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Abstract 1    Introduction 

Historically, most metamodels were generated by 
linear regression to determine the best polynomial fit 
to a set of input-output data. This paper presents 
a new formulation for definition of the metamodel- 
ing problem, a new framework for the solution, and 
a structured method to attain that solution. Most im- 
portantly, model abstraction via solution of a general 
inverse problem expands the available classes of meta- 
models by supporting the development of dynamical 
models that incorporate memory. This expansion al- 
lows the generation of metamodels that include sys- 
tem dynamics so that metamodels can be developed 
where the past can influence the future. Defining the 
metamodeling problem in this manner adds a vast 
amount of existing research (realization theory and 
system identification methods) to the statistical (re- 
gression) methods currently used to approach the prob- 
lem. This framework has been successfully applied to a 
number of metamodeling problems and is applicable in 
all areas of Modeling and Simulation. It can be used 
to support simulation analysis by reducing simulation 
results to a set of mathematical equations that can be 
easily analyzed. This technology can also be used in 
the integration of multiple simulations by approximat- 
ing one of the simulations (or portions thereof) with a 
system of equations. It can also be used in the Verifi- 
cation, Validation and Accreditation (VV&A) process 
by providing a direct, external and efficient compari- 
son of different models or simulations. l 

'This work was supported in part by The USAF Rome Lab- 
oratory Contract F30602-94-C-0H0 

Large simulations, like the tactical simulation mod- 
els used by the Department of Defense to assess the 
capabilities of combat systems and tactics, are highly 
complex. While these simulations can provide specific 
information, it is often difficult to determine the re- 
lationship of individual factors to the performance of 
the modeled process [1]. Consequently, it is not easy 
to use the results of the model in another simulation 
or couple multiple models to investigate a larger is- 
sue. The result is a proliferation of point designed 
models and simulations, expensive upgrade and main- 
tenance and the inability to efficiently answer many of 
the more difficult questions raised by decision makers 
[2]. 

A technique called "metamodeling" offers the abil- 
ity to facilitate this type of assessment. A metamodel 
is a mathematical approximation of the system rela- 
tionships defined by a high fidelity model or simula- 
tion. As an abstraction, a metamodel is a projection of 
the model onto a subspace defined by new constraints 
or regions of interest. 

Historically, most metamodels were generated by 
linear regression to determine the best polynomial fit 
to a set of input-output data. In this paper we present 
a new approach where in we do not try to fit data 
but concentrate on the identification of the underlying 
systems that defined the process. The focus is not on 
statistics but on the system theoretic properties of the 
manifest behavior. 

By focusing on the system theoretic properties of 
the manifest behavior, we generate the metamodel via 
solution of a general inverse problem and do not re- 
strict the solution to an approximation of the input- 
output map.    This approach expands the available 



classes of metamodels by supporting the development 
of dynamical models that incorporate memory. This 
expansion allows the generation of metamodels that 
include system dynamics so metamodels can be devel- 
oped that allow the past to influence the future. Defin- 
ing the metamodeling problem in this manner adds a 
vast amount of existing research (realization theory 
and system identification methods) to the statistical 
(regression) methods currently used to approach the 
problem. 

In addition to a new approach to the definition of 
the problem we present a new framework for the solu- 
tion [3, 4]. The framework centers on the behavior of 
the system, the behavioral equations that specify the 
behavior and latent variables which may be present 
from first principles. The theory, structure and defi- 
nitions follow the presentation given in [5] and begins 
with the essence of the system and not with a struc- 
ture and assumptions that facilitate a solution tech- 
nique. Consequently, this theory provides a basis that 
includes all of the issues associated with modeling and 
modeling from data. 

Although the new framework was consistent with 
existing metamodeling procedures defined in [1], the 
development of the metamodel required too many de- 
cisions involving: a priori knowledge; the data; possi- 
ble metamodel sets; and rules to determine the best 
model set to realize the data. Each decision was a 
complex function of a priori information and prior se- 
lections in the metamodeling process. 

A structured metamodeling method is presented 
that addresses this complexity. The structure is based 
on the fact that the construction of a metamodel (se- 
lection of the parameters used for the projection) is 
determined by the metamodel set, method of iden- 
tification and identification criteria. The method is 
based on a new taxonomy of metamodel sets and iden- 
tification methods that allows the separation of the 
metamodeling process into a set of sequential decisions 
based on a priori information. 

This framework has been successfully applied to 
a number of metamodeling problems and is applica- 
ble in all areas of Modeling and Simulation [3, 4]. It 
can be used to support simulation analysis by reduc- 
ing simulation results to a set of mathematical equa- 
tions that can be easily analyzed. This technology 
can also be used in the integration of multiple sim- 
ulations by approximating one of the simulations (or 
portions thereof) by a system of equations. It can also 
be used in the Verification, Validation and Accredita- 
tion (VV&A) process by providing a direct, external, 
and efficient comparison of different models or simu- 
lations [6]. 

This paper provides the approach, framework, and 

metamodeling method. While the paper also presents 
possible model sets and identification methods that 
can be used with these definitions, it is beyond the 
scope of the paper to present all of the details associ- 
ated with these sets and methods. Additional infor- 
mation on these latter subjects can be found in the 
references. 

The paper is organized as follows: Section 2 intro- 
duces metamodels, and metamodeling via direct and 
inverse modeling. Section 3 presents the identification 
framework discussing dynamical systems, representa- 
tions, the important systems properties of controlla- 
bility, observability, and identifiability. Section 4 ad- 
dresses metamodeling issues such as the requirements 
for metamodeling simulations, limitations of meta- 
modeling, representing discrete event systems and the 
determining the existence of a true input-output re- 
lationship. Section 5 introduces a structured meta- 
modeling procedure by presenting an overview of the 
revised method that segments metamodeling into a se- 
quential process. The remainder of the paper presents 
the key steps of the structured metamodeling method: 
Problem Definition, Section 6; Selection of the Meta- 
model Set, Section 7; Selection of the Identification 
Methodology, Section 8; and Generate the Metamodel, 
Section 9. Section 10 summarizes the paper. Symbols 
and notation used throughout the paper are included 
in an Appendix. 

2    Metamodels 

A model is a structure that can be used for under- 
standing the behavior of a system [7]. The model can 
be a physical structure such as a wind tunnel model 
used to determine the aerodynamics of an aircraft or 
it could be a conceptual model represented by inter- 
actions, a system of equations or a simulation. 

A simulation can be defined an instantiation or re- 
alization of a model. In this case the simulation is 
different from the model. We will use a more abstract 
definition. As stated, a model is a method of express- 
ing a theory. The expression of the model - its repre- 
sentation - distinguishes sets of models. Therefore, we 
consider a simulation to be a particular representation 
of a model and will not distinguish between them. 

Assume that we have a model of a system that can- 
not be used directly. A solution may not exist, it may 
be too complicated for a closed-form solution, it may 
require too much time to numerically determine a par- 
ticular solution, or it may be a high-fidelity simulation 
that provides much more detail than we are interested 
in. Efficient use of this model requires a "black-box" 
approximation of the causal time dependent behavior 



of the model - a metamodel. 
For our purposes, then, a metamodel is a mathe- 

matical approximation of the system relationships de- 
fined by another, more detailed model. 

As an abstraction, a metamodel is a projection of 
the model onto a subspace defined by new constraints 
or regions of interest. Selection of the parameters used 
for the projection (the construction of a metamodel) 
involves: a priori knowledge; the data; a set of meta- 
model sets; and rules to determine the best model to 
realize the data. 

There are two general metamodeling techniques: 
the "Direct" and "Inverse" methods. 

2.1 Direct Metamodeling 

First, a metamodel could be developed by apply- 
ing basic principles to generate a more abstract (ap- 
proximate) version of the original model. This would 
be an example of direct modeling. Direct model- 
ing is characterized by a specification of the elements 
of the model. Complicated systems are modeled by 
"tearing" a system into its components, modeling 
these components in a process called "zooming," and 
then interconnecting these components to construct a 
"physical" realization of the system [5, 8, 9]. The level 
of abstraction is controlled by the detail of the specifi- 
cation. The model reveals the structure of the theory 
and allows the prediction of the response to exogenous 
inputs as a function of the state of the system. The 
solution of this modeling problem requires an under- 
standing of the process being modeled and methods 
to express this understanding. 

Metamodels developed using this technique are 
"stand alone" versions. The relationship between the 
real system, the original model and the metamodel 
is contained in the two mappings from the under- 
lying system to each of the models. There is no 
guarantee that a usable correspondence will exist be- 
tween the metamodel and the model [10, 11]. Trace- 
ability from the high-fidelity model to the more ab- 
stract, lower fidelity metamodel becomes a significant 
issue. Also, this technique still requires an a priori 
understanding of the structure of the elements and 
the interconnections between these elements at the 
specific level of fidelity selected. This, in fact, could 
be a difficult and risky task and lack of this knowl- 
edge is often the reason that a high fidelity simulation 
was used in the first place. 

2.2 Metamodeling via Solution of an "In- 
verse Problem" 

Inverse modeling begins with the input-output data 
generated by the high fidelity model or simulation and 

develops the metamodel from the data. In this case, 
we have some estimate (measure) of the input and out- 
put response but do not have a complete characteriza- 
tion of the process by which the outputs are generated. 
While a properly posed direct problem generally has a 
solution, the inverse problem usually has multiple so- 
lutions out of which an acceptable solution (if it exists) 
must be selected. This technique explicitly results in a 
mathematical approximation between the inputs and 
responses. 

It should be noted that there is a significant dif- 
ference between our approach and much of the prior 
research. Most of the previous work that could be 
categorized as metamodeling consisted of procedures 
to determine the best polynomial fit to a set of input- 
output data. The researchers concentrated on the sta- 
tistical properties of the data. In our approach, we are 
not trying to "fit" data. We are attempting to iden- 
tify the underlying processes that define the system 
that generated the data (or in our terminology - the 
behavior). Therefore, the focus is not on statistics but 
on the system theoretic properties of the manifest be- 
havior. In other words we are trying to identify the 
dynamical system that generated the data. 

Dynamical systems acquire their importance from 
the fact that they exhibit memory or the potential to 
model phenomena where the past influences the fu- 
ture. A dynamical system is a family of trajectories 
without reference to I/O maps, variables, or behav- 
ioral equations. The system is coupled to its environ- 
ment and is not defined by any associated model. 

The metamodel is defined by the behavior it allows. 
This behavior is represented by inequalities or equa- 
tions which can be grouped into sets. As we shall see 
in Section 7, selection of the proper metamodel set is 
critical to generation of an acceptable solution. There 
are several system properties that must be considered 
in the selection of the model set. These are controlla- 
bility, observability and identifiability. 

3    Identification Framework 

Given a phenomenon that we would like to describe, 
we desire a mathematical expression as the model [5] 
2. Assume that this phenomenon produces outcomes 
that are elements of a set U. A model for this phe- 
nomenon will probably generate certain of these out- 
comes and exclude others. Consequently the outcomes 
recognized by the model B, are a subset of the uni- 
versal set U, and are called the behavior of the model. 
For the inverse modeling problem, we define a model 

2 This framework follows the work presented by Willems. 



class M with elements (U, B) where B C U is the 
behavior of M. 

Therefore, define a mathematical model as the pair 
(U, B) with U the universe of outcomes produced by 
the underlying phenomenon and B, the behavior of 
the model. If possible, we can describe the behavior 
of the model by a set of equations that leads to a be- 
havioral equation representation of the pair (U, B). To 
accommodate this consider an abstract set E, called 
the equating space, and f\, f2 : U —»■ E. With this 
space, and the functions /i,/2, the behavioral repre- 
sentation for the model becomes (U, E, /i, f2). 

In summary, the modeling procedure requires that 
we specify the variables in the phenomenon that we 
want to model (specify the universal set U) and iden- 
tify the possible outcomes in the behavior, B. Of- 
ten, however, we will require additional variables in 
addition to those we seek to model. These other vari- 
ables are called latent variables. These variables are 
required whenever we develop a metamodel by the 
method of tearing where the system is viewed as the 
interconnection of subsystems. Consequently we ex- 
pand the mathematical model to allow latent variables 
by defining a triple (U, L, B\). Here L is the set of la- 
tent variables, B\ C U x L, with B\ = {u G U\3l G 
L : (u,l) G Bi}. (Note: B\ could also be represented 
in an equating space as shown above.) 

A mathematical model is linear if U is a vector 
space and B is a linear subspace of U. Assume that 
U — I xO, where 7 is the input space, O is the output 
space, and B is the graph of a system map S : I x O 
called an I/O map. These assumptions allow an input- 
output model where (U, B) O (7 x O, B) O (I, O, S). 
If the past does not contain any information about the 
future other than the information in the behavioral 
relationships, the map is nonanticipating. A param- 
eterization of M consists of a set P and a surjective 
map ■K : P —► M. The set P is the parameter set with 
p G P determining the behavioral equations. 

3.1     Dynamical Systems 

Again, the model for a dynamical system is defined 
in terms of its behavior. A dynamical system is a 
family of trajectories without reference to I/O maps, 
variables or behavioral equations. The system is cou- 
pled to its environment and is not defined by a model 
associated with it. A model for a dynamical system 
E is simply a triple £ = (T, W, B) with T C R the 
time axis, W the signal space, and B C WT the be- 
havior - the set of all maps from T to W - a family 
of W-valued time trajectories. 

A dynamical system is linear if W is a vector space 
(over a field F) and B is a linear subspace of WT. A 

dynamical system E = (T, W, B) is said to be time 
invariant if <j*5 = B for all t G T. Where <r* is the 
time-shift operator: (c*/)(*') - /(*'+<)• 

A dynamical system E = (T, W, B) is said to be 
complete if {w 6 B) o H[*i,*2] € B[Hit2]yt1,t2 E 
T,t\ < t-z}. Completeness is an important property af- 
fecting the mathematical structure that defines the be- 
havioral equations that represent dynamical systems. 

Dynamical systems acquire their importance from 
the fact that they exhibit memory or the potential 
to model phenomena where the past influences the 
future. In this context, a dynamical system is said 
to have a finite memory span A(A G T, A > 0) if for 
w\,W2 G B, wi(t) = W2(t) for 0 < t < A =$■ {wiAw2 G 
B) 3. Where: 

(tui Aw2 '(*) = { Wl(t) 
w2(t) 

for   t<0 
for   t > 0 (1) 

If A = 0, the dynamical system is memoryless; if 
A = 1 (in discrete time) the system is Markovian. 
Therefore, for a system with a finite memory span, 
the past is independent of the future. E is A com- 
plete (A G T, A > 0) if {w G B} O {(<r*iu)|[o A] € 
B\mWt G T}. 

Dynamical systems with latent variables and in- 
put/output dynamical systems can be defined in an 
analogous fashion as before. One method of repre- 
senting latent variables is through state variables. A 
state-space dynamical system is defined as a dynam- 
ical system with latent variables, £; = (T, W, X, Bs) 
with X C L, such that the full behavior Bs G W x X 
satisfies the axiom of state. In this case the latent vari- 
ables, the states, contain sufficient information about 
the past so as to determine future autonomous behav- 
ior. The behavioral equations such as difference or 
differential equations, lead to representations of dy- 
namical systems. 

3.2     Representations 

The model of the dynamical system is defined by 
the behavior that it allows. The behavior can be de- 
fined by a set of inequalities or equations. The struc- 
ture of the equations is a representation of the model. 

A representation that is only a function of current 
and past signals (outputs) and is called an autore- 
gressive (AR) representation and can be written as 
R(a L   „-1 0. Where 

R(aL,a--') = RLsL+RL_1s
L-1 + ...+Rl+1s'+1+R1s' 

(2) 

Here A denotes concatenation 



If the system that we are trying to model suggests 
latent variables to describe the behavior, the autore- 
gressive representation can be expanded to include a 
moving average part of the past latent variables re- 
sulting in an autoregressive-moving-average (ARMA) 
representation. In this case, the behavioral difference 
equations relate the time-series of the manifest vari- 
ables w : Z —> Rq to the time-series of the latent 
variables x : Z —► Rq. With appropriate definitions, 
the ARMA system is defined as: 

R(aL,a-')w = M(aL,a~')a (3) 

An important class of ARMA systems are those where 
R(s,s~1) = I. This yields a moving average (MA) 
representation: w = M(<r,cr~1)x 

We can combine the above constructs to define a 
class of models with all of the advantages of complete- 
ness - described by the difference equation; state form 
- the memory is displayed through the latent vari- 
ables; and nonanticipating input-output - an explicit 
cause and effect structure. This representation is an 
input/state/output representation and is the model 
class most amenable to analysis, synthesis and simu- 
lation. 

3.3     Controllability, 
Identifiability 

Observability,    and 

In a controllable system, the past trajectory does 
not have a lasting influence on the far future. Sooner 
or later any other trajectory within the controllable 
subspace can be attained [12]. All dynamical sys- 
tems are not controllable. In an autonomous system, 
the past trajectory determines its future completely. 
Consequently, the lack of controllability implies pre- 
dictability. As we develop the capability to better un- 
derstand and control our environments, our ability to 
predict that environment can suffer. We are limited 
in our ability to predict by our ability to observe. 

Observability is the ability to reconstruct the tra- 
jectory of latent variables from the manifest set [13]. 
While controllability is intrinsic to the dynamic sys- 
tem, observability is also a function of the represen- 
tation of that system. This comes about because ob- 
servability is only an issue for dynamical system model 
representations that have latent variables (by defini- 
tion if the variable is a manifest variable it is observed) 
and is a property where an unobserved signal can be 
deduced from one which is observed. 

Identifiability relates to the ability to reconstruct 
the dynamical laws of the system from a given set 
of measurements [14]. There are several obstructions 
to identifiability. Feedback makes it difficult to sepa- 
rate system dynamics from the dynamics of feedback. 

Structured inputs can interfere with the structure of 
the behavior. The failure of the input to excite all of 
the modes will prevent observation (and subsequent 
identification) of the unexcited modes. And finally, 
over parameterization can result in dependencies that 
cause gradients to become singular preventing identi- 
fication of the system. 

Any persistently exciting unstructured input will 
be sufficiently rich to observe a controllable system. 
Structured inputs will allow observation and identi- 
fication if the AR relations defining the structure of 
the input have large lags that do not interfere with 
the structure of the system. In other words: if the 
structure of the input is not seen by the system [5]. 

In order to identify a portion of a system, we must 
be able to observe the response. Observability spec- 
ifies the ability to determine the trajectory of latent 
variables from the manifest set. Since controllabil- 
ity allows an MA representation, and any control- 
lable MA representation can be converted into an AR 
representation by increasing the lag, complete con- 
trollability implies observability. Lack of controlla- 
bility, however, does not imply lack of observability 
[15]. For systems that can be reduced to an AR- 
representation, Ri(aL,cr~')wi + R2(<T

L,a~')w2 = 0 
with Ä![(7

L
,«T-'] G R3Xqi[<TL,a-'] and R2[aL,a-'] £ 

Rgxg2[(TL,a~l] then u>2 is observable from w\ if and 
only if the rank of the matrix R2(&L, c-') is equal to 
g2V<r £ 0. 

This is why inverse modeling or system identifica- 
tion is thought to be difficult - the system and our 
selection of a representation is critical in that it con- 
strains the behaviors of the model, affects our abil- 
ity to observe latent variables, impacts our ability to 
represent the outcomes U and defines our ability to 
identify the underlying processes. 

3.4    Discrete-Event Systems (DES) 

The above framework is consistent with the for- 
malized discrete-event systems in theoretical computer 
science. The behavior is similar to the formal lan- 
guage; a state-space system is like an automation; la- 
tent variables are replaced by production rules; inter- 
connections are communications. The most significant 
difference is the lack of behavioral models (equations) 
in the theory of DES. Also completeness is usually vi- 
olated in a DES by initiation and termination rules 
for event strings. 

Since the DES is not complete, representation of 
these systems requires special consideration. We will 
see in Section 4 that completeness is required to rep- 
resent a dynamical system by a behavioral difference 
equation. Results for representation of complete sys- 



tems may be generalized to a class of noncomplete sys- 
tems (including DES) that meet specific restrictions. 

The linear time-invariant dynamical system, 
(Z, Rq, B), is called an /2-system if B is a linear shift- 
invariant closed subspace of l2(Z;Rq). Define BP

C
 as 

the closure of B with respect to the topology of point- 
wise convergence. This corresponds to finite dimen- 
sionality. With these definitions, results for complete 
systems may be generalized to /2-systems satisfying 
B = B~^[\l2(Z;RßY. 

4    Metamodeling Issues 

With a framework established to characterize sys- 
tem models, we now address the key issue of the in- 
verse modeling problem: "What properties of the be- 
havior allow the system to be represented by a differ- 
ence (or differential) equation of a particular type?" 
Analysis of these properties will result in rules and 
constraints for the setup and design of metamodels. 
Since we are no longer fitting data but identifying sys- 
tems, the data used to identify the system must meet 
certain prescriptions. Explanation and proof of the 
following statements can be found in [5]. 

1. To represent a system by means of a difference 
equation it has to be complete (it cannot have ini- 
tialization or termination conditions at t = ±00) 
with a finite memory span so that observation of 
a trajectory on a finite time interval allows con- 
clusions about past behavior independent of what 
will happen in the future. 

2. For a system to be described by AR-equations it 
must be linear, complete and time invariant. 

3. Since a dynamical system containing latent vari- 
ables can be converted into an AR representation 
with an increase in the lag, representation of a 
dynamical system with latent variables must also 
be linear, complete and time invariant. 

4. If the dynamical system is controllable (if it is 
possible to eventually steer the system to a de- 
sired trajectory) then the system will also allow 
an MA representation. 

5. An input-output dynamical representation can 
be defined if, and only if, it can be de- 
scribed by an AR-system of behavioral equa- 
tions P(a,a~1)y = Q(a,a~1)u with P(s,s~1) £ 
RP

XI
'[S,S-

1
], Q^.s-1) e AP*"*!«,«"1] and det 

P^O. 

See [10] and [11] for definitions of lp spaces. 

6. The input-output dynamical representation will 
be nonanticipating if and only if 
P'^s^-^Qis^-1) £ RP*m(s) is a matrix of 
proper rational functions. 

7. The manifest behavior of the state variable (an 
ARMA) representation will belong to Lq. Con- 
sequently every system X £ Lq admits a finite- 
dimensional state representation, allows a com- 
ponentwise I/O representation and admits an In- 
put/State/Output representation. 

4.1     Metamodeling Simulations 

In this paper we consider inverse modeling and con- 
centrate on the metamodel sets and rules to determine 
the best model. 

With respect to metamodeling simulations, the sys- 
tems we are trying to identify are complex, nonlinear 
and time-varying. They can be continuous, discrete, 
sampled-data (continuous systems with discrete mea- 
surements) or discrete event systems. In general, for 
these cases, the predictor function is a nonlinear func- 
tion of past observations and there are too many pos- 
sibilities for unstructured "black box" models. Knowl- 
edge of the nonlinearities must be built into the model 
[16]. 

Care must be taken in the setup of the Metamod- 
eling problem. The experimental design must provide 
input-output sequences that correctly represent the 
system structure. When the metamodel is determined, 
it is not possible to ask "What is the probability that 
a particular set of fitted parameters is correct?" be- 
cause there is no statistical universe of models from 
which the correct one is chosen. There is just one 
model and a statistical universe of data sets that are 
drawn from it. It is possible, however, to ask "Given 
a particular set of parameters, what is the probability 
that this data set could have occurred?" We can iden- 
tify the probability of the data given the parameters 
as the likelihood of the parameters given the data [17]. 

Fortunately, in our case we have explicit knowledge 
of the nature and characteristics of the high fidelity 
system. We have the model (the simulation) that ap- 
plied the system to the inputs to generate the out- 
puts we are interested in. Given this information we 
can build the nonlinearities into the structure of the 
metamodel and provide the capability to generate a 
reduced order approximation of the original model. 
This fact makes metamodeling as a method of model 
abstraction feasible. We exploit this fact to the fullest 
extent possible. 

In addition to knowledge of the nonlinearities, other 
requirements must be met to allow representation of 



the system by a finite dimensional, reduced order ap- 
proximation: the system must be complete; the axiom 
of state must apply; and the output must be nonan- 
ticipating. 

Simulations are usually defined to represent real- 
world events that have a beginning and an end. Given 
that the simulation terminates naturally, results for 
complete systems can be applied since the system be- 
havior is restricted to a finite dimensional sequence. 

In general the axiom of state applies because the 
simulation is set up in such a way that the initial con- 
ditions contain sufficient information about the past 
so as to determine future autonomous behavior. 

Also the presence of input and output files indi- 
cates that an input-output structure with causality is 
assumed in the model represented by the simulation. 

In summary, assuming that the underlying system 
modeled by the simulation is well behaved, (Marko- 
vian, complete with respect to the modeled behavior) 
the following is required to metamodel simulations: 

1. The data must include the behavior we are trying 
to model [18]. 

2. The latent variables that define the behavior must 
be observable [16]. 

3. The input must be persistently exciting so that 
the effects of the latent variables are observed [19]. 

4. For a stochastic system, the ensemble of trajecto- 
ries must span the space [20]. 

5. Any single trajectory must span both the input 
and output space and be sufficiently long so that 
the state transition probabilities also span the al- 
lowable probability space and the distribution of 
these probabilities are the same as the underlying 
system [16]. 

4.2     Metamodeling Limitations 

In addition to the problem setup and experimental 
design, the metamodel solution comes with limits of its 
own. Using the space spanned by the original model as 
the full order model, the metamodel is a reduced order 
approximation. This reduction inherently limits the 
span of the manifest (exogenous) variables associated 
with the behavior (input or output - if such a map 
exists). Consequently, the behaviors allowed by the 
metamodel will exist within a subspace of the original 
model. 

Assuming that an input-output map exists for the 
model, input values will be restricted to a domain 
within which the metamodel will be applicable. Out- 
side of this hypersurface, application of the metamodel 
may provide numbers but will not generate an output 

that is representative of the modeled system. Also, 
assuming appropriate inputs, the output of the meta- 
model can only be guaranteed to be approximately 
correct. As a projection, the metamodel will not con- 
tain all of the detail of the original model. There are 
output error bounds that are a function of both the 
metamodel and the input. 

4.3 Representing Discrete Event Systems 

The discussion above introduced the issues associ- 
ated with Discrete Event Systems. Most of system 
identification is formulated on continuous, discrete or 
continuous-discrete dynamical systems. Many of the 
simulations are discrete event or connected discrete- 
event dynamical systems. The question arises: "When 
can a DES be described by a difference equation?" 

Since completeness is usually violated this im- 
pact must be expressly considered. If a linear time- 
invariant system is not complete then whether or not 
w : Z —>• Rq belongs to the behavior depends on w(t) 
at ±oo. However, results for complete systems can be 
generalized if the system behavior is restricted to a 
finite dimensional sequence. From Section 3.4, every 
behavior B 6 Lq allows an AR representation. De- 
fine a DES as a time-invariant system E = (Z, W, B) 
with W a finite set. A DES is internally finite if it 
can be realized by a finite automation and/or if there 
exists a state-space representation of it with a finite- 
state space. An internally finite and complete DES 
£ = (Z, W, B) can be described by a behavioral dif- 
ference equation /o ((TLw, <T

L
~

1
W, ..., a'w, w) = 0 for 

some L G Z and some / : WL+1 -» {0,1}. 

4.4 Existence of a true Input-Output Re- 
lationship 

Assume that we have observed the input and out- 
put of a system and computed a set of linear differen- 
tial and/or algebraic equations from this data. Have 
we identified the system? Do these equations estab- 
lish a true input-output relationship suggested by this 
identification? For linear systems, answers to these 
questions are provided by two sequences of subspaces, 
one in the input space u and the other in the output 
space y [21]. 

Consider a system of linear ordinary differential and 
algebraic equations with constant coefficients: A{a)£+ 
B{a)u + C(a)y = 0 where (<r) denotes differentiation 
(or the shift operator for discrete time systems) and £ 
contains all of the latent variables not present in the 
input and output spaces. A(s), B(s), and C(s) are 
polynomial matrices. 



We say that y processes u if the linear space of tra- 
jectories {y\(y, 0) e B) is finite dimensional. There- 
fore, y processes u if u determines y up to a finite 
number of constants. Also u is free if for every trajec- 
tory u there exists a trajectory y such that (y, u) £ B. 

Recall that if the dynamical system with latent 
variables E; = (Z,Rq,Rd,Bi) is linear time invari- 
ant and complete, the manifest system which it rep- 
resents E = (Z,Rq,B) is also linear time invariant 
and complete. Consequently, for a linear time in- 
variant and complete system, any behavior given by 
A(a)£ + B(a)u + C(a)y = 0 can also be represented 
by: 

B = [Äi(ff) R2(<r)] = 0 (4) 

The behavior of such a set of equations stems from 
an input-output system if both conditions of the fol- 
lowing proposition hold. 

Proposition 1 Let a behavior B be given by equation 
4- where [Ri(a) Ä2(o")] is a polynomial matrix of full 
row rank.  The following statements hold: 

1. y processes u if and only if Ri(s) has full column 
rank. 

2. u is free if and only if, Ri(s) has full row rank. 
Therefore, Ri(s) must be invertable and the trans- 

fer matrix of the system is defined by T(s) = 
-R^(s)R2(s). 

Consequently once the identification is accom- 
plished, the subspaces generated by the system (equa- 
tion 4) can be checked to determine if a true input- 
output relationship has been found (Refer to [21] for 
additional detail). 

5     General Approach 

Thus far we have presented the new approach to 
addressing metamodeling problems and a framework 
for applying that approach. We now discuss a struc- 
tured method for implementing the framework that 
is based on a new taxonomy of metamodel sets and 
identification methods. 

The development of this method began with the 
following metamodeling procedure presented in [1]: 

1. Determine the purpose of the metamodel. 
2. Identify the response. 
3. Identify important response characteristics. 
4. Identify input factors. 
5. Identify important input characteristics. 
6. Specify the experimental region. 

7. Select validity measures. 
8. Specify required validity. 
9. Postulate a metamodel based on: 

Input - Output response characteristics. 
Experimental region dimensions. 
Required validity. 

10. Select an experimental design. 
11. Obtain data. 
12. Fit the metamodel. 
13. Assess the validity of the model. 

This procedure was primarily based on the use of 
least squares to realize the metamodel. When applied 
to our new framework this procedure, especially "Step 
9: Postulate a metamodel," resulted in too many com- 
plex decisions involving: a priori knowledge; the data; 
possible metamodel sets; and rules to determine the 
best model set to realize the data. 

In order to categorize metamodeling problems and 
their solutions in a manner that would allow the sep- 
aration of the metamodeling process into a set of se- 
quential decisions based on a priori information each 
of these areas were analyzed to derive a taxonomy that 
would support a structured metamodeling procedure. 

The first eight steps of the metamodeling proce- 
dure provide the prior knowledge or metamodel re- 
quirements that define the problem. The remaining 
steps define the experimental setup, the model set, the 
method of identification and validity measures used to 
develop and verify the metamodel. This fact was used 
to separate the procedure into two general areas. The 
first eight became the foundation for the problem def- 
inition; the remaining steps were grouped as iterative 
steps in the metamodeling process shown in Figure 1. 

PROBLEM DEFINITION 

EXPERIMENTAL DESIGN 

+ 
RUN SIMULATKJN 

1 
+ 

COLLECT 
DATA 

SELECT METAMODEL SET 

1, SELECT IDENTIFICATION 
METHODOLOGY 

■ 

Figure 1: Iterative Metamodeling Process 

In this process "Step 9: Postulate a metamodel" 
was decomposed into the two steps "Select a Meta- 
model Set" and "Select Identification Methodology." 
Both of these steps are a function of both the problem 
definition and the data generated by the simulation. 



"Step 10" was directly incorporated in the struc- 
tured method. Procedures for defining the experimen- 
tal design, for pretreatment of the data and for the 
verification processes are covered in references such as 
[16, 22, 23] and are further discussed in [24]. 

"Step 11; Obtain Data" is addressed by the two 
steps in the revised process: "Run the Simulation" and 
"Collect Data." These steps are purely mechanical in 
nature and are not discussed further. 

We now present the key steps of the structured 
metamodeling method: "Problem Definition," Section 
6; "Selection of the Metamodel Set," Section 7; "Se- 
lection of the Identification Methodology," Section 8; 
and "Generate the Metamodel," Section 9. 

6    Problem Definition 

We define a metamodeling problem as the direct 
sum of the metamodel requirements and the model 
(simulation). This means that the same simulation 
could be part of two different metamodeling prob- 
lems if the requirements were different. Conversely 
the same set of requirements applied to two differ- 
ent (nonsimilar) simulations also leads to two different 
metamodeling problems. 

Consequently, to define the problem we must con- 
sider both elements of the direct sum - the purpose of 
the metamodel and the simulation characteristics. 

6.1     Metamodel Purpose 

As mathematical relationships metamodels can be 
developed to support two general purposes: (1) Anal- 
ysis; or (2) Hierarchical simulation. 

First, a metamodel can be used for analysis. In this 
case the metamodel becomes an independent structure 
that is used to understand and extract information 
from the model. Table 1 depicts the scope and uses of 
analytical metamodels. 

Table 1: Scope and Uses of Analytical Metamodels. 

Table 2: Scope and Uses of Simulation Metamodels. 

Scope 

Uses 

Approximate an Unknown Response 

Model a Simulated Process 

Sensitivity Analysis 
Estimation of Existing States 
Predict and Control Future Responses 
Optimize Expected Performance 
Diagnosis of Faults 

Scope 

Uses 

Develop Atomic Simulation Components 

Build Coupled Simulation Components 

Execution Speed 
Maintainability / Configuration Control 
Verification, Validation, and Accreditation 

Secondly, a metamodel can be used to support hier- 
archical simulation and model reuse (Table 2). In this 
case the metamodel is used in conjunction with (cou- 
pled to) other simulations or simulation elements to 
answer larger questions that are not supported within 
the structure of the modeled simulation. This pur- 
pose supports simulation based on a hierarchical rep- 
resentation. Using metamodels for this purpose is a 
two-step process. First a metamodel of a simulation 
(or component) is generated to develop more abstract 
simulation model. Once developed, interface modules 
can be used to couple these metamodels to other sim- 
ulations or metamodels to represent a more complex 
system. 

The selection of scope and use defines the meta- 
model purpose and provides clear boundary conditions 
for follow-on selections in Steps 2 through 8 which are 
also part of Problem Definition. 

6.2     Simulation Characteristics 

We have discussed the purpose of the metamodel. 
Since all of the remaining problem definition decisions 
are a function (direct sum) of both the metamodel 
requirements and the simulation that is to be mod- 
eled, we concentrate on the aggregate space of simula- 
tion characteristics. Research has suggested that both 
a general (external) description of the simulation or 
model as well as further detail on the (internal) pro- 
cess structure of the internal components is required 
(Refer to [3, 4]). 

The classification defined by the "SIMTAX, A Tax- 
onomy for Warfare Simulation" was completely ade- 
quate for the external description. This taxonomy was 
developed by the Military Operational Research Soci- 
ety (MORS) and addresses three equally important 
relational dimensions: the purpose, the qualities and 
the construction of the model or simulation [25]. It 
is a descriptive framework designed to guide the de- 
velopment, acquisition and use of warfare models and 
provides the basis for classifying objects for identifica- 
tion, retrieval and research purposes. 



Selection of a metamodel set requires detailed in- 
formation not contained in the simulation and model 
catalogues. Recall that our new approach and frame- 
work concentrates on the behavior of the underlying 
system that defined the process. The metamodel rep- 
resentation of the simulation is realized by the param- 
eterization of the selected metamodel set. The perfor- 
mance of the metamodel is directly correlated to the 
match between the behavior of the underlying system 
and the metamodel set. To provide a link between the 
simulation behavior as described by the more general 
taxonomy outlined above and specific metamodel sets 
a more detailed internal taxonomy was appended to 
the SIMTAX. The purpose of this additional detail is 
to link the behavior (of the simulation) and the rep- 
resentation (of the metamodel) and uses system theo- 
retic definitions common to control engineering. 

Figure 2 depicts the model of a continuous system 
with a sampled measurement. In development of a 
metamodel we try to isolate and identify each of the 
individual elements in this model. Consequently we 
must be able to characterize the type of processing 
that takes place in each of the blocks. 

v(ti) 

X    *<!!> ^^!^55*J*Q3^^ 
L-o<J 

Figure 2: System Model. 

To explain this concept, we will consider the model 
of an aircraft. The input, u(t), is the pilot or au- 
topilot command. In modern aircraft this would be 
a desired acceleration ("g") or angle of attack ("a"). 
In older aircraft it would be something closer to the 
flight control surface such as the torque necessary to 
hold the control surface in a given position. This in- 
put is acted on by B(t) to provide the input expected 
by the plant. In an inertial frame it could be the force 
applied. In a more complicated model it could be the 
control surface deflection. Another input path accepts 
input disturbances w(t) (e.g. turbulence). The plant, 
represented by F(t), is the model of the physical sys- 
tem. In the case of the aircraft, it could be some- 
thing as simple as F = ma (if the simulation was 
completely defined in an inertial frame) or it could be 
the body axis stability derivatives that make up the 
coefficients in the equations of motion [26]. The noise 
corrupted output, z(ti), is the measurement available. 

The instrumentation system that performs these mea- 
surements is represented by H(t). The aircraft would 
have accelerometers or an inertial system that mea- 
sures the body axis accelerations or inertial position 
and attitude. The combination of all of these blocks 
represents a single entity in a simulation. 

Formulating the metamodeling problem with this 
additional detail is important for two reasons. First, 
each of these blocks may be represented by a separable 
process and it is usually not possible to simultaneously 
identify more than one process. 

If we try to simultaneously identify two processes 
and the processes are independent, a rank deficiency in 
the uncoupled equations causes numerical difficulties. 
If the processes are dependent, behaviors associated 
with both processes will be combined preventing the 
identification of either. 

If one is successful in simultaneously identifying 
multiple process, performance of the resulting meta- 
model is usually poor. Unless the model set and or- 
der accurately accommodates both systems, the min- 
imization process used for identification will generate 
a system of equations that represents the combined 
behaviors within allowable tolerances but represents 
neither system well. 

Returning to the internal taxonomy, categories and 
selections for these categories that were used to pro- 
vide the additional detail on the internal structure are 
shown in Table 3 and are described below. 

Basis. This is the fundamental basis of the sim- 
ulation. The simulation will model either a physical 
phenomenon or will model events that simulate human 
or system interactions with its environment. Simula- 
tions that are a combination of the two, default to 
event based (the more complex of the two basis). 

System, Input, and Output Processing. This con- 
cerns the plant or system that is modeled. It covers 
the algebraic structure (Linear or Nonlinear) and real- 
izations (Stochastic or Deterministic) used to process 
the inputs, describe the plant and the method of gen- 
erating the observed output. Each of these elements 
is considered independently. 

Result/Trajectory. The output of the simulation 
can be a single trajectory that maps a series of events 
or it can be a result that is incorporated into a statisti- 
cal database to determine probabilities of occurrences. 

Level. This describes the class of the system and 
the types of representations that can be used. SISO 
is single-input single-output system. A MISO system 
has multiple inputs but still a single output. A MIMO 
system is the most complex with multiple inputs and 
multiple outputs. 

Process description. In a "Complex" simulation 
there are inputs to more than one separable process 
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Table 3: Internal Processing Description. 

Basis 
Physics based 

Event based 

System 

Inputs 

Outputs 

Linear 

Nonlinear 

Stochastic 

Deterministic 

Result/Trajectory 
Functional 

Statistical base 

Level 
SISO 
MISO 
MIMO 

Process description 
Complex 
Simple 
Coupled 

Interval 
Continuous time 
Discrete time 
Continuous - discrete time 
Discrete-event 

(system). In a "Simple" simulation there are inputs 
to only one process (system). There is no additional 
influence on the system (other than predefined param- 
eters). In a "Coupled" simulation there are inputs 
to only one process (system) but there are additional 
non-deterministic impacts on the output. 

Interval. There are three ways that a dynamical 
system can evolve in time. It may be continuous (ana- 
log), discrete or it can be discrete-event. Also there 
are two options for measuring (sampling) the output of 
a continuous system. It may be sampled continuously 
or discretely (at specific time intervals). 

6.3     Problem Definition Summary 

At this point, we have determined the purpose of 
the metamodel. In the definition of this purpose we 
have identified the input and response that we are in- 
terested in and determined the important character- 
istics of these data. Also for this purpose, we have 
defined the region of interest, selected validity mea- 
sures and specified the required validity. 

In addition we have characterized the simulation 
that were are trying to model. In keeping with our new 
approach, we have not addressed the representation of 
the metamodel or assumptions that will be made in 
it's realization. However, data generated by this step 
provides a clear statement of the metamodel purpose 

and the characteristics of the simulation that will be 
modeled. As will be seen in the next section, this data 
directly matches the decisions that must be made in 
the selection of the model set. 

7    Selection of the Metamodel Set 

Now we discuss decisions associated with "Select a 
Metamodel Set." The completion of this step requires 
a number of interrelated selections. So many options 
are available that the combination of model selection, 
error criterion, identification technique, and numerical 
methods leads to an overwhelming myriad of "identi- 
fication methods." 

In fact there seem to be as many system identifica- 
tion methods as there are inverse problems. Many spe- 
cific identification and statistical methods have been 
developed to accommodate the differences in model 
structures, data length, measurement error statistics, 
etc. Also, the literature contains considerable discus- 
sion on particular methods with very little discussion 
on the relationship of these techniques to each other 
or to a general methodology. The result is a confusing 
array of unconnected methods with little or no guid- 
ance on the application of the techniques to general 
classes of problems. 

Since we are looking for procedures to handle gen- 
eral metamodeling problems, we discuss these meth- 
ods as elements of a more general structure and have 
reduced these selections to four (including Selection 
of the Identification Methodology - Section 8 ) that 
best match the characterization of the simulation to 
the behavior allowed by the metamodel set. 

In reality all "real world" systems are complex, 
large scale interconnections of continuous-discrete, 
nonlinear, infinite-dimensional components. We will 
approximate these systems with lumped parameter, 
parametric, finite dimensional models that can be 
grouped into sets. 

A metamodel set is defined by the system descrip- 
tion, system class and metamodel structure (represen- 
tation). For any given problem, multiple model sets 
are available. In each of these model sets a most pow- 
erful unfalsified model 5 will exist (given that the re- 
quirements of Section 4 are met) [5]. Consequently the 
performance of the metamodel will be limited by the 
match between the metamodel set and actual system 
that generated the behavior. 

7.1     System Description 

In the definition of the system description, the first 
selection concerns the system type that will define the 
allowed behavior of the models. Here the most basic 

5Defmed in Section 9. 
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Table 4: System Description. 
Selection Options 

Type 
Static 
Dynamic - Time Invariant 
Dynamic - Time Varying 

Algebraic 
Structure 

Linear 
Nonlinear 

Randomness 
Stochastic 

Deterministic 

Time 
Continuous time 
Discrete time 
Continuous - discrete time 
Discrete-event 

Table 5: System Classes and Representations. 
MODEL CLASS FORMS OF THE 

REPRESENTATION 
SISO 
MISO 
MIMO 

Polynomial 
Matrix Fraction 
State Space 

questions must be addressed. How are the parame- 
ters described? Is the representation going to include 
dynamics or will it be static? Will the model contain 
latent variables? If it is dynamic, is it time invariant 
or time varying? 

Is the algebraic structure linear or nonlinear? 
Are disturbances, noise and randomness accommo- 
dated? Is the system defined as continuous, discrete, 
continuous-discrete or as a discrete-event system? Ta- 
ble 4 outlines the possible selections that define the 
system description. Note that while both static and 
dynamical models can both accommodate nonlinear 
and stochastic behavior, only dynamical systems have 
time and trajectories associated with them. 

7.2 System Class 

In addition to the system description, the class of 
the representation is also needed to define the overall 
model set. This class is defined by the interaction of 
the variables and the representation. Table 5 provides 
a list of the general system classes and the possible 
form of the representations [19, 20]. 

Comparing Tables 4 and 5 with Table 3 we see that 
the characteristics of the behavior we are modeling 
define the first two elements of the metamodel set: 
the system description and the system class. 

7.3 Metamodel Structure 

Once a system description and class that match the 
underlying behavior have been selected, the next de- 

cision is selection of the model structure to use in de- 
scribing the response of the system to the inputs (pos- 
sibly including latent variables). A metamodel struc- 
ture M is defined as a differentiable mapping from a 
connected open subset Dm of Rd to a metamodel set 
M(0), such that the gradients of the predictor func- 
tions are stable. In this definition 6 is the vector used 
to parameterize the model and Dm is the values over 
which 9 may range in the metamodel set M(6). There 
are many metamodel structures available and this area 
generates much of the complexity in system identifi- 
cation. 

We simplify this decision by defining two general 
model structures; predictor models and probabilistic 
models. A predictor model only defines the predictor 
equation(s). These models specify the elements of the 
transfer function in terms of some parameter set. The 
models generated from these structures are determin- 
istic in nature. 6 

A probabilistic model accommodates the fact that 
many systems are subject to known disturbances that 
are not (or cannot be) completely categorized. The 
statistics of the noise and disturbances are included 
as random variables. Probabilistic models supplement 
the parametric description with a description of the 
density function (or moments) of the noise (distur- 
bance) that acts on the system. The variables of the 
system being identified become functions of random 
variables. In these situations different realizations of 
an experiment (simulation run) may not produce ex- 
actly the same results. Consequently the output of a 
probabilistic model is the conditional expected value 
and the joint or conditional probability density func- 
tions (JPDF or CPDF) of the variables. 

The following two subsections discuss these two 
model structures. Since all models are not appropri- 
ate for every system description and class the available 
selections are dependent on the description and class 
we have selected. 

7.3.1     Predictor Models 
The selection of the metamodel structure should 
match the system description. Since predictor models 
are used for deterministic systems we provide models 
that match the type and algebraic structure shown in 
Table 4. 
Static. Static systems can be either linear or non- 
linear. The predictor equations for static models are 

6 Predictor models do allow for the prediction or measure- 
ment error. And since the coefficients were generated via a 
minimization of some error criterion with assumed statistics, 
the coefficients will be random variables with an error distribu- 
tion. Since the estimates are functions of these random vari- 
ables, this distribution can be used to compute error bounds of 
the estimate. 
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the actual input-output map that comes from the se- 
lected representation and are similar to those repre- 
senting dynamical systems. Also static models can be 
set up using dynamical model structures with a zero 
state transition. 
Dynamic. For dynamic systems, we use the model 
structure to predict the output of the model. The dif- 
ferences between this prediction and the actual data 
are then used to arrive at the parameter set which 
minimizes the error. As the complexity of the system 
description increases, the flexibility in the selection 
of the representation (polynomial, matrix fraction de- 
scription, state space) decreases. 

We will consider three types of dynamic models: 
linear time-invariant, linear time-varying and nonlin- 
ear. To save space, discrete realizations are presented. 
However, continuous realizations can also be used. All 
nonlinear systems will be assumed to be Markov. 

Linear Time-Invariant Predictor Models. 
There are a number of ways of defining the trans- 
fer function (input-output map) associated with linear 
time-invariant predictor models. First, the numerator 
and denominator polynomials of the transfer function 
can be given explicitly in either discrete or continu- 
ous time. This polynomial transfer function can also 
be converted into a frequency function that gives the 
frequency response of the input-output map. Finally, 
the transfer function can also be defined by the zeros 
and poles of the model. These descriptions are most 
appropriate for SISO systems. [27] 

MISO systems are best represented by a state space 
or polynomial format that explicitly defines the coef- 
ficients of each of the input and output terms. 

Our general linear metamodel structure is: 

y(ti) = G(q)u(ti) + H(q)e(ti) (5) 

where yiti) is the output, u(t{) is the input, and e(tj) 
is the error. G(q) is the transfer function between the 
input and output, while H(q) is the transfer function 
between the error term and the output. Here g_1 is the 
backward shift operator so that q~1u(t{) = u(2;_i). 
As a result the polynomials have the form G(q) = 
1 + ffi?-1+ ••• + »„,?-"'■ 

From this general model, we can define a SISO or 
MISO model structure as: 

M<i)y(ti)=IMu(ti) + ^\e(ti) F{q)-""'  •   D(qy" (6) 

The predictor for this general polynomial structure is: 

D(q)A(q) mo) = %£M«u)+ 1 
C(q) 

y{u) (7) 
C(q)F(q) 

where each of the polynomials are a function of the pa- 
rameter set 6. Latent variables (that are not past val- 
ues of the input or output) can also be defined in the 

polynomial format by augmenting the input-output 
relationships to include the additional variables. 

Now consider the situation where the input is a m- 
dimensional vector, and the output is a p-dimensional 
vector - a multiple-input-multiple-output (MIMO) 
system. In this case, the term j4|j has no meaning. 
While a matrix fraction description (MFD) or state 
space representation can be used, MIMO systems are 
most amenable to the state space format. (See [14, 28] 
for a discussion of MFDs) This format also has the 
most flexibility in defining the relationship to latent 
variables. In this (discrete) description we add the 
state variable x(ti) that is propagated forward in time 
by: 

x(ti+1\9) = A(6)x(ti,6) + B{9)u(U) (8) 

and the measurement equation: 

y{ti\9) = C(6)x(ti,9) + D(9)u(ti) (9) 

that provides the output. 
One of the most flexible state space predictor mod- 

els is the directly parameterized innovations form. 
Based on the classical steady state Kaiman filter, this 
model accommodates the fact that measurement and 
process noise are present but does not require knowl- 
edge of the disturbance properties. This is accom- 
plished by parameterizing and identifying the Kaiman 
Gain instead of the process and noise descriptions: 7 

x(ti+u9) = A(9)x(ti,9) + B(9)u(ti) + K{9) [e(t,-)] 
(10) 

Relating this to the general model structure given 
above we see that: 

G(q,9)    =   C(9)[qI-A(9)]-1B(9) (11) 

H{q,9)    =    C(9)[qI-A(9)]-1K(9)+I   (12) 

Linear time-varying models. Linear time- 
varying systems are restricted to weighting function 
and state space forms. Predictor metamodels for use 
with a weighting function have the same form as meta- 
models used for time-invariant systems except that the 
weighting function is time varying. Time-varying state 
space models are similar to the time-invariant state 
models with the exception of the time index on the 
coefficients [16]. 

Nonlinear Models. With respect to general dy- 
namical nonlinear models the situation is far too flex- 
ible. The output may be a function of all of the past 
inputs and outputs yet we are going to represent this 
system with a finite number of parameters.   Usually 

7The error e(U\6) = y(t,) - C(0)x(t;,0). 
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considerable insight is required to effectively use a non- 
linear model type. 

Systems with linear dynamics and static input 
nonlinearities can be handled by redefining input of 
the system to exclude this nonlinearity (Hammerstein 
model). With this new definition the system can be 
identified by a linear model. Another powerful pro- 
cedure for developing a nonlinear model (given the 
required insight into the problem) is to build the non- 
linear model as a nonlinear combination of linear sys- 
tems (e.g. use the output of a linear system as the 
input to another linear system). 

Nonlinear systems (that are not approximated by 
linearization, perturbation, or combination) are re- 
stricted either to a pseudolinear form or state space 
descriptions. We define the pseudolinear form as 
y(ti\9) — 9T(j>(ti) where 6T is the vector of unknown 
coefficients and <j)(ti) contains the nonlinear combi- 
nations (functions) of the input data. Although the 
structure looks static dynamics can be included in the 
pseudolinear model by including nonlinear combina- 
tions of past data. 

If we want to explicitly consider system dynamics 
for nonlinear predictor models there is only one option: 
a nonlinear state space or a simulation model. (Note: 
Nonlinear state space and simulation models are not 
the same for Probabilistic models where disturbances 
are explicitly considered.) The nonlinear state space 
model is defined as: 

x(ti+1\0)    =    f(t,x(ti),u(ti),6) 

y(ti\6)    =    h(t,x(ti),u(ti),e) 

(13) 

7.3.2     Probabilistic Models 
Models for probabilistic descriptions will be limited 
to the state space form. While transfer function and 
matrix fraction descriptions are limited to linear time- 
invariant systems, a state space system does not share 
this restriction. This form also allows the combination 
of a continuous system with discrete measurements 
(a sampled-data system) to more closely match real 
systems. 

We cover four types of probabilistic models. The 
first type of model is a linear stochastic model devel- 
oped by assuming a white noise approximation. The 
second model is a general nonlinear stochastic model. 
The third type is a linear Ito stochastic model based 
on the correct description of the noise as Brownian 
motion with an Ito stochastic description and the fi- 
nal model is a full nonlinear Ito stochastic model. 
Linear Stochastic. Linear stochastic system mod- 
eling results in the following model driven by known 
inputs and white noise w(t) [29]: 

x = F(t)x(t) + G(t)u(t) + L{t)w{t) (14) 

starting from a Gaussian x(t0) with a known mean 
x0 and covariance PQ. Average performance can of- 
ten be described by this simple stochastic differential 
equation sometimes referred to as Langevin's equation 
[30, 31]. 

This model is supported by a discrete (or possibly 
continuous) linear measurement corrupted by additive 
white noise v{ii): 

z(U) = H(ti)x(ti) + v(U) (15) 

The noise processes were assumed independent of 
the initial condition and (at least initially) each other 
with zero mean and correlation kernels given by: 

E{w(t)wT(t + T)}    = =    Q(t)S{r) (16) 

E{w(t)vT(t + r)}    = =    S(t)S(r) (17) 

EHuVitj))  = =    R(ti)6{j (18) 

Since the solution of these systems is a stochastic 
process with many potential realizations, it is best to 
characterize the system by the expected value of its 
moments (mean, variance, etc.) The optimal (mini- 
mum mean square error, unbiased, consistent) predic- 
tor for this system is the classical Kalman-Bucy Filter 
[33]. 

Continuous Time Predictor. The continuous- 
time predictor consists of the following set of equa- 
tions: 

State estimate: 

x{t) = F(t)x(t) + G(t)u(t) + K(t) [z(t) - H(t)x(t)] 

(19) 
Filter gain calculation: 

K(t) = [P(t)HT(t) + L(t)S(t)] R-1        (20) 

Error covariance propagation (Riccati equation): 

P(t)    =    F(t)P(t) + P(t)FT(t) + L(t)Q(t)LT(t) 

-K(t)R(t)KT(t) (21) 

Discrete Time Predictor. The discrete-time 
predictor includes an additional step beyond those re- 
quired for the continuous filter [29, 32, 33]. Given a 
state and covariance estimate with discrete noise pro- 
cesses Qd and Rj, those estimates are first extrapo- 
lated to the next time step (without taking a mea- 
surement). These estimates are represented by time 
(ij~). At the next time step a measurement is taken 
and the estimates are updated. These estimates are 
identified by the time (tf). 

State estimate extrapolation: 

x(t~) = A^i.^xftf^) + 5(ii_i)w(ti_i)        (22) 
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Error covariance extrapolation: 

P(t~) = A(ti.l)P(tf_l)A
T(ti.1) + QäiU.i)    (23) 

Filter gain calculation: 

K(ti) = P(t-)CT(ti)[0(ti)}-1 (24) 

with:      °(*0 = C(U)P(t-)CT(ti) + Rd{U)        (25) 

State estimate update: 

x(tf) = x(tr) + K(U) [z(U) - C(U)x(trj\      (26) 

Error covariance update: 

P(tf) = [I-K(ti)C(ti)]P(t.) (27) 

Steady State Solution. If the system and mea- 
surement dynamics are linear, constant coefficient 
equations and the noise is stationary (Q,R,S not func- 
tions of time), the filtering process will reach a steady 
state where the value of the error covariance, P, is 
constant. For these conditions the Riccati equation 
(equation 21) becomes an algebraic relationship: 

P = FP+ PFT + LQLT - KRKT = 0        (28) 

In this case, the rate at which uncertainty increases is 
just balanced by the new information available. The 
error covariance extrapolation and update and filter 
gain equations are no longer required. The positive 
semidefinite solution of the algebraic Riccati equation 
is used as the error covariance and to calculate the 
constant filter gain. 

The discrete steady state solution error covariance 
extrapolations (equation 23) and filter gain (equation 
24) are calculated from the following two equations: 

K{9)    =    [A(e)P(8)CT(e) + Sd(Ö)] 

[C(9)P(9)CT(9) + Rd(9)}'1     (29) 

Piß) A(9)P(9)AT(9)+Qd(9)- 

[A(9)P(9)CT(9) + Sd(9)] 

[C(9)P(9)CT(9) + Rd(9)}-1 

[A(9)P(9)CT(0) + Sd(9)} (30) 

Nonlinear Stochastic Prediction. If we want 
to explicitly consider system dynamics for nonlinear 
stochastic predictor models there are two options: a 
nonlinear state space model or a simulation model. 
For probabilistic models the nonlinear state space 
model is defined as: 

x(ti+1\9)    =    f(t,x(ti),u(ti),w(ti),9)     (31) 

y(ti\9)    =    h(t,x(ti),u(ti),v(ti),9)      (32) 

A simulation model, not to be confused with a sim- 
ulation as a system description, disregards the process 
noise and simulates y(t\9) by simulating a noise free 
model using actual inputs and w(ti) = i/(t{) = 0. 
Ito Stochastic Prediction. As reasonable as the 
linear stochastic model seemed, it is not completely 
suitable. Although other models may be derived from 
these Langevin type equations, the Markovian descrip- 
tion is typically lost. With this loss, complete knowl- 
edge of the probability density functions is required 
to determine system properties. This information is 
usually not available. 

In the development of the model, w(t) has been 
considered as the derivative of a process with indepen- 
dent, stationary increments. Actually the term w(-, ■) 
is the hypothetical derivative of Brownian motion (or 
the Wiener process). A hypothetical derivative is used 
because the correct solution could not be properly de- 
veloped with ordinary Riemann integrals. 

Linear stochastic differential equations can be prop- 
erly developed through the use of Wiener stochastic 
integrals [29]. Therefore the properly denned linear 
stochastic differential equation is: 

dx(t) = F(t)x(t)dt + B(t)u(t)dt + G(t)dß(t)    (33) 

where /?(•,■) is of diffusion strength Q(t) for all t of 
interest given by E{dß(t)dßT(t)} = Q(t)dt. 

The solution to this stochastic differential equation 
is the stochastic process x(-, •) given by: 

X(t)      =      $(t,to)x(t0)+   [   Q(t,T)B(T)u(T)dT 

+ I $(t,T)G(T)dß(r) (34) 
Jt0 

with $(t,to) the state transition matrix associated 
with F. 

In general, characterization of this process re- 
quires the joint probability density (or distribu- 
tion if the density cannot be assumed to exist) of 
x(t\), x(t2),..., x(tpf) for any number N of time cuts 
in the interval of interest by repeated application 
of Bayes rule. If x(-, •) is a Markov process, how- 
ever, specification of the transition probability den- 
sities completely specifies the joint densities and the 
transition probabilities can be propagated via the for- 
ward Kolmogorov equation. 

Linear models. If the system model is (Markov) 
linear, solution to the forward Kolmogorov equation 
yields the familiar form of the state and covariance 
update: 

Ax(t) = F(t)rhx(t) (35) 

Px(t) = F(t)Px(t) + Px(t)F
T(t) + G(t)Q(t)GT(t) 
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(Note: In the development of error criterion, etc. 
derivatives must be computed using the Ito differential 
rule.) 

Nonlinear models. If we are willing to neglect 
the second partial derivatives with respect to x, we 
can use the extended Kaiman filter [32]. Consider the 
general nonlinear model: 

x{t) = f[x(t), u(t),t] + L(t)w(t) (36) 

with x(to) modeled as a Gaussian random vector with 
mean XQ and covariance Po and a measurement model 
of: 

z(ti)=h[x(ti),U] + v(ti) (37) 

The extended Kaiman filter for this model is the 
following set of equations: 

State estimate extrapolation by integrating from ti 
to ti+i: 

x(t/ti) = f[x(t/ti),u(t),t} (38) 

Error covariance extrapolation by integrating from 
ti to ti + l". 

P(t/ti)    =    F[(t;x(t/ti)]P(t/ti)+ (39) 

P{t/U)FT [(t; x(t/ti)] + G(t)Q(t)GT(t) 

Filter gain calculation with x{tf) = £(tj|i,-_i): 

K{U)    =    P(tr)HT[ti;x(tr)} 

{H[ti;x(tr)}P(t-)HT[ti;x(t-)} + 

RiU)}-1 (40) 

State estimate update: 

Kit) = *(*D + K(U) [z(ti) - h [x(t;),ti]}     (41) 

Error covariance update: 

P(tf)    =    {l-K(U)H[U;x(tr)]}P(t7) 

{l-K(U)H[U;x(tr)]}T 

+K{U)R{U)KT (U) (42) 

where the following definitions apply: 

d[x(t),u(t),t}~ 
F[{t;x(t/U)] 

and 

H[U;x(tr)] = 

dx 

dh [x,t{] 

-   X~x{tlti) 

dx 

(43) 

(44) 
x=x(ti ) 

In the general case, the nonlinear problem is.not 
solvable. There are a number of other approximations 
that exploit a Taylor series representation of the dy- 
namics and measurement to estimate conditional mo- 
ments. One of the more computationally reasonable 
is the modified Gaussian second order filter (Refer to 
[29]). 

7.4     Summary   of   the    Selection   of   the 
Model Set 

Selection of the metamodel set is clearly defined by 
the system description, system class and a metamodel 
structure. Data for all of these selections come directly 
from the problem definition step. 

Realization of the metamodel comes from the pa- 
rameterization of the selected metamodel set. While 
the system description and system class constrain 
available representations (structures), a number of op- 
tions are still available to the analyst. To help in this 
process we separated the decision into predictor and 
probabilistic models and within each of these general 
cases we presented a number of potential representa- 
tions. In each case (predictor and probabilistic) the 
complexity of the model increases from linear time- 
invariant to general nonlinear. 

The preferred solution is the simplest model struc- 
ture that provides required performance. A decision 
not addressed in this paper is the order of the meta- 
model (This issue is discussed in [24]). If the selected 
structure (and order) does not provide the desired per- 
formance there are two options. First, the order of the 
model can be increased; secondly, a different (presum- 
ably more complex) metamodel structure can be se- 
lected. This selection must be driven by the nature of 
the performance shortfall and the degree of mismatch 
between the simulation model and the metamodel. 

8    Selection      of     the      Identification 
Methodology 

We have selected a model set that we will use for 
the identification. We now discuss techniques for gen- 
erating the estimate. 

Parameter identification methods are used when 
the candidate model is to be defined by a set of 
parameters. Parameter estimation algorithms men- 
tioned in the literature include least squares, sequen- 
tial weighted least squares, recursive generalized least 
squares, instrumental variables, recursive instrumen- 
tal variables, the bootstrap method, sequential corre- 
lation and recursive maximum likelihood estimation, 
etc. A partial list of algorithms included 32 different 
methods. Again, to structure the decision process, we 
classify these methods by two elements: the form of 
the identifier and the criterion of fit. 

8.1     Form of the Identifier 

The form of the identifier defines the "experimen- 
tal setup" or the manner in which the estimates are 
generated and compared.   The criterion of fit estab- 
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lishes both the cost function and the method of its 
minimization. 

8.1.1     Equation Error Method 

For the equation error method, Figure 3, we use the 
system equations as given. Assume first that we have 
the following general description defined by a param- 
eter vector 9 and that we know the form of the vector 
functions / and h: 

x(t) = f(t,x(t),u(t),w(t);9) (45) 

y{t) = h{t,x{t),u{t),v{t);9) (46) 

Now we assume that we can measure the controls, 
ua, the states, xa, and the state derivatives xa. With 
all of this information we can determine the error be- 
tween the model and the actual data: 

e{t,6) = xa - f(xa,ua;0) (47) 

The vector e(t, 9) is the equation errors. From these 
equation errors, e(t, 9) , we can form some nonnegative 

function such as J(9) = JQ eT(t, 9)e(t, 9)dt and search 
over 9 to find the minimum. 

System   States 

System 
e* 

»i*«? > 

Model 
 a  

fylocJ©!   States 

Figure 3: Equation Error Method 

8.1.2 Output Error Method 

The equation error method required measurement of 
all of the elements of the system. Often this is not pos- 
sible. The output error method is based on an output 
error criterion and avoids this requirement. Figure 4 
depicts the experimental setup for the output error 
method. As you see, there is no attempt to measure 
the state of the plant. Instead the estimated parame- 
ter, 9, is used in the model with the input ua to gener- 
ate an estimate of the output ym. Again we can form 
some nonnegative function of the difference between 
ym and ya. 

8.1.3 Prediction Error Method 

The prediction error method is the third approach to 
developing an error function by which a parameter 

search can be structured (Figure 5). Instead of com- 
paring states or outputs the estimated parameter, 9, 
is used in the model with the input ua and the output 
ya to generate an estimate of the output ym. Given a 
description: 

y(t) = G(q)u(t) + H(q)e(t) (48) 

and having observed the output y and the input u, the 
prediction errors can be computed as: 

e(t) = H-\q) [(y(t) - G(q)u(t)} (49) 
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Figure 4: Output Error Method 
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Figure 5: Prediction Error Method 

8.2     Criterion of Fit 

So far, we have defined the metamodel set that will 
be parameterized to generate the metamodel, the form 
of the identifier that describes how the data is gener- 
ated and compared. Now we discuss the criterion of 
fit. 

By criterion of fit we mean the function or func- 
tional that is optimized to determine the parameter 
estimates.8. 

Our framework is based on the assumption that the 
data will contain both measurement errors and system 
disturbances not accounted for by the model. Conse- 
quently, measurements are realizations of a stochastic 
system and are represented by functions of random 
variables that have some probability density function. 

The probability that a particular random variable 
is in the range a < Xi < b is given by: Pr{a < X{ < 

We do not know the actual parameter vector 0« and cannot 
define an error between 6+ and 8. The error must be computed 
from {z(ti)},{u(U)}, and {y(ti)} 

17 



6} = J fx;(£)d£ where fXi(0 is the probability den- 
sity function (PDF) of the set of {a;;}. Therefore, the 
PDF is a measure of the "likelihood" of a particular 
value. 

Assume that the PDF of the measurements ZN 

is f(0;zi,z2,...,zN) = fz(9;ZN) where 9 is a d- 
dimensional parameter vector determined by the pa- 
rameter estimator. This PDF is a joint PDF (JPDF) 
that considers the joint (combined) probability of 
both 9 and zjv occurring. However, because we 
have a function of a random variable and measure- 
ments that are available in a specific sequence, we can 
also consider the conditional probability distributions 
(CPDF). That is, the probability of an event condi- 
tioned on the fact that another event has occurred 
such as P(z\9) which is the probability of a particular 
ZJV conditioned on the fact that 9 = 9. 

It is entirely possible that an identification method, 
given a model and a particular set of data, has mul- 
tiple characteristics. For example, least squares is a 
specific case of the prediction error method that min- 
imizes a norm of the prediction error. Yet, if the data 
meets the assumptions of the method, least squares is 
also a maximum likelihood estimator since it also max- 
imizes the likelihood of the parameter vector given the 
observations fz(9;ZN). 

We consider three criterion: minimum mean 
square, maximum a posteriori (maximize the CPDF) 
and maximum likelihood (maximize the JPDF). 

8.2.1     Minimum Mean Square Error 

Minimum mean square estimators minimize a cost 
function that is a function of the (possibly weighted) 
output error only - J(9) = eTWe. The mean square 
error matrix MSE for an estimate of 9 of 9 (with b 
equal to the bias) is: 

MSE = E U§ - 9){9 - 9)T} bb1 

Both bias and covariance must both be minimized 
to attain the minimum mean square estimate; and in 
general, the minimum m.s.e. will be biased. The min- 
imum m.s.e. estimator will, however, result in output 
errors (residuals) that are orthogonal to the estimate. 

8.2.2     Maximum A-Posteriori 

The Bayesian approach to parameter estimation as- 
sumes a parameter vector with a priori (before the 
measurement) probability densities P(9). The obser- 
vations ZN are therefore correlated with 9. Measure- 
ments are used to determine the most likely value after 
the measurement, the Maximum A-Posteriori (MAP) 

estimate 9MAP via the application of Bayes rule: 

P{z\9) x P{9) 
P(9\z) = 

P{z) 
(51) 

Here P{z\9) is the conditional probability; i.e., the 
total probability of the measurement conditioned on 
the current estimate of 9. 

We can rewrite the maximization to be the mini- 
mization of the negative logarithm of P(z\9) : 

9MAP = arg(9) min  - log P(6\z) (52) 

where logP(0|z) = logP(z\9) + logP(ö) - logP(z). 
Since P(z) is unaffected by 9, it can be ignored in the 
minimization. 

Assuming  the  correct   a  priori probability,   the 

MAP  estimate  minimizes  the  E 1(9 - 9)(9 - 9)T\ 

and, therefore, is the minimum-quadratic-cost esti- 
mate. The MAP estimate also minimizes the expected 

absolute error E Uß - 9)\ZN\ . 

8.2.3     Maximum Likelihood 

Given that the joint probability of the random vec- 
tor to be observed is fz(9;ZN), the probability that 
the random variable will produce the realization ZN is 
proportional to fz(9;ZN). Once a particular realiza- 
tion Z$? is inserted into the joint PDF, this becomes 
deterministic and is called the likelihood function. A 
maximum likelihood estimator maximizes this func- 
tion: 

9ML = arg(9) max/2(0; ZN) (53) 
u 

so that the observed event becomes as likely as possi- 
ble. 

Beginning with the MAP estimate and ignoring the 
prior information, we have for the ML estimate 9ML = 

(50) arg{9) minö- logP{z\9)\. 

Comparing the ML and MAP log likelihood func- 
tions (LLFs), we see that LLFMAP = LLFML + 
logP(9). 

While the MLE has been criticized for poor small 
sample properties, the statistical properties of max- 
imum likelihood estimators for a "sufficiently long" 
data sample are [16]: 

1. Parameter errors have an unbiased Gaussian dis- 
tribution. 

2. Estimates are consistent - unbiased as the data 
length increases. 

3. Efficient estimates - no unbiased estimator has 
lower error variance. 
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8.3     Summary      of 
Methodology 

the      Identification 

Referring back to Figure 1, we have defined the 
problem in terms of the use of the metamodel and the 
simulation that will be modeled. We used that infor- 
mation along with the data that came from the simu- 
lation to select the metamodel set that will be param- 
eterized to realize the metamodel. We then presented 
three methods and three criterion that can be used to 
generate the data and provide the "cost" function for 
optimization. 

Categorizing the identification method by the form 
and the criterion reduces the myriad of identification 
methods to only four approaches: Prediction Error 
and Correlation, Maximum Likelihood, Optimization 
and Approximation Techniques. 

9    Generate the Metamodel 

There are many taxonomies used in the literature 
to categorize identification methods. Methods can be 
referred to as off-line or on-line. Also, they can be clas- 
sified as either open-loop or closed-loop methods. Fur- 
ther classification can be made as nonparametric, fre- 
quency domain and as parameter identification meth- 
ods. As stated, we have reduced the parameters iden- 
tification methods to four approaches. We will now 
present some of the techniques that result. A sum- 
mary discussion of these elements is included in [34]. 
Additional details are found in [24]. 

Assume that a model structure (set of candidate 
models) has been selected and parameterized using 
some parameter vector 9. We have defined the model 
set M{6). The next step is to search for the best 
model within the set (determine the parameter vector 
6). The objective is to determine the most power- 
ful unfalsified model (MPUM) where a model is the 
MPUM based on the data D if: (1) M £ M{9) ; (2) 
M(9) is unfalsified by D; and (3) M{6) is more pow- 
erful than any other model satisfying (1) and (2). We 
must determine the mapping from the data set D to 
M{9). 

9.1     Prediction Error and Correlation Ap- 
proaches 

Let the prediction error be given by e(t, 9) = y(t) — 
y{t\9) with y(t) the output of the simulation and y(t\9) 
the output of the metamodel (9 is the parameter vec- 
tor). A "good" model will have small prediction er- 
rors. There are two general approaches to define a 
measure of e. The first is to define a norm that mea- 
sures the size of e and minimize that norm. This leads 

to the prediction error method (PEM). Another mea- 
sure of e is to require that £ be uncorrelated with past 
data. This is the correlation approach which contains 
the instrumental-variable (IV) method which we dis- 
cuss in Section 9.1.3. 

In addition to least squares (LS), subsets of the pre- 
diction error method also include the maximum likeli- 
hood approaches (ML and MAP). Our discussion sep- 
arates out the maximum likelihood approaches from 
PEM. We do so because when we consider probabilis- 
tic models (where ML and MAP estimators apply) the 
prediction equations for explicitly using the PEM algo- 
rithm are limited to the directly parameterized form. 
There are a number of other probabilistic model struc- 
tures where the PEM algorithm cannot be used. 

We do include, however, the Eigenstructure Real- 
ization Algorithm (ERA) under PEM. We do so be- 
cause this algorithm uses the least squares approach 
to directly identify the Markov parameters of a steady 
state Kaiman filter. 

9.1.1     General Description of The Prediction 
Error Method 

Filter the prediction sequence e(t,9) using a stable 
linear filter L(q): 

eF(t,9) = L(q)e(t,9) (54) 

where q is the forward shift operator defined as qu(t) = 
u(t + l). 

This filtering acts like frequency weighting and can 
remove or enhance selected properties of the model. 
Using either a fixed or weighted (possibly time vary- 
ing) norm /(■): 

1   N 

VN(9,D) = -J2n^F(t,9),9,t) (55) 
t-i 

define the estimate 9JJ by the minimization: 

9N = 9N{D) = arg min {V(9, D)} (56) 

where D is the set allowed by the model. 
In general PEM is a technique that approximates 

(smoothes) the empirical transfer function estimate 
to the model transfer function with a weighted norm 
corresponding to the model signal-to-noise at the fre- 
quency in question. 

9.1.2    Specific PEM Methods 

While "equation 56" can be solved numerically in the 
general case, specific methods are obtained as special 
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cases with special selections of the filter L(q) and the 
scalar valued norm function /(•). 

Least Squares. If the predictor is linear, the pre- 
diction error becomes e(t,9) = y(t) — <pT(t)6 where 
<fi (t) is the vector of regressors that depends on the se- 
lected model structure. Also if L(q) = 1 and l(e 
then the norm becomes: 

2C> 

M0,£) = ^E^)-^]: 
N ^2 

t=i 
(57) 

This is the least squares criterion for linear regres- 
sion. The performance measure J = eTe was based 
on the view that all errors are equally important [19]. 
Weighted least squares weights the errors and is based 
on the criterion J = eTWe. Other versions of the 
least squares criterion are the Best Linear Unbiased 
Estimator where the weight is equal to the inverse of 
the measurement noise [35]. 

If the variance of the parameters is known (or as- 
sumed), we can further improve on the Best Linear 
Unbiased (Gauss-Markov) Estimator. This improve- 
ment is called the minimum variance estimator and 
includes the variance of the parameters in the normal 
equations [20]. 

Ridge Regression. The aim of another modifi- 
cation of ordinary least squares - ridge regression - is 
the reduction of the mean square error [17]. This is 
accomplished by the addition of a symmetric matrix K 
to the regressor to improve the numerical conditioning 
of the estimator. 

Chi-Square. In Chi-Square identification we as- 
sume that each data point yi has a measurement error 
that is independently random and distributed as a nor- 
mal distribution around the true model. Suppose the 
standard deviation is the same for all points; it follows 
that the probability of the data set is the product of 
probabilities of each point: 

P = n{exp yi -y{xi) 
Ay} (58) 

Maximizing this is equivalent to maximizing its loga- 
rithm, or minimizing the negative of its logarithm: 

E [yi -y(xi)]2 

2<72 
- N log Ay (59) 

Since N,(T, and Ay are all constants, minimizing 
this equation is equivalent to minimizing: 

N 

^2bti - y(xr,0i ■ ■ -9M)? (60) 

If each data point has its own standard deviation the 
probability of the data set is modified by considering 
cTj in place of a (Refer to [17] for details). 

Eigenstructure Realization Algorithm. The 
Eigenstructure Realization Algorithm (ERA) is in- 
cluded under the PEM methods because this algo- 
rithm uses the least squares approach to directly iden- 
tify the Markov parameters of a steady state Kaiman 
filter. 

Consider a discrete, time-invariant multivariable 
linear system: 

xti+1    =   A(9)x(ti) + B(e)u(U) + M(0)wd(ti) 

y(ti)   =   C(0)x(ti) + D(6)u(U) + v(U) (61) 

An observer for the above system can be devel- 
oped that will be as stable as desired and the resulting 
Markov parameters will be the Markov parameters of 
the observer. The system Markov parameters can be 
extracted from the observer parameters. The major 
assumption is that of ergoticity. 

Choose p such that mp > n (where n is the num- 
ber of states and m is the number of outputs) and, 
beginning at the p+1 measurement, let: 

y = [y(p + 1) y{p + 2) y{p + 3)... y(k - 1)]      (62) 

From the definition of the Kaiman Filter we have: 

with 

Y=    DCBCAB...CAk  lB 

A    =    A+MC 

B    =    [B + MD,-M] 

(63) 

and if 

U = 

u(p + l) u(p+2) u{k- 1) 

u(p) 

. y(p) . 

u(k - 2) 
y(k - 2) 

u(p) 

. y(p) . 

u(k - 3) 
. y(k - 3) . 

■ u(0) 

.  J/(0)   . 
r «(i) - 
. y(i) J 

u(k -p-2) 
y(k-p-2) ] 

(64) 

8 = 1 

When CA 13 ftJ 0 for k > p, the system y = YU can 
be solved for Y using a weighted least squares. Once 
the observer Markov parameters are determined the 
system parameters must be extracted. After extract- 
ing the system Markov parameters from the observer, 
we can recover the state space model by the ERA. 
Define the following ?*i x s block data matrix: 
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H(r) = 

Yr Yr+1         •• YT+s-i 

r+1 YT+2 YT+S 

r+2 Yr+3        .. ■       YT+S+1 (65) 

The order of the system is determined by the sin- 
gular value decomposition of -ff(O): 

H(0) = Ui:VT = U1S1V? (66) 

where E are all of the singular values. Si is an n x n 
diagonal matrix of positive singular values that are 
retained and n will become the order of the system: 

A 

B 

C 

■V*TTT =    ^"Ui HWKSl 

=    S~1/2ViEm 

=    E^U1S~1/2 

1/2 (67) 

[irxr 0rx(ri_m)m]    and    E^ where    Ej 
[Imxm 0mx(ri_m)m]. The observer gain can be ex- 
tracted in a similar fashion. See [36] for the details of 
this method. 

9.1.3     Correlation Approaches 

Ideally the prediction error e(N, 9) for a "good" model 
should be independent of past data ZN~l. If e(W, 9) 
is correlated with past data there is more information 
available in the data. A true test of the correlation 
of e(N, 9) and ZN_1 requires testing every nonlinear 
transformation of e(N, 9) with all possible functions 
of ZN~1. This is not feasible. 

We can, however, select a finite dimensional vector 
sequence {CCO} derived from ZN~l and force a cer- 
tain transformation of e(N, 9) to be uncorrelated with 
this sequence. In general, we can accomplish this by 
filtering the prediction errors: 

eF(N,9) = L(q)e(N,9) 

choosing a sequence of correlation vectors: 

{C(t,e)} = {c(t)(t,zN-1,§)} 

and a function: a (SF(N,9)) for computing: 

1    N 

fN(9, ZN-') = - £ <&> §> (eH^, *)) 
t=i 

(68) 

(69) 

(70) 

and then finding #jv such that /AT(#, ZN  l) = 0 . 
If   we   define   e(N,9)   above   to   be   e(N,9)    = 

y{t) — <f>T(i)9\, we can expand the sequence of the 

correlation vectors to include model dependent param- 
eters by: 

{((t,9)} = Ku(q,6)u(t) (71) 

where Ku(q, 9) is a d x m matrix filter and L(q) is of 
dimension p x p. With dim£(t) = dim9 = d x p, we 
have the instrumental-variable (IV) method: 

9iv = «t,0)TX       «tjfy (72) 

If we allow dim((t) > d and a minimum norm solu- 
tion for fN(9,ZN), we have the extended IV method. 
(Reference [16] discusses this method in detail.) 

9.2     Maximum Likelihood Approaches 

If we consider independent, identically distributed 
measurements and if an efficient estimate (unbiased 
estimate with finite covariance such that no other 
unbiased estimate has a lower covariance) exists, it 
can always be found through maximum likelihood ap- 
proaches. Again if an efficient estimate exists, the 
likelihood equation will have a unique solution that 
equals the efficient estimate. If any single sufficient 
statistic exists, the maximum likelihood estimate will 
be sufficient. Although the maximum likelihood esti- 
mate will be biased for small samples it will provide 
the unique minimum variance estimate attaining the 
Cramer-Rao lower bound if this is possible [29]. 

The objective is to provide a parameter estima- 
tor that does not require complete a priori parame- 
ter statistics yet still allows the inclusion of a priori 
knowledge. Unlike the best linear unbiased estimate 
provided by appropriately weighted least squares, this 
method propagates the probabilistic information in 
time and directly allows the inclusion of known sta- 
tistical information. 

The key to the identification algorithm will be the 
residuals of the state estimator and the most signifi- 
cant drawback of the maximum likelihood approaches 
is the lack of theoretical knowledge on the behavior of 
the estimates for small sample sizes. 

The following discussions are limited to linear-time 
invariant (discrete time) systems. Nonlinear effects 
can be included by appropriately modifying the pre- 
diction equations in either of two ways. First, non- 
linear system effects can be directly included in the 
propagation of the state. Second, nonlinear measure- 
ments (with linear propagation) can be handled with 
an extended Kaiman filter model. 

Beginning with a linear time-invariant discrete 
state space model (equation 61) there are a number 
of conditional probability destiny functions that could 
be used for the likelihood function. Variations include 
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fixed length versus growing length functions, specifica- 
tion of a priori statistics, use of the initial conditions 
and the sensitivity of the estimate on the identified 
parameters. The most appropriate density function 
is: 

fx(tt),z(tt)\e    —    fx{tt)\z{t,),e!z{t,)\e (73) 

=   fx(t,)\z(t,),e^lj=ifx(t,)\z(t,),e 

Minimization of the likelihood function with this 
density results in the state predicted by the Kalman- 
Bucy filter, but there is no closed form solution to 
compute the partial derivatives. 

9.2.1     Full Scale Estimator 

A full scale estimator can be derived that minimizes 
the likelihood function in an iterative process. This 
estimator uses the last N observations to identify v 
uncertain parameters in the system and input matri- 
ces A and B. (Note: Uncertainty in these parameters 
could not be separated from uncertainties in C and 
D. Consequently, the assumption is that C and D are 
known and the uncertainty is A and B.) 

The iterative estimator for minimization of the like- 
lihood equation: 

dL \e,z N 

de 
e(t,)=e.(t,) 

using the method of "steepest descent" is: 

d2L e,zN 

Ö(U) = Hu) 

(74) 

892 

dL 9,Z N 

de 
(75) 

To use this algorithm, the Hessian (second deriva- 
tive matrix) must be of full rank. Using a technique 
called "scoring," we can approximate the Hessian with 
the conditional information matrix. However, consid- 
ering the propagation of the values in time, incorpora- 
tion of measurements and the summation over the last 
N residuals, the implementation of the above equa- 
tions is quite complex. Even with the approximations 
the full scale estimator requires a large number of cal- 
culations (Refer to [29]). 

9.2.2    Modified 
(MMLE) 

Maximum Likelihood 

The modified maximum likelihood formulation uses 
a discrete state variable representation (equation 61) 
where A, B, C, D, and M are estimated and used with 
the error covariance, P, to determine the Kaiman gain, 

K, from an approximation based on the Ricatti equa- 
tion [37]. To provide a parameter estimator we con- 
sider the measurement equation. Since we have as- 
sumed a Gaussian error model, the Conditional Prob- 
ability Density Function (CPDF) for the measurement 
becomes: 

P(zi\zi-1,e) = 
[(2ir)m detP] 1/2 

exp -\%{P)-l~*i 

where P = E {zz } with dimension m x m and z = 
z, — z is the innovations process (residuals) computed 
by the Kaiman filter (where all of the matrices could 
be functions of 9). 

Assuming a constant innovations covariance, use of 
a steady state filter results in a constant filter gain. 
This allows the CPDF to be written as: 

p{z\e) = n?=1        ]        exp (-Iff (P)-4,-} 
[(2?r)m detP]1'2 I    2 J 

(77) 
There are two approaches to the solution depending 

on whether a priori information is used. 
Maximum Likelihood (ML) Estimation.   Given 
the above CPDF, the ML LLF becomes: 

LLF(§)    =    ^{ff(P)-1*} (78) 
z i=i 

N Nm 
+ ylogdet(P) + —log27T 

A necessary condition at the minimum is that P = 
E {zzT} must equal the sample innovations covari- 
ance [38]. Therefore since P has dimension m x m, 
the first term in the LLF becomes Nm/2, and the 
minimization is reduced to a minimization of the de- 
terminant of the sample innovations covariance ma- 
trix. 

When P is known the LLF can be minimized by 
minimizing the following cost function: 

J{e)=\Y,{zJ{PVzl} (79) 

This minimization is usually carried out by the 
Gauss-Newton method using the first and second gra- 
dients of the cost function. 
Maximum A Posteriori (MAP) Estimation. In 

the MAP estimator, we continue to require that P = 
W ]Ci=i zzT but add the term — logP(ö). 

Assuming that # is normally distributed with a co- 
variance E: 

-iogP(ö)  =   ±(§-e)TY,-l(e-e)+ (so) 

ilog((2irrdet£) 
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the LLFMAP becomes: 

1   N 

LLFMAP(e)    =    -X^P)-1*}        (81) 
i = \ 

which adds a quadratic term that biases the estimates 
toward a priori values. 

9.3     Optimization 

Often we are unable to formulate the problem to 
achieve a suitable prediction equation. Therefore we 
must resort to either a "nonlinear state space model" 
or a "simulation model." In these situations, where we 
are unable or unwilling to consider a linearized or per- 
turbation approach, the best we can do is take the out- 
put of the model, incorporate it into a "cost" function, 
and adjust the model parameters to optimize (mini- 
mize) that function. 

There are several "standard" numerical procedures 
that are used to search for the minimum of a func- 
tion. These are the iterative optimization methods: 
Successive approximation, Newton's method, or the 
Gauss-Newton algorithm to name a few. 

In addition there are several programs that are 
specifically designed to perform parameter estimation. 

pEst. A minimum mean square error parame- 
ter estimator, pEst is an interactive program for the 
parameter estimation of nonlinear dynamic systems 
[39]. This program solves a vector set of time-varying, 
finite-dimensional, ordinary differential equations that 
are separated into a continuous-time state equation 
and a discrete-time measurement equation: 

x    =    f[x(t),u(t),6] 

z(ti)    =    g[x(U),u(ti),9' 

(82) 

pEst uses three separate minimization algorithms 
(steepest descent, modified Newton-Raphson and 
Davidod-Fletcher-Power) to minimize the following 
weighted cost function: 

J{6) = —L- JT [z(ti) - z{U)]T W [z{U) - z(U)] 

(83) 
where npj equals the number of data points, and nz is 
the number of response variables. 

Simulated Annealing. Using statistical mechan- 
ical theories an optimization technique called "sim- 
ulated annealing" provides a new option to directly 

process nonlinear, discontinuous, stochastic functions 
[40]. Given data and a cost function, it will globally 
optimize that function by emulating the physical an- 
nealing process to arrive at a global minimum. (Ref- 
erence [4] and [41] provide a description on how to use 
Adaptive Simulated Annealing.) 

9.4    Approximation Techniques for Iden- 
tification 

9.4.1 Stochastic Approximation 

Stochastic approximation may be regarded as the ap- 
plication of gradient methods to stochastic problems. 
It is a scheme for successive approximation of a sought 
quantity when the observations involve random errors 
due to the stochastic nature of the problem. The main 
advantage is the simplicity of the implementation and 
the fact that prior knowledge of the noise statistics are 
not necessary. 

Stochastic approximation can be applied to any 
problem which can be formulated as a regression in 
which repeated observations are made. This approach 
is an exact analog of the deterministic gradient proce- 
dure. 

9.4.2 Spline Approximation 

Polynomials are excellent approximating functions 
when a smooth function is to be approximated lo- 
cally. Any such smooth piecewise polynomial func- 
tion is called a spline and they are commonly used for 
fitting data. 

The typical use for the spline approximation is to 
construct a piecewise polynomial to fit data. An exact 
fit involves interpolation; an approximate fit uses least 
squares (minimum mean square error) approximation. 
To explain the structure and advantages of the spline, 
consider a truncated Taylor series (expanded about XQ 

where Dl is the ith derivative): 

» = 0 

(x - x0y rrf(x0) (84) 

This polynomial should provide a satisfactory ap- 
proximation for f(x) if the function is sufficiently 
smooth and x is sufficiently close to XQ. If the func- 
tion must be approximated over a larger interval, the 
degree of the polynomial may have to be unacceptably 
large. 

The alternative to a higher order polynomial is to 
subdivide the interval into sufficiently small intervals 
in order that, on each interval, a polynomial with a 
relatively low degree can provide an adequate approx- 
imation. 
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The construction of a series of splines over an inter- 
val is a stable and straightforward mathematical pro- 
cedure [42]. At the breakpoints, derivatives are con- 
tinuous. At the end points two conditions are possible. 
In the "natural" cubic spline the second derivative is 
zero. In the "not-a-knot" end condition the jump in 
the third derivative is zero. 

Once developed, the spline can be evaluated, inte- 
grated, differentiated, augmented or cut. 

9.4.3     Canonical Variate Analysis 

Another approximation technique is canonical variate 
analysis. The canonical variate method is a prediction 
error approximation technique that optimally predicts 
future responses based on a reduced order state space 
system [43]. 

In the statistical literature the canonical variate 
problem is one of maximizing the correlation between 
two sets of variables. Here we will use the technique to 
choose nonlinear combinations of past data to predict 
the future data by considering the fact that the condi- 
tional expectation is an optimal projection in Hubert 
space. We optimally select k linear combinations of 
the past data for prediction of the future. 

Observations coming from the behavior we desire 
to model are separated into the past p(t) of a vector 
process and the future f(t) of another vector process. 
They are assumed to be jointly stationary: 

PT    =    (yT(t),yT(t-l),...,uT(t),...f      (85) 

f    =    (yT(t + l),yT(t + 2),...,yT(t + l)f 

where the vector process p(t) can include both inputs 
and outputs. 

The optimal kth order linear predictor f(t) of the 
past is measured by the prediction error: 

^{ll/-/lli-1} = {(/-/)TA-1(/-/)}     (86) 

where A is arbitrary positive semidefinite, so that A-1 

is a quadratic weighting matrix that is possibly singu- 
lar. The CVA problem is to determine c(t) = Jkp(t) 
and d(t) = Lkf(t) such that the prediction error is 
minimized. Each of the terms c(t) and d(t) are com- 
binations of k terms and are defined in a new basis. 
The algorithm uses the properties of stochastic inde- 
pendence to find a canonical form of c(t) and d(t). 
This in turn provides Jjt and Lj, which can be used to 
predict system performance based on the past data. 

The connection between CVA and metamodeling is 
not direct and much of the literature is very confusing 
or misleading. First recall that the metamodel is a 
reduced order model that is the result of an optimal 
projection of the higher order model onto a subspace 

of reduced dimensions. It can be shown that projec- 
tion operators on a Hilbert Space of nonlinear func- 
tions can be expressed as a conditional expectation 
[43]. It can also be shown that eigenvectors of this con- 
ditional expectation have a common eigenvalue which 
is equal to the squared maximal correlation. If a pro- 
cess has a rational power spectrum (i.e. it is a finite 
order Markov process) there are a finite number of 
nonzero canonical correlations between the past and 
future outputs [44]. 

The solution to the canonical variate problem is ex- 
pressed by putting the covariance structure of the past 
and future data in a canonical form such that in this 
new basis the norm of the weighted prediction error 
is the sum of squares. This is equivalent to finding J 
and L such that: 

TV    T1     —    T L-iPPJ —     1Tn 

LALT    =   In 

(87) 

JZpfL
T = Diag {7l > 72 >,..., > 7q > 0,..., 0} 

(88) 
where Spp, T,jf, andY,pj are the covariance matrices 
of past, future and cross covariance of the past and 
future data defined by: 

2JDD2J 

s = 
'pp-^pf 

SfnE 
(89) 

ip^SS 

with Diag {ji > j2 >,..., > jg > 0,..., 0} a diagonal 
matrix with the singular values on the diagonal. Since 
the past and future basis in the new basis are orthonor- 
nal and uncorrelated the singular values are also the 
correlations between the canonical variates p and f. 

In a linear system, independent variables are or- 
thogonal. For nonlinear systems stochastic indepen- 
dence is required. The maximal correlation is defined 
by: 

p(p,f) = sup p(p(y),f(y)) 
p,f 

sup E{p(y),f(y)}  (90) 
p,f 

with || p ||= 1 and || / ||= 1. 
If p(p, /) = 0, then p(y), f(y) are statistically inde- 

pendent. Therefore to find the optimal combination of 
past data to predict the future we want the maximal 
correlation. 

Determining this structure requires multiple steps. 
First, given the past and future vectors, the mean 
is removed to meet the constraints of the alternating 
conditional expectation (ACE) algorithm that will be 
used to determine the maximum correlation between 
transformed input and output variables c and d [45]. 
Then a (Epp, A) singular value decomposition of Ep/ 
will determine a J and L such that after the trans- 
formations c(t) = Jkp(t) and d(t) = Lkf(t) and the 
covariances Ecc = £<M = I. 
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10    Results and Conclusions 

In this paper we presented a new approach where 
we did not try to determine the best polynomial fit to 
a set of input-output data, but concentrated on the 
identification of the underlying systems that defined 
the process. 

By focusing on the system theoretic properties of 
the manifest behavior we generated the metamodel 
via solution of a general inverse problem that did not 
restrict the solution to an approximation of the input- 
output map. This approach expanded the available 
classes of metamodels by supporting the development 
of dynamical models that incorporate memory. This 
expansion allowed the generation of metamodels that 
included system dynamics so that metamodels can be 
developed where the past could influence the future. 

In addition to a new approach to the definition of 
the problem we presented a new framework for the 
solution. The framework centered on the behavior of 
the system, the behavioral equations that specified the 
behavior and latent variables which may have been 
present from first principles. 

A structured metamodeling method was presented 
that simplified the metamodeling process to two 
phases: problem definition and the metamodeling pro- 
cess. In the problem definition we began with an anal- 
ysis of the metamodel requirements and the simulation 
under study. We then progress to the description of 
the system (not the model) so that we will be able 
to select a metamodel structure that matches both 
the requirements and simulation that we are going to 
metamodel. 

The structured metamodeling method segmented 
the metamodeling process into a set of sequential 
decisions: Definition of the Problem; Selection of 
the Metamodel Set; Selection of the Identification 
Methodology; and Generation of the Metamodel. In 
each case we step through decisions that are based 
on existing information or follow from prior decisions. 
We have added the capability to explicitly model dy- 
namical systems and defined the requirements to use 
these as metamodels. 

This structured metamodeling method was sup- 
ported by new taxonomies of metamodel structures 
(representations), identification methodologies and 
methods to generate the metamodel that allowed sep- 
aration of the metamodeling process into a set of se- 
quential decisions based on a priori information. 
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APPENDIX 
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Symbols 

A(q) 
A{0) 
B{ö) 
B 
Bi 
Bs 

B[tut2] 
B(q) 
B(t) 
C{6) 
C(q) 
Dm 
D 
D(9) 
D(q) 
E 
e(t) 
F 

Hq) 
F(9) 

G(q) 
G(t) 
G{ß) 

B is a subset of T and B may equal T 
Closure of B 

., 0}     Diagonal matrix with elements {71 > 72 >■■■•, 0} 
Expected value 
Representation of a polynomial operator in the shift. 
Also may use dummy variables P, Q, and M 
Polynomial matrix of dimension g, qi 
Backward shift operator 
The functions f\, /2 transform or map U into E 
The set U defined by the property L 
Covariance 
"such that" 
Cartesian product 
Congruence 
Is in, belongs to 
There exists 
If and only if 
For all 
Partial derivative 
Supremum 
Product of terms from j — 1 to i 
Frobenius norm of a matrix 
Probability that x^ is grater than a and less than b 

Polynomial that multiplies the output variable 
Discrete time state transition matrix 
Discrete time input matrix 
Behaviors - outcomes recognized by the model 
Behavior allowed by the inclusion of latent variables 
Behavior that satisfies the axiom of state 
Behavior over the closed interval [ix, i2] 
Numerator polynomial that multiplies the input variable 
Stochastic input matrix 
Discrete time output matrix 
Numerator polynomial that multiplies the error term 
The values over which 0 may range in the metamodel set M(0) 
The data set used to generate the metamodel 
Discrete time feedthrough matrix 
Denominator polynomial that multiplies the error term 
Abstract set 
Time varying error 
A Field - a set that satisfies certain algebraic and order properties 
Denominator polynomial that multiplies the input variable 
Continuous time state transition matrix 
Nonlinear state propagation function 
Transfer function between the input and output 
Stochastic error gain matrix 
Continuous time input matrix 
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Symbols (cont.) 

Hiß) 
K) 
I/O 

m 
K{ß) 

Ku(qJ) 
L 
L* 
L{q) 
L{6) 

/() 
M 
M 
M(ß) 

M 
MSE 
rh 
P 
P 

Piß) 
Q(t) 
Qd 
R 
Rd 

Rd 
R(U) 
S 
sd 
S(t) 
T 

(*D 
(fit) u 
u 
Ua 

(U,B) 
WT 

w 
w 
w(t) 
Wd(ti) 

Transfer function between the error term and the output 
Continuous time output matrix 
Nonlinear output function 
Input - Output 
Cost (objective) function based on ß 
Discrete time error gain matrix 
A matrix filter of dimension dx m 
Set of latent variables 
Linear shift invariant space 
Stable linear filter 
Continuous time error gain matrix 
Norm for the prediction error used in the Prediction Error Criterion 
Metamodel structure (mapping) 
Class of models, model set 
Set of metamodels that results from the metamodel structure, 
For a discrete state space equation, this term multiplies the discrete process noise 
Model from the set of metamodels 
Mean square error matrix 
Derivative of the estimate of the stochastic mean 
Parameter space, A set of parameters 
State space error covariance 
Probability densities 
Continuous process noise correlation kernel 
Discrete process noise correlation kernel 
Set of real numbers 
Euclidean d-dimensional space 
Discrete measurement noise correlation kernel 
Sampled data measurement noise correlation kernel 
System map 
Discrete cross correlation kernel 
Continuous cross correlation kernel 
The time axis 
Time extrapolated to the next time step 
Time after a measurement is taken 
Universal set of outcomes produced by a phenomenon 
Input space/variable, (t) indicates time varying 
Actual control inputs 
Elements of the model class 
The set of all maps from T to W 
Signal space, Weight for an error criterion 
Member of the signal space 
Additive white process noise 
Discrete additive white process noise 
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Symbols (cont.) 

X State Variable vector 
x State Variable 
x State Variable estimate 
x Derivative of the state variable 
xa Actual states 

xa Actual state derivatives 

y Output space/variable, (t) indicates time varying 
y Estimate/prediction of the output variable 
ya Actual output 
y-m Model output 
Z Set of observation (measurement) vectors of length N 
(Z, Rq ,B) Linear time-invariant dynamical system where T = Z+ and W = Rq 

z(ti) Sampled data observation 
dß(t) Brownian motion of diffusion strength Q(t) 
A Finite memory span 
Ay Finite change in y 
e Prediction error 
£F Filtered prediction error 
7T Map from the parameter set to the model set 
$(t,to) Continuous time state transition matrix 
4>(ti) Input (possibly nonlinear) data (functions) 
<f>   (t) Transpose of the vector of regressors 
5 Dynamical system, covariance of 6 in MAP estimation 
S; Dynamical system with latent variables 
0"' Differentiation or the time-shift operator discrete time systems 
<r Standard deviation 
6 The vector used to parameterize the model 
9* Value of the "true" parameter vector 

0 Estimate of the parameter vector 

8T Transpose of the parameter vector (note: all (-)T are the transpose except WT 

v{ti) Additive white (sampled data) measurement noise 
A Concatenation 

30 



A Summary of Model Abstraction Techniques 

A. F. Sistia and D. Caughlin6 

0 Rome Laboratory / IRAE 
32 Hangar Rd 

Rome NY     13441-4114   USA 
sistia@rl.af.mil 

b Space and Flight Systems Laboratory 
University of Colorado at Colorado Springs 

Colorado Springs, Colorado   09033-7150   USA 
donc@mozart.uccs .edu 

ABSTRACT 

This paper presents an overview of model abstraction methods. Model abstraction methods are techniques that 
derive simpler conceptual models while maintaining the validity of the simulation results. These methods include 
variable resolution modeling, combined modeling, multimodeling, and metamodeling. In addition, some taxonomies 
include approximation, aggregation, linear function interpolation, and look up tables as model abstraction methods. 
We discuss these methods in a general framework to assist in understanding the applicability of the various model 

abstraction methods. 

Keywords: Simulation, Metamodel, Model, Abstraction 

1. INTRODUCTION 

A model is a structure that can be used for understanding the behavior of a system.1 The development of the 
model then is an abstraction of a "real world" concept or system where we have analyzed the "real world" system, 
determined the behaviors that will be addressed by the model and determined a structure for its representation. The 
model can be a physical structure such as a wind tunnel model used to determine the aerodynamics of an aircraft, or 
it could be a conceptual model represented by interactions, a system of equations, or a simulation. We will restrict 
our attention to simulation models. 

In a slight variation from Reference [2], we define a model abstraction technique as a method (simplifying trans- 
formation) that derives a simpler conceptual model from a more complex model while maintaining the validity of 
the simulation results with respect to the behaviors addressed by the simpler model. 

There are two general types of model abstraction techniques: these are the "Direct" and "Inverse" methods. 

First, a more abstract model could be developed by applying basic principles to generate a more abstract (ap- 
proximate) version of the "real world" system. This would be an example of direct modeling. Direct modeling is 
characterized by a specification of the elements of the model. Complicated systems are modeled by "tearing" a 
system into its components, modeling these components in a process called "zooming," and then interconnecting 
these components to construct a "physical" realization of the system.3"5 The level of abstraction is controlled by the 
detail of the specification. The model reveals the structure of the theory and allows the prediction of the response 
to exogenous inputs as a function of the state of the system. The solution of this modeling problem requires an 
understanding of the process being modeled and methods to express this understanding. With the exception of the 
metamodeling technique presented in Section 2.6, all of the abstraction techniques discussed are direct methods 

Inverse modeling begins with the input-output data generated by the "real world" system or the high fidelity 
model or simulation and develops the abstract model from the data. In this case, we have some estimate (measure) 
of the input and output response but do not have a complete characterization of the process by which the outputs are 
generated. System identification methods are used to generate a mathematical approximation between the inputs 
and responses. 

31 



This paper presents an overview of both direct and inverse model abstraction methods. 

The literature identifies variable resolution modeling, combined modeling, multimodeling, and metamodeling as 
specific abstraction methods. In addition, some taxonomies include approximation, aggregation, linear function 
interpolation, and look up tables as model abstraction methods. In Section 2, we discuss abstraction methods 
from a more general perspective that follows the historical development of model abstraction methods. Section 2.1 
introduces the subject with Model Based Abstraction Techniques. These methods eventually developed into the 
Discrete Event formalism which is discussed in Section 2.2. Section 2.3 moves from the Model Based approach 
to Process Based Abstraction techniques. This approach has developed into Multimodeling which is discussed in 
Section 2.4. Section 2.5 discussed Qualitative Based techniques, while Section 2.6 discusses the only inverse method 
presented - Metamodeling. Section 3 begins with a model Abstraction Taxonomy discussed in [2] and concludes with 
a proposed new taxonomy. Section 4 concludes the paper. 

2. TAXONOMIES OF ABSTRACTION TECHNIQUES 

One of the problems in discussing model abstraction techniques and applications is a lack of uniform terminology. 
Closer inspection of the literature, however, indicates that many of the concepts are the same and that the differences 
arise from the perspective of, or terminology used by, the author. 

Since a discussion of abstraction techniques is a function of perspective, we begin with a discussion of abstraction 
techniques provided by the general approach of the author. This discussion leads to several taxonomies of abstraction 
techniques which we will attempt to reconcile. 

2.1. Model Based Abstraction Techniques 

Zeigler's development of the Discrete Event System (DEVS) Formalism was based on a model based simulation 
architecture where the model is described by a formal object called a system specification. The elements of the 
modeling approach included the real system, experimental frame, base model, lumped model, and the computer. 

Zeigler used the term "base model" to express the most detailed model and the term "lumped model" as the 
simpler (abstracted) model.6 Being hierarchical in nature, this architecture naturally led to model abstractions and 
abstraction techniques. 

As stated, the description of the object was through the system specification which involved an abstraction from 
the base to the lumped model. The system specification was cast into a hierarchy of levels: 

1. I/O relation observation 

2. I/O function observation 

3. I/O system 

4. Iterative specification 

5. Structured system specification 

6. Network of specifications 

with a corresponding hierarchy of preservation relationships (morphisms) that preserve the validity of the model. 

The transition from the base mode to the lumped model involved simplification (abstraction). Initially, he 
discussed four general categories of abstraction techniques: 

1. Dropping Components. Since all factors are not equally important, the first technique is to ingore com- 
ponents, descriptive variables, or interaction rules. This is similar to an engineering approximation and is a 
reduction in the complexity of a model by eliminating factors which least affect the response of interest. 
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2. Stochastic approximation. This abstraction technique replaces deterministic variables by random variables. 
This technique reduces fidelity by representing a higher order deterministic process by possible outcomes that 
are selected based on some probability distribution. 

3. Coarsening the Ranges of Descriptive Variables. This technique can be as simple as a straight reduction 
in variable range or considering a reduced set of allowable values for the variables that results from a many- 
to-one mapping of the variable intervals. This reduction can also be implemented by a reclassification of the 
variable attribute, such as the replacement of a string variable with a Boolean variable indicating the attribute 
as empty or non-empty. 

4. Grouping. The final category is grouping components and aggregating their variables. It can be considered 
as compounding and then coarsening the resultant compound range. 

Along with the simplification or abstraction we must consider the validity of the simpler model. The measure 
here is a homomorphism or similar structure, and elements of the measure are the preservation of the time advance 
mechanism, preservation of transition functions, and preservation of output functions. 

This early structure evolved into DEVS which explicitly includes the level of model abstraction as a parameter 
in the definition of the model. 

2.2. Discrete Event Based Abstraction Techniques 
The DEVS Formalism7'8 provides a systems theoretic basis for modeling and simulation that specifies the system in 
terms of the level of abstraction and morphisms. DEVS is based on the relationship between the system, the model, 
and the implementation of the model. Since this relationship inherently includes the level of fidelity (abstraction), 
model components are organized by their level of abstraction and the degree in which they preserve the relationships 
of the model specification. This organization is contained in a framework for structuring the model - the System 
Entity Structure. 

The System Entity Structure (SES) supports a hierarchy of abstraction levels and is based on modularity and 
coupling. Modularity describes the model with its inputs and outputs through which all interaction with the external 
world is mediated. Coupling describes the interconnections of the input and output ports of simpler models into 
more complex models. 

The SES directs the synthesis of models and combines the decomposition, taxonomic, and coupling relationships. 
In this formalism, a system has a time base, inputs and outputs, states, and functions that define the relationships 
between the system being modeled and the simulation that will represent that system. As such it is a structured 
abstraction technique that maps the system into atomic (basic) and coupled (multi-component) models. 

Within DEVS there are functions that operate on hierarchical model structures (deep-devs, flat-devs, flat-all, 
inverse-transform, etc.). Consequently, the process of developing a DEVS representation explicitly addresses the 
question of deriving more abstract models from the specification of the system and as such should be considered as 
an abstraction technique. 

2.3. Process Based Abstraction Techniques 
Fishwick defines an abstraction network as an ordered pair of models and abstraction relationships.9 The ordered set 
of models represents the inputs, outputs, and relationships of the underlying system at different levels of abstraction. 
The abstraction relationships are based on the processes represented by a model. He describes seven forms of 
abstraction: 

1. Abstraction by Representation. This form uses a different representation to present the same information 

2. Induction. Induction aggregates several behaviors into a single representation. 

3. Reduction. Reduction based on ???? 

4. Total Morphism. Morphisms define mappings between two models. Total morphisms are relationships that 
accomplish a complete mapping of the system that preserves the features of the system. 
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5. Partial Morphism.   A morphism that does not necessarily preserve all of the relationships and functions 
during the mapping. 

6. Sensory Abstraction. Is the generation of behavior that visually represents the behavior of the system being 
modeled. 

7. Cerebral Abstraction. This is the highest level of model abstraction based on intuition. 

2.4. Multimodeling Based Abstraction 
Fishwick and Lee have continued to develop process based abstraction techniques and have proposed that variable 
resolution modeling, combined modeling, multimodeling and metamodeling can be categorized as either behavioral 
or structural approaches.10 

Variable structure models include in the model description sufficient information that allows the model to change 
its own structure. Multimodels contain structurally compatible component models with distinct behaviors that play 
a mutually exclusive role. While multimodeling provides for a hierarchical structure, selection of components in each 
level is dependent on the lower level component selection. In each of these model abstraction methods, either the 
behavior or the structure is addressed. 

Behavioral abstraction addresses the level of complexity by approximating the behavior of the system. This 
category of abstraction simplifies a component by replacing it with something more generic but produces similar 
behavior. In some respects, behavioral abstraction is equivalent to multimodeling but the components are black 
boxes defined only by the input-output map. 

Structural abstraction defines the levels of abstraction and chooses which model types to use at each level. 
Structural abstraction focuses on the structure of the model and not necessarily the resulting behavior. Structural 
abstraction isolates the abstraction levels so that each level can be executed independently from the other levels 
without requiring knowledge of the detailed internal structure of the other levels. Within structural abstraction we 
can address either the values obtained by the model (data) or the model itself. 

Data abstraction compresses information obtained from the model. For example, with data abstraction we could 
represent a trajectory by its symbolic value, mean, variance, interval, or fuzzy set. Model abstraction addresses the 
strucure of the model itself and can be homogeneous or heterogeneous. Homogeneous model abstraction restricts 
the structural abstraction to a single representation - conceptual, declarative, functional, constraint, and spatial. 
Heterogeneous abstraction allows multiple representations under one structure. 

The taxonomy that results from this approach is depicted in Figure 1. 

inmnodäiiig 

Strict! ial Beiaiioral 

Daß Model 

Statte Dyian Ic 

Homogeieoif Heterageieo« 

Figure 1. Multimodel Taxonomy. 
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2.5. Qualitative Simulation Based Abstraction Techniques 
Our next approach is based on a qualitative approach to modeling. Qualitative simulation is based on qualitative 
differential equations and qualitative processes which describe the relationships that represent the system. These 
relationships include a set of variables, a quantity space, a set of variable constraints, and a set of transitions. 
Qualitative simulation is distinguished by the fact that the quantity space of the variable is not the domain of 
numbers but "landmark" values that have specific meaning (e.g. hot, cold, empty, full, etc.). 

Abstraction techniques identified in the qualitative simulations literature include; 

1. Behavior Aggregation. Characterizes all possible behaviors at different levels of detail while eliminating 
irrelevant distinctions. 

2. Structural Abstraction. Aggregates components that are close. 

3. Functional Abstraction. Aggregates components that are elements of the same function. 

4. Chatter Box Abstraction. A chatter box is a state space region where qualitative derivatives are allowed 
to vary while the qualitative values of other variables remain the same. Chatter Box Abstraction eliminates 
chatter by reducing the region to a single state. 

5. Model Decomposition. Divides the model into loosely connected components that are modeled separately 
while specifically addressing component interactions. 

6. Time Scale Abstraction. There are two aspects to Time Scale Abstraction. One aspect aggregates behavior 
over an interval and represents that behavior at a particular point (start, mid, or end) on the interval. The 
second aspect of Time Scale Abstraction is a particular form of model decomposition where the decomposi- 
tion of complex inter-related systems is focused on parts of the system that operate at different time scales. 
This technique separates the time scales so that to the fast system, the slow system is constant; and to the 
slow system, the fact system is instantaneous. These approximations allow a corresponding reduction in the 
complexity of the interactions between the two systems. 

7. Quantitative Abstraction. Ignores small differences in the value of variables. 

2.6. Metamodeling 
All of the abstraction methods presented to this point addressed very general modeling issues. Our final abstraction 
methodology does not address the entire model space but provides a specific set of methods to support some of the 
above methods. 

By definition, a metamodel is a model of a model. We restrict the use of the term metamodel, however, to 
mathematical approximations of the system relationships defined by a high fidelity model or simulation. 

As an abstraction, a metamodel is a projection of the model onto a subspace defined by new constraints or regions 
of interest. Abstract models developed using the direct techniques presented above are "stand alone" versions. The 
relationship between the real system, a high fidelity model, and the more abstract model is contained in the two map- 
pings from the underlying system to each of the models. Also, these techniques require an a priori understanding of 
the structure of the elements and the interconnections between these elements at the specific level of fidelity selected. 

The metamodeling technique we present here is based on a solution of the inverse problem and is shown in Figure 
2. This technique is a structured metamodeling method that simplifies the metamodeling process to two phases: 
problem definition and an iterative metamodeling process. 

In the problem definition, we begin with an analysis of the metamodel requirements and the simulation under 
study. We then progress to the description of the system (not the model) so that we will be able to select a metamodel 
structure that matches both the requirements and simulation that we are going to metamodel. We determine the 
purpose of the metamodel. In the definition of this purpose, we have identified the input and response that we are 
interested in and determined the important characteristics of these data. Also for this purpose, we have defined the 
region of interest, selected validity measures, and specified the required validity. 
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In addition to the purpose of the metamodel, we also characterize the simulation that were are trying to model. 
In our approach, we do not address the representation of the metamodel or assumptions that will be made in its 
realization. However, data generated by this step provides a clear statement of the metamodel purpose and the 
characteristics of the simulation that will be modeled. As will be seen in the next section, this data directly matches 
the decisions that must be made in the selection of the model set. 

2.6.1. Structured Metamodeling Method 

Prevalent metamodeling approaches required too many decisions involving: a priori knowledge; the data; possible 
metamodel sets; and rules to determine the best model set to realize the data. Each decision was a complex function 
of a priori information and prior selections in the metamodeling process. 

In reality, all "real world" systems are complex, large scale interconnections of continuous-discrete, nonlinear, 
infinite-dimensional components. We will approximate these systems with lumped parameter, parametric, finite 
dimensional models that can be grouped into sets. 

A new taxonomy of metamodel sets and identification methods was developed that allows the separation of the 
metamodeling process into a set of sequential decisions based on a priori information. This decision sequence is 
shown in Figure 3. The purpose of the procedure is to match the problem definition and characterization of the 
simulation to the behavior allowed by the metamodel set. 

PROBLEM DEFINITION 

EXPERIMENTAL DESIGN 
i i 

+ 
RUN SIMULATION 

' 

* 
' COLLECT 

DATA 

' 

SELECT METAMODEL SET ~~| 1 

SELECT IDENTIFICATION 
METHODOLOGY 

L> 

i ' 
nCMCDATC Ahm 1/CDICVMCTilWnnCI 

Figure 2. Iterative Metamodeling Process 
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Figure 3.  Metamodeling Set Determination 

As seen from Figure 3, selection of the metamodel set is clearly defined by the system description, system class, 
representation, and metamodel structure. Data for all of these selections come directly from the problem definition 
step. 

In each of these model sets, a most powerful unfalsified model will exist (given that the certain requirements are 
met).3 Consequently, the performance of the metamodel will be limited by the match between the metamodel set 
and the actual system that generated the behavior. 

2.6.2. Generation of the Metamodel 

We have defined the problem and selected a metamodel set that matches this definition.   Now we must select a 
method to generate the model parameters. 

There are many taxonomies used in the literature to categorize identification methods. Methods can be referred to 
as off-line or on-line. Also, they can be classified as either open-loop or closed-loop methods. Further classification can 
be made as nonparametric, frequency domain, and as parameter identification methods. The number of methods and 
classification schemes complicated method selection, and none of the classifications really addressed the application 
of a method based on the metamodel set. 

By selecting the metamodel set as shown in Figure 3, a new structured metamodeling method was possible that 
addresses this complexity. The structure is based on the fact that the construction of a metamodel (selection of the 
parameters used for the projection) is determined by the metamodel set, method of identification, and identification 
criteria. 

Analyzing the method of identification and identification criteria,we can reduced the parameters identification 
methods to four approaches shown in Figure 4. A summary discussion of these elements is included in Reference 
[15], additional details are found in [11]. 
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Figure 4. Taxonomy of Metamodel Methods 
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3.   MODEL ABSTRACTION TAXONOMY 

3.1. Initial Model Abstraction Taxonomy 
An analysis of the above techniques was accomplished in [2], and is presented in Figure 5. 
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Figure 5. Model Abstraction Taxonomy. 

While complete, some simplifications can be made so that the distinctions in types of abstraction come through 
more clearly. This taxonomy attempts to display all of the possible abstraction methods and their resulting repre- 
sentations in a single flowchart. This construct requires that we consider both the underlying process and how the 
process is accomplished. If carried to completion, the resulting two dimensional diagram is excessively complex and 
loses it's ability to convey any information. 

3.2. Proposed New Model Abstraction Taxonomy 
Since the process of abstracting a model usually entails multiple passes operating on the same or derived models, we 
will approach a taxonomy of abstraction techniques in the same manner. The methods in the taxonomy we describe 
are appliec! iteratively until the desired representation and level of abstraction is obtained. 

The taxonomy addresses processes that are available for model abstraction and, with the exception of separating 
the model and the data, does not address the component of the model that the method operates on. In the structural 
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techniques we will delineate between the structure of the model and the structure of the data. We divide the problem 
space into models and data because the model is the structure that can be used for understanding the behavior, the 
data is the interaction of the model with its environment. Structural abstractions can be applied to either space. 

The focus on the process means that we do not consider the result of the process as part of the taxonomy. For 
example, application of structural abstraction applied to the model (as opposed to the data) can result in different 
structural classes that can be used in the same overall model. In Figure 1 above, this results in the Hetrogeneous 
Multimodel. 

Some portions of the taxonomy, however, are based on the initial condition of the process. Direct behavioral 
techniques can be thought of as Object-Oriented (00) or Structured (functional). This distinction is similar to 
the distinction between OO Modeling and Design and Systems Engineering. In the OO approaches we analyze the 
model from the bottom up looking at the entities that are used to describe the system and their interaction with 
the environment. In the Structured Approaches we begin with a top down analysis and decompose or abstract the 
system beginning at the highest level. 

With these few introductory remarks, Figure 6 presents this new taxonomy of Model Abstraction Techniques. 
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Figure 6.  Proposed Model Abstraction Taxonomy. 
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Unfortunately, the length of the paper prevents a complete description of each branch or the specific mention of 
every technique in the branches. We do however, provide a general discussion of the major aspects. The Taxonomy 
was slightly simplified for presentation. The presentation of Structural Techniques that operate on data do not 
continue below "Boundary" and "Form" but the remaining options are identical to Structured Model abstraction 
techniques. The inverse metamodeling techniques shown in Figure 4 were not repeated and should be appended to 
Figure 6 in the appropriate location. 

The primary boundary is between "Structural" and "Behavioral" abstraction. In behavioral abstraction we 
address the behaviors that we are going to model and how these behaviors are related to the underlying model that 
we are abstracting. We can accomplish this by working directly with the behavior from a Structured or Object 
Oriented perspective or we can abstract the behavior indirectly through the data using Metamodeling. 

The OO methods are divided into "Model Based" and "DEVS". Although DEVS is an outgrowth of a model based 
approach, this distinction was maintained because of the additional constraints placed on DEVS when compared to 
the model based approach. An example of an additional constraints is the restriction to a discrete event system. It 
is possible to use model based approaches for continuous, discrete or sampled-data models. 

Under Direct Structured Behavioral approaches we divide morphisms into those that are purely mathematical in 
nature and those that would allow other types of abstractions that are based on process relationships. 

Structural Model abstraction techniques can be applied to the data or the form of the model. If we address 
the form of the model we can approach the abstraction through composition or aggregation. Both methodologies 
can be applied to portions of the model or to the model as a whole. Aggregation is a decomposition of the model 
into parts where the sum of all of the parts now represent the model. In composition we do not decompose the 
model into mutually exclusive elements but into components that are part of the original model. These components 
represent characteristics of the model but there is no assumption that the sum of the components represent the entire 
(abstracted) model. 

Structural Data abstraction maintains the behavior and the structure of the model but allows the analyst to 
address the representation of the input or output. Here we could group variables, modify intervals, etc. as long as 
the full behavior is not modified in any manner. 

If we address the boundary of the model we are changing the domain and/or range of the model. We can make 
this change by direct selection or by approximating the boundary of the model in a different representation. 

4. CONCLUSION 
We have reviewed various model abstraction techniques and suggested a taxonomy that includes and unifies those 
techniques. This new taxonomy was presented in Figure 6 and is based on the following constructs: 

1. The taxonomy addresses the processes that are available for model abstraction and does not address the 
component of the model that the process operates on. 

2. The taxonomy does not consider the result of the process. 

3. Taxonomy we describe is applied iteratively until the desired level of abstraction is obtained. 

Because the taxonomy does not consider the model components or the result of the abstraction process, it appears 
to be quite different from those proposed in the past. It is not possible to use this taxonomy to determine the type 
of the resulting (abstract) model. 
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A Metamodeling Approach to Model Abstraction 
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Abstract— This paper provides a framework for the 
application of System Identification techniques to de- 
velop suitable Metamodels for tactical simulations 
used by the Department of Defense. We fill in the 
framework with concrete definitions and identify spe- 
cific issues associated with the representation of dy- 
namical systems. Particular attention is given to 
the discussion of experimental design requirements 
for Metamodeling Tactical Engagement (usually Dis- 
crete Event System - DES) simulations. We demon- 
strate this approach by outlining the development of 
a Metamodel for the "Tactical Electronic Reconnais- 
sance Simulation Model." 

1    INTRODUCTION 

Tactical Simulation models used by the Depart- 
ment of Defense to assess the capabilities of combat 
systems and tactics are highly complex. It is often 
difficult to determine the relationship of individual 
factors to the performance of the modeled process 
[1]. Consequently, it is not easy to use the results 
of the model in another simulation or couple multi- 
ple models to investigate a larger issue. The result 
is a proliferation of point designed models and sim- 
ulations, expensive upgrade and maintenance, and 
the inability to efficiently answer many of the more 
difficult questions raised by the acquisition and op- 
erational communities [2]. 

A technique called Metamodeling has the ability 
to facilitate this type of assessment. As an abstrac- 
tion, a metamodel is a projection of the model onto 
a subspace defined by new constraints or regions of 
interest. Selection of the parameters used for the pro- 
jection (the construction of a metamodel) involves: a 
priori knowledge; the data; a set of metamodel struc- 
tures; and rules to determine the best model to realize 
the data. This paper presents a new paradigm and 
discusses some of the issues associated with Meta- 
modeling tactical simulations. 

The paper is organized as follows: Section 2 in- 
troduces Metamodels and techniques available to de- 
velop them; Section 3 introduces the Framework that 
will be used for the Identification of Metamodels from 
Combat Simulations; Section 4 identifies some special 
issues associated with the Identification of simulation 

Metamodels; Section 5 provides an example of us- 
ing this approach; and Section 6 concludes the paper 
with results and conclusions. 

2    METAMODELS 

A model is a structure that can be used for under- 
standing the behavior of a system [3]. The model can 
be a physical structure such as a wind tunnel model 
used to determine the aerodynamics of an aircraft, or 
it could be a conceptual model represented by inter- 
actions, a system of equations, or a simulation. 

Assume that we have a model of a system that 
cannot be used directly. A solution may not exist, it 
may be too complicated for a closed-form solution, it 
may require too much time to numerically determine 
a particular solution, or it may be a high-fidelity sim- 
ulation that provides much more detail than we are 
interested in. Efficient use of this model requires a 
"black-box" approximation of the causal time depen- 
dent behavior of the model - a Metamodel. 

A Metamodel is a mathematical approximation of 
the system relationships defined by another, more de- 
tailed model (in our case - a tactical simulation). 

2.1     Metamodeling Techniques 

There are two basic techniques available for Meta- 
modeling: direct and inverse modeling. 

First, a metamodel could be developed by applying 
basic principles to generate a more abstract (approx- 
imate) version of the original model. This would be 
an example of direct modeling. Direct modeling is 
characterized by a specification of the elements of 
the model. Complicated systems are modeled by 
"tearing" a system into its components, modeling 
these components in a process called "zooming," and 
then interconnecting these components to construct 
a "physical" realization of the system [4, 5, 6]. The 
level of abstraction is controlled by the detail of the 
specification. The model reveals the structure of the 
theory and allows the prediction of the response to 
exogenous inputs as a function of the state of the sys- 
tem. The solution of this modeling problem requires 
an understanding of the process being modeled and 
methods to express this understanding. 

Metamodels developed using this technique are 
"standalone" versions. The relationship between the 
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real system, the original model, and metamodel is 
contained in the two mappings from the underlying 
system to each of the models. There is no guarantee 
that a usable correspondence will exist between the 
metamodel and the model [7, 8], Traceability from 
the high-fidelity model to the more abstract, lower fi- 
delity, metamodel becomes a significant issue. Also, 
this technique still requires an a priori understanding 
of the structure of the elements and the interconnec- 
tions between these elements at the specific level of 
fidelity selected. This, in fact, could be a difficult 
and risky task and lack of this knowledge is often the 
reason that a high fidelity simulation was used in the 
first place. 

The second technique develops the metamodel 
from the Input-Output data generated by the orig- 
inal model or simulation. This technique is an ex- 
ample of the "inverse problem." As difficult as the 
direct modeling problem may be, the inverse problem 
is much more complex. In this case, we have some 
estimate (measure) of the input and output response 
but do not have a complete characterization of the 
process by which the outputs are generated. While a 
properly posed direct problem generally has a solu- 
tion, the inverse problem usually has multiple solu- 
tions out of which an acceptable solution (if it exists) 
must be selected. This technique explicitly results in 
a mathematical approximation between the inputs 
and responses - this is the technique we consider. 

It should be noted that there is a significant dif- 
ference between our approach and much of the prior 
research. Most of the previous work that could be 
categorized as Metamodeling consisted of procedures 
to determine the best polynomial fit to a set of Input- 
Output data. The researchers concentrated on the 
statistical properties of the data. In our approach, 
we are not trying to fit data. We are attempting to 
identify the underlying processes that define the sys- 
tem that generated the data (or in our terminology 
- the behavior). The focus is not on statistics but 
on the system theoretic properties of the manifest 
behavior. 

3    IDENTIFICATION FRAMEWORK 

Given a phenomenon that we would like to de- 
scribe, we desire a mathematical expression as the 
model 2 [4]. Assume that this phenomenon produces 
outcomes that are elements of a set U. A model 
for this phenomenon will probably generate certain 
of these outcomes and exclude others. Consequently, 
the outcomes recognized by the model, B, are a sub- 
set of the universal set U, and are called the behav- 
ior of the model. For the inverse modeling problem, 
we define a model class M with elements M = (U,B) 
where B C U is the behavior of M. 

This framework follows the work presented by Willems 

Therefore, define a mathematical model as the pair 
(U, B) with U the universe of outcomes produced by 
the underlying phenomenon, and B, the behavior of 
the model. If possible, we can describe the behavior 
of the model by a set of equations that leads to a 
behavioral equation representation of the pair (U, B). 
To accommodate this, consider an abstract set, E, 
called the equating space, and f\, f2 : U —*■ E. With 
this space, and the functions fi,f2, the behavioral 
representation for the model becomes (U,E,fi,f2). 

In summary, the modeling procedure requires that 
we specify the variables that we want to model (spec- 
ify the universal set U), and identify the possible 
outcomes in the behavior. Often, however, we will 
require additional variables in addition to those we 
seek to model. These other variables are called la- 
tent variables. These variables are required whenever 
we develop a metamodel by the method of tearing 
where the system is viewed as the interconnection 
of subsystems. Consequently, we expand the math- 
ematical model to allow latent variables by defin- 
ing a triple (U,L,Bf). Here L is the set of latent 
variables, Bf C U x L, with Bf = {u G U\3l g 
L such that (u,l) 6 Bf }. 

A mathematical model is linear if U is a vector 
space and B is a linear subspace of U. Assume 
that U = I x O, where I is the input space, O is 
the output space, and B is the graph of a system 
map F : I x O called an I/O map. These assump- 
tions allow an Input-Output model where (U, B) O 
(/ x O, B) O (I, O, F). If the past does not contain 
any information about the future other than the in- 
formation in the behavioral relationships, the map is 
nonanticipating. A parametrization of M consists of 
a set P and a surjective map w : P —> M. The set P 
is the parameter space with p £ P determining the 
behavioral equations. 

3.1     Dynamical Systems 

Again, the model for a dynamical system is de- 
fined in terms of its behavior. A dynamical system 
is a family of trajectories without reference to I/O 
maps, variables, or behavioral equations. The sys- 
tem is coupled to its environment and is not defined 
by a model associated with it. A model for a dy- 
namical system E is simply a triple E = (T, W, B) 
with T C R the time axis, W the signal space, and 
B C WT the behavior - the set of all maps from T 
to W, a family of W-valued time trajectories. 

A dynamical system is linear if W is a vector space 
(over a field F) and B is a linear subspace of WT. A 
dynamical system E = (T, W, B) is said to be time 
invariant if alB = B for all t £T. Where a* is the 
time-shift operator: (<7*/)(0 = f(? -M). 

A dynamical system E = (T, W, B) is said to be 
complete if {w e B} O H[*i,t3] £ B[tl:t2],Vtut2 G 
T,t\ < t2}.  Completeness is an important property 
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affecting the mathematical structure that defines the 
behavioral equations that represent dynamical sys- 
tems. 

Dynamical systems acquire their importance from 
the fact that they exhibit memory or the potential 
to model phenomena where the past influences the 
future. In this context, a dynamical system is said 
to have a finite memory span A(A G T, A > 0) if 
wi,w2 G B,wi(t) = w2(t) for 0 < t < A =>• {wy A 
w2£ B} 3. Where 

i      A      \n\     / ^iM    for   t<0 m (w1Aw2)(t) = { w^    for   t>Q (1) 

If A = 0, the dynamical system is memoryless; if 
A = 1 (in discrete time) the system is Markovian. 
Therefore, for a system with a finite memory span, 
the past is independent of the future. S is A com- 
plete (A G T, A > 0) if {w G B} & {(<T'W)|[0,A] G 
B|[0l,]V*€T}. 

Dynamical systems with latent variables and In- 
put/Output Dynamical Systems can be defined in an 
analogous fashion as before. One method of repre- 
senting latent variables is through state variables. A 
state-space dynamical system is defined as a dynam- 
ical system with latent variables, S = (T, W, X, Bs) 
with X C L, such that the full behavior Bs G W x X 
satisfies the axiom of state. In this case the latent 
variables, the states, contain sufficient information 
about the past so as to determine future autonomous 
behavior. The behavioral equations, such as differ- 
ence or differential equations, lead to representa- 
tions of dynamical systems. 

3.2     Representations 

The model is defined by the behavior that it allows. 
The behavior can be defined by a set of inequalities 
or equations. The structure of the equations is a 
representation of the model. 

A representation that is only a function of current 
and past signals (outputs) and is called an autore- 
gressive (AR) representation and can be written as 
R(a,a-1)w = 0. Where 

R(s,s-1) = RLsL + RL-1s
L-l + ... + R,+1s

1+1+R,s' 

If the system that we are trying to model suggests 
latent variables to describe the behavior, the autore- 
gressive representation can be expanded to include a 
moving average part of the past latent variables re- 
sulting in an autoregressive-moving-average (ARMA) 
representation. In this case, the behavioral difference 
equations relate the time-series of the manifest vari- 
ables w : Z —>■ Rq to the time-series of the latent 
variables / : Z —> Rq. With appropriate definitions, 
the ARMA system is defined as: 

Ä(<7,o--1)tü = M(o-,o--1)/ 
3 Here A denotes concatenation 

An important class of ARMA systems are those 
where R{s,s~1) = I. This yields a moving average 
(MA) representation: w = M(c,cr~l)l 

We can combine the above constructs to define a 
class of models with all of the advantages of com- 
pleteness - described by the difference equation; state 
form - the memory is displayed through the latent 
variables; and nonanticipating Input-Output - an ex- 
plicit cause and effect structure. This representation 
is an Input/State/Output representation and is the 
model class most amenable to analysis, synthesis and 
simulation. 

3.3 Controllability and Observability 

In a controllable system, the past trajectory does 
not have a lasting influence on the far future. Sooner 
or later, any other trajectory, within the controllable 
subspace, can be attained. In an autonomous system, 
the past trajectory determines its future completely. 
Consequently, the lack of controllability implies pre- 
dictability. As we develop the capability to better 
understand and control our environments, our abil- 
ity to predict that environment can suffer. We are 
limited in our ability to predict by our ability to ob- 
serve. All dynamical systems are not controllable. 

While controllability is intrinsic to the dynamic 
system, observability is also a function of the repre- 
sentation of that system. This comes about because 
observability is only an issue for dynamical system 
model representations that have latent variables 
(by definition, if the variable is a manifest variable it 
is observed) and is a property where an unobserved 
signal can be deduced from one which is observed. 

3.4 Discrete-Event Systems (DES) 

The above framework is consistent with the formal- 
ized discrete-event systems in theoretical computer 
science. The behavior is similar to the formal lan- 
guage, a state-space system is like an automation, 
latent variables are replaced by production rules, in- 
terconnections are communications. The most sig- 
nificant difference is the lack of behavioral models 
(equations) in the theory of DES. Also completeness 
is usually violated in a DES by initiation and termi- 
nation rules for event strings. 

Since the DES is not complete, representation of 
these systems requires special consideration. We will 
see that completeness is required to represent a dy- 
namical system by a behavioral difference equation. 
Results for representation of complete systems may 
be generalized to a class of noncomplete systems (in- 
cluding DES) that meet specific restrictions. 

A linear time-invariant dynamical system 
(Z, Rq,B) is called an /2-system if B is a linear shift- 
invariant closed subspace of l2(Z;Rq). Define B?c as 
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the closure of B with respect to the topology of point- 
wise convergence. With these definitions, results for 
complete systems may be generalized to /2-systems 
satisfying B = BP

C
 f] 12{Z; Ä«)4. 

4    METAMODELING ISSUES 

7. The manifest behavior of the state variable 
(an ARM A) representation will belong to Lq. 
Consequently, every system T, £ Lq admits a 
finite-dimensional state representation, allows a 
componentwise I/O representation, and conse- 
quently admits an Input/State/Output repre- 
sentation. 

With a framework established to characterize sys- 
tem models, we now address the key issue of the in- 
verse modeling problem: "What properties of the be- 
havior allow the system to be represented by a differ- 
ence (or differential) equation of a particular type?" 
Analysis of these properties will result in rules and 
constraints for the setup and design of metamodels. 
Since we are no longer fitting data but identifying 
systems, the data used to identify the system must 
meet certain prescriptions. Explanation and proof of 
the following statements can be found in the refer- 

1. To represent a system by means of a differ- 
ence equation it has to be complete (it cannot 
have initialization or termination conditions at 
t = ±oo) with a finite memory span so that ob- 
servation of a trajectory on a finite time interval 
allows conclusions about past behavior indepen- 
dent of what will happen in the future. 

2. For a system to be described by AR-equations it 
must be linear, complete, and time invariant. 

3. Since a dynamical system containing latent vari- 
ables can be converted into an AR representation 
with an increase in the lag, representation of a 
dynamical system with latent variables must also 
be linear, complete, and time invariant. 

4. If the dynamical system is controllable (if it is 
possible to eventually steer the system to a de- 
sired trajectory) then the system will also allow 
an MA representation. 

5. An Input-Output dynamical representation can 
be defined if, and only if, it can be de- 
scribed by an AR-system of behavioral equa- 
tions P(cr,cr~1)y — Q(a,a~1)u with P(s,s~1) G 
RPxq[s,s-1], Qis^-1) G ÄPxm[s,s-1] and det 

6. The Input-Output dynamical representation 
will be nonanticipating if, and only if, 
P-1(s,s-1)Q(s,s-1) G RJxm(s) is a matrix of 
proper rational functions. 

See [7] and [8] for definitions of I2 and Lq spaces. 

4.1     Identifiability 

Identifiability relates to the ability to reconstruct 
the dynamical laws of the system from a given set 
of measurements [9]. There are several obstructions 
to identifiability. Feedback makes it difficult to sepa- 
rate system dynamics from the dynamics of feedback. 
Structured inputs can interfere with the structure of 
the behavior. Lastly, the failure of the input to ex- 
cite all of the modes will prevent observation (and 
subsequent identification) of the unexcited modes. 

Any unstructured input will be sufficiently rich to 
observe a controllable system. Structured inputs will 
allow observation and identification if the AR rela- 
tions defining the structure of the input have large 
lags that do not interfere with the structure of the 
system. In other words, if the structure of the input 
is not seen by the system. 

In order to identify a portion of a system, we must 
be able to observe the response. Observability spec- 
ifies the ability to determine the trajectory of latent 
variables from the manifest set. Since controllabil- 
ity allows an MA representation, and any control- 
lable MA representation can be converted into an 
AR representation by increasing the lag, complete 
controllability implies observability. Lack of control- 
lability, however, does not imply lack of observabil- 
ity [10]. For systems that can be reduced to an 
AR-representation, R\{(T, cr~x)wi + R2(cr, cr~l)w2 = 0 
with Äi^s-1] G R9*^[s,s-1] and Ä2[s,s_1] G 
Rgxg2[s,s~1] then w2 is observable from w\ if, and 
only if, the rank of the matrix ^2(0", c_1) is equal to 
q2\fa ^ 0. 

This is why inverse modeling or System Identifica- 
tion is so difficult - the system and our selection of 
a representation is critical in that it constrains the 
behaviors of the model, affects our ability to observe 
latent variables, and impacts our ability to represent 
the outcomes U. 

4.2     Representing Discrete Event Systems 

The discussion above introduced the issues as- 
sociated with Discrete Event Systems. Most of 
System Identification is formulated on continuous, 
discrete, or continuous-discrete dynamical systems. 
Many of the simulations are discrete event or con- 
nected discrete-event dynamical systems. The ques- 
tion arises:   "When can a DES be described by a 
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difference equation?" 
Since completeness is usually violated, this im- 

pact must be expressly considered. If a linear time- 
invariant system is not complete, then whether or not 
w : Z —*■ Rq belongs to the behavior depends on w(t) 
at ±00. However, results for complete systems can be 
generalized if the system behavior is restricted to a 
finite dimensional sequence. From Section 3.4, every 
behavior B £ L9 allows an AR representation. De- 
fine a DES as a time-invariant system S = (Z, W, B) 
with W a finite set. A DES is internally finite if it 
can be realized by a finite automation, if there ex- 
ists a state-space representation of it with a finite- 
state space. An internally finite and complete DES 
S = (Z, W, B) can be described by a behavioral dif- 
ference equation / o (crLw, aL_1w,..., c'w, w) = 0 
for some L G Z and some / o WL+1 -* {0,1}. 

4.3     Existence of a true Input-Output Rela- 

tionship 

Assume that we have observed the input and out- 
put of a system and computed a set of linear dif- 
ferential and/or algebraic equations from this data. 
Have we identified the system? Do these equations 
establish a true Input-Output relationship suggested 
by this identification? Answers to these questions are 
provided by two sequences of subspaces, one in the 
input space u and the other in the output space y 

Consider a system of linear ordinary differential 
and algebraic equations with constant coefficients: 
A((T)£ + B(cr)u + C(a)y = 0 where (<r) denotes dif- 
ferentiation (or the shift operator for discrete time 
systems), and £ contains all of the latent variables 
not present in the input and output spaces. A(s), 
B(s), and C(s) are polynomial matrices. 

We say that y processes u if the linear space of tra- 
jectories {y\(y, 0) G -5} is finite dimensional. There- 
fore, y processes u if u determines y up to a finite 
number of constants. Also, u is free if for every trajec- 
tory u there exists a trajectory y such that (y, u) G B. 

Recall that if the dynamical system with latent 
variables £/ = (Z,R9,Rd,Bf) is linear time invari- 
ant and complete, the manifest system which it rep- 
resents S = (Z,Rq,B) is also linear time invariant 
and complete. Consequently, for a linear time in- 
variant and complete system, any behavior given by 
A(a)£ + B(<r)u + C(cr)y = 0 can also be represented 
by: 

B = [Äi(<r)  ä2(<T)] = 0 (2) 

The behavior of such a set of equations stems from 
an Input-Output system if both conditions of the fol- 
lowing proposition hold. 

Proposition 1 Let a behavior B be given by equa- 
tion 2. where [Ri(<r) ^(o-)] is a polynomial matrix 
of full row rank.  The following statements hold: 

1. y processes u if, and only if, Ri{s) has full 
column rank 

2. u is free if, and only if, Ri(s) has full row rank. 
Therefore, R\(s) must be invertible and the trans- 

fer matrix of the system is defined by T(s) = 
-R^l(s)R2(s) 

Also, once the identification is accomplished, the 
subspaces generated by the system (equation 2) can 
be checked to determine if a true Input-Output rela- 
tionship has been found (see [11]). 

4.4    Metamodeling Combat Simulations 

With respect to Metamodeling Combat Simula- 
tions, the systems we are trying to identify are com- 
plex, nonlinear, time varying discrete event systems. 
In general, for this case, the predictor function is a 
nonlinear function of past observations and there are 
too many possibilities for unstructured "black box" 
models. Knowledge of the nonlinear it ies must 
be built into the model [12]. 

Fortunately, in this case, we have explicit knowl- 
edge of the nature and characteristics of the model. 
We have the model (the simulation) that applied the 
system to the inputs to generate the outputs we are 
interested in. Given this information, we can build 
the nonlinearities into the structure of the metamodel 
and provide the capability to generate a reduced or- 
der approximation of the original model. This fact 
makes Metamodeling as a method of model abstrac- 
tion feasible. We will exploit this fact to the fullest 
extent possible. 

Care must be taken in the setup of the Metamod- 
eling problem. The experimental design must 
provide Input-Output sequences that cor- 
rectly represent the system structure. When 
the metamodel is determined, it is not possible to 
ask "What is the probability that a particular set of 
fitted parameters is correct" because there is no sta- 
tistical universe of models from which the correct one 
is chosen. There is just one model and a statistical 
universe of data sets that are drawn from it. It is 
possible to ask, however, "Given a particular set of 
parameters, what is the probability that this data set 
could have occurred?" We can identify the probabil- 
ity of the data given the parameters as the likelihood 
of the parameters given the data [13]. 

In addition to the problem setup and experimen- 
tal design, the metamodel solution comes with limits 
of its own. Using the space spanned by the origi- 
nal model as the full order model, the metamodel is 
a reduced order approximation. This reduction in- 
herently limits the span of the manifest (exogenous) 
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variables associated with the behavior (input or out- 
put - if such a map exists). Consequently, the be- 
haviors allowed by the metamodel will exist 
within a subspace of the original model. 

Assuming that an Input-Output map exists for the 
model, input values will be restricted to a do- 
main within which the metamodel will be applica- 
ble. Outside of this hypersurface, application of the 
metamodel may provide numbers but will not gener- 
ate an output that is representative of the modeled 
system. Also, assuming appropriate inputs, the out- 
put of the metamodel can only be guaranteed 
to be approximately correct. As a projection, 
the metamodel will not contain all of the detail of 
the original model. There are output error bounds 
that are a function of both the Metamodel and the 
input. 

Military Engagement Simulations usually are de- 
fined to represent real-world events that have a be- 
ginning and an end. Given that the simulation 
terminates naturally, results for complete sys- 
tems can be applied since the system behavior is 
restricted to a finite dimensional sequence. 

In general, the axiom of state applies because 
the simulation is set up in such a way that the initial 
conditions contain sufficient information about the 
past so as to determine future autonomous behavior. 

Also, the presence of input and output files in- 
dicates that an Input-Output structure with 
causality is assumed in the simulation. 

5   APPLICATION 

5.1    Introduction to TERSM 

Using the above framework, we applied System 
Identification to the TERSM Metamodeling problem. 
TERSM (Tactical Electronic Reconnaissance Simu- 
lation Model) was designed to provide comparative 
performance evaluations of single and multiple-pass 
DF (direction-finding) systems. The outputs of the 
simulation are the number of bearing measurements 
made on each emitter, and the lower bound of the 
Circular Error Probable (CEP) of the emitter loca- 
tions. Inputs to the simulation include sensor param- 
eters, an emitter environment, and aircraft parame- 
ters. The program functions as shown in Figure 1. 

From this overview, you can see that the simula- 
tion is centered on the DF sensor and the operations 
that have to take place within the system. As a re- 
sult, data generated by the simulation is event driven 
as a function of DF sensor processing. The update of 
the simulation time and corresponding motion of the 
aircraft platform is a function of the time required to 
process the data. This in turn, is a function of the 
number of channels operating, the number of emit- 
ters detected in the channel, the frequency-scanning 
technique (continuous serial scanning, parallel scan- 
ning, and either serial or parallel priority scanning), 
and the channel capacities. 

record 
rejection 

get 
next 

emitter 

temporary 
store of 

channel data 

Figure 1: TERSM Functional Flow 
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sums: 

In - ]Oyi - ye)2/rta 

hi - Yl(Xi ~ Xe^m ~ y^/7"?17 

I22 =      ^2(Xi - Xe)2/rf(T 

The simulation produces a lower bound on emitter 
location accuracy based on the assumption that the 
bearing errors from measurement to measurement on 
the same emitter are normally distributed. During 
the simulation, the information matrix of the proba- 
bility density function is computed from the following 

(3) 

where a is the standard deviation of the bearing mea- 
surement, X{ and yi are the aircraft coordinates, xe 

and ye are the emitter coordinates, and r; is the range 
at each DF measurement. At termination of the run, 
the covariance of the emitter location is obtained by 
inverting the information matrix. The covariance 
matrix is then diagonalized to obtain variances along 
the major (ox) and minor (as) axes of the location 
uncertainty ellipse. The Cramer-Rao lower bound for 
the CEP is then computed from: 

CEP    -    .674 + .8 (*A      for^f- < 0.5 
\OL j J °L    — 

or 
CEP    =    .587(<TS+(TL) 

(4) 

5.3    Previous Work 

Previous work with this simulation resulted in a 
metamodel that provided an estimate of the num- 
ber of emitters found with a CEP of 5 nautical miles 
(nm) or less [1]. This metamodel was generated by 
a Least Squares fit of selected input data and the 
number of emitters reported with a CEP of 5 nm or 
less. The inputs were aircraft altitude and velocity, 
azimuth coverage, and channel capacity of the sensor. 
These inputs were combined to generate a nonlinear 
system with 22 inputs (up to the fourth order of a 
single input) to produce the square root of the num- 
ber of emitters with a CEP of 5nm or less. Using a 
2 layer Central Composite Experimental Design, the 
following model was obtained: 

V» 23.567 - 0.669xi - 2.842x2 + 1.298x3 + 

3.344x4 - 0.491xix3 + 0.963xix4 + 

0.414x2x3 + 1.155x2x4 + 0.231x3x4 + 

0.404x!X2x3 + 0.198xiX2X4 -      (5) 

0.285x2x3x4 + 2.037xi - 0.788x| + 

0.201xix3x4 - 2.743x| + 0.714xf + 

5.836xf + 0.744x| - 2.947x? - 5.823x| 

for^ > 0.5 where 

5.2    Emitter Field 

The emitter field for this experiment consisted of 
2359 emitters as shown in Figure 2. The aircraft 
flight path (solid line) is also shown. 

Figure 2: TERSM Emitter Field 

xi = Altitude 

X2 = Velocity 

x3 = Azimuth 

X4 = Channel Capacity 

The model provided an excellent fit with an R2 

of 98.9%, Maximum Absolute Error of 73.51 emit- 
ters, and an Average Absolute Relative Error of 4.7%. 
This is a good example of a Metamodel that can be 
used to explore the effect of the different input vari- 
ables on the output via Surface Response Methodol- 
ogy or Capability Based Analysis. It has not, how- 
ever, identified the system simulated by TERSM. As 
such, it's utility for simplifying or coupling simula- 
tions, further analysis, or updating knowledge bases 
in expert systems is limited. Also, the domain of va- 
lidity (range of the response) is not guaranteed out- 
side of the area of the fit. 

5.4    A New Metamodel for TERSM 

We will pursue a different approach in line with the 
framework suggested in Section 3. Rather than com- 
bine inputs to fit the output, we will use our knowl- 
edge of the system to identify what is essentially a 
reduced order model. This model will concentrate 
on identification of the latent variables inherent to 
the system. Consequently, the validity of the model 
will not be restricted to the data used to build it. 
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We assume that the desired result remains the 
number of emitters with a CEP of less that 5 nm. 
Therefore, we will build a Metamodel that will actu- 
ally compute the CEP (as opposed to other measures 
that may be of interest such as the probability of de- 
tection, the probability of location within 5nm, etc.). 

To use this Metamodel for the kind of analysis dis- 
cussed in [1], however, we would have to relate the 
input variables of altitude, airspeed, azimuth, and 
channel capacity to the latent variables used for this 
identification. This would require running the simu- 
lation to capture the data or another mapping from 
the input variables to the latent variable inputs to 
this Metamodel. 

5.5    Simulation Parameters and Output 

TERSM was initialized to simulate a single aircraft 
flying for 1476 seconds at 40,000 feet, 560 knots, with 
a sensor that could view on both the left and right. 
The sensor used a parallel scan over 5 bands, scan- 
ning from 60MHz to 18GHz, with a channel capac- 
ity of 20 emitters, a 90 degree viewing angle, and a 
40 degree depression. Data from this simulated flight 
was collected by slightly modifying (to add a few pa- 
rameters) existing write statements that already ex- 
isted in the simulation. 

In the simulation, 949 of the 2359 emitters were 
detected by the sensor. There were 12981 DF mea- 
surements. Of these, the sequence of calculations in 
2 cases caused the lower bound for the CEP to ex- 
ceed the capability of the computer and were thus 
undefined. Three of the individual measurements re- 
sulted in estimates of the CEPs in excess of 5000nm. 
These outliers were removed from the data result- 
ing in 12976 data points. (Note that in TERSM, 
these calculations did not pose a problem. Since the 
information matrix was not inverted until the end 
of the run, the numerical effect of these single mea- 
surements were not observable.) For the 12976 data 
points, the average lower bound for the CEP for the 
first half of the data points was 140nm, the average 
lower bound for the second half of the data was 32nm 
resulting in an overall average of 86nm. The maxi- 
mum CEP in the data was 4998nm and the minimum 
was 1.2nm. Of the 949 emitters that were detected, 
329 were located with a lower bound on the CEP of 
less than 5nm. 

5.6    Metamodel Structures 

At this point, two Metamodels were considered. 
First, a dynamical model of the simulation could 
have been developed that incorporated both current 
and past inputs and outputs in a state-space or Box- 
Jenkins model structure: 

y(t) mu{t)+me{t) (6) F(q)   " '      D(q) 
Based on the physics of the situation, this would 

clearly be the most accurate model. In fact, given 
that the information matrix is a simple sum of in- 
puts, a Markov model should be possible. To gen- 
erate this Metamodel, the measurement data would 
be collated for each of the 949 sensors (with up to 58 
measurements each). Data for each sensor would be 
used to recursively identify an Autoregressive model 
that included past as well as current values of inputs 
and outputs. This Metamodel could be used in the 
situation when the state of the sensor (number of 
measurements for a given emitter, current and past 
measurements, and estimates of the CEP) is known. 

The second Metamodel considered did not attempt 
to actually model the DF estimation process. This 
Metamodel was a little more abstract and used the 
running total of the elements of the information ma- 
trix as inputs. In this way, the state of the sensor is 
fully incorporated in the input data and an Output 
Error model structure could be used: 

v(t) 
B(q) 

Hi) 
u(t) + e(t) (?) 

The Output Error structure was selected. First, it 
used data that was directly available from TERSM 
without additional processing. Second, it would be 
simpler to use as a module in another (larger) simu- 
lation because the state of the sensor is not required 
and it more closely resembles the level of abstraction 
in previous work. Third, the resulting model would 
be of significantly lower order and consequently con- 
tain fewer degrees of freedom to fit the data. Good 
results would be more difficult to obtain. At first 
this may not seem logical. But, the purpose of the 
research was to understand the process of Metamod- 
eling, not to Metamodel a particular simulation. Er- 
rors in the process of identification are much more 
evident in lower order models. 

5.7    Metamodels and Results 

From the discussion on TERSM and analysis of 
the code, we see that the CEPs are functions of the 
relative difference between the aircraft and emitter 
position and the standard deviation of the bearing 
noise. These parameters are used to calculate the 
four terms that make up the information matrix. In 
TERSM, a running total of the information matrix 
is maintained for each emitter and the lower bound 
of the CEP is calculated at the end of the run. 

The first Metamodel was based on the three pri- 
mary inputs: the number of DF cuts available to 
the sensor, the range along-track, and the cross-track 
range.    CEPs calculated with this model were not 
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very accurate. The Maximum Absolute Error was 
4984nm, the Average Error was 166nm, and Aver- 
age Absolute Relative Error was 385%. Using this 
data, 719 emitters with a lower bound on the CEP 
of less than 5nm were found. Adding range as an 
input reduced the number of emitters found to 670. 
In all cases, there was considerable correlation in the 
residual terms. 

At this time, 1/range, and the combinations of 
ranges that were actually used to compute the infor- 
mation matrix, were added to the input bringing the 
total number of inputs to 6. While the errors for the 
additional inputs improved, there was still consider- 
able structure in the residuals. Final performance, 
the number of emitters with a lower bound of the 
CEP, only improved slightly to 653 (well above the 
actual number of 329). 

Given a known system, every projection of that 
system into a subspace will reduce the information 
content of the observed behavior. The only exception 
is the situation where the kernel of the projection 
coincides with the null space of the behavior. In the 
usual case of inverse modeling, the structure of the 
system is not known. However, if the dynamics of 
the system are available (as in a simulation) or can 
be assumed, the number of processes present in the 
interconnected system can be determined. 

During the Metamodeling (inverse modeling) pro- 
cess, it is imperative to model only one system. Oth- 
erwise, behaviors associated with both processes will 
be aliased - preventing the identification of either. 

From the above discussion, it is obvious that the 
TERSM output is the result of two separate pro- 
cesses. This is an important issue. In reality, the 
CEP should be a piecewise continuous function of 
the number of measurements and the angular sepa- 
ration of the measurements - a single process based 
on the geometry of the aircraft and emitter and the 
statistics of individual measurements. The simulated 
model in TERSM, however, was a discontinuous func- 
tion of the uncertainty ellipse. Since the purpose of 
the metamodel is to represent the simulation, two 
separate systems had to be modeled. 

Based on the value of ^*- (equation 4), the input 
data was separated. Two identifications, one for each 
system, were accomplished. The results were imme- 
diate, the cross correlation between the output and 
inputs were within limits, the Maximum Absolute 
Error was 387nm, the Average Error was .3656nm, 
the Average Absolute Error was .8508nm, and the 
Average Absolute Relative Error was 2.9%. Using 
this data, there were 301 emitters with a CEP lower 
bound less than 5nm. This Metamodel was based on 
the (first) half of the data that had an average CEP 
of 140nm. The remaining data was used to determine 
the quality of the model. 

Since the interest was in emitters with a CEP of 

5nm or less, another identification was accomplished 
using data from the second half of the simulated run. 
During this portion of the profile, the sensor has more 
data and can provide a better estimate of the emitter 
location. The average lower bound for this half of the 
data was 32nm. Again, the residuals for each system 
were within limits. For this Metamodel, the Maxi- 
mum Absolute Error was significantly less at 142nm. 
This improvement came at the cost of a slight bias 
with a higher Average Error of l.lnm and Average 
Absolute Error of 1.2nm. However, the Average Ab- 
solute Relative Error was .8%; also significantly less 
than the Metamodel based on the first half of the 
data. 

The range of the data makes visual presentation of 
the results difficult. If all data points are plotted, it 
is not possible to determine a difference in the actual 
and Metamodeled data. Figure 3 is a plot of the 
last 976 data points that had a lower bound of the 
CEP between 5 and 6 nm - a range that is much 
less than the average of the data (32nm during this 
portion of the simulation). Aggregate results with 
this Metamodel were even better, of the 329 emitters 
with a CEP less than 5nm, this model predicted 326. 

6    RESULTS AND CONCLUSIONS 

This paper provided a framework for the applica- 
tion of System Identification techniques to develop 
Metamodels for tactical simulations used by the De- 
partment of Defense. Use of this framework was 
successfully demonstrated by the development of a 
Metamodel for the "Tactical Electronic Reconnais- 
sance Simulation Model." 

Issues identified under Metamodeling Combat Sim- 
ulations must be explicitly addressed: nonlinearities 
must be built in; the experimental design must isolate 
the system for identification (identification of multi- 
ple independent systems results in an ill-posed prob- 
lem that fails mathematically); the domain of the 
input must be relevant to the issues that are to be 
addressed by the Metamodel; and finally, the accu- 
racy of the model must be adequate to meet a priori 
requirements. 

Metamodeling simulations, as opposed to data 
from an unknown source, provide the ability to struc- 
ture the experimental design so that very accurate 
identification of the system or systems is possible. 
This knowledge also allows control over the input to 
the Identification algorithm so that the domain and 
range of the Metamodel can be controlled. 

In addition to meaningful results for each Meta- 
model, the Identification of system models brings 
with it a large library of research generated to ad- 
vance the Estimation and Control of linear and non- 
linear systems. 
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Figure 3:  Actual and Metamodel Data for the last 976 data 

points that were between 5 and 6 nm CEP 
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ABSTRACT 

This paper provides a new approach to support Ver- 
ification, Validation, and Accreditation (VV&A) of 
models and simulations. The need for efficient and 
objective methods to verify, validate and accredit 
models and simulations is greater than ever. More 
and more decisions are based on computer generated 
data that are derived from models and simulations. 
The strength of these decisions is a direct function of 
the validity of this data. Based on the system identi- 
fication of reduced order models, this new approach 
approximates a complex high-dimensional model or 
simulation by a relatively simple mathematical model 
valid over a specified domain and range of inter- 
est. Verification or validation is then accomplished 
by the straightforward comparison of the reduced or- 
der model structure and coefficients with the baseline 
data or system. Well-developed identification meth- 
ods and a structured procedure make this process 
more efficient and objective than existing methods. 

1    INTRODUCTION 

Increasing computational capability combined with 
the rapid response and inherent flexibility has allowed 
M&S to replace some of the more conventional design 
and analysis methods. Also, our desire to more accu- 
rately represent detailed system behavior or to rep- 
resent "systems of systems" has lead to highly com- 
plex models and simulations. These trends, combined 
with the increased use of M&S by decision makers 
and designers, demand that M&S results be correct. 
Yet, as our ability to model the real-world grows, our 
ability to verify or validate these models shrinks. 

As the reliance on M&S continues to grow, the 
issue of Verification, Validation, and Accreditation 
(VV&A) takes on increasing importance. With re- 
spect to the overall issue of VV&A, there are two 
competing requirements.   First, the decision makers 

need answers they can trust. This requirement lends 
itself to strict configuration control where a limited 
number of accredited models form the body of ana- 
lytical tools. However, if we restrict our use of mod- 
els and simulations to those that are accredited, how 
do we encourage innovation on the part of analysts, 
accommodate new questions, or respond to the ever- 
changing environment? 

This leads to the second requirement. Decision 
makers must be able to answer specific questions 
about very complex environments and phenomenon. 
This requires a large body of techniques that can be 
appropriately applied to the specific situation. It also 
requires an innovative VV&A process that allows in- 
dependent development while maintaining the valid- 
ity of the results. 

The capability that is lacking is the ability to 
clearly and efficiently compare a model or simulation 
with the phenomenon it is supposed to represent or 
to compare two different interpretations of the real- 
world. Reduced order metamodels provide this capa- 
bility and a new approach to support VV&A of mod- 
els and simulations. Although directed primarily at 
constructive (man-not-in-the-loop) models, the tech- 
nique discussed here can also support the Distributed 
Interactive Simulation (DIS) environment. 

The paper is organized as follows: Section 2 pro- 
vides background on VV&A, definitions for common 
understanding, and introduces reduced order meta- 
modeling; Section 3 demonstrates how to apply re- 
duced order metamodeling to the VV&A process; 
Section 4 provides an example of the verification of 
two versions of the same simulation; and Section 5 
summarizes the paper. 

2    BACKGROUND 

One of the major users of M&S has been the Depart- 
ment of Defense (DoD). DoD has long recognized the 
importance of M&S and with reduced budgets has 
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become even more reliant on M&S. This increased 
reliance, and a concern for the proliferation of mod- 
els and simulations, has led the Secretary of Defense 
to direct that each DoD Component shall establish 
VV&A policies and procedures for M&S applications 
managed by the DoD Component. Also, the "DoD 
M&S Executive Agent" shall establish VV&A proce- 
dures for their applications. 

Current VV&A processes, however, are complex, 
time-consuming, expensive, and cannot handle the 
workload generated by the above directives. Con- 
sequently, there is insufficient time and money to 
accredit the models that deserve such status. Fur- 
thermore, the process can take so long that changes 
are often made to the model or simulation before the 
VV&A process is finished, again drawing the results 
into question. 

The solution to this problem is a consistent, co- 
ordinated, requirements-based policy and the ability 
to efficiently analyze models and simulations. Both 
of these elements are required. Even with the best 
policy, it is not possible or desirable to "completely" 
accredit every model or simulation in existence. This 
is clearly a poor use of resources. Only models and 
simulations that need accreditation, for one purpose 
or another, need to go through this process. Given 
that we have such a policy, how does one go about 
the VV&A process so that by the time the simulation 
is accredited it is still relevant? This paper focuses 
on a technique to efficiently support verification and 
validation. 

Standard VV&A techniques are not robust and still 
leave room for interpretation. They generally involve 
looking at the elements of the model or simulation, 
dissecting it, and coming to conclusions by analyzing 
these elements. If we cut a complex problem into 
smaller more manageable pieces while maintaining 
the overall complexity, we really do not reduce the 
overall complexity of the problem that were are try- 
ing to solve. We just make it tractable. If we have a 
complex model, analyzing each and every piece does 
not make the overall analysis less complex. 

This paper provides an alternative solution to this 
paradigm that will allow the VV&A process to meet 
the competing requirements and workload demands. 
This technique is cost effective, timely, and objective. 
Rather than look at the parts of the model and at- 
tempt to integrate the results, we look at the whole 
model or simulation and identify its ability to rep- 
resent the behavior of the phenomenon we are inter- 
ested in. 

We do not maintain the overall complexity of the 
model or simulation. We propose that the analysis of 
the model or simulation be accomplished via aggre- 

gation of the model details into a more manageable 
piece that has a reduced order (more abstract) rep- 
resentation. This is accomplished by increasing the 
level of abstraction (reducing the order) of the model 
or simulation until it is consistent with data used to 
define the model or simulation. This reduction pro- 
vides the ability to clearly and efficiently compare a 
model with the phenomenon it is supposed to repre- 
sent or to compare two different interpretations of the 
real-world. 

Since reduced order metamodels provide this aggre- 
gation and abstraction, we provide a possible solution 
to the VV&A dilemma. Our technique provides the 
opportunity to verify or validate a model in a very 
short period of time, with few resources, and with 
objective results. With this capability, it is also pos- 
sible to verify and/or validate (without going through 
a formal validation process) models or simulations de- 
veloped to adapt existing models and simulations to 
new circumstances. 

2.1    Definitions 

We begin with some definitions to clarify our views 
on the relationships between models and simulations, 
verification, validation, and accreditation. 

2.1.1 Models and Simulations 

A simulation can be defined an instantiation or re- 
alization of a model. In this case, the simulation is 
different from the model. We will use a more abstract 
definition. 

To begin with, a model is a method of expressing 
a theory. The expression of the model - its represen- 
tation - distinguishes classes of models. A model can 
be physical, such as a wind tunnel model of an air- 
craft. It can be conceptual, like the construct of the 
Bore atom. Also, the model could be a mathemati- 
cal relationship or a method (algorithm) of expressing 
that relationship - a simulation. Therefore, we con- 
sider a simulation to be a particular representation of 
a model and will not distinguish between them. 

2.1.2 Verification 

Verification is the process of determining that a model 
implementation accurately represents the developer's 
conceptual description and specifications. 

The verification process confirms that the model 
functions as it was originally conceived, specified, and 
designed. Here we compare the output of the model 
to the conceptual description, specifications, or defi- 
nitions that were used in its development. 
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There are two elements to verification. If the model 
is an original development, it must be verified against 
its design specifications. If the model is a revision, up- 
date, or modification of an existing (verified) model, 
the performance of the model (and its differences) can 
be verified with respect to the original specifications 
or to the original model. 

2.1.3 Validation 

Validation is the process of determining the degree 
to which a model is an accurate representation of the 
real-world from the perspective of the intended uses 
of the model. 

Validation addresses the credibility of the model in 
its depiction of the modeled world. In this case, the 
model is not compared to the structure from which it 
is developed, but to the behavior that it is supposed 
to represent. An important issue in the validation of a 
model is its level of fidelity. Our understanding of the 
phenomenon that the model is supposed to represent 
must be at the same level of fidelity as the model. 

2.1.4 Accreditation 

Accreditation is the official certification that a model 
or simulation is acceptable for a specific purpose. 

The accreditation process is the procedure followed 
by the application sponsor that culminates in the de- 
termination that the model is suitable and acceptable 
for its intended application. 

We do not specifically address accreditation, only a 
method to support accreditation through verification 
and validation. 

2.2    VV&A Methods 

While the growing need is real, procedures for VV&A 
have not kept pace. Current VV&A processes gener- 
ally involve looking at the elements of the model or 
simulation via a functional decomposition, and com- 
ing to conclusions by analyzing these elements or by 
a direct comparison with other models. This process 
is complex, time-consuming, expensive, and still sub- 
ject to interpretation. General methods of VV&A 
include: 

1. Algorithm checks 
2. Peer or independent review 
3. Computer aided software engineering tools 

Verification is usually accomplished by either log- 
ical or code verification methods. Validation can be 
accomplished either by internal measures (structure 
of the model) or a comparison of the output of the 
simulation with other (external) data. We discuss 
each separately. 

2.2.1 Logical Verification Methods 

Logical verification requires the identification of a set 
of assumptions and interactions for which the M&S 
correctly produces intended results. It determines the 
appropriateness of the M&S for a particular applica- 
tion and ensures that all assumptions and algorithms 
are consistent with the conceptual M&S. Methods to 
accomplish this determination are: 

1. Documentation review 
2. Design walk-through 
3. Comparison of specifications to requirements 
4. Comparison of design to specifications 

2.2.2 Code Verification Methods 

Code verification methods require a rigorous audit 
of all compilable code to ensure that the representa- 
tions of verified logic have been properly implemented 
in the computer code. This audit is usually accom- 
plished by one of the following techniques: 

1. Sensitivity analyses and stress tests 
2. Code walk-through 
3. Algorithm checks 
4. Automated test tools 
5. Mathematical stability across platforms 
6. Units check 
7. Statistical test design for stochastic M&S 
8. Rule-based systems tools 

2.2.3 Validation of the Structure 

Validation of the structure analyzes the sensitivity of 
the output to the input data. It attempts to deter- 
mine how accurately the model represents the real- 
world. It ensures that the representation(s) is (are) 
balanced and consistent. 

2.2.4 Output Validation 

Validation of the output begins with the feasibility 
of the results. Are they reasonable relative to the 
inputs? If the outputs are reasonable, they are com- 
pared with historical, test, or laboratory data. 

2.3     Metamodels 

From the above discussion we see that there is no uni- 
fying approach to VV&A. The VV&A process uses 
essentially the same methods that would be appro- 
priate for design of the model. Without a truly in- 
dependent and unified approach, VV&A has become 
manpower intensive and is often subject to interpre- 
tation. The reliance on subject matter experts makes 
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the results of the VV&A a direct relation to the capa- 
bility of the expert, their familiarity with the specific 
behavior and representation, and the amount of time 
that they have to complete the process. In addition, 
VV&A for DIS requires a separate class of experts in 
that environment (Lewis 1994). 

The problem with VV&A stems from the fact that 
the underlying phenomenon is high dimensional and 
complex; representation of these systems is difficult. 
This is why simulation models are often used. The 
modeler takes the part of the phenomenon of interest 
that he understands, and develops an algorithm to 
represent that part of the behavior. Comparison of 
this part of the phenomenon to the actual occurrence 
is not always possible. 

This is why we propose that part of the VV&A 
process consists of an aggregate analysis of the model 
or simulation using a reduced order (more abstract) 
representation. Metamodeling has the ability to fa- 
cilitate this type of abstraction (Zeimer, et al. 1993). 

2.3.1     Higher levels of Abstraction - Reduced 
Order Metamodels 

A model is a method of expressing a theory and the 
expression of the model is its representation. Assume 
that the representation of a particular model is a sim- 
ulation. As such, the representation is an algorithm 
that does not have a closed form representation. 

The VV&A methods we discussed above are exam- 
ples of direct verification or validation of this repre- 
sentation. Another approach to verification or vali- 
dation of this representation is through a more ab- 
stract "black-box" approximation of the causal time 
dependent behavior represented by this simulation - 
a metamodel. 

Metamodels can be used for hierarchical simulation 
or for analysis. Used to support hierarchical simula- 
tion and model reuse, the metamodel is used in con- 
junction with (coupled to) other simulations or sim- 
ulation elements. Analytical metamodels are an in- 
dependent structure that is used to understand and 
extract information from the model. This analysis 
can be focused on the VV&A task. 

Sometimes metamodeling is confused with sensitiv- 
ity analysis. Sensitivity analysis is an analysis of the 
data given the model. It can be used to reduce the or- 
der of the model by considering the sensitivity of the 
output to certain variables. Our approach is similar 
but different. In our procedure, we are considering 
the sensitivity of the model given the data, behavior, 
or the phenomenon we are trying to model. 

2.3.2     General Framework 

As an abstraction, a metamodel is a projection of the 
model onto a subspace defined by new constraints or 
regions of interest. It is a projection of the behav- 
ior from a higher order to a lower order subspace - 
a reduced order model. One of the most important 
aspects of this projection is the definition of the basis 
of that subspace; i.e., the definition of the variables 
that are to be considered. 

There are three ways to define these variables. If 
we are working with an element of a simulation or if 
we are comparing a simulation to an exercise or some 
other real-world data, the variables are defined by the 
data set. If we are comparing the behavior to the con- 
cept used to develop the model, that concept defines 
the variables. If we are going to compare two ver- 
sions of the same model, we must first determine the 
important variables by an analysis of the simulation 
under consideration. 

The construction of a reduced order metamodel (se- 
lection of the parameters used for the projection) in- 
volves: a priori knowledge; the data; a set of meta- 
model structures; and rules to determine the best 
model to realize the data. There are two basic tech- 
niques available for reduced order modeling: direct 
and inverse modeling. 

2.3.3     Direct Methods 

First, a reduced order model could be developed by 
applying basic principles to generate a more abstract 
(approximate) version of the original model. This 
would be an example of direct modeling. Direct mod- 
eling is characterized by a specification of the ele- 
ments of the model. Complicated systems are mod- 
eled by "tearing" a system into its components, mod- 
eling these components in a process called "zoom- 
ing," and then interconnecting these components to 
construct a "physical" realization of the system (Sisti 
1992, Willems 1991, Sisti 1989). The level of abstrac- 
tion is controlled by the detail of the specification. 
The model reveals the structure of the theory and 
allows the prediction of the response to exogenous in- 
puts as a function of the state of the system. The 
solution of this modeling problem requires an under- 
standing of the process being modeled and methods 
to express this understanding at the desired level 
of fidelity. 

Reduced order models developed using this tech- 
nique have been proposed in the VV&A literature 
(Phase 3 - Concept Validation in Lewis (1994)). They 
are "standalone" versions - completely new models. 
The relationship between the real system, the original 
model, and reduced order model is contained in the 
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two mappings from the underlying system to each of 
the models. Figure 1 depicts this correspondence. 

—MMetamoden 

Figure 1: Direct Model Correspondence 

As seen from the figure, there is no guarantee that a 
usable correspondence will exist between the reduced 
order model and the high fidelity model (Naylor and 
Sell 1982, Royden 1988). Traceability from the high- 
fidelity model to the more abstract, lower fidelity, re- 
duced order model becomes a significant issue. Also, 
this technique still requires an a priori understanding 
of the structure of the elements and the interconnec- 
tions between these elements at the specific level of 
fidelity selected. This could be a difficult and risky 
task and lack of this knowledge is often the reason 
that a high fidelity simulation was used in the first 
place. 

Since traceability is not guaranteed, this technique 
does not provide any efficiencies beyond standard 
VV&A procedures. 

2.3.4    Inverse Methods 

The second technique develops the reduced order 
model from the input-output data generated by the 
original model or simulation. This technique is an ex- 
ample of the "inverse problem," and is represented by 
Figure 2. From the figure, we see that the correspon- 
dence between the original model and the reduced 
order model is direct. The issues now are the level 
of fidelity, range of applicability, and accuracy of the 
response. These are a function of the reduced order 
modeling technique and data. 

Figure 2: Inverse Model Correspondence 

Properly developed, a reduced order model derived 
from inverse modeling is clearly a mathematical ap- 

proximation between a set of input factors and re- 
sponses generated by the high fidelity model. Trace- 
ability to the high fidelity model is immediate. As 
such, it allows the assessment of individual factors 
on the performance of the model and can be used to 
study system behavior, verify responses with specifi- 
cations, or validate the model with respect to real- 
world data. 

3    REDUCED      ORDER 
FOR VV&A 

METAMODELS 

VV&A has many dimensions. Although the proce- 
dure is the same, we consider each case separately to 
facilitate understanding. Assume that we have a re- 
duced order model of an existing simulation and that 
we also have a similar description of the real-world 
data that can be used for comparison. 

3.1 Verification of an Original Model 

In our first case, we have a model that was developed 
from a specification or conceptual design. Verifica- 
tion is straightforward. We directly compare the re- 
duced order metamodel structure and coefficients to 
"expected values" inherent in the design specification 
that came from the real-world experiments, exercises, 
or test data used to develop the specification. 

3.2 Verification of a Modified Simulation 

Here we have an existing accredited simulation that 
has been modified for some purpose (improved execu- 
tion speed, hosted on a new platform, new capability, 
etc.). As stated above, we can verify the model with 
respect to the specifications or, for the portions of the 
modified simulation that do not add capability, to the 
existing (unmodified) simulation. If we use the origi- 
nal specification as the baseline, we proceed as above. 
If we use the existing simulation as the baseline, verifi- 
cation consists of developing a reduced order model of 
the original and modified simulations using the same 
model structure. Now, since the structure of each 
reduced order model is identical, we simply compare 
the reduced order metamodel coefficients. 

3.3 Validation 

This is the most complex use of reduced order meta- 
modeling. In order to use reduced order metamod- 
eling to validate a model, we must compare the re- 
duced order model to real-world data. This requires 
that we have a record of the phenomenon that we 
have modeled.  Also, this record must contain all of 
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the behavioral characteristics that have been incorpo- 
rated into the model. Given this record, we develop 
a reduced order model of both the real-world event 
and the model we are going to validate. Once we 
have these reduced models, we simply compare the 
reduced order model coefficients. 

If additional information was included in the model 
that was based on subject matter expertise or anal- 
ogy and not available in the real-world data, this ad- 
ditional data must be also added to the real-world 
data to make the comparison possible. 

4    RESULTS AND DISCUSSION 

The theory supporting reduced order metamodels 
has been developed and successful applications have 
been demonstrated. Zeimer, Tew, Sargent, and Sisti 
(1993) developed a static least squares metamodel 
of the Tactical Electronic Reconnaissance Simula- 
tion Model (TERSM) that approximated the num- 
ber of emitters reported with a CEP of 5 nm or less. 
Caughlin (1994a) outlined a general framework for 
approaching the reduced order metamodeling prob- 
lem that would support dynamical system models and 
presented an output-error dynamical metamodel of 
TERSM. In Caughlin (1994b) we expanded the dy- 
namics to include Ito stochastic systems and applied 
an optimization technique (Adaptive Simulated An- 
nealing) to generate a TERSM metamodel that ac- 
commodated the stochastic nature of the simulation. 

All of the above were examples of analytical meta- 
models (although the last two could be used as sim- 
ulation metamodels). The first metamodel addressed 
the final results of the simulation (in terms of mod- 
eled system accuracy). The output-error metamodel 
approximated the system behavior as represented by 
the simulation. The third metamodel represented the 
performance of the system in locating a single emit- 
ter and approximated the accuracy of the location 
estimate as the number of measurements increased. 

We now provide a simple example of reduced order 
metamodeling for verification of a modified simula- 
tion (the situation described in Section 3.2 above). 

The static least squares TERSM metamodel gen- 
erated by Zeimer, Tew, Sargent, and Sisti related air- 
craft altitude, aircraft velocity, sensor azimuth cov- 
erage, and sensor channel capacity to the number of 
emitters located within a 5 nautical mile circular er- 
ror probable (CEP). This model is shown below: 

y/y    =    23.567-0.669a;i-2.842^2+1.298iE3 + 

3.344z4 - 0.491aii:r3 + 0.963a:i2i4 + 

0A14x2x3 + 1.1552:22:4 + 0.2312:32:4 + 

0.404a;ia:22:3 + 0.1982:12:22:4 - (1) 
0.2852:22:32:4-1-2.037x1 

0.2012:12:32:4 

5.836a:| + 0.7442:^ - 2.9472:? - 5.8232:! 

0.7882:3 + 

2.743a;4
; + 0.714a:? + 

This model was developed from the Version 1 data 
(shown in Table 1) that came from simulation runs 
on a Sun workstation. This simulation was optimized 
for this workstation and included code to support a 
RAMTEK display of the emitter field and results. 

Another version of the code (Version 2) was recov- 
ered from the archive and hosted on a 100 MHz i486 
PC using Lahey Fortran 77L EM/32. Answers pro- 
vided by this version of the simulation were similar 
but not the same as the results from the experiment 
run on the Unix workstation. If the original simula- 
tion was accredited, could this second representation 
also be considered a "verified" representation of the 
tactical electronic reconnaissance system? 

Standard VV&A procedures could have been used 
to answer this question. This would require an ex- 
tensive analysis of the code, the different compilers, 
and the effects of the numerical accuracy. Instead, 
we used reduced order metamodeling. The same con- 
ditions that were run on the workstation were dupli- 
cated on the PC. The least squares metamodel (using 
the same model structure) generated from this data 

y/y   = 22.4331 - 0.01482-1 - 2.78222:2 + 0.14322:3 + 

3.1432a:4 + 0.3653a:ia;3 + 1.2439a:1a;4 + 

0.14832:22:3 + 0.44302:22:4 + 0.26982:32:4 + 

0.4369a:ia:2a:3 + 0.32862:12:22:4 + (2) 

0.09602:22:32:4 - 0.2791a:? - 0.8326a;| - 

0.76422:12:32:4 1.8413a;| + 0.7577a:?+ 

4.90382:f + 1.0924a:|- 1.1907a:? - 4.84432:? 

The angular difference between the subspaces de- 
fined by the vectors of coefficients is .15 radians indi- 
cating that, while similar, the two metamodels con- 
tain different information. With the standard as- 
sumptions on the data, the probability of error in 
accepting the hypothesis that both of these models 
represent the same simulation is approximately 70%. 
Clearly, the two versions of the simulation do not rep- 
resent the same behavior. 

There are two potential reasons for the differences 
between the output of the two versions of the "same" 
simulation. First, it is possible that the experimental 
procedures were different. Since all of the data sets 
for the original experiment were not available, one or 
more of the 53 other parameters used in TERSM to 
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define the aircraft and sensor performance may have 
been set in such a manner that the simulated systems 
were not the same. Correcting the differences in the 
parameters may result in the same behavior. 

If different experimental procedures are ruled out, 
the simulated systems should be identical. In this 
case, we conclude that the two simulations are not 
representations of the same high fidelity model. Ver- 
sion 2 should not be considered a "verified" repre- 
sentation of the Tactical Electronic Reconnaissance 
Simulation Model. 

5    CONCLUSION 

In this paper we have presented an alternative ap- 
proach that will allow the VV&A process to meet 
the competing requirements and workload demands. 
This approach does not maintain the overall complex- 
ity of the model or simulation, but verifies or vali- 
dates a simulation through analysis of a reduced or- 
der (more abstract) representation of the simulation. 
By increasing the level of abstraction (reducing the 
order) of the model or simulation, we aggregate the 
model details into a more manageable form. 

Reduced order metamodeling was then used to ex- 
amine two versions of the same simulation. The pro- 
cedure clearly demonstrated the probability of error 
in accepting the second version of the "same" simu- 
lation as representative of the first. 

This technique is cost effective, timely, and objec- 
tive. Increasing the level of abstraction provides the 
ability to clearly and efficiently compare a model with 
the phenomenon it represents or to compare two dif- 
ferent interpretations of the same behavior. 

A reduced order metamodel is a projection onto a 
lower order subspace. The parameters that define this 
projection are well defined for simulation and analyt- 
ical metamodels. Since reduced order metamodeling 
for VV&A is a new application of this method, fur- 
ther research is required to define the best approach 
to define the projection parameters. 
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Table 1: Input-Output Data for Metamodel Construction 

ALTITUDE VELOCITY AZIMUTH CHANNEL EMITTERS EMITTERS 
COVERAGE CAPACITY VERSION 1 VERSION 2 

40000 1150 150 30 615 514 
40000 1150 150 4 193 158 
40000 1150 60 30 327 329 
40000 1150 60 4 53 69 
40000 186 150 30 247 278 
40000 186 150 4 73 73 
40000 186 60 30 111 174 
40000 186 60 4 47 61 
5000 1150 150 30 436 284 
5000 1150 150 4 226 183 
5000 1150 60 30 322 250 
5000 1150 60 4 138 149 
5000 186 150 30 180 180 
5000 186 150 4 116 94 
5000 186 60 30 98 105 
5000 186 60 4 66 66 

22500 668 105 17 62 519 
5000 668 105 17 439 307 

40000 668 105 17 570 523 
22500 186 105 17 181 210 
22500 1150 105 17 464 412 
22500 668 60 17 419 414 
22500 668 150 17 607 505 
22500 668 105 4 240 252 
22500 668 105 30 658 617 
31250 909 128 24 621 521 
31250 909 128 10 424 361 
31250 909 82 24 512 489 
31250 909 82 10 347 322 
31250 427 128 24 634 579 
31250 427 128 10 489 399 
31250 427 82 24 570 556 
31250 427 82 0 434 396 
13750 909 128 24 602 486 
13750 909 128 10 441 346 
13750 909 82 24 560 469 
13750 909 82 10 373 339 
13750 427 128 24 651 567 
13750 427 128 10 526 404 
13750 427 82 24 605 535 
13750 427 82 10 471 411 
13750 668 105 17 580 495 
31250 668 105 17 584 504 
22500 427 105 17 575 524 
22500 909 105 17 529 446 
22500 668 82 17 512 499 
22500 668 128 17 597 523 
22500 668 105 10 441 406 
22500 668 105 24 640 585 
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Abstract 

A metamodel is a mathematical approximation of 
the system relationships defined by a high fidelity 
model or simulation. This paper presents new results 
that expand the set of available metamodel represen- 
tations beyond the traditional least squares formula- 
tion and adds the capability to use dynamical meta- 
models. These results are supported by a new taxon- 
omy of metamodel structures and methods that allow 
separation of the metamodeling process into a set of 
sequential decisions based on a priori information.  x 

1     Introduction 

In [1] we introduced a framework for the application 
of System Identification techniques to develop suitable 
metamodels for tactical combat simulations used by 
the Department of Defense. We filled in the frame- 
work with concrete definitions and identified specific 
issues associated with the representation of dynamical 
systems. Particular attention was given to the dis- 
cussion of experimental design requirements for meta- 
modeling tactical engagement (usually Discrete Event 
System - DES) simulations. We demonstrated this 
approach by outlining the development of an output- 
error metamodel for the "Tactical Electronic Recon- 
naissance Simulation Model." 

Although this framework was consistent with meta- 
modeling procedures defined in [2], the development 
of the metamodel required too many decisions to de- 
termine the model structure, method of identifica- 
tion, and identification criteria. Each decision was 
a complex function of a priori information and prior 
selections in the metamodeling process. This paper 
presents a new approach to support the development 
of metamodels that is based on a new taxonomy of 
structures and methods that allows the separation of 
the metamodeling process into a set of sequential de- 
cisions based on a priori information. 

1This work was supported in part by The USAF Rome Lab- 
oratory Contract F30602-94-C-0110 

The paper is organized as follows: Section 2 intro- 
duces metamodels; Section 3 introduces the general 
approach to metamodeling; Section 4 outlines a new 
approach to the definition of the problem; Section 5 
continues with the general approach and discusses the 
metamodeling process; Section 6 summarizes the pa- 
per with results and conclusions. 

2    Metamodels 

A model is a structure that can be used for under- 
standing the behavior of a system [3]. Assume that 
we have a model of a system that cannot be used di- 
rectly. A solution may not exist, it may be too com- 
plicated for a closed-form solution, it may require too 
much time to numerically determine a particular so- 
lution, or it may be a high-fidelity simulation that 
provides much more detail than we are interested in. 
Efficient use of this model requires a "black-box" ap- 
proximation of the causal time dependent behavior of 
the model - a metamodel. 

There are two general metamodeling techniques; 
the "Direct" and "Inverse" methods. Direct meta- 
modeling is developed by applying basic principles to 
generate a more abstract (approximate) version of the 
original model. In this paper we consider inverse mod- 
eling and concentrate on the metamodel structures 
and rules to determine the best model. 

2.1     Metamodeling via Solution of an "In- 
verse Problem" 

Inverse modeling begins with the input-output data 
generated by the high fidelity model or simulation and 
develops the metamodel (mathematical relationship) 
from this data. In this case, we have some measure 
of the input and output response and seek an expres- 
sion that characterizes the process by which the out- 
puts are generated. This type of problem usually has 
multiple solutions out of which an acceptable solution 
must be selected. 

In our approach, we are not trying to "fit" data. 
We are attempting to identify the underlying processes 
that define the system that generated the data. There- 
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fore, the focus is not on statistics but on the system 
theoretic properties of the manifest behavior. 

Dynamical systems acquire their importance from 
the fact that they exhibit memory or the potential to 
model phenomena where the past influences the fu- 
ture. A dynamical system is a family of trajectories 
without reference to I/O maps, variables, or behav- 
ioral equations. The system is coupled to its environ- 
ment and is not defined by any associated model. 

The metamodel, then, is defined by the behavior it 
allows. This behavior is represented by inequalities or 
equations which can be grouped into sets. As we shall 
see in Section 5, selection of the proper metamodel set 
is critical to generation of an acceptable solution. 

2.2     Metamodeling Simulations 

With respect to metamodeling simulations, the sys- 
tems we are trying to identify are complex, nonlinear, 
and time-varying. They can be continuous, discrete, 
or discrete event systems. In general, for these cases, 
the predictor function is a nonlinear function of past 
observations, and there are too many possibilities for 
unstructured "black box" models. Knowledge of the 
nonlinearities must be built into the model [4]. 

Fortunately, in our case, we have explicit knowledge 
of the nature and characteristics of the high fidelity 
system. We have the model that applied the system to 
the inputs to generate the outputs we are interested in. 
Given this information, we can build the nonlinearities 
into the structure of the metamodel and provide the 
capability to generate a reduced order approximation 
of the original model. This fact makes metamodeling 
as a method of model abstraction feasible. We exploit 
this fact to the fullest extent possible. 

In addition to knowledge of nonlinearities, other re- 
quirements must be met to allow representation by a 
finite dimensional, reduced order approximation: the 
system must be complete; the axium of state must 
apply; and the output must be nonanticipating. 

Assuming that the underlying system modeled by 
the simulation is well behaved (Markovian, complete 
with respect to the modeled behavior), the following 
is required to metamodel simulations: 

1. Data must include the behavior we are to model. 

2. The latent variables must be observable. 

3. The input must be persistently exciting. 

4. For a stochastic system, the ensemble of trajecto- 
ries must span the space. 

5. Any single trajectory must span both the input 
and output space and be sufficiently long so that 
the state transition probabilities also span the al- 
lowable probability space, and the distribution of 
these probabilities are the same as the underlying 
system. 

3 General Approach 

Reference [2] presented the following metamodeling 
procedure: 

1. Determine the purpose of the metamodel. 

2. Identify the response 

3. Identify important response characteristics. 

4. Identify input factors. 

5. Identify important input characteristics. 

6. Specify the experimental region. 

7. Select validity measures. 

8. Specify required validity. 

9. Postulate a metamodel based on: 
Input - Output response characteristics. 
Experimental region dimensions. 
Required validity. 

10. Select an experimental design. 

11. Obtain data. 

12. Fit the metamodel. 

13. Assess the validity of the model. 

The first eight steps of the metamodeling proce- 
dure provide the prior knowledge or metamodel re- 
quirements that define the problem. The remaining 
steps define the experimental setup, the model struc- 
ture, the method of identification, and validity mea- 
sures used to develop and verify the metamodel. 

To streamline the development of techniques for 
metamodeling simulations, we separated the proce- 
dure into two general areas. The first eight became 
the foundation for the problem definition; the re- 
maining steps were grouped in an iterative scheme as 
the metamodeling process. 

Therefore, in order to categorize metamodeling 
problems and their solutions, each of these areas were 
analyzed to derive a taxonomy that would support the 
metamodeling procedure. 

4 Problem Definition 

We define a metamodeling problem as the direct 
sum of the metamodel requirements and the model 
(simulation). This means that the same simulation 
could be part of two different metamodeling problems 
if the requirements were different. Or conversely, the 
same set of requirements applied to two different (non- 
similar) simulations also leads to two different meta- 
modeling problems. 

Consequently, to define the problem, we must con- 
sider both elements of the direct sum - the purpose of 
the metamodel and the simulation characteristics. 
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4.1 Metamodel Purpose 

As mathematical relationships, metamodels can be 
developed to support two general purposes: (1) Anal- 
ysis; or (2) Hierarchical simulation. 

First, a metamodel can be used for analysis. In this 
case, the metamodel becomes an independent struc- 
ture that is used to understand and extract informa- 
tion from the model. 

Secondly, a metamodel can be used to support hi- 
erarchical simulation and model reuse. In this case, 
the metamodel is used in conjunction with (coupled 
to) other simulations or simulation elements to an- 
swer larger questions that are not supported within 
the structure of the modeled simulation. 

This selection defines the metamodel purpose and 
provides clear boundary conditions for follow-on selec- 
tions in Steps 2 through 8. 

4.2 Simulation Characteristics 

Since all of the remaining problem definition deci- 
sions are a function (direct sum) of both the meta- 
model requirements and the simulation that is to be 
modeled, we concentrate on the aggregate space of 
simulation characteristics. Research has suggested 
that both a general (external) description of the sim- 
ulation or model as well as further detail on the (in- 
ternal) process structure of the internal components is 
required [1, 5]. 

The classification defined by the "SIMTAX, A Tax- 
onomy for Warfare Simulation" was completely ade- 
quate for the external description [6]. It is a descrip- 
tive framework designed to guide the development, ac- 
quisition, and use of warfare models and provides the 
basis for classifying objects for identification, retrieval, 
and research purposes. 

Selection of a metamodel structure, however, re- 
quires detailed information not contained in the sim- 
ulation and model catalogues. To provide a link be- 
tween the more general taxonomy outlined above and 
specific metamodeling techniques, a more detailed in- 
ternal taxonomy was appended to the SIMTAX. The 
purpose of this additional detail is to describe the 
structure of the simulation in terms of system theo- 
retic definitions common to control engineering. 

Figure 1 depicts the model of a continuous system 
with a sampled measurement. In development of a 
metamodel, we try to isolate and identify each of the 
individual elements in this model. Consequently, we 
must be able to characterize the type of processing 
that takes place in each of the blocks. 

Formulating the metamodeling problem with this 
additional detail is important for two reasons. First, 
each of these blocks may be represented by a sepa- 
rable process, and it is usually not possible to simul- 

Table 1: Internal Processing Description. 

Basis 
Physics based 

Event based 

System 

Inputs 

Outputs 

Linear 

Nonlinear 

Stochastic 

Deterministic 

Result/Trajectory 
Functional 

Statistical base 

Level 
SISO 
MISO 
MIMO 

Process description 
Complex 
Simple 
Coupled 

Interval 
Continuous time 
Discrete time 
Continuous - discrete time 
Discrete-event 

taneously identify more than one process. If we try 
to simultaneously identify two processes and the pro- 
cesses are independent, a rank deficiency in the uncou- 
pled equations causes numerical difficulties. If the pro- 
cesses are dependent, behaviors associated with both 
processes will be combined preventing the identifica- 
tion of either. If one is successful in simultaneously 
identifying multiple processes, performance of the re- 
sulting metamodel is usually poor. 

Categories and selections for these categories that 
were used to provide the additional detail on the in- 
ternal structure are shown in Table 1. 

v(ti) 

—(Fro y*- 

\-J& 

Figure 1: System Model. 
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5    Metamodeling Process 
At this point, we have determined the purpose of 

the metamodel. In the definition of this purpose, we 
have identified the input and response that we are in- 
terested in and determined the important character- 
istics of these data. Also for this purpose, we have 
denned the region of interest, selected validity mea- 
sures, and specified the required validity. 

While there are other issues that must be addressed 
by the metamodeling process, the remainder of this 
paper will concentrate on decisions associated with 
"Step 9: Postulate a metamodel." The completion of 
this step requires a number of interrelated selections. 
So many options are available, however, that the com- 
bination of model selection, error criterion, identifi- 
cation technique, and numerical methods leads to an 
overwhelming myriad of "identification methods." 

Many specific identification and statistical methods 
have been developed to accommodate the differences 
in model structures, data length, measurement error 
statistics, etc. Also, the literature contains consider- 
able discussion on particular methods with very little 
discussion on the relationship of these techniques to 
each other or to a general methodology. The result is 
a confusing array of unconnected methods with little 
or no guidance on the application of the techniques to 
general classes of problems. 

Since we are looking for procedures to handle gen- 
eral metamodeling problems, we discuss these meth- 
ods as elements of a more general structure and have 
reduced these selections to four that define the model 
set: system description; system class; meta- 
model structure; and identification methodol- 

ogy- 
For any given problem, multiple model sets are 

available. In each of these model sets, a most power- 
ful unfalsified model will exist (given that the require- 
ments of Section 2.2 are met) [7]. Consequently, the 
performance of the metamodel will be limited by the 
match between the metamodel set and actual system 
that generated the behavior. 

5.1     System Description 

In the definition of the system description, the first 
selection concerns the system type that will define the 
allowed behavior of the models. Here, the most basic 
questions must be addressed. How are the parame- 
ters described? Is the representation going to include 
dynamics or will it be static? Will the model contain 
latent variables? If it is dynamic, is it time invariant 
or time varying? 

Is the algebraic structure linear or nonlinear? 
Are disturbances, noise, and randomness accommo- 
dated? Is the system defined as continuous, discrete, 

Table 2: System Description. 
Selection Options 

Type 
Static 
Dynamic - Time Invariant 
Dynamic - Time Varying 

Algebraic 
Structure 

Linear 
Nonlinear 

Randomness 
Stochastic 

Deterministic 

Time 
Continuous time 
Discrete time 
Continuous - discrete time 
Discrete-event                                    | 

Table 3: System Classes and Representations. 
MODEL CLASS 

SISO 
MISO 
MIMO 

FORMS OF THE 
REPRESENTATION 
Polynomial 
Matrix Fraction 
State Space 

continuous-discrete, or as a discrete-event system? Ta- 
ble 2 outlines the possible selections that define the 
system description. 

5.2 System Class 

In addition to the system description, the class 
of representation is also needed to define the overall 
model set. This class is defined by the interaction of 
the variables and the representation. Table 3 provides 
a list of the general system classes and the possible 
form of the representations (see, for example [8, 9]). 

Comparing Tables 2 and 3 with Table 1, we see that 
the characteristics of the behavior we are modeling 
define the first two elements of the metamodel set: 
the system description and the system class. 

5.3 Metamodel Structure 

Once a system description and class that match the 
underlying behavior have been selected, the next de- 
cision is selection of the model structure to use in 
describing the response of the system to the inputs. 
There are many metamodel structures, and this area 
generates much of the complexity in identification. 

We simplify this decision by defining two general 
model structures, predictor models and proba- 
bilistic models. A predictor model only defines the 
predictor equation(s). Predictor models are models 
that specify the elements of the transfer function in 
terms of some parameter set.   The models generated 
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from these structures are deterministic in nature. 2 

A probabilistic model accommodates the fact that 
many systems are subject to known disturbances that 
are not (or cannot be) completely categorized. The 
statistics of the noises and disturbances are to be in- 
cluded as random variables. Probabilistic models sup- 
plement the parametric description with a description 
of the density function (or moments) of the noise (dis- 
turbance) that acts on the system. The variables of 
the system being identified become functions of ran- 
dom variables. In these situations, different realiza- 
tions of an experiment (simulation run) may not pro- 
duce exactly the same results. Consequently, the out- 
put of a probabilistic model is the conditional expected 
value and the joint or conditional probability density 
functions (JPDF or CPDF) of the variables. 

The following two subsections discuss these two 
model structures. 

5.3.1     Predictor Models 
Static. Static systems can be either linear or nonlin- 
ear. The predictor equations for static models are the 
actual input-output map that comes from the selected 
representation and are similar to those representing 
dynamical systems. Also, static models can be set up 
using dynamical model structures with a zero state 
transition. 
Dynamic. For dynamic systems, system identification 
requires the ability to use the model structure to pre- 
dict the output of the model. The differences between 
this prediction and the actual data are then used to 
arrive at the parameter set which minimizes the er- 
ror. As the complexity of the system description in- 
creases, the flexibility in the selection of the represen- 
tation (polynomial, matrix fraction description, state 
space) decreases. 

We will consider three types of dynamic systems: 
linear time-invariant, linear time-varying, and nonlin- 
ear. To save space, discrete realizations are presented. 
However, continuous realizations can also be used. All 
nonlinear systems will be assumed to be Markov. 

Linear Time-Invariant Predictor Models. 
There are a number of ways of defining the trans- 
fer function (input-output map) associated with lin- 
ear time-invariant predictor models: polynomial; fre- 
quency function; or by it's zeros and poles. These 
descriptions are most appropriate for SISO systems. 

2Predictor models, however, do allow for the prediction or 
measurement error. And since the coefficients were generated 
via a minimization of some error criterion with assumed statis- 
tics, the coefficients will be random variables with an error dis- 
tribution. Since the estimates are functions of these random 
variables, this distribution can be used to compute error bounds 
of the estimate. 

MISO systems are best represented by a state space 
or polynomial format that explicitly defines the coef- 
ficients of each of the input and output terms. 

Our general linear metamodel structure is: 

y(t) = G(q)u(t) + H(q)e(t) (1) 

where y(t) is the output, u(t) is the input, and e(t) is 
the error. Here q~l is the backward shift operator so 
that q~lu{t) = u(t — 1). Consequently, the polynomi- 
als have the form G(q) = 1 + giq~x + h gngq~ng- 

From this general model, we can define a SISO or 
MISO model structure as: 

A{q)y{t) 
BiqUt) + ^e{t) 
F(q) D(q) 

(2) 

The predictor for this general polynomial structure is: 

D(q)A(qy 

*»-»«♦ 
1- 

C(q) 
M    (3) 

Latent variables (that are not past values of the 
input or output) can also be defined in the polynomial 
format by augmenting the input-output relationships 
to include the addtional variables. 

MIMO systems are most amenable to the state 
space format. This format also has the most flexi- 
bility in defining the relationship to latent variables. 
In this description we add the state variable x(ti) that 
is propagated forward in time by: 

x(ti+1\9) = A(0)x(ti,e) + B{e)u{U) (4) 

and the measurement equation: 

y(U \6) = C(9)x(n, 6) + D(9)u{ti) (5) 

that provides the output. 
One of the most flexible state space predictor mod- 

els is the directly parameterized innovations form. 
Based on the classical steady state Kaiman filter, this 
model accommodates the fact that measurement and 
process noise are present but does not require knowl- 
edge of the disturbance properties. This is accom- 
plished by parameterizing and identifying the Kaiman 
Gain instead of the process and noise descriptions: 3 

x(ti+u$) = A(e)x{ti,e)+B(e)u(ti)+K(e)[e(ti)] (6) 

Linear time-varying systems. Linear time- 
varying systems are restricted to weighting function 
and state space forms. Predictor metamodels for use 
with a weighting function have the same form as meta- 
models used for time-invariant systems except that the 
weighting function is time varying. Time-varying state 

3The error e{U\B) = y(U) - C(9)x(U,9). 
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space models are similar to the time-invariant state 
models with the exception of the time index on the 
coefficients. 

Nonlinear Models. Systems with linear dynam- 
ics and static input nonlinearities can be handled by 
redefining input of the system to exclude this nonlin- 
earity (Hammerstein model). With this new defini- 
tion, the system can be identified by a linear model. 

Nonlinear systems (that are not approximated by 
linearization or perturbation) are restricted either to a 
pseudolinear form or state space descriptions. We de- 
fine the pseudolinear form as y(t\9) = 9T<f>(t) where 8T 

is the vector of unknown coefficients and (j>(t) contains 
the nonlinear combinations (functions) of the input 
data. Although the structure looks static, dynamics 
can be included in the pseudolinear model by includ- 
ing nonlinear combinations of past data. 

If we want to explicitly consider system dynamics 
for nonlinear predictor models, there is only one op- 
tion: a nonlinear state space or simulation model de- 
fined as: 

x(ti+1\e)    =    f(t,x(ti),u(ti),e) (7) 

y(U\9)    =    h(t,x(ti),u(U),0) (8) 

5.3.2     Probabilistic Models 
Models for probabilistic descriptions will be limited 
to the state space form. While transfer function and 
matrix fraction descriptions are limited to linear time- 
invariant systems, a state space system does not share 
this restriction. This form also allows the combination 
of a continuous system with discrete measurements 
(a sampled-data system) to more closely match real 
systems. 

We cover four types of probabilistic models. The 
first type of model is a linear stochastic model devel- 
oped by assuming a white noise approximation. The 
second model is a general nonlinear stochastic model. 
The third type is a linear Ito stochastic model based 
on the correct description of the noise as Brownian 
motion with an Ito stochastic description, and the fi- 
nal model is a full nonlinear Ito stochastic model. 
Linear Stochastic. Linear stochastic system modeling 
results in the following model driven by known inputs 
and white noise w(t) [10]: 

white noise v{ti): 

z{U) = H(ti)x(ti) + v(U) (10) 

x = F(t)x{t) + G(t)u(t) + L(t)w(t) (9) 

starting from a Gaussian x(t0) with a known mean 
x0 and covariance P0. Average performance can of- 
ten be described by this simple stochastic differential 
equation sometimes referred to as Langevin's equation 
[11, 12]. 

This model is supported by a discrete (or possibly 
continuous) linear measurement corrupted by additive 

Since the solution of these systems is a stochastic 
process with many potential realizations, it is best to 
characterize the system by the expected value of its 
moments (mean, variance, etc.) The optimal (mini- 
mum mean square error, unbiased, consistent) predic- 
tor for this system is the classical Kalman-Bucy Filter. 

Nonlinear Stochastic Prediction. If we want to 
explicitly consider system dynamics for nonlinear 
stochastic predictor models, there are two options: a 
nonlinear state space model or a simulation model. 
For probabilistic models, the nonlinear state space 
model is defined as 

x(ti+1\e)   =   /(i.xfr). «(*.-), w(*i).0)    (11) 

y(U\6)    =    h(t,x(ti),u(U),v(U),0)      (12) 

A simulation model, not to be confused with a sim- 
ulation as a system description, disregards the process 
noise and simulates y(t\6) by simulating a noise free 
model using actual inputs and w(t{) = v(ti) = 0. 
Ito Stochastic Prediction. As reasonable as the linear 

stochastic model seemed, it is not completely suitable. 
Although other models may be derived from these 
Langevin type equations, the Markovian description 
is typically lost. With this loss, complete knowledge 
of the probability density functions is required to de- 
termine system properties. This information is usually 
not available. 

Linear stochastic differential equations can be prop- 
erly developed through the use of Wiener stochastic 
integrals [10]. Therefore, the properly defined linear 
stochastic differential equation is: 

dx(t) = F{t)x{t)dt + B{t)u{t)dt + G(t)dß(t)     (13) 

where /?(■,■) is of diffusion strength Q(t) for all t of 
interest given by E{dß(t)dßT(t)} = Q(t)dt. 

In general, characterization of this process re- 
quires the joint probability density (or distribu- 
tion if the density cannot be assumed to exist) of 
x(ti), x(t2),..., i(tjv) for any number N of time cuts 
in the interval of interest by repeated application 
of Bayes rule. If x(-, •) is a Markov process, how- 
ever, specification of the transition probability den- 
sities completely specifies the joint densities and the 
transition probabilities can be propagated via the for- 
ward Kolmogorov equation. 

Linear models. If the system model is linear, so- 
lution to the forward Kolmogorov equation yields the 
familiar form of the state and covariance update: 

mx(t) = F(t)mx(t) (14) 
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Px(t) = F(t)Px(t) + PS)FT{t) + G(t)Q(t)GT(t) 
(15) 

(Note: In the development of error criterion, etc. 
derivatives must be computed using the Ito differential 
rule.) 

Nonlinear models. If we are willing to neglect 
the second partial derivatives with respect to x, we 
can use the extended Kaiman filter. 

In the general case, the nonlinear problem is not 
solvable. There are a number of other approximations 
that exploit a Taylor series representation of the dy- 
namics and measurement to estimate conditional mo- 
ments. One of the more computationally reasonable 
is the modified Gaussian second order filter (see [10]). 

5.4     Identification Methodology 

We now discuss techniques for generating the es- 
timate. A partial list of algorithms mentioned in the 
literature included 32 different methods, most of which 
can be classified by two elements: the form of the iden- 
tifier and the criterion of fit. The form of the identi- 
fier defines the "experimental setup" or the manner in 
which the estimates are generated and compared. The 
criterion of fit establishes both the cost function and 
the method of its minimization. 

Categorizing the identification method by the form 
and the criterion reduces the many identification 
methods to only five approaches: Prediction Error, 
Correlation, Maximum Likelihood, Optimization, and 
Approximation Techniques. 

5.4.1     Form of the Identifier 

Equation Error Method. For the equation error 
method, Figure 2, we use the system equations as 
given. Assume first that we have the following gen- 
eral description defined by a parameter vector 6 and 
that we know the form of the vector functions / and 
h: 

i(t) = f(t,x(t),U(t),w(t);9) (16) 

(17) y(t) = h(t,x(t),u(t),v{t);6) 

Now we assume that we can measure the controls, 
the states, and the state derivatives. With all of this 
information, we can determine the error between the 
model and the actual data: xa,xa,ua'- 

e{t,6) = xa - f(xa,ua;9) (18) 

The vector e(t, 9) is the equation errors. From these 
equation errors, e(t, 9) , we can form some nonnegative 
function such as J(9) = /Q

T sT(t, 9)e(t, 9)dt and search 
over 9 to find the minimum. 

Output Error Method. The equation error method 
required measurement of all of the elements of the 

system. Often, this is not possible. The output er- 
ror method is based on an output error criterion and 
avoids this requirement. 

System   States 
Ja 

System 

e* 
»"<■<» ^ 

Model 
ft 

IVIociel    States 

Figure 2: Equation Error Method 

Prediction Error Method. The prediction error 
method is the third approach to developing an error 
function by which a parameter search can be struc- 
tured (Figure 3). 

Figure 3: Prediction Error Method 

Instead of comparing states or outputs, the esti- 
mated parameter, 9, is used in the model with the 
input ua and the output ya to generate an estimate of 
the output ym. Given a description 

y(t) = G(q)u(t) + H(q)e(t) (19) 

and having observed the output y and the input u, the 
prediction errors can be computed as 

e(t) = H-l(q)[(y(t)-G(q)u(t)} (20) 

5.4.2     Criterion of Fit 

By criterion of fit, we mean the function or 
functional that is optimized to determine the 
parameter estimates.4 We consider three criterion: 
minimum mean square, maximum a posteriori (maxi- 
mize the CPDF), and maximum likelihood (maximize 
the JPDF). 
Minimum Mean Square Error. Minimum   mean 
square estimators minimize a cost function that is a 
function of the (possibly weighted) output error only 
- J(#) = eTWe. The mean square error matrix M for 
an estimate of 9 of 9 (with b equal to the bias) is: 

M E U§ - 9){9 - ef} = cove + w (21) 

4 We do not know the actual parameter vector 0, and cannot 
define an error between 9* and 8. The error must be computed 

from {*(<;)} <* {u(*0} and {vM} 
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Both bias and covariance must both be minimized 
to attain the minimum mean square estimate; and, in 
general, the minimum m.s.e. will be biased. 

Maximum A-Posteriori. The Bayesian approach to 
parameter estimation assumes a parameter vector 
with a priori (before the measurement) probability 
densities P{9). The observations ZN, therefore, are 
correlated with 9. Measurements are used to deter- 
mine the most likely value after the measurement, the 
Maximum a posteriori (MAP) estimate 9M AP via the 
application of Bayes rule: 

P(9\z) 
P{z\9) x P{9) 

P{z) (22) 

Here P(z\9) is the conditional probability; i.e., the 
total probability of the measurement conditioned on 
the current estimate of 9. 

We can rewrite the maximization to be the mini- 
mization of the negative logarithm of P{z\9) : 

OMAP = arg(§) min  -log P(9\z) (23) 

where log P(9\z) = log P (z\9) + log P (9) - logP(z). 
Maximum Likelihood. Given that the joint probabil- 

ity of the random vector to be observed is fz(9; ZN), 
then the probability that the random variable will pro- 
duce the realization ZN is proportional to fz(9;ZN). 
Once a particular realization Z? is inserted into the 
joint PDF, this becomes deterministic and is called the 
likelihood function. A maximum likelihood estimator 
maximizes this function: 

9ML=arg(9)m&xfy(9;Z") (24) 

so that the observed event becomes as likely as possi- 
ble. 

6    Results and Conclusions 

This new approach provides a structured method of 
developing metamodels for simulations. In each case, 
we step through decisions that are based on existing 
information or follow from prior decisions. We have 
added the capability to explicitly model dynamical 
systems and defined the requirements to use these as 
metamodels. 

We simplified the metamodeling process to two 
phases: problem definition and the metamodeling pro- 
cess. In the problem definition we begin with an anal- 
ysis of the metamodel requirements and the simulation 
under study. We then progress to the description of 
the system (not the model) so that we will be able 
to select a metamodel structure that matches both 

the requirements and simulation that we are going to 
metamodel. 

Definition of the model set for the metamodeling 
process was clearly defined by a system description, 
system class, a metamodel structure, and an identifi- 
cation methodology. All of these selections came di- 
rectly from the problem definition. 
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ABSTRACT 

Model abstraction using metamodeling has demon- 
strated the capability to facilitate software reuse, 
large scale model integration, verification, and val- 
idation.- Once restricted to static representations 
that represented the input-output behavior of mod- 
els, research has developed the capability to build 
dynamic metamodels. This capability results from a 
new approach supported by a taxonomy of metamod- 
eling problems, solution structures, and metamodel- 
ing methods. The development of the metamodel, 
however, still requires a thorough understanding of 
model abstraction, reduced order modeling, and sys- 
tem identification. In addition, even with the most 
robust procedures it is possible that the desired data 
generated by a simulation model will not meet the 
assumptions or numerical requirements of the proce- 
dure. Consequently, there is a requirement for a ro- 
bust metamodeling support system that will support 
the subject matter expert. Automation of the meta- 
modeling process will assist the analyst who is not 
familiar with model abstraction techniques but needs 
to reuse a piece of code, integrate different models, or 
verify a new version of a simulation. This paper de- 
scribes the design of a Metamodeling Support System 
that provides this automation. 

1    INTRODUCTION 

A metamodel is a mathematical approximation of the 
system relationships defined by a more detailed model 
(Caughlin et al. 1997a). Caughlin (1995) introduced 
a structured approach to metamodeling that sepa- 
rated the procedure into two steps: problem defini- 
tion and an iterative metamodeling process. While 
we can generate a metamodel from data generated 
by any model structure, the discussion in this paper 
is limited to metamodels of simulations. 

We defined a metamodeling problem as the direct 

sum of the metamodel requirements and the model 
(simulation) to be approximated. To support this def- 
inition, the problem definition step first determines 
the purpose of the metamodel. In the definition of 
this purpose we identify the input and response that 
we are interested in and determine the important 
characteristics of these data. Also for this purpose, 
we define the region of interest, validity measures and 
specify the required validity. In addition to meta- 
model requirements, problem definition addresses the 
second part of the direct sum and characterizes the 
simulation that is the subject of the metamodel. This 
characterization provides data that can be used to 
match the simulation's characteristics to the meta- 
model structure and identification method. 

The second portion of the structured approach was 
an iterative metamodeling process which consists of 
the following steps (Caughlin 1997c): 

1. Select an Experimental Design 
2. Run the Simulation 

3. Collect Data 

4. Select a Metamodel Set 

5. Select Identification Methodology 

6. Generate the Metamodel 

This approach supported development of dynamic 
metamodels that exhibit memory and can model phe- 
nomena where the past influences the future. In ad- 
dition, a more robust identification procedure was de- 
veloped that could be applied to a broader range of 
problems than existing techniques. 

The revised process outlined above provides a di- 
rect method of sorting through the myriad of de- 
cisions necessary to develop a dynamic metamodel 
and reduces the number of independent decisions re- 
quired to develop the metamodel. This process is 
supported by a new taxonomy of problems, struc- 
tures, and methods and set of computer aided rou- 
tines that match the problem definition with the sim- 
ulation characteristics. 
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Even with a new approach supported by a taxon- 
omy of metamodeling problems, solution structures, 
and metamodeling methods, the development of the 
metamodel still required a thorough understanding 
of model abstraction, reduced order modeling, and 
system identification. 

In addition, even with the most robust procedures 
it is possible that the desired data generated by a 
simulation will not meet the assumptions or numeri- 
cal requirements of the identification procedure. 

Consequently, the widespread use of metamodeling 
EIS a method of model abstraction requires an auto- 
mated support system to assist the analyst. This pa- 
per describes research into the design of a prototype 
Metamodeling Support System (MSS) to automate 
model abstraction. The prototype system will assist 
the analyst who is not familiar with model abstrac- 
tion techniques but needs to reuse a piece of code, 
integrate different models, or verify a new version of 
a simulation. 

2-   DEVELOPMENT AND SYSTEM 
OVERVIEW 

The MSS program provides a semi-automated sup- 
port system to assist an analyst/modeler in develop- 
ing a metamodeling abstraction of a more detailed 
model. This system supports the metamodeling ap- 
proach outlined above and covered in the references. 

2.1-   Technical Program 

The MSS development program is divided into two 
development phases: 

1. Build 1 

2. Prototype Metamodeling Support System 

The MSS Build 1 establishes the baseline and pro- 
vides the following capabilities: 

1. A metamodeling system based on an object- 
oriented architecture that is capable of future 
expansion. 

2. The capability to analyze the source code, gen- 
erate and run the simulation, and gather data. 

3. Data storage and analysis routines. 

4. Metamodeling routines and procedures to gener- 
ate and verify the metamodel. 

In Build 1, the MSS provides an executive and au- 
tomated routines to analyze and run the simulations 
to gather the data for the metamodel. Existing iden- 
tification algorithms will be incorporated into this 

system to provide the basic capability to generate 
metamodels. 

The automated system support discussed above 
will be provided by an expert system. An expert 
system is the union of declarative knowledge and in- 
ference. The knowledge base contains the declarative 
knowledge. The inference engine controls the appli- 
cation of that knowledge. It is an algorithm that 
dynamically directs or controls the system when it 
searches the knowledge base. 

The Prototype Metamodeling Support System is a 
near-term upgrade of the basic Build 1 and adds the 
following capabilities: 

1. An expert system. 

2. Supporting Knowledge Base to support decisions 
required to develop metamodels. 

Documentation for the program is provided 
in a System/Subsystem Specification (SSS), Sys- 
tem/Subsystem Design description (S/SDD), System 
Software Design Description (SDD). 

2.2-   System Capabilities 

The system must provide the general housekeeping, 
expert system, and knowledge base to support the 
objectives and decisions outlined in the metamodeling 
approach shown in Table 1. 

There are four general capabilities that must be 
provided by this system. These areas are the analysis 
of the simulation, the correlation of the simulation 
and data with a metamodel structure and identifi- 
cation method, generation of the metamodel, and fi- 
nally, the analysis of the metamodel. 

First, the system needs to handle the general house- 
keeping associated with any experimental setup such 
as: user preferences; cataloging the input and output 
data; associating the data with parameter selections; 
and tracking the status of the metamodeling session. 

Secondly, the system needs to support problem def- 
inition. This includes definition of the metamodel 
purpose and the analysis of the simulation. 

Once the metamodeling problem has been defined, 
the system must support selection of a metamodel 
representation (structure) and method of identifica- 
tion. Given a structure and method, the system must 
now parameterize the metamodel. Lastly, the system 
should support the analysis of the metamodel. These 
capabilities are covered under the metamodeling pro- 
cess. 

Specific, more detailed, requirements to support 
these capabilities were provided in a Statement of 
Work, previous research, and an analysis of current 
trends in model abstraction. 
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Table 1: Metamodeling Approach 

MAJOR AREA OBJECTIVE DECISION/ACTION 

Problem Definition 

Metamodel Purpose Scope 
Use 

Simulation Characteristics External Characteristics 
Internal Characteristics 

Metamodeling 
Process 

System Representation 
Identification Methodology 

System description 
System class 
Metamodel Structure 
Identification Methodology 

Generate 
and verify metamodel 

Experimental Design 
Run the Simulation 
Collect Data 
Generate the Metamodel 
Verify the Metamodel 

3    DESIGN PROCESS 

The fact that the MSS must interact with a variety of 
different legacy simulations with unknown structure 
dictates a robust, modular, scaleable, and extensible 
design. A point design would not be able to adapt 
to different model or simulation structures or handle 
the different types of analysis to be performed. This 
dictate, and the fact that this was a software develop- 
ment, seemed to demand an Object-Oriented design 
approach. 

System capabilities, however, stem from the re- 
quirement to support a structured sequential process. 
The functionality is process related and does not re- 
side in or be derived from any of the objects that exist 
in the environment. Also, the MSS is not a compo- 
nent of another system but a system of systems under 
the supervisory control of the MSS executive. This 
analysis supports a structured Systems Engineering 
design approach. 

While Systems Engineering provides a high-level 
functional architecture, Object-Oriented (00) Mod- 
eling and Design generates a set of lower level func- 
tions that should (more properly) be called methods 
or operations. Unfortunately, it is usually not possi- 
ble to distribute the methods of the 00 classes among 
the different functional elements that result from Sys- 
tems Engineering. Consequently, at this point there 
are two incompatible structures. This issue was ad- 
dressed in Caughlin (1997b). The design of the MSS 
followed the method proposed in that paper. A sum- 
mary of the method follows: 

1. Follow the standard Systems Engineering pro- 
cess generating the system capabilities with a 
functional decomposition and allocation of re- 
quirements. 

2. Initiate the Object-Oriented Modeling and De- 
sign process identifying the underlying objects 
that are basic to the problem at hand. Iden- 
tify object attributes, operations (methods), re- 
lationships and associations.- Develop a class 
structure, prototype code, and data dictionary. 

3. Beginning with system capabilities (require- 
ments), define operating "States and Modes" of 
the system that are consistent with the func- 
tional architecture.- Display these states and 
modes in a flow chart. 

4. Using the functional capabilities (architecture) 
and the States and Modes Flow Chart, connect 
the functionality that comes from the Systems 
Engineering process to the objects that result 
from Object Modeling Techniques by the def- 
inition of abstract "manager" and "controller" 
objects that connected the "top down" function- 
ality with the "bottom up" objects. 

4    SYSTEM DESIGN 

Presentation of the design of the MSS is organized 
under  Requirements  Analysis,   Functional Design, 
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Object-Oriented Design, and KnowledgBase Design. 
This section concludes with the resulting System Ar- 
chitecture.- Requirements Analysis and Functional 
Design followed the standard Systems Engineering 
Process (EIA/IS-632 1994). 

4.1- Requirements Analysis 

An analysis of the required functionality and the pro- 
cess that the MSS is to support led to 511 require- 
ments. Requirements Traceability and Management 
was accomplished with a CASE tool - Requisite Ver- 
sion 2.0.18. 

System Capabilities were organized as follows: 

1. Interface Capabilities 

(a) User Login 

(b) Session Establish/Restore 

(c) Session Configure 

(d) Select Operation 

2. Problem Definition Capabilities 

(a) Metamodel Purpose 

(b) Simulation Characteristics 

3. Metamodel Capabilities 

(a) Select Metamodel Set 

(b) Select Identification Method 

(c) Select Experimental Design 

(d) Run Model 

(e) Fit Metamodel 

(f) Verify Metamodel 

Additional (nonfunctional) capabilities and con- 
straints were also identified. Internal and external 
interfaces were defined. 

4.2- Functional Design 

System capabilities were decomposed and allocated to 
functions based on the following required States and 
Modes: Login (Standby); Configure (Define) Session; 
Problem Definition; Metamodel; and Maintenance 
States.- The operating modes are "Manual," "As- 
sisted," and "Automatic" and apply primarily to the 
Problem Definition and Metamodeling States. These 
modes determine the level of support provided by the 
Expert System. 

4.2.1- States and Modes 

Login (Standby) State. This is the initial state of 
the system prior to login to the MSS. In this mode, 
the system will determine who the analyst is, which 
process is to be modeled, and the status of the process 
at login. This state allows the analyst to suspend a 
session and come back to it at a later time. This state 
operates only in the manual mode although defaults 
are provided. 

Maintenance State. This state allows the various 
maintenance functions. This state supports file and 
knowledgebase maintenance. In addition, user pro- 
files and preferences are established in the mainte- 
nance state. Again, this state operates only in the 
manual mode. 

Configure Session State. In this state, the analyst 
defines the objectives of the session. Here we identify 
the simulation that will be modeled and provide the 
data that will support the Problem Definition State. 
This state can operate in both the manual and as- 
sisted mode and cannot be exited until all of the data 
is provided. 

Problem Definition State. The Problem Definition 
State can function in both the manual and assisted 
modes. This state provides all of the data defined as 
a priori information. There are two major areas that 
are addressed. The first area is the purpose of the 
metamodel. The second area is the characteristics of 
the simulation that is to be metamodeled. 

Metamodel State. The Metamodel State provides 
the ability to complete the metamodeling procedure. 
These steps include selection of the metamodel set 
and identification method, selection of the experimen- 
tal design, running of the model, fitting the meta- 
model, and finally, verification of the metamodel. 
This state operates in all modes. 

4.2.2- Functions 

Analyzing the Required Capabilities with respect to 
the States and Modes resulted in the following func- 
tions for the requirements allocation. 

User Interface (UI). The UI component provides 
the multimedia control and display interface to the 
user. It interprets and error checks user inputs and it 
provides graphical, text and video displays, and au- 
dible alarms. It displays out-of-tolerance conditions 
visually and, if it is a critical parameter, audibly. 

Data Manager (DM). The DM provides all of the 
functionality associated with the management of MSS 
data. As such, the DM supports data requests from 
all other functions. Data archiving is accomplished on 
a Load/Save basis as opposed to a data entry basis. 
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Scenario Manager (SM). The purpose of the SM is 
to structure and manage the data used to generate the 
metamodel. The SM provides three different types of 
support to the MSS. 

First, the Scenario Manager supports data gather- 
ing for the problem definition steps of the process. 
At this stage, the Scenario Manager determines prior 
information for construction of the metamodel. 

Next, the Scenario Manager uses the data from 
problem definition to generate input data for the sim- 
ulation. The combination of simulation input and 
output becomes the input for the identification rou- 
tines that generate the metamodel. The SM manages 
the input and output data (through the Data Man- 
ager) that will be used to generate a metamodel. 

Lastly, the Scenario Manager provides the ability 
to link the various functions to complete the meta- 
modeling process. Development of the metamodel is 
a multi-stage process. In the first stage we deter- 
mine the purpose and characteristics of the simula- 
tion. Complete determination of the simulation char- 
acteristics, however, requires the output data from 
the simulation which is provided by the Metamodel 
Manager. Consequently, the process moves from the 
Scenario Manager to the Metamodel Manager and 
back to the Scenario Manager. The last type of sup- 
port provides by the SM is in tracking this interac- 
tion. 

These stages are iterative and the sequence of the 
operation can vary depending on the data and the 
outcome. Based on data from the Problem Status 
File generated by the Session Manager (discussed be- 
low), the Scenario Manager first determines the sta- 
tus of the solution and what data is required to pro- 
ceed to the next step of the metamodeling process. 
From this analysis, the proper SM response is se- 
lected. 

Metamodel Manager (MM). The MM provides the 
capability to generate the metamodel. 

The first step is to postulate a metamodel. The 
MM assists with the initial definition of the meta- 
model structure and guides the selection of the meta- 
model set. The MM should provide a recommended 
metamodel set based on the problem and the simula- 
tion that is to be metamodeled. 

Given the metamodel set, the next decision is the 
selection of the ID methodology. When we have es- 
tablished the metamodel set we should compare the 
metamodel set to the metamodeling problem to in- 
sure consistency of the metamodel problem. With 
the metamodel set and ID methodology determined, 
we use this information to define requirements for the 
Experimental Design. These selections constrain the 
Experimental Design and define the Input-Output 

Data requirements. 
The MM subsystem should provide a recommended 

experimental design based on the problem definition, 
metamodel set, and ID methodology. 

Once the experimental design is defined it should 
also be compared to the metamodel problem to insure 
that the design and problem are consistent. Based on 
the metamodel set, ID methodology, and Experimen- 
tal Design, we can identify appropriate analysis tools. 
This step also identifies preprocessing data analysis 
required to verify the results of the design. 

Once the metamodel set, ID methodology, Experi- 
mental Design, and analysis tools are defined the sim- 
ulation controller can configure data capture files and 
then run the simulation to generate the output data. 
The I/O must be configured for each simulation along 
with the simulation run times and message passing. 
At this time we load simulation and configuration files 
and execute the simulations as defined. 

This data must be analyzed (before the generation 
of the metamodel) to insure that it meets the restric- 
tions of the method (Belsley 1980, Ljung 1987). In 
general, we: 

1. Assess for collinearity 

2. Remove trends and Outliers 

3. Select useful portions 

4. Filter to enhance important frequency ranges 

The MM now gets metamodel data files and meta- 
model parameters using the data manager. With the 
data from the simulation, the metamodel set and the 
ID methodology, the MM now fits the metamodel to 
the data. After generation of the metamodel the MM 
then must verify that the metamodel meets the re- 
quirements of the problem definition. 

Session Manager (SEM). The SEM manages the 
status of the current session. First the SEM must 
identify the user and their status as Expert / Ad- 
vanced / Novice. The SEM then gets a general idea 
of what the objective of the session. From these ob- 
jectives the SEM determines if special resources are 
required. 

The SEM also provides the ability to suspend ses- 
sions, recover from, and continue with a previous ses- 
sion if requested. 

The SEM then configures and manages the session 
and the session state via the Login and Session State 
Files. 

We have discussed capabilities (requirements) and 
a functional decomposition and allocation that meets 
these requirements. Rather than proceeding with the 
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design process, our methodology dictates an Object- 
Oriented approach to the problem. We discuss this 
analysis next. 

4.3-   Object-Oriented Design 

Beginning with the same problem statement, applica- 
tion of Object-Oriented Modeling and Design to the 
requirements results in the following primary objects: 

1. Analyst 

2. Project 

3. Problem 

4. Simulation 

5. Metamodel 

6. Metamodel Set 

7. Metamodel Parameters 

8. Data 

This analysis continued with identification of ob- 
ject attributes, operations (methods), relationships 
and associations. A class structure, prototype code, 
and data dictionary was developed. Object-Oriented 
Modeling and Design was supported by OMTool that 
was developed by General Electric Advanced Con- 
cepts Center and implements Object-Oriented Model- 
ing and Design as defined by Rumbaugh (Rumbaugh 
1991). 

In a typical 00 methodology, the next Analysis 
step is to develop the dynamic model by preparing 
scenarios of typical interaction sequences, identifying 
events that occur between objects, preparing an event 
trace for each scenario and an event flow diagram for 
the system. A functional model is used to describe 
the transformation from input to output by deter- 
mining input and output values and developing data 
flow diagrams to show functional dependencies and 
identify constraints. 

In the design methodology that we follow, however, 
this data is provided by the Systems Engineering pro- 
cess. We do not continue with the 00 design but use 
these object classes to populate the "player" or lower 
level of the architecture. 

Manager objects are defined that implement the 
functionality defined by the system states and modes. 
The player level identifies the objects that must be 
addressed, Intermediate level "controller" objects are 
designed to make the connections between the man- 
ager and player levels. 

4.4-   KnowledgBase Design 

Expert System support is provided for two purposes. 
The first purpose is to assist in execution of the Meta- 
modeling process as we have defined it. The process 
can be executed using many different sequences. The 
Expert System constrains this sequence to insure that 
required information is available at each step and that 
results conform to assumptions. 

The second area of support is assistance in deci- 
sions required by the process. Here, we help with 
selection of the metamodel structure, identification 
method, analysis tools, etc. This is the Decision As- 
sistance Knowledgebase. 

The Metamodeling Process Knowledgebase is part 
of the original specification since it's contents are well 
known. The MSS contains the ability to record and 
incorporate the metamodeling results. The Decision 
Assistance Knowledgebase will be developed as the 
MSS is used to generate metamodels by recording de- 
cisions and the effectiveness of these decisions. 

4.5-   System Architecture 

The software architecture is a framework for the in- 
terconnection of subsystems within some major sys- 
tem - in this case the MSS. Each of these component 
systems are defined by their capabilities and are com- 
posed of functions (subsystems) which in turn are a 
collection of objects (modules). 

The MMS is composed of six levels: the top level, 
the manager level, the component level, the player 
level, the data level, and the library level (only 4 are 
shown in Figure 1). The top level encapsulates the 
abstraction of the MMS and supports the four se- 
quential processing steps: system login, configure the 
session, define the metamodeling problem, generate 
and verify the metamodel. The ability to maintain 
the system is also provided. This level is described 
by the "states and modes" of operation. 

This functionality is implemented by subsystems 
derived from the functional allocation by objects of 
the "manager class." This class is expected to com- 
pletely support MMS capability requirements in these 
five processing steps. This class of components are in- 
stantiated as the different objects required to provide 
this functionality. These objects are the User Inter- 
face (UI), Data Manager (DM), Scenario Manager 
(SM), Metamodel Manager (MM), and the Session 
Manager (SEM). 

The lower "player" level consists of the objects that 
are generated by the Object-Oriented Design. The 
player level encapsulates the entity object classes that 
are the inputs and products of the MSS such as the 
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simulations, metamodeling problems, and metamod- 
els. These are the entities that will be generated 
and/or manipulated in the course of the generation 
of the metamodel. 

The connection between the manager and player 
levels is accomplished by the definition of an interme- 
diate level. This intermediate level is the collection of 
subsystems that perform the various operations of the 
MSS. In the description of the system, they are called 
"controllers." The component level "controllers" pro- 
vide the connection between the managers and player 
objects. 

Table 2 below shows the "Manager" class, the Sys- 
tems Engineering functions performed by the class 
and the objects of the 00 design from OMT that are 
affected. 

A data level consists of the data objects required 
to manage the processes and control the products. 
Lower level library objects also exist that are used to 
implement standard functions that are not explicitly 
named. 

5-  IMPLEMENTATION 

Many of the components required to meet the func- 
tional requirements of the MMS already exist. 

An existing code analyzer can be used to analyze 
the simulation characteristics. Data can be efficiently 
stored in any number of relational databases (e.g. ex- 
ternal simulation characteristics are already provided 
in a SIMTAX database (Anderson, et al. 1989). 

Managers User 
Interface 

Data 
Manager 

Metamodel 
Manager 

Scenario 
Manager 

Session 
Manager 

•   •   • Controllers Display Interface 
Expert 
System 

1   Session 
] Manager 

Simulations • • • Metamodel Problems • • ■ Metamodels Players 

Figure 1: MMS Architecture 

In addition, there are a number of expert systems 
that could be used to provide automation support. 
Identification and analysis routines are available as 
well as a number of numerical engines. 

Rather than develop all of the components of the 
MSS, the decision was made to develop a shell or 
mainframe that would integrate and manage both 
new and existing components. 

This shell was developed with Microsoft Develop- 
ment Studio and C++ language using the Microsoft 
Component Object Model, the Microsoft Foundation 
Class Library, and the DAO database interface. MSS 
targets the Windows NT operating system. 

The 00 design was accomplished in OMTool. 
These files will be integrated into the Microsoft De- 
velopment Studio. 

Table 2: Connection Between Objects and Functions 

MMS MANAGER FUNCTIONALITY (SE) PLAYER (OMT) 

User Interface Interface Analyst 
Data Manager 
Scenario Manager 

Interface 
Problem Definition 

Data 
Problem 
Simulation 

Metamodel Manager Metamodel Metamodel 
Metamodel Set 
Metamodel Parameters 

Session Manager Interface Project 
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Automating the Metamodeling Process 

The Expert system is provided by the C Lan- 
guage Integrated Production System (CLIPS) de- 
veloped by the Software Technology Branch (STB), 
NASA/Lyndon B. Johnson Space Center. CLIPS is 
designed to facilitate the development of software to 
model human knowledge or expertise.- Rules and 
objects form an integrated system since rules can 
pattern-match on facts and objects. In addition to 
being used as a stand-alone tool, CLIPS can be called 
from a procedural language, perform its function, and 
then return control back to the calling program. 

CLIPS was embedded into the MSS as a DLL us- 
ing a Wrapper Class provided by Mark Tomlinson 
(MTOMLINS@us.oracle.com). 

The numerical engine is provided by MATLAB. 
Identification and analysis tools are incorporated as 
MATLAB "M" files. 

Documentation for the system is provided in the 
form of Windows help files which are assessable on- 
line. 

6-  SUMMARY 

This paper has described the design and capabilities 
of a prototype Metamodeling Support System that 
will assist the analyst who is not familiar with model 
abstraction techniques but needs to reuse a piece of 
code, integrate different models, or verify a new ver- 
sion of a simulation. 

We presented an outline of the capabilities required 
to support the Metamodeling process and references 
where details may be found. 

We demonstrated the use of a design process that 
integrated Systems Engineering and Object-Oriented 
Modeling and Design to provide a system architec- 
ture that meets functional requirements and accom- 
modates an Object-Oriented framework. 

Unfortunately, the scope of the paper does not al- 
low a complete description of implementation details. 
A summary was provided. 
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