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Abstract 

Complex security protocols require a formal approach to ensure their correctness. The protocols are fre- 
quently composed of several smaller, simpler components. We would like to take advantage of the com- 
positional nature of such protocols to split the large verification task into separate and more manageable 
pieces. 
Various formalisms have been used successfully for reasoning about large protocol compositions by hand. 
However, hand proofs are prone to error. Automated proof systems can help make the proofs more rig- 
orous. The goal of our work is to develop an automated proof environment for compositional reasoning 
about systems. This environment would combine the power of compositional reasoning with the rigor of 
mechanically-checked proofs. The hope is that the resulting system would be useful in verification of secu- 
rity protocols of real-life size and complexity. 
Toward this goal, we present results of a case study in compositional verification of a private communication 
protocol with the aid of automated proof tool Isabelle/IOA. 
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1    Introduction 

Today's security protocols require a formal approach to ensure that they satisfy important correctness 
properties. Traditional ways of verifying correctness by hand are prone to error and require a large investment 
of human effort and patience. Furthermore, these problems tend to grow worse as the size and complexity 
of the system being verified both increase. Automated proof tools can help make the proofs more rigorous. 
Such tools also need a lot of human guidance, and the automation they do provide typically does not scale 
well with the size of the problem. 

The protocols we are interested in are frequently composed of several smaller, simpler protocols. We 
would like to take advantage of the compositional nature of such protocols to split the large verification task 
into separate, more manageable pieces. Existing proof systems do not provide a structured environment 
for compositional reasoning about systems. The goal of our work is to develop such an environment. This 
environment would combine the power of compositional reasoning with the rigor of mechanically-checked 
proofs. We would like the resulting system to be useful in verification of security protocols of real-life 
size and complexity. Toward that goal we have conducted a case study in compositional verification of a 
private communication protocol with the aid of the automated proof tool Isabelle. This paper describes our 
experiences with the case study. 

I/O automata [Lyn96, LT89] have been successfully employed in hand verification of large reactive sys- 
tems. I/O automata express reactive distributed systems concisely as compositions of several smaller sub- 
systems. Meta-theorems about compositional properties of I/O automata help prove correctness theorems 
about the systems they describe. 

Nancy Lynch has applied the I/O automata formalism to verifying a private communication proto- 
col [Lyn99]. In this paper we take a version of the same protocol and verify its properties using the theorem 
prover Isabelle and I/O automata meta-theory developed by Olaf Müller [MÜ198]. The protocol is decom- 
posed into two components whose properties are proven separately. The top-level proofs then combine 
correctness theorems about the components and obtain a correctness proof about the composite protocol. 
The resulting formal description could be further combined with other security protocol components, and 
such compositions can be verified in Isabelle using the same compositional reasoning techniques. 

The rest of this paper is organized as follows. Section 2 gives an introduction to I/O automata and 
the meta-theorems used in the Isabelle proofs. Section 3 describes two recent efforts to incorporate I/O 
automata into mechanical theorem provers PVS and Isabelle. Sections 4 and 5 discuss our experiences with 
verifying a private communication protocol of I/O using the Isabelle theorem prover. In section 6 we discuss 
our results. 

2    An Introduction to I/O Automata 

The Input/Output Automaton (I/O Automaton) model [Lyn96, LT89] is a general model used for formal 
descriptions of distributed reactive systems. An I/O Automaton A is a state machine in which the state 
transitions are associated with named actions. The actions are classified as either input, output, or internal. 
The input and output actions are called external actions. We let ext(A) designate the set of external actions 
of automaton A. External actions are used for communication with the automaton's environment, while the 
internal actions are visible only to the automaton itself. 

I/O Automata state machines are typically given in a precondition-effect style. For each action, the code 
specifies the preconditions under which the action is permitted to occur, as a predicate on the automaton 
state, and the effects of the action on the automaton state. The effects may be given as a series of imperative 
statements, in which case it is understood that all of the effects occur in one atomic step. 

The composition operator 11 allows an automaton representing a complex system to be constructed by 
composing automata representing individual system components. The composition identifies actions with 
the same name in different component automata. When any component automaton performs a step involving 
an action 7r, so do all component automata, that include n. The state of the composition is the product of 
the states of its components. 



When we compose a collection of automata, output actions of the components become output actions of 
the composition, internal actions of the components become internal actions of the composition, and actions 
that, are inputs to some components but outputs of none become input actions of the composition. 

A triple (s, TT, S') is a step of an I/O automaton A if A has a transition from state s to state s' via action 
7T. An execution fragment of A is a finite or infinite sequence s()Tr0siTTi ... of alternating states and actions 
of .4, where each subseqence sfKiSi+1 is a step of A. An execution of A is an execution fragment whose 
first state is a start state of A. The trace of an execution a is the subsequence 7 of a consisting of external 
actions of A The set of all traces of A is designated traces(A). 

Let 7 be a finite (possibly empty) sequence of external actions of automaton A and let s and t be states 

of A The triple (s,7,*) is a move of A (written s ^>A t) if there exists a finite execution fragment a of A 

starting in s and ending in t such that trace(a) = 7. Thus, a move s ^>A t is a series of state transitions 

with the externally-visible behavior 7. 

For reasoning about correctness properties of I/O automata, we use the notion of implementation relation, 

also called trace inclusion. 

Definition 2.1.  Given two I/O automata A and C with sets of identical external actions, we say that C 

implements A (denoted C -< A) iff traces(C) C traces(A). □ 

Implementation relations are used to show that a concrete system C safely implements an abstract system 
A Typically, A is a specification of safety properties we would like the concrete system to exhibit. Proving 
the relation C ■< A guarantees that C exhibits only the external behaviors allowed by the specification A 

Implementation relations can be established by exhibiting simulation relations between the concrete and 

abstract automata. 

Definition 2.2. Let C and A be I/O automata with identical external actions. A forward simulation from 
C to A is a relation R over states(C) x states (A) that satisfies the following conditions: 

• If s is a start state of C, then there is a start state s' of A such that (s,s') E R. 

• If state s is reachable in C, state s' E R[s] is reachable in A, a £ ext(C). and [s,a,t) is a step of C, 

then there is a move s' =>A t' in A, where t' E R\t\. 

Intuitively, every externally visible step (s,a,t) of automaton C is simulated by a move s' =>A t' of 
automaton A The move must include exactly one external action a, but may include any finite number of 

internal actions. 

We write C <F A when there is a forward simulation from C to A. The utility of forward simulations is 

established by the following theorem. 

Theorem 2.1. Let C and A be I/O automata with identical external actions. If C <F A, then C ■< A. 

In this paper we make use of two weaker forms of forward simulations: refinement mappings and weak 
refinement mappings. A refinement mapping is a restricted form of forward simulations that allows each 
state of the concrete automaton C to be related to exactly one state of the abstract automaton A. Weak 
refinement mappings axe further restricted. They allow the abstract automaton A to simulate a step of the 

concrete automaton C by at most one step. 

Definition 2.3. Let C and A be I/O automata with identical external actions. A refinement mapping from. 
C to A is a function M from states(C) to states(A) that satisfies the following conditions: 

• Ifs E start(C) then M(s) E start(A). 

• If state s is reachable in C, o£ ext(C), and (s,a,t) is a step of C, then state M(s) is reachable in A 

and there is a move M(s) ^A M(t) in A. 



Definition 2.4. Let C and A be I/O automata with identical external actions. A weak refinement mapping 
from C to A is a function At from states(C) to states(A) that satisfies the following conditions: 

• If s £ start(C) then M(s) £ start (A). 

• If state s is reachable in C. a £ ext(C), and (s,a,1) is a step of C, then state M(s) is reachable in A 
and (M(s),a,M(t)) is a step of A. 

It is trivial to show that weak refinement mappings are refinement mappings, and that refinement mappings 
are forward simulations. 

To prove trace inclusion C -< A by hand, one usually performs the following steps: 

• Find a simulation relation R (or a refinement mapping At) over the states of C and A. 

• Roughly speaking, to prove that the relation R is a simulation, for each transition (s,a,t) of C that 
begins with a reachable state s, and for each state s' £ R[s] reachable in A, we must exhibit a transition 
(s\a,t') of A, where t' £R[t}. 

The proof usually proceeds by induction on the length of the execution leading up to the state s. For 
the base case, we verify that each start state of C has an i?-related start state of A. For the inductive 
step, we consider each transition (s,a,t) of C that starts in a reachable state s. For each s' £ R,[s] we 
exhibit a transition (s',a,f) of A and prove that (t,t') £ R. 

• During the proof of the inductive step, showing (t, t') £ R sometimes requires us to place constraints on 
the possible values oft and t'. Here it is often helpful to prove invariant properties about the reachable 
states of C and .4. These invariant properties provide us with the necessary constraints on t and f. 

The following theorem defines compositional properties of I/O automata and enables us to reason about 
individual components of complex systems. 

Theorem 2.2. Let C — C\\\ ... \\C„ and A = A\ \| ... 11-4„ be parallel compositions of I/O automata, where 
ext(Aj) = ext(Ci) and Q ^ Aj for every i.  Then ext(A) = ext(C) and C ■< A. 

Hence, if we can decompose complex systems C and .4 into simpler components, we can prove trace inclusion 
between C and A by proving trace inclusion between individual components and then applying Theorem 2.2. 

3    I/O Automata and Mechanical Theorem Proving 

When a trace inclusion proof is attempted using a typical generic theorem prover, many issues crop up. 
The first question is how I/O automata should be represented in the specification language of the theorem 
prover. The language may lack expressive power or convenient features because the language is tailored for 
the theorem prover, rather than the user's needs. 

Once the representation has been designed, it is necessary to verify that the representation satisfies the 
meta-theorems about I/O automata, in particular Theorems 2.1 and 2.2. These essential theorems may be 
difficult to prove for the chosen representation of I/O automata. One possible solution is to supply these 
and other theorems to the theorem prover in the form of axioms. This approach defeats some of the value 
of mechanical verification, since we could not be sure that our representation of I/O automata is sound. 

If we are verifying a complex composition of multiple smaller automata, each individual automaton has 
to be hand-translated to the input language of the theorem prover-a laborious process that is prone to error. 
In our experience, subsequent, attempts to prove properties of the system reveal many more errors resulting 
from faulty translations than errors inherent in the original I/O automata specification. 

The process of proving theorems about automata in a theorem prover can be tedious. Prover commands 
are typically very different from the reasoning steps that humans usually make. Even if the user knows how 



auto = IOA + Action + „1..  + 
types 

auto-state = ..2.. 
consts 

auto-asig :: action signature 
autoJrans :: (action, auto-state) transition set 
autoJoa :: (action, auto-state) ioa 

defs 
auto-asig_def "autojasig == ({..3..}, {..4..}, {..5..})" 
auto_trans_def "auto_trans == 

{ tr. let s = fst(tr); 
t = snd(snd(tr)); 
a = fst(snd(tr)) 

in 
case Q of 

..6..  => ..7..  | 

8 

aut.oioa_.def "autoJoa == (auto-asig, {..9..}, auto.trans, {..10..}, {..11..})" 
end 

Figure 1: Template for specifying I/O automata in Isabelle 

the high-level proof should go, translating this knowledge into a complete proof in a mechanical prover can 

be a frustrating experience. 

Recent work has addressed these complications and attempted to make automated verification of I/O au- 
tomata systems more closely resemble hand verification. Myla Archer et al. recently developed TAME [AHS98], 
a high-level interface to the higher-order logic theorem prover PVS for specifying and proving invariant 
properties of I/O automata models. The TAME interface provides a template for translating I/O automata, 
specifications into the PVS input language. A set of high-level commands lets the user prove invariant prop- 
erties with the same type of steps that are commonly taken in hand proofs. However, TAME has significant 
shortcomings as well. There is no natural way to define an I/O automaton type and formalize I/O meta- 
theory, including the composition operator and theorems about simulations and compositional reasoning. 
This is due to restrictions in the polymorphic features of the PVS specification language. Hence, TAME is 
suitable primarily for verifying invariant properties of relatively small systems. 

Olaf Müller formalized a large part of the basic I/O automata, meta-theory using the theorem prover 
Isabelle [MÜ198]. Isabelle specification language has rich polymorphic mechanisms, making it suitable for 
consise specifications of I/O automata and associated operators. Miiller's meta-theory includes a definition 
of the composition operator and proofs of Theorems 2.1 and 2.2. We used Miiller's Isabelle/IOA system for 

our case study. 

4    Trace Inclusion Proofs in Isabelle/IOA 

The first step in the verification process is converting I/O automata specification and implementation (written 
in the traditional precondition-effect style) into the Isabelle input language. This task is reasonably easy 
because Isabelle/IOA contains the composition operator, an operator for hiding external actions (which 
helps make automata compatible for composition), and other standard operators from I/O automata theory. 
It is therefore not necessary to compose automata by hand, or otherwise modify them before doing the 

translation. 

A template for formalizing automata in Isabelle's language is shown in Figure 1. The template assumes 
that the actions of the automaton have been defined as a datatype action in a separate theory named 
Action. To create a specific automaton out of the template, the user must fill in items 1 through 11 (marked 

in bold numbers in the figure), as follows. 



The definition autojtrans_def specifies the transition relation on the state of the automaton using set 
comprehension notation. The relation is a set of triples tr = (s,a, /) satisfying the boolean case expression 
on the action name a. The user fills out items 6 through 8 to set up the transition relation for a specific 
instantiation of the template. Items 6 and 7 pair an action name with a boolean expression constraining the 
set of transitions labeled by the action name. All other actions of the automaton follow in item 8, using the 
same syntax. 

Finally, the definition auto_ioa_def defines the entire I/O automaton as a 5-tuple consisting of the 
action signature, the set of initial states (item 9), the transition relation, and two types of fairness conditions 
(items 10 and 11). In this paper we will consider only safety properties, so the fairness conditions will always 
be empty sets. Section 5.1.1 contains an example translation of an I/O automaton into Isabelle using the 
template. 

Once the I/O automata have been encoded in Isabelle. the next step is stating and proving invariant 
properties that will be used later in the implementation proof. A typical hand invariant proof proceeds by 
induction. For the base case, we show that the invariant holds in all initial states. For the inductive step, 
we check that each action preserves the invariant property. A similar strategy works in our Isabelle proofs 
of invariant properties. We have developed an Isabelle tactic (called simplifyJ.nv^goal_tac) that takes 
the invariant goal, applies induction (thereby breaking the goal into subgoals for the base case and for each 
action) and automatically proves the "trivial'" cases. In particular, the cases that do not modify the parts 
of the state involved in the invariant are proven automatically. After this tactic is applied, the user is left 
with the task of proving the remaining cases. In each case, the necessary reasoning is localized to the effects 
of one action, eliminating the need to reason about the entire automaton. Appendix A.7 shows an Isabelle 
proof of one of the invariants as an example. 

The final step in the implementation proof is exhibiting a simulation relation or a refinement mapping 
from the states of the implementation to the states of the specification. The proof that a function is a 
refinement mapping is structurally similar to the proofs of invariant properties. Once again, we apply 
induction on the length of the execution to the goal and automatically discharge the "trivial" cases among 
the resulting subgoals. The rest of the subgoals are proven in the manner similar to the hand proof. Each 
subgoal corresponds to one step of the implementation automaton; the user must exhibit a corresponding 
move of the specification automaton and prove that the end states of the implementation step and the 
specification move are related by the refinement mapping. 

When we want to generate a trace inclusion proof between two compositions of automata C = C\ \ \... \\C„ 
and A = Ai || ... ||.4„, we can take advantage of Theorem 2.2. Once we have obtained separate trace inclusion 
proofs for each pair of component automata C,- and Aj separately, we can apply the compositionality theorem 
to get trace inclusion between C and A. This step is easy, and requires only a side proof that the automata 
being composed are compatible with each other. We are developing Isabelle tactics that discharge most of 
this proof automatically. 

5    Case Study: Verification of a Private Communication Protocol 

We have taken a modified version of a private communication service protocol specified as I/O automata 
in [Lyn99] and used Miiller's Isabelle/IOA to verify secrecy properties of the service. The main point of 
this exercise is to investigate the feasibility of using the theoretical machinery provided by I/O automata to 
perform compositional analysis of complex systems in an automated proof environment. A full description of 
the system together with the proofs appears in the Appendices. In the rest of the paper we give a high-level 
description of the system and discuss our experiences with Isabelle/IOA. 

The private communication service is specified as an I/O automaton PC. The service lets clients exchange 
messages with each other using an insecure transmission channel. The specification guarantees that messages 
are delivered at most once, and their content remains secret from the adversary. 

The service is implemented using a shared-key cryptosystem and contains a number of automata. Before 
going out on the insecure communication channel, each message passes through an encoder automaton and 
gets encrypted with a key that the encoder shares with a corresponding decoder automaton on the receiving 
side.   The decoder decrypts the messages and passes them on to the client.   The implementation model 
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Eavesdropper Decoder 

II II 

KD II Environment 
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PCImpl j 

Figure 2: Composition PCImplj implements specification PC 

also includes a passive eavesdropper automaton. The eavesdropper can intercept messages appearing in 
the insecure channel and also compute new messages (via encryption and decryption functions) from the 
available information. Using a technique similar to assume-guarantee proofs, the environment automaton 
records our assumptions about the environment in which the service can operate correctly. In particular, 
the environment must not give a.way secrets to the eavesdropper. 

The shared keys are generated by a key distribution service. The full implementation employs a version of 
the Diffie-Hellman protocol to generate and distribute shared keys. Since the analysis of key distribution is 
fairly involved, we decompose the implementation into two parts that can be verified independently. Figure 2 
shows the structure of an I/O automata composition PCImpl x = IC\\Eve\\KD\\Enc\\Dec\\Env implementing 

specification PC. 

In PCImpl}, KD is a high-level specification, leaving out the details of key distribution and thus simplify- 
ing the structure of PCImplt. The Diffie-Hellman key distribution protocol can now be verified independently 
of the rest of the private communication protocol. The protocol consists of Diffie-Hellman nodes (one per 
client) and an insecure channel. Diffie-Hellman nodes exchange several messages over the channel in order to 
establish a shared key for a pair of clients. Just as in the private communication implementation, there is a 
passive eavesdropper and and an environment. Figure 3 shows the structure of an I/O automata composition 
KDImpl = DH1\\DH2\\IC\\Eve\\Env implementing specification KD. 

For simplicity, we assume (unrealistically) that the key distribution protocol and the private communica- 
tion protocol have separate insecure channels and eavesdroppers, and the eavesdroppers do not communicate 
with each other. See [Lyn99] for a more realistic treatment combining the insecure channels and the eaves- 

droppers. 

Breaking up the implementation in this manner lets us take advantage of the compositionality theorem 
about I/O automata (Theorem 2.2). We prove trace inclusion for compositions shown in Figures 2 and 3 
in Isabelle. Theorem 2.2 then lets us substitute the Diffie-Hellman implementation KDImpl in place of the 
specification KD while preserving trace inclusion between PCImplx and PC. The resulting implementation 

PCImpl2 is shown in Figure 4. 

Below we give a more detailed description of the PC and KD service specifications. Appendices A and B 
describe the compositions PCImplj and KDImpl and give high-level descriptions of Isabelle trace inclusion 
proofs for Figures 2 and 3.  Appendix C shows how the compositionality theorem is applied to obtain the 
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implementation relation for Figure 4. 

5.1    The Services 

In this section, we describe the two services that are implemented by the protocols and verified in this paper. 
The use of input and output actions provides convenient ways of composing these automata with others, and 
of describing what is preserved by implementation relationships. These specifications describe only safety 
properties, although the same methods can be used to handle liveness properties, formulated as live I/O 

Automata [GSSL93]. 

5.1.1     Private Communication 

This section contains a specification of the problem of achieving private communication among the members 
of a finite collection P of clients. The specification expresses three properties: (1) only messages that are 
sent are delivered, (2) messages are delivered at most once, and (3) none of the messages are revealed by an 
"adversary." We describe the problem using a high-level I/O automaton specification PC(U, P, M, A), where 
U is a universal set of data values, P is an arbitrary finite set of client ports, M C U is a set of messages, 
and A is an arbitrary finite set of adversary ports. This specification makes no mention of distribution or 
keys; these aspects will appear in implementations of this specification, but not in the specification itself. 
The specification simply describes the desired properties, as an abstract machine. As usual for automaton 
specifications, the properties, listed separately above, are intermingled in one description. 

PC(U,P,M,A): 
Signature: 

Input: Output: 
PC-send(m)p,q, m £ M, p.q £ P, V + <i PC-receive (u)p,q, u £ U, p,q £ P, p + g 

reveal(u)a, u £ C\ a £ A 

States: 

for every pair p,q £ P, p ^ q: 
buffer(p, q), a multiset of M 

Transitions: 

PC-send{m)p,q reveal (u)a 

Effect: Precondition: 
add m to buffer (p,q) u£M 

Effect: 

PC-receive(u)Vlq 
none 

Precondition: 
u £ buffer(p,q) 

Effect: 
remove one copy of u from buffer{p, q) 

The first two properties listed above, which amount to at-most-once delivery of messages that were actually 
sent, are ensured by the transition definitions for PC-send and PC-receive. The third property, privacy, is 

expressed by the constraint for reveal. 

The following figure demonstrates the private communication specification translated into Isabelle/IOA. 
The translation fills in specific information about the specification into the template shown in section 4. 

PC = IOA + Action + InfMultiset + 
types 

PC-state = "P X P => U tmultiset" 
consts 

PCasig :: action signature 
PC-trans ::  (action, PC-state) transition set 
PCJoa :: (action, PC-state) ioa 



clefs 
PC_asig-def "PC-asig == 

((UN m p q. {PC-send m p q}). 
(UN 11 msg p q. {PC.receive u msg p q}) U (UN u a. {reveal u a}), 

PC'.transjdef "PC'.trans = = 
{ tr. let s = fst(tr); 

t = snd(snd(tr)): 
a = fst(snd(tr)) 

in 
case o of 

reveal u a => u £ M_set | 
PC-send m p q => 

(m e M_set) A: 
(t = (A (p\ q). 

if (p = p') k (q = q') then 
s (p', q") + {m} 

else 

S(P'. q')))l 
PCLreceive u msg p q => 

(u € s (p. q)) & 
(t = (A (p\ q'). 

if (p = p') & (q = q') then 
s (p'- q')" {"} 

else 
s(p',q'))) 

}" 
PC_ioa_def "PCJoa == (PCasig. {A (p. q). 0}, PC.trans. {}. {})" 

end 

The state of PC is represented as a function from a pair of clients of type P to a multiset of messages of 
type U. The definition of the transition relation gives a boolean expression for every triple (s,a,t), where s 
and t are states and a is an action of PC The boolean expression includes the precondition of a and relates 
/ to s via the effects of a. Thus, the expression is true if and only if (s, a,t) is a step of PC. 

5.1.2     Key Distribution 

This is a drastically simplified key distribution service, which distributes a single key to several participants. 
We do not model requests for the keys, but assume that the service generates the key spontaneously. The 
simplified key distribution problem is specified by the automaton KD(U, P, K, A), where U is a universal set 
of data values, P is an arbitrary finite set of client ports, A" C U is a set of keys, and A is a finite set of 
adversary ports. 

KD(U,PJ\,A): 
Signature: 

Input: Internal: 
none choose-key 

Output: 
grant(u)p, n G U, p G P 
reveal (u)a, u 6 U, a£ A 

States: 

chosen-kty, an element of A* U {X}. initially X 
notified C P, initially 0 

Transitions: 



choost-key reveal.(u)a 

Precondition: Precondition: 
chosen-key = 1 « t K 

Effect: Effect: 
chosen-key :=   choose k where k £ K none 

grant (u)p 
Precondition: 

chosen-key j^ A. 
u = chosen-key 
p £ notified 

Effect: 
notified := notified U {p} 

6    Discussion 

The benefits of decomposing large systems into smaller parts for verification are twofold. From the software 
engineering perspective, formalizing and reasoning about large monolithic systems quickly becomes unman- 
ageable. The number of potential interactions between state components typically increases exponentially 
with the size of the state and the size of the transition relation. When the system has more than a few state 
components, just formulating the necessary invariants can prove to be a daunting task. Compositional rea- 
soning lets us take a modular approach to verification. We can focus on proving properties of self-contained 
systems of reasonable size and build up a component library for constructing larger systems. Composition- 
ality results let us combine proven properties of components and obtain new results about the larger system 
without going through the verification process from scratch. One can imagine that somewhat more realistic 
versions of the PC and KD services and their implementations could be a part of a library of formalized 

security and cryptography components. 

Decomposition also helps avoid the state explosion problems common to all automated verification tools. 
Isabelle's simplifier was valuable in reducing the human effort in our verification exercise, but in our ex- 
perience its running time greatly depends on the size of automata being verified. The table below shows 
the running time on a set of theorems proven automatically by an identical invocation of the simplifier. 
Each theorem describes how a transition of an n-automata composition is projected onto the individual 

components. The table gives the timings for n € {3,4,5,6}. 

n 3 4 5 6 
time 5.5 sec 27.9 sec 3.8 min 40.1 min 

We did not prove the theorems for higher values of n because for n > 7 the simplifier requires more than 
the 256MB of RAM available on the test machine. But the data in the table suggest that even without 
the space restriction, the automatic proof tools in Isabelle would not be able to handle larger systems in 
a reasonable amount of time, and without them the verification effort is prohibitively expensive. In the 
small example verified in this paper, we split the task of verifying trace inclusion for a nine-component 
system PCImpU into two separate tasks, one of which deals with a six-component system PCImph and 
the other with a five-component system KDIm.pl. Notably, we could not prove the projection theorems for 
the nine-component case, but could do so for the smaller component cases. This modest division resulted 
in substantial savings primarily because complexity, running time, and space requirements appear to be 
exponentially related to problem size. In the context of real-world systems that can have dozens of such 
components, abstraction and decomposition become essential. 

6.1     Observations on Benefits of Formal Verification 

Refinement proofs turned out to be a more effective way of fleshing out specification problems than invariant 
proofs. Invariant proofs may touch only specific, parts of the protocol state and leave untouched more abstract 
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questions about what the protocol is doing. The refinement proof makes explicit all the assumptions about 
why the implementation does what the specification intended. 

In particular, during the refinement proof for the implementation PCImplj we were forced to go back 
and prove several auxiliary invariants whose utility were not obvious a priori. This in turn led us to typos 
and errors in our formalization of the cryptosystems and component automata. Although the bugs caught 
during the process of proving invariant lemmas and trace inclusion were mostly errors in our formalization, 
we caught one error in the original description of PCImplj protocol (some uninitialized variables led to failed 
proofs of the base case) and a typo in an invariant statement in [Lyn99] (see remark about invariant B.l in 
Appendix B.3). 

6.2 Efficiency Issues 

The human effort spent, on the project included (1) twelve weeks for formalizing and verifying PCImplj < PC, 
(2) three weeks for verifying KDIinpl < KD, and (3) three clays for verifying PCImplo < PC. A substantial 
fraction of the time in stage 1 was spent learning Isabelle/IOA and setting up the procedure for formalizing 
I/O automata, stating and proving invariants, and proving trace inclusion. This accounts for most of the 
difference in effort between stages 1 and 2. Stage 3 was much shorter due to our use of the compositionality 
theorem. 

We believe that additional automation can reduce the human effort substantially in all phases of the 
verification process. At. the level of the prover, additional tactics can automate tasks that commonly show- 
up in reasoning about I/O automata. These tactics fall into two categories. One set. of tactics would 
simulate the high-level proof steps used in human-style I/O automata proofs. These would be similar to the 
proof strategies offered by Archer's TAME environment, for PVS. Another set. of tactics would help the user 
deal with proof obligations specific to Isabelle and the Isabelle formalization of I/O automata meta-theory. 
For example, applying the compositionality theorem requires proofs for side conditions that the Isabelle 
type checker does not guarantee. It must be shown that the I/O automata definitions are well formed - 
the sets of input, output, and internal actions are disjoint, and the transition relation is defined only for 
the actions in the automaton signature definition. Furthermore, the user must show that the automata 
being composed are compatible with each other. These proofs have common structure and can therefore be 
effectively encapsulated in a higher-level Isabelle tactic. The tactic would be used with every application of 
the compositionality theorem. 

There are also ways to improve efficiency at the user interface level. A compiler can take care of translating 
I/O automata (expressed in a suitable way) into an Isabelle formalization. It. is also possible to generate a 
general framework for invariant, definitions and trace inclusion proofs automatically, letting the user fill in 
definitions and proof script, details specific to the problem. 

One of the biggest, obstacles to formal reasoning with theorem provers remains their cumbersome nature 
and the level of attention to low-level details required of the user. Isabelle is not, an exception. Interacting 
with the bare-bones prover throughout the verification cycle can be a frustrating experience, which is why 
we emphasize the need to automate as much of the process as possible. With the enchancement.s discussed 
above, the task of formalizing the specification and setting up proof goals and induction can be substan- 
tially automated. Most user interaction with the prover would take place when reasoning about individual 
automata actions. The actions typically have a small and localized effect, on the automaton state, which 
makes the proofs more manageable. 

6.3 Technical Issues 

In Miiller's formalization of I/O automata meta-theory the binary automata composition operator has the 
following type, given in Isabelle's ML-like notation: 

||    ::    (a, a) ioa —»• (a, r) ioa —>• (a, a x T) ioa 

where a is the action type, cr and r are state types of the automata being composed, and a x r is the 
state type of the composition. The composition operator requires that both automata be defined over the 
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same action space a. If we apply the operator multiple times to compose several automata, every action of 
every component must be a member of the same action space. Mechanized induction on the action datatype 
generates a subcase for each action in the action space, including those that do not belong to the component 
being verified. This means that inductive proofs do not scale well for large compositions of automata. This 
is a serious problem, as it undermines the primary benefit of compositional reasoning: scalability. It takes 
over an hour for Isabelle (ver. 99) to execute in interactive mode the invariant and refinement proof scripts 
developed in this project. The simplifier spends the majority of that time reducing inductive subcases for 

actions, considering many more cases than necessary. 

Fixing the problem without completely revising the meta-theory requires a richer type system than 
supported by Isabelle/HOL. For example, in a polymorphic language with subtyping and union types [Pie91], 

the composition operator could be given the following type: 

||    ::    {a, a) ioa ->■ (/?, r) ioa ->• (a V ß, a x r) ioa 

The action type of the composition a V ß is the union type derived from the action types a and ß of 
the components. Assuming that the usual binary operators on sets (union, intersection, difference) have the 
type a set -+ ß set ->(oV /?) set, the existing definition of the composition operator would still make sense 

in this setting. 

7    Conclusions 

Existing compositional proof methods, including implementation relations between I/O Automata, are ade- 
quate for handling large classes of verification problems. Numerous case studies have used these techniques 
by hand to prove global properties of non-trivial systems. Until recently, automated verification tools have 
not. included compositional techniques in their repertoire. Yet, the strengths of compositional reasoning and 

automated reasoning have the potential to complement each other. 

Automation demands that compositional proofs be made strictly rigorous. It does not tolerate typos 
or imprecise wording, which can lead to subtle errors in hand proofs. Forced to develop proofs according 
to these exacting standards, the user gains deeper understanding of the subtleties of the system and more 
confidence in the final product. Although time consuming to use, automated proof tools make proof re- 
checking much easier, which can result in substantial time savings in the iterative development/verification 
cycle. Conversely, compositional techniques offer the best hope of dealing with state explosion and complexity 
problems associated with automated verification of non-trivial systems. 

Our experience with the Isabelle/IOA verification environment leads us to conclude that there is a 
lot. of work yet to be done before the potential benefits of automated compositional reasoning are fully 
realized. Using Isabelle/IOA is a labor-intensive undertaking, and the environment does not appear to be 
sufficiently scalable. These issues can be resolved with additional effort, and we believe that the benefits of 
the compositional approach make the effort worthwhile. 
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A    Private Communication Implementation 

In this appendix, we describe the protocol that implements the private communication specification from 
Section 5.1.1. The protocol uses a shared-key cryptosystem C to encrypt messages before sending them over 
an insecure communication channel. The protocol keeps the messages secure against passive eavesdroppers. 

We give automaton models for some system components that appear in many security-related settings: 
environments for security services, insecure channels, and eavesdroppers. They are presented in a parame- 
terized fashion so that they can be used in different contexts. We then put these components together in 

the private communication protocol. 

A.l     Cryptosystems 

A cryptosystem signature S consists of: 

• TNs, a set of type names. 

• FNs, a set of function names. 

• domains, a mapping from FNs to (TNs)*. 

• ranges, a mapping from FNs to TNs- 

• ENs C FNs, a set of easy function names. 

A constant name is a function name / such that domains(f) = A. Let CNs C FNs denote the set of 
constant names of C. We omit the subscript S where no confusion seems likely. A cryptosystem C consists 

of: 

• A cryptosystem signature sigc. We write TNC as shorthand for TNsl9c, etc. 

• setc, a mapping from TNc to disjoint sets. 

• func, a mapping from FNc to functions; We require that if domain c(f) = (ti,...,tk) and rangec (/) = t 

then func(f) : setc(t\) x - • • x setc(tk) ->• setc(t). 

We write seic for Ute TW 
setc(t)- We omit the subscript C where no confusion seems likely. lfX\j{y} C setc, 

we say that y is easily reachable from X in C provided that y is obtainable starting from elements of A', by- 
applying only functions denoted by function names in ENc ■ 

A.1.1     Term Cryptosystems 

If S is a cryptosystem signature, then the terms of S, and their types, are defined recursively, as follows: 

1. If c G CNs and ranges(c) = t, then c is a term and types(c) = t. 

2. If / G FNs, domains(f) =h,h,...,tk, where k > 1, ranges(f) -t, and ei,...,ek are terms of types 
ti,.. .,tk, respectively, then the expression e = f(e\,.. .,ek) is a term, and types(e) — t. 

Let Termss(t) denote the set of terms of S of type t. Let Termss denote the set of all terms of S. 

Some of the cryptosystems we consider are best understood as term algebras derived from cryptosystem 
signatures. In these cases, the values of the various types are, formally, equivalence classes of terms: An 
equivalence relation R on Termss is said to be a congruence provided that the following hold. 

1. If eRe' then types(e) = types(e'). 

2. Suppose that / G FNS, domains (f) = ti,t2, ■ ■ ■ ,tk, where k > 1, ranges(f) = t, ei,...,ek are 
terms of types ti,...,tk, respectively, e[,..., e'k are terms of types ti,...,tk, respectively, and for all 

i, l<i< k, aRe'i. Then f(e1,...,ek)Rf(el,...,ek). 
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Let 5 be a cryptosystem signature and R a congruence on Termss- Then the term cryptosystem C for £ 
and R is the unique cryptosystem satisfying: 

• sigc - S. 

• If / G TNc, then setc(1) is the set of all /^-equivalence classes of terms of type t in Terms?. 

• If / G FN?, domain?(f) = (ti,.. .J/,-) and rangec(f) = t then func(f) is the function from setc(ti) x 
••■x setc(tk) to setc{1) defined as follows. Suppose that e,- G setc{ii) for all i, 1 < ? < fc. Then 
f>mc(f)([f l]/?' ■ ■ • > [eA-]/?) is defined to be [f(e\ eI-)]B- (Since R is a congruence, this is well-defined.) 

We use the notation Re for the congruence relation R of C. If f G Terms?, then we write [e]? for the 
equivalence class off with respect to Re- Also, if E C Terms? then we write [E]c for the set of equivalence 

classes [e]c for e G E. 

In the rest of this section we describe two specific crypt osystems. The first kind of cryptosystem, a shared- 
key cryptosystem, is used in shared key communication. The second kind, a base-exponent cryptosystem, is 
used in the Diffie-Hellman key distribution protocol. 

A.1.2     Shared-key cryptosysteins 

A shared-key cryptosystem C is a term cryptosystem. The signature 5 = sigc is defined as follows. TNs 
consists of two type names: "M" for messages and '"A" for keys. FNs consists of: 

• enc, with domain(enr) — ("M'\ "A"") and range(enr) = "M". 

• dec, with domain (dec) — ("M", "A"") and range (dec) = "M" . 

• MConsts, a set of message constant names, with range(m) = "A/'' for all m G MConstg. 

• KConsts, a set of key constant names, with range(k) = "A"" for all fc G KConsts- 

ENs — {enc, dec}. We write the congruence relation on terms of a shared-key cryptosystem as =s. The 
relation =s is defined by means of all equations of the form: 

• dec(enc(m,k),k) = m, where m, k G Termss, type(m) = "M", t.ype(k) = "A*". 

Specifically, we want the smallest congruence relation on Termss that, equates all terms that are related by 
the given equations. In Isabelle we define this relation inductively as follows: 

1. ?7i =s m for all terms m 

2. if mi =s mn and ^'i =s k->, then enc(nii,ki) =s enc(m2,kn) 

3. if ?7ii =s J7?2 and hi =s k?, then dec(mi,ki) =s dec(m2,kn) 

4. if enc(m, k) =s e, then dec(e,k) =s m 

5. If mi =s mo, then ???o =s mi 

6. If 77?-i —* in'! and m'> — s ?713, then ?7?i =s nis 

Lemma A.l.   The definitions of =s and =s are equivalent. 

Proof. Suppose that terms tt and t-> are related by =s. We prove that /i =s <o by induction on the derivation 

of ^i =s to- 

Consider the last rule in the derivation. There are six possibilities: 
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1. ty = to = m. By reflexivity of =s, ti —s to. 

2. ti = enc(mi,ki) and to = enc(mo,ko). By the inductive hypothesis, we have n?i =s m2 and k\ =s ko. 

The result follows because =, is a congruence. 

3. Similar to case 2. 

4. *! = dec(e,k) and <2 = »". By the inductive hypothesis, we have enc(m,k) =s e. Using the fact the 
=s is a congruence, we obtain dec(enc(m,k),k) =s dec(e,k). From the equations defining =s and 

transitivity it follows that m =s dec(e, k). 

5. Result follows from symmetry of =s. 

6. Result follows from transitivity of =s. 

Now suppose that terms tx and *2 are related by =s. If ti and to are related by the equations defining 

= ,, then assume that tx = dec(enc(m,k),k) and t2 - m for some m and k. We get tx =, to by applying 

rule 4 from the inductive definition of =s with e = ene(m, k). 

We must also show that =5 is a congruence. =s is reflexive by rule 1, symmetric by rule 5, transitive by 

rule 6, and a congruence by rules 2 and 3. 

D 

Lemma A.2.  Suppose that e8- is a term of type  "M", i G {1,2}, and enc{ and deci are the number of enc 

function names and dec functions names in ei: respectively, and e\ =s eo.   Then encx — dec\ — enco — deco. 

Proof. By induction on the structure of the derivation of ei —s e2. D 

A.1.3     Base-exponent cryptosystems 

A base-exponent cryptosystem C is a term cryptosystem in which, letting S = sigc: 
TNs consists of two type names, "B" for bases and "A"" for exponents. 

FNs consists of: 

• exp, with domain(exp) = ("B", "A") and range(exp) = "5". 

• BConsts, a set of base constant names, with range(b) = "5" for all b G BConsts- 

• X Const Is and XConst2s, two disjoint sets of exponent constant names, with domam(x) = A and 

range(x) = "A" for all x G XConstls U XConst2S- 

ENS = {exp} U BConsts-  We write the congruence relation on terms of a base-exponent cryptosystem as 
=6. The relation —b is defined by means of all equations of the form: 

• exp(exp(b,x),y) = exp{exp{b,y), x), where b,x,ye Termss, type{b) = UB", type(x) = type(y) = "A". 

In the Isabelle formalization of base-exponent cryptosystems, we define the relation =b inductively as 

follows: 

1. m =5 m for all terms m 

2. if mi =b rn-2 and xx =& x2, then exp(mi,xi) =b exp(ni2,xo) 

3. exp(exp(m, xx),X2) =b exp(exp(m, x2), a?i) 

4. If mi =b m2, then m2 ={, mi 
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5. If »77-i =t 777.2 and ?772 =6 »'3, then 777^ =b 7773 

Lemma A.3.   The definitions o/=(, and =1 are equivalent. 

Proof. Suppose that terms /] and t-, are related by =(,. We prove that ii =t, to by induction on the derivation 

of ti —1, to. Consider the last rule in the derivation. There are five possibilities: 

1. fj = i-, = 777. By reflexivity of —t,, ti =5 in. 

2. t\ — exp(nii, x\) and 7*2 = exp(mn,X'_>). By the inductive hypothesis, we have ?7?i =(, 7772 and xi =(, xo. 
The result follows because ={, is a congruence. 

3. t\  = exp{e.rp(m, .rj), ,r2) and to = exp(exp(m. xo). xi).   From the equations defining ={, it follows 
immediately that t\ =t TS. 

4. Result follows from symmetry of =5. 

5. Result, follows from transitivity of ={,. 

Now suppose that terms t\ and ?N are related by =(,. If fi and 7*2 are related by the equations defining 

=(,, then assume that ti — exp(exp(b,x),y) and to = exp(exp(b,y),x) for some b, x, and y. We get. <i =(,^2 

by applying rule 3 from the inductive definition of =;, with 777 = b. Xi = x. and xo = y. 

We must, also show that =/, is a congruence. =(, is reflexive by rule 1, symmetric by rule 4, transitive by- 
rule 5, and a congruence by rule 2. 

□ 
Define B2s to be the set of all terms of the form exp(exp(b, x), y), where b G BConsts, x € XConstls 

and y £ XConst'2s- An augmented base-exponent cryptosystem is a base-exponent cryptosystem together 
with a distinguished element 6O5 of BConsts- 

Lemma A.4. Suppose that e,- is a term of type "Br, i 6 {1,2}. and expj is the number of exp function 

names in e,-. and Ci =s eo.   Then exp1 = exp2. 

Proof. By induction on the structure of the derivation of ei =5 eo. D 

A.2    Environment Automata 

Here we assume that U is a universal set of data values, A is an arbitrary finite set of adversary ports, 
that is, locations where information can be communicated to the adversary, and N C U. The environment 
automaton Env(U, A, Ar) models any entities other than the channels from which an eavesdropper may learn 
information. It says that the environment is capable of communicating elements off'' at any adversary port 
a £ A, but in fact does not. communicate any elements of N. 

Env[U,A,N) : 
Signature: 

Input: Output: 
None learn (u)a, u 6 V, a £ A 

States: 

No variables 

Transitions: 

learn (u) a 

Precondition: 
ul£N 

Effect: 
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A.3    Insecure Channel Automata 

Here we assume that U is a universal set of data values, P is an arbitrary finite set of client ports, and A 
is an arbitrary finite set of adversary ports. The insecure channel admits send and receive actions for all 
elements of U and also has eavesdrop output actions, by which information in transit passes to an outsider. 
The insecure channel allows any message in transit, to be communicated to an outsider via the eavesdrop 

actions. 

IC(U,P,A): 
Signature: 

Input: Output: 
IC-send(u)p,q, u £ U, p, q £ P, p # q IC-receivi (u)p,,, u £ O, P, q £ P, P ¥" 1 

eavesdrop{u)P:qia, u £ U, p,q £ P, p ^ q, a £ ,4 

States: 

for every p,q £ P, p ^ q: 
buffer(p,q), a multiset of U, initially empty 

Transitions: 

IC-send[u)p,q eavesdrop(u)p,qia 
Effect; Precondition: 

add u to buffer(p,q) u £ buffer(p,q) 
Effect: 

IC-receive(u)p,q 
none 

Precondition: 
u £ buffer(p, q) 

Effect: 
remove one copy of u from buffer (p, q) 

A.4    Eavesdropper Automata 

Here we assume that C is a cryptosystem, P is an arbitrary finite set of client ports, and A is an arbitrary 
finite set of adversary ports. We define a model for an eavesdropper, as a nondeterministic automaton 
Eve(C,P,A). Eve simply remembers everything it learns and hears, and can reveal anything it has, at any 
time. It does this by maintaining a variable has, initially 0. The value of has may change only in restricted 
ways: Namely, when eavesdrop{u)p^a or learn(u)a occurs, u gets added to has. When an internal compute 
action occurs, the value resulting from applying an easy function (one in ENC) to values in has may be 
added to has. We restrict the reveal(u) output so that u G has, that is, Eve can only report a value that it 
has. Similar treatments of known information appear elsewhere in the literature. 

Eve{C,P,A): 
Signature: 

Input: Internal: 
eavesdrop(u)p,q,a. u £ setc, p,q £ P, P ^ q, a £ A compute(u,f)a, f € ENc, a £ A 
learn(u)a, u £ setc, a £ A 

Output: 
reveal(u)a, ^ £ setc, a € A 

States: 

has C setc, initially 0 

Transitions: 
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eavesdrop (u)p,q.„ 
Effect: 

has := has U {n } 

learn {u)a 

Effect: 
has := has U {»} 

reveal (;;)n 

Precondition: 
u G Ans 

Effect: 
no»f 

compute («, /)a 

Precondition: 
{«i...., «■/,.} C s.has 
II = /(ui,..., «A) 

Effect: 
ks := has U {)<} 

The rest of this appendix describes a straightforward shared-key communication protocol. The proto- 
col simply uses a shared key, obtained from a key distribution service, to encode and decode messages. 
Throughout the section, we assume that C is a shared-key cryptosystem, P is a set (of clients) with at least 
2 elements, and A is a nonempty finite set (of adversaries). 

A.5    The Encoder and Decoder 

We define parameterized encoder and decoder automata, parameterized by the shared-key cryptosystem C, 
the set P of clients, and elements p.q £ P, p ^ q. Note that, in the code for IC-send(u), we are using the 
abbreviation enc for fanc(enc) - that is, we are suppressing mention of the particular cryptosystem C. 

Enc(C, P)Plq, where p, q £ P, p / q : 
Signature: 

Input: 
PC-stnd(m)ptq. m G [MConstc] 
grant(u)p, v G setc 

Output: 
IC-send(u)p,q. u G setc 

States: 

buffer, a multiset of elements of [MConstc], initially empty 
shared-key G [KC!onstc] U {X}, initially _L 

Transitions: 

PC-scnd{m)p:q 
Effect: 

add m to buffer 

IC-send(v)Ptq 
Precondition: 

m is in buffer 
shared-key ^ ± 
u = enc(m, shared-key) 

Effect: 
remove one copy of m from buffer 

More-or-less symmetrically, we have: 

grant(u)p 
Effect: 

if u G [KConstc] then 
shared-key := w 

Dec(C, P)p,q, where p, q G P, p^ q 
Signature: 

Input: 
IC-receive(v)p,q, u G setc 
grant(u)q, n G setc 

Output: 
PC-receive (u)p,q, u G setc 

States: 
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buffer, a multiset of elements of setc("M"), initially empty 
shared-key 6 [KConstc] U {-L}, initially _L 

Transitions: 

IC-receive(u)p,q 
Effect: 

if« £ setcC'M") then 
add « to buffer 

PC-receive («)p,9 

Precondition: 
m is in buffer 
shared-key ^ _L 
« =: dec(m, shared-key) 

Effect: 
remove one copy of m from buffer 

grant(u)q 
Effect: 

if « £ [A'Consfc] then 
shared-key := u 

A.6    The Complete Implementation 

In the rest of this section, we assume: U = se£c; Af = [MConstc]; K = [KConstc]; N = M U A'; U' is an 
arbitrary set with A" C U'\ A' is an arbitrary set, disjoint from A. 

The implementation consists of encoder and decoder components, an insecure channel, eavesdropper and 
environment, plus a key distribution service. More precisely, the implementation, PCImpl^C, P, A,U', A'), 

is obtained by composing the following automata and then hiding certain actions. 

. Enc(C, P)Piq, Dec(C, P)Pi„ p, ? G P, p # q. 

• IC(U,P,A), Eve(C,P,A), Env(U,A,N). 

• KD(U',P,K,A'), a key distribution service. 

In this system, the eavesdropper Eve does not acquire any information directly from the KD component. 

To get P CIm.pl j (C, P, A, U', A'), we hide the following actions in the composition just defined: eavesdrop pga, 

p, q G P, a G A; lC-sendv>q, IC-receivePtg, p, q G P; grantp, p G P; learna, a G A; reveala, a. G A1. 

A.7    Correctness of the Private Communication Implementation 

To prove correctness of PCImplj, we demonstrate an implementation relationship between PCImplx and 
PC. The invariant and implementation proofs presented here are similar to [Lyn99]. The proofs have been 
modified to mirror the Isabelle proofs. In particular, instead of a simulation relation we use a weak refinement 

mapping between the states of PClm.plj and PC. 

A.7.1     Invariants 

Invariant A.5. In all reachable states of PCImph, the following are true: 

1. If EncPtq.shared-key / _L then Encv>q.shared-key = KD.chosen-key. 

2. If DecPiq.shared-key ^ _L then DecPig.shared-key — KD.chosen-key. 

Proof. We prove this by induction on the length of an execution. 

Basis: Both claims are true in the initial state because Encp^.shared-key and Decp q.shared-key are both 

_L. 
Inductive step: Consider a step (s, a, s') of the implementation, where s satisfies the invariant. 
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1. ü = choose-key 

By the precondition on a and the inductive hypothesis, KD.chosen-key = Encr,q.shared-key = Decp>q. shared-key 
X in s. Therefore, Encrq.shared-key = Decpq.shared-key = _L in s'. 

2. a = grant(u)p By the precondition on a, KD.chosen-key = Encpq. shared-key = 
Decpq.shared-key = w in s'. 

In other cases, the invariant is trivially preserved. 

D 

Invariant A.6.  In all reachable states of PCImplj. the following are true: 

1. If Encpq.shared-key = _L then IC.bufferfp. q) is empty. 

2. If Encpq.shared-key = A. then Decpq.buffer is empty. 

Proof. By induction. For the base case, both parts of the claim are true in the initial state, channel and 
decoder buffers are empty. 

For the inductive step, consider a step (s,a,s') of PCImplj, where s satisfies the invariant. There are 
two non-trivial cases that add elements to channel or decoder buffers: 

l.a = IC-send(u)rq 

The precondition of this action ensures that EncPtq. shared-key ^ J_, so this step cannot violate part 1 
of the invariant. Part 2 is trivially preserved. 

2. a = IC-receive(u)pq 

If Encp q.shared-key — J_. then by the inductive hypothesis IC.buffer(p, q) is empty, so this step cannot 
be enabled, and therefore cannot violate part 2 of the invariant. Part 1 is trivially preserved. 

D 

Invariant A.7. In all reachable states of PCImplj the following holds: for all p, q £ P, and all u £ N, u 
<£ IC.bufferfp, q). 

Proof. By induction. For the base case, the claim is trivially true in the initial state, since IC.buffer(p, q) is 
empty. 

For the inductive step, consider a step (s,a,s') of PCImplj, where s satisfies the invariant. The only 
non-trivial case is a = IC-send(u)pq, where a — enc(m.,k). 

The precondition and type considerations imply that m G [MConstc] and k £ [KConstc]. So in fl 
MConstc 7^ 0; let in' be any element in in D MConstc- Similarly, k C\ KConstc j=- 0; let k1 be any element in 
k fl KConstc- Then enc(in',k') £«. 

Suppose that u £ [MConstc]. Then u f) MConstc ^ 0 so let u' be any element in u n MConstc- Then 
[enc(m',k')] = v = [«']. But Lemma A.2 implies that enc(m', k') and u' are not equivalent terms, because 
the difference between the number of enc and dec operators in the first of these is 1 and the difference in the 
second of these is 0. It follows that u £ [MConstc]. which implies that this event does not add an element 
of M = [MConstc] to the channel IC. 

By an identical argument, w ^ [KConstc]- 

D 

Invariant A.8.  In all reachable states of PCImplj, if u £ N then u (£ Eve.has. 

Proof By induction. For the base case, the claim is trivially true in the initial state, since Eve.has is empty. 

For the inductive step, consider a step (s,a,s') of PCImplj, where s satisfies the invariant. There are ' 
three non-trivial cases: 
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1. a — eavesdrop(u)P,q,a 

This action cannot add an element of Ar to Eve.has, because by invariant A.7 there are no elements of 

N in IC.buffer(p,q) in state s. 

2. a■ = learn(u)a 

The precondition of this action ensures that u £ N. 

3. a — compute(u, f)a 

By the inductive hypothesis, there are no elements of N in s.Eve.has. In particular, there are no keys 

(of type A") in s.Eve.has. So this action cannot be enabled in s. 

D 

We present the Isabelle proof of invariant A.8. 

Goal  "invariant PCImpl_ioa lemmaA_6"; 

(* Apply simplification tactic to reduce the goal to  (non-trivial)  subgoals 
corresponding to automata actions 

*) 
by (simplify_inv_goal_tac lemmaA_6_def 1); 

O There are three cases still left to show: eavesdrop, learn, and compute. *) 

(* eavesdrop *) 

(* Strip outer quantifiers and implications, flatten conjunctions 

in hypotheses *) 
by (REPEAT (rtac alii 1 ORELSE rtac impl 1 ORELSE etac conjE 1)); 

by (rename_tac "s t u p q" 1); 

(* Apply invariant lemma A.5 *) 
by (apply_inv_tac lemmaA_5 lemmaA_5_def 1); 

(* The rest is definition expansion, quantifier instantiation, 

and simplification *) 

sf [Ball_def] 1; 
by (strip_tac 1); 

by (thin_tac "ALL x. x : N_set —> x ": eve s" 1); 

by (eres_inst_tac [("x", "p")] allE 1) 

by (eres_inst_tac [("x", "q")] allE 1) 
by (eres_inst_tac [("x", "x")] allE 1) 

by (case_tac "x = u" 1); 

sf [] 1; 
ba 1; 

(* learn *) 
(* Solved automatically by Isabelle *) 

by (Blast_tac 1); 

(* compute *) 
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(* Solved automatically by Isabelle after expanding some definitions *) 

by (asm_full_simp_tac (simpset() addsimps [M_set_def]) 1); 

by (Blast_tac 1); 

(* done *) 

qed "lemmaA_6"; 

High-level tactic simplif y_inv_goal_tac takes care of breaking clown the invariant definition, applying 
the Isabelle induction tactic, and simplifying the resulting cases. In the example invariant proof shown here, 
the user is left with the same three non-trivial cases that were considered in the hand proof. The tactic 
apply_inv_tac is another instance where a high-level step in the hand proof can be simulated effectively by 
a high-level Isabelle tactic. In the example proof for the case a = eavesdrop(u)pq:a, apply_inv_tac applies 
the invariant A.7 to state s and adds the result to the list of assumptions in the current goal, to be used 
later in the proof. 

A.7.2     Implementation Proof 

We show that PCImplj  implements PC by exhibiting a  weak refinement mapping F from the states of 
PCImplj to the states of PC. F(s) is the multiset union of three multisets, A\, An, and A3, where: 

1. Ai = s.EnCpq.buffer. 

2. An — dec(s.ICbuffer(p. q), s.KD.chosen-key) if s.h'D.chosen-key ^ ± else 0. 

3. .4,3 = decfs.DeCpq.buffer, s.KD.chosen-key) if s.KD.chosen-key ^ _L else 0. 

Thus, the multiset of messages in transit at the specification level is obtained by combining the multisets of 
messages at the encoder and the decoder and the multiset of messages in the insecure channel. The messages 
in the insecure channel and decoder buffers must be decoded with the shared key to get the correspondence. 

Theorem A.9.  F is a lueak refinement mapping. 

Proof. The proof proceeds by induction. 
Base: Easy - in the start states of PC and PCImplj all the multisets are empty. 
Inductive step: Consider (S,TT,S') in the implementation, where s is a reachable state. The interesting cases 
are: 

1. 7T = IC-send('u)P:q, where it = enc(m,k) 

This corresponds to the trivial one-state execution fragment F(s) of PC{U,P,M,A). We must argue 
that F(s') = F(s). It follows from invariant A.5 and the precondition that this action is enabled only 
if s.KD.chosen-key ^ ±. So this event removes 7?? from Encrq.buffer (and from ^4i). The encoded 
version « of??) is added to the insecure channel, and from the equations relating enc and dec functions 
it follows that ??? is added to A'>. So the multiset F(s') is the same as F(s). 

2. 7T = IC-receive{u)Vq 

The argument is similar to the case 7r = IC-send{u)rq. The key point is that 11 is accepted by dec, 
because it is of type "M". This follows from the precondition in the insecure channel and uses an 
invariant saying that all the elements of IC.buffer „ are always of type "A/". (This invariant was 
omitted in the description above, but has been proven in Isabelle). 

3. 7T = PC-receive(u)v<q 

This corresponds to the same action in PC. In this step, u = dec(m, s.KD.chosen-key) for some 
??? £ s.DeCpq.buffer by invariant A.5. Thus, u £ F(s).buffer(p,q), which means that 7r is enabled in 
the specification automaton, in state F(s). 
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It remains to show that after executing TT in state F{s), PC must be in state F(s'). One copy of m 
is removed from s.Decp<q.buffer (and therefore from ,43) while a copy of u is removed from the ab- 
stract channel F(s).buffer(p,q). Since u - dec(m,s.KD.chosen-key), this preserves the correspondence 
between the multisets. 

7T = reveal(u)a 

This corresponds to reveal(u)a in the specification PC. We must show that u £ M. The preconditic 
for reveal{u)a (in Eve) implies that u G s.Eve.has.  Invariant A.8 implies that u g N, which impli 
that u £ M 

5. 7T = choose-key 

This corresponds to the trivial one-state execution fragment F{s) of PC(U,P,M,A). From the pre- 
condition, we have s.KD.chosen-key = -L. It follows from invariants A.5 and A.6 that the insecure 
channel and decoder buffers are empty in s. Therefore, this action has no effect on the multisets of the 
mapping F. 

D 

Theorem A.10. PCImph (C, P, A, U', A') * PC(U, P, M, A). 

Proof. Follows from Theorems A.9 and 2.1. d 

B    Diffie-Hellman Key Distribution Implementation 

This section describes the Diffie-Hellman key distribution protocol. Throughout the section, we assume C is 
an augmented base-exponent cryptosystem, P - {pl,p2}, and A is a nonempty set. 

B.l    The Endpoint Automata 

We define two symmetric automata, for the two elements of P. 

DH(C,P)pi: 
Signature: 

Input: Internal: 
IC-receive(b)p2,pi, b G setc("B") choose-exppl 

Output: 
IC-send{b)pUp2, b e setcV'B") 
grant{b)pl, b £ setc("B") 

States: 

chosen-exp £ [XConstl c] U{±}, initially J. 
base-sent, a Boolean, initially false 
rcvd-base £ se<c("B") U {!.}, initially X 
granted, a Boolean, initially false 

Derived variables: 
chosen-base £ se/c("B") U {J.}, given by: 

if chosen-exp ^t J. then exp{[bOc], chosen-exp) else J. 

Transitions: 
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choose-exp   t                                                                                                 1 C-rece ive (b)p2,p\ 
Precondition:                                                                                                        Effect: 

chosen-exp = _L                                                                                             revd-base :— b 
Effect: 

chosen-exp :=   choose J:                                                                    grant(b)pi 
where x £ [XConstl c]                                                                    Precondition: 

chosen-exp ^ X 
IC-scnd(b)pij,2                                                                                                        revd-base ^t X 

Precondition:                                                                                                         b = exp{rcvd-base. chosen-exp) 
cliosen-exp ^ X                                                                                            granted = false 
b = chosen-base                                                                                     Effect: 
base-sent = false                                                                                         granted := true 

• Effect: 
base-sent := true 

The automaton for p'l is the same, but interchanges uses of pi and p2, and likewise of A' 
XConst2. 

DH(C,P)p2: 
Signature: 

Input:                                                                     Internal: 
IG-receive (b)pi:P2, b G setc{"B'')                    choose-exp  2 

Output: 
/C'-sen<i(b)p2,pi! 6 G seff("B") 
grant(b)r,2, b G sefc("B'*) 

States: 

chosen-exp G [A'Cons/U^] U {-L}, initially X 
hnse-sent. a Roolean_ initiallv false 

revd-base G setc(aB") U {X}, initially X 
granted, a Boolean, initially /a/sf 

Derived variables: 
chosen-base G Äf(c("S'') U {-L}, given by: 

if chosen-exp ^ X then e.77>([60^], chosen-exp) else X 

Transitions: 

choose-exp  , 
Precondition: 

chosen-exp = X 
Effect: 

chosen-exp :=   choose .r 
where :r G [A'ConsiSf] 

7C'-«fnrf(6)p2,pi 
Precondition: 

chosen-exp ^ X 
£> = chosen-base 
base-sent = false 

Effect: 
base-sent := *n<e 

IC-receive (b)p\ }P2 
Effect: 

revd-base := b 

grant (b)p2 
Precondition: 

chosen-exp ^t X 
revd-base ^ X 
6 = exp(rcvd-base, chosen-exp) 
granted = false 

Effect: 
granted := rrue 

B.2    The Complete Implementation 

In the rest of this section, we assume: f' = seft-; A"' = [B2C}\ X' = [XConstl c]U[XConst2c]; N' = K'öX'. 

The implementation consists of two endpoint automata, an insecure channel, an eavesdropper and an 
environment. Specifically, implementation KDImpl(C,P,A) is the composition of the following automata, 
with certain actions hidden: 
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• DH(C, P)P, p G P, endpoint automata. 

. IC(U',P,A), Eve(C,P,A), Env{U',A,N'). 

To get KDImpl(C, P, A), we hide: eavesdrop pqa, p,q<E P, p ^ q, a G A; IC-sendP,q, IC-receivePA, p, q G F, 

p ^ q; learna, a G A. 

B.3    Invariants 

In the system KDImpl, we use DH{p) for p G -P, /C, and Eve as handles to help in naming state variables 
in the composed state. The first invariant says that messages that have been received or are in transit are 

correct: 

Invariant B.l. In all reachable states of KDImpl, the following are true: 

1. If DH(p). rcvd-base ^ X andq ^ p then DH(q).chosen-exp =£ X. andDH'(p).rcvd-base = DH {q).chosen-base. 

2. Ifu G IC.buffer(p,q), then DH{p).chosen-exp ^ X. and u = DH(p).chosen-base. 

Remark:  There was a typo in part 1 of invariant B.l as stated in [Lyn99].   Client names p and q were 
reversed in the conclusion, which read DH(q).rcvd-base = DH(p).chosen-base instead of DH(p).rcvd-base = 

DH (q) .chosen-base. 

The next two invariants say that no TV' elements ever appear in Eve.has or in the insecure channel. 

Invariant B.2.  In all reachable states of KDImpl, for allp, q G P, p ^ q, and all u G TV', u <$ IC.buffer(p, q). 

Proof. Analogous to the proof of invariant A.7. Base: The claim is true initially, because the channels are 

empty. 
Inductive step: Consider a step (s, 7r, S') of the implementation, where s satisfies the invariant. The interesting 

case is: 

1. IC-send(b)Ptq 

b is an equivalence class of a singly-exponentiated base 60, and thus cannot be a member of X' (a set of 
non-exponentiated constants) or a member of K' (a set of doubly-exponentiated bases) by Lemma A.4. 

Thus, this action cannot add a member of N' to IC.buffer(p, q). 

D 

Invariant B.3. In all reachable states of KDImpl, ifu G TV' then u £ Eve.has. 

Proof. Analogous to the proof of invariant A.8. 5o.se: The claim is true initially, because Eve.has is empty. 
Inductive step: Consider a step (s, n, s') of the implementation, where s satisfies the invariant. The interesting 

cases are: 

1. eavesdrop(w)p,g,a 

Applying invariant B.2 to state s, it follows that u cannot be a member of TV'. 

2. learn (u)a 

We use the precondition in Env. 

3. compute[u, f)a- 

The only function in the cryptosystem is exp. This can't produce any elements of [XConstl] or 
[XConst'2] because of type considerations. Moreover, in order to produce an element of [B2], an 

element of [XConstl] U [XConst2] is needed. 

D 
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B.4    Implementation Proof 

We show that KDImpl(C. P. A) implements KD(U, P, A", A) using a refinement mapping. The mapping F is 
defined as follows: 

1. If s.DH(p).chosen-exp ^ ± for all p £ P. then F(s).chosen-key = 
cxp(s .DH (p]) .chosen-base, s.DH (pi'2) .chosen-exp), and otherwise F(s). chosen-key — J_. 

2. F{s).notified = {p G P : s.DH(p).granted}. 

Theorem B.4. F is a refinement mapping. 

Proof. By induction. 
Base: Easy. 
Inductive step: Consider (S,JT, s') and t and consider cases. The most interesting cases are: 

1. 7T = choose-exp  . 

If s.DH(q).chosen-exp — _L, where q ^ p then this maps to the trivial one-state execution fragment 
F(s).   The correspondence is trivially preserved.   Otherwise, this corresponds to a one-action move 
choose-key, with a chosen value of 
exp(s'.DH(q).chosen-base, s'.DH(p).chosen-exp). 
Enabling is straightforward, as is the preservation of the refinement. 

2. 7T = IC-send(b)pq. 

This corresponds to the trivial one-state execution fragment F(s). It is easy to see that F(s') = F(s). 

3. 7T = IC-receive(b)pCj 

This corresponds to the trivial one-state execution fragment F(s). It is easy to see that F(s') = F(s). 

4. 7T = grant(b)p 

This corresponds to a one-action move grant(b)p in KD.   The interesting fact to show here is the 
enabling, specifically,  that the value b  =   exp(s.DH(p).irvd-base,s.DH(p).chosen-exp) is equal to 
F(s).chosen-key. Invariant B.l implies that 
b = exp(s.DH(q).chosen-base, s.DH(p).chosen-exp)). 
and equations in the cryptosystem imply that this is equal to 
exp(exp([bO], s.DH(pi).chosen-exp), s.DH(p2).chosen-exp). The definition of F says that this is equal 
to F'(s).chosen-key, as needed. 

5. TV — eavesdrop 

Corresponds to trivial fragment. Easy to see correspondence preserved. 

6. TT = compute 

Corresponds to trivial fragment. Easy to see correspondence preserved. 

7. TT = learn(u)a 

Corresponds to trivial fragment. Easy to see correspondence preserved. 

8. rr = reveal(u)a 

This corresponds to a one-action move reveal(u)a in KD. We must show that ?/ ^ A"'. The precondition 
for reveal(u)a (in Eve) implies that M £ s.Eve.has. Invariant B.3 implies that u (fc N', which implies 
that u <£ A'. 

D 

Theorem B.5. KDImpl[C, P, A) ■< KD(U, P. A, .4). 

Proof. By Theorems B.4 and 2.1. D 
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C    Combining Diffie-Hellman Key Distribution with Private Com- 
munication 

Now we are read}' to combine the Diffie-Hellman key distribution implementation with the rest of the private 
communication protocol. The new private communication protocol is identical to PCImph , with one change: 
the key distribution specification KD is replaced by Diffie-Hellman key distribution. As we said earlier, we 
assume that the key distribution protocol and the private communication protocol have separate insecure 
channels and eavesdroppers, and the eavesdroppers do not communicate with each other. 

Let C be a shared-key cryptosystem and £ a base-exponent cryptosystem. In this section, we assume: [/ = 

setc: M = [MConst]c; K = [[B2]s]c; N = M U A; U' = sets; K' = [B2e]\ X' = [XConstl]s U [XConst2]£; 
N' - K' U A''; P = {pl,p2}; A is a nonempty set; A' is an arbitrary set, disjoint from A. Note that the key 
set A" of cryptosystem C consists of doubly-exponentiated bases of cryptosystem £. 

As before, the implementation consists of encoder and decoder components, an insecure channel, eaves- 
dropper and environment, plus a key distribution module. More precisely, the implementation, PCImpl2(C, £, P, A, A'), 
is obtained by composing the following automata and then hiding certain actions: 

. Enc(C, P)P,g, Dec(C, P)p,q, P,q£P,P^ <?• 

• IC{U, P, A), Eve(C, P, A), Env{U, A, N). 

• KDIm.pl(£,P,A'), the key distribution module. 

In this system, the eavesdropper Eve does not acquire any information directly from the KDIm.pl component, 
and conversely, the eavesdropper inside KDImpl cannot receive information from outside KDImpl. 

To get PCImpls{C, £, P, A, A'), we hide the following actions in the composition just defined: eavesdrop pqa, 
p, q £ P, a £ A; IC-sendPiq, IC-receivePiq, p,q G P; grantp, p G P; learna, a £ A; reveala, a G A'. 

Theorem C.l. PCImpls(C,£,P,A,A') ^ PC{U,P,M,A). 

Proof. From theorem B.5 we have KDImpl(£,P,A') < KD(U',P,K,Ä). The only difference between 
PCImplo and PCImph is that we have substituted KDImpl(£,P,A') for KD(U\P,K,A'). So by the com- 
positionality theorem 2.2, PCImpls(C,£,P,A,A') < PCImpljiC^A,^\A'). The result then follows by 
theorem A. 10 and transitivity of -<. d 
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