Section 5, selection of the proper metamodel set
is critical to generation of an acceptable solution.

2.2 Metamodeling Simulations

With respect to metamodeling simulations, the sys-
tems we are trying to identify are complex, nonlinear,
and time-varying. They can be continuous, discrete,
or discrete event systems. In general, for these cases,
the predictor function is a nonlinear function of past
observations, and there are too many possibilities for
unstructured "black box" models. Knowledge of the
nonlinearities must be built into the model [4].

Fortunately, in our case, we have explicit knowledge
of the nature and characteristics of the high fidelity
system. We have the model that applied the system to
the inputs to generate the outputs we are interested in.
Given this information, we can build the nonlinearities
into the structure of the metamodel and provide the
capability to generate a reduced order approximation
of the original model. This fact makes metamodeling
as a method of model abstraction feasible. We exploit
this fact to the fullest extent possible.

In addition to knowledge of nonlinearities, other re-
quirements must be met to allow representation by a
finite dimensional, reduced order approximation: the
system must be complete; the axium of state must
apply; and the output must be nonanticipating.

Assuming that the underlying system modeled by
the simulation is well behaved (Markovian, complete
with respect to the modeled behavior), the following
is required to metamodel simulations:

1. Data must include the behavior we are to model.

2. The latent variables must be observable.

3. The input must be persistently exciting.

4. For a stochastic system, the ensemble of trajecto-
ries must span the space.

5. Any single trajectory must span both the input
and output space and be sufficiently long so that
the state transition probabilities also span the al-
lowable probability space, and the distribution of
these probabilities are the same as the underlying
system.

3 General Approach

Reference [2] presented the following metamodeling
procedure:

1. Determine the purpose of the metamodel.

2. Identify the response

3. Identify important response characteristics.

4. Identify input factors.

5. Identify important input characteristics.

6. Specify the experimental region.

7. Select validity measures.

8. Specify required validity.

9. Postulate a metamodel based on:
Input - Output response characteristics.
Experimental region dimensions.
Required validity.

10. Select an experimental design.

11. Obtain data.

12. Fit the metamodel.

13. Assess the validity of the model.

The first eight steps of the metamodeling proce-
dure provide the prior knowledge or metamodel re-
quirements that define the problem. The remaining
steps define the experimental setup, the model struc-
ture, the method of identification, and validity mea-
sures used to develop and verify the metamodel.

To streamline the development of techniques for
metamodeling simulations, we separated the proce-
dure into two general areas. The first eight became
the foundation for the problem definition; the re-
maining steps were grouped in an iterative scheme as
the metamodeling process.

Therefore, in order to categorize metamodeling
problems and their solutions, each of these areas were
analyzed to derive a taxonomy that would support the
metamodeling procedure.

4 Problem Definition

We define a metamodeling problem as the direct
sum of the metamodel requirements and the model
(simulation). This means that the same simulation
could be part of two different metamodeling problems
if the requirements were different. Or conversely, the
same set of requirements applied to two different (non-
similar) simulations also leads to two different meta-
modeling problems.

Consequently, to define the problem, we must con-
sider both elements of the direct sum - the purpose of
the metamodel and the simulation characteristics.

62

4.1 Metamodel Purpose

As mathematical relationships, metamodels can be
developed to support two general purposes: (1) Anal-
ysis; or (2) Hierarchical simulation.

First, a metamodel can be used for analysis. In this
case, the metamodel becomes an independent struc-
ture that is used to understand and extract informa-
tion from the model.

Secondly, a metamodel can be used to support hi-
erarchical simulation and model reuse. In this case,
the metamodel is used in conjunction with (coupled
to) other simulations or simulation elements to an-
swer larger questions that are not supported within
the structure of the modeled simulation.

This selection defines the metamodel purpose and
provides clear boundary conditions for follow-on selec-
tions in Steps 2 through 8.

4.2 Simulation Characteristics

Since all of the remaining problem definition deci-
sions are a function (direct sum) of both the meta-
model requirements and the simulation that is to be
modeled, we concentrate on the aggregate space of
simulation characteristics. Research has suggested
that both a general (external) description of the sim-
ulation or model as well as further detail on the (in-
ternal) process structure of the internal components is
required [1, 5].

The classification defined by the "SIMTAX, A Tax-
onomy for Warfare Simulation" was completely ade-
quate for the external description [6]. It is a descrip-
tive framework designed to guide the development, ac-
quisition, and use of warfare models and provides the
basis for classifying objects for identification, retrieval,
and research purposes.

Selection of a metamodel structure, however, re-
quires detailed information not contained in the sim-
ulation and model catalogues. To provide a link be-
tween the more general taxonomy outlined above and
specific metamodeling techniques, a more detailed in-
ternal taxonomy was appended to the SIMTAX. The
purpose of this additional detail is to describe the
structure of the simulation in terms of system theo-
retic definitions common to control engineering.

Figure 1 depicts the model of a continuous system
with a sampled measurement. In development of a
metamodel, we try to isolate and identify each of the
individual elements in this model. Consequently, we
must be able to characterize the type of processing
that takes place in each of the blocks.

Formulating the metamodeling problem with this
additional detail is important for two reasons. First,
each of these blocks may be represented by a sepa-
rable process, and it is usually not possible to simul-

Table 1: Internal Processing Description.

Basis
Physics based

Event based

System

Inputs

Outputs

Linear

Nonlinear

Stochastic

Deterministic

Result/Trajectory
Functional

Statistical base

Level
SISO
MISO
MIMO

Process description
Complex
Simple
Coupled

Interval
Continuous time
Discrete time
Continuous - discrete time
Discrete-event

taneously identify more than one process. If we try
to simultaneously identify two processes and the pro-
cesses are independent, a rank deficiency in the uncou-
pled equations causes numerical difficulties. If the pro-
cesses are dependent, behaviors associated with both
processes will be combined preventing the identifica-
tion of either. If one is successful in simultaneously
identifying multiple processes, performance of the re-
sulting metamodel is usually poor.

Categories and selections for these categories that
were used to provide the additional detail on the in-
ternal structure are shown in Table 1.

v(ti)

—(Fro y*-

\-J&

Figure 1: System Model.

63

5 Metamodeling Process
At this point, we have determined the purpose of

the metamodel. In the definition of this purpose, we
have identified the input and response that we are in-
terested in and determined the important character-
istics of these data. Also for this purpose, we have
denned the region of interest, selected validity mea-
sures, and specified the required validity.

While there are other issues that must be addressed
by the metamodeling process, the remainder of this
paper will concentrate on decisions associated with
"Step 9: Postulate a metamodel." The completion of
this step requires a number of interrelated selections.
So many options are available, however, that the com-
bination of model selection, error criterion, identifi-
cation technique, and numerical methods leads to an
overwhelming myriad of "identification methods."

Many specific identification and statistical methods
have been developed to accommodate the differences
in model structures, data length, measurement error
statistics, etc. Also, the literature contains consider-
able discussion on particular methods with very little
discussion on the relationship of these techniques to
each other or to a general methodology. The result is
a confusing array of unconnected methods with little
or no guidance on the application of the techniques to
general classes of problems.

Since we are looking for procedures to handle gen-
eral metamodeling problems, we discuss these meth-
ods as elements of a more general structure and have
reduced these selections to four that define the model
set: system description; system class; meta-
model structure; and identification methodol-

ogy-
For any given problem, multiple model sets are

available. In each of these model sets, a most power-
ful unfalsified model will exist (given that the require-
ments of Section 2.2 are met) [7]. Consequently, the
performance of the metamodel will be limited by the
match between the metamodel set and actual system
that generated the behavior.

5.1 System Description

In the definition of the system description, the first
selection concerns the system type that will define the
allowed behavior of the models. Here, the most basic
questions must be addressed. How are the parame-
ters described? Is the representation going to include
dynamics or will it be static? Will the model contain
latent variables? If it is dynamic, is it time invariant
or time varying?

Is the algebraic structure linear or nonlinear?
Are disturbances, noise, and randomness accommo-
dated? Is the system defined as continuous, discrete,

Table 2: System Description.
Selection Options

Type
Static
Dynamic - Time Invariant
Dynamic - Time Varying

Algebraic
Structure

Linear
Nonlinear

Randomness
Stochastic

Deterministic

Time
Continuous time
Discrete time
Continuous - discrete time
Discrete-event |

Table 3: System Classes and Representations.
MODEL CLASS

SISO
MISO
MIMO

FORMS OF THE
REPRESENTATION
Polynomial
Matrix Fraction
State Space

continuous-discrete, or as a discrete-event system? Ta-
ble 2 outlines the possible selections that define the
system description.

5.2 System Class

In addition to the system description, the class
of representation is also needed to define the overall
model set. This class is defined by the interaction of
the variables and the representation. Table 3 provides
a list of the general system classes and the possible
form of the representations (see, for example [8, 9]).

Comparing Tables 2 and 3 with Table 1, we see that
the characteristics of the behavior we are modeling
define the first two elements of the metamodel set:
the system description and the system class.

5.3 Metamodel Structure

Once a system description and class that match the
underlying behavior have been selected, the next de-
cision is selection of the model structure to use in
describing the response of the system to the inputs.
There are many metamodel structures, and this area
generates much of the complexity in identification.

We simplify this decision by defining two general
model structures, predictor models and proba-
bilistic models. A predictor model only defines the
predictor equation(s). Predictor models are models
that specify the elements of the transfer function in
terms of some parameter set. The models generated

64

from these structures are deterministic in nature. 2

A probabilistic model accommodates the fact that
many systems are subject to known disturbances that
are not (or cannot be) completely categorized. The
statistics of the noises and disturbances are to be in-
cluded as random variables. Probabilistic models sup-
plement the parametric description with a description
of the density function (or moments) of the noise (dis-
turbance) that acts on the system. The variables of
the system being identified become functions of ran-
dom variables. In these situations, different realiza-
tions of an experiment (simulation run) may not pro-
duce exactly the same results. Consequently, the out-
put of a probabilistic model is the conditional expected
value and the joint or conditional probability density
functions (JPDF or CPDF) of the variables.

The following two subsections discuss these two
model structures.

5.3.1 Predictor Models
Static. Static systems can be either linear or nonlin-
ear. The predictor equations for static models are the
actual input-output map that comes from the selected
representation and are similar to those representing
dynamical systems. Also, static models can be set up
using dynamical model structures with a zero state
transition.
Dynamic. For dynamic systems, system identification
requires the ability to use the model structure to pre-
dict the output of the model. The differences between
this prediction and the actual data are then used to
arrive at the parameter set which minimizes the er-
ror. As the complexity of the system description in-
creases, the flexibility in the selection of the represen-
tation (polynomial, matrix fraction description, state
space) decreases.

We will consider three types of dynamic systems:
linear time-invariant, linear time-varying, and nonlin-
ear. To save space, discrete realizations are presented.
However, continuous realizations can also be used. All
nonlinear systems will be assumed to be Markov.

Linear Time-Invariant Predictor Models.
There are a number of ways of defining the trans-
fer function (input-output map) associated with lin-
ear time-invariant predictor models: polynomial; fre-
quency function; or by it's zeros and poles. These
descriptions are most appropriate for SISO systems.

2Predictor models, however, do allow for the prediction or
measurement error. And since the coefficients were generated
via a minimization of some error criterion with assumed statis-
tics, the coefficients will be random variables with an error dis-
tribution. Since the estimates are functions of these random
variables, this distribution can be used to compute error bounds
of the estimate.

MISO systems are best represented by a state space
or polynomial format that explicitly defines the coef-
ficients of each of the input and output terms.

Our general linear metamodel structure is:

y(t) = G(q)u(t) + H(q)e(t) (1)

where y(t) is the output, u(t) is the input, and e(t) is
the error. Here q~l is the backward shift operator so
that q~lu{t) = u(t — 1). Consequently, the polynomi-
als have the form G(q) = 1 + giq~x + h gngq~ng-

From this general model, we can define a SISO or
MISO model structure as:

A{q)y{t)
BiqUt) + ^e{t)
F(q) D(q)

(2)

The predictor for this general polynomial structure is:

D(q)A(qy

*»-»«♦
1-

C(q)
M (3)

Latent variables (that are not past values of the
input or output) can also be defined in the polynomial
format by augmenting the input-output relationships
to include the addtional variables.

MIMO systems are most amenable to the state
space format. This format also has the most flexi-
bility in defining the relationship to latent variables.
In this description we add the state variable x(ti) that
is propagated forward in time by:

x(ti+1\9) = A(0)x(ti,e) + B{e)u{U) (4)

and the measurement equation:

y(U \6) = C(9)x(n, 6) + D(9)u{ti) (5)

that provides the output.
One of the most flexible state space predictor mod-

els is the directly parameterized innovations form.
Based on the classical steady state Kaiman filter, this
model accommodates the fact that measurement and
process noise are present but does not require knowl-
edge of the disturbance properties. This is accom-
plished by parameterizing and identifying the Kaiman
Gain instead of the process and noise descriptions: 3

x(ti+u$) = A(e)x{ti,e)+B(e)u(ti)+K(e)[e(ti)] (6)

Linear time-varying systems. Linear time-
varying systems are restricted to weighting function
and state space forms. Predictor metamodels for use
with a weighting function have the same form as meta-
models used for time-invariant systems except that the
weighting function is time varying. Time-varying state

3The error e{U\B) = y(U) - C(9)x(U,9).

65

space models are similar to the time-invariant state
models with the exception of the time index on the
coefficients.

Nonlinear Models. Systems with linear dynam-
ics and static input nonlinearities can be handled by
redefining input of the system to exclude this nonlin-
earity (Hammerstein model). With this new defini-
tion, the system can be identified by a linear model.

Nonlinear systems (that are not approximated by
linearization or perturbation) are restricted either to a
pseudolinear form or state space descriptions. We de-
fine the pseudolinear form as y(t\9) = 9T<f>(t) where 8T

is the vector of unknown coefficients and (j>(t) contains
the nonlinear combinations (functions) of the input
data. Although the structure looks static, dynamics
can be included in the pseudolinear model by includ-
ing nonlinear combinations of past data.

If we want to explicitly consider system dynamics
for nonlinear predictor models, there is only one op-
tion: a nonlinear state space or simulation model de-
fined as:

x(ti+1\e) = f(t,x(ti),u(ti),e) (7)

y(U\9) = h(t,x(ti),u(U),0) (8)

5.3.2 Probabilistic Models
Models for probabilistic descriptions will be limited
to the state space form. While transfer function and
matrix fraction descriptions are limited to linear time-
invariant systems, a state space system does not share
this restriction. This form also allows the combination
of a continuous system with discrete measurements
(a sampled-data system) to more closely match real
systems.

We cover four types of probabilistic models. The
first type of model is a linear stochastic model devel-
oped by assuming a white noise approximation. The
second model is a general nonlinear stochastic model.
The third type is a linear Ito stochastic model based
on the correct description of the noise as Brownian
motion with an Ito stochastic description, and the fi-
nal model is a full nonlinear Ito stochastic model.
Linear Stochastic. Linear stochastic system modeling
results in the following model driven by known inputs
and white noise w(t) [10]:

white noise v{ti):

z{U) = H(ti)x(ti) + v(U) (10)

x = F(t)x{t) + G(t)u(t) + L(t)w(t) (9)

starting from a Gaussian x(t0) with a known mean
x0 and covariance P0. Average performance can of-
ten be described by this simple stochastic differential
equation sometimes referred to as Langevin's equation
[11, 12].

This model is supported by a discrete (or possibly
continuous) linear measurement corrupted by additive

Since the solution of these systems is a stochastic
process with many potential realizations, it is best to
characterize the system by the expected value of its
moments (mean, variance, etc.) The optimal (mini-
mum mean square error, unbiased, consistent) predic-
tor for this system is the classical Kalman-Bucy Filter.

Nonlinear Stochastic Prediction. If we want to
explicitly consider system dynamics for nonlinear
stochastic predictor models, there are two options: a
nonlinear state space model or a simulation model.
For probabilistic models, the nonlinear state space
model is defined as

x(ti+1\e) = /(i.xfr). «(*.-), w(*i).0) (11)

y(U\6) = h(t,x(ti),u(U),v(U),0) (12)

A simulation model, not to be confused with a sim-
ulation as a system description, disregards the process
noise and simulates y(t\6) by simulating a noise free
model using actual inputs and w(t{) = v(ti) = 0.
Ito Stochastic Prediction. As reasonable as the linear

stochastic model seemed, it is not completely suitable.
Although other models may be derived from these
Langevin type equations, the Markovian description
is typically lost. With this loss, complete knowledge
of the probability density functions is required to de-
termine system properties. This information is usually
not available.

Linear stochastic differential equations can be prop-
erly developed through the use of Wiener stochastic
integrals [10]. Therefore, the properly defined linear
stochastic differential equation is:

dx(t) = F{t)x{t)dt + B{t)u{t)dt + G(t)dß(t) (13)

where /?(■,■) is of diffusion strength Q(t) for all t of
interest given by E{dß(t)dßT(t)} = Q(t)dt.

In general, characterization of this process re-
quires the joint probability density (or distribu-
tion if the density cannot be assumed to exist) of
x(ti), x(t2),..., i(tjv) for any number N of time cuts
in the interval of interest by repeated application
of Bayes rule. If x(-, •) is a Markov process, how-
ever, specification of the transition probability den-
sities completely specifies the joint densities and the
transition probabilities can be propagated via the for-
ward Kolmogorov equation.

Linear models. If the system model is linear, so-
lution to the forward Kolmogorov equation yields the
familiar form of the state and covariance update:

mx(t) = F(t)mx(t) (14)

66

Px(t) = F(t)Px(t) + PS)FT{t) + G(t)Q(t)GT(t)
(15)

(Note: In the development of error criterion, etc.
derivatives must be computed using the Ito differential
rule.)

Nonlinear models. If we are willing to neglect
the second partial derivatives with respect to x, we
can use the extended Kaiman filter.

In the general case, the nonlinear problem is not
solvable. There are a number of other approximations
that exploit a Taylor series representation of the dy-
namics and measurement to estimate conditional mo-
ments. One of the more computationally reasonable
is the modified Gaussian second order filter (see [10]).

5.4 Identification Methodology

We now discuss techniques for generating the es-
timate. A partial list of algorithms mentioned in the
literature included 32 different methods, most of which
can be classified by two elements: the form of the iden-
tifier and the criterion of fit. The form of the identi-
fier defines the "experimental setup" or the manner in
which the estimates are generated and compared. The
criterion of fit establishes both the cost function and
the method of its minimization.

Categorizing the identification method by the form
and the criterion reduces the many identification
methods to only five approaches: Prediction Error,
Correlation, Maximum Likelihood, Optimization, and
Approximation Techniques.

5.4.1 Form of the Identifier

Equation Error Method. For the equation error
method, Figure 2, we use the system equations as
given. Assume first that we have the following gen-
eral description defined by a parameter vector 6 and
that we know the form of the vector functions / and
h:

i(t) = f(t,x(t),U(t),w(t);9) (16)

(17) y(t) = h(t,x(t),u(t),v{t);6)

Now we assume that we can measure the controls,
the states, and the state derivatives. With all of this
information, we can determine the error between the
model and the actual data: xa,xa,ua'-

e{t,6) = xa - f(xa,ua;9) (18)

The vector e(t, 9) is the equation errors. From these
equation errors, e(t, 9) , we can form some nonnegative
function such as J(9) = /Q

T sT(t, 9)e(t, 9)dt and search
over 9 to find the minimum.

Output Error Method. The equation error method
required measurement of all of the elements of the

system. Often, this is not possible. The output er-
ror method is based on an output error criterion and
avoids this requirement.

System States
Ja

System

e*
»"<■<» ^

Model
ft

IVIociel States

Figure 2: Equation Error Method

Prediction Error Method. The prediction error
method is the third approach to developing an error
function by which a parameter search can be struc-
tured (Figure 3).

Figure 3: Prediction Error Method

Instead of comparing states or outputs, the esti-
mated parameter, 9, is used in the model with the
input ua and the output ya to generate an estimate of
the output ym. Given a description

y(t) = G(q)u(t) + H(q)e(t) (19)

and having observed the output y and the input u, the
prediction errors can be computed as

e(t) = H-l(q)[(y(t)-G(q)u(t)} (20)

5.4.2 Criterion of Fit

By criterion of fit, we mean the function or
functional that is optimized to determine the
parameter estimates.4 We consider three criterion:
minimum mean square, maximum a posteriori (maxi-
mize the CPDF), and maximum likelihood (maximize
the JPDF).
Minimum Mean Square Error. Minimum mean
square estimators minimize a cost function that is a
function of the (possibly weighted) output error only
- J(#) = eTWe. The mean square error matrix M for
an estimate of 9 of 9 (with b equal to the bias) is:

M E U§ - 9){9 - ef} = cove + w (21)

4 We do not know the actual parameter vector 0, and cannot
define an error between 9* and 8. The error must be computed

from {*(<;)} <* {u(*0} and {vM}

67

Both bias and covariance must both be minimized
to attain the minimum mean square estimate; and, in
general, the minimum m.s.e. will be biased.

Maximum A-Posteriori. The Bayesian approach to
parameter estimation assumes a parameter vector
with a priori (before the measurement) probability
densities P{9). The observations ZN, therefore, are
correlated with 9. Measurements are used to deter-
mine the most likely value after the measurement, the
Maximum a posteriori (MAP) estimate 9M AP via the
application of Bayes rule:

P(9\z)
P{z\9) x P{9)

P{z) (22)

Here P(z\9) is the conditional probability; i.e., the
total probability of the measurement conditioned on
the current estimate of 9.

We can rewrite the maximization to be the mini-
mization of the negative logarithm of P{z\9) :

OMAP = arg(§) min -log P(9\z) (23)

where log P(9\z) = log P (z\9) + log P (9) - logP(z).
Maximum Likelihood. Given that the joint probabil-

ity of the random vector to be observed is fz(9; ZN),
then the probability that the random variable will pro-
duce the realization ZN is proportional to fz(9;ZN).
Once a particular realization Z? is inserted into the
joint PDF, this becomes deterministic and is called the
likelihood function. A maximum likelihood estimator
maximizes this function:

9ML=arg(9)m&xfy(9;Z") (24)

so that the observed event becomes as likely as possi-
ble.

6 Results and Conclusions

This new approach provides a structured method of
developing metamodels for simulations. In each case,
we step through decisions that are based on existing
information or follow from prior decisions. We have
added the capability to explicitly model dynamical
systems and defined the requirements to use these as
metamodels.

We simplified the metamodeling process to two
phases: problem definition and the metamodeling pro-
cess. In the problem definition we begin with an anal-
ysis of the metamodel requirements and the simulation
under study. We then progress to the description of
the system (not the model) so that we will be able
to select a metamodel structure that matches both

the requirements and simulation that we are going to
metamodel.

Definition of the model set for the metamodeling
process was clearly defined by a system description,
system class, a metamodel structure, and an identifi-
cation methodology. All of these selections came di-
rectly from the problem definition.

References

[1] D. Caughlin, "A Metamodeling Approach to
Model Abstraction," Proc. 1994 Fourth Annual
IEEE Dual Use Technologies and Applications
Conference, May 1994.

[2] M. A. Zeimer, et. al., "Metamodel Procedures
for Air Engagement Simulation Models," IRAE
Technical Report, Jan 1993.

[3] V. Vemuri, Modeling of Complex Systems, Aca-
demic Press 1978.

[4] L. Ljung, System Identification: Theory for the
User, Prentice-Hall, New Jersey, 1987.

[5] D. Caughlin, "An Evaluation of Simulated An-
nealing for Modeling Air Combat Simulations,"
Proc. 1994 IEEE Dual-Use Technologies & Ap-
plication Conference, May 1994.

[6] L.B. Anderson, et al, "SIMTAX, A Taxonomy
for Warfare Simulation," Workshop report taken
from the Catalog of Wargaming and Military
Simulation Models, 11th Edition, Force Struc-
ture, Resource, and Assignment Directorate (J-
8), The Joint Staff, Washington, DC 20318-8000,
September 1989.

[7] J. C. Willems, "Paradigms and Puzzles in the
Theory of Dynamical Systems," IEEE Trans, on
Automat. Contr., vol. 36, no. 3, pp. 259-294,
March 1991.

[8] Sinha, Kusta, Modeling and Identification of Dy-
namic Systems, Van Nostrand, 1983.

[9] J. P. Norton, An Introduction to and Identifica-
tion, Academic Press, 1988.

[10] P. S. Maybeck, Stochastic Models, Estimation,
and Control, Vol 2, Academic Press, 1982.

[11] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, McGraw-Hill, 1965.

[12] L. Ingber, "Statistical Mechanics of Combat
and Extensions," reprint from Toward a Sci-
ence of Command, Control, and Communica-
tions, AIAA, December 1993.

68

Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradottir, K. J. Healy, D. H. Withers, and B. L. Nelson

AUTOMATING THE METAMODELING PROCESS

Don Caughlin

Space and Flight Systems Laboratory
University of Colorado at Colorado Springs

Colorado Springs, Colorado 80933-7150, Ü.S.A.

ABSTRACT

Model abstraction using metamodeling has demon-
strated the capability to facilitate software reuse,
large scale model integration, verification, and val-
idation.- Once restricted to static representations
that represented the input-output behavior of mod-
els, research has developed the capability to build
dynamic metamodels. This capability results from a
new approach supported by a taxonomy of metamod-
eling problems, solution structures, and metamodel-
ing methods. The development of the metamodel,
however, still requires a thorough understanding of
model abstraction, reduced order modeling, and sys-
tem identification. In addition, even with the most
robust procedures it is possible that the desired data
generated by a simulation model will not meet the
assumptions or numerical requirements of the proce-
dure. Consequently, there is a requirement for a ro-
bust metamodeling support system that will support
the subject matter expert. Automation of the meta-
modeling process will assist the analyst who is not
familiar with model abstraction techniques but needs
to reuse a piece of code, integrate different models, or
verify a new version of a simulation. This paper de-
scribes the design of a Metamodeling Support System
that provides this automation.

1 INTRODUCTION

A metamodel is a mathematical approximation of the
system relationships defined by a more detailed model
(Caughlin et al. 1997a). Caughlin (1995) introduced
a structured approach to metamodeling that sepa-
rated the procedure into two steps: problem defini-
tion and an iterative metamodeling process. While
we can generate a metamodel from data generated
by any model structure, the discussion in this paper
is limited to metamodels of simulations.

We defined a metamodeling problem as the direct

sum of the metamodel requirements and the model
(simulation) to be approximated. To support this def-
inition, the problem definition step first determines
the purpose of the metamodel. In the definition of
this purpose we identify the input and response that
we are interested in and determine the important
characteristics of these data. Also for this purpose,
we define the region of interest, validity measures and
specify the required validity. In addition to meta-
model requirements, problem definition addresses the
second part of the direct sum and characterizes the
simulation that is the subject of the metamodel. This
characterization provides data that can be used to
match the simulation's characteristics to the meta-
model structure and identification method.

The second portion of the structured approach was
an iterative metamodeling process which consists of
the following steps (Caughlin 1997c):

1. Select an Experimental Design
2. Run the Simulation

3. Collect Data

4. Select a Metamodel Set

5. Select Identification Methodology

6. Generate the Metamodel

This approach supported development of dynamic
metamodels that exhibit memory and can model phe-
nomena where the past influences the future. In ad-
dition, a more robust identification procedure was de-
veloped that could be applied to a broader range of
problems than existing techniques.

The revised process outlined above provides a di-
rect method of sorting through the myriad of de-
cisions necessary to develop a dynamic metamodel
and reduces the number of independent decisions re-
quired to develop the metamodel. This process is
supported by a new taxonomy of problems, struc-
tures, and methods and set of computer aided rou-
tines that match the problem definition with the sim-
ulation characteristics.

69

Automating the Metamodeling Process

Even with a new approach supported by a taxon-
omy of metamodeling problems, solution structures,
and metamodeling methods, the development of the
metamodel still required a thorough understanding
of model abstraction, reduced order modeling, and
system identification.

In addition, even with the most robust procedures
it is possible that the desired data generated by a
simulation will not meet the assumptions or numeri-
cal requirements of the identification procedure.

Consequently, the widespread use of metamodeling
EIS a method of model abstraction requires an auto-
mated support system to assist the analyst. This pa-
per describes research into the design of a prototype
Metamodeling Support System (MSS) to automate
model abstraction. The prototype system will assist
the analyst who is not familiar with model abstrac-
tion techniques but needs to reuse a piece of code,
integrate different models, or verify a new version of
a simulation.

2- DEVELOPMENT AND SYSTEM
OVERVIEW

The MSS program provides a semi-automated sup-
port system to assist an analyst/modeler in develop-
ing a metamodeling abstraction of a more detailed
model. This system supports the metamodeling ap-
proach outlined above and covered in the references.

2.1- Technical Program

The MSS development program is divided into two
development phases:

1. Build 1

2. Prototype Metamodeling Support System

The MSS Build 1 establishes the baseline and pro-
vides the following capabilities:

1. A metamodeling system based on an object-
oriented architecture that is capable of future
expansion.

2. The capability to analyze the source code, gen-
erate and run the simulation, and gather data.

3. Data storage and analysis routines.

4. Metamodeling routines and procedures to gener-
ate and verify the metamodel.

In Build 1, the MSS provides an executive and au-
tomated routines to analyze and run the simulations
to gather the data for the metamodel. Existing iden-
tification algorithms will be incorporated into this

system to provide the basic capability to generate
metamodels.

The automated system support discussed above
will be provided by an expert system. An expert
system is the union of declarative knowledge and in-
ference. The knowledge base contains the declarative
knowledge. The inference engine controls the appli-
cation of that knowledge. It is an algorithm that
dynamically directs or controls the system when it
searches the knowledge base.

The Prototype Metamodeling Support System is a
near-term upgrade of the basic Build 1 and adds the
following capabilities:

1. An expert system.

2. Supporting Knowledge Base to support decisions
required to develop metamodels.

Documentation for the program is provided
in a System/Subsystem Specification (SSS), Sys-
tem/Subsystem Design description (S/SDD), System
Software Design Description (SDD).

2.2- System Capabilities

The system must provide the general housekeeping,
expert system, and knowledge base to support the
objectives and decisions outlined in the metamodeling
approach shown in Table 1.

There are four general capabilities that must be
provided by this system. These areas are the analysis
of the simulation, the correlation of the simulation
and data with a metamodel structure and identifi-
cation method, generation of the metamodel, and fi-
nally, the analysis of the metamodel.

First, the system needs to handle the general house-
keeping associated with any experimental setup such
as: user preferences; cataloging the input and output
data; associating the data with parameter selections;
and tracking the status of the metamodeling session.

Secondly, the system needs to support problem def-
inition. This includes definition of the metamodel
purpose and the analysis of the simulation.

Once the metamodeling problem has been defined,
the system must support selection of a metamodel
representation (structure) and method of identifica-
tion. Given a structure and method, the system must
now parameterize the metamodel. Lastly, the system
should support the analysis of the metamodel. These
capabilities are covered under the metamodeling pro-
cess.

Specific, more detailed, requirements to support
these capabilities were provided in a Statement of
Work, previous research, and an analysis of current
trends in model abstraction.

70

Caughlin

Table 1: Metamodeling Approach

MAJOR AREA OBJECTIVE DECISION/ACTION

Problem Definition

Metamodel Purpose Scope
Use

Simulation Characteristics External Characteristics
Internal Characteristics

Metamodeling
Process

System Representation
Identification Methodology

System description
System class
Metamodel Structure
Identification Methodology

Generate
and verify metamodel

Experimental Design
Run the Simulation
Collect Data
Generate the Metamodel
Verify the Metamodel

3 DESIGN PROCESS

The fact that the MSS must interact with a variety of
different legacy simulations with unknown structure
dictates a robust, modular, scaleable, and extensible
design. A point design would not be able to adapt
to different model or simulation structures or handle
the different types of analysis to be performed. This
dictate, and the fact that this was a software develop-
ment, seemed to demand an Object-Oriented design
approach.

System capabilities, however, stem from the re-
quirement to support a structured sequential process.
The functionality is process related and does not re-
side in or be derived from any of the objects that exist
in the environment. Also, the MSS is not a compo-
nent of another system but a system of systems under
the supervisory control of the MSS executive. This
analysis supports a structured Systems Engineering
design approach.

While Systems Engineering provides a high-level
functional architecture, Object-Oriented (00) Mod-
eling and Design generates a set of lower level func-
tions that should (more properly) be called methods
or operations. Unfortunately, it is usually not possi-
ble to distribute the methods of the 00 classes among
the different functional elements that result from Sys-
tems Engineering. Consequently, at this point there
are two incompatible structures. This issue was ad-
dressed in Caughlin (1997b). The design of the MSS
followed the method proposed in that paper. A sum-
mary of the method follows:

1. Follow the standard Systems Engineering pro-
cess generating the system capabilities with a
functional decomposition and allocation of re-
quirements.

2. Initiate the Object-Oriented Modeling and De-
sign process identifying the underlying objects
that are basic to the problem at hand. Iden-
tify object attributes, operations (methods), re-
lationships and associations.- Develop a class
structure, prototype code, and data dictionary.

3. Beginning with system capabilities (require-
ments), define operating "States and Modes" of
the system that are consistent with the func-
tional architecture.- Display these states and
modes in a flow chart.

4. Using the functional capabilities (architecture)
and the States and Modes Flow Chart, connect
the functionality that comes from the Systems
Engineering process to the objects that result
from Object Modeling Techniques by the def-
inition of abstract "manager" and "controller"
objects that connected the "top down" function-
ality with the "bottom up" objects.

4 SYSTEM DESIGN

Presentation of the design of the MSS is organized
under Requirements Analysis, Functional Design,

71

Automating the Metamodeling Process

Object-Oriented Design, and KnowledgBase Design.
This section concludes with the resulting System Ar-
chitecture.- Requirements Analysis and Functional
Design followed the standard Systems Engineering
Process (EIA/IS-632 1994).

4.1- Requirements Analysis

An analysis of the required functionality and the pro-
cess that the MSS is to support led to 511 require-
ments. Requirements Traceability and Management
was accomplished with a CASE tool - Requisite Ver-
sion 2.0.18.

System Capabilities were organized as follows:

1. Interface Capabilities

(a) User Login

(b) Session Establish/Restore

(c) Session Configure

(d) Select Operation

2. Problem Definition Capabilities

(a) Metamodel Purpose

(b) Simulation Characteristics

3. Metamodel Capabilities

(a) Select Metamodel Set

(b) Select Identification Method

(c) Select Experimental Design

(d) Run Model

(e) Fit Metamodel

(f) Verify Metamodel

Additional (nonfunctional) capabilities and con-
straints were also identified. Internal and external
interfaces were defined.

4.2- Functional Design

System capabilities were decomposed and allocated to
functions based on the following required States and
Modes: Login (Standby); Configure (Define) Session;
Problem Definition; Metamodel; and Maintenance
States.- The operating modes are "Manual," "As-
sisted," and "Automatic" and apply primarily to the
Problem Definition and Metamodeling States. These
modes determine the level of support provided by the
Expert System.

4.2.1- States and Modes

Login (Standby) State. This is the initial state of
the system prior to login to the MSS. In this mode,
the system will determine who the analyst is, which
process is to be modeled, and the status of the process
at login. This state allows the analyst to suspend a
session and come back to it at a later time. This state
operates only in the manual mode although defaults
are provided.

Maintenance State. This state allows the various
maintenance functions. This state supports file and
knowledgebase maintenance. In addition, user pro-
files and preferences are established in the mainte-
nance state. Again, this state operates only in the
manual mode.

Configure Session State. In this state, the analyst
defines the objectives of the session. Here we identify
the simulation that will be modeled and provide the
data that will support the Problem Definition State.
This state can operate in both the manual and as-
sisted mode and cannot be exited until all of the data
is provided.

Problem Definition State. The Problem Definition
State can function in both the manual and assisted
modes. This state provides all of the data defined as
a priori information. There are two major areas that
are addressed. The first area is the purpose of the
metamodel. The second area is the characteristics of
the simulation that is to be metamodeled.

Metamodel State. The Metamodel State provides
the ability to complete the metamodeling procedure.
These steps include selection of the metamodel set
and identification method, selection of the experimen-
tal design, running of the model, fitting the meta-
model, and finally, verification of the metamodel.
This state operates in all modes.

4.2.2- Functions

Analyzing the Required Capabilities with respect to
the States and Modes resulted in the following func-
tions for the requirements allocation.

User Interface (UI). The UI component provides
the multimedia control and display interface to the
user. It interprets and error checks user inputs and it
provides graphical, text and video displays, and au-
dible alarms. It displays out-of-tolerance conditions
visually and, if it is a critical parameter, audibly.

Data Manager (DM). The DM provides all of the
functionality associated with the management of MSS
data. As such, the DM supports data requests from
all other functions. Data archiving is accomplished on
a Load/Save basis as opposed to a data entry basis.

72

Caughlin

Scenario Manager (SM). The purpose of the SM is
to structure and manage the data used to generate the
metamodel. The SM provides three different types of
support to the MSS.

First, the Scenario Manager supports data gather-
ing for the problem definition steps of the process.
At this stage, the Scenario Manager determines prior
information for construction of the metamodel.

Next, the Scenario Manager uses the data from
problem definition to generate input data for the sim-
ulation. The combination of simulation input and
output becomes the input for the identification rou-
tines that generate the metamodel. The SM manages
the input and output data (through the Data Man-
ager) that will be used to generate a metamodel.

Lastly, the Scenario Manager provides the ability
to link the various functions to complete the meta-
modeling process. Development of the metamodel is
a multi-stage process. In the first stage we deter-
mine the purpose and characteristics of the simula-
tion. Complete determination of the simulation char-
acteristics, however, requires the output data from
the simulation which is provided by the Metamodel
Manager. Consequently, the process moves from the
Scenario Manager to the Metamodel Manager and
back to the Scenario Manager. The last type of sup-
port provides by the SM is in tracking this interac-
tion.

These stages are iterative and the sequence of the
operation can vary depending on the data and the
outcome. Based on data from the Problem Status
File generated by the Session Manager (discussed be-
low), the Scenario Manager first determines the sta-
tus of the solution and what data is required to pro-
ceed to the next step of the metamodeling process.
From this analysis, the proper SM response is se-
lected.

Metamodel Manager (MM). The MM provides the
capability to generate the metamodel.

The first step is to postulate a metamodel. The
MM assists with the initial definition of the meta-
model structure and guides the selection of the meta-
model set. The MM should provide a recommended
metamodel set based on the problem and the simula-
tion that is to be metamodeled.

Given the metamodel set, the next decision is the
selection of the ID methodology. When we have es-
tablished the metamodel set we should compare the
metamodel set to the metamodeling problem to in-
sure consistency of the metamodel problem. With
the metamodel set and ID methodology determined,
we use this information to define requirements for the
Experimental Design. These selections constrain the
Experimental Design and define the Input-Output

Data requirements.
The MM subsystem should provide a recommended

experimental design based on the problem definition,
metamodel set, and ID methodology.

Once the experimental design is defined it should
also be compared to the metamodel problem to insure
that the design and problem are consistent. Based on
the metamodel set, ID methodology, and Experimen-
tal Design, we can identify appropriate analysis tools.
This step also identifies preprocessing data analysis
required to verify the results of the design.

Once the metamodel set, ID methodology, Experi-
mental Design, and analysis tools are defined the sim-
ulation controller can configure data capture files and
then run the simulation to generate the output data.
The I/O must be configured for each simulation along
with the simulation run times and message passing.
At this time we load simulation and configuration files
and execute the simulations as defined.

This data must be analyzed (before the generation
of the metamodel) to insure that it meets the restric-
tions of the method (Belsley 1980, Ljung 1987). In
general, we:

1. Assess for collinearity

2. Remove trends and Outliers

3. Select useful portions

4. Filter to enhance important frequency ranges

The MM now gets metamodel data files and meta-
model parameters using the data manager. With the
data from the simulation, the metamodel set and the
ID methodology, the MM now fits the metamodel to
the data. After generation of the metamodel the MM
then must verify that the metamodel meets the re-
quirements of the problem definition.

Session Manager (SEM). The SEM manages the
status of the current session. First the SEM must
identify the user and their status as Expert / Ad-
vanced / Novice. The SEM then gets a general idea
of what the objective of the session. From these ob-
jectives the SEM determines if special resources are
required.

The SEM also provides the ability to suspend ses-
sions, recover from, and continue with a previous ses-
sion if requested.

The SEM then configures and manages the session
and the session state via the Login and Session State
Files.

We have discussed capabilities (requirements) and
a functional decomposition and allocation that meets
these requirements. Rather than proceeding with the

73

Automating the Metamodeling Process

design process, our methodology dictates an Object-
Oriented approach to the problem. We discuss this
analysis next.

4.3- Object-Oriented Design

Beginning with the same problem statement, applica-
tion of Object-Oriented Modeling and Design to the
requirements results in the following primary objects:

1. Analyst

2. Project

3. Problem

4. Simulation

5. Metamodel

6. Metamodel Set

7. Metamodel Parameters

8. Data

This analysis continued with identification of ob-
ject attributes, operations (methods), relationships
and associations. A class structure, prototype code,
and data dictionary was developed. Object-Oriented
Modeling and Design was supported by OMTool that
was developed by General Electric Advanced Con-
cepts Center and implements Object-Oriented Model-
ing and Design as defined by Rumbaugh (Rumbaugh
1991).

In a typical 00 methodology, the next Analysis
step is to develop the dynamic model by preparing
scenarios of typical interaction sequences, identifying
events that occur between objects, preparing an event
trace for each scenario and an event flow diagram for
the system. A functional model is used to describe
the transformation from input to output by deter-
mining input and output values and developing data
flow diagrams to show functional dependencies and
identify constraints.

In the design methodology that we follow, however,
this data is provided by the Systems Engineering pro-
cess. We do not continue with the 00 design but use
these object classes to populate the "player" or lower
level of the architecture.

Manager objects are defined that implement the
functionality defined by the system states and modes.
The player level identifies the objects that must be
addressed, Intermediate level "controller" objects are
designed to make the connections between the man-
ager and player levels.

4.4- KnowledgBase Design

Expert System support is provided for two purposes.
The first purpose is to assist in execution of the Meta-
modeling process as we have defined it. The process
can be executed using many different sequences. The
Expert System constrains this sequence to insure that
required information is available at each step and that
results conform to assumptions.

The second area of support is assistance in deci-
sions required by the process. Here, we help with
selection of the metamodel structure, identification
method, analysis tools, etc. This is the Decision As-
sistance Knowledgebase.

The Metamodeling Process Knowledgebase is part
of the original specification since it's contents are well
known. The MSS contains the ability to record and
incorporate the metamodeling results. The Decision
Assistance Knowledgebase will be developed as the
MSS is used to generate metamodels by recording de-
cisions and the effectiveness of these decisions.

4.5- System Architecture

The software architecture is a framework for the in-
terconnection of subsystems within some major sys-
tem - in this case the MSS. Each of these component
systems are defined by their capabilities and are com-
posed of functions (subsystems) which in turn are a
collection of objects (modules).

The MMS is composed of six levels: the top level,
the manager level, the component level, the player
level, the data level, and the library level (only 4 are
shown in Figure 1). The top level encapsulates the
abstraction of the MMS and supports the four se-
quential processing steps: system login, configure the
session, define the metamodeling problem, generate
and verify the metamodel. The ability to maintain
the system is also provided. This level is described
by the "states and modes" of operation.

This functionality is implemented by subsystems
derived from the functional allocation by objects of
the "manager class." This class is expected to com-
pletely support MMS capability requirements in these
five processing steps. This class of components are in-
stantiated as the different objects required to provide
this functionality. These objects are the User Inter-
face (UI), Data Manager (DM), Scenario Manager
(SM), Metamodel Manager (MM), and the Session
Manager (SEM).

The lower "player" level consists of the objects that
are generated by the Object-Oriented Design. The
player level encapsulates the entity object classes that
are the inputs and products of the MSS such as the

74

Caughlin

simulations, metamodeling problems, and metamod-
els. These are the entities that will be generated
and/or manipulated in the course of the generation
of the metamodel.

The connection between the manager and player
levels is accomplished by the definition of an interme-
diate level. This intermediate level is the collection of
subsystems that perform the various operations of the
MSS. In the description of the system, they are called
"controllers." The component level "controllers" pro-
vide the connection between the managers and player
objects.

Table 2 below shows the "Manager" class, the Sys-
tems Engineering functions performed by the class
and the objects of the 00 design from OMT that are
affected.

A data level consists of the data objects required
to manage the processes and control the products.
Lower level library objects also exist that are used to
implement standard functions that are not explicitly
named.

5- IMPLEMENTATION

Many of the components required to meet the func-
tional requirements of the MMS already exist.

An existing code analyzer can be used to analyze
the simulation characteristics. Data can be efficiently
stored in any number of relational databases (e.g. ex-
ternal simulation characteristics are already provided
in a SIMTAX database (Anderson, et al. 1989).

Managers User
Interface

Data
Manager

Metamodel
Manager

Scenario
Manager

Session
Manager

• • • Controllers Display Interface
Expert
System

1 Session
] Manager

Simulations • • • Metamodel Problems • • ■ Metamodels Players

Figure 1: MMS Architecture

In addition, there are a number of expert systems
that could be used to provide automation support.
Identification and analysis routines are available as
well as a number of numerical engines.

Rather than develop all of the components of the
MSS, the decision was made to develop a shell or
mainframe that would integrate and manage both
new and existing components.

This shell was developed with Microsoft Develop-
ment Studio and C++ language using the Microsoft
Component Object Model, the Microsoft Foundation
Class Library, and the DAO database interface. MSS
targets the Windows NT operating system.

The 00 design was accomplished in OMTool.
These files will be integrated into the Microsoft De-
velopment Studio.

Table 2: Connection Between Objects and Functions

MMS MANAGER FUNCTIONALITY (SE) PLAYER (OMT)

User Interface Interface Analyst
Data Manager
Scenario Manager

Interface
Problem Definition

Data
Problem
Simulation

Metamodel Manager Metamodel Metamodel
Metamodel Set
Metamodel Parameters

Session Manager Interface Project

75

Automating the Metamodeling Process

The Expert system is provided by the C Lan-
guage Integrated Production System (CLIPS) de-
veloped by the Software Technology Branch (STB),
NASA/Lyndon B. Johnson Space Center. CLIPS is
designed to facilitate the development of software to
model human knowledge or expertise.- Rules and
objects form an integrated system since rules can
pattern-match on facts and objects. In addition to
being used as a stand-alone tool, CLIPS can be called
from a procedural language, perform its function, and
then return control back to the calling program.

CLIPS was embedded into the MSS as a DLL us-
ing a Wrapper Class provided by Mark Tomlinson
(MTOMLINS@us.oracle.com).

The numerical engine is provided by MATLAB.
Identification and analysis tools are incorporated as
MATLAB "M" files.

Documentation for the system is provided in the
form of Windows help files which are assessable on-
line.

6- SUMMARY

This paper has described the design and capabilities
of a prototype Metamodeling Support System that
will assist the analyst who is not familiar with model
abstraction techniques but needs to reuse a piece of
code, integrate different models, or verify a new ver-
sion of a simulation.

We presented an outline of the capabilities required
to support the Metamodeling process and references
where details may be found.

We demonstrated the use of a design process that
integrated Systems Engineering and Object-Oriented
Modeling and Design to provide a system architec-
ture that meets functional requirements and accom-
modates an Object-Oriented framework.

Unfortunately, the scope of the paper does not al-
low a complete description of implementation details.
A summary was provided.

ACKNOWLEDGMENTS

This research was partially supported by Rome Labo-
ratory under Contract No. F30602-96-C-0040/P0001.

REFERENCES

Anderson, L. B., et al. 1989. SIMTAX, A Tax-
onomy for Warfare Simulation, Workshop report
taken from the Catalog of Wargaming and Military
Simulation Models, 11th Edition, Force Structure,
Resource, and Assignment Directorate (J-8), The
Joint Staff, Washington, DC 20318-8000.

Belsley, D, E. Kuh, R. Welsch. 1980. Regression
Diagnostics. New York:John Wiley & Sons.

Caughlin, D. 1995. Final Report, Modeling Tech-
niques and Applications, Volume I. USAF Con-
tract F30602-94-0110, Rome Laboratory/IRAE, 32
Hangar Rd, Griffis AFB, NY 13441-4114.

Caughlin, D.,A. F. Sisti. 1997a. ."A Summary of
Model Abstraction Techniques". In Enabling Tech-
nology for Simulation Science, Alex. F. Sisti Edi-
tor, Proceedings of the SPIE, Vol. 3083:14-21.

Caughlin, D. 1997b. "Integration of Object-Oriented
and Functional Modeling and Design Methods."
In Enabling Technology for Simulation Science,
Alex. F. Sisti Editor, Proceedings of the SPIE, Vol.
3083:89-99.

Caughlin, D. 1997c. "Model Abstraction Via Solu-
tion of the Inverse Problem to Define a Reduced
Order Model". Accepted for publication in SCS
Transactions

EIA/IS-632. 1994. EIA Interim Standard, Systems
Engineering. Electronic Industries Association.

Ljung, L. 1987. System Identification: Theory for the
User, New Jersey:Prentice-Hall.

Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen.- 1991.
Object-Oriented Modeling And Design. New Jer-
sey: Prentice Hall.

AUTHOR BIOGRAPHY

DON CAUGHLIN is Acting Director of the Space
and Flight Systems Laboratory at The University of
Colorado at Colorado Springs. He received a BS in
Physics from the Air Force Academy, an MBA from
the University of Utah and MS and Ph.D. degrees in
Electrical Engineering from the University of Florida.
His research interests include modeling and simula-
tion, system identification, pattern recognition and
intelligent control. Dr. Caughlin has over 28 years
experience as an experimental test pilot, chief sci-
entist, research scientist, program manager and was
also Associate Dean of the School of Engineering at
the Air Force Institute of Technology. He is a senior
member of IEEE and AIAA and a member of SCS
and the Society of Experimental Test Pilots.

«U.S. GOVERNMENT PRINTING OFFICE: 2000-510-079-81237

76

