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OBJECTIVES 
The major aims of the proposed project were: a) development of quantitative methods for 
the characterization of structure spaces, b) application of these newly developed methods 
in selecting analogs, c) development of estimation methods for predicting toxicologically 
relevant properties of chemicals from their analogs, and d) development of neural network 
methods for property estimation and analog selection. 

STATUS OF EFFORT 

During the course of the project, most of our work focused on the first three tasks of the 
project; viz., a) characterization of molecular similarity spaces, b) selection of analogs, 
and c) similarity-based estimation of properties; has continued. However, in the last 
approximately eighteen months the focus shifted to the fourth and final task of the 
project - the application of neural networks in property estimation. 

In the area of Task 1, the effectiveness of theoretical molecular descriptors vis-a- 
vis experimental physicochemical properties in quantifying intermolecular similarity has 
been explored for several sets of compounds with varying physicochemical and 
biological properties. In Task 2, the various structure spaces developed in Task 1 have 
been used in the selection of analogs for specific probe compounds. In Task 3, we have 
used the /(-nearest neighbor (KNN) method to estimate properties of chemicals from 
various databases. For these experiments, k has been varied from 1-40. The results 
showed that, for different physicochemical, toxicological and biochemical properties, 
optimal property estimation is generally obtained in the range of k = 5-10. Finally, in 
Task 4, we have used neural networks for the prediction of toxicological endpoints. In 
addition, we examined several methods for feature (independent variable) selection 
using a machine learning technique known as genetic ensemble feature selection 
(GEFS) which is based on genetic algorithms. The results show that neural networks, in 
general, give some improvement in modeling power over statistical methods. However, 
the use of GEFS to select relevant features for modeling greatly improves the 
performance of the neural networks. 

ACCOMPLISHMENTS/NEW FINDINGS 

Described below are the accomplishments of the four project tasks that have been 
pursued during this reporting period. 

TASK 1; Characterization of molecular similarity spaces 
Molecular similarity spaces were constructed using computed molecular descriptors. 
These descriptors included atom pairs, topological indices, geometrical indices, semi- 
empirical quantum chemical parameters, and physicochemical property data and ab 
initio quantum chemical parameters when available. Atom pairs and topological indices 
were calculated using in-house software packages, APProbe and POLLY 2.3 
respectively; geometrical parameters were calculated by Sybyl 6.4 using an SPL (Sybyl 
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Programming Language) program developed in-house; and the quantum chemical 
indices were calculated by MOPAC 6.00. Additional physicochemical property data 
were taken from the literature and ab initio calculations were conducted using Gaussian 
981/1/. 

As part of this task we have also begun the development of an expanded set of 
molecular descriptors. For adequate characterization of molecular similarity spaces, we 
must be sure that we have parameters that adequately represent the pertinent 
molecular features. Currently, we have added nearly one-hundred additional novel 
indices to our predictor set (Pub. #1) and we plan to continue to expand this set in the 
future. 

Two statistical methods were used to derive non-redundant information from the 
calculated parameters, principal components analysis (PCA) and variable clustering 
(VC). The results of these studies has been reported in two peer-reviewed manuscripts 
(Pub. # 2-4, See Publications below) and in chapters in two books: a volume of the 
Discrete Mathematics and Theoretical Computer Science series (Pub. # 5) and volume 
2 of the Advances in Molecular Similarity series (Pub. #6). 

These similarity spaces, constructed from theoretical descriptors and 
physicochemical property data, are distinct in the sense that they select different sets of 
analogs for a given probe chemical. The similarity spaces constructed in our studies 
were used in the selection of analogs and estimation of toxicologically-relevant 
properties for diverse sets of chemicals (See Task 2 and 3 below). 

Recently we have created several similarity spaces for the identified constituents 
of JP-8. Three similarity spaces were constructed using a variety of descriptors: 
topological indices, atom pairs, and physicochemical descriptors. This information was 
recently reported at the Air Force Office of Scientific Research's "JP-8 Jet Fuel 
Toxicology Workshop" that was held at University of Arizona, Tucson, AZ, Jan 11-12, 
2000. These studies were conducted as part of a cluster-analysis, rather than to find 
analogous chemicals or for the estimation of properties (See Task 2 for further 
discussion). 

The optimal characterization of molecular structure is prerequisite to the creation 
of useful similarity spaces and the prediction of the toxicity of chemicals for which very 
little experimental data is available. A novel, hierarchical approach was used in 
selecting orthogonal structural information from calculated topostructural, topochemical, 
geometrical, and semi-empirical quantum chemical descriptors. The resultant 
orthogonal structural information was used to develop hierarchical quantitative 
structure-activity relationship (QSAR) models for predicting properties such as inhibition 
of the complement system by benzamidines and the dermal penetration of polycyclic 
aromatic hydrocarbons. Results of this research have been reported in six recent 
publications (Pub. # 7-12) and reviewed in a chapter (Pub. #13) of the book Topological 
Indices and Related Descriptors in QSAR and QSPAR. This hierarchical approach has 
also been employed in the development of similarity spaces (Pub. #3 & 6). 

TASK 2; Selection of analogs 
The similarity spaces created using the atom pair (AP) and PCA methods were used in 
the selection of analogs for probe compounds. In one study (Pub. #2), five distinct 
similarity spaces were created from: a) calculated topostructural indices (TSI) only, b) 
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calculated topochemical indices (TCI) only, c) a combination of both TSI and TCI, d) 
calculated atom pairs, and e) physicochemical property data taken from the literature. 
In another study (Pub. #6), three distinct similarity spaces were created from: a) 
calculated TSI only, b) calculated TCI only, and c) a combination of both TSI and TCI. 

The former of these studies (Pub #2) attempted to quantify the degree of overlap 
between similarity measures. To this end, the analogs selected for a set of 76 
compounds were compared and the methods were scored in a pair-wise fashion to 
demonstrate the degree of overlap. This study resulted in the discovery that, for this 
particular set of compounds, even though the degree of overlap between the groups of 
analogs selected by theoretical descriptor spaces is relatively high, the similarity space 
constructed from physicochemical property data provided relatively unique groups of 
analogs. 

This demonstrates that if one is attempting to determine the optimal 
characterization for a similarity space it is best to employ two or three distinct methods, 
e.g., one theoretical space and one property space, rather than two theoretical spaces 
that may have a high degree of overlap. 

Further investigation is needed to determine which of these similarity techniques 
is most capable of estimating toxicological properties of chemicals from the toxicity data 
of their selected neighbors. It should also be noted that while similarity spaces derived 
from physicochemical property data seem to be unique as compared to theoretically- 
derived similarity spaces, relevant physicochemical data is not always readily available 
for all the compounds in a given set. In technology transfer, this finding will have 
important implications. Many drug companies are using molecular similarity methods in 
their drug discovery process. This research, one aim of which is to derive molecular 
similarity methods which are non-redundant, and further pursuit of this issue could be 
beneficial to these companies and others involved in the design, synthesis, and testing 
of new chemicals. 

In addition to the selection of analogs, similarity spaces can be used in cluster- 
analysis. This technique assesses the molecular similarity and examines the distances 
between molecules within the similarity space to form clusters of related compounds. 
The clusters are formed around a central point (centroid) and have a set radius based 
on the molecular density around the centroid. The distance from the cluster centroid to 
any compound within that cluster can be measured, telling us which compounds are 
nearest the centroid and which compounds are furthest from the centroid. This type of 
study is useful in scanning large real or virtual chemical libraries in looking for new 
pharmaceutical leads or for other testing problems in which the number of compounds 
is simply too large, and therefore too expensive, to subject the entire set to proper 
toxicological screening. In this situation, representatives from each of the clusters can 
be tested on the assumption that since the compounds within each cluster are similar, 
their properties should also be similar. 

Just such a study has been carried out on 194 of the isolated compounds in JP- 
8. The three similarity spaces (See Task 1 above) were clustered in an attempt to 
determine the optimal number of topological, atom pair or physicochemical clusters to 
be used on a set of nearly 200 chemicals and the optimal representation for this 
particular set of compounds. 
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Further research coupled with analytical testing is necessary to truly determine 
the optimal method for the creation of molecular similarity spaces for use with cluster- 
analysis. However, this technique promises to be very useful in simplifying the problems 
of analyzing mixture toxicity, as in the case of JP-8, and in the analysis and pre- 
screening of large virtual chemical libraries in search of new, novel drug leads. 

TASK 3; Similarity-based estimation of properties 
Similarity spaces created in Task 1 have been used in the estimation of properties 
using the /c-nearest neighbor (KNN) method. One such study used the KNN approach 
for the classification of a set of 113 compounds as mutagens and non-mutagens (Pub. 
#5). Both the AP and PCA methods were employed to predict mutagenic activity with 
comparable results for both methods. 

This research will have important implications both in computational toxicology 
and pharmaceutical drug discovery. In toxicology, most of the chemicals in commerce 
and new chemical entities do not have the data necessary for proper risk assessment. 
Similarity methods can be used in the quick estimation of properties in such cases. 
Combinatorial chemistry, which produces thousands of chemicals per week, is fast 
growing as THE method for drug discovery and lead optimization. Only certain bioassays 
that can be run in a 96-well plate at micromolar concentrations are carried out for these 
new compounds. Few if any of these chemicals have simple property data such as 
boiling point or vapor pressure, let alone the more complex pharmacokinetic or 
pharmacodyanmic data. However, all of these chemicals have a known molecular 
structure. Our molecular similarity methods, based on the AP or PCA methods, or 
utilizing the hierarchical approach and the newly developed hierarchical QSAR 
approach, can be enormously beneficial in such situations for the rapid and reasonable 
estimation of necessary properties. 

TASK 4: Application of neural networks in property estimation 
Neural networks have been constructed for the estimation of acute aquatic toxicity 
(LC50) in fathead minow (Pimephales promelas) (Pubs. #14-16). In the first two studies, 
two standard backpropagation neural networks were constructed for the estimation of 
toxicity: a) a network using 95 topological, geometrical, and quantum chemical 
parameters, and b) a network using a subset of 23 of the 95 parameters based on a 
statistical method for variable clustering (VC) (Pub. #14 & 15). The performance of 
these models was on par with the performance of linear statistical methods from an 
earlier study. However, the neural network using only 23 parameters showed a slight 
improvement in model performance over the model using all 95 parameters. 

The third study (Pub. #16) focused on the use of a machine learning technique, 
rather than traditional statistical approaches, for the selection of a reduced set of model 
parameters. Seeing the improvement made by using a reduced feature set (set of 
molecular descriptors) in our first two studies, we decided to try other techniques for 
limiting the feature set. This study compared the estimation of aquatic toxicity between 
three models: a) a neural network using all 95 parameters, b) a statistical analysis using 
23 parameters selected through the variable clustering procedure, and c) a neural 
network utilizing a genetic ensemble feature selection (GEFS) algorithm. The neural 
network using the GEFS algorithm developed by David Opitz showed significant 
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improvement over both the linear statistical model and the "standard" neural network 
model. 

PERSONNEL SUPPORTED 

Brian Gute - Graduate Research Assistant 
Ph.D. student in computational toxicology 

(8/1/96-7/31/97) 
Mike Henderson - Undergraduate Research Assistant 

(8/1/97-7/31/99) 
Jennifer Maki - Undergraduate Research Assistant 

(8/1/98-7/31/99) 
Jason Dagit- Undergraduate Research Assistant 
Denise Mills - Undergraduate Research Assistant 

PUBLICATIONS 

The following peer-reviewed papers, which are currently either published/in press, or. 
submitted, report results of research carried out between July 1, 1996 and December 
31, 1999. 

1 Topological indices: Their nature and mutual relatedness, S.C. Basak, AT. 
Balaban, G.D. Grunwald, and B.D. Gute, J. Chem. Inf. Comput. Sei., in press, 
1999. 

2 Assessment of the mutagenicity of chemicals from theoretical structural 
parameters: A hierarchical approach, S.C. Basak, B.D. Gute, and G.D. 
Grunwald, SAR QSAR Environ. Res., 10, 117-129, 1999. 

3 Quantitative comparison of five molecular structure spaces in selecting analogs 
of chemicals, S.C. Basak, B.D. Gute, and G.D. Grunwald, Mathl. Model. Comput. 
Sei., 8, in press, 1999. 

4 Characterization of molecular structures using topological indices, S.C. Basak 
and B.D. Gute, SAR QSAR Environ. Res., 7, 1-21 1997. 

5 Use of graph invariants in QMSA and predictive toxicology, S.C. Basak and B.D. 
Gute, in: DIMACS Series in Discrete Mathematics and Theoretical Computer 
Science, in press, 1999. 
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6 Characterization of the molecular similarity of chemicals using topological 
invariants, S.C. Basak, B.D. Gute, and G.D. Grunwald, in: Advances in Molecular 
Similarity, Volume 2, eds. R. Carbo-Dorca, P.G. Mezey, JAI Press, Stamford, 
CT, 1998, p 171-185. 

7 A comparative QSAR study of benzamidines complement-inhibitory activity and 
benzene derivatives acute toxicity, S.C. Basak, B.D. Gute, B. Lucic, S. Nikolic, 
and N. Trinajstic, Computers and Chemistry, in press, 1999. 

8 Prediction of complement-inhibitory activity of benzamidines using topological 
and geometric parameters, S.C. Basak, B.D. Gute, and S. Ghatak, J. Chem. Inf. 
Comput. Sei., 39, 255-260, 1999. 

9 Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): 
a hierarchical QSAR approach, B.D. Gute, G.D. Grunwald, and S.C. Basak, SAR 
QSAR Environ. Res., 10, 1-15, 1998. 

10 The relative effectiveness of topological, geometrical, and quantum chemical 
parameters in estimating mutagenicity of chemicals, S.C. Basak, B.D. Gute and 
G D Grunwald, in: QSAR in Environmental Sciences - VII, F. Chen and G. 
Schuurman, eds., SETAC Press, Pensacola, FL, 1998, Chapter 17, p 245-261. 

11 Predicting acute toxicity (LCso) of benzene derivatives using theoretical molecular 
descriptors: a hierarchical QSAR approach, B.D. Gute and S.C. Basak, SAR 
QSAR Environ. Res., 7, 117-131, 1997. 

12 Use of topostructural, topochemical and geometric parameters in the prediction 
of vapor pressure: a hierarchical QSAR approach, S.C. Basak, B.D. Gute and 
G.D. Grunwald, J. Chem. Inf. Comput. Sei., 37, 651-655, 1997. 

13 A hierarchical approach to the development of QSAR models using topological, 
geometrical and quantum chemical parameters, S.C. Basak, B.D. Gute and G.D. 
Grunwald, in: Topological Indices and Related Descriptors in QSAR and 
QSPAR, eds. J. Devillers and AT. Balaban, Gordon and Breach: Reading, UK, 
in press, 1999. 

14 Use of statistical and neural net methods in predicting toxicity of chemicals: A 
hierarchical QSAR approach, S.C. Basak, B.D. Gute, G.D. Grunwald, D.W. Opitz 
and K Balasubramanian, in: Predictive Toxicology of Chemicals: Expenences 
and Impact of Al Tools - Papers from the 1999 AAAI Symposium, AAAI Press, 
Menlo Park, CA, 1999, p 108-111. 

15 Use of statistical and neural net approaches in predicting toxicity of chemicals, 
S.C. Basak, G.D. Grunwald, B.D. Gute, K. Balasubramanian, and D. Opitz, J. 
Chem. Inf. Comput. Sei., submitted, 1999. 
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16      Hazard assessment modeling: An evolutionary ensemble approach, D.W. Opitz, 
S C Basak, and B.D. Gute, in: GECCO-99: Proceedings of the Genetic and 
Evolutionary Computation Conference, eds. W. Banzhaf, J. Daida, A.E. Eiben, 
M.H. Garzon, V. Honavar, M. Jakiela, & RE. Smith, Morgan Kaufmann: San 
Francisco, accepted, 1999. 

Copies of all manuscripts have been attached as the Appendices. 

INTERACTIONS/TRANSITIONS 

Participation/Presentations 

1 Subhash Basak gave an invited presentation "Exploring the scientific basis of 
Ayurvedic Medicine: A computatioal approach" at the conference "Beyond 
Conventional Healthcare: Understanding Alternative Choices" organized by the 
University of Wisconsin, Superior, November 12-13, 1999. 

2 Subhash Basak gave an invited presentation on "Development of hierarchical 
QSAR models for predicting toxicity of chemicals: statistical and neural net 
approaches" at the Air Force Predictive Toxicology Conference, Wright Patterson 
Air Force Base, Dayton, OH, October 7, 1999. 

3.       Subhash Basak gave the following invited research presentations/ invited 
seminars during his trip to Europe and India: 

a) "A hierarchical QSAR approach for predating property/activity of chemical from 
structure" at the Rugjer Boskovic Institute, Zagreb, The Republic of Croatia, 
August 26, 1999 

b) "Predicting property/activity/toxicity of chemicals from structure: A hierarchical 
QSAR approach" at the National Institute of Chemistry, Slovenia, August 30, 

1999 

c) "Prediction of activity/toxicity of chemicals from structure using graph invariants" 
at Visva Bharati University, Santiniketan, West Bengal, India, September 9, 1999 

d) "Clustering of Psoralen Derivatives using Topological Invariants: a strategy for 
molecular design" presented at the 13th International Biophysics Congress, New 
Delhi September 19-24, 1999, authored jointly by Subhash C. Basak, Gregory 
D Grunwald, Alexandru T. Balaban (Polytechnic University, Romania) and 
Kanika Basak (St. Xavier's Computer Center, Calcutta, India) 

e) "A Hierarchical QSAR Approach to Predicting Bioactivity of Chemicals using 
Theoretical Molecular Descriptors" presented at the 13th International Biophysics 
Congress, New Delhi, September 19-24, 1999, authored jointly by Subhash C. 
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Basak, Brian D. Gute, Denise Mills, Gregory D. Grunwald, David Opitz 
(University of Montana, Mizoulla), and Krishnan Balasubramanian (Dept. of 
Chemistry and Biochemistry, Arizona State University, Tempe, AZ) 

f) "Modeling the Solubility of Aliphatic Alcohols in Water: Graph Connectivity 
Indices versus Line Graph Connectivity Indices" presented at the 13th 
International Biophysics Congress, New Delhi, September 19-24, 1999, authored 
jointly by Dragan Amic (The Rugjer Boskovic Institute, Croatia), Subhash C. 
Basak, Drago Beslo (Croatia), Sonja Nikolic (The Rugjer Boskovic Institute, 
Croatia) and Nenad Trinajstic (The Rugjer Boskovic Institute, Croatia) 

g) "Design of High Quality Structure-Property Regressions" presented at the 13th 
International Biophysics Congress, New Delhi, September 19-24, 1999, authored 
jointly by Milan Randic (Drake University, IA) and Subhash C. Basak 

h) "On Numerical Characterization of DNA Primary Sequences, presented at the 
13th International Biophysics Congress, New Delhi, September 19-24, 1999, 
authored jointly by Milan Randic (Drake University), Marjan Vracko (National 
Institute of Chemistry, Slovenia), Ashesh Nandy (Indian Institute of Chemical 
Biology, Calcutta, India) and Subhash C. Basak, 

i)   "Predicting biomedicinal and toxicological properties of chemicals using 
molecular descriptors" at the University of Delhi, India, September 24, 1999 

j)   "The utility of Ayurvedic medicine for modern drug discovery: An exploratory 
analysis" at the conference organized by the East India Pharmaceutical 
Company, Calcutta, September 29, 1999 

4. Subhash Basak presented the following papers at the QSAR Gordon 
Conference, July 25-30, 1999, Tilton, New Hampshire: 

a) A hierarchical QSAR approach for predicting property/activity of chemicals, 
authored by Basak, Greg Grunwald, Brian Gute, Denise Mills, Krishnan 
Balasubramanian (Department of Chemistry and Biochemistry, Arizona State 
University, Tempe, Arizona), and Alexandru Balaban (Polytechnic University, 
Bucharest, Romania) 

b) Topological indices as molecular descriptors for QSAR, authored by Balaban 
and Basak 

5. Subhash Basak and Milan Randic, a Distinguished Professor of Mathematics 
and Computer Science at Drake University, Iowa, and a Visiting Scientist at 
NRRI, jointly organized a one day Workshop on Applied Mathematical 
Chemistry: Molecular Descriptors and Their Applications in Structure-Property- 
Activity-Toxicity Relationship, May 3, 1999, at NRRI. Thirteen speakers from 
seven different countries, viz., Bulgaria, Croatia, India, Romania, Slovenia, 
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United Kingdom and United States, gave invited presentations on their latest 
research on Mathematical Chemistry, Quantitative Structure Activity 
Relationships (QSAR), Computational Chemistry and Predictive Toxicology. Dr. 
Michael J. Lalich, Director of NRRI, welcomed the guests and Dr. Vincent 
Magnuson, Vice Chancellor for Academic Administration at UMD inaugurated the 
workshop. 

6. Brian Gute attended Annual American Chemical Society meeting, March 21-25, 
1999, Anaheim, CA. 

7. Subhash Basak gave the following invited presentations on QSAR/ predictive 
toxicology: 

a) "A computational approach to predicting toxicity and toxic modes of action of 
chemicals from structure" at the International Conference 'Smarter Lead 
Optimization: easing the bottleneck' organized by Cambridge Health Institute, 
March 18-19, 1999, San Diego, CA 

b) "Topological indices as molecular descriptors for lead optimization" authored 
jointly by Alexandru T. Balaban and Subhash C. Basak, at the International 
Conference 'Smarter Lead Optimization: easing the bottleneck' organized by 
Cambridge Health Institute, March 18-19, 1999, San Diego, CA 

c) "Use of statistical and neural net methods in predicting toxicity of chemicals: a 
hierarchical QSAR approach" authored jointly by Subhash C. Basak, Gregory D. 
Grunwald, Brian D. Gute, K. Balasubramanian (Department of Chemistry and 
Biochemistry, Arizona State University, Tempe, AZ, and David Opitz 
(Department of Computer Science, University of Montana, Missoula, Montana) at 
the American Association of Artificial Intelligence (AAAI) conference, "Predictive 
Toxicology of Chemicals: Experiences and Impact of Al Tools," Stanford 
University (CA), March 22-24, 1999 

d) "A Graphical Technique for Preliminary Assessment of Effects on DNA 
Sequences from Toxic Substances" authored jointly by A. Nandy (Indian Institute 
of Chemical Biology, Calcutta, India), C. Raychaudhury (IICB, Calcutta, India) 
and Subhash Basak at the American Association of Artificial Intelligence (AAAI) 
conference, "Predictive Toxicology of Chemicals: Experiences and Impact of Al 
Tools," Stanford University (CA), March 22-24, 1999 

8. Brian Gute attended Annual Society of Toxicology meeting, March 13-17,1999, 
New Orleans, LA. 

9. Subhash Basak gave the following invited lectures/ presentations: 

a) The first distinguished lecture in Mathematical Chemistry on "From Graph 
Invariants to Molecular Design: 25 years after the connectivity index" at Visva 
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Bharati University, Santiniketan, West Bengal, India, February 11, 1999 

b) An invited seminar on "Theoretical molecular descriptors for the prediction of 
bioactivity, toxicity, selection of analogs, discovery and optimization of leads" at 
the Wockhardt Research Centre, Aurangabad, Maharashtra, India, on February 
15, 1999 

c) An invited lecture on "Prediction of bioactivity of chemicals from structure: a 
hierarchical computational approach" at Bharatiya Vidya Bhavan's Swami 
Prakashananda Ayurvedic Research Center, Mumbai, India, on February 18, 
1999 

d) An invited lecture on "Toxicology in silico: addressing the quagmire of 
environmental pollution and protecting public health using computational 
chemistry," authored jointly by Subhash C. Basak, Brian D. Gute David Opitz 
(Computer Science Department, University of Montana, Missoula) and Gregory 
D. Grunwald at the International Symposia Series: Reducing the Environmental 
Impacts of Toxic Chemicals in Asian Economies. The Impacts of Toxic 
Chemicals and Pollutants on Public Health, the Ecology and the Environment of 
the Bengal Basin - Bangladesh and India , Dhaka Bangladesh, on March 1, 1999 

e) An invited seminar on "Novel drug discovery methods: predicting 
pharmacological and toxicological properties of chemicals using computational 
chemistry" at the School of Pharmacy, Dhaka University, Dhaka, Bangladesh on 
March 4, 1999 

f) An invited talk on "Computational toxicology: a cost effective approach for the 
protection of human and environmental health" at the International Conference at 
Santiniketan, India, March 7, 1999 

g) An invited presentation "Estimation of DNA Damage from Toxic Chemicals by 
Graphical Techniques" authored jointly by Ashesh Nandy (Head of the Computer 
Division, Institute of Chemical Biology (IICB), Calcutta, India), C. Raychaudhury 
and S. Ghosh, Research Scientists at IICB and Subhash Basak on March 8, 
1999 

10 Subhash Basak gave an invited lecture on "Novel Drug Discovery Methods: 
Predicting pharmacological and toxicological properties of chemicals using 
computational chemistry" at the Meharry Medical College, Nashville, TN, January 
19, 1999. 

11 Subhash Basak had a site visit to the Molecular Anatomy Laboratory, 
Department of Biology, Indiana University Purdue University, of Indiana, 
Columbus, IN, January 12-16, 1999, as part of the US Air Force Predictive 
toxicology program, to discuss the use of proteomics in the development of 
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QSAR models for JP8 jet fuel with colleagues from University of Minnesota, TC 
campus, University of Montana, Missoula and IUPUI. 

12. Subhash Basak gave an invited presentation "Clustering of JP-8 constituents into 
structurally dissimilar groups: a novel computational strategy for predictive 
toxicology", authored jointly by Basak and Greg Grunwald, at the Air Force Office 
of Scientific Research JP-8 Jet Fuel Toxicology Workshop, held at the University 
of Arizona, Tucson, AZ, December 2-3, 1998. 

13. Brian Gute presented an invited talk "A hierarchical QSAR approach to predicting 
carcinogenicity of chemicals" authored jointly, by Subhash Basak, Gute and 
Greg Grunwald, at the 19th Annual Society of Environmental Toxicology and 
Chemistry meeting, Charlotte, North Carolina, November 15-19, 1998 

14. Subhash Basak presented the following invited lectures: 

a) "Theoretical molecular descriptors for the prediction of bioactivity/toxicity, 
selection of analogs, discovery and optimization of leads" authored jointly by 
Basak, Brian Gute, Gregory Grunwald, and Alexandru T. Balaban (Professor of 
Organic Chemistry at the Polytechnic University, Bucharest, Roumania) at the 
Astra Symposium on "Advance in Medicinal Chemistry" organized by the Astra 
company, Bangalore, September 17-19, 1998. 

b) "Prediction of bioactivity of chemicals from structure: a computational approach" 
at the Indian Institute of Science, Bangalore, India, September 20, 1998. 

c) "Integration of traditional Indian medicine and chemoinformatics for rapid drug 
discovery" at the conference organized jointly by East India Pharmaceutical 
Company, Calcutta, October 12, 1998. 

15. Subhash Basak attended the Annual American Chemical Society meeting, 
August 23-27, 1998, Boston, Massachusetts. 

16. Dr. S.C. Basak presented the invited lecture "Use of theoretical structural 
descriptors in molecular design and hazard assessment of chemicals" to the 
scientists of the computer-aided drug design company NANODESIGN, INC, 
Toronto, Canada, July 6, 1998. 

17. Dr. S.C. Basak presented an invited seminar "Novel Drug Design Methods: 
assessing activity and toxicity using computational chemistry" at the Department 
of Molecular Biology and Genetics, University of Guelph, Ontario, Canada, July 
3, 1998. 

18. Dr. S.C. Basak presented a paper "Dissimilarity-based clustering of psoralen 
derivatives in the topological structure space: a strategy for drug design" at the 
Second Annual Chemoinformatics Workshop, organized by the Cambridge 
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Health Institute, Boston, MA, June 15-16, 1998. The paper was co-authored by 
G.D Grunwald and B.D. Gute. 

19      Dr. S.C. Basak presented the following papers at the International Conference 
"Computational Methods in Toxicology" held April 20-22, 1998, Dayton, OH: 

a) "Use of computational methods in predicting potential toxicity of chemicals," 
authored jointly by S.C. Basak, B.D. Gute and G.D. Grunwald. 

b) "On construction of optimal molecular descriptors," authored jointly by M. Randic 

and S.C. Basak. 

c) "Predicting mode of action of chemicals from structure: a hierarchical approach," 
authored jointly by S.C. Basak, G.D. Grunwald and B.D. Gute. 

d) "A hierarchical approach to predictive toxicology using computed molecular 
descriptors," authored jointly by B.D. Gute, G.D. Grunwald and S.C. Basak 

20.     Dr. S.C. Basak gave an invited presentation entitled "A computational approach 
to predicting toxicity: Possible applications to JP8 jet fuel" at the First 
International Conference on the Environmental Health and Safety of Jet Fuels, 
organized jointly by US Air Force, National Institute of Occupational Safety and 
Health, USEPA National Exposure Research Laboratory and American Industrial 
Hygiene Association, April 1-3, 1998, San Antonio, TX. 

21       Dr S C Basak chaired a session at the DIMACS Workshop on Discrete 
Mathematical Chemistry, March 23-25, 1998, held at Rugters University, New 
Jersey. He also presented an invited paper entitled "Use of graph invariants in 
QSAR and predictive toxicology" at the conference authored jointly by S.C. 
Basak, B.D. Gute and G.D. Grunwald. 

22.      Dr. S.C. Basak gave several invited lectures at various national and international 
symposia: 

a) A distinguished lecture "Rational drug design and Ayurvedic medicine" at the 
conference organized by the Association of Ayurvedic Doctors of India (AADI), 
January 4, 1998. 

b) An invited lecture on "Use of computational methods and Ayurvedic knowledge 
in modern drug discovery" at the conference AYURVEDA TODAY, January 8, 
1998. 

c) An invited seminar on "Assessment of genotoxicity of chemicals from structure: a 
computational approach" at the Annual Conference of the Indian Association for 
Cancer Congress, Calcutta, January 21-24, 1998, B.D. Gute and G.D. Grunwald. 

Quantitative Characterization of Molecular Similarity Spaces: 
Tools for Computational Toxicology, Subhash C. Basak 14 



23 Dr S C Basak was the Co-Chairperson of the First Indo/US Workshop on 
Mathematical Chemistry, organized jointly by NRRI and Visva Bharati University, 
Santiniketan, West Bengal India, Jan 9-13, 1998. Basak presented the following 
papers at the workshop: 

a) "Graph invariants, molecular similarity and QSAR" coauthored by B.D. Gute and 
G.D. Grunwald. 

b) "Weighted paths as novel optimal molecular descriptors" authored jointly by M. 
Randic, President, International Society for Mathematical Chemistry and S.C. 

Basak. 

c) "The utility of hierarchical model development in examining the structural basis of 
properties" authored by B.D. Gute, G.D. Grunwald and S.C. Basak. 

d) "Weighted K-nearest neighbors property estimation in molecular similarity" 
authored by G.D. Grunwald, B.D. Gute and S.C. Basak. 

e) "Dissimilarity based clustering of psoralen derivatives in the topological structure 
space: a strategy for drug design" authored by S.C. Basak, G.D. Grunwald, D. 
Panja, K. Basak and B.D. Gute. 

24 Subhash C. Basak presented an invited lecture entitled "Predicting bioactivity of 
chemicals from structure: a hierarchical QSAR approach" to the Department of 
Biochemistry, University of Calcutta, Calcutta, India, July 30, 1997. 

25 Subhash C. Basak presented an invited lecture entitled "Prediction of 
physicochemical and toxicological properties of chemicals using theoretical 
molecular descriptors", at Moscow State University, Moscow, Russia, June 
30,1997. 

26 Subhash C. Basak, Brian D. Gute, and Greg D. Grunwald presented an invited 
paper entitled "Use of theoretical molecular descriptors in structure-property and 
structure-activity studies" at the 7th International Conference on Mathematical 
Chemistry and 3rd Girona Seminar on Molecular Similarity, Girona, Spain, May 
26-31,1997. 

27 Subhash C. Basak, Brian D. Gute and Greg D. Grunwald presented an invited 
paper entitled "Use of nonempirical structural descriptors in QSAR" in the 
session "Mathematical approaches to QSAR and predictive toxicology" of the 
11th International Conference on Mathematical and Computer Modelling and 
Scientific Computing in Washington, DC, March 27-April 3, 1997, 

28 Subhash C. Basak presented a seminar "Computational chemical graph theory 
and its practical applications" in the Scientific Computing Seminar Laboratory for 
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Intelligent Systems - ECE Dept.and CSc Dept. University of Minnesota, Duluth 
on January 29, 1997. 

29. Subhash C. Basak gave a presentation "Development of QMSA and QSAR 
methods for hazard assessment of chemicals: tools for computational toxicology" 
at the Air Force Office of Scientific Research (AFOSR) Toxicology Program 
Review, December 12-13, 1996, Fairborn, Ohio. 

30. Subhash C. Basak and Brian D. Gute gave an invited presentation "Quantitative 
Molecular Similarity Analysis (QMSA) and Toxicity Prediction" at the US Air 
Force Conference "Chemistry and Toxicology of Candidate Deicers" organized 
by the Materials Directorate of Wright Patterson Air Force Base (WPAFB), 
Dayton, OH. 

31. Brian D. Gute, Subhash C. Basak and Greg D. Grunwald presented a paper 
"Development of QSARs of bioactive molecules using a hierarchical approach" at 
the 31st Midwest Regional meeting of the American Chemical Society, November 
6-8, 1996. 

32. Subhash C. Basak presented a seminar "QSAR/QMSA using nonempirical 
parameters: applications in predictive toxicology and drug discovery" at the 
Abbott Laboratories, Chicago, September 22-23, 1996. 

33. Subhash C. Basak and Brian Gute presented an invited lecture at the 
international symposium organized for the 1995 Herman Skolnick award in 
chemical information. The symposium was held during the American Chemical 
Society meeting, Orlando, Florida, August 25-29, 1996. 

Consultative and Advisor Functions 
None 

Transitions 
1. Applied computational methods in the design a set of six anti-epileptic 

carbamates by Professor Alexandru T. Balaban, Vice President, Rumanian 
Academy of Sciences. 

2. Worked with Dr. James Riviere, North Carolina State University, in the clustering 
of JP-8 components using dissimilarity methods developed at NRRI. 

3. Worked with Professor George Mushrush, Department of Chemistry, George 
Mason University, Washington D.C., in the application of similarity and QSAR 
methods in the design of novel and benign deicing agents. 
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NEW DISCOVERIES 

1 An in-depth study of similarity space construction and analog selection resulted 
in the discovery that for a particular set of compounds the degree of overlap 
between the groups of analogs selected by theoretical descriptor spaces is 
relatively high. This study also revealed that a similarity space constructed from 
physicochemical property data provided relatively unique sets of analogs as 
compared to those selected from the theoretically-derived similarity spaces. 

2 Hierarchical QSAR research using topostructural, topochemical, and geometrical 
parameters showed that the first two classes of parameters explain most of the 
variance in the data of toxicological and physicochemical properties. 

3 It was observed that similarity spaces derived from topostructural and 
topochemical parameters have distinct analog selection characteristics. 

HONORS/AWARDS 

1 Dr S C Basak chaired a session at the DIMACS Workshop on Discrete 
Mathematical Chemistry, March 23-25, 1998, held at Rugters University, New 
Jersey. 

2 Dr S C Basak was the Co-Chairperson of the First Indo/US Workshop on 
Mathematical Chemistry, organized jointly by NRRI and Visva Bharati University, 
Santiniketan, West Bengal India, Jan 9-13, 1998. 

3 Subhash C Basak was invited to present a lecture on molecular similarity at the 
7,h International Conference on Mathematical Chemistry and 3 Girona Seminar 
on Molecular Similarity, Girona, Spain, May 26-31, 1997. 

4 Subhash C Basak was invited to become a member of the Organizing and 
Scientific Committee of for future meetings of the International Conference on 
Mathematical and Computer Modelling and Scientific Computing. 

5 Subhash C Basak chaired and organized two sessions at the 11th International 
Conference on Mathematical and Modelling and Scientific Computing, March 31- 
April 3, 1997, Georgetown University, Washington, DC. 

6 Subhash C Basak was invited to become one of six invited speakers at the 
international symposium organized for the 1995 Herman Skolnick award in 
chemical information. The symposium was held during the American Chemical 
Society meeting, Orlando, Florida, August 25-29, 1996, to honor Milan Randic, 
the recipient of 1995 Herman Skolnic award. 
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Journal of Chemical Information and 
Computer Sciences, submitted 

Use of Statistical and Neural Net Approaches in Predicting Toxicity of Qhemicals 

Subhash C. Basak, Gregory D. Grunwald, Brian D. Gute, Krishnan Balasubramanian1 and David Opitz2 

Natural Resources Research Institute, University of Minnesota Duluth, Duluth, Minnesota 55811 

1Departmentof Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 

department of Computer Science, University of Montana, Missoula, Montana 59812 

We have been involved in the development of a new hierarchical quantitative structure- 
activity relationship (H-QSAR) approach in predicting physicochemical, biomedicinal and 
toxicological properties of various sets of chemicals. This approach uses increasingly 
more complex molecular descriptors for model building in a graduated manner. 
In this paper we will apply statistical and neural net methods in the development of 
QSAR models for predicting the aquatic toxicity of sixty-nine benzene derivatives using 
topostructural, topochemical, geometrical, and quantum chemical indices. The utility and 
limitations of the approach will be discussed. 

1. INTRODUCTION 

An     important    aspect    of    modem 
toxicological research is the prediction of 
toxicity of xenobiotics  and environmental 
pollutants   from   their   structure.1'13   The 
potential toxicity  of chemicals  is  usually 
assessed   from   a   plethora   of   relevant 
physical and biological properties. Table 1 
provides a partial list of such properties. 
Such toxicological indicators usually try to 
predict    complex    toxicity    endpoints    of 
chemicals to humans and the environment 
using simpler and relevant properties. A 
perusal of the combinatorics of the situation 
shows that the problem is astronomical. The 
Toxic   Substances   Control   Act   (TSCA) 
inventory    currently    has    about    80,000 
structures most of which do not have data 
for the toxicologically  relevant properties 
mentioned in Table 1. In fact, about 50% of 
these    chemicals    do    not    have    any 
experimental    property    data    at    all. 
Worldwide, more than 16 million chemicals 

are known, as is evident from the number of 
entries in the Chemical Abstract Service 
(CAS) inventory.15 For most of these 
chemicals we do not have the data 
necessary for risk assessment. Modern 
combinatorial chemistry has been producing 
large libraries of chemicals at a very rapid 
rate. Most of these substances have none 
of the test data needed for their hazard 
estimation. 

In recent years, there have been efforts 
by the chemical industry and government 
agencies to develop reliable databases of 
properties that might be used for hazard 
estimation.16 This effort, although 
commendable, falls short of the need; and 
the picture will remain so in the foreseeable 
future. In the area of molecular biology, 
innovative techniques are emerging where 
specially engineered cell lines can be used 
to detect the activity or toxicity of chemicals 
to the genetic system.17"19 Effects of 
chemicals on the pattern of cellular proteins, 
analyzed by proteomics technology, are 
being used to detect their potential toxic 



effects.20"22 Such methods are faster than 
the traditional methods and can save large 
number of test animals. At present, neither 
the available test data nor the combination 
of in vitro toxicity testing methods provide 
adequate resources for hazard assessment. 

Quantitative       structure-activity/toxicity 
relationship   (QSAR/QSTR)   models   have 
emerged as useful tools to handle the data 
gap in toxicology and pharmacology.1"13'22"26 

Such  models  can   be  used  to  estimate 
complex   properties   of   chemicals   from 
simpler      experimental      or      computed 
properties. In view of the fact that most 
chemicals in commence and environmental 
pollutants have very little test data, it would 
be    desirable    if    we    could    develop 
toxicologically-relevant       QSARs       from 
properties that can be calculated directly 
from a chemical's molecular structure. In 
some   of   our   recent   papers   we   have 
developed   a   novel   hierarchical   QSAR 
approach where four classes of theoretical 
molecular descriptors,  viz., topostructural, 
topochemical,   geometrical,   and   quantum 
chemical   parameters,   have   been   used 
sequentially  in the formulation  of QSAR 
models for predicting physical, biomedicinal, 
and toxicological properties.1'3'6823'26 

Most of our hierarchical QSARs are 
based on linear statistical methods such as 
multiple linear regression, principal 
components analysis (PCA) and variable 
clustering. Such methods yield useful 
models; but they suffer from the limitation 
that in some cases the relationship between 
a molecular descriptor and toxicity may be 
intrinsically nonlinear. In such cases, the 
use of linear statistical methods may not 
result in the best models. Therefore, in this 
paper, we have carried out a comparative 
study of multiple regression vis-a-vis neural 
net methods in predicting toxicity (LC50) of a 
set of 69 benzene derivatives. 

2. METHODS 

2.1 Toxicity Database. The utility of this 
approach of generating numerous 
hierarchical theoretical descriptors of 
compounds was tested on a set of acute 

aquatic toxicity (LC50) data for sixty-nine 
benzene derivatives. The data was taken 
from a study by Hall, Kier and Phipps12 who 
collected acute aquatic toxicity data 
measured in fathead minnow (Pimephales 
promelas). This data was compiled from 
eight other literature sources and included 
some original work which was conducted at 
the U.S. Environmental Protection Agency 
Environmental Research Laboratory 
(USEPA - ERL) in Duluth, Minnesota. This 
set of chemicals was composed of benzene 
and sixty-eight substituted benzene 
derivatives. According to the authors, these 
benzene derivatives were tested using 
methodologies comparable to their own 96- 
hour fathead minnow toxicity test system. 
The derivatives chosen for this study (see 
Table 2) have seven different substituent 
groups that are present in at least six of the 
molecules: chloro-, bromo-, nitro-, methyl-, 
methoxyl-, hydroxyl-, and amino-. 

2.2 Calculation of Topological Indices 
(TIs). The complete set of topological 
indices (TIs) used in this study, both 
topostructural and topochemical, have been 
calculated using POLLY 2.3 and software 
developed by the Basak et a/. 27 These 
indices include Wiener index,28 the 
connectivity indices developed by Randic29 

and higher order connectivity indices 
formulated by Kier and Hall,30 bonding 
connectivity indices defined by Basak et 
a/,31 a set of information theoretic indices 
defined on the distance matrices of simple 
molecular graphs,32'33 a set of parameters 
derived on the neighborhood complexity of 
hydrogen-filled molecular graphs,34"36 and 
Balaban's J indices.37"39 Table 3 provides 
the symbols and brief definitions of the 
topological indices included in this study. 

The set of TIs was divided into two 
distinct subsets: topostructural indices (TSI) 
and topochemical indices (TCI). TSIs are 
topological indices which encode 
information about the adjacency and 
distances of atoms (vertices) in molecular 
structures (graphs) irrespective of the 
chemical nature of the atoms involved in the 
bonding or factors such as hybridization 



states of atoms, number of core/valence 
electrons in individual atoms, etc. TCIs are 
parameters that quantify information 
regarding the topology (connectivity of 
atoms), as well as specific chemical 
properties of the atoms comprising a 
molecule. TCIs are derived from weighted 
molecular graphs where each vertex (atom) 
is properly weighted with relevant 
chemical/physical properties. Table 3 shows 
the division of the topological indices into 
topostructural and topochemical indices. 

2.3     Calculation     of     Geometrical 
Indices. The geometrical indices include 
three-dimensional   Wiener   numbers   for 
hydrogen-filled       molecular       structure, 
hydrogen-suppressed  molecular structure, 
and van der Waals volume. Van der Waals 
volume, Vw, was calculated using SYBYL 
6 4 from Tripos Associates, Inc.    The 3-D 
Wiener   numbers   were   calculated   using 
SYBYL using an SPL (Sybyl Programming 
Language) program developed in our lab. 
Calculation of 3-D Wiener numbers consists 
of the sum entries in the upper triangular 
submatrix   of  the   topographic   Euclidean 
distance matrix for a molecule. The 3-D 
coordinates for the atoms were determined 
using CONCORD 3.2.1." The symbols and 
definitions of the geometrical indices are 
included in Table 3. 

2.4 Quantum Chemical Parameters. 
Quantum chemical parameters were 
calculated using the Austin Model version 
one (AM1) semi-empirical Hamiltonian 
These parameters were calculated using 
MOPAC 6.00 in the SYBYL interface. Brief 
definitions and symbols for the quantum 
chemical parameters used in this study are 
included in Table 3. 

2 5 Statistical Analysis and 
Hierarchical QSAR. Initially, all topological 
indices were transformed by the natural 
logarithm of the index plus one. This was 
done to scale the indices, since some may 
be several orders of magnitude greater than 
others, while other indices may equal zero. 
The geometric indices were transformed by 
the natural logarithm of the index for 
consistency, the addition of one was 
unnecessary. 

The set of eighty-six topological indices 
was then partitioned into the two distinct 
sets: topostructural indices (thirty-five) and 
topochemical indices (fifty-one). The sets of 
topostructural and topochemical indices 
were then divided into subsets, or clusters, 
based on the correlation matrix using the 
SAS variable clustering procedure 
(VARCLUS)43 to further reduce the number 
of independent variables for use in model 
construction. This procedure divides the set 
of indices into disjoint clusters, such that 
each cluster is essentially unidimensional. 

From each cluster, the index most 
correlated with the cluster was selected for 
modeling, as well as any indices that were 
poorly correlated with their cluster (Fr < 
0 70) These indices were then used in the 
modeling of the acute aquatic toxicity of 
benzene derivatives in fathead minnow. The 
variable clustering and selection of indices 
was performed independently for both the 
topostructural and topochemical indices. 
This procedure resulted in a set of five 
topostructural indices and a set of nine 
topochemical indices. 

Reducing the number of independent 
variables   is   critical   when   attempting   to 
model small datasets using linear statistical 
methods.   The   smaller  the   dataset,   the 
greater the chance of spurious error when 
using   a   large   number   of   independent 

'  variables      (descriptors).      Topliss      and 
Edwards44   have   thoroughly   studied   this 
issue of chance correlations. For a set with 
about     seventy     dependent     variables 
(observations), to keep the probability of 
chance correlations less than 0.01, at most 
forty independent variables may be used. 
This number is dependent on the actual 
correlation    achieved    in    the    modeling 
process,   higher  correlation   results   in   a 
better chance of using more variables with 
the   same   limited   probability   of  chance 
correlations. In this study we are well below 
the cut-off of forty independent variables. In 
fact, the total number of descriptors which 
will be used for model construction and 
estimation is twenty-three, well within the 
bounds   of   the   Topliss   and   Edwards 
criteria.44 



Regression modeling was accomplished 
using the SAS procedure REG43 on four 
distinct sets of indices. These sets were 
constructed as part of a hierarchical 
approach to QSAR model development. 
The hierarchy begins with the simplest 
parameters, the TSIs. After using the TSIs 
to model the activity, the next level of 
parameters of higher complexity are added. 
To the indices included in the best TSI 
model, we add all of the TCIs and proceed 
to model the activity using these 
parameters. Likewise, the indices included 
in the best model from this procedure are 
combined with the indices from the next 
complexity level, the geometrical indices 
and modeling is conducted once again. 
Finally, the best model utilizing TSIs, TCIs 
and geometrical indices is combined with 
the quantum chemical parameters to 
develop the final model in the hierarchy. 

2.6 Neural Network Methods. Using 
neural networks, we studied two classes of 
approaches for modeling toxicity: (1) giving 
all the descriptors to a learning algorithm 
(neural network in this case), and (2) 
reducing the feature set before giving the 
(reduced) feature set to a learning 
algorithm. Results for our approaches are 
from leave-one-out experiments (i.e., sixty- 
nine training/test set partitions). Leave-one- 
out works by leaving one data point out of 
the training set and giving the remaining 
instances (sixty-eight in this case) to the 
learning algorithms for training. This 
process is repeated sixty-nine times so that 
each example is a part of the test set once 
and only once. Leave-one-out tests 
generalization accuracy of a learner, 
whereas training set accuracy tests only the 
learner's ability to memorize. Generalization 
error from the test set is the true test of 
accuracy and is what we report here. 

First we trained neural networks using 
all ninety-five parameters: thirty-five TSI, 
fifty-one TCI, three geometrical and six 
quantum chemical parameters. The 
networks contained fifteen hidden units and 
were trained for 1000 epochs. Each input 
parameter was normalized to a value 
between 0 and 1 before training. Additional 

parameter settings for the neural networks 
included a learning rate of 0.05, a 
momentum term of 0.1 and weights 
initialized randomly between -0.25 and 
0.25. 

For our next experiment, we used a 
smaller set of twenty-three independent 
variables. The twenty-three independent 
variables were the topostructural and 
topochemical parameters provided by the 
variable clustering technique (see section 
4.1 for a list of the indices) combined with 
the three geometrical and six quantum 
chemical parameters described in Table 3. 
The parameter settings for these networks 
were the same as the settings for the other 
neural network experiments mentioned 
above. 

3. RESULTS 

3.1 Results of Statistical Regression 
Procedures. The variable clustering of the 
topostructural    indices    resulted    in    the 
retention of five indices: M,, IC, O, P8, Pg. 
All-subsets    regression    resulted    in   the 
selection   of  a  four-parameter   model  to 
estimate   -log(LC50)   with    an   explained 
variance (R2) of 45.3% and a standard error 
(s) of 0.58. While this is an unsatisfactory 
model, the indices were still retained and 
combined with the topochemical indices in 
the second step of model development. The 
second step combined the four indices used 
in   the   first   tier   model   with   the   nine 
topochemical    indices    selected    in    the 
variable clustering procedure: SIC0, SIC^ 
SIC4, CICo, Y. Vc Vc, VPC, JX. Again, 
all-subsets    regression    was    conducted 
resulting in a four-parameter model with an 
explained variance (R2) of 78.3% and a 
standard error (s) of 0.36. The four indices 
from the second tier model were combined 
with the three geometric parameters: 3DWH, 
3DW, Vw. This resulted in a four-parameter 
model that replaced the topochemical index 
CICo with the geometric parameter 3DWH. 
This model had an explained variance (R2) 
of 79.2% and a standard error (s) of 0.36. 
The final step in the hierarchical method 
combined the four parameters from the third 



tier model with the semi-empirical quantum 
chemical parameters: EHOMO. EHOMOL ELUMO. 

ELUMOI. AHf, U. This set of ten indices led 
to a seven-parameter model with an 
explained variance (R2) of 86.3% and a 
standard error (s) of 0.30. This model 
retained all indices from the third model and 
added three of the AM1 quantum chemical 
parameters. 

The leave-one-out analysis was 
conducted on the final model for purposes 
of comparison with the results of the neural 
networks. This analysis resulted in a final 
explained variance for the model of Fr = 
0.825 and a standard error of s = 0.32. 

3.2  Results  of the  Neural  Network 
Procedures. The first class of approach 
incorporating   all   ninety-five   parameters, 
obtained a test-set correlation coefficient 
between predicted toxicity and measured 
toxicity (explained variance) of R2 = 0.868 
and a standard error of 0.29. The second 
class of neural network approaches utilizing 
the twenty-three parameters from the data 
reduction step obtained a test-set explained 
variance (R2) of 0.878 and a standard error 
(s) of 0.28. The results from the leave-one- 
out   analysis   using   the   linear   statistical 
method and the neural network methods are 
summarized in Table 4. Table 2 presents 
the experimental acute aquatic toxicity 
(-log[LC50])    values    for    the    sixty-nine 
benzene derivatives as well as the values 
estimated by the best statistical model and 
the two neural network models. 

4. DISCUSSION 

The results show that both statistical and 
neural network models give acceptable 
estimates of the toxicity of the sixty-nine 
benzene derivatives studied in this paper. 
However, when tested using the leave-one- 
out approach, the statistical model falls 

' short of the performance of the neural 
network models. It has to be noted, 
however, that statistical QSARs are based 
on linear models whereas the two neural 
network models use nonlinear methods. 

It is interesting to note that the neural 
network model using the subset of twenty- 

three inputs selected in part by the 
VARCLUS procedure gave slightly better 
results as compared to the network 
developed using all ninety-five input 
variables. This could be the result of filtering 
out redundant, or nearly redundant, 
parameters from the set of independent 
variables. 

Further work on the relative utility of 
statistical vis-ä-vis neural network methods 
is necessary to determine which types of 
models are best suited to the estimation of 
chemical toxicity. 
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Table 1. Physicochemical and biological properties relevant to the assessment of 
toxicity. 

Physicochemical 
Molar Volume 
Boiling Point 
Melting Point 
Vapor Pressure 
Aqueous Solubility 
Dissociation Constant (pKa) 
Partition Coefficient 

Octanol-Water (log P) 
Air-Water 
Sediment-Water 

Reactivity (Electrophile) 

Biological 
Receptor Binding (KD) 
Michaelis Constant (Km) 
Inhibitor Constant (K|) 
Biodegradation 
Bioconcentration 
Alkylation Profile 
Metabolic Profile 
Chronic Toxicity 
Carcinogenicity 
Mutagenicity 
Acute Toxicity 

LD50 

LC50 



Compound .  
Benzene 
Bromobenzene 
Chlorobenzene 
Phenol 
Toluene 
1,2-dichlorobenzene 
1,3-dichlorobenzene 
1,4-dichlorobenzene 
2-chlorophenol 
3-chlorotoluene 
4-chlorotoluene 
1,3-dihydroxybenzene 
3-hydroxyanisole 
2-methylphenol 
3-methylphenol 
4-methylphenol 
4-nitrophenol 
1,4-dimethoxybenzene 
1,2-dimethylbenzene 
1,4-dimethylbenzene 
2-nitrotoluene 
3-nitrotoluene 
4-nitrotoluene 
1,2-dinitrobenzene 
1,3-dinitrobenzene 
1,4-dinitrobenzene 
2-methyl-3-nitroaniline 
2-methyl-4-nitroaniline 
2-methyl-5-nitroaniline 
2-methyl-6-nitroaniline 
3-methyl-6-nitroaniline 
4-methyl-2-nitroaniline 
4-hydroxy-3-nitroaniline 
4-methyl-3-nitroaniline 
1,2,3-trichlorobenzene 
1,2,4-trichlorobenzene 
1,3,5-trichlorobenzene 
2,4-dichlorophenol 
3,4-dichlorotoluene 
2,4-dichlorotoluene 

LR NN95 NN23 

3.40 3.42 3.66 3.65 

3.89 3.77 4.02 3.79 

3.77 3.75 3.80 3.77 

3.51 3.38 3.44 3.51 

3.32 3.66 3.50 3.62 

4.40 4.29 4.24 4.30 

4.30 4.37 4.03 4.12 

4.62 4.51 4.46 4.27 

4.02 3.79 3.82 3.91 

3.84 3.88 3.72 3.79 

4.33 3.87 3.78 3.76 

3.04 3.43 3.47 3.53 

3.21 3.33 3.40 3.45 

3.77 3.64 3.55 3.67 

3.29 3.60 3.51 3.58 

3.58 3.53 3.54 3.55 

3.36 3.61 3.65 3.76 

3.07 3.28 3.79 3.51 

3.48 3.93 3.88 3.91 

4.21 3.87 3.74 3.68 

3.57 3.66 3.78 3.81 

3.63 3.53 3.71 3.71 

3.76 3.49 3.68 3.68 

5.45 5.24 4.91 4.99 

4.38 4.18 4.30 4.19 

5.22 4.94 4.38 4.85 

3.48 3.79 3.79 3.88 

3.24 3.51 3.79 3.75 

3.35 3.68 3.82 3.86 

3.80 3.84 3.73 3.79 

3.80 3.78 3.64 3.62 

3.79 3.80 3.73 3.66 

3.65 3.61 3.53 3.58 

3.77 3.73 3.72 3.72 

4.89 4.89 4.85 5.04 

5.00 5.04 5.05 4.83 

4.74 5.11 4.62 4.78 

4.30 4.33 4.42 4.47 

4.74 4.26 4.39 4.28 

4.54 4.36 4.47 4.44 



4-chloro-3-methylphenol 
2,4-dimethylphenol 
2,6-dimethylphenol 
3,4-dimethylphenol 
2,4-dinitrophenol 
1,2,4-trimethylbenzene 
2,3-dinitrotoluene 
2,4-dinitrotoluene 
2,5-dinitrotoluene 
2,6-dinitrotoluene 
3,4-dinitrotoluene 
3,5-dinitrotoluene 
1,3,5-trinitrobenzene 
2-methyl-3,5-dinitroaniline 
2-methyl-3,6-dinitroaniline 
3-methyl-2,4-dinitroaniline 
5-methyl-2,4-dinitroaniline 
4-methyl-2,6-dinitroaniline 
5-methyl-2,6-dinitroaniline 
4-methyl-3,5-dinitroaniline 
2,4,6-tribromophenol 
1,2,3,4-tetrachiorobenzene 
1,2,4,5-tetrachlorobenzene 
2,4,6-trichlorophenol 
2-methyl-4,6-dinitrophenol ■ 
2,3,6-trinitrotoluene 
2,4,6-trinitrotoluene 
2,3,4,5-tetrachlorophenol 
2,3,4,5,6-pentachlorophenol 

4.27 3.87 3.96 4.07 
3.86 3.76 3.78 3.72 
3.75 3.80 3.71 3.84 
3.90 3.80 3.92 3.79 
4.04 4.14 4.15 4.01 
4.21 4.09 4.53 3.87 
5.01 5.20 5.12 5.28 
3.75 4.10 4.65 4.33 
5.15 4.84 4.71 4.72 
3.99 4.41 4.56 4.63 
5.08 5.11 5.11 5.09 
3.91 4.05 4.41 4.16 
5.29 5.37 5.34 5.32 
4.12 4.13 4.30 4.23 
5.34 4.80 4.40 4.54 
4.26 4.28 4.14 4.20 
4.92 4.14 4.00 4.02 
4.21 4.67 4.57 4.58 
4.18 4.80 4.53 4.78 
4.46 4.34 4.32 4.43 
4.70 4.89 5.34 5.47 
5.43 5.62 5.50 5.56 
5.85 5.80 5.63 5.61 
4.33 4.79 4.86 4.96 
5.00 4.21 4.20 4.16 
6.37 6.36 5.84 5.81 
4.88 5.16 5.39 5.42 
5.72 5.36 5.44 5.58 
6.06 6.03 5.86 5.83 
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Table 3. Symbols, definitions and classifications of topological, geometrical and 
quantum chemical parameters. 

Topostructural 
|D

W      Information index for the magnitudes of distances between all possible pairs 
of vertices of a graph 

TD
W     Mean information index for the magnitude of distance 

W      Wiener index = half-sum of the off-diagonal elements of the distance matrix 
of a graph 

|D       Degree complexity 
Hv      Graph vertex complexity 
HD      Graph distance complexity 
JC      Information content of the distance matrix partitioned by frequency of 

occurrences of distance h 
O       Order of neighborhood when ICr reaches its maximum value for the 

hydrogen-filled graph 
Mi      A Zagreb group parameter = sum of square of degree over all vertices 
M2      A Zagreb group parameter = sum of cross-product of degrees over all 

neighboring (connected) vertices 
\      Path connectivity index of order h = 0-6 

\c      Cluster connectivity index of order h = 3, 5 
h
Xch     Chain connectivity index of order h = 6 

hXPc     Path-cluster connectivity index of order h = 4-6 

Ph      Number of paths of length h = 0-10 
J       Balaban's J index based on distance  

Topochemical 
|0RB     Information content or complexity of the hydrogen-suppressed graph at its 

maximum neighborhood of vertices 
ICr      Mean information content or complexity of a graph based on the Ith (r = 0-6) 

order neighborhood of vertices in a hydrogen-filled graph 
SICr     Structural information content for Ith (r = 0-6) order neighborhood of vertices 

in a hydrogen-filled graph 
CICr     Complementary information content for Ith (r = 0-6) order neighborhood of 

vertices in a hydrogen-filled graph 
h
x

b      Bond path connectivity index of order h = 0-6 
h
x

b
c     Bond cluster connectivity index of order h = 3, 5 

ych    Bond chain connectivity index of order h = 6 
h
x

b
PC    Bond path-cluster connectivity index of order h = 4-6 

h
x

v      Valence path connectivity index of order h = 0-6 
hyv

c     Valence cluster connectivity index of order h = 3,5 

li 



Vch Valence chain connectivity index of order h = 6 

VPC Valence path-cluster connectivity index of order h = 4-6 

JB Balaban's J index based on bond types 
Jx Balaban's J index based on relative electronegativities 
JY Balaban's J index based on relative covalent radii 

Geometrical 

Vw      van der Waals volume 
3DW     3-D Wiener number for the hydrogen-suppressed geometric distance matrix 

3DWH    3-D Wiener number for the hydrogen-filled geometric distance matrix 

Quantum Chemical   

EHOMO Energy of the highest occupied molecular orbital 
EHOMOI Energy of the second highest occupied molecular orbital 
ELUMO Energy of the lowest unoccupied molecular orbital 

ELUMOI Energy of the second lowest unoccupied molecular orbital 

AHf Heat of formation 

la Dipole moment  
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Table 4. Relative effectiveness of statistical and neural network methods in estimating 
the acute aquatic toxicity of 69 benzene derivatives. 

# Independent 
Method Variables  #L -?— 

Neural network                         95                             0.868                           O.^a 
Neural network 23 0,878 P^8_ 
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APPENDIX 1.2    Hazard assessment modeling: An evolutionary 
ensemble approach 
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Abstract 

This paper presents a novel and effective 
genetic algorithm approach for generating 
computational models for hazard assessment. 
With millions of proposed chemicals being 
registered each year, it is impossible to come 
even remotely close to completing the battery 
of tests needed for the proper understanding 
of the toxic effects of these chemicals. Com- 
puter models can give quick, cheap, and en- 
vironmentally friendly hazard assessments of 
chemicals.   Our approach works by first ex- 
tracting a hierarchy of theoretical descriptors 
of the structure of a compound, then filtering 
these numerous descriptors with a genetic al- 
gorithm approach to ensemble feature selec- 
tion. We tested the utility of our approach by 
modeling the acute aquatic toxicity (LC50) 
of a congeneric set of 69 benzene derivatives. 
Our results demonstrate a very important 
point: that our method is able to accurately 
predict toxicity directly from structure. 

1    INTRODUCTION 

By the end of 1998 the number of chemicals registered 
with the Chemical Abstract Service rose to over 19 
million (CAS 1999). This is an increase of over 3 
million chemicals between 1996 and 1998. It is de- 
sirable to test each of these chemicals for their effects 
on the environment and human health (which we re- 
fer to as hazard assessment); however, completing the 
battery of tests necessary for the proper hazard as- 
sessment of even a single compound is a costly and 
time-consuming process. Therefore, there is simply 
not enough time or money to complete these test bat- 
teries for even a tiny portion of the compounds which 
are registered today (Menzel 1995). An alternative to 
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these traditional test batteries is to develop computa- 
tional models for hazard assessment. Computational 
models are fast (milliseconds per compound), cheap 
(less than one cent per compound), and do not run 
the risk of adversely affecting the environment during 
testing. Additionally, these computational methods 
can replace or limit the amount of animal testing that 
is necessary. Thus computational models can easily 
process all registered chemicals and flag the ones that 
require further testing. The central problem with this 
approach is developing class specific models that can 
be considered accurate enough to be useful. In this 
paper, we present a novel and effective approach for 
learning computational hazard assessment models by 
using an ensemble feature selection algorithm based on 
genetic, algorithms (GAs) to filter numerous theoreti- 
cal descriptors of chemical structure. 

To better illustrate the need for effective and quick 
hazard assessment, we should consider the situation 
of the industrial chemicals "grandfathered" into con- 
tinued use under the Toxic Substances Control Act 
(TSCA) of 1976. TSCA has required that a suite of 
physicochemical and toxicological screens be run on all 
commercial compounds (those produced or imported 
in volumes exceeding one million pounds annually) de- 
veloped after 1976. However, there are almost 3,000 
chemicals that were "grandfathered" in with the un- 
derstanding that it would be the responsibility of the 
chemical manufacturing industry to ultimately sup- 
ply information about these chemicals. Only recently, 
after a 20-year delay, are the chemical manufactur- 
ers talking about running 2,800 of these compounds 
through basic toxicity screens and while this is promis- 
ing, these screens will not. be completed until 2004 and 
at a cost of between $500 to $700 million dollars. So it 
will be another five years before we have basic toxicity 
data on compounds that have been in wide-spread use 
for more than twenty years (Johnson 1998). 

One of the fundamental principles of biochemistry is 



that activity is dictated by structure (Hansch 1976). 
Following this principle, one can use theoretical molec- 
ular descriptors that quantify structural aspects of 
a molecule to quantitatively determine its activity 
(Basak & Grunwald 1995; Cramer, Famini, k Lowrey 
1993). These theoretical descriptors can be generated 
directly from the known structure of the molecule and 
used to estimate its properties, without the need for 
further experimental data. This is important due to 
that fact that, with chemicals needing to be evaluated 
for hazard assessment, there is a scarcity of available 
experimental data that is normally required as inputs 
(i.e., independent variables) to traditional quantitative 
structure-activity relationship (QSAR) model develop- 
ment. A QSAR model based solely on theoretical de- 
scriptors on the other hand can process all registered 
chemicals for hazard assessment. 

Our hierarchical approach examines the relative con- 
tributions of theoretical descriptors of gradually in- 
creasing complexity (structural, chemical, shape, and 
quantum chemical descriptors). This approach is im- 
portant as none of the individual classes of parame- 
ters are very effective at predicting toxicity (Gute & 
Basak 1997); however, we show in this paper that we 
can effectively predict toxicity if we combine all levels 
of descriptors. One potential problem with using our 
hierarchical approach is that it often gives many in- 
dependent variables as compared to data points since 
having a limited number of data points in not uncom- 
mon in hazard assessment. For instance, in our case 
study of predicting acute toxicity (LC50) of benzene 
derivatives, we have 95 independent variables and 69 
data points. Therefore, reducing the number .of inde- 
pendent variables is critical when attempting to model 
small data sets. The smaller the data set, the greater 
the chance of spurious error when using a large num- 
ber of independent variables (descriptors). In some 
of our earlier QSAR studies we have used statistical 
methods such as principal components analysis (PCA) 
and variable clustering methods to reduce the num- 
ber of independent variables (Basak & Grunwald 1995; 
Gute & Basak 1997; Gute, Grunwald, & Basak In 
press). 

As an alternative solution, we use our previous en- 
semble feature selection approach (Opitz 1999) that 
is based on GAs. An "ensemble" is a combination 
of the outputs from a set of models that are gener- 
ated from separately trained inductive learning algo- 
rithms. Ensembles have been shown to, in most cases, 
greatly improve generalization accuracy over a single 
learning model (Breiman 1996; Maclin k Opitz 1997; 
Shapiro et al. 1997). Recent research has shown that 
an effective ensemble should consist of a set of models 

that are not only highly correct, but ones that make 
their errors on different parts of the input space as 
well (Hansen & Salamon 1990; Krogh & Vedelsby 1995; 
Opitz & Shavlik 1996a). Varying the feature subsets 
used by each member of the ensemble helps promote 
the necessary diversity and create a more effective en- 
semble (Opitz 1999). We use GAs to search through 
the enormous space of finding a set of feature subsets 
that will promote disagreement among the component 
members of an ensemble while still maintaining the 
component member's accuracy. 

Combining our approach of generating hierarchical 
theoretical descriptors with our other approach to GA- 
based ensemble feature selection, we are able to gen- 
erate an effective model for predicting the toxicity of 
benzene derivatives using only a few compounds. Our 
results show that our model is nearly as accurate as the 
battery of tests necessary for the proper hazard assess- 
ment of a single compound. Our results also confirm 
that our new ensemble feature selection approach is 
more effective than previous approaches for modeling 
hazard assessment. 

The rest of the paper is organized as follows. First 
we provide background and related work for both our 
hierarchical QSAR approach and our GA-based en- 
semble feature selection approach. This is followed by 
results of our approach applied to benzene derivatives. 
Finally, we discuss these results and provide future 
work. 

2    QSAR AND THEORETICAL 
METHODS 

QSARs have come into widespread use for the pre- 
diction of various molecular properties, as well as bi- 
ological, pharmacological and toxicological responses. 
Traditional QSAR techniques use empirical properties 
(Dearden 1990; Hansch & Leo 1995; de Waterbeemd 
1995); however, due to the scarcity of available data 
for the majority of chemicals needing to be evaluated 
for hazard assessment, these physicochemical proper- 
ties necessary for traditional QSAR model develop- 
ment may not be available. When this is the case, it 
is imperative that there are methods available which 
make use of nonempirical parameters, which we term 
theoretical molecular descriptors. 

Topological indices (TIs) are numerical graph invari- 
ants that quantify certain aspects of molecular struc- 
ture (Gute &: Basak 1997; Gute, Grunwald, & Basak 
In press). The different classes of TIs provide us 
with nonempirical, quantitative descriptors that can 
be used in place of experimentally derived descriptors 



in QSARs for the prediction of properties. 

Our recent studies have focused on the role of different, 
classes of theoretical descriptors of increasing levels of 
complexity and their utility in QSAR (Gute k Basak 
1997; Gute, Grunwald, k Basak In press). Four dis- 
tinct'sets of theoretical descriptors have been used in 
this study: topostructural, topochemical, geometric, 
and quantum chemical indices. Gute and Basak 1997 
provide the detailed list of the indices included in our 

study. 

2.1    TOPOLOGICAL INDICES 

The topostructural and topochemical indices fall into 
the category normally considered topological indices. 
Topostructural indices (TSIs) are topological indices 
that only encode information about the adjacency and 
distances of atoms (vertices) in molecular structures 
(graphs), irrespective of the chemical nature of the 
atoms involved in bonding or factors such as hybridiza- 
tion states and the number of core/valence electrons 
in individual atoms. Topochemical indices (TCIs) 
are parameters that quantify information regarding 
the topology (connectivity of atoms), as well as spe- 
cific chemical properties of the atoms comprising a 
molecule. These indices are derived from weighted 
molecular graphs where each vertex (atom) or edge 
(bond) is properly weighted with selected chemical or 
physical property information. 

The complete set of topological indices used in this 
study, both the topostructural and the topochemi- 
cal, have been calculated using POLLY 2.3 (Basak, 
Harriss, k Magnuson 1988) and software developed 
by the authors. These indices include the Wiener in- 
dex (Wiener 1947), the connectivity indices developed 
by Randic 1975 and higher order connectivity indices 
formulated by Kier and Hall 1986, bonding connec- 
tivity indices defined by Basak and Magnuson 1988. 
a set of information theoretic indices defined on the 
distance matrices of simple molecular graphs (Hansch 
k Leo 1995), and neighborhood complexity indices of 
hydrogen-filled molecular graphs, and Balaban's 1983 
J indices. 

2.2    GEOMETRICAL INDICES 

The geometrical indices are three-dimensional Wiener 
numbers for hydrogen-filled molecular structure, 
hydrogen-suppressed molecular structure, and van der 
Waals volume. Van der Waals volume, Vw (Bondi 
1964). was calculated using Sybyl 6.1 from Tripos As- 
sociates. Inc. of St. Louis. The 3-D Wiener numbers 
were calculated by Sybyl using an SPL (Sybyl Pro- 

gramming Language) program developed in our lab 
(SYBYL 1998). Calculation of 3-D Wiener numbers 
consists of the sum entries in the upper triangular sub- 
matrix of the topographic Euclidean distance matrix 
for a molecule. The 3-D coordinates for the atoms 
were determined using CONCORD 3.0.1 from Tripos 
Associates, Inc. Two variants of the 3-D Wiener num- 
ber were calculated: 3DWH and 3DW. For 3D\V„, 
hydrogen atoms are included in the computations and 
for 3DW hydrogen atoms are excluded from the com- 
putations. 

2.3    QUANTAM CHEMICAL 
PARAMETERS 

The following quantum chemical parameters were cal- 
culated using the Austin Model version one (AMI) 
semi-empirical Hamiltonian: energy of the highest oc- 
cupied molecular orbital {EHOMO), energy of the sec- 
ond highest occupied molecular orbital (EHOA/OI). 

energy of the lowest unoccupied molecular orbital 
{ELUMO), energy of the second lowest unoccu- 
pied molecular orbital (ELUMOI), beat of formation 
(AHf). and dipole moment ((i). These parameters 
were calculated using MOPAC 6.00 in the SYBYL in- 
terface (Stewart 1990). 

3    FILTERING DESCRIPTORS 

As stated above, one potential problem with including 
all theoretical descriptors in the hierarchy is that it 
gives many independent variables when compared to 
the limited number of data points available for hazard 
assessment modeling of a particular chemical deriva- 
tive. Compounding this problem is that a salient de- 
scriptor for one hazard assessment model may not be a 
salient descriptor for another problem. That is, the rel- 
evance of a descriptor for predicting hazard assessment 
is often problem dependent. This section describes 
our approach for automatically filtering the descrip- 
tors with a GA-based approach to ensemble feature 
detection. Before explaining our algorithm, we briefly 
cover the notion of ensembles. 

3.1    ENSEMBLES 

Figure 1 illustrates the basic framework of a predictor 
ensemble. Each predictor in the ensemble (predictor 1 
through predictor N in this case) is first trained using 
the training instances. Then, for each example, the 
predicted output of each of these predictors (o, in Fig- 
ure 1) is combined to produce the output of the ensem- 
ble (<5 in Figure 1). Many researchers (Breiman 1996; 
Hansen k Salamon 1990; Krogh k Vedelsby 1995; 
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Figure 1: A predictor ensemble. 

Opitz k Shavlik 1997) have demonstrated the effec- 
tiveness of combining schemes that are simply the 
weighted average of the predictors (i.e., ö = Y,i£N w'' 
o, and 53,-gyv Wi = 1), and this is the type of ensemble 
on which we focus in this article. 

Combining the output of several predictors is useful 
only if there is disagreement on some inputs. Obvi- 
ously, combining several identical predictors produces 
no gain. Hansen and Salamon 1990.proved that for an 
ensemble, if the average error rate for an example is 
less than 50% and the predictors in the ensemble are 
independent in the production of their errors, the ex- 
pected error for that example can be reduced to zero 
as the number of predictors combined goes to infinity: 
however, such assumptions rarely hold in practice. 

Krogh and Vedelsby 1995 later proved that the ensem- 
ble error can be divided into a term measuring the av- 
erage generalization error of each individual predictor 
and a term called diversity that measures the disagree- 
ment among the predictors. Formally, they define the 
diversity term. <i,, of predictor i on input x to be: 

d,(l) = [0l(.T)-ö(.T)]2. (1) 

The quadratic error of predictor i and of the ensemble 
are, respectively: 

U(x) = \0i(x) - f{x)\\ (2) 

e(x) = [<3(:r) - /(.r)]2, (3) 

where f{x) is the target value for input ,r. If we de- 
fine E, Ei, and Dt to be the averages, over the input 
distribution, of e{x), e{x), and rf(.-r) respectively, then 
the ensemble's generalization error can be shown to 
consist, of two distinct portions: 

E=E-D, (4) 

where E (= J2i w>Ei) >s the weighted average of 
the individual predictor's generalization error and D 
(= £\ w{Di) is the weighted average of the diversity 
among these predictors. What the equation shows 
then, is that an ideal ensemble consists of highly 
correct predictors that disagree as much as possible. 
Opitz and Shavlik 1996a; 1996b empirically verified 
that such ensembles generalize well. 

Regardless of theoretical justifications, methods for 
creating ensembles center around producing predic- 
tors that disagree on their predictions. Generally, 
these methods focus on altering the training- pro- 
cess in the hope that the resulting predictors will 
produce different predictions. For example, neural 
network techniques that have been employed include 
methods for training with different topologies, differ- 
ent initial weights, different parameters, and training 
only on a portion of the training set (Alpaydin 1993: 
Freund k Schapire 1996; Hansen k Salamon 1990; 
Maclin k Shavlik 1995). 

Numerous techniques try to generate disagreement 
among the classifiers by altering the training set each 
classifier sees. The two most popular techniques 
are Bagging (Breiman 1996) and Boosting (Freund 
k Schapire 1996). Bagging is a bootstrap ensem- 
ble method that trains each network in the ensemble 
with a different partition of the training set. It gener- 
ates each partition by randomly drawing, with replace- 
ment, N examples from the training set, where N is 
the size of the training set. As with Bagging, Boosting 
also chooses a training set of size iV and initially sets 
the probability of picking each example to be l/N. 
After the first network, however, these probabilities 
change to emphasize misclassified instances. A large 
number of extensive empirical studies have shown that 
these are highly successful methods that nearly always 
generalize better than their individual component pre- 
dictors (Bauer k Kohavi 1998: Maclin k Opitz 1997; 
Quinlan 1996). Neither approach is appropriate for 
our domain since we are data poor and cannot afford 
to waste training examples; however, we are feature 
rich and can afford to create diversity by instead vary- 
ing the inputs to the learning algorithms. Varying the 
feature subsets to create a diverse set of accurate pre- 
dictors is the focus of the next section. 

3.2    THE GEFS ALGORITHM 

The goal of our algorithm is to find a set of feature 
subsets that creates an ensemble of classifiers (neural 
networks in this study) that maximize equation 1 while 
minimizing equation 2. The space of candidate sets is 
enormous and thus is particularly well suited for ge- 



Table 1: The GEFS algorithm. 

GOAL: Find a set of input subsets to create an accu- 
rate and diverse classifier ensemble. 

1. Using varying inputs, create and train the initial 
population of classifiers. 

2. Until a stopping criterion is reached: 

(a) Use genetic operators to create new networks. 

(b) Measure the diversity of each network with 
respect to the current population. 

(c) Normalize the accuracy scores and the diver- 
sity scores of the individual networks. 

(d) Calculate fitness of each population member. 

(e) Prune the population to the iV fittest net- 
works. 

(f) Adjust A. 
(g) The current population is the ensemble. 

nrtic algorithms. Table 1 summarizes our recent algo- 
rithm (Opitz 1999) called GEFS (for Genetic Ensemble 
Feature Selection) that uses GAs to generate a set of 
classifiers that are accurate and diverse in their predic- 
tions. GEFS starts by creating and training its initial 
population of networks. The representation of each in- 
dividual of our population is simply a dynamic length 
string of integers, where each integer indexes a partic- 
ular feature. We create networks from these strings 
by first having the input nodes match the string of 
integers, then creating a standard single-hidden-layer, 
fully connected neural network. Our algorithm then 
creates new networks by using the genetic operators 
of crossover and mutation. 

GEFS trains these new individuals using backpropoga- 
tion. It adds new networks to the population and 
then scores each population member with respect to 
its prediction accuracy and diversity. GEFS normalizes 
these scores, then defines the fitness of each population 
member (?) to be: 

Fitness, = Accuracyi + A Diversity (5) 

where A defines the tradeoff between accuracy and di- 
versity. Finally. GEFS prunes the population to the N 
most-fit members, then repeats this process. At every 
point in time, the current ensemble consists of sim- 
ply averaging (with equal weight) the predictions of 
the output of each member of the current population. 
Thus as the population evolves, so does the ensemble. 

We define accuracy to be network i's training-set accu- 

racy. (One may use a validation-set if there are enough 
training instances.) We define diversity to be the av- 
erage difference between the prediction of our compo- 
nent classifier and the ensemble. We then separately 
normalize both terms so that the values range from 
0 to 1. Normalizing both terms allows A to have the 
same meaning across domains. 

It is not always clear at what value one should set A: 
therefore, we automatically adjust A based on the dis- 
crete derivatives of the ensemble error E, theaverage 
population error E, and the average diversity D within 
the ensemble. First, we never change A if E is decreas- 
ing; otherwise we (a) increase A if E is not increasing 
and the population diversity D is_ decreasing; or (b) 
decrease A if E is increasing and D is not decreasing. 
We started A at 1.0 for the experiments in this article. 
The amount A changes is 10% of its current, value. 

We create the initial population by randomly choosing 
the number of features to include in each feature sub- 
set. For classifier i, the size of each feature subset (JV,-) 
is independently chosen from a uniform distribution 
between 1 and twice the number of original features 
in the dataset. We then randomly pick, with replace- 
ment, Ni features to include in classifier i's training 
set. Note that some features may be picked multiple 
times while others may not be picked at all; replicat- 
ing inputs for a neural network may give the network 
a better chance to utilize that feature during training. 
Also, replicating a feature in a genome encoding allows 
that feature to better survive to future generations. 

Our crossover operator uses dynamic-length, uniform 
crossover. In this case, we chose the feature subsets of 
two individuals in the current population proportional 
to fitness. Each feature in both parent's subset, is in- 
dependently considered and randomly placed in the 
feature set of one of the two children. Thus it. is pos- 
sible to have a feature set. that is larger (or smaller) 
than the largest (or smallest.) of either parent's fea- 
ture subset. Our mutation operator works much like 
traditional genetic algorithms; we randomly replace a 
small percentage of a parent's feature subset with new 
features. With both operators, the network is trained 
from scratch using the new feature subset; thus no in- 
ternal structure of the parents are saved during the 
crossover. 

4    RESULTS 

We tested the utility of combining our approach for 
generating numerous hierarchical theoretical descrip- 
tors of compounds with our approach for filtering 
these descriptors with GEFS by modeling the acute 



aquatic toxicity (LC^o) of a congeneric set of 69 ben- 
zene derivatives. The data was taken from the work 
of Hall, Kier and Phipps 1984 where acute aquatic 
toxicity was measured in fathead minnow (Pimephales 
promelas). Their data was compiled from eight other 
sources, as well as some original work which was con- 
ducted at the U.S. Environmental Protection Agency 
(USEPA) Environmental Research Laboratory in Du- 
luth, Minnesota. This set of chemicals was composed 
of benzene and 68 substituted benzene derivatives. 

Table 2 gives our results. We studied three approaches 
for modeling toxicity: (1) giving all theoretical descrip- 
tors to a neural network, (2) reducing the feature set 
in a traditional previously published (Gute k Basak 
1997) manner, and (3) using our new genetic algorithm 
technique on the entire feature set to create a neu- 
ral network ensemble. Results for our approaches are 
from leave-one-out experiments (i.e., 69 training/test 
set partitions). Leave-one-out works by leaving one 
data point out of the training set and giving the re- 
maining instances (68 in this case) to the learning algo- 
rithms for training. (It is worth noting that each mem- 
ber of the ensemble sees the same 68 training instances 
for each training/test set partition and thus ensembles 
have no unfair advantage over other learners.) This 
process is repeated 69 times so that each example is 
a part of the test set once and. only once. Leave-one- 
out tests generalization accuracy of a learner, whereas 
training set accuracy tests only the learner's ability to 
memorize. Generalization error from the test set is the 
true test of accuracy and is what we report here. 

We first trained neural networks using all 95 param- 
eters. The networks contained 15 hidden units and 
we trained the networks for 1000 epochs. We normal- 
ized each input parameter to a values between 0 and 1 
before training. Additional parameter settings for the 
neural networks included a learning rate of 0.05, a mo- 
mentum term of 0.1, and weights initialized randomly 
between -0.25 and 0.25. With all 95 input parameters, 
the neural networks obtained a test-set correlation co- 
efficient between predicted toxicity and measured toxi- 
city (explained variance) of R2 = 0.868 and a standard 
error of 0.29. Target toxicity measurements ranged 
from 3.04 to 6.37. 

Our first method for feature-set reduction follows the 
work of Gute and Basak 1997 on toxicity domains. 
Their method begins by using the VARCLUS method 
of SAS 1998 to select subsets of topostructural and 
topochemical parameters for QSAR model develop- 
ment. With this method, the set of topological in- 
dices is first partitioned into two distinct sets, the 
topostructural indices and the topochemical indices. 

Table 2: Relative effectiveness of statistical and neural 
network methods in estimating LC^o of 69 benzene 
derivatives. 

Method R'2 Standard Error 
NN with 95 inputs 
VARCLUS 
NN with GEFS 

0.868 
0.825 
0.893 

0.29 
0.32 
0.27 

To further reduce the number of independent variables 
for model construction, the sets of topostructural and 
topochemical indices were further divided into subsets, 
or clusters, based on the correlation matrix using the 
VARCLUS procedure. This procedure divides the set 
of indices into disjoint clusters, such that each clus- 
ter is essentially unidimensional. From each cluster 
we selected the index most correlated with the clus- 
ter, as well as any indices which were poorly corre- 
lated with their cluster (R2 < 0.70). The variable 
clustering and selection of indices was performed inde- 
pendently for both the topostructural and topochem- 
ical indices. This procedure resulted in a set of five 
topostructural indices and a set of nine topochemical 
indices. These indices were combined with the three 
geometric and six quantum chemical parameters de- 
scribed earlier. Their approach then applied linear re- 
gression to these 23 parameters. This study found that 
an accurate linear regression model for acute aquatic 
toxicity required descriptors from all four levels of the 
hierarchy: topostructural, topochemical, geometrical 
and quantum chemical. This model utilized seven de- 
scriptors and obtained an explained variance (R2) of 
0.863 and a standard error of 0.30 on the whole data 
set used as a training set. Our leave-one-out experi- 
ment gave an R2 = 0.825 and a standard error of 0.32. 

Finally we applied our genetic algorithm technique, 
GEFS, using all 95 parameters. The parameter set- 
tings for the networks in the ensemble were the same as 
the settings for the single networks in the first exper- 
iment. Parameter settings for the genetic algorithm 
portion of GEFS includes a mutation rate of 50%, a 
population size of 20, a A = 1.0, and a search length 
of 100 networks (20 networks for the initial population 
and 80 networks created from crossover and mutation). 
While the mutation rate may seem high as compared 
with traditional genetic algorithms, certain aspects of 
our approach call for a higher mutation rate (such as 
the criterion of generating a population that cooper- 
ates as well as our emphasis on diversity); other muta- 
tion values were tried during our pilot studies. With 
this approach, we obtained a test-set correlation coef- 
ficient of R2 = 0.893 and a standard error of 0.27; the 
initial population of 20 networks obtained a test-set 



R2 = 0.835 and a standard error of 0.31. 

5    DISCUSSION AND FUTURE 
WORK 

The correlation coefficient between the predicted value 
from the computational model and the target value 
derived from the toxicity test is an extremely informa- 
tive metric of accuracy in this case. The exact numeric 
value of most, toxicity tests is not as important as the 
relative ordering and spread of these values. Thus, 
a perfect correlation (ft2 = 1.0) between the compu- 
tation model and target toxicity shows the computa- 
tional model is as informative as the toxicity obtained 
from a battery of expensive and time-consuming tests 
- regardless of the standard error. Note the standard 
error of 0.27 is fairly good, given the toxicity measure- 
ments ranged from 3.04 to 6.37. 

While the neural network technique and the standard 
data-reduction technique obtained decent correlation 
with measured toxicity, our ensemble technique was 
about 20% closer to perfect correlation. Note that 
GEFS produces an accurate initial population and that 
running GEFS longer with our genetic operators can 
further increase performance. Thus our approach can 
be viewed as an "anytime" learning algorithm. Such 
a learning algorithm should produce a good concept 
quickly, then continue to search concept space, report- 
ing the new "best" concept whenever one is found 
(Opitz k Shavlik 1997). This is important since, for 
most hazard assessment, an expert is willing to wait 
for days, or even weeks, if a learning system can pro- 
duce an improved model for predicting toxicity. 

Our results demonstrate a very important point: that 
our method is able to accurately predict toxicity di- 
rectly from structure. Compared to the actual bat- 
tery of tests necessary to measure toxicity, a computer 
model is much cheaper, much faster, and does not have 
a negative impact on the environment. It is important 
to also note that the computer model does not have to 
be the final measurement for hazard assessment; addi- 
tional tests can be run on compounds that are either 
flagged by the model, or require more tests by the na- 
ture of their use (such as a benzene derivative that may 
become a standard fuel). Not only can good computer 
models become filters, they will probably be the only 
viable option for processing all registered chemicals. 

While the method proposed here has proven effective, 
there is much future work that needs to be completed. 
For instance, we plan to test, our method on other data 
sets of chemical derivatives; investigate other ensemble 
feature selection techniques; investigate variants to our 

genetic algorithm approach, and finally investigate the 
utility of other descriptors, such as bio-descriptors. 

6    CONCLUSIONS 

In this paper we presented a novel approach for cre- 
ating a computer model for hazard assessment. Our 
approach works by first extracting a hierarchy of theo- 
retical descriptors derived from the structure of a com- 
pound, then filtering the numerous possible descriptors 
with a genetic algorithm approach to ensemble fea- 
ture selection. We tested the utility of our approach 
by modeling the acute aquatic toxicity (LC50) of a 
congeneric set of 69 benzene derivatives. Our results 
demonstrate the ability of our approach to accurately 
predict toxicity directly from structure. Thus our new 
algorithm further increases the applicability of com- 
puter models to the problem of predicting chemical 
activity directly from its structure. 
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Abstract 

A novel QSAR studv of benzamidines complement-inhibitory activity and benzene derivatives acute toxicity is 
reported and a new efficient method for selecting descriptors is used. Complement-inhib.tory activity QSAR models 
of benzamidines contain from one to five descriptors. The best, according to fitted and cross-validated statistical 
parameters is shown to be the five-descnptor model. Models with a higher number of indices did not improve over 
the five-descnptor model. The benzene derivatives structure-toxicity models involve up to seven linear descriptors. 
Multireeression models, containing up to ten nonlinear descriptors, are also reported for the sake of comparison with 
previously obta.ned additivitv models. Comparison with benzamidine complement-inhibitory_ activity models and 
wnth benzene derivatives toxicity models from the literature favors our novel approach. © 1999 Elsev.er Science 

Ireland Ltd. All rights reserved. 

Keywords QSAR study. Complement-inhibitory activity; Benzene; Five-descriptor model 

1. Introduction 

In our recent papers a hierarchical QSAR (quantita- 
tive structure-activity relationship) approach was used 
to model the complement-inhibitory activity of benza- 
midines (Basak et al.. 1999a) and the acute aquatic 
toxicities of benzene derivatives (Gute and Basak, 1997; 
Basak et al., 1999c). The hierarchical QSAR approach 
uses topological (partitioned into topostructural and 
topocherrucal), geometric and quantum-chemical de- 
scriptors in a stepwise fashion to build increasingly 
more complex structure-property-activity models 
(Basak et al., 1997, 1999b). Now we report the use. 

' Corresponding author. 

with the same aim, of a new efficient approach for 
selecting the best QSAR models using multivariate 
regression (MR) (Lucic and Trinajstic, 1999; Lucic et 
al., 1999a) and a standard approach for variable selec- 
tion and model generation used in CODESSA (Ka- 
tritzky et al., 1999; Lucic et al., 1999b). Sometime ago 
Hansch and Yoshimoto (Hansch and Yoshimoto, 1974) 
carried out a QSAR study on the complement-in- 
hibitory potency of benzamidines using their own ap- 
proach. After 10 years. Hall et al. (Hall et al., 1984) 
carried out a QSAR study on the toxicities of benzene 
derivatives using de novo analysis (Free and Wilson, 
1964; Kubinyi and Kehrhahn, 1976), and derived an 
additivity model for 66 compounds (they excluded three 
compounds as outliers). We will analyze their models 
and compare to ours. 

0097-8485 99 S - see front matter C 1999 Elsevier Science Ireland Ltd. All rights reserved. 

PII: S0097-8485(99)00059-5 
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Table 1 
Observed and calculated (cross-validated. CV, and fitted. FIT) complement-inhibitory activities 1.. log C of 105 benzam.dir.es 

No. 
1/log C 

1 2-CH; 
2 3.4-(CH,): 

3 H 
4 3-OH 
5 3-CF, 
6 3-NO, 
7 3-Br 
8 3-CH, 
9 3-OCH3 

10 3-CHAH5 
11 3.5-(CH3)2 

12 3-OC3H7 

13 3-i-C5Hu 

14 3-OC.H, 
15 3-C4H„ 
16 3-CH=CHC6H5 

17 3-OCH2C6H5 

18 3-(CH2)2QH5 

19 3-OQH.j 
20 3-0(CH2)4OC6H, 
21 3-0(CH2)2OC6H5 

22 3-QH5 

23 3-0(CH2),OC6H4-4-COOH 

24 3-OC5H,, 
25 3-0-i-C5H,, 
26 3-O(CH,),OC,0H7-a 
27 3-0(CH2)4OC6H4-4-NH2 
28 3-<CH,)4C6H5 

29 3-0(CH2),OC6H4-4-NO, 
30 3-0(CH2),OC(SH4-4-NH: 
31 3-(CH,M-C5H4N 
32 3-0(CH2),OC6H, 
33 3-0(CH2)3QH5 

34 3-(CH2),-3-CsH4N 
35 3-(CH2)4QH4^-NHAc 
36 3-(CH,):-2-C5H4N 
37 3-0(CH2),OQH4-2-NH: 
38 3-0(CH2),OC6H4-4-NHAc 
39 3-(CH2)4-3-C,H4N 
40 3-0(CH2)4QH5 

41 3-0(CH2),OC6H4-3-NHAc 
42 3-0(CH2),OC6H,-3.4-Cl: 
43 3-0(CH,),OQH4-3-NH, 
44 3-0(CH,),OQH4-2-NHCOC6H4-4-SO:F 
45 3-0(CH2),OC6H4-2-NHCOC6H5 

46 3-0(CH,),OC6H4^-OCHj 
47 3-0(CH,)4OC6H4-4-NHCONHC6H4-4-SO:F 

48 3-0(CH ,),OC6H4-2-NHCOC6H ,-2-OCH ,-5-SO:F 

49 3-0(CH,),OC6IV4-Cl 
50 3-0(CH2)3OC6H4-2-NO, 
51 3-0(CH2)3OC6H4-3-N02 
52 3-0(CH,)3OC6H4-3-OCH3 
53 3-0(CH2)3OC6H4-2-NHCOC6H,-2-Cl-6-S02F 

54 3-0(CH2)3OC6H4-2-NHCONHC6H5 

55 3-0(CH,),OQH4-2-NHCONHC6H3-2-Cl-5-SO,F 

Observed       Calculated (CVV Calculated (FIT)'1 

-0.444 -0.417 -0.419 

-0.425 -0.423 -0.424 

-0.418 -0.424 -0.423 

-0.415 -0.439 -0.434 

-0.410 -0.378 -0.382 

-0.410 -0.392 -0.395 

-0.405 -0.399 -0.400 

-0.398 -0.399 -0.399 

-0.397 -0.401 -0.401 

-0.373 -0.343 -0.346 

-0.361 -0.375 -0.369 

-0.355 -0.358 -0.358 

-0.355 -0.344 -0.345 

-0.351 -0.340 -0.341 

-0.338 -0.355 -0.353 

-0.339 -0.324 -0.325 

-0.331 -0.324 -0.324 

-0.330 -0.332 -0.331 

-0.329 -0.318 -0.319 

-0.325 -0.286 -0.287 

-0.323 -0.314 -0.315 

-0.323 -0.366 -0.359 

-0.321 -0.296 -0.297 

-0.320 -0.327 -0.326 

-0.318 -0.338 -0.335 

-0.312 -0.255 -0.262 

-0.306 -0.288 -0.289 

-0.302 -0.315 -0.313 

-0.301 -0.2S2 -0.282 

-0.300 -0.298 -0.298 

-0.299 -0.318 -0.318 

-0.299 -0.295  . -0.295 

-0.296 -0.290 -0.290 

-0.294 -0.298 -0.298 

-0.294 -0.281 -0.282 

-0.291 -0.300 -0.299 

-0.283 -0.288 -0.288 

-0.278 -0.270 -0.270 

-0.276 -0.284 -0.284 

-0.276 -0.277 -0.277 

-0.270 -0.260 -0.260 

-0.265 -0.271 -0.271 

-0.265 -0.283 -0.283 

-0.265 -0.247 -0.247 

-0.265 -0.258 -0.258 

-0.262 -0.275 -0.274 

-0.260 -0.236 -0.237 

-0.260 -0.226 -0.227 

-0.257 -0.287 -0.286 

-0.257 -0.279 -0.279 

-0.257 -0.268 -0.268 

-0.256 -0.255 -0.255 

-0.255 -0.247 -0.248 

-0.255 -0.260 -0.259 

-0.250 -0.246 .-0.246 



Data Reduction and Division of the Topological Indices 
Initially, all TIs were transformed by the natural logarithm of the index plus one This 
was done since the scale of some indices may be several orders of magnitude greater 
than that of other indices and other indices may equal zero. The geometric indices were 
transformed by the natural logarithm of the index for consistency, the addition of one 
was unnecessary. 

The set of TIs was partitioned into two distinct sets: topostructural indices and 
topochemical indices. Topostructural indices are indices which encode information 
about the adjacency and distances of atoms (vertices) in molecular structures (graphs) 
irrespective of the chemical nature of the atoms involved in the bonding or factors like 
hybridization states of atoms and number of core/valence electrons in individual atoms 
Topochemical indices are parameters which quantify information regarding the topology 
(connectivity of atoms) as well as specific chemical properties of the atoms comprising a 
molecule. Topochemical indices are derived from weighted molecular graphs where 
each vertex (atom) is properly weighted with selected chemical/physical properties 
These sets of the indices are shown in Table I. 

To reduce the number of independent variables that were used for model 
construction in the smaller sets of compounds, the sets of topostructural and 
topochemical indices were further divided into subsets, or clusters, based on the 
correlation matrix using the SAS procedure VARCLUS [38]. The VARCLUS procedure 
divides the set of indices into disjoint clusters so that each cluster is essentially 
unidimensional. From each cluster we select the index most correlated with the cluster, 
as well as any indices which are poorly correlated with the cluster (r < 0.70). These 
indices are then used in model construction. The variable clustering and selection of 
indices is performed independently for both the topostructural and topochemical 
subsets. 

III. DEVELOPMENT OF HIERARCHICAL QSAR MODELS 

In the development of hierarchical QSAR models, between two and four sets of indices 
have been used. A schematic of this method is given in figure 1 and the SAS procedure 
REG is used to conduct the all-subsets regression analyses [38]. Final model selection 
from the all-subsets regression is based on the results for both RSQUARE and CP 
(Mallow's Cp statistic). The hierarchy begins with the simplest indices, the topostructural. 
After developing our initial model utilizing the topostructural indices, the level of 
complexity is increased one step. To the indices included in the best topostructural 
model, all of the topochemical indices are added and modeling is conducted using the 
combined set of parameters. Likewise, the indices included in the 

[Insert Figure 1 here] 
best model from this procedure are combined with the geometrical indices and modeling 
is conducted once again. Finally, in some studies we have included quantum chemical 
parameters calculated by MOPAC. The parameters are added to the best model 
selected from modeling with the combination of topostructural, topochemical and 
geometrical parameters, and all subsets regression is used to find the best-fit model. In 
some of our studies we have also used each level of the hierarchy individually to 
compare the results of using only one higher-level set, e.g, geometrical indices, alone to 
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Table 2 
69 be'nzene derivatives and their observed and calculated (cross-validated, CV. and fitted. FIT) fathead minnow toxicities. expressed 

as -logCLCjo)  

No. Compound -log(LC50) 

1 Benzene 
2 Bromobenzene 
3 Chlorobenzene 

4 Phenol 
5 Toluene 
6 1,2-Dichlorobenzene 
7 1,3-Dichlorobenzene 
8 1,4-Dichlorobenzene 
9 2-Chlorophenol 

10 3-Chlorotoluene 
11 • 4-Chlorotoluene 
12 1,3-Dihydroxybenzene 
13 3-Hydroxyanisole 
14 2-Methylphenol 
15 3-Methylphenol 
16 4-Methylphenol 
17 4-Nitrophenol 
18 1,4-Dimethoxybenzene 
19 1,2-Dimethylbenzene 
20 1,4-Dimethylbenzene 
21 2-Nitrotoluene 
22 3-Nitrotoluene 
23 4-nitrotoluene 
24 1,2-Dinitrobenzene 
25 1,3-Dinitrobenzene 
26 1,4-Dinitrobenzene 
27 2-Methyl-3-nitroaniline 
28 2-Methyl-4-nitroaniline 
29 2Methyl-5-nitroaniline 
30 2-Methyl-6-nitroaniline 
31 3-Methyl-6-nitroaniline 
32 4-Methyl-2-nitroaniline 
33 4-Hydroxy-3-nitroaniline 
34 4-Methyl-3-nitroaniline 
35 1,2.3-Tnchlorobenzene 
36 1.2,4-Trichlorobenzene 
37 1.3,5-Trichlorobenzene 
38 2.4-Dichlorophenol 
39 3.4-Dichlorotoluene 
40 2,4-Dichlorotoluene 
41 4-Chloro-3-methylphenol 
42 2,4-Dimethylphenol 
43 2.6-Dimethylphenol 
44 3.4-Dimethylphenol 
45 2.4-Dimtrophenol 
46 1.2.4-Trimethylbenzene 
47 2,3-Dinitrotoluene 
48 2.4-Dinitrotoluene 
49 2.5-Dinitrotoluene 
50 2,6-Dinitrotoluene 
51 3.4-Dinitrotoluene 
52 3,5-Dinitrotoluene 
53 1.3,5-Trinitrobenzene 
54 2-Methyl-3,5-dinitroaniline 

3.40 3.29 

3.89 4.04 

3.77 3.75 

3.51 3.31 

3.32 3.51 

4.40 4.33 

4.30 4.10 

4.62 4.80 

4.02 4.01 
3.84 3.72 

4.33 4.11 

3.04 3.31 

3.21 3.13 
3.77 3.62 

3.29 3.52 

3.58 3.64 

3.36 3.68 
3.07 3.01 
3.48 3.84 

4.21 3.94 

3.57 3.70 

3.63 3.67 

3.76 3.71 

5.45 4.95 

4.38 4.12 
5.22 4.83 
3.48 3.74 

3.24 3.50 

3.35 3.80 

3.80 3.76 

3.80 3.61 
3.79 3.78 

3.65 3.51 
3.77 3.78 

4.89 4.84 

5.00 5.02 
4.74 4.36 

4.30 4.53 
4.74 4.46 
4.54 4.57 
4.27 4.27 

3.86 374 

375 3.75 
3.90 3.90 
4.04 4.03 

4.21 4.07 

5.01 5.29 

375 4.29 

5.15 4.89 

3.99 4.43 

5.08 5.29 

3.91 4.25 

5.29 5.29 

4.12 4.23 

Observed Calculated (CV)3 Calculated (FIT)'1 

3.32 
4.01 
3.75 
3.35 
3.49 
4.33 
4.12 
4.77 
4.01 
3.73 
4.13 
3.28 
3.14 
3.62 
3.51 
3.64 
3.66 
3.01 
3.81 
3.97 
3.69 
3.66 
3.71 
5.09 
4.15 
4.91 
3.73 
3.47 
3.77 
3.76 
3.62 
3.78 
3.52 
3.78 
4.84 
5.02 
4.45 
4.52 
4.48 
4.56 
4.27 
3.76 
375 
3.90 
4.04 
4.09 
5.21 
4.27 
4.93 
4.41 
5.23 
4.23 
5.29 
4.22 
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Table 2 (Continued) 

No. Compound -log(LCS0) 

Observed Calculated (CV)a Calculated (FITT 

55 2-Methvl-3.6-dinitroaniline 5.34 4.59 4.64 

56 3-Methvl-2.4-dinitroaniline 4.26 3.97 4.00 

57 5-Methvl-2.4-dinitroaniline 4.92 3.88 3.97 

58 4-Methvl-2.6-dinitroaniline 4.21 4.76 4.72 

59 5-Methvl-2.6-dinitroaniline 4.18 4.64 4.61 

60 4-Methvl-3.5-dinitroaniline 4.46 4.33 4.34 

61 2.4.6-Tribromophenol 4.70 4.98 4.82 

62 1.2.3,4-Tetrachlorobenzer.e 5.43 5.55 5.53 

63 1.2.4.5-Tetrachlorobenzene 5.85 5.76 5.77 

64 2.4,6-Trichlorophenol 4.33 . 4.68 4.64 

65 2-Methyl-4,6-dinitrophenol 5.00 4.45 4.48 

66 2,3.6-Trinitrotoluene 6.37 6.39 6.38 
67 2,4,6-Tnnitrotoluene 4.88 5.32 5.26 

68 2,3,4.5-Tetrachlorophenol 5.72 5.64 5.65 
69 2.3.4.5.6-Pentachlorophenol 6.06 6.01 6.03 

' CV and FIT values are calculated using Eq. (10). 

which was achieved by the orthogonalization of de- 
scriptors, because in the orthogonal basis the computa- 
tion of R is much faster and simpler (Luäc et al., 
1995a,b,c; Lucic, 1997). Namely, in the case one has the 
MR mode] based on the set of / orthogonalized de- 
scriptors di (/=!   /). the correlation coefficient 
between the experimental values of modeled activity A 
and the values estimated by the model A'" can be 
calculated in a very simple way (Eq. (1)): 

I*? (1) 

(cross-validated) correlation coefficient, F is /"-value, 5 
is the standard error and S„ is the cross-validated 
(leave-one-out) standard error of estimate (root-mean- 
square error), both with N-2 in the denominator. This 
model is only slightly better than the earlier obtained 
one-descriptor model, but with a different descriptor 
(Basak et al., 1999a): 

l/logC= - 0.6428(± 0.0129) + 0.0490(± 0.00\1?DW 
„ = "i05 £ = 0.943 /L= 0.940 S = 0.0196 

= 0.0200 F=824 
where Ri is the correlation coefficient between each 
orthogonalized descriptor di and the modeled activity 
A. For example, using this procedure it takes 28 CPU 
min on Hewlett-Packard 9OO0/E55 computer, which is 
configured as a server, to select the best MR model 
with five out of 104 descriptors among — 10s possible 
models. 

3. Results and discussion 

3.1. QSAR of benzamidines 

The best one-descriptor structure-complement-in- 
hibitory activity model of benzamidines obtained is: 

1 log C = - 0.9332( ± 0.0229) + 0.4395( ± 0.0152)//v 

n=105 £ = 0.943 Äcv = 0.941 5 = 0.0195 

5„ = 0.0199 f=832 (2) 

where Hv is the graph-vertex complexity (Basak, 1987), 
n is the number of benzamidine derivatives considered, 
R is the correlation coefficient, Rc. is the leave-one-out 

(3) 

where iDWis the 3-D Wiener number for the hydrogen- 
suppressed structures computed using their geometric 
distance matrices (Bogdanov et al., 1989). Close to this 
model is a model with 3-D Wiener number computed 
for structures containing all atoms including hydrogens 
(Bosnjak et al., 1989) (n = 105, R = 0.941, \.v = 0.939. 
S = 0.0199 Scv = 0.0203). 

The best two-descriptor model of the benzamidine 
structure-complement-inhibitory activity is: 

1 logC= - 0.6878(± 0.0175) + 0.1327( ±0.0367) W 

+ 0.1864(±0.0380)3DH'' 

n= 105 R = 0.950 Re 

Sc =0.0189 F=467 

= 0.947 S = 0.0184 

(4) 

where  W is the 2-D Wiener number (Wiener, 1947). 
The best three-descriptor model is given by: 

1 /log C = - 0.6400( ± 0.0239) + 0.1273( ± 0.0355) W 

+ 0.0103(± 0.0037)?, 

+ 0.1698(±0.0372)3DW 
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Table 3 
Descriptions of all considered descriptors and symbols of only 
those descriptors involved in the models 

Table 3 (Continued) 

Information index for the magnitude of distances 
between all possible pairs of vertices of a graph 
Mean information index for the magnitude of 
distance 

W Wiener index, the half-sum of the off-diagonal 
elements of the molecular distance matrix 
Degree complexity 

Hv Graph vertex complexity 
Graph distance complexity 
Information content of the distance matrix parti- 
tioned by frequency of occurrences of distance / 
Information content of the hydrogen-suppressed 
graph at its maximum neighborhood of vertices 
Order of neighborhood when ICr reaches its 
maximum value for the hydrogen-filled graph 
A Zagreb group parameter, the sum of square of 
degree over all vertices 
A Zagreb group parameter, the sum of cross- 
product of degrees over all neighboring (con- 
nected) vertices 

ICr Mean information content of a graph based on 
the rth (r = 0-6) order neighborhood of vertices 
in a hydrogen-filled graph 

SIC, Structural information content for rth (r = 0-6) 
order neighborhood of vertices in a hydrogen- 
filled graph 

CIC,        Complementary information content for rth <r = 
0-6) order neighborhood of vertices in a hydro- 
gen-filled graph 
Path connectivity index of order h - 0-6 
Cluster connectivity index of order h = 3-6 
Chain connectivity index of order h = 6 
Path-cluster connectivity index of order h = -1-6 
Bond path connectivity index of order h = 0-6 

"b/c Bond cluster connectivity index of order h = 3-6 
/,b/ch        Bond cnain connectivity index of order /i = 6 

Bond path-cluster connectivity index of order 
h = 4-6 

''/v Valence path connectivity index of order /i = 0—6 
'•"Z. Valence cluster connectivity index of order h = 

3-6 
'"Zci, Valence chain connectivity index of order h = 6 
*/jc Valence path-cluster connectivity index of order 

h = 4-6 
P, Number of paths of length/ = 0-10 

Balaban's J index based on distance 
Balaban's J index based on relative electronega- 
tivities 
Balaban's J index based on relative covalent 
radii 
Balaban's J index based on bond types 
Energy of the highest occupied molecular orbital 
Energy of the second highest occupied molecular 
orbital 

£ Energy of the lowest unoccupied molecular or- 
bital 
Energy of the second lowest unoccupied molecu- 
lar orbital 

&H{        Heat of formation 
H Dipole moment 

van der WaalSs volume 
yoWn      3-D Wiener index for the hydrogen-filled geometric 

distance matrix 
,DVV        3-D Wiener index for the hydrogen-suppressed ge- 

ometric distance matrix 

n = 105 R = 0.954 Äcv = 0.949 S = 0.0177 

S^.» 0.0185 F=315 (5) 

where P9 is the path of length nine. P9 could be omitted 
from Eq. (5) because the related value of error of 
regression coefficient is relatively large comparing to 
the value of regression coefficient. Then Eq. (5) simply 
converts into Eq. (4). The best four-descriptor model is: 
l/logC= - 0.6999( ±0.0194) + 0.1327(± 0.0354) W 

+ 5.0332(±1.2285)6/;c
b
h 

-5.1120 (±1.2486)6^h 

+ 0.1885(± 0.0359)3DW 

n= 105 R = 0.957 /?cv = 0.953 5 = 0.0170 

S0. = 0.0177 F=272 (6) 

where 6z*h and 6/c'h denote the bond-chain and valence- 
chain connectivity indices of order six, respectively. 

Hansch and Yoshimoto (Hansch and Yoshimoto, 
1974) published, 25 years ago, the following four-de- 
scriptor model for benzamidine derivatives inhibiting 
complement (the model is given in their notation): 

logd C) = 0.15( ± 0.03XMR - 1.2) 

+ 1.07( ± 0.13)(D-1) + 0.52( ± 0.28KD-2) 

+ 0.43( ± 0.14)(D-3) + 2.425( ±0.12) 

«= 108 tf = 0.935 S = 0.258 (?) 

where MR is the molar refractivity of substituents at 
positions 1 and 2. taken from the compilation by 
Hansch et al. (Hansch et al., 1973) or computed, while 
D-l, D-2, and D-3 are indicator variables for the 
presence or absence of three kinds of the substructural 
units in a given benzadimine. To compare fitted statisti- 
cal parameters of our four-descriptor model (Eq. (6)) 
with those of model given by Eq. (7). we retransformed 
our results into a log (1/C) scale used by Hansch and 
Yoshimoto. Thus, we obtained statistical parameters 
(R= 0.941 and S = 0.237) that are comparable with 
their result. However. Hansch and Yoshimoto consid- 
ered 108 benzamidine derivatives and we only consid- 
ered 105. This discrepancy is caused by problematic 
data for three compounds which in our case are dis- 
carded from the set of benzamidine derivatives (Basak 
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et al., 1999a). But, the nature of descriptors used in 
these two types of models is different. Descriptors used 
by us are calculated solely from the structures of stud- 
ied molecules while the Hansch-Yoshimoto parameters 
(molar refractivities of substituents) are experimentally- 
based. 

Finally, the five-descriptor model is: 

1 /log C = 1.5264( ± 0.3534) + 0.6323( ± 0.0936)(1C): 

- 1.6788( ± 0.2720)(1C)6 - 1.4540( ± 0.2043) 

(SIC), - 0.4239( ± 0.0680)(CIC)6 + 0.1286 

(±0.0149)3DPT 

„=105 R= 0.963 Rcv = 0.957 5 = 0.0158 

5CV = 0.0170 F= 253 (8) 

where (IC): and (IC)6 denote the mean information 
content of structure based on the second- and sixth- 
order neighborhood of atoms, including hydrogens, in 
the structure, respectively, (SIC), and (CIC)6 are, re- 
spectively, the structural information content for the 
first order neighborhood and complementary informa- 
tion content for the sixth order neighborhood of atoms, 
including hydrogens, in the structure. (IC)r. (SIC), and 
(CIC), are molecular complexity indices introduced 
some times ago by one of us (Basak. 19.87) for use in 
predictive pharmacology and toxicology. 

It is interesting to note that the 3-D-Wiener number 
is present in all models given here, except in the very 
best model with a single descriptor, although is present 
in the next best single-descriptor model. This is not 
surprising because this descriptor has shown to be very 
useful in the structure-property-activity modeling 
(Bogdanov et al.. 1989; Bosnjak et al., 1991: Mihalic 
and Tnnajstic, 1991; Nikolic et al., 1991; Trinajstic, 
1992). 

The models containing more decriptors did not out- 
perform the above five-descriptor model. Thus, the 
model with five-descriptors (Eq. (8)). selected from the 
initial set of descriptors, is the best QSAR model, 
according to the calculated cross-validated statistical 
parameters, for predicting the benzamidine structure- 
complement-inhibitory activity. This model is better 
than one-descriptor model previously obtained using 
hierarchical approach (Basak et al., 1999a). However, 
according to F-values one-descriptor models selected in 
this paper and our previous work (Basak et al.. 1999a) 
appear to be better models than the model with five-de- 
scriptors. But, the F-value is calculated only from the 
fitted correlation coefficient R and taking into account 
the number of parameters optimized in the model. 
Because it is accepted (Ortiz et al., 1997) that the 
cross-validated statistical parameters give better evi- 
dence into the model quality than fitted statistical 
parameters, our final conclusions are based on cross- 

validated statistical parameters, although the prediction 
for compounds from an external data set would be the 
best way of model quality testing. A plot between the 
experimental and predicted values, calculated in the 
cross-validation procedure using Eq. (8), of 1/logC is 
given in Fig. 2. Computed (fitted and leave-one-out 
cross-validated) 1 /log C values are given in Table 1. 

3.2. QSAR of benzene derivatives 

The best linear five-descriptor structure-toxicity 
model of benzene derivatives selected by CROMRsel 
program is: 

- log(LC50) 

= 5.2032( ± 0.546) + 0.8488( ± 0.106)£9 

+ 1.7979( ± 0.183)YPc - 0.4439( ± 0.0523)£,umo 

- 0.1379( ± 0.0195)/; - 0.296K ± 0.0927)3D WH 

„ = 69 R = 0.927 £„ = 0.914 5 = 0.287 S„ = 0.312 

F=77 (9) 

where P9 is the path of length nine, 4/pc valence 
path-cluster connectivity index of order four, iflumo is 
the energy of the lowest unoccupied molecular orbital, 
ß is dipole moment, and 3DWH is the 3-D Wiener 
number for the hydrogen-filled structures computed 
using their geometric distance matrices (Bogdanov et 
al., 1989). This model has two descriptors fewer than 
the best model obtained by hierarchical approach (see 
Gute and Basak, 1997) and Vessels almost the same 
statistical parameters. 

The best linear seven-descriptor model is: 

-log(LC50) 

= 4.4100( ± 0.809) + 0.8637( ± 0.0988)/>9 

+ 2.5278( ± 0.833)V - 3.1248( ± 0.655)V 

+ 1.5628( ± 0.372)6; Pc - 0.44157( ± 0.051)£,umo 

- 0.1364( ± 0.018) - 0.34054( ± 0.087)3D WH 

„ = 69 £ = 0.940 £„ = 0.925 5 = 0.262 5CV = 0.291 

F=66 (10) 

where :/v and iys denote valence path connectivity 
indices of order two and four, respectively, and 6/pc is 
the valence path-cluster connectivity index of order six. 
Other descriptors are the same as those from five-de- 
scriptor model (Eq. (9)). This model (£2 = 0.884, F = 
66, 5 = 0.26) is better than the seven-descriptor model 
obtained by hierarchical procedure (see Gute and 
Basak, 1997) (£2 = 0.863, F=50, 5 = 0.30), and one 
can see that these two models contain three identical 
descriptors: £9 3ÖWH, and ji. Fitted and cross-vali- 
dated predicted values for all benzene derivatives ob- 
tained using Eq. (10) are given in Table 2. A plot 
between the experimental and predicted values, calcu- 

'DZ&as. US 
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Fig. 2. A plot of observed versus calculated (cross-validated) I .'log C complement-inhibitory activity of benzamidines. 

lated in the cross-validation procedure using Eq. (10), 
of -log(LC5o) is given in Fig. 3. 

We also found several seven-descriptor linear multi- 
regression models with better statistical prameter than 
the best seven-descriptor model of Gute and Basak (see 
Gute and Basak, 1997). One of them is very similar to 
the model given as Eq. (10) and involving the following 
set of descriptors H\ /»9, 3/c

b, 5*;, A//f. /i. 'DW„ (see 
Table 3 for description of descriptors), and possessing 
the following statistical parameters Ä = 0.9398. R^ = 
0.9245. S = 0.262. S„ = 0.292, F= 66). 

In addition, we perform modeling in order to com- 
pare our seven-descriptor model with the additivity 
model (using eight terms, i.e. eight optimized parame- 
ters) derived"by Hall et al. (Hall et al., 1984). To do this 
we omitted from the data set compounds 53, 57 and 65. 
which were identified in by Hall et al. as outliers. For 
66 compounds statistical parameters of seven-descriptor 
model (Eq. (10)) are: R =0.955, ^ = 0.943, 5 = 0.225, 
$„ = 0.255 F=S1). This parameters are better than 
those for additivity models obtained by Hall et al. 
(R = 0.951, S = 0.249, F=61). 

4. Concluding remark 

Presented results show that the optimum way to 
carry out QSAR modeling is by selecting the best 
descriptors in (linear, as was the case here, or nolinear 
(Lucic and Trinajstic, 1999) multiregression models. 
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Abstract 
A current trend in quantitative structure-property/activity relationship studies 
(QSPR/QSAR) studies is the use of theoretical molecular descriptors that can be 
calculated directly from molecular structure. One advantage of such descriptors is that 
they can be calculated for any chemical structure, real or hypothetical. Topological 
indices (Tls) or numerical graph invariants constitute an important subset of these 
theoretical descriptors. Tls are derived from different classes of weighted graphs 
representing various levels of chemical structural information They are numerical 
quantifiers of molecular topology and encode information regarding the «ze. shape, 
branchina pattern cyclicity, and symmetry of molecular graphs. The Wiener ndex 
SfereTtypÄ innecöÄ indices and complexity or information theoretic topological 
indices have been widely used in QSAR/QSPR research. 

We have been involved in the use of Tls in QSAR/QSPR model development to 
estimate pharmacological, physicochemical, and toxicological propert.es of diverse sets 
of molecules More recently, we have developed a hierarchical approach in the use of 
meorefica descriptors where topological, geometrical, and quantum chem.cal indices 
areised The goal of this approach has been to use the simplest descriptors first and to 
only use more complex descriptors if necessary. For this reason, the Tls have been 
SeiUnto £o subsets: a) topostructural indices (TSIs), the topological indices which 
are defined on the skeletal molecular graph and which do not distinguish amor« the 
various atoms or bonds present in the molecule, and b) topochem.cal indices (TCIs), 
which exDlicitlv encode information regarding atom and bond types 

In misThapter we will discuss the utility of Tls, geometrical indices and quantum 
chemica parameLns in hierarchical QSAR studies. The results of studies where the 
various levels of indices are used in estimating physicochemical, biological, and 
toxicological properties of different sets of molecules will be presented. 

I. INTRODUCTION 

A recent interest in pharmaceutical drug design and hazard assessment of chemicals is 
fheoredict on of environmental, physicochemical, toxicological, and pharmacological 
nroDerttsTchem^ from their structure [1-11]. Early quantitative structure- 
s' trucUe activitrStionship (QSAR) studies by Hansch and others usedI physicaj 
^^^A^odtJSci\ substituent constants for the prediction of other more 
Sex physicochemical, biomedicinal and toxicological propert.es [12. Such property- 
Zerly coSbn is useful only when properties necessary for pred.ct.on a^abki 
fo? all chemicals under consideration. In the field of environmental nsk assessment 
most chemicals do not have the data required for proper hazard estimation [13]. In 



contemporary drug design, one can produce large (real or virtual) combinatorial libraries 
of chemicals for screening. Most of these chemicals will have no physicochemical data 
and predictive methods based on experimental data are of no use in this situation. 
Therefore, there is a need for the development of QSAR methods using nonempirical 
parameters, i.e., parameters that can be calculated from the molecular structure. 
Topological indices (TIs), the various molecular size and shape indices as well as 
quantum chemical parameters fall in this category. 

Recently we have developed a new hierarchical approach to QSAR using 
parameters which are algorithmically defined, i.e., which can be computed from 
structure using computer software [14-19]. We have successfully used four classes of 
computed parameters, viz., topostructural, topochemical, geometrical, and quantum 
chemical parameters, in the development of QSAR models using a hierarchical 
approach {vide infra). This approach was found to be quite useful in the estimation of 
different properties. 

In this chapter we will review the results of our hierarchical QSAR studies pertaining 
to the prediction of physicochemical, biological, and toxicological properties of different 
groups of chemicals. 

II. CALCULATION OF PARAMETERS 

Computation of Topological Indices 
Topological indices used in this study have been calculated by POLLY 2.3 [20] which 
calculates a total of 102 indices. These indices include the Wiener index [21], the 
connectivity indices of Kier and Hall [2], and Randic [22], information theoretic indices 
defined on distance matrices of graphs [23,24], a set of parameters derived on the 
neighborhood complexity of vertices in hydrogen-filled molecular graphs [25-27], and 
Balaban's J indices [28-30]. Table I provides brief definitions for the indices included in 
this study. 

Computation of Geometrical Indices 
Van der Waal's volume, Vw, [31-33] was calculated using Sybyl 6.2 [34]. The 3-D 
Wiener numbers [35] were calculated by Sybyl using an SPL (Sybyl Programming 
Language) program developed in our laboratory. Calculation of 3-D Wiener numbers 
consists of the sum entries in the upper triangular submatrix of the topographic 
Euclidean distance matrix for a molecule. The 3-D coordinates for the atoms were 
determined using CONCORD 3.2.1 [36]. Two variants of the 3-D Wiener number were 
calculated: 3DWH and 3DW. For 3DWH, hydrogen atoms are included in the computations 
and for 3DW, hydrogen atoms are excluded from the computations. 

Computation of Quantum Chemical Parameters 
The quantum chemical parameters EHOMO. EHOMOL ELUMO. ELUMOI, AH/, and m were 
calculated for all of the following semi-empirical Hamiltonians: AM1, PM3, MNDO, 
MINDO/3. These parameters were calculated by MOPAC 6.00 in the SYBYL interface 
[37]. One difficulty was encountered in using the MINDO/3 Hamiltonian. 



Data Reduction and Division of the Topological Indices 
Initially, all TIs were transformed by the natural logarithm of the index plus one. This 
was done since the scale of some indices may be several orders of magnitude greater 
than that of other indices and other indices may equal zero. The geometric indices were 
transformed by the natural logarithm of the index for consistency, the addition of one 
was unnecessary. 

The set of TIs was partitioned into two distinct sets: topostructural indices and 
topochemical indices. Topostructural indices are indices which encode information 
about the adjacency and distances of atoms (vertices) in molecular structures (graphs) 
irrespective of the chemical nature of the atoms involved in the bonding or factors like 
hybridization states of atoms and number of core/valence electrons in individual atoms. 
Topochemical indices are parameters which quantify information regarding the topology 
(connectivity of atoms) as well as specific chemical properties of the atoms comprising a 
molecule. Topochemical indices are derived from weighted molecular graphs where 
each vertex (atom) is properly weighted with selected chemical/physical properties. 
These sets of the indices are shown in Table I. 

To reduce the number of independent variables that were used for model 
construction in the smaller sets of compounds, the sets of topostructural and 
topochemical indices were further divided into subsets, or clusters, based on the 
correlation matrix using the SAS procedure VARCLUS [38]. The VARCLUS procedure 
divides the set of indices into disjoint clusters so that each cluster is essentially 
unidimensional. From each cluster we select the index most correlated with the cluster, 
as well as any indices which are poorly correlated with the cluster (r < 0.70). These 
indices are then used in model construction. The variable clustering and selection of 
indices is performed independently for both the topostructural and topochemical 

subsets. 

III. DEVELOPMENT OF HIERARCHICAL QSAR MODELS 

In the development of hierarchical QSAR models, between two and four sets of indices 
have been used. A schematic of this method is given in figure 1 and the SAS procedure 
REG is used to conduct the all-subsets regression analyses [38]. Final model selection 
from the all-subsets regression is based on the results for both RSQUARE and CP 
(Mallow's C„ statistic). The hierarchy begins with the simplest indices, the topostructurah 
After developing our initial model utilizing the topostructural indices, the level of 
complexity is increased one step. To the indices included in the best topostructural 
model all of the topochemical indices are added and modeling is conducted using the 
combined set of parameters. Likewise, the indices included in the 

[Insert Figure 1 here] 
best model from this procedure are combined with the geometrical indices and modeling 
is conducted once again. Finally, in some studies we have included quantum chemica 
parameters calculated by MOPAC. The parameters are added to the best model 
selected from modeling with the combination of topostructural, topochemical and 
qeometrical parameters, and all subsets regression is used to find the best-fit model, n 
some of our studies we have also used each level of the h.erarchy individually o 
compare the results of using only one higher-level set, e.g, geometrical indices, alone to 



determine the degree of contribution to modeling from the given set. Thus, there may be 
as many as seven final models in a hierarchical study to illustrate the individual 
contributions of the three higher-level sets of indices, as well as the four model from the 
stepwise procedure of the hierarchical modeling. 

IV. HIERARCHICAL QSAR/QSPR STUDIES 

The hierarchical method has been used in developing QSAR models for predicting a 
wide variety of properties. The following are examples from our previous studies 
employing the hierarchical approach in the construction of useful models. 

Physicochemical Properties 
Three large sets of chemicals have been used to model physicochemical properties, 
viz., normal boiling point, lipophilicity (logP), and normal vapor pressure. The normal 
boiling point data was a subset of the Toxic Substances Control Act (TSCA) Inventory 
[13] for which measured normal boiling point data were available and where HB1f a 
simple measure of the hydrogen bonding potential of a chemical, was equal to zero. 
This resulted in a set of 1023 diverse chemicals [14]. For this particular set, only the first 
three levels of the hierarchical approach were used, mainly due to the large amount of 
computational time necessary to generate quantum chemical parameters for a set of 
over 1000 chemicals. Eight topostructural indices were selected for the first model (Eq. 
1). The second level of the hierarchy resulted in the retention of two of those 
topostructural indices and the addition of six topochemical indices (Eq. 2). Finally, the 
addition of geometric indices resulted in a ten parameter model using the two 
topostructural indices, the six topochemical indices, and two of the geometric indices 
(Eq.3). The results of this modeling are presented below (Eq. 1-3): 

BP = -21.9 + 30.6(W) -21.5(0) + 69.9(3
X) + 35.8(6

X) - 106.5(6
Xc) - 96.1(5

Xch) 
-17.7(5

XPC)+19-5(PIO) Eq-1 

n = 1023, r2 = 0.812, s = 39.7°C, F = 547 

BP = -332.9 + 134.6(6
X) + 10.9(P10) + 110.0(IC0) - 133.8(6

X
b) - 80.2(3

x
bc) 

+ 176.5(°X
V) + 44.8(V) + 16.8(VPC) EC1-2 

n = 1023, r2 = 0.961, s = 18.0°C, F = 3151 

BP = -285.7 + 125.3(6
X) + 10.6(P10) + 74.5(IC0) - 125.0(6

X
b) - 86.3(3

X
bc) 

+ 175.3(°X
V) + 49.1(V) + 18.7(VPC) -9.1(3DWH) + 8.1(3DW) Eq.3 

n = 1023, r2 = 0.963, s = 17.6°C, F = 2650 

From the three equations presented, it is clear that the replacement of six topostructural 
indices with six topochemical indices greatly enhanced the predictive power of the 
model, while the addition of the geometric parameters did not add much to the model. A 
scatterplot of experimental versus predicted boiling point from equation 3 is shown in 
figure 2. 

[Insert Figure 2 here] 



The liDophilicity data are a subset of 219 chemicals derived from the STARLIST set 
with bgXates between -2 to 5.5 obtained from CLOGP [39] and HB, equal to zero 
M41 This subset was chosen to examine the effectiveness of model based on 
opological indices in the prediction of lipophilicity for compounds that do not have 
explicit hydrogen-bonding centers. Compounds were chosen within the range of logP 
values described to avoid the problematic nature of compounds having exceptionally 
hiqh values for lipophilicity. As with the boiling point models, only the first hree levels of 
the hierarchy were applied to modeling lipophilicity. Seven topostructural indices were 
initially selected (Eq.4), and again, only two were retained with the addition of eight 
lopochemical indices (Eq. 5). In equation 6, with the addition of two geometric 
parameters, an additional topostructural index is removed from the model. These 
equations (4-7) are presented below: 

,ogp = _1.42 + 1.08(W) - 1.58(2x) + 1 -51 (6x) - 0.92(6
Xc) - 0-32(P7) + 0.20(P10) 

+ 1.97(J) q 

n = 219, A2 = 0.789, s= 0.54, F= 112 

loqP = -213- 0.20(2
X) + 0.18(Pio) - 1.86(IC0) + 1.33(CIC2) - 0.92(CIC3) 

- 1 36(Y) + 5.76(V) - 2.98(V) + 0.54(V) - 0.39(3
X

vc) Eq. 5 
n = 219, ? = 0.908, s = 0.36, F = 206 

logP = -5.60 + 0.19(Pio) - 1.46(IC0) + 1.09(CIC2) - 0.77(CIC3) - 1 -36(6
X

b) 
+ 5 34(V) - 3 41 (Y) + 0.55(V) - 0.41 (Yc) + 1 -10(VW) - 0.17(3DW)        Eq. 6 

' n = 219, A2 = 0.912, s = 0.35, F= 194 

These three equations show similar results as those for the modeling of normal boiling 
poTnt The replacement of topostructural indices with an equal or greater number of 
topochemical indices results in marked improvement in the predictive power of the 
model S the addition of geometric indices resulted in only a minor 'mprovement 
FiauYe 3 presents a plot of the experimental logP values versus the logP va ues 
predicted from equation 6. The 219 chemicals and their observed and predicted values 
for loqP have been presented previously in the literature [14]. 

[Insert Figure 3 here] 
The 476 chemicals in the normal vapor pressure data [16] are a subset of the TSCA 

inventory taken from the ASTER (Assessment Tools for the Evaluation of Risk) 
database [40]. This is a diverse subset of chemicals all have vapor pressure (pvap) data 

measured at 25°C and ranging between 3-10,000 mmHg. 
The first three levels of the hierarchical method have been employed; however the 

addln of geometric parameters to the modeling process did not result in the selection 
of a novel model and so there is no geometric model reported. 

log10(Pvap) = 4.88 + 0.20(0) - 2.56( Y + 0.49(4
Xc) + 0.79(6

Xc) + 0.98(P10)   Eq. 7 ■oa wvap, ^ = 476 ^ = 0 515 s = 0 53i F = 99.7 

logio(P*p) = 8-44 - 1.77(1
X) + 1.25(Pio) - 5.69(100 + 3.91 (IC2) - 1.24(IC5) 

+ 1.41(Yc)-1-70(1
X

v) Eq8 



n = 476, r2 = 0.793, s = 0.34, F = 224.0 

As can be seen from equation 7, five topostructural indices were initially selected to 
model normal vapor pressure. The addition of the topochemical indices resulted in the 
retention of two topostructural indices and the addition of five topochemical indices (Eq. 
8). As was seen for the other two physicochemical properties, viz., normal boiling point 
and lipophilicity, the predictive power of the model is greatly enhanced by the addition of 
the topochemical indices. A scatterplot of experimental versus predicted normal vapor 
pressure, based on equation 8, is shown in Figure 4. These results are adequate, 
however, as can be seen from Figure 5 while the residuals show fairly uniform scatter 
when plotted against the dependent variable there are some significant outliers and the 
data tends to be somewhat skewed to the lower end of the vapor pressure range. 

[Insert Figure 4 here] 
[Insert Figure 5 here] 

Biological Properties 
Two smaller sets of congeneric chemicals have been used in the study of biological 
properties. The smaller of the two sets [19] consisted of sixty polycyclic aromatic 
hydrocarbons for which 24-hour dermal penetration (DP) data were available from the 
work of Roy et al [41]. For the purposes of this study, all four levels of the hierarchical 
method were employed. Only two equations are being presented since the addition of 
geometric and quantum chemical parameters to the modeling procedure did not result 
in the formulation of improved QSAR equations. 

DP = 224.1-67.9(P0) Eq. 9 
n = 60, r2 = 0.675, s = 7.4, F = 120.6 

DP = 179.7 -78.8(Y) Eq. 10 
n = 60, r2 = 0.695, s = 7.1, F = 132.0 

Equation 9 shows the model resulting from the topostructural modeling. A one 
parameter model which explains 67.5% of the variance was generated. A small 
improvement is seen in the model resulting from the addition of the topochemical 
indices (Eq. 10), in which the topostructural index is replaced by the topochemical 
index, V. Figure 6 presents a scatterplot of experimental dermal penetration versus the 
predicted results from equation 10. 

[Insert Figure 6 here] 
The second set of biological data studied using the hierarchical method was a set of 

107 benzamidines [18] that act as inhibitors of the complement system, collected from 
the literature by Hansch and Yoshimoto [42]. The base structure for the benzamidines is 
presented in figure 6 and the side-chains and activity values have been published 
previously [18]. The large size of these molecules made the calculation of quantum 
chemical indices prohibitively time consuming. As a result, the first three levels of the 
hierarchical modeling procedure were used for this study. 

[Insert Figure 7 here] 

1/logC= 1.1245 + 0.4989(1°) Eq. 11 



n = 105, i2 = 0.884, s = 0.0200, F = 785 

1/log C = -0.6428 + 0.0490(3DW) Eq. 12 
A7 = 105, A2 = 0.889, s = 0.0196, F = 824 

A single topostructural index provided a strong correlation with the inhibitory activity of 
these large compounds (Eq. 11). This one index modeled the activity so well, that the 
addition of topochemical indices did not add significantly to the predictive power of the 
model. Finally, with the addition of geometric parameters to the modeling of inhibitory 
activity, it was found that one geometric parameter provided a slightly better correlation 
with activity than did the topostructural index (Eq. 12), explaining 89% of the variance in 
the data. The results of this final model (Eq. 12) are shown in Figure 8 as a scatterplot 
of experimental versus predicted activity. 

[Insert Figure 8 here] 
Toxicological Properties 
Two sets of compounds have been studied using the hierarchical modeling for 
toxicological properties. The first set consists of acute aquatic toxicity data for 69 
benzene derivatives determined by the 96-hour fathead minnow toxicity test system 
[17]. This data was compiled by Hall, Kier, and Phipps [43] from eight literature sources 
and was supplemented by some original work conducted at the U.S. Environmental 
Protection Agency (USEPA) Environmental Research Laboratory in Duluth, Minnesota. 

LC50 = -7.50 + 3.50(Mi) - 1.72(10) - 0.52(P8) + 0.68(P9) Eq. 13 
n = 69,^ = 0.453, s = 0.58, F = 13.3 

LCso = 23.68 + 5.04(M0 + 0.55(P9) - 43.27(SIC0) - 20.04(CIC0) Eq. 14 
n = 69, A2 = 0.783, s = 0.36, F = 57.9 

LC50 = 0.59 + 5.82(1^) + 0.55(P9) - 14.23(SIC0) - 2.36(3DWH) Eq. 15 
n = 69, r2 = 0.792, s = 0.36, F = 61.1 

LC50 = -3.83 + 5.97(1^) + 0.77(P9) - 8.26(SIC0) - 1.98(3DWH) + 0.41(ELUMOI) 

+ 0.01(AH,)- 0.12(H) Eq. 16 
n = 69,^ = 0.863,5=0.30^ =55.0 

Equation 13 shows the results of the initial modeling using topostructural indices. Even 
using four indices, the topostructural set did a poor job of modeling acute toxicity. The 
addition of topochemical indices led to a significant improvement in predictive power, 
with the replacement of two topostructural indices with topochemical indices (Eq. 14). 
The geometrical indices slightly improved the QSAR modeling (Eq. 15); however, it was 
the addition of quantum chemical indices which drastically improved the predictive 
power of our model (Eq. 16). The addition of quantum chemical indices increased the 
variance explained by 7.1% over the model including geometrical indices, resulting in an 
overall explanation of 86.3% of the variance. Figure 9 presents the scatterplot of 
experimental versus predicted toxicity for these 69 compounds based on the results of 
equation 16. 



[Insert Figure 9 here] 
A set of 520 compounds, 260 mutagens and 260 non-mutagens, was taken from the 

literature [44] as a source of mutagenicity data. These data provided qualitative 
assessments of mutagenicity based on a positive or negative result in the Ames' 
mutagenicity assay. A discriminant function analysis (DFA) was conducted on this set 
using the SAS procedure DISCRIM [38] to create a function capable of classifying the 
compounds as active or inactive. Based on the results of a previous study and the 
amount of time required for the calculations, the quantum chemical parameters were 
excluded and indicators of molecular fragments associated with mutagenic activity were 
included [15]. See the original manuscript for a further discussion of the data used in 
this study and the molecular fragments keyed for the analysis. These classification 
results, the indices used in each case, and brief notes on the fragment groups included 
in the final models are presented in Table II. 

[Insert Table II here] 
As can be seen in Table II, the topostructural indices alone correctly classify over 75% 
of the mutagens; however, they only correctly classify 57.3% of the non-mutagens. This 
leaves over 40% of the non-mutagens incorrectly classified. The combination of 
topostructural and topochemical indices results in a comparable classification rate for 
mutagens (74.6%) and a significant increase (5.8%) in the classification of non- 
mutagens. The addition of information regarding the presence or absence of known 
structural fragments associated with mutagenic activity results in a significant decrease 
(5.4%) in classification rate for mutagens, from 74.6% down to 69.2%. However, the 
addition of these structural fragments also increases the correct classification rate for 
non-mutagens increasing it from 63.1% to 71.9%, and overall increase of 8.7%. As a 
result of this dramatic increase in classification rate for non-mutagens, this model was 
retained and supplemented by the geometrical indices. Addition of the geometric indices 
brought the classification rate for mutagens up to 71.5% (an overall decrease of 4.7% 
from the topostructural model) and retained the classification rate for non-mutagens at 
71.9% (an overall increase of 14.6% over the initial model). While these results are by 
no means spectacular, it is a reasonably accurate model for the prediction of mutagenic 
activity. 

V. DISCUSSION 

The goal of hierarchical QSAR studies is to investigate the relative roles of different 
classes of parameters, viz., topostructural and topochemical indices, 3-D parameters 
and calculated quantum chemical parameters in predicting different types of molecular 
properties. It is clear from the results presented here that topostructural and 
topochemical indices explain most of the variance in the data for physicochemical, 
biological and toxicological properties. In most cases geometrical and quantum 
chemical indices make only marginal improvements in the predictive power of the 
models. This indicates that the easily calculable topostructural and topochemical indices 
will be an effective first choice in QSAR studies. 

It is evident from these studies that the expanded levels of the hierarchical method 
are extremely useful for large, diverse sets of chemicals where there are many factors 



influencing the variation of properties between chemical structures. They are a so uf 
n modeling the more complex biological interactions involving the modulation of 
oxiTants It is interesting to note that studies involving the inhibition of a specific 
en^mafic system or the passage of large compounds through the skin are modded 
we^sinq simply shape and size descriptors, and do not seem to benefit significantly 
frl the addTtion of more complex indices. There is still a need for better descriptors 
thaTwill help us to more accurately model complex biological and tox.colog.cal systems. 
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Table I. Symbols, definitions and classifications of topostructural, topochemical, 
geometrical and quantum chemical descriptors. 

h 

'ORB 

Topostructural 

1^ Information index for the magnitudes of distances between all possible 
pairs of vertices of a graph 

I™ Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix 
of a graph 

|D Degree complexity 

Hv Graph vertex complexity 

HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of 
occurrences of distance h 

O Order of neighborhood when ICr reaches its maximum value for the 
hydrogen-filled graph 

Mi A Zagreb group parameter = sum of square of degree over all vertices 

M2 A Zagreb group parameter = sum of cross-product of degrees over all 
neighboring (connected) vertices 

\ Path connectivity index of order h = 0-6 

\ Cluster connectivity index of order h = 3-6 

\Ch Chain connectivity index of order h = 3-6 

^PC Path-cluster connectivity index of order h = 4-6 

Ph Number of paths of length h = 0-10 

J Balaban's J index based on distance 

Topochemical 

Information content or complexity of the hydrogen-suppressed graph at its 
maximum neighborhood of vertices 

ICr Mean information content or complexity of a graph based on the rth (r = 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SICr        Structural information content for r,h (r = 0-6) order neighborhood of vertices 
in a hydrogen-filled graph 

CICr        Complementary information content for rth (r = 0-6) order neighborhood of 
vertices in a hydrogen-filled graph 

h^b Bond path connectivity index of order h = 0-6 

\b Bond cluster connectivity index of order h = 3-6 
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Xch 

Xpc 

Y 
Y 
Xch 

Xpc 

Vw 
3DW 

3DWH 

Bond chain connectivity index of order h = 3-6 

Bond path-cluster connectivity index of order h = 4-6 

Valence path connectivity index of order h = 0-6 

Valence cluster connectivity index of order h = 3-6 

Valence chain connectivity index of order h = 3-6 

Valence path-cluster connectivity index of order h = 4-6 

Balaban's J index based on bond types 

Balaban's J index based on relative electronegativities 

Balaban's J index based on relative covalent radii 

Geometrical 

Van der Waal's volume 

3-D Wiener number for the hydrogen-suppressed geometric distance matrix 

3-D Wiener number for the hydrogen-filled geometric distance matrix  

Quantum Chemical 

EHOMO Energy of the highest occupied molecular orbital 

EHOMOI Energy of the second highest occupied molecular orbital 

ELUMO Energy of the lowest unoccupied molecular orbital 

ELUMOI Energy of the second lowest unoccupied molecular orbital 

AHf Heat of formation 

|i Dipole moment 
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Table II. Classification results for 520 mutagens/non-mutagens from DFA. ;  
 " " % Mutagens    % Non-mutagens 
Model type       Indices included correct correct  

topostructural 

topostructural 
+ topochemical 

topostructural 

W,HV, HD, IC.MLVX.VXC- 

XPC, P10 

HD
iM,,2x.Pio.lC5,Ych.Y.Y. 

3   v       6  v       6   v iX    iB 
X ch,  X ch,  X PC, J . J 

HD, ML 2X, PIO. IC5, Y. Ych, 
+ topochemical     YPC. JB. nitroso1, mustard2, sulf3, 

benz4 

HD,Mi,YPio,IC5,Y.Ych, 
YPC JB. nitroso1, mustard2, sulf3, 

benz4, Vw 

76.2 

74.6 

69.2 

71.5 

+ fragments 

topostructural 
+ topochemical 
+ fragments 
+ geometrical  

Nitroso- compounds. 
2Halogenated substituted mustard, sulfur mustard or oxygen mustard. 
3Organic sulfates or sulfonates. 
4Biphenyl amine, benzidine or4,4'-methylenedianiline derivatives. 

57.3 

63.1 

71.9 

71.9 
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Figure Legend: 

Figure 1 Diagramatic representation of the first two stages in hierarchical QSAR 

model development from topological indices. 

Figure 2        Scatterplot of experimental normal boiling point vs estimated normal 

boiling point using equation 3 for 1023 diverse chemicals. 

Figure 3        Scatterplot of experimental logP vs estimated logP using equation 6 for 

219 diverse chemicals. 

Figure 4        Scatterplot of experimental normal vapor pressure vs estimated normal 

vapor pressure using equation 8 for 476 diverse chemicals. 

Figure 5        Scatterplot of the residual vs experimental normal vapor pressure from 

equation 8 for 476 diverse chemicals. 

Figure 6        Scatterplot of experimental percent dermal penetration vs estimated 

percent dermal penetration using equation 10 for 60 polycyclic aromatic 

hydrocarbons. 

Figure 7        Neutral base structure for the 107 benzamidines. 

Figure 8        Scatterplot of experimental complement inhibition vs estimated 

complement inhibition using equation 12 for 105 benzamidines. 

Figure 9        Scatterplot of experimental acute aquatic toxicity (LC50) vs estimated 

acute aquatic toxicity using equation 16 for 69 benzene derivatives. 
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QUANTITATIVE COMPARISON OF FIVE MOLECULAR STRUCTURE 
SPACES LN SELECTING ANALOGS OF CHEMICALS 
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5013 Miller Trunk Highway, Duluth, MN 55811, US A 

Phone: (218) 720-4230 E-Mail: sbasak@wyle.nni.umn.edu 

ABSTRACT 

Five methods for characterizing intermolecular similarity have been used in the selection of analogs for a 
diverse set of seventy-six compounds. These methods include an atom pair (AP) based similarity 
measure, three principal component spaces derived from topostructural indices, topochemical indices, the 
combined set of all (topostructural and topochemical) indices, as well as one structure space consisting 
of principal components calculated from physicochemical properties. Each method has been used in the 
selection of sets analogs, ranging from five to forty in number in increments of five, for each of the 
seventy-six compounds. The degree of overlap of the sets of analogs selected by the five separate 
methods was analyzed. 

KEYWORDS 

molecular graph, atom pairs, principal components, analog selection, molecular similarity 

INTRODUCTION 

Molecular similarity is an intuitive concept which is subjectively understood by the chemist In the realm 
of mathematical and computational chemistry, intermolecular similarity can be objectively quantified in 
terras of descriptors derived from the molecular structure (Basak et al, 1988b; Basak et al, 1997; Carbö et 
al, 1980; Fisanick et al, 1992; Fisanick et al, 1994; Johnson et al, 1988; Maggiora and Johnson, 1990; 
Randic, 1992; Willet and Winterman, 1986). Chemical structures can be represented by various types of 
models, e.g., simple molecular graphs, multigraphs, pseudographs, 3-D models, and quantum chemical 
hamiltonian functions. Similarity, being context specific, is quantified in terms of a user-defined set of • 
parameters or properties of molecules. Consequently, there are a potentially endless number of methods 
that one can define to quantify intermolecular similarity. 

In recent years molecular similarity methods based on topological and substructural descriptors have 
become popular. Such methods are based on different types of graph invariants such as topological 
indices, atom pairs, and fragments (Basak and Grunwald, 1994,1995c; Basak and Gute, 1997; Basak et 
al, 1988b; Carbö et al, 1980; Carhart et al, 1985; Fisanick et al, 1992; Johnson et al, 1988; Randic, 1992; 
Willet and Winterman, 1986). Similarity/dissimilarity methods have been used in the clustering of large 
sets of chemicals (Lajiness, 1990), the selection of analogs for toxicological risk assessment (Basak and 
Grunwald. 1994; Basak et al, 1995), and the estimation of the physicochemical and biomedicinal 
properties of chemicals (Basak and Grunwald, 1995a, 1995c; Basak et al, 1996a; Basak and Gute, 1997). 
Usually some number, n, of descriptors is used to define the structure space of chemicals and either 
Euclidean distance in the /z-dimensional space or some association coefficient is used to quantify 



intermolecular similarity. The basic paradigm underlying molecular similarity analysis is "similar 
structures have similar properties." However, it has been shown that different molecular similarity 
methods select quite different sets of analogs from a specific database for the same set of query 
chemicals (Basak and Grunwald, 1995c). In the case of the automated selection of analogs for testing 
chemicals in drug design protocols or toxicological hazard assessment one would like to select analogs 
by reasonably non-redundant molecular similarity methods. Therefore, it is of interest to investigate the 
degree to which various similarity methods differ from each ether. In a previous study we analyzed the 
analog selection profiles for topologically-based vis-a-vis empirical property-based molecular similarity 
techniques in the selection of nearest neighbors of molecules (Basak and Grunwald, 1995c). In this paper 
we have compared the analog selection profile of five different molecular similarity methods, four of 
which are based on graph invariants and one is derived from physicochemical property data. 

DATABASE AND PARAMETERS 

Development of the database 

The data used in this study is a subset of the U.S. EPA ASTER system (Russom, 1992) which met the 
following criteria. These compounds have experimental values for: 

1 Log K^ Logarithm of the octanol/water partition coefficient (hydrophobicity). 
2. BP Boiling point at 760 Torr. 
3. MP Melting point. 

within the ASTER database. Kamlet (1987) provided the remaining physicochemical properties used in 
this study. These four solvatochromic parameters are: ^ 

1 V7100 The molar volume of a molecule calculated as its molecular weight divided by 
the liquid density at 20° C. 

2. a A measure of the hydrogen bond donor acidity of a compound in forming a 
hydrogen bond. 

3 ß A scale of the hydrogen bond acceptor basicity of a compound in forming a 
hydrogen bond. 

4.u* A measure of solute or solvent dipolarity or polarizability that quantifies the 
ability of a compound to stabilize a neighboring charge or dipole by virtue of its 
dielectric effect. 

Kamlet et al (1988) describe in detail the methods used in the determination of these solvatochromic 
parameters. 

Calculation of Atom Pairs 

Atom pairs (APs) were calculated using the method of Carhart et al (1985). An atom pair is defined as a 
substructure which consists of two non-hydrogen atoms i andy and their interatomic separation: 

<descriptorp>-<separation>-<descriptor/> 

where <descriptor> contains information about the element type, number of non-hydrogen-neighbors, 
and the number of it electrons for each atom. The interatomic separation of two atoms is the number of 
atoms traversed in the shortest bond-by-bond path containing both atoms. These calculations were 
conducted using the APProbe software developed by Basak and Grunwald (1993). 

Calculation of Topological Indices 

The topological indices used in this study have been calculated using the program POLLY 2.3 (Basak et 
al, 1988a) and software developed by the authors to calculate Balaban's / indices. A complete listing of 



these indices, along with examples of their calculation have been given in detail previously (Basak and 
Gute, 1997; Basak et al, 1997). 

The topological indices were further divided into two subsets, topostructural and topochemical indices. 
Topostructural indices are topological indices which only encode information about the adjacency and 
distances of the vertices (atoms) within a graph (molecular structure), irrespective of the chemical nature 
of the atoms involved. The topochemical indices are parameters which quantify information regarding 
the topology of the graph (molecule), as well as specific chemical properties of the atoms and bonds 
comprising the molecule. These indices are derived from weighted graphs where each vertex (atom) or 
edge (bond) is properly weighted with selected chemical information. The division of the topological 
indices into these distinct sets has been discussed in previous studies (Basak et al, 1996b, 1997). 

Similarity Measures 

Two measures of intermolecular similarity were used in this study. The methods have been described in 
detail previously (Basak and Grunwald, 1995b) and include an associative measure using atom pairs 
(AP) and Euclidean distance (ED) within an n-dimensional principal component (PC) space. The 
Euclidean distance method was used in conjunction with the topological indices and the physicochemical 
property data. 

ANALOG SELECTION 

Following the quantification of intermolecular similarity for the five similarity spaces, the ^-nearest 
neighbors or analogs (K = 5,10,15,20,25,30,35,40) were deterrni'ned on the basis of the associative 
measure used in conjunction with the AP method or based on ED within a principal component space. 

RESULTS AND DISCUSSION 

In generating the principal components for the sets of topological indices, only the principal components 
with eigenvalues greater than 1.0 were retained. This left six PCs for the set of topostructural indices 
which cumulatively explained 94.1% of the variance in the indices, eight PCs for the set of topochemical 
indices which explained 93 .5% of the variance in these indices, and ten PCs for the set of all topological 
indices which cumulatively explained 95.2% of the variance in the topological indices. These formed the 
final sets of PCs which were used in creation of the similarity spaces and selection of analogs for these 
three methods. 

Each similarity method was used to select sets of analogs for each of the seventy-six compounds in the 
dataset The analogs selected by each set were compared with the analogs selected by every other method 
to examine the overlap between the sets of analogs. The results of this comparison are presented in Table 
1 below as the arithmetic mean of the cardinalities of the intersection of subsets of analogs chosen by a 
particular pair of similarity methods for a specific value of K. For example, the topostructural and 
topochemical similarity methods selected an average of 2.2 identical analogs out of five for the entire set 
of seventy-six chemicals. Thus, slightly under half of the analogs selected by the two methods were 
identical. 

It is clear from the data in Table 1 that the five molecular similarity methods studied in this paper are not 
radically different from one another because they have a substantial degree of overlap in the profile of 
selected neighbors. This is an interesting observation in view of the fact that the structure spaces are 
constructed from such diverse, independent variables as experimentally determined physicochemical 
properties and calculated graph invariants. 

A perusal of the data also shows that the property-based similarity method is distinct from the group of 
methods based on topological indices and atom pairs. For K = 20, for example, the average number of 



common ncif •ighbors for the property-based methods vis-a-vis the topostructural, topochemical, all index 
and atom p^ir-based methods are 8.7, 8.9, 8.6 and 8.9, respectively. For the same value of K, the number 
of common analogs for the topostructural method with atom pair, topochemical and all index methods 

are 12.3, 12.2 and 13.1, respectively. 

K 

1. <^OIIl[. 

SvsC 

2.2 

SvsT CvsT SvsP CvsP TvsP S vsA CvsA Tvs A Pvs A 

5 2.5 3.5 1.2 1.6 1.6 2.2 2.1 2.3 1.9 

10 5.0 5.4 7.1 3.1 3.4 3.5 4.8 4.7 5.0 4.1 

15 8.6 9.2 11.3 5.6 5.7 5.7 8.2 7.8 8.1 6.3 

20 12.2 13.1 15.1 8.7 8.9 8.6 12.3 10.7 11.0 8.9 

25 15.7 16.7 19.5 12.1 12.3 11.9 16.3 14.3 < 14.3 12.1 

30 20.0 20.9 23.8 16.0 16.6 15.8 19.5 17.4 17.4 15.7 

35 24.7 25.6 28.9 20.5 21.1 20.0 22.9 21.4 21.1 20.4 

40 30.4 30.9 33.9 25.1 25.9 25.0 26.6 25.9 25.5 24.6 

S = 
C = 
T = 

topostructural indices 
= topochemical indices 
= all topological indices 

P = physicochemical parameters 
A = atom pairs 

V 

For the three similarity methods calculated from the topological indices, the topochemical indices seem 
to have more influence on the selection of neighbors when they are used along with topostructural 
parameters as independent variables. This is clear from the fact that for almost all values of* the 
topochemical and all index methods have a uniformly higher degree of overlap as compared to that 
between the topostructural and all index methods. 

In conclusion, if one is interested in selecting only two candidates.from the set of five methods studied 
here for analog selection, the property-based method and any one of the theoretically-based methods 
would be the choice. There is no criteria to decide which of the four topologically-based methods should 
be selected for a particular occasion. Further studies of the analog selection and property prediction 
profile of these methods are necessary to guide the selection of a specific method for a particular 

practical situation. 
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We calculated 202 molecular descriptors (topological indices, TIs) for two chemical 
databases (a set of 139 hydrocarbons and another set of 1037 diverse chemicals). Variable cluster 
analysis of these TIs grouped these structures into 14 clusters for the first set and into 18 clusters 
for the second set. Correspondences between the same TIs in the two sets reveal how and why the 
various classes of TIs are mutually related and provide insight into what aspects of chemical 
structure they are expressing. 

1. INTRODUCTION 
A major part of the current research in 

mathematical   chemistry,   chemical   graph 
theory,      and      quantitative      structure- 
activity/property       relationship       studies 
involves  topological  indices.  Topological 
indices (TIs) are numerical graph invariants 
that  quantitatively  characterize  molecular 
structure. A graph G = (V, E) is an ordered 
pair of two  sets  V  and  E,  the  former 
representing a nonempty set and the latter 
representing unordered pairs of elements of 
the set V. When V represents the atoms of a 
molecule  and  elements  of E  symbolize 
covalent bonds between pairs of atoms, then 
G    becomes    a    molecular    graph    (or 
constitutional graph, because there is no 
stereochemical information). Such a graph 
depicts the topology of the chemical species. 
A   graph   is   characterized   using   graph 
invariants.    An    invariant    may    be    a 
polynomial, a sequence of numbers, or a 
single number. A numerical graph invariant 
(i. e. a single number) which characterizes 
the    molecular    structure    is    called    a 
topological index. 

2. OVERVIEW OF TOPOLOGICAL 
INDICES USED IN THE PRESENT 

STUDY 
A large number of topological indices 

have been defined and used.     The majority 
of TIs are derived from the various matrices 
corresponding  to   molecular   graphs.   The 
adjacency matrix  A(G)  and  the  distance 
matrix D(G) of the molecular graph G have 
been most widely used in the formulation of 
TIs. Integer-number local vertex invariants 
(LOVIs) are the vertex degrees (v;) and the 
distance sums (distasums, di) resulting from 
summation over rows or columns of entries 
in  the  adjacency  and  distance  matrices, 
respectively.   By  mathematical  operations 
performed on such LOVIs, one can obtain a 
molecular descriptor,  /.   e.,  a topological 
index.   Wiener's   index   W   (eq.   1),    the 
Zagreb group index Mi (eq. 2)," Randic's 

connectivity index, % (eq. 3),4 the higher 
order connectivity indices, "x, for paths of 
length n defined by Kier and Hall,   and the 
J index (eq. 4),6 fall in this category. 

W = (Sidj)/2 (1) 
M, =Eivi

2 (2) 
X^ViVj)-"2 0) 



J = [q/(H+l)]Sij(didJ)-
1/2 (4) 

The summations in formulas (3) and (4) 
are over all edges i-j in the hydrogen- 
depleted graph. The numbers q of graph 
edges, and u of cycles in the graph are 
introduced into formula (4) in order to avoid 
the automatic increase of J with graph size 
and cyclicity. Indeed, for an infinite linear 
carbon chain it was demonstrated that J = 7i 
= 3.14159. The nature of atoms can be taken 
into account by means of parameters based 
on their relative atomic numbers, 
electronegativities, or covalent radii, with 
respect to those of carbon atoms, 
multiplying the corresponding distasum in 
the formula (4) for J. 

The mean square root distance D derived 
from all topological distances (denoted by i 
in the next formula) is defined as: 

D = [(Zii2)/(Iii)] 
1/2 (5) 

For taking into account the chemical 
nature of atoms symbolized by vertices, Kier 
and Hall advocated the use of "valence 
connectivity indices".5a,b These are 
calculated with formulas similar to Randic's 
(eq. 3) but products of edge endpoint (or 
path vertex) invariants are no longer of 
vertex degrees but of weights (valence delta 
values 8j) given by formula (5): 

8i = (Zi
v-Hiy(Zi-Ziv-l) (6) 

where Z\ stands for the number of valence 
electrons in atom i, Zj is its atomic number, 
and Hj is the number of hydrogen atoms 
attached to atom i. 

The most recent additions to the Kier- 
Hall armamentary of TIs are 
electrotopological state indices. c 

Another class of molecular descriptors, 
the information-theoretic indices, are 
derived from an entirely different reasoning. 
In this case, the complexity or mode of 
partitioning of structural features is 
decomposed into disjoint subsets using an 
equivalence relation; a molecular 
complexity index is then computed using 
Shannon's idea of information content or 

complexity.12    Real-number   local   vertex 
invariants (LOVIs), on the other hand, may 
also   be   defined   starting   from   different 
matrices other than A(G) or D(G), or by 
applying information theory at the vertex 
level. Thus, topological indices U, V, X, and 
Y were defined. 13 Bonchev and Trinajstic 
described several information-theoretic TIs 
reviewed thoroughly in Bonchev's book. 
The information-theoretic indices developed 
by Basak and coworkers take into account 
all   atoms   in   the   constitutional   formula 
(hydrogens also being included), and one 
considers the information content provided 
by various classes of atoms based on their 
topological neighborhood.. There are three 
main    types    of    informational    indices 
developed   by   Basak   et   al:   IC   (mean 
information  content   or  complexity   of a 
hydrogen-filled graph, with vertices grouped 
into equivalence classes having r vertices; 
the equivalence is based on the nature of 
atoms      and      bonds,      in      successive 
neighborhood groups); CIC (complementary 
information  content);  and  SIC  (structural 
information   content),   and   they   are   not 
intercorrelated  with  other  TIs.       In  the 
following formula, the summation spans the 
range from i = 1 to i = r: 

ICr = - Si pi log2 pi (10) 
SICr = ICr/log2N (11) 
CICr = log2N-ICr (12) 
The probability that a randomly selected 

vertex occurs in the i-th equivalence class is 
denoted  by  p;.  The  ICr,  SICr  and  CICr 

indices can be calculated for different orders 
of neighborhoods, r (r = 0, 1, 2, p ) 
where p is the radius of the molecular 
graph G. At the 0th order level, the atom set 
is partitioned based solely on their chemical 
nature; at the level of the first-order 
topological neighborhood, the atoms are 
partitioned into disjoint subsets based on 
their chemical nature and their first-order 
bonding topology. At the next level, the 
atom set is decomposed into equivalence 



classes using their chemical nature and 
bonding pattern up to the second-order 
bonded neighbors. The process is continued 
until consideration of higher-order neighbors 
does not yield further increase in the number 
or composition of disjoint subsets. 

A large variety of real-number local 
vertex invariants, and thence a larger variety 
of TIs, were described based on converting a 
matrix (A or D for instance) into a system of 
linear equations. This is done by means of 
two   column   vectors   that   can   convey 
topological,      chemical,      or     numerical 
information. One non-zero vector is the free 
term of the system of equations. The other 
one (which may be zero, but this restricts the 
choices     on     available     supplementary 
information) becomes the main diagonal of 
the matrix (if both vectors would be zero, 
then some negative LOVIs would result with 
difficulties of interpretation). These vectors 
may be the following integers: Z (atomic 
number of the atom corresponding to each 
vertex), V (vertex degree), I (identity), N 
(number of non-hydrogen atoms, or order of 
the   graph),   Nk   (power   k   of N).   Less 
frequently, one may use for periodicity of 
chemical    properties    real    numbers:    S 
(electronegativity) or R (covalent radius) of 
the atom corresponding to each vertex. The 
resulting matrix with the vector for the main 
diagonal constitutes the set of coefficients 
for the N unknowns which represent the 
real-number LOVIs of the N vertices. The 
triplet (matrix, vector for the main diagonal 
and vector for the free term) also serves as 
notation for LOVIs and for the derived TIs. 
After   solving   the   system   of  N   linear 
equations, the LOVIs (xs) are assembled into 
a "triplet TI" based on one of the following 
operations: 

1. Summation, ZiXi; 
2. Summation of squares, EjXj ; 
3. Summation of square roots, EjXj   ; 

1/2. 
4. Sum of inverse square root of cross- 
product over edges ij, SyXiXj)" 
5. Product,NITIiXi]'"' l/N 

Numbers 1 through 5 of the above operation 
after the triplet complete the notation of the 
triplet TIs. 

To conclude this brief review of TIs, one 
should mention recent progress that includes 
other matrices such as the reciprocal 
distance matrix which yields Harary 
indices,15 the regressive distance matrices, 
the Szeged matrix,17 and the resistance 
distance matrix which affords Kirchhoff 
indices.18 So-called optimal structural 
descriptors can be obtained from some TIs 
by varying some parameters and thereby 
adapting them to the data base; 
alternatively, in Randic-type formulas (eqs. 
3, 4) the exponent is allowed 20 to differ 
from '/z. Three-dimensional molecular 
descriptors can be derived from geometrical 
and    topological    structural    features    of 

21 molecules. 
Each of the indices above discussed is a 

"global" parameter, i.e., it quantifies certain 
aspects of the entire molecular structure 
using a single number. 

It is clear from the above discussion that 
the set of TIs is a group of heterogeneous 
entities. They have been defined to 
characterize molecular structure based on 
distinct objectives and motivations. In spite 
of their distinctive characteristics, TIs share 
certain common features. A topological 
index maps a set of chemicals C into the set 
R of real or integer numbers. Therefore, TIs 
quantify some general aspects of molecular 
architecture like size, shape, symmetry, 
bonding type, cyclicity, branching pattern, 
etc. 

Topological indices have been used for 
isomer discrimination, quantification of the 
structural similarity/ dissimilarity of 
molecules, and prediction of property/ 
activity from structure.19 The widespread 



use of TIs obviously encourages one to ask 
some fundamental questions about them: 
What is the fundamental nature of TIs? To 
what degree are they intercorrelated? How 
does one extract orthogonal information 
from TIs? 

The intercorrelation of TIs was studied 
earlier with a limited set of invariants. Thus, 
Motoc and Balaban 22 described graphically 
the intercorrelations of the few TIs known 
till 1981. These aspects were reviewed in the 
early 1980s.23 Basak et al. studied the 
mutual relatedness of a set of ninety TIs 
calculated for a set of 3,692 diverse 
chemicals.24 A third study by Todeschini et 
al. will be discussed in the last section of 
this paper. 

All such studies were limited in the 
sense that they analyzed data on a smaller 
and less diverse group of TIs. Therefore, in 
this paper, we have studied the mutual 
relatedness of a set of 202 TIs. We have also 
tried to extract useful and orthogonal 
structural information from the calculated 
TIs. This study also reports, for the first 
time, a comprehensive discussion of Basak's 
information content indices (ICr, SICr, 
CICr), the triplet indices (proposed by one of 
the present authors), and Balaban's average 
distance-based connectivity index J as 
compared to the traditional and more 
widely-used indices. 

The goal of this paper is two-fold: (a) to 
study the degree of intercorrelation among 
the various types of topological indices, and 
(b) to extract mutually uncorrelated 
(orthogonal) topological parameters which 
can be used for QSAR/QSPR studies, 
quantitation of intermolecular similarity/ 
dissimilarity as well as characterization of 
real and virtual combinatorial libraries. To 
this end, we studied the mutual relatedness 
of a set of over two hundred topological 
indices in this paper. 

3. METHODS 
3.1 Chemical Databases. There were 

two sets of chemicals analyzed in this study: 
a set of 139 hydrocarbons to represent a 
moderately homogeneous set of chemicals 
and a set of 1037 diverse chemicals. The 
hydrocarbons consisted of 73 C3-C9 
alkanes, 29 alkylbenzenes, and 37 
polycyclic aromatic hydrocarbons.25 The 
diverse set of 1037 compounds consists of 
those chemicals from the US EPA ASTER 
system 26 for which a measured boiling point 
was available and hydrogen bonding 
potential (as measured by HB1 =0). did not 
exist. The composition of these data sets is 
indicated in Table 1. Table 2 presents the list 
of all 202 parameters calculated in this 
study. 

Tables 1 and 2 around here 

3.2 Calculation    of   TIs.    The   TIs 
calculated for this study (some of which are 
included in Table 1) include Wiener number 
W,2 molecular connectivity indices as 
calculated by Randic 4 and Kier and Hall,5 

frequency of path lengths of varying size,5 

information theoretic indices defined on 
distance matrices of graphs using the 
methods of Bonchev and Trinajstic,7 Roy et 
al.,27 Basak et al.,28"31 as well as those of 
Raychaudhury et al.,32 parameters defined 
on the neighborhood complexity of vertices 
in hydrogen-filled molecular graphs, " and 
Balaban's J indices 6 as well as triplet 
indices.14 The majority of the TIs were 
calculated using the program POLLY 2.3. 
The J indices and triplet indices were 
calculated using software developed in- 
house by the authors. 

4. STATISTICAL ANALYSIS 
For both sets of chemicals, the computed 

TIs   were   transformed   by   the   natural 
logarithm  of the  index  plus  a constant, 
generally one. This was done since the scale 



of some indices may be several orders of 
magnitude greater than that of other indices. 

For each set,  a technique known as 
variable  clustering  was  performed  using 
SAS procedure VARCLUS.34 The variable 
clustering   procedure   divides   the   set   of 
indices into disjoint clusters, such that each 
cluster is essentially unidimensional. This is 
accomplished   by   a   repeated   principal 
components analysis of the sets of indices. 
The  initial  principal  component  analysis 
examines   all   indices   and   defines   two 
principal components or eigenvectors. If the 
eigenvalue for the second component is > 
1.0,   the   indices   are   split  into   separate 
clusters by correlating the indices with the 
first and second principal component. Those 
indices   most   correlated   with   the   first 
component   form   one   cluster  and  those 
indices  most correlated with the  second 
component   form   another   cluster,   thus 
forming two disjoint clusters. A principal 
component analysis is then performed for 
each cluster of indices,  with the  cluster 
being split if the eigenvalue for the second 
component   is   >   1.0.   The   procedure   is 
repeated until the second eigenvalue is < 1.0 
for all clusters. 

5. RESULTS AND DISCUSSION 
The first database (denoted by A) 

consists of 139 hydrocarbons (alkanes, 
alkylbenzenes and polycyclic aromatics) and 
162 TIs. The number of indices examined 
was reduced from the original 202 by 
removing all but one of the degenerate (i.e. 
correlation of 1.0) indices and those indices 
that were constant (0.0) for all chemicals. 
The second database (denoted by B) is a 
diverse one and contains 1037 chemical 
structures and 176 non-degenerate, non- 
constant indices. 

The results of the variable cluster 
analysis will be presented, discussing first 
how the descriptors (variables) for database 
A become clustered, and then surveying the 

descriptor clustering for database B, as well 
as the correspondence between these 
clusters. Inter-cluster correlation will then be 
described. 

The clusters have been ordered 
according to decreasing numbers of 
descriptors in each cluster; when clusters 
contain the same number of descriptors, the 
numbering of the corresponding clusters is 
arbitrary. 

In Fig. 1, one can see, in graphical form, 
on the left-hand side the points denoting the 
clusters that group together the descriptors 
for the hydrocarbon database A, and on the 
right-hand side those corresponding to the 
diverse database B. Each cluster is denoted 
by a letter (A or B) and a number. The total 
number  of variables  in  each  cluster   is 
written under each point. Full lines connect 
A-type    with    B-type    clusters,    having 
inscribed    on    them    the    numbers    of 
descriptors common to each pair of clusters; 
when no number is inscribed, this indicates a 
single common descriptor. Dashed side-lines 
denote the  descriptors  that do  not have 
counterparts in the other set of clusters, and 
the associated numbers on these side-lines 
indicate  the   numbers   of such  "orphan" 
descriptors. Because the two data sets differ 
both in the numbers of compounds and in 
their structures, it is normal to expect that 
clusters   for   one   data   set   will   have 
counterparts in several clusters in the other 
data set. This is indeed what was found to 
happen, as will be shown below when the 
diverse data set will be analyzed. 

Fig. 1 around here 
Only in a single case have we found a 

one-to-one correspondence between clusters 
of descriptors corresponding to the two data 
sets (A12 and B14). Nevertheless, in several 
instances (A6, All; B4, B9, B15, B16, and 
B17), a cluster for one data set (say, A) was 
found to have all its descriptors in common 
with only one cluster of the other data set 
(say, B); however, this latter cluster also 



contains descriptors found in more than one 
cluster of the other set. 

5.1 Clustering of descriptors for 
hydrocarbons. The descriptors for database 
A are grouped in 14 clusters summarized in 
Table 3. Cluster Al has 54 from the total of 
162 descriptors, therefore it groups together 
about one third of all variables. These 
descriptors depend both on the shape and the 
size (magnitude) of the molecular graph; 
such descriptors include the Randic 
connectivity index, the Kier-Hall simple 
path connectivity indices, the Zagreb group 
indices, and many triplet indices having as 
the main diagonal column vector the atomic 
numbers Z or the total number N of vertices. 

Table 3 around here 
Cluster A2 with about 1/8 of the total 

number of descriptors includes molecular 
connectivity indices of order higher than 
five, the J indices, as well as two closely 
similar triplet indices. Cluster A3 contains 
mainly valence/bond-corrected molecular 
connectivity indices. The next cluster, A4, 
consists mainly of the information-based 
indices IC (information content), SIC 
(structural information content) and CIC 
(complementary information content) for the 
hydrogen-filled graphs of order higher than 
2 for IC and higher than 3 for SIC and CIC. 
Cluster A5 is composed mainly of triplet 
indices having as main diagonal unit vectors 
either distance sums or total number N of 
vertices. 

Each of the remaining clusters have less 
than 10 descriptors. Clusters A6 and A7 
contain mostly triplet descriptors: A6 with 
the distance sum S, and A7 with the order N 
of the hydrogen-depleted graph, as the main 
diagonal unit vector; cluster A7 also 
includes two simple path-cluster molecular 
connectivity indices. Cluster A8 contains 
simple cluster- and bond/valence-corrected 
cluster connectivities of high order (4 
through 6). Cluster A9 again consists 
exclusively of triplet indices, and they are 

based on summing squares of LOVIs based 
mainly on distance sum unit vectors on the 
main diagonal. 

Cluster A10 includes three information- 
theoretic indices IC and SIC of low order (0 
and 1) as well as two triplet indices having 
in common the two unit vectors (distance 
sum S for the main diagonal, vertex degree 
V for the free term) and the operation for 
assembling LOVIs into an index 
(summation of LOVI square roots). 

Interestingly, the four smallest clusters 
having four descriptors each are pairwise 
similar in type: Al 1 with Al3, and A12 with 
Al4. Cluster All consists of information 
TIs (IC, SIC, CIC) of low order (0 through 
2) whereas Al3 includes the same TIs of 
slightly higher order (2 and 3). Clusters Al2 
and A14 group together molecular 
connectivity indices based on simple cluster 
and simple cycle, respectively. 

A general remark for the triplet indices 
is that what groups them together is not the 
matrix on which they are based (adjacency 
matrix or distance matrix) but the two unit 
vectors that convert such matrices into 
systems of linear equations. 

5.2 Clustering of descriptors for the 
diverse set of compounds. There are 18 
variable clusters grouping together 176 
variables for the database of 1037 diverse 
compounds (Table 4). Cluster Bl, with 49 
descriptors, includes 28 % of all variables; 
35 of these descriptors are common to 
cluster Al. Some of these indices, e.g. W 
(Wiener number), Po (number of non- 
hydrogen atoms), Pi (number of bonds in the 
hydrogen-depleted graph), express 
molecular size. It is interesting that most of 
the triplet variables (AZVi, AZNi and ANNi 
with i = 1 through 5 as well as several other 
ones) are found to be common to clusters Al 
and Bl. Five other descriptors (°xb, 2%b, 3x,b, 
0..v Xv and  xV) also appear in both clusters Al 
andBl. 



Table 4 around here 
Cluster B2 has nine variables in common 

with cluster Al; most of these (3x, 4x, P2 
through P4) are path connectivities of 
intermediate order. A couple of triplet 
indices (ANV1 and ANV5 are also in 
common with cluster Al; another pair of 
triplet indices (ASN3 and ASN4) are in 
common with cluster A7. 

Cluster B3 contains triplet indices with 
distance sums as main-diagonal vector; they 
occur in clusters A5 and A9. In addition, 
two descriptors (MIDW and HD) appear also 
in cluster        Al. 

Cluster B4 is uniquely associated with 
cluster A2, and consists in indices 5x, 6x, 
5xb> 6xb; 5*v, 6*v, and P6 through Pio- 
These descriptors are based on long paths, 
therefore these variables appear only when 
large molecules are involved. 

Seven of the 11 variables of cluster B5 
form exclusively cluster A6; they are related 
to molecular shape via vertex complexity 
and graph radius. Five triplet indices such as 
ASN1, ASN5, DSN1, DSN5 and ANV2 also 
are common to these two clusters. 

Very   interesting   correspondences   are 
manifested by cluster B6, which is mainly 
associated with two clusters involving the 
hydrocarbon database, namely A4 and Al3 
(plus one descriptor in B6 which appears in 
A10).   All   variables   are   of  information 
theoretic type. These higher-order variables 
(SIC3 through SIC6 and CIC3 through CIC6) 
are common to clusters B6 and A4 and 
represent   a   true   measure   of  molecular 
complexity. The lower- and intermediate- 
order indices such as ICi or SIC2 which 
appear in clusters B6 and A10 or B6 and 
Al3, respectively, provide information on 
lower-order complexity that may be more 
degenerate than that furnished by the higher- 
order information indices. One should stress 
here that information content indices form 
clusters that are separate from clusters with 
other    descriptors,    meaning    that    such 

variables convey unique information relative 
to structure and molecular complexity. 

Cluster B7 consists only of path-cluster 
molecular connectivity descriptors which 
were included in clusters A3, A7 and A8 for 
the hydrocarbons. 

Cluster B8 includes triplet indices, all of 
which have the atomic number Z for the free 
term vector in the system of linear 
equations. Most of these descriptors appear 
in clusters Al, A5, A9. 

Cluster B9 consists of high-order 
connectivity-cluster terms all contained in 
cluster A8. For hydrocarbons, descriptors 
6Xbc and Vc are perfectly correlated with 
descriptor 6xc, therefore, the former 
variables did not appear in the hydrocarbon 
cluster A8. For the diverse-compound 
database, such a correlation is not perfect 
because of differences in atom types. 

An interesting observation concerns 
cluster BIO: all six variables are absent from 
the hydrocarbon database because this 
database does not contain any 3- or 4- 
membered rings, unlike the diverse 
compound database. This is why indices 
3/4Xch, 3/4Xbch and 3/4

X
v
Ch appear only in 

cluster BIO. 
Cluster Bll has all but one of its 

descriptors contained in cluster A4; these 
information content indices, IC2 through 
IC6, measure a high degree of non- 
redundancy of topological neighborhoods. 

Cluster B12 has four of its variables 
contained in cluster All; these descriptors 
(SICo, CICo through CIC2) express lower- 
order redundancy of topological 
neighborhoods. This is true of indices IC0 

and SICi as well, which are present in 
cluster A10. 

From cluster B13, the six descriptors 
(simple, bond and valence corrected chain 
molecular connectivity indices) are 
partitioned equally between clusters A2 and 
Al4, according to the 6- versus 5-membered 
ring size, respectively; in the hydrocarbon 



data base A, six-membered chain (or rings) 
predominate. 

Cluster B14 is exclusively associated in 
a one-to-one relationship with cluster A12. 
The corresponding descriptors 3xc, 4Xc, as 
well as their bond and valence corrected 
counterparts represent connectivity indices 
on three- and four-vertex structural clusters. 
For the hydrocarbon database, we have 
again a case in which the two indices 4xbc 
and 4xvc, are perfectly correlated with xc, 
do not appear explicitly in cluster Al2. 

Half of the variables (J-type indices) in 
cluster B15 are contained in cluster A2. 
These J indices again form a cluster apart 
from all other ones in the case of the diverse 
data base, proving that when heteroatoms 
are taken into account, the information 
provided by such J-type indices is unique. 

Clusters B16, B17 and B18 have each a 
small number of triplet-type descriptors; the 
three descriptors of cluster B17 are all 
contained in cluster A7. 

5.3 Inter-cluster correlations. From 
each cluster we select 15-25% of the 
descriptors according to the maximal value 
of the correlation coefficient with their own 
cluster. In most cases, the first selected 
descriptor also has the minimal value of the 
correlation with the next closest cluster, 
expressed by the 1-r2 value. When choosing 
more than one index from the same cluster, 
after the first one was selected as indicated 
above, the next one must also fulfill a third 
criterion, namely a low intercorrelation with 
the previously selected indices of the same 
cluster. 

There were four inter-cluster correlations 
within the hydrocarbon data set that were 
greater than 0.9 and all involved cluster Al. 
Cluster Al was positively correlated with 
A2, A3, and A7. Cluster Al was correlated 
negatively with A5. Each of the clusters 
characterizes some aspect of molecular size 
and shape. 

Cluster Bl showed an inter-cluster 
correlation of 0.92 with cluster B2 and -0.90 
with cluster B3. These were the only inter- 
cluster correlations greater than 0.9. These 
clusters are the three largest clusters in set 
B. Like cluster Al, cluster Bl groups TIs 
expressing molecular size and shape. 
Interestingly, in set A cluster Al also had a 
negative inter-cluster correlation with cluster 
A5; it is therefore not surprising that clusters 
A5 and B3 have the most abundantly 
populated line connecting them in Fig. 1. 

In summary, for the hydrocarbon data 
base there are four inter-cluster correlations 
with r>0.90 all involving on one hand the 
first cluster Al, and on the other hand 
clusters A2, A3, A5, and A7. For the diverse 
compound data base there are only two such 
inter-cluster correlations with r>0.90, 
namely Bl with B2 and B3. This is not 
unexpected, as the combination of the first 
three clusters in each case contain more 
descriptors than the parameters remaining in 
all the remaining ones together. 

In this context, one should mention that 
Todeschini and coworkers published an 
interesting study 35 on 23 TIs for a set of 667 
diverse chemicals, 20% of which were 
hydrocarbons; the above authors excluded 
10 of these TIs because they were 
degenerate, redundant, or        had 
intercorrelation factors higher than 0.90. A 
graph depicting highly intercorrelated 
indices using data published by these 
authors is presented in Fig. 2, which is 
similar to a graph published earlier. 

Fig. 2 around here 
Ten TIs were then selected by 

Todeschini et a/.,35 namely the molecular 
weight (MW), J, IC, CIC, the bonding 
information content (BIC), mean Randic 

connectivity (x) the information content on 
atomic composition (IAc), the mean Wiener 
index (W), and the mean information indices 
on equality of distance degree and on the 
magnitude of distance degree (IE

D, deg and 



I
W

D, deg, respectively). Then, using principal 
component analysis for the above 10 TIs, 
Todeschini et al. analyzed the composition 
of the first six principal components. They 
found that the first PC is mainly composed 
of indices that express the size of molecules 
(MW, W, IC, I

E
D, deg and IWD, deg). This is in 

agreement with the earlier finding of Basak 
et al. for a diverse set of 3,692 diverse 
chemicals that the first PC is related to 
molecular size.29 Further, Todeschini et al. 
found that the second PC is dominated by 
indices  expressing  information  on bonds 
(IC, CIC, and BIC). This is also analogous 
to the results reported by Basak et al.2 that 
the    second    axis    represents    molecular 
complexity  as  encoded  by  higher  order 
neighborhood complexity indices (IC2, IC3, 
SIC2, SIC3, CIC2, CIC3, etc.). The IC, CIC 
and BIC indices used by Todeschini et al. 
are based solely on first-order topological 
bonding/neighborhoods,       and       slightly 
different equivalence relations as compared 
to the ICr, SICr, and CICr indices defined by 
Roy et al.21 In studies by Basak et al.,   the 
first-order complexity indices (ICi, SICi, 
CICi) were usually most correlated with the 
first PC. Each of the next four PCs in 
Todeschini et al.'s study35 are dominated by 
a   single   TI,viz.,:   %,   Uc,   J   (indicating 
branching), and IED. deg (connected with the 
position of substituents on the molecular 
scaffold), respectively. 
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Table 1. Summary of Chemical Classes or Features in Databases Analyzed. 

Database A Database B 

Chemical Classes or features (Hydrocarbons) (Diverse) 

Total Number of Compounds 139 1037 

Hydrocarbons 139 565 

♦ Alkanes, Cyclic Alkanes 73 206 

♦ Aromatics 66 288 

- Alkyl Benzenes 29 80 

- Fused Rings 37 56 

- Polycyclic Aromatics 37 49 

Non-hydrocarbons 0 472 

♦ Halogen containing compounds 

A Uotofnotnm ^rmtninino pnmnnnnns 

359 

101 

(Sulphur or Phosphorous) 

Compounds containing both 
halogens & heteroatoms 

- Organosulfides 

- Organophosphorous 

12 

105 

8 
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Table 2. Symbols and definitions of topological parameters 

Index Definition 

I p Information index for the magnitudes of distances between all possible pairs of 

vertices of a graph 

I* Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a 

graph 

ID Degree complexity 

Hv Graph vertex complexity 

HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of occurrences 

of distance h 

O Order of neighborhood when ICr reaches its maximum value for the hydrogen- 

filled graph 

IORB Information content or complexity of the hydrogen-suppressed graph at its 

maximum neighborhood of vertices 

Mi A Zagreb group parameter = sum of square of degree over all vertices 

M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 

(connected) vertices 

ICr Mean information content or complexity of a graph based on the r1"1 (r = 0-6) order 

neighborhood of vertices in a hydrogen-filled graph 

SICr Structural information content for r,h (r = 0-6) order neighborhood of vertices in a 

hydrogen-filled graph 

CICr Complementary information content for rth (r = 0-6) order neighborhood of vertices 

in a hydrogen-filled graph 

h£ Path connectivity index of order h = 0-6 

h^ Cluster connectivity index of order h = 3-6 

hXPC Path-cluster connectivity index of order h = 4-6 

h^Ch Chain connectivity index of order h = 3-6 

h^b Bond path connectivity index of order h = 0-6 

14 



Yc Bond cluster connectivity index of order h = 3-6 

Xch 
Bond chain connectivity index of order h = 3-6 

Xpc 
Bond path-cluster connectivity index of order h = 4-6 

Y Valence path connectivity index of order h = 0-6 

Yc Valence cluster connectivity index of order h = 3-6 

Xch 
Valence chain connectivity index of order h = 3-6 

Xpc 
Valence path-cluster connectivity index of order h = 4-6 

Ph Number of paths of length h = 0-10 

J Balaban's J index based on distance 

JB Balaban's J index based on bond types 

Jx Balaban's J index based on relative electronegativities 

JY Balaban's J index based on relative covalent radii 

Triplet Global invariants based on solutions of linear equation systems using the adjacency 
matrix (A), distance matrix (D), and column/row vectors: distance sums (S), atomic 
number (Z), number of non-hydrogen atoms (N and N ), vertex degree (V), or 
numerical constants (1). Notation is described by triplets (e.g. AZV). Results are 
weightings for each atom in a molecule. These weights are combined^ 5 possible 
formulas: 1 = Sum of weights: SjXj; 2 = Sum of squared weights Spt; ; 3 - Sum of 
square root of weights EiXj1/2; 4 = Sum of cross-product Ej(xi • xj)"   ; and 5 - 

product of weights N • [EjXj] 
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Table 3. Summary of Variable Clustering for 139 Hydrocarbons 

Cluster v   -vi Representative Variables (max. 25% of total listed) 

Al 54 DN2Z4, DN2N4, PO, AZV4, ASZ4, ANN3, ANN5, AZN3 

A2 19 6X, P7, \, 6xb, 6%\ 

A3 13 0xb,0xv,ANZl 

A4 13 SICö, SIC5, IC(, 

A5 12 DSZi, DSZ5, ASZ, 

A6 9 DSZ3, DSN5 

A7 9 DSN3, DN2N, 

A8 6 5xvc, Yc 

A9 6 DSZ2, ASZ2 

A10 5 SIC, 

All 4 CICi 

A12 4 Yc 

A13 4 SIC3 

A14 4 5Xch 
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Table 4. Summary of Variable Clustering for 1037 Diverse Chemicals. 

Cluster        ^Umbw °f Representative Variables (max. 25% of total listed) 
Variables 

Bl 49 P0, ANN3, ANN5, AN13, ANN1, ANV4, AS14, DN214 

B2 13 ANV1.P3.M2 

B3 13 AS11,AS15,DS11 

B4 13 6x, 6xb, P7 

B5 11 ASN5,AS13,ASN1 

B6 10 SIC3, SIC4, CIC4 

B7 9 5xbpc, 5XPC 

B8 8 ASZ2,ASZ1 

B9 6 5xbc, 5xc 

BIO 6 3xch, 3xbch 

Bll 6 IC4, IC5 

B12 6 CICi.SICi 

B13 6 6xvch, 6xbch 

B14 6 3xbc, 4xc 

B15 4 JB 

B16 4 AS12 

B17 4 DN2N1 

B18 2 ANSI 
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Legends of figures 

Fig. 1. Associations between clusters of descriptors for the hydrocarbon database (A-type 

clusters) and the database with diverse compounds (B-type clusters). Solid lines connect A-type 

descriptors with B type descriptors, and the numbers of common descriptors are indicated on 

such lines (when no number is indiceted, there is just one common descriptor). Dashed lateral 

lines indicate descriptors that have no correspondence for the other type. 

Fig. 2. Graph of highly correlated topological indices (TIs) according to Todeschini et al. 

(notation of TIs as in Tab. 3 of ref.31). Lines connect TIs with r > 0.90. 
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I. INTRODUCTION 

A contemporary interest in mathematical chemistry is the characterization of molecular 
structure using graph theoretic formalism [1-11]. A graph G = [V,E\ consists of an 
ordered pair of two sets V and £, representing the vertices and edges, respectively. G 
becomes a molecular graph when the set V represents the set of atoms in a molecule 
and the set E symbolizes chemical bonds between adjacent atoms [8]. 

Mathematical characterization of molecular graphs (structures) may be 
accomplished using graph invariants. An invariant may be a polynomial, a sequence of 
numbers or a real number. A real number characterizing a molecular graph is called a 
topological index (Tl). TIs quantify different aspects of molecular architecture, viz., size, 
shape, cyclicity, branching, symmetry, etc [8]. 

TIs have been used extensively in quantitative structure-property/activity 
relationships (QSPR and QSAR respectively) and the quantification of intermolecular 
similarity/dissimilarity of chemicals [10-24]. In quantitative molecular similarity analysis 
(QMSA) studies TIs have been used to derive high dimensional structure spaces where 
the Euclidean distance D9 between a pair of molecules / and j is used to quantify the 
similarity between them. Similarity measures can be used either for the selection of 
analogs of chemicals or in the prediction of the property/activity of a molecule from the 
property of its selected neighbor(s). . 

In some of our recent QSAR/QMSA studies we have used different similarity 
measures derived from TIs in the selection of analogs and prediction of 
properties/activities for diverse sets of chemicals. We have also used orthogonal 
descriptors derived from a set of over 100 graph invariants to estimate 
bioactivity/toxicity of different graphs of molecules. In this paper we have used similarity 
measures derived from TIs in: a) selecting analogs of an isospectral graph from a 
diverse set of 221 compounds, and b) predicting the mutagenicity of a set of 113 
mutagens and non-mutagens using QMSA methods. 

II. METHODS 

A set of 19 pairs of isospectral graphs from the work of Balasubramanian and Basak 
f251 were added to a set of 107 benzamidines [26] and a composite set of 76 diverse 
compounds used in an earlier study by Basak and Grunwald [23] to create a varied 



library of 221 compounds. This composite library was created to provide a large set 
containing both congeneric and non-congeneric sets to test analog selection methods. 
The chemical structures for the 19 pairs of isospectral graphs have been presented in a 
previously [25]. 

A second data set, representing a subset of the set of 277 chemicals presented by 
Yamaguchi et al. [27] was also used in the current study. This subset consisted of all 
the chemicals in the set of 277 chemicals that had reported results for mutagenicity in 
the Ames test, mutagenicity in the medium term liver carcinogenesis bioassay, and 
carcinogenicity in the two-year rodent bioassay in rat and/or mouse. This subseting 
resulted in a set of 113 chemicals, 68 of which are classified as non-mutagens and 45 
of which are classified as mutagens in the Ames test. This set of chemicals and their 
observed mutagenicity are reported in Table 1. 

Calculation of Topological Indices 
The TIs calculated for this study are listed in Table 2 and include Wiener number 

[28], molecular connectivity indices as calculated by Randic [29] and Kier and Hall [4], 
frequency of path lengths of varying size, information theoretic indices defined on 
distance matrices of graphs using the methods of Bonchev and Trinajstic [30] as well as 
those of Raychaudhury et al. [31], parameters defined on the neighborhood complexity 
of vertices in hydrogen-filled molecular graphs [32-34], and Balaban's J indices [35-37]. 
The majority of the TIs were calculated using POLLY 2.3 [38]. The J indices were 
calculated using software developed by the authors. 

The Wiener index (W) [28], the first topological index reported in the chemical 
literature, may be calculated from the distance matrix D(G) of a hydrogen-suppressed 
chemical graph G as the sum of the entries in the upper triangular distance submatrix. 
The distance matrix D(G) of a nondirected graph G with n vertices is a symmetric n x n 
matrix (dy), where d,j is equal to the distance between vertices v, and vj in G. Each 
diagonal element du of D(G) is zero. We give below the distance matrix D(Gi) of the 
unlabeled hydrogen-suppressed graph G1 of thioacetamide (Fig.1): 

1 2 3 4 

1 0 1 2 2 

D(G,) = 2 1 0 1 1 

3 2 1 0 2 
4 2 1 2 0 

W is calculated as: 

ij      h 

where gh is the number of unordered pairs of vertices whose distance is h. Thus for 
D(Gi), W has a value of nine. 



[Insert Fig. 1 here] 

Randic's connectivity index [29], and higher-order connectivity path, cluster, path- 
cluster and chain types of simple, bond and valence connectivity parameters were 
calculated using the method of Kier and Hall [4]. The generalized form of the simple 
path connectivity index is as follows: 

(2) 
Ä* = l(v7V.vÄ+1)-* 

where vit v,,..., vh+i are the degrees of the vertices in the path of length h. The path 
length parameters (Ph), number of paths of length h (h = 0,1 10) in the hydrogen- 
suppressed graph, are calculated using standard algorithms. 

Information-theoretic topological indices are calculated by the application of 
information theory on chemical graphs. An appropriate set A of n elements is derived 
from a molecular graph 6 depending upon certain structural characteristics. On the 
basis of an equivalence relation defined on A, the set A is partitioned into disjoint 
subsets A, of order n, (/' = 1, 2 />;. n, = n). A probability distribution is then assigned 

to the set of equivalence classes: 

A1tA2 ,Ah 

Ph 92,  , Ph 

where p, = n,/ n is the probability that a randomly selected element of A will occur in the 
f subset. 

The mean information content of an element of A is defined by Shannon's relation 
[39]: 

h 

/C = -$>log2p, (3) 
;'=1 

The logarithm is taken at base 2 for measuring the information content in bits. The total 
information content of the set A is then n x IC. Figure 2 provides a sample calculation 
for Id. 

[Insert Fig. 2 here] 

It is to be noted that the information content of a graph G is not uniquely defined. It 
• depends on how the set A is derived from G as well as on the equivalence relation 
which partitions A into disjoint subsets A.. For example, when A constitutes the vertex 
set of a chemical graph G, two methods of partitioning have been widely used: a) 
chromatic-number coloring of G where two vertices of the same color are considered 
equivalent, and b) determination of the orbits of the automorphism group of G thereafter 
vertices belonging to the same orbit are considered equivalent. 



Rashevsky was the first to calculate the information content of graphs where 
"topologically equivalent" vertices were placed in the same equivalence class [40]. In 
Rashevsky's approach, two vertices u and v of a graph are said to be topologically 
equivalent if and only if for each neighboring vertex m (;' = 1, 2 k) of the vertex u, 
there is a distinct neighboring vertex v, of the same degree for the vertex v. While 
Rashevsky used simple linear graphs with indistinguishable vertices to symbolize 
molecular structure, weighted linear graphs or multigraphs are better models for 
conjugated or aromatic molecules because they more properly reflect the actual 
bonding patterns, i.e., electron distribution. 

To account for the chemical nature of vertices as well as their bonding pattern, 
Sarkar et al. [41] calculated information content of chemical graphs on the basis of an 
equivalence relation where two atoms of the same element are considered equivalent if 
they possess an identical first-order topological neighborhood. Since properties of 
atoms or reaction centers are often modulated by stereo-electronic characteristics of 
distant neighbors, i.e., neighbors of neighbors, it was deemed essential to extend this 
approach to account for higher-order neighbors of vertices. This can be accomplished 
by defining open spheres for all vertices of a chemical graph. If r is any non-negative 
real number and v is a vertex of the graph G, then the open sphere S(v, i) is defined as 
the set consisting of all vertices v, in G such that d(v,V/) < r. Therefore, S(v, 0) - , S(v, r) 
= v for 0 < r < 1, and S(v,r) is the set consisting of v and all vertices v, of G situated at 
unit distance from v, if 1 <r<2. 

One can construct such open spheres for higher integral values of r. For a particular 
value of r, the collection of all such open spheres S(v,r), where v runs over the whole 
vertex set V, forms a neighborhood system of the vertices of G. A suitably defined 
equivalence relation can then partition V into disjoint subsets consisting of vertices 
which are topologically equivalent for Ith order neighborhood. Such an approach has 
been developed and the information-theoretic indices calculated based on this idea are 
called indices of neighborhood symmetry [34]. 

In this method, chemicals are symbolized by weighted linear graphs. Two vertices u0 

and v0 of a molecular graph are said to be equivalent with respect to f   order 
neighborhood if and only if corresponding to each path u0, u1 ur of length r, there is a 
distinct path v0, v1  vr of the same length such that the paths have similar edge 
weights and both u0 and v0 are connected to the same number and type of atoms up to 
the Ith order bonded neighbors. The detailed equivalence relation has been described in 
earlier studies [34,42]. . . 

Once partitioning of the vertex set for a particular order of neighborhood is 
completed ICr is calculated by Eq. 2. Basak et al. [32] defined another information- 
theoretic measure, structural information content (SICr), which is calculated as: 

(4) 
SICr =/Cr/log2n 

where ICr is calculated from Eq. 2 and n is the total number of vertices of the graph. 
Another information-theoretic invariant, complementary information content (C/G) 

[43], is defined as: 

CICr =\og2 n-ICr 



CICr represents the difference between maximum possible complexity of a graph 
(where each vertex belongs to a separate equivalence class) and the realized 
topological information of a chemical species as defined by ICr. Sample calculations for 
SIC1 and CIC1 have been included in Figure 2. 

The information-theoretic index on graph distance, Iff is calculated from the distance 
matrix D(G) of a chemical graph G as follows [30]: 

(6) 
1% =W\og2W-y£gh-h\og2h 

h 

The mean information index, fo^-is found by dividing the informationindex /D" by W. 
The information theoretic parameters defined on the distance matrix, hr and H , were 
calculated by the method of Raychaudhury et al [31 ]. 

Balaban defined a series of indices based upon distance sums within the distance 
matrix for a chemical graph that he designated as J indices [35-37]. These indices are 
highly discriminating with low degeneracy. Unlike W, the J indices range of values are 
independent of molecular size. The general form of the J index calculation is as follows: 

ij,edges 

where the cyclomatic number n (or number of rings in the graph) is u=g-n+1, with q 
edges and n vertices and s, is the sum of the distances of atom / to all other atoms and 
s is the sum of the distances of atom j to all other atoms [35]. Variants were proposed 
by Balaban for incorporating information on bond type, relative electronegativities, and 
relative covalent radii [36,37]. 

Calculation of Atom Pairs ,,«,** 
Atom pairs (APs) were calculated using the method of Ca.rhart et al [3]. An atom pair 

is defined as a substructure consisting of two non-hydrogen atoms / and j and their 
interatomic separation: 

<atom descriptors - <separation> - <atom descriptor^ 
where <atom descriptor contains information about the atomic type, number of non- 
hydrogen neighbors and the number of * electrons. The interatomic separation of two 
atoms is the number of atoms traversed in the shortest bond-by-bond path containing 
both atoms. APs used in this study were calculated by the APProbe software [43]. 

Ill STATISTICAL METHODS AND COMPUTATION 
OF INTERMOLECULAR SIMILARITY 

Data Reduction 
Initially all TIs were transformed by the natural logarithm of the index plus one. This 

was done since the scale of some TIs may be several orders of magnitude greater than 

other TIs. , , ...       ^ 
A principal component analysis (PCA) was used on the transformed indices to 

minimize the intercorrelation of indices. The PCA was conducted using the SAS 



procedure PRINCOMP [44]. The PCA produces linear combinations of the TIs, called 
principal components (PCs) which are derived from the correlation matrix. The first PC 
has the largest variance, or eigenvalue, of the linear combination of TIs. Each 
subsequent PC explains the maximal index variance orthogonal to the previous PCs, 
eliminating any redundancies that could occur within the set of TIs. The maximum 
number of PCs generated is equal to the number of TIs available. For the purposes of 
this study, only PCs with eigenvalues greater than one were retained. A more detailed 
explanation of this approach has been provided in a previous study by Basak et al [13]. 
These PCs were subsequently used to determine similarity scores as described below. 

Similarity Measures 
Intermolecular similarity was measured using two distinct methods. The AP method 

uses an associative measure described by Carhart et al. [3] and is based on atom pair 
descriptors. The measurement is the ratio of the number of shared atom pairs between 
two molecules over the total number of atom pairs present in the two molecules. 
Similarity (S) between molecules / and j is defined as: 

s,=2C/(r/+ry) (8) 

where C is the number of atom pairs common to molecule /' and / T, and 7} are the total 
number of atom pairs in molecule / and j, respectively. The numerator is multiplied by a 
factor of 2 to reflect the presence of shared atom pairs in both compounds. 

The second similarity method, Euclidean distance (ED) within an n-dimensional PC 
space derived from TIs was used. ED between molecules /' and j is defined as: 

(9) 

E°i = 
*=i 

where n equals the number of dimensions or PCs retained from the PCA. Dik and Djk are 
the data values of the /<*h dimension for molecules /andy, respectively. 

Analog / K-Nearest Neighbor Selection 
Following the quantification of intermolecular similarity of the molecules, analogs or 

nearest neighbors are determined on the basis of both S and ED. In the case of the AP 
method, two molecules are considered identical if S=1, while they have no atom pairs in 
common if S=0. The ED method measures a distance between molecules, thus the 
lower the value of ED the greater the similarity between two molecules. 

Property Estimation 
Since the data presented in the work of Yamaguchi et al. [27] represented 

mutagenicity as non-mutagen (-) or mutagen (+) this data was treated as a zero-one 
relationship, where non-mutagens have a value of zero and mutagens have a value of 
one. In estimating the mutagenicity of the probe compound, the mean of the observed 
mutagenicity of the K-nearest neighbors was used as the estimate. Thus, if the mean 
resulted in a value greater than 0.5, the compound was classified as a mutagen. 



However, if the mean was equal to 0.5, the compound was not classified as the results 
were inconclusive. 

IV. RESULTS 

Principal Component Analysis 
From the PCA of the 102 TIs, eight PCs with eigenvalues greater than one were 

retained These eight PCs explained, cumulatively, 95.2% of the total variance within 
the Tl data Table 3 lists the eigenvalues of the eight PCs, the proportion of variance 
explained by each PC, the cumulative variance explained, and the two TIs most 
correlated with each individual PC. 

Analog Selection 
Figure 3 shows the results of the analog selection for isospectral graph 10.1.1 using 

atom pairs to derive a similarity space and PCs to derive a Euclidean distance space. 
The first five analogs (neighbors) for the probe compound, 10.1.1, are presented for 
each of the similarity methods. 

[Insert Fig. 3 here] 

K-Nearest Neighbor Estimation 
Table 4 presents the results for the prediction of mutagenicity for the 113 molecules 

over a range of K values (K = 1-5) for both the AP and ED methods. The results are 
presented as percent correctly classified and over-all percent correct prediction rates 
are provided as a means of comparing the efficacy of the individual models. The 
variability between the K levels is easily explained by the problematic nature of using a 
binary relationship such as this one in estimation. When the number of neighbors was 
even, the potential for unclassified compounds led to lower prediction rates than in the 
case of an odd number of neighbors. 

V. DISCUSSION 
The major objective of this paper was to study the effectiveness of mathematical 

invariants in the characterization of molecular structure and the estimation of the toxicty 
of chemicals. An invariant maps a chemical structure into the set R of real numbers. A 
specific invariant may be used for the ordering or partial ordering of sets of molecules or 
in structure-activity relationship studies [45]. A particular structural invanant quantifies 
distinct aspects of molecular structure. Therefore, a combination of such indices might 
be more powerful in the mathematical characterization of molecular structure as 
compared to the use of one specific invariant. The problem arises out of the fact that 
often the various graph theoretic indices of molecular structures are strongly correlated. 
We have attempted to resolve this problem through the implementation of a PCA to 
derive orthogonal variables from a large set of calculated TIs, and using the orthogonal 
parameters in the characterization of structure [10,12,15,17,18,22,23]. 

In the present study we have used calculated atom pairs and principal components 
derived from TIs to select structural analogs for a probe compound from a diverse set 



containing closely related structures. The result of this analog selection, depicted in 
Figure 3, shows that the five neighbors selected by each of the methods exhibit 
sufficient power to reject dissimilar structures. In other words, we may conclude that 
both the atom pair and Euclidean distance methods are capable of choosing similar 
molecules from a collection of structurally diverse structures. This is in line with our 
earlier studies with various diverse sets of molecules [10,12,15,17,18,22,23]. 

The central paradigm of QSAR holds that similar structures usually have similar 
properties. To test this idea, we selected K-nearest neighbors (K=1-5) for each molecule 
from a set of 113 mutagens and non-mutagens using the ED and AP methods and used 
the selected nearest neighbors in estimating mutagenicity. The results in Table 4 show 
that both methods lead to reasonably good estimates, although the AP method was 
superior to the ED method. 

In conclusion, both the ED and AP methods, based on calculated graph theoretic 
structural invariants, did reasonably well in the selection of structural analogs and in the 
estimation of chemical properties based on nearest neighbors. 
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Table i 

No.a 

1.5 

. MUiageniCliy III me ninco i^w,i .~-    ■ ■- w : _ 

ConfiDOiind Name  

Obs. Ames 
Mutagenicity 

butylated hydroxyanisole (BHA) 0 
o 

1.6 caffeic acid n 
1.7 catechol o 
1.8 clofibrate 0 

o 1.9 di(2-ethylhexyl)phthalate (DEHP) 

1.10 hydroquinone n 
1.11 p-methoxyphenol o 
1.12 sesamol n 
1.13 tamoxifen 0 
1.14 acetaminophen o 
1.15 benzoin o 
1.16 EPN o 
1.17 gallic acid o 
1.18 a-tocopherol 

\j 

2.2 • 2-acethylaminofluorene (AAF) 

2.3 adriamycin 
2.4 aflatoxin B1 
2.5 benzo[a]pyrene 
2.7 captafol 
2.8 captan 
2.9 carbazole 
2.10 dibutylnitrosamine (DBN) 
2.11 diethylnitrosamine (DEN) 
2.12 3,2'-dimethyl-4-aminobiphenyl(DMAB) 

2.14 dimethylnitrosamine (DMN) 
2.15 N-ethyl-N-hydroxyethylnitrosamine(EHEN) 

2.16 N-ethyl-N-nitrosourea (ENU) 
2.20 hydrazobenzene 
2.22 laciocarpine 
2.26 S'-methyM-dimethylaminoazobenzene (3 -Me-DAB) 

2.27 3-amino-9-ethylcarbazole 

2.28 N-nitrosooxazolidine 
2.29 N-nitrosodi-n-propylamine (NDPA) 

2.30 N-nitrosomorpholine 

2.31 N-nitrosopiperidine 
2.32 N-nitrosopyrrolidine 
2.33 quinoline 
2.34 sterigmatocystin 
2.35 4,4'-thiodianiline o 
2.42 alachlor o 
2.43 aldrin o 
2.44 
2.45 

auramine 0 
barbital                                                    — 

0 
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2.46 chlordane 
2.47 chlorendic acid 
2.48 chlorobenzilate 
2.49 DDT 
2.50 dieldrin 
2.51 diethylstilbestrol 
2.53 ethenzamide 
2.54 17a-ethinylestradiol 
2.55 DL-ethionine 
2.56 hexachlorobenzene (HCB) 
2.57 a-hexachlorocyclohexane (a-HCH) 
2.58 d-limonene 
2.59 monoclotaline 
2.60 N-nitrosodiethanolamine 
2.61 phenobarbital 
2.64 safrole 
2.66 thioacetamide 
2.67 triadimefon 
2.68 trifluralin 
2.69 urethane 
2.70 polychlorinated biphenyl (PCB) 
2.71 malathion 
2.72 vinclozolin 
3.1 acetophenetidine (phenacetin) 
3.2 azathioprine 
3.3 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) 
3.4 chrysazin (danthron) 
3.5 4,4'-diaminodiphenylmethane (DDPM) 
3.6 7,12-dimethylbenz[a]anthracene (DMBA) 
3.7 N-ethyl-N-(4-hydroxybutyl)nitrosamine (EHBN) 
3.8 folpet 
3.9 hydrogen peroxide 
3.11 3-methylcholanthrene (3-MC) 
3.12 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) 
3.13 N-methyl-N-nitrosourea (MNU) 
3.14 8-nitroquinoline 
3.17 streptozotocin 
3.18 o-toluidine 
3.20 6-methylquinoline 
3.21 8-methylquinoline 
3.22 nitrofrantoln 
3.23 6-nitroquinoline 
3.24 quercetin 
3.32 acetaldehyde 
3.33 atrazine 
3.34 di(2-ethylhexyl)adipate (DEHA)  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
Ö 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
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3.35 1,1-dimethylhydrazine jj 
3.39 trichloroacetic acid 
3.42 4-acethylaminofluorene (AAF) " 
3.43 aspirin 0 
3.44 butylated hydroxytoluene (BHT) " 
3.45 caffeine 0 

3.46 caprolactam 0 
3.47 chenodeoxicholic acid 
3.49 cypermethrin 
3.50 deltamethrin 
3.51 diltiazem n 
3.52 dimethylsulfoxide (DMSO) Jj 
3.53 diazinon Q 

3.54 fenvalerate Q 

3.55 glutathione n 
3.56 4-o-hexyl-2,3,6-trimethylhydroquinone (HTHQ) " 
3.58 lithocolic acid Q 

3.59 d-mannitol Q 

3.61 phenol 0 

3.64 propyl galiate Q 

3.65 propylparaben 
3.66 pyrene Q 

3.67 resorcinol 
3.71      trimorphamide  .—   .       
aThe numbering scheme refers to the enumeration ot the cnemicals in the Presentation 
bv Yamaquchi et al. [27] where the numeral before the decimal place refers to the table 
in which the compound was listed (see below) and the numerals after the decimal refer 
to the compounds location within the table. 
Table 1 -Association between inhibitory results in the medium-term liver bioassay (Ito 
test) and reported mutagenicity and carcinogenicity. 
Table 2 -Association between positive results in the medium-term liver bioassay (Ito 
test) and reported mutagenicity and carcinogenicity. 
Table 3 - Association between negative results in the medium-term liver bioassay (Ito 
test) and reported mutagenicity and carcinogenicity. 
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Table 2. Symbols and brief definitions for 101 topological indices. __ 

|^ Information index for the magnitudes of distances between all possible 
pairs of vertices of a graph 

TD Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix 
of a graph 

lD Degree complexity 

Hv Graph vertex complexity 

HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of 
occurrences of distance h 

|0RB        Information content or complexity of the hydrogen-suppressed graph at its 
maximum neighborhood of vertices 

O Order of neighborhood when ICr reaches its maximum value for the 
hydrogen-filled graph 

MT A Zagreb group parameter = sum of square of degree over all vertices 

M2 A Zagreb group parameter = sum of cross-product of degrees over all 
neighboring (connected) vertices 

ICr Mean information content or complexity of a graph based on the rth (r = 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SICr        Structural information content for r,h (r = 0-6) order neighborhood of vertices 
in a hydrogen-filled graph 

CICr        Complementary information content for rth (r = 0-6) order neighborhood of 
vertices in a hydrogen-filled graph 

\ Path connectivity index of order h = 0-6 

\c Cluster connectivity index of order h = 3-6 

h
Xch Chain connectivity index of order h = 3-6 

hXPc Path-cluster connectivity index of order h = 4-6 

\b Bond path connectivity index of order h = 0-6 

h^c Bond cluster connectivity index of order h = 3-6 

16 
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h^h Bond chain connectivity index of order h = 3-6 

\b
PC Bond path-cluster connectivity index of order h = 4-6 

\v Valence path connectivity index of order h = 0-6 

h5$ Valence cluster connectivity index of order h = 3-6 

hXch Valence chain connectivity index of order h = 3-6 

hXPc Valence path-cluster connectivity index of order h = 4-6 

Ph Number of paths of length h = 0-10 

J Balaban's J index based on distance 

JB Balaban's J index based on bond types 

Jx Balaban's J index based on relative electronegativities 

JY Balaban's J index based on relative covalent radii 

17 
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Table 3. Eigenvalues, variance explained and two TIs most correlated with the eight 

Percent Cumulative 
variance variance First most . Second most 

PC Eigenvalue explained explained correlated Tl 
V     (96.5%) 

correlated Tl 

PCi 55.52 54.97 54.97 3X      (96.4%) 

PC2 12.38 12.26 67.23 SIC3 (86.4%) SIC4 (85.5%) 

PC3 11.73 11.61 78.84 Vch (77.3%) Ych (76.1%) 

PC4 6.78 6.71 85.55 ICo     (55.0%) Vch (49.7%) 
JY      (62.4%) PC5 4.60 4.55 90.10 J        (68.9%) 

PC6 2.35 2.32 92.43 ICo   (-47.2%) SICo (-36.4%) 

PC7 1.65 1.63 94.06 Vc   (44.4%) Vc   (43.5%) 

PC8 1.16 1.14 95.21 Vc (-34.6%) Vc   (23.0%) 
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Table 4 KNN results for the prediction of mutagenicity for 113 chemicals.  
— Percent Negative Percent Positive Total Percent 

Correct Correct Correct  
K         AP ED AP ED AP ED 
1 73.5 75.0 84.1 66.7 77.7 71.7 

2 66.2 64.7 72.7 33.3 68.8 52.2 

3 77.9 80.9 88.6 53.3 82.1 69.9 

4 70.6 69.1 77.3 42.2 73.2 58.4 

5 79.4 77.9 86.4 53.3 82.1 68.1 
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Figure Captions 

Figure 1 - Unlabeled, hydrogen-suppressed graph of thioacetamide (G?). 

Figure 2 - Labeled, hydrogen-filled graph of thioacetamide (G2) and sample calculations 
for Id, Sid and Cld- 

Figure 2 -Analogs selected for isospectral graph 10.1.1. 

20 
20 



H3C NH2 

Thioacetamide 

1 *-    2   >•   4 

Gi 



Go: thioacetamide 

H2 Li 

\ /"4 

H,—C6 N8 

H3        || 

S9 

First order neighbors: 

H1H2H3 

C C C 

H4H5 

N N H H 

IV 

c s N 

V 

H  i  C 

VI 

S9 

Subsets: 

(HrH3) (H4-H5) 

IV 

c7 

V 

N8 

VI 

s9 

Probability: 

3/9 2/9 1/9 

IV 

1/9 

V 

1/9 

VI 

1/9 
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QUANTITATIVE COMPARISON OF FIVE MOLECULAR STRUCTURE 
SPACES IN SELECTING ANALOGS OF CHEMICALS 

Subhash C. Basak, Brian D. Gute and Gregory D. Grunwald 

Natural Resources Research Institute, University of Minnesota - Duluth, 
5013 Miller Trunk Highway, Duluth, MN 55811, USA 

Phone: (218) 720-4230 E-Mail: sbasak@wyle.nrri.umn.edu 

ABSTRACT 

Five methods for characterizing intermolecular similarity have been used in the selection of analogs for a 
diverse set of seventy-six compounds. These methods include an atom pair (AP) based similarity 
measure, three principal component spaces derived from topostructural indices, topochemical indices, the 
combined set of all (topostructural and topochemical) indices, as well as one structure space consisting 
of principal components calculated from physicochemical properties. Each method has been used in the 
selection of sets analogs, ranging from five to forty in number in increments of five, for each of the 
seventy-six compounds. The degree of overlap of the sets of analogs selected by the five separate 
methods was analyzed. 

KEYWORDS 

molecular graph, atom pairs, principal components, analog selection, molecular similarity 

INTRODUCTION 

Molecular similarity is an intuitive concept which is subjectively understood by the chemist In the realm 
of mathematical and computational chemistry, intermolecular similarity can be objectively quantified in 
terras of descriptors derived from the molecular structure (Basak et al, 1988b; Basak et al, 1997; Carbö et 
al, 1980; Fisanick et al, 1992; Fisanicket al, 1994; Johnson et al, 1988; Maggiora and Johnson, 1990; 
Randic, 1992; Willet and Winterman, 1986). Chemical structures can be represented by various types of 
models', e.g., simple molecular graphs, multigraphs, pseudographs, 3-D models, and quantum chemical 
hamiltonian functions. Similarity, being context specific, is quantified in terms of a user-defined set of • 
parameters or properties of molecules. Consequently, there are a potentially endless number of methods 
that one can define to quantify intermolecular similarity. 

In recent years molecular similarity methods based on topological and substructural descriptors have 
become popular. Such methods are based on different types of graph invariants such as topological 
indices, atom pairs, and fragments (Basak and Grunwald, 1994,1995c; Basak and Gute, 1997; Basak et 
al, 1988b; Carbö et al, 1980; Carhart et al, 1985; Fisanick et al, 1992; Johnson et al, 1988; Randid, 1992; 
Willet and Winterman, 1986). Similarity/dissimilarity methods have been used in the clustering of large 
sets of chemicals (Lajiness, 1990), the selection of analogs for toxicological risk assessment (Basak and 
Grunwald, 1994; Basak et al, 1995), and the estimation of the physicochemical and biomedicinal 
properties of chemicals (Basak and Grunwald, 1995a, 1995c; Basak et al, 1996a; Basak and Gute, 1997). 
Usually some number, n, of descriptors is used to define the structure space of chemicals and either 
Euclidean distance in the /i-dimensional space or some association coefficient is used to quantify 



intermolecular similarity. The basic paradigm underlying molecular similarity analysis is "similar 
structures have similar properties." However, it has been shown that different molecular similarity 
methods select quite different sets of analogs from a specific database for the same set of query 
chemicals (Basak and Grunwald, 1995c). In the case of the automated selection of analogs for testing 
chemicals in drug design protocols or toxicological hazard assessment one would like to select analogs 
by reasonably non-redundant molecular similarity methods. Therefore, it is of interest to investigate the 
degree to which various similarity methods differ from each ether. In a previous study we analyzed the 
analog selection profiles for topologically-based vis-a-vis empirical property-based molecular similarity 
techniques in the selection of nearest neighbors of molecules (Basak and Grunwald, 1995c). In this paper 
we have compared the analog selection profile of five different molecular similarity methods, four of 
which are based on graph invariants and one is derived from physicochemical property data. 

DATABASE AND PARAMETERS 

Development of the database 

The data used in this study is a subset of the U.S. EPA ASTER system (Russom, 1992) which met the 
following criteria. These compounds have experimental values for: 

1. Log K^ Logarithm of the octanol/water partition coefficient (hydrophobicity). 

2. BP Boiling point at 760 Torr. 
3. MP Melting point. 

within the ASTER database. Kamlet (1987) provided the remaining physicochemical properties used in 
this study. These four solvatochromic parameters are: v 

1. V7100 The molar volume of a molecule calculated as its molecular weight divided by 
the liquid density at 20° C. 

2. a A measure of the hydrogen bond donor acidity of a compound in forming a 
hydrogen bond. 

3. ß A scale of the hydrogen bond acceptor basicity of a compound in forming a 

hydrogen bond. 
4. 7i* A measure of solute or solvent dipolarity or polarizability that quantifies the 

ability of a compound to stabilize a neighboring charge or dipole by virtue of its 
dielectric effect. 

Kamlet et al (1988) describe in detail the methods used in the determination of these solvatochromic 

parameters. 

Calculation of Atom Pairs 

Atom pairs (APs) were calculated using the method of Carhart et al (1985). An atom pair is defined as a 
substructure which consists of two non-hydrogen atoms i and j and their interatomic separation: 

<descriptor,>-<separation>-<descriptoiy> 

where <descriptor> contains information about the element type, number of non-hydrogen-neighbors, 
and the number of 7t electrons for each atom. The interatomic separation of two atoms is the number of 
atoms traversed in the shortest bond-by-bond path containing both atoms. These calculations were 
conducted using the APProbe software developed by Basak and Grunwald (1993). 

Calculation of Topological Indices 

The topological indices used in this study have been calculated using the program POLLY 2.3 (Basak et 
al, 1988a) and software developed by the authors to calculate Balaban's J indices. A complete listing of 



these indices, along with examples of their calculation have been given in detail previously (Basak and 
Gute, 1997; Basak et al, 1997). 

The topological indices were further divided into two subsets, topostructural and topochemical indices. 
Topostructural indices are topological indices which only encode information about the adjacency and 
distances of the vertices (atoms) within a graph (molecular structure), irrespective of the chemical nature 
of the atoms involved. The topochemical indices are parameters which quantify information regarding 
the topology of the graph (molecule), as well as specific chemical properties of the atoms and bonds 
comprising the molecule. These indices are derived from weighted graphs where each vertex (atom) or 
edge (bond) is properly weighted with selected chemical information. The division of the topological 
indices into these distinct sets has been discussed in previous studies (Basak et al, 1996b, 1997). 

Similarity Measures 

Two measures of intermolecular similarity were used in this study. The methods have been described in 
detail previously (Basak and Grunwald, 1995b) and include an associative measure^ using atom pairs 
(AP) and Euclidean distance (ED) within an n-dimensional principal component (PC) space. The 
Euclidean distance method was used in conjunction with the topological indices and the physicochemical 

property data. 

ANALOG SELECTION 

Following the quantification of intermolecular similarity for the five similarity spaces, the K-nearest 
neighbors or analogs (K = 5,10,15,20,25, 30,35,40) were determined on the basis of the associative 
measure used in conjunction with the AP method or based on ED within a principal component space. 

RESULTS AND DISCUSSION 

In generating the principal components for the sets of topological indices, only the principal components 
with eigenvalues greater than 1.0 were retained. This left six PCs for the set of topostructural indices 
which cumulatively explained 94.1% of the variance in the indices, eight PCs for the set of topochemical 
indices which explained 935% of the variance in these indices, and ten PCs for the set of all topological 
indices which cumulatively explained 95.2% of the variance in the topological indices. These formed the 
final sets of PCs which were used in creation of the similarity spaces and selection of analogs for these 
three methods. 

Each similarity method was used to select sets of analogs for each of the seventy-six compounds in the 
dataseL The analogs selected by each set were compared with the analogs selected by every other method 
to examine the overlap between the sets of analogs. The results of this comparison are presented in Table 
1 below as the arithmetic mean of the cardinalities of the intersection of subsets of analogs chosen by a 
particular pair of similarity methods for a specific value of K. For example, the topostructural and 
topochemical similarity methods selected an average of 2.2 identical analogs out of five for the entire set 
of seventy-six chemicals. Thus, slightly under half of the analogs selected by the two methods were 
identical. 

It is clear from the data in Table 1 that the five molecular similarity methods studied in this paper are not 
radically different from one another because they have a substantial degree of overlap in the profile of 
selected neighbors. This is an interesting observation in view of the fact that the structure spaces are 
constructed from such diverse, independent variables as experimentally determined physicochemical 
properties and calculated graph invariants. 

A perusal of the data also shows that the property-based similarity method is distinct from the group of 
methods based on topological indices and atom pairs. For K = 20, for example, the average number of 



common neighbors for the property-based methods vis-a-vis the topostructural, topochemical, all index 
and atom pair-based methods are 8.7, 8.9, 8.6 and 8.9, respectively. For the same value of K, the number 
of common analogs for the topostructural method with atom pair, topochemical and all index methods 
are 12.3, 12.2 and 13.1, respectively. 

Table 1. Comparisons of the overlap in analog selection for five distinct similarity methods.  

K     SvsC     SvsT     CvsT     S vs P     C vs P     TvsP     S vs A    C vs A    TvsA     PvsA 

5 2.2 2.5 3.5 1.2 1.6 1.6 2.2 2-1 2.3 1.9 

10 5.0 5.4 7.1 3.1 3.4 3.5 4.8 4.7 5.0 4.1 

15 8.6 9.2 11.3 5.6 5.7 5.7 8.2 7.8 8.1 6.3 

20 12.2 13.1 15.1 8.7 8.9 8.6 12.3 10.7 11.0 8.9 

25 15.7 16.7 19.5 12.1 12.3 11.9 16.3 14.3 \ 14.3 12.1 

30 20.0 20.9 23.8 16.0 16.6 15.8 19.5 17.4 17.4 15.7 

35 24.7 25.6 28.9 20.5 21.1 20.0 22.9 21.4 21.1 20.4 

40 30.4 30.9 33.9 25.1 25.9 25.0 26.6 25.9 25.5 24.6 

S = topostructural indices P = physicochemical parameters 
C = topochemical indices A = atom pairs 
T = all topological indices       ." 

For the three similarity methods calculated from the topological indices, the topochemical indices seem 
to have more influence on the selection of neighbors when they are used along with topostructural 
parameters as independent variables. This is clear from the fact that for almost all values of K the 
topochemical and all index methods have a uniformly higher degree of overlap as compared to that 
between the topostructural and all index methods. 

In conclusion, if one is interested in selecting only two candidates from the set of five methods studied 
here for analog selection, the property-based method and any one of the theoretically-based methods 
would be the choice. There is no criteria to decide which of the four topologically-based methods should 
be selected for a particular occasion. Further studies of the analog selection and property prediction 
profile of these methods are necessary to guide the selection of a specific method for a particular 
practical situation. 
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INTRODUCTION 

A current interest in the fields of chemistry, toxicology and biomedical 
sciences is the pred.cuon of the property/activity of chem.cals from 
calculated molecular descriptors [1-6]. In both environmental hazard 
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these compounds have vcrv hale of the experimental data necessary for the 
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estimation of their toxicity or efficacy. In this age of combinatorial chemistry, 
one can synthesize thousands of chemicals very quickly. However, experi- 
mental testing of these large numbers of chemicals would not be cost effective. 
Also, it is possible to create virtual libraries consisting of billions of structures 
In this case one would like to know the toxic, as well as therapeutic, potential 
of such a vast collection of chemicals. The experimental data necessary for the 
predict.on of the toxicity/activity of these large and diverse sets of chemicals 
will not be available to us in the near future. 

This pervasive lack of experimental data demonstrates the need for the 
development of predictive models based on parameters that can be cal- 
culated directly from a chemical's molecular structure. Recently, our research 
group has been involved in the development of a hierarchical approach 
to quantitative structure-activity relationship (QSAR) model development 
for predicting physicochemical, toxicological and pharmacological prop- 
erties of chemicals using theoretical molecular descriptors [3, 6-10] Various 
topological indices (TIs) fall  in  this category of molecular descriptors 
[11 -23]. Balaban has classified TIs into three generations based on whether 
they are integers, real numbers or a sequence of numbers [24]. Different 
classes of TIs quantify various aspects of molecular structure. We have shown 
in the past that various indices, .•/.-., connectivity indices and complexity 
indices developed and used by Basak el al. [15-18] quantify distinctly 
different types of molecular structural information. Such indices can be cal- 
culated very rapidly. On the other hand, geometrical and quantum chemical 
parameters  encode  information   regarding  the  stereo-electronic  aspects 
of molecules. These classes of parameters are also algorithmically derived 
i.e., they can be calculated for any real or hypothetical molecular structure 
without any input of experimental data. 

One of our recent interests has been to test the relative effectiveness of the 
four classes of theoretical molecular descriptors mentioned above in the 
development of QSARs for predicting property/activity/toxicity of chemi- 
cals [3, 6-10]. In this paper we have used these parameters in the develop- 
ment of models for predicting mutagenicity/non-mutagenicity of a set of 127 
aromatic amines. 

METHODS 

Datasets 

A set of 127 aromatic and heteroaromatic amines, previously collected from 
the literature by Debnath et al. [25], were used to study mutagenicity. The 
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mutagenicity of these compounds in S. Typhimurium TA98 + S9 m.crosomal 
preparation has been expressed as positive or negative mutagenic.ty by 
Benigni [26]. Compounds included in this study and their mutagenic 
classification based on experimentally determined mutagenic potency are 
given in Table I. Of the compounds used in this study, 106 were classified as 
mutagens while twenty-one were determined to be non-mutagens. 

TABLE I    Aromatic and heteroaromatic amines 

Chemicals TA9% 
(Expl.) 

TA9Z 
(Pred.)2 

2-Bromo-7-aminofluorene 
2-Melhoxy-5-methylaniline (p-cresidine) 
5-Aminoquinoline 
4-Ethoxyaniline (p-phenetidine) 

1 -Aminonaphthalene 
4-Aminofluorene 
2-Aminoanthracene 
7-Aminofluoranthene 
8-Aminoquinoline 
1,7-Diaminophenazinc 
2-Aminonaphthalene 
4-Aminopyrene 
3-Amino-3 -nilrobiphenyl 
2.4.5-Trimelhylaniline 
3-Aminofluorene 
3.3'-Dichlorobenzidme 
2.4-Dimethylaniline (2.4-xylidine) 
2.7-Diaminofluorene 
3-Aminofluoranlhene 
2-Aminofluorene 
2-Amino-4'-nitrobiphenyl 
4-Aminobiphenyl 
3-Methoxy-4-methylaniline (o-cresidinc) 
2-Aminocarbazolc 
2-Amino-5-nitrophcno! 
2.2'-Diaminobiphenyl 
2-Hydroxy-7-aminoftuorenc 
1 • Aminophenanlhrcne 
2.5-Dimethylanilinc (2.5-xylidine) 
4-Amino-2'-nilrobiphenyI 
2-Amino-4-melhylphenol 
2-Aminophenazine 
4-Aminophcnylsulfide 
2.4-Dinitroaniline 
2.4-Diaminoisopropylbcnzene 
2.4-Difluoroaniline 
4.4'-Methylenedianiline 
3.3'-Dimethylbenzidme 
2-Aminofluoranthcnc 
2-Amino-3'-nitrobiphenyl 
1 -Aminofluoranthene 
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TABLE I    (Continued) 

Chemicals TA9S, 
(Expl.) 

TA9Ü 
(Pred.Y 

4,4'-Ethylenebis (aniline) 
4-Chloroaniline 
2-Aminophenanthrene 
4-Fluoroaniline 
9-Aminophenanlhrene 
3.3'-Diaminobiphenyl 
2-Aminopyrene 
2,6-Dichloro-l,4-phenylenediamine 
2-Amino-7-acetamidofluorene 
2,8-Diaminophenazine 
6-Aminoquinoline 
4-Methoxy-2-methylaniline (m-cresidine) 
3-Amino-2'-nitrobiphenyl 
2,4'-Diamino-biphenyi 
1,6-Diaminophenazine 
4-Aminophenyldisulfide 
2-Bromo-4,6-dinitroaniline 
2.4-Diamino-n-butylbenzene 
4-AminophenyIether 
2-Aminobiphenyl 
1,9-Diaminophenazine 
l-Aminofluorene 
8-Aminofluoranthene 
2-Chloroaniline 
2-Amino-aaa-trifluorotoluenc 
2-Amino-l-nitronaphthalene 
3-Amino-4'-nitrobiphenyl 
4-Bromoaniline 
2-Amino-4-chlorophenol 
3.3'-Dimethoxybenzidine 
4-Cyclohexylaniline 
4-Phenoxyaniline 
4.4'-Methylenebis (o-ethylaniline) 
2-Amino-7-Nitrofluorene 
Benzidine 
I -Amino-4-Nitronaphthalene 
4-Amino-3'-Nitrobiphenyl 
4-Amino-4'-Nitrobipheny! 
I-Aminophenazine 
4.4'-Methylenebis (o-fiuoroaniline) 
4-Chloro-2-nitroaniline 
3-Aminoquinoline 
3-Aminocarbazole 
4-Chloro-1,2-phenylenediamine 
3-Aminophenanthrene 
3.4'-Diaminobiphenyl 
l-Aminoanthracene 
l-Aminocarbazole 
9-Aminoanthracene 
4-Aminocarbazole 
6-Aminochrysene 
l-Aminopyrene 
4-4'-Methylenebis(o-isopropyl-a inline) 
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TABLE I    (Continued) 

Chemicals  

2.7-Diaminophenazine 
4-Aminophenanthrene 
2,4-Diaminotoluene 
3,3'-Diaminobenzidinc 
1.3-Phenylenediamine 
3,4-Diaminotoluene 
1,2-Phenylenediamine 
3-Amino-6-methylphenol 
2,4-Diaminoethylbenzene 
4,4'-Methylenebis(2,6-diisopropylanilinc) 
4,4'-Methylenebis (2,6-diethylaniline) 
4.4'-Methylenebis(2-methyl-6-(-butylaniline) 
4,4'-Methylenebis(2-methyl-6-isopropylaniltne) 
4!4'-Methylenebis (2-methyl-6-elhylanihne) 
4,4'-Methylcnebis (2.6-dimethylaniline) 
3-Aminobiphenyl 
2.3-Diaminobiphenyl 
2-Mcthyl-4-chloroaniline 
2-Chloro-4-methylanilinc 
4-Mcthoxyaniline 
3-Methoxyaniline 
Aniline 
3-Chloroanilinc 
3-Elhoxyanilmc 
2-Elhoxyaniline 
4-Aminophenol 
3-Aminophenol 
2-Aminophenol 
2-Methoxyanilinc 
4-Chloro-1.3-phenylenediamine 
2-Niiro-1,4-phenylenediamine 
4-Nilro-1,3-phenylenediamine 
4-Nilro-1.2-phcnylenediamine  

TA 98 
(Expl.) 

TA9& 
(Pred.f 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 

I 
1 
1 
1 
0 

1 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 

1 
1 
1 
0 
0 
1 
1 
1 
1 
1 

'   The  table  «ports  the mutagenic.y  of the aromat.c  and   he.eroaroma.ic  amines  a,   0 - negative; 

: TAWresults predicted using toposlructural and topochem.cal indices 

Computation of Indices 

Topologicat indices used in th.s study have been calculated by POLLY 2.3 
[27] which can calculate a total of 102 .ndices. These indices include Wiener 
index [28], connectivity ind.ces [11.12], information theoretic indices defined 
on distance matrices or graphs [13.14], a set of parameters derived on the 
neighborhood complexity of vertices in hydrogen-filled molecular graphs 
[15- 18], as well as Balaban's J indices [19-21]. Table II provides brief de- 
finitions for the topological indices included in this study. 
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TABLE II    Symbols, definitions and classifications of topological parameters 

Toposlruclural 

|* Information index for the magnitudes of distances between all possible pairs of 

vertices of a graph 
I* Mean information index for the magnitude of distance 
W Wiener index = half-sum of the off-diagonal elements of the distance matrix of 

a graph 
/" Degree complexity 
H' Graph vertex complexity 
H" Graph distance complexity 
TC Information content  of the distance  matrix  partitioned  by  frequency  of 

occurrences of distance h 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen- 

filled graph 
M, A Zagreb group parameter = sum of square or degree over all vertices 
M2 A   Zagreb  group  parameter = sum  of cross-product   of degrees  over  all 

neighboring (connected) vertices 
\ Path connectivity index or order A = 0-6 
*Xf Cluster connectivity index of order h = 3-6 
hXcn Chain connectivity index of order h = 3-6 
*XPC Path-cluster connectivity index of order h = 4-6 
/>,, Number of paths of length h = 0- 10 
J Balaban's J index based on distance 

Topochemical 

|()RB Information content or complexity of the hydrogen-suppressed graph at its 
maximum neighborhood of vertices 

IC, Mean information content or complexity of a graph based on the r'  (r = 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SIC, Structural information content for r,h (r = 0-6) order neighborhood or vertices 
in a hydrogen-filled graph 

CICr Complementary information content for r'h (r = 0-6) order neighborhood or 
vertices in a hydrogen-filled graph 

hyh Bond path connectivity index oi" order h = 0-6 
*^£ Bond cluster connectivity index or order h = 3-6 
*jA Bond chain connectivity index or order h = 3-6 
*^^c Bond path-cluster connectivity index or order h = 4-6 
*^' Valence path connectivity index or order h = 0-6 
l,^'c Valence cluster connectivity index or order/i = 3-6 

*x' Valence chain connectivity index or order h = 3-6 
*xj,c Valence path-cluster connectivity index or order h = 4-6 

JB Balaban's J index based on bond types 
Jx Balaban's J index based on relative electronegativities 
Jy Balaban's J index based on relative covalent radii 

Values for log/5 and the quantum chemical parameters 6HOMO and 
€LUMO were taken from the work of Debnath et al. [25]. Octanol/water 
partition coefficients (log P) were determined experimentally for a set of 67 
aromatic and heteroaromatic amines and, when these values were determined 
to be in agreement with values calculated using the CLOGP program (release 
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3.54), the remainder of the log P values were calculated using CLOGP [29]. 
The quantum chemical parameters provided by Debnath et al., €HOMO and 
€LUMO were calculated using the semi-empirical AMI of MOPAC 4.10 
(Quantum Chemistry Program Exchange No. 455) [30]. 

Data Reduction 

Initially, all TIs were transformed by the natural logarithm of the index plus 
one. This was done since the scale of some indices may be several orders of 
magnitude greater than that of other indices and other indices may equal zero. 

The set of 95 TIs was partitioned into two distinct sets: 38 topostructural 
indices and 57 topochemical indices. Topostructural indices are indices 
which encode information about the adjacency and distances of atoms 
(vertices) in molecular structures (graphs) irrespective of the chemical nature 
of the atoms involved in the bonding or factors like hybridization states of 
atoms and number of core/valence electrons in individual atoms. Topo- 
chemical indices are parameters which quantify information regarding the 
topology (connectivity of atoms) as well as specific chemical properties of 
the atoms comprising a molecule. Topochemical indices are derived from 
weighted molecular graphs where each vertex (atom) is properly weighted 
with selected chemical/physical properties. The categorization of the 95 TIs 

into these sets is shown in Table II. 
To further reduce the number of independent variables to be used for model 

construction, the sets of topostructural and topochemical indices were further 
divided into subsets, or clusters, based on the correlation matrix using the S AS 
procedure VARCLUS [31]. This variable clustering procedure divides the 
set of indices into disjoint clusters such that each cluster is essentially 
unidimensional. The index most correlated with each cluster, as well as any 
indices which were poorly correlated with the cluster (r < 0.70), were selected 
for model development. Variable clustering was performed independently for 

both the to'postructural and topochemical subsets. 

Statistical Analysis and Hierarchical DFA 

Selection of indices for the final models was conducted using all subsets 
regression on the sets of indices chosen through variable cluster analysis in 
the SAS procedure REG [32]. This all subsets procedure was performed on 
four distinct sets of indices: (1) the topostructural indices selected by variable 
clustering, (2) the topostructural indices selected in all subsets regression and 
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the topochemical indices selected during variable clustering, (3) the 
topostructural and topochemical indices selected in all subsets regression 
and log/*, and 4) the model chosen for topostructural and topochemical 
indices with log P and with the addition of £HOMO and 6LUMO -These sets of 
indices were then used to develop and crossvalidate discriminant function 
models for classifying the mutagenicity/non-mutagenicity of the 127 aromatic 
and heteroaromatic amines. Figure 1 illustrates the process for the selection of 
indices and formulation of DFA models. 

RESULTS AND DISCUSSION 

In the first step of our hierarchical modeling, 38 topostructural parameters 
were subjected to variable clustering procedure. The following indices were 
retained from the five clusters generated: Iß,IC,0,4xc<6Xch/xPC, P^J- 
These five clusters explained a total variation of 35.29 and the proportion of 
the variance explained was equal to 92.86%. Of the 57 topochemical indices, 
the following ten indices were selected from eight clusters: IC0,1C2, IC4, 

SIC:,SIC4,4x^,6x^h,
4Xpc-:x'--/>- The ei8ht clusters generated from the 

topochemical indices resulted in a total variation explained of 51.65 and the 
proportion of the variance explained was equal to 90.61%. These indices 
were then included in the all subsets regression procedure for the selection of 
final indices for discriminant function analysis. In all cases, the RSQUARE 
and ADJRSQ values were examined as indicators of model fit, however the 
final models were selected based on the Mallow's Cp statistic (CP). Statistics 
for the cluster analysis and the inter-correlation of the clusters for the topo- 
structural indices are presented in Tables III and IV, respectively. Similar 
statistics for the variable clustering of the topochemical indices can be found 
in Tables V and VI. 

The all subsets regression of the eight topostructural indices resulted in 
the selection of the following indices for model development: Iß,IC, Py 
These indices were used to create the topostructural DFA model, the 
simplest model in the hierarchy, and were also combined with the ten 
topochemical indices to create the second model in the hierarchy. All subsets 
regression of the thirteen topostructural and topochemical indices resulted 
in the selection of the following indices for modeling: I„, IC, P3, IC0, SIC2. 
These indices were combined with \ogP and resulted in a six parameter 
model with log P added to the complete set of descriptors from the second 
model. Finally, the quantum chemical descriptors, SHOMO and 6LUMO. were 
combined with the set of six indices and all subsets regression was used again 
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Topostructural Descriptors 
38 Variables 

Cluster 
Analysis 

5 Clusters 
8 Variables 

All Subsets 
Regression 

3 Variables 

DFA 

3 Variable 
DFA 

Topochemical Descriptors 
57 Variables 

Cluster 
Analysis 

5 Variable 
DFA 

All Subsets 
Regression 

5 Variables 
6 Variable 

DFA DFA 

5 Variable 
DFA 

FIGURE I    Illustration  or the  hicrarchit.il  method  of index  selection  and  discriminant 
function analysis. 

to select the best parameters Tor model construction. This procedure resulted 
in the selection of the following model: Ip.IC, P^logP, GLUMO- 

Discriminant function analysis, using the SAS procedure DISCRIM [33], 
was used to develop models for predicting mutagenicity/non-mutagenicity 
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TABLE III    Statistics for the varia ble cluster ani lysts of the topostructura indices 

Cluster Members Variation Proportion Second Index most Correlation 
explained explained eigenvalue correlated 

1 18 16.99 0.94 0.71 Pi 0.9918 

2 2 2.00 1.00 0.00 V 0.9992 

3 3 2.15 0.71 0.72 "xch 0.9104 

4 12 11.41 0.95 0.45 'D 0.9977 

5 3 2.73 0.91 0.18 4XPC 0.9474 

TABLE IV    Intercorrelation of the clusters generated in the variable cluster analysis of the 
lopostructural indices 

Cluster I 

1.0000 
0.0735 1.0000 
0.6317 -0.0707 1.0000 
0.9327 0 1389 0.3922 1.0000 
0.7131 04006 0.2275 0.7793 

5 

1.0000 

TABLE V    Statistics for the variable cluster analysis of the topochemical indices 

Cluster Members        I'anation       Proportion Second        Index most     Correlation 
explained       explained      eigenvalue      correlated 

19 17.61 093 0.58 V 0.9686 

8 7.52 094 0.42 SICj 0.9876 

4 3.76 0 94 0.24 V 0.9484 

6 5.11 085 0.80 Jy 08889 
5 4.72 094 0.23 IC4 0.9880 

4 3.72 093 0.27 6.* 0.9419 

6 4.68 0 78 0.79 SIC 0.9079 

5 4.52 090 0.21 4    h 
XPC 0.9225 

TABLE VI    Intercorrelation of the clusters generated in the variable cluster analysis of the 
topochemical indices 

Cluster 1 2 3 4 5 6 7 8 

1 1.0000 
■> -0.4121 1.0000 
} 0.2311 -02150 1 (»0(H) 
4 -08162 0 4459 -0 0885 1.0000 
S 0 3407 0 6649 -0 0641 -0 2594 1.0000 
6 04739 02192 - 0 0509 -0 4812 0.5033 1.0000 
7 -0.5604 0 4636 -01072 0.7565 -0.0130 -0.2089 1.0000 

8 07805 -0 5046 0 5542 -0.4287 00484 0.1481 -0.2913 1.0000 
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TABLE Vll    Results of the cross-validated discriminant function analyses 

 —-—. ~ZIZ % Correct % Correct 
Hierarchical classes Mices lnon.mulagens) (mutagens) 

Topostructural I0,jC. rj 

Topostructural + lD.\C.Py. 
Topochemical ICo^SIC? 

Topological + log P '« •1C- p>- 
ICo.SlQ.logf 

Topological + log P + l£, IC. Pj. 

Quantum chemical log P. SLUMP 

28.6 95.3 

42.9 93.4 

38.1 95.3 

33.3 95.3 

of chemicals in the Ames test. Four distinct models were developed using the 
indices selected from the all subsets regression procedure as described above. 
The results in Table VII shows that all four models could predict the muta- 
genicity of chemicals 93% to 95% of the time whereas they were less effective 
in predicting non-mutagenicity (29% to 43%). 

The addition of topochemical to the set of topostructural indices result- 
ing in the best predictive model, are shown in Table VII. It is clear from the 
results that the addition of topochem.cal indices to the set of topostructural 
indices did slightly decrease the prediction of mutagenicity. However there 
was a significant improvement in the prediction of non-mutagcmaty by the 
addition of topochemical indices to the set of independent variables. 

Finally the addition of log P and quantum chemical indices did not make 
any improvement in the models. This is in line with our earlier work w,th 
physical and biochemical properties which showed that topostructural and 
topochemical indices explain most of the variance in the data [3, 6- 10]. 
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A hierarchical approach to quantitative structure-activity relationship (QSAR) modeling has been used to 
the estimate the complement-inhibitory potency of 105 benzamidines. This hierarchical approach uses 
topostructural, topochemical, and geometric parameters in a stepwise fashion to build increasingly more 
complex models. The results show that topostructural indices alone, specifically P, predict inhibitory potency 
reasonably well The addition of topochemical and geometrical parameters to the set of descriptors provides 
only marginal improvement in predictive power. However, when taken alone, the geometric parameter 
3DW provides a more stable model than the topostructural one. 

1. INTRODUCTION 

A recent trend in structure-activity relationships (SAR) 
is the use of topological and geometric parameters in 
predicting the physicochemical, biochemical, and toxicologi- 
cal properties of molecules.1-23 Topological indices (TIs) 
are numerical descriptors of molecular topology and encode 
information regarding the size, shape, branching, and sym- 
metry of molecular graphs.23 TIs and substructure param- 
eters have been very useful in the development of quantitative 
structure-activity relationship (QSAR) models, in the quan- 
tification of the structural similarity of chemicals and in the 
similarity-based estimation of numerous physical and bio- 
logical properties of diverse sets of molecules.24-39 On the 
other hand, geometric variables such as total surface area, 
volume, and three-dimensional Wiener index have been 
employed in QSARs pertaining to biomedicinal and toxico- 
logical action of molecules with good results.314-40-44 

One interesting area of research in biochemistry, pharma- 
cology, and toxicology is the rationalization of the action of 
classes of chemicals with specialized modes of action. 
Specificity in enzymology, immunology, and toxicology 
arises out of specific structural features which lead to 
particular types of interactions between ligands and their 
biotargets. Topological and geometric parameters have been 
used in the development of QSARs of many groups of 
molecules with specific modes of action.3•7•9■,0•13•,4•^l7J,-33•42-44 

Complement is a system of factors occurring in normal 
serum which are characteristically activated by antibody- 
antigen interactions and which subsequently mediate a 
number of biologically significant consequences.45 The 
factors of the complement system include at least 20 
chemically distinct serum proteins and glycoproteins. These 

Table 1.   Conflicting Data for Structure and Log \IC for Four 
Benzamidines   
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no. obsd log 1/C 

77 3-0(CH2)30C6H4-3-NHCONHC6H4-3',-S02F 
95 3-0(CH2)30C6H4-3-NHCONHC6H4-3-S02F 
97 3-0(CH2)30C6H4-3-NHCOC6H4-4-S02F 

108 3-0(CH2)3OC6H4-3-NHCOC6H4-4-S02F 

"This S02F group should be meta- instead of para-. 

4.23 
4.51 
4.57 
5.21 

H,N 

Figure 1.  Neutral base structure for the 107 benzamidines. 

factors, which normally exist in an inactive form, are 
activated by "classical" and "alternative" pathways. Both 
pathways generate macromolecular membrane attack com- 
plexes which lyse a variety of cells, bacteria, and viruses.46 

Products of this activation result in inflammatory reactions 
at the site of antibody-antigen interaction. This is especially 
pronounced in the case of organ specific and systemic 
autoimmune disorders. Therefore, control of unregulated 
complement activation is important, at least in the case of 
autoimmune disease. 

Hansch and Yoshimoto47 carried out a QSAR study of a 
set of 108 benzamidine derivatives using linear free-energy 
related (LFER) parameters. This series of compounds are 
inhibitors of the complement system. In view of the fact 
that LFER parameters are not routinely available for any 
arbitrary chemical, real or hypothetical, it was of interest to 
see whether computable parameters such as TIs and geo- 
metric indices can give a reasonable QSAR for the set of 
benzamidines. Therefore, in this paper we have carried out 
a comparative study of the utility of topological indices vis- 
a-vis calculated geometric parameters in predicting the 
complement-inhibitory potencies of this set of benzamidines. 

© 1999 American Chemical Society 
Web 12/04/1998 
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Table 2.   Side-Chain Structures and Biological Property Data for 107 Benzamidines 

l/log C 1/logC 

obsd     predict."     resid      no. 

1 3.5-(OCH,h -0.452 -0.367" -0.085 55 
2 2-CHj -0.444 -0.405 -0.040 56 
3 3,4-(CH,h -0.425 -0.389 -0.036 57 
4 H -0.418 -0.417 -0.002 58 
5 3-OH -0.415 -0.402 -0.012 59 
6 S-NHCOtCHihCjH, -0.412 -0.302» -0.110 60 
7 3-CF, -0.410 -0.369 -0.041 61 
8 3-NO; -0.410 -0.378 -0.032 62 
9 3-Br -0.405 -0.401 -0.004 63 

10 3-CHj -0.398 -0.402 0.004 64 
11 3-OCH, -0.397 -0.389 -0.008 65 
12 3-CH:C6H, -0.373 -0.339 -0.034 66 

13 3.5-(CH,): -0.361 -0.389 0.028 67 
14 3-OC,H, -0.355 -0.362 0.007 68 

15 3-i-C,H|, -0.355 -0.353 -0.002 69 
16 3-OC4H» -0.351 -0.349 -0.001 70 
17 3-OH, -0.338 -0.362 0.024 71 
18 3-CH-CHC.H, -0.339 -0.325 -0.014 72 
19 3-OCH,C„H, -0.331 -0.326 -0.005 73 

20 3-(CH:);C,H, -0.330 -0.326 -0.004 74 

21 3-OCH,, -0.329 -0.327 -0.002 75 

22 3-0(CH;)40Q>H, -0.325 -0.288 -0.037 76 

23 S-CKCHjkOCH, -0.323 -0.306 -0.017 77 

24 3-C.H, -0.323 -0.347 0.025 78 
25 3-CXCH:),OC,Hl-4-COOH -0.321 -0.277 -0.044 79 

26 3-OC.H,, -0.320 -0.338 0.017 80 
27 3-0-,-C,H„ -0.318 -0.341 0.022 81 
28 3-O(CH:):0C,„H,-0. -0.312 -0.283 -0.030 82 

29 3-0(CH;),OCH,-4.NH. -0.306 -0.282 -0.024 83 

30 V(CH;),OH, -0302 -0306 0.004 84 

31 3-CXCH:bOC«,H,-l-NO: -0.301 -0.277 -0.024 85 

32 3-CXCH:),OCH.-»-NH: -0.300 -0.290 -0.010 86 
33 3-(CH:):-»-C.H.N -0.299 -0.326 0.026 87 

u    3-OiCH:),OC«H, -0.299 -0.297 -0.003     88 

35 3-0(CH;>,C,H, -0.296 -0.306 0010     89 

36 3-lCH:>.-3CMt,N                                              '     -0.294 -0 326 0.032     90 
37 3-<CH;>,GH4-4.NHAc -0294 -0.273 -0.021      91 
3S    3-(CH;t:-2-aH,N -0.291 -0.326 0.035     92 
39 3-OCH;),OC.H,-2-NH; -0.283 -0.291 0.009     93 
40 3-0(CH:>,OQR.-4-NHAc -0.278 -0.265 -0.012     94 

41 3-<CH;i.-3-C,R,N -0.276 -0.306 0.030     95 

42 3-CXCH;),GH, -0.276 -0.297 0.020     96 

41    3-aCH:),OOR.-3-NHAc -0.270 -0.267 -0.003     97 

44 3-CHCH!),OC.H,-3.4-Cl:                                         -0.265 -0.283 0.018     98 
45 3-0(CH,).0C.H1-3-NH;                                          -0 265 -0.290 0.025     99 
46 3-CHCH!),OCH,-2-NHCOC6H.-4-SO;F                 -0 265 -0.237 -0.028 100 
4->    3-OCH. >,OQH<-2-NHCOC«H.                              -0.265 -0.253 -0012 101 
48 3-CXCH:hOC.H.-»-OCH,                                        -0.262 -0.283 0022 102 
49 30(CH:1.0C.ri,-4-NHCONHC«a,-»-SO;F            -0.260 -0.219 -0040 103 
50 3-CXCH:),OC.H4-2-NHCOC»Hr2-OCH,-5-SO;F   -0 260 -0.233 -0 027 104 
51 3-CHCH.),OC.a,-»-Cl                                             -0257 -0 290 0033 105 
52 3-CKCH.>,OC4t.-2-NO:                                          -0.257 -0.281 0 024 106 
53 3aCH:),OC»R,-3-NO:                                          -0.257 -0.278 0 021 107 
54 3-CHCH:),OC.H.-3-OCH,                                       -0.256 -0 283 0027 

3-0(CH:))OC„H4-2-NHCOC6H,-2-Cl-6-SO:,F 
3-0(CH;),OC«,H4-2-NHCONHC6H< 
3-0(CH;),OC4H4-2-NHCONHC,,H,-2-Cl-5-SO;F 
3-0(CH3),OC6H4-2-NHCONHCH;C,,H4-4-SOjF 
3-0(CH2)jOC6H4-2-NHCONH-C6H;-2.4-(CH,)r5-SO;F 
3-0(CH,)jOQH4-4-COOCHj 
3-0(CH;),OC»H,-3-NO;-4-CH, 
3-0(CH:),OC«H.-3-CF, 
3-0(CH3),OC6H4-2-NHCONHC6fV»-CH,-3-SO;F 

3-0(CH:)jOQR,-4-NHCOC6H5 
3-0(CH,),OCtH4-2-NHCOCH,OCtH4-t-SO;F 
3-0(CH;>,OQrl4-4-NHCOC6H,-»-OCHj 
3-0(CH,),OCtH4-2-NHCOQHl-3-SO;F 
3-0(CH2)jOC4H1-2-NHCOCH;C6H,-4-SO,F 
3-0(CH,)jOQR,-3-COOCHj 
3-0(CH;)jOC6H4-2-NHCO(CH;);C6H4-4-SO;F 
3-0(CH:)iOC6H,-»-NHCOC(1H,-4-NO, 
3-0(CH:)30C«H,-2-NHCOC«HJ-4-NO: 

3-0(CH!)jOC6H1-4-NHCONHC4Hs 

3-0(CH,)3OC«H4-4-NHCOCtH,-3-NO: 
3-0(CH,),OC6H1-2-NHCO(CH:)4CtH4-4-SO;F 
3-0(CH:)1OCtHl-2-NHCONHC6H1^-SO!F 
3-0(CH,),OCH,-3-NHCONHC6H4-»-S03F 
3-0(CH;)jOC6H4-2-NHCONH(CH;):C6H4-4-SO!F 
3-0(CH;)4CX;6H4-3-NHCOC6H1-4-SO;F 
3-0(CH:),OC6H4-2-NHCONHC1H,-4-Cl-3-SO!F 
3-0(CH:)40C6H4-2-NHCOCtH,^l-CH,-3-SO;F 
3-0(CH:),OC6H,-2-NHCOC6H;-2.4-(CHj)r5-SO:F 
3-0(CH;)jOCtH4-2-NHCOC6Hr2.4-Clr5-SO:F 
3-(CH;)4C«H4-2-NHCONHC6H4-3-SO;F 
3-0(CH;)JOC6H4-3-NHCOC6HJ-4-OCH, 
3-(CH!)4C«H4-2-NHCONHC6H,-4-SO!F 
3-0(CH!))OCtH,-4-NHCOC6H4-4-Cl 
3-0(CH:))OC«H.-2-NHCOC6H,-2-CH,-5-SO!F 
3-0(CH;)40C«H.-4-NHCONHCtH,-2-OCH,-5-SO;F 
3-0(CH:)jOCtH4-4-C6H, 
3-0(CH;),OC6H4-2-NHCONHC6R,-3-SO;F 
3-0(CH;),OCtH4-3-NHCOC,,H4-3-SO;F 
3-0(CH;);OC6H4-3-NHCOC6H,-3-SO;F 
3-0(CH;)jCK:6H4-4-CHr3-NHCOCH.-4-SO;F 
3-0(CH:),OC<,H,-3-NHCONHC,H4-3-SO,F 
3-0(CH;),OC6H,-3-NHCOCH:CH4Jt-SO,F 
3-0(CH;))OC6H4-3-NHCOC6H,-4-SO;F 
3-0(CH:)jOC4H4-2-NHCONHC6Hr2-Cl-5-SO,F 
3-0(CH;),OC4H4-3-NHCOCH!OC6H4-*-SO;F 
3-0(CH:)?OC6H,-3-NHCONHC(,H4-4-SO;F 
3-0(CH;)40C»H4-3-NHCONHC6H,^l-SO;F 
3-0(CH!),OC(,H4-3-NHCOC6H,-4-NO; 
3-0(CH:):OC,H4-3-NHCOC6H4-4-SO:F 
3-0(CH;)4OC6H4-2-NHCONHC6H,-2-a-5-SO:F 
3-0(CH;)iOCtH4-3-NHCONHC,H4-4-NO; 

3-0(CH:),OC6H.-4-CH,-3-NHCONHC6H4^-SO!F 
3-0(CH:)jCX:6H4-3-NHCONH(CH!):C6H4-4-SO,F 

obsd predict." resid 

-0.255 -0.237 -0.018 
-0.255 -0.249 -0.006 
-0.250 -0.236 -0.014 
-0.250 -0.228 -0.022 
-0.248 -0.229 -0.019 
-0.247 -0.271 0.025 
-0.245 -0.273 0.028 
-0.245 -0.273 0.028 
-0.245 -0.229 -0.015 
-0.244 -0.246 0.002 
-0.244 -0.227 -0.017 
-0.243 -0.236 -0.007 
-0.243 -0.238 -0.005 
-0.243 -0.233 -0.010 
-0.242 -0.272 0.030 
-0.242 -0.227 -0.014 
-0.239 -0.232 -0.007 
-0.239 -0.241 0.002 
-0.237 -0.241 0.004 
-0.237 -0.233 -0.005 
-0.237 -0.217 -0.020 
-0.237 -0.233 -0.004 

-0.236 -0.225 -0.011 
-0.236 -0.223 -0.014 

-0.236 -0.223 -0.013 
-0.235 -0.229 -0.006 
-0.235 -0.229 -0.006 
-0.234 -0.233 -0.001 
-0.234 -0.233 -0.001 
-0.234 -0.239 0.005 
-0.233 -0.237 0.004 
-0.233 -0.239 0.007 
-0.232 -0.241 0.009 
-0.232 -0.236 0.004 
-0.232 -0.214 -0.018 
-0.230 -0.261 0.031 
-0.230 -0.233 0.003 
-0.230 -0.230 -0.000 
-0.229 -0.236 0.007 
-0.229 -0.226 -0.003 
-0.222 -0.226 0.004 
-0.220 -0.226 0.006 
-0.219 -0.229 0.010 
-0.217 -0.230 0.013 
-0.217 -0.219 0.002 
-0.216 -0.231 0.015 
-0.215 -0.220 0.005 
-0.214 -0.233 0.019 
-0.214 -0.235 0.021 
-0.207 -0.225 0.018 
-0.204 -0.230 0.025 
-0.204 -0.223 0.018 
-0.193 -0.215 0.022 

■' Predicted values based on eq 2. * Values for compounds excluded from final modeling, provided to show lack of fit. 

2. METHODS 

2.1. Database. The 107 benzamidines used in this study 
are those presented in the work of Hansch and Yoshimoto.47 

These data were compiled from a series of five articles by 
B. R. Baker,48-52 in which Baker and his students determined 
experimentally the inhibition of guinea pig complement by 
benzamidines. Hansch and Yoshimoto provide the structures 
and measured log MC values, where C is the micromolar 
concentration for 50% inhibition of complement (/50), for 
108 benzamidines. The numbered ordering used by Hansch 
and Yoshimoto will be used in this manuscript as well for 

ease of comparison. In the process of coding the data, it 
became evident that two of the compounds had structural 
duplicates with distinctly different values for log 1/C (see 
Table 1). Through close examination of Baker's work, it 
became evident that there was a typographic mistake in 
compound 77, while the error in compound 108 could not 
be accounted for. Thus, compound 108 was discarded from 
the set, leaving 107 benzamidine derivatives. The base 
structure of the benzamidines is presented in Figure 1, while 
their side chains and biological activities, both measured and 
estimated, are presented in Table 2. 



COMPLEMENT-INHIBITORY ACTIVITY OF BENZAMIDINES 

Table 3.   Symbols and Definitions of Topological and Geometrical Parameters 
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information index for the magnitudes of distances between all possible pairs of vertices of a graph 
mean information index for the magnitude of distance 
Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
degree complexity 
graph vertex complexity 
graph distance complexity 
information content of the distance matrix partitioned by frequency of occurrences of distance h 
information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices 
order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph 
A Zagreb group parameter = sum of square of degree over all vertices 
A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertices 
mean information content or complexity of a graph based on the rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
structural information content for rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
complementary information content for rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
path connectivity index of order h = 0-6 
cluster connectivity index of order h = 3-6 
path-cluster connectivity index of order h = 4-6 
chain connectivity index of order h = 6 
bond path connectivity index of order h = 0-6 
bond cluster connectivity index of order h = 3-6 
bond chain connectivity index of order h = 6 
bond path-cluster connectivity index of order h = 4-6 
valence path connectivity index of order h = 0-6 
valence cluster connectivity index of order A = 3—6 
valence chain connectivity index of order h = 6 
valence path-cluster connectivity index of order h = 4-6 
number of paths of length A = 0—10 
Balaban's J index based on distance 
Balaban's J index based on bond types 
Balaban's J index based on relative electronegativities 
Balaban's J index based on relative covalent radii 
van der Waal' s volume 
3-D Wiener number for the hydrogen-suppressed geometric distance matrix 
3-D Wiener number for the hydrogen-filled geometric distance matrix  

2.2. Calculation of Topological Indices (TIs). Topo- 
logical indices used in this study have been calculated by 
POLLY 2.3.5' These indices include Wiener index,54 con- 
nectivity indices,16-55 information theoretic indices defined 
on distance matrices of graphs,56-57 and a set of parameters 
derived on the neighborhood complexity of vertices in 
hydrogen-filled molecular graphs10-58_60 as well as Balaban's 
J indices.61-63 Table 3 gives brief definitions for the 
topological indices included in this study. 

23. Calculation of Geometrical Indices. Volume (V„) 
was calculated using the SybyF package from Tripos 
Associates. Inc. The 3-D Wiener numbers were calculated 
using Sybyl with an SPL (Sybyl Programming Language) 
program developed in our lab. Calculation of 3-D Wiener 
numbers consists of the sum entries in the upper triangular 
submatrix of the topographic Euclidean distance matrix for 
a molecule. The 3-D coordinates for the atoms were 
determined using CONCORD 3.0.1.65 Two variants of the 
3-D Wiener number were calculated. For 3DWH. hydrogen 
atoms are included in the computations, and for 3DW, 
hydrogen atoms are excluded from the computations. 

2.4. Data Reduction. Initially, all TIs were transformed 
by the natural logarithm of the index plus one. This was 
done since the scale of some indices may be several orders 
of magnitude greater than that of other indices. This scaling 
was also done for the geometric indices for consistency. 

The set of 92 TIs was divided into two distinct sets: 
topostructural indices (TSI) and topochemical indices (TCI). 

TSIs are topological indices which encode information about 
the adjacency and distances of atoms (vertices) in molecular 
structures (graphs) irrespective of the chemical nature of the 
atoms involved in the bonding or factors such as hybridiza- 
tion states of atoms, number of core/valence electrons in 
individual atoms, etc. TCIs are parameters which quantify 
information regarding the topology (connectivity of atoms) 
as well as specific chemical properties of the atoms compris- 
ing a molecule. TCIs are derived from weighted molecular 
graphs where each vertex (atom) is properly weighted with 
relevant chemical/physical properties. Table 4 shows the 
breakdown of the topological indices into structural and 

chemical indices. 
The sets of TSIs and TCIs were further divided into 

subsets, or clusters, based on the correlation matrix by using 
the SAS procedure VARCLUS.66 The VARCLUS procedure 
divides the set of indices into disjoint clusters so that each 
cluster is essentially unidimensional. 

From each cluster we selected the TI most correlated with 
the cluster as well as any TIs which were poorly correlated 
with the cluster (/? < 0.70). These TIs were then used in 
the modeling of benzamidine-mediated inhibition of guinea 
pig complement. The variable clustering and selection of 
TIs was performed independently for both the TSI and TCI 
sets of indices. 

2.5. Statistical Analysis. Regression modeling was 
accomplished using the SAS procedure REG.56 During the 
initial stages of statistical analysis it became apparent that it 
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Figure 2.  Scatterplot for observed 1/log C versus predicted 1/log C using eq 2 for the set of 107 benzamidines. 

Table 4.   Classification of Parameters Used in Developing Models 
for Complement Inhibition 
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would be necessary to perform an alternative transformation 
of the data. Using Hansch and Yoshimoto's Log MC 
transformation resulted in residual plots that showed that the 
variance of the errors correlated with the predictions. To 
deal with this problem, we back transformed the data to the 
initial value C and then tried several other transformations, 
finally settling on 1 /Log C which resulted in an uncorrelated 
residual plot. All subsets linear regression was then carried 
out on three distinct sets of indices: set I—three TSIs; set 
II—the TSI used in model I and four TCIs; and set III—the 
TSI retained in model I and the three geometrical indices. 
The regression analysis resulted in the final selection of TIs 
for the models. 

3. RESULTS 

Using only the topostructural class of indices, all-subsets 
regression resulted in a one parameter model to estimate I50: 

1/log C= -1.1245 + 0.4989(1°) (1) 

„ = 105, r = 0.940,  rc = 0.938, 5 = 0.0200,  F = 785 

This parameter was added to the set of topochemical 
parameters. Again, all-subsets regression was used to 
develop a model using this new set of independent variables. 
The best model for estimation of /50 once again used only 
P. This being the case, topochemical parameters were 
dropped from the modeling procedure. 

Using all-subsets regression on the one parameter from 
eq 1 and the three geometrical parameters resulted in the 
selection of a different one parameter model: 

1/log C - -0.6428 + 0.0490(3DW) (2) 

n = 105,  r = 0.943,  rc = 0.940, s = 0.0196, F = 824 

Compounds 1 and 6 were removed from all models, as 
they were both strongly influential and were classified as 
outliers as defined by the studentized range. The predicted 
values from eq 2 for all 107 benzamidines, including the 
results predicted for the two outliers, are presented in Table 
2. 

A scatter plot of the experimental data for the 107 
benzamidines versus the values predicted using eq 2 is 
presented in Figure 2. Predicted values for the two outliers 
have been included. 

4. DISCUSSION 

The objective of this paper was to study the relative 
effectiveness of topostructural, topochemical, and geometrical 
parameters in estimating the complement inhibitory potency 
of a set of benzamidines based solely on their chemical 
structures. Theoretical structural indices can be derived from 
distinct models of molecules. Also, various indices defined 
on the same representation of the molecule can quantify 
various aspects of molecular architecture. Recently, we have 
advocated the use of a "hierarchical QSAR approach" 
involving the TSI, TCI, geometrical, and quantum chem- 
ical indices in the successful development of predictive 
models.67"71 

In comparing our study to the work of Hanch and 
Yoshimoto,47 it must be pointed out that our models did little 
to improve on their QSAR analysis as can be seen from 
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examining our retransformed results with the results of their 

best equation. 

Basaketal. 105 0.943 0.264 
Hansch and Yoshimoto 108 0.935 0.258 

However, the LFER approach used by Hansch and Yoshim- 
oto required experimental data for all compounds in the study 
and significant input from a human expert for the determi- 
nation of the three "structural" indicator variables. One 
strength of our approach to this problem is the use of 
nonempirical theoretical descriptors which can be calculated 
solely from the chemical structure. With these purely 
theoretical descriptors we have modeled the inhibition of 
complement by benzamidines as successfully as Hansch and 
Yoshimoto using their LFER approach. 

It is clear from this study of 107 benzamidines that the 
TSI indices are sufficient to explain most of the variance in 
bioactivity. The addition of TCI and geometrical parameters 
did not substantially increase the predictive power of the 
models. However, quantum chemical indices were not used 
for model development with this set of compounds. 

TSls encode information about generalized size and shape 
of a molecule. The success of TSI parameters in explaining 
most of the complement-inhibitory action of these benz- 
amidines indicates that the general shape and size of these 
molecules largely determines their bioactivity. In some of 
our other studies we have found that the addition of quantum 
chemical indices can improve the correlation in cases of 
specific bioactivity. Further studies will focus on the 
contribution of quantum chemical indices in explaining the 
bioactivity of benzamidines. 
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Abstract 

A contemporary trend in computational toxicology is 
the prediction of toxicity endpoints and toxic modes of 
action of chemicals from parameters that can be calcu- 
lated directlv from their molecular structure. Topologi- 
cal geometrical, substructural, and quantum chemical 
parameters fall into this category. We have been in- 
volved in the development of a new hierarchical quanti- 
tative structure-activity relationship (QSAR) approach 
in predicting physicochemical, biomedicinal and toxi- 
cological properties of various sets of chemicals. This 
approach uses increasingly more complex molecular de- 
scriptors for model building in a graduated manner. In 
this paper we will applv statistical and neural net meth- 
ods in the development of QSAR models for predicting 
toxicitv of chemicals using topostructural, topochetm- 
cal, geometrical, and quantum chemical indices. The 
utility and limitations of the approach will be dis- 
cussed. 

Introduction 
In 1998 the number of chemicals registered with the 
Chemical Abstract Service (CAS) rose to over 19 mil- 
lion (CAS 1999). This is an increase of over 3 million 
chemicals between 1996 and 1998.  It would certainly 
ho desirable to be able to test each of these chemicals 
for their effects on the environment and human health 
(which we refer to as hazard assessment); however, com- 
pleting the battery of tests necessary for the proper haz- 
ard assessment of even a single compound is a costly and 
time-consuming process. Therefore, there is simply not 
enough time or money to complete these test batteries 
for even a tinv portion of the compounds which are reg- 
istered todav (Menzel 1995).   An alternative to these 
traditional test batteries is to develop computational 
models for hazard assessment.  Computational models 
are fast (milliseconds per compound), cheap (less than 
one cent per compound), and do not run the risk of ad- 
versely affecting the environment, during testing. Thus 
computational models can easily process all registered 
chemicals and flag the ones that require further testing. 
The central problem with this approach is developing 
class specific models that can be considered accurate 
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enough to be useful. In this paper, we present compu- 
tational models for hazard assessment that are indeed 
considered both accurate and useful. 

One of the fundamental principles of biochemistry is 
that activity is dictated by structure (Hansch 1976). 
Following this principle, one can use theoretical molec- 
ular descriptors that quantify structural aspects of a 
molecule to quantitatively determine its activity (Basak 
& Grunwald 1995; Cramer, Famini, & Lowrey 1993). 
These theoretical descriptors can be generated directly 
from the known structure of the molecule and used 
to estimate its properties, without the need for fur- 
ther experimental data.  This is important due to the 
fact that, with chemicals needing to be evaluated for 
hazard assessment, there is a scarcity of available ex- 
perimental data that is normally required as inputs 
(i.e., independent variables) to traditional quantitative 
structure-activity relationship (QSAR) model develop- 
ment.  A QSAR model based solely on theoretical de- 
scriptors on the other hand can process all registered 
chemicals for hazard assessment.   Our recent studies 
show that hierarchical QSARs (H-QSAR) using theo- 
retical structural descriptors give reasonable models for 
predicting toxicity (Basak, Gute, & Grunwald In press; 
Gute k Basak 1997; Gute,  Grunwald,  &  Basak In 
press). 

One potential problem with using our hierarchical ap- 
proach is that it often gives many independent variables 
as compared to data points. For instance, in our case 
study of predicting acute toxicity (LC5o) of benzene 
derivatives, we have 95 independent variables and 69 
data points. Therefore, reducing the number of inde- 
pendent variables is critical when attempting to model 
small data sets. The smaller the data set, the greater 
the chance of spurious error when using a large num- 
ber of independent variables (descriptors). Part of our 
focus in this paper is attempting to reduce the size of 
the data set. 

Hierarchical QSAR 
Our recent studies have focused on the role of differ- 
ent classes of theoretical descriptors of increasing lev- 



els of complexity and their utility in QSAR (Gute & 
Basak 1997; Gute, Grunwald, & Basak In press). Four 
distinct sets of theoretical descriptors have been used 
in this study: topostructural, topochemical, geometric, 
and quantum chemical indices. Gute and Basak 1997 
provide the detailed list of the indices included in our 
study. 

Topological Indices 
The complete set of topological indices used in this 
study, both the topostructural and the topochemical, 
havebeen calculated using POLLY 2.3 (Basak, Harriss, 
k Magnuson 1988) and software developed by the au- 
thors. These indices include the Wiener index (Wiener 
1947), the connectivity indices developed by Randic 
1975 and higher order connectivity indices formulated 
by Kier and Hall 1986, bonding connectivity indices 
defined by Basak and Magnuson 1988, a set of infor- 
mation theoretic indices defined on the distance matri- 
ces of simple molecular graphs (Hansch & Leo 1995), 
and neighborhood complexity indices of hydrogen-filled 
molecular graphs, and Balaban's 1983 J indices. 

Geometrical Indices 

The geometrical indices are three-dimensional Wiener 
numbers for hydrogen-filled molecular structure, 
hvdrogen-suppressed molecular structure, and van der 
Waals volume. Van der Waals volume, l'n (Bondi 
1964), was calculated using Sybyl 6.1 from Tripos As- 
sociates, Inc. of St. Louis. The 3-D Wiener numbers 
were calculated by Sybyl using an SPL (Sybyl Program- 
ming Language) program developed in our lab (SYBYL 
1998). Calculation of 3-D Wiener numbers consists of 
the sum entries in the upper triangular submatrix of the 
topographic Euclidean distance matrix for a molecule. 
The 3-D coordinates for the atoms were determined 
using CONCORD 3.0.1 from Tripos Associates, Inc. 
Two variants of the 3-D Wiener number were calcu- 
lated: 3DH'#/ and 3DIV. For 3DWH, hydrogen atoms 
are included in the computations and for 3D\Y hydro- 
gen atoms are excluded from the computations. 

Quantum Chemical Parameters 
The following quantum chemical parameters were cal- 
culated using the Austin Model version one (AMI) 
semi-empirical Hamiltonian: energy of the highest oc- 
cupied molecular orbital (EHOMO), energy of the sec- 
ond highest occupied molecular orbital (£//OA/OI). 
energy of the lowest unoccupied molecular orbital 
{ELUMO)- energy of the second lowest unoccupied 
molecular orbital (ELIIMO\ ), heat of formation (A///), 
and dipole moment (/J). These parameters were calcu- 
lated using MOPAC 6.00 in the SYBYL interface (Stew- 
art 1990). 

Results 
We tested the utility of our approach of generating 
numerous hierarchical theoretical descriptors of com- 

pounds on the acute aquatic toxicity (LCw) of a con- 
generic set of 69 benzene derivatives. The data was 
taken from the work of Hall, Kier and Phipps 1984 
where acute aquatic toxicity was measured in fathead 
minnow (Pimephales promelas). Their data was com- 
piled from eight other sources, as well as some original 
work which was conducted at the U.S. Environmental 
Protection Agency (USEPA) Environmental Research 
Laboratory in Duluth, Minnesota. This set of chemicals 
was composed of benzene and 68 substituted benzene 
derivatives. According to the authors, these benzene 
derivatives were tested using methodologies comparable 
to their own 96-hour fathead minnow toxicity test sys- 
tem. The derivatives chosen for this study have seven 
different substituent groups that are present in at least 
six of the molecules. These groups consist of chloro, 
bromo, nitro, methyl, methoxyl, hydroxyl. and amino 
substituents. 

We studied two classes of approaches for modeling 
toxicity: (1) giving all the descriptors to a learning al- 
gorithm (neural networks in this case), and (2) reducing 
the feature set before giving the (reduced) feature set 
to a learning algorithm. Results for our approaches are 
from leave-one-out experiments (i.e., 69 training/test 
set partitions). Leave-one-out works by leaving one 
data point out of the training set and giving the remain- 
ing instances (68 in this case) to the learning algorithms 
for training. (It is worth noting that each member of the 
ensemble sees the same 68 training instances for each 
training/test set partition and thus ensembles have no 
unfair advantage over other learners.) This process is 
repeated 69 times so that each example is a part of the 
test set once and only once. Leave-one-out tests gen- 
eralization accuracy of a learner, whereas training set 
accuracy tests only the learner's ability to memorize. 
Generalization error from the test set is the true test of 
accuracy and is what we report here. 

Table 1 gives our results. First we trained neural 
networks using all 95 parameters. The networks con- 
tained 15 hidden units and we trained the networks for 
1000 epochs. We normalized each input parameter to 
a values between 0 and 1 before training. Additional 
parameter settings for the neural networks included a 
learning rate of 0.05, a momentum term of 0.1, and 
weights initialized randomly between -0.25 and 0.25. 
With these ninety-five parameters, the neural network 
obtained a test-set correlation coefficient between pre- 
dicted toxicity and measured toxicity (explained vari- 
ance) of R2 = 0.868 and a standard error of 0.29. Tar- 
get toxicity measurements ranged from 3.04 to 6.37. 

For our next experiments, the VARCLUS method of 
SAS 1998 was used for selecting subsets of topostruc- 
tural and topochemical parameters for QSAR model 
development. With this method, the set of topolog- 
ical indices is first partitioned into two distinct sets, 
the topostructural indices and the topochemical indices. 
To further reduce the number of independent variables 
for model construction, the sets of topostructural and 
topochemical indices were further divided into subsets, 
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Numerous quantitative structure-activity relationships (QSARs) have been developed using topostructuraU 
iopochemical, and geometrical molecular descriptors. However, few systematic stud.es have been earned 
oTonTreiative effectiveness of these three classes of parameters in pred.ct.ng propert.es We have 
carried out a systematic analysis of the relative utility of the three types of structural descriptors .n dewtopmg 
MAR models for predicting vapor pressure at STP for a set of 476 d.verse chemicals The h.erarch cal 
ShnYque has proven to be useful in illuminating the relationships of different types of molecular descr.pt.on 
information to physicochemical property and is a useful tool for limiting the number of independent vanables 
in linear regression modeling to avoid the problems of chance correlations. 

1.   INTRODUCTION 

A large number of quantitative structure-activity relation- 
ship (QSAR) studies have been reported in recent literature 
using theoretical molecular descriptors in predicting physi- 
cochemical, pharmacological, and toxicological properties 
of molecules.'-"  Such descriptors comprise graph invari- 
ants, geometrical or 3-D parameters, and quantum chemical 
indices. One of the reasons for the current upsurge of interest 
is the fact that such descriptors can be derived algorithmi- 
cally. i.e., can be computed for any molecule, real or 
hypothetical, using standard software. Both in pharmaceuti- 
cal drue design and in risk assessment of chemicals, one 
has to evaluate potential biological effects of chemicals. 
Evaluation schemes based on property-property correlation 
paradigms are not very useful in practical situations, because, 
for most of the candidate structures, the experimental data 
necessary for proper evaluation are not available.  This is 
especially true  for the thousands of chemicals rapidly 
produced by methods of combinatoric chemistry16 as well 
as for the large number of chemicals present in the Toxic 
Substances Control Act (TSCA) Inventory.17 

A large number of physicochemical and biological end- 
points arc necessary for estimating the ecotoxicological fate, 
transport, and effects of environmental pollutants.'7-"' The 
vapor pressure of chemicals is important in determining the 
partitioning of chemicals among different phases once they 
are released in the environment. Many QSARs have been 
reported for predicting normal vapor pressure of chemicals. 
Such studies are usually carried out on small sets of 
congeneric chemicals. Also, many QSARs use experimental 
data as inputs in the model. Therefore, it becomes necessary 
to develop QSARs based on nonempirical parameters which 
can predict the vapor pressure for a heterogeneous collection 
of chemicals so that such models are generally applicable. 
With this end in mind, in the current paper we have carried 
out a QSAR study of 476 diverse chemicals using three types 
of nonempirical molecular descriptors. 
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2.   MATERIALS AND METHODS 

2.1. Normal Vapor Pressure Database. Measured 
values for a subset of the Toxic Substances Control Act 
(TSCA) Inventory17 were obtained from the ASTER (As- 
sessment Tools for the Evaluation of Risk) database.20 This 
subset consisted of a diverse set of chemicals where vapor 
pressure (pv,p) was measured at 25 °C and over a pressure 
range of approximately 3-10 000 mmHg. Due to the size 
of the dataset being used in this study, data for these 
chemicals will not be listed in this paper. An electronic copy 
of the data may be obtained by contacting the authors. 

2.2. Computation of Topological Indices. The majority 
of the topological indices (TIs) used in this study have been 
calculated by the computer program POLLY 2.3.21 These 
indices include Wiener index,22 the molecular connectivity 
indices developed by Randic and Kier and Hall,1-2-1 informa- 
tion theoretic indices defined on distance matrices of 
graphs,24-25 and a set of parameters derived on the neighbor- 
hood complexity of vertices in hydrogen-filled molecular 
graphs.2-26-28 Balaban's J indices29-31 were calculated using 
software developed by the authors. 

van der Waal's volume (Vw)32-34 was calculated using 
Sybyl 6.2." The 3-D Wiener numbers36 were calculated by 
Sybyl using an SPL (Sybyl Programming Language) program 
developed by the authors. Calculation of 3-D Wiener 
numbers consists of the summation of the entries in the upper 
triangular submatrix of the topographic Euclidean distance 
matrix for a molecule. The 3-D coordinates for the atoms 
were determined using CONCORD 3.2.1." Two variants 
of the 3-D Wiener number were calculated, 3DWH and 3 W, 
where hydrogen atoms are included and excluded from the 
computations, respectively. 

Table 1 provides a complete listing of all of the topological 
and geometrical parameters which have been used in this 
study. The listing includes the symbols used to represent 
the parameters and brief definitions for each of the param- 
eters. 

Two additional parameters were used in modeling normal 
vapor pressure, HBi, and dipole moment Qx). HB, is a 
simple hydrogen bonding parameter calculated using a 
program developed by Basak,38 which is based on the ideas 
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Table 1.  Symbols and Definitions of Topological and Geometrical 
Parameters 

l*'o       information index for the magnitudes of distances 
between all possible pairs of vertices of a graph 

~M~       mean information index for the magnitude of distance 
'   D 
W Wiener index = half-sum of the off-diagonal elements 

of the distance matrix of a graph 
1° degree complexity 
//v        graph vertex complexity 
H°        graph distance complexity 
\Q information content of the distance matrix partitioned by 

frequency of occurrences of distance h 
/ORB       information content or complexity of the hydrogen- 

suppressed graph at its maximum neighborhood of 
vertices 

O order of neighborhood when ICr reaches it maximum 
value for the hydrogen-filled graph 

M,        a Zagreb group parameter = sum of square of degree 
over all vertices 

A/.-        a Zagreb group parameter = sum of cross-product of 
degrees over all neighboring (connected) vertices 

IC,        mean information content or complexity of a graph 
based on the r*\r = 0—5) order neighborhood of vertices 
in a hydrogen-filled graph 

SIC,      structural information content for rth (r = 0-5) order 
neighborhood of vertices in a hydrogen-filled graph 

CIC      complmentary information content for rth (r = 0-5) 
order neighborhood of vertices in a hydrogen-filled graph 

hy path connectivity index of order h = 0—6 
"Xc cluster connectivity index of order h = 3—6 
hXK       path-cluster connectivity index of order h = 4-6 
"jro,       chain connectivity index of order h = 5, 6 
y        bond path connectivity index of order h = 0-6 
h/*i        bond cluster connectivity index of order h — 3-6 
"Z*", h      bond chain connectivity index of order h = 5, 6 
*?*,.      bond path-cluster connectivity index of order h = 4-6 
hy valence path connectivity index of order h = 0—6 
"j('i        valence cluster connectivity index of order h = 3—6 
'•■/■■ <:     valence chain connectivity index of order h = 5, 6 
y„      valence path-cluster connectivity index of order h = 4-6 
V, number of paths of length h = 0-10 
J Balaban's J index based on distance 
7* Balaban's J index based on bond types 
Jx Balaban's J index based on relative electronegativities 
r Balab?n's J index based on relative covalent radii 
V» van der Waal's volume 
i;'W       3-D Wiener number for the hydrogen-suppressed 

geometric distance matrix 
"'M M     3-D Wiener number for the hydrogen-filled geometric 

distance matrix 

of Ou et a/.'"  Dipole moment was calculated using Sybyl 
6.2." 

23. Data Reduction. The set of 92 TIs was partitioned 
into two distinct subsets: topostructural indices and to- 
pochemical indices. The distinction was made as follows: 
topostructural indices encode information about the adjacency 
and distances of atoms (vertices) in molecular structures 
(graphs) irrespective of the chemical nature of the atoms 
involved in the bonding or factors like hybridization states 
of atoms and number of core/valence electrons in individual 
atoms, while topochemical indices quantify information 
regarding the topology (connectivity of atoms) as well as 
specific chemical properties of the atoms comprising a 
molecule. Topochemical indices are derived from weighted 
molecular graphs where each vertex (atom) is properly 
weighted with selected chemical/physical properties. These 
subsets are shown in Table 2. 

The partitioning of the indices left 38 topostructural indices 
and 54 topochemical indices. At this point no further data 
reduction is called for, since the ratio of the number of 

Table 2.  Classification of Parameters used in Modeling Normal 
Vapor Pressure [logio(p»v)] 

topological topochemical geometric other parameters 

/nw /ORB Vw HB, 

C ICO-1C5 
3DW H 

W SIC0-SIC5 3DWH 
P CICo-Cia 
IT V-Y 
IP Yc-Yc 
IC Yo, and YCh 

0 VPC-VFC 
Mi Y-Y 
Mi Yc-Yc 
V- "X Yo, and Ych 
Y" "Y YK-YPC 
JZch and 6xch J» 
*XPC -

6
ZPC J* 

Po- P.o r 
J 

observations in the training set (342) to the total number of 
variables (92 maximum) falls well within the condition limits 
suggested by Topliss and Edwards40 for reducing the 
probability of spurious correlations even at the more 
conservative R1 > 0.7 level. 

2.4. Statistical Analysis and Hierarchical QSAR. 
Initially, all TIs were transformed by the natural logarithm 
of the index plus one. This was done since the scale of some 
indices may be several orders of magnitude greater than that 
of other indices. The geometric parameters were transformed 
by the natural logarithm of the parameter. 

Two regression procedures were used in developing the 
linear models. When the number of independent variables 
was high, typically greater than 25, a stepwise regression 
procedure was used to maximize the improvement of the 
explained variance (R2). When the number of independent 
variables was smaller, all possible subsets regression was 
used. Models were then optimized to reduce problems of 
variance inflation and collinearity. Regression modeling was 
conducted using the REG procedure of the statistical package 
SAS.41 

The vapor pressure data (pvap) was split into a training set 
(342 compounds) and a test set (134 compounds), an 
approximately 75/25 split. Models were developed using 
the training set of chemicals and then used to predict the 
pv,p values of the test chemicals. Final models were then 
developed using the combined training and test set of 
chemicals. 

Five sets of indices were used in model development. 
These sets were constructed as part of a hierarchical approach 
to QSAR modeling. The hierarchy begins with the simplest 
indices, the topostructural. After developing our initial model 
utilizing the topostructural indices, we increase the level of 
complexity. To the indices included in the best topostructural 
model, we add all of the topochemical indices and proceed 
to model pVip using these parameters. Likewise, the indices 
included in the best model from this procedure are combined 
with the geometrical indices and modeling is conducted once 
again. In addition to this hierarchical approach, models were 
also constructed using the topochemical indices alone and 
the geometrical indices alone for purposes of comparison. 

3.  RESULTS 

Stepwise regression analyses for \og\o(pvip) of the training 
set of chemicals is summarized in Table 3.   As shown in 
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Table 3.  Summary of the Regression Results for the Training Set and the Prediction Results for the Test Set for the Hierarch.cal Analysts of 

lOgloO'v.p)  ___ —— 
training set (N = 342) 

parameter class variables included R1 

test set (N= 134) 

R2 s 

topostructural 
topochemical 
geometrical 
topostructural + topochemical 

all indices 
ttg + HB, +ft 

XX, bxc, P9 
SICo, SIC2, SIC3, CICo, CIC. Yc. Y. V. Yc. JY 

3DW, 3DWH, Vw ,       , 
'z, />,, ic,. SIC2. no, Yc Y. Y. Y. Yc. Ych 
tf. sic,, sic2, ciCo. cic Y. 'xv. Y. Yc. Pt. Pio 
>X. />,. /Y IC. Y Yc Y- Y- Yc.HB,  

104.6 
126.3 
168.9 
112.5 
117.4 
160.8 

48.1 
79.2 
51.8 
80.4 
79.6 
82.9 

0.56 
0.36 
0.53 
0.35 
0.35 
0.32 

57.9 
85.8 
62.2 
84.7 
84.2 
83.1 

0.46 
0.27 
0.44 
0.28 
0.28 
0.29 

Table 3, the topostructural model using three parameters 
resulted in an explained variance (R2) of 48.1% and a 
standard error (5) of 0.56.   Addition of the topochemical 
parameters to the three topostructural parameters led to a 
significant increase in the effectiveness of the model.  The 
resulting model used 12 parameters, two topostructural and 
ten topochemical. This model had an R2 of 80.4% and s of 
0.35.   All subsets regression of the two topostructural and 
ten topochemical indices retained thus far and the three 
geometrical indices resulted in the selection of the same 12 
parameter model, thus the geometrical  indices did not 
contribute significantly to model development. Several other 
models were constructed for comparative purposes.  Using 
topochemical indices only, a ten parameter model was 
developed which had an R2 of 79.2% and 5 of 0.36.   A 
geometrical model was developed which utilized all three 
geometrical indices and resulted in an R2 of 51.8% and s of 
0.53.  Finally, two additional stepwise models were devel- 
oped.  One model simply used all indices for a comparison 
between a simple stepwise analysis of the data and the results 
of the hierarchical  procedure.   This resulted  in an   11 
parameter model with R2 of 79.6% and s of 0.35. The second 
model added two new parameters, HBi and fx. We thought 
that it might be possible to improve our modeling by adding 
in some other nonempirical parameters which could be 
important to the determination of normal vapor pressure. We 
selected the parameters HB, and n, since they would be 
important in intermolecular interactions which could have a 
dramatic effect on vapor pressure.  To look at the addition 
of these parameters, we conducted a stepwise regression 
analysis using all topostructural. topochemical. and geometric 
indices so that we would be able to optimize our model, 
just as we had done with the previous models. The addition 
of these parameters led to the selection of a ten parameter 
model which included three topostructural indices, nine 
topochemical indices, and HB,.   This was the best model 
yet. with an R: of 82.9% and s of 0.32. 

Application of these six models to the test set of chemicals 
resulted in comparable R2 and 5; actually all models improved 
slightly on their predictions of the test set. and these values 
are also listed in Table 3. Based on these results, we decided 
that it was pointless to develop further models using only 
geometrical parameters. Also, based on the findings that 
the geometrical indices did not contribute significantly to 
any of the training models, they were dropped from the 
development of final models for the full set of 476 chemicals. 
However, even though the topostructural indices did not 
perform well in modeling vapor pressure by themselves, they 
will be used in model development since they did contribute 
significantly to most of the models. 

Regression analyses of the combined set of 476 chemicals 
showed similar results for estimating logi()(/\2p) as analysis 

of the training set. Using only the topostructural indices, 
stepwise regression analysis resulted in a five parameter 
model to estimate vapor pressure: 

log10(PvaP) = 4-88 + 0-2°(°) " 2-56('^) + 049^c) + 

0.79(6
Zc) + 0.98(PI0) (1) 

„ = 476,   R2 = 5l.5%,   5 = 0.53,   F = 99.7 

Stepwise regression using the five topostructural param- 
eters and all topochemical parameters resulted in the selection 
of the following seven parameter model: 

log,o(PvaP) = S-44 - I-77*'*) + L25(P>o) - 5.69(IC,) + 

3.91(IC2) - 1.24(IC5) + 1.41(YC) - 1.70(V) (2) 

„ = 476,   tf2 = 79.3%,   5 = 0.34,   F = 224.0 

Only two of the topostructural indices used in eq 1 were 
retained by the stepwise regression procedure used to produce 
eq 2: 'x and pio- Tne improvement in R2 was significant, 
increasing from 51.5% for eq 1 to 79.3% for eq 2. Also, 
the model error decreased significantly, dropping by 0.19 
logarithmic units. Since we have dropped the geometrical 
indices, this becomes our final hierarchical model. 

The stepwise regression analysis of only topochemical 
parameters resulted in a 12 parameter model: 

log„Map) = 6-65 - 3.44(IC0) - i.33(IC,) + 

3.47(SIC2) + 0.87(CIC,) - 0.48(Y) + 1.44(YC) - 

1.00(V) " 0.4 i(V) - 0.70(Y) - 1.08(Yc) + 

1.42(Ych)-l-23(JY) (3) 

„ = 476.   R2 = 75.8%,   s = 0.38.   F = 120.5 

This model which is inferior to the topostructural + 
topochemical model (eq 2), because its variance explained 
is lower and, more importantly, it requires more independent 
variables (parameters) to achieve this explanation of variance. 

Stepwise regression of all indices resulted in the selection 
of an 11 parameter model. This approach selected three 
topostructural indices and eight topochemical indices to arrive 
at the following model: 

log,0(Pvap) = 7-85 - 2.56(HV) + 1.17(Y> ~ 
5.01 (IC,) + 3.65(IC2) - 0.99(IC5) + 0.51 (CIC,) - 

1.54(Y) - 0-36(Y) - 0-36(Y) ~ 1-40(YC) (4) 

„ = 476,   /?2 = 80.4%,   5 = 0.33,   F= 173.4 
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Figure 1.  Scatterplot of observed \og\d,pv,p) vs estimated logio- 
l/)wp) using eq 5 for 476 diverse compounds. 

While eq 4 shows some slight improvements over eq 2. 
the hierarchical model, eq 2 is preferred since it is a simpler 
model using seven indices instead of 11 and based on a 
comparison of F values it is a more robust model than that 
in eq 4. 

Finally, we conducted the stepwise regression modeling 
using all topostructural and topochemical indices with HB, 
and u lor the complete set of 476 chemicals. The resulting 
ten parameter model used three topostructural indices, six 
topochemical indices, and HB|i 

log,n</\ap> = 9-67 - 3-66('z) + 0-35(P3) + 0.74(P9) - 

1.78(IC„) - 3.33(SIC,) - 0.81(CIC:) + 2.05(Y) - 

1.73(V) - 0.79(V) - 0.29(HB,) (5) 

„ = 476,   /?: = 84.3%.   5 = 0.29,   F = 249.5 

Equation 5 shows marked improvement over eq 2, 
justifying the addition of indices to the model. Also, it meets 
the criteria on which eq 4 was judged to be lacking. Overall, 
there is an improvement in variance explained of 5%. with 
a comparable decrease in standard deviation. A scatter plot 
of observed log,o(/\»p) versus estimated logi0(/\,P) using eq 
5 is presented in Figure 1. 

4.   DISCUSSION 

The purpose of this paper was 2-fold: (a) to study the 
utility of algorithmically-derived molecular descriptors in 
developing QSAR models for predicting the vapor pressure 
of chemicals from structure and b) to investigate the relative 

Table 4.  Summary of the Chemical Class Composition of the 
Normal Vapor Pressure Dataset 

compd classification no. of compds   pure   substituted 

total normal vapor pressure dataset 
hydrocarbons 
non-hydrocarbons" 
nitro compounds 
amines 

476 
253 
223 

4 
20 

3 
17 

1 
3 

nitriles 7 6 1 
ketones 7 7 0 
halogens 
anhydrides 
esters 

100 
1 

18 

95 
1 

16 

5 
0 
2 

carboxylic acids 
alcohols 

2 
10 

2 

6 
0 
4 

sulfides 39 38 i 
thiols 4 4 0 
imines 2 2 0 
epoxides 
aromatic compounds6 

1 
15 

1 
10 

0 
4 

fused-ring compoundsc 1 1 0 

" The non-hydrocarbons are further broken down into the following 
groups. 'The 15 aromatic compounds are a mixture of 11 aromatic 
hydrocarbons and four aromatic halides.' The only fused-ring com- 
pound was a polycyclic aromatic hydrocarbon. 

roles of topostructural, topochemical, and geometrical indices 
in the estimation of standard vapor pressure. 

Results described in this paper (eqs 1-5) show that 
nonempirical parameters derived predominantly from graph 
theoretic models of molecules can estimate normal vapor 
pressure of diverse chemicals reasonably well. The ex- 
plained variance of data {PC- = 84.3%) is excellent in view 
of the fact that the database of chemicals analyzed in this 
paper is very diverse (see Table 4). It should be mentioned 
that most published QSAR models for the estimation of vapor 
pressure have dealt with much smaller data sets with limited 
structural variety.42,13 

The relative effectiveness of topostructural, topochemical, 
and geometrical indices in predicting normal vapor pressure 
of chemicals is evident from the result presented above 
Equation 1 explains over 51% of variance in the data. All 
parameters used to derive eq 1 are topostructural, i.e., they 
are parameters which encode information about the adjacency 
and distance of vertices in skeletal molecular graphs without 
quantifying any explicit information about such chemical 
aspects like bond order, electronic character of atoms, etc. 
Yet. the high explained variance of the property indicates 
that adjacency and distance in chemical graphs, being general 
descriptors of molecular size, shape, and branching, are 
important in predicting properties. This may explain the 
success of parameters like simple connectivity indices in 
estimating many diverse properties.' 

Equation 3 is derived only from topochemical indices. The 
explained variance of vapor pressure (75.8%) shows that 
topochemical parameters, as a class, explain a larger fraction 
of the variance as compared to models derived from only 
topostructural indices (eq 1). Geometrical parameters were 
dropped from the set of descriptors after their limited success 
in prediction for the training and test sets. This is in line 
with our earlier studies with normal boiling point and 
hydrophobicity, where it was reported that the addition of 
geometrical indices could not significantly improve the 
predictive power of QSAR models derived from a combined 
set of topostructural and topochemical parameters.IS  It would 
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be interesting to see whether this pattern holds good for other 
properties as well. Finally, the addition of the simple 
nonempirical parameter, HB,, which contains information 
relevant to intermolecular interactions further improves our 
ability to estimate normal vapor pressure resulting in an 
explained variance of 84.3% (eq 5). 
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APPENDIX 1.11  Characterization of the molecular similarity of 
chemicals using topological invariants 
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Table 1: Relative effectiveness of statistical and neu- 
ral network methods in estimating LC50 of 69 benzene 
derivatives. 

Method Ri1 Standard Error 

Linear regression 
NN with 95 inputs 
NN with VARCLUS 

0.825 
0.868 
0.878 

0.32 
0.29 
0.28 

or clusters, based on the correlation matrix using the 
VARCLUS procedure. This procedure divides the set 
of indices into disjoint clusters, such that each cluster 
is essentially unidimensional. From each cluster we se- 
lected the index most correlated with the cluster, as well 
as any indices which were poorly correlated with their 
cluster {R2 < 0.70). The variable clustering and selec- 
tion of indices was performed independently for both 
the topostructural and topochemical indices. This pro- 
cedure resulted in a set of five topostructural indices 
and a set of nine topochemical indices. These indices 
were combined with the three geometric and six quan- 
tum chemical parameters described earlier. 

The linear regression approach was that described 
earlier bv Gute and Basak 1997. This study found that 
an accurate linear regression model for acute aquatic 
toxicity required descriptors from all four levels of the 
hierarchy: topostructural, topochemical. geometrical 
and quantum chemical. This model utilized seven de- 
scriptors and obtained an explained variance {R ) of 
0 863 and a standard error of 0.30. A leave-one-out ap- 
proach was then implemented to test the predictivity 
of the model. This testing resulted in a model with an 
R2 = 0.825 and a standard error of 0.32. 

We also trained neural networks using the 23 param- 
eters provided by this data reduction technique. Tin- 
parameter settings for these networks were the same as 
the settings for the other neural network experiments 
mentioned above. With these 23 parameters, the neural 
networks obtained a test-set explained variance (R ) of 
0.878 and a standard error of 0.28. Thus the inputs 
selected by our data reduction procedure were able to 
increase the- accuracy of the neural network. 

Discussion and Future Work 
The results show that both statistical and neural net- 
work methods give acceptable estimates of toxicity. The 
neural network methods produced improvement over 
the statistical model. While the method proposed hen- 
has proven effective, there is much future work that 
needs to be completed. For example, though our results 
demonstrate that our method is able to accurately pre- 
dict toxicity directly from structure, it would be inter- 
esting to know just iiow many compounds are needed to 
learn an accurate model of toxicity. Future work, then, 
is to empirically answer this question. We plan to run 
our techniques on further reduced data sets and plot 
leave-one-out accuracy.   This would allow one to look 

at a curve that plots accuracy versus training set size 
and decide how many compounds need to be explicitly 
tested for toxicity. 

In the machine learning literature, the process of find- 
ing and removing the variables that are unhelpful or 
destructive to learning is called feature selection (Ko- 
havi k John 1997). Previous work on feature selection 
has focused on finding the appropriate subset of rele- 
vant features to be used in constructing one inference 
model, such as our approach presented in this paper; 
however, it is appropriate to start, considering feature 
selection with regards to ensembles. An "ensemble" is a 
combination of the outputs from a set of models that are 
generated from separately trained inductive learning al- 
gorithms. Ensembles have been shown, in most cases, 
to greatly improve generalization accuracy over a single 
learning model (Breiman 1996a; Maclin k Opitz 1997; 
Opitz k Shavlik 1996b; Shapire et al. 1997). Recent 
research has shown that an effective ensemble should 
consist of a set of models that are not only highly cor- 
rect, but ones that make their errors on different parts 
of the input space as well (Hansen & Salamon 1990; 
Krogh k Vedelsby 1995; Opitz k Shavlik 1996a). 

Varying the feature subsets used by each member 
of the ensemble helps promote the necessary diversity 
and create a more effective ensemble (Opitz submit- 
ted). Thus, this concept is particularly appropriate for 
large feature sets of partially correlated inputs, such as 
found in hazard assessment of compounds. Ensemble 
feature selection algorithms, then, not only have the 
traditional feature-selection criteria of needing.to find 
feature subsets that are germane to the particular task 
and inductive-learning algorithm, but have the addi- 
tional criterion of finding a set of features subsets that 
will promote disagreement among the component mem- 
bers of the ensemble. 

The ensemble techniques we plan to test are anal- 
ogous  to  the  popular  and  successful  ensemble  ap- 
proach Bagging (Breiman 1996b).   Bagging is a sta- 
tistical "boot-strap" (Efron k Tibshirani 1993) ensem- 
ble method that creates individuals for its ensemble by 
training each predictor on a random redistribution of 
the training set.   Each predictor's training set is gen- 
erated by randomly drawing, with replacement, N ex- 
amples - where N is the size of the original training 
set; many of the original examples may be repeated 
in the resulting training set while others may be left 
out. Each individual predictor in the ensemble is gen- 
erated with a different random sampling of the training 
set. Breiman 1996a showed that Bagging is effective on 
"unstable" learning algorithms where small changes in 
the training set result in large changes in predictions. 
This shows that, on average, more diversity is created 
among the predictors by varying our training set in this 
manner than is lost in individual predictor accuracy by 
not training each predictor on the whole data set. 

Bagging is not appropriate for most toxicity domains 
since they are data poor and one cannot afford to waste 
training examples; however, these domains are feature 



rich and thus we can attempt to create diversity by 
instead varying the inputs to the learning algorithms. 
Thus we plan to test the approach where each predic- 
tor's feature set is generated by randomly drawing, with 
replacement, N features - where TV is the size of the 
original feature set. 
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ABSTRACT 

Three similarity spaces were used in the selection of analogues and A'-nearest- 
neighbor (KNN)-based estimation of normal boiling points for a diverse set of 2926 
chemicals. The similarity spaces consisted of principal components derived from (1) 
40 topostructural indices, (2) 61 topochemical parameters, and (3) the full set of 101 
topostructural and topochemical indices. The three methods selected sets of analogues 
with a substantial number of structurally analogous molecules. For the KNN method 
of property estimation, the similarity space that used the full set of indices was superior 
to either of the subsets (topostructural or topochemical). For all three methods, K = 
6-10 gave the best estimated values for boiling point. 

I.   INTRODUCTION 

Interest in quantifying the similarity of molecules using computational methods has 

increased.1-8 In particular, a recent trend in the characterization of similarity/ 
dissimilarity of chemicals makes use of graph invariants. Molecular structures can 
be represented by planar graphs, G = [VE], where the nonempty set V represents 
the set of atoms and the set E generally represents covalent bonds.9 These graphs 
can be used to adequately represent the pattern of connectedness of atoms within a 
molecule. Graph invariants, values derived from planar graphs, are graph theoretic 
properties which are identical for isomorphic graphs. A numerical graph invariant 
or topological index maps a chemical structure into the set of real numbers. 

Various graph invariants have been used in ordering and partial ordering of sets 
of molecules.1,4_8 Various topological indices (TIs) and principal components (PCs) 
derived from TIs have been used in quantifying the similarity/dissimilarity of 
molecules and in the similarity-based estimation of physical and toxicological 
properties.451*"17 Such TIs include those derived from simple planar graphs which 
contain adjacency and distance information for vertices. These TIs could be 

considered topostructural indices. Other TIs, which are derived from weighted 

chemical graphs, could be regarded as topochemical indices because they contain 
explicit information regarding the chemical nature of the atoms (vertices) and bonds 
(edges) in the molecular structure, in addition to quantifying the adjacency and 
distance relationships within the graph. 

Our earlier studies made use of a combination of topostructural and topochemical 
indices to select analogues of chemicals and estimate properties of molecules in 
large and diverse databases using the K-nearest-neighbor (KNN) method. In this 
paper we have carried out a comparative analysis of similarity-based analogue 
selection and KNN-based estimation of normal boiling point using: (1) a set of 40 
topostructural indices, (2) a group of 61 topochemical indices, and (3) the combined 
set of 101 indices. 
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II.   METHODS 

A.   Database 

The normal boiling point database consisted of 2926 compounds taken from the 
U S EPA ASTER18 system. The data comprised a set for which chemical structures 
and normal boiling values were available, and for which it was possible to compute 

all 101 TIs. 

B.   Calculation of Indices 

The TIs calculated for this study are listed in Table 1 and include Wiener 
number,19 molecular connectivity indices as calculated by Randic and Kier and 
Hall21 frequency of path lengths of varying size, information theoretic-indices 
defined on distance matrices of graphs using the methods of Bonchev and Tnna- 
jstic22 as well as those of Raychaudhury et al.,23 parameters defined on the 
neighborhood complexity of vertices in hydrogen-filled molecular graphs, and 
Balaban's J indices.27"29 The majority of the TIs were calculated us.ng POLLY 
2 3 30 The J indices were calculated using software developed by the authors. 

The Wiener index (W). the first topological index reported in the chemical 
literature 19 may be calculated from the distance matrix D(G) of a hydrogen- 
suppressed chemical graph G as the sum of the entries in the upper triangular 
distance submatrix. The distance matrix D(G) of a nondirected graph G with n 
vertices is a symmetric n x n matrix (<*„•). where dtj is equal to the distance between 
vertices v. and v, in G. Each diagonal element dtt of D'G) is zero. We g.ve below 
the distance matrix D{GX) of the unlabeled hydrogen-suppressed graph G, of 

n-propanol (Figure 1): 

(1)   (2)   (3)   (4) 

1 

D(G,) = 3 

4 

0 1 2 3' 
1 0 1 2 
2 1 0 1 
3 2 1 0 

W is calculated as 

W=l/2£4y =£/»•£„ 

where gh is the number of unordered pairs of vertices whose distance is h. Thus, for 

D(.G.), W has a value of ten. 
Randic's connectivity index,20 and higher order connectivity path, cluster, path- 

cluster, and chain types of simple, bond and valence connectivity parameters were 
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Table 1.   Symbols, Definitions, and Classifications of Topological Parameters 

Topostructursl 

(Q Information index for the magnitudes of distances between all possible pairs of 
vertices of a graph 

IQ Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a 
graph 

P Degree complexity 

Hv Graph vertex complexity 

HD Graph distance complexity 

TU Information content of the distance matrix partitioned by frequency of 
occurrences of distance h 

O Order of neighborhood when IC, reaches its maximum value for the hydrogen- 

filled graph 

/vf, A Zagreb group parameter = sum of square of degree over all vertices 

M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 
(connected) vertices 

hX Path connectivity index of order h = 0-6 
hX Cluster connectivity index of order h = 3-6 
hXPC Path-cluster connectivity index of order h = 4-6 
hXch Chain connectivity index of order h = 3-6 

Ph Number of paths of length h = 0-10 

/ Balaban's / index based on distance 

Topochemical 

'ORB Information content or complexity of the hydrogen-suppressed graph at its 
maximum neighborhood of vertices 

IC, Mean information content or complexity of a graph based on the rth (r = 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SIC, Structural information content for rth (r = 0-6) order neighborhood of vertices in a 
hydrogen-filled graph 

CIC, Complementary information content for rth (r = 0-6) order neighborhood of 
vertices in a hydrogen-filled graph 

hXh Bond path connectivity index of order h = 0-6 
hx£ Bond cluster connectivity index of order h = 3-6 
hX^h Bond chain connectivity index of order h = 3-6 
hXpC Bond path-cluster connectivity index of order h = 4-6 
hX" Valence path connectivity index of order h = 0-6 
hX£ Valence cluster connectivity index of order h - 3-6 
hXQh Valence chain connectivity index of order h = 3-6 
hXpC Valence path-cluster connectivity index of order h = 4-6 

y8 Balaban's / index based on bond types 

f Balaban's / index based on relative electronegativities 

yY Balaban's I index based on relative covalent radii 
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(1)      (2)      (3)      (4) 

G, 

Figure 7.   The unlabeled hydrogen-suppressed graph (Ci) of n-propanol. 

calculated using the method of Kier and Hall.21 The generalized form of the simple 

path connectivity index is as follows: 

i/2 (2) 

'-X=£(v1.v;...v,+Ir
1/2 

paths 

where v  v.       ,v„ . are the degrees of the vertices in the path of length h. The path 
length parameters (P,), number of paths of length h (h = 0, 1 10) in the 
hydrogen-suppressed graph, are calculated using standard algorithms. 

Information-theoretic TIs are calculated by the application of information theory 
on chemical graphs. An appropriate set A ofn elements is derived from a molecular 
graph G depending on certain structural characteristics. On the basis of an equiva- 
lence relation defined on A, the set A is partitioned into disjoint subsets A of order 
„ (,- = 1,2 h\ Z/i, = n). A probability distribution is then assigned to the set ot 

equivalence classes: 

A,,A2 Ah 

PvPi Ph 

where p, = n/n is the probability that a randomly selected element of A will occur 

in the ith subset. 
The mean information content of an element of A is defined by Shannon s 

relation:31 

* (3) 
lC = -^P,\og2Pi 

i=i 

The logarithm is taken at base 2 for measuring the information content in bits. The 
total information content of the set A is then n x IC. 

To account for the chemical nature of vertices as well as their bonding pattern, 
Sarkar et al32 calculated the information content of chemical graphs on the basis 
of an equivalence relation where two atoms of the same element are considered 
equivalent if they possess an identical first-order topological neighborhood. Since 
properties of atoms or reaction centers are often modulated by stereoelectron.c 
characteristics of distant neighbors, i.e.. neighbors of neighbors, it was deemed 
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essential to extend this approach to account for higher order neighbors of vertices. 
This can be accomplished by defining open spheres for all vertices of a chemical 
graph. If r is any nonnegative real number and v is a vertex of the graph G, then the 
open sphere 5(v, r) is defined as the set consisting of all vertices v, in G such that 
d(v,vf.)< r. Therefore, S(v,0) = 0, S(v,r) = v forO< r < 1, and S(v,r) is the set consisting 
of v and all vertices v( of G situated at unit distance from v, if 1 < r < 2. 

One can construct such open spheres for higher integral values of r. For a 
particular value of r, the collection of all such open spheres S(v,r), where v runs 
over the whole vertex set V, forms a neighborhood system of the vertices of G. A 
suitably defined equivalence relation can then partition V into disjoint subsets 
consisting of vertices that are topologically equivalent for rth-order neighborhood. 
Such an approach has been developed and the information-theoretic indices calcu- 
lated based on this idea are called indices of neighborhood symmetry.26 

In this method, chemicals are symbolized by weighted linear graphs. Two vertices 
u0 and v0 of a molecular graph are said to be equivalent with respect to r-th-order 
neighborhood if and only if corresponding to each path u0, M, ur of length r, 
there is a distinct path v^ v, vr of the same length such that the paths have 
similar edge weights, and both M0 and v0 are connected to the same number and type 
of atoms up to the rth-order bonded neighbors. The detailed equivalence relation 
has been described in earlier studies.2 -33 

Once partitioning of the vertex set for a particular order of neighborhood is 
completed, ICr is calculated by Eq. 2. Basak et al. defined another information- 
theoretic measure, structural information content (5/Cr), which is calculated as 

SIC, = IC/\og2n (4) 

where IC is calculated from Eq. 2 and n is the total number of vertices of the 

graph.24 

Another information-theoretic invariant, complementary information content 
(C7Cr), is defined as 

CIC, = log2n - ICr (5) 

ClCr represents the difference between maximum possible complexity of a graph 
(where each vertex belongs to a separate equivalence class) and the realized 
topological information of a chemical species as defined by ICr. 

In Figure 2, the calculation of IC2, SICV and CIC2 is demonstrated for the labeled 
hydrogen-filled graph (G2) of «-propanol. 

The information-theoretic index on graph distance, /£, is calculated from the 
distance matrix D(G) of a chemical graph G as follows:22 

(6) 
/^WlogjW-X^-Älog^ 
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G2: n-propanol 

IjV He 

H3     I       H7 
Hs 

Second order neighbors: 

I n 

r o 
I 
c 

H, H, 

H  A  C    H  A  C 

m 

r r 
c c 

IV 

r 
c 

A A '    A\ A\       /\\  /\\ /\\ ■'    V  u IV HACHAC HHC      HUC      HH( 

v 

H  H  C 

VI 

" /Vi\ HiC H     "   H 

vn 
 c, 

HV|   H H 

H  o 

vin 

7|\ H  H .£ 

HiC 

Subsets: 

m rv VI vu        vm 

(H,) (H2-H3) (H«-H5) (H^-He) (0,) (C) (C2) (C3) 

Probability: 

I n 

1/12 2/12 

in iv v vi vn        vm 

2/12 3/12 1/12        1/12       1/12       1/12 

IC2    = 5M/12'log2 12 +2-2/12'log2 12/2 + 3/12-log2 12/3 = 2.855 bits 

SIC2 = \CiltoQ2 12 
CIC2 = log2 12 - ICj 

: 0.796 bits 
: 0.730 bits 

Figure 2.   Calculation of the indices IC2, SIC2l and CICi for the hydrogen-filled, 

labeled graph (C2) of n-propanol. 
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The mean information index, 7* is found by dividing the information index 1» by 
W. The information-theoretic parameters defined on the distance matrix, H and 
Hv were calculated by the method of Raychaudhury et al. 

Balaban defined a series of indices based on distance sums within the distance 
matrix for a chemical graph which he designated as J indices. These indices 
are highly discriminating with low degeneracy. Unlike W, the J indices have a range 
of values that is independent of molecular size. The general form of the J index 

calculation is as follows: 

y=^+i)-'X(v;-1/2 w 
ij, edges 

where the cyclomatic number u (or number of rings in the graph) is ji = q - n + 1 
with a edges and n vertices, and st is the sum of the distances of atom i to all other 
atoms and s- is the sum of the distances of atom; to all other atoms. Variants were 
proposed by Balaban for incorporating information on bond type, relative elec- 
tronegativities, and relative covalent radii.   • 

C.   Classification of the Indices 

The set of 101 TIs was partitioned into two distinct subsets: topostructural indices 
and topochemical indices. Topostructural indices encode information about the 
adjacency and distances of atoms (vertices) in molecular structures (graphs) irre- 
spective of atom type or factors such as hybridization states and number of core/ 
valence electrons in individual atoms. Topochemical indices quantify information 
regarding specific chemical properties of the atoms comprising a molecule as well 
as the topology (connectivity of atoms). Topochemical indices are derived from 
weighted molecular graphs where each vertex (atom) is properly weighted with 
selected chemicaVphysical properties. These subsets are shown in Table 1. 

D.   Statistical Methods and Computation of Similarity 

Da fa Reduction 

Initially, all TIs were transformed by the natural logarithm of the index plus one. 
This was done since the scale of some TIs may be several orders of magnitude 

greater than other TIs. 
A principal component analysis (PCA) was used on the transformed indices to 

minimize intercorrelation of indices. The PCA analysis was accomplished using 
the SAS procedure PRINCOMP.34 The PCA produces linear combinations of the 
TIs, called principal components (PCs) which are derived from the correlation 
matrix. The first PC has the largest variance, or eigenvalue, of the linear combina- 
tion of TIs. Each subsequent PC explains the maximal index variance orthogonal 
to the previous PCs, eliminating any redundancies that could occur within the set 
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of TIs. The maximum number of PCs generated is equal to the number of TIs 
available. For the purposes of this study, only PCs with eigenvalues greater than 
one were retained. A more detailed explanation of this approach has been provided 
in a previous study by Basak et al.4 These PCs were subsequently used in determin- 

ing similarity scores as described below. 

Similarity Measures 

Intermodular similarity was measured by the Euclidean distance (ED) within 
an „-dimensional space. This „-dimensional space consisted of orthogonal vari- 
ables (PCs) derived from the TIs as described above. ED between molecules i and 

j is defined as 
-.1/2 

EDt]= i(Dlk-Djkf 
(8) 

where n is the number of dimensions or PCs retained from the PCA. Dik and Djk 

are the data values of the *th dimension for chemicals i and;, respectively. 

K-Nearest-Neighbor Selection and Property Estimation 

Following the quantification of intermodular similarity of the 2926 chemicals, 
the ^-nearest neighbors (K =1-10,15.20,25) were determined on the basis of ED. 
This procedure can be used to select structural analogues (neighbors) of a probe 
compound or the neighbors can be used in property estimation. In estimating the 
normal boiling point of the probe compound, the mean observed normal boiling 
point of the K-nearest neighbors was used as the estimate and the standard error (s) 
of the estimate was used to assess the efficacy of the set of indices. 

III.   RESULTS 

A.   Principal Component Analysis 

From the PCA of the 40 topostructural indices, seven PCs with eigenvalues 
greater than one were retained. These seven PCs explained, cumulatively. 90.8% 
of the total variance within the TI data. Table 2 lists the eigenvalues of the seven 
PCs. the proportion of variance explained by each PC, the cumulative variance 
explained, and the three TIs most correlated with each individual PC. 

The PCA of the 61 topochemical indices resulted in the selection often PCs, all 
having eigenvalues greater than one. The ten PCs explain a total of 92.1% of the 
variance within the TI data. Table 3 presents a summary of the information 

regarding these ten PCs. 



Table 2.   Summary of Principal Component Analysis of 40 Topostructural Indices 
for 2926 Chemicals 

Proportion of Cumulative 
Explained Explained Top Three 

PC Eigenvalue Variance Variance Correlated Indices 

1 28.2 46.2 46.2 P„P0,'* 

2 11.0 18.0 64.3 4v       5 y       by APO    APO    ÄPC 

3 5.9 9.6 73.9 XQ,    XQ,    Xpc 

4 4.1 6.7 80.6 /, 6*Ov "*C 

5 2.8 4.6 85.2 ■*Ov   *Ch'   ■th 

6 1.9 3.1 88.3 *bv 4*c> *ch 

7 1.5 2.4 90.8 *0 Pio- P9 

Tab/e 3.   Summary of Principal Component Analysis of 61 Topochemical Indices 
for 2926 Chemicals 

Proportion of Cumulative 
Explained Explained Top Three 

PC Eigenvalue Variance Variance Correlated Indices 

1 20.4 33.5 33.5 'x6, 2X*>, »xb 

2 10.8 17.8 51.2 SICA S/C3 ,5/C5 

3 8.1 13.3 64.6 
3*t "Ac, *PC 

4 6.1 9.9 74.5 5*CH . 
5*Ov "*Ch 

5 3.0 5.0 79.5 ^ 3 yv       4 yb 
/    ACh'    *Ch 

6 2.4 3.9 83.4 <q> s/Q>, 'C, 

7 1.7 2.8 86.2 6x£. >& bXJ
c 

8 1.4 2.2 88.4 4*o 
i>c, bXJ

c 

9 1.2 2.0 90.4 5*o 
brc, *XC 

10 1.1 1.8 92.1 
4x£, **. 6 yv 

APC 

Tab/e 4.   Summary of Principal Component Analysis of 101 Topological Indices 
for 2926 Chemicals 

PC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

Eigenvalue 

42.6 
13.3 
11.4 
8.9 
5.1 
3.7 

2.6 
2.0 
1.7 
1.4 
1.1 
1.0 

Proportion of 
Explained 
Variance 

41.6 
13.0 
11.1 
8.7 
5.0 
3.6 
2.6 
1.9 
1.7 
1.4 
1.1 
1.0 

Cumulative 
Explained 
Variance 

41.6 
54.7 
65.8 
74.5 
79.6 
83.2 
85.8 
87.7 
89.4 

90.8 
91.9 
92.8 

Top Three 
Correlated Indices 

P„P0. 'X 
XpO   *PC'   *c *PC 

5/C5, SICb, ClCb 

5*Ch, 5*ch- 5*ch 

;, 4*ch. 4*ch 

IQ, S/Q, SIC, 
6x£, 6Xo 5Xc 
4*o 5*Ov 6*Ch 

X- icQ, SIC0 
5XJ, "rpc, 6rc 

/C,,/\/Q, 
Po. Pin, Pft 
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Twelve PCs were retained from the PCA of the full set of 101 TIs. Each of these 
PCs had an eigenvalue greater than one and, cumulatively, they explained 92.8% 
of the variance within the full set of TIs. These PCs are summarized in Table 4. 

Probe: 3-methyl-4-chlofophenol 

Structural: 

Chemical: 

o.cxaa.9 
I OH Cl NH, NH, 

(1) 0.00 (2) 0.00        (3) 0.01 (4) 0.01 (5) 0.01 

CH, a <?"> 

(1) 0.01 (2) 0.02        (3) 0.02        (4) 0.02 (5) 0.03 

All 

9«» 

ÖL tX cXOCO 
(1) 0.01 (2) 0.02        (3) 0.02        (4) 0.03 (5) 0.03 

Figure 3. The five analogues selected for the probe 3-methyl-4-chlorophenol using 
three molecular similarity spaces: topostructural, topochemical, and all indices. The 
numbers under the structures indicate the ranking of the analogues and the Euclidean 

distance to the probe. 
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Table 5.   Comparison of the Three Sets of TIs and Their Derivative PCs for 
Prediction of Normal Boiling Point (°C) Using K-Nearest-Neighbors (n = 2926) 

Indices 

Topostructural 
Topochemical 
Topostructural + topochemical 

10 
6 
8 

0.881 
0.883 
0.896 

39.0 
38.6 
36.6 

0.92 

0.90 - 

~ 0.88 
c 

_o 
ra   0.86 - 
<u 
o 
°   0.84 

0.82 - 

0.80 

Topostructural indices 
Topochemical indices 
All indices 

~i— 

15 10 15 20 

Number of neighbors (K) 

25 30 

50 

48 

46 

■D   42 
CD 

I   40 
w 

38 - 

36 - 

34 

Topostructural indices 
Topochemical indices 
All indices 

5 10 15 

Number of neighbors (K) 

~i— 

20 25 30 

Figure 4. Pattern of (top) correlation (r) and (bottom) standard error (s) of the estimates 
according to the K-nearest-neighbor selection for 2926 normal boiling points using 

three molecular similarity spaces. 
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B.  Analogue Selection 

Figure 3 shows an example of analogue selection using PCs to derive a Euclidean 
distance space. The first five analogues (neighbors) for the probe compound, 
3-methyl-4-chlorophenol, are presented for each of the three similar.ty spaces. The 
analogues selected by the topostructural model show a repetition of the same 
skeletal structure, ignoring subst.tuents, throughout the first five ana ogues. In the 
topochemical model and the full set model some variability in the skeletal structure 
arises (chemical analogues 2 and 5, full set analogue 4). Also of interest is the 
repetition of chemicals between the sets of analogues. While the ordering varies 
between the methods, the topostructural and topochemical models select two 
identical structures, the topostructural and the full set have three analogues in 
common, and the topochemical and full set select four of the same analogues. 
2-Chloro-5-methylphenol appears in all three sets, while there are only three unique 
compounds (topostructural analogues 4 and 5, topochemical analogue 5). 

C.   K-Nearest-Neighbor Property Estimation 

Figure 4 presents the correlation (r) and the standard error (s) of the prediction 
of the normal boiling points for the 2926 chemicals for the three groups of indices 
over the full range of K values examined (*= 1-10, 15,20,25) Table 5 shows the 
best normal boiling point model for each set of indices. The best boiling point 
estimates for all three sets were for K in the range of 6 to 10. The full set of indices 
gave the best result, although there was only a small difference between models.- 

IV.   DISCUSSION 

The purpose of this paper was to study the relative effectiveness of three similarity 
spaces derived from graph invariants in the selection of structural analogues and in 
the KNN-based estimation of properties. The similarity spaces were created using 
a PCA of calculated graph invariants. Tables 2-4 summarize the results of the PCA 
of the three sets of indices. The first PC is always correlated with indices that 
quantify molecular size. In the case of the topostructural indices, the second PC is 
most correlated with branching indices. In the case of PCs derived from either 
topochemical or the full set of topostructural and topochemical parameters, the first 
PC was strongly correlated with molecular size, while the second PC was highly 
associated with the molecular complexity indices. These results are in line with our 
earlier studies on different sets of chemicals. 

All three spaces were used in the selection of five analogues of a particular 
structure (Figure 3). Perusal of the three sets of structures shows that there is a 
substantial degree of similar.ty among the three groups of five chemicals selected. 
It is interesting to note that all five nearest neighbors of the probe selected by the 
topostructural method had isomorphic skeletal graphs when hydrogen atoms are 
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suppressed. For the two similarity spaces created by topochemical indices alone 
and the combined set of topostructural and topochemical indices, four of the five 
selected neighbors are common (Figure 3) although the ordering of the molecules 
is different. This shows that these two similarity methods are not intrinsically very 
different. Our earlier results showed that analogues selected by similarity methods 
derived from experimental physical properties, atom pairs, and TIs select very 
similar sets of analogues.' 

In the case of KNN-based estimation of boiling points of chemicals from their 
analogues, K was varied from 1 to 25. The best estimated value was obtained in the 
range of K = 6-10. This is in line with our earlier studies with different proper- 

ties.1112 

In conclusion, the three similarity spaces derived in this paper have reasonable 
power for selecting analogous molecules from a very diverse database of chemicals. 
The KNN-based estimation shows that selected analogues can be used for the 
estimation of boiling points of diverse chemicals if more accurate methods are not 

available. 
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Attempts were made to develop hierarchical quantitative structure-activity relationship (QSAR) 
modds foTthe dela, penetration of polycyclic aromatic hydrocarbons (PAHs) using four 
dasses of heoret.cal structural parameters; viz.. topostructural, topochem.cal geometrynd 
Quantum chemical descriptors; and physicochemical properties such as molecular weight (MW) 
and 1poph.Zriog/>-octanol/water). The results show that topostructural, topo<hemica 
and geome ric descriptors and molecular weight are equally effective ,n predicting the derma 
p^nefraTon of PAHsP Quantum chem.cal parameters did not make any .movements ,n the 
predictive power of the QSAR models. 

Keywords   Hierarchical QSAR; topological ind.ces; geometrical indices; quantum chem.cal 
parameters; dermal penetration; polycyclic aromatic hydrocarbons 

INTRODUCTION 

An understanding of the barrier properties of skin is important both for 
hazard assessment following dermal exposure to toxicants [1] as well as for 
the transdermal delivery of drugs 12). Over the years transdermal delivery 
data on a large number of compounds have been accumulated. These 
compounds cover a wide range of physicochemical properties and structural 
types [I]. Attempts have been made to explain permeation behavior of 
chemicals using specific models of the permeability barrier. 

•Corresponding author. 
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One of the contemporary interests in the field is the prediction of skin 
permeability from their physicochemical and structural parameters. Potts 
and Guy [1] and Guy [3] succeeded in predicting the permeability coefficient 
of diverse chemicals using molecular weight (MW), molar volume (MV) and 
octanol/water partition coefficient. These parameters quantify size and hydro- 
phobicity of chemicals. Molnar and King used integrated molecular trans- 
form, FTm, as the structural parameter for predicting skin permeability of 
diverse chemicals [4]. 

A recent interest in quantitative structure-activity relationship (QSAR) 
studies is the prediction of toxicological and pharmacological properties of 
chemicals directly from their structure [5-12]. This is particularly important 
for the risk assessment of chemicals where the majority of the new chemicals 
which have little or no available experimental data [13]. 

Recently we have developed a new hierarchical approach to QSAR 
using parameters which can be computed directly from molecular structure 
[14-18]. Such variables include topostructural, topochemical, geometrical 
and quantum chemical parameters. These parameters quantify size, shape, and 
stereo-electronic aspects of molecular architecture. In view of the fact that 
well-known molecular properties like molecular weight, octanol/water parti- 
tion coefficient, molar volume and calculated molecular descriptors like inte- 
grated molecular transform have been used in predicting skin permeability of 
chemicals, it was of interest to investigate our hierarchical approach in 
estimating skin permeability. To this end, we have attempted to predict the 
skin permeability of a set of sixty polycyclic aromatic hydrocarbons using the 
hierarchical QSAR method. 

THEORETICAL METHODS 

Database 

A data set of sixty polycyclic aromatic hydrocarbons (PAHs) was used for 
the development of hierarchical QSAR models. The data was taken from the 
work of Roy et al. [19]. Using equimolar concentrations for each compound, 
dermal penetration (%DP) was determined 24-hours after dosing. Activity 
was expressed as the percentage of the applied dose (40nmoles per cm2 skin 
surface) which penetrated the skin. The molecular structures of the PAHs 
were coded for evaluation using the SMILES line-notation for chemical 
structure [20]. This data: including compound name, Chemical Abstracts 
Services (CAS) registry number (when available), and measured dermal 
penetration; are presented in Table I. 
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TABLE Sixty polycyclic aromatic hydrocarbons (PAHs) and their dermal penetration values 
expressec as percent of biological activity 

Pred. 
No. Compound CAS No. Act. Act. Resid. 

1 Coronene 191-07-1 0.70 7.18 -6.48 
2 Dibenzo(a, /)pyrene 191-30-0 2.00 7.08 -5.08 
3 9,10-Diphenylanthracene 1499-10-1 6.00 -0.10 6.10 
4 Perylene 198-55-0 7.00. 19.68 -12.68 
5 Dibenzo(a, Opyrene 189-55-9 8.00 7.18 0.82 
6 3-Methylcholanthene 56-49-5 8.00 11.89 -3.89 
7 Benzylhydrilindenefluorene 1836-87-9 8.00 16.93 -8.93 
8 7,10-Dimethylbenzo(a)pyrene 63104-33-6 8.30 11.57 -3.27 
9 Indeno(l,2,3:c,«/)pyrene 193-39-5 9.00 11.52 -2.52 
10 Dibenz(a, A)anthracene 53-70-3 9.40 13.29 -3.89 
11 Benzo(e)pyrene 192-97-2 10.00 19.68 -9.68 
12 Benzo(g, h, i)pzry\ene 191-24-2 10.00 13.19 -3.19 
13 9-/j-Tolylfluorene 1815-43-0 10.00 14.97 -4.97 
14 6-Ethylchrysene 2732-58-3 10.00 16.51 -6.51 
15 9-Cinnamylfluorene NA 11.00 8.08 2.92 
16 6-Methylbenz(a)anthracene 316-14-3 14.00 22.40 -8.40 
17 Benzo(fc)fluoranthene 207-08-9 14.00 17.99 -3.99 
18 Benzo(a)pyrene 50-32-8 15.00 19.79 -4.79 
19 1-Ethylpyrene 17088-22-1 18.00 23.43 -5.43 
20 l-Methyl-7-isopropylphenanthrene 483-65-8 20.00 21.95 -1.95 
21 2-/err-Butylanthracene 18801-00-8 20.00 23.28 -3.28 
22 9-Phenylanthracene 602-55-1 20.00 18.78 1.22 
23 3-Methylbenzo(c)phenanthrene 56-49-5 20.00 11.89 8.11 
24 10-Methylbenz(a)anthracene 2381-15-9 20.00 22.49 -2.49 
25 5-Methylbenz(a)anthracene 2319-96-2 20.00 22.40 -2.40 
26 9.10-Dihydroanthracene 613-31-0 20.00 37.63 -17.63 
27 9-Phenylfluorene 789-24-2 20.00 19.07 0.93 
28 1,2,3,6,7,8-Hexahydropyrene 1732-13-4 20.00 22.00 -2.00 
29 n-Butylpyrene 35980-18-8 20.00 13.27 6.73 
30 5.6-Dihydro-4H-dibenz 

(a,i,/)anthracene 
7198-87-0 20.00 11.09 8.91 

31 3-Ethylfluoranthene 20496-16-6 20.00 21.42 -1.42 
32 Triphenylene 217-59-4 20.00 26.77 -6.77 
33 7,8,9,10-Tetrahydroaccphenanthrene 7468-93-1 20.00 22.03 -2.03 
34 2,3-Benztriphenylene 215-58-7 20.00 13.19 6.81 
35 Benzo(c)phenanthrene 195-19-7 20.00 26.89 -6.89 
36 1-Methylpyrene 2381-21-7 22.00 29.76 -7.76 
37 3,9-Dimethylbenz(fl)anthracene 316-51-8 24.00 18.22 5.78 
38 2.3-Benzofluorene 243-17-4 25.00 27.26 -2.26 
39 1,2-Benzofluorene 238-84-6 25.00 27.17 -2.17 
40 9-Benzylfluorene 1572-46-9 26.00 14.36 11.64 
41 9-m-Toylfluorene 18153-42-9 29.00 14.97 14.03 
42 Pyrene 129-00-0 30.00 34.84 -4.84 
43 2-Elhy [anthracene 52251-71-5 30.00 31.11 -1.11 
44 10-Methylbenzo(a)pyrene 63104-32-5 32.00 15.58 16.42 
45 1 - Melhylanthracene 610-48-0 33.00 37.99 -4.99 
46 2-Methylfluoranthene 33543-31-6 33.00 27.67 5.33 
47 3,6-Dimethylphenanthrene 1576-67-6 33.00 32.78 0.22 
48 Benzo(a)anthracene 56-55-3 35.00 27.02 7.98 
49 Fluorene 86-73-7 36.00 43.80 -7.80 
50 2-Methylphenanthrene 2531-84-2 38.00 37.96 0.04 
51 9-Ethylfluorene 2294-82-8 38.00 31.06 6.94 
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TABLE I (Continued) 

Pred. 

No. Compound CAS No. Act. Act. Resid. 

52 1 -Methylphenanthrcne 832-69-9 40.00 37.85 2.15 

53 9,10-Dihydrophenanthrene 776-35-2 40.00 37.07 2.93 

54 9-Vinylanthraccne 2444-68-0 40.00 35.37 4.63 

55 Anthracene 120-12-7 42.00 43.66 -1.66 

56 Fluoranthene 206-44-0 42.00 32.52 9.48 

57 1-Methylfluorene 1730-37-6 49.00 38.16 10.84 

58 2-Methylanthracene 613-12-7 50.00 38.11 11.89 

59 4H-Cyclopenta(rf. e, Aphenanthrene 203-64-5 50.00 36.23 13.77 

60 Phenanthrene 85-01-8 50.00 43.50 6.50 

Computation of Indices 

Five sets of parameters have been used to construct the hierarchical models 
presented in this study. These sets include topostructural, topochemical, 
geometric, quantum chemical, and physicochemical descriptors. Topo- 
structural and topochemical indices are subsets of the set of topological 
indices, and the distinction between these groups will be discussed later. 
Geometric indices include the three-dimensional Wiener number, both 
hydrogen-filled and hydrogen-suppressed, and van der Waals volume. The 
quantum chemical parameters were calculated using four semi-empirical 
Hamiltonians, and the physicochemical descriptors include calculated \ogP 
and molecular weight. These physicochemical indices were included since 
they are commonly used in modeling dermal penetration. The set of indices 
used in this studv are summarized in Table II. 

TABLE II    Classification of parameters used in developing models for the dermal penetration 
of polycyclic aromatic hydrocarbons (PAHs) 

Quantum 

Topostructural Topochemical Geometric chemical 
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Topological Indices 

The topological indices used in this study, both the topostructural and the 
topochemical, have been calculated using POLLY 2.3 [21] and software 
developed by the authors. These indices include Wiener index [22], 
connectivity indices developed by Randic [23] and higher order connectivity 
indices formulated by Kier and Hall [24], bonding connectivity indices 
denned by Basak et al. [25], a set of information theoretic indices denned on 
the distance matrices of simple molecular graphs [26, 27] and neighborhood 
complexity indices of hydrogen-filled molecular graphs [28,29], and 
Balaban's J indices [30-32]. Table III provides a list and brief definitions 

TABLE III   Symbols, definitions and classifications of topological parameters 

Topostructural 

I* Information index for the magnitudes of distances between all possible pairs of 

vertices of a graph 
I* Mean information index for the magnitude of distance 
W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a 

graph 
|D Degree complexity 
Hv Graph vertex complexity 
HD Graph distance complexity 
IC Information  content   of  the  distance  matrix   partitioned   by   frequency   of 

occurrences of distance h 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen- 

filled graph 
M, A Zagreb group parameter = sum of square of degree over all vertices 
M! A  Zagreb  group  parameter   =   sum  of cross-product  of degrees over  all 

neighboring (connected) vertices 
*X Path connectivity index of order h = 0-6 
*XC- Cluster connectivity index of order h = 3- 5 
*XPC Path-cluster connectivity index of order h = 4 - 6 
*Xch Chain connectivity index of order h = 5 & 6 
/>„ Number of paths of length h = 0-10 
j Balaban's J index based on distance 

Topochemical 

IORB Information content or complexity of the hydrogen-suppressed graph at its 

maximum neighborhood of vertices _ 
IC Mean information content or complexity of a graph based on the r tn (r - U - b) 

order neighborhood of vertices in a hydrogen-filled graph 
Structural information content for rth (r = 0-6) order neighborhood of vertices 

in a hydrogen-filled graph uuu^„r 
Complementary information content for rth (r = 0-6) order neighborhood of 

vertices in a hydrogen-filled graph 
'Xh Bond path connectivity index of order h = 0-6 
'X£ Bond cluster connectivity index of order h = 3 & 5 

'X^v Bond chain connectivity index of order h = 5 & 6 

'X%c Bond path-cluster connectivity index of order h = 4-6   

SIC, 

CIC, 
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TABLE III   (Continued) 

*XV Valence path connectivity index of order h = 0-6 
*X£ Valence cluster connectivity index of order h = 3 & 5 
*Xvch Valence chain connectivity index of order h = 5 & 6 
''XJc Valence path-cluster connectivity index of order h = 4 - 6 
JB Balaban's J index based on bond types 

Geometric 

Vw van der Waal's volume 
3t^V 3-D Wiener number for the hydrogen-suppressed geometric distance matrix 
3DWH 3-D Wiener number for the hydrogen-filled geometric distance matrix 

of the topostructural, topochemical, and geometrical indices included in this 

study. 
The topological indices were divided into two subsets: topostructural and 

topochemical indices. Topostructural indices (TSIs) are topological indices 
which only encode information about the adjacency and distances of atoms 
(vertices) in molecular structures (graphs), irrespective of the chemical 
nature of the atoms involved in bonding or factors such as hybridization 
states and the number of core/valence electrons in individual atoms. 
Topochemical indices (TCIs) are parameters that quantify information 
regarding the topology (connectivity of atoms), as well as specific chemical 
properties of the atoms comprising a molecule. These indices are derived 
from weighted molecular graphs where each vertex (atom) or edge (bond) is 
properly weighted with selected chemical or physical property information. 
The division of the topological indices into the sets of topostructural and 
topochemical indices is shown in Tables II and III. 

Geometrical Indices 

Van der Waals volume, V„ [33-35], was calculated using Sybyl 6.1 from 
Tripos Associates, Inc [36]. The 3-D Wiener numbers were calculated by 
Sybyl using an SPL (Sybyl Programming Language) program developed in 
our laboratory [37]. Calculation of 3-D Wiener numbers consists of the sum 
entries in the upper triangular submatrix of the topographic Euclidean 
distance matrix for a molecule. The 3-D coordinates for the atoms were 
determined using CÜSCORD 3.0.1 [38]. Two variants of the 3-D Wiener 
number were calculated: ,DWH and 3DW. For 3DWH hydrogen atoms are 
included in the compulations and for 3DW, hydrogen atoms are excluded 
from the computations. 
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Quantum Chemical Parameters 

Quantum chemicals parameters were calculated using four semi-empirical 
Hamiltonian methods: modified neglect of diatomic overlap version 1 
(MNDO), modified neglect of diatomic overlap Austin Model 1 (AMI), 
modified neglect of diatomic overlap parametric method 3 (PM3), and 
modified intermediate neglect of differential overlap version 3 (MINDO/3). 
The following quantum chemical parameters were calculated using each of 
the above methods: energy of the highest occupied molecular orbital 
(EHOMO). energy of the second highest occupied molecular orbital 
(EHOMOI). energy of the lowest unoccupied molecular orbital (ELUMO). 

energy of the second lowest unoccupied molecular orbital (ELUMOI). heat 
of formation (A///), dipole moment (/i), and HOMO/LUMO gap (EHOMO- 

ELUMO)- These parameters were calculated using MOP AC 6.00 in the Sybyl 

interface [39]. 

Physicochemical Descriptors 

Molecular weight (MW) was calculated using Sybyl 6.1. Molecular weight 
can be thought of as a descriptor which characterizes the general size of a 
molecule, especially in the case a specialized set such as the PAHs. Values of 
log P were computed by CLOGP [40]. The calculated values of log P for the 
set of sixty PAHs range from approximately 4.2 to 8.3 and are presented in 

Table IV. 

Data Reduction 

Initially, all topological indices were transformed by the natural logarithm 
of the index plus one. This was done to scale the indices, since some may be 
several orders of magnitude greater than others, while other indices may 
equal zero. The geometric indices were also transformed by the natural 

logarithm of the index for consistency. 
The resulting set of eighty-eight topological indices was then partitioned 

into two distinct sets, the topostructural indices (thirty-eight) and the 
topochemical indices (fifty). Further reduction of the number of indepen- 
dent variables available for model construction was still necessary to 
minimize the chance of spurious correlations. According to the guidelines 
described by Topliss and Edwards, for a set of sixty observations, 
approximately thirty-five independent variables can be used in modeling 
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TABLE IV    Calculated values for molecular weight (MW), lipophilicity (log P), P0, 'Xb, 3DW 

No MW 

300.360 

logP Po 
XX" >DW 

1 7.044 3.2189 2.1898 7.0226 

2 302.376 7.298 3.2189 2.1910 7.1475 

3 330.430 8.266 3.2958 2.2821 7.3402 

4 252.316 6.124 3.0445 2.0310 6.6000 

5 289.357 NA 3.2189 2.1898 6.9618 

6 268.359 7.067 3.0910 2.1299 6.8191 

7 254.332 5.858 3.0445 2.0660 6.6916 

8 280.370 7.422 3.1355 2.1339 6.8771 

9 276.338 6.584 3.1355 2.1346 6.8812 

10 278.354 6.838 3.1355 2.1122 6.9813 

II 252.316 6.124 3.0445 2.0310 6.5945 

12 276.338 6.584 3.1355 2.1135 6.8175 

13 256.348 6.432 3.0445 2.0909 6.6725 

14 256.348 6.842 3.0445 2.0713 6.6775 

15 282.386 6.916 3.1355 2.1783 6.9571 

16 242.321 6.313 2.9957 1.9965 6.5583 

17 252.316 6.124 3.0445 2.0525 6.7022 

18 252.316 6.124 3.0445 2.0296 6.6374 

19 230.310 6.128 2.9444 1.9835 6.3486 

20 234.342 6.716 2.9444 2.0023 6.4635 

21 234.342 6.466 2.9444 1.9854 6.4892 

22 254.332 6.378 3.0445 2.0425 6.6514 

23 242.321 7.067 3.0910 2.1299 6.4636 

24 242.321 6.313 2.9957 1.9954 6.5952 

25 242.321 6 313 2.9957 1.9965 6.5691 

26 180 250 4.674 2.7081 1.8032 5.7671 

27 242.321 5 783 2.9957 2.0388 6.5159 

28 208.304 5 942 2.8332 2.0016 6.0322 

29 258.364 7 186 3.0445 2.1124 6.6998 

30 268.359 6 977 3.0910 2.1401 6.7552 

31 230 310 6 128 2.9444 2.0090 6.3900 

32 228.294 5664 2.9444 1.9410 6.3516 

33 208 304 5 942 2.8332 2.0012 6.0656 

34 278.354 6838 3.1355 2.1135 6.9177 

35 228.294 5 664 2.9444 1.9395 6.3531 

36 216283 5 599 2.8904 1.9032 6.1824 

37 256.348 6962 3.0445 2.0496 6.7562 

38 216.283 5.399 2.8904 1.9348 6.3157 

39 216.283 5 399 2.8904 1.9360 6.2906 

40 256 348 6312 3.0445 2.0986 6.5775 

41 256 348 6 432 3.0445 2.0909 6.6494 

42 202.256 4950 2.8332 1.8386 6.0130 

43 206 288 5 668 2.8332 1.8860 6.1723 

44 266 343 6 773 3.0910 2.0831 6.7519 

45 192261 5 139 2.7726 1.7986 5.9393 

46 216283 5 599 2.8904 1.9296 6.2290 

47 206 288 5 788 2.8332 1.8647 6.1080 

48 228294 5664 2.9444 1.9379 6.4313 

49 166 223 4 225 2.6391 1.7249 5.5620 

50 192.261 5 139 2.7726 1.7991 5.9358 

51 194.277 5.273 2.7726 1.8866 5.8875 

52 192261 5 139 2.7726 1.8004 5.9104 

53 180 250 4 784 2.7081 1.8103 5.7372 

54 204 272 5.214 2.8332 1.8319 6.0757 
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TABLE IV   (Continued) 

No MW logP 
\yh 3D ft; 

«                             178 234 4 490 2.7081 1.7267 5.7650 
2ÖS 4:9500 2.8332 1.8681 6.0547 

57                             180.250 4.874 2.7081 .7964 5 76 
«                             192 261 5 139 2.7726 1-7971 5.9752 
»                           mils 4 685 2.7726 1.8210 5.8489 
£                           m.234 4.490 2.7081 1-7286 5.7224 

while retaining a low probability of chance correlations (Pe < 0.01 with R 

> 0.7) [41]. 
To further reduce the number of indices available, the sets ol 

topostructural and topochemical indices were divided into subsets, or 
clusters, based on the correlation matrices using the SAS procedure 
VARCLUS [42]. This procedure divides the set of indices into disjoint 
clusters, such that each cluster is essentially unidimensional. 

From each cluster we selected the index most correlated with the cluster, 
as well as any indices which were poorly correlated with their cluster 
(R2 < 0 70). These indices were then used in the modeling of the dermal 
penetration of the sixty PAHs. The variable clustering and selection of 
ind.ces was performed independently on both the topostructural and 
topochemical sets of indices. This procedure resulted in a set of eight 
topostructural indices and nine topochemical indices. 

Statistical Analysis and Hierarchical QSAR 

Regression modeling of the thirteen distinct sets of indices was accomplished 
using the SAS procedure REG [42]. This hierarchical approach to QSAR 
modeling begins with  the simplest parameters,  the TSIs.  Increasingly 
complex levels of parameters are then added. The indices from the best TSI 
model are retained and the set of TCIs are added. The indices included in the 
best model from this second step are then combined with the geometric 
ind.ces and regression modeling is conducted again. The quantum chemical 
parameters from the various Hamiltonians are treated as unique sets of 
descriptors and are individually modeled with the other parameters, e.g., the 
AMI   and   PM3   indices   are   never   used   in   the   same   model.   The 
phvs.cochemical descriptors were included in each step of the modeling 
process to determine how they compare with the theoretical descriptors. 

In  addition  to  the  seven  models  developed  using  the  hierarchical 
.   approach, seven other models were generated. These models used the 
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individual sets of descriptors only to determine the potential contribution of 
each set. Thus these models were generated using TCI indices only, 
geometric indices only, quantum chemical indices only, or physicochemical 
indices only. 

RESULTS 

The variable clustering of the TSIs resulted in the selection of eight indices: 
IC, O, 3X-5X, 6XCh, P0, Py Log? and MW were added to the set of 
independent variables, for this model and all subsequent models, because 
other studies have shown the importance of these parameters in predicting 
dermal penetration [1, 19]. All-possible subsets regression resulted in the 
selection of the following one-parameter model for the estimation of dermal 
penetration: 

%DP = 224.1 -67.9/>o 

„ = 60 r2 = 0.675 .s = 7.4 F = 120.6 

In the next step of the hierarchy, the nine TCIs selected by variable 
clustering (IC0. SIC2, SIC4, CIC,, 'Xb, 6Xb

Ch, 
4XV,5 X^. JB) were combined 

with P0, log/*, and MW and all-subsets regression was conducted on this 
set. The following model resulted: 

%DP= 179.7 - 78.8'Xb 

(2) 
n = 60 r = 0.695 s= 7.1 F= 132.0 

Interestingly, neither the topostructural index from the first model or either 
of our physicochemical descriptors were selected. Neither the geometrical 
nor any of the quantum chemical indices added significantly to the model 
produced in the second step of the hierarchy. In all cases, 'Xb produced the 
best model. 

To continue our comparative study of the indices, models were 
constructed using only geometric indices, only quantum chemical indices, 
and only physicochemical parameters. The use of geometric parameters 
alone resulted in a one-parameter model which performed as well as the TSI 
model: 

%DP = 186.0 -25.4,DW 
(3) 

n -- 60 r = 0.673 ,i = 7.4f=l 19.3 
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The models using only quantum chemical indices were all discarded since 
none resulted in an explained variance (r2) greater than 25%. 

Finally, modeling was conducted using log P and MW. Molecular weight 
proved to be a better descriptor for modeling the dermal penetration of 
PAHs than was log/'. This step resulted in the following one-parameter 

model: 

%DP = 90.6 - 0.3MW 

n = 60 r2 = 0.674 s = 7.4 F = 120.0 

The values for the parameters used in the final models (P0, *X ,    W, MW) 
have been provided in Table IV. 

DISCUSSION 

The goal of this paper was to develop models for estimating the dermal 
penetration of chemicals using computed molecular descriptors. To this end 
we used topostructural, topochemical, geometric, and quantum chemical 
parameters which can be computed directly from the molecular structure. 
We also used calculated log P (CLOGP) and molecular weight as descriptors 
in the development of regression equations. 

Our results show that topostructural indices (P0), topochemical para- 
meters ('Xb), geometrical descriptors (3DW) and physicochemical properties 
(MW) are almost equally effective in predicting the dermal penetration of 
the sixty PAHs studied in this paper. Additionally, we attempted to develop 
hierarchical QSAR models by adding selected topochemical, geometric, and 
quantum chemical indices to the set of topostructural parameters retained 
by the variable clustering method. This procedure did not result in any 
improvement in the models. Interestingly, log P and the quantum chemical 
descriptors gave QSAR models which were inferior to the predictive 
equations generated from topostructural, topochemical or geometric 

variables. 
Of the four final models which were generated as part of this study, X , a 

simple bond-type connectivity index which accounts for general size and 
bonding patterns within the molecule, provided the best correlation with 
percent dermal penetration. Figure 1 shows the correlation between 
experimental dermal penetration and estimated dermal penetration using 
'Xb and Figure 2 demonstrates the scatter of the residuals. Thus, there are 
no apparent co-variance problems within this model. 
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FIGURE 1    Scatterplot of experimentally determined percent dermal penetration (%DP) vs. 
estimated %DP using Eq (2) for a set of 60 polycyclic aromatic hydrocarbons. 

(E*tknatMl) 

FIGURE 2    Pattern of residual errors for the estimation of the percent dermal penetration 
(VoDP) of 60 polycyclic aromatic hydrocarbons using Eq. (2). 

QSAR models developed in this study are in line with other published 
models for dermal penetration of chemicals. Potts and Guy [1] developed 
models for dermal penetration of diverse chemicals using MW, molar 
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volume (MV) and log P. Roy et ai, developed dermal penetration models 
for the same set of sixty PAHs analyzed in this paper [19] using log/> and 
several molecular shape descriptors in the development of regression models 
(r2 = 64%). The parameters used by these authors quantify generalized 
shape, size, and hydrophobicity of chemicals, so it is not surprising that 
parameters such as />„, 'Xb, 3DW, and MW are well correlated with the 
dermal penetration of PAHs since these parameters also quantify general 

aspects of the size and shape of molecules. 
Based on the results of this study, it seems that physical size and shape are 

more important in determining the dermal penetration of PAHs than 
lipophilicity. This conclusion would support the notion that larger 
molecules must traverse water-filled pores rather than moving across the 
dermal membrane. This would also account for the findings of Roy et al. 
[19] which showed an inverse relationship between the lipophilicity of PAHs 
and their dermal penetration. The more lipophilic the compound, the less 
likely it is to travel through a hydrophilic channel. Additionally, it should be 
noted that while these results are on par with similar studies, they also 
demonstrate that there is still something missing in this characterization of 

the dermal penetration of PAHs. 
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Chapterl7  

Relative Effectiveness of Topological, 
Geometrical, and Quantum Chemical Parameters 

in Estimating Mutagenicity of Chemicals 

Subhash C. Basak, Brian D. Gute, Gregory D. Grunwald 
Natural Resources Research Institute, University of Minnesota, 

5013 Miller Trunk Highway, Duluth MN55811, USA 

Abstract - Adequate experimental data necessary for hazard assessment is not available for the 
majority of environmental pollutants and chemicals in commerce. This has led to the increasing 
use of theoretical structural parameters in the hazard estimation of such chemicals. In this pa- 
per we have used a hierarchical quantitative structure-activity relationship (QSAR) approach in- 
volving topological indices, geometrical 3-dimensional (3D) indices, and quantum chemical 
indices to estimate the mutagenicity of a set of 95 aromatic and heteroaromat.c amines. The 
results show that topological indices explain the major part of the variance in mutagenicity. The 
addition of quantum chemical indices to the set of descriptors makes some improvement in the 

predictive models 

The assessment of the environmental and human health hazard posed by chemicals is 
frequently carried out using insufficient experimental data. This is true for industrial 
chemicals as well as for substances identified in industrial effluent, hazardous waste sites 
and environmental monitoring surveys (Auer et al. 1990). In 1984. the National Research 
Council (NRO studied the availability of toxicity data on industrial chemicals and found 
that many of these chemicals have very little or no test data (1984). About 15 million 
distinct chemical entities have been registered with the Chemical Abstract Service (CAS) 
and the list is growing by nearly 750.000 per year. Out of these chemicals about 1.000 
enter into societal use every year (Arcos 1987). Very few of these chemicals have empiri- 
cal properties needed for hazard assessment. In the United States, the Toxic Substances 
Control Act (TSCA) inventory has over 72,000 entries, and the list is growing by nearly 
3 000 per year (U.S. General Accounting Office IGAO] 1993). Of the some 3 00CI chemi- 
cals submitted yearly to the United States Environmental Protection Agency (USEPA) for 
the premanufacture notification (PMN) process, less than 50% have any experimental 
data at all, less than 15% have empirical mutagenicity data, and only about 6% have ec- 
otoxicological and environmental fate data. The Superfund list of hazardous substances 
has only limited data for many of the more than 700 chemicals as well (Auer et al. 1990). 

245 
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This pervasive lack of empirical data shows the real need for the development of meth- 
ods that can estimate environmental and toxic properties of chemicals using parameters 
that can be calculated directly from molecular structure. In recent years we have been in- 
volved in the development of such models (Basak and Magnuson 1983; Basak 1987, 
1990; Basak et al. 1988,1994; Balaban et al. 1994; Basak and Grunwald 1994a, 1994b, 
1995a-1995e, 1996; Basak, Bertelsen, and Grunwald 1995; Basak, Gute, and Grunwald 
1995,1996a, 1996b; Basak, Gute, and Drewes 1996; Basak, Grunwald and Niemi 1997; 
Basak and Gute 1997). Specifically, we have used graph theoretic indices, geometrical (3- 
dimensional [3D]) parameters, and semiempirical quantum chemical indices in the de- 
velopment of quantitative structure-activity relationship (QSAR) models pertinent to 
biomedicinal chemistry and toxicology. In this chapter, we have used a hierarchical ap- 
proach in the development of QSARs for a group of 95 aromatic and heteroaromatic 
amines using topological indices, 3D parameters, and a set of quantum chemical descrip- 
tors. 

The purpose in using a hierarchical approach is to begin to look at the importance of the 
contribution of different classes of parameters to modeling physicochemical or biologi- 
cally relevant properties. To this end we ask these questions: What nonempirical molecu- 
lar information is adequate for the estimation of mutagenic potency? Is specific chemical 
or quantum chemical information necessary, or do simple structural descriptors do an 
adequate job? These questions should lead us to a deeper understanding of the principles 
and molecular basis for determining mutagenic potency. 

Theoretical Methods 

Database 

A set of 95 aromatic and heteroaromatic amines previously collected from the literature 
by Debnath et al. (1992) were used to study mutagenic potency. The mutagenic activities 
of these compounds in S. typhimurium TA98 + S9 microsomal preparation are expressed 
as the mutation rate, ln(R), in natural logarithm (revertants/nanomole). Table 17-1 lists 
the compounds used in this study and their experimentally measured mutation rates. 

Computation of topological indices 

Topological indices (TIs) used in this study have been calculated by POLLY 2.3 (Basak et 
al. 1988), which can calculate a total of 102 indices. These indices include Wiener index 
(Wiener 1947), connectivity indices (Randic 1975; Kier and Hall 1986), information 
theoretic indices defined on distance matrices of graphs (Bonchev and Trinajstic 1977; 
Raychaudhury et al. 1984), a set of parameters derived on the neighborhood complexity 
of vertices in hydrogen-filled molecular graphs (Basak et al. 1980; Basak and Magnuson 
1983; Roy et al. 1984; Basak 1987). as well as Balaban's J indices (Balaban 1982,1983, 
1986). Table 17-2 provides brief definitions for the topological indices included in this 
study. 

SETAC Press 
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Table 17-1 Observed and estimated mutagenic potency 
[ln(revertants/nmol)l for 95 aromatic and heteroaromatic amines 

Estln(R) 
Nr. Compound   Exp.ln(R) (Equation 17-10) 

1 2-bromo-7-aminofluorene 

2 2-methoxy-5-methylaniline(p-cresidine) 

3 5-aminoquinoline 

4 4-ethoxyaniline (p-phenetidine) 

5 1-aminonaphthalene 

6 4-aminofluorene 

7 2-aminoanthracene 

8 7-aminofluoranthene 

9 8-aminoquinoline 

10 1,7-diaminophenazine 

11 2-aminonaphthalene 

12 4-aminopyrene 

13 3-amino-3'-nitrobiphenyl 

14 2,4,5-trimethylaniline 

15 3-aminofluorene 

16 3,3 '-dichlorobenzidine 

17 2.4-dimethylaniline (2,4-xylidine) 

18 2,7-diaminofluorene 

19 3-aminofluoranthene 

20 2-aminofluorene 

21 2-amino-4'-nitrobiphenyl 

22 4-aminobiphenyl 

23 3-methoxy-4-methylaniline (o-cresiduie) 

24 2-aminocarbazole 

25 2-amino-5-nitrophenol 

26 2.2'-diaminobiphenyl 

27 2-hydroxy-7-aminofluorene 

28 1-aminophenanthrene 

29 2.5-dimethylaniline (2,5-xylidine) 

30 4-amino-2'-nitrobiphenyl 

31 2-amino-4-methylphenol 

32 2-aminophenazine 

33 4-aminophenylsulfide 

34 2,4-dinitroaniline 

35 2,4-diaminoisopropylbenzene 

36 2,4-difluoroaniline 

37 4,4'-methylenedianiline 

38 3,3'-dimethylbenzidine 

39 2-aminofluoranthene 

40 2-amino-3'-nitrobiphenyl 

4! 1-aminoflitoranthene 

42 4,4'-ethylenebis (aniline) 

43 4-chloroanihne 

SF.TACPrm 

2.62 1.10 

-2.05 -3.13 

-2.00 -2.30 

-2.30 -3.76 

-0.60 -0.32 

1.13 0.44 

2.62 1.61 

2.88 2.54 

-1.14 -1.66 

0.75 1.36 

-0.67 -0.80 

3.16 3.10 

-0.55 -0.19 

-1.32 -0.74 

0.89 0.74 

0.81 0.24 

-2.22 -1.63 

0.48 0.97 

3.31 2.57 

1.93 1.08 

-0.62 0.37 

-0.14 0.06 

-1.96 -3.27 

0.60 0.60 

-2.52 -2.01 

-1.52 -1.24 

0.41 1.61 

2.38 1.80 

-2.40 -1.55 

-0.92 -O.50 

-2.10 -2.43 

0.55 1.32 

0.31 -0.47 

-2.00 -0.75 

-3.00 -3.36 

-2.70 -1.29 

-1.60 -0.97 

0.01 -0.23 

3.23 2.66 

-0.89 -0.42 

3.35 2.23 

-2.15 -0.92 

-2.52 -2.94 
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Table 17-1 continued 

Est. ln(R) 

Nr. Compound Exp. ln(R) (Equation 17-10) 

44 2-aminophenanthrene 2.46 1.96 

45 4-fluoroaniline -3.32 -2.57 

46 9-aminophenanthrene 2.98 1.13 

47 3,3'-diaminobiphenyl -1.30 -O.20 

48 2-aminopyrene 3.50 2.58 

49 2,6-dichloro-l ,4-phenylenediamine -0.69 -1.46 

50 2-amino-7-acetamidofluorene 1.18 0.89 

51 2,8-diaminophenazine 1.12 1.55 

52 6-aminoquinoline -2.67 -2.31 

53 4-methoxy-2-methylaniline(m-Cresidine) -3.00 -2.44 

54 3-amino-2'-nitrobiphenyl -1.30 -0.90 

55 2,4'-diaminobiphenyl -0.92 -0.40 

56 1,6-diaminophenazine 0.20 0.20 

57 4-aminophenyldisulfide -1.03 -1.00 

58 2-bromo-4,6-dinitroaniline -0.54 -1.25 

59 2,4-diamino-n-butylbenzene -2.70 -3.72 

60 4-aminophenylether -1.14 -0.76 

61 2-aminobiphenvl -1.49 -0.77 

62 1.9-diaminophenazine 0.04 0.09 

63 1-aminofluorene 0.43 0.28 

64 8-aminofluoranthene 3.80 2.69 

65 2-chloroaniline -3.00 -2.37 

66 2-amino-a,a,atrifluorotoluene -0.80 -1.63 

67 2-amino-l-nitronaphthalene -1.17 -0.90 

68 3-amino-4'-nitrobiphenyl 0.69 0.14 

69 4-bromoaniline -2.70 -3.08 

70 2-amino-4-chlorophenol -3.00 -2.39 

71 3,3'-dimethoxybenzidine 0.15 0.05 

72 4-cyclohexylaniline -1.24 -0.73 

73 4-phenoxyaniline 0.38 -0.50 

74 4,4'-methylenebis(o-ethylaniline) -0.99 -0.51 

75 2-amino-7-nitrofluorene 3.00 1.19 

76 benzidine -0.39 -0.52 

77 l-amino-4-nitronaphthalene -1.77 -0.95 

78 4-amino-3'-nitrobiphenyl 1.02 0.47 

79 4-amino-4'-nitrobiphenyl 1.04 0.73 

80 1-aminophenazine -0.01 1.28 

81 4.4'-methylenebis(o-fluoroaniline) 0.23 0.41 

82 4-chloro-2-nitroanilinc -2.22 -2.06 

83 3-aminoquinoline -3.14 -2.22 

84 3-aminocarbazole -0.48 0.60 

85 4-chloio-1.2-phenylenediamine -0.49 -2.01 

86 3-aminophenanthrene 3.77 1.79 

87 3.4'-diaminobiohenvl 0.20 -0.34 

SF.TAC Press 



Relative effectiveness oftopological. geometrical, and quantum chemical parameters 249 

Table 17-1 continued 

Est. ln(R) 
Nr. Compound Exp.ln(R) (Equation 17-10) 

88 1-aminoanthracene 
89 1-aminocarbazole 
90 9-aminoanthracene 
91 4-aminocarbazole 

. 1.83 3.41 
92 6-aminochrysene 
93 1-aminopyrene )■ ' 

...        .   ■      ,-.,-: i -_:i;.w^                           -1.77                         -1.13 

1.18 1-86 
-1.04 0.65 

0.87 1-15 
-1.42 0.38 

4-4'-methylenebis (o-isopropyl-aniline) -I-77 

95 2,7-diaminophenazine 3.97 193 

Computation of geometrical indices 
Van der Waal's volume, Vw (Bondi 1964; Moriguchi et al. 1975; Moriguchi and Kanada 
1977) was calculated using SYBYL 6.2 (Tripos Associates, Inc. «94>; ™«^iener 
numbers (Bogdanov et al 1989) were calculated by SYBYL using an SPL (SYBYL Pro- 
gramming Language) program developed in our laboratory Calculation of D Wiener 
numbers consists of the sum entries in the upper triangular submatnx of the topo- 
graphic Euclidean distance matrix for a molecule. The 3D coordinates for the atoms were 
determined using CONCORD 3.2.1 (Tripos 1993). Two variants of the 3D Wiener num- 
ber were calculated: 3DWH and 3DW. For 3DWH, hydrogen atoms are included in the com- 
putations, and for 3DW. hydrogen atoms are excluded from the computations. 

Computation of quantum chemical parameters 
The quantum chemical parameters EHOMO. EHOMOI- 

E
LUMO. ELUMOL AH/ *"d^'" "|" 

culated for all of the following semiempirical Hamiltonians: AMI PM3. MNDO, 
M1NDO/3 These parameters were calculated by MOPAC 6.00 in the SYBYL interface 
(Stewart 1990). One difficulty was encountered in using the MINDO/3 Hamilton.an. 
This particular interface does not include the information necessary for handling bro- 
mine present in 3 of the 95 molecules. To avoid omitting any compounds from one ot 
the models, we accounted for the bromine by substituting dummy atoms wh.ch were as- 
signed the Gasteiger-Huckel charges calculated for the original bromine atoms. These 
molecules containing the dummy atoms with assigned charges were then entered into 
MOPAC for calculation. 

Data reduction 
Initially all Tls were transformed by the natural logarithm of the index plus 1. This was 
done because the scale of some indices may be several orders of magnitude greater than 
that of other indices, and other indices may equal 0. The geometric indices were trans- 
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Table 17-2 Symbols and definitions of topological and geometrical parameters 

Symbol      Definition 

IW 
ID 

Information index for magnitudes of distances between all possible pairs of vertices of a 
graph 

7£ Mean information index for magnitude of distance 
ID 

W Wiener index = half-sum of off-diagonal elements of distance matrix of a graph 

ID Degree complexity 
Hv Graph vertex complexity 
HD Graph distance complexity 
IC Information content of distance matrix partitioned by frequency of occurrences of 

distance h 
10RB Information content or complexity of hydrogen-suppressed graph at its maximum 

neighborhood of vertices 
0 Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph 

M i A Zagreb group parameter = sum of square of degree over all vertices 
M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 

(connected) vertices 
IC, Mean information content or complexity of a graph based on r * (r = 0-6) order 

neighborhood of vertices in a hydrogen-filled graph 
SIC r Structural information content for r * (r = 0-6) order neighborhood of vertices in a 

hydrogen-filled graph 
CIQ Complementary information content for r'h (r = 0-6) order neighborhood of vertices in a 

hydrogen-filled graph 
hX Path connectivity index of order h = 0-6 
hX£ Ouster connectivity index of order h = 3-5 
hXpc Path-cluster connectivity index of order h = 4-6 
hXch Chain connectivity index of order h = 5,6 
hXb Bond path connectivity index of order h = 0-6 
hvt Bond cluster connectivity index of order h = 3,5 
hXr}i Bon(* c^am connectivity index of order h = 5,6 
hX^c Bo"d path-cluster connectivity index of order h = 4-6 
hX» Valence path connectivity index of order h = 0-6 
hX£ Valence cluster connectivity index of order h = 3,5 
hX ^ Valence chain connectivity index of order h = 5,6 
hXlc Valence path-cluster connectivity index of order h = 4-6 
Ph Number of paths of length h = 0-10 
J Balaban's J index based on distance 
JB Balaban's J index based on bond types 
jx Balaban's J index based on relative electronegativities 
f Balaban's J index based on relative covalent radii 
Vw van der Waal's volume 
3D w 3D Wiener number for the hydrogen-suppressed geometric distance matrix 
30 WH 3D Wiener number for the hydrogen-filled geometric distance matrix 
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formed by the natural logarithm of the index for consistency; the addition of 1 was un- 
necessary. 
The set of 91 TIs was partitioned into 2 distinct sets: topostructural indices and to- 
pochemical indices. Topostructural indices are indices that encode information about 
the adjacency and distances of atoms (vertices) in molecular structures (graphs) irrespec- 
tive of the chemical nature of the atoms involved in the bonding or factors like hybrid- 
ization states of atoms and number of core/valence electrons in individual atoms. 
Topochemical indices are parameters that quantify information regarding the topology 
(connectivity of atoms) as well as specific chemical properties of the atoms comprising 
a molecule. Topochemical indices are derived from weighted molecular graphs where 
each vertex (atom) is properly weighted with selected chemical/physical properties. 
These sets of the indices are shown in Table 17-3. 

Table 17-3 Classification of parameters used in developing models for mutagenic potency (ln(R)) 

Topostructural Topochemical Geometric 
Quantum chemical: 
AMI, PM3, MNDO, MINDO/3 

lo IORB vw EHOMO 

I? ICo-lC6 
3DW EHOMOI 

W SICo-SIQ DWH ELUMO 

P CICo-CIQ ELUMOI 

Hv °xb -<ab AH/ 

HD % and5Xbc H 

1C % and6Xbch 

0 *xk -6xk 
M, °xv-6xv 

M2 
1Xcand5Xc 

"l-l % and«xh, 

3frand>Xc *X.\c-f7Ck 

yandex» JB 

«XPC-
6

**: J* 

PO'PIO 

J 

r 
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According to Topliss and Edwards (1979), in conducting QSAR studies it is important to 
bear in mind that the indiscriminate use of too many independent variables can lead to 
spurious (chance) correlations. Using their findings, we have determined that, for a set of 
95 compounds, no more than 60 independent variables can be used in generating regres- 
sion analyses with explained variance (R2) of 0.7 or greater. It must be kept in mind that 
this is the total number of variables initially used in modeling, not the final number of 
variables used in the model. This number of independent variables should keep the prob- 
ability of chance correlations below the 0.01 level. 

To reduce the number of independent variables that we would use for model construc- 
tion, the sets of topostructural and topochemical indices were further divided into sub- 
sets, or clusters, based on the correlation matrix using the SAS procedure VARCLUS (SAS 
1988). The VARCLUS procedure divides the set of indices into disjoint clusters so that 
each cluster is essentially unidimensional. 

From each cluster, we selected the index most correlated with the cluster, as well as any 
indices that were poorly correlated with the cluster (r < 0.70). These indices were then 
used in the modeling of mutagenic potency of aromatic and heteroaromatic amines. The 
variable clustering and selection of indices were performed independently for both the 
topostructural and topochemical subsets. 

Statistical analysis and hierarchical QSAR 
Regression modeling was accomplished using the SAS procedure REG on 13 sets of indi- 
ces. These sets were constructed as part of a hierarchical approach to QSAR model devel- 
opment. The hierarchy begins with the simplest indices, the topostructural. After using 
the topostructural indices to model the activity, we then proceed to add the next level of 
complexity, the topochemical indices from the clustering procedure, and proceed to 
model the activity using these parameters. Likewise, the indices included in the model 
selected from this procedure are combined with the indices from the next level, the geo- 
metrical indices, and modeling is conducted once again. Finally, the best model utilizing 
topostructural, topochemical, and geometrical indices is combined with the quantum 
chemical parameters and modeling is conducted. This final step was repeated 4 times, 
each time using quantum chemical parameters from a different semiempirical Hamilto- 
nian. namely, AMI, PM3. MNDO. MINDO/3. Thus quantum chemical models are de- 
veloped individually, one using the AMI parameters, one using the MNDO parameters, 
one using the PM3 parameters, and one using the MINDO/3 parameters. The regression 
analysis resulted in the final selection of indices for each of the models. 
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Results and Discussion 

The variable clustering of topostnictural and topochemical indices resulted in 8 topo- 
stnictural and 13 topochemical indices being retained for model construction (see Table 
17-3). The results for the all possible subsets' regression analyses have been summarized 
in Table 17-4. Because all sets were well under 25 parameters, all possible subsets' regres- 
sions were used for all analyses. 

Table 17-4 Summary of regression results for all classes of parameters 

Equation Parameter class 

topostnictural 

Variables included F # s 

17-1 0,«XPC.PO.J 
58.1 0.721 1.04 

17-2 topochemical KZ4.SIC2.SIC4,«xv.sXc.4Xk 41.1 0.737 1.02 

17-3 geometric x>W 61.8 0.399 1.50 

17-4 Qc:AMl EHOMOI-ELUMO- V- 31.8 0.512 1.37 

17-5 Qc: MNDO EHOM01'ELUMO 
54.7 0.543 1.31 

17-6 Qc: MINDO/3 EHOMO-ELUMO' AH/ 32.4 0.517 1.36 

17-7 Qc:PM3 EHOMO-EHOMOI- ELUMO 30.0 0.497 1.39 

17-8 topostnictural + 
topochemical 

♦XPC.POJ.SIQ.SKM.VC 44.5 0.752 0.99 

17-9 topostnictural + 
topochemical + 
geometric 

*XPOJ.SIC2.SIC„.*XC,*>W 42.9 0.746 1.00 

17-10 topostnictural + 
topochemical + 
geometric + 
AMI 

♦Xrc.Po.J-SlC2.SIC4,Sxc. 

EHOMOL AH/. H 

35.8 0.791 0.92 

17-11 topostnictural + 
topochemical + 
geometric + 
MNDO 

♦XPC.PO.J.SIC2.SIC4.SXC.AH/ 40.4 0.765 0.97 

17-12 topostnictural + 
topochemical + 
geometric + 
MINDO/3 

♦XPC.POJ-SIC2.SIC4,ELUMO 45.8 0.758 0.98 

17-13 topostnictural + 
topochemical + 
geometric + 
PM3 

«XK.P0J.SIC2.SIC4.SXC-
AH/ 39.7 0.761 0.98 
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As can be seen from Table 17-4, using only the topostructural class of indices resulted in 
a 4 parameter model to estimate ln(R) with a variance explained (R2) of 72.1% and a stan- 
dard error (s) of 1.04 (Equation 17-1). The P0 and J indices are related to the size and 
shape of molecular graphs; the 4XPC encodes information about the degree of branching 
of molecular graphs; the 0 parameter is related to the degree of symmetry of graphs 
(Basak et al. 1987). Therefore, size, branching, and symmetry (or complexity) of skeletal 
graphs corresponding to molecular structures seem to be the predominant factors in 
determining mutagenic potency of the set of 95 aromatic amines. 

The second step of the hierarchical method combined the 4 topostructural parameters 
from Equation 17-1 with the set of 13 topochemical parameters The resulting model for 
estimation of ln(R) included 6 parameters (Equation 17-8), which had an R2 of 75.2% and 
an 5 of 0 99. Thus we see that the addition of topochemical information does lead to an 
increase in the explained variance, improving our model without greatly increasing the 
number of independent variables. The independent variables of Equation 17-8 quantify 
1) shape and size of molecular graphs 0, P0). 2) branching (JXPC). 3) molecular complex- 
ity / redundancy (SIC2, SIC4). and 4) degree of cyclicity (5Xb

c). It may be mentioned that 
we have found very similar sets of topostructural and topochemical parameters useful in 
estimating normal boiling point, octanol/water partition coefficient (Basak Gute, and 
Grunewald 1996b), and vapor pressure (Basak, Gute, and Grunewald 1997) of diverse 

sets of molecules. 

The next step of the hierarchical method takes this topostructural + topochemical model 
and adds the 3 geometric indices; however, this actually led to a decrease in the explained 
variance. As part of model construction, it became necessary to eliminate P0 from the set 
of indices when adding the hydrogen-suppressed 3D Wiener number because of result- 
ing problems with variance inflation between the 2 parameters. As a result, the mode 
that retained the geometric parameter had slightly lower R2 and s values than the model 
using topostructural and topochemical only (Equation 17-9). This being the case, we 
chose to use the parameters from Equation 17-8 in the following modeling with the quan- 
tum chemical parameters. Thus, the last 4 models were aU constructed with the 6 param- 
eters from Equation 17-8 and all 6 quantum chemical parameters for the particular 
Hamiltonian methodology available for modeling. 

As can be seen from Table 17-4, the AMI parameters made the most significant contribu- 
tion to our hierarchical modeling procedure (R2 = 79.1%, s = 0.92). The other 3 methods 
showed only minimal improvement over the topostructural + topochemical model. 

Finally individual models using only topochemical. only geometrical, and only quantum 
chemical parameters were constructed to further our understanding of the individual 
contribution of these different types of parameters. The topochemical model was the 
strongest of the 3. with the geometrical and quantum chemical models showing little 
effectiveness. The topochemical model included 6 parameters and did show a slight in- 
crease in explained variance and standard error over the topostructural model. 
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The goal of this chapter is to investigate the relative effectiveness of theoretical structural 
parameters — namely topostructural, topochemical, geometrical, and quantum chemi- 
cal parameters — in predicting the mutagenicity of a set of aromatic and heteroaromatic 
amines. To this end, we used a hierarchical approach in the development of QSARs using 
4 classes of molecular descriptors. 

The results show that the topostructural parameters explain a large fraction of the vari- 
ance (Z?2) in the mutagenic potency of the amines. The best model in this area explained 
about 72% of variance in mutagenicity using 0, 4

XPO 
P

O. J-These indices do not contain 
any explicit chemical information about the molecules. The large explained variance 
probably indicates that general structural features like size, shape, symmetry, and 
branching play a major role in determining mutagenic potency. The addition of 
topochemical variables made some improvement in the explained variance. The best 
model using topostructural and topochemical indices explained about 75% of variance in 
mutagenicity. The addition of geometrical parameters, however, did not make any im- 
provement in estimation. Finally, the addition of quantum chemical parameters was at- 
tempted. Indices from AMI, PM3, MNDO, and MIND03 were used separately in 
developing the QSAR models. While addition of the heat of formation, dipole moment, 
and EHOMOI parameters calculated by the AMI method provided some improvement in 
the estimation of ln(R), parameters calculated by PM3, MIND03, and MNDO did not 
make any significant improvement in the estimation of mutagenic potency. The calcu- 
lated values for the parameters used in the hierarchical model that included the AMI pa- 
rameters (Equation 17-10) are presented in Table 17-5. These values represent the 
original, nontransformed values for all indices used in Equation 17-10. Additionally, Fig- 
ure 17-1 presents a scatterplot of observed versus estimated mutagenic potency based on 
Equation 17-10. 

Estimated   ln(revert«nts/nmol) 
4.00 

2 00 

0 00 

-2.00 

-4.00 
-4.00 -2 00 0.00 2.00 

Ln(revertants/nmol) 

4.00 

Figure 17-1 Scatterplot for observed ln(R) versus estimated ln(R) 
using Equation 17-10 for set of 95 aromatic and heteroaromatic 
amines 
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Table 17-5 Calculated values for topostructural, 
topochemical, and AMI quantum chemical parameters used in Equation 17-1 

Nr. *XPC Po J sic2 SIC 4 *zl EHOMOI AH/ H 

1 2.482 15 1.722 0.780 0.966 0.080 -9.510998 57.462489 3.246 

2 1.409 10 2.356 0.824 0.875 0.059 -9.198889 -24.061979 1.613 

3 1.440 11 1.993 0.831 0.975 0.058 -9.528133 51.959364 2.993 

4 0.841 10 2.132 0.775 0.818 0.000 -9.761040 -22.045505 1.782 

5 1.440 11 1.993 0.639 0.931 0.058 -9.342732 40.325881 1.549 

6 2.209 14 1.800 0.697 0.931 0.109 -9.019172 53.561923 1.377 

7 2.148 15 1.673 0.613 0.885 0.049 -8.752501 61.467301 1.686 

8 3.051 17 1.694 0.616 0.890 0.119 -8.883560 90.631004 1.061 

9 1.440 11 1.993 0.807 0.975 0.058 -9.497513 49.496038 1.140 

10 2.650 16 1.701 0.703 0.967 0.083 -8.759018 93.256750 2.202 

11 1.292 11 1.932 0.648 0.907 0.025 -8.981140 39.152911 1.625 

12 3.058 17 1.692 0.593 0.890 0.112 -9.017251 86.180524 1.025 

13 2.289 16 1.879 0.722 0.951 0.065 -9.635184 49.692122 5.732 

14 2.154 10 2.462 0.622 0.786 0.167 -9.195396 -1.116909 1.386 

15 2.136 14 1.751 0.704 0.948 0.080 -8.880375 53.383623 1.407 

16 3.115 16 1.884 0.677 0.755 0.194 -9.010987 29.747467 1.402 

17 1.478 9 2.346 0.719 0.867 0.083 -9.402700 5.680026 1.423 

18 2.482 15 1.722 0.692 0.766 0.080 -9.008264 51.483002 0.749 

19 3.131 17 1.679 0.592 0.890 0.128 -8.745169 113.597721 1.348 

20 2.132 14 1.739 0.704 0.948 0.080 -9.316509 53.266008 1.795 

21 2.481 16 1.832 0.699 0.902 0.103 -10.009252 50.464895 5.573 

22 1.351 13 1.789 0.570 0.836 0.028 -9.611345 45.922022 1.682 

23 1.418 10 2.376 0.824 0.875 0.059 -9.233259 -23.899670 2.229 

24 2.132 14 1.739 0.715 0.981 0.057 -8.382162 66.295627 1.688 

25 2.126 11 2.396 0.874 0.942 0.121 -10.236383 -21.118276 6.030 

26 1.945 14 1.963 0.591 0.755 0.104 -8.411351 45.503434 0.270 

27 2.482 15 1.722 0.791 0.967 0.080 -9.366850 8.492721 1.867 

28 2.332 15 1.763 0.600 0.951 0.091 -8.782735 57.726120 1.543 

29 1.478 9 2.346 0.696 0.867 0.083 -9.229828 5.699677 1.431 

30 2.293 16 1.944 0.699 0.902 0.075 -9.850974 54.711440 5.793 

31 1.478 9 2.346 0.847 0.910 0.083 -9.261839 -30.703134 1.260 

32 2.148 15 1.673 0.651 0.891 0.049 -9.205497 91.251439 1.882 

33 1.221 14 1.685 0.593 0.845 0.000 -9.510446 52.769884 1.912 

34 2.499 13 2.526 0.777 0.920 0.107 -11.360524 25.435.777 7.257 

35 1.838 11 2.437 0.722 0.815 0.131 -8.792416 3.913795 2.561 

36 1.478 9 2.346 0.836 0.962 0.083 -10.029053 -69.256743 2.575 

37 1.630 15 1.681 0603 0.659 0.000 -8.406652 39.288132 1.394 

38 3.115 16 1884 0656 0.716 0.194 -8.782407 29.805987 2.494 

39 2.913 17 1.674 0.604 0.905 0.093 -8.844299 113.962366 0.866 

40 2.437 16 1.921 0.716 0.967 0.103 -9.940798 79.401262 6.265 

41 3.058 17 1.700 0.616 0.920 0.119 -8.657007 101.911673 1.867 

42 1.683 16 1.601 0.606 0.660 0.000 -8.707849 57.273517 2.562 

43 0.816 8 2.192 0.737 0.812 0.000 -9.948850 13.095294 2.631 

44 2.176 15 1.722 0.606 0.951 0.057 -8.807318 59.927756 1.359 
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Table 17-5 continued 

Nr. "XPC Po J SIC 2 SIC 4 ^ EHOMOI AH/ H 

45 0.816 8 2.192 0.737 0.812 0.000 -10.025071 -24.569648 2.776 

46 2.280 15 1.787 0.603 0.885 0.091 -8.826091 57.985510 1.608 

47 1.641 14 1.861 0.624 0.755 0.028 -9.637290 52.825739 0.355 

48 2.888 17 1.654 0.569 0.807 0.077 -8.537199 81.775262 1.644 

49 2.006 10 2.487 0.719 0.812 0.144 -9.653936 6.122184 0.948 

50 2.727 18 1.612 0.786 0.920 0.080 -9.409869 19.708295 4.954 

51 2.497 16 1.667 0.644 0.771 0.049 -9.614724 124.753819 2.050 

52 1.292 11 1.932 0.831 0.975 0.025 -9.345759 50.639120 2.728 

53 1.574 10 2.330 0.824 0.875 0.083 -9.524426 -23.745777 1.831 

54 2.234 16 1.984 0.716 0.967 0.075 -9.701876 55.625683 6.167 

55 1.848 14 1.867 0.628 0.902 0.066 -8.529041 45.389658 1.889 

56 2.802 16 1.739 0.677 0.755 0.117 -8.724272 87.859343 1.995 

57 1.683 16 1.601 0.584 0.643 0.000 -8.694071 52.783142 3.652 

58 3.074 14 2.661 0.813 0.920 0.174 -11.175279 33.261219 6.162 

59 1.360 12 2.246 0.740 0.890 0.059 -8.803533 -7.047410 2.543 

60 1.630 15 1.681 0.579 0.642 0.000 -8.589188 21.521611 2.589 

61 1.292 13 1.833 0.588 0.884 0.028 -9.075139 46.291223 1.526 

62 2.802 16 1.744 0.677 0.771 0.117 -8.760423 87.878976 2.958 

63 2.293 14 1.786 0.697 0.931 0.127 -8.809819 52.914796 1.658 

64 2.972 17 1.656 0.613 0.896 0.093 -8.672342 86.560420 1.569 

65 1.138 8 2.279 0.775 0.962 0.083 -9.647217 13.148070 1.773 

66 2.214 11 2.461 0.788 0.903 0.250 -10.328717 -135.798912 4.070 . 

67 2.274 14 2.092 0.732 0.939 0.093 -9.498965 42.132738 5.212 

68 2.332 16 1.793 0.699 0.902 0.065 -9.707684 49.439690 6.645 

69 0.816 8 2.192 0.737 0.812 0.000 -9.958995 24.673699 2.834 

70 1.478 9 2.346 0.885 0.966 0.083 -9.512320 -30.257131 1.873 

71 2.994 18 1.913 0.670 0.725 0.146 -8.597273 -29.701343 0.593 

72 1.351 13 1.789 0.633 0.783 0.048 -9.618662 -11.036978 1.453 

73 1.221 14 1.685 0.593 0.845 0.000 -9.519593 24.038959 3.243 

74 2.855 19 1.809 0.670 0.738 0.118 -8.322206 14.345758 1.347 

75 3.130 17 1.674 0.786 0.953 0.117 -9.907587 57.088597 7.715 

76 1.759 14 1.780 0.558 0.624 0.028 -8.898246 44.312986 2.417 

77 2.390 14 2.079 0.760 0.939 0.103 -9.995923 44.945430 7.318 

78 2.348 16 1.843 0.699 0.902 0.065 -10.065351 48.997787 5.907 

79 2.391 16 1.760 0.656 0.836 0.065 -10.153390 48.597189 7.636 

80 2.300 15 1.714 0.655 0.884 0.083 -9.466774 90.375028 1.894 

81 2.975 17 1.775 0.705 0.773 0.167 -8.668864 -51.583170 2.233 

82 1.851 11 2.471 0.863 0.938 0.070 -10.795945 14.958329 5.163 

83 1.292 11 1.932 0.807 0.975 0.025 -9.250508 61.289442 2.564 

84 2.136 14 1.751 0.715 0.981 0.057 -8.650669 70.561209 2.432 

85 1.478 9 2.346 0.738 0.875 0.083 -9.338439 12.337686 1.935 

86 2.180 15 1.741 0.606 0.935 0.057 -8.832492 56.103853 1.663 

87 1.700 14 1.820 0.611 0.869 0.028 -8.581538 44.585899 2.808 

88 2.300 15 1.714 0.617 0.896 0.083 -9.168383 66.520403 Ö16 
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Table 17-5 continued 

Nr. *%K Po J SIC2 SIC 4 *xl EHOMOI AH/ n' 
89 2.293 14 1.786 0.708 0.962 0.091 -8.617125 69.956608 1.276 

90 2.357 15 1.760 0.587 0.787 0.103 -9.179235 64.230081 1.689 

91 2.209 14 1.800 0.708 0.962 0.082 -8.497152 66.236222 1.211 

92 3.175 19 1.575 0.553 0.913 0.124 -8.830777 100.875189 1.130 

93 3.110 17 1.677 0.577 0.890 0.112 -8.958369 70.826740 1.287 

94 3.721 21 1.867 0.638 0.674 0.263 -8.315255 10.633206 1.225 

95 2.497 16 1.664 0.644 0.755 0.049 -9.634497 124.742897 0.004 

Using the same set of aromatic amines Debnath et al. (1992 ) developed various QSAR 
models using hydrophobicity (log P. octanol/water), EH0M0, and ELUM0 calculated by the 
AMI Hamiltonian and some indicator variables. For the largest subset (n = 88), they 

derived the following model: 

In (R) = 7.20 + 1.08(log P) + 1.28(EHOMO) " 0.73(ELUMO) +1-46(10 (17-14) 

s = 0.860, F= 12.6, R^ 0.806 

The model in Equation 17-10 is comparable to the model developed by Debnath et al. 
(1992) and uses all the 95 aromatic amines as compared to a smaller subset (n=88) used 

in their study. 
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The characterization of molecular structure using structural invariants has increased greatly 
over the las. ten years. Specially, topolog.cal mdices have become more widely used ,n the 
quanSaUon of molecular structure for use ,„ quantitative s.rueture-aeüvity relaüonship 
s.udl. chemical documentation, and mo.ecu.ar s.milanty stud.es. The bas.s, calculat.on and 
util.iv of topological indices has been examined, with an eye to the specific advantages and 
problems in «heir use. In add.tion. vanable clustering and pnncpal component analysis are 
examined as two potential solut.ons to the problem of index mtercorrelat.on. 

Keywords Topolog.cal indices; molecular structure; graph theory; graph invariants; variable 

clustering; pnncpal component analysis 

INTRODUCTION 

An important area of research in computational and mathematical 
chemistry is the characterization of molecular structure using structural 
invariants {1 - 14]. The impetus for this research trend comes from various 
directions. Researchers in chemical documentation have searched for a set 
of invariants which will be more convenient than the adjacency matrix (or 
connection table) for the storage and comparison of chemical structures 
[15] Invariants have been used to order sets of molecules [3-5, 8, 16]. With 
the substantial increase in available databases of chemical structures and 
properties, attempts have been made to develop structure-activity relation- 

•Author to whom all correspondence should be addressed. 
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ships (SARs) whereby existing molecules can be compared with other 
molecules (real or hypothetical) on the basis of these structural invariants. 
The properties of the molecules of interest can then be predicted based on 
molecular structure without the need for experimental data. 

In this age of combinatorial chemistry thousands of molecules of known 
structure can be produced rapidly. However, at the same time resources for 
determining even the simplest properties of all these molecules in the 
laboratory are unavailable. In the USA, the Toxic Substances Control Act 
(TSCA) Inventory includes nearly 74,000 chemicals and the list is growing at 
a rate of more than 2,000 new submissions to the United States 
Environmental Protection Agency (USEPA) for the Premanufacture 
Notification (PMN) process per year [17-20]. At present, risk assessment 
of the PMN chemicals is carried out using limited test data. For example, 
approximately 15% of PMN submissions have empirical mutagenicity data. 
Under such circumstances, structural descriptors will play a pivotal role in 
comparing molecules with one another and in predicting their properties. 

MOLECULAR STRUCTURE - BEAUTY IN THE EYE 
OF THE BEHOLDER OR CONUNDRUM? 

The main hurdle to the characterization of molecular structure is the lack of 
uniformity in its definition and quantification. The term molecular structure 
represents a set of nonequivalent and probably disjoint concepts [21]. For 
example, the term "molecule" means different things when it represents an 
assembly of identifiable atoms held together by fairly rigid bonds as 
compared to a collection of delocalized nuclei and electrons in which all 
identical particles are indistinguishable [21]. There is no reason to believe 
that when we discuss diverse topics (e.g., chemical synthesis, reaction rates, 
spectroscopic transitions, reaction mechanisms, and ab initio calculations) 
using the notion of molecular structure, that the different meanings we attach 
to this term originate from the same fundamental concept [21, 22]. This 
fundamental problem has been described succinctly by Woolley [22]: 

"■ • • there is no reason to suppose that the same basic idea can 
provide a basis for the discussion of all molecular experiments. 
This is understandable if one recognizes that every physical 
and chemical concept is only defined with respect to a certain 
class of experiments, so that it is perfectly reasonable for 
different sets of concepts, although mutually incompatible, to 
be applicable to different experiments." 
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in the context of molecular science, the various concepts of molecular 
tructure(eg, classical valence bond  representation, vanous chem.cal 
"p Xoredc representations, the ba,.-and-st,dc model, representauonM 

minimum energy conformation, semi-symbol.c contour maps, or symbol c 
r^mation^y Hamiltonian operators) are distinct molecular model 
der    d through different means of abstraction from the same chem.ca 
rea tv or molecule [23]. In each instance, the equivalence class (concept or 
mo     o molecular structure) is generated by selecting certain aspects wh, e 
Tgno ing other unique properties of those actual events. Th.s explains the 
plu     ty of the concepts of molecular structure and their autonomous 
nature, the word autonomous being used in the sense that one concept , not 

logically derived from the other. 

GRAPHS AND MOLECULAR STRUCTURE 

At the most fundamental level, the structural model of an assembled entity 
Teg    a molecule consisting of atoms) may be defined as the patterr, of 

", auonship among its parts as distinct from the values associated-them 
[24].   Constitutional   formulae  of molecules  are  graphs  where  vrt.ces 
enresent the set of atoms and edges represent chemical bonds [25]. The 

pTue"   of connectedness  of  atoms   in   a   molecule   ,s  preserved   by 
constitutional graphs. A graph (more correctly a non-d,rect* g™ph) £- 
\V   £] consists of a finite nonempty set   V of po.nts together w.th a 

described set £ of unordered pa.rs of distinct po.nts of W A/'^ 
Zdcl assigns to the points of C a realization in some applied field and each 
d ment of £ .nd.cates a pa.r of entities (elements of the structural model) 
vTch are in the finite nonempty .rreflexive symmetric binary relation 
described by G. For example, when elements of the set V symbolize atom, 
"without valence electrons and the elements of £ represent covaWm 

^-electron bonds, G is the molecular graph or ™«™™W*«* 
covalent chemical species. Such a graph can represent structural formulaeo 
a large number of organic compounds. S.nce more than 90 /„ of chemical 
compounds described so far are either organic or conu.norg.mc l.gands 
uch a graph has been found to be useful in chemistry [. 3] The edge set need 

not alwavs represent a covalent bond. In fact, elements of £ may symbohz 
almost any ty'pe of bond (e.g.. ionic, coordinate, hydrogen or weak   o 
representing transition states of an SN2 reaction, etc.) P7-»]_If the 
nteracuon between a pa.r of atoms is asymmetric (e.g., .n case of sufficiently 

Po a    covalent  bonds,  hydrogen  bond  donor  acidity,  hydrogen  bond 



4 S.C. BASAK AND B. D  GUTE 

acceptor basicity, or charge transfer complex formation) the bonding 
pattern can be represented by a binary relation which is anti-reflexive and 
asymmetric [6]. Further refinement could be achieved through the assign- 
ment of weights to the vertices or edges [3], and use of multiple edges 
between a pair of atoms held together both by sigma and pi bonds. The 
weighted pseudograph appears to be the most general model capable of 
symbolizing the bonding pattern of a large number of organic and inorganic 

chemicals. 
For a long time, chemists have relied on visual perception to relate 

various aspects of constitutional graphs to observable phenomena. The 
power of graph-theoretic formalism in chemistry is evident from its 
successful applications in chemical documentation, isomer discrimination 
and characterization of molecular branching, enumeration of constitutional 
isomers associated with a particular empirical formula, calculation of 
quantum chemical parameters, structure-physicochemical property correla- 
tions, and chemical structure-biological activity relationships [30-37]. 

GRAPHS AS MOLECULAR MODELS 

Any concept of molecular structure is a hypothetical sketch of the 
organization of atoms within the molecule. Such a model object is a general 
theory and remains empirically untestable. A model object has to be grafted 
to a specific theory to generate a theoretical model which can be empirically 
tested [38]. For example, when it was suggested by Sylvester in 1878 [39] that 
the structural formula of a molecule is a special kind of graph, it was an 
innovative general theory without any predictive potential. When the idea of 
combinatorics was applied on chemical graphs (model object), it could be 
predicted that "there should be exactly two isomers of butane (C4HK,V 

because "there are exactly two tree graphs with four vertices" when one 
considers only the non-hydrogen atoms present in C4H|0 [13]. This is a 
theoretical model of limited predictive potential. Although it predicts the 
existence of chemical species, given a set of molecules (e.g., isomers of 
hexane [C6HM]) the model is incapable of predicting any properties for 
these molecules. This is due to the fact that any empirical property P maps a 
set of chemical structures into the set R of real numbers and thereby orders 
the set empirically. Therefore, to predict the property from structure, we 
need a nonempirical (structural) ordering scheme which closely resembles 
the empirical ordering of structures as determined by P. This is a more 
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specific theoretical model based on the same model object (chemical graph) 
and can be accomplished by using specific graph mvanant(s). 

CHARACTERIZATION OF MOLECULAR GRAPHS 

Molecular graphs can be characterized by graph invariants. A graph 
1 nant „a graph-theoretic property wh.ch ,s preserved *™™f™ 
[26] A graph invariant could be a polynomial, a sequence of numbers or a 
Se number. The characteristic polynomial of a graph and the spectra^of 
graphs are graph invariants. Numerical graph invariants derived from 
mlcular graphs are called graph-theoretic indices or topolog.cal md.es 
P? Topologlcal indies quantitatively describe molecular topology and are 
sensitwe to such structural attributes as size, shape, patterns of branching, 
bonding types, and cyclicity of molecules. 

TopologL  indices (TIs) can sometimes be derivedI convenetiy from 

different matrices such as the adjacency matrix and the **£^ £ 
origins of such TIs illuminate the fundamental structural features that they 
cua t fy  On the other hand, some indices are derived to quantify     key 
structural feature which is qualitative and only understood ,ntu,t,vel. In 
lIm   his original connectivity index ('*)   JUndK asked £«£*». 

which of the two heptane isomers. «.-., 3-methylhexane and 3^hy^«.unc 
is more branched [9]. Until that ume, branching was understood only 
ntuTvdy- Randic derived a quantitative description of branching based on 
he g apttheoretic treatment of the structures. In addition, information 
heorZ indices of chemical structures have been derived to answer the 

ouest on'   which  of a  collection  of structures  is  more  complex  or 
SLous^ Different measures of molecu.ar comity^^ 
answer this question from different points of v.ew [40]. In the following 
s"cZ we discuss the structural bas.s and method of calculation for some of 

the major topological indices. 

CALCULATION OF TOPOLOGICAL INDICES 

The Wiener index (W) (41). the first topological index reported in the 
chemical literature, may be calculated from the distance matrix D(G) of a 
hydTgelsuopressed chemical graph C as the sum of the entries ,n the upper 
trangular distance submatr.x. The distance matrix D(G) of a nond.rec d 
graph G with n vertices is a symmetric n x „ matrix «/„). where du « equal to 
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the distance between vertices v, and v, in G. Each diagonal element d„ of 
D(G) is zero. We give below the distance matrix D(G\) of the unlabeled 
hydrogen-suppressed graph G, of 2,3-dimethylhexane (Fig. 1): 

(1) (2) (3) (4) (5) (6) (7) (8) 

1 "    0 1 2 2 3 3 4 5 

2 1 0 1 1 2 2 3 4 

3 2 1 0 2 3 3 4 5 
D(G{)-- = 4 2 1 2 0 1 1 2 3 

5 3 2 3 1 0 2 3 4 

6 3 2 3 1 2 0 1 2 

7 4 3 4 2 3 1 0 1 

8 5 4 5 3 4 2 1 0 

W is calculated as: 

w■■■ l/2l> = 5>SA (0 

where g* is the number of unordered pairs of vertices whose distance is /;. 
Thus for £>(G|), W has a value of seventy. 

Randic's connectivity index [9], and higher-order connectivity path, clu- 
ster, path-cluster and chain types of simple, bond and valence connectivity 
parameters were calculated using the method of Kier and Hall [10]. Ph 

parameters, number of paths of length h(h = 0,1,..., 10) in the hydrogen- 
suppressed graph, are calculated using standard algorithms. 

Balaban defined a series of indices based upon distance sums within 
the distance matrix for a chemical graph which he designated as J indices 
[42-44]. These indices are highly discriminating with low degeneracy. 
Unlike W, the / indices range of values are independent of molecular size. 

• i—i • •—• 
1 8 

FIGURE I    Hydrogen-suppressed graph of 2,3-dimethylhexane 
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Information-theoretic topological indices are calculated by the applica- 
tion of information theory on chemical graphs. An appropriate set of A of« 
elements is derived from a molecule graph G depending upon certain 
structural characteristics. On the basis of an equivalence relation defined on 
A the set A is partitioned into disjoint subsets A, of order «.-(i - 

l,,2,.-..A;E,-"-- = ")- A Probability distribution is then assigned to the 
set of equivalence classes: 

A\,Ai,- ■ -,Ah 

P\,Pl,---,Ph 

where Pi = njn is the probability that a randomly selected element of A will 

occur in the z'th subset. 
The mean information content of an element of A is defined by Shannon s 

relation [45]: 

1C = - ]T P' log: "" ^ 

The logarithm is taken at base 2 for measuring the information content in 
bus The total information content of the set A is then nxIC. 

It is to be noted that the information content of a graph G is not uniquely 
defined. It depends on how the set A is derived from G as well as on the 
equivalence relation which partitions A into disjoint subsets Aj. For 
example, when A constitutes the vertex set of a chemical graph G, two 

methods of partitioning have been widely used: 

a) Chromatic-number coloring of G where two vertices of the same color 

are considered equivalent, and 
b) Determination of the orbits of the automorphism group of G therealter 

vertices belonging to the same orbit are considered equivalent. 

Rashevsky was the first to calculate the information content of graphs 
where "topologically equivalent" vertices were placed in the same 
equivalence class [46]. In Rashevsky's approach, two vertices «and v of a 
graph are said to be topologically equivalent if and only if for each 
neighboring vertex «,(/-!.2 *) of the vertex u, there is a d.st.nct 
neighboring vertex v, of the same degree for the vertex v. While Rashevsky 
used simple linear graphs with indistinguishable vert.ces to symbolize 
molecular structure,  weighted  linear  graphs or multigraphs are  better 
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models for conjugated or aromatic molecules because they more properly 
reflect the actual bonding patterns, i.e., electron distribution. 

To account for the chemical nature of vertices as well as their bonding 
pattern, Sarkar et al. [47] calculated information content of chemical graphs 
on the basis of an equivalence relation where two atoms of the same element 
are considered equivalent if they possess an identical first-order topological 
neighborhood. Since properties of atoms or reaction centers are often 
modulated by stereo-electronic characteristics of distant neighbors, i.e., 
neighbors of neighbors, it was deemed essential to extent this approach to 
account for higher-order neighbors of vertices. This can be accomplished by 
defining open spheres for all vertices of a chemical graph. If r is any non- 
negative real number and v is a vertex of the graph G, then the open sphere 
S(v, r) is defined as the set consisting of all vertices v, in G such that d(\\ v,) < r. 
Therefore, S(v,0) = 4>, S(v, r) = v for 0<r< 1, and S(v, r) is the set consisting 
of v and all vertices v, of G situated at unit distance from v, if 1 < r < 2. 

One can construct such open spheres for higher integral value of r. For a 
particular value of r, the collection of all such open spheres S(v, r) where v 
runs over the whole vertex set K, forms a neighborhood system of the 
vertices of G. A suitably defined equivalence relation can then partition V 
into disjoint subsets consisting of vertices which are topologically equivalent 
for rth order neighborhood. Such an approach has been developed and the 
information-theoretic indices calculated based on this idea are called indices 
of neighborhood symmetry (40). 

In this method, chemicals are symbolized by weighted linear graphs. Two 
vertices u0 and v0 of a molecular graph are said to be equivalent with respect 
to rth order neighborhood if any only if corresponding to each path w0. 
«i ur of length r, there is a distinct path v0, v,,..., vr of the same length 
such that the paths have similar edge weights, and both u0 and v0 are 
connected to the same number and type of atoms up to the rth order 
bonded neighbors. The detailed equivalence relation has been described in 
earlier studies [40, 48). 

Once partitioning of the vertex set for a particular order of neighborhood 
is completed, IC, is calculated by Eq. 2. Basak et al. [49] defined another 
information-theoretic measure, structural information content (SICr). which 
is calculated as: 

SIC, = ICr/log: n (3) 

where lCr is calculated from Eq. 2 and n is the total number of vertices of 
the graph. 
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Another  information-theoretic  invariant,  complementary  information 

content (CICr) [50], is defined as: 

ClCr= log2/i-ICr W 

CIC, represents the difference between maximum possible complexity of a 
graph (where each vertex belongs to a separate equivalence class) and the 
realized topological information of a chemical species as denned by ICr. 

In Figure 2, the calculation of IC,, SIC, and CIC, is demonstrated for the 

hydrogen-filled graph of 2.3-dimethylhexane. 
'The information-theoretic index on graph distance, 1% is calculated from 

the distance matrix D(G) of a chemical graph G as follows [11]: 

Lubeled Graph: Hn-is H,h-i8 

H,    C-,    C5  H6  H8    H,0 

I'       I'      I       I       I       I 
H, -C, -C2-C4-C6-C7-C8-H 12 

I   I   I   I   I   I 
Wj    Hi     H«,    H7   H^    Hu 

First Order Neighborhoods: 

'    H,      H,x <-'i..'V8 C2-< Ct: 

HHHC.HCCC H H C C 

IV 
II HI 

l..1J.8> <C2- 

Probability (p,-):       '»^ 4/26 2/26 2/26 

Subsets: ,..      . ,r        > <c^ A (C-6.7) 
(H1_1g) ((-I.3J.8' l*-2.4> 

IC!   = - I Pi • logi Pi 

= 2 • 2/26 • log2 26/2 + 4/26 • log2 26 + 18/26 • log2 26/18 

= I 150 bits 

SIC, = IC,/iog2 26 

= 0.353 bus 

CIC, = log2 26-IC, 

= 2.108 bus 

MCURE 2    The calculation of IC. SIC, and CIC, based on the first order neighborhoods for 
the labeled graph of 2.3-dimethylhexane 
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/}}'= WlogiW-£**,■/» log2 A (5) 

The mean information index, /£', is found by dividing the information 
index /"' by W. The information theoretic parameters defined on the 
distance matrix. Hn and Hv, were calculated by the method of 
Raychaudhury et al.   [12]. 

THEORETICAL METHODS 

Databases and Calculations 

Two data sets were used for this study: the first consists of the seventy-four 
alkanes (C3-C9) and the second, more heterogeneous set was taken from the 
STARLIST group of chemicals [51]. The STARLIST subset includes 219 
chemicals for which HB, was equal to zero and calculated log P values fell in 
the range of -2 to 5.5. HB, is a measure of the hydrogen bonding potential 
of a chemical. Chemical structures for these compounds were encoded using 
the SMILES line notation for chemical structures and entered into the 
computer program POLLY version 2.3 for the calculation of indices [52]. 
Table 1 provides a comprehensive list and brief descriptions for these 

indices. 

STATISTICAL METHODS 

Initially all TIs were tranformed by the natural logarithm of the index plus 
one. This is routinely done to scale the indices since there may be a 
difference of several orders of magnitude between indices and some may 
equal zero. 

From the original sets of 102 indices calculated for both data sets, it was 
necessary to remove some indices. Some of the indices for the set of alkanes 
(e.g., the simple, valence and bond connectivity indices) were completely 
redundant. Other indices were removed because they had values of zero for 
all compounds. This '-cleaning" of the sets of TIs left fifty-three indices for 
the alkanes and ninety-eight indices for the STARLIST set. 

Variable clustering and principal component analysis were used on the 
remaining indices to minimize problems of intercorrelation amongst the 
indices. The variable clustering was conducted using the SAS procedure 
VARCLUS  which  divides  the  indices  into disjoint clusters which  are 
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TABLE I    Symbols and definitions of topological indices 

/»■ Information index for the magnitudes of distances between all possible pairs of 

vertices of a graph 
Mean information index for the magnitude of distance 
Wiener index = half-sum of the off-d.agonal elements of the distance matrix 

of a graph 
/" Degree complexity 
H" Graph vertex complexity 
H" Graph distance complexity 

Information content of the distance matrix partitioned by frequency ot 
occurrences of distance h 
Information content or complexity of the hydrogen-suppressed graph at il» 
maximum neighborhood of vertices 
Order of neighborhood when IC reaches its maximum value for the 
hvdroeen-filled graph 
A Zagreb group parameter = sum of square of degree over all vertices 
A Zagreb group parameter = sum of cross-product of degrees over all 
neighboring (connected) vertices ,u„ r<» ,r-n   A\ 
Mean informat.on content or complexity of a graph based on the r    (r - 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SIC, Structural information content for r'h <r - 0 - 6) order neighborhood of vertices 
in a hydrogen-filled graph . 

CIC Complementary information content for r'h (' = 0-6) order neighborhood of 
vertices in a hydrogen-filled graph 

''.V Path connectivity index of order h = 0-6 
*.\'( Cluster connectivity index of order h - 3-6 
\VC „ Chain connectivity index of order h = 3-6 
'A,., Path-cluster connectivity index of order /i = 4 - 6 
W Bond path connectivity index of order li =■ 0-6 
W1 Bond cluster connectivity index of order h = 3-6 
W*1 Bond chain connectivity index of order /i: 3-6 
\v|C Bond path-cluster connectivity index of order /i = 4-6 
\V'1 Valence path connectivity index of order /i = 0-6 
*A" Valence cluster connectivity index of order /> = 3-6 
\V ' „ Valence chain connectivity index of order h = 3-6 ^ 
*V^" Valence path-cluster connectivity index of order h - 4-6 
/', Number of paths of length h = 0-10 
J Balaban's J index based on distance 
J" Balaban's J index based on bond types 
Js Balaban's J index based on relative electronegativities 
J> Balabans J index based on relative covalent radii   

essentially unid.mens.onal based on the correlation matrix [53]. From each 
cluster, the index which was most correlated with the cluster was selected as 
the best representat.ve of that cluster. In this way. individual indices are 
retained while minimizing interrelations. This procedure resulted in the 
retention of eight TIs lor the alkanes. //''. SIC0, SIC,, SIC4, Xc,^ Ac. PA, 
yK: and twelve TIs for the STARLIST data;/X'.1C4. SIC,. CIC,, X. XCh, 
,,.-,     tyd.sy*   'V''     P,  ;" TI values for a subset of the alkanes, the 

'* C'h" C • < - PI'"      " 
eighteen octane isoiners. are presented in Table II. 
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The principal component analysis (PCA) was accomplished using the 
SAS procedure PRINCOMP [54]. The PCA produces linear combinations 
of the TIs, called principal components (PCs) which are derived from the 
correlation matrix. The first PC has the largest variance, or eigenvalue, of 
the linear combination of TIs. Each subsequent PC explains the maximal 
index variance orthogonal to previous PCs, eliminating the redundancy 
which can occur with TIs. The maximum number of PCs generated is equal 
to the number of individual TIs available. For the purposes of this study, 
only PCs with eigenvalues greater than one were retained. A more detailed 
explanation of this approach has been provided in a previous study by 
Basak el al. [3]. The seven PCs with eigenvalues greater than one and the ten 
PCs with eigenvalues greater than one were retained for the alkanes and 
STAR-LIST set respectively. Table III presents the PCs for the octane 
isomers, a subset of the seventy-four alkanes. 

DISCRIMINATION OF ISOMERS USING TOPOLOGICAL 
INDICES AND PRINCIPAL COMPONENTS 
DERIVED FROM THEM 

Topological aspects of chemicals have been used in chemical documenta- 
tion.  One  line of research  in  this area  has  been  the development  of 

TABLE II    TIs selected by variable clustering of the alkanes (octane isomers listed) 

Isomer Name H' SIC,, SIC, SIC, 'AY 5AV P* P, 

Octane 1 28S 0 173 0218 0.477 0.000 0.000 2 0 
2-mcthylheptane 1.233 0 173 0248 0.561 0.342 0.000 2 0 

3-mcthylheptane 1 228 0 173 0.248 0.598 0.254 0.000 2 0 

4-methylheptanc 1.215 0 173 0.248 0.503 0.254 0.000 -) 0 

3-elhylhexane 1.177 0 173 0.248 0532 0.186 0.000 t 0 

2.2-dimethylhexane 1 157 0 173 0.248 0.495 0.940 0.000 -> 0 

2.3-dimethylhexane 1.170 0.173 0.253 0.557 0.450 0.212 -) 0 

2.4-dimethylhexane 1 171 0 173 0.253 0.557 0.529 0.000 2 0 
2.5-dimethylhexane 1 183 0 173 0.253 0.384 0.597 0.000 n 0 

3,3-dimethylhexane 1 137 0 173 0.248 0.548 0.792 0.000 2 0 

3.4-dimelhylhexane 1 157 0 173 0.253 0.469 0.386 0.154 2 0 
3-ethyl-2-methylpentane 1 096 0 173 0.253 0.490 0.405 0.154 2 0 
3-clhyl-3-methylpenlane 1 073 0 173 0.248 0.421 0.656 0.000 1 0 
2.2.3-trimelhylpentane 1 075 0.173 0.255 0490 0.944 0.477 1 0 
2.2.4-trimethylpenlane 1 081 0 173 0.255 0.450 1.088 0000 i 0 
2.3,3-trimethylpentane 1 065 0 173 0.255 0.506 0.850 0.529 i 0 

2,3.4-tnmethylpentane 1 097 0.173 0.225 0.413 0.620 0.326 2 0 
2.2.3.3-tetramethylbutanc 0 997 0 173 0.218 0218 1.253 1.179 0 0 
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TABLE III    Values of the first seven PCs for the eighteen octane isomers 

homer Name 

Octane 
2-methylheptane 
3-melhylheptane 
4-methylheptane 
3-ethylhexane 
2,2-dimethylhexane 
2.3.-dimelhylhexane 
2.4-dimethylhexane 
2.5-dimethylhexane 
3.3-dimethylhexane 
3.4-dimethylhexane 
3-ethyl-2-methylpentane 
3-ethyl-3-methylpenlane 
2.2.3-trimelhylpentane 
2.2.4-trimethylpentane 
2.3.3-trimethylpentane 
2.3.4-trimethylpentane 
2.2,3.3-letramethylbutane 

PC, PC; PCx PC, PC, PC* PC-, 

0 328 -1.744 5.807 0.602 -0.320 -0.473 -0.433 

2.181 -4.236 1.097 0.386 1.100 0.300 -0.935 

2 817 -4.857 -0.307 0.921 0.368 0.366 -0.513 

1 338 -2.211 0.848 -0.821 0.005 -0.541 -0.904 

1 553 -2.077 -0.348 -0.494 -0.817 -0.651 -0.290 

1.163 0.007 -0.436 -0.878 1.367 1.383 0.638 

2 122 -2.060 -1.546 0.502 -0.308 -0.253 -0.105 

2 089 -2.306 -1.372 -0.289 -0.205 0.004 0.291 

-0.769 1.340 1.473 -2.659 0.612 -0.387 -1.443 

2.044 -0.573 -1.726 0.303 0.173 0.582 1.163 

0.807 0.228 -0.825 -0.696 -0.730 -1.223 -0.545 

0.991 -0.035 -1.596 -0.672 -1.076 -1.438 0.110 

-0 035 2.870 -0.614 -0.909 -0.497 -1.178 0.271 

1.136 2.191 -2.383 1.277 0.465 -0.075 0.548 

0.377 2.377 -1.284 -1.846 0.726 0.461 1.676 

1.318 1.825 -2.717 1.990 0.318 -0.400 0.251 

-0.548 4.168 1.329 0.020 -1.745 -1.140 -0.039 

-4.473 12.522 2.681 4.256 1.345 -0.129 -2.627 

topologica! indices which are more d.scriminatory. For example, the J index 
developed by Balaban is one of the most discriminatory indices. Rand.c 
developed the concept of molecular identification number (I. D. number) by 
combining a few topoloeical aspects of structures. Other authors have used 
more than one index for this purpose. One example is the topolog.cal 
superindex proposed by Bonchev ct al. [55] where they use a collection of 
mdices as the superindex. Two structures are said to be distinct if the 
magnitudes of any one of the component indices differ for them. 

In view or the intercorrelation of indices and the fact that a large number 
of TIs have been defined in the literature, we have been interested in denving 
orthogonal parameters from TIs. We have employed two statistical 
methods- variable clustering and principal components analysis (PCA). In 
the former method, we begin with the TIs calculated by POLLY and derive 
a small set of original variables which are minimally intercorrelated. In the 
case of the seventy-four alkanes the method retained eight indices. In the 
PCA. seven principal components (PCs) are derived from original variables 
and these PCs are linear combmat.ons or all the TIs. For the STARLIST 
set, twelve TIs were retained by variable clustering, while ten PCs were 

derived. 
We are interested to see the discriminatory power of the TIs selected by 

variable clustering vis-a-vis the PCs. Values of the TIs selected by the 
variable clustennc technique and the first seven PCs with eigenvalue greater 
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than 1.0 for the set of eighteen octane isomers are presented in Tables 11 and 
III respectively. It is clear from the data that some individual TIs are not 
sufficiently discriminatory for the eighteen octane isomers. On the other 
hand, each PC is unique for any given structure, making them more 
discriminatory than any individual TI. In the interest of space, the values of 
the TIs and PCs for all of the alkanes and for the STARLIST set were not 
included in the tables, however, this information is available upon request 
from the authors. 

TOPOLOGICAL INDEX SPACE VIS-A-VIS 
PC SPACE: WHAT DO THEY MEAN? 

Each TI quantifies certain aspects of molecular structure. Distinct indices 
selected by the variable clustering procedure encode different information 
regarding molecular structure (model object). For example, indices like the 
connectivity index or Wiener index quantify adjacency information of the 
simple planar graph model of molecules. On the other hand, information 
theoretic graph invariants quantify the degree of complexity of the 
molecular graph. Intuitively, these are distinct aspects of molecular structure 
and this notion is borne out by the result of variable clustering analysis on 
the set of TIs calculated by POLLY. It is tempting to speculate that each 
index retained by variable clustering represents one distinct aspect of 
molecular architecture and that, collectively, the TIs form the structure 
space of the set of chemicals. Such a space can be used for the discrimination 
of structures and structure-property correlation. The magnitudes of eight 
TIs for the eighteen octane isomers show that the TIs selected by variable 
clustering have reasonable power for discriminating isomeric structures. 

At the level of PCs. we have derived a certain number of orthogonal 
variables using PCA of the indices. For the alkanes we had seven PCs with 
eigenvalues greater than 1.0 (Tab. Ill) whereas for the structurally diverse 
set of 219 compounds we had ten PCs with eigenvalues greater than 1.0. 
This result indicates that the structure space for the set of 219 molecules is 
more complex than that for the set of seventy-four alkanes. This is in 
agreement with our intuitive notion that molecules with heteroatoms and 
many functional groups are more complex than molecules devoid of any 
heteroatom. Finally, the pattern of correlation of the individual PCs with 
the TIs can help us in understanding the nature of the axes derived by PCA 
(Tabs. IV and V). 
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DISCUSSION 

The major objectives of this paper were: 

a) To illuminate the fundamental nature of mathematical invariants of 

molecular structure, 
b) To study the utility of graph  invariants in the characterization  of 

molecular structure, and 
c) To study the intercorrelation of indices and extraction of orthogonal 

variables from TIs. 

It is clear from the results presented in this paper that the various classes 
of mathematical invariants quantify different aspects of molecular 
architecture. They depend principally on the structural model (model 
object) used for the calculation of the invariant as well as the intuitive aspect 
of molecular structure they are used to quantify. For example, connectivity 
indices and neighbor complexity indices were designed to quantify distinct 
aspects of molecular structure. The results of variable clustering of the 
congeneric set of alkanes and the diverse set of 219 chemicals show that 
these indices encode largely independent structural information about these 

molecules. 
Many structural schemes have been developed for the derivation of 

numbers or sets of numbers which can discriminate closely related structures 
so that they can be useful in chemical documentation. The results presented 
in this paper show that both the collection of indices selected by variable 
clustering as well as the PCs can discriminate among the eighteen octane 
isomers (Tabs. II - V). It is also clear from the data that the PCs are more 
discriminatory than the individual indices. For example, each PC has 
distinct values for all eighteen octane isomers. PCs derived from TIs have 
also been used in the discrimination or isospectral molecular graphs where 
individual indices show a high degree of degeneracy [56]. 

Variable clustering of TIs for the sei of seventy-four alkanes retained 
eight parameters which can be classified into three subsets: 

a) H\ PA, and P8 which represent generalized size and shape; 
b) SIC,o, SIC,, and SIC4 which quantify molecular complexity; and 
c) yX( and *XC which encode information about molecular branching. 

In the case of the more diverse set of 219 chemicals, the indices retained after 
variable clustering fall into four subclasses: 

a) l"n, P« and AX (general shape and si/e): 
b) IC. SIC, and CIC, (complexity); 
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c) *X'Ch and bX[-h (cyclicity); and 
d) }Xh

c, 
$Xh

c< 
yXh

PC and JB (branching). 

A perusal of results from both the sets indicate that distinct indices quantify 
different intuitive aspects of molecular structure. 

A similar picture emerges from the principal component analysis of both 
sets of molecules. The first PC is strongly correlated with variables which 
quantify shape and size. The next important factor is molecular complexity 
which is encoded by the second PC (Tabs. IV and V). The higher order PCs 
(3 - 5) are strongly correlated with invariants which quantify such subtle 
structural factors as branching, cyclicity, etc. It may be mentioned that such 
a result emerged from our earlier studies on a large, diverse set of 3,692 

chemicals [3, 57]. 
In conclusion, mathematical invariants derived from chemical topology 

quantify different aspects of molecular architecture which are intuitively 
understood by the chemist. One can create a structure space from these 
invariants taking uncorrelated structural information (indices or PCs). Such 
orthogonal factors can be useful in the discrimination of closely related 
structures like isomers and in the creation of structure spaces. Metrics 
defined on such spaces have been useful in the quantification of molecular 
similarity [3-5, 58-63]. Orthogonal variables derived by PCA or variable 
clustering can also be used in QSAR studies pertaining to pharmacology 
and toxicology (1.2.6, 33-36.40,48-50,64-68]. 
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INTRODUCTION 

Today's toxicologist is faced with a myriad of unknowns. In 1996 
approximately 1.26 million new chemicals were registered with the Chem.cal 
Abstract Service (CAS), bringing the total number of registered chemicals to 
around 15.8 million [1]. With such a large number of chcm.caIs being 
registered yearly, it is impossible to test all of them exhaustively for the.r 
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effects on the environment and human health. Chemicals can only be 
evaluated as they are called into question, and for many of these compounds 
there will be little or no test data available. Therefore, when the issue of hazard 
assessment comes up, it becomes difficult at best to provide any useful 
suggestions or analyses for many of the registered chemicals, including some 
which are in commerce today. To complete the battery of tests necessary for 
the proper hazard assessment of a single compound is an extremely costly 
procedure and there is simply not enough time or money to complete these test 
batteries for all compounds which are registered today [2]. As a result, when we 
need to evaluate the human health or ecological hazards posed by a chemical it 
becomes ever more important that we have accurate methods for estimating 
the physicochemical and biological properties of molecules. 

Quantitative structure-activity relationships (QSARs) have come into 
widespread use for the prediction of various molecular properties and bio- 
logical responses. Traditional QSARs use empirical properties; e.g., boiling 
point, melting point, octanol-water partition coefficient; or empirically 
derived parameters; e.g., linear free energy related (LFER) and linear 
solvation energy related (LSER) parameters; for the prediction of other 
endpoints [3 - 8] However, due to the scarcity of available data for the 
majority of chemicals that need to be evaluated for ecotoxicological risk 
assessment, these physicochemical properties necessary for traditional 
QSAR model development may not be known. When this is the case, it is 
imperative that we have methods that make use of nonempirical parameters. 
One of the fundamental principles of biochemistry is that activity is dictated 
by structure [9]. Following this principle, one can use theoretical molecular 
descriptors which quantify structural aspects of the molecular structure 
[10-27]. These theoretical descriptors can be generated directly from the 
molecular structure alone, without any input of experimental data. 

Topological indices (TIs) are numerical graph invariants that quantify 
certain aspects of molecular structure. TIs are sensitive to such structural 
features as size, shape, bond order, branching, and neighborhood patterns of 
atoms in molecules. They can be derived from simple linear graphs, 
mulligraphs. weighted graphs, and weighted pseudographs. TIs derived from 
these different classes of graphs will encode different types of information 
about molecular architecture. The different classes of TIs provide us with 
nonempirical. quantitative descriptors that can be used in place of exp- 
erimentally derived descriptors in QSARs for the prediction of properties. 

Our recent studies have focused on the role of different classes of 
theoretical descriptors of increasing levels of complexity and their utility in 
QSAR [2K   31]   This lakes the form of a hierarchical approach which 
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examines the relative contributions of parameters of gradually increasing 
convexity; e.g., structural, chemical, shape and quantum chem.cal 
descriptors; in estimating physicochemical and biological properties. 

In this paper we have reported the utility of this hierarchical approach in 
modeling the acute aquatic toxicity (LC50) of a congeneric set ofs.xty-n.ne 

benzene derivatives. 

THEORETICAL METHODS 

Database 

Acute aquatic toxicity [-log(LC5o)] in fathead ^^^"^^T 
melas) data was taken from the work of Hall, K.er and Ph.pps [32] Their 
data was compiled from eight other sources, as well as some original work 
which was conducted at the U. S. Environmental Protection Agency 
(USEPA) Environmental Research Laboratory in Duluth, Minnesota. The 
complete set of fathead ■ minnow data included 69 benzene derivatives. 
According to the authors, the set of benzene derivatives were tested using 
methodologies which were comparable to their 96-hour fathead minnow 
toxicitv test system. The derivatives chosen for this study have seven dif- 
ferent 'substituent groups that are all present in at least six of the molecules. 
These groups consist of chloro, bromo, nitro, methyl, methoxyl, hydroxyl, 

and ammo substituents (Tab. I). 

Computation of Indices 

Four distinct sets of theoret.cal descriptors have been used in this study. 
These sets include topostructural, topochemical, geometric, and quantum 
chem.cal indices. The topostructural and topochemical indices fall into the 
category normally grouped together as topological indices. The geometrical 
mdices are three-dimensional W.ener number for hydrogen-filled molecular 
structure, hydrogen-suppressed molecular structure, and van der Waals 

'^«structural indices (TSls) are topological indices which only encode 
.„formation about the adjacency and distances of atoms (vertices) .n 
molecular structures (graphs), irrespective of the chem.cal nature of he 
atoms involved in bonding or factors such as hybridization states and the 
number of core/valence electrons in individual atoms. Topochem.cal indices 
(TCh) are parameters that quantify information regarding the topology 



120 B   I)  GUTE ANDS. C. BASAK 

TABLE I    Sixty-nine benzene derivatives and their fathead minnow toxiciiies. expressed 

-log (LC5„)       '   

No. Compound -hg(LCio) -tagiLC*,) Rcsulnul 
(obs.) U-sl. Eq. 4 ) 

1 Benzene 
2 Bromobenzcne 
3 Chlorobenzene 
4 Phenol 
5 Toluene 

6 1. 2 -dichloroben/ene 
7 1. 3-dichlorobenzene 

8 1. 4-dichloroben/enc 

9 2-chlorophenol 

10 3-chlorotoluenc 

II 4-chlorotoluene 

12 1, 3-dihydroxyben/.cne 

13 3-hydroxyanisole 
14 2-methylphenol 

15 3-methylphenol 
16 4-methylphenol 
17 4-nitrophenol 

18 1, 4-dimethoxybenzene 
19 1. 2-dimethylbenzenc 
20 I, 4-dimethylbenzene 

21 2-nitrotoluenc 
22 3-nitrotoluenc 
23 4-niirotolucnc 
24 1. 2-dimtroben/ene 
25 1. 3-dinitroben/enc 
26 1, 4-dinitrobcn/enc 
27 2-methyl-3-nitrounihnc 

28 2-melhyl-4-nitrojmline 

24 2-mcthyl-5-nitroanilinc 
30 2-methyl-6-r.uroanilinc 

31 3-melhyl-6-nitroanthne 

32 4-mcthyl-2-nitroanilinc 
33 4-hydroxy-3-nitroanilinc 
34 4-methyl-3-nitroanihne 

35 1. 2. 3-lnchlorohenzene 
36 1. 2. 4-inchlorobenzem: 
37 1. 3. 5-trichlorobenzcnc 
38 2, 4-dichlorophcnol 
39 3, 4-dichlorotoluenc 
40 2. 4-dichlorotoluene 
41 4-chloro-3-meth>lphenol 

42 2. 4-dimethylphenol 

43 2. 6-dimeth>lphenol 
44 3. 4-dimeth>lphcnol 

45 2. 4-dinitropheno! 
46 1. 2. 4-tnmeth>lbcn/enc 
47 2. 3-dimtrotoluene 

48 2. 4-dinitrotolucnc 
49 2. 5-dinitrotoluenc 
50 2. 6-dimtrotolucnc 
51 3. 4-dinilrotolucnc 

3.40 3.42 -0.02 

3.89 3.77 0.12 

3.77 3.75 0.02 

3.51 3.38 0 13 

3.32 3.66 ■0.34 

4.40 4.29 0.11 

4.30 4.37 -0.07 

4.62 4.51 0.11 

4.02 3.79 0.23 
3.84 3.88 -0.04 

4.33 3.87 0.46 

3.04 3.43 -0.39 

3.21 3.33 -0.12 

3.77 3.64 0.13 
3.29 3.60 -0.31 
3.58 3.53 0.05 
3.36 3.61 -0.25 
3.07 3.28 -0.21 
3.48 3.93 -0.45 
4.21 3.87 0.34 
3.57 3.66 -009 

3.63 3.53 0.10 
3.76 3.49 0.27 

5.45 5.24 0.21 
4.38 4.18 0 20 
5.22 4.94 0.28 
3.48 3.79 -0.31 
3 24 3.51 - 0 27 

3.35 368 - 0.33 
3 80 3.84 -0 04 

3.80 3.78 0 02 
3 79 3.80 -0 01 

3 65 3.61 0 04 
3 77 3.73 0.04 
489 4.89 -000 
5.00 5.04 -0.04 
4.74 5.11 -0 37 

4 30 4 33 -0 03 
474 4.26 0.4S   ■ 
4 54 4.36 0 18 
4 27 3.87 0 40 
386 3.76 0 10 
3 75 3.80 -0 05 
3 90 3.80 0 10 
404 4.14 -0 10 

421 4.09 0 12 
501 5.20 - 0 19 

3.75 4.10 -0.35 
5.15 4.84 0.31 
3 99 441 0 42 
508 5.11 -0.03 
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TABLE I    (Continued) 

3.91 4.05 -0.14 

5.29 5.37 -0.08 

4.12 4.13 -0.01 

5.34 4.80 0.54 

4.26 4.28 -0.02 

4.92 4.14 0.78 

4.21 4.67 -0.46 

4.18 4.80 -0.62 

4.46 4.34 0.12 

4.70 4.89 -0.19 

5.43 5.62 -0.19 

5.85 5.80 0.05 

4.33 4.79 -0.46 

5.00 4.21 0.79 

6.37 6.36 0.01 

4.88 5.16 -0.28 

5.72 5.36 0.36 

6.06 6.03 0.03 

52 3. 5-dinitrololuenc 
5? 1.3. 5.-trinitrobcnzene 
54 2-meihyl-3. 5-dinitroaniline 
55 2-methyl-3. 6-dinilroanilinc 
56 3-methyl-2. 4-dinilroaniline 
57 5-melhyl-2. 4-dinitroaniline 
58 4-mcthyl-2. 6-dinitroaniline 
59 5-mcthyl-2. 6-dinilroanilinc 
60 4-methyl-3. 5-dinitroaniline 
61 2. 4. 6-tribromophenol 
62 1.2. 3. 4-telrachlorobenzcne 
63 1.2. 4. 5-teirachlorobenzene 
64 2.4. 6-trichlorophenol 
65 2-methyl-4. 6-dinitrophenol 
66 2. 3. 6-lrinitrotoluene 
67 2. 4. 6-tnnitrotoluene 
6X 2. 3. 4. 5-tetrachlorophenol 
69 2. 3. 4. 5. 6-penlachlorophenol 

(connectivity of atoms), as well as specific chemical properties of the atoms 
comprising a molecule. These indices are derived from weighted molecular 
graphs where each vertex (atom) or edge (bond) is properly weighted with 
selected chemical or physical property information. Brief definitions of the 

topological indices are shown in Table II. 

Topological Indices 

The 102 topological indices used in this study, both the topostructural and 
the lopochemical, have been calculated by POLLY 2.3 [33] and software 
developed by the authors. These indices include Wiener index [34], conn- 
ective indices developed by Randic [35] and higher order connectivity 
indices formulated by Kier and Hall [36], bonding connectivity indices 
defined by Basak et al. [37], a set of information theoretic indices defined on 
the distance matrices of simple molecular graphs [38,39] and neighborhood 
complexity indices of hydrogen-filled molecular graphs [40,41], and 
Bahiban's J indices [42-44]. Table III provides the list of the topostructural, 
lopochemical, geometrical and quantum chemical indices included in this 

studs 

Geometrical Indices 

Van der Waals volume, VK [45-47], was calculated using Sybyl 6.1 from 
Tnpo-. Associates. Inc [48].-The 3-D Wiener numbers were calculated by 
.SYM/ using an SPL (Sybyl Programming Language) program developed in 
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TABLE II    Symbols and definitions of topological and geometrical parameters 

/£' Information index for the magnitudes of distances between all possible pairs of 
vertices of a graph 

~1* Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a 

graph 
/" Degree complexity 

H' Graph vertex complexity 

H" Graph distance complexity 
fC Information content of the distance matrix partitioned by frequency of occurrences 

of distance h 
/ORB Information content or complexity of the hydrogen-suppressed graph at its 

maximum neighborhood of vertices 
0 Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled 

graph 
A Zagreb group parameter = sum of square of degree over all vertices 

A Zagreb group parameter = sum of cross-product of degrees over all neighboring 
(connected) vertices 

IC, Mean information content or complexity of a graph based on the r'h(r = 0-5) order 
neighborhood of vertices in a hydrogen-filled graph 

SIC, Structural information content for r,h(r = 0-5) order neighborhood of vertices in a 
hydrogen-filled graph 

CIC, Complementar> information content for rth(r = 0-5) order neighborhood of 
vertices in a hvdrogen-filled graph 

*X Path conncctivin index of order h = 0-6 

% Cluster connection index of order h =3.5 

*\,i, Chain connection index of order h = 6 

*Vf Path-Cluster connectivity index of order h = 4-6 

'x* Bond path connectivity index of order h = 0-6 

'x* Bond cluster connectivity index of order h = 3. 5 

*x\ Bond chain connectivity index of order h = 6 

'Xft B°nd path-cluster connectivity index or order h = 4-6 

*X' Valence path connectivity index of order h = 0-6 

Valence cluster connectivity index of order h = 3, 5 

Valence path- cluster connectivity index of order h = 4-6 

P„ Number of paths of length h =  1-9 

J Balaban's J index based on distance 

j" Balaban's J index based on bond types 

J* Balaban's J index based on relative electronegativities 

y' Balaban's J index based on relative covalent radii 

\\, van der Waals volume 
J-/) Wiener number for the hydrogen-suppressed geometric distance matrix 

X, 
*s' 

!/> H' 
»II-,       y-n Wiener number for the hydrogen-filled geometric distance matrix 
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TABLE III    Classification of parameters used in developing models for acute aquatic toxicity 
(Z.C50) in Pimephales promelas 

Topological Topochemical Geometric Quantum Chemical 
AMI 

' n /ORB v„ £HOMO 

1" /C0-/C5 
SDW £HOMOI 

W SICo-SICs 
wwH £LUMO 

1" CIC0-CIC<, ^LUMOI 

H' i)  * _*v* A//r 

H" V ^d V /' 
  
It X.h 

O V -V 
A/, v -v 
M, 3X,V and 5x; 

°x- b\ V  -V 
1 
Xr and "x, ys 

*\rf JX 

V jr 

P\- P* 

J 

our lab [49], Calculation of 3-D Wiener numbers consists of the sum entries 
in the upper triangular submatrix or the topographic Euclidean distance 
matrix for a molecule. The 3-D coordinates for the atoms were determined 
using CONCORD 3.0.1 [50]. Two variants of the 3-D Wiener number were 
calculated: iDWH and iDW. For lDW„ hydrogen atoms are included in 
the compulations and for ™W hydrogen atoms are excluded from the 

computations. 

Quantum Chemical Parameters 

The following quantum chemical parameters were calculated using the 
Austin Model version one (AM 1) semi-empirical Hamiltonian: energy of the 
highest occupied molecular orbital (£HOMO). energy of the second highest 
occupied molecular orbital (£HOMOI). energy of the lowest unoccupied 
molecular orbital (£LUMO), energy of the second lowest unoccupied 
molecular orbital (£LUMOI). heat of formation (A//r), and dipole moment 
in). These parameters were calculated using MOPAC 6.00 in the SYBYL 

interface  [51]. 
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Data Reduction 

Initially, all topological indices were transformed by the natural logarithm 
of the index plus one. This was done to scale the indices, since some may be 
several orders of magnitude greater than others, while other indices may 
equal zero. The geometric indices were transformed by the natural logarithm 
of the index for consistency, the addition of one was unnecessary. 

The set of eighty-one topological indices was then partitioned into two 
distinct sets, the topostructural indices (thirty-three) and the topochemical 
indices (forty-seven). To further reduce the number of independent variables 
for model construction, the sets to topostructural and topochemical indices 
were further divided into subsets, or clusters, based on the correlation 
matrix using the SAS procedure VARCLUS [52]. This procedure divides 
the set or indices into disjoint clusters, such that each cluster is essentially 

unidimensional. 
From each cluster we selected the index most correlated with the cluster, 

as well as any indices which were poorly correlated with their cluster 
(R2 < 0.70). These indices were then used in the modeling of the acute 
aquatic toxicity of benzene derivatives in fathead minnow. The variable 
clustering and selection of indices was performed independently for both the 
topostructural and topochemical indices. This procedure resulted in a set of 
five topostructural indices and a set of nine topochemical indices. 

Reducing the number of independent variables is critical when attempting 
to model small datascts. The smaller the dataset is, the greater the chance of 
spurious error when using a large number of independent variables (descrip- 
tors). Tophss and Edwards have studied this issue or chance correlations 
[53]. For a set with about seventy dependent variables (observations), to 
keep the probability of chance correlations less than 0.01, we can use at 
most forty independent variables. This number is dependent on the actual 
correlation achieved in the modeling process, with a high correlation we 
have a better chance of using more variables with the same limited 
probability of chance correlations. In this study we are well below the cut-off 
of forty. In Tact, the total number or descriptors which will be used for 
model construction and estimation is twenty-three, well within the bounds 
or the Topliss and Fdwards criteria [53]. 

Statistical Analysis and Hierarchical QSAR 

Regression modeling was accomplished using the SAS procedure REG on 
seven distinct sets of indices. These sets were constructed as part or a 
hierarchical approach to QSAR model development. The hierarchy begins 



PREDICTING IX* FROM TOPOLOGICAL DESCRIPTORS 125 

with the simplest parameters, the TSIs. After using the TSIs to model the 
activity the next level of complexity is added. To the indices included in the 
best TSI model, we add all of the TCIs and proceed to model the activity 
using these parameters. Likewise, the indices included in the best model 
from this procedure are combined with the indices from the next level, the 
geometrical indices and modeling is conducted once again. Finally, the best 
model utilizing TSIs, TCIs and geometrical indices is combined with the 
quantum chemical parameters. The regression analysis results in the final 
selection of indices for each of the models. The remaining three models 
which use TCIs, geometric, and quantum chemical parameters indepen- 
dently serve as a means of validating the utility of the hierarchical approach 
and the need for varying types of theoretical descriptors. 

RESULTS 

The variable clustering of the topostructural indices resulted in the retention 
of five indices: M,,7C,0,P8,P9. All-possible subsets regression resulted in 
the selection of a four-parameter model to estimate -log(LC50) with an 
explained variance (R2) of 45.3% and a standard error (5) of 0.58. While this 
is an unsatisfactory model, the indices will still be retained and combined 
with the topochemical indices in the second step of model development. 
Table IV lists the indices used in each of the models. 

The second step of the hierarchical method combined the four indices 
used in the first tier model with the nine topochemical indices selected in the 
variable clustering procedure: S/Co,5/Ci,S/C4,C/Co, X . X c- x'C X/>c> 
J Again all-possible subsets regression was conducted resulting in a four- 
parameter model with an explained variance (R2) of 78.3% and a standard 
error(s) of 0.36. While this model retained two parameters from the 
topostructural model, it is evident that the addition of two topochemical 
indices made a significant contribution to the effectiveness of our model. 

The four indices from the second tier model were then combined with the 
three geometric parameters: ™WH}DW, Vw. The resulting model from this 
procedure retained four indices, replacing the topochemical index CICQ with 
the geometric parameter iDWH. This model had an explained variance (R ) 

of 79 2% and a standard error (5) of 0.36. 
The final step in the hierarchical method combined the four parameters 

from the third tier model with the quantum chemical (AMI) parameters: 
r F F,,,i,r> EI.IMO 1  A//r. u .This set of ten indices led to a 
fhOMl). 'HOMO I. tLUMO. CLUMO I. U,T' I cocio/ A* 
seven-parameter model with an explained variance (R ) of 86.3 /o and a 
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standard error(s) of 0.30. This model retained all of the indices from the 
third model and added three quantum chemical parameters. 

Three other models were constructed for the purpose of comparison. These 
include a five-parameter topochemical model, a three parameter geometric 
model, and a four-parameter quantum chemical model. The indices used in 
these models and the results of the models can be found in Table IV. 

DISCUSSION 

The goal of this paper was to investigate the utility of hierarchical QSAR 
using algorithmically derived molecular descriptors in predicting LC50 

values for a set of sixty-nine benzene derives. To this end, we used four 
classes of parameters, viz., topostructural descriptors, topochemical indices, 
geometrical descriptors and semiempirical quantum chemical indices. 

It is clear from the results described in Table IV that none of the 
individual classes of parameters correlate well with acute aquatic toxicity. 
The TSIs, the simplest of the four classes of parameters, explained about 
45% of the variance in toxicity. The inclusion of topochemical indices in the 
set of independent variables made substantial improvement in the predictive 
capacity of the QSAR models. This is understandable since the benzene 
derivatives analyzed in this paper comprise a fairly congeneric set, and while 
the number and size of substituents may be important, the chemical nature 
of the substituents also plays an important role in determining the overall 
toxicity of the molecule. This is shown by the dramatic increase in predictive 
power between Eqs. 1 and 2. Equation 2 replaces two TSI descriptors with 
two TCI indices that are sensitive to the atom types in all zero-order 
neighborhoods. The addition of this basic chemical information results in an 

TABLE IV    Summary of the regression results for all models for the full set of sixty-nine 
benzene derivatives 

Eq Parameter class Variables Included F R2 S 

1 TSI MuTC. P». P, 13.3 0453 0 58 
-* TSI  •  TCI A/,. /•,. SIC0. CICo 57.9 0783 0.36 
3 TSI + TCI -> 

Geometric 
A/,. />,. 5/C0, '"H'„ 61.1 0.792 0.36 

4 TSI • TCI • 
Geometric * Quantum 

Chemical 

A,,. />,. SICo. iDW„ 
i'lUMOI. A"f. /' 

550 0863 0.30 

5 TCI 5/C». SIC,, CIC0. V. J* 34.3 0.731 041 
6 Geometric "II.     ". v it 34.8 0.616 0.48 
7 Quantum Chemical £|IOMOI. £LUMO- £LUMOI. /' 23.X 0598 0.50 
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TABLE V   Calculated values for the topostructural, topochemical, geometric and quantum 

chemical parameters used in Eq. 4 (Tab. IV) - — 

No. M, P? 

■><; 

5/Co >DWH       ELVMOi        &Hf 

, 3 0 0.246 
^ 3 0 0.315 
3 3 0 0.315 

3 0 0.304 

5 21 0 5540 22.0240 0.005 
5 25 0.2447 26.7581 1.449 
5 25 0.2632 14.8214 1.299 
5 43 0.5095 -22.2334 1.233 

2 0-5745 .6.5004 0.279 
I                        4                0             0 34 5.28 -0.0203 9.2203 1.974 
\                        4                0             0 34 5.28 -0.0462 8.2544 1.218 
1                        4                o             0 341 5.28 -0.0988 10.4661 0.000 

9 4 0 0.362 5^46 0.2406     -28.6621        0.934 
in 4 0 0.284 5.81 0.2785 7.1915 .478 
0 J o 0.284 5.82 0.3208 7.1066 1.623 
' 1 o 0 323 5.64 0.3778 -66.4516 2.433 

12 4 ° 6 16 0.4618 -59.9961 2.338 4 0 0.295 
!J a S.95 0.53M -28.9297 0.960 
4 4 0 0.276 5.97 0.5610 -29.6368 1.079 
■ 4 o 0 276 5.97 0.4880 -29.7869 1.333 
* 4 o 0376 5.84 -0.4095 -19.5199 5.261 

\l 4 0 0274 6.59 0.5766 -52.9350 2.424 
o 4 o 0 213 6.22 0.6180 7.5221 0.465 

H 4 I oYl 6.28 0.6450 6.8236 0.003 
?? 4 o 0 341 6.11 -0.2692 19.0823 5.015 
;: 4 0 034, 6.14 -0.2921 17.6145 5.443 

21 4 0 
24 4 

0 341 6.15 -0.2334 17.2948 5.728 
2             0 389 5 99 -1.2793 38.6210 7.804 

0 389 6.01 -1.5339 33.1466 4.845 
0 389 6 02 -1.0875 33.2941 0.013 
0 344 6.38 -0.1596 20.4489 5.727 
0344 641 -0.0919 14.3213 7.434 

-o                        4                 u              0.344 6.41 -0.1084 19.7541 6.185 
™                      4                0             0.344 6.39 -0.0006 13.8471 5.374 
30                      4                               0 344 6 42 0.1022 12.9086 5.649 

0344 6.42 0.0314 13.3128 5.280 

4 0 
26                       4 0 
■>7                             4 0 
28                           4 0 

4 0 

31 4 0 
32 4 0 

4 0 0.376 6.15        -0.2384     -15.9560        6.801 

4 
4 

36 4 Ö 0.349 531        -0.3927 2.2158        0.020 

2 a M -Ö:H79       .8.0,4, 5.596 
« 4 0 0.349 5.31        -0.339, 4.23,3        2.070 
\l 4 0 0.349 5.31        -0.2761 2.9490        1.033 

" 4 Ö 0.385 5.49 -0.1034 -35.1296 0.395 
3* 4 0 0.312 5.84 0.0251 1.5862 2.296 
In 4 0 0.312 584 0.0006 1.2199 1.464 
f 4 0 0.326 5.99 0.2063 -36.1532 1.059 
_ 4 0 0.255 6.40 0.5006 -36.4200 1.052 
A- 4 0 0.255 6.38 0.5503 -35.5810 ,199 
,4 4 0 0.255 6.38 0.5387 -36.6403 1.229 
H 4 0 0.383 6.17 -1.5210 -8.7887 6.20 
*i * 0 0 202 6.64 0.6477 -0.1093 0.274 
_* 4 2 0 365 6.40 -12262 31.8226 7.909 
1 4 0 0 36 6.43 -14332 26.3804 5.390 
!g 4 0 0.365 6 42 -10421 26.9397 0.797 
4

5n 4 0 0.365           6.39 -14076 30.3487 .639 
f 4                2 0.365           6 43 -1.1564 32.0703 8256 

4                0 0.365           6 44 -1.4923 25.3294 5.321 
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TABLE V    (Continued) 

No. M, A,     SICo nWH        Elx,MO, AW, 

53 4 
54 4 
55 4 
56 4 
57 4 
58 4 
59 4 
60 4 

61 4 
62 4 
61 4 
64 4 

65 4 

66 4 
67 4 

68 4 

0 0.378 6.33 ^2.5221 44.8961 0.032 

0 0.362 6.66 -1.2453 27.9172 6.590 

0 0.362 6.65 -0.6994 25.1359 3.166 

0 0.362 6.65 -1.1532 23.8377 5.797 

0 0.362 6.67 -1.3084 51.2351 7.196 

0 0.362 6.68 -1.0204 18.0757 2.366 

0 0.362 6.66 -1.0160 54.7718 3.199 

0 0.362 6.66 -1.2172 29.5227 5.090 

0 0.392 5.54 -0.4993 2.2014 1.096 

0 0.34] 5.34 -0.5585 -0.5979 1.616 

0 0.341 5.34 -0.6587 3.2072 0.000 

0 0.392 5.52 -0.3777 -38.2930 1.083 

n 0.362 6.56 -1.5102 -19.8380 4.669 
T 0.365 6.66 -1.9189 46.0695 3.518 

n 0.365 6.67 -2.3240 41.4239 1.418 

0 0.385 5.54 -0.5526 -43.2613 1.231 

improvement in the model. A similar conclusion is borne out from the 
QSAR analysis of the same set of benzene derivatives reported by Hall et al. 
where they found that the chemical nature of the substituent is important in 
determining toxicity (32]. 

In the next tier. Eq. 3 replaces one of the information content indices with 
the three-dimensional Wiener number, a descriptor that characterizes the 
three-dimensional aspects of molecular shape and size. This leads to 
refinement of the model developed in Eq. 2. Finally, the addition of the 
quantum chemical parameters; energy of the second lowest unoccupied 
molecular orbital, heat of formation, and dipole moment; leads to a marked 
improvement in the predictive power of the model (Eq. 4). 

As can be seen from Eqs. 1 and 5 - 7 (Tab. IV), none or the four classes of 
indices do very well individually. The hierarchical QSAR approach using 
four classes of parameters resulted in acceptable predictive models (Eq. 4). 
We may conclude from the results presented in this paper that each of the 
four classes of theoretical descriptors that were used are necessary for the 
development of good QSARs for the acute aquatic toxicity of benzene 
derivatives in fathead minnow. 
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Numerous quantitative structure-activity relationships (QSARs) have been developed using topostructural 
topochemical, and geometrical molecular descriptors. However, few systematic studies have been carried 
out on the relative effectiveness of these three classes of parameters in predicting properties. We have 
carried out a systematic analysis of the relative utility of the three types of structural descriptors in developing 
OSAR models for predicting vapor pressure at STP for a set of 476 diverse chemicals. The hierarchical 
technique has proven to be useful in illuminating the relationships of different types of molecular description 
information to physicochemical property and is a useful tool for limiting the number of independent variables 
in linear regression modeling to avoid the problems of chance correlations. 

1.   INTRODUCTION 

A large number of quantitative structure-activity relation- 
ship (QSAR) studies have been reported in recent literature 
using theoretical molecular descriptors in predicting physi- 
cochemical. pharmacological, and toxicological properties 
of molecules.1-15 Such descriptors comprise graph invari- 
ants, geometrical or 3-D parameters, and quantum chemical 
indices. One of the reasons for the current upsurge of interest 
is the fact that such descriptors can be derived algorithmi- 
cally. i.e.. can be computed for any molecule, real or 
hypothetical, using standard software. Both in pharmaceuti- 
cal drug design and in risk assessment of chemicals, one 
has to evaluate potential biological effects of chemicals 
Evaluation schemes based on property-property correlation 
paradigms are not very useful in practical situations, because, 
for most of the candidate structures, the experimental data 
necessary for proper evaluation are not available. This is 
especially true for the thousands of chemicals rapidly 
produced by methods of combinatoric chemistry16 as well 
as for the large number of chemicals present in the Toxic- 
Substances Control Act (TSCA) Inventory.17 

A large number of physicochemical and biological end- 
points are necessary for estimating the ecotoxicological fate, 
transport, and effects of environmental pollutants.17"19 The 
vapor pressure of chemicals is important in determining the 
partitioning of chemicals among different phases once they 
are released in the environment. Many QSARs have been 
reported for predicting normal vapor pressure of chemicals. 
Such studies are usually carried out on small sets of 
congeneric chemicals. Also, many QSARs use experimental 
data as inputs in the model. Therefore, it becomes necessary 
to develop QSARs based on nonempirical parameters which 
can predict the vapor pressure for a heterogeneous collection 
of chemicals so that such models are generally applicable. 
With this end in mind, in the current paper we have carried 
out a QSAR study of 476 diverse chemicals using three types 
of nonempirical molecular descriptors. 

• All correspondence should be addressed lo Dr Subhash C Basak. 
Natural Resources Research Institute. University of Minnesota. Duluth. 5013 
Miller Trunk Highway. Duluth. MN 55811 

* Abstract published in Advance ACS Abstracts. June I. 1997. 
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2.   MATERIALS AND METHODS 

2.1. Normal Vapor Pressure Database. Measured 
values for a subset of the Toxic Substances Control Act 
(TSCA) Inventory17 were obtained from the ASTER (As- 
sessment Tools for the Evaluation of Risk) database.20 This 
subset consisted of a diverse set of chemicals where vapor 
pressure (pv«P) was measured at 25 °C and over a pressure 
range of approximately 3-10 000 mmHg. Due to the size 
of the dataset being used in this study, data for these 
chemicals will not be listed in this paper. An electronic copy 
of the data may be obtained by contacting the authors. 

2.2. Computation of Topological Indices. The majority 
of the topological indices (TIs) used in this study have been 
calculated by the computer program POLLY 2.3.21 These 
indices include Wiener index,22 the molecular connectivity 
indices developed by Randic and Kier and Hall,1-2' informa- 
tion theoretic indices defined on distance matrices of 
graphs.24 25 and a set of parameters derived on the neighbor- 
hood complexity of vertices in hydrogen-filled molecular 
graphs.2-26"28 Balaban'sJ indices29"" were calculated using 
software developed by the authors. 

van der Waal's volume (VW)32"M was calculated using 
Sybyl 6.2.35 The 3-D Wiener numbers36 were calculated by 
Sybyl using an SPL (Sybyl Programming Language) program 
developed by the authors. Calculation of 3-D Wiener 
numbers consists of the summation of the entries in the upper 
triangular submatrix of the topographic Euclidean distance 
matrix for a molecule. The 3-D coordinates for the atoms 
were determined using CONCORD 3.2.1." Two variants 
of the 3-D Wiener number were calculated, iDWH and 3DW, 
where hydrogen atoms are included and excluded from the 
computations, respectively. 

Table 1 provides a complete listing of all of the topological 
and geometrical parameters which have been used in this 
study. The listing includes the symbols used to represent 
the parameters and brief definitions for each of the param- 
eters. 

Two additional parameters were used in modeling normal 
vapor pressure, HBi, and dipole moment QJ.). HB, is a 
simple hydrogen bonding parameter calculated using a 
program developed by Basak,38 which is based on the ideas 

T'   MJO"T   A rr..»ri«-"in Ph^mirnl  Snri^tv 
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Table 1.  Symbols and Definitions of Topological and Geometrical 
Parameters   

/*D       information index for the magnitudes of distances 
between all possible pairs of vertices of a graph 

Äv-       mean information index for the magnitude of distance 
'   D 
W Wiener index = half-sum of the off-diagonal elements 

of the distance matrix of a graph 
P degree complexity 
H^        graph vertex complexity 
H°        graph distance complexity 
IC information content of the distance matrix partitioned by 

frequency of occurrences of distance h 
/ORB       information content or complexity of the hydrogen- 

suppressed graph at its maximum neighborhood of 

vertices 
O order of neighborhood when ICr reaches it maximum 

value for the hydrogen-filled graph 
M\        a Zagreb group parameter = sum of square of degree 

over all vertices 
M:        a Zagreb group parameter = sum of cross-product of 

degrees over all neighboring (connected) vertices 
1C,        mean information content or complexity of a graph 

based on the /*(r = 0—5) order neighborhood of vertices 
in a hydrogen-filled graph 

SIC,      structural information content for rth (r = 0-5) order 
neighborhood of vertices in a hydrogen-filled graph 

CIC,     complmentary information content for rth (r = 0-5) 
order neighborhood of vertices in a hydrogen-filled graph 

"X path connectivity index of order h = 0-6 
"Jfr-        cluster connectivity index of order A = 3-6 
h^Hv-       path-cluster connectivity index of order h = 4-6 
"Jen       chain connectivity index of order h = 5, 6 
y        bond path connectivity index of order h = 0-6 
•yV       bond cluster connectivity index of order h — 3-6 
yVi,     bond chain connectivity index of order h = 5, 6 
Y„      bond path-cluster connectivity index of order h = 4-6 
hy' valence path connectivity index of order h = 0—6 
*X\       valence cluster connectivity index of order h = 3—6 
uX\t,     valence chain connectivity index of order h = 5, 6 
Vii       valence path-cluster connectivity index of order h = 4-6 
Pr number of paths of length h = 0-10 
J Balaban's J index based on distance 
JK Balaban's J index based on bond types 
yx Balaban's J index based on relative electronegativities 
P Balab?n's J index based on relative covalent radii 
\\,        van der Waal's volume 
'"W       3-D Wiener number for the hydrogen-suppressed 

geometric distance matrix 
1DH „     3D Wiener number for the hydrogen-filled geometric 

distance matrix 

Table 2.  Classification of Parameters used in Modeling Normal 

Vapor Pressure [logioO^)] 

of Ou el a/.1"  Dipole moment was calculated using Sybyl 
6.2." 

2.3. Data Reduction. The set of 92 TIs was partitioned 
into two distinct subsets: topostmctural indices and to- 
pochemical indices The distinction was made as follows: 
topostmctural indices encode information about the adjacency 
and distances of atoms (vertices) in molecular structures 
(graphs) irrespective of the chemical nature of the atoms 
involved in the bonding or factors like hybridization states 
of atoms and number of core/valence electrons in individual 
atoms, while topochemical indices quantify information 
regarding the topology (connectivity of atoms) as well as 
specific chemical properties of the atoms comprising a 
molecule. Topochemical indices are derived from weighted 
molecular graphs where each vertex (atom) is properly 
weighted with selected chemical/physical properties. These 
subsets are shown in Table 2. 

The partitioning of the indices left 38 topostructural indices 
and 54 topochemical indices. At this point no further data 
reduction is called for, since the ratio of the number of 

topological topochemical geometric other parameters 

/D
W /ORB Vw HB, 

/nW ICo-IC5 
3DU/ u 

W SIC0-SIC5 3D
W'H 

P CICo-CIC, 
tr Y~Y 
H° ¥c-Yc 
IC ya and Yci. 
0 YPC-YPC 
Mi Y-Y 
Mi Yc-Yc 
°x-6x Yet, and Vch 
3Zc-6Zc YPC-YPC 
5Xo, and 6xch ß 
4
*PC-

6
XPC J* 

Pa~ P\a ß 
J 

observations in the training set (342) to the total number of 
variables (92 maximum) falls well within the condition limits 
suggested by Topliss and Edwards40 for reducing the 
probability of spurious correlations even at the more 
conservative R2 > 0.7 level. 

2.4. Statistical Analysis and Hierarchical QSAR. 
Initially, all TIs were transformed by the natural logarithm 
of the index plus one. This was done since the scale of some 
indices may be several orders of magnitude greater than that 
of other indices. The geometric parameters were transformed 
by the natural logarithm of the parameter. 

Two regression procedures were used in developing the 
linear models. When the number of independent variables 
was high, typically greater than 25, a stepwise regression 
procedure was used to maximize the improvement of the 
explained variance (R2). When the number of independent 
variables was smaller, all possible subsets regression was 
used. Models were then optimized to reduce problems of 
variance inflation and collinearity. Regression modeling was 
conducted using the REG procedure of the statistical package 
SAS.41 

The vapor pressure data (/>vap) was split into a training set 
(342 compounds) and a test set (134 compounds), an 
approximately 75/25 split. Models were developed using 
the training set of chemicals and then used to predict the 
pvip values of the test chemicals. Final models were then 
developed using the combined training and test set of 
chemicals. 

Five sets of indices were used in model development. 
These sets were constructed as part of a hierarchical approach 
to QSAR modeling. The hierarchy begins with the simplest 
indices, the topostructural. After developing our initial model 
utilizing the topostructural indices, we increase the level of 
complexity. To the indices included in the best topostructural 
model, we add all of the topochemical indices and proceed 
to model pvap using these parameters. Likewise, the indices 
included in the best model from this procedure are combined 
with the geometrical indices and modeling is conducted once 
again. In addition to this hierarchical approach, models were 
also constructed using the topochemical indices alone and 
the geometrical indices alone for purposes of comparison. 

3.   RESULTS 

Stepwise regression analyses for logio(/A,aP) of the training 

set of chemicals is summarized in Table 3.   As shown in 
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Table 3. Summary of the Regression Results for the Training Set and the Prediction Results for the Test Set for the H.erarchical Analysis of 

logio(Pv.p)      ____ .  
training set (N = 342) 

parameter class variables included R2 

test set (N = 134) 

R1 s 

topostructural 
topochemical 
geometrical 
topostructural + topochemical 
all indices 
ttg + HB, + n 

'*. 6Zc. P9 
SICo, SIC SICj, CICo, CIC, Yc. 
iDW, 3DWH, VW 

Y.Y.YC.;Y 

Y P*. ic,, sic, cic, Yc. Y. Y. Y. Yc. Ych 
Hv, SIC, SIC, CICo, cic, "xc. Y- Y. Yc. ^6. Pv 
'y, />,. P„, IC Y. Yc Y- Y. Yc HB, 

104.6 
126.3 
168.9 
112.5 
117.4 
160.8 

48.1 
79.2 
51.8 
80.4 
79.6 
82.9 

0.56 
0.36 
0.53 
0.35 
0.35 
0.32 

57.9 
85.8 
62.2 
84.7 
84.2 
83.1 

0.46 
0.27 
0.44 
0.28 
0.28 
0.29 

Table 3, the topostructural model using three parameters 
resulted in an explained variance (R2) of 48.1% and a 
standard error (5) of 0.56.   Addition of the topochemical 
parameters to the three topostructural parameters led to a 
significant increase in the effectiveness of the model.  The 
resulting model used 12 parameters, two topostructural and 
ten topochemical. This model had an R2 of 80.4% and 5 of 
0.35.   All subsets regression of the two topostructural and 
ten topochemical indices retained thus far and the three 
geometrical indices resulted in the selection of the same 12 
parameter model, thus the geometrical indices did not 
contribute significantly to model development. Several other 
models were constructed for comparative purposes.  Using 
topochemical indices only, a ten parameter model was 
developed which had an R2 of 79.2% and 5 of 0.36.   A 
geometrical model was developed which utilized all three 
geometrical indices and resulted in an R2 of 51.8% and s of 
0.53.  Finally, two additional stepwise models were devel- 
oped.  One model simply used all indices for a comparison 
between a simple stepwise analysis of the data and the results 
of the  hierarchical  procedure.   This resulted  in an   11 
parameter model with R2 of 79.6% and s of 0.35. The second 
model added two new parameters, HB, and p.  We thought 
that it might be possible to improve our modeling by adding 
in some other nonempirical parameters which could be 
important to the determination of normal vapor pressure We 
selected the parameters HB, and ft. since they would be 
important in intermolecular interactions which could have a 
dramatic effect on vapor pressure.  To look at the addition 
of these parameters, we conducted a stepwise regression 
analysis using all topostructural, topochemical, and geometric 
indices so that we would be able to optimize our model, 
just as we had done with the previous models. The addition 
of these parameters led to the selection of a ten parameter 
model which included three topostructural indices, nine 
topochemical indices, and HB,.  This was the best model 
yet. with an R2 of 82.9% and 5 of 0.32. 

Application of these six models to the test set of chemicals 
resulted in comparable R2 and 5; actually all models improved 
slightly on their predictions of the test set. and these values 
are also listed in Table 3. Based on these results, we decided 
that it was pointless to develop further models using only 
geometrical parameters. Also, based on the findings that 
the geometrical indices did not contribute significantly to 
any of the training models, they were dropped from the 
development of final models for the full set of 476 chemicals. 
However, even though the topostructural indices did not 
perform well in modeling vapor pressure by themselves, they 
will be used in model development since they did contribute 
significantly to most of the models. 

Regression analyses of the combined set of 476 chemicals 
showed similar results for estimating logio(/?vip) as analysis 

of the training set. Using only the topostructural indices, 
stepwise regression analysis resulted in a five parameter 
model to estimate vapor pressure: 

log,o(PvaP) = 4-88 + 0.20(0) - 2.56('*) + 0.49(4*c) + 

0.79(6xc) + 0.98(P10) (1) 

„ = 476,   R2 = 5l.5%,   5 = 0.53,   F = 99.7 

Stepwise regression using the five topostructural param- 
eters and all topochemical parameters resulted in the selection 
of the following seven parameter model: 

log10(Pvap) = 8.44 - l.llCx) + l-25(P,o) - 5.69(IC.) + 

3.91(IC2) - 1.24(IC3) + l-41(Yc) - 1-70(V) (2) 

„ = 476,   R2 = 793%,   5 = 0.34,   F = 224.0 

Only two of the topostructural indices used in eq 1 were 
retained by the stepwise regression procedure used to produce 
eq 2: lx and P,0. The improvement in R2 was significant, 
increasing from 51.5% for eq 1 to 79.3% for eq 2. Also, 
the model error decreased significantly, dropping by 0.19 
logarithmic units. Since we have dropped the geometrical 
indices, this becomes our final hierarchical model. 

The stepwise regression analysis of only topochemical 
parameters resulted in a 12 parameter model: 

log,o</>vaP) = 665 - 3.44(ICo) - 1.33(IC5) + 

3.47(SIC2) + 0.87(CIC,) - 0.48(Y) + 1.44(YC) - 

l.OO(V) - 0.41(V) - 0.70(V) - 1.08(Vc) + 

1.42(YCh)-1.23(JY) (3) 

5 = 0.38.   F= 120.5 476.   /T = 75i 

This model which is inferior to the topostructural + 
topochemical model (eq 2), because its variance explained 
is lower and, more importantly, it requires more independent 
variables (parameters) to achieve this explanation of variance. 

Stepwise regression of all indices resulted in the selection 
of an 11 parameter model. This approach selected three 
topostructural indices and eight topochemical indices to arrive 
at the following model: 

) = 7.85 - 2.56(HV) + 1.17(6^c) - 

0.99(IC5) + 0.51(CIC,)- 
lOgiolPvap 

5.01(IC,) + 3.65(IC2) 
/6..V 

1.54(V) - 0.36(V) - 0.36CY) - 1.40(YC) (4> 

= 476,   fl2 = 80.4%,   5 = 0.33,   F= 173.4 
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Figure 1.  Scatterplot of observed logio(pVaP) vs estimated log,0- 
'/'.. .1 using eq 5 for 476 diverse compounds. 

While eq 4 shows some slight improvements over eq 2. 
the hierarchical model, eq 2 is preferred since it is a simpler 
model using seven indices instead of 11 and based on a 
comparison of F values it is a more robust model than that 
m eq 4 

r-inally. we conducted the stepwise regression modeling 
using all topostructural and topochemical indices with HB, 
and u for the complete set of 476 chemicals. The resulting 
ten parameter model used three topostructural indices, six 
topochemical indices, and HB|: 

log.nOW = 9-67 " 3.66('z) + 0.35(P3) + 0.74(P9) - 

1 78(IC(1) - 3.33(SIC,) - 0.81(CIC:) + 2.05(Y)- 

1.73(V) - 0.79(V) - 0.29(HB,) (5) 

n -476.   fl: = 84.3%,   s = 0.29,   F = 249.5 

Equation 5 shows marked improvement over eq 2. 
justifying the addition of indices to the model. Also, it meets 
the criteria on which eq 4 was judged to be lacking. Overall, 
there is an improvement in variance explained of 5%, with 
a comparable decrease in standard deviation. A scatter plot 
of observed logio(/\-iP) versus estimated logio(/\»P> using eq 
5 is presented in Figure 1. 

4.   DISCUSSION 

The purpose of this paper was 2-fold: (a) to study the 
utility of algorithmically-derived molecular descriptors in 
developing QSAR models for predicting the vapor pressure 
of chemicals from structure and b) to investigate the relative 

Table 4.  Summary of the Chemical Class Composition of the 
Normal Vapor Pressure Dataset 

compd classification no. ofcompds   pure   substituted 

total normal vapor pressure dataset 476 
hydrocarbons 253 
non-hydrocarbons" 223 
nitro compounds 4 3 1 
amines 20 17 i 
nitriles 7 6 1 
ketones 7 7 0 
halogens 100 95 5 
anhydrides 1 1 0 
esters 18 16 2 
carboxylic acids 2 2 0 
alcohols 10 6 4 
sulfides 39 38 1 
thiols 4 4 0 
imines 2 2 0 
epoxides 1 1 0 
aromatic compounds'" 15 10 4 
fused-ring compounds' 1 1 0 

" The non-hydrocarbons are further broken down into the following 
groups. 'The 15 aromatic compounds are a mixture of 11 aromatic 
hydrocarbons and four aromatic halides. c The only fused-ring com- 
pound was a polycyclic aromatic hydrocarbon. 

roles of topostructural, topochemical, and geometrical indices 
in the estimation of standard vapor pressure. 

Results described in this paper (eqs 1-5) show that 
nonempirical parameters derived predominantly from graph 
theoretic models of molecules can estimate normal vapor 
pressure of diverse chemicals reasonably well. The ex- 
plained variance of data (R2 = 84.3%) is excellent in view 
of the fact that the database of chemicals analyzed in this 
paper is very diverse (see Table 4). It should be mentioned 
that most published QSAR models for the estimation of vapor 
pressure have dealt with much smaller data sets with limited 
structural variety.42-43 

The relative effectiveness of topostructural, topochemical, 
and geometrical indices in predicting normal vapor pressure 
of chemicals is evident from the result presented above. 
Equation 1 explains over 51% of variance in the data. All 
parameters used to derive eq 1 are topostructural, i.e., they 
are parameters which encode information about the adjacency 
and distance of vertices in skeletal molecular graphs without 
quantifying any explicit information about such chemical 
aspects like bond order, electronic character of atoms, etc. 
Yet, the high explained variance of the property indicates 
that adjacency and distance in chemical graphs, being general 
descriptors of molecular size, shape, and branching, are 
important in predicting properties. This may explain the 
success of parameters like simple connectivity indices in 
estimating many diverse properties.1 

Equation 3 is derived only from topochemical indices. The 
explained variance of vapor pressure (75.8%) shows that 
topochemical parameters, as a class, explain a larger fraction 
of the variance as compared to models derived from only 
topostructural indices (eq 1). Geometrical parameters were 
dropped from the set of descriptors after their limited success 
in prediction for the training and test sets. This is in line 
with our earlier studies with normal boiling point and 
hydrophobicity, where it was reported that the addition of 
geometrical indices could not significantly improve the 
predictive power of QSAR models derived from a combined 
set of topostructural and topochemical parameters.15  It would 
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be interesting to see whether this pattern holds good for other 
properties as well. Finally, the addition of the simple 
nonempirical parameter, HBh which contains information 
relevant to intermolecular interactions further improves our 
ability to estimate normal vapor pressure resulting in an 
explained variance of 84.3% (eq 5). 
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