
AFRL-IF-RS-TR-1999-269
Final Technical Report
January 2000

##'

DESIGN, DEVELOPMENT, BENCHMARKING AND
EVALUATION OF PARALLEL APPLICATIONS
FOR HIGH PERFORMANCE EMBEDDED
SYSTEMS

Syracuse University

Wei-keng Liao, Donald Weiner, and Alok Choudhary

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000308 OH
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

DTTC QUALITY XMHEfiClED 3

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-269 has been reviewed and is approved for publication.

APPROVED:
^

ZENON J. PRYK
Project Engineer

FOR THE DIRECTOR:

fpJ^SL.
NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTS,26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

SL^ZTüi'i^Tf!^ a!" tmV?*J3?*.'im *!£".""""?. VJST.^T" '' "*" c*°"" '* "••""•<«• ««*««* ««««" tar reducing tho tartan, u Wartngtan Haadourtan Sareicu. uincMata lor Marmatien
Oaaratara «id Raaaru. 1215 Jaffna» Dtvu Ughwly. SUM 1204. AitagtnVA 22202-4302. andta tha Offca of Managamant ml Budgat. Paaarwark FMuctnlPraia« I070W18JI. Wailangton. DC 20503

1. AGENCY USE ONLY (Lean blink) 2. REPORT DATE

JANUARY 2000
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

DESIGN, DEVELOPMENT, BENCHMARKING AND EVALUATION OF
PARALLEL APPLICATIONS FOR HIGH PERFORMANCE EMBEDDED
SYSTEMS

Final Nov 96 - May 99

6. AUTHOR(S)

Wei-keng Liao, Donald Weiner, and Alok Choudhary

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

Syracuse University
Office of Sponsored Programs
113 Browne Hall
Syracuse New York 13441-4514

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

Air Force Research Laboratory/IFTC
26 Electronic Pky
Rome New York 1344-4514

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Zenon J. Pryk/IFTC/(315) 330-2596

5. FUNDING NUMBERS

C - F30602-97-C-0026
PE- 63755D
PR- HPCM
TA- 00
WU-P1

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10.SP0NSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-269

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT Maximum 200 words)

Due to the nature of the algorithms typically employed in applications such as STAP, sensor data fusion, and target
detection, it was decided to integrate the signal processing areas of space-time adaptive processing and signal detection. In
particular, the following algorithms were parallelized: 1) AFRL (Rome) version of a PEI-staggered post-Doppler STAP
algorithm. This algorithm, comprised of more than 23,000 lines of code, included the steps of a) Doppler filter processing,
b) weight computation, c) beam forming, d) pulse compression, and e) constant false alarm rate (CFAR) processing. 2)
Ozturk (clutter characterization) algorithm. This algorithm is used to analyze random data and includes the steps of a)
goodness-of-fit test and b) probability distribution approximation. 3) Ordered-statistic CFAR algorithm. This CFAR
algorithm is in addition to the cell averaging CFAR algorithm contained in the PRI-staggered post-Doppler STAP algorithm.
In carrying out the algorithm parallelizations, the following task/technical requirements were accomplished: 1) Efficient
techniques for high-speed, high-volume I/O applicable to embedded high-performance systems were designed and
implemented. 2) Data distribution and redistribution strategies for both inter-task and intra-task data communications in
real-time pipelined and parallelized applications were designed and implemented. 3) A documented beta code release was
implemented to illustrate the full system with all major functional, technical, programming, documentation, installation, and
user application features to be included in the full delivery. 4) The individual algorithms, as well as the integrated
applications, were implemented, demonstrated, benchmarked, and evaluated on the Intel Parago and, IBM SP2.
14. SUBJECT TERMS

Signal Processing, High Performance Computing, Programming
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Preacrtad by «NSI Sid. 238.18
Daaaad uanj Part ami Pre, WHS/DIOR. Oct M

Table of Contents

1.0 Background 1
2.0 Objectives !
3.0 Administrative Details 1
4.0 Participants 2
5.0 Accomplishments 2

Appendix A A-l
Appendix B B"l
Appendix C • C-l
Appendix D D-l
Appendix E E-l

FINAL REPORT
FOR

DESIGN, DEVELOPMENT, BENCHMARKING AND EVALUATION
OF PARALLEL APPLICATIONS

FOR HIGH PERFORMANCE EMBEDDED SYSTEMS

1.0 Background

High performance computing is coming into the mainstream due to progress made in
both hardware as well as software support in the past few years. For DoD applications, in
particular, the trend toward leveraging off-the-shelf components and systems creates the
need to address many system issues relevant to the DoD applications that were largely
not considered when high performance computing was used mainly for scientific
applications.

These DoD specific issues arise from the particular functional requirements of the
intended applications, the frequency requirements for high-speed high-volume data input
and output, and real-time requirements for achieving specified throughout and latency.
For benchmarking and evaluation of software systems, it is not just sufficient to compute
the total execution time of an application, but it is extremely important to study the
performance of individual components of an application, the overheads stemming from
interactions among the component tasks (e.g. data flow), and the overall performance of
an integrated system in terms of the achievable latency and throughput.

2.0 Objectives

The objectives of this effort were to: (a) design, develop and implement individual
parallel and portable algorithms plus integrated algorithm systems for applications such
as Space-Time Adaptive Processing (STAP), sensor data fusion, and target detection;
(b) design and implement efficient Input/Output (I/O), data redistribution and task
assignment techniques for embedded high-performance system applications;
(c) implement and benchmark the algorithms individually and in integrated applications
in the Intel Paragon and demonstrate the performance levels achieved; (d) deliver high-
quality software for distribution to DoD researchers nationwide.

3.0 Administrative Details

The sponsor of this effort was the Information Directorate of the Air Force Research
Laboratory (AFRL/IF) located in Rome, NY. Funding in the amount of $359,748 was
provided as part of the Common HPC Software Support Initiative (CHS SI) under the
DoD High Performance Computing Modernization Program (HPCMP). The duration of

the effort was approximately 29 months, with a start date of December 24,1996 and an
end date of May 15,1999. Syracuse University was the principal contractor while
Northwestern University was a subcontractor.

4.0 Participants

The principal investigators were Drs. Pramod Varshney and Donald Weiner of Syracuse
University and Drs. Alok Choudhary and Nagaraj Shenoy of Northwestern University.
They were assisted by doctoral students Wei-keng Liao of Syracuse University and
Xiaohui Shen of Northwestern University.

Valuable contributions were made by several AFRL (Rome) personnel Russ Brown
Mike Little Mark Linderman and Richard Linderman clearly explained their rationale for
the changes' they had implemented in the STAP algorithm chosen for parallel lotion.
Charles Pedersen and Zen Pryk provided valuable guidance with the CHSSI and HPLMF
documentation requirements. In addition, Zen Pryk assisted with the alpha and beta
testing and made a major contribution to parallelization of the Ozturk algorithm by
converting its FORTRAN code from an interactive to batch mode. Zen, also removed
nonstandard FORTRAN features so that the parallelized version of the Ozturk algorithm
could be compiled and run on a variety of high-performance computers.

5.0 Accomplishments

Based upon Government review of our suggestions with regard to algorithms typically
employed in applications such as STAP, sensor data fusion, and target detection, it was
decided to integrate the signal processing areas of space-time adaptive processing and
signal detection. In particular, the following algorithms were parallelized:
1) AFRL (Rome) version of a PRI-staggered post-Doppler STAP algorithm. This

algorithm, comprised of more than 23,000 lines of code, included the steps of
a) Doppler filter processing, b) weight computation, c) beam forming, d) pulse
compression, and e) constant false alarm rate (CFAR) processing.

2) Ozturk algorithm. This algorithm is used to analyze random data and includes the
steps of a) goodness-of-fit test and b) probability distribution approximation.

3) Ordered-statistic CFAR algorithm. This CFAR algorithm is in addition to the cell
averaging CFAR algorithm contained in the PRI-staggered post-Doppler STAP

algorithm.

In carrying out the algorithm parallelizations, the following task/technical requirements

were accomplished:

1) Efficient techniques for high-speed, high-volume I/O applicable to embedded
high-performance systems were designed and implemented.

2) Data distribution and redistribution strategies for both inter-task and intra-task
data communications in real-time pipelined and parallelized applications were
designed and implemented.

3) Task assignment and scheduling techniques which can be used to satisfy latency
and throughput requirements for high-performance embedded systems were
designed and implemented.

4) A documented alpha code release was implemented in accordance with the
contract schedule using algorithms that provide a representative example of all
major technical, programming, documentation, installation and user application
features planned for the full delivery.

5) A documented beta code release was implemented to illustrate the full system
with all major functional, technical, programming, documentation, installation,
and user application features to be included in the full delivery.

6) The individual algorithms, as well as the integrated applications, were
implemented, demonstrated, benchmarked, and evaluated on the Intel Paragon at
AFRL (Rome). The performance and optimization levels achieved were
demonstrated and the final release delivered to AFRL (Rome).

7) A Software System Design Plan that presented prioritized and sequenced
timelines for design, development, benchmarking, evaluation and documentation
for the individual algorithms and applications chosen for parallelization was
documented. Targeted levels of completion and functionality for the alpha, beta,
and final code releases, and the format and planned content for the Application
Programming Interface were included.

8) All computer software developed, assembled, and acquired was delivered to the
Government in accordance with its specifications.

Details of the work accomplished are documented in the publications, reports, and
manuals included in the appendices attached to this report. These are itemized below:

1) Papers presented at conferences (Appendix A)

Choudhary. A., Liao, W. K., Weiner, D., Varshney, P., Linderman, M.,Linderman, R., "Design
of Parallel Pipelined STAP on High-Performance Computers", Proc. 1997 DoD High
Performance Computing Modernization Program Users Group Meeting, San Diego, CA, June
23-26, 1997.

Choudhary, A., Liao, W. K., Weiner, D., Varshney, P., Linderman, M, Linderman, R., "Design
Implementation, and Evaluation of Parallel Pipelined STAP on Parallel Computers", Combined
International Parallel Processing Symposium and Symposium on Parallel and Distributed
Processing, Orlando, Florida, March 30-April 3,1998.

Choudhary, A., Liao, W. K., Weiner, D., Varshney, P., Linderman M., L;nde™^;.^gn

Z Impkmentkon of Space-Time Adaptive Processing Application « ^^^»
Proc. 1998 DoD High Performance Computing Modernization Program Users Group Meeting,
Houston, Texas, June 1-5,1998.

Liao WK Choudhary, A., Weiner, D., Varshney, P., "Multi-Threaded Design and
S^StafofpSd Pipelined STAP on Parallel Computers", 1999 International Parallel
Processing Symposium, Puerto Rico, April 1999.

2) Papers submitted for publication (Appendix B)

Choudhary A, Liao, W. K., Weiner, D., Varshney, P., Linderman, M., Linderman R., "Design
SpTeStk,;, and Evaluation of Parallel Pipelined STAP on Parallel Computers", selected o
asjJerid collection of papers on STAP and adaptive arrays to appear in an upcoming issue of the
IEEE Transactions on Aerospace and Electronic Systems.

Liao W K Choudhary, A., Weiner, D., Varshney, P., "I/O Implementation, and Evaluation of
Paälel Pained STAP on Parallel Computers", International Conference on High-Performance
Computing (fflPC 99), Calcutta, India, Dec. 17-20,1999.

3) Ph.D. Dissertation (Appendix C)

Liao, W. K., "Parallel Pipelined Computational Model for Space-Time Adaptive Processing",
Syracuse University, June 1999.

4) Report and Users' Manual for Ozturk Algorithm (Appendix D)

5) Users'Manual for STAP (Appendix E)

Appendix A

Papers presented at conferences

A-1

Design of Parallel Pipelined STAP on High-Performance Computers

Alok Choudhary
(choudhar@ece.nwu.edu)

ECE Department
Northwestern University

Evanston, IL 60208

Wei-Keng Liao, D. Weiner
and P. Varshney

EECS Department
Syracuse University
Syracuse, NY 13244

R. Linderman and M.
Linderman

Rome Laboratory
Surveillance Directorate

Rome, NY 13441

Abstract

This paper presents preliminary results for our ongoing implementation of parallel pipelined STAP algorithm on high-
performance computers. In particular, the paper describes the issues involved in parallelization, our approach to
parallelization and initial results on some tasks of the STAP algorithm. Initial results are encouraging and show significant
performance benefits from our approach. The results demonstrate the scalability of computations and communication.

1. Introduction
The detection of weak target returns embedded in strong ground clutter, interference, and receiver noise is a primary
objective of airborne surveillance phased array radars. Space-time adaptive processing (STAP) refers to 2-dimensional
adaptive filtering algorithms which take advantage of differences between the spatial and/or Doppler frequences of the
target versus those of the unwanted components of the received waveform in order to separate the target from the

disturbances.

The spatial frequency of a signal is a function of its angle of arrival while its Doppler frequency is a function of a relative
radial velocity between the airborne platform and that of the corresponding scatterer or jammer. Unwanted signals are
attenuated by using STAP algorithms to place nulls in the 2-dimensional frequency plane with respect to their directions of
arrival and/or Doppler frequencies. However, high performance computers are required to meet the STAP computations!
requirements of real-time applications and to increase the flexibility, affordability, and scaleabihty of radar signal

processing systems.

In this paper we discuss our progress in implementing a PRI-staggered post-Doppler STAP algorithm on the Rome
Laboratory Intel Paragon machine. The algorithm consists of the following steps: 1) application to the data of window
and range correction multipliers, 2) calculation of 128-point FFT's for each PRI stagger and every range and channel 3)
solution of the weight vector for each Doppler bin and range gate, 4) application of the weight vector to the test cell data
for each Doppler bin and range gate, 5) pulse compression of the array output data for each Doppler bin and range gate^
For our study the data cube for a coherent processing interval (CPI) was assumed to be collected from 16 channels, 128
pulses and 512 range gates. For the parallel implementation we have designed parallel pipelined collection of tasks
where'each task itself is parallel. In this paper we present some preliminary results from this implementation. In Section 2
we present the model of computation. Parallelization issues are discussed in Section 3. Section 4 presents some specific
details of STAP implementation and software development. Preliminary results are presented in Section 5.

A-2

2. Model of Computation

Figure 1 shows the computational model for the type of applications (e.g., STAP) considered in this work and illustrates
the computational characteristics found in these applications. Each pipeline shows a number of tasks applied to a set of
inputs. The input to the first task in a pipeline is the input to the rest of the tasks is the output of the previous task. The set
of pipelines (shades) illustrates that the entire pipeline of tasks is repeated on subsequent data sets. Each block in the
pipeline represents one parallel task. That is, the pipeline is a collection of parallel tasks.

Input Tco

Tl

Figure 2: Model of Computation

There exists both spatial and temporal parallelism in such applications. Existence of spatial and temporal parallelism may
also result in two types of data dependencies and flow, namely, spatial data dependency and temporal data
dependency! 1,2]. Intertask data dependency denotes the transfer and reorganization of data to be passed onto the next task
in the pipeline. The mode of communication is subtasks of the current tasks to the subtasks of the next task, permitting
parallel pipelined communication.

3. PARALLELIZATION ISSUES

Applications such as STAP entail multiple algorithms (or processing steps), each of which performs a particular function,
to be executed in a pipelined fashion. Multiple pipelines needs to be executed in a staggered manner to satisfy the
throughput requirements. Each task needs to be parallelized for the required performance, which in turn requires
addressing issues of data distributions on the subset of processors on which a task is parallelized to obtain good efficiency
and incur minimal communication overhead. Given that each task is parallelized, data flow among them requires
communication among multiple processes of two or more tasks, for which efficient communication scheduling techniques
become critical. The problem of input-output of data is another crucial problem and is more challenging in this scenario
because data must be redistributed within the pipeline in a timely manner to guarantee the throughput and latency
requirements.

3.1 Data Redistribution

In an integrated system which implements several tasks that feed data to each other, data redistribution is required when it
is fed from one parallel task to another, or when intermediate results need to be exchanged within a parallel task. This is
because the way data is distributed in one task may not be the most appropriate distribution for the task it is supplied to due
to algorithmic or efficiency reasons. Furthermore, the number of processors in two communicating tasks may be different
because of the required response time from each task and the underlying computations requiring redistribution.

Recently, we developed runtime functions and strategies that perform efficient redistribution of data [4]. These techniques
reduce the communication time by minimizing contention on the communication links as well as by minimizing the
overhead of processing for redistribution (which adds to the latency of sending messages). We apply lessons from these
techniques to implement parallel pipelined STAP application

A-3

3.2 Task Scheduling and Assignment
An important factor in the performance of a parallel system, is how the computational load is mapped onto the processors
in the system. Ideally, to achieve maximum parallelism, the load must be evenly distributed across the processors.
Applications such as STAP employ several algorithms with different computational requirements. Each task must be
allocated some processors so that all the tasks can execute concurrently. Furthermore, there is communication among tasks
to transfer intermediate data. All these sub-components should be accounted for in making schedulmg decisions.

When several parallel tasks need to be executed in a pipelined fashion tradeoffs exist between maximizing throughput and
minimizing latency. The throughput requirement says that when allocating processors to tasks, it should be guaranteed that
the all input data sets will be handled in a timely manner, that is, the processing rate should not fall behmd the input data
rate The response time criteria, on the other hand, require minimizing the latency of computation on a particular set of
data input Clearly, there is a tradeoff. Increasing the throughput invariably means increasing the latency given a fixed set
of resources (processors etc.), and vice-versa. In our previous work we have developed techniques for processor
allocations to various tasks that balance throughput and latency requirements optimally[6], and these will be used in the
STAP algorithm implementation.

input

XJ P2 (O)

1/ Easy 1
Wcishts Is

Doppler 1/ Beam |
Form 1 >

P4(t4)

Palie I

'*" K Compr 1

« ^
Hard |

Weights Y P5(tS)

P3(t3)

Figure 2: Parallel Pipelined Implementation of STAP

4. Design and Implementation of Parallel Pipelined STAP

Figure 2 shows the design of the parallel pipelined STAP on high-performance computers. There are five basic tasks in
addition to initialization. A detailed description of the algorithms can be found in [7,8]. Here we briefly describe each task.

4.1 Parallelization of Steps
The first task is Doppler Filter processing. It involves performing range correction and 128-point FFT. Range correction is
done by a windowing operation. The basic parallelization technique in this step is to partition data across the range data,
that is, if PI processors are allocated to this step, then each processor is responsible for K/Pl range cells, where K is the
number of range cells. Figure 3 illustrates the parallelization of this step.

The second step in this pipeline is computing adaptive weights to be applied to the next CPI. As seen from Figure 2, this
computation itself is divided into two parts, namely, "easy" and "hard" Doppler bins. The main difference m the two is the
amount of data used and the amount of computation in each of these steps. For each "hard" Doppler bin, the amount of
computation is approximately 48 times that in the "easy" Doppler bin. Each of these involves QR factorization. Given the
uneven nature of the computations, different sets of processors are allocated to each of these steps, as shown in Figure 2.
Note that as seen from the figure, data computed in the first step needs to be communicated to these two tasks as well as to
the task in the third step. The data sent to the third task is more than to the second task (shown by a thick arrow).

The third task (which is actually the second step for the current CPI because the result of the second task is only used in the
subsequent time step) is Beamforming. This requires 56 matrix multiplications of 51X32 matrix by a 32X6 matrix. Smce
the cost of these multiplications can be determined accurately, the computations are equally divided among the allocated

A-4

processors for this step. As seen from Figure 2, this step requires data to be communicated from the first as well as second
task.

The last step, Pulse compression is performed when the beams are formed. It involves convolution of the received signal
with a replica of transmit pulse wave form. This is accomplished by first performing FFTs in of the two inputs, point-wise
multiplication of the intermediate result and then computing the inverse FFT. Again, each of these FFTs could be
performed on a individual processor, each processor in this task getting equal amount of computation. For more details of
the these algorithms, please refer to [5,6].

4.2 Software Development

All the parallel programs development and their integration is being performed using C language and message passing
interface (MPI) [3]. All the functions needed for data redistribution etc. are also being developed in the same fashion. This
permits easy portability across various platforms which support C language and MPI. Since MPI is becoming a de facto
standard for high-performance systems, we believe the software will be portable. To facilitate upward or downward
scalability, the number of processors, data sizes and other important parameters are runtime inputs so that the same
program can be run on different number of processors without compiling it again. This allows, for example, the same
function to be executed on 2, 4 and so on, number of processors.

5. Preliminary Results

The first implementation of techniques and application is being done on the Intel Paragon installed at Rome Laboratories.
Due to lack of space only results from the first task and part of the second task are presented. Communication
performance, and performance of other tasks will be shown in the presentation at the meeting. Figure 4 shows the
performance results for Task 1 (Doppler processing) as a function of processors on the Intel Paragon. Parameters for this
task are : Number of range cells = 512, Number of Channels = 16 and number of pulses = 128. For each range cell and
channel pair, two 128-point FFTs were performed. The performance results include all the overhead incurred including
dynamic memory allocation, windowing and computing staggered inputs. As can be observed, we have obtained linear
speedups. Although the performance results are shown only up to 32 processors, we have obtained linear speedups for
larger number of processors. On 32 processors, the first step can be performed in approximately 90 milliseconds.

Array
Dements
(channels)

— KR (Pulses)

Kcais
Range cdls are divided across processor

Figure 3: Partitioning Strategy for Stepl: Doppler Filter Parallel Task

Figure 5 shows initial result on implementing hard doppler bin task for up to 56 processors. Despite the fact that no
optimizations have been incorporated yet, we obtain almost linear speedups. For the 56 processor case, it takes
approximately 160 milliseconds for computing hard doppler bins. Easy doppler bins task takes 80 milliseconds on 12
processors. In the presentation, we intend to provide more detailed results.

A-5

I (Hard Bins)

o

4 8 1216 28 56

No of Processors

Figure 5

1000-,
800 ■ Time 1 CPI
600 '■
400 Mm 200

0-
j j ^ ^ i
4 8 16 32

Number of Processors

Figure 4

Figure 4: Performance of Doppler Processing (Task 1) as a function of Number of Processors

Figure 5: Performance of Hard Bin (Task 2) as a function of Number of Processors (unoptimized)

Figure 6 shows communication scaling for data transfer from Task 1 to Task 2. In this three-dimensional chart the two
horizontal axes show the number of processors in each task. The vertical axis shows the amour«: of time for
communicating data including all the send-receive overhead for that pan- of number of processors m each task. It is clear
that there is tremendous scaling in performance of communicating data as the number of processors is increased This is
because the amount of processing for communication per processor is decreased (as ,t handles less amount of data),
amount of data per processor to be communicated is decreased and traffic on links going in and out of each processor is
reduced. This is clearly a scalable model and approach for computation and communication.

6. Summary
In this paper we presented initial results in implementing a PRI-staggered post-Doppler STAP algorithm on the Rome
Laboratory Intel Paragon machine. The initial results indicate that our approach of parallel pipelined implementation scales
well both in terms of communication and computation.

NOP Task 2

Figure 6: Communication Scaling from Task 1 to Task 2.

A-6

Acknowledgements

This work was supported by Air Force Materials Command under contract F30602-97-C-0026. We acknowledge the use
of the Intel Paragon at CALTECH for initial development.

References

[1] A. Choudhary and Ponnusamy, "Parallel Implementation and Evaluation of a Motion Estimation System Algorithm
using Several Data Decomposition Strategies", Jour, of Par. and Dist. Comp., Jan. 1992.

[2] A. N. Choudhary, "Parallel architectures and parallel algorithms for integrated vision systems", Kluwer Academic

Publisher, Boston, MA, 1990

[3] M. Snir et. al., "MPI The Complete Reference", The MIT Press, 1995.

[4] R. Thakur, A. Choudhary and J. Ramanujam, "Efficient Algorithms for Array Redistribution, IEEE Trans, on Parallel

and Dist. Systems", 1995.

[5] R. Bordawaker, A. Choudhary and J. M. del Rosario, "Runtime Primitives for Parallel I/O, Supercomputing '93",

November 1993, Portland, OR.

[6] A. N. Choudhary, B. Narahari, D. M. Nicol and R. Simha, "Optimal Processor Assignment for Pipeline Computations",
IEEE Trans, on Par. and Dist. Systems, April, 94.

[7] M. Linderman and R. Linderman, "Real-Time STAP Demonstration on an embedded high-performance computer,"
1997 National Radar Conference.

[8] R. Brown and R. Linderman, "Algorithm Development for an Airborne Real-Time STAP Demonstration," 1997
National Radar Conference

A-7

Design, Implementation and Evaluation of Parallel Pipelined STAP on
Parallel Computers

Alok Choudhary

ECE Department
Northwestern University

Evanston, IL 60208
email: choudhar@ece.nwu.edu

Wei-keng Liao,
Donald Weiner, and
Pramod Varshney

EECS Department

Syracuse University

Syracuse. NY 13244

Richard Linderman and
Mark Linderman

Air Force Research Laboratory

Information Directorate

Rome, NY 13441

Abstract

This paper presents performance results for the design
and implementation of parallel pipelined Space-Time Adap-
tive Processing (STAP) algorithms on parallel computers.
In particular, the paper describes the issues involved in
parallelization, our approach to parallelization and perfor-
mance results on an Intel Paragon. The paper also dis-
cusses the process of developing software for such an appli-
cation on parallel computers when latency and throughput
are both considered together and presents tradeoffs consid-
ered with respect to inter and intra-task communication and
data redistribution. The results show that not only scal-
able performance was achieved for individual component
tasks of STAP but linear speedups were obtained for the
integrated task performance, both for latency as well as
throughput. Results are presented for up to 236 compute
nodes (limited by the machine size available to us). An-
other interesting observation made from the implementation
results is that performance improvement due to the assign-
ment of additional processors to one task can improve the
performance of other tasks without any increase in the num-
ber of processors assigned to them. Normally, this cannot
be predicted by theoretical analysis.

1 Introduction

Space-time adaptive processing (STAP) is a well known
technique in the area of airborne surveillance radars, which
is used to detect weak target returns embedded in strong
ground clutter, interference, and receiver noise. Data pro-
cessing for STAP refers to a 2-dimensional adaptive filter-
ing algorithm which attenuates unwanted signals by plac-
ing nulls in the frequency domain with respect to their di-
rections of arrival and/or Doppler frequencies. Most STAP

applications consume great amounts of computational re-
sources and are also required to operate in real time. High
performance computers are becoming mainstream due to
the progress made in hardware as well as software support
in the last few years. They can satisfy the STAP computa-
tional requirements of real-time applications while increas-
ing the flexibility, affordability, and scalability of radar sig-
nal processing systems. However, efficient parallelization
of STAP, which consists of several different algorithms is
challenging, and requires several optimizations.

This paper describes our parallel pipelined implementa-
tion of a PRI-staggered post-Doppler STAP algorithm. The
design and implementation of the application is portable.
Performance results are presented for the Intel Paragon at
the Air Force Research Laboratory (AFRL), Rome, New
York. AFRL has successfully implemented this STAP al-
gorithm onboard an airborne platform and performed four
flight experiments in May and June 1996 [8]. In that real-
time demonstration, live data from a phased array radar was
processed by Intel Paragon machine and results showed that
high performance computers can deliver a significant per-
formance gain. However, that implementation only used
compute nodes of the machine as independent resources in
a round robin fashion to run different instances of STAP
(rather than speeding up one instance of STAP.) Using this
approach, the throughput may be improved, but the latency
is limited by what can be achieved using one compute node.
The algorithm consists of the following steps: l)Doppler
filter processing, 2)weight computation, 3)beamforming,
4)pulse compression, and 5)CFAR processing.

For our parallel implementation of this real application
we have designed a model of parallel pipeline system where
each pipeline is a collection of tasks and each task itself is
parallelized. This parallel pipeline model was applied to
the STAP algorithm with each step as a task in a pipeline.
This permits us to significantly improve latency as well as

A-8

SfNCM SprtUl

T»»l T-»,

tola

1 '"T

T«l,

Tak,

Figure 1. Model of the parallel pipeline sys-
tem. (Note that Task, for all input instances is
executed on the same number of processors.)

throughput. In this paper we present results from this im-
plementation. Furthermore, we present the process of par-
allelization and software design considerations including
those for portability, task mapping, parallel data redistribu-
tion, parallel pipelining and issues involving in measuring
performance in implementations when not only the perfor-
mance of individual tasks is important, but overall perfor-
mance of the integrated system is critical. We demonstrate
the performance and scalability for a large number of pro-
cessors.

The rest of the paper is organized as follows: in Sec-
tion 2, we present the parallel pipeline system model and
discuss some parallelization issues and approaches for im-
plementation of STAP algorithms. Section 3 presents the
implementation. Performance results and conclusions are
presented in Section 4 and Section 5 respectively.

2 Model of the parallel pipeline system

The system model for the type of STAP applications con-
sidered in this work is shown in Figure 1. This model is
suitable for the computational characteristics found in these
applications. A pipeline is a collection of tasks which are
executed sequentially. The input to the first task is obtained
normally from sensors or other input devices and the inputs
to the rest of the tasks in the pipeline are the outputs of their
previous tasks. The set of pipelines shown in the figure indi-
cates that the same pipeline is repeated on subsequent input
data sets. Each block in a pipeline represents one parallel
task, which itself is parallelized on multiple (different num-
ber of) processors.

In such a system, there exist both spatial and temporal
parallelism that result in two types of data dependencies and

flows, namely, spatial data dependency and temporal data
dependency [4, 6]. Spatial data dependency can be classi-
fied into inter-task data dependency and intra-task data de-
pendency. Intra-task data dependencies arise when a set of
subtasks needs to exchange intermediate results during the
execution of a parallel task in a pipeline. Inter-task data de-
pendency is due to the transfer and reorganization of data
passed onto the next parallel task in the pipeline. Tempo-
ral data dependency occurs when some form of output gen-
erated by the tasks executed on the previous data set are
needed by tasks executing the current data set. We will later
see that STAP has both types of data dependencies.

2.1 Parallelization issues and approaches

Applications such as STAP entail multiple algorithms (or
processing steps), each of which performs particular func-
tions, to be executed in a pipelined fashion. Each task needs
to be parallelized for the required performance, which, in
turn, requires addressing the issue of data distribution on
the subset of processors on which a task is parallelized to
obtain good efficiency and incur minimal communication
overhead.

2.1.1 Inter-task data redistribution

In an integrated system which implements several tasks that
feed data to each other, data redistribution is required when
it is fed from one parallel task to another. This is because
the way data distributed in one task may not be the most
appropriate distribution for another task for algorithmic or
efficiency reasons. Data redistribution also allows concen-
tration of communication at the beginning and the end of
each task. We have developed runtime functions and strate-
gies that perform efficient data redistribution [10]. These
techniques reduce the communication time by minimizing
contention on the communication links as well as by mini-
mizing the overhead of processing for redistribution (which
adds to the latency of sending messages). We take advan-
tage of lessons learned from these techniques to implement
the parallel pipelined STAP application.

2.1.2 Task scheduling and processor assignment

An important factor in the performance of a parallel sys-
tem, is how the computational load is mapped onto the pro-
cessors in the system. Ideally, to achieve maximum paral-
lelism, the load must be evenly distributed across the pro-
cessors. The problem of statically mapping the workload of
a parallel algorithm to processors in a distributed memory
system, has been studied under different problem models,
such as [1, 2]. These static mapping policies do not model
applications consisting of a sequence of tasks (algorithms),

A-9

Figure 2. Implementation of parallel pipelined
STAR Arrows connecting task blocks repre-
sent data transfer between tasks.

where the output of one task becomes the input to the next
task in the sequence.

Optimal use of resources is particularly important in
high-performance embedded applications due to limited re-
sources and other constraints such as desired latency or
throughput [5]. When several parallel tasks need to be exe-
cuted in a pipelined fashion, tradeoffs exist between assign-
ing processors to maximize the overall throughput and as-
signing processors to minimize a single data set's response
time (or latency.)

3 Design and implementation

The design of the parallel pipelined STAP algorithm is
shown in Figure 2. The parallel pipeline system consists of
seven basic tasks. We refer to the parallel pipeline as simply
a pipeline in the rest of this paper. Both the weight compu-
tation and the beamforming tasks are divided into two parts,
namely, "easy" and "hard" Doppler bins. The hard Doppler
bins are those in which significant ground clutter is expected
and the remaining bins are easy Doppler bins. The main dif-
ference between the two is the amount of data used and the
amount of computation required. The input data set for the
pipeline is obtained from a phased array radar and is formed
in terms of a coherent processing interval (CPI). Each CPI
data set is a 3-dimensional complex data cube. The out-
put of the pipeline is a report on the detection of possible
targets. Each task i, 0 < i < 7, is parallelized by evenly
partitioning its work load among Pt processors. The execu-
tion time associated with task i,Tt, consists of the time to
receive data from the previous task, computation time, and
time to send results to the next task.

For the computation of the weight vectors for the cur-
rent CPI data cube, data cubes from previous CPIs are used
as input data. This introduces temporal data dependency.
Temporal data dependencies are represented by arrows with
dashed lines, TDh3 and TD2A, in Figure 2 where TDitj

represents temporal data dependency of task j on data from
task i. In a similar manner, spatial data dependencies SDiyj

can be defined and are indicated in Figure 2 by arrows with
solid lines.

Throughput and latency are two important measures for
performance evaluation on a pipeline system. The through-
put of our pipeline system is the inverse of the maximum
execution time among all tasks. The latency of this pipeline
system is the time between the arrival of the CPI data cube
at the system input and the time at which the detection re-
port is available at the system output.

throughput =
1

max Ti
0<»<6

latency = T0 + max Ti + T$ + T6.
»=3,4

(1)

(2)

The temporal data dependency does not affect the latency
because weight computation tasks use data from the previ-
ous instance rather than current CPI. The filtered CPI data
cube sent to the beamforming task does not wait for the
completion of its weight computation. This explains why
equation (2) does not contain Tx and T2. A detailed de-
scription of the STAP algorithm we used can be found in

[3, 7].

4 Performance results

The implementation of the STAP application based on
our parallel pipeline system model was done on the Intel
Paragon at the Air Force Research Laboratory, Rome, New
York. All the parallel programs development and their inte-
gration was performed using C language and message pass-
ing interface (MPI) [9]. This permits easy portability across
various platforms which support C language and MPI. In
our implementation, asynchronous send and receive func-
tion calls were used in order to overlap communication and
computation.

4.1 Computation costs

The task of computing hard weights is the most compu-
tationally demanding task. The Doppler filter processing
task is the second most demanding task. Naturally, more
processors are assigned to these two tasks in order to obtain
a good performance. For each task in the STAP algorithm,
parallelization was done by evenly dividing computational
load across processors. Figure 3 gives the computation per-
formance results as functions of numbers of processors and
the corresponding speedup on the AFRL Intel Paragon. For
each task, we obtained linear speedups.

42 Inter-task communication

Inter-task communication refers to the communication
between sending and receiving (distinct and parallel) tasks.

A-10

M Dawjitf fltar PTVCMMMJ 1

1 "

P « l 1 .

HUM in
N»»htr «f pwwwn

Hart ■«■ FunM«

i"' 1 1
s« 1 < ll..

t I*

HaN Wriffc« CMpmte

IM I» I«

NiaMrttpwnwi

**"
E~7»«-Ffw<-c

1" 1
J in

J«
Ml ll>,

Ntfstaf *f ^cwcwMfi

Nwwtwr ml pfwin

«J _ htoCifrrtii

■a ui 1
S " 1
Jill 1 I 1 "

Ml III.

Figure 3. Performance of computation as a function of number of processors.

Table 1. Timing results of inter-task communication. Time in seconds. # proc: number of processors.

easv weight hard weight easy BF hardBF

#proc 16 56 112 16 1 6

Doppler
filler

8
16
32

send recv send recv send recv send recv send recv

.1331

.0679

.0340

.4339

.1780

.0511

.1335

.0679

.0332

.3603

.1048

.0034

.1332

.0679

.0340

.4441

.1837

.0563

.1332

.0679

.0340

.4509

.1955

.0646

.1332

.0679

.0340

.4395

.1843

.0519

easy beamiorrrung

#proc 8 16

easy
weight

4
8
16

send recv send recv

.0005

.0088

.0768

.1956

.0883

.0807

.ÖÖÖ7

.0004

.0003

.2570

.0905

.0660

pulse compression

#proc 8 16

easy
BF

4
8
16

send recv send recv

.0069

.0036

.0580

.5016

.1379

.0771

.0069

.0036

.0022

.5714

.2090

.0569

hard

BF

4
8
16

send recv send recv

.0054

.0029

.1159

.5016

.1379

.0771

.0054

.0030

.0017

.5714

.2090

.0569

hard beamiorming

#proc 8 16

hard
weight

28
56
112

send recv send recv

.ÖÖÖ7

.0100

.1824

.1798

.1468

.1398

Ö0Ö7
.0065
.0005

.2485

.0765

.0543

CFAR processing

#proc 4 8

pulse
compression

4
8
16

send recv send recv

.0099

.0053

.1256

.3351

.0662

.0435

.0098

.0051

.0028

.3348

.1750

.1783

This communication cost depends on both processor assign-
ment for each task as well as on the volume and extent of
data reorganization. Table 1 presents the inter-task commu-
nication timing results. Each sub-table considers pairs of
tasks where the number of processors (# proc) for both tasks
are varied. In some cases timing results shown in the tables

contain idle time for waiting for the corresponding task to
complete. This happens when receiving task's computation
part completes before the sending task has generated data to
send.

From most of the results the following important obser-
vations can be made. First, when the number of processors

A-11

Table 2. Performance results for 3 cases with
different processor assignments.

Table 3. Performance results for adding 4
more processors to case 2 in Table 2.

case 1: total number of processors = 236 Time in seconds
#proc recv comp send total

Doppler filter 32 .0055 .0874 .0348 .1276

easy weight 16 .0493 .0913 .0003 .1408

hard weight 112 .0555 .0831 .0005 .1390
easyBF 16 .0658 .0708 .0021 .1387

hardBF 28 .0936 .0414 .0010 .1361

pulse compression 16 .0551 .0776 .0028 .1355

CFAR 16 .0910 .0434 - .1344

throughput
latency

7.2659
0.3622

case 2: total number of processors =118 Time in seconds
#proc recv comp send total

Doppler filter 16 .0110 .1714 .0668 .2492

easv weight 8 .0998 .1636 .0003 .2637

hard weight 56 .0979 .1636 .0005 .2621

easy BF 8 .1302 .1267 .0036 .2605

hardBF 14 .1782 .0822 .0017 .2622

pulse compression 8 .1027 .1543 .0051 .2621

CFAR 8 .1742 .0864 - .2606
throughput

latency
3.7959
0.6805

case 3: total number of processors = 59 Time in seconds
#proc recv comp send total

Doppler filter 8 .0219 .3509 .1296 .5024
easv weight 4 .1796 .3254 .0003 .5053
hard weieht 28 .1779 .3265 .0006 .5050

easy BF 4 .2439 .2529 .0068 .5037
hardBF 7 .3370 .1636 .0032 .5039

pulse compression 4 .1806 .3067 .0097 .4970
CFAR 4 .3240 .1723 - .4963

throughput
latency

1.9898
1.3530

is unbalanced, the communication performance is not very
good. Second, as the number of processors is increased
in the sending and receiving tasks, communication scales
tremendously. This happens for two reasons. One, each
processor has less data to reorganize, pack and send and
each processor has less data to receive; and two, contention
at sending and receiving processors is reduced. Thus, it is
not sufficient to improve the computation times for such
parallel pipelined applications to improve throughput and
latency.

Because of the asynchronous send used in the implemen-
tation, the results shown here are visible sending time and
the actual sending action may occur in other portions of
the task. Similar to the receiving time, sending time may
also contain waiting time for the completion of sending re-
quests in the previous loop. With large number of proces-
sors, there is tremendous scaling in performance of com-
municating data as the number of processors is increased.
This is because the amount of processing for communica-
tion per processor is decreased (as it handles less amount
of data), amount of data per processor to be communicated
is decreased and traffic on links going in and out of each

total number of processors = 122 Time in seconds
#proc recv comp send total

Doppler filter 20 .0090 .1395 .0540 .2024
easy weight 8 .0519 .1633 .0003 .2155
hard weight 56 .0486 .1644 .0005 .2135

easyBF 8 .0815 .1272 .0037 .2124
hardBF 14 .1232 .0823 .0018 .2073

pulse compression 8 .0519 .1543 .0051 .2113
CFAR 8 .1240 .0864 - .2105

throughput
latency

5.0213
0.5498

Table 4. Performance results for adding 16
more processors to the case in Table 3.

total number of processors = 138 Time in seconds
#proc recv comp send total

Doppler filter 20 .0091 .1395 .0541 .2027

easy weight 8 .0516 .1633 .0003 .2152
hard weight 56 .0488 .1644 .0005 .2137

easyBF 8 .0819 .1273 .0037 .2129
hardBF 14 .1301 .0823 .0018 .2142

pulse compression 16 .1337 .0775 .0028 .2140
CFAR 16 .1701 .0434 - .2135

throughput
latency

4.9052
0.4247

processor is reduced. This model scales well for both com-
putation and communication.

4.3 Integrated system performance

Integrated system refers to the evaluation of performance
when all the tasks are considered together. Throughput
(CPIs per second) and latency (seconds per CPI) are the
two most important measures for performance evaluation in
addition to individual task computation time and inter-task
communication time. Table 2 gives timing results for three
different cases with different processor assignments. From
these 3 cases, it is clear that even for latency and throughput
measures we obtain linear speedups from our experiments.
Given that this scale up is up to 236 processors (we were
limited to these number of processors due to the size of the
machine), we believe these are very good results.

As discussed in section 2, tradeoffs exist between assign-
ing processors to maximize throughput and to minimize la-
tency, given limited resources. Using two examples, we
illustrate how further performance improvements may (or
may not) be achieved if few extra processors are available.
We now take case 2 from Table 2 as an example and add
some extra processors to tasks to analyze its affect to the
throughput and latency. Suppose that case 2 has fulfilled
the minimum throughput requirement and more processors

A-12

can be added. Table 3 shows that adding 4 more proces-
sors to Doppler filter processing task not only increases the
throughput but also reduces the latency. This is because the
communication amount for each send and receive between
Doppler filter processing task to weight computation and to
beamforming tasks is reduced (Table 3). So, clearly adding
processors to one task not only affects that task's perfor-
mance but has a measurable effect on the performance of
other tasks. By increasing the number of processors 3%, the
improvement in throughput is 32% and in latency is 19%.
Such effects are very difficult to capture in purely theoretical
models because of the secondary effects.

Since parallel computation load may be different among
tasks, bottleneck problems arise when some tasks in the
pipeline do not have proper numbers of processors assigned.
If the number of processors assigned to one task with heavy
work load is not enough to catch up the input data rate, this
task becomes a bottleneck in the pipeline system. Hence, it
is important to maintain approximately the same computa-
tion time among tasks in the pipeline system to maximize
the throughput and also achieve higher processor utiliza-
tion. One bottleneck task can be seen when its computa-
tion time is relatively much larger than the rest of the tasks.
The entire system's performance degrades because the rest
of the tasks have to wait for bottleneck task's completion to
send/receive data to/from it no matter how many more pro-
cessors assigned to them and how fast they can complete
their jobs. Therefore, poor task scheduling and processor
assignment will cause significant portion of idle time in the
resulted communication costs. In Table 4 we added a total
of 16 more processors to pulse compression and CFAR pro-
cessing tasks to the case in Table 3. Comparing to case 2
in Table 2, we can see that the throughput increased. How-
ever, the throughput did not improve compared to the results
in Table 3. even though this assignment has 16 more pro-
cessors. In this case, the weight tasks are bottleneck tasks
because their computation costs are relatively higher than
other tasks. We can see that the receiving time of the rest of
tasks are much larger than their computation time. A sig-
nificant portion of idle time waiting for the completion of
weight tasks is in the receiving time. On the other hand,
we observe 23% improvement in the latency. This is be-
cause the computation time is reduced in the last two tasks
with more processors assigned. T5 and T6 in equation (2)
decrease and therefore the latency is reduced.

5 Conclusions

In this paper we presented performance results for a
PRI-staggered post-Doppler STAP algorithm implementa-
tion on the Intel Paragon machine at Air Force Research
Laboratory, Rome, New York. The results indicate that our
approach of parallel pipelined implementation scales well

both in terms of communication and computation. For the
integrated pipeline system, the throughput and latency also
demonstrate the linear scalability of our design. Our de-
sign and implementation not only shows tradeoffs in paral-
lelization, processor assignment, and various overheads in
inter and intra-task communication etc., but it also shows
that accurate performance measurement of these systems
is very important. Consideration of issues such as cache
performance when data is packed and unpacked, and im-
pact of the parallelization and processor assignment for one
task on another task are crucial. This is normally not easily
captured in theoretical models. In the future we plan to in-
corporate further optimizations including multi-threading,
multiple pipelines and multiple processors on each compute
node.

6 Acknowledgments

This work was supported by Air Force Materials Com-
mand under contract F30602-97-C-0026. We acknowledge
the use of the Intel Paragon at Caltech for initial develop-
ment.

References

[1] M. Berger and S. Bokhari. "A Partitioning Strategy for
Nonuniform Problems on Multiprocessors,". IEEE Trans,
on Computers, 36(5):570-580, May 1987.

[2] F. Berman and L. Snyder. "On Mapping Parallel Algorithms
into Parallel Architectures,". Journal of Parallel and Dis-
tributed Computing, 4:439^58, 1987.

[3] R. Brown and R. Linderman. "Algorithm Development for
an Airborne Real-Time STAP Demonstration,". IEEE Na-
tional Radar Conference, 1997.

[4] A. Choudhary. Parallel Architectures and Parallel Algo-
rithms for Integrated Vision Systems. Kluwer Academic
Publisher, Boston, MA, 1990.

[5] A. Choudhary, B. Narahari, D. Nicol, and R. Simha. "Op-
timal Processor Assignment for Pipeline Computations".
IEEE Trans, on Parallel and Distributed Systems, Apr. 1994.

[6] A. Choudhary and R. Ponnusamy. "Parallel Implementation
and Evaluation of a Motion Estimation System Algorithm
using Several Data Decomposition Strategies,". Journal of
Parallel and Distributed Computing, Jan. 1992.

[7] M. Linderman and R. Linderman. "Real-Time STAP
Demonstration on an Embedded High Performance Com-
puter,". IEEE National Radar Conference, 1997.

[8] M. Little and W. Berry. "Real-Time MultiChannel Airborne
Radar Measurements,". IEEE National Radar Conference,
1997.

[9] M. Snir and et. al. MP1 The Complete Reference. The MIT
Press, 1995.

[10] R. Thakur, A. Choudhary, and J. Ramanujam. "Efficient Al-
gorithms for Array Redistribution,". IEEE Trans, on Parallel
and Distributed Systems, 1995.

A-13

Design and Implementation of Space-Time Adaptive Processing
Application on Parallel Computers

Alok Choudhary*

ECE Department

Northwestern University
Evanston, IL 60208

email: choudhar@ece.nwu.edu

Wei-keng Liao,
Donald Weiner, and
Pramod Varshney

EECS Department
Syracuse University

Syracuse, NY 13244

Richard Linderman and
Mark Linderman

Air Force Research Laboratory
Information Directorate

Rome, NY 13441

Abstract

This paper presents performance results for our ongoing Implementation of parallel pipelined Space-Time Adap-
tive Processing (STAP) algorithms on Intel Paragon at the Air Force Research Laboratory (AFRL), Rome, Sew
York In particular, the paper describes the issues involved in designing the parallel pipeline computation model on
parallel computers. The paper also discusses the process of developing software for STAP applications on parallel
computers when latency and throughput are both considered together and presents tradeoffs. The results show that
linear speedups were obtained for the integrated task performance, both for latency as well as throughput. Another
interesting observation made from the implementation results is that performance improvement due to the assign-
ment of additional processors to one task can improve the performance of other tasks without any increase in the
number of processors assigned to them. Normally, this cannot be predicted by theoretical analysis.

1 Introduction

Space-time adaptive processing (STAP) is a well known technique in the area of airborne surveillance radars,
which is used to detect weak target returns embedded in strong ground clutter, interference, and receiver noise.
Data processing for STAP refers to a 2-dimensional adaptive filtering algorithm which attenuates unwanted signals
bv placing nulls in the frequencv domain with respect to their directions of arrival and/or Doppler frequencies.
Most STAP applications consume great amounts of computational resources and are also required to operate
in real time High performance computers are becoming mainstream due to the progress made in hardware as
well as software support in the last few years. They can satisfy the STAP computational requirements of real-
time applications while increasing the flexibility, affordability, and scalability of radar signal processing systems.
However, efficient parallelization of STAP, which consists of several different algorithms is challenging, and requires

several optimizations.

This paper describes our parallel pipelined implementation of a PRI-staggered post-Doppler STAP algorithm
The design and implementation of the application is portable. Performance results are presented for the Intel
Paragon at the Air Force Research Laboratory (AFRL), Rome, New York. AFRL has successfully implemented
this STAP algorithm onboard an airborne platform and performed four flight experiments in May and June
1996 [Little and Berry, 1997]. In that real-time demonstration, live data from a phased array radar was processed
by Intel Paragon machine and results showed that high performance computers can deliver a significant performance

A-14

Pi (T,)

Weight
Computation
(Easy Case)

CPI
Data
Cube

P3 (Tj)

Doppler
Filter

Processing

(T0)

Beamforming

(Easy Case)
(T5) P6 ff 6>

Detection
Reports

Weight
Computation
(Hard Case)

Beamforming

(Hard Case)

(T4)

(T2)

Figure 1. Implementation of parallel pipelined STAP. Arrows connecting task blocks represent data
transfer between tasks.

gain. However, that implementation only used compute nodes of the machine as independent resources in a
round robin fashion to run different instances of STAP (rather than speeding up one instance of STAP.) Using
this approach, the throughput may be improved, but the latency is limited by what can be achieved using one
compute node. The algorithm consists of the following steps: l)Doppler filter processing, 2)weight computation,
3)beamforming, 4)pulse compression, and 5)CFAR processing.

For our parallel implementation of this real application we have designed a model of parallel pipeline system
where each pipeline is a collection of tasks and each task itself is parallelized. This parallel pipeline model was
applied to the STAP algorithm with each step as a task in a pipeline. This permits us to significantly improve
latency as well as throughput. In this paper we present results from this implementation. Furthermore, we present
the process of parallelization and issues involving in measuring performance in implementations when not only
the performance of individual tasks is important, but overall performance of the integrated system is critical. We
demonstrate the performance and scalability for a large number of processors.

The rest of the paper is organized as follows: Section 2 presents the design and implementation. Performance
results and conclusions are given in Section 3 and Section 4 respectively.

2 Design and Implementation

The design of the parallel pipelined STAP algorithm is shown in Figure 1. The parallel pipeline system consists
of seven basic tasks. We refer to the parallel pipeline as simply a pipeline in the rest of this paper. The input data
set for the pipeline is obtained from a phased array radar and is formed in terms of a coherent processing interval
(CPI). Each CPI data set is a 3-dimensional complex data cube. The output of the pipeline is a report on the
detection of possible targets. Each task i, 0 < i < 7, is parallelized by evenly partitioning its work load among P,
processors. The execution time associated with task i, T{, consists of the time to receive data from the previous
task, computation time, and time to send results to the next task.

For the computation of the weight vectors for the current CPI data cube, data cubes from previous CPIs are
used as input data. This introduces temporal data dependency. Temporal data dependencies are represented by
arrows with dashed lines, TD\tz and TDi^, in Figure 1 where 7\D,-,j represents temporal data dependency of task
j on data from task i. In a similar manner, spatial data dependencies SDij can be defined and are indicated in
Figure 1 by arrows with solid lines.

Throughput and latency are two important measures for performance evaluation on a pipeline system. The

A-15

Table 1. Performance results for 3 cases with different processor assignments.

,-?eo 1 • tnt.a.1 number of processors = 236 Time in seconds

pr°c recv comp send total

Doppler filter 32 .0055 .0874 .0348 .1276

easy weight 16 .0493 .0913 .0003 .1408

hard weight 112 .0555 .0831 .0005 .1390

easy BF 16 .0658 .0708 .0021 .1387

hard BF 28 .0936 .0414 .0010 .1361

pulse compression 16 .0551 .0776 .0028 .1355

CFAR 16 .0910 .0434 - .1344

throughput
latency

7.2659
0.3622

ruse 2: total number of processors =118 Time in seconds

Pr°c recv comp send total

Doppler filter 16 .0110 .1714 .0668 .2492

easy weight 8 .0998 .1636 .0003 .2637

hard weight 56 .0979 .1636 .0005 .2621

easy BF 8 .1302 .1267 .0036 .2605

hard BF 14 .1782 .0822 .0017 .2622

pulse compression 8 .1027 .1543 .0051 .2621

CFAR 8 .1742 .0864 - .2606

throughput
latency

3.7959
0.6805

case 3: total number of processors = 59 Time ir seconds

proc recv comp send total

Doppler filter 8 .0219 .3509 .1296 .5024

easy weight 4 .1796 .3254 .0003 .5053

hard weight 28 .1779 .3265 .0006 .5050

easy BF 4 .2439 .2529 .0068 .5037

hard BF i .3370 .1636 .0032 .5039

pulse compression 4 .1806 .3067 .0097 .4970

CFAR 4 .3240 .1723 - .4963

throughput
latency

1.9898
1.3530

throughput of our pipeline svstem is the inverse of the maximum execution time among all tasks. The latency
of this pipeline system is the" time between the arrival of the CPI data cube at the system input and the time at
which the detection report is available at the system output.

throughput —
max Ti
0<i<6

latency = T0 + maxTJ + T5 + T6.
i=3,4

(1)

(2)

The temporal data dependency does not affect the latency because weight computation tasks use data from
the previous instance rather than current CPI. The filtered CPI data cube sent to the beamforming task does
not wait for the completion of its weight computation. This explains why equation (2) does not containij
and To. A detailed description of the STAP algorithm we used can be found in [Brown and Linderman, 1997.

Linderman and Linderman, 1997].

3 Performance Results

The implementation of the STAP application based on our parallel pipeline system model was done on the
Intel Paragon at the Air Force Research Laboratory, Rome, New York. All the paralleP^ams devdopment
and their integration was performed using C language and message passing interface (MPI)[Snir and et al 1995].
This permits easy portability across various platforms which support C language and MPI. In our implementation,
asynchronous send and receive function calls were used in order to overlap communication and computation.

A-16

Table 2. Performance results for adding 4 more processors to case 2 in Table 1.

total number of processors = 122 Time in seconds
proc recv comp send total

Doppler filter 20 .0090 .1395 .0540 .2024
easy weight 8 .0519 .1633 .0003 .2155
hard weight 56 .0486 .1644 .0005 .2135

easy BF 8 .0815 .1272 .0037 .2124
hard BF 14 .1232 .0823 .0018 .2073

pulse compression 8 .0519 .1543 .0051 .2113
CFAR 8 .1240 .0864 - .2105

throughput
latency

5.0213
0.5498

Table 3. Performance results for adding 16 more processors to the case in Table 2.

total number of processors = 138 Time in seconds
proc recv comp send total

Doppler filter 20 .0091 .1395 .0541 2027
easy weight 8 .0516 .1633 .0003 2152
hard weight 56 .0488 .1644 .0005 2137

easy BF 8 .0819 .1273 .0037 2129
hard BF li .1301 .0823 .0018 2142

pulse compression 16 .1337 .0775 .0028 2140
CFAR 16 .1701 .0434 - 2135

throughput
latency

4.9052
0.4247

3.1 Integrated System Performance

Integrated system refers to the evaluation of performance when all the tasks are considered together. Throughput
(CPIs per second) and latency (seconds per CPI) are the two most important measures for performance evaluation
in addition to individual task computation time and inter-task communication time. Table 1 gives timing results
for three different cases with different processor assignments. From these 3 cases, it is clear that even for latency
and throughput measures we obtain linear speedups from our experiments. Given that this scale up is up to 236
processors (we were limited to these number of processors due to the size of the machine), we believe these are
very good results.

Tradeoffs exist between assigning processors to maximize throughput and to minimize latency, given limited
resources. Using two examples, we illustrate how further performance improvements may (or may not) be achieved if
few extra processors are available. We now take case 2 from Table 1 as an example and add some extra processors
to tasks to analyze its affect to the throughput and latency. Suppose that case 2 has fulfilled the minimum
throughput requirement and more processors can be added. Table 2 shows that adding 4 more processors to
Doppler filter processing task not only increases the throughput but also reduces the latency. This is because the
communication amount for each send and receive between Doppler filter processing task to weight computation
and to beamforming tasks is reduced (Table 2). So, clearly adding processors to one task not only affects that
task's performance but has a measurable effect on the performance of other tasks. By increasing the number of
processors 3%, the improvement in throughput is 32% and in latency is 19%. Such effects are very difficult to
capture in purely theoretical models because of the secondary effects.

Since parallel computation load may be different among tasks, bottleneck problems arise when some tasks in
the pipeline do not have proper numbers of processors assigned. If the number of processors assigned to one
task with heavy work load is not enough to catch up the input data rate, this task becomes a bottleneck in the
pipeline system. Hence, it is important to maintain approximately the same computation time among tasks in the
pipeline system to maximize the throughput and also achieve higher processor utilization. One bottleneck task
can be seen when its computation time is relatively much larger than the rest of the tasks. The entire system's
performance degrades because the rest of the tasks have to wait for bottleneck task's completion to send/receive
data to/from it no matter how many more processors assigned to them and how fast they can complete their jobs.

A-17

Therefore poor task scheduling and processor assignment will cause significant portion of idle time in the resulted
communication costs. In Table 3 we added a total of 16 more processors to pulse compression and CFAR processing
tasks to the case in Table 2. Comparing to case 2 in Table 1, we can see that the throughput increased. However,
the throughput did not improve compared to the results in Table 2, even though this assignment has 16 more
processors. In this case, the weight tasks are bottleneck tasks because their computation costs are relatively higher
than other tasks. We can see that the receiving time of the rest of tasks are much larger than their computation
time. A significant portion of idle time waiting for the completion of weight tasks is in the receiving time. On
the other hand, we observe 23% improvement in the latency. This is because the computation time is reduced in
the last two tasks with more processors assigned. T5 and T6 in equation (2) decrease and therefore the latency is

reduced.

4 Conclusions

In this paper we presented performance results for a PRI-staggered post-Doppler STAP algorithm implementa-
tion on the Intel Paragon machine at Air Force Research Laboratory, Rome, New York. The results indicate that
our approach of parallel pipelined implementation scales well both in terms of communication and computation.
For the integrated pipeline system, the throughput and latency also demonstrate the linear scalability of our de-
sign. Our design and implementation not only shows tradeoffs in parallelization, processor assignment, and various
overheads in inter and intra-task communication etc., but it also shows that accurate performance measurement
of these systems is very important. Consideration of issues such as cache performance when data is packed and
unpacked, and impact of the parallelization and processor assignment for one task on another task are crucial. This
is normally not easily captured in theoretical models. In the future we plan to incorporate further optimizations
including multi-threading, multiple pipelines and multiple processors on each compute node.

Acknowledgments

This work was supported by Air Force Materials Command under contract F30602-97-C-0026. We acknowledge
the use of the Intel Paragon at Caltech for initial development.

References

[Brown and Linderman, 1997] Brown, R. and Linderman, R. (1997). "Algorithm Development for an Airborne
Real-Time STAP Demonstration,". IEEE National Radar Conference.

[Linderman and Linderman. 1997] Linderman, M. and Linderman, R. (1997). "Real-Time STAP Demonstration
on an Embedded High Performance Computer,". IEEE National Radar Conference.

[Little and Berry, 1997] Little. M. and Berry, W. (1997). "Real-Time Multichannel Airborne Radar Measure-
ments," . IEEE National Radar Conference.

[Snir and et al., 1995] Snir. M. and et al. (1995). MPI The Complete Reference. The MIT Press.

A-18

Multi-Threaded Design and Implementation of Parallel Pipelined STAP on
Parallel Computers with SMP Nodes

Wei-keng Liaof, Alok Choudhary*, Donald Weinet, and Pramod Varshney*

* EECS Department
Syracuse University
Syracuse, NY 13244

* ECE Department
Northwestern University

Evanston, IL 60208

Abstract

This paper presents performance results for the multi-
threaded design and implementation of a parallel pipelined
Space-Time Adaptive- Processing (STAP) algorithm on
parallel computers with Symmetrical Multiple Processor
(SMP) nodes. In particular, the paper describes our ap-
proach to parallelization and multi-threaded implementa-
tion on an Intel Paragon MP system. Our goal is to deter-
mine how much more performance can be enhanced using
small SMPs on each node of a large parallel computer for
such an application. The paper also discusses the process
of developing software for such an application on parallel
computers when latency and throughput are both consid-
ered together and presents their tradeoffs. The results show
that not only scalable performance was achieved for indi-
vidual component tasks of STAP but linear speedups were
obtained for the integrated task performance, both for la-
tency as well as throughput.

1 Introduction

Space-time adaptive processing (STAP) is a well known
technique in the area of airborne surveillance radars, which
is used to detect weak target returns embedded in strong
ground clutter, interference, and receiver noise. Most STAP
applications consume great amounts of computational re-
sources and are also required to operate in real time. High
performance computers are becoming mainstream due to
the progress made in hardware as well as software support
in the last few years. They can satisfy the STAP computa-
tional requirements of real-time applications while increas-
ing the flexibility, affordability, and scalability of radar sig-
nal processing systems. However, efficient parallelization
of a STAP algorithm which has embedded in it different al-
gorithms, is challenging and requires several optimizations.

In our previous work [3], we described the parallel

pipelined implementation of a PRI-staggered post-Doppler
STAP algorithm. In this paper, we focus on the multi-
threaded design and implementation on the parallel com-
puters with SMP nodes. This STAP algorithm consists of
five steps: l)Doppler filter processing, 2)weight compu-
tation, 3)beamforming, 4)pulse compression, and 5)CFAR
processing. For our implementation of this real applica-
tion we designed a model of the parallel pipeline system
where each pipeline is a collection of tasks and each task
itself is parallelized. This parallel pipeline model was ap-
plied to the STAP algorithm with each step as a task in a
pipeline. This permits us to significantly improve latency
as well as throughput. Performance results presented in this
paper were obtained on the Intel Paragon at the Air Force
Research Laboratory (AFRL), Rome, New York.

The Intel Paragon at the AFRL is an MP system which
has three processors on each compute node board. In this
paper, we focus on the design of the parallel pipeline sys-
tem and its implementation using multi-threading on this
system. We demonstrate the performance and scalability
on different numbers of compute nodes for both threaded
and non-threaded implementations. The improvement of
threaded implementation over non-threaded implementa-
tion is provided.

The rest of the paper is organized as follows: in Section
2, we present the parallel pipeline system model and discuss
some parallelization issues. Section 3 describes the multi-
threaded programming environment on the Intel Paragon
MP system. Section 4 presents the implementation. Per-
formance results and conclusions are given in Section 5 and
Section 6 respectively.

2 Model of the parallel pipeline system

The system model for the type of STAP applications con-
sidered in this work is shown in Figure 1. This model is
suitable for the computational characteristics found in these
applications. A pipeline is a collection of tasks which are

A-19

Spatial Spatial Spatial
data data data

dependency dependency dependency

input.
Task. Task.

Temporal
data

dependency

Temporal
data

dependency

input,,, ■+
Task.

Temporal
data

dependency

Task.
output M

Temporal
data

dependency

E input. 2

P »*■

« y
Task, Taskj Task,

output 1+J

Figure 1. Model of the parallel pipeline sys-
tem. The set of pipelines indicates that the
same pipeline is repeated on subsequent in-
put data sets. Each task for all input in-
stances is executed on the same number of
compute nodes.

data dependency is due to the transfer and reorganization of
data passed onto the next parallel task in the pipeline. Tem-
poral data dependency occurs when some form of output
generated by the tasks executed on the previous data set are
needed by tasks executing the current data set. We will later
see that STAP has both types of data dependencies.

2.2 Compute node assignment

Optimal use of resources is particularly important in
high-performance embedded applications due to limited re-
sources and other constraints such as desired latency or
throughput [4]. When several parallel tasks need to be ex-
ecuted in a pipelined fashion, tradeoffs exist between the
assignment of processors for the maximization of overall
throughput as opposed to the minimization of a single data
set's response time (or latency.) The throughput require-
ment says that when allocating processors to tasks, it should
be guaranteed that all the input data sets will be handled in
a timely manner. That is, the processing rate should not fall
behind the input data rate. The response time criteria, on the
other hand, require minimizing the latency of computation
on a particular set of data input.

executed sequentially. The input to the first task is obtained
normally from sensors or other input devices and the inputs
to the rest of the tasks in the pipeline are the outputs of their
previous tasks. The set of pipelines shown in the figure indi-
cates that the same pipeline is repeated on subsequent input
data sets. Each block in a pipeline represents one parallel
task, which itself is parallelized on multiple (different num-
ber of) compute nodes.

From a single task point of view, the execution flow con-
sists of three phases: receive, compute, and send phases. In
the receive and send phases, communication involves data
transfer between two different groups of compute nodes. In
the compute phase, work load is evenly partitioned among
all compute nodes assigned in each task to achieve the max-
imum efficiency. For the parallel systems with SMP nodes,
multi-threading technique can be employed to further im-
prove the computation performance.

2.1 Data dependency

In such a parallel pipeline system, there exist both spa-
tial and temporal parallelism that result in two types of data
dependencies, namely, spatial data dependency and tempo-
ral data dependency [2, 5]. Spatial data dependency can
be classified into inter-task data dependency and intra-task
data dependency. Intra-task data dependencies arise when a
set of subtasks needs to exchange intermediate results dur-
ing the execution of a parallel task in a pipeline. Inter-task

3 Multi-threads on Paragon

We implemented our parallel pipeline model of the STAP
algorithm on the Intel Paragon XP/S parallel computer lo-
cated at AFRL. The compute partition of this machine con-
sists of 232 MP nodes, each has three i860 processors on its
compute node board. By running UNIX OSF/1 operating
system, the three processors are configured with two pro-
cessors as general application processors and one processor
as message coprocessor which is dedicated to message pass-
ing. Multi-threaded programming environment is supported
on a Paragon system and the threads are implemented as
POSIX threads [6].

4 Design and implementation

The STAP algorithm we implemented is a PRI-staggered
post-Doppler STAP algorithm [1, 7]. The design of the par-
allel pipelined STAP algorithm is shown in Figure 2. The
parallel pipeline system consists of seven tasks. Both the
weight computation and the beamforming tasks are divided
into two parts, namely, "easy" and "hard" Doppler bins.
The hard Doppler bins are those in which significant ground
clutter is expected and the remaining bins are easy Doppler
bins. The main difference between the two is the amount
of data used and the amount of computation required. The
input data set for the pipeline is obtained from a phased ar-
ray radar and is formed in terms of a coherent processing

A-20

en r, a,)
DUa
Cabt 1 w«W« 1

J CmmfmtMÜam JDlJ
P3 dl)

\ , ^ nwfillw*t
|Ea?Cu)

Dafftr
FWUr U

^

Bii.ifinaK
P. dt)

y wdcu 1

maio thread loopt

Pj (T,) P« (T.)

- ^- Data from previous time instance
-■*- Data from enrrent time instance

Figure 2. Implementation of parallel pipelined
STAP. Arrows connecting task blocks repre-
sent data transfer between tasks.

interval (CPI). Each CPI data set is a 3-dimensional com-
plex data cube. The output of the pipeline is a report on
the detection of possible targets. Each task i, 0 < i < 7,
is parallelized by evenly partitioning its work load among
Pi compute nodes. The execution time associated with task
i is T{. For the computation of the weight vectors for the
current CPI data cube, data cubes from previous CPIs are
used as input data. This introduces temporal data depen-
dency. Temporal data dependencies are represented by ar-
rows with dashed lines in Figure 2 where TJDjj represents
temporal data dependency of task j on data from task i. In
a similar manner, spatial data dependencies SDij can be
defined and are indicated by arrows with solid lines.

Throughput and latency are two important measures for
performance evaluation on a pipeline system.

throughput =
max Ti
0<i<6

latency = To + max Ti + T5 +T6.
i=3,4

(1)

(2)

The temporal data dependency does not affect the latency
because weight computation tasks use data from the previ-
ous time instance rather than the current CPI. The filtered
CPI data cube sent to the beamforming task does not wait
for the completion of its weight computation. This explains
why equation (2) does not contain Ti and T%. A detailed
description of the STAP algorithm we used can be found in
[1,7].

4.1 Threads in compute phases

In the Intel Paragon MP system, two out of the three pro-
cessors in one compute node are configured as general pro-
cessors to run application code while the third as a mes-
sage coprocessor which is dedicated to message passing.

Figure 3. Implementation of two threads in
the compute phase. The main thread signals
the second thread to perform its computation.
After completion of its computation, the sec-
ond thread signals back to the main thread.

With this configuration, only compute phase for each task
in our parallel pipeline system is implemented with threads.
The reason for not implementing threads in communication
phases is that the Paragon message-passing library is not
thread-safe. Since there are only two application proces-
sors in each compute node, each compute phase in every
task will have two threads implemented. Figure 3 gives the
execution flows of two threads in the compute phase.

5 Performance results

The implementation of the STAP application based on
our parallel pipeline system model was done on the Intel
Paragon at AFRL. Each CPI complex data cube is a 512 x
16 x 128 three-dimensional array. A total of 27 CPIs were
generated as inputs to the parallel pipeline system.

5.1 Compute time

For each task in the STAP algorithm, parallelization was
done by evenly dividing computational load across compute
nodes assigned to the task. Figure 4 gives the performance
results of compute phases for different tasks. For each task,
we obtained linear speedups on both implementations using
two threads as well as using single thread.

Assuming that the execution time of a non-threaded im-
plementation of a task is t\ and the execution time of
its threaded implementation is £2. we define the threading
speedup for threaded over non-threaded implementation as
s = j1. Since two processors are employed in the threaded
implementation, we have Q < t2 < h and, therefore,
1 < s < 2. The threading speedups for compute phases of
all tasks are also given in Figure 4. By running on two pro-
cessors at the same time, the two-threaded STAP code ide-
ally can have a threading speedup of 2. However, in most
cases, the actual threading speedups do not approach this
ideal value. This may be caused by the limitation of imple-
mentation of operating system, OSF/1, and the implemen-

A-21

P>y|itr Filar Pi i f*t

■s *"
1 " * « * ...
t ..
P Hi 11 II ll

Ea^WrifU

1
i ill

E-T«

JLH Jl_ii ll I. ■■

LLLU 1 I I I ■ ■ i in
NvBbcrsTMMWs NVaMavcr WtWGBGB N_fer ■(••*>

Figure 4. Performance of compute phases as a function of number of compute nodes.

10,-

.1

2-

■ aon<threaded
e threaded

51 102 17«
Number of nodes

1J
1.4
1.4

«,"
£ l

0.4
OJ

0 ll ll
■ non-threaded 1
B threaded

] li
51 102 176

Number of nodes

250r
— aoB-threaded throughput

200 (• -threaded throughput
i .. non-threaded latency

^1501 * threaded latency

S '
»loot

en
50f

50 100 150
Number of nodes

2
a.

1"
frl-of
M

a
£u

■ throughput
D latency

■n ii IR
51 102 176

Number of nodes

Figure 5. Integrated performance results for
threaded and non-threaded implementations.

tation of linked thread-safe libraries. On an Intel Paragon
MP system, scheduling of threads is handled by the oper-
ating system kernel. Users cannot have control over or get
information about which processor runs which thread.

5.2 Integrated system performance evaluation

Integrated system performance evaluation refers to the
evaluation of performance when all the tasks in the pipeline
are considered together. Throughput (number of CPIs per
second) and latency (seconds per CPI) are the two most im-
portant measures for performance evaluation on the parallel
pipeline system. Figure 5 shows the speedups and threading
speedups achieved by the threaded implementation for both
latency and throughput for three cases of different compute
node assignments with 51, 102 and 176 nodes. From these
experiments, it is clear that for latency and throughput mea-
sures we obtain linear speedups for both threaded and non-
threaded implementations. Given that this scale up is up
to 176 compute nodes (we were limited to this number of
nodes due to the size of the machine), we believe these are
very good results.

5.3 Tradeoff between throughput and latency

Using an example, we illustrate how further performance
improvements may (or may not) be achieved if a few addi-
tional compute nodes are available. We now take the case
with 102 nodes from Figure 5 as an example and add some
nodes to the pipeline to analyze its effect on the throughput
and latency. Compute nodes were added to each task in in-
crements of two nodes at a time. The resulting throughput
and latency are plotted in Figure 6.

When nodes were added to the Doppler filter processing
task, the throughput increased and latency reduced. From
Equations (1) and (2), this improvement was obtained be-
cause the execution time, To, is reduced. However, when
the number of nodes added is more than 8, both throughput
and latency degrade. This is because the Doppler filter pro-
cessing task finishes its computation on the new CPI so fast
that the actual send operations for the previous CPI have not
been carried out yet. The waiting time increases Doppler fil-
ter processing task's execution time, To, and therefore de-
grades the throughput and latency.

When compute nodes are added to easy and hard weight
computation tasks, the resulting throughput and latency
have no significant changes. This is because the latency
does not contain the execution time of weight computations,
as indicated in Equation (2). However, when extra com-
pute nodes are added to either the beamforming or the pulse
compression task, we observe that the latency is reduced.
This is because the execution times T3, T4, and T5 reduce
in Equation (2). The throughput, on the other hand, is not
improved because the Doppler filter processing task is the
task with the maximum execution time among all tasks.

Figure 6 presents the tradeoffs between increasing the
throughput and reducing the latency, when assigning nodes
to the tasks in the pipeline. We observed that only the addi-
tion of nodes to the Doppler filter processing task can in-
crease the throughput. Similarly, only beamforming and
pulse compression tasks are candidates for the addition of
more compute nodes to reduce the latency.

Compute node assignment can also be made in such a
way that both throughput and latency are improved simul-

A-22

DoppJer Filter Processing *
Easy Weight Computation

t

u

Hard Weight Computation
t

u

Bcamforming Pulse Compression

• Ikrcackd
— in» tkrmimi

- tansricd
— — tkramdwd

- tarcKkd - tarwdtd
- MMMkraitod u

- tkRMM
-M^tkr*Mkd

1. ■

U

i i

u * ■

%
AS * •■■- ' * • .

e ' ■y\^-^ 4

U

s

4

1*

1

4

1

4 ■

e - ■

• 1 4 * t » 11 H 1« t 2 4 * 1 M 11 14 14 • 1 4 4 ■ I* U 14 It • 1 4 t ■ ia ii 14 it

M
- thrvMiMl
- BO* tartadtd .. _

US

U

ITS

17

— — ifcrwdtd
tJS

u
•.«

S.7

- IkiuM
— BOB tkrwdtl

u

«.79

S.T

-tana**
— — tfcnadtd

US

u
CTS

- taradtd
-Mt>tlt1MM

o

f, > 1 US US 44» " ' " MS '
* ,—/ U • - ■*-■— - * U • " * ' U U

' *'""* ' ■•

«4
' "■■

•LII «LH
' ■ - -

US * "'"" '
•] 4 * ■ II 11 W It

Number of extra nodes added
• 3 4 4 I It 11 14 It

Number of extra nodes added
• 1 4 t 1 II 11 14 1«

Number of extra nodes added
• 1 4 t * It 11 14 It

Number of extra nodes added
t 1 4 4 ■ It 11 14 It

Number of extra nodes added

Figure 6. Throughput and latency results by adding 2 compute nodes at a time to each task.

Table 1. Performance results when 4 nodes to
the Doppler processing task and 4 nodes to
the pulse compression task are added to the
implementation with 102 nodes.

non-threaded threaded
nodes 102 110 102 110

throughput 3.8677 4.8368 4.6916 5.6137
latency 0.7767 0.6650 0.6108 0.5458

throughput: CPIs/sec latency: sec/CPI

taneously. We now add 4 nodes to the Doppler filter pro-
cessing task and 4 nodes to the pulse compression task.
By increasing the number of compute nodes by 7.8%, the
improvement in throughput is 25.1% and in latency it is
14.4% for the non-threaded implementation. Meanwhile,
the threaded implementation shows 19.7% improvement in
throughput and 10.6% improvement in latency. From these
experimented results, we can draw the following conclu-
sions. Extra compute nodes can be assigned to the task that
has the maximum execution time among all tasks. In this
way, the execution time of this task is reduced and accord-
ing to Equation (1), the throughput is increased. Extra com-
pute nodes can be added to those tasks which benefit the
most, that is, the tasks with greatest reduced execution time
when more nodes are assigned. The sum of these tasks can
be reduced the most and therefore it minimizes the latency.

6 Conclusions

In this paper we presented performance results for a
PRI-staggered post-Doppler STAP algorithm implementa-
tion on the Intel Paragon machine at Air Force Research
Laboratory, Rome, New York. This Paragon machine has
three processors on each compute node board. By taking
advantage of the SMP architecture, a multi-threaded im-

plementation is was designed and compared to the non-
threaded implementation. Performance results indicate that
our approach of parallel pipelined implementation scales
well both in terms of throughput and latency whether the
multi-threaded technique is used or not. Our design and
implementation not only shows tradeoffs in parallelization,
compute node assignment, and various overheads in inter-
task communication etc., but it also shows that accurate per-
formance measurement of these systems is very important.

7 Acknowledgments

This work was supported by Air Force Materials Com-
mand under contract F30602-97-C-0026. We are grateful to
Russell Brown, Mark Linderman, Richard Linderman, and
Zen Pryk for their help, support, and encouragement during
the course of this work.

References

[1] R. Brown and R. Linderman. "Algorithm Development for an
Airborne Real-Time STAP Demonstration,". IEEE National
Radar Conference, 1997.

[2] A. Choudhary. Parallel Architectures and Parallel Algorithms
for Integrated Vision Systems. Kluwer Academic Publisher,
Boston, MA, 1990.
A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linder-
man, and M. Linderman. "Design, Implementation and Eval-
uation of Parallel Pipelined STAP on Parallel Computers,".
International Parallel Processing Symposium, 1998.
A. Choudhary, B. Narahari, D. Nicol, and R. Simha. "Opti-
mal Processor Assignment for Pipeline Computations,". IEEE
Trans, on Parallel and Distributed Systems, Apr. 1994.
A. Choudhary and R. Ponnusamy. "Parallel Implementation
and Evaluation of a Motion Estimation System Algorithm us-
ing Several Data Decomposition Strategies,". Journal of Par-
allel and Distributed Computing, Jan. 1992.
Intel Corporation. Paragon System User's Guide, Apr. 1996.
M. Linderman and R. Linderman. "Real-Time STAP Demon-
stration on an Embedded High Performance Computer,".
IEEE National Radar Conference, 1997.

[3]

[4]

[5]

[6]
[7]

A-23

Appendix B

Papers submitted for publication

B-1

Design, Implementation and Evaluation of Parallel

Pipelined STAP on Parallel Computers

Alok Choudhary

ECE Department
Northwestern University

Evanston, IL 60208

Wei-keng Liao
Donald Weiner

Pramod Varshney

EECS Department
Syracuse University
Syracuse, NY 13244

Richard Lindermant

Mark Lindermant
Russell Brown*

Information Directorate*
Sensors Directorate*

Air Force Research Laboratory

Abstract

This paper presents performance results for the design and implementation of parallel

pipelined Space-Time Adaptive Processing (STAP) algorithms on parallel computers. In par-

ticular, the paper describes the issues involved in parallelization, our approach to parallelization

and performance results on an Intel Paragon. The paper also discusses the process of devel-

oping software for such an application on parallel computers when latency and throughput are

both considered together and presents tradeoffs considered with respect to inter and intra-task

communication and data redistribution. The results show that not only scalable performance

was achieved for individual component tasks of STAP but linear speedups were obtained for

the integrated task performance, both for latency as well as throughput. Results are presented

for up to 236 compute nodes (limited by the machine size available to us). Another interesting

observation made from the implementation results is that performance improvement due to the

assignment of additional processors to one task can improve the performance of other tasks

without any increase in the number of processors assigned to them. Normally, this cannot be

predicted by theoretical analysis.

B-2

1 Introduction

Space-time adaptive processing (STAP) is a well known technique in the area of airborne surveil-

lance radars used to detect weak target returns embedded in strong ground clutter, interference,

and receiver noise. STAP is a 2-dimensional adaptive filtering algorithm that attenuates unwanted

signals by placing nulls in their directions of arrival and Doppler frequencies. Most STAP applica-

tions are computationally intensive and must operate in real time. High performance computers are

becoming mainstream due to the progress made in hardware as well as software support in the last

few years. They can satisfy the STAP computational requirements of real-time applications while

increasing the flexibility, affordability, and scalability of radar signal processing systems. How-

ever, efficient parallelization of a STAP algorithm which has embedded in it different processing

steps is challenging and is the subject of this paper.

This paper describes our innovative parallel pipelined implementation of a Pulse Repetition

Interval (PRI)-staggered post-Doppler STAP algorithm on the Intel Paragon at the Air Force Re-

search Laboratory (AFRL), Rome, New York. For a detailed description of the STAP algorithm

implemented in this work, the reader is referred to [1, 2]. AFRL successfully installed their im-

plementation of the STAP algorithm onboard an airborne platform and performed four flight ex-

periments in May and June 1996 [3]. These experiments were performed as part of the Real-Time

Multi-Channel Airborne Radar Measurements (RTMCARM) program. The RTMCARM system

block diagram is shown in Figure 1. In that real-time demonstration, live data from a phased ar-

ray radar was processed by the onboard Intel Paragon and results showed that high performance

computers can deliver a significant performance gain. However, this implementation used com-

pute nodes of the machine only as independent resources in a round robin fashion to run differ-

ent instances of STAP (rather than speeding up each instance of STAP.) Using this approach, the

throughput may be improved, but the latency is limited by what can be achieved using one compute

node.

Parallel computers, organized with a large set (several hundreds) of processors linked by a spe-

cialized high speed interconnection network, offer an attractive solution to many computationally

intensive applications, such as image processing, simulation of particle reactions, and so forth.

Parallel processing splits an application problem into several subproblems which are solved on

B-3

A/D Converters
Multiplexer

lOMB/sec

SCSI
8MB/5CC

DCRS1
TAPE

DISC
27 GByte

RTMCARM
SYSTEM

Mercury
Processor

* Conventional
processing

Ethernet

Sensor Manager
& Beam Steering

Computer

* RADAR Control
* Process Comparison
* Data Displays

Ethernet

Demultiplex
Demodulate

Buffer Memory
Corner Turn

VME
SPARC 20

* JSS Interface
* Carto Display
* Paragon Interface

iHIPPI

Rqggednxd Paragon

25 Compute, 2 HIPPI,2 Service Nodes

•Doppter Filter Processing
* Weight Computation
* Beamforming
* Pulse Compression
* CFAR processing
* Data Recording

HIPPI

Figure 1. RTMCARM system block diagram.

multiple processors simultaneously. To learn more about parallel computing, the reader is referred

to [4,5, 6,7, 8]. For our parallel implementation of this real application we have designed a model

of the parallel pipeline system where each pipeline is a collection of tasks and each task itself is

parallelized. This parallel pipeline model was applied to the STAP algorithm with each step as a

task in a pipeline. This permits us to significantly improve latency as well as throughput.

This paper describes parallelization process and performance results. In addition, design con-

siderations for portability, task mapping, parallel data redistribution, parallel pipelining as well as

system-level and task-level performance measurement are discussed. Finally, the performance and

scalability of the implementation for a large number of processors is demonstrated. Performance

results are presented for the Intel Paragon at AFRL.

The paper is organized as follows. In Section 2 we discuss the related work. An overview of

the implemented algorithm is given in Section 3. In Section 4, we present the parallel pipeline

system model and discuss some parallelization issues and approaches for implementation of STAP

algorithms. Section 5 presents specific details of STAP implementation. Performance results and

B-4

Ruggedized Touchstone

Round
Robin

Scheduling

Figure 2. Implementation of the ruggedized version of Intel Paragon system in RTMCARM

experiments.

conclusions are presented in Section 7 and Section 8, respectively.

2 Related Work

The RTMCARM experiments were performed using a BAC 1-11 aircraft. The radar was a phased

array L-Band radar with 32 elements organized into two rows of 16 each. Only the data from the

upper 16 elements were processed with STAR This data was derived from a 1.25 MHz intermediate

frequency (IF) signal that was 4:1 oversampled at 5 MHz. The number representation at IF was 14

bits, 2's complement and was converted to 16 bit baseband real and imaginary numbers. Special

interface boards were used to digitally demodulate EF signals to baseband. The signal data formed

a raw 3-dimensional data cube called coherent processing interval (CPI) data cube comprised of

128 pulses, 512 range gates (32.8 miles), and 16 channels. These special interface boards were also

used to corner turn the data cube so that CPI is unit stride along pulses. It speeds the subsequent

Doppler processing on the High Performance Computing (HPC) systems. Live CPI data from a

phased-array radar were processed by a ruggedized version of the Paragon computer.

The ruggedized version of Intel Paragon system consists of 25 compute nodes running the SUN-

MOS operating system. Figure 2 depicts the system implementation. Each compute node has three

B-5

i860 processors accessing the common memory of size 64M bytes as a shared resource. The CPI

data sets were sent to the 25 compute nodes in a round robin manner and all three processors

worked on each CPI data set as a shared-memory machine. The system processed up to 10 CPIs

per seconds (throughput) and achieved a latency of 2.35 seconds per CPI. This implementation

used compute nodes of the machine as independent resources to run different instances of CPI

data sets. No communication among compute nodes was needed. This approach can achieve de-

sired throughput by using as many nodes as needed, but the latency is limited by what can be

achieved using the three processors in one compute node. More information on the overall system

configuration and performance results can be found in [1, 3].

Other related work such as [9,10,11,12] parallelized high-order post-Doppler STAP algorithms

by partitioning the computational workload among all processors allocated for the applications. In

[9, 10], they focused on the design of parallel versions of subroutines for FFT and QR decomposi-

tion. In [11,12], the implementations optimized the data redistribution between processing steps in

the STAP algorithms while using sequential versions of FFT and QR decomposition subroutines.

A multi-stage approach was employed in [13] which was an extension of [11, 12]. A beam space

post-Doppler STAP was divided into three stages and each stage was parallelized on a group of

processors. A technique called replication of pipeline stages was used to replicate the computa-

tional intensive stages such that different data instance is run on a different replicated stage. Their

effort focused on increasing the throughput while keeping the latency fixed. For other related work,

the reader is referred to [14, 15, 16].

3 Algorithm Overview

The adaptive algorithm, which cancels Doppler shifted clutter returns as seen by the airborne radar

system, is based on a least squares solution to the weight vector problem. This approach has

traditionally yielded high clutter rejection, but suffers from severe distortions in the adapted main

beam pattern and resulting loss of gain on the target. Our approach introduces a set of constraint

equations into the least squares problem which can be weighted proportionally to preserve main

beam shape. The algorithm is structured so that multiple receive beams may be formed without

changing the matrix of training data. Thus, the adaptive problem can be solved once for all beams

B-6

which lie within the transmit illumination region. The airborne radar system was programmed

to transmit five beams, each 25 degrees in width, spaced 20 degrees apart. Within each transmit

beam, six receive beams were formed by the processor.

The algorithm consists of the following steps:

1. Doppler filter processing,

2. Weight computation,

3. Beamforming,

4. Pulse compression, and

5. CFAR processing.

Doppler filtering is performed on each receive channel using weighted Fast Fourier Transforms

(FFT's). The analog portion of the receiver compensates the received clutter frequency to center

the clutter frequency at zero regardless of the transmit beam position. This simplifies indexing

of Doppler bins for classification as "easy" or "hard" depending on their proximity to mainbeam

clutter returns. For the hard cases, Doppler processing is performed on two 125-pulse windows of

data separated by three pulses (a STAP technique known as "PRI-stagger"). Both sets of Doppler

processed data are adaptively weighted in the beamforming process for improved clutter rejection.

In the easy case, only a single Doppler spectrum is computed. This simpler technique has been

termed Post Doppler Adaptive Beamforming and is quite effective at a fraction of the computa-

tional cost when the Doppler bin is well separated from mainbeam clutter. In these situations, an

angular null placed in the direction of the competing ground clutter provides excellent rejection.

Selectable window functions are applied to the data prior to the Doppler FFT's to control sidelobe

levels. The selection of a window is a key parameter in that it impacts the leakage of clutter returns

across Doppler bins, traded off against the width of the clutter passband.

An efficient method of beamforming using recursive weight updates is made possible by a block

update form of the QR decomposition algorithm. This is especially significant in the hard Doppler

regions, which are computed using separate weights for six consecutive range intervals. The re-

cursive algorithm requires substantially less training data (sample support) for accurate weight

computation, as well as providing improved efficiency. Since the hard regions have one sixth the

B-7

range extent from which to draw data, this approach dealt with the paucity of data by using past

looks at the same azimuth, exponentially forgotten, as independent, identically distributed esti-

mates of the clutter to be cancelled. This assumes a reasonable revisit time for each azimuth beam

position. During the flight experiments, the five 25 degree transmit beam positions were revisited

at a 1-2 Hz rate (5-10 CPIs per second.)

The training data for the easy Doppler regions was selected using a more traditional approach.

Here, the entire range extent was available for sample support, so the entire training set was drawn

from three preceding CPIs for application to the next CPI in this azimuth beam position. In this

case, a regular (non-recursive) QR decomposition is performed on the training data, followed by

block update to add in the beam shape constraints.

Pulse compression is a compute intensive task, especially if applied to each receive channel in-

dependently. In general, this approach is required for adaptive algorithms which compute different

weight sets as a function of radar range. Our algorithm, however, with its mainbeam constraint,

preserves phase across range. In fact, the phase of the solution is independent of the clutter nulling

equations, and appears only in the constraint equations. The adapted target phase is preserved

across range, even though the clutter and adaptive weights may vary with range. Thus, pulse

compression may be performed on the beamformed output of the receive channels providing a

substantial savings in computations.

In the sections to follow, we present the process of parallelization and software design consider-

ations including those for portability, task mapping, parallel data redistribution, parallel pipelining

and issues involved in measuring performance in implementations when not only the performance

of individual tasks is important, but overall performance of the integrated system is critical. We

demonstrate the performance and scalability for a large number of processors.

4 Model of the Parallel Pipelined System

The system model for the type of STAP applications considered in this work is shown in Figure

3. A pipeline is a collection of tasks which are executed sequentially. The input to the first task

is obtained normally from sensors or other input devices with the inputs to the remaining tasks

coming from outputs of previous tasks. The set of pipelines shown in the figure indicates that

B-8

Spatial Spatial Spatial
data data data

dependency dependency dependency

input |
Task, Task.

Temporal
data

dependency

Task.
output.

Temporal
data

dependency

input. +1
Task.

4*
W

E

Task.

Temporal
data

dependency

Task.
output i+1

Temporal
data

dependency

input.
Task,

4
Task. Task.

output .+2

t

Figure 3. Model of the parallel pipeline system. (Note that Taski for all input instances is

executed on the same number of processors, but that the number of processors may differ

from one task to another.)

the same pipeline is repeated on subsequent input data sets. Each block in a pipeline represents

one task, that is parallelized on multiple (different number of) processors. That is, each task is

decomposed into subtasks to be performed in parallel. Therefore, each pipeline is a collection of

parallel tasks.

In such a system, there exist both spatial and temporal parallelism that result in two types of

data dependencies and flows, namely, spatial data dependency and temporal data dependency

[17, 18, 19]. Spatial data dependency can be classified into inter-task data dependency and intra-

task data dependency. Intra-task data dependencies arise when a set of subtasks needs to exchange

intermediate results during the execution of a parallel task in a pipeline. Inter-task data depen-

dency is due to the transfer and reorganization of data passed onto the next parallel task in the

pipeline. Inter-task communication can be communication from the subtasks of the current task to

the subtasks of the next task, or collection and reorganization of output data of the current task and

then redistribution of the data to the next task. The choice depends on the underlying architecture,

mapping of algorithms and input-output relationship between consecutive tasks. Temporal data

B-9

dependency occurs when some form of output generated by the tasks executed on the previous

data set are needed by tasks executing the current data set. STAP is an interesting parallelization

problem because it exhibits both types of data dependency.

4.1 Parallelization Issues and Approaches

A STAP algorithm involves multiple algorithms (or processing steps), each of which performs

particular functions, to be executed in a pipelined fashion. Multiple pipelines need to be executed

in a staggered manner to satisfy the throughput requirements. Each task needs to be parallelized

for the required performance, which, in turn, requires addressing the issue of data distribution

on the subset of processors on which a task is parallelized to obtain good efficiency and incur

minimal communication overhead. Given that each task is parallelized, data flow among multiple

processors of two or more tasks is required and, therefore, communication scheduling techniques

become critical.

4.1.1 Inter-task Data Redistribution

In an integrated system, data redistribution is required to feed data from one parallel task to an-

other, because the way data is distributed in one task may not be the most appropriate distribution

for the next task for algorithmic or efficiency reasons. For example, the FFTs in the Doppler fil-

ter processing task perform optimally when the data is unit-stride in pulse, while the next stage,

beamforming, performs optimally when the data is unit stride in channel. To ensure efficiency

and continuity of memory access, data reorganization and redistribution are required in the inter-

task communication phase. Data redistribution also allows concentration of communication at the

beginning and the end of each task.

We have developed runtime functions and strategies that perform efficient data redistribution

[20]. These techniques reduce the communication time by minimizing contention on the commu-

nication links as well as by minimizing the overhead of processing for redistribution (which adds

to the latency of sending messages). We take advantage of lessons learned from these techniques

to implement the parallel pipelined STAP application.

B-10

4.1.2 Task Scheduling and Processor Assignment

An important factor in the performance of a parallel system is how the computational load is

mapped onto the processors in the system. Ideally, to achieve maximum parallelism, the load must

be evenly distributed across the processors. The problem of statically mapping the workload of a

parallel algorithm to processors in a distributed memory system has been studied under different

problem models, such as [21,22]. The mapping policies are adequate when an application consists

of a single task, and the computational load can be determined statically. These static mapping

policies do not model applications consisting of a sequence of tasks (algorithms) where the output

of one task becomes the input to the next task in the sequence.

Optimal use of resources is particularly important in high-performance embedded applications

due to limited resources and other constraints such as desired latency or throughput [23]. When

several parallel tasks need to be executed in a pipelined fashion, tradeoffs exist between assigning

processors to maximize the overall throughput and assigning processors to minimize a single data

set's response time (or latency.) The throughput requirement says that when allocating processors

to tasks, it should be guaranteed that all the input data sets will be handled in a timely manner.

That is, the processing rate should not fall behind the input data rate. The response time criteria,

on the other hand, require minimizing the latency of computation on a particular set of data input.

To reduce the latency, each parallel task must be allocated more processors to reduce its exe-

cution time, and consequently, the overall execution time of the integrated system. But it is well

known that the efficiency of parallel programs usually decreases as the number of processors is in-

creased. Therefore, the gains in this approach may be incremental. On the other hand, throughput

can be increased by increasing the latency of individual tasks by assigning them fewer processors

and, therefore, increasing efficiency, but at the same time having multiple streams active concur-

rently in a staggered manner to satisfy the input-data rate requirements. We next present these

tradeoffs and discuss various implementation issues.

5 Design and Implementation

The design of the parallel pipelined STAP algorithm is shown in Figure 4. The parallel pipeline

system consists of seven basic tasks. We refer to the parallel pipeline as simply a pipeline in the rest

B-11

CPI
Data
Cube

(Ti>

Weight
Computation
(Easy Case)

Doppier
Filter

Processing

(T,)

(T3)

Beamforming

(Easy Case)
(T5) ft (T«)

N

Weight
Computation
(Hard Case)

Beamforming

(Hard Case)

^

Pulse

Compression

CFAR

Processing

T
(T«)

Detection
Reports

P2 (T2)

^- Data from previous time instance
-►- Data from current time instance

Figure 4. Implementation of parallel pipelined STAR Arrows connecting task blocks represent

data transfer between tasks.

of this paper. The input data set for the pipeline is obtained from a phased array radar and is formed

in terms of a coherent processing interval (CPI). Each CPI data set is a 3-dimensional complex data

cube comprised of K range cells, J channels, and N pulses. The output of the pipeline is a report

on the detection of possible targets. The arrows shown in Figure 4 indicate data transfer between

tasks. Although a single arrow is shown, note that each represents multiple processors in one task

communicating with multiple processors in another task. Each task i is parallelized by evenly

partitioning its work load among P, processors. The execution time associated with task i, Tu

consists of the time to receive data from the previous task, computation time, and time to send

results to the next task.

The calculation of weights is the most computationally intensive part of the STAP algorithm.

For the computation of the weight vectors for the current CPI data cube, data cubes from previous

CPIs are used as input data. This introduces temporal data dependency. For example, suppose

that a set of CPI data cubes entering the pipeline sequentially are denoted by CPU, i = 0,1,....

At any time instance i, the Doppier filtering task is processing CPU and beamforming task is

processing CPU-\. In the meanwhile, the weight computation task is using past CPIs in the same

azimuthal direction to calculate the weight vectors for CPU as described below. The computed

weight vectors will be applied to CPU in the beamforming task at next time instance i + 1. Thus,

B-12

temporal data dependencies exist and are represented by arrows with dashed lines, TD\$ and

TD2,i, in Figure 4 where TDiyj represents temporal data dependency of task j on data from task

i. In a similar manner, spatial data dependencies SDUj can be defined and are indicated in Figure

4 by arrows with solid lines.

Throughput and latency are two important measures for performance evaluation on a pipeline

system. The throughput of our pipeline system is the inverse of the maximum execution time

among all tasks, i.e.,

throughput = —• (1)
max Ti
0<t<7

To maximize the throughput, the maximum value of T{ should be minimized. In other words, no

task should have an extremely large execution time. With a limited number of processors, the

processor assignment to different tasks must be made in such a way that the execution time of the

task with highest computation time is reduced.

The latency of this pipeline system is the time between the arrival of the CPI data cube at the

system input and the time at which the detection report is available at the system output. Therefore,

the latency for processing one CPI is the sum of the execution times of all the tasks except weight

computation tasks, i.e.,

latency = T0 + Tnax(Tz,Ti) +T5+T6. (2)

Equation (2) does not contain 7\ and T2. The temporal data dependency does not affect the

latency because weight computation tasks use data from the previous instance of CPI data rather

than the current CPI. The filtered CPI data cube sent to the beamforming tasks do not wait for the

completion of its weight computation but rather for the completion of the weight computation of

the previous CPI. For example, when the Doppler filter processing task is processing CPU, the

weight computation tasks use the filtered CPI data, CPIi-i, to calculate the weight vectors for

CPIi. At the same time, the beamforming tasks are working on CPU-i using the data received

from the Doppler filter processing and weight computation tasks. The beamforming tasks do not

wait for the completion of the weight computation task when processing CPIi-i data. The overall

system latency can be reduced by reducing the execution times of the parallel tasks, e.g., T0, T3,

T^ T5, and T6 in our system.

Next, we briefly describe each task and its parallel implementation. A detailed description of

B-13

K
range cells

N pulses

Figure 5. Partitioning strategy for Doppler filter processing task. The CPI data cube is parti-

tioned among PQ processors across dimension K.

the STAP algorithm we used can be found in [1, 2].

5.1 Doppler Filter Processing

The input to the Doppler filter processing task is one CPI complex data cube received from a

phased array radar. The computation in this task involves performing range correction for each

range cell and the application of a windowing function (e.g. Hanning or Hamming) followed by

a JV-point FFT for every range cell and channel. The output of the Doppler filter processing task

is a 3-dimensional complex data cube of size K x 2 J x N which is referred to as staggered CPI

data. In Figure 4, we can see that this output is sent to the weight computation task as well as to

the beamforming task.

Both the weight computation and the beamforming tasks are divided into easy and hard parts.

These two parts use different portions of staggered CPI data and the associated amounts of compu-

tation are also different. The easy weight computation task uses range samples only from the first

half of the staggered CPI data while the hard weight computation task uses range samples from

the entire staggered CPI data. On the other hand, easy and hard beamforming tasks use all range

cells rather than some of them. Therefore, the size of data to be transfered to weight computation

tasks is different from the size of data to be sent to beamforming tasks. In Figure 4, thicker arrows

connected from Doppler filter processing task to beamforming tasks indicates that the amount of

data sent to the beamforming tasks is more than the amount of data sent to the weight tasks.

The basic parallelization technique employed in the Doppler filtering processing task is to par-

B-14

tition the CPI data cube across the range cells, that is, if P0 processors are allocated to this task,

then each processor is responsible for J^ range cells. The reason for partitioning the CPI data cube

along dimension K is that it maintains an efficient accessing mechanism for contiguous memory

space. A total of K • 2 J N-point FFTs are performed and the best performance is achieved when

every iV-point FFT accesses its N data sets from a contiguous memory space. Figure 5 illustrates

the parallelization of this step. The inter-task communication from the Doppler filter processing

task to weight computation tasks is explained in Figure 6(b). Since only subsets of range cells are

needed in weight computation tasks, data collection has to be performed on the output data before

passing it to the next tasks. Data collection is performed to avoid sending redundant data and hence

reduces the communication costs.

5.2 Weight Computation

The second step in this pipeline is the computation of weights that will be applied to the next CPI.

This computation for JV pulses is divided into two parts, namely, "easy" and "hard" Doppler bins,

as shown in Figure 6(a). The hard Doppler bins (pulses), Nhard, are those in which significant

ground clutter is expected. The remaining bins are easy Doppler bins, Neasy. The main difference

between the two is the amount of data used and the amount of computation required. Not all range

cells in the staggered CPI are used in weight calculation and different subsets of range samples are

used in easy Doppler bins and hard Doppler bins.

To gather range samples for easy Doppler bins to calculate the weight vectors for the current

CPI, data is drawn from three preceding CPIs by evenly spacing out over the first one third of K

range cells of each of the three CPIs. The easy weight computation task involves Neasy QR factor-

izations, block updates, and back substitutions. In the easy weight calculation, only range samples

in the first half of the staggered CPI data are used while hard weight computation employs range

samples from the entire staggered CPI. Furthermore, range extent for hard Doppler bins is split

into six independent segments to further improve clutter cancelation. To calculate weight vectors

for the current CPI, range samples used in hard Doppler bins are taken from the immediately pre-

ceding staggered CPI combined with older, exponentially forgotten, data from CPIs in the same

direction. This is done for each of the six range segments. The hard weight computation task

B-15

Input to Hard Weight
Computation Task

data transfer

Input to Easy Weight
Computation Task

N Doppler bins (pulses)

(a)

Output from Doppler
Filter Processing Task

(b)

Figure 6. (a) Staggered CPI data partitioned into easy and hard weight computation tasks,

(b) Parallel inter-task communication from Doppler filter processing task to easy and hard

weight computation tasks requires different sets of range samples. Data collection needs to

be performed before the communication. This can be viewed as irregular data redistribution.

involves 6Nhard recursive QR updates, block updates, and back substitutions. The easy and hard

weight computation tasks process sets of 2-dimensional matrices of different sizes.

Temporal data dependency exists in the weight computation task because both easy and hard

Doppler bins use data from previous CPIs to compute the weights for the current CPI. The outputs

of this step, the weight vectors, are two 3-dimensional complex data cubes of size Neasy x J x M

and Nhard x 2 J x M for easy and hard weight computation tasks, respectively, where M is the

number of receive beams. These two weight vectors are to be applied to the current CPI in the

beamforming task. Because of the different sizes of easy and hard weight vectors, the beamforming

task is also divided into easy and hard parts to handle different amounts of computation.

Given the uneven nature of weight computations, different sets of processors are allocated to the

easy and hard tasks. In Figure 4, Pi processors are allocated to easy weight computation and P2

processors to hard weight computation. Since weight vectors are computed for each pulse (Doppler

bin), the parallelization in this step involves partitioning of data along dimension N, that is, each

processor in easy weight computation task is responsible for Zff* pulses while each processor in

hard weight computation task is responsible for ^ pulses, as shown in Figure 7.

B-16

Niurj pulses

J
channels

Ncas} pulses

ctUsX

■-)

N

Pi

2xJ
channels

ells/
/

Ü 1
SM ~*^Mr
/

P2

Figure 7. Partitioning strategy for easy and hard weight computation tasks. Data cube is

partitioned across dimension N.

Notice that Doppler filter processing and weight computation tasks employ different data parti-

tioning strategies (along different dimensions.) Due to different partitioning strategies, an all-to-all

personalized communication scheme is required for data redistribution from Doppler filter pro-

cessing task to the weight computation task. That is, each of the Px and P2 processors needs to

communicate with all P0 processors allocated to the Doppler filter processing task to receive CPI

data. Since only subsets of Doppler filter processing task's output are used in the weight computa-

tion task, data collection is performed before inter-task communication. Although data collection

reduces inter-task communication cost, it also involves data copying from non-contiguous memory

space to contiguous buffers. Sometimes the cost of data collection may become extremely large

due to hardware limitations (e.g. high cache miss ratio.) When sending data to the beamforming

task, the weight vectors have already been partitioned along dimension N which is the same as the

data partitioning strategy for the beamforming task. Therefore, no data collection is needed when

transferring data to the beamforming task.

5.3 Beamforming

The third step in this pipeline (which is actually the second step for the current CPI because the

result of the weight task is only used in the subsequent time step) is beamforming. The inputs

of this task are received from both Doppler filter processing and weight computation tasks, as

shown in Figure 4. The easy weight vector received from easy weight computation task is applied

B-17

to the easy Doppler bins of the received CPI data while the hard weight vector is applied to hard

Doppler bins. The application of weights to CPI data requires matrix-matrix multiplications on two

received data sets. Due to different matrix sizes for multiplications in easy and hard beamforming

tasks, uneven computational load results. The beamforming task is also divided into easy and hard

parts for parallelization purposes. This is because the easy and hard beamforming tasks require

different amounts and portions of CPI data, and involve different computational loads. The inputs

for the easy beamforming task are two 3-dimensional complex data cubes. One data cube which

is received from the easy weight computation task is of size Neasy x M x J. The other is from

Doppler filter processing task and its size is iVeasy x J x K. A total of Neasy matrix-matrix

multiplications are performed where each multiplication involves two matrices of size M x J

and J x K, respectively. The hard beamforming task also has two input data cubes which are

received from Doppler filter processing and hard weight computation tasks. The data cube of size

6Nhard x M x 2 J is received from hard weight computation task and the Doppler filtered CPI data

cube is of size Nhard x2JxK. Since range cells are divided into 6 range segments, there are a total

of 6Nhard matrix-matrix multiplications in hard beamforming. The results of the beamforming task

are two 3-dimensional complex data cubes of size Neasy x M x K and Nhard xMxK corresponding

to easy and hard parts respectively.

In a manner similar to the weight computation task, parallelization in this step also involves par-

titioning of data across the <V dimension (Doppler bins.) Different sets of processors are allocated

to easy and hard beamforming tasks. Since the cost of matrix multiplications can be determined

accurately, the computations are equally divided among the allocated processors for this task. As

seen from Figure 4, this task requires data to be communicated from the first as well as the second

task. Because data is partitioned along different dimensions, an all-to-all personalized communi-

cation is required for data redistribution between Doppler filter processing and beamforming tasks.

The output of the Doppler filter processing task is a data cube of size K x 2 J x N which is re-

distributed to the beamforming task after data reorganization in the order of N x K x 2 J. Data

reorganization has to be done before the inter-task communication between the two tasks takes

place, as shown in Figure 8.

Data reorganization involves data copying from non-contiguous memory space and its cost may

become extremely large due to cache misses. For example, two Doppler bins in the same range cell

B-18

CPI Data Subcube
output from

Doppler Filter Processing Task

K S N.*j P"""5

-^
A /m m A /<

/

"'~* ~ 7
' N.

J
channels

CPI Data Subcube
input to

Easy Beamforming Task

Figure 8. Data redistribution from Doppler filter processing task to easy beamforming task. CPI

data subcube of size JxJx ^ is reorganized to subcube of size Zf**- x|xJ before

sending from one processor in Doppler filter processing task to another in easy beamforming

task.

and the same channel are stored in contiguous memory space. After data reorganization, they are

• J element distance apart. Therefore, if P0 is small and the size of CPI data subcube partitioned

in each processor is large then it is quite likely that expensive data reorganization will be needed

which becomes a major part of communication overhead. The algorithms which perform data

collection and reorganization are crucial to exploit the available parallelism. Note that receiving

data from weight computation tasks does not involve data reorganization or data collection because

they have the same partitioning strategy (along dimension N.)

5.4 Pulse Compression

The input to the pulse compression task is a 3-dimensional complex data cube of size N xM xK,

as shown in Figure 9. This data cube consists of two subcubes of size Neasy x M x K and Nhard x

MxK which are received from easy and hard beamforming tasks respectively. Pulse compression

involves convolution of the received signal with a replica of the transmit pulse waveform. This is

accomplished by first performing tf-point FFTs on the two inputs, point-wise multiplication of the

intermediate result and then computing the inverse FFT. The output of this step is a 3-dimensional

B-19

M
beams

'mm&Sm&p, 'WN_ * mmmm
/r5

K range cells

Figure 9. Partitioning strategy for pulse compression task. Data cube is partitioned across

dimension iV into P5 processors.

real data cube of size .V x M x K. The parallelization of this step is straightforward and involves

the partitioning of data cube across the N dimension. Each of the FFTs could be performed on an

individual processor and hence each processor in this task gets an equal amount of computation.

Partitioning along the X dimension also results in an efficient accessing mechanism for contiguous

memory space when running FFTs. Since both beamforming and pulse compression tasks use

the same data partitioning strategy (along dimension N), no data collection or reorganization is

needed prior to communication between these two tasks. After pulse compression, the square of

the magnitude of the complex data is computed to move to the real power domain. This cuts data

set size in half and eliminates the computation of the square root.

5.5 CFAR Processing

The input to this task isanJVxMxif real data cube received from the pulse compression task.

The sliding window constant false alarm rate (CFAR) processing compares the value of a test cell

at a given range to the average of a set of reference cells around it times a probability of false alarm

factor. This step involves summing up a number of range cells on each side of the cell under test,

multiplying the sum by a constant, and comparing the product to the value of the cell under test.

The output of this task, which appears at the pipeline output, is a list of targets at specified ranges,

Doppler frequencies, and look directions. The parallelization strategy for this step is the same as

for the pulse compression task. Both tasks partition data cube along the N dimension. Also, no

data collection or reorganization is needed in pulse compression task before sending data to this

B-20

n

inBuf[2]

outBuf[2]

number of CPIs

input data buffer

output data buffer

1 for i 4- 0 to n - 1

2 prev 4- (i - 1) mod 2

3 cur 4- i mod 2

4 next <- (i +1) mod 2

5 to ■<- read timer

6 post async receives for mBuf[next]

7 wait for completion of previous receives for inBuf[cur]

8 data unpacking on inBuf[cur]

9 ti 4- read timer

10 computation on inBuf[cur] and result in outBuf[cur]

11 <2 «- read timer

12 data packing for outgoing message on outBuffcur]

13 post async sends for outBuf[cur] to next task

14 wait for completion of sends for outBuf[pret;]

15 <3 4- read timer

Figure 10. Implementation of timing computation and communication for each task. A double

buffering strategy is used to overlap the communication with the computation. Receive time =

t\ — t0, compute time = t2 — h, and send time = t$ — t2.

task.

6 Software Development and System Platform

All the parallel program development and their integration was performed using ANSI C lan-

guage and message passing interface (MPI) [24]. This permits easy portability across various

platforms which support C language and MPI. Since MPI is becoming a de facto standard for

B-21

high-performance systems, we believe the software is portable.

The implementation of the STAP application based on our parallel pipeline system model has

been done on the Intel Paragon at the Air Force Research Laboratory, Rome, New York. This

machine contains 321 compute nodes interconnected in a two-dimensional mesh. The Paragon

runs Intel's standard Open Software Foundation (OSF) UNIX operating system. Each compute

node consists of three i860 RISC processors which are connected by a system bus and share a 64M

byte memory. The speed of an i860 RISC processor is 40 MHz and its peak performance is 100M

floating point operations per second. The interconnection network has a message startup time of

35.3 //sec and a data transfer time of 6.53 nsec/byte for point-to-point communication.

In our implementation, a double buffering strategy was used both in receive and send phases.

During the execution loops, this strategy employs two buffers alternatively such that one buffer

can be processed during the communication phase while the other buffer is processed during the

compute phase. Together with the double buffering implementation, asynchronous send and re-

ceive calls were employed in order to maximize the overlap of communication and computation.

Asynchronous communication means that the program executing the send/receive does not wait

until the send/receive is complete. This type of communication is also referred to as non-blocking

communication. The other option is synchronous communication which blocks the send/receive

operation till the message has been sent/received. The general execution flow and the approach to

measure the timing for each part of computation and communication is given in Figure 10. We

used MPI timer, MPLWtime(), because this function is portable with high resolution.

7 Performance Results

We specified the parameters that were used in our experiments as follows:

• range cells (K) = 512,

• channels (J)= 16,

• pulses (N) = 128,

• receive beams (M) = 6,

B-22

Table 1. The number of floating point operations for the PRI-staggered post Doppier STAP

algorithm to process one CPI data.

Task number of floating point operations

Doppler filter processing 79,691,776

hard weight computation 197,038,464

easy weight computation 13,851,792

easy beamforming 28,311,552

hard beamforming 44,040,192

pulse compression 38,928,384

CF/H processing 1,690,368

Total 403,552,528

• easy Doppler bins (Neasy) = 72, and

• hard Doppler bins (Nhard) = 56.

Given these values of parameters, the total number of floating point operations (flops) required for

each CPI data to be processed throughout this STAP algorithm is 403,552,528. Table 1 shows the

number of flops required for each task. A total of 25 CPI complex data cubes were generated as in-

puts to the parallel pipeline system. Each task in the pipeline contains three major parts: receiving

data from the previous task, main computation, and sending results to the next task. Performance

results are measured separately for these three parts, namely receiving time, computation time, and

sending time. In each task timing results for processing one CPI data were obtained by accumu-

lating the execution time for the middle 20 CPIs and then averaging it. Timing results presented in

this paper do not include the effect of initial setup (first 3 CPIs) and final iterations (last 2 CPIs).

7.1 Computation Costs

The task of computing hard weights is the most computationally demanding task. The Doppler

filter processing task is the second most demanding task. Naturally, more compute nodes are

assigned to these two tasks in order to obtain a good performance. For each task in the STAP algo-

B-23

*A DoppkrFlhTPini—in ->

'S iJ

1"

1.1 l 1 .
W—fcirrfM-w

1«
HaN Wrigkl Coa-MUtfaa i

■i
I"
e
- «J
E p u

«.i I,
i

■
i"

Ewy ■ —fTuring .

8 " 1
£ HI

III.
u _ P«b»C«Ti— Inn •

f "* ' 1
S» 1
iiu

US III.
NoabCTotaota

•Jl CFAR proc—riBf

sus [1 & 1 | i
!" ..I

US ill ■

Nnmbcr of aoda

Number of nod*

Figure 11. Performance and speedup of computation time as a function of number of compute

nodes for all tasks.

rithm, parallelization was done by evenly dividing computational load across the compute nodes

assigned. Since there is no intra-task data dependency, no inter-processor communication occurs

within any single task in the pipeline. Another way to view this is that intra-task communication

is moved to the beginning of each task within the data redistribution step. Figure 11 gives the

computation performance results as functions of numbers of nodes and the corresponding speedup

on the AFRL Intel Paragon. For each task, we obtained linear speedups.

7.2 Inter-task Communication

Inter-task communication refers to the communication between sending and receiving (distinct and

parallel) tasks. This communication cost depends on both processor assignment for each task as

well as on the volume and extent of data reorganization. Tables 2 to 6 present the inter-task com-

B-24

Table 2. Timing results of inter-task communication from Doppler filter processing task to its

successor tasks. Time in seconds.

easy weight hard weight easy BF hardBF

nodes 16 56 112 16 16

Doppler

filter

send recv send recv send recv send recv send recv

8 .1332 .4339 .1332 .3603 .1332 .4441 .1332 .4509 .1332 .4395

16 .0679 .1780 .0679 .1048 .0679 .1837 .0679 .1955 .0679 .1843

32 .0340 .0511 .0332 .0034 .0340 .0563 .0340 .0646 .0340 .0519

munication timing results. Each table considers pairs of tasks where the number of compute nodes

for both tasks are varied. In some cases timing results shown in the tables contain idle time for

waiting for the corresponding task to complete. This happens when receiving task's computation

part completes before the sending task has generated data to send.

From most of the results (Tables 2 to 6) the following important observations can be made. First,

when the number of nodes is unbalanced (e.g., sending task having small number of nodes while

the receiving task has large number of nodes), the communication performance is not very good.

Second, as the number of nodes is increased in the sending and receiving tasks, communication

scales tremendously. This happens for two reasons. One, each node has less data to reorganize,

pack and send and each node has less data to receive; and two, contention at sending and receiving

nodes is reduced. For example, Table 2 shows that when the sending task's number of nodes is

increased from 8 to 32, the communication times improve in a superlinear fashion. Thus, it is

not sufficient to improve the computation times for such parallel pipelined applications to improve

throughput and latency.

In Figure 10 receiving time for each loop is given by subtracting ti from t0. Since computation

has to be performed only after input data has been received, receiving time may contain the waiting

time for the input, shown in line 4. Sending time, h - t2, measures the time containing data

packing (collection and reorganization) and posting sending requests. Because of the asynchronous

send used in the implementation, the results shown here are visible sending time and the actual

sending action may occur in other portions of the task. Similar to the receiving time, sending

B-25

Table 3. Timing results of inter-task communication from easy weight computation task to easy

beamforming task. Time in seconds.

easy beamforming

nodes 8 16

easy

weight

send recv send recv

4 .0005 .1956 .0007 .2570

8 .0088 .0883 .0004 .0905

16 .0768 .0807 .0003 .0660

Table 4. Timing results of inter-task communication from hard weight computation task to hard

beamforming task. Time in seconds.

hard beamforming

nodes 8 16

hard

weight

send recv send recv

28 .0007 .1798 .0007 .2485

56 .0100 .1468 .0065 .0765

112 .1824 .1398 .0005 .0543

time may also contain waiting time for the completion of sending requests in the previous loop,

shown in line 8. Especially in the cases when two communicating tasks have uneven partitioned

parallel computation load, this effect becomes more apparent. With large number of nodes, there

is tremendous scaling in performance of communicating data as the number of nodes is increased.

This is because the amount of processing for communication per node is decreased (as it handles

less amount of data), amount of data per node to be communicated is decreased and traffic on

links going in and out of each node is reduced. This model scales well for both computation and

communication.

B-26

Table 5. Timing results of inter-task communication from easy and hard beamforming tasks to

pulse compression task. Time in seconds.

pulse compression

nodes 8 16

easy

BF

send recv send recv

4 .0069 .5016 .0069 .5714

8 .0036 .1379 .0036 .2090

16 .0580 .0771 .0022 .0569

hard

BF

send recv send recv

4 .0054 .5016 .0054 .5714

8 .0029 .1379 .0030 .2090

16 .1159 .0771 .0017 .0569

Table 6. Timing results of inter-task communication from pulse compression task to CFAR

processing task. Time in seconds.

CFAR processing

nodes 4 8

pulse

compr

send recv send recv

4 .0099 .3351 .0098 .3348

8 .0053 .0662 .0051 .1750

16 .1256 .0435 .0028 .1783

7.3 Integrated System Performance

Integrated system refers to the evaluation of performance when all the tasks are considered to-

gether. Throughput and latency are the two most important measures for performance evaluation

in addition to individual task computation time and inter-task communication time. Table 7 gives

timing results for three different cases with different node assignments.

In section 5 equations (1) and (2) provide the throughput and latency for one CPI data set. The

measured throughput is obtained by placing a timer at the end of last task and recording the time

B-27

Table 7. Performance results for 3 cases with different node assignments. Time in seconds.

case 1: total number of nodes = 236

#nodes recv comp send total

Doppler filter 32 .0055 .0874 .0348 .1276

easy weight 16 .0493 .0913 .0003 .1408

hard weight 112 .0555 .0831 .0005 .1390

easy BF 16 .0658 .0708 .0021 .1387

hardBF 28 .0936 .0414 .0010 .1361

pulse compr 16 .0551 .0776 .0028 .1355

CFAR 16 .0910 .0434 - .1344

throughput

latency

7.2659

0.3622

case 2: total nur nber of nod es = 118

#nodes recv comp send total

Doppler filter 16 .0110 .1714 .0668 .2492

easy weight 8 .0998 .1636 .0003 .2637

hard weight 56 .0979 .1636 .0005 .2621

easy BF 8 .1302 .1267 .0036 .2605

hardBF 14 .1782 .0822 .0017 .2622

pulse compr 8 .1027 .1543 .0051 .2621

CFAR 8 .1742 .0864 - .2606

throughput

latency

3.7959

0.6805

case 3: total nut nber of noc es = 59

#nodes recv comp send total

Doppler filter 8 .0219 .3509 .1296 .5024

easy weight 4 .1796 .3254 .0003 .5053

hard weight 28 .1779 .3265 .0006 .5050

easy BF 4 .2439 .2529 .0068 .5037

hardBF 7 .3370 .1636 .0032 .5039

pulse compr 4 .1806 .3067 .0097 .4970

CFAR 4 .3240 .1723 - .4963

throughput

latency

1.9898

1.3530

B-28

Tab,e S «pu, and ,atenc, .or the 3 cases ,n «. 7. Rea, resu„s are ottaineC .rom

r^~——-—~^i~,",,,,,,T ;uls(1)ana(2,TheUnBof,hroU9hpu,ls„umberofCP,spefseco„d.TheUn,,ona,encv

is second.

-ID # of nodes I 236 | 118 59
 .

equation 7.1019 3.7919 1.9791

throughput real 7.2659 3.7959 1 1.9898

equation 0.5362 1.0346 1 1.9996

latency I real I 0.3622 | 0.6805 1 1.3530

dlffere„ce between eve, >oop «ha, is between two successive colons of the p ne J^

latt„cy because it retires synchronizing clocks a, the «rs, taslc and ,ast .as, s node . TtaMo

„tain the mcured latency, «He «,m.ng measurement should be made by first readmg time a, bo

1 task and las« tasK when tbe first «* is ready to read a new input data. Th,s can be done by

^Igasignalfrom.henrs, — - ■.-—*.«-«•-—.''.-

In fact, the latency given in equation (2) represents upp

tasks contains «he time of waiting for input from previous task. This waiting time portion ove*Ps

2 the computation t,me in the previous „as and shouid be eluded from the latency Tta

le iatency Its are conservative vaiues and the rea, latency is expected to be sm,ler than this
l.However,he1a,e„cygivenfromequationa,indica,eS.hew„rs..aseperformanceforour

implementation. The real latency equation, therefore, becomes

real latency = To + nua(7j, T,) +1? + T6

shown in Table 7. From these
whereT'=T,- idle time at receiving, i - 3,4, 5, and6.

Table's gives the throughput and latency results for the 3 cases

3 cases t, s clear that even for latency and throughput measures we obtain linear speedups f om

„Zerimen, Given that this scale up is up to compute 23b nodes (we were lirmted to these

B-29

Table 9. Performance results for adding 4 more nodes to Doppler filter processing task to case

2 in Table 7. Time in seconds.

total number of nodes = 122

nodes recv comp send total

Doppler filter 20 .0090 .1395 .0540 .2024

easy weight 8 .0519 .1633 .0003 .2155

hard weight 56 .0486 .1644 .0005 .2135

easy BF 8 .0815 .1272 .0037 .2124

hardBF 14 .1232 .0823 .0018 .2073

pulse compr 8 .0519 .1543 .0051 .2113

CFAR 8 .1240 .0864 - .2105

throughput

latency

5.0213

0.5498

number of nodes due to the size of the machine), we believe these are very good results.

As discussed in section 4, tradeoffs exist between assigning nodes to maximize throughput and

to minimize latency, given limited resources. Using two examples, we illustrate how further per-

formance improvements may (or may not) be achieved if few extra nodes are available. We now

take case 2 from Table 7 as an example and add some extra nodes to tasks to analyze its affect

to the throughput and latency. Suppose that case 2 has fulfilled the minimum throughput require-

ment and more nodes can be added. Table 9 shows that adding 4 more nodes to Doppler filter

processing task not only increases the throughput but also reduces the latency. This is because

the communication amount for each send and receive between Doppler filter processing task to

weight computation and to beamforming tasks is reduced (Table 9). So, clearly adding nodes to

one task not only affects that task's performance but has a measurable effect on the performance

of other tasks. By increasing the number of nodes 3%, the improvement in throughput is 32% and

in latency is 19%. Such effects are very difficult to capture in purely theoretical models because of

the secondary effects.

Since the parallel computation load may be different among tasks, bottleneck problems arise

when some tasks in the pipeline do not have proper numbers of nodes assigned. If the number of

B-30

Table 10. Performance results for adding 16 more nodes to pulse compression and CFAR

processing tasks to the case in Table 9. Time in seconds.

total number of nodes =138

nodes recv comp send total

Doppler filter 20 .0091 .1395 .0541 .2027

easy weight 8 .0516 .1633 .0003 .2152

hard weight 56 .0488 .1644 .0005 .2137

easy BF 8 .0819 .1273 .0037 .2129

hardBF 14 .1301 .0823 .0018 .2142

pulse compr 16 .1337 .0775 .0028 .2140

CFAR 16 .1701 .0434 - .2135

throughput

latency

4.9052

0.4247

nodes assigned to one task with heavy work load is not enough to catch up the input data rate, this

task becomes a bottleneck in the pipeline system. Hence, it is important to maintain approximately

the same computation time among tasks in the pipeline system to maximize the throughput and

also achieve higher processor utilization. One bottleneck task can be seen when its computation

time is relatively much larger than the rest of the tasks. The entire system's performance degrades

because the rest of the tasks have to wait for bottleneck task's completion to send/receive data

to/from it no matter how many more nodes assigned to them and how fast they can complete their

jobs. Therefore, poor task scheduling and processor assignment will cause significant portion of

idle time in the resulted communication costs. In Table 10 we added a total of 16 more nodes to

pulse compression and CFAR processing tasks to the case in Table 9. Comparing to case 2 in Table

7, we can see that the throughput increased. However, the throughput did not improve compared to

the results in Table 9, even though this assignment has 16 more nodes. In this case, the weight tasks

are bottleneck tasks because their computation costs are relatively higher than other tasks. We can

see that the receiving time of the rest of tasks are much larger than their computation time. A

significant portion of idle time waiting for the completion of weight tasks is in the receiving time.

On the other hand, we observe 23% improvement in the latency. This is because the computation

B-31

time is reduced in the last two tasks with more nodes assigned. From equation (3), the execution

time of these two tasks, T'h and Tg, decreases and therefore the latency is reduced.

8 Conclusions

In this paper we presented performance results for a PRI-staggered post-Doppler STAP algorithm

implementation on the Intel Paragon machine at Air Force Research Laboratory, Rome, New York.

The results indicate that our approach of parallel pipelined implementation scales well both in

terms of communication and computation. For the integrated pipeline system, the throughput and

latency also demonstrate the linear scalability of our design. Linear speedups were obtained for

up to 236 compute nodes. When more than 236 nodes are used, the speedup curves for the results

of throughput and latency may saturate. This is because the communication costs will become

significant with respect to the computation costs.

Almost all radar applications have real-time constraints, hence a well designed system should be

able to handle any changes in the requirements on the response time by dynamically allocating or

re-allocating processors among tasks. Our design and implementation not only shows tradeoffs in

parallelization, processor assignment, and various overheads in inter and intra-task communication

etc., but it also shows that accurate performance measurement of these systems is very important.

Consideration of issues such as cache performance when data is packed and unpacked, and impact

of the parallelization and processor assignment for one task on another task are crucial. This is

normally not easily captured in theoretical models. In the future we plan to incorporate further op-

timizations including multi-threading, multiple pipelines and multiple processors on each compute

node.

9 Acknowledgments

This work was supported by Air Force Materiel Command under contract F30602-97-C-0026. We

acknowledge the use of the Intel Paragon at Caltech for initial development.

B-32

References

[I] M. Linderman and R. Linderman, "Real-Time STAP Demonstration on an Embedded High

Performance Computer," IEEE AES Systems Magazine, pp. 15-21, Mar. 1998.

[2] R. Brown and R. Linderman, "Algorithm Development for an Airborne Real-Time STAP

Demonstration," in Proceedings of the IEEE National Radar Conference, 1997.

[3] M. Little and W. Berry, "Real-Time Multi-Channel Airborne Radar Measurements," in

Proceedings of the IEEE National Radar Conference, 1997.

[4] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design

and Analysis of Algorithms, Benjamin-Cummings, 1994.

[5] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on

Concurrent Processors, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[6] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability,

McGraw-Hill, Inc., 1993.

[7] G. Golub and J. Ortega, Scientific Computing: An Introduction with Parallel Computing,

Academic Press, Boston, MA, 1993.

[8] C. Xavier and S. Iyengar, Introduction to Parallel Algorithms, John Wiley & Sons, Inc.,

1998.

[9] J. Lebak, R. Durie, and A. Bojanczyk, "Toward A Portable Parallel Library for Space-Time

Adaptive Methods," Tech. Rep. CTC96TR242, Cornell Theory Center, June 1996.

[10] S. Olszanskyj, J. Lebak, and A. Bojanczyk, "Parallel Algorithms for Space-Time Adaptive

Processing," International Parallel Processing Symposium, pp. 77-81, Apr. 1995.

[II] Y. Lim and V. Prasanna, "Scalable Portable Implementations of Space-Time Adaptive Pro-

cessing," in Proceedings of the 10th International Conference on High Performance Com-

puting, June 1996.

B-33

[12] P. Bhat, Y.Lim, and V. Prasanna, "Issues in using Heterogeneous HPC Systems for Em-

bedded Real Time Signal Processing Applications," in Proceedings of the 2nd International

Workshop on Real-Time Computing Systems and Applications, Oct. 1995.

[13] M. Lee and V. Prasanna, "High Throughput-Rate Parallel Algorithms for Space Time Adap-

tive Processing," 2nd International Workshop on Embedded Systems and Applications, Apr.

1997.

[14] D. Martinez, "Application of Parallel Processors to Real-Time Sensor Array Processing,"

International Parallel Processing Symposium, Apr. 1999.

[15] K. Cain, J. Torres, and R. Williams, "RT.STAP: Real-Time Space-Time Adaptive Processing

Benchmark," Tech. Rep. 96B0000021, MITRE Corporation, Feb. 1997.

[16] C. Brown, M. Flanzbaum, R. Games, and J. Ramsdell, "Real-Time Embedded High Perfor-

mance Computing: Application Benchmarks," Tech. Rep. MTR94B145, MITRE Corpora-

tion, Oct. 1994.

[17] A. Choudhary and J. Patel, Parallel Architectures and Parallel Algorithms for Integrated

Vision Systems, Kluwer Academic Publishers, Boston, MA, 1990.

[18] A. Choudhary and R. Ponnusamy, "Run-Time Data Decomposition for Parallel Implemen-

tation of Image Processing and Computer Vision Tasks," Journal of Concurrency, Practice

and Experience, vol. 4, no. 4, pp. 313-334, June 1992.

[19] A. Choudhary and R. Ponnusamy, "Parallel Implementation and Evaluation of a Motion

Estimation System Algorithm using Several Data Decomposition Strategies," Journal of

Parallel and Distributed Computing, vol. 14, pp. 50-65, January 1992.

[20] R. Thakur, A. Choudhary, and J. Ramanujam, "Efficient Algorithms for Array Redistribu-

tion," IEEE Trans, on Parallel and Distributed Systems, vol. 6, no. 7, pp. 587-594, June

1996.

[21] M. Berger and S. Bokhari, "A Partitioning Strategy for Nonuniform Problems on Multipro-

cessors," IEEE Trans, on Computers, vol. 36, no. 5, pp. 570-580, May 1987.

B-34

I/O Implementation and Evaluation of Parallel Pipelined
STAP on High Performance Computers

Wei-keng Liaof, Alok Choudhary*, Donald Weinet, and Pramod Varshneyt

t EECS Department
Syracuse University
Syracuse, NY 13244

* ECE Department
Northwestern University

Evanston, IL 60208

Abstract

This paper presents experimental results for
a parallel pipeline STAP system with I/O task
implementation. In our previous work, a paral-
lel pipeline model was designed for radar signal
processing applications on parallel computers.
Based on this model, we implemented a real
STAP application which demonstrated the per-
formance scalability of this model in terms of
throughput and latency. The parallel pipeline
model normally does not include I/O task be-
cause the input data can be provided directly
from radars. However, I/O can also be done
through disk file systems if radar data is stored
in disks first. In this paper, we study the ef-
fect on system performance when the I/O task
is incorporated in the parallel pipeline model.
There are two alternatives for I/O implemen-
tation: embedding I/O in the pipeline or hav-
ing a separate I/O task. We used the parallel
file systems on the Intel Paragon and the IBM
SP to perform parallel I/O and studied its ef-
fects on the overall performance of the pipeline
system. From these two I/O implementations,
we discovered that the latency may be improved
when the structure of the pipeline is reorganized
by merging multiple tasks into a single task.
Finally, we investigated the problem of data re-
distribution embedded in the parallel I/O when

special hardware is not available to pre-process
the raw signal data before it enters the pipeline
system. All the performance results shown in
this paper demonstrated the scalability of paral-
lel I/O implementation on the parallel pipeline
STAP system.

1 Introduction

In this paper we build upon our ear-
lier work where we devised strategies for
high performance parallel pipeline implemen-
tations, in particular, for Space-Time Adap-
tive Processing (STAP) applications [2, 8].
A modified Pulse Repetition Interval (PRI)-
staggered post-Doppler STAP algorithm was
implemented based on the parallel pipeline
model and scalable performance was obtained
both on the Intel Paragon and the IBM SP.
Normally, this parallel pipeline system does
not include disk I/O costs. Since most radar
applications require signal processing in real
time, thus far we have assumed that the signal
data collected by radar is directly delivered to
the pipeline system, as shown in the overall
radar and signal processing system of Figure
1.

In practice, the I/O can be done either di-
rectly from a radar or through disk file systems.

B-35

Parallel Computer

(^f—»JTasKo\~\ Task,^. . •

Target
Display

RADAR

Figure 1. Data flow of a radar and signal pro-
cessing system using parallel computers.

In this work we focus on the I/O implementa-
tion of the parallel pipeline STAP algorithm
when I/O is carried out through a disk file sys-
tem. Using existing parallel file systems, we
investigate the impact of I/O on the overall
pipeline system performance. Two designs of
I/O are employed: in the first design the I/O
is embedded in the pipeline without changing
the task structure and in the other a sepa-
rate task is created to perform I/O operations.
With different I/O strategies, we ran the par-
allel pipeline STAP system portably and mea-
sured the performance on the Intel Paragon
at California Institute of Technology and on
the IBM SP at Argonne National Laboratory
(ANL.) The parallel file systems on both the
Intel Paragon and the IBM SP contain mul-
tiple stripe directories for applications to ac-
cess disk files efficiently. On the Paragon, two
PFS file systems with different stripe factors
were tested and the results were analyzed to
assess the effects of the size of the stripe fac-
tor on the STAP pipeline system. On the IBM
SP. the performance results were obtained by
using the native parallel file system, PIOFS,
which has 80 stripe directories.

Comparing the two parallel file systems with
different stripe sizes on the Paragon, we found
that an I/O bottleneck results when a file sys-
tem with smaller stripe size is used. Once a
bottleneck appears in a pipeline, the through-
put which is determined by the task with max-
imum execution time degrades significantly.
On the other hand, the latency is not sig-
nificantly affected by the bottleneck problem.

This is because the latency depends on all the
tasks in the pipeline rather than the task with
the maximum execution time. Furthermore,
when evaluating the performance results of the
two I/O designs, we observed that the latency
can be improved by merging two tasks in the
pipeline. In this paper, we also examine the
possibility of improving latency by reorganiz-
ing the task structure of the STAP pipeline
system.

A sequence of raw signal data sets collected
by a radar form the input to the STAP pipeline
system. Each of these raw data sets is in
the form of a three dimensional array. How-
ever, the three dimensions of this array are
not organized in a way such that each Fast
Fourier Transformation (FFT) in the Doppler
filter processing task can be performed in a sin-
gle processor. Without special hardware sup-
port to pre-process the collected raw data, data
redistribution is needed before delivering the
data to the Doppler filter processing task. In
the real application we implemented, this pre-
processing work includes data type conversion
and corner turn on the three-dimensional ar-
ray. Using a software approach, we also embed-
ded pre-processing operation on the raw data
in the two I/O designs and compared their per-
formances.

The rest of the paper is organized as follows:
in Sections 2 and 3, we briefly describe our pre-
vious work, the parallel pipeline system model
and its implementation on a STAP algorithm.
The characteristics of the parallel file systems
tested in this paper are described in Section 4.
The I/O design and implementation are pre-
sented in Section 5 and their performance re-
sults are given in Section 6. Section 7 presents
the implementation when tasks are combined
to improve latency. The software approach to
pre-processes raw signal data is described in
Section 8. Conclusions are given in Section 9.

B-36

Spatial Spatial Spatial
data data data

dependency dependency dependency

Comer turn All to all

input.

Temporal
data

dependency

Input,,,

z
I input|H

P 1

■+

Output !

Task,

Temporal
data

dependency

Temporal
data

dependency

Temporal
data

dependency

1—*1
Task,

i—h
Task 2

output,

Figure 2. Model of the parallel pipeline sys-
tem. The set of pipelines indicates that the
same pipeline is repeated on subsequent in-
put data sets. Each task for all input in-
stances is executed on the same number of
compute nodes.

2 Model of the parallel pipeline
system

The system model for the type of STAP ap-
plications considered in this work is shown in
Figure 2. A pipeline is a collection of tasks
which are executed sequentially. The input to
the first task is obtained normally from sen-
sors or other input devices and the inputs to
the rest of the tasks in the pipeline are the
outputs of their previous tasks. The set of
pipelines shown in the figure indicates that the
same pipeline is repeated on subsequent input
data sets. Each block in a pipeline represents
one parallel task, which itself is parallelized on
multiple compute nodes.

2.1 Data dependency

In such a parallel pipeline system, there exist
both spatial and temporal parallelism that re-
sult in two types of data dependencies, namely,

z

Left-right shift Many to many

P P P ri ri ri

Figure 3. Two types of data redistribution:
corner turn and left-right shift. Corner turn
involves an all-to-all personalized communi-
cation and left-right shift involves a many-to-
many communication.

spatial data dependency and temporal data de-
pendency [3, 4]. Spatial data dependency can
be classified into inter-task data dependency
and intra-task data dependency. Intra-task
data dependencies arise when a set of subtasks
needs to exchange intermediate results during
the execution of a parallel task in a pipeline.
Inter-task data dependency is due to the trans-
fer and reorganization of data passed onto the
next parallel task in the pipeline. Temporal
data dependency occurs when some form of
output generated by the tasks executed on the
previous data set are needed by tasks execut-
ing the current data set. We will later see that
STAP has both types of data dependencies.

2.2 Data redistribution

In the parallel pipeline system shown in Fig-
ure 2, compute nodes are partitioned into sev-
eral disjoint groups and each group is assigned
to exactly one task in the pipeline. Data trans-
fer between two tasks represents interprocessor
communication between two groups of com-
pute nodes. Since the data access patterns of
one task may be different from its successor

B-37

tasks, communication patterns can be either a
corner-turn or a left-right shift pattern, shown
in Figure 3.

Given a three-dimensional array as a
pipeline system input, the data partitioning
can be done along one of the array's three
axes. Any single data layout will not always
provide efficient computation for data access
along two orthogonal axes. This communica-
tion pattern is called a corner-turn commu-
nication. The corner-turn communication in-
volves a complete exchange (all-to-all person-
alized) of data between two groups of compute
nodes. The left-right shift communication pat-
tern occurs when an array is partitioned along
the same axis between two consecutive parallel
tasks. It does not involve data reorganization
and each node in one task only communicates
with some of the nodes in its successor task (a
many-to-many communication.)

3 Parallel pipeline STAP system

In our previous work [2], we described
the parallel pipelined implementation of a
PRI-staggered post-Doppler STAP algorithm.
This STAP algorithm consists of five steps:
l)Doppler filter processing, 2)weight computa-
tion. 3)beamforming, 4)pulse compression, and
5)CFAR processing. The design of the parallel
pipelined STAP algorithm is shown in Figure 4.
The parallel pipeline system consists of seven
tasks. Both the weight computation and the
beamforming tasks are divided into two parts,
namely, "easy" and "hard" Doppler bins. The
hard Doppler bins are those in which signif-
icant ground clutter is expected and the re-
maining bins are easy Doppler bins. The main
difference between the two is the amount of
data used and the amount of computation re-
quired.

The input data set for the pipeline is ob-
tained from a phased array radar and is formed
in terms of a coherent processing interval

P| (T,)

r> <T.) r« (T.)

Pake CFAR

Ibporti

- ^- Data from previous time instance
-^- Data from current time instance

Figure 4. Implementation of parallel pipelined

STAP. Arrows connecting task blocks repre-

sent data transfer between tasks.

(CPI). Each CPI data set is a 3-dimensional
complex data cube. The output of the pipeline
is a report on the detection of possible targets.
Each task i, 0 < i < 7, is parallelized by evenly
partitioning its work load among Pi compute
nodes. The execution time associated with
task i is T{. For the computation of the weight
vectors for the current CPI data cube, data
cubes from previous CPIs are used as input
data. This introduces temporal data depen-
dency. Temporal data dependencies are rep-
resented by arrows with dashed lines in Figure
4 where TDij represents temporal data depen-
dency of task j on data from task i. In a similar
manner, spatial data dependencies SDij can
be defined and are indicated by arrows with
solid lines.

Throughput and latency are two impor-
tant measures for performance evaluation on
a pipeline system.

throughput=
max Ti
0<i<7

(1)

latency = T0 + max(T3, T4) + T5 + T6. (2)

The temporal data dependency does not af-
fect the latency because weight computation
tasks use data from the previous time instance
rather than the current CPI. The filtered CPI

B-38

data cube sent to the beamforming task does
not wait for the completion of its weight com-
putation. This explains why Equation (2) does
not contain 7\ and T2. A detailed description
of the STAP algorithm we used can be found
in [1, 9].

4 Parallel file systems

Only input part of parallel I/O was imple-
mented on the STAP pipeline system because
most applications like STAP send their detec-
tion results to display devices in real time. The
input to the STAP pipeline system is a series
of CPI data sets captured by the radar. To test
our parallel pipeline system with regard to I/O
performance, these CPI data sets were stored
in the parallel file system and provided to the
pipeline system through machine's I/O nodes.
We used the parallel I/O library developed by
Intel Paragon and IBM SP systems to perform
read operations.

4.1 Intel Paragon PFS file system

The Intel Paragon OSF/1 operating system
provides a special file system type called PFS,
for Parallel File System, which gives appli-
cations high-speed access to a large amount
of disk storage [7]. PFS file systems are op-
timized for simultaneous access by multiple
nodes. Each PFS file system consists of multi-
ple stripe directories. Each stripe directory is
the mount point of a separate UNIX file sys-
tem. A PFS file system collects together sev-
eral file systems into a unit that behaves like
a single large file system. A file stored in PFS
is distributed, or striped, across the stripe di-
rectories that make up the PFS file system.
The performance of accessing a single PFS file
is significantly improved by multiple stripe de-
vices providing disk data simultaneously. The
amount of data from a PFS file that is stored
in each stripe directory is determined by the

PFS file system's stripe unit. The stripe units
on all Paragon parallel systems at Caltech are
64K bytes. Two PFS file system were tested :
one has 16 stripe directories (stripe factor 16)
and the other has a stripe factor of 64.

We used the Intel Paragon NX library to im-
plement the I/O of the parallel pipeline STAP
system. Since only input part of the I/O is
needed for providing a series of CPI data sets
to the pipeline, only read operations are in-
vestigated. Subroutine gopen() was used to
open CPI files globally because it offers bet-
ter performance and causes less system over-
head. NX library provides six I/O modes for
an application to access files: M.UNIX, M.LOG,
M.SYNC, M.RECORD, M.GLOBAL, and M.ASYNC.
A file's I/O mode is set when the file is opened
with gopen(). Only non-collected I/O mode
M-ASYNC was used because it provided an ef-
ficient parallel read operation. This mode has
the following characteristics on an opened PFS
file:

• every node has its own file pointer

• read operations are not synchronized

• read can be for variable-length, unordered
records

This mode allows multiple reads to access
a single file simultaneously without agreement
on record size or file offset among nodes. If
read operations access exclusive portions of a
file, it behaves like each compute node reads
from its own file independently. In the pipeline
system, the number of nodes to read CPI files
may vary and, therefore, the length of the sub-
set of CPI file for each node to read can be
different. Besides, only the nodes in the first
task of the pipeline system issue read opera-
tions, rather than all nodes allocated for the
whole application. This explains why we used
M-ASYNC mode and it is also the only feasible
and efficient way to read disk files in parallel.
All other collective I/O modes provided by the

B-39

OSF/1 operating system require that all nodes
in the application perform the same I/O oper-
ations and, hence, accessing files by a subset
of the nodes is prohibited for these modes. In
addition, we used asynchronous I/O function
calls: ireadO and ireadoff() in order to overlap
I/O operations with the computation and com-
munication.

4.2 IBM SP PIOFS file system

The IBM AIX operating system provides
a parallel file system called Parallel I/O File
System (PIOFS) which is designed for IBM
RS/6000 SP to allow fast parallel access to
large temporary data files [6]. The PIOFS on
the IBM SP at ANL is made up of 5 servers.
Four of the servers have 4 Serial Storage Archi-
tecture (SSA) disks while the fifth is the direc-
tory server. Each of the 4 SSA disks is parti-
tioned into 5 slices. Therefore, there are a total
of 80 slices (striped directories) in the ANL PI-
OFS file system. The default basic striped unit
(BSU) is 64K bytes. A file stored in the PIOFS
is physically divided into several blocks with
each equal to the size of one BSU, and these
blocks are stored in the 80 striped directories
in a round-robin manner.

IBM PIOFS supports existing C read, write,
open and close functions. In addition to a
UNIX-like I/O interface, PIOFS also supports
logical partitioning of files. A processor can in-
dependently specify a logical view of the data
in a file, a subfile, and then perform I/O on
this subfile with a single call. In our STAP I/O
task implementation, we store all CPI files in
the ANL PIOFS using the default BSU, 64K
bytes. As for the Intel Paragon, CPI files are
stored across 80 striped directories in the PI-
OFS file system. However, unlike the Paragon
NX library, asynchronous parallel read/write
subroutines are not supported on IBM PIOFS.
The overall performance of the STAP pipeline
svstem will be limited by the inability to over-

Parallel
File

System Round
Robin

Scheduling

Parallel Pipeline System

RADAR

Figure 5. Four CPI data files are read from the
parallel file system into the pipeline system
in a round-robin manner.

lap I/O operations with computation and com-
munication.

5 Design and implementation

A total of four CPI data sets stored as four
files in the parallel file systems were used on
both the Caltech Paragon and the ANL SP.
Each of the four CPI files is of size 8M bytes.
On the Paragon, these files are opened glob-
ally (or collectively) by all compute nodes al-
located in the whole application during the
STAP pipeline system's initialization. On SP,
these four files are opened only by the compute
nodes that perform the I/O task. During each
of the following steps after the initialization,
only nodes assigned to the first task perform
read operations from the parallel file system.
We assume that the radar writes its collected
CPI data into these four files in a round-robin
manner. Similarly, the STAP pipeline system
was also designed to read these four files in a
round-robin fashion but at times that are dif-
ferent from the times at which the radar writes.
This is shown in Figure 5. In this manner, the
problem of data inconsistency for read/write
operations between the radar and the STAP
parallel pipeline system is minimized.

All nodes allocated to the first task (the I/O
nodes) of the pipeline read exclusive portions
of each CPI file with proper offsets. Because

B-40

uu
lUMa

1 "»■ 1
f!*>J r i |. J Ikfik |

"1 r»»r I

'l <T,)\

i£j

F. (14)

Figure 6. I/O task is embedded in the Doppler
filter processing task of the STAP pipeline
system.

the number of I/O nodes may vary due to dif-
ferent node assignments to the I/O task, the
length of data for the read operations can be
different. The read length and file offset for
all the read operations are set only during the
STAP pipeline system's initialization and is
not changed afterward. Therefore, in each of
the following iterations, only one read function
call is needed. On the Paragon, since asyn-
chronous read subroutines were used, an addi-
tional subroutine waiting for the read's com-
pletion was also required in each iteration.

5.1 I/O task implementation

Two designs for the I/O task were imple-
mented in the STAP pipeline system. The
first one, shown in Figure 6, embeds the par-
allel I/O in the first task of the pipeline, i.e.
in the Doppler filter processing task. The
Doppler filter processing task now consists of
three phases, reading CPI data from files, com-
putation, and sending phases. The second I/O
implementation creates a new task for reading
CPI data and this task is added to the begin-
ning of the pipeline. Figure 7 shows the struc-
ture of the overall pipeline system with this
implementation. The only job of this I/O task
is to read CPI data from the files and deliver
it to the Doppler filter processing task.

Figure 7. A separate I/O task for reading CPI

data is added to the STAP pipeline system.

6 Performance results

Performance results are given for the two
I/O implementations on the parallel pipeline
STAP system. For each implementation, par-
allel file systems on the Paragon and the SP
were tested. On the Paragon, we used two
PFS file systems, one with 16 stripe directo-
ries and the other with 64 stripe directories.
On the SP, only the parallel file system with
80 striped directories was tested. On both ma-
chines, the stripe unit for the parallel file sys-
tems is 64K bytes. The size of each CPI data
file is 8M bytes that results in 128 stripe units
distributed across all stripe directories in all
the parallel file systems.

6.1 I/O embedded in the first task

In the first I/O implementation on the
Paragon, the Doppler filter processing task
reads its input from CPI files using asyn-
chronous read calls. A double buffering strat-
egy is employed to overlap the I/O operations
with computation and communication in this
task. Table 1 shows the timing results for this
implementation on the Paragon PFS file sys-
tem with 16 stripe directories. Three cases of
node assignments to all tasks in the pipeline
system are given, each doubles the number of
nodes of another. The throughput scales well
in the first two cases, but degrades when the

B-41

Table 1. Performance results on the Paragon
with the I/O embedded in the Doppler filter
processing task.

Table 2. Performance results on the Paragon
with the I/O embedded in the Doppler filter
processing task.

PFS stripe factor = 16 PFS stripe factor = 64

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0101 .2566 .0916 .3584

easy weight 3 .1317 .2214 .0002 .3534

hard weight 28 .0684 .2838 .0003 .3525

easy BF 3 .1451 .1921 .0003 .3375

hard BF 4 .1596 .1756 .0002 .3354

pulse compr 4 .1070 .1979 .0298 .3347

CFAR 2 .1983 .1361 - .3343

throughput
latency

2.9560
0.9804

case 2: total number of nodes = 112 Time in seconds

nodes recv | comp send total

Doppler filter 24 .0178 1 .1292 .0663 .2134

easy weight 6 .0856 1 .1110 .0002 .1968

hard weight 56 .0483 I .1423 .0059 .1965

easy BF 6 .0939 ! .0958 .0003 .1901

hard BF 8 .0906 i .0885 .0003 .1795

pulse compr 8 .0648 ! .0993 .0150 .1792

CFAR 4 .1107 .0683 - .1790

throughput
latency

5.4996
0.5171

case 3: total number of nodes = 224 Time in seconds

nodes recv comp send total

Doppler filter 48 .0871 ! .0619 .0317 .1807

easy weight 12 .1056 i .0557 .0002 .1616

hard weight 112 .0905 i .0724 .0009 .1639

easy BF 12 .1080 1 .0482 .0003 .1565

hard BF 16 .1030 1 .0509 .0003 .1542

pulse compr 16 .0983 | .0502 .0078 .1562

CFAR 8 .1217 .0343 - .1561

throughput
latency

6.2708
0.3292

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0314 .2461 .0916 .3691

easv weight 3 .1262 .2216 .0002 .3480

hard weight 28 .0628 .2840 .0003 .3471

easy BF 3 .1397 .1921 .0003 .3321

hard BF 4 .1537 .1756 .0002 .3295

pulse compr 4 .1011 .1977 .0298 .3286

CFAR 2 .1920 .1363 - .3282

throughput
latency

3.0111
0.9787

case 2: total number of nodes = 112 Time in seconds

nodes recv comp send total

Doppler filter 24 .0107 .1280 .0557 .1944

easy weight 6 .0787 .1111 .0020 .1917

hard weight 56 .0453 .1427 .0039 .1919

easy BF 6 .0860 .0959 .0003 .1823

hard BF 8 .0878 .0885 .0003 .1766

pulse compr 8 .0615 .0995 .0151 .1761

CFAR 4 .1077 .0682 - .1759

throughput
latency

5.6068
0.5143

case 3: total number of nodes = 224 Time in seconds
nodes recv comp send total

Doppler filter 48 .0069 .0673 .0309 .1052

easv weight 12 .0510 .0559 .0002 .1071

hard weight 112 .0355 .0733 .0019 .1106

easv BF 12 .0526 .0483 .0003 .1013

hard BF 16 .0471 .0515 .0003 .0989

pulse compr 16 .0407 .0503 .0080 .0990

CFAR 8 .0642 .0343 - .0985

throughput
latency

10.0262
0.2871

B-42

■

Intel Paragon

Table 3. Performance results on the SP with
the I/O embedded in the Doppler filter pro-

cessing task.

PIOFS stripe factor = 80

case 1: total number of nodes =18 Time in seconds
nodes recv comp send total

Doppler filter 6 .1172 .0734 .1966 .3872

easy weight .2717 .1070 .0001 .3788

hard weight .1590 .2194 .0002 .3786

easy BF .2927 .0829 .0001 .3757

hard BF .2595 .1177 .0002 .3775

pulse compr .2230 .1545 .0001 .3776

CFAR .2941 .0828 - .3770

throughput
latency

2.6715
1.2353

case 2: total number of nodes = 30 Time ii lseconds
nodes recv comp send total

Doppler filter 8 .1109 .0543 .1031 .2683
easy weight 1 .1471 .1045 .0002 .2518
hard weight 14 .1523 .1072 .0002 .2597

easy BF 2 .2189 .0412 .0001 .2602

hard BF 2 .1999 .0606 .0001 .2606

pulse compr 2 .1801 .0777 .0001 .2579

CFAR 1 .1801 .0801 - .2602
throughput

latency
3.8319
0.7810

case 3: total number of nodes = 60 Time i n seconds
nodes recv comp send total

Doppler filter 16 .1044 .0304 .0474 .1823

easy weight 2 .1314 .0547 .0001 .1862

hard weight 28 .1303 .0566 .0002 .1871

easy BF 4 .1571 .0219 .0002 .1792

hard BF 4 .1492 .0298 .0002 .1792

pulse compr 4 .1370 .0396 .0001 .1767

CFAR 2 .1399 .0403 - .1802

throughput
latency

5.5364
0.5004

Intel Paragon

■ itripc factor * 16
■ itripc factor * 64

II II
56 112 124

Number of Nodes

IBM SP

56 112 224
Number of Nodes

IBM SP

18 30 60
Number of Nodes

18 30 60
Number of Nodes

Figure 8. Performance results for the STAP
pipeline system with parallel I/O embedded in
the Doppler filter processing task. This figure

corresponds to Tables 1,2, and 3.

total number of nodes goes up to 224. In this
case, we observe that the timing results of the
receive phase in the first task are relatively
higher than the other two phases, the compute
and send phases. The I/O operations for read-
ing CPI data files here become a bottleneck
for the pipeline system. This bottleneck forces
the rest of the following tasks in the pipeline
system to wait for their input data from their
previous tasks.

Table 2 gives the timing results for the
same cases as in Table 1, but on a Paragon
PFS file system with 64 stripe directories.
Both throughput and latency showed linear
speedups. In the first two cases with 56 and
112 nodes, the results of throughput and la-
tency are approximately the same for both
file systems with 16 and 64 stripe directo-
ries. However, in the case with 224 nodes,
we observe that the I/O bottleneck is relieved
by using 64 stripe directories. The efficiency
of I/O operations plays an important role in
the overall performance of the pipeline system.
The I/O task may become a bottleneck in the

B-43

pipeline and directly affect the throughput re-
sults.

On the other hand, a linear speedup was ob-
tained for the latency results. The I/O bottle-
neck problem does not affect the latency signif-
icantly. We can observe that in the case with
224 nodes, the latency of using 16 stripe direc-
tories is slightly greater than using 64 stripe di-
rectories. This can be explained by examining
the throughput and latency equations, (1) and
(2), shown in Section 3. Unlike the through-
put that depends on the maximum of the ex-
ecution times of all the tasks, the latency is
determined by the sum of the execution times
of all the tasks except for the tasks with tem-
poral dependency. Therefore, even though the
execution time of the Doppler filter processing
task is increased, the delay does not contribute
much to the latency. Comparing Tables 1 and
2, the latency did not degrade significantly and
still scaled well in the case with 224 nodes. Fig-
ure 8 shows the performance results of this I/O
design in bar charts.

Detailed timing results for the IBM SP at
ANL are given in Table 3. The stripe factor
of the PIOFS file system is 80. Because PI-
OFS does not provide asynchronous read/write
subroutines, the I/O operations do not overlap
with computation and communication in the
Doppler filter processing task. Hence, the per-
formance results for throughput and latency on
the SP did not show the scalability as on the
Paragon, even though the SP has faster CPUs.

6.2 A new I/O task

In the second I/O task implementation, a
new task is added to the beginning of the
pipeline. This new task only performs the op-
erations of reading CPI files and distributing
CPI data to its successor task, Doppler fil-
ter processing task. The STAP pipeline sys-
tem then has a total of 8 tasks. Tables 4, 5,
and 6 show the performance results for this

I/O design. Corresponding to Tables 1, 2, and
3, all tasks have the same numbers of nodes
assigned, except for the I/O task. The I/O
bottleneck problem still occurs when using the
Paragon PFS system with 16 stripe directo-
ries. When using the file system with 64 stripe
directories, the throughput results improved.
The bar charts shown in Figure 9 represent the
throughput and latency results of Tables 4, 5,
and 6.

Comparing the two I/O designs, we observe
that the throughput results are approximately
the same for both implementations. However,
the latency results for the separate I/O task
design are worse than the embedded implemen-
tation. This phenomenon can be explained by
examining the throughput and latency equa-
tions. The equations for the throughput and
latency for the STAP pipeline system are

throughputs =
max Ti
0<:<8

(3)

and

latency* = To+Ti+max(T4,T5)+T6+T7) (4)

where T, is the execution time for the task i.
The throughput of a pipeline system is de-

termined by the task with the maximum exe-
cution time among all the tasks. From Tables
4 and 5, we observe that the Doppler filter pro-
cessing task has the maximum execution time
among all the tasks in the cases with a total
of 60 and 120 nodes. In the case of 240 nodes
on the PFS file system with 16 stripe direc-
tories, the maximum execution time occurs in
the parallel I/O task. Using PFS with 64 stripe
directories, the hard weight computation task
has the maximum execution time in the case of
240 nodes. Compared to Tables 1 and 2, the
throughput results have no significant change
because the tasks with the maximum execu-
tion time are the same for every correspond-
ing pair in all cases. All these tasks have the

B-44

Table 4. Performance results on the Paragon
with the I/O implemented as a separate task.

Table 5. Performance results on the Paragon
with the I/O implemented as a separate task.

PFS stripe factor = 16 PFS stripe factor = 64

case 1: total number of nodes = 60 Time in seconds
nodes recv comp send total

Parallel read 4 .0191 - .3997 .4187

Doppler filter 12 .0122 .3240 .2375 .5738

easy weight 3 .2032 .2217 .0002 .4252

hard weight 28 .1390 .2846 .0003 .4239

easy BF 3 .2210 .1911 .0003 .4124

hard BF 4 .2327 .1753 .0003 .4083

pulse compr 4 .1800 .1977 .0295 .4072

CFAR 2 .2706 .1362 - .4068
throughput

latency
2.4127
1.9186

case 2: total number of nodes = 120 Time in seconds

nodes recv comp send total

Parallel read 8 .0559 - .1604 .2163
Doppler filter 24 .0254 .1221 .0839 .2313
easv weight 6 .0920 .1110 .0004 .2034
hard weight 56 .0526 .1432 .0045 .2003

easv BF 6 .1003 .0960 .0003 .1966

hard BF 8 .0918 .0928 .0003 .1849

pulse compr 8 .0727 .0999 .0151 .1877
CFAR 4 .1185 .0683 - .1867

throughput
latency

5.3883
0.9226

case 3: total number of nodes = 240 Time in seconds
nodes recv comp send total

Parallel read 16 .1269 - .0276 .1545
Doppler filter 48 .0833 .0463 .0245 .1541

easy weight 12 .0891 .0558 .0002 .1451

hard weight 112 .0749 .0724 .0004 .1477

easy BF 12 .0975 .0485 .0003 .1463

hard BF 16 .0924 .0516 .0003 .1443

pulse compr 16 .0869 .0502 .0077 .1448

CFAR 8 .1104 .0343 - .1447

throughput
latency

6.8438
0.3890

case 1: total number of nodes = 60 Time in seconds
nodes recv comp send total

Parallel read 4 .0628 - .3391 .4019

Doppler filter 12 .0085 .2670 .1755 .4510

easy weight 3 .1425 .2217 .0002 .3645

hard weight 28 .0763 .2847 .0003 .3613

easy BF 3 .1621 .1914 .0003 .3537

hardBF 4 .1740 .1759 .0002 .3501

pulse compr 4 .1213 .1980 .0296 .3489

CFAR 2 .2125 .1362 - .3488

throughput
latency

2.8234
1.7309

case 2: total number of nodes = 120 Time in seconds
nodes recv comp send total

Parallel read 8 .0362 - .1685 .2047

Doppler filter 24 .0280 .1084 .0786 .2151
easy weight 6 .0816 .1111 .0024 .1951
hard weight 56 .0461 .1438 .0003 .1903

easy BF 6 .0914 .0959 .0003 .1877

hard BF 8 .0891 .0908 .0003 .1802

pulse compr 8 .0672 .0999 .0151 .1822

CFAR 4 .1131 .0683 - .1815
throughput

latency
5.5262
0.9137

case 3: total number of nodes = 24 0 Time in seconds
nodes recv comp send total

Parallel read 16 .0171 - .0617 .0788
Doppler filter 48 .0073 .0502 .0290 .0864
easy weight 12 .0503 .0558 .0002 .1063

hard weight 112 .0305 .0724 .0029 .1057

easy BF 12 .0491 .0489 .0004 .0984

hard BF 16 .0417 .0540 .0004 .0961

pulse compr 16 .0393 .0502 .0078 .0973
CFAR 8 .0629 .0343 - .0972

throughput
latency

10.2111
0.5193

B-45

Table 6. Performance results on the SP with
the I/O implemented as a separate task.

PIOFS stripe factor = 80

case 1: total number of nodes = 20 Time in seconds

nodes recv comp send total

Parallel read 2 .1787 - .1413 .3200

Doppler filter 6 .0045 .0724 .2548 .3316

easy weight 1 .2269 .1047 .0001 .3317

hard weight 7 .1165 .2150 .0013 .3329

easy BF 1 .0641 .0822 .2082 .3545

hard BF 1 .0416 .1179 .1874 .3469

pulse compr 1 .1459 .1538 .0656 .3653

CFAR 1 .2926 .0801 - .3727
throughput

latency
2.6670
2.6715

case 2: total number of nodes = 34 Time in seconds

nodes recv comp send total

Parallel read 4 .1230 - .0594 .1823

Doppler filter 8 .0264 .0549 .0913 .1726

easy weight 1 .0639 .1043 .0001 .1683

hard weight 14 .0598 .1090 .0003 .1692

easy BF 2 .0576 .0415 .0814 .1805

hard BF 2 .0593 .0596 .0579 .1768

pulse compr 2 .0278 .0784 .0803 .1864

CFAR 1 .1092 .0804 - .1896

throughput
latency

5.2819
1.2766

case 3: total number of nodes = 68 Time in seconds

Parallel read
Doppler filter
easy weight
hard weight

easv BF
hard BF

pulse compr
CFAR

nodes

8
16

28

throughput
latency

recv

.1100

.0455

.0901

.0839

.1158

.0813

.1008

.1074

comp

.0283

.0535

.0554

.0208

.0483

.0391

.0404

send

.0185

.0631

.0001

.0001

.0035

.0089

.0054

total

.1285

.1369

.1437

.1395

.1401

.1385

.1453

.1478
6.5063
0.6531

Intel Paragon

u

■ stripe factor = 16
O strip« factor - 64

M 120 240

Number of Nodes

IBM SP

i
~ 1.8
E 1.6
U 1.4
" 1.2
* I
£•••*
s 0.6
Ä0.4
2 02

0

Intel Paragon

■ stripe factor = 16
■ stripe factor = 64

60 120 240

Number of Nodes

IBM SP

20 34 68
Number of Nodes

20 34
Number of Nodes

Figure 9. Performance results for the imple-
mentation using a separate I/O task. This fig-
ure corresponds to Tables 4,5, and 6.

same number of compute nodes assigned and
hence have approximately the same computa-
tion time. Therefore, the execution times of
these tasks have no significant differences for
both cases and the throughput results do not
change significantly.

The latency, on the other hand, is the sum of
the execution times of all the tasks except for
the tasks with temporal data dependency, that
is, easy and hard weight computation tasks (T2

and T3, respectively.) In the design with a sep-
arate I/O task, the latency contains one more
term than the embedded I/O implementation:
the execution time of the new task, T0. There-
fore, the latency results become worse in this
implementation.

7 Task Combination

From the comparison of performance results
for the two I/O task implementations, we no-
tice that the structure of the STAP pipeline
system can be reorganized to improve the la-
tency. The first implementation that embeds
I/O in the Doppler filter processing task can

B-46

be viewed as combining the first two tasks of
the second implementation that uses a sepa-
rate task for I/O. As shown in Section 6.2, the
first I/O implementation has a better latency
performance, while the throughput results are
approximately the same.

7.1 Improving latency

We investigate whether the latency can be
further improved by combining multiple tasks
of the pipeline into a single task. We consider
Tables 1, 2, and 3 as an example and combine
the last two tasks, the pulse compression and
CFAR processing tasks, into a single task. In
order to make a fair comparison, we keep the
total number of nodes allocated to the whole
pipeline system to be the same. The number
of nodes assigned to this single task is equal
to the sum of the nodes assigned to the two
tasks in the original pipeline. In this case, no
communication costs between pulse compres-
sion and CFAR processing tasks are incurred.
Tables 7, 8, and 9 give the timing results cor-
responding to Tables 1,2, and 3 with the same
total number of nodes assigned to the pipeline
system. Figure 10 shows the bar charts of the
throughput and latency results for Tables 7, 8.
and 9. Figure 11 gives a comparison of per-
formance results of the STAP pipeline system
with and without task combining. We observe
that the latency improves for all cases on both
Paragon PFS and SP PIOFS file systems when
the last two tasks are combined.

This improvement can also be explained
by examining the latency equation. Before
task combination, the latency equation for the
STAP pipeline system with 7 tasks is

latency7 =T0 + max(T3, T4) + T5 + T6. (5)

Let W5 and We be the workloads for tasks 5
and 6, respectively. The execution times for
task 5 and 6 are

and

W5

-T5
(6)

We
-HS

(7)

where C* and V* represent the communication
time and the other parallelization overhead for
task i respectively. Similarly, let T5+6 be the
execution time of the task that combines tasks
5 and 6 running on P$ + Pe nodes:

W5 + We
^5+6 = D , D + C5+6 + V5+6. (8)

"5 + "6

By subtracting Equations (6) and (7) from
Equation (8), we have

T5+6 — (T5 + T6)
Wh + W6 W5 W6

P5 + P6 P5 Pe
+ C5+6 — C$ — Ce

+ V5+6-V5-Ve (9)

where

W5 + We W5

P5 + P6 Ps
-w5Pi -

We

Pe
WePi

P5P6(P5 + Pe)
< 0. (10)

Communication for the combined task oc-
curs only when receiving data from tasks 3 and
4. Prior to the task combination, the same
communication takes place in the receive phase
of task 5. The difference is the number of nodes
used between the two tasks. Since P5+6 > P5,
the data size for each received message from
tasks 3 and 4 to the combined task is smaller
than that for task 5. Besides, in task 5, C5 in-
cludes the communication cost of sending mes-
sages from task 5 to task 6 which does not oc-
cur in the combined task. Hence, we have

'5+6 <c5 (11)

The remaining overhead, V{, is due to paral-
lelization of task i. Since the operations in

B-47

Table 7. Performance results on the Paragon
with pulse compression and CFAR tasks
combined.

Table 8. Performance results on the Paragon
with pulse compression and CFAR tasks
combined.

PFS stripe factor = 16 PFS stripe factor = 64

case 1: total number of nodes = 56 Time in seconds
nodes recv comp send total

Doppler filter 12 .0094 .2589 .0908 .3591
easy weight 3 .1307 .2230 .0002 .3540

hard weight 28 .0660 .2868 .0003 .3531
easv BF 3 .1449 .1930 .0003 .3382
hard BF 4 .1616 .1756 .0003 .3375

PC + CFAR 6 .1517 .1863 - .3380
throughput

latency
2.9243
0.7913

case 1: total number of nodes = 56 Time in seconds

case 2: total number of nodes =112 Time in seconds
nodes recv comp send total

Doppler filter 24 .0194 .1294 .0656 .2145
easy weight 6 .0831 .1111 .0002 .1944
hard weight 56 .0468 .1427 .0046 .1940

easv BF 6 .0914 .0958 .0003 .1874
hard BF 8 .0892 .0887 .0004 .1784

PC + CFAR 12 .0869 .0935 - .1804
throughput

latency
5.5340
0.4221

case 3: total number of nodes = 224 Time in seconds
nodes recv comp send total

Doppler filter 48 .0953 .0623 .0323 .1900
easy weight 12 .1056 .0558 .0003 .1617
hard weight 112 .0930 .0726 .0004 .1661

easv BF 12 .1116 .0484 .0003 .1603
hard BF 16 .1063 .0513 .0004 .1579

PC -1- CFAR 24 .1079 .0513 - .1592
throughput

latency
6.1478
0.2948

nodes recv comp send total

Doppler filter 12 .0319 .2485 .0915 .3718

easy weight 3 .1265 .2218 .0002 .3485

hard weight 28 .0631 .2839 .0003 .3473
easy BF 3 .1400 .1921 .0003 .3324

hard BF 4 .1533 .1756 .0003 .3292
PC + CFAR 6 .1449 .1860 - .3309

throughput
latency

3.0027
0.7957

case 2: total number of nodes = 112 Time in seconds
nodes recv comp send total

Doppler filter 24 .0104 .1301 .0528 .1933
easy weight 6 .0774 .1111 .0002 .1887
hard weight 56 .0438 .1427 .0022 .1886

easy BF 6 .0853 .0959 .0003 .1815

hardBF 8 .0869 .0886 .0004 .1759
PC + CFAR 12 .0838 .0936 - .1773

throughput
latency

5.6029
0.4197

case 3: total number of nodes = 224 Time in seconds
nodes recv comp send total

Doppler filter 48 .0071 .0676 .0306 .1054
easy weight 12 .0522 .0559 .0002 .1083
hard weight 112 .0347 .0730 .0031 .1108

easy BF 12 .0533 .0482 .0004 .1018
hard BF 16 .0481 .0512 .0003 .0997

PC + CFAR 24 .0489 .0514 - .1003
throughput

latency
9.8853
0.2392

B-48

> 10

£ 4 u

/nte/ Paragon

m stripe factor «16
■ stripe factor * 64

Jl
56 112 224

Number of Nodes

Intel Paragon

■ stripe factor * 16 I
■ stripe factor • 64 I

II ■■
56 112 224

Number of Nodes

Table 9. Performance results on the SP with
pulse compression and CFAR tasks com-
bined.

PIOFS stripe factor = 80

IBM SP IBM SP

IS 30 60
Number of Nodes

J_l
18 30 60

Number of Nodes

case 1: total number of nodes = 18 Time in seconds
nodes recv comp send total

Doppler filter 6 .1320 .0728 .1894 .3942
easy weight 1 .2844 .1023 .0001 .3868
hard weight 7 .1738 .2131 .0002 .3870

easy BF 1 .3039 .0823 .0001 .3862
hard BF 1 .2677 .1182 .0002 .3862

PC + CFAR 2 .2683 .1194 - .3877
throughput

latency
2.5754
0.9388

case 2: total number of nodes = 30 Time i n seconds
nodes recv comp send total

Doppler filter 8 .1105 .0550 .1055 .2710
easy weight 1 .1711 .1026 .0002 .2739
hard weight 14 .1570 .1077 .0002 .2649

easy BF 2 .2225 .0417 .0001 .2644
hard BF 2 .2051 .0608 .0002 .2661

PC + CFAR 3 .1878 .0793 - .2671
throughput

latency
3.7492
0.6255

case 3: total number of nodes = 60 Time ii i seconds
nodes recv comp send total

Doppler filter 16 .1044 .0279 .0462 .1786
easy weight 2 .1350 .0515 .0002 .1867
hard weight 28 .1238 .0568 .0002 .1808

easy BF 4 .1582 .0210 .0002 .1794
hard BF 4 .1485 .0300 .0003 .1787

PC + CFAR 6 .1397 .0414 - .1810
throughput

latency
5.5356
0.4207

Figure 10. Performance results for the STAP
pipeline system that combines the pulse com-
pression and CFAR tasks into a single task.
This figure corresponds to Tables 7, 8, and 9.

tasks 5 and 6 are sets of individual subroutines
which require no communication within each
single task, parallelization is carried out by
evenly partitioning these subroutines among
the nodes assigned. Due to this computational
structure, the overhead for these two tasks be-
comes negligible compared to their communi-
cation costs. From Equations (9), (10), and
(11) we can conclude that

T5+6 < T5 + Tß (12)

Therefore, the new latency equation of the
STAP pipeline system with the last two tasks
combined becomes

latencye = T0 +max(T3,r4) + T5+6

< latencyr (13)

Combining the last two tasks, therefore, re-
duces the latency.

Table 10 gives the percentage of improve-
ment in latency when the last two tasks are
combined. These improvements were made
without adding any extra nodes to the pipeline

B-49

Paragon PFS Strip« factor = 16 Paragon PFS Stripe factor = 64

101- 'l^
si-
61-

41.

: II

2
- 1.8
Z U
y i4
s"
Xo.8
So.«
Ü 0.4
JU

0

Number of Nodes

Paragon PFS Stripe factor: 16

■ 7tuks
■ «Ulks

JUi

,ir
i.«i.
1.41-
Ul-

li-
mi
0.61-
0.4t
0.21-

M 112 224
Number of Nodes

Paragon PFS Stripe factor = 64

■ 7uuki
■ 6tisks

56 112 224
Number of Nodes

SP PIOFS

J* 10

u 8

■ 7uulu
BiUski

Jl 1Ü

2^-
~ *V
Z 1.6 t-
Ul.4-

"> 1.

S0.6.
Ü0.4.

56 112 224
Number of Nodes

SP PIOFS

Li
■ 7 tasks
a 6 tasks

11
18 30 60

Number of Nodes
18 30 60

Number of Nodes

Figure 11. Performance comparison of the
pipeline system with and without task com-
bining. The throughput results remain ap-
proximately the same. Latency is improved
when the last two tasks are combined.

system. We observe that the percentage de-
creases as the number of nodes goes up. Nor-
mally, scalability of the parallelization tends to
decrease when more processors are used. This
also explains the trend for the percentage im-
provement shown in Table 10. Notice that the
tasks that can be combined to improve the la-
tency do not include tasks with temporal data
dependency. It is because only those tasks with
spatial data dependency contribute to the la-
tency.

7.2 Improving throughput

The throughput results, on the other hand,
do not change significantly when the two tasks
are combined. This is because the throughput

Table 10. Percentage of latency improvement
when the Pulse compression and CFAR tasks

are combined into a single task.

Paragon: PFS
nodes

16 stripe dir
64 stripe dir

56

19.3%
18.7%

112
18.4%
18.4%

224

10.4%
16.7%

SP: PIOFS
nodes 18 30 ÖU ||

80 stripe dir 24.0% 19.9% 15.9%

is determined by the task with the maximum
execution time among all the tasks, which is
still the maximum in the new pipeline system.
Assuming that Tmax is the maximum execution
time before task combination, the throughput
is given by

throughput =

where

max Ti
0<i<7

> max(T5,Te)

From Equations (6), (7), and (8), the execution
time of the new combined task becomes

AT5 + P6T(6^6
15+6

P5 + P6

P5 max(T-0, T6) + P6 max{T5, T6)

P5 + Pe
= max{T5,T6) (14)

<

and the new maximum execution time becomes

T = max(To,Ti,T2,T3,T4,T5+6)

< max(To,Ti,T2,T3,T4,T5,Te)

= ■'■max-

B-50

Therefore, the throughput will not decrease af-
ter task combination because

range bin

throughputs =
1

>

T

Lmax
= throughput. (15)

Both latency and throughput can be im-
proved simultaneously when one of the com-
bined tasks determines the throughput of the
pipeline system. Suppose that either task 5 or
task 6 has the maximum execution time among
all the 7 tasks in the STAP pipeline system,
that is,

Tmax = max(T5,T6)

> max Ti.
0<t<4

(16)

Notice that none of these two tasks has tem-
poral data dependency. From Equation (13),
we have latency improvement when tasks 5
and 6 are combined. From Equations (15) and
(16), the throughput is increased. The reduc-
tion of execution time of both tasks 5 and 6
contributes to the latency as well as to the
throughput. Therefore, not only the through-
put can be increased, but the latency can be
also reduced. Note that in our experiment re-
sults shown in the previous section, the task
with the maximum execution time is neither
task 5 nor task 6, that is, Tmax > max (T5,T6).

8 Raw CPI data redistribution

The presentation in this paper up to now as-
sumed that a special hardware is available to
pre-process the raw CPI data received by the
radar before delivering it to the STAP pipeline
system. However, this special purpose equip-
ment may not perform very efficiently or may
not be available. We investigate the possibility
of implementing this data pre-processing op-
eration using a software approach. Actually,

c •
E
o •

1«

1X1X16

H H
512 range bins

phased array radar

1x512x16 128x512x16

snap shot CPI data cube

Figure 12. Raw CPI data received from a
phased array radar is used to form a 128 x
512 x 16 three dimensional data cube.

Air Force Research Laboratory (AFRL) per-
formed a real time STAP demonstration using
exactly the same signal processing algorithm
as ours onboard an airborne platform in May
1996 [11, 10]. The radar was a phased array
L-Band radar with 32 elements organized into
two rows of 16 each. Only the data from the
upper 16 elements were processed with STAP.
This data is a 1.25 MHz intermediate frequency
(IF) signal that is 4:1 oversampled at 5 MHz.
The number representation at IF is 14 bits, 2's
complement and is converted to 16 bit base-
band real and imaginary numbers. Special in-
terface boards were used to digitally demod-
ulate to baseband. The signal data formed a
raw 3-dimensional data cube called coherent
processing interval (CPI) data cube comprised
of 128 pulses, 512 range gates (32.8 miles), and
16 channels, shown in Figure 12. These special
interface boards were also used to corner turn
the data cube so that CPI is unit stride along
pulses. It speeds the subsequent Doppler pro-
cessing on the High Performance Computing
(HPC) systems. Live CPI data from a phased-
array radar were processed by a ruggedized ver-
sion of the Paragon computer. The STAP al-
gorithm was performed on this computer using
the raw data from the 16 columns of the phased
array.

B-51

All experiments described in the previous
sections assumed that this special purpose
hardware was used to pre-process the raw CPI
data such that each CPI data cube is corner-
turned from 128 x 512 x 16 to 512 x 16 x 128
and each complex element in a CPI is type-
converted from two 16-bits real numbers to
two 32-bits real numbers (type float in C lan-
guage.) The operations of corner turn and CPI
data partitioning among compute nodes are
illustrated in Figure 13. The reason for the
corner turn operations is that the major op-
erations in the Doppler filter processing task,
the Fast Fourier transforms (FFTs), need to
be performed along the pulse dimension of the
CPI cube. That is, 128-point FFTs are per-
formed for every range and channel. The cor-
ner turn operation, here, is to allow each FFT
to be computed on a single compute node in
the Doppler filter processing task. Given this
hardware, the parallel pipeline STAP system
can directly process the CPI data without re-
distributing it among the compute nodes once
the CPI data is read from the disk.

16 channels

(a)RawCPI: 128X512X16

16 channels

(c) CPI partitioned in I/O task

- 128 pulses

(b) Corner-turned CPI: 512X16X128

128 pulses

(d) CPI partitioned in Doppler
filter processing task

Figure 13. (a) Raw CPI data received from the
radar as a 128 x 512 x 16 data cube, (b)
Corned-turned CPI data cube of size 512 x
16 x 128. (c) Raw CPI partitioned among 4
reading nodes, (d) Corned-turned CPI parti-
tioned among 5 nodes.

8.1 Corner turn and type conversion

Without hardware support for the opera-
tions of corner turn and type conversion, the
parallel pipeline STAP system has to include
this in its implementation. In order that every
FFT can be processed in a single compute node
in the Doppler filter processing task, the CPI
data has to be partitioned along the dimension
of range cells among the compute nodes as-
signed, shown in Figure 13(d). Note that two
consecutive pulses in a raw CPI data cube are
stored in disks at a distance of 512 • 16 com-
plex numbers. By partitioning the raw CPI
along the range dimension, each sub-CPI data
for one node consists of several pieces of non-
contiguous data. For instance, we use 4 nodes
to read a raw CPI data cube and it results in
a sub-CPI of size 128 x 128 x 16. That is, each

sub-CPI has 128 pieces of data and each piece
is of size 128 x 16. Although contents of each
data piece are stored contiguously in disks, the
128 data pieces themselves are not adjacent to
each other. To obtain the sub-CPI data re-
quired by each node, two implementations for
reading CPI data can be done:

1. Every node performs several read opera-
tions directly from the disks. Each read
is for a data piece of a sub-CPI. After the
sub-CPI data is read, type-conversion op-
erations are applied.

2. Using a two-phase I/O access strategy [5],
the CPI data is first read using data dis-
tribution which conforms with the distri-
bution of CPI data over the disks. This
results in each node making a single, large,
and contiguous disk space access. In

B-52

^4=

parallel read
— s?

Step I

Comer turn
+

Type conversion

step 2

16 chuinels

Riw CPI stored in disks

16 Channels

*. «v <U «•.

128IV pubes

128/P pulses 128 pulses
128 pulses

Figure 14. Implementation of parallel reading of raw CPI data from disks and its distribution for the

Doppler filter processing task.

the second phase, the sub-CPI data is
type-converted, corner-turned, and redis-
tributed among the nodes to match the
desired data distribution.

Two-phase I/O access strategy has been
shown to improve the I/O performance signifi-
cantly. This method first reduces the I/O bot-
tleneck from disks to compute nodes by mak-
ing all the file accesses large and contiguous.
Second, the data redistribution uses the inter-
processor communication network with higher
bandwidth and higher degree of connectivity.

8.2 Implementation

To read CPI files in parallel, we implemented
the two-phase I/O access strategy on the two
STAP pipeline system I/O designs described in
Section 5. The implementation for the reading
of CPI files for the STAP pipeline system with
a separate I/O task is shown in Figure 14. In
this implementation, each node in the I/O task
performs the following steps:

1. uses one read operation to read an exclu-
sive part of CPI data. In other words, the
CPI data is partitioned into exclusive sub-
sets and node i in the I/O task reads the
iih subset of each CPI file.

2. performs the corner turn and type conver-
sion operations on the sub-CPI data.

3. redistributes the sub-CPI data with other
nodes in the I/O task such that each node
receives all parts of sub-CPI data it is re-
sponsible for. Data exchange in this step
is an all-to-all personalized communica-
tion within the same group of nodes.

4. sends the re-organized sub-CPI data to
the Doppler filter processing task. The
communication pattern in this step is a
left-right shift communication. Notice
that the number of nodes assigned to
the I/O task may be different from the
Doppler filter processing task.

B-53

Table 11. Performance results on the Paragon
with the I/O implemented as a separate task
in which the corner turn and type conversion
are embedded in the receive phase.

Table 12. Performance results on the Paragon
with the I/O implemented as a separate task
in which the corner turn and type conversion
are embedded in the receive phase.

PFS stripe factor = 16 PFS stripe factor = 64

case 1: total number of nodes = 64 Time in seconds
nodes recv comp send total

Parallel read 8 .3256 - .0003 .3259
Doppler filter 12 .0634 .1744 .0907 .3285
easy weight 3 .1053 .2215 .0002 .3270
hard weight 28 .0403 .2849 .0003 .3255

easy BF 3 .1204 .1923 .0003 .3131
hard BF 4 .1346 .1757 .0003 .3105

pulse compr 4 .0812 .1978 .0302 .3092
CFAR 2 .1726 .1361 - .3087

throughput
latency

3.2079
1.2516

case 2: total number of nodes = 128 Time in seconds
nodes recv comp send total

Parallel read 16 .1485 - .0099 .1585
Doppler filter 24 .0037 .0976 .0580 .1593
easy weight 6 .0528 .1110 .0002 .1639
hard weight 56 .0161 .1435 .0038 .1634

easv BF 6 .0515 .0969 .0004 .1488
hard BF 8 .0555 .0894 .0003 .1452

pulse compr 8 .0313 .1000 .0151 .1464
CFAR 4 .0777 .0682 - .1459

throughput
latency

6.7809
0.7797

case 3: total number of nodes = 256 Time in seconds
nodes recv comp send total

Parallel read 32 .1041 - .0004 .1045
Doppler filter 48 .0241 .0453 .0244 .0937
easy weight 12 .0499 .0559 .0002 .1060
hard weight 112 .0319 .0729 .0008 .1056

easv BF 12 .0516 .0486 .0003 .1005
hard BF 16 .0474 .0518 .0003 .0996

pulse compr 16 .0411 .0499 .0079 .0989
CFAR 8 .0643 .0343 - .0986

throughput
latency

9.9740
0.3713

case 1: total number of nodes = 64 Time in seconds
nodes recv comp send total

Parallel read 8 .3242 - .0004 .3246
Doppler filter 12 .0575 .1742 .0956 .3272
easy weight 3 .1039 .2214 .0002 .3255
hard weight 28 .0375 .2849 .0003 .3227

easy BF 3 .1197 .1921 .0003 .3121
hard BF 4 .1275 .1830 .0002 .3108

pulse compr 4 .0789 .1980 .0296 .3065
CFAR 2 .1693 .1360 - .3053

throughput
latency

3.3022
1.2889

case 2: total number of nodes = 128 Time in seconds
nodes recv comp send total

Parallel read 16 .1471 - .0163 .1633
Doppler filter 24 .0048 .1004 .0669 .1722
easy weight 6 .0601 .1109 .0002 .1712
hard weight 56 .0214 .1430 .0059 .1703

easy BF 6 .0524 .0970 .0003 .1497
hard BF 8 .0605 .0895 .0003 .1503

pulse compr 8 .0369 .0994 .0149 .1512
CFAR 4 .0825 .0681 - .1506

throughput
latency

6.5610
0.8300

case 3: total number of noc ies = 25 6 Time in seconds
nodes recv comp send total

Parallel read 32 .0908 - .0005 .0913
Doppler filter 48 .0015 .0507 .0244 .0766
easy weight 12 .0434 .0559 .0002 .0995
hard weight 112 .0248 .0727 .0005 .0980

easy BF 12 .0455 .0499 .0003 .0957
hard BF 16 .0390 .0548 .0004 .0942

pulse compr 16 .0349 .0505 .0078 .0932
CFAR 8 .0590 .0342 - .0932

throughput
latency

10.5710
0.4629

B-54

Table 13. Performance results on the Paragon
with the I/O implemented in the Doppler filter
processing task in which the corner turn and
type conversion are embedded in the receive
phase.

Table 14. Performance results on the Paragon
with the I/O implemented in the Doppler fil-
ter processing task in which corner turn and
type conversion are embedded in the receive
phase.

PFS stripe factor =16 PFS stripe factor = 64

case 1: total number of nodes = 31 Time in seconds case 1: total number of nodes = 31 Time in seconds
nodes recv comp send total

Doppler filter 8 .3188 .2584 .1354 .7127
easy weight 2 .3794 .3321 .0002 .7118
hard weight 14 .1446 .5669 .0004 .7119

easy BF 2 .4164 .2865 .0002 .7031
hard BF 2 .3405 .3478 .0002 .6886

pulse compr 2 .2313 .3949 .0583 .6845
CFAR 1 .4121 .2724 - .6845

throughput
latency

1.4411
1.9326

case 2: total number of nodes = 60 Time in seconds
nodes recv comp send total

Doppler filter 16 .1505 .1296 .0681 .3482
easy weight 3 .1277 .2216 .0002 .3495
hard weight 28 .0629 .2849 .0003 .3481

easy BF 3 .1419 .1918 .0003 .3340
hard BF 4 .1537 .1756 .0002 .3295

pulse compr 4 .1003 .1985 .0298 .3286
CFAR 2 .1918 .1363 - .3281

throughput
latency

3.0129
0.9789

case 3: total number of nodes = 120 Time in seconds
nodes recv comp send total

Doppler filter 32 .0863 .0660 .0349 .1872
easy weight 6 .0780 .1110 .0002 .1893
hard weight 56 .0431 .1429 .0019 .1879

easv BF 6 .0842 .0961 .0003 .1806
hard BF 8 .0886 .0880 .0003 .1770

pulse compr 8 .0616 .0995 .0151 .1763
CFAR 4 .1079 .0683 - .1762

throughput
latency

5.5923
0.5047

case 4: total number of nodes = 238 Time in seconds
nodes recv comp send total

Doppler filter 64 .0625 .0364 .0192 .1181
easy weight 12 .0675 .0557 .0003 .1234
hard weight 112 .0494 .0721 .0004 .1219

easy BF 12 .0732 .0482 .0004 .1218

hard BF 14 .0649 .0511 .0003 .1164

pulse compr 16 .0587 .0501 .0078 .1166

CFAR 8 .0821 .0344 - .1165
throughput

latency
8.4272
0.2925

nodes recv comp send total

Doppler filter 8 .3196 .2586 .1355 .7138
easy weight 2 .3804 .3321 .0003 .7128
hard weight 14 .1455 .5670 .0004 .7129

easy BF 2 .4174 .2865 .0002 .7042
hard BF 2 .3413 .3480 .0003 .6896

pulse compr 2 .2321 .3949 .0582 .6852
CFAR 1 .4129 .2724 - .6852

throughput
latency

1.4390
1.9368

case 2: total number of nodes = 60 Time in seconds
nodes recv comp send total

Doppler filter 16 .1504 .1298 .0757 .3558
easy weight 3 .1341 .2216 .0002 .3559
hard weight 28 .0697 .2849 .0004 .3550

easy BF 3 .1486 .1913 .0003 .3402
hard BF 4 .1524 .1828 .0002 .3355

pulse compr 4 .1007 .1989 .0317 .3313
CFAR 2 .1918 .1363 - .3280

throughput
latency

3.0618
1.0159

case 3: total number of noc les = 12 0 Time in seconds
nodes recv comp send total

Doppler filter 32 .0835 .0647 .0455 .1937
easy weight 6 .0872 .1111 .0002 .1985
hard weight 56 .0469 .1430 .0074 .1973

easy BF 6 .0934 .0959 .0003 .1896
hard BF 8 .0864 .0895 .0003 .1762

pulse compr 8 .0618 .0998 .0151 .1768
CFAR 4 .1080 .0683 - .1763

throughput
latency

5.6552
0.5264

case 4: total number of no(ies = 23 8 Time i a seconds
nodes recv comp send total

Doppler filter 64 .0617 .0327 .0190 .1134
easy weight 12 .0675 .0558 .0002 .1236
hard weight 112 .0497 .0724 .0004 .1225

easy BF 12 .0735 .0482 .0003 .1220
hardBF 14 .0652 .0511 .0003 .1166

pulse compr 16 .0590 .0500 .0077 .1167
CFAR 8 .0824 .0343 - .1167

throughput
latency

8.4237
0.2927

B-55

Intel Paragon

M IM 256
Number of Nodes

Intel Paragon

U stripe factor = 16
■ stripe factor = 64

Number of Nodes

— 12 w
jj 10
S a

i «
1 4 u
i 2

JnfeJ Paragon

■ stripe factor a 16
B stripe factor e 64

.n III 1! II
6« 120

Number of Nodes

Jnfe/ Paragon

Number of Nodes

Figure 15. Performance results for the imple-
mentation using a separate I/O task in which
the corner turn and type conversion are em-
bedded in the receive phase. This figure cor-
responds to Tables 11 and 12.

In the first I/O design that embeds the I/O
in the Doppler filter processing task, the only
difference is that it is without step 4, the left-
right shift communication. In addition, all
the steps are performed within the same group
of nodes. The sub-CPI data redistribution is
performed within the same group of compute
nodes in the Doppler filter processing task. As
opposed to the inter-task data dependency dis-
cussed in Section 2, this data redistribution re-
sults in an intra-task data dependency. The
intra-task dependency exists when intermedi-
ate results need to be exchanged during the ex-
ecution of a single parallel task in the pipeline.

8.3 Performance results

The performance results for the implemen-
tation using a separate I/O task are given in
Tables 11 and 12, for Paragon PFS file systems
with 16 and 64 striped directories, respectively.
Figure 15 shows the bar charts corresponding
to Tables 11 and 12. Linear speedups were ob-
tained for both throughput and latency.

The performance results for the implemen-
tation with the I/O task embedded in the
Doppler filter processing task is shown in Ta-
bles 13 and 14, for Paragon PFS file systems
with 16 and 64 striped directories, respectively.
Figure 16 shows the bar charts corresponding
to Tables 13 and 14. We observe that the

Figure 16. Performance results for the imple-
mentation when the parallel I/O, corner turn,
and type conversion are embedded in the re-
ceive phase of the Doppler filter processing
task. This figure corresponds to Tables 13
and 14.

throughput and latency show linear speedups
till the case with a total of 120 nodes. The tim-
ing for performing read CPI data from disks,
corner turn, type conversion, and CPI data re-
distribution are included in the receive phase
of the Doppler filter processing task. When we
increase the number of nodes from 32 to 64
in the Doppler filter processing task, the per-
formance of the receive phase does not scale
up linearly. This is because of the increasing
cost of the all-to-all personalized communica-
tion in the sub-CPI data redistribution. The
size of each CPI data in our experiments is
128 • 512 • 16 • (2 • 4 bytes) = 8M bytes. With 64
nodes, the size of data in each send/receive of
the all-to-all personalized communication be-
comes ^gF = 2K bytes. In the all-to-all

04-04
personalized communication, each node has a
total of 64 read/receive calls whose communi-
cation startup time overwhelms the message
transmission time with respect to the relatively
small size of the messages (2K bytes each.)

9 Conclusions

In this work, we studied the effects of
parallel I/O implementation on the parallel
pipeline system for a modified PRI-staggered
post-Doppler STAP algorithm. The parallel

B-56

pipeline STAP system was run portably on
Intel Paragon and IBM SP and the overall
performance results demonstrated the linear
scalability of our parallel pipeline design when
the existing parallel file systems were used in
the I/O implementations. On the Paragon,
we found that a pipeline bottleneck can re-
sult when using a parallel file system with a
relatively smaller stripe factor. With a larger
stripe factor, a parallel file system can deliver
higher efficiency of I/O operations and, there-
fore, improve the throughput performance.

This paper presented two I/O designs which
are incorporated into the parallel pipeline
STAP system. One embedded I/O in the orig-
inal pipeline and the other used a separate
I/O task. By comparing the results of these
designs, we found that the task structure of
the pipeline can be reorganized to further im-
prove the latency. Without adding any com-
pute nodes, we obtained performance improve-
ment in the latency when the last two tasks
were combined. We also analyzed the possibil-
ity of further improvement by examining the
throughput and latency equations.

We also investigated a software approach to
implement raw data pre-processing which can
often be done by a special purpose hardware.
The performance results demonstrate that the
parallel pipeline STAP system scaled well even
with a more complicated I/O implementation.

10 Acknowledgments

This work was supported by Air Force Ma-
terials Command under contract F30602-97-C-
0026. We acknowledge the use of the Intel
Paragon at California Institute of Technology
and the IBM SP at Argonne National Labora-
tory.

References

[1] R. Brown and R. Linderman. Algorithm De-

velopment for an Airborne Real-Time STAP
Demonstration. In Proceedings of the IEEE
National Radar Conference, 1997.

[2] A. Choudhary, W. Liao, D. Weiner, P. Varsh-
ney, R. Linderman, and M. Linderman. De-
sign, Implementation and Evaluation of Par-
allel Pipelined STAP on Parallel Comput-
ers. International Parallel Processing Sym-
posium, 1998.

[3] A. Choudhary and J. Patel. Parallel Ar-
chitectures and Parallel Algorithms for In-
tegrated Vision Systems. Kluwer Academic
Publishers, Boston, MA, 1990.

[4] A. Choudhary and R. Ponnusamy. Parallel
Implementation and Evaluation of a Motion
Estimation System Algorithm using Several
Data Decomposition Strategies. Journal of
Parallel and Distributed Computing, 14:50-
65, January 1992.

[5] J. del Rosario, R. Bordawekar, and
A. Choudhary. Improved Parallel I/O via
a Two-Phase Run-time Access Strategy.
In Proceedings of the Workshop on I/O
in Parallel Computer Systems at IPPS'93,
pages 56-70, 1993.

[6] IBM Corp. IBM AIX Parallel I/O File Sys-
tem: Installation, Administration, and Use,
October 1996.

[7] Intel Corporation. Paragon System User's
Guide, Apr. 1996.

[8] W. Liao, A. Choudhary, D. Weiner, and
P. Varshney. Multi-Threaded Design and Im-
plementation of Parallel Pipelined STAP on
Parallel Computers with SMP Nodes. In-
ternational Parallel Processing Symposium,
1999.

[9] M. Linderman and R. Linderman. Real-Time
STAP Demonstration on an Embedded High
Performance Computer. In Proceedings of the
IEEE National Radar Conference, 1997.

[10] M. Linderman and R. Linderman. Real-Time
STAP Demonstration on an Embedded High
Performance Computer. IEEE AES Systems
Magazine, pages 15-21, Mar. 1998.

[11] M. Little and W. Berry. Real-Time Multi-
Channel Airborne Radar Measurements. In
Proceedings of the IEEE National Radar
Conference, 1997.

B-57

Appendix C

Ph.D. Dissertation

C-1

ABSTRACT OF DISSERTATION

This dissertation presents a parallel pipelined computational model for radar signal

processing applications. Performance results for the design and implementation of a

real Space-Time Adaptive Processing (STAP) application on parallel computers are

presented. The dissertation also discusses the process of software development for

such an application on parallel computers when latency and throughput are both

considered together and presents tradeoffs considered with respect to inter and intra-

task communication and data redistribution. The results show that not only scal-

able performance was achieved for individual component tasks of STAP but linear

speedups were obtained for the integrated task performance, both for latency as well

as throughput. Multi-threaded design for the STAP application is also presented

for the parallel machine with SMP nodes. It is shown that the performance is en-

hanced when a multi-threaded implementation is employed. In this dissertation, we

also study the effect on system performance when the I/O task is incorporated in the

parallel pipeline computational model. There are two alternatives for I/O implemen-

tation: embedding I/O in the pipeline or having a separate I/O task. From these

two I/O implementations, we discovered that the latency may be improved when the

structure of the pipeline is reorganized by merging multiple tasks into a single task.

All the performance results shown in this work demonstrated the scalability of the

parallel pipeline STAP system.

C-2

PARALLEL PIPELINED COMPUTATIONAL MODEL

FOR

SPACE-TIME ADAPTIVE PROCESSING

by

WEI-KENG LIAO

Bachelor of Science, National Chung-Hsing University, Taiwan, 1988

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

in the Graduate School of Syracuse University

June, 1999

Approved _

Professor Alok N. Choudhary

Date

Approved

Professor Pramod K. Varshney

Date .

Approved

Professor Donald D. Weiner

Date .

C-3

© Copyright 1999 WEI-KENG LIAO

All Rights Reserved

C-4

Contents

List of Tables vm

List of Figures xl

Acknowledgments xv

1 Introduction 1

1.1 Parallelism in STAP 2

1.2 Shared Memory versus Distributed Memory HPC Systems 5

1.3 Disk I/O 7

1.4 Processor Assignment 7

1.5 Organization of the Dissertation 8

2 Parallel Pipeline System Model 10

2.1 Custom VLSI versus HPC Systems 11

2.2 Overview of Space-Time Adaptive Processing 15

2.2.1 STAP Algorithms 16

2.2.2 Computational Characteristic Analysis 18

2.3 Related Work 21

2.4 Parallel Pipeline Computational Model 23

2.4.1 Data Dependencies 25

2.5 Parallelization Issues and Approaches 26

2.5.1 Throughput and Latency 27

C-5

2.5.2 Data Redistribution 29

2.5.3 Task Scheduling and Processor Assignment 31
32 2.6 Summary

Parallel Pipelined STAP System 34

3.1 Algorithm Overview
QQ

3.2 Design and Implementation

3.2.1 Doppler Filter Processing 41

3.2.2 Weight Computation 43

AC
3.2.3 Beamforming *°

48 3.2.4 Pulse Compression ^°

3.2.5 CFAR Processing 49

3.3 Software Development and System Platform 49

3.4 Performance Results

3.4.1 Computation Costs 54

3.4.2 Inter-task Communication 54

3.4.3 Integrated System Performance 58

3.5 Summary 63

Multi-Threaded Design and Implementation 65

4.1 Symmetrical Multi-Processor System 66

4.1.1 Intel Paragon MP System 68

4.2 Design and Implementation 69

4.2.1 Threads in the Compute Phase 69

4.2.2 Software Development 71
71 4.3 Performance Results

4.3.1 Compute Time 72

4.3.2 Integrated System Performance Evaluation 74

4.3.3 Tradeoff Between Throughput and Latency 78
82 4.4 Summary

C-6

84 5 I/O Implementation

5.1 Parallel File Systems 86

5.1.1 Intel Paragon PFS File System 86

5.1.2 IBM SP PIOFS File System 88

oo
5.2 Design and Implementation

5.2.1 I/O Task Implementation 90

5.3 Performance Results
 91 5.3.1 I/O Embedded in the First Task

 102
5.3.2 A New I/O Task 96

5.4 Task Combination

5.4.1 Improving Latency

5.4.2 Improving Throughput 110

5.5 Raw CPI Data Redistribution 1:l1

5.5.1 Corner Turn and Type Conversion 113

11 r;
5.5.2 Implementation

5.5.3 Performance Results 116

5.6 Summary 122

6 Summary and Conclusions

6.1 Suggestions for Future Work 127

C-7

List of Tables

1 Characteristics of shared-memory and distributed-memory HPC systems. 6

2 Feature comparison between custom VLSI and HPC systems 14

3 Configurations of the system platforms on which we ran the parallel

pipeline STAP codes 51

4 The number of floating point operations for the PRI-staggered post

Doppler STAP algorithm to process one CPI data 53

5 Timing results of inter-task communication. Time in seconds. # proc:

number of processors 5"

6 Performance results on the Intel Paragon for 3 cases of processor as-

signments. Time in seconds. # proc: number of processors 59

7 Performance results on IBM SP and SGI Origin 60

8 Performance results for adding 4 more processors to Doppler filter pro-

cessing task to case 2 in Table 6. Time in seconds 63

9 Performance results for adding 16 more processors to pulse compression

and CFAR processing tasks to the case in Table 8. Time in seconds. . 64

10 Performance results of non-threaded implementation for 3 cases of

nodes assignments '5

11 Performance results of threaded implementation for 3 cases of nodes

assignments '"

12 Performance results of non-threaded implementation for adding 4 more

compute nodes to the Doppler processing task and 4 more compute

nodes to pulse compression task to the case 2 in Table 10 81

C-8

13 Performance results of threaded implementation for adding 4 more

compute nodes to the Doppler processing task and 4 more compute

nodes to pulse compression task to the case 2 in Table 11 82

14 Performance results on the Paragon with the I/O embedded in the

Doppler filter processing task

15 Performance results on the Paragon with the I/O embedded in the

Doppler filter processing task

16 Performance results on the SP with the I/O embedded in the Doppler
95 filter processing task

17 Performance results on the Paragon with the I/O implemented as a

separate task
18 Performance results on the Paragon with the I/O implemented as a

separate task
19 Performance results on the SP with the I/O implemented as a separate

task
20 Performance results on the Paragon with pulse compression and CFAR

103 tasks combined

21 Performance results on the Paragon with pulse compression and CFAR

tasks combined

22 Performance results on the SP with pulse compression and CFAR tasks

combined
23 Percentage of latency improvement when the Pulse compression and

CFAR tasks are combined into a single task 109

24 Performance results on the Paragon with the I/O implemented as a

separate task in which the corner turn and type conversion are embed-

ded in the receive phase. PFS stripe factor = 16 117

25 Performance results on the Paragon with the I/O implemented as a

separate task in which the corner turn and type conversion are embed-

ded in the receive phase. PFS stripe factor = 64 118

C-9

26 Performance results on the Paragon with the I/O implemented in the

Doppler filter processing task in which the corner turn and type con-

version are embedded in the receive phase 120

27 Performance results on the Paragon with the I/O implemented in the

Doppler filter processing task in which corner turn and type conversion

are embedded in the receive phase 121

C-10

List of Figures

1 The effect of parallelism and pipelining on the system throughput. . . 4

2 Basic structure for the computational model of the parallel pipeline

system. Taski is parallelized on Pi processors 5

3 Three architectures of HPC systems: (a) Symmetrical Multi-Processor,

(b) cluster, and (c) Massively Parallel Processor 13

4 Operation stages performed in two radar signal processing algorithms:

(a) pre-Doppler STAP and (b) post-Doppler STAP. A series of CPI
data sets represent signals collected in different time intervals 17

5 Data used for Doppler filter processing and Weight computation in

STAP algorithms 19

6 Implementation of the ruggedized version of Intel Paragon system in

RTMCARM experiments 22

7 Model of the parallel pipeline system. Note that Task; for all input

instances is executed on the same number of processors 24

8 Execution flow of a single compute node in a parallel pipeline system.

For each individual task, there are three phases: receive, compute, and
, 25 send

9 A pipeline system with spatial data dependency only 27

10 A pipeline system with both spatial and temporal data dependencies. 28

11 Two types of data redistribution: corner turn and left-right shift. Cor-

ner turn involves an all-to-all personalized communication and left-

right shift involves a many-to-many communication 30

C-11

ore
12 RTMCARM system block diagram

13 Implementation of parallel pipelined STAP. Arrows connecting task

blocks represent data transfer between tasks 39

14 Partitioning strategy for Doppler filter processing task. The CPI data

cube is partitioned among P0 processors across dimension K 42

15 (a) Staggered CPI data partitioned into easy and hard weight compu-

tation tasks, (b) Parallel inter-task communication from Doppler filter

processing task to easy and hard weight computation tasks requires

different sets of range samples. Data collection needs to be performed

before the communication. This can be viewed as irregular data redis-

tribution
16 Partitioning strategy for easy and hard weight computation tasks.

Data cube is partitioned across dimension N 45

17 Data redistribution from Doppler filter processing task to easy beam-

forming task. CPI data subcube of size f x J x Of* is reorganized

to subcube of size ^x|xJ before sending from one processor in

Doppler filter processing task to another in easy beamforming task. . 47

18 Partitioning strategy for pulse compression task. Data cube is parti-

tioned across dimension N into P5 processors 48

19 Organization of data cubes for all tasks in the STAP algorithm. ... 50

20 Implementation of timing computation and communication for each

task. A double buffering strategy is used to overlap the communication

with the computation. Receive time = *i — *o, compute time = t2-h,
52 and send time = £3 - h

21 Performance and speedup of computation time as a function of number

of processors for all tasks 55

C-12

22 Throughput and latency for the 3 cases in Table 6. Measured results

are obtained from the experiments while estimated results are obtained

from applying individual tasks' timing to equations (4) and (5). The

unit of throughput is number of CPIs per second. The unit of latency

is second
23 Throughput and latency results correspond to the cases in Table 7. . 62

24 The architecture of a Symmetrical Multi-Processor system 66

25 The architecture of an Massively Parallel Processing system with SMP
, 67 nodes

26 The architecture of an Intel Paragon MP system 68

27 Implementation of two threads in the compute phase. The main thread

signals the second thread to perform its computation. After completion

of its computation, the second thread signals back to the main thread. 70

28 Performance of different tasks during the compute phase as a function

of the number of compute nodes: (a) execution time, (b) speedups,

and (c) threading speedups

29 Estimated and measured values of throughput (number of CPIs per

second) and latency (seconds per CPI) for both threaded and non-
77 threaded implementations

30 Performance results of integrated pipeline system for threaded and

non-threaded implementations, corresponding to Tables 10 and 11. . . 78

31 Throughput and latency results by adding 2 nodes at a time to each

task
32 Data flow of a radar and signal processing system using parallel com-

 85 puters
33 Four CPI data files are read from the parallel file system into the

pipeline system in a round-robin manner. . 89

34 I/O task is embedded in the Doppler filter processing task of the STAP
90 pipeline system

C-13

35 A separate I/O task for reading CPI data is added to the STAP pipeline
Q1 system

36 Performance results for the STAP pipeline system with parallel I/O

embedded in the Doppler filter processing task. This figure corresponds

to Tables 14, 15, and 16 96

37 Performance results for the implementation using a separate I/O task.

This figure corresponds to Tables 17, 18, and 19 101

38 Performance results for the STAP pipeline system that combines the

pulse compression and CFAR tasks into a single task. This figure

corresponds to Tables 20, 21, and 22 106

39 Performance comparison of the pipeline system with and without task

combining. The throughput results remain approximately the same.

Latency is improved when the last two tasks are combined 107

40 Raw CPI data received from a phased array radar is used to form a

128 x 512 x 16 three dimensional data cube 112

41 (a) Raw CPI data received from the radar as a 128 x 512 x 16 data

cube, (b) Corned-turned CPI data cube of size 512 x 16 x 128. (c)

Raw CPI partitioned among 4 reading nodes, (d) Corned-turned CPI

partitioned among 5 nodes 114

42 Implementation of parallel reading of raw CPI data from disks and its

distribution for the Doppler filter processing task 116

43 Performance results for the implementation using a separate I/O task

in which the corner turn and type conversion are embedded in the

receive phase. This figure corresponds to Tables 24 and 25 119

44 Performance results for the implementation when the parallel I/O, cor-

ner turn, and type conversion are embedded in the receive phase of the

Doppler filter processing task. This figure corresponds to Tables 26

and 27 122

C-14

Acknowledgments

I would like to thank my advisors, Professor Pramod Varshney, Alok Choudhary, and

Donald Weiner. I am grateful to Professor Varshney for his help and encouragement

throughout the course of this work. Especially during my most difficult time at

Syracuse University, he gave me the opportunity of this research project and guided

me toward this degree. I would like to thank Professor Choudhary for his expert

guidance and intellectual inspiration to shape my research over space and time. His

valuable comments and suggestions have made this work all more complete. My

thanks also go to Prof. Weiner whose wisdom and ideas in the area of radar signal

processing formed the foundations of this work.

I am grateful to Russell Brown, Mark Linderman, Richard Linderman, and Zen

Pryk for their help, support, and encouragement during the course of this work.

Thanks are also due to Dr. Nagaraj Shenoy for his valuable advice.

I sincerely thank my parents for their unwavering love and support throughout

these years. Much gratitude goes to my my wife, Pei-hsun, for her patience and

encouragement at every step of this long journey, and our beloved son, Justin, for

bring all the joy and luck since the day he was born. I thank my sister who have been

always prayed for me these years.
I gratefully acknowledge use of the Intel Paragon at California Institute of Tech-

nology and the IBM SP at Argonne National Laboratory. This work was supported

by Air Force Materiels Command under contract F30602-97-C-0026.

C-15

Chapter 1

Introduction

A key requirement for Moving Target Indicator (MTI) radars is that they are small in

size, light in weight, and consume low power so that they can be installed on platforms,

such as airborne radars, undersea sonars, and ground moving radar stations. In

order to fulfill these requirements, radar signal processing systems were traditionally

built by using custom VLSI circuits. Most of these Application Specific Integrated

Circuits (ASICs) are contemporary non-commercial products designed for special

purposed uses. However, the use of non-commercial products results in a higher cost

of system development. To reduce the cost, system designers nowadays tend to use

Commercial-Of-The-Shelf (COTS) products because they offer lower cost hardware,

faster development, and higher reliability while adhering to the size, weight, and

power requirements [1].
High Performance Computing (HPC) systems are becoming a feasible alterna-

tive due to the progress made in hardware as well as software support in the last

few years. Since HPC systems are made of COTS products, they are replacing the

custom VLSI based radar systems. Furthermore, HPC systems offer advantages of

affordability, scalability, reusability, and flexibility over the traditional custom VLSI

based solutions. These powerful machines have traditionally been used to solve scien-

tific problems which require a large number of computational operations. There are

many radar signal processing applications such as Space-Time Adaptive processing

C-16

(STAP) that are computational intensive and must operate in real time [2]. Such

applications may benefit from the use of HPC systems. This dissertation investigates

the use of HPC systems for the STAP application. Specifically, a new computa-

tional model is developed and performance enhancement achieved by this model is

demonstrated.

1.1 Parallelism in STAP

To design a radar signal processing system on HPC platforms, we first have to under-

stand the parallelism embedded in the radar applications. In this work, we will focus

on the investigation of parallelization and performance evaluation for STAP algo-

rithms. These algorithms have of considerable interest to the radar signal processing

community for some time. They present a challenge to signal processing systems

which are required to operate in real time.

STAP applications entail filtering, convolution and correlations, inner and outer

products, solvers (direct or iterative), Fast Fourier Transforms (FFTs), etc. A major-

ity of individual processing steps in this application domain exhibit Single Program

Multiple Data (SPMD) parallelism. Therefore, an overall integrated system can be

thought of as a collection of communicating SPMD programs, that is, at a higher level

there exists task parallelism. This parallelism can be further divided into two cate-

gories; namely, spatial and temporal parallelism. Spatial parallelism refers to parallel

computation on data from the same time instance. Temporal parallelism refers to the

performance of tasks on data from different time instances [3, 4, 5].

Ideally, the parallelization of a STAP application must be done by partitioning all

the computational load evenly across the processors to achieve maximum efficiency.

However, this strategy may not be feasible for the type of STAP applications to be

parallelized in a real HPC environment. From the hardware point of view, the archi-

tecture of a computer system basically consists of three most essential components:

CPU, cache memory, and main memory. Compared to the main memory, the cache

is a small capacity and high speed memory used as a buffer between a CPU and the

C-17

main memory. The purpose of a cache memory is to reduce the time the CPU must

spend waiting for data to arrive from the slower main memory. When a memory re-

quest is generated by the CPU, the request is first presented to the cache, and if the

cache cannot respond, the request is then presented to the main memory. The cache

memory is usually divided into instruction cache and data cache. Since a STAP

application has many processing steps that are executed in sequence on the input

signal data, this application contains several different instructions sets. If a STAP

application is parallelized on all processors in a HPC system, each processor must

execute all the instruction sets which results in a poor utilization of the instruction

cache. The effect of cache miss can become a significant execution overhead in the

real computational environment.
An alternative implementation strategy for a STAP application is called pipelin-

ing. The idea of pipelining is that the rate of execution of instructions can be in-

creased by overlapping the execution of different instructions among processors. The

pipelining technique can achieve the same throughput results as parallelization on all

processors. Consider a job with workload W executed on P processors. The paral-

lelization on all P processors produces a throughput of £. The pipelining technique

can achieve the same throughput after the pipeline is filled which takes W time.

Figure 1 illustrates the effects of the two implementations on the throughput result.

For most of the radar applications including STAP, the input data is an indefinite

sequence of signal data sets collected by the sensors to be processed by the signal

processing system. In addition, a STAP application has a sequence of processing steps

in which the output of each step is the input of its successor. Therefore, the pipelining

implementation is more appropriate for the design of a STAP system due to the

nature of the STAP application. From the hardware point of view, the utilization of

instruction cache for every processor in a pipeline can be enhanced by executing only

one set of instructions. However, the communication overhead due to data transfer

between processors in the pipeline may cause a performance degradation for the

integrated system. In the real STAP application, this overhead can be tolerated since

the size of each signal data set is moderate compared to many scientific applications.

C-18

E
o

u
o
h

EL.

Time

(a) Parallelization

o
CA
(A
W u
o h

&.

W
P

-w- w
p

(b) Pipelining

-*- Time

Pipeline Initialization ^ Productive Stage

Figure 1. The effect of parallelism and pipelining on the system throughput.

Also, the communication costs can be reduced by overlapping communication and

computation in the pipeline.

In this work, we design a parallel pipeline computational model for STAP which

combines both the parallelization and pipelining techniques. The pipeline in this

model consists of several tasks where each task represents a processing step in a

STAP algorithm. The input of one task in the pipeline is the output of its previous

task. Each task is then parallelized by partitioning its workload evenly across the

processors assigned to this task. Since many of the same operations in a task are

repetitively performed on its input data and the size of data for each operation is

relatively small, the sequential version of these operations is used instead of using a

C-19

Input Taskj, —►Output

P2 Pn

Figure 2. Basic structure for the computational model of the parallel pipeline system.

Taski is parallelized on Pi processors.

parallel algorithm. In this manner, the communication between processors within a

single task is reduced to a minimum. Figure 2 illustrates the basic structure of the

parallel pipeline computational model. In this work, a real STAP application based

on this model was implemented on several HPC systems and the performance results

demonstrate the linear scalability of this model.

1.2 Shared Memory versus Distributed Memory

HPC Systems

Shared-memory multiprocessor architectures are the oldest form of parallel processing

architecture. All processors in a shared-memory system have equal access to the

system memory through a system bus. The shared-memory architecture is favored

because it is the most affordable way to achieve scalability by plugging processors into

the system board and then providing an improved performance. There is no inter-

processor communication overhead in this system because processors communicate

with each other by accessing the common memory. However, there are disadvantages

for these types of systems. First, a cache is associated with each processor, which

raises the problem of cache coherence. A given piece of data which refers to an

address in the main memory can be present at the same time in several caches,

so when a processor updates data, a cache-coherency protocol must prevent other

processors from accessing the non-updated copies of that piece of data. On the

C-20

Table 1. Characteristics of shared-memory and distributed-memory HPC systems.

Shared-Memory System Distributed-Memory System

Processors Multiple Multiple

Communication Access via shared memory Message passing

Operating System A single copy across

all processors

One copy per node

Interconnection System bus Data network

Overhead Access to common data

structures

Communication costs

hardware side, the parallelism is restricted by the number of processors that can be

connected to a single system bus and the cache/memory transfers and cache-coherency

traffic increase with the number of processors. On the software side, the operating

system must be designed such that multiple accesses to common data structures are

protected. The execution streams on processors must synchronize their accesses to

common data by using locks to prevent simultaneous updating.

Distributed-memory massively parallel processor architecture is defined as a po-

tentially large set of compute nodes linked by a specialized inter-processor connection

network. The interconnection network provides a scalable bandwidth with a very low

latency; e.g., in the order of a few tens of microseconds. Each compute node has

its own processor and private memory as well as its own copy of the operating sys-

tem. Compute nodes in this type of a system communicate with each other through

message passing over the interconnection network. Compared to the shared-memory

system, the inter-processor communication overhead may become large enough to

degrade the performance of the distributed-memory system. Table 1 summarizes the

characteristics of these two multiple processor architectures.

A hybrid system that combines both the characteristics of shared and distributed-

memory architectures is implemented on Intel Paragon MP system. In the Paragon

C-21

MP system, a large number of compute nodes are interconnected by a high speed

fabric data network and each compute node is a shared-memory system with a small

number of processors. The communication between compute nodes is done by message

passing through the data network. In this work, we investigate the implementation

of the parallel pipeline STAP system on the Paragon MP system. By using the

multi-threading technique, we evenly divide the computational workload across all the

processors in every single compute node. Our goal is to determine the performance

enhancement that can be obtained using a small number of shared-memory processors

at each compute node.

1.3 Disk I/O

Since most radar applications require signal processing in real time, we assume that

the signal data collected by the radar is directly delivered to the signal processing

system. In addition, the output of the processing system is assumed to be sent to

a terminal that displays the detected target in real time. Therefore, the parallel

pipeline STAP system normally does not include disk I/O costs. However, with the

recent advances in both hardware and software aspects of parallel I/O techniques,

parallel file systems can provide powerful disk I/O performance. High data transfer

bandwidth between disks and computing systems is achieved by using file systems

with multiple stripe directories. In this work, we also investigate the impact of I/O

on the overall parallel pipeline STAP system performance when the signal data is

obtained through parallel file systems.

1.4 Processor Assignment

Optimal use of resources is particularly important in high-performance embedded

applications due to limited resources and other constraints such as desired latency or

throughput [6]. The throughput requirement says that when allocating processors to

tasks, it should be guaranteed that all the input data sets will be handled in a timely

C-22

manner. That is, the processing rate should not fall behind the input data rate. The

response time criteria, on the other hand, require the minimization of computation

latency on a particular set of data input.
In this work, we investigate the effect of processor assignment in the parallel

pipeline system on the throughput and latency. Throughput can always be improved

by increasing the number of processors assigned to the task with the maximum ex-

ecution time among all the tasks in the pipeline system. From the study of the

experimental results, the latency may be improved by reorganizing the task structure

in the parallel pipeline system. With the fixed total number of processors, tradeoffs

exist between assignment of processors to maximize the overall throughput and as-

signment of processors to minimize the latency. We will examine the possibility of

improving the results for both latency and throughput.

1.5 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 first discusses the traditional

design of radar signal processing systems and states the advantages of HPC based

systems over VLSI based systems. Then, we propose the parallel pipelined compu-

tation model for real time signal processing applications, especially for STAP ap-

plications. By analyzing the computational characteristics of STAP algorithms, we

describe the structure of this model with respect to the characteristics found in the

STAP algorithm and also discuss some parallelization issues and approaches.

In Chapter 3, the implementation of a modified PRI-staggered post-Doppler STAP

application based on our parallel pipeline computational model on HPC systems

is described. A general description of the STAP algorithm used is given and its

associated parallelization approaches are also presented. We ran the codes portably

and obtained the performance results on Intel Paragon, IBM SP, and SGI Origin.

We present the performance results with regard to computation and communication

costs as well as the overall system throughput and latency.

Chapter 4 describes the multi-threaded implementation of the parallel pipeline

C-23

STAP system on the Intel Paragon MP system. We compare the performance results

between the systems that use single processor nodes and the ones that use SMP nodes.

We also discuss the limited performance gain resulting from using the thread-safe

versions of numerical libraries developed on the Paragon MP system. The decision

of processor assignment is studied when extra compute nodes are available to be

added into the pipeline system. This decision presents the tradeoff between increasing

throughput and reducing latency.

In Chapter 5, we study the effect on system performance when disk I/O is incor-

porated in the parallel pipeline model. Two alternatives for I/O implementation are

presented: embedding I/O in the pipeline or having a separate I/O task. We use the

parallel file systems on the Intel Paragon and the IBM SP to perform the parallel I/O

and study its effect on throughput and latency. From these two I/O implementations,

we discover that the latency may be improved when the structure of the pipeline is

reorganized by merging multiple tasks into a single task. The possibility of improving

latency is also examined.

Chapter 6 gives conclusions and outlines further research topics.

C-24

Chapter 2

Parallel Pipeline System Model

Traditional radar signal processing systems have been built using custom VLSI in

order to meet real-time requirements. Custom VLSI based systems satisfy the re-

quirements for small size and light weight such that they can be installed on airborne

platforms. However, custom VLSI can only be used for special purpose radar equip-

ments and have to be re-designed when different signal processing algorithms are to

be employed. Due to the technological advances in recent years, High Performance

Computing (HPC) systems that provide the necessary computational power to solve

many scientific problems are becoming practical. These systems offer advantages

of programming generality, software portability, architectural flexibility, affordabil-

ity, and performance scalability over the systems using traditional custom VLSI.

Equipped with powerful processors, HPC systems are attractive in real-time embed-

ded environments, such as radar signal processing applications.

Most radar applications such as Space-Time Adaptive Processing (STAP) are com-

putationally intensive and must operate in real time which require performance levels

of Tera FLoating point Operations Per Second (TFLOPS) [2]. Since this work focuses

on the parallelization of STAP algorithms for HPC environments, we first analyze the

computational requirements of STAP algorithms. Based on the computational char-

acteristics of STAP algorithms, we have designed a parallel pipeline computational

model. This model permits us to significantly improve the performance of STAP

C-25

applications on HPC systems.
This chapter is organized as follows. Section 2.1 compares the approaches of

using custom VLSI and HPC systems in radar signal processing applications. Sec-

tion 2.2 presented an overview of STAP algorithms and describes the computational

characteristics of most STAP applications. Section 2.3 discusses the related work on

parallelization of STAP applications in the current literature. The parallel pipeline

model is presented in Section 2.4. The parallelization issues of this model are given

in Section 2.5.

2.1 Custom VLSI versus HPC Systems

Traditionally, radar signal processing systems were built based on custom VLSI. In

these systems, VLSI was used to implement several hardware components for special

purpose operations, for example, Fast Fourier Transforms (FFT) processors, linear

algebra solvers, matrix multipliers/etc. This VLSI based systems satisfy the embed-

ded system requirements of small size, light weight, and fit into the limited space

on airborne platforms. However, in order to achieve the required computational per-

formance, the software developed for these systems use low level languages. This

restricted the programming flexibility provided by these systems. In addition, signifi-

cant design modification was often required when porting across different application

environments. Therefore, the VLSI based design can only suffice for one signal pro-

cessing application on one VLSI board. Due to this application specific nature, the

hardware development for each individual application leads to higher overall costs.

In recent years, the radar signal processing area has evolved significantly. Many

new algorithms have been proposed and developed to solve detection problems in

different environments. Most of these algorithms such as STAP require higher com-

putational power in the order of TFLOPS. Adequate processing power is not provided

by the current custom VLSI based systems to perform these computations in real time.

Hence, different approaches for the design of embedded real time signal processing

systems are needed.

C-26

High performance computing (HPC) systems are becoming mainstream due to the

progress made in hardware as well as software support in the last few years. These

powerful machines were used to solve scientific problems, such as grand challenge

problems, which require a large number of computational operations. The current

commercial HPC systems are developed by integrating commercial-off-the-shelf com-

ponents interconnected by a high speed data network. Typically, a single processor in

HPC systems offers performance in the range 100 Mega FLoating point Operations

Per Second (MFLOPS) to 600 MFLOPS. Different architectures of HPC systems are

implemented such as the classical Symmetrical Multi-Processor (SMP), cluster, or

Massively Parallel Processor (MPP) systems.

SMP systems were introduced for mainframe systems during the 1960s. The SMP

architecture is favored because of its affordability to achieve scalability by simply

plugging in additional processor boards and thus providing an improved performance.

From the hardware point of view, an SMP system may contain more than one proces-

sor. Every processor in an SMP system has its own private cache memory but shares

all other system resources such as the main memory and I/O. Figure 3(a) illustrates

the architecture of an SMP system. As opposed to SMPs, clusters are loosely coupled

computers where each member computer of the cluster is a system with fully features

that is able to function independently from the others. The interconnection in a clus-

ter system is based on a high speed Local Area Network (LAN), for example, Ethernet

or FDDI. Figure 3(b) illustrates the architecture of a cluster HPC system. An MPP

configuration can be defined as a potentially large set (several hundreds) of CPUs

called nodes, linked by a specialized interconnection network. Such an interconnec-

tion is based on proprietary technology of individual manufacturers which provides

scalable bandwidth with a very low communication latency. Each node has its own

processor(s), memory, and I/O channels, as well as its own copy of the operating

system. Figure 3(c) illustrates the architecture of an MPP system.

In contrast with the custom VLSI based systems, HPC systems offer advantages of

architectural flexibility, performance scalability, and software portability. HPC sys-

tem architectures can be scaled in size to suit the requirements of radar applications.

C-27

CPU CPU CPU
I ' ' I • • •

(cache) (cache) (cache
system bus

high speed local area network

main
memory

_X77
CPU I I/O

I/O
interface network]

^^ ^^3 ••• Ez3 disks

!#/cache).;! 4

'{memory)!

CPU 1 I/O

] '(memory)?

' •••
X

CPU i I/O
(cache) .,

(memory|;

disks ÖÖÖÖÖÖ—Ö

(a) SMP (b) cluster

[(memory)
;^ (cache)'

I/O node

(cache)

compute nodes

[(memory) 1 [(memory)i
! (cadie) 1

CPU

(memory)^
(cache)-

CPU

kL

Interconnect Fabric

2D mesh,
hypercube,
switch,
etc.

FT

I/O node ••• I/O node

ÖÖÖÖÖÖ-Ö disks

(c) MPP

Figure 3. Three architectures of HPC systems: (a) Symmetrical Multi-Processor, (b)

cluster, and (c) Massively Parallel Processor.

C-28

Table 2. Feature comparison between custom VLSI and HPC systems.

Custom VLSI HPC Systems

Hardware components Special purpose General purpose

Computation Fine grain Coarse grain

Communication Systolic Message passing or

shared memory

Software design Low level language High level language

Architecture flexibility No Yes

Scalability No Yes

Portability No Yes

Afibrdability No Yes

On these HPC systems, software can be implemented in high level programming lan-

guages. Use of standardized programming languages and software libraries such as

Message Passing Interface (MPI) [7] permits easy portability across various platforms.

With recent advances in micro-system technologies, it is now feasible to manufacture

light weight, small size, and low power versions of these HPC computers for real-time

embedded radar systems. Table 2 compares the features of custom VLSI and current

HPC systems.

Digital signal processing is one of the core technologies central to the operation of

radar systems. Most signal processing algorithms are characterized by the need for

high-performance and involve repetitive, numerical-intensive tasks which are ideally

suitable to be parallelized on HPC systems. For embedded real time radar signal

processing applications, we have designed a parallel pipeline computational model

on the HPC systems. This model was designed for these applications to meet their

low latency and high throughput requirements. Our work focused on the parallel

implementation and performance evaluation of this model for a Space-Time Adaptive

processing (STAP) algorithm. STAP is a typical class of signal processing methods

whose parallelization is highly desirable. In the next section, we briefly describe the

C-29

STAP algorithms and study the computational characteristics of these algorithms.

2.2 Overview of Space-Time Adaptive Processing

The basic purpose of a radar (radio detection and ranging) is to detect the presence

of an object of interest and provide information concerning that object [8]. A radar

device transmits a waveform into the atmosphere and then listens for the echoes as

the transmitted waveform reflects back from surrounding objects. Various types of

information, such as range, velocity, angular coordinates, size, etc., can be obtained

from the incoming echoes to detect the desired targets. Range information can be

inferred from the amount of time it takes the transmitted signal to travel to a target

and then arrive back at the receiver. Directional information can be attained by scan-

ning the surrounding space with a directed beam. Velocity or target movement can be

determined through measuring the Doppler shift induced in the reflected waveform.

Relative motion between a signal source and a receiver creates a Doppler shift of the

source frequency. When a radar system intercepts a moving object that has a radial

velocity component relative to the radar, the reflected signal's frequency is shifted.

Moving-target indication (MTI) radar is a special purpose Doppler radar that is de-

signed to measure the shift between the transmitted frequency and the frequency

of reflections received from possible targets. The MTI radar rejects signal returns

from stationary or unwanted slow-moving targets, such as buildings, hills, tree, sea,

and rain, and retains detection information on moving targets such as aircrafts and

missiles [9].
In our work, we focus on the study of Space-Time Adaptive Processing (STAP)

algorithms which refer to a class of radar signal processing methods that operate on

data collected from a set of sensors over a given time interval [2]. The object of these

methods is to extract the desired signal from potential target returns comprised of

Doppler shifts resulting from radar platform motion, clutter returns, and interfer-

ence including jamming and sensor noise. The sections that follow provide a brief

overview of the numerical operations and computational characteristics of general

C-30

STAP algorithms. For a thorough theoretical analysis of STAP, the reader is referred

to [2, 10, 11].

2.2.1 STAP Algorithms

The computational requirements to determine the optimal solution for STAP prob-

lems are in the order of 109 to 1012 FLOPS which is too large to process in the allotted

time for real-time operations. With the computational power of current HPC sys-

tems, this method is not completely feasible within the time deadline. Hence, various

heuristic methods have been developed which attempt to approximate the optimal

solution while reducing the computational requirement.

Generally speaking, a heuristic STAP algorithm consists of five primary processing

stages: Doppler filter processing, adaptive weight calculation, beamforming, pulse

compression, and Constant False Alarm Rate (CFAR) processing. The input data

to the STAP algorithms are serial sets of echo returns collected by a radar in a

sequential manner. Each data set is composed of range, pulse, and channel digital

samples. Consequently, a three-dimensional data cube represents each set of STAP

input data which is commonly referred to as a Coherent Processing Interval (CPI.)

Each CPI data is processed through all stages of the STAP algorithms but only

a portion of CPI data may be actually needed in the heuristic approach. Various

STAP algorithms exist and the difference is basically the order of processing stages

that the CPI data goes through. An overview of the STAP process for pre-Doppler

and post-Doppler architectures is shown in Figure 4.

The pre-Doppler STAP performs a reduced dimension space-time adaptive nulling

function through adaptive combination of the input antenna element data. This

algorithm is classified as pre-Doppler STAP because the beamforming is performed

on the data prior to Doppler filter processing. Figure 4(a) illustrates the processing

function chain for this architecture. The post-Doppler STAP performs a reduced

dimension space-time adaptive nulling function through adaptive combination of the

input beam space data and is classified as post-Doppler STAP because beamforming

C-31

steering
Vectors Calculation

'
/ /

Beamforming CPI;

1 *-™u Vl "

I ^ElM\J Pulse
Compression

"

Doppler Filter
Processing

'

CFAR
Processing

(a) Pre-Doppler STAP Architecture (b) Post-Doppler STAP Architecture

Figure 4. Operation stages performed in two radar signal processing algorithms: (a)

pre-Doppler STAP and (b) post-Doppler STAP. A series of CPI data sets represent signals

collected in different time intervals.

is performed after the Doppler filter processing. Figure 4(b) illustrates the processing

function chain for this architecture. The major operations for all processing stages in

STAP are described as follows.

Doppler filter processing The Fast Fourier Transform (FFT) operations are used

to transform the CPI data to the Doppler domain. There is an FFT operation

for every range and channel. The size for each FFT is equal to the number of

pulses in a CPI data cube.

Adaptive weight calculation For each bin in the Doppler domain, the weight vec-

tors are calculated by solving the least squares problem on the matrix of training

data. The training data is selected from all range gates to provide a good es-

timate of the interference. The least squares solution consists of Quadratic

C-32

Residue (QR) decomposition and back substitution where the QR decomposi-

tion is the most computational intensive operation in a STAP algorithm.

Beamforming The resulting weight vectors are then applied to the CPI data for

every Doppler bin. The application is performed by matrix-matrix multiplica-

tion.

Pulse compression In this step, the received signal is convolved with a replica of

the transmit pulse waveform. This is performed with forward FFTs, vector-

vector pointwise multiplications, and inverse FFTs for every Doppler bin and

receive beam.

CFAR processing Various CFAR techniques have been developed to detect targets

by comparing radar signal returns to an adaptive threshold such that a constant

false alarm rate is maintained. Cell-averaging CFAR (CA-CFAR) and ordered

statistics CFAR (OS-CFAR) are two well-known methods where CA-CFAR is

often used for a homogeneous environment of non-stationary Gaussian noise

and OS-CFAR is used for the non-homogeneous environment of Gaussian noise.

The operations involved in CA-CFAR are additions and multiplications while

OS-CFAR involves sorting which is more computational intensive.

2.2.2 Computational Characteristic Analysis

Some general computational characteristics exist in most of the STAP algorithms [10].

We now examine these characteristics and the potential parallelization strategies.

• A STAP algorithm contains a sequence of processing steps or stages. Each step

uses many identical operations on its input data. These identical operations

can be performed independently on different sub-sets of data. Since many of

these operations are carried out repetitively, an efficient parallelization strategy

is to partition the input data across processors such that these operations can

be performed sequentially in each processor without communicating with the

C-33

pulses

I FFT in Doppler Filter Processing

[1 Least Squares Solution in Weight Computation

Figure 5. Data used for Doppler filter processing and Weight computation in STAP

algorithms.

other nodes. For instance, during Doppler filter processing, several FFTs of the

same size are evaluated. Instead of using a parallel algorithm for each FFT,

many sequential FFTs are computed in each processor.

. The data access pattern in one step may be different from that of the sub-

sequent step. Each input data set collected by the radar is organized as a

three-dimensional complex data cube (CPI data cube.) In the Doppler filter

processing, data for the FFTs is distributed orthogonally in the cube relative

to the data for solving the least squares solutions in the weight computation.

Figure 5 illustrates the data access patterns for these two steps. However,

parallelization can only be done by partitioning the data cube across several

processors along one of the three axes. Therefore, corner turn on the data

cube is required between these two steps. The strategy for data redistribution

among processors to achieve the operations of corner turn is critical due to the

possibility of having high communication overhead between the two steps.

C-34

• The size of each input data set at each step of STAP is moderate and. much

smaller than those found in grand challenge scientific applications. Normally,

the size of each input data set for radar signal processing applications ranges

from IM to 100M bytes. The communication overhead due to parallelization is

most likely embedded in the data redistribution between two consecutive steps

and its cost depends on the size of the data processed in these two steps. With

moderate size of data in most STAP applications, the primary communication

will concentrate on the data transfer between two tasks whose access patterns

to the same set of data are orthogonal to each other.

• A sequence of signal data sets received by a radar arrives in a continuous fashion

and each data set has to be processed through all steps in the STAP algorithm.

Data processed in the sequence of steps is like a systolic pipeline that operates

on one input data set after another. Parallelization can be done such that one

processor performs only one of these steps in order to keep the execution simple

and efficient. The radar signal processing applications have a serial or chain-

like structure which make themselves amenable to pipelining. In this work, we

have designed a model of the parallel pipeline system. This model treats each

step as an individual task and assigns groups of processors exclusively to all the

tasks to perform the computation in parallel. The details of this model will be

discussed in the next section.

• The most important requirements for radar signal processing applications are

throughput and latency. The throughput requirement says that all the input

data sets should be handled in a timely manner. That is, the processing rate

should not fall behind the incoming data rate. The latency criteria, on the

other hand, require the minimization of the response time on a particular set

of data input. Furthermore, high throughput provides high accuracy for target

detection and low latency represents a real time response. The goal for the

design of parallel STAP systems is to be able to keep up with the incoming

data rate while minimize the data processing time. Therefore, task scheduling

C-35

for each STAP process stages on an HPC systems needs to be done carefully to

meet these two requirements.

2.3 Related Work

Since the parallelization of STAP applications is highly desirable, several efforts have

been devoted to designing efficient parallel STAP algorithms on HPC systems. In

May 1996, Air Force Research Laboratory (AFRL) performed a real time STAP

demonstration using a Pulse Repetition Interval (PRI)-staggered post-Doppler STAP

algorithm onboard an airborne platform [12, 13]. These experiments were performed

as part of the Real-Time Multi-Channel Airborne Radar Measurements (RTMCARM)

program. The radar in the RTMCARM experiments was a phased array L-Band

radar with 32 elements organized into two rows of 16 each. Only the data from the

upper 16 elements were processed with STAP. This data was derived from a 1.25

MHz intermediate frequency (IF) signal that was 4:1 oversampled at 5 MHz. The

number representation at IF was 14 bits, 2's complement and was converted to 16 bit

baseband real and imaginary numbers. Special interface boards were used to digitally

demodulate IF signals to baseband. The signal data formed a raw 3-dimensional data

cube called coherent processing interval (CPI) data cube comprised of 128 pulses, 512

range gates (32.8 miles), and 16 channels. These special interface boards were also

used to corner turn the data cube so that CPI is unit stride along pulses. It speeds the

subsequent Doppler processing on the High Performance Computing (HPC) systems.

Live CPI data from a phased-array radar were processed by a ruggedized version of

the Paragon computer.
The ruggedized version of Intel Paragon system consists of 25 compute nodes run-

ning the SUNMOS operating system. Figure 6 depicts the system implementation.

Each compute node has three i860 processors accessing the common memory of size

64M bytes as a shared resource. The CPI data sets were sent to the 25 compute

nodes in a round robin manner and all three processors worked on each CPI data

set as a shared-memory machine. The system processed up to 10 CPIs per seconds

C-36

Ruggedized Touchstone

Round
Robin

Scheduling

Figure 6. Implementation of the ruggedized version of Intel Paragon system in RTM-

CARM experiments.

(throughput) and achieved a latency of 2.35 seconds per CPI. This implementation

used compute nodes of the machine as independent resources to run different instances

of CPI data sets. No communication among compute nodes was needed. This ap-

proach can achieve desired throughput by using as many nodes as needed, but the

latency is limited by what can be achieved using the three processors in one compute

node. More information on the overall system configuration and performance results

can be found in [13, 12].
Other related work such as [10, 14, 15, 16] parallelized high-order post-Doppler

STAP algorithms by partitioning the computational workload among all processors

allocated for the applications. In [10, 14], they focused on the design of parallel ver-

sions of subroutines for FFT and QR decomposition. The total communication time

increases as the number of processors increases. The fine grain parallelism generates

many short messages for each operation of parallel FFT and QR decomposition and

C-37

incurs significant communication overhead. In [15, 16], the implementations opti-

mized the data redistribution between processing steps in the STAP algorithms while

using sequential versions of FFT and QR decomposition subroutines. A multi-stage

approach was employed in [17] which was an extension of [15, 16]. A beam space

post-Doppler STAP was divided into three stages and each stage was parallelized on

a group of processors. A technique called replication of pipeline stages was used to

replicate the computational intensive stages such that different data instance is run on

a different replicated stage. Their effort focused on increasing the throughput while

keeping the latency fixed. For other related work, the reader is referred to [18,11, 19].

2.4 Parallel Pipeline Computational Model

Based on the study of computational characteristics of STAP algorithms, we have

designed a computational model of the parallel pipeline system which is suitable for

STAP applications. Figure 7 shows this system model and illustrates the computa-

tional characteristics found in these applications.

A pipeline is a collection of tasks which are executed sequentially on an input data

set. The input to the first task of a pipeline is obtained normally from radar sensors

or other input devices with the inputs to the remaining tasks coming from outputs

of previous tasks. The set of multiple pipelines shown in the figure indicates that the

same pipeline is repeated on subsequent input data sets. Each block in a pipeline

represents one parallel task, which itself is parallelized on multiple (different number

of) processors. That is, each task is decomposed into subtasks to be performed in

parallel. Therefore, each pipeline is a collection of parallel tasks. From the archi-

tecture point of view, compute nodes (or nodes) in a HPC system are partitioned

exclusively into several groups and every task is assigned a group of compute nodes.

The number of nodes assigned to one task may be different from other tasks. In this

model, no compute node is assigned to more than one task and at least one node is

assigned to a task.

From the single compute node point of view, the execution flow for a task in the

C-38

Spatial Spatial Spatial
data data data

dependency dependency dependency

input.
Task. Task.

Temporal
data

dependency

Task.
output.

Temporal
data

dependency

input +1
Task.

3

4-
Task.

Temporal
data

dependency

input i+2
■+

Task.
output .+1

Temporal
data

dependency

Task, Task. Task.
output i+2

y

Figure 7. Model of the parallel pipeline system. Note that Task{ for all input instances

is executed on the same number of processors.

parallel pipeline consists of three phases: receive, compute, and send phases. During

the receive phase in a task, a compute node receives data as the input of this task

from the nodes assigned to the previous task. In the send phase, the data resulting

from the compute phase is transferred to the nodes in the successor task. Figure 8

illustrates the execution flow of a single compute node in a parallel pipeline system.

In both the receive and send phases, communication involves data transfer between

two groups of nodes where no common node is in these two groups simultaneously.

The communication also involves message packing in the send phase and unpacking

in the receive phase. Therefore, data redistribution strategy plays an important role

in determining the communication performance. In the compute phase, computa-

tional work load in each single task is evenly partitioned among all compute nodes

assigned in order to achieve the maximum efficiency. For the parallel systems with

C-39

(finalize V,.
Vstage^^

loops

Figure 8. Execution flow of a single compute node in a parallel pipeline system. For

each individual task, there are three phases: receive, compute, and send.

multiple processors in each compute node (SMP system), multi-threading technique

can be employed to further improve the computation performance. We will discuss

the implementation of multiple threads in the parallel pipeline system in Chapter 4.

2.4.1 Data Dependencies

In such a parallel pipeline system, there exist both spatial and temporal parallelism

[3, 4, 5]. Spatial parallelism is one in which similar operations are applied in all parts

of the input data. That if, the input data for one task can be divided into many

granules and distributed to its subtasks which may execute on different processors

in parallel. Each task operates on the output data of the previous task as its input

and produces an output which becomes the input for the next task. The type of data

and data structures may be different for each task in the system but each form of

data can be partitioned into several granules to be processed in parallel. Temporal

parallelism is present when tasks are repeated on a time sequence of input data sets.

The processing of each set of input data can be done in parallel with the processing

of data sets of other time instances.

Both spatial and temporal parallelism result in two types of data dependencies

C-40

and flows, namely, spatial data dependency and temporal data dependency. Spatial

data dependency can be classified into inter-task data dependency and intra-task

data dependency. Intra-task data dependencies arise when a set of subtasks needs to

exchange intermediate results during the execution of a parallel task in a pipeline.

The exchange of data may be needed during the execution of the algorithm, or to

combine the partial results, or both. Inter-task data dependency is due to the transfer

and reorganization of data passed onto the next parallel task in the pipeline. Inter-

task communication can be communication from the subtasks of the current task to

the subtasks of the next task, or collection and reorganization of output data of the

current task and then redistribution of the data to the next task. The choice depends

on the underlying architecture, mapping of algorithms and input-output relationship

between consecutive tasks. Temporal data dependency occurs when some form of

output generated by the tasks executed on the previous data set are needed by tasks

executing the current data set. In the next chapter, we will see that STAP algorithms

have both types of data dependencies.

2.5 Parallelization Issues and Approaches

Applications such as STAP entail multiple algorithms (or processing steps), each of

which performs particular functions, to be executed in a pipelined fashion. Multiple

pipelines need to be executed in a staggered manner to satisfy the throughput re-

quirements. Each task needs to be parallelized for the required performance, which,

in turn, requires addressing the issue of data distribution on the subset of processors

on which a task is parallelized to obtain good efficiency and incur minimal commu-

nication overhead. Given that each task is parallelized, data flow among multiple

processors of two or more tasks is required and, therefore, communication scheduling

techniques become critical. The problem of input-output of data is another crucial

problem and is more challenging in this scenario because data must be redistributed

within the pipeline in a timely manner to guarantee the throughput and latency

requirements.

C-41

Taskl

Input; —»- TaskO
^^•"^

Task 3 —^- Ou

Task 2

u c
V
3

en Taskl
4)
F

Inputi+1 —»» TaskO Task 3 ^

Task 2

Output i+i

spatial data dependency

Figure 9. A pipeline system with spatial data dependency only.

2.5.1 Throughput and Latency

Throughput and latency are two important measures for performance evaluation on

a pipeline system. Given a parallel pipeline system with n tasks, the throughput of

the pipeline system is the inverse of the maximum execution time among all tasks,

i.e.,

throughput =
max Ti
0<i<n

(1)

where Ti represents the execution time of task i. Figure 9 gives an example of a

parallel pipeline system with 4 tasks. In this example, the throughput of the pipeline

system is

throughput^ —
max T
0<i<4

(2)

To maximize the throughput, the maximum value of T{ should be minimized. In other

words, no task should have an extremely large execution time. With limited number

of processors, the processor assignment to different tasks must be made in such a way

that the execution time of the task with highest computation time is reduced.

The latency of this pipeline system is the time between the arrival of one data

set at the system input and the time at which the result data set is available at the

C-42

Input)

Taskl

TaskO Task 3

Task 2
V

Output j

Inputi+1

Taskl
v

TaskO
\\

Task 3

Task 2
X

Output j+i

Inputj+2

Taskl
%

TaskO
\\

Task 3

Task 2

Output |+2

 »- temporal data dependency

 »- spatial data dependency

Figure 10. A pipeline system with both spatial and temporal data dependencies.

system output. Therefore, the latency for processing one data set is the sum of the

execution times of all the tasks except for the tasks with temporal data dependency,

i.e.,
n-l

(3) latency = ^ Tj -]T Tt
i=0 i€TD

Notice that temporal data dependency (TD) exists when a task processes data sets

in previous time instances and its results is applying to the data set in current time

instance. The temporal data dependency does not affect the latency because the

task with temporal data dependency is operating on previous data sets at any time

instance and its following tasks do not wait for its completion on current time instant

data set. In the example shown in Figure 9, no temporal data dependency exists in

the pipeline system and its latency is

latency^ =■ T0 + max(Ti, T2) + T3.

C-43

Figure 10 shows an example of a parallel pipeline system with both spatial and

temporal data dependencies. In this example, a temporal data dependency exists

between task 2 and task 3. The latency for this pipeline system becomes

latency'^ = To + T\ + T$

while the throughput is still the same as Equation (1),

1
throughput 4 = T-

0<i<4

To reduce the overall system latency, every parallel task must be allocated more

processors to decrease its execution time and consequently the overall execution time

of the integrated system.

2.5.2 Data Redistribution

In an integrated system which implements several tasks that feed data to each other,

data redistribution is required when it is fed from one parallel task to another. This

is because the way data is distributed in one task may not be the most appropri-

ate distribution for another task for algorithmic or efficiency reasons. For example,

given an input two-dimensional array, one task may process it in a row major fash-

ion. The next task that receives this two-dimensional array may require a column

major order. To ensure efficiency of continuity of memory access, data reorganiza-

tion and redistribution are required in both intra-task and inter-task communication

phase. In inter-task communication, data redistribution also allows concentration of

communication at the beginning and the end of each task.

In the parallel pipeline system shown in Figure 7, compute nodes are partitioned

into several disjoint groups and each group is assigned to exactly one task in the

pipeline. As one group of nodes completes its computation on one set of input data,

its output is to be transferred to its successor group or groups, depending on the

structure of the pipeline. Data transfer between two tasks represents interprocessor

communication between two groups of compute nodes. Since the data access patterns

C-44

Corner turn All to all

Mt

Left-right shift

P. P. P:

Many to many

Figure 11. Two types of data redistribution: corner turn and left-right shift. Corner

turn involves an all-to-all personalized communication and left-right shift involves a

many-to-many communication.

of one task may be different from its successor tasks, communication patterns can be

either a corner-turn or a left-right shift pattern.

We now use an example to explain these two types of data redistribution. Given

a three-dimensional array as the input to one parallel task, the array is evenly par-

titioned into several sub-arrays across multiple compute nodes assigned to this task.

This partitioning can be done along one of the array's three axes due to the efficiency

of memory access. However, after the completion of computation, partitioning of the

output array of one group along the same axis may not be suitable for its successor

group. Since any single data layout will not always provide efficient computation for

data access along two orthogonal axes, the data re-mapping problem exists when in-

termediate data is transmitted between different parallel tasks. This communication

pattern is called a corner-turn communication pattern, shown in Figure 11(a). A

three-dimensional array is partitioned along axis z for task p with 3 compute nodes

while it is partitioned along axis x for task q with 4 nodes. Therefore, it may be

C-45

necessary to reorganize the data during message packing in the send phase of one

task and message unpacking in the receive phase of its successor task. The com-

munication pattern of corner-turn data redistribution involves a complete exchange

(all-to-all personalized) pattern between two groups of compute nodes.

On the other hand, the left-right shift communication pattern occurs when an

array is partitioned along the same axis between two consecutive parallel tasks. In

Figure 11(b), a three-dimensional array is partitioned along axis x for both p and q

tasks. Left-right shift communication pattern does not involve data reorganization.

Each node in one task only communicates with some of the nodes in its successor

task (a many-to-many communication.) Therefore, the communication overhead of

left-right shift pattern is much less than the corner-turn pattern.

Efficient runtime functions and strategies have been developed to perform data

redistribution within the same group of processors [20, 21, 22, 23]. These techniques

reduce the communication time on irregular all-to-all redistribution by minimizing

node contention. However, our parallel pipeline system model requires data redis-

tribution between two different groups of processors and those algorithms were not

designed for the case of our model. In the next chapter, we present several efficient

redistribution algorithms which focus on communication between different sets of

processors.

2.5.3 Task Scheduling and Processor Assignment

An important factor in the performance of a parallel system, is how the computa-

tional load is mapped onto the processors in the system. Ideally, to achieve maximum

parallelism, the load must be evenly distributed across the processors. In recent years,

much research has been devoted to the problem of mapping large computations onto

a system of parallel processors. Various aspects of the general problem have been

studied, including different parallel architectures, task structures, communication is-

sues, and load balancing [3, 24]. The problem of statically mapping the workload of

a parallel algorithm to processors in a distributed memory system, has been studied

C-46

under different problem models, such as [25, 26]. The mapping policies are adequate

when an application consists of a single task, and the computational load can be

determined statically. These static mapping policies do not model applications con-

sisting of a sequence of tasks (algorithms), where the output of one task becomes the

input to the next task in the sequence.
Optimal use of resources is particularly important in high-performance embedded

applications due to limited resources and other constraints such as desired latency or

throughput [6]. When several parallel tasks need to be executed in a pipelined fashion,

tradeoffs exist between assigning processors to maximize the overall throughput and

assigning processors to minimize a single data set's response time (or latency.) The

throughput requirement says that when allocating processors to tasks, it should be

guaranteed that all the input data sets will be handled in a timely manner. That

is, the processing rate should not fall behind the input data rate. The response

time criteria, on the other hand, require minimizing the latency of computation on a

particular set of data input.
To reduce the latency, each parallel task must be allocated more processors to re-

duce its execution time, and consequently, the overall execution time of the integrated

system. But it is well known that the efficiency of parallel programs usually decreases

as the number of processors is increased. Therefore, the gains in this approach may

be incremental. On the other hand, throughput can be increased by increasing the

latency of individual tasks by assigning them fewer processors, and therefore, increas-

ing efficiency, but at the same time having multiple streams active concurrently in a

staggered manner to satisfy the input-data rate requirements. We will present these

tradeoffs and discuss various implementation issues in the later chapters.

2.6 Summary

This chapter first compared two competing approaches to build a radar signal pro-

cessing system namely by using custom VLSI and HPC systems. Due to the techno-

logical advances in recent years, HPC systems are becoming a practical alternative

C-47

that provide the necessary computational power to solve many scientific problems.

These systems offer advantages of programming generality, software portability, archi-

tectural flexibility, affordability, and performance scalability over the systems using

traditional custom VLSI.
An overview of radar signal processing, especially the STAP algorithm, was pro-

vided. The computational characteristics embedded in most of the existing STAP

algorithms were analyzed. Based on the studies of these characteristics, we designed

a parallel pipeline computational model that is suitable for the type of STAP appli-

cations. Parallelization issues of this model on HPC systems were also addressed in

this chapter. These issues involve data redistribution between two groups of proces-

sors and processor assignment among tasks in the pipeline. In the next chapter, we

implement a STAP application using our parallel pipeline model to demonstrate the

performance efficiency and scalability that this model can achieve.

C-48

Chapter 3

Parallel Pipelined STAP System

Space-time adaptive processing (STAP) is a well known technique in the area of

airborne surveillance radars used to detect weak target returns embedded in strong

ground clutter, interference, and receiver noise. STAP is a 2-dimensional adaptive

filtering algorithm that attenuates unwanted signals by placing nulls in their directions

of arrival and Doppler frequencies. Most STAP applications are computationally

intensive and must operate in real time. High performance computers are becoming

mainstream due to the progress made in hardware as well as software support in

the last few years. They can satisfy the STAP computational requirements of real-

time applications while increasing the flexibility, affordability, and scalability of radar

signal processing systems. However, efficient parallelization of a STAP algorithm

which has embedded in it different processing steps is challenging, and requires several

optimizations.
This chapter describes our parallel pipelined implementation of a Pulse Repetition

Interval (PRI)-staggered post-Doppler STAP algorithm. The design and implemen-

tation of the application is portable. Performance results are presented for the Intel

Paragon at the Air Force Research Laboratory (AFRL), IBM SP at Argonne National

Laboratory (ANL), and SGI Origin at Northwestern University. AFRL successfully

installed their implementation of the STAP algorithm onboard an airborne platform

and performed four flight experiments in May and June 1996 [12]. These experiments

C-49

24 Channel
L-Band
RADAR

A/D Converters
Multiplexer

10 MB/sec

SCSI
8 MB/sec

DCRSI
TAPE

DISC
27 GByte

Mercury
Processor

* Conventional
processing

Preprocessor

Demultiplex
Demodulate

Buffer Memory
Corner Turn

"HffPI

RTMCARM
SYSTEM

Ethernet

VME

Ruggedized Paragon

25 Compute, 2 HD?PI, 2 Service Nodes

* Doppier Filter Processing
* Weight Computation
* Beamforming
* Pulse Compression
* CFAR processing
* Data Recording

Sensor Manager
& Beam Steering

Computer

* RADAR Control
* Process Comparison
* Data Displays

Ethernet

SPARC 20

* JSS Interface
* Carto Display
* Paragon Interface

HIPPI

Figure 12. RTMCARM system block diagram.

were performed as part of the Real-Time Multi-Channel Airborne Radar Measure-

ments (RTMCARM) program. The RTMCARM system block diagram is shown in

Figure 12. In that real-time demonstration, live data from a phased array radar was

processed by the onboard Intel Paragon and results showed that high performance

computers can deliver a significant performance gain. However, that implementation

used compute nodes of the machine only as independent resources in a round robin

fashion to run different instances of STAP (rather than speeding up one instance of

C-50

STAP.) Using this approach, the throughput may be improved, but the latency is

limited by what can be achieved using one compute node.

For our parallel implementation of this real application we have designed a model

of the parallel pipeline system described in Chapter 2 where each pipeline is a col-

lection of tasks and each task itself is parallelized. This parallel pipeline model was

applied to the STAP algorithm with each step as a task in a pipeline. This permits

us to significantly improve latency as well as throughput.

This chapter describes parallelization process and performance results. In addi-

tion, design considerations for portability, task mapping, parallel data redistribution,

parallel pipelining as well as system-level and task-level performance measurement

are discussed. Finally, the performance and scalability of the implementation for a

large number of processors is demonstrated.

This chapter is organized as follows: Section 3.1 presents an overview the STAP

algorithm we implemented in our work, Section 3.2 presents specific details of parallel

pipeline STAP implementation. Section 3.3 describes the software development and

the configurations of system platforms we used in the experiments. Performance

results are presented in Section 3.4.

3.1 Algorithm Overview

The adaptive algorithm, which cancels Doppler shifted cluttei returns as seen by

the airborne radar system, is based on a least squares solution to the weight vector

problem. This approach has traditionally yielded high clutter rejection, but suffers

from severe distortions in the adapted main beam pattern and resulting loss of gain

on the target. Our approach introduces a set of constraint equations into the least

squares problem which can be weighted proportionally to preserve main beam shape.

The algorithm is structured so that multiple receive beams may be formed without

changing the matrix of training data. Thus, the adaptive problem can be solved once

for all beams which lie within the transmit illumination region. The airborne radar

system was programmed to transmit five beams, each 25 degrees in width, spaced

C-51

20 degrees apart. Within each transmit beam, six receive beams were formed by the

processor.

The algorithm consists of the following steps:

1. Doppler filter processing,

2. Weight computation,

3. Beamforming,

4. Pulse compression, and

5. CFAR processing.

Doppler filtering is performed on each receive channel using weighted Fast Fourier

Transforms (FFT's). The analog portion of the receiver compensates the received

clutter frequency to center the clutter frequency at zero regardless of the transmit

beam position. This simplifies indexing of Doppler bins for classification as "easy" or

"hard" depending on their proximity to mainbeam clutter returns. For the "hard"

cases, Doppler processing is performed on two 125-pulse windows of data separated

by three pulses (a STAP technique known as "PPJ-stagger"). Both sets of Doppler

processed data are adaptively weighted in the beamforming process for improved

clutter rejection. In the "easy" case, only a single Doppler spectrum is computed.

This simpler technique has been termed Post Doppler Adaptive Beamforming and

is quite effective at a fraction of the computational cost when the Doppler bin is

well separated from mainbeam clutter. In these situations, an angular null placed in

the direction of the competing ground clutter provides excellent rejection. Selectable

window functions are applied to the data prior to the Doppler FFT's to control

sidelobe levels. The selection of a window is a key parameter in that it impacts the

leakage of clutter returns across Doppler bins, traded off against the width of the

clutter passband.

An efficient method of beamforming using recursive weight updates is made pos-

sible by a block update form of the QR decomposition algorithm. This is especially

C-52

significant in the "hard" Doppler regions, which are computed using separate weights

for six consecutive range intervals. The recursive algorithm requires substantially less

training data (sample support) for accurate weight computation, as well as providing

improved efficiency. Since the hard regions have one sixth the range extent from which

to draw data, this approach dealt with the paucity of data by using past looks at the

same azimuth, exponentially forgotten, as independent, identically distributed esti-

mates of the clutter to be cancelled. This assumes a reasonable revisit time for each

azimuth beam position. During the flight experiments, the five 25 degree transmit

beam positions were revisited at a 1-2 Hz rate (5-10 CPIs per second.)

The training data for the easy Doppler regions was selected using a more tradi-

tional approach. Here, the entire range extent was available for sample support, so

the entire training set was drawn from three preceding CPIs for application to the

next CPI in this azimuth beam position. In this case, a regular (non-recursive) QR

decomposition is performed on the training data, followed by block update to add in

the beam shape constraints.

Pulse compression is a compute intensive task, especially if applied to each receive

channel independently. In general, this approach is required for adaptive algorithms

which compute different weight sets as a function of radar range. Our algorithm,

however, with its mainbeam constraint, preserves phase across range. In fact, the

phase of the solution is independent of the clutter nulling equations, and appears

only in the constraint equations. The adapted target phase is preserved across range,

even though the clutter and adaptive weights may vary with range. Thus, pulse

compression may be performed on the beamformed output of the receive channels

providing a substantial savings in computations.

In the sections to follow, we present the process of parallelization and software

design considerations including those for portability, task mapping, parallel data re-

distribution, parallel pipelining and issues involved in measuring performance in im-

plementations when not only the performance of individual tasks is important, but

overall performance of the integrated system is critical. We demonstrate the perfor-

mance and scalability for a large number of processors.

C-53

CPI
Data
Cube

1 (Ti)

u Weight
Computation
(Easy Case)

TD
(T3)

13

Doppler
Filter

Processing

'o (T0)

Beamforming

(Easy Case)
(T5) P« (T6)

Weight
Computation
(Hard Case)

Beamforming

(Hard Case)

ine '

Pulse

Compression

CFAR

Processing

T
TD 2,4

(T4)
Detection
Reports

(T2)

 ► Data from previous time instance
 ► Data from current time instance

Figure 13. Implementation of parallel pipelined STAR Arrows connecting task blocks

represent data transfer between tasks.

3.2 Design and Implementation

The design of the parallel pipelined STAP algorithm is shown in Figure 13. The

parallel pipeline system consists of seven basic tasks. We refer to the parallel pipeline

as simply a pipeline in the rest of this chapter. The input data set for the pipeline is

obtained from a phased array radar and is formed in terms of a coherent processing

interval (CPI). Each CPI data set is a 3-dimensional complex data cube comprised of

K range cells, J channels, and N pulses. The output of the pipeline is a report on the

detection of possible targets. The arrows shown in Figure 13 indicate data transfer

between tasks. Although a single arrow is shown, note that each represents multiple

processors in one task communicating with multiple processors in another task. Each

task * is parallelized by evenly partitioning its work load among P{ processors. The

execution time associated with task *, Tu consists of the time to receive data from

C-54

the previous task, computation time, and time to send results to the next task.

The calculation of weights is the most computationally intensive part of the STAP

algorithm. For the computation of the weight vectors for the current CPI data cube,

data cubes from previous CPIs are used as input data. This introduces temporal

data dependency. For example, suppose that a set of CPI data cubes entering the

pipeline sequentially are denoted by CPU, t = 0,1,.... At any time instance i,

the Doppler filtering task is processing CPU and beamforming task is processing

CPIi-i. In the meanwhile, the weight computation task is using past CPIs in the

same azimuthal direction to calculate the weight vectors for CPU as described below.

The computed weight vectors will be applied to CPU in the beamforming task at

next time instance i +1. Thus, temporal data dependencies exist and are represented

by arrows with dashed lines, TDlfl and TD2)4, in Figure 13 where TDid represents

temporal data dependency of task j on data from task i. In a similar manner, spatial

data dependencies SDid can be defined and are indicated in Figure 13 by arrows with

solid lines.
Throughput and latency are two important measures for performance evaluation

on a pipeline system. The throughput of our pipeline system is the inverse of the

maximum execution time among all tasks, i.e.,

throughput = —. v4)
max li
0<i<7

To maximize the throughput, the maximum value of % should be minimized. In other

words, no task should have an extremely large execution time. With a limited number

of processors, the processor assignment to different tasks must be made in such a way

that the execution time of the task with highest computation time is reduced.

The latency of this pipeline system is the time between the arrival of the CPI data

cube at the system input and the time at which the detection report is available at

the system output. Therefore, the latency for processing one CPI is the sum of the

execution times of all the tasks except weight computation tasks, i.e.,

latency = T0 + max{T3, T4) +T$ + T6 (5)

C-55

Equation (5) does not contain Tx and T2. The temporal data dependency does

not affect the latency because weight computation tasks use data from the previous

instance of CPI data rather than the current CPI. The filtered CPI data cube sent to

the beamforming tasks do not wait for the completion of its weight computation but

rather for the completion of the weight computation of the previous CPI. For example,

when the Doppler filter processing task is processing CPU, the weight computation

tasks use the filtered CPI data, CPU-U to calculate the weight vectors for CPU- At

the same time, the beamforming tasks are working on CPU-i using the data received

from the Doppler filter processing and weight computation tasks. The beamforming

tasks do not wait for the completion of the weight computation task when processing

CPIi-i data. The overall system latency can be reduced by reducing the execution

times of the parallel tasks, e.g., T0, T3, T4, T5, and T6 in our system.

Next, we briefly describe each task and its parallel implementation. A detailed

description of the STAP algorithm we used can be found in [27, 28].

3.2.1 Doppler Filter Processing

The input to the Doppler filter processing task is one CPI complex data cube received

from a phased array radar. The computation in this task involves performing range

correction for each range cell and the application of a windowing function (e.g. Plan-

ning or Hamming) followed by a iV-point FFT for every range cell and channel. The

output of the Doppler filter processing task is a 3-dimensional complex data cube of

size Kx2JxN which is referred to as staggered CPI data. In Figure 13, we can see

that this output is sent to the weight computation task as well as to the beamforming

task.
Both the weight computation and the beamforming tasks are divided into easy

and hard parts. These two parts use different portions of staggered CPI data and the

associated amounts of computation are also different. The easy weight computation

task uses range samples only from the first half of the staggered CPI data while the

hard weight computation task uses range samples from the entire staggered CPI data.

C-56

J
channels

K
range eel

'^
/

/-*'•• Z
► , - •. / "*Ti

V - ZV-
11

p.
s

/

/ "

—_ »
N pulses

Figure 14. Partitioning strategy for Doppler filter processing task. The CPI data cube is

partitioned among P0 processors across dimension K.

On the other hand, easy and hard beamforming tasks use all range cells rather than

some of them. Therefore, the size of data to be transfered to weight computation

tasks is different from the size of data to be sent to beamforming tasks. In Figure 13,

thicker arrows connected from Doppler filter processing task to beamforming tasks

indicates that the amount of data sent to the beamforming tasks is more than the

amount of data sent to the weight tasks.

The basic parallelization technique employed in the Doppler filtering processing

task is to partition the CPI data cube across the range cells, that is, if P0 processors

are allocated to this task, then each processor is responsible for ^ range cells. The

reason for partitioning the CPI data cube along dimension K is that it maintains an

efficient accessing mechanism for continuous memory space. A total of K ■ 2 J N-point

FFTs are performed and the best performance is achieved when every JV-point FFT

accesses its N data sets from a continuous memory space. Figure 14 illustrates the

parallelization of this step. The inter-task communication from the Doppler filter

processing task to weight computation tasks is explained in Figure 15(b). Since only

subsets of range cells are needed in weight computation tasks, data collection has to

be performed on the output data before passing it to the next tasks. Data collection

is performed to avoid sending redundant data and hence reduces the communication

costs.
C-57

range cells

channels hard hard

Input to Hard Weight
Computation Task

data transfer

Input to Easy Weight
Computation Task

Nhari
2

N, easy
Nhard

2

N Doppler bins (pulses)

(a)

Output from Doppler
Filter Processing Task

(b)

Figure 15. (a) Staggered CPI data partitioned into easy and hard weight computation

tasks, (b) Parallel inter-task communication from Doppler filter processing task to easy

and hard weight computation tasks requires different sets of range samples. Data

collection needs to be performed before the communication. This can be viewed as

irregular data redistribution.

3.2.2 Weight Computation

The second step in this pipeline is the computation of weights that will be applied to

the next CPI. This computation for N pulses is divided into two parts, namely, "easy"

ana "hard" Doppler bins, as shown in Figure 15(a). The hard Doppler bins (pulses),

Nhard, are those in which significant ground clutter is expected. The remaining bins

are easy Doppler bins, Neasy. The main difference between the two is the amount

of data used and the amount of computation required. Not all range cells in the

staggered CPI are used in weight calculation and different subsets of range samples

are used in easy Doppler bins and hard Doppler bins.

To gather range samples for easy Doppler bins to calculate the weight vectors

for the current CPI, data is drawn from three preceding CPIs by evenly spacing

out over the first one third of K range cells of each of the three CPIs. The easy

weight computation task involves Neasy QR factorizations, block updates, and back

C-58

substitutions. In the easy weight calculation, only range samples in the first half

of the staggered CPI data are used while hard weight computation employs range

samples from the entire staggered CPI. Furthermore, range extent for hard Doppler

bins is split into six independent segments to further improve clutter cancelation. To

calculate weight vectors for the current CPI, range samples used in hard Doppler

bins are taken from the immediately preceding staggered CPI combined with older,

exponentially forgotten, data from CPIs in the same direction. This is done for

each of the six range segments. The hard weight computation task involves 6Nhard

recursive QR updates, block updates, and back substitutions. The easy and hard

weight computation tasks process sets of 2-dimensional matrices of different sizes.

Temporal data dependency exists in the weight computation task because both

easy and hard Doppler bins use data from previous CPIs to compute the weights for

the current CPI. The outputs of this step, the weight vectors, are two 3-dimensional

complex data cubes of size Neasy x J x M and Nhard x 2 J x M for easy and hard weight

computation tasks, respectively, where M is the number of receive beams. These two

weight vectors are to be applied to the current CPI in the beamforming task. Because

of the different sizes of easy and hard weight vectors, the beamforming task is also

divided into easy and hard parts to handle different amounts of computation.

Given the uneven nature of weight computations, different sets of processors are

allocated to the easy and hard tasks. In Figure 13, Pi processors are allocated to

easy weight computation and P2 processors to hard weight computation. Since weight

vectors are computed for each pulse (Doppler bin), the parallelization in this step

involves partitioning of data along dimension N, that is, each processor in easy weight

computation task is responsible for ^** pulses while each processor in hard weight

computation task is responsible for ^^ pulses, as shown in Figure 16.

Notice that Doppler filter processing and weight computation tasks employ dif-

ferent data partitioning strategies (along different dimensions.) Due to different par-

titioning strategies, an all-to-all personalized communication scheme is required for

data redistribution from Doppler filter processing task to the weight computation

task. That is, each of the Pi and P2 processors needs to communicate with all P0

C-59

K

J
channels

K

N, easy pulses

cells/o
■* — •■

// /

/
/

Neasy „

2xJ
channels

Nhard Pukes

y ^ . ■-

ells//

// /

/

;

f

//
Nhard m

Pi P2

Figure 16. Partitioning strategy for easy and hard weight computation tasks. Data cube

is partitioned across dimension N.

processors allocated to the Doppler filter processing task to receive CPI data. Since

only subsets of Doppler filter processing task's output are used in the weight compu-

tation task, data collection is performed before inter-task communication. Although

data collection reduces inter-task communication cost, it also involves data copying

from non-continuous memory space to continuous buffers. Sometimes the cost of data

collection may become extremely large due to hardware limitations (e.g. high cache

miss ratio.) When sending data to the beamforming task, the weight vectors have

already been partitioned along dimension N which is the same as the data partition-

ing strategy for the beamforming task. Therefore, no data collection is needed when

transferring data to the beamforming task.

3.2.3 Beamforming

The third step in this pipeline (which is actually the second step for the current CPI

because the result of the weight task is only used in the subsequent time step) is

beamforming. The inputs of this task are received from both Doppler filter process-

ing and weight computation tasks, as shown in Figure 13. The easy weight vector

received from easy weight computation task is applied to the easy Doppler bins of

C-60

the received CPI data while the hard weight vector is applied to hard Doppler bins.

The application of weights to CPI data requires matrix-matrix multiplications on two

received data sets. Due to different matrix sizes for multiplications in easy and hard

beamforming tasks, uneven computational load results. The beamforming task is also

divided into easy and hard parts for parallelization purposes. This is because the easy

and hard beamforming tasks require different amounts and portions of CPI data, and

involve different computational loads. The inputs for the easy beamforming task are

two 3-dimensional complex data cubes. One data cube which is received from the

easy weight computation task is of size Neasy x M x J. The other is from Doppler

filter processing task and its size is ATeasy x J x K. A total of Neasy matrix-matrix

multiplications are performed where each multiplication involves two matrices of size

M x J and J x K, respectively. The hard beamforming task also has two input data

cubes which are received from Doppler filter processing and hard weight computation

tasks. The data cube of size SNhard x M x 2 J is received from hard weight compu-

tation task and the Doppler filtered CPI data cube is of size Nhard x2JxK. Since

range cells are divided into 6 range segments, there are a total of 6Nhard matrix-

matrix multiplications in hard beamforming. The results of the beamforming task

are two 3-dimensional complex data cubes of size Neasy x M x K and NhaTd xMxK

corresponding to easy and hard parts respectively.

In a manner similar to the weight computation task, parallelization in this step also

involves partitioning of data across the N dimension (Doppler bins.) Different sets of

processors are allocated to easy and hard beamforming tasks. Since the cost of matrix

multiplications can be determined accurately, the computations are equally divided

among the allocated processors for this task. As seen from Figure 13, this task requires

data to be communicated from the first as well as the second task. Because data is

partitioned along different dimensions, an all-to-all personalized communication is

required for data redistribution between Doppler filter processing and beamforming

tasks. The output of the Doppler filter processing task is a data cube of size K x

2J x N which is redistributed to the beamforming task after data reorganization in

the order of N x K x 2J. Data reorganization has to be done before the inter-task

C-61

CPI Data Subcube
output from

Doppler Filter Processing Task

K
JL

N pulses easy r

/
'A / / /:

7 / /
'— =^ <-

N.

J
channels

Data Reorganize

N

CPI Data Subcube
input to

Easy Beamforming Task

-2^x— XJ P P \3 r0

Figure 17. Data redistribution from Doppler filter processing task to easy beamforming

task. CPI data subcube of size ^ X J X Pi
is reorganized to subcube of size

ut x — X J before sending from one processor in Doppler filter processing task
P3 ~ Pa

to another in easy beamforming task

communication between the two tasks takes place, as shown in Figure 17.

Data reorganization involves data copying from non-continuous memory space and

its cost may become extremely large due to cache misses. For example, two Doppler

bins in the same range cell and the same channel are stored in contiguous memory

space. After data reorganization, they are ^ • J element distance apart. Therefore, if

P0 is small and the size of CPI data subcube partitioned in each processor is large then

it is quite likely that expensive data reorganization will be needed which becomes a

major part of communication overhead. The algorithms which perform data collection

and reorganization are crucial to exploit the available parallelism. Note that receiving

data from weight computation tasks does not involve data reorganization or data

collection because they have the same partitioning strategy (along dimension N.)

C-62

K range cells

Figure 18. Partitioning strategy for pulse compression task. Data cube is partitioned

across dimension N into P5 processors.

3.2.4 Pulse Compression

The input to the pulse compression task is a 3-dimensional complex data cube of size

NxMxK,as shown in Figure 18. This data cube consists of two subcubes of size

Neasy xMxK and NhardxMxK which are received from easy and hard beamforming

talks respectively. Pulse compression involves convolution of the received signal with

a replica of the transmit pulse waveform. This is accomplished by first performing

X-point FFTs on the two inputs, point-wise multiplication of the intermediate result

and then computing the inverse FFT. The output of this step is a 3-dimensional real

data cube of size N x M x K. The parallelization of this step is straightforward and

involves the partitioning of data cube across the N dimension. Each of the FFTs

could be performed on an individual processor and hence each processor in this task

gets an equal amount of computation. Partitioning along the N dimension also results

in an efficient accessing mechanism for continuous memory space when running FFTs.

Since both beamforming and pulse compression tasks use the same data partitioning

strategy (along dimension N), no data collection or reorganization is needed prior to

communication between these two tasks. After pulse compression, the square of the

magnitude of the complex data is computed to move to the real power domain. This

cuts data set size in half and eliminates the computation of the square root.

C-63

3.2.5 CFAR Processing

The input to this task is an N x M x K real data cube received from the pulse

compression task. The sliding window constant false alarm rate (CFAR) processing

compares the value of a test cell at a given range to the average of a set of reference

cells around it times a probability of false alarm factor. This step involves summing

up a number of range cells on each side of the cell under test, multiplying the sum by a

constant, and comparing the product to the value of the cell under test. The output

of this task, which appears at the pipeline output, is a list of targets at specified

ranges, Doppler frequencies, and look directions. The parallelization strategy for this

step is the same as for the pulse compression task. Both tasks partition data cube

along the N dimension. Also, no data collection or reorganization is needed in pulse

compression task before sending data to this task.

Figure 19 illustrates the organization of input/output data cubes for all tasks in

this STAP algorithm. All data cubes shown in this figure are partitioned along its

first dimension across the assigned processors in every task. For example, the input

data cube to the Doppler filter processing task organized as K x J x N is partitioned

along dimension K.

3.3 Software Development and System Platform

All the parallel programs development and their integration was performed using

ANSI C language and message passing interface (MPI) [7]. All the functions needed

for data redistribution etc. were developed in the same fashion. This permits easy

portability across various platforms which support C language and MPI. Since MPI is

becoming a de facto standard for high-performance systems, we believe the software is

portable. To facilitate upward or downward scalability, the number of processors, data

sizes and other important parameters are runtime inputs so that the same program

can be run on different number of processors without compiling it again. This allows,

for example, the same function to be executed on 2, 4 and so on, number of processors.

C-64

CPI
datacube

Target
datacube

K : Range Cells J : Channels N : Pulses M : Receive Beams

Figure 19. Organization of data cubes for all tasks in the STAP algorithm.

C-65

Table 3. Configurations of the system platforms on which we ran the parallel pipeline

STAP codes.

AFRL

Paragon

ANL

IBMSP

NWU

SGI Origin

Configuration MPPf Cluster Cluster

CPU Type i860 RISC P2SC* MIPS R10000

RAM (MByte) 64 256 1024

MFLOPS/proc 100 480 390

MHz /proc 40 120 195

No. nodes 232 80 8

No. proc/node 3 1 1

Execution mode dedicated
 1

dedicated time shared

tMPP: Massively Parallel Processor

tP2SC: Power 2 SuperScalar chip

The High Performance Computer (HPC) system we used to test our STAP code

are: 232-node Intel Paragon at the Air Force Research Laboratory, 80-node IBM SP

at Argonne National Laboratory, and 8-node SGI Origin at Northwestern University.

Their system configurations are given in Table 3.
In our implementation, a double buffering strategy was used both in receive and

send phases. During the execution loops, this strategy employs two buffers alterna-

tively such that one buffer can be processed during the communication phase while

the other buffer is processed during the compute phase. Together with the double

buffering implementation, asynchronous send and receive calls were employed in order

to maximize the overlap of communication and computation. The general execution

flow and the approach to measure the timing for each part of computation and com-

munication is given in Figure 20.

C-66

n : number of CPIs

inBuf[2] : input data buffer

outBuf[2] : output data buffer

1 for i <- 0 to n - 1

2 prev «— (i — 1) mod 2

3 cur <— i mod 2

4 next <- (i + 1) mod 2

5 to «- read timer

6 post async receives for inBuf[next]

7 wait for completion of previous receives for inBuf[cur]

8 data unpacking on iiiBuf[cw]

9 ti <- read timer

10 computation on inBuf[cur] and result in outBuf[cur]

11 t2 •<— read timer

12 data packing for outgoing message on outBuf[cur]

13 post async sends for outBuf[cur] to next task

14 wait for completion of sends for outBuf[preu]

15 t3 <— read timer

Figure 20. Implementation of timing computation and communication for each task. A

double buffering strategy is used to overlap the communication with the computation.

Receive time = U - t0, compute time = t2 - *i, and send time = t3 - -t2.

C-67

Table 4. The number of floating point operations for the PRI-staggered post Doppler

STAP algorithm to process one CPI data.

Task number of floating point operations

Doppler filter processing 79,691,776

hard weight computation 197,038,464

easy weight computation 13,851,792

easy beamforming 28,311,552

hard beamforming 44,040,192

pulse compression 38,928,384

CFAR processing 1,690,368

Total 403,552,528

3.4 Performance Results

We specified the parameters that were used in our experiments as follows:

• range cells (K) = 512,

• channels (J) = 16,

• pulses (N) = 128,

• receive beams (M) = 6,

• easy Doppler bins {NeaSy) = 72, and

• hard Doppler bins {Nhard) = 56.

Given these values of parameters, the total number of floating point operations

(flops) required for each CPI data to be processed throughout this STAP algorithm

is 403,552,528. Table 4 shows the number of flops required for each task. A total of

25 CPI complex data cubes were generated as inputs to the parallel pipeline system.

C-68

Each task in the pipeline contains three major parts: receiving data from the previous

task, main computation, and sending results to the next task. Performance results

are measured separately for these three parts, namely receiving time, computation

time, and sending time. In each task timing results for processing one CPI data were

obtained by accumulating the execution time for the middle 20 CPIs and then aver-

aging it. Timing results presented in this chapter do not include the effect of initial

setup (first 3 CPIs) and final iterations (last 2 CPIs).

3.4.1 Computation Costs

The task of computing hard weights is the most computationally demanding task. The

Doppler filter processing task is the second most demanding task. Naturally, more

processors are assigned to these two tasks in order to obtain a good performance.

For each task in the STAP algorithm, parallelization was done by evenly dividing

computational load across processors. Since there is no intra-task data dependency, no

inter-processor communication occurs within any single task in the pipeline. Another

way to view this is that intra-task communication is moved to the beginning of each

task within the data redistribution step. Figure 21 gives the computation performance

results as functions of numbers of processors and the corresponding speedup on the

AFRL Intel Paragon. For each task, we obtained linear speedups.

3.4.2 Inter-task Communication

Inter-task communication refers to the communication between sending and receiv-

ing (distinct and parallel) tasks. This communication cost depends on both processor

assignment for each task as well as on the volume and extent of data reorganization.

Table 5 presents the inter-task communication timing results. Each sub-table consid-

ers pairs of tasks where the number of processors (# proc) for both tasks are varied.

In some cases timing results shown in the tables contain idle time for waiting for the

corresponding task to complete. This happens when receiving task's computation

part completes before the sending task has generated data to send.

C-69

u Doppkr Filter Procttttag •

11 « ■

i « ■

■: «J ■
•Ll ll.

Number of procenon

. U5 EMyWrifhlCon .„»k.
c •J

n US 1 ■

i
«J

«.15

■.1 ll US III 1
Number of proctann

M Hard Weight Compuulkm ■

1« .

1« 1 .
«.i Ill

Number of proccmon

Easy Bcamformlat .

Ii 1
Number of proraaaors

Hard Bum, forming

i"' I ■

u 1 ■

5 ■ ■
H CM ■ ■ 1 1 1 ■

Number of prnceaaora

U ■ PUIK ComprcmdoB -

i"! 1
1 U ■ I

■H ms

MS 1 1 ■
Number of precewon

■J5 __ CFAR procemtmj

«j ' 1
«J5 ■ 1
" 1 _

MS 1 1
«.«5 III B

Number of proccoon

Number of pntceoon

Number of proceaaon Number of pruccmon

Figure 21. Performance and speedup of computation time as a function of number of

processors for all tasks.

C-70

Table 5. Timing results of inter-task communication. Time in seconds. # proc: number

of processors.

easy weight hard weight easy BF hard BF

proc 16 56 112 16 16

Doppler

filter

8

16

32

send recv send recv send recv send recv send recv

.1332

.0679

.0340

.4339

.1780

.0511

.1332

.0679

.0332

.3603

.1048

.0034

.1332

.0679

.0340

.4441

.1837

.0563

.1332

.0679

.0340

.4509

.1955

.0646 _

.1332

.0679

.0340

.4395

.1843

.0519

easy beamforming

proc 8 16

easy

weight

4

8

16

send recv send recv

.0005

.0088

.0768

.1956

.0883

.0807

.0007

.0004

.0003

.2570

.0905

.0660

hard beamforming

#proc 8 16

hard

weight

28

56

112

send recv send recv

.0007

.0100

.1824

.1798

.1468

.1398

.0007

.0065

.0005

.2485

.0765

.0543

pulse compression

Proc 8 16

easy

BF

4

8

16

send recv send recv

.0069

.0036

.0580

.5016

.1379

.0771

.0069

.0036

.0022

.5714

.2090

.0569

hard

BF

4

8

16

send recv send recv

.0054

.0029

.1159

.5016

.1379

.0771

.0054

.0030

.0017

.5714

.2090

.0569

CFAR processing

#proc 4 8

pulse

compression

4

8

16

send recv send recv

.0099

.0053

.1256

.3351

.0662

.0435

.0098

.0051

.0028

.3348

.1750

.1783

From most of the results the following important observations can be made. First,

when the number of processors is unbalanced, the communication performance is not

very good. Second, as the number of processors is increased in the sending and

receiving tasks, communication scales tremendously. This happens for two reasons.

One, each processor has less data to reorganize, pack and send and each processor

has less data to receive; and two, contention at sending and receiving processors is

reduced. Thus, it is not sufficient to improve the computation times for such parallel

pipelined applications to improve throughput and latency.

In Figure 20 receiving time for each loop is given by subtracting h from t0. Since

C-71

computation has to be performed only after input data has been received, receiving

time may contain the waiting time for the input, shown in line 4. Sending time, t3-t2,

measures the time containing data packing (collection and reorganization) and posting

sending requests. Because of the asynchronous send used in the implementation,

the results shown here are visible sending time and the actual sending action may

occur in other portions of the task. Similar to the receiving time, sending time

may also contain waiting time for the completion of sending requests in the previous

loop. With large number of processors, there is tremendous scaling in performance

of communicating data as the number of processors is increased. This is because the

amount of processing for communication per processor is decreased (as it handles less

amount of data), amount of data per processor to be communicated is decreased and

traffic on links going in and out of each processor is reduced. This model scales well

for both computation and communication.

In Figure 20 receiving time for each loop is given by subtracting tx from t0. Since

computation has to be performed only after input data has been received, receiving

time may contain the waiting time for the input, shown in line 4. Sending time, t3-i2,

measures the time containing data packing (collection and reorganization) and posting

sending requests. Because of the asynchronous send used in the implementation, the

results shown here are visible sending time and the actual sending action may occur in

other portions of the task. Similar to the receiving time, sending time may also contain

waiting time for the completion of sending requests in the previous loop, shown in line

8. Especially in the cases when two communicating tasks have uneven partitioned

parallel computation load, this effect becomes more apparent. With large number

of processors, there is tremendous scaling in performance of communicating data as

the number of processors is increased. This is because the amount of processing for

communication per processor is decreased (as it handles less amount of data), amount

of data per processor to be communicated is decreased and traffic on links going in

and out of each processor is reduced. This model scales well for both computation

and communication.

C-72

3.4.3 Integrated System Performance

Integrated system refers to the evaluation of performance when all the tasks are

considered together. Throughput and latency are the two most important measures

for performance evaluation in addition to individual task computation time and inter-

task communication time. Table 6 gives timing results on the AFRL Paragon for three

different cases with different processor assignments. The performance results on the

ANL SP and SGI Origin at Northwestern University are given in Table 7.

In Section 3.2 equations (4) and (5) provide the throughput and latency for one

CPI data set. The measured throughput is obtained by placing a timer at the end

of last task and recording the time difference between every loop (that is between

two successive completions of the pipeline.) The inverse of this measure provides

the throughput. On the other hand, it is more difficult to measure latency because

it requires synchronizing clocks at the first task and last task's processors. Thus,

to obtain the measured latency, the timing measurement should be made by first

reading time at both first task and last task when the first task is ready to read a

new input data. This can be done by sending a signal from the first task to the last

task's processor when the first task is ready for reading the new input data. Then

the timer for last task can be started.

In fact, the latency given in equation (5) represents an upper bound because

the way we time tasks contains the time of waiting for input from previous task. This

waiting time portion overlaps with the computation time in the previous tasks and

should be excluded from the latency. Thus the latency results are conservative values

and the real latency is expected to be smaller than this value. However, the latency

given from equation (5) indicates the worst-case performance for our implementation.

The real latency equation, therefore, becomes

real latency = T0 + maxfö, T{) + T'b + T6 (6)

where T[= T{ - idle time at receiving, i = 3, 4, 5, and 6.

Figure 22 gives the throughput and latency results corresponding to the 3 cases in

Table 6. From these 3 cases, it is clear that even for latency and throughput measures

C-73

Table 6. Performance results on the Intel Paragon for 3 cases of processor assignments.

Time in seconds. # proc: number of processors.

case 1: total number of processors = 236

#proc recv comp send total

Doppler filter 32 .0055 .0874 .0348 .1276

easy weight 16 .0493 .0913 .0003 .1408

hard weight 112 .0555 .0831 .0005 .1390

easy BF 16 .0658 .0708 .0021 .1387

hard BF 28 .0936 .0414 .0010 .1361

pulse compr 16 .0551 .0776 .0028 .1355

CFAR 16 .0910 .0434 - .1344

estimated
throughput

latency

7.1019

0.5362

measured
throughput

latency

7.2659

0.3622

case 2: total number of processors = 118

proc recv comp send total

Doppler filter 16 .0110 .1714 .0668 .2492

easy weight 8 .0998 .1636 .0003 .2637

hard weight 56 .0979 .1636 .0005 .2621

easy BF 8 .1302 .1267 .0036 .2605

hard BF 14 .1782 .0822 .0017 .2622

pulse compr 8 .1027 .1543 .0051 .2621

CFAR 8 .1742 .0864 - .2606

estimated
throughput

latency

3.7919

1.0342

measured
throughput

latency

3.7959

0.6805

case 3: total number of processors = 59

#proc recv comp send total

Doppler filter 8 .0219 .3509 .1296 .5024

easy weight 4 .1796 .3254 .0003 .5053

hard weight 28 .1779 .3265 .0006 .5050

easy BF 4 .2439 .2529 .0068 .5037

hard BF 7 .3370 .1636 .0032 .5039

pulse compr 4 .1806 .3067 .0097 .4970

CFAR 4 .3240 .1723 - .4963

estimated
throughput

latency

1.9791

1.9996

measured
throughput

latency

1.9898

1.3530

C-74

Table 7. Performance results on IBM SP and SGI Origin.

IBMSP IBMSP
case 1: total nodes = 52 Time in seconds

node recv comp send total

Doppler 8 .0068 .0593 .0964 .1625

easy wgt 2 .1208 .0525 .0001 .1734

hard wgt 28 .1048 .0639 .0001 .1689

easy BF 4 .1072 .0605 .0001 .1678

hard BF 4 .1069 .0615 .0002 .1686

PC 4 .1146 .0527 .0001 .1674

CFAR 2 .1296 .0402 - .1699

estimated
throughput

latency

5.7654

0.6684

measured
throughput

latency

5.9104

0.4273 |

case 3: total nodes = 8 Time in seconds

node recv comp send total |

Doppler 1 0.0484 .4240 .7688 1.2412

easy wgt 1 1.1360 .1051 .0001 1.2412

hard wgt 2 0.4950 .7464 .0001 1.2415

easy BF 1 1.0047 .2352 .0001 1.2399

hardBF 1 1.0018 .2387 .0001 1.2406

PC 1 1.0418 .1986 .0001 1.2405

CFAR 1 1.1602 .0802 - 1.2404

estimated
throughput

latency

0.8055

4.9627

measured
throughput

latency

0.8057

2.5973

IBMSP
case 2: total nodes = 26 Time in seconds

node recv comp send total

Doppler 4 .0129 .1070 .2031 .3230

easy wgt 1 .2230 .1021 .0001 .3252

hard wgt 14 .2182 .1072 .0001 .3255

easy BF 2 .2052 .1185 .0001 .3238

hard BF 2 .2054 .1189 .0001 .3244

PC 2 .2231 .0989 .0001 .3221

CFAR 1 .2439 .0809 - .3248

estimated
throughput

latency

3.0179

1.2942

measured
throi

lat

ghput

ency

3.0810

| 0.9062

SGI Origin
case 4: total nodes = 8 Time in seconds

Doppler

easy wgt

hard wgt

easy BF

hardBF

PC

CFAR

node

estimated

measured

1

comp

0.0695

1.4808

0.9531

1.3615

1.3395

1.3973

1.5326

throughput

latency

throughput

latency

.6437

.0924

.6208

.2001

.2220

.1638

.0303

send

.8540

.0000

.0005

.0005

.0012

.0018

total

1.5671

1.5732

0.6352

6.2554

0.6395

3.0983

1.5744

1.5620

1.5627

1.5628

1.5629

C-75

^10 u v

e-
Ö 6

8. 4
J3
00

§ 2
u

ZnfeZ Paragon

I estimated
I measured

I I
59 118 236

Number of Nodes

Intel Paragon
2.5

2 ■

"§1.5

!►> 1 u e
•a 0.5

EG
j

o

■ estimated
a measured

I
59 118 236

Number of Nodes

Figure 22. Throughput and latency for the 3 cases in Table 6. Measured results are

obtained from the experiments while estimated results are obtained from applying indi-

vidual tasks' timing to equations (4) and (5). The unit of throughput is number of CPIs

per second. The unit of latency is second.

we obtain linear speedups from our experiments. Figure 23 shows the performance

results corresponding to Table 23. We were limited to these number of processors

due to the size of the machines. Both throughput and latency results scale well on

the IBM SP at ANL. Given that this scale up is up to 236 processors on the Paragon

and 52 processors on the SP, we believe these are very good results.

As discussed in Chapter 2, tradeoffs exist between assigning processors to max-

imize throughput and to minimize latency, given limited resources. Using two ex-

amples, we illustrate how further performance improvements may (or may not) be

achieved if few extra processors are available. We now take case 2 from Table 6 as an

example and add some extra processors to tasks to analyze its effect to the throughput

and latency. Suppose that case 2 has fulfilled the minimum throughput requirement

and more processors can be added. Table 8 shows that adding 4 more processors to

Doppler filter processing task not only increases the throughput but also reduces the

latency. This is because the communication amount for each send and receive be-

tween Doppler filter processing task to weight computation and to beamforming tasks

is reduced (Table 8). So, clearly adding processors to one task not only affects that

C-76

■— 7

j« 6

S 5
Ö 4

t 3
■ä 2
§ 1 u

e °

EJ SGI Origin
■ IBM SP

nl 1

4

■a 2.5
& 2
S*1.5
I !
«0.5
J 0

B SGI Origin
■ IBM SP

1
8 26 52

Number of nodes
8 26 52

Number of nodes

Figure 23. Throughput and latency results correspond to the cases in Table 7.

task's performance but has a measurable effect on the performance of other tasks.

By increasing the number of processors 3%, the improvement in throughput is 32%

and in latency is 19%. Such effects are very difficult to capture in purely theoretical

models because of the secondary effects.

Since the parallel computation load may be different among tasks, bottleneck

problems arise when some tasks in the pipeline do not have proper numbers of pro-

cessors assigned. If the number of processors assigned to one task with heavy work

load is not enough to catch up the input data rate, this task becomes a bottleneck

in the pipeline system. Hence, it is important to maintain approximately the same

computation time among tasks in the pipeline system to maximize the throughput

and also achieve higher processor utilization. One bottleneck task can be seen when

its computation time is relatively much larger than the rest of the tasks. The entire

system's performance degrades because the rest of the tasks have to wait for bottle-

neck task's completion to send/receive data to/from it no matter how many more

processors assigned to them and how fast they can complete their jobs. Therefore,

poor task scheduling and processor assignment will cause significant portion of idle

time in the resulted communication costs. In Table 9 we added a total of 16 more

processors to pulse compression and CFAR processing tasks to the case in Table 8.

Comparing to case 2 in Table 6, we can see that the throughput increased. However,

the throughput did not improve compared to the results in Table 8, even though this

assignment has 16 more processors. In this case, the weight tasks are bottleneck tasks

C-77

Table 8. Performance results for adding 4 more processors to Doppler filter processing

task to case 2 in Table 6. Time in seconds.

total number of processors i = 122

#proc recv comp send total

Doppler filter 20 .0090 .1395 .0540 .2024

easy weight 8 .0519 .1633 .0003 .2155

hard weight 56 .0486 .1644 .0005 .2135

easy BF 8 .0815 .1272 .0037 .2124

hard BF 14 .1232 .0823 .0018 .2073

pulse compr 8 .0519 .1543 .0051 .2113

CFAR 8 .1240 .0864 - .2105

throughput

latency

5.0213

0.5498

because their computation costs are relatively higher than other tasks. We can see

that the receiving time of the rest of tasks are much larger than their computation

time. A significant portion of idle time waiting for the completion of weight tasks

is in the receiving time. On the other hand, we observe 23% improvement in the

latency. This is because the computation time is reduced in the last two tasks with

more processors assigned. Prom equation (6), the execution time of these two tasks,

T5 and T^, decreases and therefore the latency is reduced.

3.5 Summary

In this chapter we presented the design and implementation for a PRI-staggered post-

Doppler STAP algorithm implementation on the Intel Paragon machine at AFRL, the

IBM SP at ANL and SGI Origin at Northwestern University. The performance results

indicate that our approach of parallel pipelined implementation scales well both in

terms of communication and computation. For the integrated pipeline system, the

throughput and latency also demonstrate the linear scalability of our design. Our

C-78

Table 9. Performance results for adding 16 more processors to pulse compression and

CFAR processing tasks to the case in Table 8. Time in seconds.

total number of processor: i = 138

#proc recv comp send total

Doppler filter 20 .0091 .1395 .0541 .2027

easy weight 8 .0516 .1633 .0003 .2152

hard weight 56 .0488 .1644 .0005 .2137

easy BF 8 .0819 .1273 .0037 .2129

hard BF 14 .1301 .0823 .0018 .2142

pulse compr 16 .1337 .0775 .0028 .2140

CFAR 16 .1701 .0434 - .2135

throughput

latency ...

4.9052

0.4247

design and implementation not only shows tradeoffs in parallelization, processor as-

signment, and various overheads in inter and intra-task communication etc., but it

also shows that accurate performance measurement of these systems is very impor-

tant. Consideration of issues such as cache performance when data is packed and

unpacked, and impact of the parallelization and processor assignment for one task on

another task are crucial. This is normally not easily captured in theoretical models.

C-79

Chapter 4

Multi-Threaded Design and

Implementation

In this chapter, we present the multi-threaded design and implementation for the

parallel pipelined STAP system on Intel Paragon MP system. The Intel Paragon

at the Air Force Research Laboratory (AFRL), Rome, New York, is an MP system

which has three processors on each compute node board. By running UNIX OSF/1

operating system, each node can run multiple processes and each process can have

multiple threads at the same time. In this chapter, we focus on the design of the

parallel pipeline system and its implementation using multi-threading on this system.

Our goal is to determine the performance enhancement that can be achieved when

using small SMPs on each node of a large parallel computer for such an applica-

tion. We also discuss the process of software development for such an application on

parallel computers when latency and throughput are both considered together and

present their tradeoffs. We demonstrate the performance improvement and scalability

on different numbers of compute nodes for both threaded and non-threaded imple-

mentations. The performance improvement results for the threaded implementation

over non-threaded implementation are provided. Due to limitations of software in

the Intel Paragon, the improvement is not as good as expected on the system with

multi-processors on each compute node board.

C-80

main memory
I/O

interface
system bus

(cache)
processor

(cache)
processor

(cache)
processor

Figure 24. The architecture of a Symmetrical Multi-Processor system.

The rest of the chapter is organized as follows: Section 4.1 describes the archi-

tecture of symmetrical multi-processor systems and the multi-threaded programming

environment on the Intel Paragon MP system. Section 4.2 presents the multi-threaded

design and implementation of the parallel pipeline STAP system. Performance results

are given in Section 4.3.

4.1 Symmetrical Multi-Processor System

Symmetrical Multi-Processor (SMP) systems were introduced during the 1960s for

mainframe computers. The concept of multiprogramming was first introduced on

uni-processors with the goal of providing scaleup by overlapping CPU and I/O times

and to support the time sharing of system resources by numerous users. Figure 24

illustrates the architecture of an SMP system. In an SMP system, there are multiple

processors each having its own private cache memory and having an equal access to

the other system resources such as the main memory and I/O. The SMP architecture

is favored in the 1990s because it is the most affordable way to achieve scalability;

i.e., just plugging in one processor board provides an increase in performance.

The development of the SMP programming environment was based on the fact

that the main memory is common and is accessible to all processors running in the

system. With the introduction of threads, or lightweight processes, the basic concept

of multiprogramming is to allow more than one execution stream to work on the

same workload. Each thread is an independent execution stream that synchronizes

C-81

processor
(cache)

processor
(cache)

processor
(cache)

system bus
I/O

interface
main memory

Interconnection Data Network

i/o
interface main memory

system bus

(cache)

processor
(cache)

processor
(cache)

processor

Figure 25. The architecture of an Massively Parallel Processing system with SNIP nodes.

its accesses to common data in the main memory with other threads by using locks

to prevent simultaneous updating. The operating systems running on the SMP sys-

tems must have proper scheduling algorithms to evenly distribute all threads among

available processors. In this way, multiple threads with the same copy of binary code

can be executed concurrently on more than one CPU and, therefore, the SMP system

scalability is achieved.
The Massively Parallel Processing (MPP) computers with SMP nodes are config-

ured with a large set of SMP nodes linked by high speed interconnection data network.

Processor communication within the a SMP node is carried out by accessing shared

main memory. Processors in different SMP nodes communicate with each other using

message passing through the interconnection data network. The architecture of an

MPP system with SMP nodes is given in Figure 25. An Intel Paragon MP system is

an example of this type of architecture.

C-82

2D mesh

Paragon MP node

main
memory

system bus

cache
message

coprocessor

Figure 26. The architecture of an Intel Paragon MP system.

4.1.1 Intel Paragon MP System

We implemented our parallel pipeline model of the STAP algorithm on the Intel

Paragon XP/S parallel computer located at Air Force Research Laboratory (AFRL)

in Rome, New York. The compute partition of this machine consists of 307 MP

nodes, each with 64M byte RAM. All 307 MP nodes are connected by a high-speed

node interconnect network and are configured in a two-dimensional mesh. Of the

307 MP nodes, 232 are general compute nodes which run users' applications. Ev-

ery Paragon MP node is a SMP system with three i860 processors on each compute

node board. The architecture of a Paragon MP node is illustrated in Figure 26.

Each of the three processors has its own private cache memory but shares the main

memory with the other two processors. The operating system is a version of UNIX

OSF/1. By running this operating system, the three processors in each compute node

are configured with two processors as general application processors and one proces-

sor as message coprocessor which is dedicated to message passing. Multi-threaded

programming environment is supported on a Paragon system [29]. The threads are

implemented as POSIX threads which are based on the POSIX Threads Extension

[C language] P1008.4a/D4 (Draft 4), August 1990. Therefore, the programs that use

C-83

POSIX threads may not be portable to other systems.

Since two out of the three processors in the Paragon MP system are configured as

general application processors, threads in a multi-threaded program on the MP system

can run on either of the two application processors. Each thread runs independently,

but shares resources with other threads. For example, all the threads in a single

process share the main memory. Each compute node acts just like a parallel shared

memory system with two processors. Ideally, if multi-threaded programs have no

concurrent write operations, a speedup of 2 can be expected by using threads on a

compute node of the Paragon MP system.

4.2 Design and Implementation

The STAP algorithm we implemented is described in Chapter 3. The structure of the

parallel pipelined STAP system is the same as shown in Figure 13. From a single task

point of view, the execution flow consists of three phases: receive, compute, and send

phases, shown in Figure 8. In this chapter, only the compute phase is to re-designed

so as to embed multiple threads.

4.2.1 Threads in the Compute Phase

The Intel Paragon at the AFRL is an MP system which has three processors on each

compute node board. In each compute node, two out of the three processors are

configured as general processors to run application code while the third is a message

coprocessor which is dedicated to message passing. With this configuration, only

the compute phase for each task in our parallel pipeline system is implemented with

threads. The reason for not implementing threads in the communication phase is that

the Paragon message-passing library is not thread-safe. Also, if more than one thread

performs message passing, the message-passing performance may degrade and results

may be incorrect. The message passing thread can be the main thread or any other

thread. However, a thread other than the main thread will experience higher message

C-84

main thread loops

second thread loops

Figure 27. Implementation of two threads in the compute phase. The main thread signals

the second thread to perform its computation. After completion of its computation, the

second thread signals back to the main thread.

latency than the main thread. Besides, one processor has already been configured as

message coprocessor which is dedicated to message passing and the communication

performance has been sufficiently improved on the Paragon system.

Since there are only two application processors in each compute node, each com-

pute phase in every task will have two threads implemented. For each task, the main

thread in the compute phase sends a signal to the second thread when the input data

is ready at the receive phase. Both threads then perform the computation on two

processors concurrently. Once the second thread completes its computation, it sig-

nals the main thread that its output data is ready so that the main thread can start

the send phase. While the main thread is performing the message passing calls, the

second thread is waiting for its input signal from the main thread. These two signal

operations involve two synchronizations of two threads using a mutually exclusive

access semaphore. Figure 27 gives the execution flows of two threads in the compute

phase.

C-85

4.2.2 Software Development

All the parallel program development and their integration was performed using ANSI

C language. The libraries linked include standard C math library, message passing

interface (MPI) library [7], POSIX thread library, and Kuck and Associates' CLASS-

PACK basic math library [30]. CLASSPACK library includes several basic linear

algebra subroutines (BLAS) and Fast Fourier transform subroutines. The BLAS con-

tains useful vector and matrix operations for dense numerical linear algebra programs.

All subroutines in CLASSPACK library have been tuned for optimal performance on

the Intel Paragon. The thread-safe versions of these libraries are also provided in

the Intel Paragon and linked by the multi-threaded version of parallel pipeline STAP

implementation.
In our implementation, a double buffering strategy was used both in receive and

send phases. During the execution loops, this strategy employs two buffers alterna-

tively such that one buffer can be processed during the communication phase while

the other buffer is processed during the compute phase. Together with the double

buffering implementation, asynchronous send and receive calls were employed in order

to maximize the overlap of communication and computation. The general execution

flow and the approach to measure the timing for each part of computation and com-

munication is given in Figure 20.

4.3 Performance Results

The implementation of the STAP application based on our parallel pipeline system

model was done on the Intel Paragon at the Air Force Research Laboratory, Rome,

New York. Each CPI complex data cube is a 512 x 16 x 128 three-dimensional array.

A total of 25 CPIs were generated as inputs to the parallel pipeline system. In each

task, timing results for processing one CPI data cube were obtained by accumulating

the execution time for the middle 20 CPIs and then averaging it. Timing results

presented in this chapter do not include the effect of initial setup (first 3 CPIs) and

C-86

final stage (last 2 CPIs). Each task in the pipeline contains three parts: receiving

data from the previous task, main computation, and sending results to the next task.

Performance results are measured separately for these three parts, namely receive

time, compute time, and send time. Since the multiple thread strategy is implemented

in the compute phase only, we first discuss the compute time for each task in the

pipeline and then present the performance results for the integrated pipeline system.

4.3.1 Compute Time

The task of computing hard weights is the most computationally demanding task. The

Doppler filter processing task is the second most demanding task. Naturally, more

compute nodes are assigned to these two tasks in order to obtain a good performance.

For each task in the STAP algorithm, parallelization was done by evenly dividing

computational load across compute nodes assigned. Figure 28 gives the performance

results for different tasks during the compute phase on the AFRL Intel Paragon. It

includes the execution time, the corresponding speedup, and the threading speedups

when using two threads over a non-threaded implementation, all as functions of num-

bers of compute nodes. For each task, we obtained linear speedups for both two

threads and single thread implementations. From Figure 28(b), the speedups when

using two threads are approximately the same as using a single thread.

Assuming that the execution time of a non-threaded implementation of a task is tx

and the execution time of its threaded implementation is t2, we define the threading

speedup for threaded over non-threaded implementation as

s = ± (7)
h

Since two processors are employed in the threaded implementation, we have | < t2 <

tx and therefore 1 < s < 2. The threading speedups for all the tasks during the com-

pute phase are given in Figure 28(c). By running on two processors at the same time,

the two threaded STAP code ideally can have a threading speedup of 2. However, in

most cases, the actual threading speedups do not approach this ideal value. This may

C-87

NMbtt-afaato

«5
Hard Wtfcjhl Ca«»»Utt«i

1" ■ — tlytaiai
p tUniM

■ 1 1
i" 9 li ■ CJH H IB li

NMktrifMta

0J5 MMCMPT^M

I"5

• 0.15

I« llhmM

IB i P 0.1

LOS li 11 li
NMhrrf ■adM

CTAR Fracca*«

MS

0.1 1
■ aafrthrtadad
■ ifcraM

M5 11 ll IES

IJ

HaNBaaafai mm

U

u

1.2

1 | |

Nub*r «f naric*

Figure 28. Performance of different tasks during the compute phase as a function of

the number of compute nodes: (a) execution time, (b) speedups, and (c) threading

speedups.

C-88

be caused by the limitation of implementation of the operating system, OSF/1, and

the implementation of linked thread-safe libraries. On an Intel Paragon MP system,

scheduling of threads is handled by the operating system kernel. Users do not have

control over or get information about which processor runs which thread. On the

other hand, the implementation of thread-safe versions of linked libraries most likely

contains overheads of concurrent read/write operations when multiple threads are

taken into consideration. Although each thread in a process executes independently,

it shares resources with other threads, for example, the memory. Concurrent read

and write operations prevent the threaded implementation from obtaining a linear

speedup, even if two processors are used concurrently.

4.3.2 Integrated System Performance Evaluation

Integrated system performance evaluation refers to the evaluation of performance

when all the tasks in the pipeline are considered together. Throughput (number of

CPIs per second) and latency (number of seconds per CPI) are the two most im-

portant measures for performance evaluation on the parallel pipeline system. Tables

10 and 11 provides detailed timing results for three cases of different compute node

assignments, each with threaded and non-threaded implementations. These timing

tables include computation time and communication time of each task for processing

one CPI. Because of the asynchronous send and receive calls used in the implementa-

tion, the results shown here are communication times that can actually be measured.

Figure 29 gives the estimated and measured throughput and latency values corre-

sponding to Tables 10 and 11. Given timing results for each individual task, estimated

throughput and latency are obtained by applying these individual timing results to

Equations (4) and (5), shown in Section 3.2 of Chapter 3. The measured throughput

and latency are obtained by placing a timer at the end of the last task and recording

the time difference between every loop (that is, between two successive completions

of the pipeline.) The measured throughput results are very close to the estimated

ones both for threaded and non-threaded implementations. However, the measured

C-89

Table 10. Performance results of non-threaded implementation for 3 cases of nodes

assignments.
case 1: total number of nodes = 176 Time in seconds

nodes recv comp send total

Doppler filter 32 .0052 .0860 .0344 .1256

easy weight 8 .0482 .0824 .0004 .1310

hard weight 84 .0373 .0947 .0003 .1323

easy BF 18 .0752 .0561 .0002 .1315

hard BF 14 .0547 .0696 .0002 .1246

pulse compr 16 .0364 .0834 .0085 .1284

CFAR 4 .0597 .0677 - .1273

estimated
throughput

latency

7.5579

0.5128

measured
throughput

latency

7.7403

0.3985

CARP. 2: total nu mber of no des = 10 2 Time in seconds

nodes recv comp send total

Doppler filter 16 .0102 .1761 .0701 .2563

easy weight 4 .0957 .1640 .0003 .2600

hard weight 56 .1184 .1410 .0003 .2597

easy BF 8 .1409 .1178 .0003 .2590

hard BF 8 .1335 .1214 .0003 .2551

pulse compr 8 .0746 .1653 .0150 .2548

CFAR 2 .1199 .1351 - .2550

estimated
throughput

latency

3.8460

1.0251

measured
throughput

latency

3.8677

0.7767

rase 3: total nu mber of no des = 51 Time i n seconds

nodes recv comp send total

Doppler filter 8 .0193 .3471 .1364 .5028

easy weight 2 .1827 .3273 .0003 .5102

hard weight 28 .2293 .2815 .0003 .5110

easy BF 4 .2715 .2347 .0003 .5065

hard BF 4 .2538 .2423 .0002 .4963

pulse compr 4 .1359 .3297 .0293 .4949

CFAR 1 .2256 .2695 .0000 .4950

estimated
throughput

latency

1.9569

1.9992

measured
throughput

latency

1.9962

1.5151

C-90

Table 11. Performance results of threaded implementation for 3 cases of nodes assign-

ments.
case 1: total number of nodes = 176 Time in seconds

nodes recv comp send total

Doppler filter 32 .0052 .0618 .0369 .1039

easy weight 8 .0605 .0538 .0004 .1146

hard weight 84 .0518 .0615 .0004 .1137

easy BF 18 .0680 .0439 .0004 .1123

hard BF 14 .0447 .0602 .0004 .1054

pulse compr 16 .0399 .0608 .0084 .1091

CFAR 4 .0701 .0376 - .1076

throughput
estimated latency

8.7243

0.4329

throughput
measured latency

9.1895

0.3248

case 2: total number of nodes = 105 Time in seconds

nodes recv comp send total

Doppler filter 16 .0101 .1246 .0739 .2086

easy weight 4 .1190 .0992 .0004 .2185

hard weight 56 .1238 .0909 .0004 .2151

easy BF 8 .1223 .0946 .0002 .2171

hard BF 8 .1035 .1056 .0003 .2094

pulse compr 8 .0805 .1151 .0153 .2109

CFAR 2 .1357 .0735 - .2091

throughput
estimated ,atency

4.5757

0.8457

throughput
measured ,atency

4.6916

0.6108

case 3: total number of nodes = 51 Time n seconds

nodes recv comp send total

Doppler filter 8 .0201 .2502 .1429 .4132

easy weight 2 .2241 .1939 .0003 .4183

hard weight 28 .2388 .1777 .0004 .4169

easy BF 4 .2301 .1832 .0004 .4136

hard BF 4 .1935 .2070 .0003 .4009

pulse compr 4 .1447 .2262 .0298 .4006

CFAR 1 .2546 .1451 - .3997

throughput
estimated Jatency

2.3905

1.6272

throughput
measured ,atency

2.4590

1.2046

C-91

10

9 a.
JS
M
a o u
H

estimated
measured

J

25

2

frl.5
e
u
es 1

0.5

0

I estimated
I measured

1 1
51 102 176

Number of nodes
51 102 176

Number of nodes

(a) No thread implemented

10

8
s
St « en
§ 4 u

43
H 2

I estimated
! measured

1 1
u c
Ä
es

2
1.8 I-
1.6
1.4
12

1
0.8
0.6
0.4
0.2

0

■ estimated
m measured

1 I
51 102 176

Number of nodes
51 102 176

Number of nodes

(b) With threads implemented

Figure 29. Estimated and measured values of throughput (number of CPIs per second)

and latency (seconds per CP1) for both threaded and non-threaded implementations.

latency results are smaller than the estimated ones. It is because some tasks may

need to wait for their input data from the previous tasks and this waiting time ac-

tually overlaps with the computation time of the previous tasks. This waiting time

should be excluded from the actual latency value. The latency obtained from Equa-

tion (5) yields the worst-case performance for our implementation. The real latency

is expected to be smaller than the estimated value.

Figure 30 shows the speedups and threading speedups achieved by the threaded

implementation for both latency and throughput corresponding to three cases of

compute node assignments. From these experiments, it is clear that for latency and

throughput measures we obtain linear speedups for both threaded and non-threaded

C-92

s a.
■a s o I-

10

8

6

4

2

0

250

200

§"150

«100

50

I non-threaded
I threaded

i]
•:

51 102 176
Number of nodes

non-threaded throughput
threaded throughput

. non-threaded latency
threaded latency

1.8
1.6
1.4

£ 0.8
J0.6

0.4
0.2

0

2 a
-a 1.8

o>
v
5*1.6
M
| 1.4

u 1.2

50 100 150
Number of nodes

200

non-threaded
I threaded

I M,

i
51 102 176

Number of nodes

i throughput
I latency

Jl__li_J
51 102 176

Number of nodes

Figure 30. Performance results of integrated pipeline system for threaded and non-

threaded implementations, corresponding to Tables 10 and 11.

implementations. Given that this scale up is up to 176 compute nodes (we were

limited to this number of nodes due to the size of the machine), we believe these are

very good results.

4.3.3 Tradeoff Between Throughput and Latency

As discussed in Chapter 2, tradeoffs exist between the assignment of compute nodes

to maximize the overall throughput and the assignment of compute nodes to mini-

mize latency, given limited resources. Using an example, we illustrate how further

performance improvements may (or may not) be achieved if a few extra compute

nodes are available. We now take the case with 102 nodes from Tables 10 and 11 as

an example and add some extra compute nodes to the pipeline to analyze its effect

on the throughput and latency. Extra compute nodes were added to each- task in

C-93

increments of two nodes at a time. The resulting throughput and latency are plotted

in Figure 31.
When extra compute nodes were added to Doppler filter processing tasks, the

throughput increased and latency reduced. From Equations (4) and (5), this im-

provement was obtained because the execution time, T0, is reduced. However, when

the number of nodes added is more than 8, both throughput and latency degrade.

This is because the Doppler filter processing task finishes its computation on the new

CPI so fast that the actual sending operations for the previous CPI have not been

carried out yet. The Doppler filter processing task is forced to wait until the previous

send operations complete. At this moment, the clock has already been read for the

new CPI to be used later to calculate the throughput and latency. The waiting time

increases Doppler filter processing task's execution time, T0, and therefore degrades

the throughput and latency.

When compute nodes are added to easy and hard weight computation tasks, the

resulting throughput and latency have no significant changes. This is because the

latency does not contain the execution time of weight computations, as indicated

in Equation (5). In the case with 102 nodes, we observe that the Doppler filter

processing task has the maximum execution time among all tasks. From Equation

(5), the throughput is affected only by the execution time of Doppler filter processing

task. Therefore, further reduction of the execution time for weight computations does

not improve the throughput.

However, when extra compute nodes are added to either the beamforming or the

pulse compression task, we observe that the latency is reduced. This is because the

execution times T3,T4, and T5 reduce in Equation (5). The throughput, on the other

hand, is still not improved because the Doppler filter processing task is still the task

with the maximum execution time among all tasks.

Given additional compute nodes, Figure 31 presents the tradeoffs between increas-

ing the throughput and reducing the latency, when assigning nodes to the tasks in the

pipeline. Let us consider the case with 102 compute nodes in Tables 10 and 11 that

has satisfied the maximum response time requirement (latency) and more compute

C-94

Doppier Filter Processing

* threaded
-•- non-threaded .

2 4 6 8 10 12 14 16
Number of extra nodes added

5.5

S S
Q.

3 4** e
e 4

3.5

3

Easy Weight Computation - threaded
— non-threaded '

2 4 6 8 10 12 14 16
Number of extra nodes added

5.5

= 5
a.
M 4.5
£
e 4

3.5

3

Hard Weight Computation - threaded
«- non-threaded

2 4 6 8 10 12 14 16
Number of extra nodes added

5.5

= S
a.
M 4.5
a
e 4

3.5

3

Beamforming —■ threaded
•*- non-threaded

2 4 6 8 10 12 14 16
Number of extra nodes added

S3

3 S
a
*! 4.5
o
e 4

3.5

3

Pulse Compression -*- threaded
~- non-threaded

2 4 6 8 10 12 14 16
Number of extra nodes added

1.6

1.4

1.2

0.8

0.6

0.4

Doppler Filter Processing

- threaded
<- non-threaded

0 2 4 6 8 10 12 14 16
Number of extra nodes added

0.9

0.85

0.8

^0.75

I °-7

3 0.65

0.6

0.55
0.5

0.9

0.85

0.8

^0.75

I °-7

J0.65

0.6

0.55

0.5

0.9

0.85

0.8

0.75
£■ | °-7

3 0.65

0.6

0.55

0.5

0.9

0.85

0.8

^0.75

1 °-7

2 0.65

0.6

0.55

0.5

Easy Weight Computation •••• threaded
— non-threaded

0 2 4 6 8 10 12 14 16
Number of extra nodes added

Hard Weight Computation - threaded
— non-threaded

0 2 4 6 8 10 12 14 16
Number of extra nodes added

Beamforming — threaded
«- non-threaded

0 2 4 6 8 10 12 14 16
Number of extra nodes added

Pulse Compression
-i——i—-i 1 1

--' threaded
— non-threaded

0 2 4 6 8 10 12 14 16
Number of extra nodes added

Figure 31. Throughput and latency results by adding 2 nodes at a time to each task.

C-95

Table 12. Performance results of non-threaded implementation for adding 4 more com-

pute nodes to the Doppler processing task and 4 more compute nodes to pulse com-

pression task to the case 2 in Table 10.

total number of nodes = 110 Time in seconds

nodes recv comp send total ||

Doppler filter 20 .0084 .1429 .0579 .2092

easy weight 4 .0473 .1639 .0003 .2114

hard weight 56 .0708 .1404 .0003 .2115

easy BF 8 .0901 .1176 .0003 .2079

hardBF 8 .0796 .1224 .0003 .2024

pulse compr 12 .0813 .1135 .0108 .2057

CFAR 2 .0701 .1348 - .2049

estimated
throughput

latency

4.7271

0.8276

measured
throughput

latency

4.8368

0.6650 1

nodes can be added. We observed that only the addition of nodes to the Doppler

filter processing task can increase the throughput. Similarly, for the case with 102

compute nodes that has satisfied the minimum throughput requirement, only beam-

forming and pulse compression tasks are candidates for the addition of more compute

nodes to reduce the latency.
Compute node assignment can also be made in such a way that throughput and

latency are both improved simultaneously. We again take case 2 (with 102 compute

nodes) from Tables 10 and 11 as an example and add 8 more compute nodes to

analyze its effect on the throughput and latency. Tables 12 and 13 show the results

of adding 4 compute nodes to the Doppler filter processing task and 4 nodes to the

pulse compression task. By increasing the number of compute nodes by 7.8%, the

improvement in throughput is 25.1% and in latency it is 14.4% for the non-threaded

implementation. Meanwhile, the threaded implementation shows 19.7% improvement

in throughput and 10.6% improvement in latency. From these experimented results,

C-96

Table 13. Performance results of threaded implementation for adding 4 more compute

nodes to the Doppler processing task and 4 more compute nodes to pulse compression

task to the case 2 in Table 11.

total number of nodes = 110 Time in seconds

nodes recv comp send total

Doppler filter 20 .0082 .1026 .0681 .1789

easy weight 4 .0905 .0998 .0004 .1907

hard weight 56 .0990 .0900 .0005 .1895

easy BF 8 .0894 .0955 .0003 .1851

hard BF 8 .0644 .1100 .0003 .1747

pulse compr 12 .0799 .0865 .0109 .1773

CFAR 2 .1023 .0736 " .1759

throughput
estimated ,atency

5.2427

0.7172

throughput
measured ,atency

5.6137

0.5458

we can draw the following conclusions. Extra compute nodes can be assigned to

the task that has the maximum execution time among all tasks. In this way, the

execution time of this task is reduced and according to Equation (4), the throughput

is increased. From Equation (5), latency is the sum of several tasks' execution time.

Extra compute nodes can be added to those tasks which benefit the most, that is,

the tasks with greatest reduced execution time when more nodes are assigned. The

sum of these tasks can be reduced the most and therefore it minimizes the latency.

4.4 Summary

In this chapter we presented performance results for a PRI-staggered post-Doppler

STAP algorithm implementation on the Intel Paragon machine at Air Force Research

Laboratory, Rome, New York. This Paragon machine is an MP system which has

C-97

three processors on each compute node board. By taking advantage of this architec-

ture, a multi-threaded implementation is presented and compared to the non-threaded

implementation. Performance results indicate that our approach of parallel pipelined

implementation scales well both in terms of throughput and latency whether the

multi-threaded technique is used or not. Our design and implementation not only

shows tradeoffs in parallelization, compute node assignment, and various overheads

in inter-task communication etc., but it also shows that accurate performance mea-

surement of these systems is very important.

C-98

Chapter 5

I/O Implementation

In this chapter we build upon our work in the previous chapters where we devised

strategies for high performance parallel pipeline implementations, in particular, for

Space-Time Adaptive Processing (STAP) applications [31, 32]. A modified Pulse

Repetition Interval (PRI)-staggered post-Doppler STAP algorithm was implemented

based on the parallel pipeline model and scalable performance was obtained both on

the Intel Paragon and the IBM SP. Normally, this parallel pipeline system does not

include disk I/O costs. Since most radar applications require signal processing in real

time, thus far we have assumed that the signal data collected by radar is directly

delivered to the pipeline system, as shown in the overall radar and signal processing

system of Figure 32.
In practice, the I/O can be done either directly from a radar or through disk

file systems. In this chapter, we focus on the I/O implementation of the parallel

pipeline STAP algorithm when I/O is carried out through a disk file system. Using

existing parallel file systems, we investigate the impact of I/O on the overall pipeline

system performance. Two designs of I/O are employed: in the first design the I/O

is embedded in the pipeline without changing the task structure and in the other a

separate task is created to perform I/O operations. With different I/O strategies, we

ran the parallel pipeline STAP system portably and measured the performance on the

Intel Paragon at California Institute of Technology and on the IBM SP at Argonne

C-99

Parallel Computer

RADAR

Target
Display

Figure 32. Data flow of a radar and signal processing system using parallel computers.

National Laboratory (ANL.) The parallel file systems on both the Intel Paragon and

the IBM SP contain multiple stripe directories for applications to access disk files

efficiently. On the Paragon, two PFS file systems with different stripe factors were

tested and the results were analyzed to assess the effects of the size of the stripe factor

on the STAP pipeline system. On the IBM SP, the performance results were obtained

by using the native parallel file system, PIOFS, which has 80 stripe directories.

Comparing the two parallel file systems with different stripe sizes on the Paragon,

we found that an I/O bottleneck results when a file system with smaller stripe size is

used. Once a bottleneck appears in a pipeline, the throughput which is determined

by the task with maximum execution time degrades significantly. On the other hand,

the latency is not significantly affected by the bottleneck problem. This is because

the latency depends on all the tasks in the pipeline rather than the task with the

maximum execution time. Furthermore, when evaluating the performance results of

the two I/O designs, we observed that the latency can be improved by merging two

tasks in the pipeline. In this chapter, we also examine the possibility of improving

latency by reorganizing the task structure of the STAP pipeline system.

A sequence of raw signal data sets collected by a radar form the input to the

STAP pipeline system. Each of these raw data sets is in the form of a three dimen-

sional array. However, the three dimensions of this array are not organized in a way

such that each Fast Fourier Transformation (FFT) in the Doppler filter processing

task can be performed in a single processor. Without special hardware support to

pre-process the collected raw data, data redistribution is needed before delivering the

C-100

data to the Doppler filter processing task. In the real application we implemented,

this pre-processing work includes data type conversion and corner turn on the three-

dimensional array. Using a software approach, we also embedded pre-processing op-

eration on the raw data in the two I/O designs and compared their performances.

The rest of the chapter is organized as follows: The characteristics of the parallel

file systems tested are described in Section 5.1. The I/O design and implementation

are presented in Section 5.2 and their performance results are given in Section 5.3.

Section 5.4 presents the implementation when tasks are combined to improve latency.

The software approach to pre-processes raw signal data is described in Section 5.5.

5.1 Parallel File Systems

Only input part of parallel I/O was implemented on the STAP pipeline system because

most applications like STAP send their detection results to display devices in real

time. The input to the STAP pipeline system is a series of CPI data sets captured

by the radar. To test our parallel pipeline system with regard to I/O performance,

these CPI data sets were stored in the parallel file system and provided to the pipeline

system through machine's I/O nodes. We used the parallel I/O library developed by

Intel Paragon and IBM SP systems to perform read operations.

5.1.1 Intel Paragon PFS File System

The Intel Paragon OSF/1 operating system provides a special file system type called

PFS, for Parallel File System, which gives applications high-speed access to a large

amount of disk storage [29]. PFS file systems are optimized for simultaneous access

by multiple nodes. Each PFS file system consists of multiple stripe directories. Each

stripe directory is the mount point of a separate UNIX file system. A PFS file system

collects together several file systems into a unit that behaves like a single large file

system. A file stored in PFS is distributed, or striped, across the stripe directories

that make up the PFS file system. The performance of accessing a single PFS file is

C-101

significantly improved by multiple stripe devices providing disk data simultaneously.

The amount of data from a PFS file that is stored in each stripe directory is deter-

mined by the PFS file system's stripe unit. The stripe units on all Paragon parallel

systems at Caltech are 64K bytes. Two PFS file system were tested : one has 16

stripe directories (stripe factor 16) and the other has a stripe factor of 64.

We used the Intel Paragon NX library to implement the I/O of the parallel pipeline

STAP system. Since only input part of the I/O is needed for providing a series of CPI

data sets to the pipeline, only read operations are investigated. Subroutine gopen()

was used to open CPI files globally because it offers better performance and causes

less system overhead. NX library provides six I/O modes for an application to access

files: M-UNIX, M.LOG, M.SYNC, M.RECORD, M.GLOBAL, and MJVSYNC. A file's I/O mode

is set when the file is opened with gopen(). Only non-collected I/O mode MJVSYNC

was used because it provided an efficient parallel read operation. This mode has the

following characteristics on an opened PFS file:

• every node has its own file pointer

• read operations are not synchronized

• read can be for variable-length, unordered records

This mode allows multiple reads to access a single file simultaneously without

agreement on record size or file offset among nodes. If read operations access ex-

clusive portions of a file, it behaves like each compute node reads from its own file

independently. In the pipeline system, the number of nodes to read CPI files may

vary and, therefore, the length of the subset of CPI file for each node to read can be

different. Besides, only the nodes in the first task of the pipeline system issue read

operations, rather than all nodes allocated for the whole application. This explains

why we used MJVSYNC mode and it is also the only feasible and efficient way to read

disk files in parallel. All other collective I/O modes provided by the OSF/1 operating

system require that all nodes in the application perform the same I/O operations

and, hence, accessing files by a subset of the nodes is prohibited for these modes. In

C-102

addition, we used asynchronous I/O function calls: iread() and ireadoff() in order to

overlap I/O operations with the computation and communication.

5.1.2 IBM SP PIOFS File System

The IBM AIX operating system provides a parallel file system called Parallel I/O File

System (PIOFS) which is designed for IBM RS/6000 SP to allow fast parallel access

to large temporary data files [33]. The PIOFS on the IBM SP at ANL is made up

of 5 servers. Four of the servers have 4 Serial Storage Architecture (SSA) disks while

the fifth is the directory server. Each of the 4 SSA disks is partitioned into 5 slices.

Therefore, there are a total of 80 slices (striped directories) in the ANL PIOFS file

system. The default basic striped unit (BSU) is 64K bytes. A file stored in the PIOFS

is physically divided into several blocks with each equal to the size of one BSU, and

these blocks are stored in the 80 striped directories in a round-robin manner.

IBM PIOFS supports existing C read, write, open and close functions. In addition

to a UNIX-like I/O interface, PIOFS also supports logical partitioning of files. A

processor can independently specify a logical view of the data in a file, a subfile,

and then perform I/O on this subfile with a single call. In our STAP I/O task

implementation, we store all CPI files in the ANL PIOFS using the default BSU, 64K

bytes. As for the Intel Paragon, CPI files are stored across 80 striped directories in the

PIOFS file system. However, unlike the Paragon NX library, asynchronous parallel

read/write subroutines are not supported on IBM PIOFS. The overall performance of

the STAP pipeline system will be limited by the inability to overlap I/O operations

with computation and communication.

5.2 Design and Implementation

A total of four CPI data sets stored as four files in the parallel file systems were

used on both the Caltech Paragon and the ANL SP. Each of the four CPI files is

of size 8M bytes. On the Paragon, these files are opened globally (or collectively)

C-103

Round
Robin

Scheduling

Parallel
File

System Round
Robin

Scheduling

Parallel Pipeline System

• • •-

RADAR

Figure 33. Four CPI data files are read from the parallel file system into the pipeline

system in a round-robin manner.

by all compute nodes allocated in the whole application during the STAP pipeline

system's initialization. On SP, these four files are opened only by the compute nodes

that perform the I/O task. During each of the following steps after the initialization,

only nodes assigned to the first task perform read operations from the parallel file

system. We assume that the radar writes its collected CPI data into these four files

in a round-robin manner. Similarly, the STAP pipeline system was also designed to

read these four files in a round-robin fashion but at times that are different from the

times at which the radar writes. This is shown in Figure 33. In this manner, the

problem of data inconsistency for read/write operations between the radar and the

STAP parallel pipeline system is minimized.

All nodes allocated to the first task (the I/O nodes) of the pipeline read exclusive

portions of each CPI file with proper offsets. Because the number of I/O nodes may

vary due to different node assignments to the I/O task, the length of data for the

read operations can be different. The read length and file offset for all the read

operations are set only during the STAP pipeline system's initialization and is not

changed afterward. Therefore, in each of the following iterations, only one read

C-104

Round
Robin

Scheduling Pi CTi)

Easy I
Weight

P3 (T3)

PS CTS)

V Easy |
BF 1

4

P6 CT«)

Doppler 1^
Filter 1^

Pulse |
Compr |"" CFAR 1

P0 (T0)\ Hard IK" 1
Hard

Weight
l^1 ■

P4 (T4)

T
Detection
Reports

Pi (Tj)

Figure 34. I/O task is embedded in the Doppler filter processing task of the STAP pipeline

system.

function call is needed. On the Paragon, since asynchronous read subroutines were

used, an additional subroutine waiting for the read's completion was also required in

each iteration.

5.2.1 I/O Task Implementation

Two designs for the I/O task were implemented in the STAP pipeline system. The first

one, shown in Figure 34, embeds the parallel I/O in the first task of the pipeline, i.e.

in the Doppler filter processing task. The Doppler filter processing task now consists

of three phases, reading CPI data from files, computation, and sending phases. The

second I/O implementation creates a new task for reading CPI data and this task is

added to the beginning of the pipeline. Figure 35 shows the structure of the overall

pipeline system with this implementation. The only job of this I/O task is to read

CPI data from the files and deliver it to the Doppler filter processing task.

C-105

P7 <T7)

Detection
Reports

P3 (T3)

Parallel
File

System

Figure 35. A separate I/O task for reading CPI data is added to the STAP pipeline system.

5.3 Performance Results

Performance results are given for the two I/O implementations on the parallel pipeline

STAP system. For each implementation, parallel file systems on the Paragon and the

SP were tested. On the Paragon, we used two PFS file systems, one with 16 stripe

directories and the other with 64 stripe directories. On the SP, only the parallel file

system with 80 striped directories was tested. On both machines, the stripe unit for

the parallel file systems is 64K bytes. The size of each CPI data file is 8M bytes that

results in 128 stripe units distributed across all stripe directories in all the parallel

file systems.

5.3.1 I/O Embedded in the First Task

In the first I/O implementation on the Paragon, the Doppler filter processing task

reads its input from CPI files using asynchronous read calls. A double buffering

strategy is employed to overlap the I/O operations with computation and communi-

cation in this task. Table 14 shows the timing results for this implementation on the

C-106

Paragon PFS file system with 16 stripe directories. Three cases of node assignments

to all tasks in the pipeline system are given, each doubles the number of nodes of

another. The throughput scales well in the first two cases, but degrades when the

total number of nodes goes up to 224. In this case, we observe that the timing results

of the receive phase in the first task are relatively higher than the other two phases,

the compute and send phases. The I/O operations for reading CPI data files here

become a bottleneck for the pipeline system. This bottleneck forces the rest of the

following tasks in the pipeline system to wait for their input data from their previous

tasks.
Table 15 gives the timing results for the same cases as in Table 14, but on a

Paragon PFS file system with 64 stripe directories. Both throughput and latency

showed linear speedups. In the first two cases with 56 and 112 nodes, the results of

throughput and latency are approximately the same for both file systems with 16 and

64 stripe directories. However, in the case with 224 nodes, we observe that the I/O

bottleneck is relieved by using 64 stripe directories. The efficiency of I/O operations

plays an important role in the overall performance of the pipeline system. The I/O

task may become a bottleneck in the pipeline and directly affect the throughput

results.
On the other hand, a linear speedup was obtained for the latency results. The

I/O bottleneck problem does not affect the latency significantly. We can observe that

in the case with 224 nodes, the latency of using 16 stripe directories is slightly greater

than using 64 stripe directories. This can be explained by examining the throughput

and latency equations, (4) and (5), shown in Section 3.2 of Chapter 3. Unlike the

throughput that depends on the maximum of the execution times of all the tasks, the

latency is determined by the sum of the execution times of all the tasks except for the

tasks with temporal dependency. Therefore, even though the execution time of the

Doppler filter processing task is increased, the delay does not contribute much to the

latency. Comparing Tables 14 and 15, the latency did not degrade significantly and

still scaled well in the case with 224 nodes. Figure 36 shows the performance results

of this I/O design in bar charts.

C-107

Table 14. Performance results on the Paragon with the I/O embedded in the Doppler

filter processing task.

PFS stripe factor = 16

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0101 .2566 .0916 .3584

easy weight 3 .1317 .2214 .0002 .3534

hard weight 28 .0684 .2838 .0003 .3525

easy BF 3 .1451 .1921 .0003 .3375

hardBF 4 .1596 .1756 .0002 .3354

pulse compr 4 .1070 .1979 .0298 .3347

CFAR 2 .1983 .1361 - .3343

throughput

latency

2.9560

0.9804

case 2: total number of nodes = 112 Time in seconds

nodes recv comp send total

Doppler filter 24 .0178 .1292 .0663 .2134

easy weight 6 .0856 .1110 .0002 .1968

hard weight 56 .0483 .1423 .0059 .1965

easy BF 6 .0939 .0958 .0003 .1901

hard BF 8 .0906 .0885 .0003 .1795

pulse compr 8 .0648 .0993 .0150 .1792

CFAR 4 .1107 .0683 - .1790

throughput

latency

5.4996

0.5171

case 3: total number of nodes = 224 Time in seconds

nodes comp send total

Doppler filter 48 .0871 .0619 .0317 .1807

easy weight 12 .1056 .0557 .0002 .1616

.1639 hard weight 112 .0905 .0724 .0009

easy BF 12 .1080 .0482 .0003 .1565

hardBF 16 .1030 .0509 .0003 .1542

pulse compr 16 .0983 .0502 .0078 .1562

CFAR .1217 .0343 .1561

throughput

latency

6.2708

0.3292

C-108

Table 15. Performance results on the Paragon with the I/O embedded in the Doppler

filter processing task.

PFS stripe factor = 64

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0314 .2461 .0916 .3691

easy weight 3 .1262 .2216 .0002 .3480

hard weight 28 .0628 .2840 .0003 .3471

easy BF 3 .1397 .1921 .0003 .3321

hardBF 4 .1537 .1756 .0002 .3295

pulse compr 4 .1011 .1977 .0298 .3286

CFAR 2 .1920 .1363 - .3282

throughput

latency

3.0111

0.9787

case 2: total number of nodes =112 Time in seconds

nodes recv comp send total

Doppler filter 24 .0107 .1280 .0557 .1944

easy weight 6 .0787 .1111 .0020 .1917

hard weight 56 .0453 .1427 .0039 .1919

easy BF 6 .0860 .0959 .0003 .1823

hard BF 8 .0878 .0885 .0003 .1766

pulse compr 8 .0615 .0995 .0151 .1761

CFAR 4 .1077 .0682 - .1759

throughput

latency

5.6068

0.5143

case 3: total number of nodes = 224 Time in seconds

nodes recv comp send total

Doppler filter 48 .0069 .0673 .0309 .1052

easy weight 12 .0510 .0559 .0002 .1071

hard weight 112 .0355 .0733 .0019 .1106

easy BF 12 .0526 .0483 .0003 .1013

hard BF 16 .0471 .0515 .0003 .0989

pulse compr 16 .0407 .0503 .0080 .0990

CFAR 8 .0642 .0343 - .0985

throughput

latency

10.0262

0.2871

C-109

Table 16. Performance results on the SP with the I/O embedded in the Doppler filter

processing task.

PIOFS stripe factor = 80

case 1: total number of nodes = 18 Time in seconds

nodes recv comp send total

Doppler filter 6 .1172 .0734 .1966 .3872

easy weight 1 .2717 .1070 .0001 .3788

hard weight 7 .1590 .2194 .0002 .3786

easy BF 1 .2927 .0829 .0001 .3757

hard BF 1 .2595 .1177 .0002 .3775

pulse compr 1 .2230 .1545 .0001 .3776

CFAR 1 .2941 .0828 - .3770

throughput

latency

2.6715

1.2353

case 2: total number of nodes = 30 Time in seconds

nodes recv comp send total

Doppler filter 8 .1109 .0543 .1031 .2683

easy weight 1 .1471 .1045 .0002 .2518

hard weight 14 .1523 .1072 .0002 .2597

easy BF 2 .2189 .0412 .0001 .2602

hard BF 2 .1999 .0606 .0001 .2606

pulse compr 2 .1801 .0777 .0001 .2579

CFAR 1 .1801 .0801 - .2602

throughput

latency

3.8319

0.7810

case 3: total number of nodes = 60 Time in seconds

nodes recv comp send total

Doppler filter 16 .1044 .0304 .0474 .1823

easy weight 2 .1314 .0547 .0001 .1862

hard weight 28 .1303 .0566 .0002 .1871

easy BF 4 .1571 .0219 .0002 .1792

hard BF 4 .1492 .0298 .0002 .1792

pulse compr 4 .1370 .0396 .0001 .1767

CFAR 2 .1399 .0403 - .1802

throughput

latency

5.5364

0.5004

C-110

^ 12 u

5 10

£ 6

5- 4
M
o 2 u

H °

Intel Paragon

I stripe factor = 16
I stripe factor = 64

1 1 m
56 112 224

Number of Nodes

2
^1.8
S 1.6
U 1.4

W) 1 s-»- 1

S-0.8
e 0.6

■a 0.4
5 0.2

0

Intel Paragon

1
stripe factor = 16

i stripe factor = 64

I 1
56 112 224

Number of Nodes

IBM SP IBM SP

18 30 60
Number of Nodes

18 30 60
Number of Nodes

Figure 36. Performance results for the STAP pipeline system with parallel I/O embedded

in the Doppler filter processing task. This figure corresponds to Tables 14,15, and 16.

Detailed timing results for the IBM SP at ANL are given in Table 16. The stripe

factor of the PIOFS file system is 80. Because PIOFS does not provide asynchronous

read/write subroutines, the I/O operations do not overlap with computation and

communication in the Doppler filter processing task. Hence, the performance results

for throughput and latency on the SP did not show the scalability as on the Paragon,

even though the SP has faster CPUs.

5.3.2 A New I/O Task

In the second I/O task implementation, a new task is added to the beginning of

the pipeline. This new task only performs the operations of reading CPI files and

C-111

distributing CPI data to its successor task, Doppler filter processing task. The STAP

pipeline system then has a total of 8 tasks. Tables 17,18, and 19 show the performance

results for this I/O design. Corresponding to Tables 14, 15, and 16, all tasks have

the same numbers of nodes assigned, except for the I/O task. The I/O bottleneck

problem still occurs when using the Paragon PFS system with 16 stripe directories.

When using the file system with 64 stripe directories, the throughput results improved.

The bar charts shown in Figure 37 represent the throughput and latency results of

Tables 17, 18, and 19.

Comparing the two I/O designs, we observe that the throughput results are ap-

proximately the same for both implementations. However, the latency results for the

separate I/O task design are worse than the embedded implementation. This phe-

nomenon can be explained by examining the throughput and latency equations. The

equations for the throughput and latency for the STAP pipeline system are

throughputs = ^r (8)
max li
0<i<8

and

latency* = T0 + T1 + max(T4, T5) + T6 + T7, (9)

where Tj is the execution time for the task i.

The throughput of a pipeline system is determined by the task with the maximum

execution time among all the tasks. From Tables 17 and 18, we observe that the

Doppler filter processing task has the maximum execution time among all the tasks

in the cases with a total of 60 and 120 nodes. In the case of 240 nodes on the PFS file

system with 16 stripe directories, the maximum execution time occurs in the parallel

I/O task. Using PFS with 64 stripe directories, the hard weight computation task

has the maximum execution time in the case of 240 nodes. Compared to Tables 14

and 15, the throughput results have no significant change because the tasks with

the maximum execution time are the same for every corresponding pair in all cases.

All these tasks have the same number of compute nodes assigned and hence have

approximately the same computation time. Therefore, the execution times of these

C-112

Table 17. Performance results on the Paragon with the I/O implemented as a separate

task- PFS stripe factor = 16

case 1: total number of nodes = 60 Time in seconds

nodes recv comp send total 1

Parallel read 4 .0191 - .3997 .4187

Doppler filter 12 .0122 .3240 .2375 .5738

easy weight 3 .2032 .2217 .0002 .4252

hard weight 28 .1390 .2846 .0003 .4239

easy BF 3 .2210 .1911 .0003 .4124

hard BF 4 .2327 .1753 .0003 .4083

pulse compr 4 .1800 .1977 .0295 .4072

CFAR 2 .2706 .1362 - .4068

throughput

latency

2.4127

1.9186

case 2: total number of nodes = 120 Time in seconds

nodes recv comp send total

Parallel read 8 .0559 - .1604 .2163

Doppler filter 24 .0254 .1221 .0839 .2313

easy weight 6 .0920 .1110 .0004 .2034

hard weight 56 .0526 .1432 .0045 .2003

easy BF 6 .1003 .0960 .0003 .1966

hard BF 8 .0918 .0928 .0003 .1849

pulse compr 8 .0727 .0999 .0151 .1877

CFAR 4 .1185 .0683 - .1867

throughput

latency

5.3883

0.9226

case 3: total number of nodes = 240 Time in seconds

nodes recv comp send total

Parallel read 16 .1269 - .0276 .1545

Doppler filter 48 .0833 .0463 .0245 .1541

easy weight 12 .0891 .0558 .0002 .1451

hard weight 112 .0749 .0724 .0004 .1477

easy BF 12 .0975 .0485 .0003 .1463

hard BF 16 .0924 .0516 .0003 .1443

pulse compr 16 .0869 .0502 .0077 .1448

CFAR 8 .1104 .0343 - .1447

throughput

latency

6.8438

0.3890

C-113

Table 18. Performance results on the Paragon with the I/O implemented as a separate

task. PFS stripe factor = 64

case 1: total number of nodes = 60 Time in seconds

nodes recv comp send total

Parallel read 4 .0628 - .3391 .4019

Doppler filter 12 .0085 .2670 .1755 .4510

easy weight 3 .1425 .2217 .0002 .3645

hard weight 28 .0763 .2847 .0003 .3613

easy BF 3 .1621 .1914 .0003 .3537

hard BF 4 .1740 .1759 .0002 .3501

pulse compr 4 .1213 .1980 .0296 .3489

CFAR 2 .2125 .1362 - .3488

throughput

latency

2.8234

1.7309

case 2: total number of nodes = 120 Time in seconds

nodes recv comp send total

Parallel read 8 .0362 - .1685 .2047

Doppler filter 24 .0280 .1084 .0786 .2151

easy weight 6 .0816 .1111 .0024 .1951

hard weight 56 .0461 .1438 .0003 .1903

easy BF 6 .0914 .0959 .0003 .1877

hard BF 8 .0891 .0908 .0003 .1802

pulse compr 8 .0672 .0999 .0151 .1822

CFAR 4 .1131 .0683 - .1815

throughput

latency

5.5262

0.9137

case 3: total number of nodes = 240 Time in seconds

nodes recv comp send total

Parallel read 16 .0171 - .0617 .0788

Doppler filter 48 .0073 .0502 .0290 .0864

easy weight 12 .0503 .0558 .0002 .1063

hard weight 112 .0305 .0724 .0029 .1057

easy BF 12 .0491 .0489 .0004 .0984

hard BF 16 .0417 .0540 .0004 .0961

pulse compr 16 .0393 .0502 .0078 .0973

CFAR 8 .0629 .0343 - .0972

throughput

latency

10.2111

0.5193

C-114

Table 19. Performance results on the SP with the I/O implemented as a separate task.

PIOFS stripe factor = 80

case 1: total number of nodes = 20 Time in seconds

nodes recv comp send total

Parallel read 2 .1787 - .1413 .3200

Doppler filter 6 .0045 .0724 .2548 .3316

easy weight 1 .2269 .1047 .0001 .3317

hard weight 7 .1165 .2150 .0013 .3329

easy BF 1 .0641 .0822 .2082 .3545

hard BF 1 .0416 .1179 .1874 .3469

pulse compr 1 .1459 .1538 .0656 .3653

CFAR 1 .2926 .0801 - .3727

throughput

latency

2.6670

2.6715

case 2: total number of nodes = 34 Time in seconds

nodes recv comp send total

Parallel read 4 .1230 - .0594 .1823

Doppler filter 8 .0264 .0549 .0913 .1726

easy weight 1 .0639 .1043 .0001 .1683

hard weight 14 .0598 .1090 .0003 .1692

easy BF 2 .0576 .0415 .0814 .1805

hardBF 2 .0593 .0596 .0579 .1768

pulse compr 2 .0278 .0784 .0803 .1864

CFAR 1 .1092 .0804 - .1896

throughput

latency

5.2819

1.2766

case 3: total number of nodes = 68 Time in seconds

nodes recv comp send total

Parallel read 8 .1100 - .0185 .1285

Doppler filter 16 .0455 .0283 .0631 .1369

easy weight 2 .0901 .0535 .0001 .1437

hard weight 28 .0839 .0554 .0001 .1395

easy BF 4 .1158 .0208 .0035 .1401

hard BF 4 .0813 .0483 .0089 .1385

pulse compr 4 .1008 .0391 .0054 .1453

CFAR 2 .1074 .0404 - .1478

throughput

latency

6.5063

0.6531

C-115

~ 12 u ft)
5 10

u 8

? 6

£ 4
M
o 2
h

InteZ Paragon

■ stripe factor = 16
■ stripe factor = 64

LJ 1
60 120 240

Number of Nodes

2
^1.8
S 1.6
U 1.4
g 1.2
Ä 1
g.0.8
S 0.6
.8 0.4
J 0-2

0

Iretef Paragon

I stripe factor = 16
I stripe factor = 64

] I
60 120 240

Number of Nodes

IBM SP IBM SP

20 34 68
Number of Nodes

20 34 68
Number of Nodes

Figure 37. Performance results for the implementation using a separate I/O task. This

figure corresponds to Tables 17,18, and 19.

tasks have no significant differences for both cases and the throughput results do not

change significantly.

The latency, on the other hand, is the sum of the execution times of all the tasks

except for the tasks with temporal data dependency, that is, easy and hard weight

computation tasks (T2 and T3, respectively.) In the design with a separate I/O task,

the latency contains one more term than the embedded I/O implementation: the

execution time of the new task, T0. Therefore, the latency results become worse in

this implementation.

C-116

5.4 Task Combination

From the comparison of performance results for the two I/O task implementations, we

notice that the structure of the STAP pipeline system can be reorganized to improve

the latency. The first implementation that embeds I/O in the Doppler filter processing

task can be viewed as combining the first two tasks of the second implementation that

uses a separate task for I/O. As shown in Section 5.3.2, the first I/O implementation

has a better latency performance, while the throughput results are approximately the

same.

5.4.1 Improving Latency

We investigate whether the latency can be further improved by combining multiple

tasks of the pipeline into a single task. We consider Tables 14, 15, and 16 as an

example and combine the last two tasks, the pulse compression and CFAR processing

tasks, into a single task. In order to make a fair comparison, we keep the total

number of nodes allocated to the whole pipeline system to be the same. The number

of nodes assigned to this single task is equal to the sum of the nodes assigned to

the two tasks in the original pipeline. In this case, no communication costs between

pulse compression and CFAR processing tasks are incurred. Tables 20, 21, and 22

give the timing results corresponding to Tables 14, 15, and 16 with the same total

number of nodes assigned to the pipeline system. Figure 38 shows the bar charts

of the throughput and latency results for Tables 20, 21, and 22. Figure 39 gives a

comparison of performance results of the STAP pipeline system with and without

task combining. We observe that the latency improves for all cases on both Paragon

PFS and SP PIOFS file systems when the last two tasks are combined.

This improvement can also be explained by examining the latency equation. Be-

fore task combination, the latency equation for the STAP pipeline system with 7

tasks is
latency, = T0 + max(T3, T4) +T5 + T6. (10)

C-117

Table 20. Performance results on the Paragon with pulse compression and CFAR tasks

combined.

PFS stripe factor = 16

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0094 .2589 .0908 .3591

easy weight 3 .1307 .2230 .0002 .3540

hard weight 28 .0660 .2868 .0003 .3531

easy BF 3 .1449 .1930 .0003 .3382

hard BF 4 .1616 .1756 .0003 .3375

PC + CFAR 6 .1517 .1863 - .3380

throughput

latency

2.9243

0.7913

case 2: total number of nodes = 112 Time in seconds

nodes recv comp send total

Doppler filter 24 .0194 .1294 .0656 .2145

easy weight 6 .0831 .1111 .0002 .1944

hard weight 56 .0468 .1427 .0046 .1940

easy BF 6 .0914 .0958 .0003 .1874

hardBF 8 .0892 .0887 .0004 .1784

PC + CFAR 12 .0869 .0935 - .1804

throughput

latency

5.5340

0.4221

case 3: total number of nodes = 224 Time in seconds

nodes recv comp send total

Doppler filter 48 .0953 .0623 .0323 .1900

easy weight 12 .1056 .0558 .0003 .1617

hard weight 112 .0930 .0726 .0004 .1661

easy BF 12 .1116 .0484 .0003 .1603

hardBF 16 .1063 .0513 .0004 .1579

PC + CFAR 24 .1079 .0513 - .1592

throughput

latency

6.1478

0.2948

C-118

Table 21. Performance results on the Paragon with pulse compression and CFAR tasks

combined.

PFS stripe factor = 64

case 1: total number of nodes = 56 Time in seconds

nodes recv comp send total

Doppler filter 12 .0319 .2485 .0915 .3718

easy weight 3 .1265 .2218 .0002 .3485

hard weight 28 .0631 .2839 .0003 .3473

easy BF 3 .1400 .1921 .0003 .3324

hard BF 4 .1533 .1756 .0003 .3292

PC + CFAR 6 .1449 .1860 - .3309

throughput

latency

3.0027

0.7957

case 2: total number of nodes =112 Time in seconds

nodes recv comp send total

Doppler filter 24 .0104 .1301 .0528 .1933

easy weight 6 .0774 .1111 .0002 .1887

hard weight 56 .0438 .1427 .0022 .1886

easy BF 6 .0853 .0959 .0003 .1815

hard BF 8 .0869 .0886 .0004 .1759

PC + CFAR 12 .0838 .0936 - .1773

throughput

latency

5.6029

0.4197

case 3: total number of nodes = 224 Time in seconds

nodes recv comp send total

Doppler filter 48 .0071 .0676 .0306 .1054

easy weight 12 .0522 .0559 .0002 .1083

hard weight 112 .0347 .0730 .0031 .1108

easy BF 12 .0533 .0482 .0004 .1018

hardBF 16 .0481 .0512 .0003 .0997

PC + CFAR 24 .0489 .0514 - .1003

throughput

latency

9.8853

0.2392

C-119

Table 22. Performance results on the SP with pulse compression and CFAR tasks com-

bined.

PIOFS stripe factor = 80

case 1: total number of nodes = 18 Time in seconds

nodes recv comp send total

Doppler filter 6 .1320 .0728 .1894 .3942

easy weight 1 .2844 .1023 .0001 .3868

hard weight 7 .1738 .2131 .0002 .3870

easy BF 1 .3039 .0823 .0001 .3862

hard BF 1 .2677 .1182 .0002 .3862

PC + CFAR 2 .2683 .1194 - .3877

throughput

latency

2.5754

0.9388

case 2: total number of nodes = 30 Time in seconds

nodes recv comp send total

Doppler filter 8 .1105 .0550 .1055 .2710

easy weight 1 .1711 .1026 .0002 .2739

hard weight 14 .1570 .1077 .0002 .2649

easy BF 2 .2225 .0417 .0001 .2644

hardBF 2 .2051 .0608 .0002 .2661

PC + CFAR 3 .1878 .0793 - .2671

throughput

latency

3.7492

0.6255

case 3: total number of nodes = 60 Time in seconds

nodes recv comp send total

Doppler filter 16 .1044 .0279 .0462 .1786

easy weight 2 .1350 .0515 .0002 .1867

hard weight 28 .1238 .0568 .0002 .1808

easy BF 4 .1582 .0210 .0002 .1794

hardBF 4 .1485 .0300 .0003 .1787

PC + CFAR 6 .1397 .0414 - .1810

throughput

latency

5.5356

0.4207

C-120

~ 12 u o

U

s
cu

■S en
9
O u

InteZ Paragon

I stripe factor = 16
I stripe factor = 64

I ilJJ
56 112 224

Number of Nodes

2
^1.8
S 1.6
U 1.4 r
g 1.2
Ä 1

S 0.6
2 °.4
,3 0.2

/rate/ Paragon

I stripe factor = 16
I stripe factor = 64

Jl_l
56 112 224

Number of Nodes

IBM SP IBM SP

18 30 60
Number of Nodes

18 30 60
Number of Nodes

Figure 38. Performance results for the STAP pipeline system that combines the pulse

compression and CFAR tasks into a single task. This figure corresponds to Tables 20,

21, and 22.

Let Wb and W6 be the workloads for tasks 5 and 6, respectively. The execution times

for task 5 and 6 are
(11)

and

P5

*6

(12)

where d and V{ represent the communication time and the other parallelization

overhead for task i respectively. Similarly, let r5+6 be the execution time of the task

C-121

^v 12 u

s m
Paragon PFS Stripe factor = 16

6.
U

s a
J:
Bl)
3
O
la

■ 7 tasks
B 6 tasks

I u
56 112 224

Number of Nodes

Paragon PFS Stripe factor = 64

56 112 224
Number of Nodes

Paragon PFS Stripe factor = 16

56 112 224
Number of Nodes

Paragon PFS Stripe factor = 64

56 112 224
Number of Nodes

SP PIOFS

18 30 60
Number of Nodes

SP PIOFS

■ 7 tasks
■ 6 tasks

18 30 60
Number of Nodes

Figure 39. Performance comparison of the pipeline system with and without task com-

bining. The throughput results remain approximately the same. Latency is improved

when the last two tasks are combined.

C-122

that combines tasks 5 and 6 running on P5 + P6 nodes:

By subtracting Equations (11) and (12) from Equation (13), we have

T5+6 - (T5 + T6)

~ P5 + Pe Ps Pe
+ C5+6 — C$ - Ce

+ V5+e-V5-V6 (14)

where

W5 + W6 Wb

P5 + Pe P$
-W5Pi -

w6

p6

W6Pi

P5Pe(P5 + Pe)
< 0. (15)

Communication for the combined task occurs only when receiving data from tasks

3 and 4. Prior to the task combination, the same communication takes place in the

receive phase of task 5. The difference is the number of nodes used between the two

tasks. Since P5+6 > ^5, the data size for each received message from tasks 3 and 4 to

the combined task is smaller than that for task 5. Besides, in task 5, C5 includes the

communication cost of sending messages from task 5 to task 6 which does not occur

in the combined task. Hence, we have

'5+6 < G, (16)

The remaining overhead, Vu is due to parallelization of task t. Since the operations

in tasks 5 and 6 are sets of individual subroutines which require no communication

within each single task, parallelization is carried out by evenly partitioning these

subroutines among the nodes assigned. Due to this computational structure, the

C-123

Table 23. Percentage of latency improvement when the Pulse compression and CFAR

tasks are combined into a single task.

Paragon: PFS

nodes 56 112 224

16 stripe dir 19.3% 18.4% 10.4%

64 stripe dir 18.7% 18.4% 16.7%

SP: PIOFS

nodes 18 30 60

80 stripe dir 24.0% 19.9% 15.9%

overhead for these two tasks becomes negligible compared to their communication

costs. From Equations (14), (15), and (16) we can conclude that

T5+6 < T5 + Te (17)

Therefore, the new latency equation of the STAP pipeline system with the last

two tasks combined becomes

latency^ — TQ + max(T3, T4) + T$+e

< latenqjj (18)

Combining the last two tasks, therefore, reduces the latency.

Table 23 gives the percentage of improvement in latency when the last two tasks

are combined. These improvements were made without adding any extra nodes to the

pipeline system. We observe that the percentage decreases as the number of nodes

goes up. Normally, scalability of the parallelization tends to decrease when more

processors are used. This also explains the trend for the percentage improvement

shown in Table 23. Notice that the tasks that can be combined to improve the

latency do not include tasks with temporal data dependency. It is because only those

tasks with spatial data dependency contribute to the latency.

C-124

5.4.2 Improving Throughput

The throughput results, on the other hand, do not change significantly when the two

tasks are combined. This is because the throughput is determined by the task with

the maximum execution time among all the tasks, which is still the maximum in the

new pipeline system. Assuming that Tmax is the maximum execution time before task

combination, the throughput is given by

1
throughput = ——

J-max

where

Tmax = ™<%Ti 0<i<7

> max(Ts,T6)

From Equations (11), (12), and (13), the execution time of the new combined task

becomes

P5T5 + P6T6
Tb+e * Pb + Pe

P-0 max{T5,T6) + P6 max(T5,T6)

~ P5 + Pe
= max{T5,T6) (19)

and the new maximum execution time becomes

T'max = rnax{T0,Ti,T2,T3,T4,T5+e)

< max(TQ,Ti,T2,T3,TA,TrnTe)

= J- max •

Therefore, the throughput will not decrease after task combination because

1
throughput?, = —

max
l

>
J-max

= throughput-?. (20)

C-125

Both latency and throughput can be improved simultaneously when one of the

combined tasks determines the throughput of the pipeline system. Suppose that

either task 5 or task 6 has the maximum execution time among all the 7 tasks in the

STAP pipeline system, that is,

Tmax = max(T5,T6)

> max Ti. (21)
0<i<4

Notice that none of these two tasks has temporal data dependency. From Equation

(18), we have latency improvement when tasks 5 and 6 are combined. From Equations

(20) and (21), the throughput is increased. The reduction of execution time of both

tasks 5 and 6 contributes to the latency as well as to the throughput. Therefore, not

only the throughput can be increased, but the latency can be also reduced. Note that

in our experiment results shown in the previous section, the task with the maximum

execution time is neither task 5 nor task 6, that is, Tmax > max (T5,T6).

5.5 Raw CPI Data Redistribution

The presentation in this chapter up to now assumed that a special hardware is avail-

able to pre-process the raw CPI data received by the radar before delivering it to the

STAP pipeline system. However, this special purpose equipment may not perform

very efficiently or may not be available. We investigate the possibility of implement-

ing this data pre-processing operation using a software approach. Actually, Air Force

Research Laboratory (AFRL) performed a real time STAP demonstration using ex-

actly the same signal processing algorithm as ours onboard an airborne platform in

May 1996 [12, 13]. The radar was a phased array L-Band radar with 32 elements

organized into two rows of 16 each. Only the data from the upper 16 elements were

processed with STAP. This data is a 1.25 MHz intermediate frequency (IF) signal

that is 4:1 oversampled at 5 MHz. The number representation at IF is 14 bits, 2's

complement and is converted to 16 bit baseband real and imaginary numbers. Spe-

cial interface boards were used to digitally demodulate to baseband. The signal data

C-126

range bin
-H h-

ea
c

en
c

o
u
C ##-#* 1

512 range bins

phased array radar

1x1x16

1X512X16 128x512x16

snap shot CPI data cube

Figure 40. Raw CPI data received from a phased array radar is used to form a 128 X

512 X 16 three dimensional data cube.

formed a raw 3-dimensional data cube called coherent processing interval (CPI) data

cube comprised of 128 pulses, 512 range gates (32.8 miles), and 16 channels, shown

in Figure 40. These special interface boards were also used to corner turn the data

cube so that CPI is unit stride along pulses. It speeds the subsequent Doppler pro-

cessing on the High Performance Computing (HPC) systems. Live CPI data from a

phased-array radar were processed by a ruggedized version of the Paragon computer.

The STAP algorithm was performed on this computer using the raw data from the

16 columns of the phased array.

All experiments described in the previous sections assumed that this special pur-

pose hardware was used to pre-process the raw CPI data such that each CPI data

cube is corner-turned from 128 x 512 x 16 to 512 x 16 x 128 and each complex element

in a CPI is type-converted from two 16-bits real numbers to two 32-bits real numbers

(type float in C language.) The operations of corner turn and CPI data partitioning

among compute nodes are illustrated in Figure 41. The reason for the corner turn

C-127

operations is that the major operations in the Doppler filter processing task, the Fast

Fourier transforms (FFTs), need to be performed along the pulse dimension of the

CPI cube. That is, 128-point FFTs are performed for every range and channel. The

corner turn operation, here, is to allow each FFT to be computed on a single compute

node in the Doppler filter processing task. Given this hardware, the parallel pipeline

STAP system can directly process the CPI data without redistributing it among the

compute nodes once the CPI data is read from the disk.

5.5.1 Corner Turn and Type Conversion

Without hardware support for the operations of corner turn and type conversion, the

parallel pipeline STAP system has to include this in its implementation. In order that

every FFT can be processed in a single compute node in the Doppler filter processing

task, the CPI data has to be partitioned along the dimension of range cells among the

compute nodes assigned, shown in Figure 41(d). Note that two consecutive pulses in

a raw CPI data cube are stored in disks at a distance of 512 • 16 complex numbers. By

partitioning the raw CPI along the range dimension, each sub-CPI data for one node

consists of several pieces of non-contiguous data. For instance, we use 4 nodes to read

a raw CPI data cube and it results in a sub-CPI of size 128 x 128 x 16. That is, each

sub-CPI has 128 pieces of data and each piece is of size 128 x 16. Although contents

of each data piece are stored contiguously in disks, the 128 data pieces themselves

are not adjacent to each other. To obtain the sub-CPI data required by each node,

two implementations for reading CPI data can be done:

1. Every node performs several read operations directly from the disks. Each read

is for a data piece of a sub-CPI. After the sub-CPI data is read, type-conversion

operations are applied.

2. Using a two-phase I/O access strategy [34], the CPI data is first read using data

distribution which conforms with the distribution of CPI data over the disks.

This results in each node making a single, large, and contiguous disk space

C-128

v*V, f/Z
w

<n
u
u
V
M
B 1---J
1. '

<S /I

*H y '
l/> s

1 /

16 channels

(a)RawCPI: 128X512X16

'-' 128 pulses

(b) Corner-turned CPI: 512 X16 X128

16 channels

(c) CPI partitioned in I/O task

128 pulses

(d) CPI partitioned in Doppler
filter processing task

Figure 41. (a) Raw CPI data received from the radar as a 128 X 512 X 16 data cube,

(b) Corned-turned CPI data cube of size 512 X 16 X 128. (c) Raw CPI partitioned

among 4 reading nodes, (d) Corned-turned CPI partitioned among 5 nodes.

C-129

access. In the second phase, the sub-CPI data is type-converted, corner-turned,

and redistributed among the nodes to match the desired data distribution.

Two-phase I/O access strategy has been shown to improve the I/O performance

significantly. This method first reduces the I/O bottleneck from disks to compute

nodes by making all the file accesses large and contiguous. Second, the data redistri-

bution uses the inter-processor communication network with higher bandwidth and

higher degree of connectivity.

5.5.2 Implementation

To read CPI files in parallel, we implemented the two-phase I/O access strategy on the

two STAP pipeline system I/O designs described in Section 5.2. The implementation

for the reading of CPI files for the STAP pipeline system with a separate I/O task is

shown in Figure 42. In this implementation, each node in the I/O task performs the

following steps:

1. uses one read operation to read an exclusive part of CPI data. In other words,

the CPI data is partitioned into exclusive subsets and node i in the I/O task

reads the ith subset of each CPI file.

2. performs the corner turn and type conversion operations on the sub-CPI data.

3. redistributes the sub-CPI data with other nodes in the I/O task such that each

node receives all parts of sub-CPI data it is responsible for. Data exchange in

this step is an all-to-all personalized communication within the same group of

nodes.

4. sends the re-organized sub-CPI data to the Doppler filter processing task. The

communication pattern in this step is a left-right shift communication. Notice

that the number of nodes assigned to the I/O task may be different from the

Doppler filter processing task.

C-130

16 channels

Raw CPI stored in disks

parallel read

sup 1

Corner turn
+

Type conversion

sup 2

It channels
--H r-

128 /P pulses

intra-task data

1. «^ <U

ft* redistribution v m

step > */T77

128/P pulses
128 pulses 128 pulses

Figure 42. Implementation of parallel reading of raw CPI data from disks and its distri-

bution for the Doppler filter processing task.

In the first I/O design that embeds the I/O in the Doppler filter processing task,

the only difference is that it is without step 4, the left-right shift communication.

In addition, all the steps are performed within the same group of nodes. The sub-

CPI data redistribution is j>erformed within the same group of compute nodes in

the Doppler filter processing task. As opposed to the inter-task data dependency

discussed in Section 2.4.1 of Chapter 2, this data redistribution results in an intra-

task data dependency. The intra-task dependency exists when intermediate results

need to be exchanged during the execution of a single parallel task in the pipeline.

5.5.3 Performance Results

The performance results for the implementation using a separate I/O task are given

in Tables 24 and 25, for Paragon PFS file systems with 16 and 64 striped directories,

respectively. Figure 43 shows the bar charts corresponding to Tables 24 and 25.

C-131

Table 24. Performance results on the Paragon with the I/O implemented as a separate

task in which the corner turn and type conversion are embedded in the receive phase.

PFS stripe factor = 16.
case 1: total number of nodes = 64 Time in seconds

nodes recv comp send total

Parallel read 8 .3256 - .0003 .3259

Doppler filter 12 .0634 .1744 .0907 .3285

easy weight 3 .1053 .2215 .0002 .3270

hard weight 28 .0403 .2849 .0003 .3255

easy BF 3 .1204 .1923 .0003 .3131

hard BF 4 .1346 .1757 .0003 .3105

pulse compr 4 .0812 .1978 .0302 .3092

CFAR 2 .1726 .1361 - .3087

throughput

latency

3.2079

1.2516

case 2: total number of nodes = 128 Time in seconds

nodes recv comp send total

Parallel read 16 .1485 - .0099 .1585

Doppler filter 24 .0037 .0976 .0580 .1593

easy weight 6 .0528 .1110 .0002 .1639

hard weight 56 .0161 .1435 .0038 .1634

easy BF 6 .0515 .0969 .0004 .1488

hardBF 8 .0555 .0894 .0003 .1452

pulse compr 8 .0313 .1000 .0151 .1464

CFAR 4 .0777 .0682 - .1459

through

latenc

)Ut

y

6.7809

0.7797

case 3: total number of nodes = 256 Time in seconds

nodes recv comp send total

Parallel read 32 .1041 - .0004 .1045

Doppler filter 48 .0241 .0453 .0244 .0937

easy weight 12 .0499 .0559 .0002 .1060

hard weight 112 .0319 .0729 .0008 .1056

easy BF 12 .0516 .0486 .0003 .1005

hardBF 16 .0474 .0518 .0003 .0996

pulse compr 16 .0411 .0499 .0079 .0989

CFAR 8 .0643 .0343 - .0986

throughput

latency

9.

0.

3740

3713

C-132

Table 25. Performance results on the Paragon with the I/O implemented as a separate

task in which the corner turn and type conversion are embedded in the receive phase.

PFS stripe factor = 64.
case 1: total number of nodes = 64 Time in seconds

 n
nodes recv comp send total ||

Parallel read 8 .3242 - .0004 .3246

Doppler filter 12 .0575 .1742 .0956 .3272

easy weight 3 .1039 .2214 .0002 .3255

hard weight 28 .0375 .2849 .0003 .3227

easy BF 3 .1197 .1921 .0003 .3121

hard BF 4 .1275 .1830 .0002 .3108

pulse compr 4 .0789 .1980 .0296 .3065

CFAR 2 .1693 .1360 - .3053

throughput

latency

3.3022

1.2889

case 2: total number of nodes = 128 Time in seconds

nodes recv comp send total

Parallel read 16 .1471 - .0163 .1633

Doppler filter 24 .0048 .1004 .0669 .1722

easy weight 6 .0601 .1109 .0002 .1712

hard weight 56 .0214 .1430 .0059 .1703

easy BF 6 .0524 .0970 .0003 .1497

hard BF 8 .0605 .0895 .0003 .1503

pulse compr 8 .0369 .0994 .0149 .1512

CFAR 4 .0825 .0681 - .1506

throughput

latency ..

6.5610

0.8300

case 3: total number of nodes = 256 Time ir seconds

nodes recv comp send total

Parallel read 32 .0908 - .0005 .0913

Doppler filter 48 .0015 .0507 .0244 .0766

easy weight 12 .0434 .0559 .0002 .0995

hard weight 112 .0248 .0727 .0005 .0980

easy BF 12 .0455 .0499 .0003 .0957

hard BF 16 .0390 .0548 .0004 .0942

pulse compr 16 .0349 .0505 .0078 .0932

CFAR 8 .0590 .0342 | - .0932

throughput

latency

10.5710

| 0.4629

C-133

^ 12 o

ü 8

£ 6

£ 4
M
§ 2 u

JnteZ Paragon

I stripe factor = 16
I stripe factor = 64

I
64 128 256

Number of Nodes

2

S 1.6
U 1.4
g 1-2
Ä 1
^0.8
S0.6
Ä0.4
J0.2

0

Intel Paragon

i stripe factor = 16
i stripe factor = 64

64 128 256
Number of Nodes

Figure 43. Performance results for the implementation using a separate I/O task in which

the corner turn and type conversion are embedded in the receive phase. This figure

corresponds to Tables 24 and 25.

Linear speedups were obtained for both throughput and latency.

The performance results for the implementation with the I/O task embedded in

the Doppler filter processing task is shown in Tables 26 and 27, for Paragon PFS

file systems with 16 and 64 striped directories, respectively. Figure 44 shows the

bar charts corresponding to Tables 26 and 27. We observe that the throughput and

latency show linear speedups till the case with a total of 120 nodes. The timing for

performing read CPI data from disks, corner turn, type conversion, and CPI data

redistribution are included in the receive phase of the Doppler filter processing task.

When we increase the number of nodes from 32 to 64 in the Doppler filter processing

task, the performance of the receive phase does not scale up linearly. This is because

of the increasing cost of the all-to-all personalized communication in the sub-CPI data

redistribution. The size of each CPI data in our experiments is 128 • 512 • 16 • (2 • 4

bytes) = 8M bytes. With 64 nodes, the size of data in each send/receive of the

all-to-all personalized communication becomes 8^" = 2K bytes. In the all-to-all

personalized communication, each node has a total of 64 read/receive calls whose

communication startup time overwhelms the message transmission time with respect

to the relatively small size of the messages (2K bytes each.)

C-134

Table 26. Performance results on the Paragon with the I/O implemented in the Doppler

filter processing task in which the corner turn and type conversion are embedded in

the receive phase.

PFS stripe factor = 16

case 1: total nodes = 31 Time in seconds

node recv comp send total

Doppler 8 .3188 .2584 .1354 .7127

easy wgt 2 .3794 .3321 .0002 .7118

hard wgt 14 .1446 .5669 .0004 .7119

easy BF 2 .4164 .2865 .0002 .7031

hard BF 2 .3405 .3478 .0002 .6886

PC 2 .2313 .3949 .0583 .6845

CFAR 1 .4121 .2724 - .6845

throughput

latency

1.4411

1.9326

case 2: total nodes = 60 Time in seconds

Doppler

easy wgt

hard wgt

easy BF

hardBF

PC

CFAR

node

16

28

throughput

latency

.1505

.1277

.0629

.1419

.1537

.1003

.1918

comp

.1296

.2216

.2849

.1918

.1756

.1985

.1363

send

.0681

.0002

.0003

.0003

.0002

.0298

3.0129

0.9789

total

.3482

.3495

.3481

.3340

.3295

.3286

.3281

case 3: total nodes = 120 Time in seconds

node recv comp send total

Doppler 32 .0863 .0660 .0349 .1872

easy wgt 6 .0780 .1110 .0002 .1893

hard wgt 56 .0431 .1429 .0019 .1879

easy BF 6 .0842 .0961 .0003 .1806

hard BF 8 .0886 .0880 .0003 .1770

PC 8 .0616 .0995 .0151 .1763

CFAR 4 .1079 .0683 - .1762

throughput

latency

5.5923

0.5047

case 4: total nodes = 238 Time in seconds

node recv comp send total

Doppler 64 .0625 .0364 .0192 .1181

easy wgt 12 .0675 .0557 .0003 .1234

hard wgt 112 .0494 .0721 .0004 .1219

easy BF 12 .0732 .0482 .0004 .1218

hard BF 14 .0649 .0511 .0003 .1164

PC 16 .0587 .0501 .0078 .1166

CFAR 8 .0821 .0344 - .1165

throughput

latency

8.4272

0.2925

C-135

Table 27. Performance results on the Paragon with the I/O Implemented In the Doppler

filter processing task in which corner turn and type conversion are embedded in the

receive phase.

PFS stripe factor = 64

case 1: total nodes = 31 Time in seconds

node recv comp send total

Doppler 8 .3196 .2586 .1355 .7138

easy wgt 2 .3804 .3321 .0003 .7128

hard wgt 14 .1455 .5670 .0004 .7129

easy BF 2 .4174 .2865 .0002 .7042

hard BF 2 .3413 .3480 .0003 .6896

PC 2 .2321 .3949 .0582 .6852

CFAR 1 .4129 .2724 - .6852

throughput

latency

1.4390

1.9368

case 2: total nodes = 60 Time in seconds

node recv comp send total

Doppler 16 .1504 .1298 .0757 .3558

easy wgt 3 .1341 .2216 .0002 .3559

hard wgt 28 .0697 .2849 .0004 .3550

easy BF 3 .1486 .1913 .0003 .3402

hard BF 4 .1524 .1828 .0002 .3355

PC 4 .1007 .1989 .0317 .3313

CFAR 2 .1918 .1363 - .3280

throughput

latency

3.0618

1.0159

case 3: total nodes = 120 Time in seconds

node recv comp send total

Doppler 32 .0835 .0647 .0455 .1937

easy wgt 6 .0872 .1111 .0002 .1985

hard wgt 56 .0469 .1430 .0074 .1973

easy BF 6 .0934 .0959 .0003 .1896

hard BF 8 .0864 .0895 .0003 .1762

PC 8 .0618 .0998 .0151 .1768

CFAR 4 .1080 .0683 - .1763

throughput

latency

5.6552

0.5264

case 4: total nodes = 238 Time in seconds

node recv comp send total

Doppler 64 .0617 .0327 .0190 .1134

easy wgt 12 .0675 .0558 .0002 .1236

hard wgt 112 .0497 .0724 .0004 .1225

easy BF 12 .0735 .0482 .0003 .1220

hard BF 14 .0652 .0511 .0003 .1166

PC 16 .0590 .0500 .0077 .1167

CFAR 8 .0824 .0343 - .1167

throughput

latency

8.4237

0.2927

C-136

,-v 12 u

5 10

ö »
3 6

X 4
so
§ 2
i~ .
* n

InteJ Paragon Intel Paragon

I stripe factor = 16
I stripe factor = 64

31 60 120 238
Number of Nodes

2
^1.8
£ 1-6
U 1.4
g 1.2
e 1
>>0.8
g0.6
«0.4
,3 0.2

0

I stripe factor = 16
i stripe factor = 64

| Ü M
31 60 120 238

Number of Nodes

Figure 44. Performance results for the implementation when the parallel I/O, corner turn,

and type conversion are embedded in the receive phase of the Doppler filter processing

task. This figure corresponds to Tables 26 and 27.

5.6 Summary

In this work, we studied the effects of parallel I/O implementation on the parallel

pipeline system for a modified PRI-staggered post-Doppler STAP algorithm. The

parallel pipeline STAP system was run portably on Intel Paragon and IBM SP and the

overall performance results demonstrated the linear scalability of our parallel pipeline

design when the existing parallel file systems were used in the I/O implementations.

On the Paragon, we found that a pipeline bottleneck can result when using a parallel

file system with a relatively smaller stripe factor. With a larger stripe factor, a parallel

file system can deliver higher efficiency of I/O operations and, therefore, improve the

throughput performance.
This chapter presented two I/O designs which are incorporated into the parallel

pipeline STAP system. One embedded I/O in the original pipeline and the other

used a separate I/O task. By comparing the results of these designs, we found that

the task structure of the pipeline can be reorganized to further improve the latency.

Without adding any compute nodes, we obtained performance improvement in the

latency when the last two tasks were combined. We also analyzed the possibility of

further improvement by examining the throughput and latency equations.

C-137

We also investigated a software approach to implement raw data pre-processing

which can often be done by a special purpose hardware. The performance results

demonstrate that the parallel pipeline STAP system scaled well even with a more

complicated I/O implementation.

C-138

Chapter 6

Summary and Conclusions

This dissertation has proposed a parallel pipeline computational model for radar sig-

nal processing applications on high performance computers. This model is designed

for those radar applications that are computationally intensive and are required to

operate in real time. We addressed the advantages of HPC systems over the tradi-

tional VLSI based designs in terms of scalability, flexibility, and affordability. In this

work, we focused on STAP algorithms which is representative of radar signal process-

ing methods whose parallelization is highly desirable. Based on the computational

characteristics of STAP algorithms, the proposed parallel pipeline model captures the

computational requirements for this type of application. Although we focused on a

specific STAP algorithm and implemented it on the parallel pipeline model through-

out the dissertation, this computational model is suitable for the system design of

other signal processing applications as well.

In addition to the spatial data dependency, all signal processing applications with

space-time relationship show temporal data dependency as well. In the design of

the parallel pipeline computational model, these two types of data dependencies are

incorporated. The parallelization issues for this model include data redistribution and

processor assignment. Data redistribution is divided into two categories: inter-task

and intra-task. Inter-task data redistribution occurs when two groups of processors

in two different tasks need to exchange data with each other while intra-task data

C-139

redistribution involves data transfer among the same group of processors in one task.

Both types of data redistribution show two communication patterns: corner turn

or left-right shift. In the corner-turn communication pattern, messages need to be

packed on the sender side and unpacked on the receiver side. Message packing and

unpacking both involve data reorganization whose efficiency depends on the message

size and the machine's cache performance.

Processor assignment is one of the most important issues in the implementation

of the parallel pipeline model for the embedded real-time signal processing applica-

tions. Performance of throughput and latency are two key requirements for this type

of applications. Within a single task, the strategy of data partitioning across the

processors assigned to this task determines the efficiency of the parallelizations of

this task. In the integrated pipeline system, processor assignment affects the overall

system performance in terms of throughput and latency. Tradeoffs exist when assign-

ing processors to the tasks such that the throughput is increased and the latency is

reduced. These two goal may require two different processor assignments.

A real radar application was used in the implementation of our parallel pipeline

computational model. This application is based on a modified PRI-staggered post-

Doppler STAP algorithm. AFRL also implemented the same algorithm on a ruggedi-

zed version of the Paragon computer by using compute nodes of the machine only as

independent resources in a round robin fashion to run different signal data instances.

The implemented system had been installed onboard an airborne platform and suc-

cessfully performed four flight experiments. Using our proposed parallel pipeline

model, we implemented the same application on Intel Paragon, IBM SP and SGI

Origin. The performance results indicate that our approach scales well both in terms

of communication and computation. The throughput and latency results also demon-

strate the linear scalability.

Given additional processors, tradeoffs exist between assigning these processors

to increase the throughput and to reduce the latency. Throughput of a pipeline

system depends on the task with the maximum execution time among all tasks in the

pipeline. To improve the throughput, processors should be assigned to the task with

C-140

the maximum execution time. On the other hand, latency is determined by the sum

of the execution times of the tasks without temporal data dependency. Additional

processors can be assigned to those tasks which benefit the most, that is, the tasks

whose execution time is reduced the most when more nodes are assigned.

To explore the possibility of further performance improvement, the multi-threaded

design of the parallel pipeline STAP system was implemented on the Paragon MP

system. Paragon MP system is a massively parallel processing machine with SMP

nodes. Each SMP node in the Paragon MP system has three processors sharing the

main memory, I/O interface, and other common resources. The thread library imple-

mented on the Paragon uses POSIX threads which is not standardized yet. Since the

message-passing part of the library is not thread-safe, the multi-threaded design was

only implemented in the compute phase of the STAP pipeline system. The approach

for using multiple threads is straightforward by dividing the computation load further

within each compute node. Performance results indicated that the parallel pipelined

implementation scales well for both throughput and latency when the multi-threaded

technique is used. Although the concurrent read/write problems limit the multi-

threading performance when designing a thread-safe library, our model still provides

significant performance improvement by using the Paragon thread-safe numerical li-

braries.
To study the effect of disk I/O performance on our parallel pipeline model, we

incorporated the I/O task designs into the parallel pipeline STAP system. We used

the existing parallel file system on the Paragon and SP to perform the read operations

of input data to the STAP system. Two I/O task designs were presented in this

work. One embedded I/O in the original pipeline and the other used a separate task

to perform I/O. We ran the codes using two parallel file systems on the Paragon,

each with different sizes of stripe directories. The parallel file system with large

stripe directories can deliver higher efficiency of I/O operations to relieve the I/O

bottleneck problem in a pipeline system. On the other hand, when comparing the

two I/O designs, the throughput results were approximately the same. However, the

latency results for the first design were better. This observation leads to the fact

C-141

that the task structure of the pipeline can be reorganized to further improve the

latency. We combined the last two tasks into a single task and maintained the same

number of processors assigned to the whole system and demonstrated this observation.

A theoretical analysis was also given by examining the equations of latency and

throughput.

A software approach to implement raw signal data pre-processing which can often

be done by a special purpose hardware was investigated. The raw data pre-processing

involves operations of corner turn and type conversion of a three dimensional data

cube. The corner-turn operation in the I/O task can be viewed as a two-phase

I/O access strategy. Operation of corner turn also represents the intra-task data

dependency in the parallel pipeline system. With a more sophisticated I/O task, the

parallel pipeline STAP system scaled well for both throughput and latency.

6.1 Suggestions for Future Work

There are several issues that can be further studied. First, the data redistribution

operation between two exclusive groups of processors or even among more than two

groups of processors can be further investigated. Since the task structure of a pipeline

can be complicated as several processing tasks whose data need to be transferred

among several groups of processors, data redistribution can require communication

from one group to another group, one group to many groups, many groups to one

group, or many groups to many groups of processors. We call this problem a group-

to-group data redistribution problem. Development of this type of communication

structure is a new research area. In the literature, primitive communication patterns

have been well addressed and many optimized approaches have been developed for

several architectures. The group-to-group communication structure can be designed

based on these primitive communications or a brand new approach needs to be de-

veloped.

Optimization of processor assignment in a parallel pipeline system is normally not

easily captured by a theoretical analysis. The fact is that the execution time of a task

C-142

is determined by its communication and computation time. Even if the computa-

tion time of one task can be predicted given a number of processors, the overlapping

nature of a pipeline model can hide the communication costs in the other phases of

this task, especially when asynchronous send and receive are used with double buffer-

ing. Further research on the optimization of processor assignment may first focus on

situations with simple communication patterns presented in the inter-task data re-

distribution, e.g., a parallel pipeline system with only left-right shift communication.

Then more general problems can be addressed with more complicated communication

patterns.
Since almost all radar applications have real-time constraints, a well designed

system should be able to handle any changes in the requirements on the throughput

and latency by dynamically allocating or re-allocating processors among tasks. With

the capability of interaction with users, the STAP system may need to fine tune some

of the signal processing parameters after preliminary detection results are obtained.

To design an interactive radar system which is capable of performing processor re-

assignment in real time may need to take several issues into consideration, such as

overhead of pipeline re-initialization, change of inter-task communication pattern,

and so on. This appears to be a fruitful area of research.

C-143

Bibliography

[1] P. Rowe. COTS Radar and Sonar Systems Solutions. Multiprocessor Toolsmiths,

Inc., Kanata, ON, Canada, 1996.

[2] J. Ward. Space-Time Adaptive Processing for Airborne Radar. Technical Report

1015, MIT Lincoln Lab., December 1987.

[3] A. Choudhary and J. Patel. Parallel Architectures and Parallel Algorithms for

Integrated Vision Systems. Kluwer Academic Publishers, Boston, MA, 1990.

[4] A. Choudhary and R. Ponnusamy. Run-Time Data Decomposition for Parallel

Implementation of Image Processing and Computer Vision Tasks. Journal of

Concurrency, Practice and Experience, 4(4):313-334, June 1992.

[5] A. Choudhary and R. Ponnusamy. Parallel Implementation and Evaluation of a

Motion Estimation System Algorithm using Several Data Decomposition Strate-

gies. Journal of Parallel and Distributed Computing, 14:50-65, January 1992.

[6] A. Choudhary, B. Narahari, D. Nicol, and R. Simha. Optimal Processor As-

signment for Pipeline Computations. IEEE Trans, on Parallel and Distributed

Systems, April 1994.

[7] M. Snir and et. al. MPI The Complete Reference. The MIT Press, 1995.

[8] M. Skolnik. Introduction to Radar Systems, Second Edition. McGraw-Hill, Inc.,

New York, 1980.

C-144

[9] D. Taylor and C. Westcott. Principles of Radar. Cambridge University Press,

New York, 1948.

[10] J. Lebak, R. Durie, and A. Bojanczyk. Toward A Portable Parallel Library for

Space-Time Adaptive Methods. Technical Report CTC96TR242, Cornell Theory

Center, June 1996.

[11] K. Cain, J. Torres, and R. Williams. RT.STAP: Real-Time Space-Time Adaptive

Processing Benchmark. Technical Report 96B0000021, MITRE Corporation,

February 1997.

[12] M. Little and W. Berry. Real-Time Multi-Channel Airborne Radar Measure-

ments. In Proceedings of the IEEE National Radar Conference, 1997.

[13] M. Linderman and R. Linderman. Real-Time STAP Demonstration on an Em-

bedded High Performance Computer. IEEE AES Systems Magazine, pages 15-

21, March 1998.

[14] S. Olszanskyj, J. Lebak, and A. Bojanczyk. Parallel Algorithms for Space-Time

Adaptive Processing. International Parallel Processing Symposium, pages 77-81,

April 1995.

[15] Y. Lim and V. Prasanna. Scalable Portable Implementations of Space-Time

Adaptive Processing. In Proceedings of the 10th International Conference on

High Performance Computing, June 1996.

[16] P. Bhat, Y.Lim, and V. Prasanna. Issues in using Heterogeneous HPC Systems

for Embedded Real Time Signal Processing Applications. In Proceedings of the

2nd International Workshop on Real-Time Computing Systems and Applications,

October 1995.

[17] M. Lee and V. Prasanna. High Throughput-Rate Parallel Algorithms for Space

Time Adaptive Processing. 2nd International Workshop on Embedded Systems

and Applications, April 1997.

C-145

[18] D. Martinez. Application of Parallel Processors to Real-Time Sensor Array Pro-

cessing. International Parallel Processing Symposium, April 1999.

[19] C. Brown, M. Flanzbaum, R. Games, and J. Ramsdell. Real-Time Embed-

ded High Performance Computing: Application Benchmarks. Technical Report

MTR94B145, MITRE Corporation, October 1994.

[20] R. Thakur, A. Choudhary, and J. Ramanujam. Efficient Algorithms for Array

Redistribution. IEEE Trans, on Parallel and Distributed Systems, 6(7):587-594,

June 1996.

[21] S. Ranka, R. Shankar, and K. Alsabti. Many-to-many Communication With

Bounded Traffic. Symposium on Frontiers of Massively Parallel Computation,

1995.

[22] S. Hambrusch, F. Hameed, and A. Khokhar. Communication Operations on

Coarse Grained Mesh Architectures. Parallel Computing, 21:731-751, 1995.

[23] W. Liu, C. Wang, and V. Prasanna. Portable and Scalable Algorithms for Ir-

regular All-to-All Communication. 16th International Conference on Distributed

Computing Systems (ICDCS '96), May 1996.

[24] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving

Problems on Concurrent Processors. Prentice-Hall, Englewood Cliffs, NJ, 1990.

[25] M. Berger and S. Bokhari. A Partitioning Strategy for Nonuniform Problems on

Multiprocessors. IEEE Trans, on Computers, 36(5):570-580, May 1987.

[26] F. Berman and L. Snyder. On Mapping Parallel Algorithms into Parallel Archi-

tectures. Journal of Parallel and Distributed Computing, 4:439-458, 1987.

[27] M. Linderman and R. Linderman. Real-Time STAP Demonstration on an Em-

bedded High Performance Computer. In Proceedings of the IEEE National Radar

Conference, 1997.

C-146

[28] R. Brown and R. Linderman. Algorithm Development for an Airborne Real-Time

STAP Demonstration. In Proceedings of the IEEE National Radar Conference,

1997.

[29] Intel Corporation. Paragon System User's Guide, April 1996.

[30] Kuck and Associates, Champaign, IL. CLASSPACK Basic Math Library / C,

1994.

[31] A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linderman, and M. Lin-

derman. Design, Implementation and Evaluation of Parallel Pipelined STAP on

Parallel Computers. International Parallel Processing Symposium, 1998.

[32] W. Liao, A. Choudhary, D. Weiner, and P. Varshney. Multi-Threaded Design

and Implementation of Parallel Pipelined STAP on Parallel Computers with

SMP Nodes. International Parallel Processing Symposium, 1999.

[33] IBM Corp. IBM AIX Parallel I/O File System: Installation, Administration,

and Use, October 1996.

[34] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a

Two-Phase Run-time Access Strategy. In Proceedings of the Workshop on I/O

in Parallel Computer Systems at IPPS'93, pages 56-70, 1993.

C-147

Biographical Data

Name: Wei-keng Liao

Date and Place of Birth: June 27, 1966

Taipei, Taiwan

College: National Chung-Hsing University

Taichung, Taiwan

B.S., Applied Mathematics, 1988

Graduate Work: Syracuse University

Syracuse, New York

Research Assistant: 1997-99
Publications:

1. Multi-Threaded Design and Implementation of Parallel Pipelined STAP on Par-

allel Computers with SMP Nodes, (with A. Choudhary, D. Weiner, and P.

Varshney.) Proceedings of the 13th International Parallel Processing Sympo-

sium, April 1999.

2. Design, Implementation and Evaluation of Parallel Pipelined STAP on Paral-

lel Computers, (with A. Choudhary, D. Weiner, P. Varshney, R. Linderman,

and M. Linderman.) Proceedings of the 12th International Parallel Processing

Symposium, April 1998.

3. Dynamic Alignment and Distribution of Irregularly Coupled Data Arrays for

Scalable Parallelization of Particle-in-Cell Problems, (with Chao-wei Ou, and

Sanjay Ranka.) Proceedings of the 10th International Parallel Processing Sym-

posium, April 1996.

C-148

Appendix D

Report and Users' Manual for the Ozturk Algorithm

D-1

Parallel Ozturk Algorithm User's Manual

1. Introduction

Ozturk algorithm is one of the goodness of fit tests used to check
consistency of a null hypothesis against a given sample of random data.
For certain real-time applications of the Ozturk algorithm, it is

essential that the processing time is within some acceptable limits.
Employing parallel machines seems to be one way of reducing the processing
time. Please refer to our final report 'ozturk.ps' for the details of
program characteristics, parallelization strategy and final results.

2. How to extract source code?

A. download ozturk.tar.gz to your local workstation
B. 'gunzip ozturk.tar.gz' then you will get ozturk.tar
C. use 'tar xvf ozturk.tar' to extract the archive. It will create

a subdirectory new
D. There are two subdirectories under new, one is

new_hp: directory for the source code running on HP workstations
new_sp: directory for the source code running on IBM SP2

3. How to compile the source code?

First copy the source code to the platform you are going to be runnin
on.

For both SP and HP, there is a single makefile, just type make and you
should get the executables respectively.

4. How to run the executables?

On HP workstations, you need to edit a machine list in a file to

indicate which machines are you going to run the code on. such as in
the new_hp directory you will find out a text file 'machines', each line
corresponds to a HP workstation in my local area network. You need to
configure it for workstations in your own local area network.

To run the code on 4 nodes, use 'mpirun' with the following arguments:
1 mpirun -np 4 -machinefile machines ozturk '
where, ozturk is executable. The ozturk will be running on the first
four machines in machines file.

On IBM SP2, you need to edit a command script, a sample cmd 'ozturk.cmd'
requesting 4 nodes is given under the directory new_sp. To run submit the
job, use 'llsubmit' command as follows:

'llsubmit ozturk.cmd1

The results will be directed to 'ozturk.out'.

5. How to configure input file?

Edit 'ozturk.init' under new_hp and new_sp directories respectively.

5. Further questions?

send your email to xhshen@ece.nwu.edu

D-2

A Parallel Goodness of Fit Test Algorithm for
Realtime Applications

U.Nagaraj Shenoy Alok N. Choudhary Xiaohui Shen Donald Werner Pramod Varshney

CPDC-TR-9811-022
©1998 Center for Parallel and Distributed Computing

June 1998.

Center for Parallel and Distributed Computing
Department of Electrical k Computer Engineering

Northwestern University
Technological Institute

2145 Sheridan Road, Evanston IL-60208

D-3

A Parallel Goodness of Fit Test Algorithm for Real-time
Applications*

U.Nagaraj Shenoy Alok N. Choudhary
ECE Department

Northwestern University
Evanston, IL 60208

Donald Weiner Pramod Varshney
EECS Department
Syracuse University
Syracuse, NY 13244

Xiaohui Shen

Abstract

Ozturk algorithm is one of the goodness of
fit tests used to check consistency of a null
hypothesis against a given sample of random
data. For certain real-time applications of the
Ozturk algorithm, it is essential that the pro-
cessing time is within some acceptable limits.
Employing parallel machines seems to be one
way of reducing the processing time.

In this report we discuss the paralleliza-
tion of this algorithm on a variety of parallel
machines. Our current results indicate that
the algorithm scales well up to 6-8 processors
depending on the architecture of the paral-
lel machine. Further scaling is impeded by
some inherently sequential portions of the al-
gorithm.

'This work was supported by Air Force Materials
Command under contract F30602-97-C-0026

1 Introduction

In the analysis of random data, situations are
encountered where there may be various sta-
tistical models or hypotheses that need to be
checked against the data. In a typical sce-
nario, one would like to check whether a par-
ticular distribution (the null hypothesis) con-
sistently represents the data from a certain
experiment. Several tests have been proposed
for this purpose and the test developed by
Professor Aydin Ozturk (commonly known as
Ozturk Algorithm [1]) is the focus of this re-
port.

Ozturk algorithm is one of the goodness of
fit tests used to check consistency of a null
hypothesis against a given sample of random
data. Since the algorithm is often used to
process real time data, it is necessary to re-
duce the time needed to process each sample
of data. For large sample sizes, it is observed
that the computation time of the Ozturk al-
gorithm is not acceptable.

One way to achieve improved processing
speed is by employing multiple processors.

D-4

The algorithm in the original sequential form
exhibits very little parallelism which can ex-
ploited by conventional parallelizing compil-
ers on distributed and distributed shared
memory parallel machines. However, there
exists significant amount of parallelism which
can be exploited by hand parallelizing the
code. In the current work we attempt to im-
prove the execution time of this algorithm by
employing multiple processors.

As the original sequential code changed
later, so we presented two sets of results.

In the next few sections we discuss our
initial experience in parallelizing this algo-
rithm on a variety of parallel machines for
the original code: IBM SP2 - a 16 processor
distributed memory multiprocessor, IBM J30
- an 8 processor symmetric multiprocessor,
SGI Origin 2000 - an 8 processor distributed
shared memory multiprocessor and a cluster
of HP 9000 work-stations. For the new code,
the results from SP2 and HP work-stations
are presented.

To ensure portability across different paral-
lel architectures we have adopted the message
passing style of parallel programming. Fur-
ther, we have used standard message passing
interface namely the MPI [2, 3, 4, 5].

The rest of the paper is organized as fol-
lows. In Section 2 we look more closely at
the original sequential implementation of the
Ozturk algorithm and study how the com-
putation time is distributed among various
phases of the algorithm. With this in mind,
we evolve a parallelization strategy which is
discussed in Section 3. Section 5 describes
the code changes from the original sequen-
tial code. The results of running our paral-
lel Ozturk algorithm on a variety of parallel
machines are presented in Section 4 and 6.
Finally we conclude with Section 7.

2 Breakup of computa-
tion time

Before deciding the parallelization strategy,
the sequential algorithm was profiled to study
the breakup of computation time in different
phases of the algorithm. The original algo-
rithm which was implemented in FORTRAN
has around 50 functions. None of these ex-
hibit significant loop level parallelism which
can be exploited by conventional paralleliz-
ing compilers. Manual parallelization seems
to be the only way to parallelize this algo-

rithm.
Among these 50 functions, two top level

functions namely mstar and eexpuv together
contribute to more that 80% of the execution
time (the function mstar along with the func-
tions called by it contributes to more than
50% of the time and eexpuv along with the
functions called by it contributes to 30% of
the time). There also exist other parts of
the algorithm, which contribute to roughly
15-20% of the time, that are difficult to par-
allelize either due to I/O or due to fine gran-

ularity.
Our current parallelization strategy mainly

concentrates on portions of the algorithm
which contribute to roughly 80% of the time.

3 Parallelization Strategy

Our emphasis is on arriving at a portable
parallel implementation of the Ozturk algo-
rithm which can run on a variety of parallel
machines with little or no modification. We
found that a message passing style of paral-
lel programming met this goal. We used the
standard message passing interface namely
MPI as a portable interface due to its wide
availability. The overview of our parallel im-
plementation is shown in Figure 1.

The circles marked by P0...Pn indicate pro-

D-5

Sequential processing

mstar processing eexpuv processing mstar processing

Figure 1: Architecture of parallel Ozturk algorithm

cessors Po---Pn- The sequential parts of the
algorithm are run on PQ. The computation
in mstar and eexpuv is shared by all the pro-
cessors in parallel. Whenever a parallelizable
phase of the algorithm is encountered, the
computation as well as the data is farmed
out to all the processors. These processors
work on their portions of the data in paral-
lel and join together at the end of the par-
allel phase. Different MPI primitives like
MPI_BCAST, MPI_GATHER and MPIJIEDUCE are
used to achieve computation partitioning as
well as interprocessor communication. The
algorithm proceeds as a sequence of alternat-
ing sequential and parallel phases.

4 Experimental Results
of Old Code

We have ported our parallel Ozturk algorithm
on a range of parallel architectures - loosely
coupled network of work stations to tightly

coupled shared memory multiprocessors. Ta-
ble 1 lists these architectures and some of the
related numbers.

Three different sizes (100, 250 and 500
points) of input sample data were tried to
see how the algorithm scales with sample size.
Figure 2 shows the processing time for these
samples on different number of processors for
these parallel machines.

execution time on SGI Origin 2000 is the
least among all the four parallel architec-
tures. This is both because of the higher per-
formance of each processor (195 MHz) as
well as better communication bandwidth sup-
ported (60 MB/sec) by this machine. The
MPI running on Origin is a special imple-
mentation of the standard MPI which proba-
bly makes best use of the distributed shared
memory architecture.

Though the IBM J30 is also a shared mem-
ory machine, the performance of the algo-
rithm is not as good as that on Origin pri-
marily because of the lower processor speed (

D-6

machine
HP 9000
IBM SP2
SGI Origin

2000
IBM J30

architecture
NOW2"
multicomputer
DSM3

SMP4

processor
PA7200
P2SC
R10000

PowerPC 604

clock
120 MHz
120 MHz
195 MHz

112 MHz

comm b/w1

800 KB/sec
24 MB/sec
60 MB/sec

3 MB/sec

nodes
8

16
8

8

MPI
MPICH
IBM MPI
SGI MPI

MPICH

Effective, point to point
2 Network of workstations

distributed shared memory multiprocessor Symmetric multiprocessor

Table 1: Platforms on which the Old parallel Ozturk algorithm has been ported

Input stz« <■ 100

I

~ A - i. ■ -
';

3...,V- ,
■a 2.5 ■ - v\ —

-•-SP2

1 2 \\
-*-J3D
-*—Orign

Kyv
' Vv>s

*JT~?'—*n«i.
»-f—m

12 3 4

Procaa

5 E 7 e

Input lb« "500

■"■ I

,c t- 16 "l
14'"^. -»-HP

f ,2 \\ ■■ ■•■•■■'■""
I in H. -P-SP2

i tzk -*-J30

, . \V ' v^^ !
;. v^ ;fe«=L

12 3 4

ProcM

5 6 7 8

man

Table 2: Old code: Execution times for different data sizes on various machines

D-7

112 MHz) and also the poor communication
bandwidth (3 MB/sec). On the other hand,
though the SP2 processor is slightly faster (
120 MHz) and supports a much higher com-
munication bandwidth (24 MB/sec), J30 al-
ways performs slightly better. We suspect
that this could be due to I/O overheads since
the programs running on SP2 were accessing
a remote file system as compared to the pro-
grams on J30 which accessed a local file sys-
tem. Also, the higher communication band-
width of SP2 may not have given an edge
since the algorithm appears to be compute
bound rather than communication bound.

Our observation that communication band-
width does not play a major role in this appli-
cation stands justified when we compare the
performance of the algorithm on SP2 and the
network of HP workstations. Architecturally
both are distributed memory multiprocessors
except that SP2 has a high bandwidth com-
munication fabric (24 MB/sec) as compared
to the low speed LAN (800 KB/sec) con-
necting the HP NOW. For small number of
processors, both perform almost identically.
The difference shows up for larger number of
processors probably because of the reduced
concurrency in the communication on the HP
NOW.

For small input sizes, only Origin seems
to keep up with the near linear speed up.
However, SP2 catches up and to some ex-
tent scales better than Origin for larger in-
put sizes. Overall, both Origin as well as SP2
seem to scale up very well. Among the ma-
chines, HP NOW seems to saturate early.

The speed-up curve seems to taper off be-
yond 6 to 7 processors in most of the cases.
This is understandable given the fact that
the parallelized code still has some sequential
part which would definitely start dominating
as we increase the number of processors irre-
spective of the architecture.

5 Code Changes

The original sequential code has been
changed later. The changes include:

ORIGINAL MODS: (1) added subroutine
to read/process an ASCII parameter file (2)
removed references to encode/decode; re-
placed with formatted read/writes

FOLLOW-ON MODS: (1) explicitly de-
clared variable types in the common blocks
(2) modified position of '-o' argument in the
makefile; make would ignore '-o' option if
last argument on the line. (3) removed ref-
erences to 'structure' keyword in subroutine
'initialize-pgm.f.

The changes of ozturk code do not affect
the parallelization method, so the new paral-
lel code did the same way of parallelization as
the old one, i.e. concentrates on mstar and
eexpuv functions which take up most of the
execution time.

6 Experimental Results
of New Parallel Code

We have ported the new parallel Ozturk al-
gorithm on Network of HP workstations and
two IBM SP2 machines: one is a 16-node ma-
chine at Center for Parallel and Distributed
Computing(CPDC) at Northwestern Univer-
sity and one is a 80-node machine at Argonne
National Lab. Table 3 lists these machines.

We also tried three different sizes (100, 250
and 500 points) of input sample data to study
the scalability. Figure 4 shows the processing
time for these samples on different number of
processors for these parallel architectures.

Our results show that the execution time
on Argonne's SP2 is the best of all parallel
architectures and the network of HP work-
stations is the worst. This is because net-
work of workstations is loosely coupled with
poor communication bandwidth. The Ar-

D-8

gonne's SP2 has higher communication band-
width (104Mbytes/s) than CPDC's although
they have the same kind of CPU. In addition,
the CPDC has to access a remote filesystem
when it reads the input, this may introduce
some overhead. Therefore, Argonne's SP al-
ways outperforms CPDC's SP.

All parallel architectures demonstrate good
scalability. The only exception is Network of
workstations on the small input size (100),
because it's loosely coupled with poor com-
munication bandwith. But when the in-
put size is large enough, its execution time
also decreases appropriately as the number
of nodes increases. One observation is that
the larger input size, the better speedup can
be achieved. Another observation is that
the rate of performance gain decreases as the
number of node becomes large, this is due to
the sequential part of the code may dominate
the performance.

Note, the old results can not be compared
to the new results since our SP2 and SGI Ori-
gin systems have been upgraded a lot and the
former results can not be repeated.

7 Conclusion

them. The remaining parts are left sequen-
tial and are executed by one of the processors
(processor 0). This results in the early satu-
ration of the algorithm for larger number of
processors since the sequential portions dom-
inate. We observe that some of the sequen-
tially is introduced by I/O which probably
could be eliminated.

References

[1] Shah Rajiv R. ,High-Level Adaptive
Signal Processing Architecture with Ap-
plications to Radar Non-Gaussian Clut-
ter, A New Technique for Distribution
Approximation of Random Data, RL-
TR-95-164, Vol II, Rome Laboratory,
Sep 1995.

[2] The MPI Forum, The MPI-Message
passing Interface Standard.

[3] William Gropp, Ewing Lusk and
Nathan Doss, A High-Performance,
Portable Implementation of the MPI
Message Passing Interface Standard,
Argonne National Laboratory and Mis-
sissippi State University.

In this report we discussed the parallelization
of the Ozturk algorithm on a range of mul-
tiprocessors. The algorithm exhibits signifi-
cant amount of parallelism needing very little
interprocessor communication. We presented
the results from our implementation on IBM
J30, IBM SP2, SGI Origin 2000 and a net-
work of HP 9000 work-stations for the old
code and results on IBM SP2 and network of
HP 9000 work-stations for the new code. Our
experiments show that the algorithm scales
very well for reasonable input sizes and on a
small number of processors.

The current algorithm concentrates only
on the most compute intensive parts of the
sequential algorithm and tries to parallelize

[4] Silicon Graphics Inc., MPI manual on
SGI Origin 2000.

[5] IBM Corp., MPI manual on IBM SP2.

D-9

machine
HP 9000
IBM SP2
IBM SP2(Argonne)

architecture
NOW2

multicomputer
multicomputer

processor
PA7200
P2SC
P2SC

clock
120 MHz
120 MHz
120 MHz

comm b/w1

800 KB/sec
24 MB/sec

104 MB/sec

nodes
8

16
80

MPI
MPICH
IBM MPI
IBM MPI

Effective, point to point 2Network of workstations
distributed shared memory multiprocessor Symmetric multiprocessor

Table 3: Platforms on which the New parallel Ozturk algorithm has been ported

Input SI» 100

ID-

S'

E 6
t-

4

2

™.-

w
*"-—- • • > '

1 2 3Nunlofnod..6 7 8

Input Su» 2SO

35

30

25

Ä20
c

I«
10

5

0
12 3 4 5 6 7

Num of nodes

Input st» SO0

3 4 5 6

Num of nodes

Table 4: New Code: Execution times for different data sizes on various machines

D-10

Appendix E

Users' Manual for STAP

E-1

User Manual for a Parallel Pipelined PRI-Staggered

Post-Doppler STAP Application *

Alok Choudhary

ECE Department

Northwestern University

Evanston, IL 60208

email: choudhar@ece.nwu.edu

Wei-keng Liao.

Donald Weiner, and

Pramod Varshney

EECS Department

Syracuse University

Syracuse, NY 13244

June 9. 1999

'This work was supported by Air Force Materials Command under contract F30602-97-C-0026.

E-2

Abstract

This user manual consists of three chapters. The first chapter presents the design and im-

plementation of parallel pipelined Space-Time Adaptive Processing (STAP) algorithms on

parallel computers. The second chapter describes the detection performance of STAP algo-

rithm. The third chapter describes the commands of using the parallel pipeline STAP source

codes. In the last chapter, default scripts are given for running the parallel pipeline STAP

codes on three High Performance Computing (HPC) systems. In particular, the manual de-

scribes the issues involved in parallelization, our approach to parallelization and performance

results on an Intel Paragon. The process of developing software are also discussed for such

an application on parallel computers when latency and throughput are both considered to-

gether and presents tradeoffs considered with respect to inter and intra-task communication

and data redistribution. The results show that not only scalable performance was achieved

for individual component tasks of STAP but linear speedups were obtained for the integrated

task performance, both for latency as well as throughput.

E-3

Contents

1 Design and Implementation of Parallel Pipelined STAP on Parallel Com-

puters

1.1 Algorithm Overview °

1.2 Model of the parallel pipeline system 8

1.2.1 Parallelization issues and approaches 9

1.3 Design and implementation H

1.3.1 Doppler filter processing 13

1.3.2 Weight computation 14

1.3.3 Beamforming I7

1.3.4 Pulse compression 19

1.3.5 CFAR processing 19

1.4 Software development 20

2 Detection Performance of STAP algorithm 21

3 Using parallel pipeline STAP commands 25

3.1 Source files 25

3.2 Libraries 26

3.3 Compiling and Linking 27

3.4 Running the program 28

3.4.1 Intel Paragon 28

3.4.2 IBM SP 29

3.4.3 SGI Origin 29

E-4

3.5 Input CPI data

3.6 Compute node assignment

3.7 Parameter file

3.8 Description of user specified parameters

3.9 Results output

3.10 Debugging

4 Examples of Running Codes

4.1 Parameter files

4.2 CPI data files

4.3 Compiling • •

4.4 Executing

4.5 Output

4.6 Script to run with defaults

30

30

31

32

38

39

41

41

43

43

44

45

51

E-5

Chapter 1

Design and Implementation of

Parallel Pipelined STAP on Parallel

Computers

Space-time adaptive processing (STAP) is a well known technique in the area of airborne

surveillance radars, which is used to detect weak target returns embedded in strong ground

clutter, interference, and receiver noise. Data processing for STAP refers to a 2-dimensional

adaptive filtering algorithm which attenuates unwanted signals by placing nulls in the fre-

quency domain with respect to their directions of arrival and/or Doppler frequencies. Most

STAP applications are computationally intensive and must operate in real time. High per-

formance computers are becoming mainstream due to the progress made in hardware as well

as software support in the last few years. They can satisfy the STAP computational require-

ments of real-time applications while increasing the flexibility, affordability. and scalability

of radar signal processing systems. However, efficient parallelization of STAP, which consists

of several different algorithms is challenging, and requires several optimizations.

This manual describes our parallel pipelined implementation of a Pulse Repetition Inter-

val (PRI)-staggered post-Doppler STAP algorithm. The design and implementation of the

application is portable. Performance results are presented for the Intel Paragon at the Air

Force Research Laboratory (AFRL), Rome, New York. AFRL has successfully implemented

this STAP algorithm onboard an airborne platform and performed four flight experiments

in May and June 1996 [1]. In that real-time demonstration, live data from a phased array

radar was processed by Intel Paragon machine and results showed that high performance

computers can deliver a significant performance gain. However, that implementation only

E-6

used compute nodes of the machine as independent resources in a round robin fashion to

run different instances of STAP (rather than speeding up one instance of STAR) Using

this approach, the throughput may be improved, but the latency is limited by what can be

achieved using one compute node. The algorithm consists of the following steps:

For our parallel implementation of this real application we have designed a model of parallel

pipeline system where each pipeline is a collection of tasks and each task itself is parallelized.

This parallel pipeline model was applied to the STAP algorithm with each step as a task in

a pipeline. This permits us to significantly improve latency as well as throughput. For the

detail of our implementation and performance results on Intel Paragon, please refer to [2].

1.1 Algorithm Overview

The adaptive algorithm, which cancels Doppler shifted clutter returns as seen by the airborne

radar system, is based on a least squares solution to the weight vector problem. This

approach has traditionally yielded high clutter rejection, but suffers from severe distortions

in the adapted main beam pattern and resulting loss of gain on the target. Our approach

introduces a set of constraint equations into the least squares problem which can be weighted

proportionally to preserve main beam shape. The algorithm is structured so that multiple

receive beams may be formed without changing the matrix of training data. Thus, the

adaptive problem can be solved once for all beams which lie within the transmit illumination

region. The airborne radar system was programmed to transmit five beams, each 25 degrees

in width, spaced 20 degrees apart. Within each transmit beam, six receive beams were

formed by the processor.

The algorithm consists of the following steps:

1. Doppler filter processing,

2. Weight computation,

3. Beamforming.

4. Pulse compression, and

5. CFAR processing.

Doppler filtering is performed on each receive channel using weighted Fast Fourier Trans-

forms (FFT's). The analog portion of the receiver compensates the received clutter frequency

E-7

to center the clutter frequency at zero regardless of the transmit beam position. This sim-

plifies indexing of Doppler bins for classification as "easy" or "hard" depending on their

proximity to mainbeam clutter returns. For the "hard" cases, Doppler processing is per-

formed on two 125-pulse windows of data separated by three pulses (a STAP technique

known as "PRI-stagger"). Both sets of Doppler processed data are adaptively weighted in

the beamforming process for improved clutter rejection. In the "easy" case, only a sin-

gle Doppler spectrum is computed. This simpler technique has been termed Post Doppler

Adaptive Beamforming and is quite effective at a fraction of the computational cost when

the Doppler bin is well separated from mainbeam clutter. In these situations, an angular

null placed in the direction of the competing ground clutter provides excellent rejection.

Selectable window functions are applied to the data prior to the Doppler FFT's to control

sidelobe levels. The selection of a window is a key parameter in that it impacts the leakage

of clutter returns across Doppler bins, traded off against the width of the clutter passband.

An efficient method of beamforming using recursive weight updates is made possible by a

block update form of the QR decomposition algorithm. This is especially significant in the

"hard" Doppler regions, which are computed using separate weights for six consecutive range

intervals. The recursive algorithm requires substantially less training data (sample support)

for accurate weight computation, as well as providing improved efficiency. Since the hard

regions have one sixth the range extent from which to draw data, this approach dealt with

the paucity of data by using past looks at the same azimuth, exponentially forgotten, as

independent, identically distributed estimates of the clutter to be cancelled. This assumes

a reasonable revisit time for each azimuth beam position. During the flight experiments,

the five 25 degree transmit beam positions were revisited at a 1-2 Hz rate (5-10 CPIs per

second.)

The training data for the easy Doppler regions was selected using a more traditional ap-

proach. Here, the entire range extent was available for sample support, so the entire training

set was drawn from three preceding CPIs for application to the next CPI in this azimuth

beam position. In this case, a regular (non-recursive) QR decomposition is performed on the

training data, followed by block update to add in the beam shape constraints.

Pulse compression is a compute intensive task, especially if applied to each receive channel

independently. In general, this approach is required for adaptive algorithms which compute

different weight sets as a function of radar range. Our algorithm, however, with its mainbeam

constraint, preserves phase across range. In fact, the phase of the solution is independent

of the clutter nulling equations, and appears only in the constraint equations. The adapted

target phase is preserved across range, even though the clutter and adaptive weights may

E-8

Spatial Spatial Spatial
data data data

dependency dependency dependency

input.
Task. Task.

output.
• • •

Temporal
data

dependency

Temporal
data

dependency

input.
Task,

V
u
C
u
s
er
4)

CA
11
E

■+
Task. • • •

Temporal
data

dependency

Task.
output ,+1

Temporal
data

dependency

input.
Task. Task. • • • Task.

output j+2

t
Figure 1.1: Model of the parallel pipeline system. (Note that Task for all input instances is

executed on the same number of processors.)

vary with range. Thus, pulse compression may be performed on the beamformed output of

the receive channels providing a substantial savings in computations.

In the sections to follow, we present the process of parallelization and software design

considerations including those for portability, task mapping, parallel data redistribution,

parallel pipelining and issues involved in measuring performance in implementations when

not only the performance of individual tasks is important, but overall performance of the

integrated system is critical. We demonstrate the performance and scalability for a large

number of processors.

1.2 Model of the parallel pipeline system

The system model for the type of STAP applications considered in this work is shown in

Figure 1.1. This model is suitable for the computational characteristics found in these

applications. A pipeline is a collection of tasks which are executed sequentially. The input

to the first task is obtained normally from sensors or other input devices and the inputs

E-9

to the rest of the tasks in the pipeline axe the outputs of their previous tasks. The set of

pipelines shown in the figure indicates that the same pipeline is repeated on subsequent input

data sets. Each block in a pipeline represents one parallel task, which itself is parallelized

on multiple (different number of) processors. That is, each task is decomposed into subtasks

to be performed in parallel. Therefore, each pipeline is a collection of parallel tasks.

In such a system, there exist both spatial and temporal parallelism that result in two

types of data dependencies and flows, namely, spatial data dependency and temporal data

dependency [3, 4, 5]. Spatial data dependency can be classified into inter-task data depen-

dency and intra-task data dependency. Intra-task data dependencies arise when a set of

subtasks needs to exchange intermediate results during the execution of a parallel task in a

pipeline. Inter-task data dependency is due to the transfer and reorganization of data passed

onto the next parallel task in the pipeline. Inter-task communication can be communication

from the subtasks of the current task to the subtasks of the next task, or collection and

reorganization of output data of the current task and then redistribution of the data to

the next task. The choice depends on the underlying architecture, mapping of algorithms

and input-output relationship between consecutive tasks. Temporal data dependency occurs

when some form of output generated by the tasks executed on the previous data set are

needed by tasks executing the current data set. We will later see that STAP has both types

of data dependencies.

1.2.1 Parallelization issues and approaches

Applications such as STAP entail multiple algorithms (or processing steps), each of which

performs particular functions, to be executed in a pipelined fashion. Multiple pipelines need

to be executed in a staggered manner to satisfy the throughput requirements. Each task

needs to be parallelized for the required performance, which, in turn, requires addressing

the issue of data distribution on the subset of processors on which a task is parallelized to

obtain good efficiency and incur minimal communication overhead. Given that each task

is parallelized, data flow among multiple processors of two or more tasks is required and,

therefore, communication scheduling techniques become critical.

Inter-task data redistribution

In an integrated system which implements several tasks that feed data to each other, data

redistribution is required when it is fed from one parallel task to another. This is because

E-10

the wav data is distributed in one task may not be the most appropriate distribution for an-

other task for algorithmic or efficiency reasons. For example, given an input two-dimensional

array, one task may process it in a row major fashion. The next task that receives this two-

dimensional array may require a column major order. To ensure efficiency of continuity of

memory access, data reorganization and redistribution are required in the inter-task com-

munication phase. Data redistribution also allows concentration of communication at the

beginning and the end of each task.

We have developed runtime functions and strategies that perform efficient data redistribu-

tion [6]. These techniques reduce the communication time by minimizing contention on the

communication links as well as by minimizing the overhead of processing for redistribution

(which adds to the latency of sending messages). We take advantage of lessons learned from

these techniques to implement the parallel pipelined STAP application.

Task scheduling and processor assignment

An important factor in the performance of a parallel system, is how the computational load

is mapped onto the processors in the system. Ideally, to achieve maximum parallelism, the

load must be evenly distributed across the processors. The problem of statically mapping

the workload of a parallel algorithm to processors in a distributed memory system, has been

studied under different problem models, such as [7, 8]. The mapping policies are adequate

when an application consists of a single task, and the computational load can be determined

statically. These static mapping policies do not model applications consisting of a sequence

of tasks (algorithms), where the output of one task becomes the input to the next task in

the sequence.

Optimal use of resources is particularly important in high-performance embedded appli-

cations due to limited resources and other constraints such as desired latency or throughput

[9]. When several parallel tasks need to be executed in a pipelined fashion, tradeoffs exist

between assigning processors to maximize the overall throughput and assigning processors

to minimize a single data set's response time (or latency.) The throughput requirement says

that when allocating processors to tasks, it should be guaranteed that all the input data

sets will be handled in a timely manner. That is, the processing rate should not fall behind

the input data rate. The response time criteria, on the other hand, require minimizing the

latency of computation on a particular set of data input.

To reduce the latency, each parallel task must be allocated more processors to reduce its

execution time, and consequently, the overall execution time of the integrated system. But

E-11

CPI
Data
Cube

(T,)

u-
Weight

Computation
(Easy Case)

JDU
P3 (T3)

Doppler
FUter

Processing

P0 (To)

Beamforming

(Easy Case)
(Tj) P6 (T4)

Weight
Computation
(Hard Case)

Beamforming

(Hard Case)

Pulse

Compression

CFAR

Processing

TD 2,4
(T4)

T
Detection
Reports

P2 <T2)

 ^- Data from previous time instance
 ► Data from current time instance

Figure 1.2: Implementation of parallel pipelined STAP. Arrows connecting task blocks repre-

sent data transfer between tasks.

it is well known that the efficiency of parallel programs usually decreases as the number

of processors is increased. Therefore, the gains in this approach may be incremental. On

the other hand, throughput can be increased by increasing the latency of individual tasks

by assigning them fewer processors, and therefore, increasing efficiency, but at the same

time having multiple streams active concurrently in a staggered manner to satisfy the input-

data rate requirements. We next present these tradeoffs and discuss various implementation

issues.

1.3 Design and implementation

The design of the parallel pipelined STAP algorithm is shown in Figure 1.2. The parallel

pipeline system consists of seven basic tasks. We refer to the parallel pipeline as simply a

pipeline in the rest of this paper. The input data set for the pipeline is obtained from a

phased array radar and is formed in terms of a coherent processing interval (CPI). Each CPI

data set is a 3-dimensional complex data cube comprising of K range cells, J channels, and

N pulses. The output of the pipeline is a report on the detection of possible targets. The

arrows shown in Figure 1.2 indicate data transfer between tasks. Note that although a single

arrow is shown, each represents multiple processors in one task communicating with multiple

E-12

processors in another task. Each task * is parallelized by evenly partitioning its work load

among P processors. The execution time associated with task 2, Tu consists of the time to

receive data from the previous task, computation time, and time to send results to the next

task.
The calculation of weights is the most computationally intensive part of the STAP algo-

rithm. For the computation of the weight vectors for the current CPI data cube, data cubes

from previous CPIs are used as input data. This introduces temporal data dependency. For

example, suppose that a set of CPI data cubes entering the pipeline sequentially are denoted

by CPU, i = 0,1,.... At any time instance i, the Doppler filtering task is processing CPU

and beamforming task is processing CPU-,. In the meanwhile, the weight computation task

is using CPU-i, CPU-2, • • • to calculate the weight vectors for CPU. The resulted weight

vectors will be applied to CPU in the beamforming task at next time instance i + 1. Thus,

temporal data dependencies exist and are represented by arrows with dashed lines, TDh3

and TD2,4, in Figure 1.2 where TD^ represents temporal data dependency of task j on data

from task i. In a similar manner, spatial data dependencies SDUj can be defined and are

indicated in Figure 1.2 by arrows with solid lines.

Throughput and latency are two important measures for performance evaluation on a

pipeline system. The throughput of our pipeline system is the inverse of the maximum

execution time among all tasks, i.e.,

throughput = —. U--v
max ±i
0<t<6

To maximize the throughput, the maximum value of T{ should be minimized. In other words,

no task should have an extremely large execution time. With limited number of processors,

the processor assignment to different tasks must be made in such a way that the execution

time of the task with highest computation time is reduced.

The latency of this pipeline system is the time between the arrival of the CPI data cube

at the system input and the time at which the detection report is available at the system

output. Therefore, the latency for processing one CPI is the sum of the execution times of

all the tasks except weight computation tasks, i.e..

latency = T0 + maxT, + T5 + T6. (1.2)
X—0,4

The temporal data dependency does not affect the latency because weight computation tasks

use data from the previous instance rather than current CPI. The filtered CPI data cube

sent to the beamforming task does not wait for the completion of its weight computation.

E-13

N pulses

Figure 1.3: Partitioning strategy for Doppler filter processing task. CPI data cube is parti-

tioned among PQ processors across dimension K.

This explains why equation (1.2) does not contain 7\ and T2. The overall system latency

can be reduced by reducing the execution times of the parallel tasks, e.g., T0, T3, T4, T5, and

TO in our system.

Next, we briefly describe each task and its parallel implementation. A detailed description

of the STAP algorithm we used can be found in [10, 11].

1.3.1 Doppler filter processing

The input to the Doppler filter processing task is one CPI complex data cube received from

a phased array radar. The computation in this task involves performing range correction

for each range cell and the application of a windowing function (e.g. Hanning or Hamming)

followed by a N-point FFT for every range cell and channel. The output of the Doppler filter

processing task is a 3-dimensional complex data cube of size K x 2 J x N which is referred

to as staggered CPI data. In Figure 1.2. we can see that this output is sent to the weight

computation task as well as to the beamforming task.

Both the weight computation and the beamforming tasks are divided into easy and hard

parts. These two parts use different portions of staggered CPI data and the associated

amounts of computation are also different. Easy weight computation task uses range samples

only from the first half of the staggered CPI data while hard weight computation task uses

range samples from the entire staggered CPI data. On the other hand, easy and hard

beamforming tasks use all range cells rather than some of them. Therefore, the size of data

to be transfered to weight computation tasks is different from the size of data to be sent to

beamforming tasks. In Figure 1.2, thicker arrows connected from Doppler filter processing

task to beamforming tasks indicates that the amount of data sent to the beamforming tasks

is more than the amount of data sent to the weight tasks.

E-14

Easy Weight
Computation

Dopplcr Filter
Processing Output

Figure 1.4: Parallel inter-task communication from Doppler filter processing task to easy and

hard weight computation tasks requires different sets of range samples. Data collection needs

to be performed before the communication. This can be viewed as irregular data redistribution.

The basic parallelization technique employed in the Doppler filtering processing task is to

partition CPI data cube across the range cells, that is, if P0 processors are allocated to this

task, then each processor is responsible for f range cells. The reason for partitioning CPI

data cube along dimension K is that it maintains an efficient accessing mechanism for contin-

uous memory space. A total of K-2J iV-point FFTs are performed and the best performance

is achieved when every iV-point FFT accesses its N data sets from a continuous memory

space. Figure 1.3 illustrates the parallelization of this step. The inter-task communication

from Doppler filter processing task to weight computation tasks is explained in Figure 1.4.

Since only subsets of range cells are needed in weight computation tasks, data collection has

to be performed on the output data before passing it to the next tasks. Data collection is

performed to avoid sending redundant data and hence reduces the communication costs.

1.3.2 Weight computation

The second step in this pipeline is the computation of weights that will be applied to the next

CPI. This computation for N pulses is divided into two parts, namely, "easy" and "hard"

Doppler bins, as shown in Figure 1.5. The hard Doppler bins (pulses), Nhard, are those

E-15

range cells

channels

J

hard hard

Nhard N, easy
Nhard

N Doppler bins (pulses)

Figure 1.5: Staggered CPI data partitioned into easy and hard weight computation tasks.

in which significant ground clutter is expected. The remaining bins are easy Doppler bins.

The main difference between the two is the amount of data used and the amount of ■" 'easy

computation required. Not all range cells in the staggered CPI are used in weight calculation

and different subsets of range samples are used in easy Doppler bins and hard Doppler bins.

To gather range samples for easy Doppler bins to calculate the weight vectors for the

current CPI. data is drawn from three preceding CPIs by evenly spacing out over the first one

third of K range cells of each of the three CPIs. Easy weight computation task involves Neasy

QR factorizations, block updates, and back substitutions. In the easy weight calculation,

only range samples in the first half of the staggered CPI data are used while hard weight

computation employs range samples from the entire staggered CPI. Furthermore, range

extent for hard Doppler bins is split into six independent segments to further improve clutter

cancelation. To calculate weight vectors for the current CPI, range samples used in hard

Doppler bins are taken from the immediately preceding staggered CPI data by evenly spacing

out over each of six segment ranges. The hard weight computation task involves 6Nhard

recursive QR updates, block updates, and back substitutions. The easy and hard weight

computation tasks process sets of 2-dimensional matrices of different sizes.

Temporal data dependency exists in the weight computation task because both easy and

hard Doppler bins use data from previous CPIs to compute the weights for the current CPI.

The outputs of this step, the weight vectors, are two 3-dimensional complex data cubes

of size Neasy x J x M and Nhard x 2J x M for easy and hard weight computation tasks

respectively, where M is the number of receive beams. These two weight vectors are to be

applied to the current CPI in the beamforming task. Because of the difference sizes of easy

and hard weight vectors, beamforming task is also divided into easy and hard parts to handle

E-16

Nharä puls«

N, easy pulses

J
channels

y» " ""

7
*?M

$tWr

Nean .
' Pi

2xJ
channels

Figure 1.6: Partitioning strategy for easy and hard weight computation tasks. Data cube is

partitioned across dimension N.

different amounts of computation.

Given the uneven nature of weight computations, different sets of processors are allocated

to the easy and hard tasks. In Figure 1.2. Pi processors are allocated to easy weight compu-

tation and P2 processors to hard weight computation. Since weight vectors are computed for

each pulse (Doppler bin), the parallelization in this step involves partitioning of data along

dimension N. that is. each processor in easy weight computation task is responsible for -^

pulses while each processor in hard weight computation task is responsible for *W pulses,

as shown in Figure 1.6.
Notice that Doppler filter processing and weight computation tasks employ different data

partitioning strategies (along different dimensions.) Due to different partitioning strategies,

an all-to-all personalized communication scheme is required for data redistribution from

Doppler filter processing task to the weight computation task. That is, each of the P, and

P2 processors needs to communicate with all P0 processors allocated to the Doppler filter

processing task to receive CPI data. Since only subsets of Doppler filter processing task's

output are used in the weight computation task, data collection is performed before inter-

task communication. Although data collection reduces inter-task communication cost, it also

involves data copying from non-continuous memory space to continuous buffers. Sometimes

the cost of data collection may become extremely large due to hardware limitations (e.g.

high cache miss ratio.) When sending data to the beamforming task, the weight vectors

have already been partitioned along dimension N which is the same as the data partitioning

strategy for the beamforming task. Therefore, no data collection is needed when transferring

data to the beamforming task.

E-17

1.3.3 Beamforming

The third step in this pipeline (which is actually the second step for the current CPI because

the result of the weight task is only used in the subsequent time step) is beamforming. The

inputs of this task are received from both Doppler filter processing and weight computation

tasks, as shown in Figure 1.2. Easy weight vector received from easy weight computation

task is applied to the easy Doppler bins of the received CPI data while hard weight vector is

applied to hard Doppler bins. The application of weights to CPI data requires matrix-matrix

multiplications on two received data sets. Due to different matrix sizes for multiplications in

easy and hard beamforming tasks, uneven computational load results. The beamforming task

is also divided into easy and hard parts for parallelization purposes. Recall that the weight

computation task was divided due to algorithmic reasons. Easy and hard beamforming tasks

require different amounts and portions of CPI data, and involve different computational

loads.

The inputs for the easy beamforming task are two 3-dimensional complex data cubes. One

data cube which is received from the easy weight computation task is of size NeaSy x M x J.

The other is from Doppler filter processing task and its size is Neasy x J x K. A total of

Neasy matrix-matrix multiplications are performed where each multiplication involved two

matrices of size M x J and J x K respectively. Hard beamforming task also has two input

data cubes which are received from Doppler filter processing and hard weight computation

tasks. The data cube of size 6Nhard x M x 2J is received from hard weight computation

task and the Doppler filtered CPI data cube is of size Nhard x 2J x K. Since range cells

are divided into 6 range segments, there are a total of 6Nhard matrix-matrix multiplications

in hard beamforming. The results of the beamforming task are two 3-dimensional complex

data cubes of size .Veasy xM x K and Nhard x M x K corresponding to easy and hard parts

respectively.

In a manner similar to the weight computation task, parallelization in this step also in-

volves partitioning of data across the N dimension (Doppler bins.) Different sets of processors

are allocated to easy and hard beamforming tasks. Since the cost of matrix multiplications

can be determined accurately, the computations are equally divided among the allocated pro-

cessors for this task. As seen from Figure 1.2, this task requires data to be communicated

from the first as well as the second task. Because data is partitioned along different dimen-

sions, an all-to-all personalized communication is required for data redistribution between

Doppler filter processing and beamforming tasks. The output of Doppler filter processing

task is a data cube of size K x 2 J x N which is redistributed to the beamforming task after

E-18

CPI Data Subcube
in

Doppler Filter Processing Task

JL / "easy PukeS

CPI Data Subcube
in

Easy Beam Forming Task

K , '' «>sy
— x7x —
*0 r3

Figure 1.7: Data redistribution from Doppler filter processing task to easy beamforming task.

CPI data subcube of size KxJx^ls reorganized to subcube of size ^fxfxj before

sending from one processor m Doppler filter processing task to another in easy beamforming

task.

data reorganization in the order of N x K x 2J. Data reorganization has to be done before

the inter-task communication between the two tasks takes place, as shown in Figure 1.7.

Data reorganization involves data copying from non-continuous memory space and its

cost may become extremely large due to cache misses. For example, two Doppler bins in

the same range cell and the same channel are stored in contiguous memory space. After

data reorganization, they are f • J element distance apart. Therefore, if P0 is small and the

size of CPI data subcube partitioned in each processor is large then it is quite likely that

expensive data reorganization will be needed which becomes major part of communication

overhead. The algorithms which perform data collection and reorganization are crucial

to exploit the available parallelism. Note that receiving data from weight computation

tasks does not involve data reorganization or data collection because they have the same

partitioning strategy (along dimension N.)

E-19

M
beams

K range cells

Figure 1.8: Partitioning strategy for pulse compression task. Data cube is partitioned across

dimension N into P$ processors.

1.3.4 Pulse compression

The input to the pulse compression task is a 3-dimensional complex data cube of size NxMx

K. This data cube consists of two subcubes of size Neasy x M x K and Nhard x M x K which

are received from easy and hard beamforming tasks respectively. Pulse compression involves

convolution of the received signal with a replica of the transmit pulse waveform. This is

accomplished by first performing Appoint FFTs on the two inputs, point-wise multiplication

of the intermediate result and then computing the inverse FFT. The output of this step

is a 3-dimensional real data cube of size N x M x K. The parallelization of this step is

straightforward and involves the partitioning of data cube across the N dimension. Each of

the FFTs could be performed on an individual processor and hence each processor in this

task gets an equal amount of computation. Partitioning along the N dimension also results

in an efficient accessing mechanism for continuous memory space when running FFTs. Since

both beamforming and pulse compression tasks use the same data partitioning strategy

(along dimension TV), no data collection or reorganization is needed prior to communication

between these two tasks.

1.3.5 CFAR processing

The input to this task is an N x M x K real data cube received from the pulse compression

task. The sliding window constant false alarm rate (CFAR) processing compares the value

of a test cell at a given range to the average of a set of reference cells around it times a

probability of false alarm factor. This step involves summing up a number of range cells

E-20

on each side of the cell under test, multiplying the sum by a constant, and comparing the

product to the value of the cell under test. The output of this task, which appears at

the pipeline output, is a list of targets at specified ranges, Doppler frequencies, and look

directions. The parallelization strategy for this step is the same as for the pulse compression

task. Both tasks partition data cube along the N dimension. Also, no data collection or

reorganization is needed in pulse compression task before sending data to this task.

1.4 Software development

All the parallel programs development and their integration is being performed using C

language and message passing interface (MPI) [12]. All the functions needed for data redis-

tribution etc. are also being developed in the same fashion. This permits easy portability

across various platforms which support C language and MPI. Since MPI is becoming a de

facto standard for high-performance systems, we believe the software will be portable. To

facilitate upward or downward scalability, the number of processors, data sizes and other

important parameters are runtime inputs so that the same program can be run on different

number of processors without compiling it again. This allows, for example, the same function

to be executed on 2, 4 and so on, number of processors.

E-21

Chapter 2

Detection Performance of STAP

algorithm

The algorithm which has been parallelized is a PRI-staggered post-Doppler STAP algo-

rithm. Assume the data cube consists of N pulses, J channels, and K range cells. With

this algorithm, Doppler filtering is first performed separately on the N pulses received in

each channel. In effect, this produces at each channel the output of N Doppler filters which

subdivide the Doppler frequency interval into N contiguous Doppler bins. The intention is

that each Doppler filter is designed to have suitably low side lobes such that it rejects all of

the clutter with Doppler frequencies outside of the filter passband. In this way, the residual

clutter along the clutter ridge is localized in term of its spatial frequencies. Adaptive spatial

filtering is subsequently performed to reduce the residual clutter.

The philosophy of the post-Doppler STAP algorithm is illustrated in the Figure 2.2. Let

• d = inter-channel spacing

• fT — pulse repetition frequency

• A0 = wavelength of transmitted carrier frequency

• va = velocity of airborne platform in x-direction

• 8 = elevation angle

• d> = azimuth angle

E-22

radar platform

scatter

Figure 2.1: Radar platform - array in x-z plane parallel to x axis. 9

0 = azimuth angle.

= elevation angle and

Assuming no velocity misalignment (i.e. zero crab angle), the clutter return from a point

scattered in the (0, <?) direction has a normalized Doppler frequency given by

2v" a ■ A. UJ = cos v sm <p
/rAo

and the normalized spatial frequency equals to

d a ■ A v = — cos 0 sm (p.
Ao

It follows that the clutter returns appear upon the clutter ridge specified by

(2.1)

(2.2)

(2.3)

where

0 =
2^a

frd
(2.4)

The Figure 2.2 shows the clutter ridge corresponding to ß = 1. Ideally, the Doppler filter

rejects all of the clutter outside its passband (the shaded area in the Figure). The spatial

frequencies of the residual clutter are then localized to the shaded region shown in the Figure

2.2. Adaptive spatial filtering is then used to remove the residual clutter. A target within

the Doppler filter will be easy to detect when it is located far from the clutter ridge. The

E-23

-0.5

Doppier
Filter

Normalized
Doppier

Frequency

Easy Target Hard Target

-0.5 Normalized
Spatial

Frequency

+0.5

Figure 2.2: Philosophy of the post-Doppler STAP algorithm.

target becomes more difficult to detect as it moves toward the clutter ridge and it may not

be possible to detect the target when it is too close to the clutter ridge.

When the side lobes of the Doppler filter are not sufficiently low, the strong clutter in the

main beam of the radar transmitter will not be completely rejected by the Doppler filter.

The adaptive spatial filter will then attempt to remove this clutter as well. In the process,

the signal power received from the target may be reduced making it more difficult to detect

the target.

The problem becomes more difficult when frequency aliasing occurs. This will be the

case when ß > 1. Then more than one clutter ridge will appear within the passband of

the Doppler filter. As a result, the target is more likely to be close to a clutter ridge and.

therefore, more difficult to detect. Additional clutter ridges may appear within the passband

of the Doppler filter when there is velocity misalignment (i.e., a nonzero crab angle). The

clutter ridge then expands into an ellipse which can be troublesome when there is significant

antenna gain in the backward looking direction. Frequency aliasing aggravates the problem.

Because the clutter covariance matrix is unknown, it must be estimated. Typically, this

is done using secondary (or training) data from nearby range cells. In a severely non-

homogeneous environment, the secondary data will not be representative of the clutter data

in the range cell under test. As a consequence, the spatial adaptive filter may do a poor job

E-24

of cancelling the localized clutter along the clutter ridge and a target may not be detected.

E-25

Chapter 3

Using parallel pipeline STAP

commands

In this chapter, we describe the parallel pipeline STAP source file structures and explain the

commands to perform the following tasks on various HPC system platforms:

• compiling and linking application,

• running application,

• input data files, and

• output data files.

The target machines for current implementations are Intel Paragon, IBM SP, and SGI Origin.

Besides, the source codes can also be ported to other machines with modification on linked

libraries.

3.1 Source files

All source files are written in standard ANSI C language. Several make files have been incor-

porated with the source files: Makefile, Makefile. common, Makefile .paragon, Makefile. sp,

and Makefile. sgi. According to the make file, Makefile. common, source files are generally

consist of 8 groups:

1. Doppler filter processing (FILTER-GRP),

E-26

Table 3.1: Source file names for each of 7 tasks.

Doppler filter

easy weight

hard weight

easy beamforming

hard beamforming

pulse compression

CFAR

täk\ sending phase | computation phase | receiving phase

random-gen.cpi.c

wt-easy-grp-recv.c

wt-hard.grp-recv. c

bf_easy_grp_recv.c

bf-hard-grp-recv.c

pc_grp_recv.c

cfar_grp_recv.c

rawToFFT.c

easy.dop.c

hard.dop.c

beamforming jeasy. c

beamforming_hard. c

pulse.compress. c

cfar .detection, c

filter-grp-send.c

wt.easy-grp-send.c

wtJiard_grp-send.c

bLeasy-grp-send.c

bfJiard-grp-send.c

pc.grp-send.c

0

2. easy weight computation (WT_EASY_GRP),

3. hard weight computation (WT.HARD.GRP),

4. easy beamforming (BF_EASY_GRP),

5. hard beamforming (BF_HARD_GRP),

6. pulse compression (PC-GRP).

7. CFAR processing (CFAR.GRP), and

8. utility subroutines.

3.2 Libraries

Libraries used in the source codes include Message Passing Interface (MPI) [12], standard

ANSI C math library, Basic Linear Algebra Subroutines (BLAS) library, and Fast Fourier

Transform(FFT) library. Since most of the HPC platforms support ANSI C language and

MPI. the part of source codes linking with MPI and ANSI C math libraries are portable. The

header file for using MPI library is mpi.h and for using ANSI C math library is math. h. The

libraries linked are libmpi.a and libm.a or libmpi.so and libm.so. On the other hand, there are

various implementations of the BLAS and FFT libraries on different system platforms. The

following is the list of BLAS and FFT libraries implemented on the HPC system platforms

that parallel pipeline STAP source codes have been ported successfully.

• Intel Paragon running OSF/1 operating system

E-27

- CLASSPACK Basic Math Library [13],

- CLASSPACK Signal Processing Library [14].

- header file: kai_c.h.

- library files: libkmath.a and libksignal.a.

• IBM SP running AIX operating system

- Engineering and Scientific Subroutine Library (ESSL) [15],

- header file: essl.h.

- library file: libessl.a.

• SGI Origin running IRIX 6.4 or 6.5 operating system running MIPS R10000 CPUs

- SGI/Cray Scientific Library (SCSL) [16],

- library file: libscs.so.

3.3 Compiling and Linking

Make files are available for compiling the source codes on different HPC platforms:

• Makefile,

• Makefile.common,

• Makefile.paragon,

• Makefile.sp, and

• Makefile.sgi.

Since the compiling and linking environments differ among target HPC systems, the make

file with extension, paragon, sp, and sgi are for Intel Paragon, IBM SP, and SGI Origin

respectively. To compile the source codes on Intel Paragon, use the command

7. make -f Makefile.paragon

To compile the source codes on IBM SP. use the command

E-28

*/. make -f Makefile, sp

To compile the source codes on SGI Origin, use the command

7, make -f Makefile.sgi

The resulted executable file is main_f.

Users can also use other C compiler options by modifying the macro CFLAGS in Makefile. common.

In Makefile. common, two macros defined for compiling are

DFLAGS = -DFLOAT.TYPE

CFLAGS = -02

The macro CFLAGS specifies compiling options. A flag -02 is given to specify the level of

optimization for the object code is 2. For example, users can change it to -g for debugging

purpose. Please see the online manual of C compiler for detail of all flags on the system

platform used. Macro DFLAGS is a list for define macros for compiling. A defined macro

FLOAT-TYPE shown here makes the application compiled with all real numbers declared in

the source program using float type (single precision). If this variable list is given empty,

i.e.

DFLAGS

the application is compiled with all real numbers using double type (double precision).

3.4 Running the program

The program execution environments also differ among target HPC systems, We now explain

how to run the program on Intel Paragon. IBM SP, and SGI Origin.

3.4.1 Intel Paragon

To run in interactive mode, a partition of compute nodes must first be made. Usually,

partition of interactive mode is made under . compute partition. By using command "lspart

-r .", a list available partitions is shown such that users can reserve a group of compute nodes

under desired partition tree.

E-29

7, lspart - -r .

USER GROUP ACCESS SIZE FREE RQ EPL PARTITION

root daemon 754 10 10 SPS 5 io

root daemon 754 6 6 SPS 5 service

root daemon 777 28 28 SPS 5 sunmos

root daemon 777 1 1 SPS 5 atm_hippi

root daemon 766 30 30 SPS 5 ditp

root daemon 744 232 232 SPS 5 compute

.sunmos:

root daemon 777 28 28 SPS 5 interactive

.compute:

root daemon 766 85 85 SPS 5 OPEN

.compute. DPEN:

pottsg AFIT 766 4 4 SPS 5 test

wkliao PAHPES 766 16 16 SPS 5 stap

For example, to make a partition with 16 compute nodes under . compute partition, a user

can use the command

7. mkpart -sz 16 OPEN.stap

For more information of making partition, please refer Paragon User's Guide [17]. A com-

mand line to execute the application interactively can be

7. main_f -sz 16 -pn OPEN.stap.

3.4.2 IBM SP

To run in interactive mode, a command "mpirun" is for launching an MPI application. A

command can be as simple as

7. mpirun -np 16 main_f

3.4.3 SGI Origin

To run in interactive mode, the command "mpirun" is also available on SGI Origin for

launching an MPI application. A command can also be as simple as

E-30

'/, mpirun -np 16 main_f

3.5 Input CPI data

The input CPI data sets for this parallel pipeline STAP application are generated by a C

random number generator, random(). Every processor in Doppler filter processing group

calls the function random-gen-cpi() in file random^en.cpi. c with its processor id as the

random seed. Therefore, when the number of processors assigned to Doppler filter processing

group differs, the overall CPI data differs. If users want to use real CPI data as inputs, please

refer to the Debugging section to set the debug flag in filter-grp. c.

3.6 Compute node assignment

The file proc.dat controls the compute node allocations on the program. An example of

this file is:

processor numbers assigned for each group

32 16 112 16 28 16 16

16 8 56 8 14 8 8
8 4 28 4 7 4 4

where the comments followed by # in each line are ignored. In this example, the program

will execute three times, each with different numbers of compute nodes assigned to each of

the 7 groups of tasks. That is. the first line in this example will assign

• 32 compute nodes to FILTER-GRP.

• 16 compute nodes to WT_EASY_GRP,

• 112 compute nodes to WT_HARD_GRP,

• 16 compute nodes to BF_EASY_GRP,

• 28 compute nodes to BF_HARD_GRP,

• 16 compute nodes to PC.GRP, and

• 16 compute nodes to CFAR-GRP,

E-31

and so forth. Before running the program, users should allocate sufficient number of compute

nodes. This is, the number of reserved compute nodes should be at least greater than the

total number specified in the file proc.dat. In the above example, 236 the the smallest

number needed to run the program.

3.7 Parameter file

The parameter file for the parallel pipeline STAP application is param.dat. The program

reads this file and checks the ranges of the given parameters before it actually runs. An

example of par am. dat is

-k 512 # number of range cells

-j 16 # number of channels

-n 128 # number of pulses

-r 3 # number of reference CPIs

-m 24 # total number of CPIs (besides the reference CPIs)

-p 3 # number of zero padding

-w Hanning # windowing function: Hanning or Hamming

-h 56 # number of hard Doppler bins

-e 26 # number of range samples for easy weight

-u 0.3333 # fraction of range cells for extracting easy weight samples

-s 39 # number of range samples for hard weight

-g 6 # number of segments for each hard Doppler bin

-1 5 # number of broad transmit beams

-d 2 # broad transmit beams direction

-b 6 # number of receive beams for each broad transmit beam

-V SVs # filename of the steering vector (in Matlabe 4.0)

-c 0.5 # beam constraint weight

-f 0.05 # frequency constraint weight

-o 0.6 # forgetting factor

-C replica # filename for replica array used in pulse compression

-a 2 # number of guard cells for the sliding window

-i 10 # number of range cells for the window size

-q 12.7 # false alarm factor

-v 0.0001 # probability of false alarm for order statistic CFAR

-y o.O # guessing left boundary root of solving threshold equation

-z 100.0 # guessing right boundary root of solving threshold equation

E-32

-x 0.0001 # accuracy of bisection root finding for solving threshold

_t i7 # order number for order statistic CFAR

-R 17400 # recording start range (in meters)

-S 1.0E6 # A/D sampling frequency (in Hz)

_N i6 # number of bits representing one CPI element

-P 61.1E-6 # transmit pulse width (in seconds)

-F 450.0E6 # transmit frequency (in Hz)

-B 0.5E6 # transmit bandwidth (in Hz)

-D 0.333 # azimuth element spacing (in meters)

_A go # mechanical boresight azimuth (degree)

_E 3 # mechanical boresight elevation (degree)

where the comments followed by # are ignored.

3.8 Description of user specified parameters

A description of user specified parameters are given as follows.

-k value number of range cells for one CPI data cube.

-j value number of channels for one CPI data cube.

-n value number of pulses for one CPI data cube.

-m value total number of CPIs (besides the reference CPIs). This number should be at least

one. The measured timing results are obtained by recording the process time of the

middle CPIs. The first two and last two CPI process time do not count.

-r value number of previous reference CPIs for weight computation tasks. Reference CPIs

are used to calculated the adaptive weight vectors that is applied to the current CPI

in beamforming task. The suggested default value is 3.

-p value number of zeros padded for each Doppier FFT. For example, given 128 pulses, if

3 zero padding and 2 staggers are chosen then a set of FFTs is performed on the first

125 pulses and another set of FFTs performed on the last 125 pulses. In each case the

last 3 samples are padded with zeros. This value depends on the number of pulses.

The default values is 3.

E-33

16 16

26 CPI i-3
16

QR
decomp

\R

26 CPI i-2

26 CPIi-1
16 6

block update matrix

back
substitute

wts 16

constraintWeight = abs(first column of QR matrix)

k = constraintWeight * beamConstraintWeight

Figure 3.1: Weight vector calculation for one easy Doppler bin, given 16 channels, 26 easy

range samples, 3 reference CPIs, and 6 receive beams.

E-34

preserved for next step

32 32

39 CPIi-1
QR

decomposition

\R

avgPower

16
16 16

ßl 81

avgPower : abs(first column of QR matrix) / 39

a : from DFT_matrix[6][128] in stagger_dft.h

a = (o
ß : (freqConstraintWeight * avgPower, 0)

8 : freqConstraintWeight * avgPower * -a

Figure 3.2: Weight vector calculation for one hard Doppler bin (Initial step), given 2 staggers.

16 channels, 39 range samples, and 6 receive beams.

E-35

* Forgetting factor

preserved for next step

PI 0 6l
kl 32 6 ccSVs

block update matrix
or 8 8 8 8

0 0 81
PI

back
substitute

wts 32

avgPower : abs(first column of QR matrix) / 39

k : beamConstraintWeight * avgPower

a : from DFT_matrix[6][128] in stagger_dft.h

a = (o

ß : (freqConstraintWeight * avgPower, 0)

5 : freqConstraintWeight * avgPower * -a

Figure 3.3: Weight vector calculation for one hard Doppler bin (successive step), given 2

staggers. 16 channels. 39 range samples, and 6 receive beams.

E-36

-w value windowing coefficient name for Doppler filter processing on each staggered CPI. It
can be Harming or Hamming windows. The default windowing coefficient is Hanning

window.

-h value number of Doppler bins for hard case of adaptive weight computation. The sug-

gested default value is (pulses • ^g).

-e value number of range cell samples for easy weight computation. This refers to the

number of range samples from each reference CPI to be used in the matrix on which

a QR factorization is performed for easy weight computation. Figure 3.1 shows the

QR factorization used in easy weight computation, given 16 channels and 3 reference

CPIs. The suggested default value is ^^freffeT^cks •

-u value fraction of range cells for extracting sample range cells for easy weight computation.

The suggested default value is |.

-s value number of range cell samples for hard weight computation. This refers to the num-

ber of range samples from each reference CPI to be used in the matrix on which a QR

factorization is performed for hard weight computation. Figures 3.2 and 3.3 shows the

QR factorization used in hard weight computation, given 16 channels and 3 reference

CPIs. The suggested default value is 39. For best performance the value should be

chosen to utilize the entire machine cache such that the whole QR factorization matrix

can fit in the cache.

-b value number of receive beams for each broad transmit beam.

-g value number of range segments for hard Doppler bins. The default value of the number

of hard segments is 6. One weight vector is computed for each hard segment. The

user may increase the number of hard segments when needed for improved clutter

cancelation performance at the expense of increasing computation time.

-1 value number of broad transmit beams.

-d value the broad transmit beam direction. This value should be from 0, 1, ... (number of

broad transmit beams -1).

-V filename filename for steering vector (the filename without suffix .mat). This file must

be in Matlab 4.0 format. The size of the steering vector should be (number of broad

transmit beams * number of receive beams * number of channels).

E-37

-c value beam constraint weight. To preserve the main beam shape, the beam constraint

weight is chosen to be large. To emphasize clutter cancelation at the expense of beam

shape, the beam constraint weight is chosen to be small. Figures 3.1, 3.2, and 3.3 show

this constant used in QR factorizations in both easy and hard weight computation,

given 16 channels and 3 reference CPIs. The suggested default value is 0.5.

-f value frequency constrain weight. Frequency constraints are included to reflect the desire

for gain in the Doppler bin of interest. Large values of the frequency constraint weight

result in large gain. Figures 3.2 and 3.3 show this constant used in QR factorizations

in hard weight computation. The default value is 0.05.

-o value forgetting factor used in QR factorization. Data from several reference CPIs are

used. The forgetting factor is employed to diminish importance of the older data.

Figure 3.3 shows this constant used in QR factorizations only in the successive steps

of hard weight computation. The default value is 0.6.

-C filename filename for replica complex array used in pulse compression (the filename with-

out suffix .mat). This file must be in Matlab 4.0 format. The replica array must be of

size the least number of power of 2 that is greater than or equals to number of range

cells.

-a value number of guard cells on each side of a test cell. The sliding window constant false

alarm rate (CFAR) processing compares the value of a test cell at a given range to

the average of a set of reference cells that surround it times a false alarm factor. The

default value is 2.

-i value number of reference cells to each side of the test cell is called the window size. The

default value is 10.

-q value the false alarm factor, a threshold sealer used to control the number of false alarms.

Increasing this factor reduces the number of false alarms at the expense of target

detections. The default value is 12.7

-v value probability of false alarm for order statistic CFAR

-y value guessing left boundary root of solving threshold equation

-z value guessing right boundary root of solving threshold equation

-x value accuracy of bisection root finding for solving threshold

E-38

-t value order number for order statistic CFAR

-R value recording start range (in meters)

-S value A/D sampling frequency (in Hz)

-N value number of bits to represent one CPI element

-P value transmit pulse width (in seconds)

-F value transmit frequency (in Hz)

-B value transmit bandwidth (in Hz)

-D value azimuth element spacing (in meters)

-A value mechanical boresight azimuth (degree)

-E value mechanical boresight elevation (degree)

-T to run in two threads in SMP system.

The required parameters are -k -j -n -m -r -b -1 -d -V -R -S -N -P -F -B -D -A -E. An

example for weight computation of using 128 pulses, 16 channels, 26 easy range samples, 39

hard range samples, 3 reference CPIs, and 6 receive beams is shown in Figure 3.1, 3.2, and

3.3.

3.9 Results output

The resulted output consists of the output of detected target report and the performance

timing report. The output of detected target report is given in file cfar.out .mat, if the

debugging flag DEBUG_CFAR_PRINT_RESULT is set in file cfar^grp. c.

The timing results are stored in the file timing. This file gives the communication and

computation time for each of 7 tasks and the measured latency (in seconds) and throughput

(in number of CPI data cubes) as well. An example of timing output is

total processors = 118
nop recv comp send total

Doppler filter & 16 & 0.0110 & 0.1714 & 0.0668 & 0.2492

E-39

easy weight k 8 & 0.0998 k 0.1636 k 0.0003 k 0.2637

hard weight & 56 & 0.0979 k 0.1636 & 0.0005 k 0.2621
easy BF & 8 & 0.1302 & 0.1267 & 0.0036 & 0.2605

hard BF & 14 & 0.1782 & 0.0822 & 0.0017 & 0.2622

pulse compr k 8 & 0.1027 k 0.1543 & 0.0051 & 0.2621

CFAR detection k 8 & 0.1742 k 0.0864 & 0.0000 & 0.2606

Estimated throughput = 3.7919

Estimated Latency = 1.0342

Measured throughput = 3.7959

Measured latency = 0.6805

3.10 Debugging

Several defined macros are used for debugging purposes. They are designed for read from

and write to Matlab files. The Matlab files used in this code are restricted for Matlab 4.x

only (because Matlab 5.x and above have some headers at the beginning of the .mat files.)

These macros only exist in the main subroutines of 7 tasks. Therefore, debugging can be

done for each individual task by checking its input and output data files. Table 3.2 gives the

names of these macros in each main subroutines.

E-40

Table 3.2: Debugging macros for file main subroutines of 7 tasks.

subroutine

filter-grp.c

purpose

DEBUG JILTER-READ.CPI-MAT

DEBUG JILTER._PRINT-RECV.CPI

DEBUG JFTLTER-PRINT_RESULT

wt-easy-grp.c

wt_hard.grp.c

DEBUG.WT_EASY_PRINT.RECV.CPI

DEBUG-WT-EASY_READ-CPI
DEBUG.WTJEASY.PRINT.RESULT

DEBUG.WT_HARD.PRINT_RECV.CPI

DEBUG.WT_HARD.READ.CPI
DEBUG.WT_HARD.PRINT_RESULT

bLeasy-grp.c

bLhard-grp.c

DEBUG_BF_EASY_PRINT_RECV.CPI
DEBUG_BF_EASY_PRINT_RECV.WTS

DEBUG_BF_EASY.READ.CPI
DEBUG-BF-EASY-READ-WTS

DEBUG_BF_EASY_PRINT_RESULT

DEBUG_BF_HARD_PRINT.RECV.CPI
DEBUG_BF_HARD_PRINT_RECV.WTS

DEBUG_BF_HARD_READ-CPI
DEBUG-BF-HARD-READ-WTS

DEBUG_BF_HARD.PRINT_RESULT

pcgrp.c

cfar-grp.c

DEBUG_PC_PRINT.RECV.BF

DEBUG-PC-READ.BF

DEBUG-PCPRINTJRESULT

DEBUG.CFAR-PRINT.RECV.PC

DEBUG.CFAR.READ-PC

DEBUG.CFAR-PRINT_RESULT

read CPI from Matlab files

print received CPI to Matlab files

print result filtered CPI to Matlab

files
print received CPI to a Matlab file

read CPI samples from a Matlab file

print result weight vectors to a

Matlab file

print received CPI to a Matlab file

read CPI samples from a Matlab file

print result weight vectors to a

Matlab file
print received CPI to a Matlab file
print received weight vectors to a

Matlab file
read CPI from a Matlab file
read weight vectors from a M-tlab file

print result beamformed data to a

Matlab file

print received CPI to a Matlab file

print received weight vectors to a

Matlab file
read CPI from a Matlab files
read weight vectors from a Matlab file

print result beamformed data to a

Matlab file ___

print received beamformed data to a

Matlab file
read beamformed data from a Matlab

file
print result pulse compression data to

a Matlab file

print received CPI to a Matlab file

read pulse compressed data from a

Matlab file
print result CFAR detection data to a

Matlab file

E-41

Chapter 4

Examples of Running Codes

This chapter gives three examples of running parallel pipeline STAP codes, one for each of

Intel Paragon, IBM SP, and SGI Origin machines. All input parameters and data files given

here are the same across these three machines. The only difference are the compiling and

executing commands. Users can use the following examples to run the program and obtain

the same output results to make sure the proper use of the program.

The source code package has already been set to this example as the default options. Users

can compile and execute these codes without modifying anything and check with the output

results shown in this chapter.

4.1 Parameter files

There are two parameter files: proc.dat and param.dat. Node assignments to the tasks in

the STAP pipeline system is given in file proc. dat. File param. dat provides all parameters

that are relative to the signal processing.

The example of the file proc. dat:

'/, cat proc.dat

8 2 28 4 4 4 2

The example of the file param. dat:

7, cat param.dat
-k 512 # number of range cells

-j 16 # number of channels

E-42

-e

-u

-s

-n 128 # number of pulses

_r 3 # number of reference CPIs

_m 24 # total number of CPIs (besides the reference CPIs)

_p 3 # number of zero padding

-v Hanning # windowing function: Hanning or Hamming

_n 56 # number of hard Doppler bins

26 # number of range samples for easy weight

0.3333 # fraction of range cells for extracting easy weight samples

39 # number of range samples for hard weight

_g 6 # number of segments for each hard Doppler bin

_1 5 # number of broad transmit beams

-d 2 # broad transmit beams direction

_b 6 # number of receive beams for each broad transmit beam

_V sVs # filename of the steering vector (in Matlabe 4.0)

_c 0.5 # beam constraint weight

-f 0.05 # frequency constraint weight

0.6 # forgetting factor

■C replica # filename for replica array used in pulse compression

2 # number of guard cells for the sliding window

10 # number of range cells for the window size

-q 12.7 # false alarm factor

0.0001 # probability of false alarm for order statistic CFAR

0.0 # guessing left boundary root of solving threshold equation

100.0 # guessing right boundary root of solving threshold equation

0.0001 # accuracy of bisection root finding for solving threshold

17 # order number for order statistic CFAR

-R 17400 # recording start range (in meters)

-S 1.0E6 # A/D sampling frequency (in Hz)

_N 16 # number of bits representing one CPI element

-p 61.1E-6 # transmit pulse width (in seconds)

-F 450.0E6 # transmit frequency (in Hz)

-B 0.5E6 # transmit bandwidth (in Hz)

-D 0.333 # azimuth element spacing (in meters)

_A go # mechanical boresight azimuth (degree)

_E 3 # mechanical boresight elevation (degree)

-o

-a

-i

-v

-y

-z

-x

-t

E-43

4.2 CPI data files

The default setting is using random generated CPI data as program input. The output of

the program only shows the performance timing results. However, four CPI data files are

also provided for the code testing: cpiO.mat, cpil.mat, cpi2.mat, and cpi3.mat. These

files are in Matlab 4.0 format. If users would like to see the target detection report of these

four CPI data, two define macros have to be set:

• DEBUG_FILTER_READ_CPI_MAT in file f ilter_grp.c and file f ilter_grp_np.c

• DEBUG_CFAR_PRINT_RESULT in file cf ar_grp. c and cf ar^grp_nt. c.

Also, the total number of CPI data sets has to be set to 1 in the file param.dat, i.e.,

-m 1 # total number of CPIs (besides the reference CPIs)

The results of target report will be saved as a Matlab file, cfar_out .mat. Please refer to

Section 4.5 to see the target output for using these 4 CPI files.

Otherwise, uses can test the program for observing the performance results by doing the

following:

1. not setting any define macros in all files

2. set the number of CPI data sets to any number larger than 20.

In this case, the program generates random numbers for CPI data as inputs to the STAP

pipeline system. This will eliminate the overhead of reading and writing Matlab files into

the disk. In this way. the performance timing results contain purely computation and com-

munication costs on the parallel machines.

4.3 Compiling

The multi-threading implementation only works on Intel Paragon with SMP nodes. There-

fore, there are two choices to compile the source codes on Paragon. To obtain the multi-

threaded execution codes on Intel Paragon, use the command

'/, make -f Makefile.paragon

E-44

a multi-threaded execution code, main.f, will be generated. To obtain the single-threaded

execution codes on Intel Paragon, use the command

'/. make -f Makefile.paragon nt

a single-threaded execution code, main_nt, will be generated.

On the IBM SP and SGI Origin, only single-threaded implementation work even if the

multi-threaded code is compiled. To compile the source codes on IBM SP, use the command

7. make -f Makefile.sp

to obtain a multi-threaded execution code main J or

'/. make -f Makefile.sp nt

to obtain a single-threaded execution code main^it To compile the source codes on SGI

Origin, use the command

•/. make -f Makefile.sgi

to obtain a multi-threaded execution code mainjf or

7. make -f Makefile.sgi nt

to obtain a single-threaded execution code main_nt.

4.4 Executing

The following commands are for running the codes interactively. On Intel Paragon,

% main_nt -sz 52 -pn OPEN.stap

assuming the partition .compute.OPEN.stap has been built. On IBM SP,

'/, mpirun -np 52 main.nt

On SGI Origin,

7. mpirun -np 52 main_nt

E-45

To run the program in the batch mode on Paragon, the command

'/. qsub -eo -o $HOME/STAP/q_out -q q512 -IP 52 -IT 20:00 -x scpt.file

submits a batch job requiring 52 processors, maximum 20 minutes, script file name scpt_f ile

on the batch queue named q512. The script file, scptjf ile, is

7. cat scpt_file

$HOME/STAP/main_nt

To submit a batch job on IBM SP, use the command

7. spsubmit -np 52 -progtype M -maxtime 20 -stdout q_out main.nt

and it will submit a batch job requiring 52 processors and maximum 20 minutes execution

time and stndard output to the file q_out.

4.5 Output

The performance timing results are given in file timing. An example of output using 52

nodes on the Intel Paragon is

total processors = 52

nop recv comp send total

Doppler filter & 8 & 0.0213 & 0.2670 & 0.1349 & 0.4232

easy weight & 2 & 0.0897 & 0.3331 & 0.0003 & 0.4231

hard weight & 28 & 0.1364 & 0.2851 & 0.0003 & 0.4218

easy BF & 4 & 0.2752 & 0.1433 & 0.0003 & 0.4188

hard BF & 4 & 0.2360 & 0.1754 & 0.0003 & 0.4117

pulse compr & 4 & 0.1839 & 0.1973 & 0.0293 & 0.4106

CFAR & 2 & 0.2740 & 0.1363 & 0.0000 & 0.4103

Estimated throughput = 2.3630

Estimated Latency = 1.6628

Measured throughput = 2.3865

Measured latency = 1.0766

An example result on IBM SP is

E-46

total processors = 52
nop recv comp send total

Doppler filter & 8 & 0.0068 & 0.0593 & 0.0964 & 0.1625

easy weight & 2 & 0.1208 & 0.0525 & 0.0001 & 0.1734
hard weight & 28 & 0.1048 & 0.0639 & 0.0001 & 0.1689

easy BF & 4 & 0.1072 & 0.0605 & 0.0001 & 0.1678

hard BF & 4 & 0.1069 & 0.0615 & 0.0002 & 0.1686

pulse compr & 4 & 0.1146 & 0.0527 & 0.0001 & 0.1674

CFAR & 2 & 0.1296 & 0.0402 & 0.0000 & 0.1699

Estimated throughput = 5.7654

Estimated Latency = 0.6684

Measured throughput = 5.9104

Measured latency = 0.4273

Users can also test the output of target detection results when using provided 4 CPI

Matlab data files. If the program is compiled to generate the target detection output, there

are one output shows total number possible targets and one out Matlab file stores the target

detection report. When total number of CPIs (besides the reference CPIs) is set to one, the

output should be

Total number of possible targets = 148

There is also a target report file. cfar_out .mat, generated in Matlab format. This file
can be loaded into Matlab software and printed into a file by running a Matlab subroutine
name tg_rpt() provided in directory MAT. The results specified 148 targets each with three

elements: Doppler bin number, receive beam number, and range cell number.

*/, matlab

<MATLAB(R)>

(c) Copyright 1984-98 The MathWorks, Inc.

All Rights Reserved

Version 5.2.0.3084

Jan 17 1998

To get started, type one of these: helpwin, helpdesk, or demo.

E-47

For product information, type tour or visit www.mathworks.com.

>> load cfar_out;

» tg_rptCdefault_target.txt', cfar_out, 128, 6, 450);

» quit

1036948 flops.

7, cat default_target.txt

Doppler bin # recv beam # range #

6 1 136

6 2 320

7 2 193

7 3 193

7 . 4 193

8 1 44

8 1 45

13 5 276

16 5 170

18 2 234

18 3 234

18 4 234

19 6 139

20 1 364

20 6 139

20 6 140

23 2 282

24 5 52

27 4 300

32 3 365

32 3 366

32 4 277

41 1 335

42 1 173

42 5 208

E-48

44

45

46

49

49

53

53

55

55

57

57

58

58

58

58

61

67

70

71

71

72

72

78

78

79

80

80

80

80

80

80

80

80

80

80

81

81

4

5

4

1

2

1

6

2

2

1

2

3

3

4

4

4

6

6

2

6

2

2

5

5

3

1

1

2

2

3

3

4

4

5

5

1

1

174

67

67

122

122

364

164

429

430

412

412

216

217

216

217

342

89

58

392

445

325

326

108

109

253

204

205

204

205

204

205

204

205

204

205

203

204

E-49

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

81

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

6

6

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

205

206

203

204

205

206

203

204

205

206

147

203

204

205

206

203

204

205

206

204

205

203

204

205

206

203

204

205

206

203

204

205

206

203

204

205

206

E-50

82

82

82

82

82

82

83

83

83

83

83

83

83

83

83

83

83

83

83

83

92

92

96

107

112

112

112

112

112

112

112

118

118

118

119

119

119

5

5

5

5

6

6

1

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

4

2

1

2

2

2

3

3

4

1

3

4

2

2

3

203

204

205

206

204

205

204

205

204

205

203

204

205

203

204

205

338

203

204

205

136

322

92

122

211

211

282

283

282

283

283

216

445

306

386

387

386

E-51

119

121

121

121

121

124

125

125

126

126

126

127

total number of targets = 148

3 387

2 405

2 406

3 405

3 406

1 359

4 142

5 142

3 403

5 402

6 402

6 436

4.6 Script to run with defaults

Script files axe included in the software package for users to run the STAP code using the

defaults described in this Chapter. Three scripts files are available for three High Perfor-

mance Computers: Intel Paragon at California Institute of Technology, IBM SP at Argonne

National Laboratory, and SGI Origin at Northwestern University. The machine platforms

are shown in Table 4.1.

The script files are:

• Paragon - script .paragon

• SP - script_sp

• Origin - script_origin

Users can run these script files on each of three machines to compile and run the code in one

time by using command:

• Paragon - 7. sh script_paragon

• SP - 7. sh script_sp

• Origin - 7. sh script .origin

E-52

Table 4.1: System platforms

AFRL

Paragon

ANL

IBMSP

NWU

SGI Origin

CPU Type i860 RISC P2SCt MIPS R10000

RAM (MByte) 64 256 1024

MFLOPS/proc 100 480 390

MHz /proc 40 120 195

No. nodes 232 80 8

No. proc/node 3 1 1

Execution mode dedicate dedicate time share

fP2SC: Power 2 SuperScalar chip

E-53

Bibliography

[1] M. Little and W. Berry. Real-Time Multi-Channel Airborne Radar Measurements. IEEE

National Radar Conference, 1997.

[2] A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linderman, and M. Linderman. Design,

Implementation and Evaluation of Parallel Pipelined STAP on Parallel Computers. Interna-

tional Parallel Processing Symposium, 1998.

[3] A. Choudhary and J. Patel. Parallel Architectures and Parallel Algorithms for Integrated

Vision Systems. Kluwer Academic Publishers, Boston, MA, 1990.

[4] A. Choudhary and R. Ponnusamy. Run-Time Data Decomposition for Parallel Implementa-

tion of Image Processing and Computer Vision Tasks. Journal of Concurrency, Practice and

Experience, 4(4):313-334, June 1992.

[5] A. Choudhary and R. Ponnusamy. Parallel Implementation and Evaluation of a Motion Esti-

mation System Algorithm using Several Data Decomposition Strategies. Journal of Parallel

and Distributed Computing, 14:50-65, January 1992.

[6] R. Thakur, A. Choudhary, and J. Ramanujam. Efficient Algorithms for Array Redistribution.

IEEE Trans, on Parallel and Distributed Systems, 6(7):587-594, June 1996.

[7] M. Berger and S. Bokhari. A Partitioning Strategy for Nonuniform Problems on Multiproces-

sors. IEEE Trans, on Computers, 36(5):570-580, May 1987.

[8] F. Berman and L. Snyder. On Mapping Parallel Algorithms into Parallel Architectures. Journal

of Parallel and Distributed Computing, 4:439-458, 1987.

[9] A. Choudhary, B. Narahari, D. Nicol, and R. Simha. Optimal Processor Assignment for

Pipeline Computations. IEEE Trans, on Parallel and Distributed Systems, April 1994.

[10] M. Linderman and R. Linderman. Real-Time STAP Demonstration on an Embedded High

Performance Computer. IEEE National Radar Conference, 1997.

E-54

[11] R. Brown and R. Linderman. Algorithm Development for an Airborne Real-Time STAP

Demonstration. IEEE National Radar Conference, 1997.

[12] M. Snir and et. al. MPI The Complete Reference. The MIT Press, 1995.

[13] Kuck and Associates, Champaign, IL. CLASSPACK Basic Math Library / C, 1994.

[14] Kuck and Associates, Champaign, IL. CLASSPACK Signal Processing Library, 1994.

[15] IBM, http://www.austin.ibm.com/resource/aix-resource/sp.books/essl. Engineering and Sci-

entific Subroutine Library for AIX Guide and Reference, 1997.

[16] Silicon Graphics Inc., http://www.sgi.com/software/scsl.html. SGI/CRAY Scientific Library,

1998.

[17] Intel Corporation. Paragon System User's Guide, April 1996.

/

E-55

.U.S. GOVERNMENT PmNT.NG OFF.CE: 1000-SUM.W-..23S

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

A

