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ABSTRACT 

Proliferation of theater ballistic missile technologies to potential U.S. adversaries 

necessitates that the U.S. employ a defensive system to counter this threat. The system that is 

being developed is called the Space-Based Infrared System (SBIRS) "System of Systems." The 

SBIRS Low component of the SBIRS "System of Systems" will track strategic and theater 

ballistic missiles from launch to reentry and relay necessary cueing data to missile interceptors 

before the missiles reach friendly forces or countries whose safety is a vital interest to the U.S. 

SBIRS Low has a number of critical system requirements that for any given satellite are 

mutually exclusive for the length of time needed to complete the specified tasking. This 

limitation implies a system capacity on the total number of ballistic objects the SBIRS Low 

system can track at any given time. 

Applying exploratory model analysis, the SBIRS Low model uses the Monte Carlo 

method to explore large regions of the model space to identify key factors in the system and to 

provide insight into different tasking schemes for individual satellites. 

The exploratory model analysis of the CSS-2 and M-9 missiles, in which over 13 million 

simulated missiles were tracked, yielded the following results: (a) defining the "best" satellite is 

nontrivial, (b) the SBIRS Low system was unable to initiate a booster track for an unacceptably 

large percentage of M-9 missiles launched near the equator, (c) if the system anticipates a long 

delay in revisiting a track, a stereo view should be scheduled immediately prior to the start of the 

delay, (d) mono viewing alone does not provide the required track accuracy, (e) track accuracy is 

a function of missile classification, and (f) the instantaneous track accuracy versus sensor revisit 

rate does not fit any well-known probability distribution. 
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GLOSSARY OF TERMS AND ACRONYMS 

Clutter: any tactically insignificant set of tracking objects, e.g., noise, solar radiation, etc. 

Detection: any received signal from an object whose value is above the threshold for a sensing 
system. 

Discrimination: to make a distinction between the lethal object and all other non-lethal objects. 

Divert maneuver: change in velocity of the interceptor needed for a collision to occur. If an 
interceptor does not have sufficient propulsive capability to accomplish the required maneuver, 
additional interceptor(s) must be allocated to the target to destroy it. 

Dwell time: length of time that a sensor stares at an object. 

Event: the occurrence of a ballistic missile launch. 

False alarm: one or more signals, without "interesting" origins, that exceed the detection 
threshold. A random false alarm may be caused by persistent and/or structured clutter. 

Generalized energy management maneuver (GEMM): a coning maneuver by an object taking 
place in the boost phase and is used to expend excess energy, complicate counter-targeting, 
and/or prevent tracking systems from reverse-tracking the missile to its launch point. 
Additionally, since the maneuver affects the range of the missile, it may be used when either a 
depressed or lofted launch is not feasible or desirable. 

In-flight target update (IFTU): a mid-course position update in estimated position of the object 
given to the interceptor. 

Kepler orbit: the non-powered, ballistic phase of a missile's trajectory. The trajectory is elliptical 
with the earth located at one focii and the only force acting on the object is gravity. 

Kinematic tracking: a procedure in which each sensor, using its own data, forms polynomial fits 
through a fixed number of detections (typically cubic fits through six detections). 

Lethal object: warhead associated with a ballistic missile. A ballistic missile may have more than 
one lethal object contained within it. 

Long wavelength infrared (LWIR): this band generally covers the wavelengths between 8-14 
micrometers and is used by space based sensors to detect and track objects above the horizon 
against a cold space background. 

Maneuver in the field of view (ManFOV): a compound situation consisting of sufficient divert 
maneuver and the target image lying within the interceptor seeker's field of view. Both of these 
conditions must be achieved for a successful intercept to occur. 

Medium wavelength infrared (MWIR): this band generally covers the wavelengths between 3-8 
micrometers and is used by space based sensors to detect and track objects through booster 
burnout against an Earth background (i.e., below the horizon against a warm background). 
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Missile classification: the variant of missile launched, i.e., SCUD, CSS-2, M-9, etc. 

Mono track: an object whose positional data is derived from one or more successive line-of- 
bearing detections from a single sensor. 

Non-lethal object: any object, except a warhead, which continues on a ballistic trajectory after 
booster burnout. 

Periapsis: the point nearest the prime focus. In the context of this research, the point at which the 
ballistic object reaches its highest altitude. 

Post-boost vehicle (PBV): nose-section of the missile that contains lethal and non-lethal objects. 

Precision track: track generalized by physics-based equations of motion (e.g., Kepler motion for 
ballistic objects). 

Resolution: smallest distance between two objects at which the system can distinguish two 
separate objects. 

Revisit rate: scan rate for a sensor to return to an object. 

Revisit scheme: sensor tasking strategy used to ensure all objects are tracked within a specified 
positional accuracy. 

Scissors angle: the smallest angle formed by the line of sight to an object from two sensors with 
the object at the vertex. 

Short wavelength infrared (SWTR): this band generally covers the wavelengths between 1-3 
micrometers and is used by space based sensors to see the bright rocket plumes of boosting 
missiles. 

Slew-settle-stare: the process in which a sensor is directed from one object to another, allowed to 
dampen any induced vibrations, and then "looking at" the object. 

Stereo track: an object whose positional data is derived from successive intersecting line-of- 
bearing detections from two or more sensors. 

Three-dimensional (3D) mono track: a track developed from a single sensor over several time 
periods. It provides range, azimuth, and elevation. To develop a 3D mono track, an active sensor 
or assumption of a rigid wire model is required. 

Three-dimensional (3D) stereo track: a track developed from two or more line-of-sight sensors in 
which azimuth and elevation data is combined to derive range. 

Track: a set of position coordinates and associated information that are associated with a single 
origin or cause. It should be noted that a track has an underlying system model, a mathematical 
formalism to determine properties of the underlying object based on the observed detections. 

Two-dimensional (2D) mono track: a track developed from the initial conditions at booster 
burnout and a single line-of-sight sensor. The only trajectory data provided is azimuth and 
elevation. 
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Very long wavelength infrared (VLWIR): this band generally covers the wavelengths between 14 
- 30 micrometers and is used by space based sensors to track targets against a space background. 
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EXECUTIVE SUMMARY 

Proliferation of theater ballistic missile technologies to potential U.S. adversaries 

necessitates that the U.S. employ a defensive system to counter this threat. The system that is 

being developed is called the Space-Based Infrared System (SBIRS) "System of Systems." The 

SBIRS Low component of the SBIRS "System of Systems" will track strategic and theater 

ballistic missiles from launch to reentry and relay necessary cueing data to missile interceptors 

before the missiles reach friendly forces or countries whose safety is a vital interest to the U.S. 

The Space-Based Infrared System (SBIRS) architecture is an evolutionary step forward in the 

United States' forty-year program of employing space-based infrared surveillance system. 

The "SBIRS System of Systems" is comprised of two separate satellite constellations, 

SBIRS High and SBIRS Low. SBIRS High is comprised of four satellites in geostationary earth 

orbit, two satellites in highly elliptical orbits, and ground assets. The first satellite launch is 

scheduled for 2004. The SBIRS Low will feature 25 to 30 satellites in low earth orbit (analysis in 

this report is done for a particular 27 satellite constellation) and will be fully operational in 2006. 

The SBIRS Low component will bring an entirely new capability to the warfighter—the ability to 

track theater and intercontinental ballistic missiles from launch to reentry and to relay necessary 

cueing data to missile interceptors before the missiles reach friendly forces. 

The SBIRS Low system must orchestrate surveillance of the entire post-boost threat, in 

support of a number of system requirements such as: track maintenance, discrimination of lethal 

(i.e., warhead) and non-lethal objects, precise track estimates and updates for interceptors, 

interceptor-lethal object kill assessment, and battlefield characterizations. For any given satellite, 

these requirements are mutually exclusive for the length of time needed to complete the specified 

tasking. This limitation implies a system capacity on the total number of ballistic objects the 

SBIRS Low system can track. 

At early stages in the analysis of a new system, the emphasis is on developing a broad 

understanding of the critical elements in the system and its potential applications. In such 

situations, there may be too much uncertainty to reliably estimate optimal solutions with the 

available tools. The SBIRS program is at such a stage. The SBIRS Low model was used to 

explore large regions of model space in an attempt to identify key factors in the system and 

scenarios to provide insight into the global scheduler problem, i.e., tasking of individual satellites. 
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The primary goal of this project is to explore various sensor tasking strategies that could 

be used by the SBIRS Low system, as controlled by the global scheduler, and characterize their 

effectiveness under different operating conditions. The tasking problem for SBIRS Low is 

nontrivial for the following reasons: 

a. The underlying scenario can be very dynamic with feasible sensor-to-target 
pairings (determined by some given criterion) changing over time. 

b. The track sensor is a limited resource, implying restrictions on the system 
target handling capacity. 

c. SBIRS Low has a number of system requirements that are mutually 
incompatible from the perspective of tasking, which results in variable 
demands being placed on individual sensors. 

d. A large number of target-specific tasks place time-dependent constraints on 
sensor assets. An example of a time-dependent task is the length of time a 
sensor "stares" at a target in an attempt to detect it. 

Because there is so much uncertainty in the SBIRS "System of Systems," it is the ideal candidate 

for exploratory analysis. The exploratory modeling search strategy used in this analysis is based 

upon the notion that simple models must first be implemented and explored in some detail in 

order to gain the intuition needed for the actual system design. 

The probability of SBIRS mission success, where success is defined as destruction of the 

lethal object, is of the general form 

P(success) = P(acquire n track n discriminate n target n kill). 

With a probability of mission success that exceeds 0.99, if a track on a lethal object is lost or 

dropped, intercept becomes nearly impossible. Thus, there is a necessity for an in depth 

understanding of this complex architecture. 

A typical timeline of events for a missile launch is shown in Figure 1. 
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Figure 1. Representative missile launch timeline. 
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The SBIRS Low model makes certain assumptions regarding orbital mechanics and 

missile detection criteria. These assumptions represent a balance between achieving a desired 

level of insight and the recognition that a model cannot include every contingency. Additionally, 

certain aspects that are critical to SBIRS Low performance are ignored because they are 

functionally irrelevant for this analysis. For example, the communication architecture, specific 

design parameters of the interceptor, and all logistic constraints associated with an interceptor 

battery provide no additional insight into tracking accuracy. 

The SBIRS Low modeling goals are to: (1) develop of a system analysis methodology, 

(2) identify/explore sensitivities, (3) develop intuition, and (4) provide benchmark/reference book 

of track accuracies as a function of missile type, sensor revisit scheme, length of time since 

booster burnout (i.e., length of time in free-flight), and length of predict-ahead time. 

The SBIRS Low model is a Monte Carlo computer simulation that uses "appropriate 

fidelity" code for actual system components and physics-based equations of motion. The chosen 

fidelity is a trade-off between computational speed and resources, complexity of formulas, 

inclusion of parameters, and desired level of insight. 
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The analysis consisted of examining the system tracking accuracy for two of the nine 

types of missiles available to the user. These missiles, the CSS-2 and M-9, were chosen because 

of their dynamic flight characteristics. The exploratory model analysis included over 688 

simulation events and each event consisted of 20,000 individual missile launches. 

Two results from the analysis are presented: (a) the failure of the system to initiate a 

ballistic track on a M-9 missile launched near the equator and (b) track position accuracy for a 

given sensor tasking strategy. 

Figure 2 shows the fraction of ballistic track initiation failures as a function of ballistic 

track revisit rate for three different boost phase sensor revisit rates for the M-9 missile. In all 

three cases, an "unacceptably" large number of ballistic track initiation failures were encountered. 

The counts of track initiation failures for the M-9 missiles are well characterized by a Poisson 

distribution. 

M-9: Fraction of Ballistic Track Initiation Failures 
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Figure 2. Line plots of the fraction of ballistic track initiation failures for a M-9 missile at eight 
different ballistic sensor revisit rates. 

Figure 3 is representative of the analysis of the data provided by the SBIRS Low model. 

It shows the estimation error for three empirical containment bounds for a CSS-2 missile at time 

t = 50 seconds (after booster burnout). 
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CSS-2: Synchronous Detection Using Sensors 1 & 2 
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Figure 3. CSS-2: Synchronous Detection Using Sensors 1 and 2. Line plot of the revisit rate 
versus estimation error for a CSS-2 missile using a stereo symmetric tasking scheme for the 
closest and next closest satellite. 

The exploratory model analysis yielded the following significant results: (a) defining the 

"best" satellite (based on sensor-to-target range, viewing geometry criteria, etc.) is nontrivial, (b) 

the SBIRS Low system was unable to initiate a booster track for an unacceptably large percentage 

of M-9 missiles launched near the equator, (c) if the system anticipates a long delay in revisiting a 

track, a simultaneous detection by two different sensors should be scheduled immediately prior to 

the start of the delay, (d) repeated detections by a single sensor alone does not provide the 

required track accuracy, (e) track accuracy is a function of the type of missile launched, and (f) 

the instantaneous track accuracy versus sensor revisit rate does not fit any well-known probability 

function. 
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I. INTRODUCTION 

A.        OVERVIEW 

Throughout history, military leaders have sought to gain the high ground advantage, and 

by achieving this goal, commanders were able to survey large areas of the battlefield, watch 

enemy troop movements, and guard against surprise attacks. With the development of rocket 

engine technology and the atomic bomb, by the middle of the Cold War the military high ground 

moved to outer space. 

The Space-Based Infrared System (SBIRS) architecture is an evolutionary step forward 

in the United States' space-based infrared surveillance system. The United States' first space- 

based infrared system was called Missile Defense Alarm System (MIDAS). This program was 

started in 1960 and the concept of using space-based infrared detectors and other technologies 

was proven by 1963. Additionally, in 1963, the Vela program was developed to monitor 

compliance with the nuclear test ban treaty. 

In 1970, these two programs were consolidated into the Defense Support Program (DSP), 

an early warning satellite system operated by Air Force Space Command (AFSPC) and developed 

by the Air Force's Space and Missile Systems Center. DSP provides twenty-four hour, 

worldwide surveillance for missile warning and nuclear burst detection and serves as the space 

segment of the U.S. Integrated Tactical Warning and Attack Assessment System. 

The DSP system consists of several satellites in geostationary orbit, an Overseas Ground 

Station (OGS) in Australia, a European Ground Station (EGS), a continental U.S. (CONUS) 

Ground Station (CGS), and Mobile Ground Terminals (MGTs). The infrared detector arrays on 

each satellite have the capability to view nearly an entire hemisphere of the earth and can detect 

hot plumes from boosting missiles from any location within its field of view. The data collected 

during these sweeps is relayed down to one of the three Air Force ground stations or MGTs 

around the world and then communicated to the National Command Authority or to commanders 

in the field. 

A follow-on program to DSP is currently under development. This program is called 

"SBIRS System of Systems" and is comprised of two separate satellite constellations, SBIRS 

High and SBIRS Low. The SBIRS system is designed to perform the following four functions: 



a. Missile warning - Utilizing over 25 years of experience on DSP and state-of-the-art 
technology, missile warning capabilities will significantly increase, and space-based 
platforms will better provide missile warning information to commanders. 

b. Missile defense - This mission will be satisfied using space-based infrared platforms 
to track targets from initial boost phase through mid-course, and the tracking data 
will be relayed to interceptors. 

c. Technical intelligence - Using multiple platforms, space-based infrared sensors will 
provide valuable data necessary for missile characterization and phenomenology and 
collect information on various other military systems and operations. 

d. Battlespace characterization - Capitalizing on the advantages of space-based infrared 
sensors, commanders will be able to assess interceptor hit/failure and battle damage 
and track infrared-intense events to improve battlefield situational awareness. 
[Ref. 1] 

SBIRS High is scheduled for first launch in 2004 and will feature a mix of four satellites 

in geostationary earth orbit, two satellites in highly elliptical orbits, and ground assets. Ground 

assets include a CONUS based Mission Control Station (MCS), a backup MCS, a survivable 

MCS, overseas relay ground stations, relocatable terminals, and associated communications links. 

The primary objective of SBIRS High is to detect and track the boost phase of theater and 

intercontinental ballistic missiles and communicate trajectory parameters to the ground assets. 

The SBIRS Low component will bring an entirely new capability to the warfighter—the 

ability to track theater and intercontinental ballistic missiles from launch to reentry and to relay 

necessary cueing data to missile interceptors before the missiles reach friendly forces. When 

fully operational in 2006, the SBIRS Low component will consist of 25 to 30 satellites in low 

earth orbit (analysis in this report is done for a particular 27 satellite constellation). 

Each SBIRS Low satellite has two infrared sensors with which to perform its missions. 

One sensor, known as the acquisition sensor, will be a wide field of view scanning infrared sensor 

that will watch for short-wave infrared electromagnetic energy associated with missile plumes 

during the boost phase. Once the acquisition sensor has located a boosting missile, it begins to 

compute a trajectory for initialization of the ballistic track.   Upon booster burnout, the 

initialization data for the ballistic track is transferred to the second on-board sensor. This sensor, 

called the track sensor, is a narrow field of view, high-precision staring sensor that is capable of 

detecting electromagnetic energy in multiple infrared bands. Mounted on a two-axis gimbal, the 

track sensor is capable of detecting post-booster burnout objects which may or may not contain 

various numbers of lethal objects or warheads, attitude control modules, spent booster rockets, 



and decoys or penetration aids. The track sensor will track all objects through their mid-course 

trajectory and into their reentry phase. By this time, the on-board processing is supposed to have 

discriminated the lethal object(s), predicted the final ballistic trajectory of all objects, and 

estimated the lethal object's impact point and time of impact. This data will then be relayed to 

interceptor batteries where it will be used to intercept the incoming warhead(s). [Ref. 2] 

Utilizing tracking data from SBIRS Low, the area defendable by a single interceptor 

battery increases dramatically. Whereas systems like the Patriot require that the missile be within 

view of its ground-based radar before it can fire, SBIRS Low will provide cueing information to 

interceptors while warheads are still far away from friendly forces. This additional targeting 

capability will allow earlier engagements and multiple interceptor attempts on incoming missiles 

to increase the likelihood of a successful kill. 

Additionally, the entire constellation will be networked together using inter-satellite 

crosslinks, thus allowing each satellite to communicate with all other satellites in the 

constellation. This capability allows for satellite-to-satellite "handover" of target tracks. Target 

handover is required because the dynamic nature of the orbiting satellites and uncertainty of the 

launch point and time makes it extremely unlikely any one satellite will track a missile during its 

entire flight duration. If necessary, this type of handover will continue between satellites in the 

constellation until the target has been destroyed, its infrared energy can no longer be detected, or 

the missile impacts the surface of the earth. Additionally, SBIRS High satellites are networked, 

via ground relay, with SBIRS Low satellites and, if tactically prudent, can provide cueing to 

multiple SBIRS Low track sensors in near real-time for an extremely limited number of tracks. 

B.   BACKGROUND 

SBIRS Low will "bridge the gap" between initial launch detection, the current capability 

of DSP and SBIRS High, and ground-based radar interceptors. Its primary function is to provide 

precise mid-course tracking and discrimination of objects for the SBIRS missile defense mission 

in theater conflicts and attacks against North America. The SBIRS Low system must orchestrate 

surveillance of the entire post-boost threat, in support of a number of system requirements such 

as: 

a.   Track maintenance on all relevant objects until the lethal object is destroyed, the 
missile is judged not to be a threat and the track is dropped, or the lethal object 
impacts the earth. 



b. Discrimination of lethal and non-lethal objects. 

c. Precise track estimates and updates for interceptors. 

d. Interceptor-lethal object kill assessment. 

e. Battlefield characterizations. [Ref. 3] 

For any given satellite, these requirements are mutually exclusive for the length of time 

needed to complete the specified tasking. This limitation implies a system capacity on the total 

number of objects the SBIRS Low system can track in the ballistic phase. With SBIRS Low, 

tracking, per se, is not an issue because the track sensor is sensitive enough to detect and 

discriminate objects with sufficient accuracy given most sensor-to-object geometries. The most 

critical issues are at the system level and these issues are tasking in highly dynamic environments 

and accomplishing the multiple system level requirements listed in the previous paragraph. 

The component in the SBIRS Low system that is responsible for "partitioning" active 

entries from the track file, a listing of all objects being tracked, is called the global scheduler. 

The global scheduler receives tasking requirements internally, from an acquistion sensor which 

detects a boosting missile, or externally from sources such as a Mission Control Station. Based 

on the tasking requirements, the global scheduler directs the operation of track sensors via local 

schedulers on-board each satellite. When operating within designed capacity, the global 

scheduler will fulfill this tasking while maintaining the specified level of tracking accuracy for all 

objects. Levels of tracking accuracy include simple detection, continual object discrimination, 

and target quality. These criterion can be established at some given level of confidence at the 

time of detection and predicted ahead to provide an approximate time at which, without an 

update, tracking accuracy will degrade below the defined minimum acceptable level. 

When the tracking accuracy for at least one track drops below the currently defined 

minimum acceptable level, the entire SBIRS Low system is defined to be in an overload 

condition. The system decision-aid will then suggest operator action necessary to relieve the 

overload based on utility assigned to available options. Examples of suggested operator action 

include no longer performing the mission of space surveillance, "dropping track" on a non-lethal 

object, or dropping track on a group of objects (e.g., sacrificing Pittsburgh to save Cleveland). 



C.        PURPOSE AND RATIONALE 

The primary goal of this project is to explore feasible track revisit schemes available to 

the global scheduler and characterize their effectiveness under different operating conditions and 

conditions that result in an overload. Using exploratory model analysis, the model space can be 

systematically searched over a variety of assumptions and hypotheses to reveal how the system 

would behave if the various guesses were correct. This type of analysis produces useful results 

through the creation of alternative feasible model outcomes. A sensitivity analysis is subsumed 

in the exploratory model analysis process, which inherently provides insight into which 

parameters are critical by the fact that its results are not predicated on any single point. 

Computer simulation and modeling plays a vital role in achieving insights which will aid 

in the quantification of uncertainties and determining feasible track revisit schemes for given 

predict ahead track position error bounds. The SBIRS Low model will provide ballistic missile 

launches that will be detected and tracked by the SBIRS Low satellite system and Monte Carlo 

simulations will be used to explore tasking and contingency operations models, target handling 

capacities, and system failure modes. Examples of tasking operations are using only the closest 

and second closest sensor from the target to track the target, using only the closest and third 

closest sensor from the target to track the target, or using only the second and third closest sensor 

from the target to track the target. In a dense tracking or sensor-deficient scenario, only one 

sensor may be available to track a target. These operations will each produce slightly different 

system behavior because: 

a. As the range from the sensor to the target increases, target positional error increases 
due to uncertainty in the focal plane pointing angle. 

b. Randomly assigned sensor bias errors that are varied each launch event. 

c. Differences in available tracking data, i.e., two sensors providing positional data via 
intersecting lines of bearing versus positional data derived from single lines of 
bearing taken from one sensor over some given time interval. 

d. Different contingency operations, i.e., conducting the analysis for different types of 
ballistic missiles (nine different missiles are currently modeled). 

Based on the feasible track revisit schemes, the output can be used as input for follow-on analysis 

of system overload behavior. 



Thus, through a high dimensional exploration of the model, this analysis will: 

a. Determine how often a track needs to be updated to remain within a prescribed 
positional uncertainty. 

b. Determine the distribution for positional uncertainty as a function of revisit time. 

c. Determine the tracking capacity of the system in a variety of scenarios. 

d. Determine the critical factors that result in an overload condition. 

D.        ORGANIZATION OF THESIS 

Following this introduction, the report is divided into five additional chapters. First, the 

SBIRS "System of Systems" is described in additional detail. Building on this additional 

information, specific design and requirements of the global scheduler are examined. The final 

section of this chapter provides a general overview of exploratory model analysis and why this 

analysis is appropriate at the present stage of the SBIRS Low development. 

Next, the architecture of the SBIRS Low system is further refined to include engineering 

complications, a definition of SBIRS mission success, and a typical timeline for a ballistic missile 

launch scenario. The assumptions present in the SBIRS Low model and their impact are listed in 

chronological order, according to the launch scenario. The chapter ends with a discussion of 

tracking and Monte Carlo assumptions. 

Next, the specifics of the SBIRS Low model are explained. The Monte Carlo structure of 

the model is further detailed and a prediction on the distribution of the track accuracy is 

presented. An overview of orbital mechanics is presented to ensure that the reader has an 

understanding of the underlying astrodynamics applicable to the SBIRS Low model. The chapter 

concludes with a description of the analysis sample space. 

Finally, the results of the exploratory model analysis are presented. The results are 

followed by a conclusion, which includes suggestions for additional research. 



II.        SBIRS "SYSTEM OF SYSTEMS" AND EXPLORATORY MODELING 
OVERVIEW 

A.        SBIRS HIGH OPERATIONS 

The SBIRS "System of Systems" will provide the enhanced capabilities necessary to 

combat evolving theater and ballistic missile threats and help meet U.S. infrared space 

surveillance needs through the next several decades. The system will integrate space assets in 

multiple orbit configurations with a consolidated ground segment to provide more effective 

integration of data, improved tracking accuracy, reduced time latency, and greater detection 

sensitivity to maximize the operational commander's situational awareness. The SBIRS "System 

of Systems" architecture will consist of four satellites located in geostationary orbit, two satellites 

orbiting in highly elliptical orbits, and a constellation of greater than twenty satellites in low earth 

orbit to provide global coverage in support of SBIRS missions. 

The SBIRS High system of satellites is comprised of four satellites located in 

geostationary orbit and two satellites orbiting in highly elliptical orbits. These six satellites will 

perform the four infrared missions of missile warning, missile defense, technical intelligence, and 

battlespace characterization. Specifically, SBIRS High will provide global and theater infrared 

data and processed messages concerning launch, flight, and impact location of strategic and 

theater missiles and other infrared significant events to the National Command Authority and 

operational commanders. 

The SBIRS High component will use highly flexible tasking infrared sensor technology 

to combat emerging threats. Each satellite will consist of a scanning infrared sensor for global 

coverage and a staring sensor for accurate detection and tracking of theater-level threats. This 

technology will allow the SBIRS High element to detect and track shorter-range missiles in the 

boost phase with greater accuracy. The benefit to the warfighter will be increased accuracy in 

determining the missile launch point and impact point predictions in support of offensive and 

defensive operations. 

The SBIRS High ground segment architecture integrates assets from the current DSP 

ground segment with SBIRS unique assets to provide a highly capable, low risk system. The 

ground segment will consolidate three DSP operational sites and associated communications 

networks into a fully integrated ground segment that fuses all infrared and other data to optimize 



performance for all infrared missions. The integrated ground segment will be implemented with 

modern, open systems processing and allow for modular hardware/software updates. 

B.        SBIRS LOW OPERATIONS 

The SBIRS Low system of satellites will be comprised of a constellation of 25 to 30 

satellites in low earth orbit. The primary function of SBIRS Low is to provide precise mid-course 

tracking and discrimination of objects for the SBIRS missile defense mission in theater conflicts 

and attacks against North America. In addition, with its low altitude putting it physically closer 

to the battlefield and thus allowing for higher resolution, the SBIRS Low system is well suited to 

support the other three SBIRS missions of missile warning, technical intelligence, and battlespace 

characterization. 

A two-stage process characterizes the SBIRS Low sensor suite concept of operations. In 

the first stage, the acquisition sensor scans for very bright targets in their boost phase utilizing a 

fast scan, large field of view, small aperture focal plane. Then, the track sensor will stare at very 

dim post-boost phase targets using a technique of slew and stare with a small field of view, 

modest aperture focal plane. Conceptually, the track sensor's field of view is similar to looking 

through a soda straw. An example of the entire sensor system operation is the acquisition sensor 

detects the infrared signature of a booster rocket, then the acquisition sensor performs a handoff 

to the track sensor, which maintains a ballistic track on all post-boost vehicles. Post-boost 

vehicles may include the reentry vehicle (warhead), an attitude control module, spent booster 

rocket, and decoys. As necessary, the track sensor in one satellite will "handover" a track to 

another track sensor in a different satellite. This tracking information is also relayed to a ground 

station where the decision on target engagement procedures is made based upon the current 

battlespace characterization. 

The interceptor batteries will receive cueing data from the SBIRS Low system. The goal 

is to launch as few interceptors as necessary to achieve the desired probability of kill. The 

interceptor battery's salvo doctrine, e.g., shoot-look-shoot, shoot-shoot-look, shoot four times, is 

determined by the operational commander based upon their current tactical assessment. 

Because both satellites and a missile move relative to each other, different satellites will 

track a target based on the time of launch, location of the launch, operability of a satellite, and 

track revisit scheme. Communications between satellites, between a satellite and the global 



scheduler, and between a satellite and a ground station is critical to ensuring tracking accuracy 

requirements are maintained. Three features of the SBIRS Low communications architecture are: 

a. Flood routing: relay message over set communication paths until the message 
repeats. 

b. Any new track data initiates communications to update all local schedulers across the 
system. 

c. Tasking from the ground station can be sent to specified satellites. [Ref. 4] 

The key components in a general SBIRS Low tracking architecture are: 

a. Global track file: a single centralized object maintaining full system-level tracks 
using all available detections. 

b. Track assessor: its two specific functions are to (1) identify and remove "aged" tracks 
from the global track file and (2) flag requirement failures in the global track file and 
forward these assessments to the ground station. 

c. Global scheduler: a single module responsible for "partitioning" active entries from 
the track file among the system's sensors. This component can be reprogrammed in 
real-time in response to dynamic battlefield circumstances. 

d. Local scheduler: replicated for each sensor/platform. This component determines the 
actual sequence of detection attempts and forwards the observations to the global 
tracker. [Ref. 5] 

It is assumed that space-certified computer hardware and software will be available to meet these 

requirements. 

C.        GLOBAL SCHEDULER 

In a fully autonomous mode, SBIRS Low detects and tracks all threat missiles from 

launch to mid-course targeting and the global scheduler determines the appropriate track revisit 

scheme to be employed based upon system design utility theory. The global scheduler tasking 

model is shown below in Figure 1. 
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Figure 1. Diagram of Global Scheduler. Diagram of how the global scheduler interacts with the 
local scheduler on each satellite in response to inputs from the global track file. [Ref. 6] 

The system then transmits the tactical parameter data to appropriate ground stations for 

use in subsequently targeting the lethal object. Operators in the ground station will assess 

information from SBIRS Low and other relevant sources. Based on the resulting global 

assessment, operators may choose to accept or override the nominal, automated decision-aided 

procedures. Reasons for manually overriding the automated procedures could include: 

a. The predicted impact point of a target is deemed to be insignificant (e.g., the middle 
of an ocean), and the associated track can be dropped. 

b. Sensor resources are needed for higher priority tasking. 

c. Override target classification. 

d. Large raid triage. In case of system overload, ground operators have final authority 
on tracks to be dropped (certain target spared at the expense of another). [Ref. 7] 

A global scheduler is required because of battle management considerations and in 

general, U.S. military doctrine is characterized by centralized battle management with 

decentralized execution. In one SBIRS Low architecture design, a global scheduler is located on 

each satellite and based on the current tactical situation, the duties would be assigned to the 

satellite with the least tactical tasking. A command center with authority to override the global 

scheduler is necessarily earth-based because current technology cannot support transmitting the 

required volume of information to a space-based platform. For example, non-surveillance 

information such as target value and status, interceptor location and status, and resource 
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allocation decisions would have to be uplinked to a spaced-based scheduler in real-time. 

Additionally, it would be too far removed from human oversight and more vulnerable to counter- 

measures if it were space-based. 

The global scheduler maintains two lists, a sensor list and a track list. The sensor list 

contains a list of all targets that a sensor detects and the target list contains a list of which 

sensor(s) has/have tracking responsibility for each target. The track file architecture is shown 

below in Figure 2. 

Ground 
Station 

Figure 2. Track File Architecture. [Ref. 8] 

The global scheduler controls the tasking of individual local schedulers. The tasking 

problem for SBIRS Low is nontrivial for the following reasons: 

a. The underlying scenario can be very dynamic with feasible sensor-to-target pairings 
(determined by some given criterion) changing over time. 

b. The track sensor is a limited resource implying restrictions on the system target 
handling capacity. 

c. SBIRS Low has a number of system requirements that are mutually incompatible 
from the perspective of tasking. The system requirements to maintain target track 
and/or lethal/non-lethal object discrimination and/or a target-quality track result in 
very different object revisit requirements for the track sensor. 

d. A large number of tasks such as sensor band switching and variable, target-specific 
dwell times place time-dependent constraints on sensor assets. The sensor has to 
sweep through some given angle to detect the next target. This motion is referred to 
as the slew-settle-stare process. 
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e.   The autonomous tasking-sensing-tracking system must interact "appropriately" with 
human operators in a ground station. [Ref. 9] 

To satisfy the specified level of system performance, there are certain desired 

characteristics of the global scheduler. These characteristics include: 

a. Very simple control logic. 

b. Capability for the ground command to change target and tasking priorities in real- 
time. 

c. Maintain robust operations in the presence of component failures. 

d. Support all target tracking functions and ground command tasking until overloaded. 

e. Maintain feasible observation capability under all target/tasking load conditions. 
[Ref. 10] 

The various requirements that must be scheduled by the global scheduler include: 

a. Maintain track: This level is the least stringent tracking requirement. Note, the track 
maybe one or more objects but system resolution or scissors angle prevents 
determination and the system may degrade into this condition if there is a mismatch 
in the total number of objects detected after a satellite-to-satellite handover. 

b. Maintain object resolution: This level is the third highest tracking accuracy 
requirement. It provides an accurate count of total objects but no insight into which 
is a lethal object. Note, in real-world operations intelligence sources may aid in 
assessing accuracy of object count. 

c. Maintain object discrimination: This level requires the second highest tracking 
accuracy requirement. At this level, the total number of objects has been determined 
with a high degree of confidence and the lethal objects have been determined. It is 
important to track all objects to preclude overlapping containment bounds. Failure to 
maintain nonoverlapping containment bounds could result in targeting a non-lethal 
object vice the lethal object. 

d. Support an intercept: This level requires the most stringent tracking accuracy. The 
position of the lethal object is known with sufficient precision that the interceptor 
will have enough maneuver in the field of view to impact the warhead. 

e. Kill assessment: In general, an accurate estimate for when the intercept should occur 
is available. Thus, the length of dwell time to determine whether a kill occurred is on 
the order of one to two seconds. Thus, kill assessment should always be able to be 
scheduled; however, it is a task that does not necessarily have to be accomplished. 

f. Battlespace characterization: This tasking provides battle damage assessment and 
tracking of infrared intense events, such as secondary explosions from a bomb attack. 
Battle damage assessment could be scheduled but infrared intense events would be 
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"random." This tasking is important requirement but could easily be "dropped" 
during periods of intense missile activity. 

g.   Technical intelligence gathering: This tasking, which monitors the ballistic missile 
program developments of potential adversaries, is most important during periods of 
peacetime. However, this tasking could be important in times of hostilities to 
determine, for example, if missile counter-measures have been modified. 

h.   Space surveillance: This tasking is the lowest level of importance. This tasking is 
used to update the catalog of objects in space or detect new objects. This tasking 
may be important if space junk is predicted to come close to a satellite. [Ref. 11] 

The level to which these requirements are met is based upon the current tactical 

assessment, available assets, and political constraints. There are no hard and fast rules on 

required tracking accuracy because the system wouldn't know which missile was launched and 

hence the system operator would not know if track discrimination were an issue. For example, 

the SCUD has only a single warhead so track discrimination is not applicable. However, more 

sophisticated theater weapons such as the SS-26 can have both a reentry vehicle and an attitude 

control module so track discrimination is critical. It is impossible to know in real-time which 

type of missile was launched, although in certain instances some could be eliminated from 

consideration. Even though technical intelligence sources have provided estimates of how long 

each type of booster burns; the system may not be able to determine the exact time of launch due 

to the presence of "opaque" clouds and unknown altitude of the missile launch vehicle. 

The operational commander may have to revise his concept of how to accomplish these 

requirements. The old paradigm is that target acquisition drives system design and once a track is 

acquired, track maintenance is straightforward. However, the new paradigm is that requirements 

for reentry vehicle discrimination could be system drivers and realistic light replicas and heavy 

replicas impose significant line of sight and signal to noise constraints. Additionally, viewing 

angle constraints can exclude what would otherwise be the "best viewer", i.e., the closest sensor. 

If the closest viewer is excluded, the fact that increased range decreases the signal to noise ratio 

and resolution of closely spaced objects decreases with increasing range may place the system in 

an overload condition. 

D.        SYSTEM INTEGRATION 

The SBIRS Low system will operate at a variety of tasking levels for which it was 

designed, but it will also have to operate at a level of "overload." Reasons for a system overload 

include too many targets, widely varying booster burn times which require an increased number 
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of detections to accurately initialize the ballistic trajectory algorithm, rapidness of the salvo, time 

of day, tracks become unresolvable, targets become too dim for further tracking, and any target 

motion that results in tracking ambiguities such as crossing trajectories. The SBIRS Low system 

will be considered to be in an overload condition when the track revisit rate for at least one track, 

i.e., a reentry vehicle, attitude control module, decoy, etc., cannot support some critical track 

performance criterion. This critical criterion might be maintain track and/or maintain track 

identity and/or a target-quality track solution at some given level of probability. Based upon 

system design, an overload condition should be predictable to allow the operator to use a 

deliberate decision making process to determine if manual intervention is required. 

The basis for robust autonomous global scheduler operations is characterized by: 

a. Target observation data distributed throughout system (communications flood 
routing). 

b. No overload conditions (perform all target and tasking observations). 

c. An onboard decision-making capability that automatically responds to overload 
conditions by reducing the number of targets tracked per satellite, sharing targets 
among track capable satellites, and graceful system degradation when overload is 
unavoidable. [Ref. 12] 

The basic process of scheduling track sensor tasking is for each target, select the earliest 

of the task function times to determine next tasking time. Sequence each target revisit by 

"nearest angle neighbor" route except when a scheduled high priority revisit would be too late 

compared to its required latest function tasking time. The simplified tasking criteria is based 

upon: 

a. Range to target, where shortest target range selects tracking satellite. 

b. Target priority, where target preference is based upon mission priority or command 
override. 

c. Observation function priority where preference is based upon function importance to 
target in track. [Ref. 13] 

If target/tasking load conditions in a target rich and/or satellite poor environment result in 

an overload condition, graceful system degradation can be achieved by: 

a.   Efficient sharing of targets/tasking between available satellites. For instance, in a 
time critical scenario, the second-closest sensor could be tasked, even though the 
closest sensor is available, because it has a shorter slew-settle-stare process. The 
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nominal decrease in tracking accuracy, provided by sensor 2 versus sensor 1, is offset 
by preventing an overload condition. 

b.   Reducing targets/tasking on basis of prioritization (prioritization is automatic but 
Ground Command can override in real-time). An example of a task reduction is to 
no longer perform hit assessment. 

E.   EXPLORATORY MODEL ANALYSIS 

When new operational concepts, doctrine, tactics, techniques, and/or procedures are 

developed to exploit new technologies, an experimental process is necessary to efficiently utilize 

the new concepts and to validate that the change actually represents an improvement in some 

appropriate measure of performance with some given level of confidence. To confirm the 

applicable hypothesis, the resulting desirability for timely, affordable testing and evaluation has 

put increased demands on simulation and modeling requirements. At early stages in the analysis 

of a new system, the emphasis is on developing a broad understanding of the critical elements in 

the system and its potential applications. In such situations, there may be too much uncertainty to 

reliably estimate optimal solutions with the available tools. The SBIRS program is at such a 

stage. Therefore, the SBIRS Low model will be used to explore large regions of model space in 

an attempt to identify key factors in the system and scenarios to provide insight into the global 

scheduler problem. 

When insufficient knowledge or unresolvable uncertainties preclude building a surrogate 

for a particular system, modelers must make guesses at details and mechanisms. While the 

resulting model cannot be taken as a reliable image of the system to be analyzed, it does provide a 

computational experiment that reveals how the system would behave if the various guesses were 

correct. Exploratory modeling is the use of series of such computational experiments to explore 

the implications of varying assumptions and hypotheses and thus produces useful results through 

a constellation of alternative feasible model outcomes. 

Exploratory modeling helps to address the following five aspects of computer modeling: 

a. Model specification: correct model structure is not known. 

b. Model estimation: adequate data is often unavailable. With military weapon systems, 
seldom can enemy weapon systems be acquired and fully exploited. 

c. Sensitivity analysis: complexity of models means adequate sensitivity analysis is 
seldom conducted. 
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d. Model validation: experimental validation is impossible due to non-repeatability of 
human-in-the-loop experiments, uncertainties in weapon system performance, cost, 
and infeasibility of "live fire" events. However, exploratory analysis can be an 
effective tool in the process of verification and validation of the models used. 

e. Model use: any given model is probably wrong - how do we learn what the model 
has to teU us? Although there is considerable uncertainty in the model, with 
exploratory modeling uncertainty can be narrowed and partial information can 
provide partial answers. Also, even simple models can surprise their creators, and a 
model that is not validated does not mean it is not useful (can reaffirm ideas or lead 
to new directions and support prior knowledge or facts). [Ref. 14] 

Exploratory modeling is a relatively new technique that is used to conduct a 

comprehensive analysis of complex or poorly understood systems. It was developed because 

modeling methodologies were unsuited to provide insight about the future of some forms of 

warfare, an uncertain event, and advances in computer technology made "high dimensionality 

searches" economically feasible. Thus, exploratory modeling allows the analyst to automate 

running many model instances to create geographical "landscapes" of possible futures, support 

satisfying policy design (avoid being misled by fragile optima), and support design of adaptive 

strategies. Each of these three aspects of exploratory modeling is discussed within the context of 

the SBIRS Low model in the following paragraphs. 

The creation of graphical "landscapes" is the exploratory modeling environment. 

Accurate depiction of this environment allows analysts to navigate efficiently through the space 

of plausible models, model outcomes to construct lines of reasoning, and to learn about 

implications of both knowledge and hypotheses. [Ref. 15] By representing 

uncertainty/possibility with sets of alternative models, the analyst solves multiple problems that 

provide the following characterizations: 

a. Allows reasoning about structural uncertainty. 

b. A set of "wrong" models can bracket actual system behavior. 

c. Tolerance for incomplete models allows utilization of parameters that are known. 

d. Constraint knowledge can be represented by set boundaries. 

e. Representation of complex "challenge sets" facilitates thinking about adaptivity, 
responsiveness, and information agility. 

The SBIRS Low model contains a large number of variables with imprecise input values. 

Examples of imprecise input values include: 
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a. Unknown sensor availability. Sensor availability is a function of parameters such as 
time, type of missile launched, and enemy missile launch doctrine. 

b. Unknown sensor revisit schemes due communication delays and/or variations in 
slew-settle-stare requirements. Variations in "stare" requirements occur because of 
the time differences required for simple object detection and non-lethal versus lethal 
object determination. 

c. Unknown time delay, after booster burnout, for first Kepler orbit detection. 

The revisit strategy for SBIRS Low model events are aggregated into a single strategy 

and/or as a "delay" because a high-fidelity computer model is inappropriate at this stage of the 

analysis. The exploratory modeling paradigm requires that the model be run over multiple 

dimensions, i.e., sensor availability combinations, sensor revisit schemes, and delays in beginning 

a ballistic track. However, the combinations are such that it is difficult to comprehensively 

search over more than a few dimensions. By taking representative samples of system 

performance at tactically critical moments in the missile's trajectory in various "dimensions," a 

reasonable balance of model replications and operational insight is achieved. 

Exploratory modeling is using computational experiments to assist in reasoning about 

systems where there is significant uncertainty. An important aspect of exploratory modeling is its 

relationship with uncertainty. Because exploratory analysis is not predicated on any single point, 

it is more extensive and considers broader uncertainties such as those generally represented in 

combat models with many imperfectly known parameters, decisions, and measures of 

effectiveness. Thus, exploratory analysis can help decision-makers choose options that are robust 

across different scenario conditions, operational or technical preferences, and costs. The 

advantage of increased flexibility in decision making and knowledge of the robustness across 

various contingencies neutralizes risk inherent with imperfect information and an unpredictable 

future. 

For a model to be valid, the classical model paradigm would require that all phenomena 

that might potentially be influential on the outcome are included and details that might prove 

pivotal are represented. Additionally, there will be a large number of inputs that specify initial 

conditions and model boundaries. From this model, a single output or course of action is 

provided to the analyst. If the decision-maker desires to explore unanticipated adaptive 

strategies, additional potentially complex modifications to the model will be required. These 
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changes will increase the complexity of the code and increase in the run-time and data storage 

requirements. Exploratory modeling provides an alternative to the classical model paradigm by: 

a. Representing knowledge as sets (ensembles, universes) or alternative possible models 
or scenarios (includes both parametric and structural variation). 

b. Reasoning about future possibilities (inductively) based on properties of set of 
plausible models inferred from a finite number of such experiments. 

c. Driving sampling strategy from goals of reasoning problem. [Ref. 16] 

When developing new warfare strategies or testing new weapons systems, a sensitivity 

analysis is a critical stage in the computer modeling and analysis process. Sensitivity analysis 

shows how precise inputs must be measured or the level of fidelity required in the model to 

provide factual insight into the applicable system. Using traditional methods, improving the 

model or data alone can be inefficient and may not solve the problem. Exploratory analysis 

expands on sensitivity analysis and it is useful to contrast exploratory modeling to the traditional 

concept of sensitivity analysis. 

For any traditional numerical computer program, sensitivity analysis is the process by 

which uncertainty in inputs is related to uncertainty in outputs. To undertake a sensitivity 

analysis, a parameter to be varied has to be selected. The criterion for choosing a particular 

parameter generally is an a priori belief that a change in it will result in some change in the 

measure of effectiveness. In a traditional model as a parameter is varied, if nonmonotinicity is 

encountered, the non-intuitive results may lead to a requirement for adding greater detail or better 

representations in the model. Again, the complexity of the model increases and the result may 

become more fragile as the inputs become more precise. 

The advantage exploratory analysis has over the traditional approach to computer 

modeling is that exploratory analysis can provide greater insights into the information that 

explains the phenomenology being investigated and sometimes resolves troubling sensitivity 

results without resorting to changes in the model or data. Exploratory analysis determines the 

range of outputs by sampling throughout the volume of the plausible range of inputs. The 

accuracy of the sensitivity analysis is determined by the size of the changes in input parameters. 

Thus, the sensitivity analysis is predicated on the needs of the analysis and available 

computational resources. Utilizing this approach, changes to the SBIRS Low model may be 

unnecessary and the results are robust across the range of inputs. 



III. SBIRS PROBLEM AND ANALYSIS GENERALITIES 

A.        OVERALL ARCHITECTURE 

The SBIRS architecture is composed of a constellation of two satellites in highly 

elliptical orbits, four satellites in geostationary orbit, and greater than twenty satellites in low 

earth orbit, and a consolidated ground station to accomplish the four primary missions allocated 

to SBIRS. The SBIRS "System of Systems" is shown below in Figure 3. 

Figure 3. SBIRS "System of Systems" Architecture with Communication Nodes. [Ref. 17] 

The primary goal of the SBIRS "System of Systems" architecture is to provide national 

missile warning and defense against tactical ballistic missiles. There is a requirement to track all 

objects associated with a missile launch until lethal object kill is achieved, or it is a "leaker." 

These objects include the lethal object(s), attitude control module, and decoys. Leakage and false 

alarms are the primary measures of system performance. Leakage is a far more critical 

measurement, with false alarms only becoming critical when considering logistic (resupply) 

constraints. Certainly, political ramifications of launching an interceptor at a false alarm and 
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operator desensitization caused by frequent false alarms are critical. However, unnecessarily 

launching an interceptor has little affect on the material readiness of an intercept battery while 

operator desensitization would result in leakage, which was previously defined as "critical." 

This architecture is characterized by many "engineering complications," of which four 

are described in detail. Track accuracies are balanced, meaning they all degrade uniformly since 

they all have the same error basket. When there are too many targets, by some criteria, the auto- 

advisor should advise the tracking, telemetry, and control operator to drop track on a given 

number of targets otherwise an additional number of tracks will drop below tracking 

requirements. The operator can either do nothing or drop the required number of tracks. If the 

operator does nothing, tracks will randomly fail to meet the minimum tracking accuracy criteria. 

Sensor line of sight (LOS) measurements have two primary sources of error—a random 

component which is ultimately determined by pixel granularity, and a bias component determined 

by imprecise knowledge of the position/orientation of the focal plane. This bias component can 

be reduced considerably by frequent recalibrations against known star positions. Typical sources 

of random bias are jitter and diffraction. Jitter is caused by the focal plane's gimbal assembly 

shaking/vibrating. Diffraction occurs as the photons, the received infrared signal, enter the 

assembly housing the focal plane. The diffraction occurs because as the photons enter the focal 

plane assembly, based on its design, they spread out according to physics-based wave theory. 

The expected value of the cumulative affect of the two sources of random error and the 

bias error is 36 microradians. Using a representative value for the distance from a satellite to a 

missile, the positional uncertainty is given by 

Positionuncertain = Curd 

where: 

C0r = angular resolution, microradians 

d = distance from satellite to missile, kilometers. 

Then, for example, using representative numbers 

Positionuncenain = ©4 = (36)(4000) = 0.144 kilometers = 144 meters. 

There is no navigation controller that is tasked with maintaining a shared navigation grid 

within the entire constellation. A common navigation grid is unnecessary because each satellite 
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will communicate with a global positioning satellite to update its own internal navigation system. 

Thus, any navigation errors are insignificantly small and will not adversely affect satellite to 

satellite track handovers. 

The probability of SBIRS mission success, where success is defined as destruction of the 

lethal object, is of the general form 

P(success) = P(acquire n track n discriminate n target n kill). 

With very little margin of error and knowledge that if a track on a lethal object is lost or dropped, 

intercept becomes nearly impossible, there is a necessity for an in depth understanding of this 

complex architecture. 

Each of these probabilities can be further subdivided into specific components where 

measures of performance can be assigned. Some of these components are now considered. 

Three factors that affect the probability that the SBIRS Low system acquires a missile 

are: 

a. Geometric coverage, duty cycles. This factor is dependent on whether there are 
enough sensors/viewers. 

b. Sensor sensitivity, target signature, and obscurations. An example of an obscuration 
is cloud cover. 

c. Sensor revisit rates and single-look probability of detection. A track algorithm 
typically requires three hits in four scans to distinguish a valid target from random, 
background clutter. [Ref. 18] 

Missile detection in the SBIRS Low model is partially dependent upon each of the above 

factors. However, target acquisition itself is a very reasonable area for exploratory data analysis, 

trading costs such as increased number of satellites and focal plane sensitivities versus system 

requirements. However, this exploratory data analysis is beyond the scope of this report since to 

be done right, it requires a high-resolution sensor focal plane simulation. 

Once acquired in boost, there are two mechanisms for track loss due to coverage failure: 

a.   The sensing constellation does not provide stereo coverage of the booster burnout 
point. 
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b.   Stereo coverage is nominally available, but one or more of the participating sensors 
has failed. This mechanism is not included in the SBIRS Low model. 

The interceptor's probability of kill is comprised of independent events such as the 

probability that the interceptor's seeker head can detect the target and the probability that the 

interceptor has sufficient divert maneuver to hit the target. As the error basket gets larger, the 

probability of maneuver in the field of view decreases and the probability of leakage increases. 

Because there is so much uncertainty in the SBIRS "System of Systems," it is the ideal 

candidate for exploratory analysis. The exploratory modeling search strategy used in this analysis 

is based upon the notion that simple models must first be implemented and explored in some 

detail in order to gain the intuition needed for the actual system design. A Monte Carlo model is 

used for the analysis because it provides a computationally efficient method to achieve the 

desired simulation accuracies. 

B. SBIRS LOW PROBLEM 

For the baseline SBIRS Low capability considered in this model, each SBIRS Low 

satellite consists of a short-wave infrared acquisition sensor and a multi-band infrared tracking 

sensor. One proposed design variation in the SBIRS "System of Systems" is to put the 

acquisition sensor on SBIRS High satellites, which then requires the SBIRS High satellite to 

perform a handover to a SBIRS Low satellite immediately following the determination of booster 

burnout. This design further complicates an already complex system by necessitating an 

additional handover from one system to another, which is subject to some probability of failure, 

and the handover is subject to some nominal time latency. Additionally, placing the acquisition 

sensor on SBIRS High satellites does not improve overall system survivability. Thus, this 

configuration is not analyzed in this project. 

A typical timeline of events for a missile launch scenario analyzed by this simulation is 

shown in Figure 4. 
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Figure 4. Ballistic Missile Launch Timeline. Timeline for ballistic missile launch scenario. 

The launch is detected by the autonomous short-wave infrared sensor onboard a SBIRS 

Low satellite. Communication flood routing alerts all other SBIRS Low satellites to the launch 

and the global scheduler determines which satellites will be tasked to monitor the missile. Each 

satellite builds a mono track that is flood routed to all other satellites. Those satellites that are 

actively sensing the event fuse the mono tracking data into a three-dimensional stereo track. 

Precision fitting of the boost-phase trajectory continues based on the track revisit rate, nominally 

five seconds based on projected system capability. 

Once booster burnout is detected, the global scheduler must determine the sequence of 

events for pointing individual track sensors. This allocation of individual sensors determines 

overall target handling capacity. Unfortunately, the "efficient tasking" problem is an intractable 

mathematical problem, especially given the fact there could be multiple, nearly simultaneous 

missile launches and multiple objects deployed from a single missile. 

Nominally, the satellite closest to the object being tracked is the "best" sensor based upon 

strength of received energy (photons) and minimization of positional uncertainty caused by 

imprecise line-of-bearing measurement. To achieve a stereo track, the "second best" sensor is 
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logically the second closest satellite to the object being tracked. However, this rationale does not 

consider the scenario in which the scissors angle is extremely small, in the case of stereo viewing, 

or the scenario in which a sensor is nearly in the missile's orbital plane. Thus, the two "best" 

satellites could provide poor tracking data and result in track ambiguities during a handover. 

There are no established rules on required tracking accuracy. The reason is that the 

system is unable to determine, in real-time, which missile was launched and hence cannot 

determine if track discrimination is applicable. For example, the SCUD missile has only a single 

warhead so track discrimination is not applicable. However, modern missiles may have a reentry 

vehicle and an attitude control module so track discrimination is critical. It can be difficult to 

determine which type of missile was launched, although in certain instances some could be 

eliminated from consideration. Even though technical intelligence sources have provided 

estimates on how long each type of booster burns, the system is probably unable to determine the 

exact time of launch due to infrared "opaque" clouds. In a real-world scenario with a scanning 

system, you could never know with adequate precision the height at which the booster becomes 

visible. If the system could determine the height at which the missile becomes visible, the time of 

missile launch could be estimated. 

Sensor-to-object geometry is carefully modeled, and values of positional accuracy in the 

tails (of the applicable Gamma distribution) are likely due to "bad" geometry. As described 

above, the best sensor is defined as the satellite closest to the object being tracked, regardless of 

tracking geometry. In actual SBIRS Low operation, the determination of the best sensor is 

nontrivial. 

The factors that affect slew-settle-stare time are: 

a. The quality of local scheduling algorithms, i.e., target intensity will be incorporated 
into stare times and efficient system tasking will minimize sensor slew time. 

b. Satellite phasing. The number of satellites within line of sight of any missile varies 
with time. 

c. The number of objects to track which is a function of the type(s) of missile(s) 
launched, salvo rate, salvo size, launch location, launch trajectory, available assets 
and time to complete a detection. The number of available assets is a function of 
other tasking requirements and the time to complete a detection is a function of the 
type(s) of missile(s) launched and possibly the task at hand (discrimination versus 
track versus hit assessment). 
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The major contributions to the expected time delay where a SBIRS Low satellite switches 

from tracking to targeting is any internal communications delay and the time required for the 

targeting sensor to schedule and move to the newly assigned target. A zero time delay in a 

handover occurs because each satellite knows where all tracks are located. Thus, if necessary, a 

satellite can "look ahead" to begin tracking a target as soon as it becomes detectable (i.e., within 

line of sight). 

C.        UNMODELED ASSUMPTIONS AND ISSUES 

Classical computer modeling standards require the ultimate model to be valid for a wide 

range of contingencies. However, including all phenomena that might be potentially influential 

typically caused models to collapse under their own weight as more and more detail was added. 

[Ref. 19] Contemporary modeling philosophy recognizes that having a multitude of 

contingencies precludes modeling each and every one of them, especially in an exploratory data 

analysis model. Many specific aspects of system performance, for instance modeling the focal 

plane design, are better studied in high-resolution, cost-performance tradeoff studies. It is 

acknowledge that many aspects, such as the communication architecture, are critical to SBIRS 

Low performance, but others are functionally irrelevant. For instance, modeling an oblate earth 

when computing the Kepler orbit is easily accomplished, but doing so provides no additional 

insight into tracking accuracy at a cost of significantly increasing the computational time per 

event. 

The unmodeled assumptions for the SBIRS Low model are presented in chronological 

order, according to the typical timeline for a ballistic missile launch scenario shown in Figure 4. 

Then, basic assumptions for U.S. and enemy tactics and proficiency are presented. 

In developing the SBIRS Low model, certain simplifications of orbital mechanics were 

made. First, the free-flight portion of the trajectory is Kepler. This assumption states that the 

only force acting on the reentry vehicle, attitude control module, decoys, and spent booster 

rockets is gravity. Second, the earth is spherical and has no atmosphere. Modeling the earth as a 

sphere eliminates perturbations of the gravitational field due to the real nonspherical shape of the 

earth. The lack of atmosphere allows factors such as winds, temperature, atmospheric density, 

and drag to be ignored. However, opaque clouds are modeled to a user-defined altitude, below 

which the SBIRS Low system cannot detect a missile. The version of the computer code used in 

this analysis does not model "solar outages," i.e., obscuration of a missile by the sun being in the 
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background. However, "hooks" are included in the code for eventual modeling of this 

phenomenon. 

Once the satellites are in orbit, they cannot be repositioned in response to an anticipated 

threat. Mechanical failures do not occur, which eliminates the requirement to take corrective 

action such as realignment of the constellation, reprogramming of a satellite, and launching 

replacement satellites. Additionally, the position error of a satellite is insignificantly small. Each 

satellite maintains its own navigation solution and receives updates from global positioning 

satellites. Additionally, random bias errors are trivially small since calibration is essentially 

continuously performed using stars. 

Each missile is launched with identical boost-phase performance and Kepler orbit flight 

characteristic, and all trajectories are elliptical with the focus at the center of the earth. 

Tracking accuracy will vary slightly run to run due to the random effects of the various sources of 

error. 

Missile classification, in general, will not be possible due to uncertainty in missile launch 

time. This lack of classification makes tracking requirements difficult to quantify since certain 

missiles contain only a warhead while others contain a warhead, decoys, and/or an attitude 

control model. Thus, in certain but unknown instances, track discrimination is extremely critical 

while in other instances it is irrelevant. 

Discrimination or the lack thereof, between objects contained in the post-boost vehicle 

does not affect track accuracy. Discrimination between lethal objects, the reentry vehicle, and 

non-lethal objects, light replicas, heavy replicas, attitude control module, and spent booster 

rocket, is "only" critical when determining which object to target. 

It is also assumed that there is perfect track correlation between sensors. For instance, as 

one sensor is no longer able to track an object (reentry vehicle, attitude control module, or spent 

booster rocket), the sensor that receives the "handover" "sees" the same tactical picture and 

objects remain discriminated. Although track correlation ambiguities are likely (and require 

nontrivial solutions), by making this assumption a "best case" answer is determined. 

Additionally, a track "handover" occurs instantaneously and in general, all communications occur 
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instantaneously and are not subject to failures, errors, being missed, misinterpretation, or being 

"lost." 

Detection is based upon line of sight and heuristics (based on tangent height from the 

earth), not a probability of detection based on factors such as signal to noise ratio, minimum 

scissors angle, minimum dwell time, or higher priority tasking taking precedence. Note, the 

SBIRS Low model does not model time factors such as: 

a. The length of time a sensor must stare at an object to detect it. 

b. The length of time a sensor must stare at an object to perform lethal/non-lethal object 
determination. 

c. The length of time to complete the slew-settle-stare process. 

In a dense target environment, the assignment problem, associating observations with 

tracks, use of tracking gates only begins to solve the problem. Additional logic is required when 

an observation falls within the gates of multiple target tracks or when multiple observations fall 

within the gates of a target track. Additionally, one sensor may "handover" a single track, but 

when the new sensor looks for this track, it is conceivable, based on sensor-to-target geometry, 

that the new sensor sees an additional track not detectable by the first sensor. Tracking 

ambiguities could, for example, occur during a "handover" from one track sensor to another, a 

handover from one acquisition sensor to another, or if SBIRS High is used to cue a SBIRS Low 

track sensor. However, they will not occur in the SBIRS Low model because all events are run 

where a single missile is in-flight at any given time. This modeling assumption will result in the 

SBIRS Low model providing a "best case" estimate. 

Specific design parameters of the interceptor are ignored since actual interceptor-missile 

engagements are not analyzed in the SBIRS Low model. For additional studies, assume the 

interceptor design is well balanced. In general, the probability of maneuver in the field of view is 

comprised of the divert maneuver capability of the interceptor and detection capability of the 

focal plane. Analysis could be complicated by the fact that divert capability is limited by a 

circular contour while detection is limited by the square contour of the focal plane assembly. 

However, the interceptor design is balanced by assumption, 
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AV _ FOV 

V 2    ' 

where: 

AV = divert maneuver capability, m/sec 
V = nominal closing speed of an interceptor relative to its target lethal object, m/sec 
FOV = interceptor seeker/sensor field of view, radians. 

Then, the probability density of tracking errors can be projected on any two dimensional surface 

like the interceptor focal plane assembly as a Rayleigh distribution. [Ref. 19] 

All logistic constraints are ignored. Although an unlimited supply of interceptors would 

allow a battery commander to shoot any arbitrary number of interceptors at a missile to achieve 

the desired probability of kill, tracking and global scheduler overload is not directly affected by 

the number of available interceptors. 

The U.S. will honor all applicable treaty limitations. This assumption has no affect on 

system tracking accuracy but is applicable to certain actions that could be used if the system was 

in an overload condition. 

Attrition of the enemy's missile launching capability is not possible due to system 

mobility and deception tactics used by the enemy, and a large quantity of transport erector 

launchers and missiles allows the enemy to be unconstrained by logistic limitations. 

Certain additional assumptions must be made regarding enemy capabilities and political 

and military doctrine. First, enemy ballistic missiles do not have terminal guidance. If terminal 

guidance is used, the calculations for predicted position probabilities cannot be utilized to 

schedule sensor revisits and determining marginal tracking requirements to support intercept and 

impact points is not possible. Thus, if a missile has terminal guidance, the model and actual 

SBIRS Low operation cannot support this eventuality with any predetermined accuracy. 

However, the missile may perform a generalized energy management maneuver prior to booster 

burnout. 

The enemy may violate treaty limitations imposed on missile performance characteristics. 

This assumption does not currently affect the results provided by the model since the booster 

phase is being modeled by a kinematic algorithm, track discrimination factors such as multiple 

objects along a single line of sight are ignored, and track detection factors such as signal-to-noise 

28 



ratio are ignored. Thus, this assumption currently only affects the rate at which an overload 

condition is reached and resolved. 

The enemy is a rational actor who will employ deception tactics to disguise launch 

facilities, vehicles, and missile launches and will attempt to attack military and politically 

sensitive targets. The enemy is also competent so that threat missile performance is within design 

parameters and the enemy is capable of properly employing the missile. 

The enemy cannot directly target the interceptor or SBIRS Low satellites, but the enemy 

is capable of targeting sea-based and shore-based SBIRS assets and associated communication 

links. This assumption has no effect on the performance of the simulation, but would effect the 

outcomes determined by higher-resolution models. 

D.        TRACKING AND MONTE CARLO ASSUMPTIONS 

A ballistic missile trajectory is composed of three parts: the powered flight portion, the 

free-flight portion, and the re-entry portion. The powered flight portion lasts from launch to 

booster burnout, and based on the assumptions described in the previous section, the free-flight 

and re-entry portion comprise the remaining time of flight. 

Three types of powered flight trajectory models are rigid wire, flexible wire, and stereo 

kinematic. The rigid wire model assumes that target altitude and down-range travel only depend 

on time since launch. This model is the most restrictive in that it assumes every booster rocket of 

a given class follows the same trajectory. The flexible wire model assumes altitude and down- 

range travel is a function of time since launch and a constant, which may change during the 

trajectory. This constant changes the shape of the trajectory. The stereo kinematic model is a 

cubic polynomial fit of successive detections by the acquisition sensor. This model has the most 

number of degrees of freedom for a closed-form solution and hence offers a "worst-case", in 

terms of accuracy, solution. However, as the model makes no assumptions on underlying booster 

dynamics, it is completely general. This model is used as the default in the analysis because it 

offers a lower bound on booster phase tracking accuracy and hence will require the greatest 

number of detections to provide an acceptable initialization of the Kepler trajectory algorithm. 

The cubic polynomial fits in the first step are computed using a fixed number of 

detections, typically through six detections. The time derivative of the position, velocity, 
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acceleration, and jerk vector is a velocity, acceleration, jerk, and zero vector and a noise term 

vector which only affects jerk. Note, jerk is the derivative of acceleration with respect to time. 

Thus, the equation is given by 

v ^ 
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dt 
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0 

o 

v°y v*y 

and 

^) = x0+vot + -aot
2+-j/. 

There are two primary components of the velocity error associated with booster tracking: 

state estimation errors in boost phase tracking and additional uncertainties in boost-to-ballistic 

propagation due to unknown burnout time. The accuracy of determining the boost phase motion 

is important for initial computation of the Kepler motion. It affects computational accuracy and 

hence the frequency and number of detections required to achieve the desired ballistic track 

accuracy. In general, the exact time of booster burnout cannot be determined, but with a five 

second revisit rate and three satellites tasked to track the missile, the expected accuracy can be 

computed. 

First, the following four assumptions are made: 

a. The booster is equally likely to burn out during any given 5 second interval and its 
time of burnout is independent of sensor operation. 

b. The sensors act independently. 

c. The sensors are randomly assigned to track the missile, but once the order is 
established, it does not change. 

d. The time to detect the missile is instantaneous. 

Without loss of generality, assume sensor 1 looks at time t = 0, and then sensor 2 and 

sensor 3 have detections within the next t seconds. Then, 

Y = min[U2, U3] 

where: 
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U2 = time at which sensor 2 detects the missile 

U3 = time at which sensor 3 detects the missile. 

With t defined to be the length, in seconds, of the revisit rate (5 seconds in this example), 

then 

Pr[Y < y] = Pr[at least one U2, U3 < y] 

Pr[Y<y] =l-Pr[U2,U3>y] 

Pr[Y<y] =l-[U2>y][U3>y] 

because sensor 2 and sensor 3 operate independently. 

Since U2 and U3 are distributed uniformly over the interval t, 

-|2 

Pr[Y < y] = 1 - 1- 

Thus, the cumulative distribution function is given as 

Fy(y) = i- i-l 
-i2 

for   ye[0,t]. 

After differentiating the cumulative distribution, the probability density function is written 

t 
fy(y)=-2 1-1 

V   h 
1- 

t 

With t = 5, 

f(y) = --^ JyU)    5    25 

To compute the expected value of the length of uncertainty, the following equation is used 

I*M-jf<H*> 
2y    2y 2 ^ 

5       25   r        " 
y2   2y 

75 
25    250    5 
 = — seconds. 
5      75     3 

The cumulative distribution function can be generalized to any number of sensors with any given 

revisit rate, and is given by 
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where: 

1 — 
t 

-\s-\ 
y forye[0,t] 

s =number of sensors 

t=revisit rate. 

The (averaged) quality of the estimated three-dimensional target state, both at the time of 

the last detection and at the time of the Kepler initiation, is controlled by a number of factors, 

including: 

a. The assumed random and bias components of the line-of-sight error for individual 
detections. The random error is assumed to be normally distributed with a mean 
value of zero and standard deviation of 30 microradians. The bias is an unknown 
additive constant that is present due to errors in pointing the focal plane. This error is 
also assumed to be normally distributed, but with a mean value of zero and standard 
deviation of 20 microradians. 

b. The order of the interpolating polynomials for the mono fits. 

c. The number of detections (i.e., the time window) used in the mono fits. 

d. Track quality at time of predict-ahead. 

The missile may perform a generalized energy management maneuver prior to beginning 

its ballistic trajectory. This event is currently not coded into any missile profile, however, the 

kinematic tracking algorithm will track the missile during this maneuver. 

E.        SCOPE OF ANALYSIS 

The scope of this analysis is to identify and assess feasible, tactically prudent track revisit 

schemes for SBIRS Low operations using Monte Carlo computer simulation and exploratory data 

analysis. The problem of analysis using exploratory modeling can be conceptualized as the 

problem of how to select the limited number of experiments that can be practically run to best 

inform the question of interest. The design of the exploratory analysis is based upon timeline 

constraints dictated by the typical missile launch scenario shown in Figure 4 and conducting a 

reasonable number of model events without sacrificing details of analysis. 

The primary concern is the development of a methodology and a specific implementation 

that is designed, from the outset, to address some of the important open questions in SBIRS Low 
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operations. The SBIRS Low model can be characterized as a scalable, high-performance 

compute engine and a flexible overall system design allowing use of "minimum acceptable 

fidelity" components for some studies or higher fidelity components as needed for other studies. 

The chosen fidelity is a trade-off between computational speed and resources, complexity of 

formulas, inclusion of parameters, and desired level of insight. The sampling strategy utilized is 

Monte Carlo because it provides the desired high degree of accuracy and the computational 

resources are available. A discussion of Monte Carlo methods is contained in Appendix A. 

The use of 20,000 Monte Carlo simulation runs per event was chosen to reduce the 

standard error of the instantaneous position accuracy at time t = 50 seconds to an order of five 

meters. Suppose that T|], r\2, ■ ■ ■, T]n are independent observations from the same parent 

distribution. Then an unbiased estimator of the mean of this parent distribution is 

-_T?]+7]2+y3+- + 7ln 

' n 

and it has estimated standard error 

G 

v« 

This computational technique provides an accurate estimation of the distribution's "tail" behavior. 

For a Gamma distribution, the expected value and variance is given by 

E[X] = |i = aß and V(X) = c2 = aß2. 

From which the standard deviation follows: 

a = Vcr^ = ß*Jcc. 

Thus, the estimated standard error is written 

Using instantaneous positional accuracy values at time t = 50 seconds from a CSS-2 launch in 

which sensor 1 and sensor 2 have a 5 second revisit rate, a representative scenario is given by 
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= £[ä = (0.1498)(VÖ4965) = O1056 = QQ0(n4M ^^ = Q ^ ^ 
'      V^ V2ÖÖÖÖ 141.42 

Note, this is the precision of the Monte Carlo calculation itself, not a "real world" measurement 

of the precision of the SBIRS Low system. 

The SBIRS Low modeling goals are identification of the metrics, identify/explore 

sensitivities, develop intuition, and provide benchmark/reference book of track accuracies as a 

function of missile type, sensor revisit scheme, length of time since booster burnout (i.e., length 

of time in ballistic orbit), and length of predict-ahead time. 

The instantaneous or any arbitrary predict-ahead time position error is modeled as a 

generalized gamma distribution where 

1 -i 
1 yf-Kß */    „ o\    /    •*•    e        tor x ^ 0 f(x-,a,ß) = {   ßaT(a) 

\0 otherwise 

where a > 0, ß > 0. 

The gamma distribution was chosen because it is the parent distribution of the chi-squared 

distribution. Each component of the position error was created from a normal distribution and by 

construction of the formulation, the errors are independent. The result of squaring then summing 

"n" independent standard normal random variables is a chi-squared distribution with n-degrees of 

freedom. Thus, the ratio of the absolute value of the position error divided by the variance of the 

position error is distributed X2 w*tn three degrees of freedom. The result of dividing by the 

variance is to normalize the random variable. This equation is given by 

— — c*2        c2        c2 
Xpredict ~~ Xtruth \        Ox  +Oy +Oz 2 

2 ~ _2 ~ %[*] 
^ predict predict 

This relationship can also be expressed as 

STP-lö ~ xl, 
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where: 

P = variance/covariance matrix = 
°l ffv <r* r o\ Px,y0xOy 

**> °) °yz = Px,y°X°y °\ 
CT* °yz °'\ _P*,z°x°z Py,z°y°z 

Px,z<7x<rz 

Py,z°y°z 

and p = correlation coefficient. 

The parameters a and ß are estimated using the method of moments technique that is 

given by the following equations 

a = 
(i)£*,2-*2 

x 

— 2 

where: 

x = ^jT (bin)(count) 
bins 

(i)2>? =J,(bin){count? 
bins 

and 

bin =mean value of each position error bin (x-axis value) 

count = proportion of position errors in the given histogram bin (y-axis value). 

By modeling the data as a generalized Gamma distribution, the expected value and 

variance of this distribution can be compared to the mean and variance of a %2 witn v degrees of 

freedom, which is given by v and 2v, respectively. Hence, the normalized theoretical mean and 

variance are 3 and 6, respectively. This modeling technique will allow comparison between 

theoretical and actual simulation results. 
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IV.       SBIRS LOW MODEL AND ANALYSIS SPECIFICS 

A.        BASIC MONTE CARLO STRUCTURE 

A "model event" is a computer simulation of the SBIRS Low tracking system's response 

to an individual threat missile launch. It consists of: 

a. "Flying" the simulated booster and resulting ballistic objects. 

b. Generation of simulated detection sets based on SBIRS Low observations of the 
physics-based booster rockets and subsequent ballistic tracks. 

c. Computation of an estimated track position based on the random data. 

d. Evaluation of track performance metrics (e.g., difference between estimated and true 
positions). 

A "Monte Carlo analysis" is simply the generation of a large number of pseudo random 

model events and the evaluation of empirical probability distributions (e.g., histograms) from the 

performance metrics of individual events. 

A model event is specified for a given satellite constellation, acquisition and track sensor 

revisit scheme, and missile type. For all model events, the satellite constellation consisted of a 

total of 27 satellites, three satellites in nine different orbits, and the acquisition sensor, which 

detects the plume from the missile's booster motor, had a track revisit rate of five seconds.   The 

revisit rate for each track sensor, which detects ballistic objects, was varied according to a 

notional pattern and consisted of 

a. Delaying the time after booster burnout the sensor first attempted to detect the 
ballistic object, and/or 

b. Varying the number of satellites used to track the ballistic object, and/or 

c. Specifying whether the closest, next closest, or third closest satellite was utilized. 

Each run consisted of a specified number of single missile launches distributed at 

random, according to a uniform distribution with respect to the surface area, within a specified 

latitude/longitude box. The number of runs per event, 20,000, was determined based on a desire 

for the estimated standard error to be on the order of five meters. See Chapter 3, section E for the 

applicable calculations. 
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The timeline for a representative missile launch is shown below in Figure 5, which is 

identical to Figure 4. 

Mid-course 
range =150 seconds 

Lethal object 

Intercept 
Range = 90 seconds 

Figure 5. Ballistic Missile Launch Timeline. Nominal SBIRS Low system operational timeline. 

A random launch time is generated within the launch window. The primary affect of 

randomizing the launch time is to vary the phasing of the SBIRS Low constellation. This 

randomization helps to ensure inferential validity of the analysis. 

All available satellites, typically three, collect the boost phase tracking data. The two- 

dimensional boost phase data is collected from each satellite every At seconds and fused to the 

track's three-dimensional earth-centered inertial reference frame state matrix (position and 

velocity vectors) at burnout. 

Once booster burnout is sensed, the acquisition sensor performs a track handover to the 

track sensor. A post-boost burnout handover from the acquisition sensor to the track sensor is the 

preferred option because a reliable trajectory model for predictions exists only for ballistic targets 

and the ballistic initiation prescription provides an unbiased estimate of the Kepler trajectory 

from the available sensor data. If the handover were attempted prior to this perceived burnout, 

the target state estimation errors can only get worse, with an associated increase in the overall 

track loss probability. 
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The most significant factor in track loss probability is the precision of the velocity 

estimate for Kepler initiation. In this regard, the track loss probabilities (for differing fields of 

view) are highly correlated with the precision of the associated velocity estimate provided by the 

boost phase tracking system. 

The ballistic phase analysis is characterized by iterating through the following three steps 

until the missile impacts the earth. 

1. Positional data on the ballistic object is collected from the specified sensors based on 
the track revisit scheme. 

2. The Kepler track parameters are fitted according to least squares estimation. 

3. Positional accuracy and their statistical distribution are calculated for various predict- 
ahead times. 

For example, at times t = 50, 100, and 150 seconds after booster bumut, the current Kepler track 

fit is formed. The instantaneous, 50 second predict-ahead, and 100 second predict-ahead tracking 

accuracies are then computed and a Gamma distribution is fit to the probability of a given relative 

positional uncertainty. In determining relative spherical error, the absolute value of the difference 

between the detected and actual location divided by the variance of the prediction is computed. 

This equation is given by 

^predict       Xtruth S2+s2+S2 
x y       ^z 

2 2 
predict predict 

Note that this error is a "real" error and does not require Gaussian assumptions. By avoiding the 

requirement to make Gaussian assumptions, the critical tail region is more accurately determined. 

However, if the assumption of combining independent Gaussian random variables is made, then 

the relative spherical error is distributed as chi-squared with three degrees of freedom. 

Tracking uncertainties are induced into the system by assigning errors to all sensors. The 

error, £, is given as 

y*        rm       h 
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where: 

e = total error 

£r   = random error ~ JV(0,302) 

£br s bias error- N(0,20z) 

i = i'hsensor — 1,..., 27 

j = j'hevent = l,..., 20000 

k = k' detection. 

The bias error remains constant for each sensor during a missile's entire time of flight and is then 

recomputed for the next event, but the random error is varied for each sensor after every 

detection. 

The ballistic phase tracker may use a tracking scheme of mono sensing only, stereo 

sensing only, or a combination of both. The stereo sensing rapidly provides accurate 

determination of the orbital elements because azimuth and elevation information from each 

satellite is combined to form range. In the case of mono sensing only, the determination of the 

orbital elements requires significantly more detections, and hence time, because the tracker must 

derive range over multiple detections. Additionally, tracking predict-ahead accuracy is greatly 

degraded. 

The goals for any generic tracker are interpretation of sensor data and identification and 

characterization of targets of interest. These goals are achieved by balancing two system-level 

trade-offs, (1) false reports versus missed (true) reports, and (2) timeliness versus confidence. 

The tracker must interpret sensor data and accurately identify and ignore the clutter while 

associating interesting detections into tracks. 

The tracking problem, associating detections into tracks, is not rigorously solvable due to 

a number of unavoidable difficulties such as extraneous detections (false alarms), 

inadequate/unknown system models ("stochastics"), and association ambiguities for multiple 

objects. Additionally, the number of tracks seen by one sensor may not match the total number of 

tracks seen by another. This difficulty is especially challenging to resolve in the case of a 

"handover" from one satellite to another. In real world SBIRS Low operation, discrimination 
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failures would be costly. This "first step" analysis sidesteps the real tracking issue by considering 

only (randomized) single target launches. 

There are varied methods for modeling trackers such as kinematic versus precision and 

deterministic versus stochastic. They are implemented by either batch or recursive computations. 

Batch implementation is characterized by single fits to multiple detection sets and in 

mathematical terms, this type of tracking is known as least squares. Hence, the entire data is refit 

upon arrival of each new observation. The advantages of this method are robustness and it is a 

"proven" technology. The disadvantages are CPU-costly and does not easily handle model 

errors. Recursive implementation is characterized by continual re-fits as new detections are made 

and in mathematical terms, one of several types like this is known as Kaiman filtering. Thus, the 

tracker will iterate an update of the current estimate from a single new measurement. The 

advantages of this method are it is fast and naturally accommodates model errors. The 

disadvantage is that it generally has poorer convergence characteristics compared to least squares. 

A system model that represents the trade-off between detections and an acceptable false 

alarm rate is problematic because: 

a. A poor system model accepts junk. 

b. An overly rigid system model accepts nothing. 

c. An unconstrained model accepts everything. 

d. A model with the ideal ratio of probability of detection to probability of false alarm 
may require a long time window. 

Optimal association problems require large CPU costs, however, the larger problem is that 

poor/incorrect behavior for incomplete data, such as missed detections or "new objects," can 

cause substantive errors. There is no one single answer to the tracking problem and specifics 

must be matched to overall system requirements. Thus, pure mathematics must be tempered by 

heuristics and operator intuition, and since no single method works everywhere, full-scale system 

simulations are essential. 
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B. BOOST SPECIFICS 

The trajectory of each type of missile is modeled as a physics-based parametric fit to 

observed trajectories, using data from relevant intelligence sources. 

The rotation of the earth must be accounted for when aiming a ballistic missile. This 

aiming point does not coincide with the target at the time the missile is launched. Rather, it is a 

point at the same latitude as the target but east of it an amount equal to the number of degrees the 

Earth will turn during the total time the missile is in flight. This problem is solved by a 

straightforward iterative procedure that is repeated until the computed value of total time of flight 

agrees with the estimated value. [Ref. 20] 

Given the simulated model trajectory, individual boost phase detections are generated in 

the SBIRS Low model using a simple model with: 

a. A constant revisit rate per sensor, 

b. Simple geometric "cuts" to determine target visibility (no signal-to-noise ratio 
determinations). 

The target viewing times of individual boost sensors are staggered randomly, but once 

this relationship is established, it does not change for the duration of the event. 

Given the boost data, the booster state at burnout is estimated using the general kinematic 

estimation procedure outlined in Section C. The alternative of "tracking" using a model based on 

the underlying data generation model tends to give unrealistically small state estimation errors 

and was not used in the final analyses described in this paper. 

C. KEPLER SPECIFICS 

Five independent quantities called "orbital elements" are sufficient to completely 

describe the size, shape, and orientation of a ballistic orbit. A sixth element is required to 

pinpoint the position of the satellite along the orbit at a particular time. The set of five orbital 

elements is shown in Figure 6. 
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Figure 6. Orbital Elements. [Ref. 21] 

Five of the orbital elements are defined as follows: 

a. Semi-major axis (a): a constant defining the size of the conic orbit. 

b. Eccentricity (e): a constant defining the shape of the conic orbit. 

c. Inclination (I): the angle formed between the K unit vector and the angular 
momentum vector, h. 

d. Longitude of the ascending node (ß): the angle, in radians, in the fundamental plane, 
between the I unit vector and the point where the satellite crosses through the 
fundamental plane in a northerly direction (ascending node) measured 
counterclockwise when viewed from the north side of the fundamental plane. 
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e.   Argument of periapsis (00): the angle, in radians, in the plane of the satellite's orbit, 
between the ascending node and the periapsis point, measured in the direction of the 
satellite's motion. In the standard Kepler set (circular orbits), this parameter is 
undefined and set to zero. 

The sixth orbital element is mean anomaly at time t0 = 0, the time of booster burnout. 

Mean anomaly is defined as 

M = E - esin(E). 

According to Kepler, 

dM 

dt 
= constant 

so that M is the natural "time measure" for Kepler orbits. 

The angle E, called the eccentric anomaly, is shown in Figure 7 

Figure 7. Eccentric Anomaly. Eccentric anomaly, E. [Ref. 22] 

where: 
a=radius of circle, centered at O, that has been circumscribed about the ellipse (path of 
Kepler orbit) 
F=focal point of the ellipse, which is the center of the earth for this analysis 
OV = line extending along the major axis of the ellipse, denoted as the x-axis. 

The eccentric anomaly is related to true anomaly, v, shown in Figure 8, by 

e + cos(v) 
cos(£') = 

l + ecos(v) 
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Figure 8. Depiction of True Anomaly. Depiction of true anomaly, v. [Ref. 23] 

To transition from the powered flight model to the Kepler orbit model, the boost-phase 

tracker data initializes the non-linear least squares algorithm used by the ballistic-phase tracker. 

The algorithm used in the ballistic-phase tracker is the Levenberg-Marquardt method, which is an 

extension of Newton's algorithm. [Ref. 24] The Levenberg-Marquardt method varies smoothly 

between the extremes of the inverse Hessian method and the steepest descent method. The latter 

is used far from the minimum, switching continuously to the former as the minimum is 

approached. It should be noted that this method enjoys the property of global convergence, i.e., 

the algorithm converges to a point of zero gradient regardless of the starting point. However, the 

initial starting point must be "reasonably" close to the solution to achieve the appropriate 

solution. 

The non-linear least squares model is defined as 

Y = f{e,t) 
where: 

0 =M-element parameter vector 

Y =N-element vector of all data 
t = indexing variable (time, bin number, etc.). 

Implementation of the standard linearized least squares is given by 

where: 

$9 = correction step from linearized approximation 
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Aj = linearized matrices for final estimated parameter value 

Bj = matrices of observed data minus predicted values 

j = index of data (sum over full data set). 

The Marquardt modification is given by modifying the matrix A as 

S9 = M{A)~
1
B 

where: 

A = Marquardt convergence factor. A is nonnegative and scales the step size. 

For small A, 

'LS 

For large A, 

SB = —Ve^
2 = small gradient step 

To assess the goodness of fit, a score function that is to be minimized is defined as 

N 

$ TOTAL = ?]     >  ~ ^N"i 

where: 

iV = number of data values - number of estimated parameters. 

With the implementation outlined above, the Marquardt algorithm is initialized by 

choosing X small (e.g., A, = 10"4) and making initial guess 0O. The method is performed using 

the following iterative steps (an explanation of the method is given following the algorithm): 

1.   Compute 

dQj=M{A)~lSB 

etrial=Qj+SQj 

Snew = S\3 trial ) 

2. ifsnew<sold=s(e.) 

Accept step: 0y+I = Ötrial 
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Ä 
Reduce scale: A —> —    (R = 10) 

Go to (1) for next step. 

3.   If Snew > Sold then repeat 

A->AR 
ÖQj=M{Ay:SB 

0m,,=e,.+<5ö, 

Until Snew=s(0m.a,)<S old 

©;>,=©,„„, 

Go to (1) for next step. 

End of algorithm. 

In step 1, the first equation determines the direction in which the parameter vector 

"moves" and the second equation updates the parameter vector based on the step size. The third 

equation applies the updated parameter vector to the score function. 

Step 2 is executed if the value of the new score function is less than the old function (i.e., 

represents an improvement). The trial parameter vector updates the previous vector and the 

convergence factor is reduced. By reducing the convergence factor, the next step size is smaller 

since the algorithm is closer to its termination criteria. 

Step 3 is executed if the value of the new score function is greater than the old function 

(i.e., does not represent an improvement). The first three equations represent the algorithm 

attempting to find a descent direction by taking increasing step sizes. Once a descent direction is 

found, the parameter vector is updated and the algorithm is repeated. 

The algorithm is terminated when some appropriate stopping condition (i.e., level of 

accuracy) is met. 

Applying the above general procedures to computing the Kepler state matrix, the non- 

linear least squares is fit using: 
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minimize: Zw^fiPfDj 

where: 

Dj = [Observation - Pr ediction]jth damm = Zj - Zpred (p) 

j = \,2,...,Nda!a. 

The first datum is the handover from the boost-phase tracker which is given by 

D,={x,v;Pj. 

Subsequent data points are two-dimensional line-of-sight detections provided by each ballistic- 

phase tracker that either remain mono detections or are fused to become stereo detections. The 

arithmetic to solve each minimization problem is straightforward but tedious. 

The above procedure is not the most general; Kaiman filters would allow "model noise," 

but model noise is not important for non-maneuvering ballistic tracks. 

D.        SAMPLE POINTS AND PREDICT-AHEAD 

The global scheduler must ensure that the appropriate level of tracking accuracy is 

maintained throughout the missile's time of flight. For example, the system must be able to 

discriminate objects, e.g., a re-entry from an attitude control module, not just track each 

individually. This level of tracking is highly scenario dependent where different tasks are time- 

dependent, and is another facet of the difficult to quantify efficient tasking problem. 

The data is sampled at time t = 50, 100, and 200 seconds (after booster burnout) because 

these times represent critical points in the timeline of the representative ballistic trajectory.   By 

time t = 50 seconds, the system should have discriminated the non-lethal objects from the lethal 

objects, if applicable. Although the simulation models detections as instantaneous occurrences, 

object discrimination in actual system operation may take a dwell time considerably longer than 

10 seconds. Thus, by time t = 50 seconds, the system would have several opportunities to dwell 

on multiple objects. By time t = 100 seconds, the system should have discriminated the lethal 

objects and be tracking the lethal objects with sufficient accuracy to target them with interceptors. 

By time t = 200 seconds, interceptors should be airborne. 
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At each of these three times, four quantities are computed. First, predict-ahead positional 

accuracy is computed for instantaneous, 50 seconds, and 100 seconds. For the 50 and 100 second 

predict-ahead quantities, these predictions assume that the system receives no additional updates 

on the given ballistic track during the predict-ahead period. Four empirical containment bounds, 

80%, 90%, 95%, and 99%, are computed at the three data sampling times. These four bounds 

were chosen because they represent analogous, commonly used confidence intervals. 

Second, histograms are then created at the specified sampling time(s). Two parameters, 

N_Bins and X_Max, are used to match the granularity of the histogram bins to plausible 

estimation error variations. For all events N_Biris was set at 80 and for all events except "Mono" 

and "Sequential Mono" (described in Section E), the parameter X_Max was set at 8 kilometers. 

For the "Mono" and "Sequential Mono" events, X_Max was set at 32 kilometers. 

Third, an empirical cumulative distribution function is determined from the histogram in 

the straightforward manner—simply sum up histogram bin contents below each histogram bin 

edge. 

Fourth, the empirical histograms are fit to a Gamma distribution parameterized as 

Zenite)"-1 

P{x;a,X}- .  , x>0 
UP) 

0 otherwise 

where a, X > 0 and u = —   and   o   —   . . 
X X2 
a       ,     2 _ öL 

1 
This parameterization is equivalent to that given in Chapter 3 with ß = — and the containment 

X 

bound levels used for predicting positional accuracy are also used in predicting the two Gamma 

distribution parameters. See Chapter 3, Section E., for the method of moments technique for 

estimating a and ß. The containment bound levels are calculated by counting events, that is, a 

95% containment bound is calculated by finding r095 such that 
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JV(r<ra9S) 

N, 
= 0.95 

total 

where ro.95 is the range corresponding to the 95th percent order statistic. 

E. ANALYSIS SAMPLE SPACE 

The analysis consisted of the exploratory region shown in Table 1 and analyzing the 

system's tracking accuracy of the CSS-2 and M-9 missiles. These missiles were chosen because 

their dynamic flight characteristics at booster burnout combined with the uncertainty of the time 

of booster burnout represent a worst-case scenario in the initialization of a ballistic track. 

Exploratory Regions 

Type of Event Description 
Mono Event viewed by only one sensor. 
Sequential Mono Event viewed by one sensor for first 75 or 150 seconds then performs 

handover to another sensor. Handover combinations were sensor 1 to sensor 
2, sensor 1 to sensor 3, and sensor 2 to sensor 3.  

Synchronous Event viewed by two sensors with simultaneous revisit rates 
Asynchronous Event viewed by two sensors with different revisit rates 
Delayed Event viewed by two sensors with synchronous revisit rates but delay viewing 

ballistic track after booster burnout.   
Staggered Combination of the synchronous and delayed events 
Latitude Shift Synchronous revisit rates using sensor 1 and sensor 2 for randomly chosen 

latitude between N02 to N05, N22 to N25, N62 to N65, and N82 to N85. 

Table 1. Exploratory Regions. SBIRS Low model sample space. 

In each case, the revisit rate is varied between 5 and 40 seconds in 5 second increments. 

Where applicable, the delay in beginning the Kepler track was varied between 5 and 30 seconds 

in 5 second increments. The latitude for all events was randomly chosen between N42 to N45, 

except for the "Latitude Shift" events. 

The range of revisit rates was chosen because it provides the desired insight into the 

trade-off between a large number of detections over a small time period versus a small number of 

detections over a large time period.  The 5 second increment increase per event represents a 

balance between accuracy of extrapolation between revisit rates and conducting a reasonable 

number of model events. The default latitude range from which launches originated was selected 

because it is a mid-range latitude from which most threat missiles would be launched. The 
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longitude range was held constant, between E52 and E56, for all model runs because positional 

accuracy is not a function of longitude (with regard to using an earth-centered inertial reference 

frame to specify the position of each satellite in the constellation) since launch times are 

randomized over an entire day. 
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V.        RESULTS 

A.        MODEL INPUT PARAMETERS 

The SBERS Low model input parameters are contained in an ASCII text file. The input 

file is divided into four sections: (1) CONTROL, (2) BOOSTER, (3) BALLISTIC, and (4) 

OUTPUT. An overview of an input file is discussed in this section and specific parameter names, 

valid entries, and miscellaneous file-specific requirements are listed in the sample input file 

described in Appendix B, section A. 

The control parameters specify the SBIRS Low configuration and the number of Monte 

Carlo simulated events to be included in the run. For all runs, the satellite constellation was 

defined as nine rings with three satellites per ring and the number of events per run was 20,000. 

As described in Chapter 3, section E, this number of events results in the estimated standard error 

of the instantaneous position accuracy being on the order of 5 meters. 

The booster phase parameters specify the trajectory profile, launch mode, launch and 

target position, and sensor viewing availability for the missile to be launched. Individual 

launches were generated using a simple, efficient interpolation of appropriate boost phase data 

(see Chapter 3, section D). The launch mode was "random" for all events, which results in a 

random target position (impact point). There are nine different missile classifications available to 

the user and they are described below. The CSS-2 and M-9 missiles were the only missiles used 

in the exploratory model analysis because of their dynamic flight characteristics at booster 

burnout. 

a. CSS2: Follow-on version of the first operational Chinese ballistic missile, the liquid- 
fuelled CSS-1 which was reverse-engineered from two Russian R-2 (SS-3) 
intermediate range ballistic missiles delivered in 1958. The CSS-2 can deliver a 3 
megaton nuclear warhead over a distance of 2800 km. Saudi Arabia purchased 36 
CSS-2s with conventional warheads in 1988, where they are maintained and operated 
by Chinese personnel. The CSS-2 gives Saudi Arabia the longest-range theater 
ballistic missile capability in the Arabian Gulf region, and enables them to target 
cities as far apart as Moscow, Algiers, and Rome. China currently deploys 40 
CSS-2s at six field garrisons and launch complexes. 

b. M9: A Chinese intermediate-range, road mobile, solid propellant missile that began 
development in 1984. It has a range of 600 km, a single 500 kg high-explosive 
warhead, and a circular error probability of approximately 300 m. There are 
approximately 300 missiles in service in China. 
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c. SCUD: This missile forms the basis of Iraq's missile program. It purchased this 
missile from the Soviet Union in 1974. The SCUD-B has a liquid-fuel booster 
rocket, a single warhead, and a range of approximately 300 km. 

d. ALAB: Al Abbas. A modified SCUD missile in which the size of the warhead has 
been decreased to provide space for additional propellant. The missile had the 
warhead reduced to 300 kg and a further increase in liquid fuel capacity to give a 
range of 900 km. The circular error probability is reported to be no more than 3 km. 
Iraqi technicians were reported to have concluded that an upgraded version of the Al 
Hussein with improved motor performance and higher energy liquid fuel would give 
greater range with a larger payload than could be achieved with the Al Abbas. 

e. ALHU: Al Hussein. A modified SCUD-B missile with a range of more than 500 
km. Analysis of the Al Husseins fired during the Gulf War revealed that its 600 - 
650 km range had been achieved by reducing the warhead weight to around 500 kg to 
allow an increase in fuel capacity. The circular error probability of the Al Hussein is 
poor, with reports generally estimating it to be between 1 and 3.2 km. 

f. ND: Nodong 1. A North Korean SCUD-based missile with a range of 1000 km and 
a payload of 1000 kg based on deductions from intelligence photographs of the 
missile's size and fuel capacity. Like the SCUD-B and SCUD-C, the Nodong 1 is 
road mobile and transported and launched by a Korean-produced copy of the Russian 
MAZ 543P transport erector launch vehicle. Using a three-gyroscope inertial 
guidance package similar to that of the SCUB-B, the Nodong 1 is believed to have a 
circular error probability of approximately 700 meters. 

g. SS26: A Russian missile that is a follow-on variant to the SCUD-B. It is a short- 
range, road mobile, single-stage solid propellant missile. It has a single 700 kg high- 
explosive warhead, a range of 400 km, and circular error probability of 
approximately 10 m. Additionally, it may contain tactical decoys. 

h.   GENR: A notional missile, developed as an analyst tool, with a booster burn time of 
100 seconds. 

i. UNK1: Argentinean Condor 1 (acronym is historical accident). The Condor 1 was 
manufactured in Argentina in the late 1970s. The Condor 1 is a single-stage, solid- 
fuel sounding rocket with a range of 100 km and a 400 kg warhead. [Ref. 25] 

The ballistic phase parameters specify the parameters and frequency of ballistic track 

sensing. The sensors were ordered by range-to-target and this ordering was recomputed, based on 

a user-defined value, every 60 seconds. For the entire analysis, the maximum number of 

available satellites was defined to be three, but at any given time the maximum number of 

satellites that were used to detect an object was two. Additionally, the notional uncertainty of the 

time of booster burnout is defined. This value is used in estimating the initial state covariance 

matrix of the ballistic object. 
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The output control section specifies the quantities that are computed and reported during 

program execution. For all events, 80%, 90%, 95%, and 99% track containment bounds were 

computed at times t = 50, 100, and 200 seconds after booster burnout because these three times 

represent critical points in the timeline of the representative ballistic trajectory. At each of these 

three times, the containment bounds represent the instantaneous, 50 second predict ahead, and 

100 second predict ahead accuracy. Additionally, histogram data and cumulative distribution for 

the fitted gamma distribution data are outputted to separate files. 

B.        OUTPUT REPORT 

The SBIRS Low model provides the user with up to three separate output files. The most 

important file is the one that contains the output report. This report is divided into four sections 

where the first three sections summarize the user-defined inputs. The output report is an ASCII 

text file and an overview of an output file is discussed in this section. A detailed description of a 

sample output file is given in Appendix B, section B. The other two files contain histogram data 

on the track containment level and an empirical gamma cumulative distribution function fit to the 

histogram data. 

The output file is divided into four sections: (1) Run Control Boost Component 

Summary, (2) Run Control Ballistic Component Summary, (3) Run Control Output Selection 

Summary, and (4) Run Control Results. The description below corresponds to the output file 

shown in Appendix B, section B. 

The Run Control Boost Component Summary is described below. 

In this event, the chosen missile is an M-9 whose booster stage is modeled as a flexible 
wire. The launch time window is given as 0.00 to 7200.00 seconds, which equates to one 
day (making positional accuracy independent of launch longitude). With a random 
launch mode, the actual launch points vary within a region defined by N52.00 to N56.00 
and E042.00 to E045.00, which represents a region in Russia east of Moscow. The two 
closest sensors will build the boost phase track with a revisit time of every 5 seconds. 

The Run Control Ballistic Component Summary is described below. 

After booster burnout, time is reset to zero. Ballistic tracking data will be used from the 
three closest sensors, although additional sensors may be within line of sight of the 
missile. Sensors are numbered from the closest sensor-to-missile distance, to the next 
closest sensor-to-missile distance, etc. Thus, for sensor 1, the closest sensor, from time 
zero to 100 seconds, the sensor will revisit the missile every ten seconds. At 100 
seconds, the revisit time is changed to every thirty seconds until time equals 300 seconds. 
From time equals 300 until the missile impacts its target position, the sensor revisits 

55 



every fifty seconds. Entries for sensor 2 are exactly analogous to sensor 1 and the entries 
for sensor 3 are analogous to sensor 1 except the sensor does not begin tracking the 
missile until fifty seconds after booster burnout. The Sensor Order Viewing Window is 
the frequency, in seconds, in which the distance from the missile to all sensors in the 
missile's line of sight is recomputed. Once the order is determined, it remains unchanged 
until the distances are recomputed. 

The Run Control Output Selection Summary is described below. 

These parameters generate position predictions at time equals 50 seconds, 150 seconds, 
and 250 seconds. For each of these times, position predictions, assuming no additional 
updates, are made for the current position, time equals 50 seconds into the future, and 100 
seconds into the future. For the current position, the distance specified is the mean track 
error distance. By specifying a containment level (percentage), the output computes the 
distance that contains this given percentage of missiles. Additionally, at each of these 
three times, a gamma distribution is fit to the empirical track estimation error data. 

The Run_Control Results is described below. 

The first set of data reports various machine processing times and initial error in 
initializing the Kepler trajectory. The number of event attempts should always match the 
number of successful events. One reason for an unsuccessful event is large errors in the 
boost phase tracking which result in imprecise initialization of the Kepler trajectory. In 
actual system operation, the track sensor would be unable to locate the post-boost 
vehicle. 

A total of three State/Prediction Statistics are generated for tracking error and the fitted 
gamma distribution. The Delta X entry represents the mean track error and the estimated 
standard error of this value. The entries in the columns to the right, for each containment 
level, are the distance, in units of kilometers, that contain the corresponding percentage of 
missiles. The statistical values describe the fitted gamma distribution, parameterized as 
shown in Chapter 4, section D. 

If "Insufficient Results" is displayed, the most likely reason is that the missile has 
impacted the earth prior to the time of the applicable computation. For example, if a 
missile has a ballistic flight duration of 240 seconds, the model cannot calculate a 
predicted position for time 250 seconds. 

C.        ANALYSIS OF CSS-2 MISSILE DATA 

The SBIRS Low model was used to conduct an exploratory analysis of system tracking 

performance of a CSS-2 missile. For each of the seven types of events described in Chapter 4, 

the simulation provides tracking data at the specified times for the desired predict-ahead times, 

estimation of parameters for the gamma distribution, a histogram, and an empirical cumulative 

distribution function. The results are reported in the following three sub-sections. Additionally, 

in section E, the results are compared to those from the M-9. 
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In the first sub-section, an analysis of the ballistic track initiation failures is made for the 

Latitude Shift event where the launch latitude is bounded by N02 and N05. In the second and 

third sub-sections respectively, an analysis of mean estimation error distances for all Synchronous 

and Mono Viewing events is made. In all three sections, data is reported for instantaneous 

positional accuracy at time t = 50 seconds (after booster burnout) because by this time, the SBIRS 

Low system should be transitioning from object discrimination to targeting of the lethal object, a 

critical point in the missile's timeline. 

The results for the remaining events are listed in Appendix C. 

1.   Ballistic Track Initiation Failure 

Figure 9 was generated using the launch latitude randomly selected between the latitudes 

ofN02andN05. 

CSS-2: Fraction of Ballistic Track Initiation Failures 
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Figure 9. CSS-2: Percentage Ballistic Track Initiation Failure. Line plot of the fraction of 
ballistic track initiation failures for a CSS-2 missile at eight different ballistic sensor revisit rates. 

Figure 9 shows the fraction of ballistic track initiation failure for each of the eight 

ballistic sensor revisit rates, from 5 to 40 seconds in 5 second increments. In each case, the 

booster sensor revisit rate was five seconds. The interpretation of Figure 9 is that for the given 

ballistic sensor revisit scheme, generally described as with no delay after booster burnout is 
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detected the two closest ballistic sensors use synchronous viewing to track the ballistic object, the 

fraction of ballistic track initiation failures is "acceptable." 

The number of ballistic track initiation failures is independent of the track revisit rate 

because for each ballistic track revisit rate, sensors 1 and 2 immediately initiate a detection 

attempt as soon as the booster burnout event is determined to have occurred. The success or 

failure of the detection attempt by sensors 1 and 2 is a Bernoulli trial. Each trial is independent 

because of the random launch time, which results in a random phasing of satellites, random 

launch location, and the success or failure of one event has no bearing on the subsequent event. 

With the number of failures between one and eight per 20,000 attempts, the model for these 

counts is taken to be the Poisson distribution. 

The probability mass function of the Poisson distribution for a random variable x is given 

by 

e~xXx 

p(x;X) = —, x = 0,1, 2,... 
xl 

for some X > 0, where X is the rate. 

Using Bayesian statistics to determine a two-sided 95% credibility interval on X, the 

noninformative prior is given by 

p(A)~A~K. 

Using this noninformative prior, the posterior distribution of A. is 

p{X I x) = cX™~Yl exp(-nA), X > 0 

where: 

c = nHnx+}i)[r(rix + y2)T
l and 

x=vector of observations (number of failures). 

From the posterior distribution of X, n X is distributed as X/f2 witn 2w3c +1 degrees of 

freedom. [Ref. 26] 

From the data shown in Figure 9, using the maximum likelihood estimation technique 

with n = 8, x = 4.875 and Ä = 4.875. Thus, 2nA is distributed ;}f[79] as shown in Figure 10. 
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Probability Denstiy Function for Chi-Squared Distribution 
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Figure10. Probability Density Function for Chi-Squared Distribution. Chi-squared distribution 
of 2nA with 79 degrees of freedom. 

Given the distribution on 2nA, the two-sided 95% credible interval for X is (3.519, 

6.592). A one-sample Kolmogorov-Smirnov goodness of fit test, with the null hypothesis being 

the true cumulative distribution function is the Poisson distribution with X = 4.875 and the 

alternate hypothesis being the true cumulative distribution function is not the Poisson distribution 

with I = 4.875, resulted in a failure to reject the null hypothesis with a p-value of 0.7461. 

Although the Poisson distribution is discrete, these counts are extremely rare and it did not seem 

too inappropriate to use the Kolmogorov-Smirnov goodness of fit test. 

The reasons for a ballistic track initiation failure are the satellite phasing and the tangent 

height of the opaque clouds, which is a maximum at the equator. The rings of the constellation 

are 40 degrees apart (since the satellites are in polar orbits) and the distance between adjacent 

rings, due to angular separation, is a maximum at the equator. Combining the increased distance 

between satellites and constraints on satellites within line-of-sight of the missile, an extremely 

small percentage of missile launch events are not tracked with sufficient accuracy to initiate a 

ballistic track. 
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The existence of.coverage gaps near the equator is a known phenomenon and is currently 

an "accepted" risk based on previous trade-off analyses. Various trade-off analyses considered 

the cost of increasing the number of satellites in the constellation, implications of placing the 

satellites in higher orbits, and analysis of the likely implications of an actual missile launch from 

near the equator. 

Because the percentage failure is acceptable for the default booster and variable ballistic 

track revisit rates, no additional simulation events were conducted at faster booster sensor revisit 

rates. 

2.   Synchronous Viewing 

At time t = 50 seconds, Figure 11 shows synchronous viewing using the closest and 

second closest sensors. 
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Figure 11   CSS-2: Synchronous Detection Using Sensors 1 and 2. Line plot of the revisit rate 
versus estimation error for a CSS-2 missile using a stereo symmetric tasking scheme for the 
closest and next closest satellite. 

Figure 11 shows the estimation error for each of the eight ballistic sensor revisit rates, 

from 5 to 40 seconds, in 5 second increments. The y-axis scale is estimation error, in units of 

kilometers, and the lower the value, the more accurate the missile is being tracked. 
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The estimation error for the mean containment bound is nearly constant over the range of 

revisit rates and is at an "acceptable" accuracy. The large increase in estimation error at a revisit 

rate of 25 seconds is due to the fact that the simulation computes its tracking statistics prior to 

making a detection. Thus, given a detection occurs at time t = 25 seconds, the track's positional 

error is extrapolated an additional 25 seconds prior to the computation of tracking statistics. By 

comparison, given a detection occurs at time t = 40 seconds (using a revisit rate of either 10, 20, 

or 40 seconds), the track's positional error is extrapolated only ten seconds. If statistics are 

computed at time t = 50 seconds, the length of time of the extrapolation is a maximum when the 

revisit rate is 25 seconds. This behavior, an increase in estimation error as the length of time of 

the extrapolation increases, is common to all revisit schemes analyzed. 

There is only a modest increase in the estimation error when going from the 95% 

confidence bound to the 99% confidence bound, except at a revisit rate of 25 seconds. The 

rationale for the large increase at 25 seconds explained in the previous paragraph is germane. 

The SBIRS Low model indicated that a gamma distribution may not fit the estimation 

error data. A detailed statistical analysis was made on the empirical track estimation error for the 

above sensor tasking strategy with a five second revisit rate. 

Generally, the matter was resolved by increasing the number of histogram bins to 400 (to 

better describe the continuous distribution), the bin data was scaled to represent a proper 

probability density, and the value for the gamma distribution parameters & and ß was derived 

using the method of moments shown in Chapter 3, section E. The resulting estimates were in 

acceptable range, ä = 0.2951 and ß = 0.2195, but the shape parameter is smaller than one. Such 

a value is not compatible with the physical interpretation of the problem. Using these values, the 

chi-squared goodness of fit value was 104.9333 based on five degrees of freedom and the p-value 

was infintesimal. 

Additionally, the chi-squared goodness of fit statistic for composite hypotheses is 

specified as 

2 _ Y
1
  (observed —estimated expected)' 

an ceiis estimated exp ected 
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Applying the statistic to all cells with a bin count greater than or equal to five, otherwise cells 

were grouped, resulted in strongly rejecting the hypothesis that the distribution was gamma with 

the above values of a and ß. 

The statistical analysis shifted to using the method of maximum likelihood to estimate the 

values of a and ß because the estimation error did not fit a gamma distribution with the parameter 

values calculated using the method of moments. Using the Newton-Raphson method in the 

iterative numerical analysis, a = 1.162 and ß =0.0558. Although the estimate for a is greater 

than one, the chi-squared goodness of fit value was 2181.8 and the p-value was infintesimal. 

These results are no better than before. Clearly, the distribution of the estimation error data is not 

gamma. 

The histogram plot of the observed data is displayed in Figure 12. Note, because of the 

y-axis scale, the data appears to be unimodal and plausibly fitted to a gamma distribution. 

Histogram of Track Estimation Error versus Containment Bound Probability 
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Figure 12. CSS-2: Histogram of Containment Bound. Histogram of track estimation error 
probability using 400 bins. 

Figure 13 shows the same data except the first five bins are not plotted. 
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Histogram With Five Truncated Left Bins 
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Figure 13. CSS-2: Histogram of Containment Bound, First Five Bins Not Plotted. Histogram of 
track estimation error probability, with the first five bins not plotted, using 400 bins. 

By not plotting the first five bins, the bimodal shape of the track estimation error is 

readily apparent at approximately 0.3 kilometers where the estimation error percentage increases. 

The histogram data between 1.6 and 1.8 and at 2.3 kilometers also contributes to a failure to fit 

the data to a gamma distribution. The reason for the bimodal shape is that a small but significant 

percentage of events encounter nearly co-linear scissors angle, i.e., the "best" sensors are not 

necessarily the two closest sensors. This bimodal shape is evaluated to be present in all model 

events based on the inability of the SBIRS Low model to adequately fit a gamma distribution to 

each event. The statistical interpretation of the bimodal shape is that it is the superposition of two 

gamma distributions (each with a different shape parameter), one the result of "acceptable" 

viewing geometry and the other the result of "unacceptable" viewing geometry. 

Contrary to what was anticipated, it was concluded that the observed data couldnt be 

modeled as a gamma distribution. Additionally, no comparison could be made between the 

observed data and the chi-squared distribution since the observations could not even be modeled 

as the more general gamma distribution. Similar analysis resulted in failure to fit the data to the 

following distributions: exponential, Weibull, lognormal, normal, or Rayleigh. Thus, the 

emphasis on generating a catalogue of empirical distributions. A variety of tracking geometries 

are suspected as the cause of this instability. 
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The 400-bin histogram data were also used to calculate the variance and standard 

deviation of the 95% and 99% containment bounds. Each of the 20,000 observations at time t = 

50 seconds (after booster burnout) represent independent identically distributed random variables 

with common probability density /(•) and cumulative distribution function F(*). Let £ be the 

unique solution in x of F(x) = p for some 0 < p < 1. (£p is the pth quantile.) Let pn be such that 

npn is an integer and nlpn - pi is bounded. Finally, let Y™ denote the (npn)th order statistic for a 

random sample of size n. Then Y£ is asymptotically distributed as a normal distribution with 

mean £p and variance given by 

var = ~7777TT-  tRef- 27] 

From the histogram data, at the 99* percentile, 

ffä - bin heiSht = 0.0018 = 0 Q9 

bin width       0.02 

Thus, with p = 0.01 and n = 20,000, 

(0.01X0.99) 
var = —i ii i— = 0.0000611 and 

(20,000)(0.09)2 

standard deviation = Vvär = VO.0000611 = 0.007817 kilometers. 

Similarly for the 95th percentile, the variance is 0.0002375 and the standard deviation 

is 0.01541 kilometers. The data from all other revisit schemes will yield similar results. 

The analysis with 200 histogram bins was objectively worse and the bimodal shape was 
less noticeable. 

64 



Figure 14 shows synchronous viewing using the closest and third closest sensors. 

CSS-2: Synchronous Detection Using Sensors 1 & 3 
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Figure 14. CSS-2: Synchronous Detection Using Sensors 1 and 3. Line plot of the revisit rate 
versus estimation error for a CSS-2 missile using a stereo symmetric tasking scheme for the 
closest and third closest satellite. 

The estimation error for the mean containment bound is nearly constant over the range of 

revisit rates and is an "acceptable" accuracy. The large increase in the estimation error at a revisit 

rate of 25 seconds is due to the fact that the simulation computes its tracking statistics prior to 

making a detection. The estimation error for the 95% and 99% containment bounds are smaller 

for a revisit rate of 15 seconds, compared to 10 seconds, because the delay until the statistics are 

computed (at 50 seconds) is only 5 seconds compared to 10 seconds. There is a large increase in 

the estimation error when going from the 95% confidence bound to the 99% confidence bound, 

especially at a revisit rate of 25 seconds. Based on this result, the probability density function 

may rise quicker than a normal distribution, but the tails are significantly longer. The cause of 

this increase is most likely associated with the increase in the sensor-to-object distance for sensor 

3 compared to sensor 2 since the presence of longer tails is not present in the sensor 1 and 2 

tasking scheme. 

Figure 15 synchronous viewing using the second and third closest sensors. 
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CSS-2: Synchronous Detection Using Sensors 2 & 3 
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Figure 15. CSS-2: Synchronous Detection Using Sensors 2 and 3. Line plot of the revisit rate 
versus estimation error for a CSS-2 missile using a stereo symmetric tasking scheme for the 
second and third closest satellite. 

The estimation error for the mean containment bound is nearly constant over the range of 

revisit rates and is an "acceptable" accuracy. Again, the large increase at a revisit rate of 25 

seconds is due to the fact that the simulation computes its tracking statistics prior to making a 

detection. There is a large increase in the estimation error when going from the 95% containment 

bound to the 99% containment bound, especially at a revisit rate of 25 seconds. The cause of this 

increase is most likely associated with the increase in the sensor-to-object distance for sensor 2 

compared to sensor 1. 

Figure 16 shows the mean containment bound for each of three sensor combinations. 
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CSS-2: Mean Containment Bound Using Synchronous Viewing 
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Figure 16. CSS-2: Mean Containment Bounds Using Synchronous Detection. Line plot of the 
revisit rate versus mean estimation error for a CSS-2 missile comparing the tracking performance 
of the three synchronous viewing tasking schemes. 

From Figure 16, the configuration of sensors 1 and 2 provides the most accurate tracking 

over the entire range of revisit rates. For revisit times less than 30 seconds, the combination of 

sensors 2 and 3 provides a smaller mean estimation error than the combination of sensors 1 and 3. 

This result is counter-intuitive since the effect of azimuth and elevation errors increases with 

range. Also, the random phasing of the satellite constellation should ensure each sensor 

combination encounters a representative sample of possible tracking geometries (scissors angle). 

The cause of this behavior is due, in part, to the fact that the most likely satellite to be in 

or adjacent to the orbital plane of the missile is the closest satellite. The angle 9 is defined as the 

angle formed by the vector normal to the plane of the ballistic object's orbit and the line-of-sight 

of the sensor. Thus, 

where: 

/ = sensor line-of-sight 

n = normal vector to the plane of the ballistic object's orbit. 
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Figure 17 is a plot of cos(6) versus detection count for a representative ballistic track 

revisit scheme (10,000 events) using sensors 1, 2, and 3. 

Satellite Line-of-Sight and Missile's Orbital Plane 
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Figure 17. Satellite Line-of-Sight and Missile's Orbital Plane. Plot of cos(0), grouped in bins 
with width 0.05, versus detection count. 

Values in which the absolute value of cos(9) is "small" represents the satellite being 

nearly in the plane of the ballistic object's orbit and values in which cos(8) are "large" represent a 

satellite's line-of-sight being nearly perpendicular to the plane of the ballistic object's orbit. The 

plot shows that sensor 1 has the highest number of occurrences of being in the plane of the 

ballistic object's orbit. If a satellite is nearly in the orbital plane of the missile, positional data 

provided by that satellite is severely degraded. Additional research is necessary to fully quantify 

this phenomenon and underscores the notion that the definition of the best satellite is nontrivial. 

Figure 18 shows the 95% containment bounds for each of the three sensor combinations. 
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CSS-2: 95% Containment Bound Using Synchronous Viewing 
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Figure 18. CSS-2: 95% Containment Bounds Using Synchronous Detection. Line plot of the 
revisit rate versus 95% estimation error for a CSS-2 missile compares the tracking performance of 
the three synchronous viewing tasking schemes. 

For nearly the entire range of revisit rates, the sensor combination of sensors 2 and 3 

provides a smaller 95% containment bound than the combination of sensors 1 and 3. The 

analysis provided for Figure 16 is germane to Figure 18. 

Figure 19 shows the 99% containment bounds for each of the three sensor combinations. 
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CSS-2: 99% Containment Bound Using Synchronous Viewing 
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Figure 19. CSS-2: 99% Containment Bounds Using Synchronous Detection Line plot of the 
revisit rate versus 99% estimation error for a CSS-2 missile compares the tracking performance of 
the three synchronous viewing tasking schemes. 

For nearly the entire range of revisit rates, the sensor combination of sensors 2 and 3 

provides a smaller 99% containment bound than the combination of sensors 1 and 3. The 

analysis provided for Figure 16 is germane to Figure 19. 

3.   Mono Viewing 

At time t = 50 seconds, Figure 20 shows mono viewing using the closest sensor. 
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CSS-2: Mono Viewing Using Sensor 1 
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Figure 20. CSS-2: Mono Detection Using Sensor 1. Line plot of the revisit rate versus 
estimation error for a CSS-2 missile using a mono tasking scheme for the closest satellite. 

The estimation error for the mean containment bound is variable over the range of revisit 

rates and the accuracy is "unacceptable." There is a large percentage increase, approximately 

300%, in the estimation error when going from the mean containment bound to a 95% 

containment bound. The percent increase in going from the mean containment bound to a 99% 

containment bound is approximately 400%. 

Using the procedures described in the previous sub-section, a detailed statistical analysis 

was made on the mean containment bound data for a five second revisit rate. Again, the observed 

data does not fit a gamma distribution, based on the chi-squared goodness of fit test and p-value, 

or the following distributions: exponential, Weibull, lognormal, normal, or Rayleigh. Also, the 

histogram had a bimodal shape. 

Figure 21 shows mono viewing using the second closest sensor. 
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Figure 21. CSS-2: Mono Detection Using Sensor 2. Line plot of the revisit rate versus 
estimation error for a CSS-2 missile using a mono tasking scheme for the second closest satellite. 

The estimation error for the mean containment bound radius is essentially constant over 

the range of revisit rates and the accuracy is "unacceptable." The percentage increase in the 

estimation error when going from the mean containment bound to the 95% containment bound 

and when going to the 99% containment bound is similar to that shown in Figure 20. 

Figure 22 shows mono viewing using the third closest sensor. 
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CSS-2: Mono Viewing Using Sensor 3 
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Figure 22. CSS-2: Mono Detection Using Sensor 3. Line plot of the revisit rate versus 
estimation error for a CSS-2 missile using a mono tasking scheme for the third closest satellite. 

The estimation error for the mean containment bound is essentially constant over the 

range of revisit rates and the accuracy is "unacceptable." The percentage increase in the 

estimation error when going from the mean containment bound to the 95% containment bound 

and when going to the 99% containment bound is slightly smaller than that shown in Figure 21. 

Figure 23 shows the mean containment bound for each of the three sensor combinations. 
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Figure 23. CSS-2: Mean Containment Bounds Using Mono Detection. Line plot of the revisit 
rate versus mean estimation error for a CSS-2 missile comparing the tracking performance of the 
three mono viewing tasking schemes. 

From Figure 23, tracking accuracy is similarly shaped for sensors 2 and 3. However, the 

tracking accuracy for sensor 1 varies considerably, and for revisit rates greater than 

approximately 22 seconds, it provides the worst performance. This result is counter-intuitive 

since the affect of sensor bias error increases with range. The analysis provided for Figure 16 and 

shown in Figure 17 is germane. 

Figure 24 shows the 95% containment bound for each of the three sensor combinations. 
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CSS-2: 95% Containment Bound Using Mono Viewing 
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Figure 24. CSS-2: 95% Containment Bounds Using Mono Detection. Line plot of the revisit rate 
versus 95% estimation error for a CSS-2 missile comparing the tracking performance of the three 
mono viewing tasking schemes. 

From Figure 24, tracking accuracy is similarly shaped for sensors 2 and 3, although 

sensor 3 provides significantly better performance when the revisit rate is greater than 25 

seconds. The tracking accuracy for sensor 1 varies considerably, and for revisit rates greater than 

approximately 25 seconds, its tracking accuracy provides the worst performance. The rationale 

explained in the previous paragraph is germane. 

Figure 25 shows the 99% containment bound for each of the three sensor combinations. 
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CSS-2: 99% Containment Bound Using Mono Viewing 
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Figure 25. CSS-2: 99% Containment Bounds Using Mono Detection. Line plot of the revisit rate 
versus 99% estimation error for a CSS-2 missile comparing the tracking performance of the three 
mono viewing tasking schemes. 

From Figure 25, tracking accuracy is similarly shaped for sensors 2 and 3, where sensor 3 

provides the best tracking accuracy when the revisit rate is greater than approximately 16 

seconds. The tracking accuracy for all sensors varies considerably, and for revisit rates greater 

than approximately 23 seconds, sensor 1 provides the worst performance. Again, this result is 

counter-intuitive since the affect of sensor bias error increases with range. The rationale 

explained for Figure 23 is germane. 

D. ANALYSIS OF M-9 MISSILE DATA 

The SBIRS Low model was used to conduct an exploratory analysis of system tracking 

performance of a M-9 missile. For each of the seven types of events described in Chapter 4, the 

simulation provides tracking data at the specified times for the desired predict-ahead times, 

estimation of parameters for the gamma distribution, a histogram, and an empirical cumulative 

distribution function. The results are reported in the following three sub-sections. Additionally, 

in section E, the results are compared to those from the CSS-2. 

In the first sub-section, an analysis of the ballistic track initiation failures is made for the 

Latitude Shift event where the launch latitude is bounded by N02 and N05. In the second and 
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third sub-sections respectively, an analysis of mean estimation error distances for all Synchronous 

and Mono Viewing events is made. In all three sections, data is reported for instantaneous 

positional accuracy at time t = 50 seconds (after booster burnout) because by this time, the SBIRS 

Low system should be transitioning from object discrimination to targeting of the lethal object, a 

critical point in the missile's timeline. 

The results for the remaining events are listed in Appendix D. 

1.   Ballistic Track Initiation Failure 

With the launch latitude randomly selected between N02 and N05, Figure 26 was 

generated. 
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Figure 26. M-9: Percentage Ballistic Track Initiation Failure. Line plots of the fraction of 
ballistic track initiation failures for a M-9 missile at eight different ballistic sensor revisit rates. 

Because of the unacceptably large fraction of ballistic track initiation failures with a 

booster revisit rate of five seconds, two additional events were run where the revisit rate was 

increased to every three seconds and then every two seconds. In all three cases, an 

"unacceptably" large number of ballistic track initiation failures were encountered. 

Using the procedures shown in section C, sub-section 1, the data for each of the three 

booster revisit rates is fit to a Poisson distribution with rate X. Given a 5 second booster track 

revisit rate the maximum likelihood estimate for A is 1267.25 and the 95% credible interval for 
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X is (1242.76, 1292.19). The Kolmogorov-Smirnov goodness of fit test resulted in failure to 

reject the null hypothesis with a p-value of 0.3439. The distribution for 2nX is shown in Figure 

27. 

Probability Density Function of Chi-Squared Distribution 
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Figure 27. Probability Density Function for Chi-Squared Distribution. Chi-squared distribution 
of 2nA with 20277 degrees of freedom. 

The maximum likelihood estimates and 95% credible interval for A given a 3 second and 

2 second booster track revisit rate are 929.25 and (908.31, 950.56) and 755 and (736.14, 774.22), 

respectively. The corresponding p-values from the Kolmogorov-Smirnov goodness of fit test are 

0.4231 and 0.5578. The plots for these distributions are similar to Figure 27. 

The reasons for a ballistic track initiation failure are exactly analogous for those 

described in the case of a CSS-2 missile. The reason for an increased percentage of failures for a 

M-9 missile, compared to a CSS-2, is differences in dynamic motion throughout the boost phase 

and at booster burnout. 

2.   Synchronous Viewing 

At time t = 50 seconds, Figure 28 shows synchronous viewing using the closest and 

second closest sensors. 
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Figure 28. M-9: Synchronous Detection Using Sensors 1 and 2. Line plot of the revisit rate 
versus estimation error for a M-9 missile using a stereo symmetric tasking scheme for the closest 
and next closest satellite. 

The shape of this plot is similar to the corresponding plot for the CSS-2 missile. 

However, each estimation error is smaller for the M-9 missile. Although a detailed statistical 

analysis was not conducted on the M-9 data, based on the similar difficulties encountered by the 

SBIRS Low model in fitting these observations to a gamma distribution, the observed data cannot 

be accurately modeled by a gamma distribution. It follows that no comparison could be made 

between the observed data and the chi-squared distribution since the observations could not even 

be modeled as the more general gamma distribution. 

Figure 29 shows synchronous viewing using the closest and third closest sensors. 
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M-9: Synchronous Viewing Using Sensors 1 & 3 
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Figure 29. M-9: Synchronous Detection Using Sensors 1 and 3. Line plot of the revisit rate 
versus estimation error for a M-9 missile using a stereo symmetric tasking scheme for the closest 
and third closest satellite. 

The estimation error for the mean containment bound is approximately constant over the 

range of revisit rates and is an "acceptable" accuracy. The large increase in the estimation error at 

a revisit rate of 25 seconds is due to the fact that the simulation computes its tracking statistics 

prior to making a detection. There is a large increase in the containment radius when going from 

the 95% containment bound to the 99% containment bound, especially at a revisit rate of 25 

seconds. Based on this result, the probability density function may rise quicker than a normal 

distribution, but the tails are significantly longer. The cause of this increase is most likely 

associated with the increase in the sensor-to-object distance for sensor 3 compared to sensor 2 

since the presence of longer tails is not present in the sensor 1 and 2 tasking scheme. 

Figure 30 shows synchronous viewing using the second and third closest sensors. 
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Figure 30. M-9: Synchronous Detection Using Sensors 2 and 3. Line plot of the revisit rate 
versus estimation error for a M-9 missile using a stereo symmetric tasking scheme for the second 
and third closest satellite. 

The analysis of Figure 30 is similar to that of Figure 29, where the presence of longer 

tails is most likely associated with the increase in the sensor-to-object distance for sensor 3 

compared to sensor 2. 

Figure 31 shows the mean containment bound for each of the three sensor combinations. 



M-9: Mean Containment Bound Using Syncrounous Viewing 
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Figure 31. M-9: Mean Containment Bounds Using Synchronous Detection. Line plot of the 
revisit rate versus mean estimation error for a M-9 missile comparing the tracking performance 
for the three synchronous viewing tasking schemes. 

The shape of the line plots for each of the three satellite tasking schemes is nearly 

identical. The mean estimation error increases when comparing the combination of sensors 1 and 

2 to sensors 1 and 3 and then sensors 1 and 3 to sensors 2 and 3. This result is intuitive since the 

affect of bias errors increases with range, and the occurrences of a satellite being in the ballistic 

object's orbital plane does not affect one satellite more than another. 

Figure 32 shows the 95% containment bound for each of three sensor combinations. 
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M-9: 95% Containment Bound Using Synchronous Viewing 

0.8- 

S 
E 0.6 

g 0.4 

g 0.2 

o.o- 

sensors 1 & 2 
sensors 1 & 3 
sensors 2 & 3 

~I I 1 1 1 1- 

5 10 15 20 25 30 
revisit rate (sec) 

35 40 

Figure 32. M-9: 95% Containment Bounds Using Synchronous Detection. Line plot of the 
revisit rate versus 95% estimation error for a M-9 missile comparing the tracking performance of 
the three synchronous viewing tasking schemes. 

Analysis for Figure 32 is similar to that for Figure 31. 

Figure 33 shows the 99% containment bound for each of the three sensor combinations. 

M-9: 99% Containment Bound Using Synchoronous Viewing 
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Figure 33. M-9: 99% Containment Bounds Using Synchronous Detection. Line plot of the 
revisit rate versus 99% estimation error for a M-9 missile comparing the tracking performance of 
the three synchronous viewing tasking schemes. 
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Analysis for Figure 33 is similar to that for Figure 31. 

3.   Mono Viewing 

At time t = 50 seconds, Figure 34 shows mono viewing using the closest sensor. 

M-9: Mono Viewing Using Sensor 1 
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Figure 34. M-9: Mono Detection Using Sensor 1. Line plot of the revisit rate versus estimation 
error for a M-9 missile using a mono tasking scheme for the closest satellite. 

The estimation error for the mean containment bound is approximately constant over the 

range of revisit rates and the accuracy is "unacceptable." The percentage increase in the 

estimation error is approximately 300% when comparing the mean containment bound to the 95% 

containment bound. The similarity in shape of the three containment bounds suggests that the 

flight dynamics of the M-9 missile does not present tracking difficulties for the SBIRS Low 

system. 

Figure 35 shows mono viewing using the second closest sensor. 
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Figure 35. M-9: Mono Detection Using Sensor 2. Line plot of the revisit rate versus estimation 
error for a M-9 missile using a mono tasking scheme for the second closest satellite. 

The estimation error for the mean containment bound is nearly constant over the range of 

revisit rates and the accuracy is "unacceptable." The analysis of Figure 35 is similar to that for 

Figure 34. 

Figure 36 shows mono viewing using the third closest sensor. 
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M-9: Mono Viewing Using Sensor 3 
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Figure 36. M-9: Mono Detection Using Sensor 3. Line plot of the revisit rate versus estimation 
error for a M-9 missile using a mono tasking scheme for the third closest satellite. 

Analysis of Figure 36 is similar to that for Figure 34. 

Figure 37 shows the mean containment bound for each of the three sensor combinations. 

M-9: Mean Containment Bound Using Mono Viewing 
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Figure 37. M-9: Mean Containment Bounds Using Mono Detection. Line plot of the revisit rate 
versus mean estimation error for a M-9 missile comparing the tracking performance of the three 
mono viewing tasking schemes. 
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From Figure 37, tracking accuracy plots are similarly shaped for sensors 2 and 3. 

However, the tracking accuracy for sensor 1 varies considerably, and over the entire range of 

revisit rates its tracking accuracy provides the worst performance. This result is counter-intuitive 

since the affect of sensor bias error increases with range. The analysis provided for Figure 17 is 

germane. 

Figure 38 shows the 95% containment bound for each of the three sensor combinations. 

M-9: 95% Containment Bound Using Mono Viewing 
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Figure 38. M-9: 95% Containment Bounds Using Mono Detection. Line plot of the revisit rate 
versus 95% estimation error for a M-9 missile comparing the tracking performance of the three 
mono viewing tasking schemes. 

Analysis of Figure 38 is similar to that for Figure 37. 

Figure 39 shows the 99% containment bound for each of the three sensor combinations. 
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M-9: 99% Containment Bound Using Mono Viewing 
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Figure 39. M-9: 99% Containment Bounds Using Mono Detection Line plot of the revisit rate 
versus 99% estimation error for a M-9 missile comparing the tracking performance of the three 
mono viewing tasking schemes. 

Analysis of Figure 39 is similar to that for Figure 37. 

E. COMPARISON OF CSS-2 AND M-9 MISSILE DATA 

This section is organized by showing the mean containment bounds for the CSS-2 and 

M-9 using synchronous viewing and then mono viewing. Then, the 95% containment bounds are 

shown followed by the 99% containment bounds. From these figures, two significant results are: 

(1) mono viewing does not provide an "acceptable" level of tracking accuracy for all revisit rates 

for both missiles, and (2) the SBIRS Low system tracks the M-9 missile with greater accuracy 

than the CSS-2. 

Figure 40 is plotted using the data shown in Figures 16 and 31. 
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CSS-2 & M-9: Mean Containment Bound Using Synchronous Viewing 
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Figure 40. CSS-2 & M-9: Mean Containment Bounds Using Synchronous Detection. Line plot 
of the revisit rate versus mean estimation error comparing the tracking performance of the three 
synchronous viewing tasking schemes for the two types of missiles. 

Over the entire range of revisit rates, the M-9 tracking accuracy was better than the 

CSS-2 tracking accuracy for corresponding sensor combinations. All configurations exhibited an 

increase in containment radius at a revisit rate of 25 seconds. Again, this increase is a result of 

the SBERS Low model computing statistics prior to scheduling a detection, which results in the 

tracking data "aging" the longest for the eight tested revisit rates. The tracking accuracy is shown 

to improve as the revisit rate increases since the "aging" time is decreasing. 

Figure 41 is plotted using the data shown in Figures 23 and 37. 
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CSS-2 & M-9: Mean Containment Bound Using Mono Viewing 
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Figure 41. CSS-2 & M-9: Mean Containment Bounds Using Mono Detection. Line plot of the 
revisit rate versus mean estimation error comparing the tracking performance of the three mono 
viewing tasking schemes for the two types of missiles. 

Again, the M-9 tracking accuracy is significantly better than that of the CSS-2. 

Additionally, in each case, sensor 1 provides the worst tracking accuracy for revisit rates greater 

than approximately 20 seconds. 

Comparing the mono viewing shown in Figure 39 to the synchronous viewing shown in 

Figure 38, the mean estimation error increased by a factor of ten in the case of the M-9 and a 

factor of thirty in the case of the CSS-2. 

Figure 42 is plotted using the data shown in Figures 18 and 32. 
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CSS-2 & M-9: 95% Containment Bound Using Synchronous Viewing 
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Figure 42. CSS-2 & M-9: 95% Containment Bounds Using Synchronous Detection. Line plot of 
the revisit rate versus 95% estimation error comparing the tracking performance of the three 
synchronous viewing tasking schemes for the two types of missiles. 

Analysis of Figure 42 is similar to that of Figure 40. 

Figure 43 is plotted using the data shown in Figures 24 and 38. 

CSS-2 & M-9: 95% Containment Bound Using Mono Viewing 
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Figure 43. CSS-2 & M-9: 95% Containment Bounds Using Mono Detection. Line plot of the 
revisit rate versus 95% estimation error comparing the tracking performance of the three mono 
viewing tasking schemes for the two types of missiles. 
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Analysis of Figure 43 is similar to that of Figure 39. 

Figure 44 is plotted using the data shown in Figures 19 and 33. 

CSS-2 & M-9: 99% Containment Bound Using Synchronous Viewing 
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Figure 44. CSS-2 & M-9: 99% Containment Bounds Using Synchronous Detection. Line plot of 
the revisit rate versus 99% estimation error comparing the tracking performance of the three 
synchronous viewing tasking schemes for the two types of missiles. 

Analysis of Figure 44 is similar to that of Figure 40. 

Figure 45 is plotted using the data shown in Figures 25 and 39. 
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CSS-2 & M-9: 99% Containment Bound Using Mono Viewing 
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Figure 45. CSS-2 & M-9: 99% Containment Bounds Using Mono Detection. Line plot of the 
revisit rate versus 99% estimation error comparing the tracking performance of the three mono 
viewing tasking schemes for the two types of missiles. 

Analysis of Figure 45 is similar to that of Figure 41. 
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delay. In certain instances, track accuracy is an artifact of computing statistics first then 

performing missile detection. This result is most apparent with a revisit rate of 25 seconds. The 

large increase in estimation error occurs because, given a detection at time t = 25 seconds (after 

booster burnout), the track "ages" an additional 25 seconds prior to the computation of tracking 

statistics. This revisit rate has the longest time between detections when computing statistics at 

50 seconds after booster burnout. By comparison, given a 40 second revisit rate with a detection 

at time t = 40 seconds, the track "ages" only ten seconds prior to the computation of tracking 

statistics. 

Mono viewing alone does not provide the required tracking accuracy even in the single 

target tactical scenario. The mean containment bound for the CSS-2 and M-9 varied between 

4.75 and 7.75 kilometers and 1.0 and 6.5 kilometers, respectively. Since the SBIRS Low system, 

in general, will be unable to classify a threat missile, the most conservative course of action in 

judging system performance is to assume the larger uncertainty. This mean containment bound is 

"unacceptable" for achieving critical requirements such as object resolution, object 

discrimination, and intercept support. However, mono viewing is acceptable for tasking schemes 

that incorporate stereo detections. 

The SBIRS Low model has shown tracking accuracy is a function of missile 

classification. There is a large increase in positional uncertainty when going from a 95% to 99% 

containment radius for the CSS-2 missile, compared to the M-9 missile when using the tasking 

scheme of synchronous detections by sensors 1 and 3 and sensors 2 and 3. Thus, although a 

probability distribution was not fit to the data, it can be inferred that the probability density 

function must rise faster than a normal distribution but have significantly longer tails. Since the 

CSS-2 has a larger change in velocity at booster burnout (compared to the M-9), which affects the 

accuracy of the initialization of the Kepler orbit tracking algorithm, 

Tracking accuracy is a function of track-to-sensor range. In certain synchronous revisit 

schemes for detecting a CSS-2 missile, sensors 2 and 3, the second-closest and third-closest 

sensors, provided better tracking accuracy compared to sensors 1 and 3, the closest and second- 

closest sensors. For example, see Figure 17, which shows the 99% containment bounds for each 

of the three sensor combinations used for synchronous viewing. However, it is not intuitive that 

tracking accuracy would improve as the track-to-sensor range increases because the affect of the 

sensor bias error increases with range. This decrease in tracking accuracy for the closest satellite 
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VI.       CONCLUSION 

The relatively large number of unknowns and absence of a "correct" answer with which 

to compare the model's output to makes validation of the SBIRS Low model impossible. 

However, as with any computer model, if the output is at least plausibly correct, insight into the 

applicable questions regarding performance of the system being analyzed is possible. When the 

output is not intuitively correct, analysis of the model itself must be made, or it may reveal 

hidden, important factors not anticipated by the analyst. From the 13,760,000 missiles tracked 

during the exploratory analysis, the SBIRS Low model output revealed both intuitively correct 

answers and unanticipated, but apparently correct results. 

The results are listed in order of significance to actual system operation followed by a 

discussion on the importance of providing a benchmark/reference book of track accuracies for 

various sensor revisit schemes. The final paragraph discusses using the results of this exploratory 

model analysis in follow-on research projects. 

The global scheduler must predict the result of each task prior to scheduling it. Figure 17 

shows one aspect of the nontrivial difficulties associated with defining the best sensor. The 

closest sensor, in general, will have the highest signal-to-noise ratio but could provide the worst 

track positional data because it is in the object's orbital plane. Also, using the closest and second 

closest sensor to update a track may provide little reduction in positional uncertainty if their 

viewing geometry results in an extremely small scissors angle. Additionally, in a high-tasking 

scenario, the slew-settle-stare time for any given satellite may constrain feasible tasking schemes. 

For the M-9 missile, where the launch point was randomly selected between N02 and 

N05, an unacceptably large number of events resulted in a failure to initiate a ballistic track. 

Thus, the SBIRS Low system had no capability to target the missile. Systematically increasing 

the revisit rate during the booster phase from every 5 seconds to every 3 seconds then to every 2 

seconds did reduce the number of track failures, but not to an acceptable number. Events run 

with a CSS-2 missile and a booster phase revisit rate of 5 seconds between the above latitudes 

also resulted in ballistic track initiation failures, but the number of failures was acceptable. 

If the system can anticipate an occurrence of a long period of time between observations 

on a given track, a stereo detection should be scheduled immediately prior to the start of the 
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is due to the fact that if a sensor is in the orbital plane of the missile, it is most likely to be the 

closest satellite. 

The instantaneous track accuracy, for both synchronous and mono viewing for the CSS-2 

and M-9 missiles, did not fit a gamma distribution. It was predicted that the ratio of the sum of 

the absolute value of the three-dimensional positional uncertainty and variance would be a 

gamma distribution. The SBIRS Low model attempted to fit the histogram of the mean 

containment bound to a gamma distribution and reported the estimated parameters in the output 

report. By fitting the gamma distribution, anticipated values for the mean and variance of 

instantaneous track accuracy could be compared to observed data. The reason the data did not fit 

a gamma distribution is that the individual gamma distributions in x, y, and z position errors have 

different scale parameters and hence are not closed under addition. Also, the probabilities for 

each gamma are not independent. Therefore, the convolution of the three distributions no longer 

resembles a chi-squared distribution or even a gamma distribution. Additional statistical analysis 

of the data revealed that the data could not be fit to the following distributions: exponential, 

Weibull, lognormal, normal, or Rayleigh. 

The specific insights gained by the exploratory data analysis of the SBIRS Low model 

were only one goal of the project. Perhaps a more important goal was to provide a 

benchmark/reference book of track accuracies for various sensor revisit schemes. This reference 

book is contained in Appendices C and D and balances the requirements of running enough 

model events to detect significant trends with an acceptable incremental increase in the sensor 

revisit rate. The Monte Carlo methodology was computationally efficient and provided the 

desired level of accuracy. The necessary level of model fidelity was present for each component 

in the SBIRS Low system and underlying orbital mechanics. Because of these features, multiple 

acceptable revisit schemes were identified and provide a first step in solving the global scheduler 

problem. 

The insight gained from this exploratory model analysis and development of data 

contained in Appendices C and D can be used in follow-on analysis. The fact that the data could 

not be fit to any well-known probability distribution is perhaps the most important topic for 

additional research. If the data is determined to be from a probability distribution, tracking 

accuracy and containment probability could be easily computed at any time for the launch 

scenario. Another topic requiring additional research is the minimization of the slew-settle-stare 

problem, which could be modeled as a traveling salesman problem, given certain viewing 
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geometry constraints. Utility theory and decision-making analysis could be used to assign a 

sensor to a track in an overload condition. Also, linear and/or non-linear programming could be 

used to analyze interceptor salvo doctrines. Finally, a discrete event simulation could be written 

to test end-to-end SBIRS Low system operation, from enemy missile launch to interceptor 

impact. 
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APPENDIX A: MONTE CARLO METHODOLOGY 

When a model is not a high-resolution surrogate of the actual system, the meaning of its 

outputs must be provided by a larger context. Typically, this context must be an analytic strategy 

that justifies its use. The analytic strategy of Monte Carlo methods, that branch of experimental 

mathematics which is concerned with experiments on random numbers, is used in the SBIRS 

Low model. The idea behind the Monte Carlo approach is to replace theory by experiment 

whenever the former falters. [Ref. 28] For example the bias values assigned to all sensors are 

random numbers that amount to a random sample from the population of all possible error values. 

The conclusions from the simulation are valid if the random sample is representative of all 

observations which might have been made. 

Despite the fact that the result is not absolutely certain, uncertainty can be managed to a 

point where it is negligible for all practical purposes. Additionally, Monte Carlo methods are one 

technique capable of providing a high degree of accuracy (covariance analysis, if it can be done, 

can generally provide accurate answers for probabilities between about 10% and 90%) necessary 

to assess capabilities on the tails of a distribution. [Ref. 29] The accuracy can be made arbitrarily 

small by taking a sufficiently large number of samples or at least suggest a distribution that can 

be used to analytically solve the problem. 

The Monte Carlo approach provides a method of solving probability theory problems in 

situations where system performance is based upon the behavior and outcome of random 

processes. Li the case of a probabilistic problem the simplest Monte Carlo approach is to observe 

random numbers, chosen in such a way that they directly simulate the physical random processes 

of the original problem, and to infer the desired solution from the behavior of these random 

numbers. In the case of the SBIRS Low model, tracking accuracy is the outcome of the random 

processes of satellite phasing, individual errors that affect the accuracy of a sensor's line of sight 

measurements, and missile launch location (only if the random launch mode is chosen). 

There are various reasons for using Monte Carlo methods and the main one is based upon 

the inferential nature of Monte Carlo techniques. The Monte Carlo method in the SBIRS Low 

model is concerned with estimating the unknown numerical value of the positional uncertainty of 

a threat missile given some sensor revisit scheme, a quantity difficult to determine analytically. 

Thus, the positional uncertainty parameter is called an estimand. The available data, tracking 

accuracy at specified times in a missile's trajectory, will consist of a number of observed random 
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variables, constituting the sample. The number of observations in the sample is the sample size. 

The connection between the sample and the estimand is that the latter is a parameter of the 

probability distribution of the random variables constituting the former. For the SBIRS Low 

model, the predicted probability distribution of positional uncertainty is the generalized gamma. 

Another feature of Monte Carlo calculations is that, if the calculations are repeated, then 

slightly different answers are given each time (provided that a different place in the random 

number sequence is used on each occasion). Thus, the Monte Carlo calculations simulate real life 

situations, where the repetition of a particular experiment of limited experimental accuracy or of 

finite statistics is liable to produce a somewhat different result from the previous measurement. 

A procedural problem that arises in virtually every Monte Carlo simulation is present in 

the SBIRS Low model. The problem concerns the number of replications that must be performed 

in order to guarantee a specified bound on error. This number, called the sample size, depends on 

the tolerable error specification of the problem under study. There is no specified "real world" 

precision of the SBIRS Low system, however, it is computationally feasible to reduce the 

uncertainty of the Monte Carlo calculations to the order of five meters. 

The Law of Large Numbers states that, as the sample size n increases, the error of 

X + X  -\ h X 
approximation in estimating the mean, |i, by —■ , where X; is a sequence of 

n 

independent random variables have a common distribution, becomes vanishingly small. [Ref. 30] 

Additionally, in principle, the Central Limit Theorem provides a way of assessing the extent of 

that statistical error for large n. In practice, however, the Monte Carlo method relies on 

techniques that contradict both of these statistical laws. Since all numerical-valued samples 

generated in a Monte Carlo experiment arise from transforming numbers that a pseudorandom 

number generator produces, and since sequences of these numbers repeat themselves after a finite 

number of steps P, sampling without limit in a Monte Carlo experiment does not make statistical 

error vanish. Based on current implementation and foreseeable modifications, the random 

number generator in the SBIRS Low model essentially eliminates this consequence because, by 

design, its value of P is significantly greater than 1,000,000. 
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Improving computational efficiency is a prevalent theme in Monte Carlo methods 

because in general, there is a square law relationship between the error in an answer and the 

requisite number of observations. The estimated standard error is given by 

<J 

V« 

where: 

(7 = standard deviation 

n = sample size. 

Hence, to reduce the error by a factor often requires a hundredfold increase in the number of 

observations. The sampling plan that induces the smallest variance per replication leads to the 

smallest sample size required to achieve a specified absolute error criterion. Thus, it is often 

beneficial to develop sampling plans that reduce variance to improve efficiency in Monte Carlo 

experiments. Procedures that improve the efficiency of Monte Carlo methods are known as 

variance reduction techniques. Examples of variance reduction techniques include importance 

sampling, stratified sampling, control variates, antithetic variates, regression methods, and use of 

orthornormal functions. [Ref. 31] 

Variance reduction techniques in Monte Carlo methods distort the original problem in 

such a manner that the uncertainty in the answer is reduced for the same number of samples. 

Hence, the term variance-reducing method is a misnomer. In reality, the cost of implementing a 

sampling plan and the variance it induces collectively dictate its appeal relative to an alternative 

plan. To combat misplaced emphasis, this topic is better described as efficiency-improving 

techniques. 

Every problem amenable to the Monte Carlo method comes with an explicit or implicit 

sampling plan usually dictated by the context in which the problem arises. If the cost of using 

this plan to achieve the desired statistical accuracy for the estimate of the parameter in question 

falls within the available computing budget, then no need exists to consider alternative plans. 

When the cost of the original sampling plan exceeds the available budget, then selecting an 

alternative sampling plan that meets the budget constraint is an essential first step in the 

application of the Monte Carlo method. It should be noted that although the sample size is 
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reduced, some amount of time-dependent computational savings is offset by an increase in 

computational complexity. 

The SBIRS Low model does not utilize a variance reduction technique because the 

required sample size, 20,000 events, the use of random numbers to assign bias errors, establish 

satellite phasing, and establish missile launch location does not justify increasing the 

computational complexity. 
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APPENDIX B: SBIRS LOW MODEL INPUT AND OUTPUT FILES 

SBIRS LOW MODEL INPUT FILE FORMAT 

A description of each of the input parameters is listed below. 

System: initializes the constellation from data contained in the specification file. The 
default file is gp27.specs, which specifies a constellation of nine rings with three 
satellites in each ring. 

Events: specifies the number of events to be generated in the Monte Carlo simulation 

Ack_Level: specifies the frequency at which the user is notified of the number of 
completed events 

KBoost: specifies whether kinematic tracking is used during the boost phase. If set to 
"on", kinematic tracking is used, in which case the choice of profile in the boost phase 
parameters only affects the model used to fly the booster. If "off' is selected, the choice 
of profile in the boost phase parameters also affects the tracking algorithm. 

Profile: specifies the overall booster trajectory. Options are rigid wire, flexible wire, or 
stereo kinematic. 

Type: specifies the particular missile by either the (code internal) missile index or by one 
of the following entries described in Chapter 5, section A. 

Mode: specifies the random launch generation procedure. Options are random or fixed. 
If random is selected, launch latitude, longitude, and azimuths are selected randomly 
(according to a uniform distribution) within the user specified entries. If fixed is selected, 
launch and impact latitudes and longitudes are fixed at the user specified values and the 
launch azimuth is calculated by the computer using either a lofted or depressed angle, as 
specified in the code. 

TJWindow: specifies Tmin and Tmax in units of seconds. Launch times for individual 
events are selected randomly, according to a uniform distribution, within this interval. 
This parameter is primarily used to ensure a variable phasing of the satellite constellation. 

Lat_Window: specifies Lat_min and Lat_max in units of degrees. Minimum and 
maximum launch latitude values for random launch mode. Values are chosen according 
to a uniform distribution over the surface area of the earth with positive values 
representing east latitudes and negative values representing west latitudes. If the fixed 
launch mode is selected, the launch point is specified by the Launch_Pt parameter. 

Lon_Window: specifies Lon_min and Lonjmax in units of degrees. Minimum and 
maximum launch longitude values for random launch mode. Values are chosen 
according to a uniform distribution over the surface area of the earth with positive values 
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representing north longitudes and negative values representing south longitudes. If the 
fixed launch mode is selected, the launch point is specified by the LaunchJPt parameter. 

Az_Window: specifies Az_min and Azjmax in units of degrees east of north. Minimum 
and maximum values for random launch mode. Values are chosen according to a 
uniform distribution with positive values representing degrees east of north and negative 
values representing degrees west of north. If the fixed mode is selected, the specified 
launch and target points determine this value. 
Launch_Pt: specifies the latitude and longitude of the launch point in units of degrees 
when the user selects the fixed launch mode. Positive values represent east latitudes and 
north longitudes and negative values represent west latitudes and south longitudes. If the 
random launch mode is selected, the launch point is determined by the Lat_Window and 
Lon_Window parameters. 

Target_Pt: specifies the latitude and longitude of the target point in units of degrees 
when the user selects the fixed launch mode. Positive values represent east latitudes and 
north longitudes and negative values represent west latitudes and south longitudes. If the 
random launch mode is selected, the target point is dependent upon the randomly chosen 
launch point and azimuth parameters. 

DT: specifies delta_time, the revisit time (scan rate) in units of seconds for boost phase 
viewing. This parameter is the time between consecutive detection attempts on a given 
target by the acquisition sensor on a given satellite. 

Viewers: specifies the number of satellites that will be used to build a track. Options are 
"all" or "2Best". If all is selected, the boost track is built from all sensors within line-of- 
sight of the missile. If 2Best is selected, the boost track is built from the two closest 
sensors, regardless of the scissors angle. 

MaxViewers: sets the maximum number of sensors to view each ballistic event. This 
value must be set prior to any of the following ballistic phase parameters. 

Sensor: specifies the timing of detection of the i-th sensor, with 1 < ID < MaxViewers. 
The sensor ID number is followed by a list of (t_start, t_step) pairs specifying beginning 
at time t_start, the sensor make a detection attempt every t_step seconds. Sensors are 
ordered by range-to-target so that sensor ID = 1 is the closest sensor, sensor ID = 2 is the 
next closest sensor, etc. 

T_Window: sets the internal time window, in units of seconds, used for identifying and 
ordering the sensors that can detect the target. The sensor ordering is with respect to 
range-to-target. The identification and ordering sensors is done only once every time 
window and that ordering is used for the entire sampling interval. 
DTJHandover: specifies a notional uncertainty in the time of booster burnout. This 
value is used in estimating, the initial state covariance matrix of the reentry vehicle. The 
default value is 1. 

N_Bins: specifies/resets the number of bins for position error histograms. The default 
value is 80. 

X_Max: sets the histogram upper edge. If this value is exceeded, a "++.++++" is 
displayed in the applicable output field. 
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FitList: specifies whether or not the parameters a and X for a Gamma distribution are 
calculated and displayed to the user. 

HDump: specifies the data file to write the full output of the predict-ahead histogram 
contents. If this entry is not included in the input file, only the report described in section 
C is outputted. 

CDump: same as HDump, but for cumulative probabilities. 

NM_C1: specifies the number and levels of confidence intervals that are computed for 
track containment probabilities. The confidence intervals are one-sided. This line should 
be entered only once since it simply sets a list of confidence levels which are used during 
final answer outputs. 

NJTimes: specifies the number of times to predict the confidence intervals specified in 
the previous entry. 

Times: specifies the elapsed time and length of time for prediction of the defined 
confidence intervals. Note, there will be a total of NJTimes individual entries for this 
field. 

A representative input file is listed below. Additionally, some parameters described in 

the previous section are not shown because they are not applicable to the specified launch mode. 

CONTROL 
System = gp27.specs 
Events = 20000 
Ack_Level =500 
KBoost = On 

END CONTROL 

BOOSTER 
Profile = Flexible 
Type = M9 
Mode = Random 
Lat_Window =42.0  45.0 
Lon_Window = 52.0  56.0 
Az_Window = -10.0 30.0 
T_Window = 0.0, 7200.0 
DT = 5.0 
Viewers = 2Best 

END BOOSTER 

BALLISTIC 
MaxViewers = 3 
Sensor=l, 0.0, 20.0 
Sensor=2, 0.0, 20.0 
Sensor=3, 400.0, 20.0 
T_Window =60 
DT_Handover = 1 

END BALLISTIC 
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OUTPUT 
X_Max =8.0 
NM_Conf = 4, 0.80, 0.90, 0.95, 0.99 
N_Times = 3 
FitList = On 
HDump = plotm91220.out 
CDump = cdfm91220.out 
Times =   50.0, NH = 3, 0.0, 50.0, 100.0 
Times =  100.0, NH = 3, 0.0, 50.0, 100.0 
Times =  200.0, NH = 3, 0.0, 50.0, 100.0 

END OUTPUT 

B.        SBIRS LOW MODEL OUTPUT FILE FORMAT 

A representative output file is listed below. A general description of this output file was 

given in Chapter 5, section B. 

Running From Input File M91220.dat 

System Initializations File : gp27.specs 

Run Control Boost Component Summary   
Flexible Profile, M9 
Launch Time Window:  0.00 To 7200.00 [sec] 
Random Launches 

Latitude Window:   42.00 To   45.00 [d] 
Longitude Window:   52.00 To  56.00 [d] 
Azimuth Window:  -10.00 To   30.00 [d] 

Use Two Closest Viewers 
Revisit Time:  5.0 [s] 
Tracking Done With Kinematic (Polynomial) Fits 

Run Control Ballistic Component Summary   
Maximum Number Of Viewers: 3 
Sensor Order Viewing Window: 10.0 [s] 
Notional Booster Burnout Time Uncertainty: 1.00 [s] 
Viewing Frequencies By Sensors: 

Sensing 1 
Sensing 2 
Sensing  3 

(0.00,20.00) 
(0.00,20.00) 
(400.00,20.00) 

Run Control Output Selection Summary — 
Generate State Predictions At 3 Slices 

3 Predicts At  50.0 [s], DTs 
3 Predicts At 100.0 [s], DTs 
3 Predicts At 200.0 [s], DTs 

0.0   50.0  100.0 
0.0   50.0  100.0 
0.0   50.0  100.0 

Compute Containment Radii For CLs:  0.8000  0.9000  0.9500  0.9900 

Run_Control Results   
20000: Number Of Event Attempts 
20000: Number Of Successful Events 
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104.850: Seconds In Boost Phase (5.243 msec/Event) 
539.170: Seconds In Ballistic Phase (26.958 msec/Event) 

3.800: Seconds In Output Phase (0.190 msec/Event) 
647.820: Seconds Total (32.391 msec/Event) 

0.249: Mean Initial Kepler Track Error [km] 
64.069: Mean Initial Kepler Speed Error [m/s] 

Generate 3 Position Error Analysis Sets 

State/Prediction Statistics, Ballistic Track Time 50.0 Seconds After 
BBO 
20000 Simulated Events 
Mean Detections Per Track:   7.00 

Upper Bounds [km] 
DT [s] Counts  <Delta X> [km]    R[0.800]  R[0.900]  R[0.950]  R[0.990] 

0.00   20000 0 .078 +- 0 047 0 1181 0 1628 0.1852 0.2451 
50.00  20000 0 .185 H— 0 110 0 2664 0 3265 0.3873 0.5432 
100.00 20000 0 296 + - 0 174 0 4101 0 5096 0.6072 0.8577 

P(x) = Gamma(x;Alpha,Lambda) Fits, Data Through 50.0 [s] 
DT[s]  Alpha +- Error  Lambda +- Error Corrl.  Score (mu,sigma) 

0.0   1.270 +- 0.022  16.248 +- 0.240   0.818   98.08 (0.08,0.07) 
50.0   2.620 +- 0.024  12.943 +- 0.135   0.891  180.64 (0.20,0.13) 

100.0   2.633 +- 0.024   8.308 +- 0.083   0.879  126.54 (0.32,0.20) 

State/Prediction Statistics, Ballistic Track Time 100.0 Seconds After 
BBO 
20000 Simulated Events 
Mean Detections Per Track:  11.00 

Upper Bounds [km] 
DT [s] Counts  <Delta X> [km]    R[0.800]  R[0.900]  R[0.950]  R[0.990] 

0.00   20000 0 .078 + - 0 045 0.1219 0 1652 0 1868 0 .2522 
50.00  20000 0 136 +- 0 079 0.1952 0 2580 0 2947 0 3955 
100.00 20000 0 195 +- 0 114 0.2823 0 3588 0 4227 0 5745 

P(x) = Gamma(x;Alpha,Lambda) Fits, Data Through 100.0 [s] 
DT[s]  Alpha +- Error   Lambda +- Error  Corrl.  Score (mu,sigma) 

0.0   1.510 +- 0.031  19.040 +- 0.339   0.906  149.26 (0.08,0.06) 
50.0   3.072 +- 0.033  21.627 +- 0.260   0.948    9.00 (0.14,0.08) 

100.0   3.030 +- 0.027  15.281 +- 0.153   0.921    5.67 (0.20,0.11) 

State/Prediction Statistics, Ballistic Track Time 200.0 Seconds After 
BBO 
20000 Simulated Events 
Mean Detections Per Track:  21.00 

Upper Bounds [km] 
DT [s] Counts  <Delta X> [km]    R[0.800]  R[0.900]  R[0.950]  R[0.990] 

0.00   20000   0.055 +-   0.032    0.0883    0.0994    0.1478    0.1909 
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50.00  20000 0.077 +- 0.045 0.1203 0.1643 0.1863 0.2490 
100.00 20000 0.099 +- 0.058 0.1601 0.1894 0.2243 0.2949 

P(x) = Gamma(x;Alpha,Lambda) Fits, Data Through 200.0 [s] 
DT[s]  Alpha +- Error  Lambda +- Error Corrl.  Score   (mu,sigma) 

0.0  ... Fits Failed ... 
50.0  ... Fits Failed ... 

100.0   3.326 +- 0.051  30.424 +- 0.480   0.974   51.26  (0.11,0.06) 
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APPENDIX C: CSS-2 MISSILE DATA 

The tables do not contain the values for the Gamma distribution parameters, a and A, 

fit by the SBIRS Low model because the observed data cannot be fit to a gamma distribution. 

A.        BALLISTIC TRACK INITIATION FAILURE 

Table 2 shows the fraction of ballistic track initiation failures with the launch latitude 

randomly selected between N02 and N05. 

CSS-2 Ballistic Track Initiation Failures 

Booster Track 
Revisit Rate (sec) 

Ballistic Track 
Revisit Rate (sec) 

Fraction of 
Failures 

5 5 0.00005 

5 10 0.00015 

5 15 0.00040 

5 20 0.00020 

5 25 0.00025 

5 30 0.00030 

5 35 0.00035 

5 40 0.00025 

Table 2. CSS-2: Ballistic Track Initiation Failure. 

B. SYNCHRONOUS STEREO VIEWING 

At time t = 50 seconds, the data shown in Table 3, Table 4, and Table 5 was generated for 

the instantaneous positional accuracy using the stated sensor combination. 
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Sensors 1 and 2 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.065 ± 0.121 0.2143   J 0.5827 
10 0.095+ 0.156 0.2686 0.6885 
15 0.067+ 0.072 0.1791 0.3731 
20 0.086+ 0.087 0.1964 0.4392 
25 0.194+ 0.325 0.4720 2.2400 
30 0.155+ 0.512 0.3023 0.7773 
35 0.097 ± 0.083 0.2058 0.3439 
40 0.102± 0.483 0.1869 0.2653 

Table 3. CSS-2: Synchronous Detection Using Sensors 1 and 2. 

Sensors 1 and 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.219+ 0.655 0.8560 4.1000 
10 0.259 ± 0.708 0.9293 4.4400 
15 0.160+ 0.436 0.4066 2.8833 
20 0.211± 0.576 0.5248 3.9231 
25 0.535 ± 1.149 2.8714 6.6545 
30 0.352± 0.856 1.1435 5.2455 
35 0.223+ 0.533 0.5600 3.4714 
40 0.166± 0.431 0.3712 1.4000 

Table 4. CSS-2: Synchronous Detection Using Sensors 1 and 3. 

Sensors 2 and 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.154± 0.589 0.3771 1.9750 
10 0.192+ 0.583 0.4298 1.8143 
15 0.161+ 0.541 0.3036 1.0091 
20 0.202 ± 0.612 0.3987 1.5300 
25 0.476+ 1.117 1.5778 6.8500 
30 0.350+ 0.941 0.8402 5.2667 
35 0.272± 0.778 0.5903 3.5667 
40 0.249± 0.778 0.5045 3.7750 

Table 5. CSS-2: Synchronous Detection Using Sensors 2 and 3. 

C. MONO VIEWING 

At time t = 50 seconds, the data shown in Table 6, Table 7, and Table 8 was generated for 

the instantaneous positional accuracy using the stated sensor combination. 
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Sensor 1 

Revisit Rate AX 95% C.I. 99% C.I. 
5 5.710± 5.498 16.0667 25.1652 
10 5.722± 5.023 15.5753 22.1739 
15 4.973 ± 4.804 14.4000 21.3882 
20 5.409± 4.771 14.6804 21.5000 
25 7.409± 4.715 17.1942 22.3704 
30 7.527 ± 4.843 17.3217 23.5429 
35 7.622± 4.934 17.4769 23.8667 
40 7.543± 4.918 17.0565 24.2824 

Table 6. CSS-2: Mono Detection Using Sensor 1. 

Sensor 2 

Revisit Rate AX 95% C.I. 99% C.I. 
5 6.941 ± 5.729 18.7220 23.5579 
10 6.447 ± 5.400 17.7560 22.6556 
15 6.099± 5.403 17.8133 23.6258 
20 5.943± 5.191 16.8427 23.3571 
25 5.876± 4.613 15.4517 20.5290 
30 5.922± 4.678 15.5054 21.4533 
35 6.087+ 4.876 15.9086 23.0875 
40 6.127 ± 4.938 16.2338 23.6143 

Table 7. CSS-2: Mono Detection Using Sensor 2. 

Sensor 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 6.236+ 5.686 17.7691 22.5158 
10 5.599± 5.155 16.2575 21.0133 
15 5.319± 5.102 15.7294 21.7667 
20 5.195± 4.689 14.2211 20.5838 
25 5.218+ 3.978 12.4035 17.3286 
30 5.325 ± 4.031 12.4142 18.4714 
35 5.369± 4.188 12.6931 19.8500 
40 5.485± 4.339 13.0115 21.0750 

Table 8. CSS-2: Mono Detection Using Sensor 3. 
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D.        SEQUENTIAL MONO VIEWING 

At time t = 50 seconds the data shown in Table 9, Table 10, Table 11, Table 12, Table 13, 

and Table 14 was generated for the instantaneous positional accuracy using the stated sensor 

combination. 

Sensor 1 Handover to Sensor 2 at Time t = 75 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 

5 5.664± 5.388 15.7073 24.8571 
10 5.750± 4.948 15.4722 21.7333 
15 4.931 ± 4.830 14.5347 21.6000 
20 5.432± 4.729 14.7053 21.3391 
25 7.480± 4.770 17.1955 22.6815 
30 7.538± 4.880 17.3824 23.4462 
35 7.499± 4.876 17.3545 23.7895 
40 7.563 ± 4.977 17.4313 24.7304 

Table 9. CSS-2 Sequential Mono Viewing: Sensor 1 Handover to Sensor 2 at Time t = 75 
seconds. 

Sensor 1 Handover to Sensor 2 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 5.664± 5.388 15.7073 24.8571 
10 5.799± 5.035 15.7708 21.9810 
15 4.931+ 4.830 14.5347 21.6000 
20 5.427± 4.729 14.7009 21.2571 
25 7.480± 4.770 17.1955 22.6815 
30 7.462± 4.795 17.2754 22.9103 
35 7.499 ± 4.876 17.3545 23.7895 
40 7.563 ± 4.977 17.4313 24.7304 

Table 10. CSS-2 Sequential Mono Viewing: Sensor 1 Handover to Sensor 2 at Time t = 150 
seconds. 
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Table 11. 
seconds. 

Table 12. 
seconds. 

Table 13. 
seconds. 

Sensor 1 Handover to Sensor 3 at Time t = 75 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 5.632± 5.367 15.7679 24.3765 
10 5.723 ± 5.014 15.6667 22.2000 
15 4.980± 4.828 14.5558 21.4222 
20 5.460+ 4.775 14.7040 21.4667 
25 7.455 ± 4.700 16.9287 22.6182 
30 7.561+ 4.931 17.4813 23.3760 
35 7.518+ 4.927 17.1778 24.2222 
40 7.576 ± 4.955 17.3851 24.1455 

CSS-2 Sequential Mono Viewing: Sensor 1 Handover to Sensor 3 at Time t = 75 

Sensor 1 Handover to Sensor 3 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 5.683 ± 5.386 15.8462 24.4250 
10 5.767+ 5.021 15.8521 22.0000 
15 5.005 ± 4.906 14.7673 21.7524 
20 5.456± 4.721 14.6721 21.0667 
25 7.494± 4.753 17.1678 22.6621 
30 7.488+ 4.815 17.3000 23.1000 
35 7.456 ± 4.855 17.1463 23.5000 
40 7.605 ± 4.960 17.2400 24.7000 

CSS-2 Se quential Mono Viewing: Sensor 1 Handover to Sensor 3 a 

Sensor 2 Handover to Sensor 3 at Time t = 75 seconds 

it Time t= 150 

Revisit Rate AX 95% C.I. 99% C.I. 
5 6.976± 5.729 18.7882 23.5529 
10 6.506± 5.461 18.0710 22.6824 
15 6.192± 5.539 18.1519 23.7677 
20 6.011± 5.177 17.0833 23.1704 
25 5.916± 4.679 15.6178 20.8000 
30 5.983 ± 4.767 15.8457 22.0824 
35 6.084 ± 4.907 16.2000 23.1500 
40 6.203+ 4.942 16.3536 23.0080 

CSS-2 Se< quential MonoA /iewing: Sensor \ 
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Sensor 2 Handover to Sensor 3 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 6.976 ± 5.733 18.8747 23.5222 
10 6.527+ 5.465 18.0240 22.8154 
15 6.152± 5.482 17.9830 23.9048 
20 5.989+ 5.184 16.9531 23.4162 
25 5.933 ± 4.639 15.4488 20.7143 
30 5.959+ 4.763 15.8409 21.7333 
35 5.947± 4.786 15.7487 22.6750 
40 6.117± 4.894 16.1412 23.0667 

Table 14. CSS-2 Sequential Mono Viewing: Sensor 2 Handover to Sensor 3 at Time t = 150 
seconds. 

E. ASYNCHRONOUS VIEWING 

At time t = 50 seconds, the data shown in Tables 15 to 32 was generated for the 

instantaneous positional accuracy using the stated sensor combination. 

Sensor 1 has a constant revisit rate of every 5 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.065 ± 0.121 0.2143 0.5827 
10 0.137± 0.392 0.4112 2.6696 
15 0.112± 0.314 0.3358 2.0957 
20 0.174+ 0.512 0.5108 3.3286 
25 0.639+ 1.462 3.8829 7.4333 
30 0.411± 1.083 2.7382 5.8250 
35 0.257+ 0.742 0.9603 4.4955 
40 0.177+ 0.526 0.4945 3.4350 

Table 15. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 has a constant revisit rate of every 10 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.062 ± 0.088 0.1633 0.4539 
10 0.095 ± 0.156 0.2686 0.6885 
15 0.078+ 0.111 0.1963 0.5217 
20 0.104± 0.199 0.2604 0.8575 
25 0.330± 0.852 1.2565 5.1375 
30 0.202 ± 0.526 0.5350 3.4833 
35 0.144± 0.348 0.3362 2.4542 
40 0.116± 0.371 0.2538 0.9405 

Table 16. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 15 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.056 ± 0.084 0.1432 0.3589 
10 0.080 ± 0.108 0.1967 0.4913 
15 0.067 ± 0.072 0.1791 0.3731 
20 0.086+ 0.117 0.1971 0.5975 
25 0.262 ± 0.669 0.8269 4.1708 
30 0.163 ± 0.399 0.3958 2.8895 
35 0.114± 0.233 0.2600 1.0353 
40 0.087+ 0.117 0.1955 0.5976 

Table 17. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 20 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.062+ 0.076 01648. 0.3761 
10 0.079+ 0.073 0.1937 0.3940 
15 0.069+ 0.061 0.1779 0.2855 
20 0.086+ 0.087 0.1964 0.4392 
25 0.207+ 0.483 0.5029 3.2900 
30 0.137± 0.261 0.2961 1.1647 
35 0.103± 0.127 0.2334 0.6324 
40    - 0.096 ± 0.341 0.1952 0.4048 

Table 18. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 has a constant revisit rate of every 25 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.112+ 0.204 0.3489 0.8280 
10 0.111± 0.158 0.2626 0.5710 
15 0.108± 0.193 0.2326 0.5419 
20 0.112± 0.127 0.2538 0.4940 
25 0.194+ 0.325 0.4720 2.2400 
30 0.239 ± 0.973 0.3899 4.1750 
35 0.223 ± 1.003 0.2986 4.6400 
40 0.289 ± 1.265 0.2970 7.6857 

Table 19. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 30 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.079+ 0.098 0.1950 0.4642 
10 0.091+ 0.095 0.1965 0.3989 
15 0.085 ± 0.090 0.1925 0.3667 
20 0.096 ± 0.098 0.1984 0.3578 
25 0.276+ 1.061 0.4847 4.8000 
30 0.097+ 0.083 0.2058 0.3439 
35 0.124± 0.429 0.2480 0.4434 
40 0.199+ 1.006 0.2096 4.8600 

Table 20. CSS-2 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 2 has a constant revisit rate of every 5 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.154+ 0.589 0.3771 1.9750 
10 0.280+ 1.003 0.7488 5.5000 
15 0.233+ 0.875 0.5409 4.6000 
20 0.386 ± 1.318 1.3829 7.8667 
25 1.029± 2.251 5.4360 8.0000+ 
30 0.718± 1.893 3.6724 8.0000+ 
35 0.512± 1.544 2.5444 8.0000+ 
40 0.411± 1.415 1.5325 8.0000+ 

Table 21. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 
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Sensor 2 has a constant revisit rate of every 10 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.148+ 0.504 0.3409 1.0222 
10 0.192± 0.583 0.4298 1.8143 
15 0.180± 0.605 0.3830 1.4778 
20 0.231+ 0.745 0.4906 3.2750 
25 0.619± 1.717 2.8622 8.0000+ 
30 0.421 ± 1.282 1.4114 7.2500 
35 0.308+ 0.998 0.7467 5.7000 
40 0.278 ± 0.943 0.5981 5.1200 

Table 22. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 15 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.142± 0.524 0.2798 0.8750 
10 0.181 ± 0.594 0.3535 1.7000 
15 0.161+ 0.541 0.3036 1.0091 
20 0.213 ± 0.734 0.3955 2.8000 
25 0.540 ± 1.585 2.2233 8.0000+ 
30 0.394± 1.301 1.0354 7.5333 
35 0.311± 1.093 0.6397 6.5250 
40 0.257 ± 0.913 0.5136 4.9600 

Table 23. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 20 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.153± 0.503 0.3025 1.3900 
10 0.186± 0.562 0.3703 1.5714 
15 0.183± 0.595 0.3537 1.5200 
20 0.202 ± 0.612 0.3987 1.5300 
25 0.456+ 1.278 1.5475 7.3200 
30 0.345+ 1.064 0.8396 5.9000 
35 0.282± 0.917 0.5792 4.9333 
40 0.242 ± 0.786 0.4765 3.5000 

Table 24. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 
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Sensor 2 has a constant revisit rate of every 25 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.275 ± 0.797 0.6536 4.0200 
10 0.266+ 0.707 0.5824 3.3889 
15 0.249± 0.715 0.5405 2.2143 
20 0.266 ± 0.664 0.5708 2.4667 
25 0.476± 1.117 1.5778 6.8500 
30 0.374 ± 0.917 0.8937 5.2000 
35 0.337 ± 0.903 0.7750 5.1286 
40 0.326+ 0.912 0.6945 4.8500 

Table 25. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 30 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.211± 0.643 0.4561 2.8875 
10 0.229+ 0.654 0.4604 2.4000 
15 0.206 ± 0.552 0.4253 1.7286 
20 0.238 ± 0.667 0.4781 2.0500 
25 0.436 ± 1.079 1.3045 6.3667 
30 0.350± 0.941 0.8402 5.2667 
35 0.299 ± 0.855 0.6541 4.0500 
40 0.285 ± 0.854 0.5821 4.3250 

Table 26. CSS-2 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 3 has a constant revisit rate of every 5 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.154± 0.589 0.3771 1.9750 
10 0.148 ± 0.504 0.3409 1.0222 
15 0.142± 0.524 0.2798 0.8750 
20 0.153 ± 0.503 0.3025 1.3900 
25 0.275+ 0.797 0.6536 4.0200 
30 0.211 ± 0.643 0.4561 2.8875 
35 0.181 ± 0.625 0.3639 1.7600 
40 0.161 ± 0.549 0.2951 1.5286 

Table 27. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 
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Sensor 3 has a constant revisit rate of every 10 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.280+ 1.003 0.7488 5.5000 
10 0.192± 0.583 0.4298 1.8143 
15 0.181 ± 0.594 0.3535 1.7000 
20 0.186± 0.562 0.3703 1.5714 
25 0.266 ± 0.707 0.5824 3.3889 
30 0.229 ± 0.654 0.4604 2.4000 
35 0.205 ± 0.630 0.3873 2.0000 
40 0.192± 0.605 0.3739 1.6857 

Table 28. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 15 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.233 ± 0.875 0.5409 4.6000 
10 0.180± 0.605 0.3830 1.4778 
15 0.161 ± 0.541 0.3036 1.0091 
20 0.183± 0.595 0.3537 1.5200 
25 0.249 ± 0.715 0.5405 2.2143 
30 0.206+ 0.552 0.4253 1.7286 
35 0.190+ 0.584 0.3758 1.2667 
40 0.178± 0.542 0.3509 1.2857 

Table 29. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 20 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.386± 1.318 1.3829 7.8667 
10 0.231± 0.745 0.4906 3.2750 
15 0.213+ 0.734 0.3955 2.8000 
20 0.202+ 0.612 0.3987 1.5300 
25 0.266+ 0.664 0.5708 2.4667 
30 0.238+ 0.667 0.4781 2.0500 
35 0.227+ 0.673 0.4292 2.4375 
40 0.213+ 0.655 0.4192 1.7500 

Table 30. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 
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Sensor 3 has a constant revisit rate of every 25 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.029± 2.251 5.4360 8.0000+ 
10 0.619± 1.717 2.8622 8.0000+ 
15 0.540 ± 1.585 2.2233 8.0000+ 
20 0.456 ± 1.278 1.5475 7.3200 
25 0.476± 1.117 1.5778 6.8500 
30 0.436+ 1.079 1.3045 6.3667 
35 0.448 ± 1.229 1.2862 7.3286 
40 0.477 ± 1.359 1.4854 8.0000+ 

Table 31. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 30 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.718 ± 1.893 3.6724 8.0000+ 
10 0.421 ± 1.282 1.4114 7.2500 
15 0.394 ± 1.301 1.0354 7.5333 
20 0.345+ 1.064 0.8396 5.9000 
25 0.374 ± 0.917 0.8937 5.2000 
30 0.350± 0.941 0.8402 5.2667 
35 0.330+ 0.935 0.7632 4.8250 
40 0.358 ± 1.099 0.8371 6.6333 

Table 32. CSS-2 Asynchronous Viewing: Sensor 3 and Sensor 2. 

F.        DELAYED VIEWING 

At time t = 50 seconds, the data shown in Tables 33 to Table 38 was generated for the 

instantaneous positional accuracy using the stated sensor combination. 
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Sensor 1 and 2 delay turning on for 5 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.084 ± 0.192 0.3333 0.8104 
10 0.082± 0.138 0.2569 0.6196 
15 0.140± 0.249 0.4035 1.6333 
20 0.074 ± 0.073 0.1897 0.3892 
25 0.181 ± 0.477 0.4268 1.9727 
30 0.113± 0.133 0.2769 0.5694 
35 0.098± 0.338 0.1945 0.3404 
40 0.069 ± 0.052 0.1745 0.1994 

Table 33. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 10 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.102± 0.233 0.3698 1.4667 
10 0.140± 0.278 0.4713 1.7778 
15 0.121 ± 0.203 0.3626 1.0231 
20 0.248 ± 0.501 J 0.7511 2.7692 
25 0.139± 0.202 0.3750 0.9194 
30 0.108± 0.267 0.2533 0.5477 
35 0.075 ± 0.078 0.1849 0.2890 
40 5.289± 2.699 8.0000+ 8.0000+ 

Table 34. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 15 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.134± 0.299 0.5168 1.8053 
10 0.113± 0.213 0.3873 1.2190 
15 0.101 ± 0.159 0.3000 0.8413 
20 0.186± 0.324 0.5287 2.0361 
25 0.125± 0.248 0.3599 0.8043 
30 0.086 ± 0.092 0.2019 0.4821 
35 3.453 ± 2.594 7.5811 8.0000+ 
40 3.442± 2.598 7.5914 8.0000+ 

Table 35. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 and 2 delay turning on for 20 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.190± 0.418 0.9586 2.2483 
10 0.234 ± 0.482 1.1030 2.5700 
15 0.321 ± 0.619 1.4446 3.6286 
20 0.148± 0.239 0.4362 1.4438 
25 0.102± 0.134 0.2978 0.7125 
30 2.206 ± 2.114 6.3299 7.2763 
35 2.206± 2.114 6.3299 7.2763 
40 2.221 ± 2.113 6.3227 7.2692 

Table 36. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 25 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.253 ± 0.495 1.1926 2.7212 
10 0.162± 0.310 0.6642 1.6714 
15 0.218± 0.417 0.8849 2.3053 
20 0.118± 0.168 0.3681 1.0034 
25 1.363 ± 1.560 5.0290 5.9560 
30 1.365 ± 1.568 5.0487 5.9808 
35 1.377± 1.571 5.0570 5.9553 
40 1.376± 1.570 5.0548 5.9425 

Table 37. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 30 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.298+ 0.511 1.4137 2.5556 
10 0.358+ 0.611 1.6425 3.1522 
15 0.149± 0.233 0.5402 1.2000 
20 0.819± 1.119 3.5600 4.7642 
25 0.824 ± 1.130 3.5625 4.7690 
30 0.827+ 1.153 3.6386 4.8325 
35 0.825 ± 1.130 3.5352 4.7532 
40 0.825 ± 1.130 3.5352 4.7532 

Table 38. CSS-2 Delayed Viewing: Sensor 1 and Sensor 2. 

G.        STAGGERED VIEWING 

At time t = 50 seconds, the data shown in Table 39, Table 40, Table 41, Table 42, and 

Table 43 was generated for the instantaneous positional accuracy using the stated sensor 

combination. 
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Sensor 1 and 2 delay turning for 5 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.084 ± 0.192 0.3333 0.8104 
10 0.111± 0.290 0.3790 2.0323 
15 0.315 ± 0.824 1.8710 4.5771 
20 0.140± 0.387 0.4536 2.5724 
25 0.514 ± 1.207 3.0957 6.2250 
30 0.313± 0.831 1.8391 4.7192 
35 0.205 ± 0.578 0.6667 3.5733 
40 0.145± 0.399 0.4502 2.6667 

Table 39. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 10 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.102± 0.233 0.3698 1.4667 
10 0.220 ± 0.560 1.0644 3.3083 
15 0.241 ± 0.617 1.2578 3.5933 
20 0.610 ± 1.262 3.1200 6.5167 
25 0.372 ± 0.897 2.1836 4.9300 
30 0.239 ± 0.622 1.2057 3.6514 
35 0.160± 0.412 0.5857 2.6519 
40 4.161 ± 3.890 8.0000+ 8.0000+ 

Table 40. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 15 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.134± 0.299 0.5168 1.8053 
10 0.163 ± 0.385 0.7523 2.3406 
15 0.174 ± 0.419 0.7977 2.5118 
20 0.433 ± 0.932 2.3297 4.9500 
25 0.269 ± 0.642 1.5223 3.6118 
30 0.178± 0.427 0.8145 2.6167 
35 3.082± 3.194 8.0000+ 8.0000+ 
40 3.107± 3.197 8.0000+ 8.0000+ 

Table 41. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 and 2 delay turning for 20 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.190+ 0.418 0.9586 2.2483 
10 0.328 ± 0.659 1.7064 3.4029 
15 0.506 ± 0.887 2.3248 4.3160 
20 0.309 ± 0.659 1.6022 3.5643 
25 0.198± 0.441 1.0436 2.5455 
30 2.102± 2.422 7.0359 8.0000+ 
35 2.102± 2.422 7.0359 8.0000+ 
40 2.124± 2.432 7.1000 8.0000+ 

Table 42. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 25 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.253 ± 0.495 1.1926 J 2.7212 
10 0.243 ± 0.491 1.2462 2.6583 
15 0.364 ± 0.659 1.7585 3.2385 
20 0.230± 0.470 1.1675 2.5744 
25 1.322± 1.691 4.7658 7.2733 
30 1.337± 1.713 4.7862 7.4400 
35 1.346+ 1.719 4.8205 7.4300 
40 1.346+ 1.721 4.8284 7.4526 

Table 43. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 30 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.298 ± 0.511 1.4137 2.5556 
10 0.392+ 0.621 1.7915 2.7828 
15 0.255+ 0.467 1.2547 2.4698 
20 0.818+ 1.141 3.0460 5.0769 
25 0.827+ 1.141 3.1288 4.9136 
30 0.843+ 1.189 3.1263 5.0300 
35 0.832+ 1.162 3.0865 4.8800 
40 0.830+ 1.160 3.0875 4.8556 

Table 44. CSS-2 Staggered Viewing: Sensor 1 and Sensor 2. 
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H. LATITUDE SHIFT 

At time t = 50 seconds, the data shown in Table 45, Table 46, Table 47, and Table 48 was 

generated for the instantaneous positional accuracy using sensors 1 and 2 at the stated latitude. 

Sensors 1 and 2 at Latitude N02 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.270 ± 0.726 1.4874 3.8715 
10 0.334± 0.811 1.7018 4.6129 
15 0.221 ± 0.580 0.5952 3.6231 
20 0.264± 0.642 0.6820 4.0006 
25 0.650 ± 1.250 3.2268 6.4339 
30 0.420 ± 1.047 1.5627 5.4020 
35 0.273 ± 0.612 0.6724 3.7509 
40 0.231+ 0.814 0.5121 2.8025 

Table 45. CSS-2 Latitude Shift to N02: Sensor 1 and Sensor 2. 

Sensors 1 and 2 at Latitude N20 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.130± 0.352 0.4286 2.0605 
10 0.166± 0.388 0.4723 2.2267 
15 0.115 ± 0.266 0.2692 1.5871 
20 0.143 ± 0.314 0.3237 1.8629 
25 0.335 ± 0.619 1.1444 3.4500 
30 0.241 ± 0.597 0.5586 2.6737 
35 0.157± 0.301 0.3496 1.6800 
40 0.150± 0.529 0.2847 0.7778 

Table 46. CSS-2 Latitude Shift to N20: Sensor 1 and Sensor 2. 

Sensors 1 and 2 at Latitude N60 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.085 ± 0.315 0.2434 0.8100 
10 0.118+ 0.443 0.2614 1.0923 
15 0.082 ± 0.235 0.1852 0.4593 
20 0.103+ 0.281 0.1981 0.6450 
25 0.218± 0.612 0.4325 1.9833 
30 0.173± 0.595 0.2924 1.3067 
35 0.113 ± 0.248 0.2178 0.5220 
40 0.120± 0.620 0.1947 0.4542 

Table 47. CSS-2 Latitude Shift to N60: Sensor 1 and Sensor 2. 
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Sensors 1 and 2 at Latitude N80 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.096+ 0.252 0.1998^ 0.6048 
10 0.137± 0.305 0.2787 0.8187 
15 0.106± 0.158 0.2056 0.5246 
20 0.141+ 0.249 0.2789 0.7583 
25 0.285 ± 0.582 0.5106 2.5800 
30 0.277 ± 1.036 0.4303 3.7000 
35 0.177± 0.305 0.3368 1.0789 
40 0.191+ 0.811 0.2945 1.1333 

Table 48. CSS-2 Latitude Shift to N80: Sensor 1 and Sensor 2. 
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APPENDIX D: M-9 MISSILE DATA 

The tables do not contain the values for the Gamma distribution parameters, a and X, 

fit by the SBIRS Low model because the observed data cannot be fit to a gamma distribution. 

A.        BALLISTIC TRACK INITIATION FAILURE 

Table 49 shows the fraction of ballistic track initiation failures with the launch latitude 

randomly selected between N02 and N05 and the booster track revisit varied from 5 to 3 then 2 

seconds. 

M-9 Ballistic Track Initiation Failures 

Booster Track 
Revisit Rate 

(sec) 

Ballistic Track 
Revisit Rate 

(sec) 

Fraction of 
Failures 

5 3 2 5 0.0645 0.0492 0.0386 
5 3 2 10 0.0648 0.0453 0.0366 
5 3 2 15 0.0624 0.0456 0.0360 
5 3 2 20 0.0629 0.0490 0.0393 
5 3 2 25 0.0629 0.0463 0.0382 
5 3 2 30 0.0634 0.0450 0.0385 
5 3 2 35 0.0630 0.0478 0.0384 
5 3 2 40 0.0632 0.0435 0.0364 

Table 49. M-9: Ballistic Track Initiation Failure. 

B. SYNCHRONOUS STEREO VIEWING 

At time t = 50 seconds, the data shown in Table 50, Table 51, and Table 52 was 

generated for the instantaneous positional accuracy using the stated sensor combination. 
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Sensors 1 and 2 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.050+ 0.037 0.1269 0.1903 
10 0.070 ± 0.045 0.1774 0.2140 
15 0.063 ± 0.036 0.1641 0.1964 
20 0.078 ± 0.047 0.1852 0.2451 
25 0.145± 0.094 0.2983 0.4444 
30 0.119± 0.118 0.2580 0.3637 
35 0.094 ± 0.051 0.1974 0.2835 
40 0.085 ± 0.117 0.1888 0.2685 

Table 50. M-9: Synchronous Detection Using Sensors 1 and 2. 

Sensors 1 and 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.081± 0.109 0.1989 0.5524 
10 0.108± 0.121 0.2711 0.6268 
15 0.095+ 0.098 0.2333 0.4687 
20 0.117± 0.112 0.2831 0.5767 
25 0.218± 0.211 0.5270 1.1676 
30 0.176± 0.183 0.4308 0.9469 
35 0.144 ± 0.137 0.3538 0.6988 
40 0.123± 0.128 0.2938 0.5695 

Table 51. M-9: Synchronous Detection Using Sensors 1 and 3. 

Sensors 2 and 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.105+ 0.127 0.2870 0.6931 
10 0.142± 0.152 0.3744 0.8444 
15 0.126± 0.136 0.3209 0.7429 
20 0.157± 0.167 0.3928 0.9190 
25 0.284 ± 0.263 0.7473 1.4727 
30 0.234 ± 0.231 0.6302 1.2636 
35 0.198± 0.206 0.5279 1.1205 
40 0.171+ 0.192 0.4534 1.0551 

Table 52. M-9: Synchronous Detection Using Sensors 2 and 3. 

C.        MONO VIEWING 

At time t = 50 seconds, the data shown in Table 53, Table 54, and Table 55 was 

generated for the instantaneous positional accuracy using the stated sensor combination. 
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Table 53. 

Table 54. 

Table 55. 

Sensor 1 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.157+ 1.059 3.2844 4.6186 
10 1.271± 1.119 3.5250 4.7894 
15 1.103 ± 0.988 3.1266 4.2282 
20 1.264+ 1.095 3.4601 4.7286 
25 1.875± 1.508 4.6848 6.6867 
30 1.846± 1.505 4.7386 6.5873 
35 1.846± 1.490 4.7435 6.5684 
40 1.841 ± 1.480 4.6586 6.4778 

M-9: Mono Detection Using Sensor 1. 

Sensor 2 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.092± 0.990 3.0661 4.3375 
10 1.137+ 0.998 3.1098 4.3883 
15 1.098 ± 0.962 3.0138 4.2112 
20 1.164± 0.982 3.0977 4.3241 
25 1.341+ 1.052 3.4094 4.6962 
30 1.312± 1.042 3.3452 4.7091 
35 1.313+ 1.050 3.3538 4.6913 
40 1.312± 1.045 3.3623 4.7000 

M-9: Moi lo Detection Using Sensor 2. 

Sensor 3 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.983+ 1.003 3.0178 4.5570 
10 1.073+ 1.022 3.1675 4.5631 
15 1.047± 1.017 3.1708 4.5443 
20 1.180± 1.071 3.3814 4.7187 
25 1.418+ 1.098 3.5817 4.7739 
30 1.404+ 1.106 3.5952 4.7779 
35 1.372± 1.088 3.5445 4.8051 
40 1.368± 1.104 3.5719 4.7852 

M-9: Mor lo Detection Us ing Sensor 3. 
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D. SEQUENTIAL MONO VIEWING 

At time t = 50 seconds, the data shown in Table 56, Table 57, Table 58, Table 59, Table 

60, and Table 61 was generated for the instantaneous positional accuracy using the stated sensor 

combination. 

Sensor 1 Handover to Sensor 2 at Time t = 75 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.166± 1.078 3.3327 4.7135 
10 1.264+ 1.112 3.4809 4.8719 
15 1.102+ 1.004 3.1305 4.4000 
20 1.273 ± 1.093 3.4615 4.7404 
25 1.869± 1.514 4.7333 6.6759 
30 1.866+ 1.523 4.7686 6.7771 
35 1.867± 1.509 4.6983 6.7211 
40 1.841± 1.511 4.7675 6.6390 

Table 56. M-9 Sequential Mono Viewing: Sensor 1 Handover to Sensor 2 at Time t = 75 
seconds. 

Sensor 1 Handover to Sensor 2 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.166± 1.078 3.3327 4.7135 
10 1.266± 1.109 3.4890 4.8047 
15 1.102± 1.004 3.1305 4.4000 
20 1.273 ± 1.093 3.4615 4.7404 
25 1.869± 1.514 4.7333 6.6759 
30 1.872± 1.509 4.7065 6.6800 
35 1.867± 1.509 4.6983 6.7211 
40 1.841+ 1.511 4.7675 6.6390 

Table 57. M-9 Sequential Mono Viewing: Sensor 1 Handover to Sensor 2 at Time t = 150 
seconds. 
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Sensor 1 Handover to Sensor 3 at Time t = 75 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.183+ 1.085 3.3757 4.7115 
10 1.268 ± 1.113 3.5033 4.8395 
15 1.104± 0.997 3.1119 4.3584 
20 1.271 ± 1.097 3.4675 4.7339 
25 1.867 + 1.513 4.4732 6.7000 
30 1.848± 1.484 4.7067 6.6535 
35 1.871+ 1.514 4.7775 6.6810 
40 1.824± 1.484 4.7150 6.6030 

Table 58. M-9 Sequential Mono Viewing: Sensor 1 Handover to Sensor 3 at Time t = 75 
seconds. 

Sensor 1 Handover to Sensor 3 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1-159+ 1.062 3.2896 4.6071 
10 1.258+ 1.105 3.4900 4.8371 
15 1.091+ 0.991 3.1126 4.3433 
20 1.284+ 1.100 3.4667 4.7788 
25 1.878+ 1.524 4.7748 6.7013 
30 1.859+ 1.502 4.7057 6.6718 
35 1.852+ 1.516 4.7957 6.7526 
40 1.837+ 1.502 4.7492 6.6217 

Table 59. M-9 Sequential Mono Viewing: Sensor 1 Handover to Sensor 3 at Time t = 150 
seconds. 

Sensor 2 Handover to Sensor 3 at Time t = 75 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.109+ 1.005 3.0859 4.3891 
10 1.133+ 1.002 3.1090 4.3735 
15 1.094+ 0.958 3.0090 4.1550 
20 1.161+ 0.987 3.1212 4.3220 
25 1.333+ 1.041 3.3647 4.6694 
30 1.330+ 1.064 3.4037 4.7862 
35 1.303+ 1.033 3.3467 4.6509 
40 1.309+ 1.048 3.3374 4.7125 

Table 60. M-9 Sequential Mono Viewing: Sensor 2 Handover to Sensor 3 at Time t = 75 
seconds. 
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Sensor 2 Handover to Sensor 3 at Time t = 150 seconds 

Revisit Rate AX 95% C.I. 99% C.I. 
5 1.095 ± 0.979 3.0302 4.2754 
10 1.116± 0.985 3.0858 4.3278 
15 1.100± 0.967 3.0463 4.2359 
20 1.167± 0.992 3.1315 4.3429 
25 1.338 ± 1.062 3.4266 4.7649 
30 1.332± 1.059 3.4134 4.7521 
35 1.298± 1.033 3.3265 4.6733 
40 1.295 ± 1.027 3.2785 4.5558 

Table 61. M-9 Sequential Mono Viewing: Sensor 1 Handover to Sensor 3 at Time t = 150 
seconds. 

E. ASYNCHRONOUS VIEWING 

At time t = 50 seconds, the data shown in Tables 62 to 79 was generated for the 

instantaneous positional accuracy using the stated sensor combination. 

Sensor 1 has a constant revisit rate of every 5 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.050± 0.037 0.1269 0.1903 
10 0.067 ± 0.062 0.1769 0.2521 
15 0.061 ± 0.054 0.1649 0.1988 
20 0.074 ± 0.071 0.1867 0.2820 
25 0.142± 0.174 0.3726 0.9302 
30 0.110+ 0.131 0.2776 0.6026 
35 0.089 ± 0.097 0.2136 0.3568 
40 0.075 ± 0.067 0.1888 0.2828 

Table 62. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 has a constant revisit rate of every 10 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.058 ± 0.042 0.1519 0.1959 
10 0.070 ± 0.045 0.1774 0.2140 
15 0.067 ± 0.046 0.1719 0.1994 
20 0.076 ± 0.052 0.1856 0.2580 
25 0.128± 0.126 0.2976 0.5194 
30 0.103± 0.085 0.2461 0.3604 
35 0.088 ± 0.066 0.1963 0.2905 
40 0.080± 0.088 0.1879 0.2674 

Table 63. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 15 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.054 ± 0.035 0.1358 0.1902 
10 0.068 ± 0.046 0.1749 0.2144 
15 0.063 ± 0.036 0.1641 0.1964 
20 0.072+ 0.047 0.1807 0.2316 
25 0.121 ± 0.105 0.2916 0.4448 
30 0.100± 0.077 0.2417 0.3456 
35 0.084± 0.056 0.1937 0.2798 
40 0.075 ± 0.047 0.1842 0.2469 

Table 64. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 20 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.061 ± 0.038 0.1600 0.1964 
10 0.073+ 0.044 0.1797 0.2222 
15 0.068 ± 0.042 0.1737 0.1994 
20 0.078 ± 0.047 0.1852 0.2451 
25 0.124± 0.092 0.2880 0.3994 
30 0.102± 0.066 0.2406 0.3177 
35 0.089+ 0.055 0.1956 0.2829 
40 0.083 ± 0.090 0.1884 0.2643 

Table 65. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 has a constant revisit rate of every 25 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.093 ± 0.075 0.2217 0.3540 
10 0.100± 0.067 0.2178 0.3323 
15 0.097 ± 0.064 0.2110 0.3114 
20 0.104± 0.062 0.2211 0.3193 
25 0.145+ 0.094 0.2983 0.4444 
30 0.145± 0.236 0.2835 0.7118 
35 0.136± 0.240 0.2653 0.8900 
40 0.145± 0.298 0.2718 1.7478 

Table 66. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 1 has a constant revisit rate of every 30 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.077 ± 0.056 0.1887 0.2802 
10 0.088 ± 0.057 0.1934 0.2793 
15 0.083+ 0.048 0.1896 0.2666 
20 0.092+ 0.052 0.1955 0.2840 
25 0.149+ 0.208 0.2969 0.7100 
30 0.119± 0.118 0.2580 0.3637 
35 0.105± 0.114 0.2072 0.2958 
40 0.117+ 0.246 0.1997 0.8684 

Table 67. M-9 Asynchronous Viewing: Sensor 1 and Sensor 2. 

Sensor 2 has a constant revisit rate of every 5 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.105+ 0.127 0.2870 0.6931 
10 0.141+ 0.170 0.4146 0.9140 
15 0.131+ 0.164 0.3783 0.8676 
20 0.157+ 0.198 0.4791 1.0808 
25 0.283+ 0.333 0.9242 1.7327 
30 0.230 ± 0.277 0.7562 1.4674 
35 0.197± 0.248 0.6555 1.2836 
40 0.170± 0.214 0.5356 1.1527 

Table 68. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 
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Sensor 2 has a constant revisit rate of every 10 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.116± 0.122 0.2915 0.6438 
10 0.142± 0.152 0.3744 0.8444 
15 0.133± 0.146 0.3510 0.7915 
20 0.152± 0.165 0.3929 0.9184 
25 0.254 ± 0.278 0.7549 1.4851 
30 0.213± 0.238 0.6293 1.3071 
35 0.186± 0.208 0.5176 1.1437 
40 0.164± 0.194 0.4443 1.0657 

Table 69. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 15 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.112+ 0.118 0.2874 0.6446 
10 0.135± 0.138 0.3533 0.7521 
15 0.126± 0.136 0.3209 0.7429 
20 0.147± 0.157 0.3870 0.8358 
25 0.242 ± 0.267 0.7288 1.3863 
30 0.204 ± 0.227 0.5908 1.2132 
35 0.175± 0.199 0.4871 1.0797 
40 0.157± 0.176 0.4209 0.9414 

Table 70. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 20 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.124+ 0.133 0.3148 0.7407 
10 0.143± 0.144 0.3669 0.7980 
15 0.136± 0.140 0.3383 0.7737 
20 0.157± 0.167 0.3928 0.9190 
25 0.247 ± 0.255 0.7074 1.3556 
30 0.209+ 0.228 0.5746 1.1787 
35 0.181± 0.194 0.4838 1.0548 
40 0.164± 0.181 0.4212 0.9958 

Table 71. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 
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Sensor 2 has a constant revisit rate of every 25 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.183± 0.198 0.5048 1.0681 
10 0.194± 0.188 0.4861 1.0435 
15 0.184± 0.179 0.4617 0.9840 
20 0.202 ± 0.193 0.4998 1.0842 
25 0.284 ± 0.263 0.7473 1.4727 
30 0.249 ± 0.240 0.6306 1.3024 
35 0.234 ± 0.239 0.6108 1.2681 
40 0.222 ± 0.249 0.5827 1.3063 

Table 72. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 2 has a constant revisit rate of every 30 seconds and sensor 3 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.158± 0.174 0.4210 0.9310 
10 0.171 ± 0.166 0.4216 0.9167 
15 0.166± 0.165 0.4104 0.9025 
20 0.183± 0.183 0.4586 1.0178 
25 0.269 ± 0.264 0.7383 1.4405 
30 0.234 ± 0.231 0.6302 1.2636 
35 0.213+ 0.219 0.5643 1.2057 
40 0.198 ± 0.221 0.5133 1.1719 

Table 73. M-9 Asynchronous Viewing: Sensor 2 and Sensor 3. 

Sensor 3 has a constant revisit rate of every 5 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.105± 0.127 0.2870 0.6931 
10 0.116± 0.122 0.2915 0.6438 
15 0.112± 0.118 0.2874 0.6446 
20 0.124± 0.133 0.3148 0.7407 
25 0.183± 0.198 0.5048 1.0681 
30 0.158± 0.174 0.4210 0.9310 
35 0.140± 0.150 0.3680 0.8089 
40 0.132± 0.151 0.3463 0.8474 

Table 74. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 
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Sensor 3 has a constant revisit rate of every 10 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.141 ± 0.170 0.4146 0.9140 
10 0.142± 0.152 0.3744 0.8444 
15 0.135± 0.138 0.3533 0.7521 
20 0.143 ± 0.144 0.3669 0.7980 
25 0.194± 0.188 0.4861 1.0435 
30 0.171 ± 0.166 0.4216 0.9167 
35 0.158± 0.159 0.3928 0.9050 
40 0.153± 0.165 0.3971 0.9250 

Table 75. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 15 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.131± 0.164 0.3783 0.8676 
10 0.133± 0.146 0.3510 0.7915 
15 0.126± 0.136 0.3209 0.7429 
20 0.136± 0.140 0.3383 0.7737 
25 0.184± 0.179 0.4617 0.9840 
30 0.166± 0.165 0.4104 0.9025 
35 0.152± 0.160 0.3798 0.8981 
40 0.143 ± 0.156 0.3669 0.8294 

Table 76. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 20 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.157± 0.198 0.4791 1.0808 
10 0.152+ 0.165 0.3929 0.9184 
15 0.147± 0.157 0.3870 0.8358 
20 0.157± 0.167 0.3928 0.9190 
25 0.202 ± 0.193 0.4998 1.0842 
30 0.183± 0.183 0.4586 1.0178 
35 0.169± 0.170 0.4253 0.9327 
40 0.161 ± 0.172 0.4119 0.9642 

Table 77. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 
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Sensor 3 has a constant revisit rate of every 25 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.283 ± 0.333 0.9242 1.7327 
10 0.254 ± 0.278 0.7549 1.4851 
15 0.242 ± 0.267 0.7288 1.3863 
20 0.247 ± 0.255 0.7074 1.3556 
25 0.284± 0.263 0.7473 1.4727 
30 0.269 ± 0.264 0.7383 1.4405 
35 0.265 ± 0.274 0.7593 1.4878 
40 0.258 ± 0.277 0.7542 1.4885 

Table 78. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 

Sensor 3 has a constant revisit rate of every 30 seconds and sensor 2 has a 
variable revisit rate given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.230 ± 0.277 0.7562 1.4674 
10 0.213± 0.238 0.6293 1.3071 
15 0.204+ 0.227 0.5908 1.2132 
20 0.209+ 0.228 0.5746 1.1787 
25 0.249 ± 0.240 0.6306 1.3024 
30 0.234 ± 0.231 0.6302 1.2636 
35 0.221+ 0.234 0.5988 1.3000 
40 0.219 ± 0.239 0.6167 1.3195 

Table 79. M-9 Asynchronous Viewing: Sensor 3 and Sensor 2. 

F. DELAYED VIEWING 

At time t = 50 seconds, the data shown in Tables 80 to 85 was generated for the 

instantaneous positional accuracy using the stated sensor combination. 
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Sensor 1 and 2 delay turning on for 5 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.053 ± 0.047 0.1367 0.1941 
10 0.060± 0.039 0.1587 0.1956 
15 0.098 ± 0.065 0.2010 0.2979 
20 0.067+ 0.038 0.1710 0.1979 
25 0.127+ 0.102 0.2747 0.3925 
30 0.099 ± 0.056 0.2058 0.2912 
35 0.085 ± 0.078 0.1902 0.2721 
40 0.071 ± 0.039 0.1779 0.1999 

Table 80. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 10 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.056+ 0.047 0.1503 0.1981 
10 0.080± 0.058 0.1879 0.2782 
15 0.084 ± 0.056 0.1902 0.2769 
20 0.139± 0.098 0.2902 0.4720 
25 0.106± 0.065 0.2281 0.3120 
30 0.087 ± 0.062 0.1909 0.2707 
35 0.072 ± 0.040 0.1781 0.1995 
40 0.771 ± 0.563 1.8584 2.9684 

Table 81. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 15 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.061 ± 0.057 0.1626 0.2868 
10 0.066+ 0.048 0.1712 0.2149 
15 0.069+ 0.045 0.1750 0.2023 
20 0.114+ 0.075 0.2496 0.3690 
25 0.089+ 0.060 0.1936 0.2833 
30 0.072+ 0.040 0.1778 0.1988 
35 0.500+ 0.340 1.1720 1.7465 
40 0.501+ 0.343 1.1534 1.7587 

Table 82. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 and 2 delay turning on for 20 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.067 ± 0.063 0.1758J 0.3741 
10 0.094+ 0.076 0.1975 0.4500 
15 0.126± 0.096 0.2767 0.5481 
20 0.092 ± 0.060 0.1955 0.2935 
25 0.073 ± 0.043 0.1791 0.2123 
30 0.342+ 0.259 0.7929 1.3600 
35 0.342 ± 0.259 0.7929 1.3600 
40 0.343 ± 0.261 0.7849 1.3617 

Table 83. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 25 seconds after booster bumout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.071± 0.070 0.1836 0.4205 
10 0.073+ 0.057 0.1815 0.3229 
15 0.098+ 0.073 0.1989 0.4253 
20 0.073 ± 0.044 0.1800 0.2318 
25 0.241 ± 0.176 0.5436 1.0190 
30 0.242 ± 0.180 0.5497 1.0481 
35 0.242+ 0.179 0.5411 1.0114 
40 0.242 ± 0.179 0.5411 1.0114 

Table 84. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning on for 30 seconds after booster burnout 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.072 ± 0.065 0.1867 0.3944 
10 0.099 ± 0.077 0.2074 0.4679 
15 0.074 ± 0.051 0.1826 0.2857 
20 0.178± 0.176 0.3894 0.7787 
25 0.179± 0.164 0.3982 0.8020 
30 0.178± 0.159 0.3933 0.8264 
35 0.178± 0.164 0.3922 0.8068 
40 0.178± 0.164 0.3922 0.8068 

Table 85. M-9 Delayed Viewing: Sensor 1 and Sensor 2. 

G.        STAGGERED VIEWING 

At time t = 50 seconds, the data shown in Tables 86 to 91 was generated for the 

instantaneous positional accuracy using the stated sensor combination. 
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Sensor 1 and 2 delay turning for 5 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.053 ± 0.047 0.1367 0.1941 
10 0.060+ 0.056 0.1631 0.2055 
15 0.095 ± 0.107 0.2345 0.4984 
20 0.066 ± 0.065 0.1751 0.2526 
25 0.123± 0.144 0.3030 0.7600 
30 0.095 ± 0.107 0.2360 0.4833 
35 0.079 ± 0.074 0.1918 0.2966 
40 0.069 ± 0.059 0.1792 0.2557 

Table 86. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 10 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.056+ 0.047 0.1503 0.1981 
10 0.077 ± 0.079 0.1894 0.3616 
15 0.082 ± 0.084 0.1939 0.3939 
20 0.138± 0.160 0.3638 0.8650 
25 0.105± 0.120 0.2655 0.6000 
30 0.082+ 0.080 0.1942 0.3652 
35 0.071 ± 0.062 0.1807 0.2726 
40 0.768± 0.719 2.1400 3.3560 

Table 87. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 15 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.061 ± 0.057 0.1626 0.2868 
10 0.067+ 0.063 0.1759 0.2957 
15 0.071± 0.067 0.1809 0.3258 
20 0.112+ 0.122 0.2869 0.6655 
25 0.087 ± 0.086 0.1980 0.4470 
30 0.072 ± 0.064 0.1831 0.2920 
35 0.542+ 0.555 1.6676 2.6378 
40 0.544+ 0.554 1.6778 2.6080 

Table 88. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 
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Sensor 1 and 2 delay turning for 20 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.067 ± 0.063 0.1758 0.3741 
10 0.089 ± 0.091 0.2043 0.5301 
15 0.120+ 0.130 0.3041 0.7000 
20 0.091 ± 0.089 0.2072 0.5028 
25 0.075+ 0.067 0.1861 0.3554 
30 0.374 ± 0.403 1.1978 1.9511 
35 0.374 ± 0.403 1.1978 1.9511 
40 0.375 ± 0.408 1.1955 1.9792 

Table 89. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 25 seconds after booster bumout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.071 ± 0.070 0.1836 0.4205 
10 0.075+ 0.068 0.1870 0.3986 
15 0.095+ 0.091 0.2354 0.5107 
20 0.077+ 0.068 0.1883 0.3828 
25 0.247 ± 0.268 0.7934 1.3403 
30 0.246 ± 0.266 0.7847 1.3323 
35 0.249 ± 0.272 0.8145 1.3431 
40 0.248 ± 0.270 0.8061 1.3322 

Table 90. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 

Sensor 1 and 2 delay turning for 30 seconds after booster burnout, sensor 1 has a 
constant revisit rate of every 5 seconds, and sensor 2 has a variable revisit rate 

given in the "Revisit Rate" column 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.072 ± 0.065 0.1867 0.3944 
10 0.094+ 0.088 0.2393 0.5059 
15 0.076+ 0.066 0.1894 0.3822 
20 0.165+ 0.180 0.4870 0.9265 
25 0.167+ 0.188 0.4956 0.9242 
30 0.165+ 0.191 0.4946 0.9107 
35 0.168+ 0.183 0.5124 0.9384 
40 0.168+ 0.183 0.5124 0.9384 

Table 91. M-9 Staggered Viewing: Sensor 1 and Sensor 2. 
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H.        LATITUDE SHIFT 

At time t = 50 seconds, data shown in Table 92, Table 93, Table 94, and Table 95 was 

generated for the instantaneous positional accuracy using sensors 1 and 2 at the stated latitude. 

Sensors 1 and 2 at Latitude N02 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.089 ± 0.134 0.2367 0.3733 
10 0.123± 0.177 0.2979 0.4862 
15 0.107± 0.098 0.2752 0.3982 
20 0.132± 0.125 0.3258 0.4976 
25 0.242+ 0.238 0.5858 0.8930 
30 0.204 ± 0.279 0.4796 0.7603 
35 0.160± 0.163 0.3881 0.5960 
40 0.146± 0.244 0.3478 0.5531 

Table 92. M-9 Latitude Shift to N02: Sensor 1 and Sensor 2. 

Sensors 1 and 2 at Latitude N20 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.072 ± 0.075 0.1874 0.2916 
10 0.101+ 0.089 0.2444 0.3834 
15 0.088 ± 0.070 0.1983 0.3015 
20 0.109+ 0.089 0.2614 0.3861 
25 0.200+ 0.156 0.4576 0.7360 
30 0.165± 0.170 0.3753 0.5920 
35 0.131 ± 0.094 0.2955 0.4529 
40 0.119+ 0.169 0.2703 0.3964 

Table 93. M-9 Latitude Shift to N20: Sensor 1 and Sensor 2. 

Sensors 1 and 2 at Latitude N60 

Revisit Rate AX 95% C.I. 99% C.I. 
5 0.051± 0.032 0.1205 0.1866 
10 0.072 ± 0.041 0.1779 0.2000 
15 0.065 ± 0.035 0.1656 0.1960 
20 0.080 ± 0.043 0.1857 0.2410 
25 0.145± 0.077 0.2917 0.3934 
30 0.122± 0.117 0.2587 0.3537 
35 0.098 ± 0.052 0.1973 0.2838 
40 0.087 ± 0.110 0.1889 0.2682 

Table 94. M-9 Latitude Shift to N60: Sensor 1 and Sensor 2. 
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Sensors 1 and 2 at Latitude N80 

Revisit Rate AX 95% C.I. 99% C.I. 

5 0.085+ 0.066 0.1926 0.3257 
10 0.120+ 0.088 0.2654 0.4301 
15 0.106+ 0.078 0.2308 0.3958 
20 0.132± 0.101 0.2819 0.5058 
25 0.244 ± 0.180 0.4885 1.0000 
30 0.204± 0.216 0.3997 1.0385 
35 0.163+ 0.125 0.3364 0.6932 
40 0.152± 0.223 0.2944 0.8326 

Table 95. M-9 Latitude Shift to N80: Sensor 1 and Sensor 2. 

144 



LIST OF REFERENCES 

1. U.S. Air Force. Space Based InfraRed System: Providing the Essential High Ground 
Advantage of Space Based IR Surveillance to the Warfighter of the 21s' Century. Los Angeles, 
CA.: Department of the Air Force, 1998. 

2. U.S. Air Force. Space Based InfraRed System: Providing the Essential High Ground 
Advantage of Space Based IR Surveillance to the Warfighter of the 21s' Century. Los Angeles, 
CA.: Department of the Air Force, 1998. 

3. U.S. Air Force. Space Based InfraRed System: Providing the Essential High Ground 
Advantage of Space Based IR Surveillance to the Warfighter of the 21s' Century. Los Angeles, 
CA.: Department of the Air Force, 1998. 

4. Martz, Bob. "Scheduler Logic for FDS & Objective System," Interoffice Correspondence, The 
Aerospace Corporation, 1997. 

5. Gottschalk, Thomas D. "SBIRS-Low Tasking Algorithms," Interoffice Correspondence, The 
Aerospace Corporation, 1999. 

6. Gottschalk, Thomas D. "SBIRS-Low Tasking Algorithms," Interoffice Correspondence, The 
Aerospace Corporation, 1999. 

7. Gottschalk, Thomas D. "The Case for Scalable, Appropriate-Fidelity Simulations," Interoffice 
Correspondence, The Aerospace Corporation, 1999. 

8. Gottschalk, Thomas D. "SBIRS-Low Tasking Algorithms," Interoffice Correspondence, The 
Aerospace Corporation, 1999. 

9. Gottschalk, Thomas D. "The Case for Scalable, Appropriate-Fidelity Simulations," Interoffice 
Correspondence, The Aerospace Corporation, 1999. 

10. Martz, Bob. "Scheduler Logic for FDS & Objective System," Interoffice Correspondence, 
The Aerospace Corporation, 1997. 

11. Martz, Bob. "Scheduler Logic for FDS & Objective System," Interoffice Correspondence, 
The Aerospace Corporation, 1997. 

12. Martz, Bob. "Scheduler Logic for FDS & Objective System," Interoffice Correspondence, 
The Aerospace Corporation, 1997. 

13. Martz, Bob. "Scheduler Logic for FDS & Objective System," Interoffice Correspondence, 
The Aerospace Corporation, 1997. 

14. Bankes, Steve. "Reasoning About Complex and Uncertain Systems with Computational 
Experiments," Naval Postgraduate School Operations Research Department Seminar, 10 
December 1998. 

15. Bankes, Steve. "Exploratory Modeling For Policy Analysis." Operations Research, Vol. 41, 
No. 3, May-June 1993, pp. 435-449. 

145 



16. Bankes, Steve. "Reasoning About Complex an Uncertain systems with Computational 
Experiments," Naval Postgraduate School Operations Research Department Seminar, 10 
December 1998. 

17. U.S. Air Force. Space Based InfraRed System: Providing the Essential High Ground 
Advantage of Space Based IR Surveillance to the Warfighter of the 21s' Century. Los Angeles, 
CA.: Department of the Air Force, 1998. 

18. Gottschalk, Thomas D. "Detecting Theater Targets With SBIRS Low." Interoffice 
Correspondence, The Aerospace Corporation, 1998. 

19. Hoult, Charles P. "SBIRS Low TT&C Operator's Auto Agent Notes." Interoffice 
Correspondence, The Aerospace Corporation, 1999. 

20. Bate, Roger R., Mueller, Donald D., and White, Jerry E. Fundamentals of Astrodynamics. 
New York: Dover Publishing, Inc., 1971. 

21. Bate, Roger R., Mueller, Donald D., and White, Jerry E. Fundamentals of Astrodynamics. 
New York: Dover Publishing, Inc., 1971. 

22. Bate, Roger R., Mueller, Donald D., and White, Jerry E. Fundamentals of Astrodynamics. 
New York: Dover Publishing, Inc., 1971. 

23. Bate, Roger R., Mueller, Donald D., and White, Jerry E. Fundamentals of Astrodynamics. 
New York: Dover Publishing, Inc., 1971. 

24. Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling, William T. 
Numerical Recipes in C. New York: Cambridge University Press, 1988. 

25. Lennox, Duncan. Jane's Strategic Weapon Systems. Coulsdon, Surrey, U.K.: Jane's 
Information Group, Limited, 1997. 

26. Box, George E.P. and Tiao, George C. Bavesian Inference in Statistical Analysis. Menlo 
Park, CA: Addison-Wesley Publishing Company, 1973. 

27. Mood, Alexander M., Graybill, Franklin A., and Boes, Duane C. Introduction to the Theory 
of Statistics. New York: McGraw-Hill Book Company, 1974. 

28. Hammersley, J.M. and Hahdscomb, D.C. Monte Carlo Methods. New York: Chapman & 
Hall, 1992. 

29. Fishman, George S. Monte Carlo Concepts, Algorithms, and Applications. New York: 
Springer-Verlag, 1996. 

30. Ross, Sheldon M. Introduction to Probability Models. New York: Academic Press, 1997. 

31. Fishman, George S. Monte Carlo Concepts. Algorithms, and Applications. New York: 
Springer-Verlag, 1996. 

146 



BIBLIOGRAPHY 

Barlow, R.J. Statistics. New York: John Wiley & Sons, Inc., 1989. 

Bazarra, Mokhtar S., Sherali, Hanif D., and Shetty, CM. Nonlinear Programming Theory and 
Algortihms. New York: John Wiley & Sons, Inc., 1993. 

Box, George E. P., Hunter, William G., and Hunter, J. Stuart. Statistics for Experimenters. New 
York: John Wiley & Sons, 1978. 

Gottschalk, Thomas D. "Containment Error Estimation," Interoffice Correspondence, The 
Aerospace Corporation, 1999. 

Gottschalk, Thomas D. "Tracking Primer," Interoffice Correspondence, The Aerospace 
Corporation, 1999. 

Hoult, Charles P. "Global Scheduler," Interoffice Correspondence, The Aerospace Corporation, 
1999. 

Lyons, Louis. Statistics for Nuclear and Particle Physicists. New York: Cambridge University 
Press, 1989. 

147 



THIS PAGE INTENTIONALLY LEFT BLANK 

148 



INITIAL DISTRIBUTION LIST 

1.   Defense Technical Information Center 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library   
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. Dr. Thomas W. Lucas   
Operations Research Department 
Naval Postgraduate School 
Monterey, CA 93943 

4.  Dr. Robert R. Read   
Operations Research Department 
Naval Postgraduate School 
Monterey, CA 93943 

4.   Dr. Thomas D. Gottschalk   
California Institute of Technology 
Mail Code 158-79 
Pasadena, CA 91125 

5.   Aerospace Corporation  
P.O. Box 92957 
Los Angeles, CA 90009-2957 
Attn: Charles P. Hoult 

CDR Jim O'Brien USN   
CNO-N632D 
2000 Navy Pentagon 
Washington, DC 20350-2000 

7. LCDR Brian Morgan .... 
44633 Smith Nursery Rd. 
Hollywood, MD 20636 

LCDR Dave Jazdyk . 
Unit 45002 Box 398 
APO AP 96337-5002 

149 


