
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

NAVAL ARCHITECTURE
FACILITATING

by

ENVIRONMENT
JV2010

Thomas H. Augustine

December 1999

Thesis
Second

Advisor:
Reader:

Luqi
Barbara McBr. Lde

Approved for public release; distribution is unlimited.

20000309 015

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Daws
Highway Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
NAVAL ARCHITECTURE ENVIRONMENT:

FACILITATING JV2010
6. AUTHORS
Augustine, Thomas H.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Center, San Diego
53560 Hull St.
San Diego, CA 92152-5001

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES
The vjews expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis demonstrates that the C4ISR Framework Version 2.0 requirements can be satisfied with one modem object oriented CASE tool. It
provides an alternative scenario-centric approach to architecture development. The combination of scenarios and Unified Modeling Language
(UML) semantics is referred to as the Naval Architecture Environment (NAE). Specifically, it recommended the acquisition of Rational Rose.

The NAE combines the best practices of software development with the domain-specific insight contained in the Framework to create an efficient
process, supported by a commercial tool and robust semantics, to älow the analysis and design of interoperable C4ISR systems. These are
systems that will support Joint Vision 2010's call for Information Superiority.

14. SUBJECT TERMS

C4ISR. Architecture. Unified Modelina Lanauaae (UML)

15. NUMBER OF PAGES
62

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

11

Approved for public release; distribution is unlimited

NAVAL ARCHITECTURE ENVIRONMENT:
FACILITATING JV2010

Thomas H. Augustine
B.S.E.E., University of Californian, Los Angeles, 1983

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1999

Author:
gisfstine

Approved by:
Luqi, Thesisadvisor

VBarbara McBride, Second Reader

Luqi, Chairman
Software Engineering

in

IV

ABSTRACT

This thesis demonstrates that the C4ISR Framework Version 2.0 requirements can

be satisfied with one modern object oriented CASE tool. It provides an alternative

scenario-centric approach to architecture development. The combination of scenarios and

Unified Modeling Language (UML) semantics is referred to as the Naval Architecture

Environment (NAE). Specifically, it recommended the acquisition of Rational Rose.

The NAE combines the best practices of software development with the domain-

specific insight contained in the Framework to create an efficient process, supported by a

commercial tool and robust semantics, to allow the analysis and design of interoperable

C4ISR systems. These are systems that will support Joint Vision 2010's call for

Information Superiority.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PURPOSE 1
B. MOTIVATION 1
C. ORGANIZATION 3

1. C4ISR Architectures 3
2. Current C4ISR Architectures Development Environment 3
3. Essentials of the Unified Modeling Language 4
4. Rational Rose 4

5. Naval Architecture Environment (NAE) 4
6. Recommendations and Conclusions 4

H. C4ISR ARCHITECTURES 5

A. THE C4ISR ARCHITECTURE FRAMEWORK 5
1. The Document 5
2. The Operational Architecture View 6
3. Definition of the Systems Architecture View 7

B. JOINT VISION 2010 H
C. c4I FOR THE WARRIOR: JOINT PUB 6 12
D. SUMMARY 14

IE. CURRENT C4ISR ARCHITECTURES DEVELOPMENT ENVIRONMENT , 17

A. PURPOSE 17
B. BENEFITS AND SHORTFALLS 19
C. SUMMARY 22

IV. ESSENTIALS OF THE UNDJBED MODELING LANGUAGE 23

A. THE ADVANTAGES OF OBJECTS : 23
1. Consistency of Model Views 23
2. Improved Problem Domain Abstraction 23
3. Improved Stability with Functional Changes 24
4. Improved Model Facilities for Reuse 24
5. Improved Scalability.... ..., 25
6. Better Support for Reliability 26
7. Inherent Support for Concurrency 26

B. OMG STANDARD 27
1. Scope of the OMG-UML 27
2. Outside The Scope of the UML 28

C. ORTHOGONAL CHARACTERISTICS OF OBJECTS 29
1. Dynamic: 29
2. Functional: 29
3. Entitiy: 29

D. UML MODELS, VIEWS, AND DIAGRAMS 30
E. THE MODERN CASE TOOL 32
F. SUMMARY 34

V. NAVAL ARCHITECTURE ENVIRONMENT 35

vi x

A. ASSUMPTIONS 35

B. UML: ENSURING CONSISTENCY WITHIN THE FRAMEWORK PRODUCTS 35
C. RATIONAL ROSE: MARKET LEADING UML CASE TOOL 37

1. Jim Rumbaugh 3'
2. GradyBooch 37

3. Ivar Jacobsen ™
D. NAE PROCESS • 38

E. SUMMARY 42

VI. RECOMMENDATIONS AND CONCLUSIONS • 43

A. RECOMMENDATIONS 43

B. SUMMARY AND CONCLUSIONS • 43

APPENDIX A: EXAMPLE FRAMEWORK PRODUCTS USING UML 45

1. OV-1, High-Level Operational Concept Graphic (Use Case Diagram) 45
2. OV-2, Operational Node Connectivity Graphic (Collaboration Diagram) 46
3. OV-3, Operational Information Exchange Matrix (Sequence Diagram) 47
4. SV-1, System Interface Description (Deployment) 48

LIST OF REFERENCES - 49

INITIAL DISTRIBUTION LIST —51

Vlll

LIST OF FIGURES

Figure 1 : Tenets of JV 2010 11
Figure 2 : Framework Products 18
Figure 3 : Violation of Database Integrity ,..20
Figure 4 : CASE Tool History 33
Figure 5 : UML Support for NAE Process 40

IX

I. INTRODUCTION

A. PURPOSE

This thesis explores and demonstrates how commercially

available object-oriented analysis and design tools can be

used to develop C4ISR Architectures that fulfill the

essential requirements of the C4ISR Architecture Framework.

This process will create internally consistent and

maintainable products in a cost-effective COTS environment.

B. MOTIVATION

The Services and Agencies of the Department of Defense

(DoD)have been faced with falling Total Obligation Authority

(TOA) since the fall of the Berlin Wall. While manning and

quality of life have been affected the impact on the

acquisition community has' been even more severe. As Paul G.

Kaminski, undersecretary of defense for acquisition and

technology, stated at the Center for Strategic and

International Studies Inaugural Conference, Washington, Feb.

27, 1995,

In response to reduced mean value of the threat the United States has cut
end strength by about a third from 1985 levels. But at the same time the
increase in variance has caused deployments of U.S. forces to go up by a
third. During this adjustment phase we have brought the total defense
budget down while maintaining the high state of readiness needed to
support increased operational tempos. We have done this by reducing our
procurement at a pace that is twice the rate of the overall downturn in total
obligation authority. This response is consistent with historical norms.
Procurement has been the most volatile component of the budget in a
drawdown because it is not necessary to purchase new equipment for a
smaller force structure.l

The acquisition community is in the midst of a paradigm

shift driven by falling TOA. The nature of this shift will

be discussed shortly. No longer can the DoD financially

afford disparate and redundant systems with similar

functions being supplied to different communities by

different suppliers with 'different supply channels. Dollars

drive the debate but they are not the only factor. Two other

major changes are contributing. First is the drive toward

Joint operations that requires interoperability. The second

factor discouraging military specific development is the

phenomenal growth in -the private computing industry. Growth

that has reduced the DoD from being a major customer to a

rather insignificant one while providing a plethora of

options to build upon.

The shift in paradigm is a shift from program-centric

acquisition to warfighter-centric acquisition. The

warfighter must be central to the acquisition system because

there are not the dollars available to obligate to any cause

that does not provide the maximum return in warfighter

effectiveness.

The old paradigm was characterized by system "stove-

pipes" operated by closed communities. The new paradigm will

be characterized, by horizontal integration, warfighter

optimization across systems, increased importance of Joint

service, and . the use of Commercial Off- the-Shelf (COTS)

systems.

C. ORGANIZATION

1. C4ISR Architectures

This chapter will . discuss the benefits of C4ISR

Architectures, describe an example product,' and discuss its

use in the evolving acquisition environment.

C4ISR Architectures are intended to capture warfighter

requirements and allocate them efficiently across systems.

To accomplish this requires a comprehensive environment of

supporting tools and processes.

2. Current C4ISR Architectures Development
Environment

This chapter will describe the status of the current

C4ISR architectures development environment. It provides a

high level view of the components of an architectures

development environment.

3. Essentials of the Unified Modeling Language

This chapter discusses the fundamentals of the unified

Modeling Language (UML). It describes modern modeling

techniques and mechanisms.

4. Rational Rose

This chapter describes Rational Corporation's Rose

modeling product. Along with an overview of the Rose tool,

this chapter discusses the advantages and disadvantages of

Rational 's implementation.

5. Naval Architecture Environment (NAE)

This chapter will describe an augmented development

environment for architectures that utilize the underlying

capabilities of Rose to provide user support.

6. Recommendations and Conclusions

This chapter recommends areas of additional research

and concludes with a summary analysis of NAE.

II. C4ISR ARCHITECTURES

A. THE C4ISR ARCHITECTURE FRAMEWORK

1. The Document

The C4ISR Architecture Working Group, under the

sponsorship of ASD(RDTSE), has pursued the necessary

conditions for the Services and Agencies of the DoD to

acquire interoperable systems. This effort has resulted in,

most recently, the promulgation of the C4ISR Architecture

Framework, Version 2 2.

The development of the Framework was in response to

recent government legislation that is placing more emphasis

on the need to pursue interoperable, integrated, and cost-

effective business practices and capabilities within each

organization and across DoD, particularly with respect to

information technology. Two legislative acts that impact

DoD architecture analysis and integration activities are the

Information Technology Management Reform Act (ITMRA), also

known as the Clinger-Cohen Act of 1996, and the Government

Performance and Results Act of 1993 (GPRA). Together, the

ITMRA and GPRA serve to codify the efficiency,

interoperability, and leveraging goals being pursued by the

Services and Agencies of DoD.

The ITMRA and the GPRA require DoD organizations to

measure the performance of existing and planned information

systems and to report performance measures on an annual

basis. The C4ISR Architecture Framework provides uniform

methods for describing information systems and their

performance in the context of mission and functional

effectiveness.

The Framework defined three views of an integrated

architecture: Operational, Systems, and Technical. It is

important to remember that they are intended to be views,

not complete and independent models unto themselves.

2. The Operational Architecture View

The operational architecture (OA) view is a description

of the tasks and activities, operational elements, and

information flows (known as Information Exchange

Requirements (IER)) required to accomplish or support a

military operation.

The OA view contains descriptions (often graphical) of

the operational elements, assigned tasks and activities, and

information flows required to support the warfighter. It

defines the types of information exchanged, the frequency of

exchange, which tasks and activities are supported by the

information exchanges, and the nature of information

exchanges in sufficient detail to ascertain specific

interoperability requirements.

Tenets that apply to the operational architecture view

include the following:

The primary purpose of an operational architecture is

to define operational elements, activities and tasks, and

information exchange requirements.

Operational architectures incorporate doctrine and

assigned tasks and activities.

Activities and IERs may cross-organizational

boundaries.

Operational architectures are not generally systems-

dependent .

Generic activity descriptions are not based on an

organizational architecture or force structure.

Operational architectures should clearly identify the

time phase(s) covered (e.g., specific years; Mas-is" or

"to-be").

3. Definition of the Systems Architecture View

The systems architecture (SA) view is a description,

including graphics, of systems and interconnections

providing for, or supporting, warfighting functions.

For a domain, the SA view shows how multiple systems

link and interoperates, and may describe the internal

construction and operations of particular systems within the

architecture. For the individual system, the SA view

includes the physical connection, location, and

identification of key nodes (including materiel item nodes),

circuits, networks, warfighting platforms, etc., and

specifies system and component performance parameters (e.g.,

mean time between failure, maintainability, availability) .

The systems architecture view associates physical resources

and their performance attributes to the operational view and

its requirements per standards defined in the technical

architecture.

Tenets that apply to the systems architecture include

the following:

The primary purpose of systems architecture is to

enable or facilitate operational tasks and activities

through the application of physical resources.

Systems architectures map systems with their associated

platforms, functions, and characteristics back to the

operational architecture.

Systems architectures identify system interfaces and

define the connectivities between systems.

Systems architectures define system constraints and

bounds of system performance behavior.

Systems architectures are technology-dependent (unlike

operational architectures), show how multiple systems within

a subject area link and interoperate, and may describe the

internals of particular systems.

Systems architectures can support multiple

organizations and missions.

Systems architectures should clearly identify the time

phase(s) covered.

Systems architectures are based upon and constrained by

technical architectures.

4. Definition of the Technical Architecture View

The technical architecture (TA) view is the minimal set

of rules governing the arrangement, interaction, and

interdependence of system parts or elements, whose purpose

is to ensure that a conformant system satisfies a specified

set of requirements.

The TA view provides the technical systems-

implementation guidelines upon which engineering

specifications are based, common building blocks are

established, and product lines are developed. The TA view

includes a collection of the technical standards,

conventions, rules and criteria organized into profile(s)

that govern system services, interfaces, and relationships

for particular systems architecture views and that relate to

particular operational views.

Tenets that apply to the TA view include the following:

TA views are based on associations between operational

requirements and their supporting systems, enabling

technologies, and. appropriate interoperability criteria.

The primary purpose of a TA is to define the set of

standards and rules that govern system implementation and

system operation.

A TA profile is constructed from an enterprise-wide set

of standards and design rules for specific standards

contained in the Joint Technical Architecture3 and other

applicable standards documents.

The TA standards and criteria should reflect multiple

information system implementation paradigms.

TA profiles account for the requirements of multi-

platform and network interconnections among all systems that

produce, use, or exchange information electronically for a

specifically bounded architecture configuration.

Technical architectures • must accommodate new

technology, evolving standards, and the phasing out of old

technology.

Technical architectures should be driven by commercial

standards and direction.

10

B. JOINT VISION 2010

A key component of Operational Architecture is a vision

document that outlines the mission that the architecture

will fulfill.

The Chairman of the Joint Chiefs of Staff has outlined

his future vision of twentieth century warfare in a document

titled Joint Vision 20104. Figure 1 captures the concepts

of JV 2010 in one diagram.

■ ^S^^^^Äii^ ^^^S^^^^P^ü^P^l^^^^S^^^Ä^

<tm

*?.H

•#-

1111 If
WS
s §
ü ©
» §

Dominant Maney ver

Precision Engagement

?"1 Jolni Forces "T*

Focused Logistics

Fuli'Dimensionai Protection

Coalition Partners

Massed

Figure 1: Tenets of JV 2010

JV 2010 is based upon the tenets of dominant maneuver,

precision engagement, focused logistics, and full-

dimensional protection. Note that the four tenets are all

11

encompassed by information superiority. In an era of

diminishing force structure, the success of our nation's

military defense is tied to its ability to do more with less

- as mentioned earlier. Information superiority is the

force multiplier that enables a smaller, more agile,

technologically superior force to succeed in battle. The

doctrine that outlines how the Department of Defense will

achieve information superiority is published in Joint Pub

65.

C. C4I FOR THE WARRIOR: JOINT PUB 6

Command, Control, Communications, Computers, and

Intelligence (C4I) encompasses the procedures that a

commander employs to direct his forces, as well as the

policies to be used to communicate information between them.

C4I For the Warrior is the vision for future command and

control systems. In this case, the Warrior refers to the

warfighting commander. In order to accomplish his mission,

the warrior needs a fused, current, and accurate

representation of the battlespace along with the ability to

coordinate with, respond to, and order all his forces. The

Joint Staff concisely defines the importance of command and

control in the following quote from its doctrine:

12

War is a process that pits the opposing wills of two commanders against
each other. Great victories of military forces are often attributed to
superior firepower, mobility, or logistics. In actuality, it often is the
commander who makes good decisions and executes these decisions at a
superior tempo who leads his forces to victory.

Therefore, victory demands that commanders effectively link decision
making to execution through the concept of command and control.
Warfare will continue to evolve and command and control processes,
organization, and supporting systems will continue to change, but the basic
concept of command and control will remain the key to the decisive
application of combat power. More than ever before, a command and
control system is crucial to success and must support shorter decision
cycles and instantaneous flexibility across vast distances of time and space.
6

Clearly, if we are to achieve information dominance, we

need a coherent and comprehensive C4ISR architecture that

allows us to intelligently and currently utilize COTS

capabilities more rapidly than our adversary. Command of

joint forces in war is an intense, competitive and stressful

process. The joint force, commander is not only faced with

making life and death decisions in complex situations but

must do this, in limited time, in an environment of

uncertainty. Command is as much a problem of information

system management as it is of carrying out difficult and

complex warfighting tasks.

Command, control, communications, computers and

Intelligence (C4I) systems supporting US military forces

must have the capability to rapidly adapt to the demands of

the commanders who use them, as well as the environment in

13

which they are used. They must make important information

available, provide it where needed, and ensure that it gets

there not only in a timely manner, but also in a format that

is usable by the receiver. In short, there are key

information exchange requirements that can be

architecturally captured and must be supported. The Joint

Chiefs of Staff summarize the goal of C4I systems as

follows: "The fundamental objective of C4I systems is to get

the critical and relevant information to the right place in

time to allow forces to seize on opportunity and meet the

objectives across the range of military operations."

C4ISR systems are extensions of the natural needs, and

actions of the commander. And architectures should naturally

capture that relationship.

D. SUMMARY

C4ISR systems and the explosive growth of computing

have irrevocably changed the paradigm by which systems of

all types are acquired. Long gone are the days specialized

systems for closed communities. The ability to present

previously unimaginable amounts of information inexpensively

has affected the manner in which Commanders will employ

information technology assets. Joint Vision 2010 requires

14

information superiority for success in battle. C4ISR

architectures facilitate that objective.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

III. CURRENT C4ISR ARCHITECTURES DEVELOPMENT ENVIRONMENT

A. PURPOSE

The purpose of this section is to provide the reader

with a sense of the current development environment. This

will include a sense of the lifecycle costs associated with

the current methods as well as their semantic limitations.

The current development environment supports the

development of the essential and supporting architecture

products (see Figure 2: Framework Products) through an ad-

hoc collection on non-interoperable software tools.

The Information Exchange Requirements are stored in a

relational database. Activity diagrams are developed in

BPWin. Top level concept diagrams are developed in Microsoft

Powerpoint. Various types of entity relationship graphics

are produced using different tools. Command hierarchy

graphics may be developed in Microsoft PowerPoint. Database

Schemas are visualized by a tool unique to the database

being used or perhaps ERWin.

These tools were not designed to interoperate and do

not support a coherent information architecture. As such it

has been the author's experience that expert developers are

necessary to develop coherent architectures. That is a key

criticism since a measure of effectiveness of any modeling

17

Applicable
Architecture

View

Product
Reference

Architecture
Product

Eucatial
or

SuDDorting
General Nature

AU Views
(Context) AV-1 Overview and Summary

Information
Essential

Scope, purpose, intended users, environment depicted,anarytcal
findings, if applicable (4.2.1.I)

AU Views
(Terms> AV-2 Integrated Dictionary Essential Definitions of all terms used in all products (4 7 17)

Operational OV-1 High-level Operational
Concept Graphic

Essential
High-level graphical description of operational concept (high-level
organizations, missions, geographic configuration, connectivity, etc.) (4.2.1.3)

Operational OV-2
Operational Node
Connectivity Description Essential

Operational nodes, activities performed at each node,
connectivities & information flow between nodes (4.2.1.4)

Operational OV-3 Operational Information
Exchange Matrix Essential

Information exchanged between nodes and the relevant attributes of
mat exchange such as media, quality, quantity, and the level of
mteroDerabuitvreauired. (4.J.I.DJ

Operational 0V4 Command Relationships
Chart

Supporting Command, control, coordination relationships among organizations (4.2.2.I)

Operational OV-5 Activity Model Supporting
Activities, relationships among activities, I/Os, constraints (e.g., policy,
guidance), and mechanisms that perform those activities. In addition to
showing mechanisms, overlays can show other pertinent information. (4.2.2.2)

Operational OV-6a Operational Rules Model Supporting One of the three products used to describe operational activity sequence and
timing mat identifies the business rules mat constrain die operation (4.2.2.3.1)

Operational OV-6b Operational State Transition
Description

Supporting One of the three products used to describe operational activity sequence and
timing that identifies responses of a business process to events (4.2.2.3.2/

Operational 0V-6c
Operational Event/Trace
Description

Supporting One of the three products used to describe operational activity sequence and
timing that traces the actions in a scenario or critical sequence of events

Operational OV-7 Logical Data Model Supporting
Documentation of the data requirements and structural business
process rules of the Operational View. (4.2.2.4)

Systems
SV-1 System Interface

Description
Essential Identification of systems and system components and their

interfaces, within and between nodes (4.2.1.61

Systems SV-2
Systems Communications
Description

Supporting Physical nodes and their related communications lay downs
(4.2.2.5)

Systems SV-3 Systems'Matrix Supporting
Relationships among systems in a given architecture; can be designed to show
relationships of interest, e.g., system-type interfaces, planned vs.
existing interfaces, etc. (4.22.6)

Systems SV-4 Systems Functionality
Description Supporting

Functions performed by systems and the information flow among
system functions (4.2.2.7)

Systems SV-5
Operational Activity to System
Function Traceabmti Matrix Supporting Mapping of system functions back to operational activities (4 22 8)

Systems SV-6
System Information
Exchange Matrix Supporting

Detailing of information exchanges among system elements,
applications andH/W allocated to system elements (4.2.2.9)

Systems SV-7
System Performance
Parameters Matrix Supporting

Performance characteristics of each system(s) hardware and software
elements, for the appropriate timeffame(s) (4.2.2.10

Systems SV-8
System Evolution
Description

Supporting
Planned incremental steps toward migrating a suite of systems to a more
efficient suite, or toward evolving a current system to a future
implementation (4.2.2.11)

Systems SV-9 System Technology
Forecast

Supporting
Emerging technologies and software/hardware products that are expected to
be available in a given set of timeframes, and mat will affect future
development of the architecture (4.2.2.12)

Systems SV-10a Systems Rules Model Supporting One of three products used to describe systems activity sequence and
timing - Constraints that are imposed on systems functionality due to
some aspect of systems design or implementation (4.2.2.13.1)

Systems SV- 10b Systems State Transition
Description

Supporting One of three products used to describe systems activity
sequence and tinting-Responses of a system to events (4.2.2.13.2)

Systems SV-lOc
Systems Event/Trace
Description Supporting

One of three products used to describe systems activity sequence and
timing- System-specific refinements of critical sequences of events
described in the operational view (4.2.2.13.3)

Systems SV-11 Physical Data Model Supporting Physical implementation of the information of the Logical Data
Model, e.a.. messaae formats, file structures, ohvsical schema (4.2.2.14)

Technical TV-1
Technical Architecture
Profile Essential Extraction of standards that apply to the given architecture

(4.2.1.7)

Technical TV-2
Standards Technology
Forecast

Supporting Description of emerging standards mat are expected to apply to the
given architecture, within an appropriate set of timeframes (4.2.2.15)

Figure 2: Framework Products

18

system is its ability to aid the novice in achieving expert

level understanding.

B. BENEFITS AND SHORTFALLS

The current "system" benefits from minimizing the up-

front lifecycle costs:

1) User training.

2) Tool acquisition.

3) Tool maintenance costs.

The current "system" experiences shortfalls in the

down-stream lifecycle costs:

1) Architecture maintenance.

2) Architecture revision.

3) Architecture adaptation.

4) Architecture correctness (lower return on

investment).

A result of the current system, which creates the model

at the database level, is that the developer is responsible

for ensuring database correctness. This is not a minor item

since databases (specifically, Microsoft Access) are much

more "user-friendly" appearing than they are in practice to

use correctly. An example is shown (see Figure 3 : Violation

of Database Integrity).

19

As discussed previously the development methodology

emphasized the population of relational database tables.

These tables would then be queried to produce actual

products. The development methodology also proposed a chain

of

Database Cycles Threaten Integrity

Cmd Nodes

NTAs

Op Processes
"Shortcut' ^

Automated Sys
Table of Relationships Function

Sys Element

Phys Nodes

Table of Relationships

Table of Relationships

Table of Relationships

Table of Relationships

Table of Relationships

Figure 3 : Violation of Database Integrity

Relationships, shown in Figure 3 : Violation of

Database Integrity, which when populated and subsequently

queried would provide the mapping of system elements to

20

command nodes. This query would identify which command node

required which system element.

However, once the Command Node, NTA (tasks) ,

Operational Processes, Automated System Function, and System

Element were populated and a query run to produce the table

of system elements to command nodes the resulting table was

fully populated; i.e. all system elements were to be on all

command nodes! This was not the "correct answer".

Due to lack of time and resources it was not considered

feasible to revisit the four table of relationships that

were used in the query. Instead a new table, annotated as a

"Short Cut" in Figure 3, was created. This new table

contained the "correct answer."

In his seminal paper on relational databases, "A

Relational Model of Data for Large Shared Data Banks,"8 when

referring to what is now know as the first normal form E.F.

Codd writes:

If normalization as described above is to be applicable, the
unnormalized collection of relations must satisfy the
following conditions:

1. The graph of interrelationships of the nonsimple
domains is a collection of trees

2. No primary key has a component domain which is
nonsimple.

The writer knows of no application which would require any
relaxation of these conditions. Further operations of a
normalizing kind are possible. These are not discussed in
this paper.

21

The insertion of the table that directly related system

elements to command nodes violated Codd's first condition.

No longer is the schema is a tree. It has become cyclical.

This violation of relational database integrity will

result in ongoing costs and confusion. It is an excellent

example of why analysis and design should not be executed at

the database level.

An additional consideration when using a relational

database to derive answers to queries is that each relation

should be a true statement. If that is not the case then the

outcome of projections is apt to be misleading.

C. SUMMARY

Building C4ISR Architectures at the database level is

not a cost effective approach. Not only is it expensive

(from a lifecycle perspective) it is also dangerous. When

novices are empowered to think they are experts unnecessary

risks are taken.- That is the true' definition of danger.

A more robust environment is needed which abstracts the

database and supports the desire of the user to have

multiple views of one model.

22

IV. ESSENTIALS OP THE UNIFIED MODELING LANGUAGE

A. THE ADVANTAGES OF OBJECTS

The primary advantages of object-oriented development,

as compared to the structured analysis (data flow diagrams,

functional decomposition, and activity diagrams) methods of

current architecture efforts, are:

1. Consistency of Model Views

Data flow diagrams do not map well into

implementations, which are designed using a different

paradigm. This problem appears in the architecture Framework

products, as currently produced, because the mapping from

operational architecture products to system architecture

products is not clear - certainly not automated.

2. Improved Problem Domain Abstraction

Object technology binds data and functionality together

to provide a more robust abstraction. In the structured

approach functions are separated from data. This dichotomy

appears in the creation of activity models in BPWin and

storing of IERs in a separate database in operational

architectures.

The ability to tie data and functionality provides an

abstraction that more closely matches the world as we

experience it. A sensor (for example) can be modeled as an

23

object with certain methods (functions) and related

attributes (data) - the relation of methods to attributes is

maintained.

3. Improved Stability with Functional Changes

The area of greatest of change in most projects comes

from customers changing their minds or, after seeing what

has been developed, deciding they wanted something else.

That "something else" is usually a change to functionality.

It is not a change to the customer (or "actor") set, it is

not a change to fundamental elements ("objects"), and it is

usually a change to the how the system elements interact

with the customer. In an object-oriented model these changes

are isolated to the affected object's methods.

4. Improved Model Facilities for Reuse

Reusing functionally decomposed components is difficult

without rigid interface specifications that are uncommon in

software development (beyond mathematical, logical, and

relational functions). This problem is critical at the

architecture level, which, of course, is at a much higher

level of abstraction than the mathematical, logical, or

relational level.

Object technology uses generalization and refinement to

build hierarchies that can be adopted at each level.

Generalization, also known as inheritance, allows reuse by

24

adding and extending existing models without modifying their

underlying structure. Refinement builds upon incomplete

specifications, or templates, to allow more specific

implementations (and allow for changes that are

implementation specific).

5. Improved Scalability

As an article of faith Object Oriented developers

believe "Objects do it better!" There are some interesting

possible connections in the world of DoD acquisition to

believe this is true. A key element in the system

development life cycle is modeling and simulation

(frequently referred to as "M&S") . M&S is used not only in

prototyping, development, and testing, but also in embedded

training. As this becomes a larger cost driver for programs

more effort will be expended in controlling that cost

through re-use. A likely vehicle towards that end, currently

used for developing federations of simulations, is the High

Level Architecture (HLA)9 sponsored by the Defense Modeling

and Simulation Office. The HLA is fundamentally object

based. At the other side of the life cycle, requirements,

there are many interesting COTS applications that support

the round-trip evolution of requirements documents and UML

use-case diagrams.10

25

The greatest stumbling block to scalability is when

different parts of the acquiring and developing organization

use incompatible methodologies that create discontinuities

at the organizational interfaces. These discontinuities will

add additional costs over the project's life cycle. Object

oriented technology offers a methodology that can span the

lifecycle and scale to accommodate growth and change.

6. Better Support for Reliability

Well defined interfaces eliminate inconsistencies that

otherwise lead to errors and failures. Superior reuse

capabilities allow more thoroughly tested components to be

used. Objects' well defined interfaces and reuse

capabilities are major plusses for reliability.

7. Inherent Support for Concurrency

Concurrency is a concept that is missing from

architectures as currently developed. It is also missing

from structured methods which do not have mechanisms to

capture concurrency, manage tasks, or synchronize tasks.

It would be argued that at the architectural level

those issues are not important (although certainly a

shooting war is concurrent!). That is a mistake, because it

guarantees that your architecture will not be scalable.

26

B. 0M6 STANDARD

The Object Management Group, an industry consortium,

adopted UML as the object modeling standard. The OMG's

mission, in part, is:

The OMG was formed to create a component-based
software marketplace by hastening the introduction
of standardized object software. The
organization's charter includes the establishment
of industry guidelines and detailed object
management specifications to provide a common
framework for application development. Conformance
to these specifications will make it possible to
develop a heterogeneous computing environment
across all major hardware platforms and operating
systems.11

The OMG is structured into three major bodies, the

Platform Technology Committee (PTC), the Domain Technology

Committee (DTC) and the Architecture Board. The Architecture

Board is responsible for UML and they describe the scope as

follows:

1. Scope of the OMG-UML

The Unified Modeling Language (UML) is a language
for specifying, constructing, visualizing, and
documenting the artifacts of a software-intensive
system. First and foremost, the Unified Modeling
Language fuses the concepts of Booch, OMT and
OOSE. The result is a single, common, and widely
usable modeling language for users of these and
other methods.
Second, the Unified Modeling Language pushes the
envelope of what can be done with existing
methods. As an example, the UML authors targeted
the modeling of concurrent, distributed systems to
assure that the UML adequately addresses these
domains.
Third, the Unified Modeling Language focuses on a
standard modeling language, not a standard

27

process. Although the UML must be applied in the
context of a process, experience has shown that
different organizations and problem domains
require different processes. (For example, the
development process for shrink-wrapped software is
an interesting one, but building shrink-wrapped
software is vastly different from building hard-
real-time avionics systems upon which lives
depend.) Therefore, the efforts concentrated first
on a common metamodel (which unifies semantics)
and second on a common notation (which provides a
human rendering of these semantics). The UML
authors promote a development process that is use-
case driven, architecture centric, and iterative
and incremental.

2. Outside The Scope of the UML

While the UML aims to simplify and standardize
modeling it is not an all encompassing language.
This gives it the flexibility to be used to design
a variety of systems over a wide spectrum of
industries. Some major areas outside of the scope
of the UML include:

a) Programming Languages
The UML, a visual modeling language, is not
intended to be a visual programming language, in
the sense of having all the necessary visual and
semantic support to replace programming languages.
The UML is a language for visualizing, specifying,
constructing, and documenting the artifacts of a
software-intensive system, but it does draw the
line as you move toward code. The UML does have a
tight mapping to a family of 00 languages, so that
you can get the best of both worlds

b) Tools
Standardizing a language is necessarily the
foundation for tools and process. The primary goal
of the OMG RFP was to enable tool,
interoperability. However, tools and their
interoperability are very dependent on a solid
semantic and notation definition, such as the UML
provides. The UML defines a semantic metamodel,
not an tool interface, storage, or run-time model,

28

although these should be fairly close to one
another.

c) Process
Many organizations will use the UML as a common
language for its project artifacts, but will use
the same UML diagram types in the context of
different processes. The UML is intentionally
process independent, and defining a standard
process was not a goal of the UML or OMG's RFP.

C. ORTHOGONAL CHARACTERISTICS OF OBJECTS

A model captures the following three orthogonal (non-

redundant) information types (see Appendix A: Example for

examples):

1. Dynamic:

Time dependent behavior, essential for capturing

concurrency, is captured in state charts and scenarios.

2. Functional:

The functions that are performed by the system are

captured in Use Case diagrams and performed by object

methods.

3. Entitiy:

The relationships between system entities are captured

in class diagrams. Implementation details can be captured in

component diagrams and package diagrams.

29

D. UML MODELS, VIEWS, AND DIAGRAMS

This section is not meant to be a tutorial on UML;

there are many books on that subject, but rather an overview

of how UML products can support the architecture process.

The primary UML vehicle for gathering subject matter

expert (SME) input is the use case diagram. Use cases are

scenarios. They may be nested hierarchically. The top level

use case shows all the scenarios (or sets of scenarios) for

which the external environment interacts with the system in

question. Interacting with the system in each use case are

actors (identified by a stick man stereotype). Underlying

each use case can be additional use cases or, at the leaf

level, state and activity diagrams. The state and activity

diagrams are used to capture the scenario's business model.

The UML offers two semantically identical but visually

distinct forms of interaction diagrams: the collaboration

diagram and the sequence diagram. Both diagrams would be

useful for showing operational node connectivity. They show

the flow of messages between objects with respect to time. A

collaboration diagram has sequentially numbered messages and

allows the objects to be spatially distributed. A sequence

diagram is a waterfall style diagram with the objects listed

horizontally across the top and time progressing down in the

vertical direction.

30

The sequence diagram would also be useful for

collecting architectural information exchange requirements

that traditionally have been shown in a matrix and therefore

are more easily recognized in the waterfall format. The

sequence diagram also allows an advanced notation to be used

called "focus of control (FOC)". FOC shows the period of

time during which an object is performing an action, either

directly or through an underlying procedure. A source FOC

will affect a destination FOC such that if it is moved the

destination will be as well.

The transition from operational to system analysis is a

common architecture problem. UML offers the deployment

diagram, which integrates the software and hardware aspects

of a system. UML packages represent logical grouping of

model entities, generally related classes that would

eventually be implemented in a library or configuration

item. UML components represent a software module (source

code, binary code, -executable, etc.) with a well-defined

interface. A UML task is a component and it has its own

thread of control. Components can be aggregated into

packages. In a deployment diagram packages and/or components

can be allocated to processors. A processor is a physical

entity with computing power. A deployment diagram can also

show UML devices that are physical entities without

31

computing power. And the beauty is that the relationships

between the devices and processors can be annotated with

stereotypes to show the physical connections (i.e., "RS-

232", "TCP-IP", or any other meaningful phrase).

E. THE MODERN CASE TOOL

The modern Computer-Aided Software Engineering (CASE)

tool is the product of many years of innovation in a wide

variety of fields. They are in fact complex software

programs themselves, which incorporate the latest in

graphical user interface (GUI) designs, database support,

and compiler development. A brief history of contributors,

which are especially relevant in the context of DoD

architectures, is shown in Figure 4 : CASE Tool History.

As mentioned earlier E.F. Codd's relational model paper

proved to be seminal in the development of relational

databases. This work has been incorporated into CASE tools.

Rational Rose stores its models in a relational database.

The Air Force took a leading role in the 70's and

80's in the study of business process modeling.

Unfortunately over time the processes that they developed

became too document focused and were not used widely outside

of DOD. However, the focus on capturing SME input can be

traced to IDEF 1 and IX.

32

Ef. Codd Edward Yourdan IDEF IX
"A Relational "Structured Design"
Model..."

UML1.1

Air Force do elops
IDEFO, l,an|i2

IvarJacobsen
Use Case Meth ids

Booch's Object Oriented
Development

PP.S. Chen Yourdan
"The Entity - Relationship "Modem Structured
Model..." Analysis"

Figure 4 : CASE Tool History

Edward Yourdan has contributed many concepts to the

development of' modern modeling. As mentioned earlier his

concept of "balancing" is now de-rigueur in any CASE tool.

Chen's contribution of entity relationship modeling has

influenced not only the analysis and specification of

relational databases but also is an underlying concept of

classes that are key to object oriented methods.

Grady Booch's contributed one of the earliest object

oriented development methods. This built upon the earlier

concepts of entity modeling, balanced models, business

modeling, and added the concepts of encapsulation and

inheritance.

33

Jacobsen's use case analysis added a human face to

object techniques by providing an interface that SME could

easily relate to. Use cases added the ability to capture

scenarios and build a system that supports those scenarios.

Finally, when the OMG approved UML vl.l the computer

industry finally agreed upon a semantic standard. This put

the "model wars" behind most users and allows the market

power of standardization to move to the fore. Now multiple

vendors can provide solutions and users may not be locked

into a proprietary tool.

F. SUMMARY

UML, as supported by modern CASE tools, captures the

three aspects of modeling (dynamic, functional, and entity)

that are important to DoD architecture. The relationships

between the views and the underlying integrated model are

maintained ("balanced" in Yourdan's parlance). The result is

an internally consistent, maintainable, and cost-effective

COTS environment.

34

V. NAVAL ARCHITECTURE ENVIRONMENT

The Naval Architecture Environment (NAE) will combine a

semantic language (UML), with automated support (Rational

Rose), and a process (the NAE process) to provide an

internally consistent, maintainable, and cost-effective COTS

environment.

A. ASSUMPTIONS

The NAE supports the C4ISR acquisition guidance

function of the Chief Engineers office. As such it will

support the requirements and top-level architecture efforts.

To support verification and validation of architectures it

adopts the use of UML, which is consistent with DMSO's HLA.

Further research will be required to specify the nature of

that interaction.

B. UML: ENSURING CONSISTENCY WITHIN THE FRAMEWORK PRODUCTS

•Ed Yourdan says, "A structured specification in which

all the modeling tools have been cross-checked against each

other for consistency is said to be balanced."13

The model views and their products, as produced to

date, are not identical to those described by Yourdon or

other authors. However, there are strong parallels with the

crosschecking requirements that have been identified.

35

UML builds upon the structured analysis and design

legacy to provide extensive crosschecking and enforcement

mechanisms. UML 1.1, the current standard, has a rigorous,

although not totally formal, language description to provide

detailed rules for static and dynamic semantics.

UML 1.1 explains, the difference between static and

dynamic semantics in the following quotation:

The static semantics of a language define how an instance of a

construct should be connected to other instances to be meaningful, and

the dynamic semantics define the meaning of a well-formed construct. The

meaning of a description written in the language is defined only if the

description is well formed (i.e., if it fulfills the rules defined in

% 14 the static semantics).

A useful example of the difference between static and

dynamic semantics "is the definition of class and

inheritance. The concept of class, an instance of meta-

class, is a basic construct in object-oriented paradigms.

The concept of inheritance defines how a class is created

from its constituent members. The definition of class is

given as a static semantic definition using Object

Constraint Language (OCL) and repeated in natural language

and the dynamic semantics of inheritance are described in

natural language.

36

The rigor that has been applied to the development of

UML can be leveraged to assist in creating models, and views

of models, that are internally consistent.

C. RATIONAL ROSE: MARKET LEADING UML CASE TOOL

Rational Software's competitive advantage in the

crowded CASE tool market, which has resulted in their market

leading position, has been to bring the "gurus" together.

The methodologists brought together at Rational are:

1. Jim Rumbaugh

Rumbaugh is best known as a principal developer of the

Object Modeling Technique (OMT). OMT presented an object

oriented modeling technique that covered the three aspects

mentioned earlier (entity (known as the object model),

dynamic, and functional). In an OMT model the most important

model aspect is the object model. This characteristic

distinguishes it from structured analysis techniques that

focus on the functional model.

2. Grady Booch

Booch is best known as a principal developer of the

Booch Method. The Booch Method was generally similar to OMT;

in fact, some tools support either notation. The existence

of competing notations added mostly to the level of

confusion.

37

3. Ivar Jacobsen

Jacobsen developed "Use Cases" as a mechanism to

discover objects, identify user interface interactions,

identify user types, and capture requirements. Rather than

publishing or developing commercial tools his work was

developed primarily for Ericson, the Swedish electronics

giant, and his own consulting firm, Objectory. His process,

Object Oriented System Engineering (OOSE), was a use-case

oriented approach that provided support for business

engineering and requirements analysis.

D. NAE PROCESS

The NAE process supports the development of the

Framework's Essential products (see Figure 5: UML Support

for NAE Process) . The NAE process has a different focus

however. While the Framework emphasizes the development of

Information Exchange Requirements (IER) the NAE process

emphasizes the development of scenarios.

During the development of Framework IERs the subject

matter experts (SME) will usually talk in terms of

scenarios. For instance, a warfare commander will describe

the communications that occur between his staff, other

warfare commander's staff, and the composite warfare

commander during the replanning process when there is a

contention for resources. Each exchange will generate an IER

38

that occurs in the context of the SME's scenario. Once the

IERs are collected and stored in OV-3 the scenario has been

lost if each is stored as one row in a table in a relational

database (the typical implementation of OV-3).

Capturing that exchange in a Scenario Diagram will

create the IERs while maintaining their context (a Scenario

Diagram is an instance of Use Case) and their temporal

Applicable Product Architecture Essential or UML Diagram

Architecture Reference Product Supporting

View

All Views AV-1 Operational Essential Main Use Case

Summary Diagram

Information Documentation

All Views AV-2 Integrated

Dictionary

Essential Rose Model

Database

Operational OV-1 High-Level

Operational

Concept

Graphic

Essential Main Use Case

Diagram or

custom graphic

Operational OV-2 Operational

Node

Connectivity

Graphic

Essential Activity,

Collaboration,

and/or

Deployment

Diagram

Figure 5: UML Support for NAE Process

39

Applicable Product Architecture Essential or ÜML Diagram

Architecture Reference Product Supporting

View

Operational OV-3 Operational

Information

Exchange

Matrix

Essential Scenario-type

diagram

(Sequence or

Collaboration)

Systems SV-1 System

Interface

Description

Essential Implementation

-type diagram

(Component, -

Deployment,

and/or

Package)

Technical TV-1 Technical

Architecture

Profile

Essential Implementation

-type diagram

Stereotypes

Figure 5: OML Support for NÄE Process (continued)

relationship as well..

The current release of Rational Rose, 98i, does not

support all the possible UML syntax. One area where this

thesis revealed a shortcoming is in the Deployment Diagram

(see Appendix A). The example Deployment Diagram in Appendix

A shows the full syntax described by the standard.

A Rose deployment diagram shows processors, devices, and

connections. Each model contains a single deployment diagram

40

that shows the connections between its processors and

devices, and the allocation of its processes to processors.

Full support for the Deployment Diagram syntax would include

the presentation of packages and tasks as well. These are

shown in the example in Appendix A. The Deployment Diagram

tends to stand alone without these elements.

On the plus side Rose offers (depending on level

purchased) various means to extend its capabilities and

interface with other vendor's products. In particular, the

ability to leverage its underlying relational database to

interact with other products offers the C4ISR architecture

community an opportunity to continue to derive value from

the extensive relational database tables created to date.

Rose offers an extensibility interface called REI.

Rational has already taken advantage of this extensibility

to extend Rose 98's capabilities. The REI has enabled

Rational to integrate LogicWorks' ERwin product to provide

database schema and Data Description Language (DDL)

generation capabilities in the Rose 98 Enterprise Edition.

Rose also offers round-trip re-engineering with the

Oracle 8 database, which enables analysts to model their

business processes and generate object-relational schemas

for 0racle8. In addition, developers can use Rational Rose

to extract relational schemas from an existing Oracle

41

database and create object views for building an object-

oriented application architecture.

E. SUMMARY

The NAE combines the best practices of software

development with the domain-specific insight contained in

the Framework to create an efficient process, supported by a

commercial tool and robust semantics, to allow the analysis

and design of interoperable C4ISR systems. These are systems

that will support Joint Vision 2010's call for Information

Superiority.

42

VI. RECOMMENDATIONS AND CONCLUSIONS

This thesis has demonstrated that the requirements of

Framework V 2.0 can be satisfied with one modern object

oriented CASE tool. Specifically, it recommended the

acquisition of Rational Rose.

A. RECOMMENDATIONS

The need to efficiently acquire, analyze, and design

C4ISR systems is not limited to the United States. A similar

effort has been located in Norway15 and others are probably

underway. It is recommended that CISA sponsor a symposium to

solicit input for version 3 of the Framework.

It is also recommended that the NAE be applied to an

actual program so that practical experience can be gained.

The author expects this to occur in Fiscal Year 2000.

B. SUMMARY AND CONCLUSIONS

When the NAE is fully implemented it can help achieve

this internally consistent, maintainable, and cost-effective

COTS environment.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

APPENDIX A: EXAMPLE FRAMEWORK PRODUCTS USING UML

1. OV-1, High-Level Operational Concept Graphic (Use
Case Diagram)

r^,

Commander
Command and Control

Shooter
Contact Prosecution

45

2. OV-2, Operational Node Connectivity Graphic
(Collaboration Diagram)

0 ,

Commander

Commander's Intent

Air Tasking,Decision

Commander

46

3. OV-3, Operational Information Exchange Matrix
(Sequence Diagram)

0

Commander Sensor

rs

Shooter

o

Contact

Guidance & Directives
 > U

Guidance &.

Detelction

Directives

0
Contact Report
<

Prosecution Order

Battle Damage Assessment
h< p 0"

*Q

-> D

*ö

Attack

*0

47

4. SV-1, System Interface Description (Deployment)

FlooEle^
Direction
Indicator

RS-23J

V .

Floor Call
ElevatoiJ-

Buttons ,

RS-232

Floor
Sensor

«S-23i

Elevator
Motor
Pnntrnl

ÄS-23.»

Single Processor

Simulation Subsystem

1 ran I

/Update/
/ Display/

1 Klmrtnr 1

/ Elevator/ / Elevator/
/Number/ /Number/

HAMECS Sri

rnntrnller

' Button /
Polling/

Elevator/ / Elevator,
Command /Assignmi

RS-232

Elevatoi
Buttons

RS-232

Elevatoi
Directioi

-Indicator-

48

LIST OF BEFERENCES

1 Paul G. Kaminski, Undersecretary of Defense for Acquisition and
Technology, stated at the Center for Strategic and International Studies
Inaugural Conference, Washington, Feb. 27, 1995

2 C4ISR Architecture Framework, Version 2, C4ISR Architecture Working
Group, 1997.

3 Available on-line at: http://-www-jta.itsi.disa.mil/

4 Available on-line at http://www.dtic.mil/doctrine/jv2010/jvpub.htm

5 Available on-line at:
http://www.dtic.mil/doctrine/jel/new pubs/jp6 O.pdf

6 JP 6

7 JP 6

8 Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387
The first of two sections is available on-line at:
http://www.acm.org/classics/nov95/

9 On-line information available at: http://hla.dmso.mil/

10 On-line information for Rational's tool available at:
http://www.rational■com
11 Available on-line at: http://www.omg.org/omg/background.html

12 OMG UML Press Release, 1997. Available on line at:
http://www.omg.org/news/pr97/umlprimer.html

13 "Modern Structured Analysis," Edward Yourdon, Yourdon Press, 1989.

14http://www.rational.com/uml/resources/documentation/media/ad970808_UML
ll_OCL.pdf.

15 http://www.omg.org/docs/c4i/98-12-02.ppt

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd. STE 0944
Ft. Belvoir, VA 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000

•5 Luqi 1
Naval Postgraduate School
Computer Science Department
411 Dyer Rd.
Monterey, CA 93943-5000

.J. 4. Barbara McBride
Space and Naval Warfare Systems Command
Code 051-1
San Diego, CA

5. Thomas H. Augustine 1
Space and Naval Warfare Systems Center
Code D4121
53560 Hull Street
San Diego, CA 92152-5001

51

