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FINAL REPORT 
FOR 

DESIGN, DEVELOPMENT, BENCHMARKING AND EVALUATION 
OF PARALLEL APPLICATIONS 

FOR HIGH PERFORMANCE EMBEDDED SYSTEMS 

1.0      Background 

High performance computing is coming into the mainstream due to progress made in 
both hardware as well as software support in the past few years. For DoD applications, in 
particular, the trend toward leveraging off-the-shelf components and systems creates the 
need to address many system issues relevant to the DoD applications that were largely 
not considered when high performance computing was used mainly for scientific 
applications. 

These DoD specific issues arise from the particular functional requirements of the 
intended applications, the frequency requirements for high-speed high-volume data input 
and output, and real-time requirements for achieving specified throughout and latency. 
For benchmarking and evaluation of software systems, it is not just sufficient to compute 
the total execution time of an application, but it is extremely important to study the 
performance of individual components of an application, the overheads stemming from 
interactions among the component tasks (e.g. data flow), and the overall performance of 
an integrated system in terms of the achievable latency and throughput. 

2.0      Objectives 

The objectives of this effort were to: (a) design, develop and implement individual 
parallel and portable algorithms plus integrated algorithm systems for applications such 
as Space-Time Adaptive Processing (STAP), sensor data fusion, and target detection; 
(b) design and implement efficient Input/Output (I/O), data redistribution and task 
assignment techniques for embedded high-performance system applications; 
(c) implement and benchmark the algorithms individually and in integrated applications 
in the Intel Paragon and demonstrate the performance levels achieved; (d) deliver high- 
quality software for distribution to DoD researchers nationwide. 

3.0      Administrative Details 

The sponsor of this effort was the Information Directorate of the Air Force Research 
Laboratory (AFRL/IF) located in Rome, NY. Funding in the amount of $359,748 was 
provided as part of the Common HPC Software Support Initiative (CHS SI) under the 
DoD High Performance Computing Modernization Program (HPCMP). The duration of 



the effort was approximately 29 months, with a start date of December 24,1996 and an 
end date of May 15,1999. Syracuse University was the principal contractor while 
Northwestern University was a subcontractor. 

4.0      Participants 

The principal investigators were Drs. Pramod Varshney and Donald Weiner of Syracuse 
University and Drs. Alok Choudhary and Nagaraj Shenoy of Northwestern University. 
They were assisted by doctoral students Wei-keng Liao of Syracuse University and 
Xiaohui Shen of Northwestern University. 

Valuable contributions were made by several AFRL (Rome) personnel  Russ Brown 
Mike Little Mark Linderman and Richard Linderman clearly explained their rationale for 
the changes' they had implemented in the STAP algorithm chosen for parallel lotion. 
Charles Pedersen and Zen Pryk provided valuable guidance with the CHSSI and HPLMF 
documentation requirements. In addition, Zen Pryk assisted with the alpha and beta 
testing and made a major contribution to parallelization of the Ozturk algorithm by 
converting its FORTRAN code from an interactive to batch mode. Zen, also removed 
nonstandard FORTRAN features so that the parallelized version of the Ozturk algorithm 
could be compiled and run on a variety of high-performance computers. 

5.0       Accomplishments 

Based upon Government review of our suggestions with regard to algorithms typically 
employed in applications such as STAP, sensor data fusion, and target detection, it was 
decided to integrate the signal processing areas of space-time adaptive processing and 
signal detection. In particular, the following algorithms were parallelized: 
1) AFRL (Rome) version of a PRI-staggered post-Doppler STAP algorithm. This 

algorithm, comprised of more than 23,000 lines of code, included the steps of 
a) Doppler filter processing, b) weight computation, c) beam forming, d) pulse 
compression, and e) constant false alarm rate (CFAR) processing. 

2) Ozturk algorithm. This algorithm is used to analyze random data and includes the 
steps of a) goodness-of-fit test and b) probability distribution approximation. 

3) Ordered-statistic CFAR algorithm. This CFAR algorithm is in addition to the cell 
averaging CFAR algorithm contained in the PRI-staggered post-Doppler STAP 

algorithm. 

In carrying out the algorithm parallelizations, the following task/technical requirements 

were accomplished: 

1)        Efficient techniques for high-speed, high-volume I/O applicable to embedded 
high-performance systems were designed and implemented. 



2) Data distribution and redistribution strategies for both inter-task and intra-task 
data communications in real-time pipelined and parallelized applications were 
designed and implemented. 

3) Task assignment and scheduling techniques which can be used to satisfy latency 
and throughput requirements for high-performance embedded systems were 
designed and implemented. 

4) A documented alpha code release was implemented in accordance with the 
contract schedule using algorithms that provide a representative example of all 
major technical, programming, documentation, installation and user application 
features planned for the full delivery. 

5) A documented beta code release was implemented to illustrate the full system 
with all major functional, technical, programming, documentation, installation, 
and user application features to be included in the full delivery. 

6) The individual algorithms, as well as the integrated applications, were 
implemented, demonstrated, benchmarked, and evaluated on the Intel Paragon at 
AFRL (Rome). The performance and optimization levels achieved were 
demonstrated and the final release delivered to AFRL (Rome). 

7) A Software System Design Plan that presented prioritized and sequenced 
timelines for design, development, benchmarking, evaluation and documentation 
for the individual algorithms and applications chosen for parallelization was 
documented. Targeted levels of completion and functionality for the alpha, beta, 
and final code releases, and the format and planned content for the Application 
Programming Interface were included. 

8) All computer software developed, assembled, and acquired was delivered to the 
Government in accordance with its specifications. 

Details of the work accomplished are documented in the publications, reports, and 
manuals included in the appendices attached to this report. These are itemized below: 

1)        Papers presented at conferences (Appendix A) 

Choudhary. A., Liao, W. K., Weiner, D., Varshney, P., Linderman, M.,Linderman, R., "Design 
of Parallel Pipelined STAP on High-Performance Computers", Proc. 1997 DoD High 
Performance Computing Modernization Program Users Group Meeting, San Diego, CA, June 
23-26, 1997. 

Choudhary, A., Liao, W. K., Weiner, D., Varshney, P., Linderman, M, Linderman, R., "Design 
Implementation, and Evaluation of Parallel Pipelined STAP on Parallel Computers", Combined 
International Parallel Processing Symposium and Symposium on Parallel and Distributed 
Processing, Orlando, Florida, March 30-April 3,1998. 



Choudhary, A., Liao, W. K., Weiner, D., Varshney, P., Linderman M., L;nde™^;.^gn 

Z Impkmentkon of Space-Time Adaptive Processing Application « ^^^» 
Proc. 1998 DoD High Performance Computing Modernization Program Users Group Meeting, 
Houston, Texas, June 1-5,1998. 

Liao WK  Choudhary, A., Weiner, D., Varshney, P., "Multi-Threaded Design and 
S^StafofpSd Pipelined STAP on Parallel Computers", 1999 International Parallel 
Processing Symposium, Puerto Rico, April 1999. 

2)        Papers submitted for publication (Appendix B) 

Choudhary A, Liao, W. K., Weiner, D., Varshney, P., Linderman, M., Linderman R., "Design 
SpTeStk,;, and Evaluation of Parallel Pipelined STAP on Parallel Computers", selected o 
asjJerid collection of papers on STAP and adaptive arrays to appear in an upcoming issue of the 
IEEE Transactions on Aerospace and Electronic Systems. 

Liao W K  Choudhary, A., Weiner, D., Varshney, P., "I/O Implementation, and Evaluation of 
Paälel Pained STAP on Parallel Computers", International Conference on High-Performance 
Computing (fflPC 99), Calcutta, India, Dec. 17-20,1999. 

3) Ph.D. Dissertation (Appendix C) 

Liao, W. K., "Parallel Pipelined Computational Model for Space-Time Adaptive Processing", 
Syracuse University, June 1999. 

4) Report and Users' Manual for Ozturk Algorithm    (Appendix D) 

5) Users'Manual for STAP  (Appendix E) 
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Abstract 

This paper presents preliminary results for our ongoing implementation of parallel pipelined STAP algorithm on high- 
performance computers. In particular, the paper describes the issues involved in parallelization, our approach to 
parallelization and initial results on some tasks of the STAP algorithm. Initial results are encouraging and show significant 
performance benefits from our approach. The results demonstrate the scalability of computations and communication. 

1. Introduction 
The detection of weak target returns embedded in strong ground clutter, interference, and receiver noise is a primary 
objective of airborne surveillance phased array radars. Space-time adaptive processing (STAP) refers to 2-dimensional 
adaptive filtering algorithms which take advantage of differences between the spatial and/or Doppler frequences of the 
target versus those of the unwanted components of the received waveform in order to separate the target from the 

disturbances. 

The spatial frequency of a signal is a function of its angle of arrival while its Doppler frequency is a function of a relative 
radial velocity between the airborne platform and that of the corresponding scatterer or jammer. Unwanted signals are 
attenuated by using STAP algorithms to place nulls in the 2-dimensional frequency plane with respect to their directions of 
arrival and/or Doppler frequencies. However, high performance computers are required to meet the STAP computations! 
requirements of real-time applications and to increase the flexibility, affordability, and scaleabihty of radar signal 

processing systems. 

In this paper we discuss our progress in implementing a PRI-staggered post-Doppler STAP algorithm on the Rome 
Laboratory Intel Paragon machine. The algorithm consists of the following steps: 1) application to the data of window 
and range correction multipliers, 2) calculation of 128-point FFT's for each PRI stagger and every range and channel 3) 
solution of the weight vector for each Doppler bin and range gate, 4) application of the weight vector to the test cell data 
for each Doppler bin and range gate, 5) pulse compression of the array output data for each Doppler bin and range gate^ 
For our study the data cube for a coherent processing interval (CPI) was assumed to be collected from 16 channels, 128 
pulses and 512 range gates. For the parallel implementation we have designed parallel pipelined collection of tasks 
where'each task itself is parallel. In this paper we present some preliminary results from this implementation. In Section 2 
we present the model of computation. Parallelization issues are discussed in Section 3. Section 4 presents some specific 
details of STAP implementation and software development. Preliminary results are presented in Section 5. 
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2. Model of Computation 

Figure 1 shows the computational model for the type of applications (e.g., STAP) considered in this work and illustrates 
the computational characteristics found in these applications. Each pipeline shows a number of tasks applied to a set of 
inputs. The input to the first task in a pipeline is the input to the rest of the tasks is the output of the previous task. The set 
of pipelines (shades) illustrates that the entire pipeline of tasks is repeated on subsequent data sets. Each block in the 
pipeline represents one parallel task. That is, the pipeline is a collection of parallel tasks. 

Input   Tco 

Tl 

Figure 2: Model of Computation 

There exists both spatial and temporal parallelism in such applications. Existence of spatial and temporal parallelism may 
also result in two types of data dependencies and flow, namely, spatial data dependency and temporal data 
dependency! 1,2]. Intertask data dependency denotes the transfer and reorganization of data to be passed onto the next task 
in the pipeline. The mode of communication is subtasks of the current tasks to the subtasks of the next task, permitting 
parallel pipelined communication. 

3. PARALLELIZATION ISSUES 

Applications such as STAP entail multiple algorithms (or processing steps), each of which performs a particular function, 
to be executed in a pipelined fashion. Multiple pipelines needs to be executed in a staggered manner to satisfy the 
throughput requirements. Each task needs to be parallelized for the required performance, which in turn requires 
addressing issues of data distributions on the subset of processors on which a task is parallelized to obtain good efficiency 
and incur minimal communication overhead. Given that each task is parallelized, data flow among them requires 
communication among multiple processes of two or more tasks, for which efficient communication scheduling techniques 
become critical. The problem of input-output of data is another crucial problem and is more challenging in this scenario 
because data must be redistributed within the pipeline in a timely manner to guarantee the throughput and latency 
requirements. 

3.1   Data Redistribution 

In an integrated system which implements several tasks that feed data to each other, data redistribution is required when it 
is fed from one parallel task to another, or when intermediate results need to be exchanged within a parallel task. This is 
because the way data is distributed in one task may not be the most appropriate distribution for the task it is supplied to due 
to algorithmic or efficiency reasons. Furthermore, the number of processors in two communicating tasks may be different 
because of the required response time from each task and the underlying computations requiring redistribution. 

Recently, we developed runtime functions and strategies that perform efficient redistribution of data [4]. These techniques 
reduce the communication time by minimizing contention on the communication links as well as by minimizing the 
overhead of processing for redistribution (which adds to the latency of sending messages). We apply lessons from these 
techniques to implement parallel pipelined STAP application 
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3.2 Task Scheduling and Assignment 
An important factor in the performance of a parallel system, is how the computational load is mapped onto the processors 
in the system. Ideally, to achieve maximum parallelism, the load must be evenly distributed across the processors. 
Applications such as STAP employ several algorithms with different computational requirements. Each task must be 
allocated some processors so that all the tasks can execute concurrently. Furthermore, there is communication among tasks 
to transfer intermediate data. All these sub-components should be accounted for in making schedulmg decisions. 

When several parallel tasks need to be executed in a pipelined fashion tradeoffs exist between maximizing throughput and 
minimizing latency. The throughput requirement says that when allocating processors to tasks, it should be guaranteed that 
the all input data sets will be handled in a timely manner, that is, the processing rate should not fall behmd the input data 
rate The response time criteria, on the other hand, require minimizing the latency of computation on a particular set of 
data input Clearly, there is a tradeoff. Increasing the throughput invariably means increasing the latency given a fixed set 
of resources (processors etc.), and vice-versa. In our previous work we have developed techniques for processor 
allocations to various tasks that balance throughput and latency requirements optimally[6], and these will be used in the 
STAP algorithm implementation. 

input 

XJ P2 (O) 

1/ Easy     1 
Wcishts  Is 

Doppler 1/ Beam    | 
Form    1      > 

P4(t4) 

Palie     I 

'*" K Compr   1 

« ^ 
Hard    | 

Weights Y P5(tS) 

P3(t3) 

Figure 2: Parallel Pipelined Implementation of STAP 

4. Design and Implementation of Parallel Pipelined STAP 

Figure 2 shows the design of the parallel pipelined STAP on high-performance computers. There are five basic tasks in 
addition to initialization. A detailed description of the algorithms can be found in [7,8]. Here we briefly describe each task. 

4.1   Parallelization of Steps 
The first task is Doppler Filter processing. It involves performing range correction and 128-point FFT. Range correction is 
done by a windowing operation. The basic parallelization technique in this step is to partition data across the range data, 
that is, if PI processors are allocated to this step, then each processor is responsible for K/Pl range cells, where K is the 
number of range cells. Figure 3 illustrates the parallelization of this step. 

The second step in this pipeline is computing adaptive weights to be applied to the next CPI. As seen from Figure 2, this 
computation itself is divided into two parts, namely, "easy" and "hard" Doppler bins. The main difference m the two is the 
amount of data used and the amount of computation in each of these steps. For each "hard" Doppler bin, the amount of 
computation is approximately 48 times that in the "easy" Doppler bin. Each of these involves QR factorization. Given the 
uneven nature of the computations, different sets of processors are allocated to each of these steps, as shown in Figure 2. 
Note that as seen from the figure, data computed in the first step needs to be communicated to these two tasks as well as to 
the task in the third step. The data sent to the third task is more than to the second task (shown by a thick arrow). 

The third task (which is actually the second step for the current CPI because the result of the second task is only used in the 
subsequent time step) is Beamforming. This requires 56 matrix multiplications of 51X32 matrix by a 32X6 matrix. Smce 
the cost of these multiplications can be determined accurately, the computations are equally divided among the allocated 

A-4 



processors for this step. As seen from Figure 2, this step requires data to be communicated from the first as well as second 
task. 

The last step, Pulse compression is performed when the beams are formed. It involves convolution of the received signal 
with a replica of transmit pulse wave form. This is accomplished by first performing FFTs in of the two inputs, point-wise 
multiplication of the intermediate result and then computing the inverse FFT. Again, each of these FFTs could be 
performed on a individual processor, each processor in this task getting equal amount of computation. For more details of 
the these algorithms, please refer to [5,6]. 

4.2 Software Development 

All the parallel programs development and their integration is being performed using C language and message passing 
interface (MPI) [3]. All the functions needed for data redistribution etc. are also being developed in the same fashion. This 
permits easy portability across various platforms which support C language and MPI. Since MPI is becoming a de facto 
standard for high-performance systems, we believe the software will be portable. To facilitate upward or downward 
scalability, the number of processors, data sizes and other important parameters are runtime inputs so that the same 
program can be run on different number of processors without compiling it again. This allows, for example, the same 
function to be executed on 2, 4 and so on, number of processors. 

5. Preliminary Results 

The first implementation of techniques and application is being done on the Intel Paragon installed at Rome Laboratories. 
Due to lack of space only results from the first task and part of the second task are presented. Communication 
performance, and performance of other tasks will be shown in the presentation at the meeting. Figure 4 shows the 
performance results for Task 1 (Doppler processing) as a function of processors on the Intel Paragon. Parameters for this 
task are : Number of range cells = 512, Number of Channels = 16 and number of pulses = 128. For each range cell and 
channel pair, two 128-point FFTs were performed. The performance results include all the overhead incurred including 
dynamic memory allocation, windowing and computing staggered inputs. As can be observed, we have obtained linear 
speedups. Although the performance results are shown only up to 32 processors, we have obtained linear speedups for 
larger number of processors. On 32 processors, the first step can be performed in approximately 90 milliseconds. 

Array 
Dements 
(channels) 

— KR (Pulses) 

Kcais 
Range cdls are divided across processor 

Figure 3: Partitioning Strategy for Stepl: Doppler Filter Parallel Task 

Figure 5 shows initial result on implementing hard doppler bin task for up to 56 processors. Despite the fact that no 
optimizations have been incorporated yet, we obtain almost linear speedups. For the 56 processor case, it takes 
approximately 160 milliseconds for computing hard doppler bins. Easy doppler bins task takes 80 milliseconds on 12 
processors. In the presentation, we intend to provide more detailed results. 
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Figure 4: Performance of Doppler Processing (Task 1) as a function of Number of Processors 

Figure 5: Performance of Hard Bin (Task 2) as a function of Number of Processors (unoptimized) 

Figure 6 shows communication scaling for data transfer from Task 1 to Task 2. In this three-dimensional chart the two 
horizontal axes show the number of processors in each task. The vertical axis shows the amour«: of time for 
communicating data including all the send-receive overhead for that pan- of number of processors m each task. It is clear 
that there is tremendous scaling in performance of communicating data as the number of processors is increased This is 
because the amount of processing for communication per processor is decreased (as ,t handles less amount of data), 
amount of data per processor to be communicated is decreased and traffic on links going in and out of each processor is 
reduced. This is clearly a scalable model and approach for computation and communication. 

6. Summary 
In this paper we presented initial results in implementing a PRI-staggered post-Doppler STAP algorithm on the Rome 
Laboratory Intel Paragon machine. The initial results indicate that our approach of parallel pipelined implementation scales 
well both in terms of communication and computation. 

NOP Task 2 

Figure 6: Communication Scaling from Task 1 to Task 2. 
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Abstract 

This paper presents performance results for the design 
and implementation of parallel pipelined Space-Time Adap- 
tive Processing (STAP) algorithms on parallel computers. 
In particular, the paper describes the issues involved in 
parallelization, our approach to parallelization and perfor- 
mance results on an Intel Paragon. The paper also dis- 
cusses the process of developing software for such an appli- 
cation on parallel computers when latency and throughput 
are both considered together and presents tradeoffs consid- 
ered with respect to inter and intra-task communication and 
data redistribution. The results show that not only scal- 
able performance was achieved for individual component 
tasks of STAP but linear speedups were obtained for the 
integrated task performance, both for latency as well as 
throughput. Results are presented for up to 236 compute 
nodes (limited by the machine size available to us). An- 
other interesting observation made from the implementation 
results is that performance improvement due to the assign- 
ment of additional processors to one task can improve the 
performance of other tasks without any increase in the num- 
ber of processors assigned to them. Normally, this cannot 
be predicted by theoretical analysis. 

1   Introduction 

Space-time adaptive processing (STAP) is a well known 
technique in the area of airborne surveillance radars, which 
is used to detect weak target returns embedded in strong 
ground clutter, interference, and receiver noise. Data pro- 
cessing for STAP refers to a 2-dimensional adaptive filter- 
ing algorithm which attenuates unwanted signals by plac- 
ing nulls in the frequency domain with respect to their di- 
rections of arrival and/or Doppler frequencies. Most STAP 

applications consume great amounts of computational re- 
sources and are also required to operate in real time. High 
performance computers are becoming mainstream due to 
the progress made in hardware as well as software support 
in the last few years. They can satisfy the STAP computa- 
tional requirements of real-time applications while increas- 
ing the flexibility, affordability, and scalability of radar sig- 
nal processing systems. However, efficient parallelization 
of STAP, which consists of several different algorithms is 
challenging, and requires several optimizations. 

This paper describes our parallel pipelined implementa- 
tion of a PRI-staggered post-Doppler STAP algorithm. The 
design and implementation of the application is portable. 
Performance results are presented for the Intel Paragon at 
the Air Force Research Laboratory (AFRL), Rome, New 
York. AFRL has successfully implemented this STAP al- 
gorithm onboard an airborne platform and performed four 
flight experiments in May and June 1996 [8]. In that real- 
time demonstration, live data from a phased array radar was 
processed by Intel Paragon machine and results showed that 
high performance computers can deliver a significant per- 
formance gain. However, that implementation only used 
compute nodes of the machine as independent resources in 
a round robin fashion to run different instances of STAP 
(rather than speeding up one instance of STAP.) Using this 
approach, the throughput may be improved, but the latency 
is limited by what can be achieved using one compute node. 
The algorithm consists of the following steps: l)Doppler 
filter processing, 2)weight computation, 3)beamforming, 
4)pulse compression, and 5)CFAR processing. 

For our parallel implementation of this real application 
we have designed a model of parallel pipeline system where 
each pipeline is a collection of tasks and each task itself is 
parallelized. This parallel pipeline model was applied to 
the STAP algorithm with each step as a task in a pipeline. 
This permits us to significantly improve latency as well as 
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Figure 1. Model of the parallel pipeline sys- 
tem. (Note that Task, for all input instances is 
executed on the same number of processors.) 

throughput. In this paper we present results from this im- 
plementation. Furthermore, we present the process of par- 
allelization and software design considerations including 
those for portability, task mapping, parallel data redistribu- 
tion, parallel pipelining and issues involving in measuring 
performance in implementations when not only the perfor- 
mance of individual tasks is important, but overall perfor- 
mance of the integrated system is critical. We demonstrate 
the performance and scalability for a large number of pro- 
cessors. 

The rest of the paper is organized as follows: in Sec- 
tion 2, we present the parallel pipeline system model and 
discuss some parallelization issues and approaches for im- 
plementation of STAP algorithms. Section 3 presents the 
implementation. Performance results and conclusions are 
presented in Section 4 and Section 5 respectively. 

2   Model of the parallel pipeline system 

The system model for the type of STAP applications con- 
sidered in this work is shown in Figure 1. This model is 
suitable for the computational characteristics found in these 
applications. A pipeline is a collection of tasks which are 
executed sequentially. The input to the first task is obtained 
normally from sensors or other input devices and the inputs 
to the rest of the tasks in the pipeline are the outputs of their 
previous tasks. The set of pipelines shown in the figure indi- 
cates that the same pipeline is repeated on subsequent input 
data sets. Each block in a pipeline represents one parallel 
task, which itself is parallelized on multiple (different num- 
ber of) processors. 

In such a system, there exist both spatial and temporal 
parallelism that result in two types of data dependencies and 

flows, namely, spatial data dependency and temporal data 
dependency [4, 6]. Spatial data dependency can be classi- 
fied into inter-task data dependency and intra-task data de- 
pendency. Intra-task data dependencies arise when a set of 
subtasks needs to exchange intermediate results during the 
execution of a parallel task in a pipeline. Inter-task data de- 
pendency is due to the transfer and reorganization of data 
passed onto the next parallel task in the pipeline. Tempo- 
ral data dependency occurs when some form of output gen- 
erated by the tasks executed on the previous data set are 
needed by tasks executing the current data set. We will later 
see that STAP has both types of data dependencies. 

2.1    Parallelization issues and approaches 

Applications such as STAP entail multiple algorithms (or 
processing steps), each of which performs particular func- 
tions, to be executed in a pipelined fashion. Each task needs 
to be parallelized for the required performance, which, in 
turn, requires addressing the issue of data distribution on 
the subset of processors on which a task is parallelized to 
obtain good efficiency and incur minimal communication 
overhead. 

2.1.1 Inter-task data redistribution 

In an integrated system which implements several tasks that 
feed data to each other, data redistribution is required when 
it is fed from one parallel task to another. This is because 
the way data distributed in one task may not be the most 
appropriate distribution for another task for algorithmic or 
efficiency reasons. Data redistribution also allows concen- 
tration of communication at the beginning and the end of 
each task. We have developed runtime functions and strate- 
gies that perform efficient data redistribution [10]. These 
techniques reduce the communication time by minimizing 
contention on the communication links as well as by mini- 
mizing the overhead of processing for redistribution (which 
adds to the latency of sending messages). We take advan- 
tage of lessons learned from these techniques to implement 
the parallel pipelined STAP application. 

2.1.2 Task scheduling and processor assignment 

An important factor in the performance of a parallel sys- 
tem, is how the computational load is mapped onto the pro- 
cessors in the system. Ideally, to achieve maximum paral- 
lelism, the load must be evenly distributed across the pro- 
cessors. The problem of statically mapping the workload of 
a parallel algorithm to processors in a distributed memory 
system, has been studied under different problem models, 
such as [1, 2]. These static mapping policies do not model 
applications consisting of a sequence of tasks (algorithms), 
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Figure 2. Implementation of parallel pipelined 
STAR Arrows connecting task blocks repre- 
sent data transfer between tasks. 

where the output of one task becomes the input to the next 
task in the sequence. 

Optimal use of resources is particularly important in 
high-performance embedded applications due to limited re- 
sources and other constraints such as desired latency or 
throughput [5]. When several parallel tasks need to be exe- 
cuted in a pipelined fashion, tradeoffs exist between assign- 
ing processors to maximize the overall throughput and as- 
signing processors to minimize a single data set's response 
time (or latency.) 

3   Design and implementation 

The design of the parallel pipelined STAP algorithm is 
shown in Figure 2. The parallel pipeline system consists of 
seven basic tasks. We refer to the parallel pipeline as simply 
a pipeline in the rest of this paper. Both the weight compu- 
tation and the beamforming tasks are divided into two parts, 
namely, "easy" and "hard" Doppler bins. The hard Doppler 
bins are those in which significant ground clutter is expected 
and the remaining bins are easy Doppler bins. The main dif- 
ference between the two is the amount of data used and the 
amount of computation required. The input data set for the 
pipeline is obtained from a phased array radar and is formed 
in terms of a coherent processing interval (CPI). Each CPI 
data set is a 3-dimensional complex data cube. The out- 
put of the pipeline is a report on the detection of possible 
targets. Each task i, 0 < i < 7, is parallelized by evenly 
partitioning its work load among Pt processors. The execu- 
tion time associated with task i,Tt, consists of the time to 
receive data from the previous task, computation time, and 
time to send results to the next task. 

For the computation of the weight vectors for the cur- 
rent CPI data cube, data cubes from previous CPIs are used 
as input data. This introduces temporal data dependency. 
Temporal data dependencies are represented by arrows with 
dashed lines, TDh3 and TD2A, in Figure 2 where TDitj 

represents temporal data dependency of task j on data from 
task i. In a similar manner, spatial data dependencies SDiyj 

can be defined and are indicated in Figure 2 by arrows with 
solid lines. 

Throughput and latency are two important measures for 
performance evaluation on a pipeline system. The through- 
put of our pipeline system is the inverse of the maximum 
execution time among all tasks. The latency of this pipeline 
system is the time between the arrival of the CPI data cube 
at the system input and the time at which the detection re- 
port is available at the system output. 

throughput = 
1 

max Ti 
0<»<6 

latency = T0 + max Ti + T$ + T6. 
»=3,4 

(1) 

(2) 

The temporal data dependency does not affect the latency 
because weight computation tasks use data from the previ- 
ous instance rather than current CPI. The filtered CPI data 
cube sent to the beamforming task does not wait for the 
completion of its weight computation. This explains why 
equation (2) does not contain Tx and T2. A detailed de- 
scription of the STAP algorithm we used can be found in 

[3, 7]. 

4   Performance results 

The implementation of the STAP application based on 
our parallel pipeline system model was done on the Intel 
Paragon at the Air Force Research Laboratory, Rome, New 
York. All the parallel programs development and their inte- 
gration was performed using C language and message pass- 
ing interface (MPI) [9]. This permits easy portability across 
various platforms which support C language and MPI. In 
our implementation, asynchronous send and receive func- 
tion calls were used in order to overlap communication and 
computation. 

4.1    Computation costs 

The task of computing hard weights is the most compu- 
tationally demanding task. The Doppler filter processing 
task is the second most demanding task. Naturally, more 
processors are assigned to these two tasks in order to obtain 
a good performance. For each task in the STAP algorithm, 
parallelization was done by evenly dividing computational 
load across processors. Figure 3 gives the computation per- 
formance results as functions of numbers of processors and 
the corresponding speedup on the AFRL Intel Paragon. For 
each task, we obtained linear speedups. 

42   Inter-task communication 

Inter-task communication refers to the communication 
between sending and receiving (distinct and parallel) tasks. 
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Figure 3. Performance of computation as a function of number of processors. 

Table 1. Timing results of inter-task communication. Time in seconds. # proc: number of processors. 

easv weight hard weight easy BF hardBF 

#proc 16 56 112 16 1 6 

Doppler 
filler 

8 
16 
32 

send recv send recv send recv send recv send recv 

.1331 

.0679 

.0340 

.4339 

.1780 

.0511 

.1335 

.0679 

.0332 

.3603 

.1048 

.0034 

.1332 

.0679 

.0340 

.4441 

.1837 

.0563 

.1332 

.0679 

.0340 

.4509 

.1955 

.0646 

.1332 

.0679 

.0340 

.4395 

.1843 

.0519 

easy beamiorrrung 

#proc 8 16 

easy 
weight 

4 
8 
16 

send recv send recv 

.0005 

.0088 

.0768 

.1956 

.0883 

.0807 

.ÖÖÖ7 

.0004 

.0003 

.2570 

.0905 

.0660 

pulse compression 

#proc 8 16 

easy 
BF 

4 
8 
16 

send recv send recv 

.0069 

.0036 

.0580 

.5016 

.1379 

.0771 

.0069 

.0036 

.0022 

.5714 

.2090 

.0569 

hard 

BF 

4 
8 
16 

send recv send recv 

.0054 

.0029 

.1159 

.5016 

.1379 

.0771 

.0054 

.0030 

.0017 

.5714 

.2090 

.0569 

hard beamiorming 

#proc 8 16 

hard 
weight 

28 
56 
112 

send recv send recv 

.ÖÖÖ7 

.0100 

.1824 

.1798 

.1468 

.1398 

Ö0Ö7 
.0065 
.0005 

.2485 

.0765 

.0543 

CFAR processing 

#proc 4 8 

pulse 
compression 

4 
8 
16 

send recv send recv 

.0099 

.0053 

.1256 

.3351 

.0662 

.0435 

.0098 

.0051 

.0028 

.3348 

.1750 

.1783 

This communication cost depends on both processor assign- 
ment for each task as well as on the volume and extent of 
data reorganization. Table 1 presents the inter-task commu- 
nication timing results. Each sub-table considers pairs of 
tasks where the number of processors (# proc) for both tasks 
are varied. In some cases timing results shown in the tables 

contain idle time for waiting for the corresponding task to 
complete. This happens when receiving task's computation 
part completes before the sending task has generated data to 
send. 

From most of the results the following important obser- 
vations can be made. First, when the number of processors 
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Table 2. Performance results for 3 cases with 
different processor assignments. 

Table 3. Performance results for adding 4 
more processors to case 2 in Table 2. 

case 1: total number of processors = 236 Time in seconds 
#proc recv comp send total 

Doppler filter 32 .0055 .0874 .0348 .1276 

easy weight 16 .0493 .0913 .0003 .1408 

hard weight 112 .0555 .0831 .0005 .1390 
easyBF 16 .0658 .0708 .0021 .1387 

hardBF 28 .0936 .0414 .0010 .1361 

pulse compression 16 .0551 .0776 .0028 .1355 

CFAR 16 .0910 .0434 - .1344 

throughput 
latency 

7.2659 
0.3622 

case 2: total number of processors =118 Time in seconds 
#proc recv comp send total 

Doppler filter 16 .0110 .1714 .0668 .2492 

easv weight 8 .0998 .1636 .0003 .2637 

hard weight 56 .0979 .1636 .0005 .2621 

easy BF 8 .1302 .1267 .0036 .2605 

hardBF 14 .1782 .0822 .0017 .2622 

pulse compression 8 .1027 .1543 .0051 .2621 

CFAR 8 .1742 .0864 - .2606 
throughput 

latency 
3.7959 
0.6805 

case 3: total number of processors = 59 Time in seconds 
#proc recv comp send total 

Doppler filter 8 .0219 .3509 .1296 .5024 
easv weight 4 .1796 .3254 .0003 .5053 
hard weieht 28 .1779 .3265 .0006 .5050 

easy BF 4 .2439 .2529 .0068 .5037 
hardBF 7 .3370 .1636 .0032 .5039 

pulse compression 4 .1806 .3067 .0097 .4970 
CFAR 4 .3240 .1723 - .4963 

throughput 
latency 

1.9898 
1.3530 

is unbalanced, the communication performance is not very 
good. Second, as the number of processors is increased 
in the sending and receiving tasks, communication scales 
tremendously. This happens for two reasons. One, each 
processor has less data to reorganize, pack and send and 
each processor has less data to receive; and two, contention 
at sending and receiving processors is reduced. Thus, it is 
not sufficient to improve the computation times for such 
parallel pipelined applications to improve throughput and 
latency. 

Because of the asynchronous send used in the implemen- 
tation, the results shown here are visible sending time and 
the actual sending action may occur in other portions of 
the task. Similar to the receiving time, sending time may 
also contain waiting time for the completion of sending re- 
quests in the previous loop. With large number of proces- 
sors, there is tremendous scaling in performance of com- 
municating data as the number of processors is increased. 
This is because the amount of processing for communica- 
tion per processor is decreased (as it handles less amount 
of data), amount of data per processor to be communicated 
is decreased and traffic on links going in and out of each 

total number of processors = 122 Time in seconds 
#proc recv comp send total 

Doppler filter 20 .0090 .1395 .0540 .2024 
easy weight 8 .0519 .1633 .0003 .2155 
hard weight 56 .0486 .1644 .0005 .2135 

easyBF 8 .0815 .1272 .0037 .2124 
hardBF 14 .1232 .0823 .0018 .2073 

pulse compression 8 .0519 .1543 .0051 .2113 
CFAR 8 .1240 .0864 - .2105 

throughput 
latency 

5.0213 
0.5498 

Table 4. Performance results for adding 16 
more processors to the case in Table 3. 

total number of processors = 138 Time in seconds 
#proc recv comp send total 

Doppler filter 20 .0091 .1395 .0541 .2027 

easy weight 8 .0516 .1633 .0003 .2152 
hard weight 56 .0488 .1644 .0005 .2137 

easyBF 8 .0819 .1273 .0037 .2129 
hardBF 14 .1301 .0823 .0018 .2142 

pulse compression 16 .1337 .0775 .0028 .2140 
CFAR 16 .1701 .0434 - .2135 

throughput 
latency 

4.9052 
0.4247 

processor is reduced. This model scales well for both com- 
putation and communication. 

4.3   Integrated system performance 

Integrated system refers to the evaluation of performance 
when all the tasks are considered together. Throughput 
(CPIs per second) and latency (seconds per CPI) are the 
two most important measures for performance evaluation in 
addition to individual task computation time and inter-task 
communication time. Table 2 gives timing results for three 
different cases with different processor assignments. From 
these 3 cases, it is clear that even for latency and throughput 
measures we obtain linear speedups from our experiments. 
Given that this scale up is up to 236 processors (we were 
limited to these number of processors due to the size of the 
machine), we believe these are very good results. 

As discussed in section 2, tradeoffs exist between assign- 
ing processors to maximize throughput and to minimize la- 
tency, given limited resources. Using two examples, we 
illustrate how further performance improvements may (or 
may not) be achieved if few extra processors are available. 
We now take case 2 from Table 2 as an example and add 
some extra processors to tasks to analyze its affect to the 
throughput and latency. Suppose that case 2 has fulfilled 
the minimum throughput requirement and more processors 
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can be added. Table 3 shows that adding 4 more proces- 
sors to Doppler filter processing task not only increases the 
throughput but also reduces the latency. This is because the 
communication amount for each send and receive between 
Doppler filter processing task to weight computation and to 
beamforming tasks is reduced (Table 3). So, clearly adding 
processors to one task not only affects that task's perfor- 
mance but has a measurable effect on the performance of 
other tasks. By increasing the number of processors 3%, the 
improvement in throughput is 32% and in latency is 19%. 
Such effects are very difficult to capture in purely theoretical 
models because of the secondary effects. 

Since parallel computation load may be different among 
tasks, bottleneck problems arise when some tasks in the 
pipeline do not have proper numbers of processors assigned. 
If the number of processors assigned to one task with heavy 
work load is not enough to catch up the input data rate, this 
task becomes a bottleneck in the pipeline system. Hence, it 
is important to maintain approximately the same computa- 
tion time among tasks in the pipeline system to maximize 
the throughput and also achieve higher processor utiliza- 
tion. One bottleneck task can be seen when its computa- 
tion time is relatively much larger than the rest of the tasks. 
The entire system's performance degrades because the rest 
of the tasks have to wait for bottleneck task's completion to 
send/receive data to/from it no matter how many more pro- 
cessors assigned to them and how fast they can complete 
their jobs. Therefore, poor task scheduling and processor 
assignment will cause significant portion of idle time in the 
resulted communication costs. In Table 4 we added a total 
of 16 more processors to pulse compression and CFAR pro- 
cessing tasks to the case in Table 3. Comparing to case 2 
in Table 2, we can see that the throughput increased. How- 
ever, the throughput did not improve compared to the results 
in Table 3. even though this assignment has 16 more pro- 
cessors. In this case, the weight tasks are bottleneck tasks 
because their computation costs are relatively higher than 
other tasks. We can see that the receiving time of the rest of 
tasks are much larger than their computation time. A sig- 
nificant portion of idle time waiting for the completion of 
weight tasks is in the receiving time.  On the other hand, 
we observe 23% improvement in the latency. This is be- 
cause the computation time is reduced in the last two tasks 
with more processors assigned. T5 and T6 in equation (2) 
decrease and therefore the latency is reduced. 

5   Conclusions 

In this paper we presented performance results for a 
PRI-staggered post-Doppler STAP algorithm implementa- 
tion on the Intel Paragon machine at Air Force Research 
Laboratory, Rome, New York. The results indicate that our 
approach of parallel pipelined implementation scales well 

both in terms of communication and computation. For the 
integrated pipeline system, the throughput and latency also 
demonstrate the linear scalability of our design. Our de- 
sign and implementation not only shows tradeoffs in paral- 
lelization, processor assignment, and various overheads in 
inter and intra-task communication etc., but it also shows 
that accurate performance measurement of these systems 
is very important. Consideration of issues such as cache 
performance when data is packed and unpacked, and im- 
pact of the parallelization and processor assignment for one 
task on another task are crucial. This is normally not easily 
captured in theoretical models. In the future we plan to in- 
corporate further optimizations including multi-threading, 
multiple pipelines and multiple processors on each compute 
node. 
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Abstract 

This paper presents performance results for our ongoing Implementation of parallel pipelined Space-Time Adap- 
tive Processing (STAP) algorithms on Intel Paragon at the Air Force Research Laboratory (AFRL), Rome, Sew 
York In particular, the paper describes the issues involved in designing the parallel pipeline computation model on 
parallel computers. The paper also discusses the process of developing software for STAP applications on parallel 
computers when latency and throughput are both considered together and presents tradeoffs. The results show that 
linear speedups were obtained for the integrated task performance, both for latency as well as throughput. Another 
interesting observation made from the implementation results is that performance improvement due to the assign- 
ment of additional processors to one task can improve the performance of other tasks without any increase in the 
number of processors assigned to them. Normally, this cannot be predicted by theoretical analysis. 

1     Introduction 

Space-time adaptive processing (STAP) is a well known technique in the area of airborne surveillance radars, 
which is used to detect weak target returns embedded in strong ground clutter, interference, and receiver noise. 
Data processing for STAP refers to a 2-dimensional adaptive filtering algorithm which attenuates unwanted signals 
bv placing nulls in the frequencv domain with respect to their directions of arrival and/or Doppler frequencies. 
Most STAP applications consume great amounts of computational resources and are also required to operate 
in real time High performance computers are becoming mainstream due to the progress made in hardware as 
well as software support in the last few years. They can satisfy the STAP computational requirements of real- 
time applications while increasing the flexibility, affordability, and scalability of radar signal processing systems. 
However, efficient parallelization of STAP, which consists of several different algorithms is challenging, and requires 

several optimizations. 

This paper describes our parallel pipelined implementation of a PRI-staggered post-Doppler STAP algorithm 
The design and implementation of the application is portable. Performance results are presented for the Intel 
Paragon at the Air Force Research Laboratory (AFRL), Rome, New York. AFRL has successfully implemented 
this STAP algorithm onboard an airborne platform and performed four flight experiments in May and June 
1996 [Little and Berry, 1997]. In that real-time demonstration, live data from a phased array radar was processed 
by Intel Paragon machine and results showed that high performance computers can deliver a significant performance 
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Figure 1. Implementation of parallel pipelined STAP. Arrows connecting task blocks represent data 
transfer between tasks. 

gain. However, that implementation only used compute nodes of the machine as independent resources in a 
round robin fashion to run different instances of STAP (rather than speeding up one instance of STAP.) Using 
this approach, the throughput may be improved, but the latency is limited by what can be achieved using one 
compute node. The algorithm consists of the following steps: l)Doppler filter processing, 2)weight computation, 
3)beamforming, 4)pulse compression, and 5)CFAR processing. 

For our parallel implementation of this real application we have designed a model of parallel pipeline system 
where each pipeline is a collection of tasks and each task itself is parallelized. This parallel pipeline model was 
applied to the STAP algorithm with each step as a task in a pipeline. This permits us to significantly improve 
latency as well as throughput. In this paper we present results from this implementation. Furthermore, we present 
the process of parallelization and issues involving in measuring performance in implementations when not only 
the performance of individual tasks is important, but overall performance of the integrated system is critical. We 
demonstrate the performance and scalability for a large number of processors. 

The rest of the paper is organized as follows: Section 2 presents the design and implementation. Performance 
results and conclusions are given in Section 3 and Section 4 respectively. 

2    Design and Implementation 

The design of the parallel pipelined STAP algorithm is shown in Figure 1. The parallel pipeline system consists 
of seven basic tasks. We refer to the parallel pipeline as simply a pipeline in the rest of this paper. The input data 
set for the pipeline is obtained from a phased array radar and is formed in terms of a coherent processing interval 
(CPI). Each CPI data set is a 3-dimensional complex data cube. The output of the pipeline is a report on the 
detection of possible targets. Each task i, 0 < i < 7, is parallelized by evenly partitioning its work load among P, 
processors. The execution time associated with task i, T{, consists of the time to receive data from the previous 
task, computation time, and time to send results to the next task. 

For the computation of the weight vectors for the current CPI data cube, data cubes from previous CPIs are 
used as input data. This introduces temporal data dependency. Temporal data dependencies are represented by 
arrows with dashed lines, TD\tz and TDi^, in Figure 1 where 7\D,-,j represents temporal data dependency of task 
j on data from task i. In a similar manner, spatial data dependencies SDij can be defined and are indicated in 
Figure 1 by arrows with solid lines. 

Throughput and latency are two important measures for performance evaluation on a pipeline system.  The 
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Table 1. Performance results for 3 cases with different processor assignments. 

,-?eo 1 • tnt.a.1 number of processors = 236 Time in seconds 

# pr°c recv comp send total 

Doppler filter 32 .0055 .0874 .0348 .1276 

easy weight 16 .0493 .0913 .0003 .1408 

hard weight 112 .0555 .0831 .0005 .1390 

easy BF 16 .0658 .0708 .0021 .1387 

hard BF 28 .0936 .0414 .0010 .1361 

pulse compression 16 .0551 .0776 .0028 .1355 

CFAR 16 .0910 .0434 - .1344 

throughput 
latency 

7.2659 
0.3622 

ruse 2: total number of processors =118 Time in seconds 

# Pr°c recv comp send total 

Doppler filter 16 .0110 .1714 .0668 .2492 

easy weight 8 .0998 .1636 .0003 .2637 

hard weight 56 .0979 .1636 .0005 .2621 

easy BF 8 .1302 .1267 .0036 .2605 

hard BF 14 .1782 .0822 .0017 .2622 

pulse compression 8 .1027 .1543 .0051 .2621 

CFAR 8 .1742 .0864 - .2606 

throughput 
latency 

3.7959 
0.6805 

case 3: total number of processors = 59 Time ir seconds 

# proc recv comp send total 

Doppler filter 8 .0219 .3509 .1296 .5024 

easy weight 4 .1796 .3254 .0003 .5053 

hard weight 28 .1779 .3265 .0006 .5050 

easy BF 4 .2439 .2529 .0068 .5037 

hard BF i .3370 .1636 .0032 .5039 

pulse compression 4 .1806 .3067 .0097 .4970 

CFAR 4 .3240 .1723 - .4963 

throughput 
latency 

1.9898 
1.3530 

throughput of our pipeline svstem is the inverse of the maximum execution time among all tasks. The latency 
of this pipeline system is the" time between the arrival of the CPI data cube at the system input and the time at 
which the detection report is available at the system output. 

throughput — 
max Ti 
0<i<6 

latency = T0 + maxTJ + T5 + T6. 
i=3,4 

(1) 

(2) 

The temporal data dependency does not affect the latency because weight computation tasks use data from 
the previous instance rather than current CPI. The filtered CPI data cube sent to the beamforming task does 
not wait for the completion of its weight computation. This explains why equation (2) does not containij 
and To. A detailed description of the STAP algorithm we used can be found in [Brown and Linderman, 1997. 

Linderman and Linderman, 1997]. 

3    Performance Results 

The implementation of the STAP application based on our parallel pipeline system model was done on the 
Intel Paragon at the Air Force Research Laboratory, Rome, New York. All the paralleP^ams devdopment 
and their integration was performed using C language and message passing interface (MPI)[Snir and et al 1995]. 
This permits easy portability across various platforms which support C language and MPI. In our implementation, 
asynchronous send and receive function calls were used in order to overlap communication and computation. 
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Table 2. Performance results for adding 4 more processors to case 2 in Table 1. 

total number of processors = 122 Time in seconds 
# proc recv comp send total 

Doppler filter 20 .0090 .1395 .0540 .2024 
easy weight 8 .0519 .1633 .0003 .2155 
hard weight 56 .0486 .1644 .0005 .2135 

easy BF 8 .0815 .1272 .0037 .2124 
hard BF 14 .1232 .0823 .0018 .2073 

pulse compression 8 .0519 .1543 .0051 .2113 
CFAR 8 .1240 .0864 - .2105 

throughput 
latency 

5.0213 
0.5498 

Table 3. Performance results for adding 16 more processors to the case in Table 2. 

total number of processors = 138 Time in seconds 
# proc recv comp send total 

Doppler filter 20 .0091 .1395 .0541 2027 
easy weight 8 .0516 .1633 .0003 2152 
hard weight 56 .0488 .1644 .0005 2137 

easy BF 8 .0819 .1273 .0037 2129 
hard BF li .1301 .0823 .0018 2142 

pulse compression 16 .1337 .0775 .0028 2140 
CFAR 16 .1701 .0434 - 2135 

throughput 
latency 

4.9052 
0.4247 

3.1   Integrated System Performance 

Integrated system refers to the evaluation of performance when all the tasks are considered together. Throughput 
(CPIs per second) and latency (seconds per CPI) are the two most important measures for performance evaluation 
in addition to individual task computation time and inter-task communication time. Table 1 gives timing results 
for three different cases with different processor assignments. From these 3 cases, it is clear that even for latency 
and throughput measures we obtain linear speedups from our experiments. Given that this scale up is up to 236 
processors (we were limited to these number of processors due to the size of the machine), we believe these are 
very good results. 

Tradeoffs exist between assigning processors to maximize throughput and to minimize latency, given limited 
resources. Using two examples, we illustrate how further performance improvements may (or may not) be achieved if 
few extra processors are available. We now take case 2 from Table 1 as an example and add some extra processors 
to tasks to analyze its affect to the throughput and latency. Suppose that case 2 has fulfilled the minimum 
throughput requirement and more processors can be added. Table 2 shows that adding 4 more processors to 
Doppler filter processing task not only increases the throughput but also reduces the latency. This is because the 
communication amount for each send and receive between Doppler filter processing task to weight computation 
and to beamforming tasks is reduced (Table 2). So, clearly adding processors to one task not only affects that 
task's performance but has a measurable effect on the performance of other tasks. By increasing the number of 
processors 3%, the improvement in throughput is 32% and in latency is 19%. Such effects are very difficult to 
capture in purely theoretical models because of the secondary effects. 

Since parallel computation load may be different among tasks, bottleneck problems arise when some tasks in 
the pipeline do not have proper numbers of processors assigned. If the number of processors assigned to one 
task with heavy work load is not enough to catch up the input data rate, this task becomes a bottleneck in the 
pipeline system. Hence, it is important to maintain approximately the same computation time among tasks in the 
pipeline system to maximize the throughput and also achieve higher processor utilization. One bottleneck task 
can be seen when its computation time is relatively much larger than the rest of the tasks. The entire system's 
performance degrades because the rest of the tasks have to wait for bottleneck task's completion to send/receive 
data to/from it no matter how many more processors assigned to them and how fast they can complete their jobs. 
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Therefore poor task scheduling and processor assignment will cause significant portion of idle time in the resulted 
communication costs. In Table 3 we added a total of 16 more processors to pulse compression and CFAR processing 
tasks to the case in Table 2. Comparing to case 2 in Table 1, we can see that the throughput increased. However, 
the throughput did not improve compared to the results in Table 2, even though this assignment has 16 more 
processors. In this case, the weight tasks are bottleneck tasks because their computation costs are relatively higher 
than other tasks. We can see that the receiving time of the rest of tasks are much larger than their computation 
time. A significant portion of idle time waiting for the completion of weight tasks is in the receiving time. On 
the other hand, we observe 23% improvement in the latency. This is because the computation time is reduced in 
the last two tasks with more processors assigned. T5 and T6 in equation (2) decrease and therefore the latency is 

reduced. 

4    Conclusions 

In this paper we presented performance results for a PRI-staggered post-Doppler STAP algorithm implementa- 
tion on the Intel Paragon machine at Air Force Research Laboratory, Rome, New York. The results indicate that 
our approach of parallel pipelined implementation scales well both in terms of communication and computation. 
For the integrated pipeline system, the throughput and latency also demonstrate the linear scalability of our de- 
sign. Our design and implementation not only shows tradeoffs in parallelization, processor assignment, and various 
overheads in inter and intra-task communication etc., but it also shows that accurate performance measurement 
of these systems is very important. Consideration of issues such as cache performance when data is packed and 
unpacked, and impact of the parallelization and processor assignment for one task on another task are crucial. This 
is normally not easily captured in theoretical models. In the future we plan to incorporate further optimizations 
including multi-threading, multiple pipelines and multiple processors on each compute node. 
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Abstract 

This paper presents performance results for the multi- 
threaded design and implementation of a parallel pipelined 
Space-Time Adaptive- Processing (STAP) algorithm on 
parallel computers with Symmetrical Multiple Processor 
(SMP) nodes. In particular, the paper describes our ap- 
proach to parallelization and multi-threaded implementa- 
tion on an Intel Paragon MP system. Our goal is to deter- 
mine how much more performance can be enhanced using 
small SMPs on each node of a large parallel computer for 
such an application. The paper also discusses the process 
of developing software for such an application on parallel 
computers when latency and throughput are both consid- 
ered together and presents their tradeoffs. The results show 
that not only scalable performance was achieved for indi- 
vidual component tasks of STAP but linear speedups were 
obtained for the integrated task performance, both for la- 
tency as well as throughput. 

1    Introduction 

Space-time adaptive processing (STAP) is a well known 
technique in the area of airborne surveillance radars, which 
is used to detect weak target returns embedded in strong 
ground clutter, interference, and receiver noise. Most STAP 
applications consume great amounts of computational re- 
sources and are also required to operate in real time. High 
performance computers are becoming mainstream due to 
the progress made in hardware as well as software support 
in the last few years. They can satisfy the STAP computa- 
tional requirements of real-time applications while increas- 
ing the flexibility, affordability, and scalability of radar sig- 
nal processing systems. However, efficient parallelization 
of a STAP algorithm which has embedded in it different al- 
gorithms, is challenging and requires several optimizations. 

In our previous work [3], we described the parallel 

pipelined implementation of a PRI-staggered post-Doppler 
STAP algorithm. In this paper, we focus on the multi- 
threaded design and implementation on the parallel com- 
puters with SMP nodes. This STAP algorithm consists of 
five steps: l)Doppler filter processing, 2)weight compu- 
tation, 3)beamforming, 4)pulse compression, and 5)CFAR 
processing. For our implementation of this real applica- 
tion we designed a model of the parallel pipeline system 
where each pipeline is a collection of tasks and each task 
itself is parallelized. This parallel pipeline model was ap- 
plied to the STAP algorithm with each step as a task in a 
pipeline. This permits us to significantly improve latency 
as well as throughput. Performance results presented in this 
paper were obtained on the Intel Paragon at the Air Force 
Research Laboratory (AFRL), Rome, New York. 

The Intel Paragon at the AFRL is an MP system which 
has three processors on each compute node board. In this 
paper, we focus on the design of the parallel pipeline sys- 
tem and its implementation using multi-threading on this 
system. We demonstrate the performance and scalability 
on different numbers of compute nodes for both threaded 
and non-threaded implementations. The improvement of 
threaded implementation over non-threaded implementa- 
tion is provided. 

The rest of the paper is organized as follows: in Section 
2, we present the parallel pipeline system model and discuss 
some parallelization issues. Section 3 describes the multi- 
threaded programming environment on the Intel Paragon 
MP system. Section 4 presents the implementation. Per- 
formance results and conclusions are given in Section 5 and 
Section 6 respectively. 

2   Model of the parallel pipeline system 

The system model for the type of STAP applications con- 
sidered in this work is shown in Figure 1. This model is 
suitable for the computational characteristics found in these 
applications. A pipeline is a collection of tasks which are 
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Figure 1. Model of the parallel pipeline sys- 
tem. The set of pipelines indicates that the 
same pipeline is repeated on subsequent in- 
put data sets. Each task for all input in- 
stances is executed on the same number of 
compute nodes. 

data dependency is due to the transfer and reorganization of 
data passed onto the next parallel task in the pipeline. Tem- 
poral data dependency occurs when some form of output 
generated by the tasks executed on the previous data set are 
needed by tasks executing the current data set. We will later 
see that STAP has both types of data dependencies. 

2.2   Compute node assignment 

Optimal use of resources is particularly important in 
high-performance embedded applications due to limited re- 
sources and other constraints such as desired latency or 
throughput [4]. When several parallel tasks need to be ex- 
ecuted in a pipelined fashion, tradeoffs exist between the 
assignment of processors for the maximization of overall 
throughput as opposed to the minimization of a single data 
set's response time (or latency.) The throughput require- 
ment says that when allocating processors to tasks, it should 
be guaranteed that all the input data sets will be handled in 
a timely manner. That is, the processing rate should not fall 
behind the input data rate. The response time criteria, on the 
other hand, require minimizing the latency of computation 
on a particular set of data input. 

executed sequentially. The input to the first task is obtained 
normally from sensors or other input devices and the inputs 
to the rest of the tasks in the pipeline are the outputs of their 
previous tasks. The set of pipelines shown in the figure indi- 
cates that the same pipeline is repeated on subsequent input 
data sets. Each block in a pipeline represents one parallel 
task, which itself is parallelized on multiple (different num- 
ber of) compute nodes. 

From a single task point of view, the execution flow con- 
sists of three phases: receive, compute, and send phases. In 
the receive and send phases, communication involves data 
transfer between two different groups of compute nodes. In 
the compute phase, work load is evenly partitioned among 
all compute nodes assigned in each task to achieve the max- 
imum efficiency. For the parallel systems with SMP nodes, 
multi-threading technique can be employed to further im- 
prove the computation performance. 

2.1    Data dependency 

In such a parallel pipeline system, there exist both spa- 
tial and temporal parallelism that result in two types of data 
dependencies, namely, spatial data dependency and tempo- 
ral data dependency [2, 5]. Spatial data dependency can 
be classified into inter-task data dependency and intra-task 
data dependency. Intra-task data dependencies arise when a 
set of subtasks needs to exchange intermediate results dur- 
ing the execution of a parallel task in a pipeline. Inter-task 

3 Multi-threads on Paragon 

We implemented our parallel pipeline model of the STAP 
algorithm on the Intel Paragon XP/S parallel computer lo- 
cated at AFRL. The compute partition of this machine con- 
sists of 232 MP nodes, each has three i860 processors on its 
compute node board. By running UNIX OSF/1 operating 
system, the three processors are configured with two pro- 
cessors as general application processors and one processor 
as message coprocessor which is dedicated to message pass- 
ing. Multi-threaded programming environment is supported 
on a Paragon system and the threads are implemented as 
POSIX threads [6]. 

4 Design and implementation 

The STAP algorithm we implemented is a PRI-staggered 
post-Doppler STAP algorithm [1, 7]. The design of the par- 
allel pipelined STAP algorithm is shown in Figure 2. The 
parallel pipeline system consists of seven tasks. Both the 
weight computation and the beamforming tasks are divided 
into two parts, namely, "easy" and "hard" Doppler bins. 
The hard Doppler bins are those in which significant ground 
clutter is expected and the remaining bins are easy Doppler 
bins. The main difference between the two is the amount 
of data used and the amount of computation required. The 
input data set for the pipeline is obtained from a phased ar- 
ray radar and is formed in terms of a coherent processing 
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Figure 2. Implementation of parallel pipelined 
STAP. Arrows connecting task blocks repre- 
sent data transfer between tasks. 

interval (CPI). Each CPI data set is a 3-dimensional com- 
plex data cube. The output of the pipeline is a report on 
the detection of possible targets. Each task i, 0 < i < 7, 
is parallelized by evenly partitioning its work load among 
Pi compute nodes. The execution time associated with task 
i is T{. For the computation of the weight vectors for the 
current CPI data cube, data cubes from previous CPIs are 
used as input data. This introduces temporal data depen- 
dency. Temporal data dependencies are represented by ar- 
rows with dashed lines in Figure 2 where TJDjj represents 
temporal data dependency of task j on data from task i. In 
a similar manner, spatial data dependencies SDij can be 
defined and are indicated by arrows with solid lines. 

Throughput and latency are two important measures for 
performance evaluation on a pipeline system. 

throughput = 
max Ti 
0<i<6 

latency = To + max Ti + T5 +T6. 
i=3,4 

(1) 

(2) 

The temporal data dependency does not affect the latency 
because weight computation tasks use data from the previ- 
ous time instance rather than the current CPI. The filtered 
CPI data cube sent to the beamforming task does not wait 
for the completion of its weight computation. This explains 
why equation (2) does not contain Ti and T%. A detailed 
description of the STAP algorithm we used can be found in 
[1,7]. 

4.1    Threads in compute phases 

In the Intel Paragon MP system, two out of the three pro- 
cessors in one compute node are configured as general pro- 
cessors to run application code while the third as a mes- 
sage coprocessor which is dedicated to message passing. 

Figure 3. Implementation of two threads in 
the compute phase. The main thread signals 
the second thread to perform its computation. 
After completion of its computation, the sec- 
ond thread signals back to the main thread. 

With this configuration, only compute phase for each task 
in our parallel pipeline system is implemented with threads. 
The reason for not implementing threads in communication 
phases is that the Paragon message-passing library is not 
thread-safe. Since there are only two application proces- 
sors in each compute node, each compute phase in every 
task will have two threads implemented. Figure 3 gives the 
execution flows of two threads in the compute phase. 

5   Performance results 

The implementation of the STAP application based on 
our parallel pipeline system model was done on the Intel 
Paragon at AFRL. Each CPI complex data cube is a 512 x 
16 x 128 three-dimensional array. A total of 27 CPIs were 
generated as inputs to the parallel pipeline system. 

5.1    Compute time 

For each task in the STAP algorithm, parallelization was 
done by evenly dividing computational load across compute 
nodes assigned to the task. Figure 4 gives the performance 
results of compute phases for different tasks. For each task, 
we obtained linear speedups on both implementations using 
two threads as well as using single thread. 

Assuming that the execution time of a non-threaded im- 
plementation of a task is t\ and the execution time of 
its threaded implementation is £2. we define the threading 
speedup for threaded over non-threaded implementation as 
s = j1. Since two processors are employed in the threaded 
implementation, we have Q < t2 < h and, therefore, 
1 < s < 2. The threading speedups for compute phases of 
all tasks are also given in Figure 4. By running on two pro- 
cessors at the same time, the two-threaded STAP code ide- 
ally can have a threading speedup of 2. However, in most 
cases, the actual threading speedups do not approach this 
ideal value. This may be caused by the limitation of imple- 
mentation of operating system, OSF/1, and the implemen- 
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Figure 5. Integrated performance results for 
threaded and non-threaded implementations. 

tation of linked thread-safe libraries. On an Intel Paragon 
MP system, scheduling of threads is handled by the oper- 
ating system kernel. Users cannot have control over or get 
information about which processor runs which thread. 

5.2   Integrated system performance evaluation 

Integrated system performance evaluation refers to the 
evaluation of performance when all the tasks in the pipeline 
are considered together. Throughput (number of CPIs per 
second) and latency (seconds per CPI) are the two most im- 
portant measures for performance evaluation on the parallel 
pipeline system. Figure 5 shows the speedups and threading 
speedups achieved by the threaded implementation for both 
latency and throughput for three cases of different compute 
node assignments with 51, 102 and 176 nodes. From these 
experiments, it is clear that for latency and throughput mea- 
sures we obtain linear speedups for both threaded and non- 
threaded implementations. Given that this scale up is up 
to 176 compute nodes (we were limited to this number of 
nodes due to the size of the machine), we believe these are 
very good results. 

5.3   Tradeoff between throughput and latency 

Using an example, we illustrate how further performance 
improvements may (or may not) be achieved if a few addi- 
tional compute nodes are available. We now take the case 
with 102 nodes from Figure 5 as an example and add some 
nodes to the pipeline to analyze its effect on the throughput 
and latency. Compute nodes were added to each task in in- 
crements of two nodes at a time. The resulting throughput 
and latency are plotted in Figure 6. 

When nodes were added to the Doppler filter processing 
task, the throughput increased and latency reduced. From 
Equations (1) and (2), this improvement was obtained be- 
cause the execution time, To, is reduced. However, when 
the number of nodes added is more than 8, both throughput 
and latency degrade. This is because the Doppler filter pro- 
cessing task finishes its computation on the new CPI so fast 
that the actual send operations for the previous CPI have not 
been carried out yet. The waiting time increases Doppler fil- 
ter processing task's execution time, To, and therefore de- 
grades the throughput and latency. 

When compute nodes are added to easy and hard weight 
computation tasks, the resulting throughput and latency 
have no significant changes. This is because the latency 
does not contain the execution time of weight computations, 
as indicated in Equation (2). However, when extra com- 
pute nodes are added to either the beamforming or the pulse 
compression task, we observe that the latency is reduced. 
This is because the execution times T3, T4, and T5 reduce 
in Equation (2). The throughput, on the other hand, is not 
improved because the Doppler filter processing task is the 
task with the maximum execution time among all tasks. 

Figure 6 presents the tradeoffs between increasing the 
throughput and reducing the latency, when assigning nodes 
to the tasks in the pipeline. We observed that only the addi- 
tion of nodes to the Doppler filter processing task can in- 
crease the throughput. Similarly, only beamforming and 
pulse compression tasks are candidates for the addition of 
more compute nodes to reduce the latency. 

Compute node assignment can also be made in such a 
way that both throughput and latency are improved simul- 
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Figure 6. Throughput and latency results by adding 2 compute nodes at a time to each task. 

Table 1. Performance results when 4 nodes to 
the Doppler processing task and 4 nodes to 
the pulse compression task are added to the 
implementation with 102 nodes. 

non-threaded threaded 
# nodes 102 110 102 110 

throughput 3.8677 4.8368 4.6916 5.6137 
latency 0.7767 0.6650 0.6108 0.5458 

throughput: CPIs/sec latency: sec/CPI 

taneously. We now add 4 nodes to the Doppler filter pro- 
cessing task and 4 nodes to the pulse compression task. 
By increasing the number of compute nodes by 7.8%, the 
improvement in throughput is 25.1% and in latency it is 
14.4% for the non-threaded implementation. Meanwhile, 
the threaded implementation shows 19.7% improvement in 
throughput and 10.6% improvement in latency. From these 
experimented results, we can draw the following conclu- 
sions. Extra compute nodes can be assigned to the task that 
has the maximum execution time among all tasks. In this 
way, the execution time of this task is reduced and accord- 
ing to Equation (1), the throughput is increased. Extra com- 
pute nodes can be added to those tasks which benefit the 
most, that is, the tasks with greatest reduced execution time 
when more nodes are assigned. The sum of these tasks can 
be reduced the most and therefore it minimizes the latency. 

6   Conclusions 

In this paper we presented performance results for a 
PRI-staggered post-Doppler STAP algorithm implementa- 
tion on the Intel Paragon machine at Air Force Research 
Laboratory, Rome, New York. This Paragon machine has 
three processors on each compute node board. By taking 
advantage of the SMP architecture, a multi-threaded im- 

plementation is was designed and compared to the non- 
threaded implementation. Performance results indicate that 
our approach of parallel pipelined implementation scales 
well both in terms of throughput and latency whether the 
multi-threaded technique is used or not. Our design and 
implementation not only shows tradeoffs in parallelization, 
compute node assignment, and various overheads in inter- 
task communication etc., but it also shows that accurate per- 
formance measurement of these systems is very important. 
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Abstract 

This paper presents performance results for the design and implementation of parallel 

pipelined Space-Time Adaptive Processing (STAP) algorithms on parallel computers. In par- 

ticular, the paper describes the issues involved in parallelization, our approach to parallelization 

and performance results on an Intel Paragon. The paper also discusses the process of devel- 

oping software for such an application on parallel computers when latency and throughput are 

both considered together and presents tradeoffs considered with respect to inter and intra-task 

communication and data redistribution. The results show that not only scalable performance 

was achieved for individual component tasks of STAP but linear speedups were obtained for 

the integrated task performance, both for latency as well as throughput. Results are presented 

for up to 236 compute nodes (limited by the machine size available to us). Another interesting 

observation made from the implementation results is that performance improvement due to the 

assignment of additional processors to one task can improve the performance of other tasks 

without any increase in the number of processors assigned to them. Normally, this cannot be 

predicted by theoretical analysis. 
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1    Introduction 

Space-time adaptive processing (STAP) is a well known technique in the area of airborne surveil- 

lance radars used to detect weak target returns embedded in strong ground clutter, interference, 

and receiver noise. STAP is a 2-dimensional adaptive filtering algorithm that attenuates unwanted 

signals by placing nulls in their directions of arrival and Doppler frequencies. Most STAP applica- 

tions are computationally intensive and must operate in real time. High performance computers are 

becoming mainstream due to the progress made in hardware as well as software support in the last 

few years. They can satisfy the STAP computational requirements of real-time applications while 

increasing the flexibility, affordability, and scalability of radar signal processing systems. How- 

ever, efficient parallelization of a STAP algorithm which has embedded in it different processing 

steps is challenging and is the subject of this paper. 

This paper describes our innovative parallel pipelined implementation of a Pulse Repetition 

Interval (PRI)-staggered post-Doppler STAP algorithm on the Intel Paragon at the Air Force Re- 

search Laboratory (AFRL), Rome, New York. For a detailed description of the STAP algorithm 

implemented in this work, the reader is referred to [1, 2]. AFRL successfully installed their im- 

plementation of the STAP algorithm onboard an airborne platform and performed four flight ex- 

periments in May and June 1996 [3]. These experiments were performed as part of the Real-Time 

Multi-Channel Airborne Radar Measurements (RTMCARM) program. The RTMCARM system 

block diagram is shown in Figure 1. In that real-time demonstration, live data from a phased ar- 

ray radar was processed by the onboard Intel Paragon and results showed that high performance 

computers can deliver a significant performance gain. However, this implementation used com- 

pute nodes of the machine only as independent resources in a round robin fashion to run differ- 

ent instances of STAP (rather than speeding up each instance of STAP.) Using this approach, the 

throughput may be improved, but the latency is limited by what can be achieved using one compute 

node. 

Parallel computers, organized with a large set (several hundreds) of processors linked by a spe- 

cialized high speed interconnection network, offer an attractive solution to many computationally 

intensive applications, such as image processing, simulation of particle reactions, and so forth. 

Parallel processing splits an application problem into several subproblems which are solved on 
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Figure 1. RTMCARM system block diagram. 

multiple processors simultaneously. To learn more about parallel computing, the reader is referred 

to [4,5, 6,7, 8]. For our parallel implementation of this real application we have designed a model 

of the parallel pipeline system where each pipeline is a collection of tasks and each task itself is 

parallelized. This parallel pipeline model was applied to the STAP algorithm with each step as a 

task in a pipeline. This permits us to significantly improve latency as well as throughput. 

This paper describes parallelization process and performance results. In addition, design con- 

siderations for portability, task mapping, parallel data redistribution, parallel pipelining as well as 

system-level and task-level performance measurement are discussed. Finally, the performance and 

scalability of the implementation for a large number of processors is demonstrated. Performance 

results are presented for the Intel Paragon at AFRL. 

The paper is organized as follows. In Section 2 we discuss the related work. An overview of 

the implemented algorithm is given in Section 3. In Section 4, we present the parallel pipeline 

system model and discuss some parallelization issues and approaches for implementation of STAP 

algorithms. Section 5 presents specific details of STAP implementation. Performance results and 
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experiments. 

conclusions are presented in Section 7 and Section 8, respectively. 

2   Related Work 

The RTMCARM experiments were performed using a BAC 1-11 aircraft. The radar was a phased 

array L-Band radar with 32 elements organized into two rows of 16 each. Only the data from the 

upper 16 elements were processed with STAR This data was derived from a 1.25 MHz intermediate 

frequency (IF) signal that was 4:1 oversampled at 5 MHz. The number representation at IF was 14 

bits, 2's complement and was converted to 16 bit baseband real and imaginary numbers. Special 

interface boards were used to digitally demodulate EF signals to baseband. The signal data formed 

a raw 3-dimensional data cube called coherent processing interval (CPI) data cube comprised of 

128 pulses, 512 range gates (32.8 miles), and 16 channels. These special interface boards were also 

used to corner turn the data cube so that CPI is unit stride along pulses. It speeds the subsequent 

Doppler processing on the High Performance Computing (HPC) systems. Live CPI data from a 

phased-array radar were processed by a ruggedized version of the Paragon computer. 

The ruggedized version of Intel Paragon system consists of 25 compute nodes running the SUN- 

MOS operating system. Figure 2 depicts the system implementation. Each compute node has three 
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i860 processors accessing the common memory of size 64M bytes as a shared resource. The CPI 

data sets were sent to the 25 compute nodes in a round robin manner and all three processors 

worked on each CPI data set as a shared-memory machine. The system processed up to 10 CPIs 

per seconds (throughput) and achieved a latency of 2.35 seconds per CPI. This implementation 

used compute nodes of the machine as independent resources to run different instances of CPI 

data sets. No communication among compute nodes was needed. This approach can achieve de- 

sired throughput by using as many nodes as needed, but the latency is limited by what can be 

achieved using the three processors in one compute node. More information on the overall system 

configuration and performance results can be found in [1, 3]. 

Other related work such as [9,10,11,12] parallelized high-order post-Doppler STAP algorithms 

by partitioning the computational workload among all processors allocated for the applications. In 

[9, 10], they focused on the design of parallel versions of subroutines for FFT and QR decomposi- 

tion. In [11,12], the implementations optimized the data redistribution between processing steps in 

the STAP algorithms while using sequential versions of FFT and QR decomposition subroutines. 

A multi-stage approach was employed in [13] which was an extension of [11, 12]. A beam space 

post-Doppler STAP was divided into three stages and each stage was parallelized on a group of 

processors. A technique called replication of pipeline stages was used to replicate the computa- 

tional intensive stages such that different data instance is run on a different replicated stage. Their 

effort focused on increasing the throughput while keeping the latency fixed. For other related work, 

the reader is referred to [14, 15, 16]. 

3   Algorithm Overview 

The adaptive algorithm, which cancels Doppler shifted clutter returns as seen by the airborne radar 

system, is based on a least squares solution to the weight vector problem. This approach has 

traditionally yielded high clutter rejection, but suffers from severe distortions in the adapted main 

beam pattern and resulting loss of gain on the target. Our approach introduces a set of constraint 

equations into the least squares problem which can be weighted proportionally to preserve main 

beam shape. The algorithm is structured so that multiple receive beams may be formed without 

changing the matrix of training data. Thus, the adaptive problem can be solved once for all beams 
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which lie within the transmit illumination region. The airborne radar system was programmed 

to transmit five beams, each 25 degrees in width, spaced 20 degrees apart. Within each transmit 

beam, six receive beams were formed by the processor. 

The algorithm consists of the following steps: 

1. Doppler filter processing, 

2. Weight computation, 

3. Beamforming, 

4. Pulse compression, and 

5. CFAR processing. 

Doppler filtering is performed on each receive channel using weighted Fast Fourier Transforms 

(FFT's). The analog portion of the receiver compensates the received clutter frequency to center 

the clutter frequency at zero regardless of the transmit beam position. This simplifies indexing 

of Doppler bins for classification as "easy" or "hard" depending on their proximity to mainbeam 

clutter returns. For the hard cases, Doppler processing is performed on two 125-pulse windows of 

data separated by three pulses (a STAP technique known as "PRI-stagger"). Both sets of Doppler 

processed data are adaptively weighted in the beamforming process for improved clutter rejection. 

In the easy case, only a single Doppler spectrum is computed. This simpler technique has been 

termed Post Doppler Adaptive Beamforming and is quite effective at a fraction of the computa- 

tional cost when the Doppler bin is well separated from mainbeam clutter. In these situations, an 

angular null placed in the direction of the competing ground clutter provides excellent rejection. 

Selectable window functions are applied to the data prior to the Doppler FFT's to control sidelobe 

levels. The selection of a window is a key parameter in that it impacts the leakage of clutter returns 

across Doppler bins, traded off against the width of the clutter passband. 

An efficient method of beamforming using recursive weight updates is made possible by a block 

update form of the QR decomposition algorithm. This is especially significant in the hard Doppler 

regions, which are computed using separate weights for six consecutive range intervals. The re- 

cursive algorithm requires substantially less training data (sample support) for accurate weight 

computation, as well as providing improved efficiency. Since the hard regions have one sixth the 
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range extent from which to draw data, this approach dealt with the paucity of data by using past 

looks at the same azimuth, exponentially forgotten, as independent, identically distributed esti- 

mates of the clutter to be cancelled. This assumes a reasonable revisit time for each azimuth beam 

position. During the flight experiments, the five 25 degree transmit beam positions were revisited 

at a 1-2 Hz rate (5-10 CPIs per second.) 

The training data for the easy Doppler regions was selected using a more traditional approach. 

Here, the entire range extent was available for sample support, so the entire training set was drawn 

from three preceding CPIs for application to the next CPI in this azimuth beam position. In this 

case, a regular (non-recursive) QR decomposition is performed on the training data, followed by 

block update to add in the beam shape constraints. 

Pulse compression is a compute intensive task, especially if applied to each receive channel in- 

dependently. In general, this approach is required for adaptive algorithms which compute different 

weight sets as a function of radar range. Our algorithm, however, with its mainbeam constraint, 

preserves phase across range. In fact, the phase of the solution is independent of the clutter nulling 

equations, and appears only in the constraint equations. The adapted target phase is preserved 

across range, even though the clutter and adaptive weights may vary with range. Thus, pulse 

compression may be performed on the beamformed output of the receive channels providing a 

substantial savings in computations. 

In the sections to follow, we present the process of parallelization and software design consider- 

ations including those for portability, task mapping, parallel data redistribution, parallel pipelining 

and issues involved in measuring performance in implementations when not only the performance 

of individual tasks is important, but overall performance of the integrated system is critical. We 

demonstrate the performance and scalability for a large number of processors. 

4   Model of the Parallel Pipelined System 

The system model for the type of STAP applications considered in this work is shown in Figure 

3. A pipeline is a collection of tasks which are executed sequentially. The input to the first task 

is obtained normally from sensors or other input devices with the inputs to the remaining tasks 

coming from outputs of previous tasks. The set of pipelines shown in the figure indicates that 
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Figure 3. Model of the parallel pipeline system. (Note that Taski for all input instances is 

executed on the same number of processors, but that the number of processors may differ 

from one task to another.) 

the same pipeline is repeated on subsequent input data sets. Each block in a pipeline represents 

one task, that is parallelized on multiple (different number of) processors. That is, each task is 

decomposed into subtasks to be performed in parallel. Therefore, each pipeline is a collection of 

parallel tasks. 

In such a system, there exist both spatial and temporal parallelism that result in two types of 

data dependencies and flows, namely, spatial data dependency and temporal data dependency 

[17, 18, 19]. Spatial data dependency can be classified into inter-task data dependency and intra- 

task data dependency. Intra-task data dependencies arise when a set of subtasks needs to exchange 

intermediate results during the execution of a parallel task in a pipeline. Inter-task data depen- 

dency is due to the transfer and reorganization of data passed onto the next parallel task in the 

pipeline. Inter-task communication can be communication from the subtasks of the current task to 

the subtasks of the next task, or collection and reorganization of output data of the current task and 

then redistribution of the data to the next task. The choice depends on the underlying architecture, 

mapping of algorithms and input-output relationship between consecutive tasks. Temporal data 

B-9 



dependency occurs when some form of output generated by the tasks executed on the previous 

data set are needed by tasks executing the current data set. STAP is an interesting parallelization 

problem because it exhibits both types of data dependency. 

4.1   Parallelization Issues and Approaches 

A STAP algorithm involves multiple algorithms (or processing steps), each of which performs 

particular functions, to be executed in a pipelined fashion. Multiple pipelines need to be executed 

in a staggered manner to satisfy the throughput requirements. Each task needs to be parallelized 

for the required performance, which, in turn, requires addressing the issue of data distribution 

on the subset of processors on which a task is parallelized to obtain good efficiency and incur 

minimal communication overhead. Given that each task is parallelized, data flow among multiple 

processors of two or more tasks is required and, therefore, communication scheduling techniques 

become critical. 

4.1.1    Inter-task Data Redistribution 

In an integrated system, data redistribution is required to feed data from one parallel task to an- 

other, because the way data is distributed in one task may not be the most appropriate distribution 

for the next task for algorithmic or efficiency reasons. For example, the FFTs in the Doppler fil- 

ter processing task perform optimally when the data is unit-stride in pulse, while the next stage, 

beamforming, performs optimally when the data is unit stride in channel. To ensure efficiency 

and continuity of memory access, data reorganization and redistribution are required in the inter- 

task communication phase. Data redistribution also allows concentration of communication at the 

beginning and the end of each task. 

We have developed runtime functions and strategies that perform efficient data redistribution 

[20]. These techniques reduce the communication time by minimizing contention on the commu- 

nication links as well as by minimizing the overhead of processing for redistribution (which adds 

to the latency of sending messages). We take advantage of lessons learned from these techniques 

to implement the parallel pipelined STAP application. 
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4.1.2   Task Scheduling and Processor Assignment 

An important factor in the performance of a parallel system is how the computational load is 

mapped onto the processors in the system. Ideally, to achieve maximum parallelism, the load must 

be evenly distributed across the processors. The problem of statically mapping the workload of a 

parallel algorithm to processors in a distributed memory system has been studied under different 

problem models, such as [21,22]. The mapping policies are adequate when an application consists 

of a single task, and the computational load can be determined statically. These static mapping 

policies do not model applications consisting of a sequence of tasks (algorithms) where the output 

of one task becomes the input to the next task in the sequence. 

Optimal use of resources is particularly important in high-performance embedded applications 

due to limited resources and other constraints such as desired latency or throughput [23]. When 

several parallel tasks need to be executed in a pipelined fashion, tradeoffs exist between assigning 

processors to maximize the overall throughput and assigning processors to minimize a single data 

set's response time (or latency.) The throughput requirement says that when allocating processors 

to tasks, it should be guaranteed that all the input data sets will be handled in a timely manner. 

That is, the processing rate should not fall behind the input data rate. The response time criteria, 

on the other hand, require minimizing the latency of computation on a particular set of data input. 

To reduce the latency, each parallel task must be allocated more processors to reduce its exe- 

cution time, and consequently, the overall execution time of the integrated system. But it is well 

known that the efficiency of parallel programs usually decreases as the number of processors is in- 

creased. Therefore, the gains in this approach may be incremental. On the other hand, throughput 

can be increased by increasing the latency of individual tasks by assigning them fewer processors 

and, therefore, increasing efficiency, but at the same time having multiple streams active concur- 

rently in a staggered manner to satisfy the input-data rate requirements. We next present these 

tradeoffs and discuss various implementation issues. 

5   Design and Implementation 

The design of the parallel pipelined STAP algorithm is shown in Figure 4. The parallel pipeline 

system consists of seven basic tasks. We refer to the parallel pipeline as simply a pipeline in the rest 
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Figure 4. Implementation of parallel pipelined STAR Arrows connecting task blocks represent 

data transfer between tasks. 

of this paper. The input data set for the pipeline is obtained from a phased array radar and is formed 

in terms of a coherent processing interval (CPI). Each CPI data set is a 3-dimensional complex data 

cube comprised of K range cells, J channels, and N pulses. The output of the pipeline is a report 

on the detection of possible targets. The arrows shown in Figure 4 indicate data transfer between 

tasks. Although a single arrow is shown, note that each represents multiple processors in one task 

communicating with multiple processors in another task. Each task i is parallelized by evenly 

partitioning its work load among P, processors. The execution time associated with task i, Tu 

consists of the time to receive data from the previous task, computation time, and time to send 

results to the next task. 

The calculation of weights is the most computationally intensive part of the STAP algorithm. 

For the computation of the weight vectors for the current CPI data cube, data cubes from previous 

CPIs are used as input data. This introduces temporal data dependency. For example, suppose 

that a set of CPI data cubes entering the pipeline sequentially are denoted by CPU, i = 0,1,.... 

At any time instance i, the Doppier filtering task is processing CPU and beamforming task is 

processing CPU-\. In the meanwhile, the weight computation task is using past CPIs in the same 

azimuthal direction to calculate the weight vectors for CPU as described below. The computed 

weight vectors will be applied to CPU in the beamforming task at next time instance i + 1. Thus, 
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temporal data dependencies exist and are represented by arrows with dashed lines, TD\$ and 

TD2,i, in Figure 4 where TDiyj represents temporal data dependency of task j on data from task 

i. In a similar manner, spatial data dependencies SDUj can be defined and are indicated in Figure 

4 by arrows with solid lines. 

Throughput and latency are two important measures for performance evaluation on a pipeline 

system. The throughput of our pipeline system is the inverse of the maximum execution time 

among all tasks, i.e., 

throughput = —• (1) 
max Ti 
0<t<7 

To maximize the throughput, the maximum value of T{ should be minimized. In other words, no 

task should have an extremely large execution time. With a limited number of processors, the 

processor assignment to different tasks must be made in such a way that the execution time of the 

task with highest computation time is reduced. 

The latency of this pipeline system is the time between the arrival of the CPI data cube at the 

system input and the time at which the detection report is available at the system output. Therefore, 

the latency for processing one CPI is the sum of the execution times of all the tasks except weight 

computation tasks, i.e., 

latency = T0 + Tnax(Tz,Ti) +T5+T6. (2) 

Equation (2) does not contain 7\ and T2. The temporal data dependency does not affect the 

latency because weight computation tasks use data from the previous instance of CPI data rather 

than the current CPI. The filtered CPI data cube sent to the beamforming tasks do not wait for the 

completion of its weight computation but rather for the completion of the weight computation of 

the previous CPI. For example, when the Doppler filter processing task is processing CPU, the 

weight computation tasks use the filtered CPI data, CPIi-i, to calculate the weight vectors for 

CPIi. At the same time, the beamforming tasks are working on CPU-i using the data received 

from the Doppler filter processing and weight computation tasks. The beamforming tasks do not 

wait for the completion of the weight computation task when processing CPIi-i data. The overall 

system latency can be reduced by reducing the execution times of the parallel tasks, e.g., T0, T3, 

T^ T5, and T6 in our system. 

Next, we briefly describe each task and its parallel implementation. A detailed description of 
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Figure 5. Partitioning strategy for Doppler filter processing task. The CPI data cube is parti- 

tioned among PQ processors across dimension K. 

the STAP algorithm we used can be found in [1, 2]. 

5.1   Doppler Filter Processing 

The input to the Doppler filter processing task is one CPI complex data cube received from a 

phased array radar. The computation in this task involves performing range correction for each 

range cell and the application of a windowing function (e.g. Hanning or Hamming) followed by 

a JV-point FFT for every range cell and channel. The output of the Doppler filter processing task 

is a 3-dimensional complex data cube of size K x 2 J x N which is referred to as staggered CPI 

data. In Figure 4, we can see that this output is sent to the weight computation task as well as to 

the beamforming task. 

Both the weight computation and the beamforming tasks are divided into easy and hard parts. 

These two parts use different portions of staggered CPI data and the associated amounts of compu- 

tation are also different. The easy weight computation task uses range samples only from the first 

half of the staggered CPI data while the hard weight computation task uses range samples from 

the entire staggered CPI data. On the other hand, easy and hard beamforming tasks use all range 

cells rather than some of them. Therefore, the size of data to be transfered to weight computation 

tasks is different from the size of data to be sent to beamforming tasks. In Figure 4, thicker arrows 

connected from Doppler filter processing task to beamforming tasks indicates that the amount of 

data sent to the beamforming tasks is more than the amount of data sent to the weight tasks. 

The basic parallelization technique employed in the Doppler filtering processing task is to par- 
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tition the CPI data cube across the range cells, that is, if P0 processors are allocated to this task, 

then each processor is responsible for J^ range cells. The reason for partitioning the CPI data cube 

along dimension K is that it maintains an efficient accessing mechanism for contiguous memory 

space. A total of K • 2 J N-point FFTs are performed and the best performance is achieved when 

every iV-point FFT accesses its N data sets from a contiguous memory space. Figure 5 illustrates 

the parallelization of this step. The inter-task communication from the Doppler filter processing 

task to weight computation tasks is explained in Figure 6(b). Since only subsets of range cells are 

needed in weight computation tasks, data collection has to be performed on the output data before 

passing it to the next tasks. Data collection is performed to avoid sending redundant data and hence 

reduces the communication costs. 

5.2   Weight Computation 

The second step in this pipeline is the computation of weights that will be applied to the next CPI. 

This computation for JV pulses is divided into two parts, namely, "easy" and "hard" Doppler bins, 

as shown in Figure 6(a). The hard Doppler bins (pulses), Nhard, are those in which significant 

ground clutter is expected. The remaining bins are easy Doppler bins, Neasy. The main difference 

between the two is the amount of data used and the amount of computation required. Not all range 

cells in the staggered CPI are used in weight calculation and different subsets of range samples are 

used in easy Doppler bins and hard Doppler bins. 

To gather range samples for easy Doppler bins to calculate the weight vectors for the current 

CPI, data is drawn from three preceding CPIs by evenly spacing out over the first one third of K 

range cells of each of the three CPIs. The easy weight computation task involves Neasy QR factor- 

izations, block updates, and back substitutions. In the easy weight calculation, only range samples 

in the first half of the staggered CPI data are used while hard weight computation employs range 

samples from the entire staggered CPI. Furthermore, range extent for hard Doppler bins is split 

into six independent segments to further improve clutter cancelation. To calculate weight vectors 

for the current CPI, range samples used in hard Doppler bins are taken from the immediately pre- 

ceding staggered CPI combined with older, exponentially forgotten, data from CPIs in the same 

direction. This is done for each of the six range segments. The hard weight computation task 
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be performed before the communication. This can be viewed as irregular data redistribution. 

involves 6Nhard recursive QR updates, block updates, and back substitutions. The easy and hard 

weight computation tasks process sets of 2-dimensional matrices of different sizes. 

Temporal data dependency exists in the weight computation task because both easy and hard 

Doppler bins use data from previous CPIs to compute the weights for the current CPI. The outputs 

of this step, the weight vectors, are two 3-dimensional complex data cubes of size Neasy x J x M 

and Nhard x 2 J x M for easy and hard weight computation tasks, respectively, where M is the 

number of receive beams. These two weight vectors are to be applied to the current CPI in the 

beamforming task. Because of the different sizes of easy and hard weight vectors, the beamforming 

task is also divided into easy and hard parts to handle different amounts of computation. 

Given the uneven nature of weight computations, different sets of processors are allocated to the 

easy and hard tasks. In Figure 4, Pi processors are allocated to easy weight computation and P2 

processors to hard weight computation. Since weight vectors are computed for each pulse (Doppler 

bin), the parallelization in this step involves partitioning of data along dimension N, that is, each 

processor in easy weight computation task is responsible for Zff* pulses while each processor in 

hard weight computation task is responsible for ^ pulses, as shown in Figure 7. 
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Figure 7. Partitioning strategy for easy and hard weight computation tasks.   Data cube is 

partitioned across dimension N. 

Notice that Doppler filter processing and weight computation tasks employ different data parti- 

tioning strategies (along different dimensions.) Due to different partitioning strategies, an all-to-all 

personalized communication scheme is required for data redistribution from Doppler filter pro- 

cessing task to the weight computation task. That is, each of the Px and P2 processors needs to 

communicate with all P0 processors allocated to the Doppler filter processing task to receive CPI 

data. Since only subsets of Doppler filter processing task's output are used in the weight computa- 

tion task, data collection is performed before inter-task communication. Although data collection 

reduces inter-task communication cost, it also involves data copying from non-contiguous memory 

space to contiguous buffers. Sometimes the cost of data collection may become extremely large 

due to hardware limitations (e.g. high cache miss ratio.) When sending data to the beamforming 

task, the weight vectors have already been partitioned along dimension N which is the same as the 

data partitioning strategy for the beamforming task. Therefore, no data collection is needed when 

transferring data to the beamforming task. 

5.3   Beamforming 

The third step in this pipeline (which is actually the second step for the current CPI because the 

result of the weight task is only used in the subsequent time step) is beamforming. The inputs 

of this task are received from both Doppler filter processing and weight computation tasks, as 

shown in Figure 4. The easy weight vector received from easy weight computation task is applied 
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to the easy Doppler bins of the received CPI data while the hard weight vector is applied to hard 

Doppler bins. The application of weights to CPI data requires matrix-matrix multiplications on two 

received data sets. Due to different matrix sizes for multiplications in easy and hard beamforming 

tasks, uneven computational load results. The beamforming task is also divided into easy and hard 

parts for parallelization purposes. This is because the easy and hard beamforming tasks require 

different amounts and portions of CPI data, and involve different computational loads. The inputs 

for the easy beamforming task are two 3-dimensional complex data cubes. One data cube which 

is received from the easy weight computation task is of size Neasy x M x J. The other is from 

Doppler filter processing task and its size is iVeasy x J x K.  A total of Neasy matrix-matrix 

multiplications are performed where each multiplication involves two matrices of size M x J 

and J x K, respectively. The hard beamforming task also has two input data cubes which are 

received from Doppler filter processing and hard weight computation tasks. The data cube of size 

6Nhard x M x 2 J is received from hard weight computation task and the Doppler filtered CPI data 

cube is of size Nhard x2JxK. Since range cells are divided into 6 range segments, there are a total 

of 6Nhard matrix-matrix multiplications in hard beamforming. The results of the beamforming task 

are two 3-dimensional complex data cubes of size Neasy x M x K and Nhard xMxK corresponding 

to easy and hard parts respectively. 

In a manner similar to the weight computation task, parallelization in this step also involves par- 

titioning of data across the <V dimension (Doppler bins.) Different sets of processors are allocated 

to easy and hard beamforming tasks. Since the cost of matrix multiplications can be determined 

accurately, the computations are equally divided among the allocated processors for this task. As 

seen from Figure 4, this task requires data to be communicated from the first as well as the second 

task. Because data is partitioned along different dimensions, an all-to-all personalized communi- 

cation is required for data redistribution between Doppler filter processing and beamforming tasks. 

The output of the Doppler filter processing task is a data cube of size K x 2 J x N which is re- 

distributed to the beamforming task after data reorganization in the order of N x K x 2 J. Data 

reorganization has to be done before the inter-task communication between the two tasks takes 

place, as shown in Figure 8. 

Data reorganization involves data copying from non-contiguous memory space and its cost may 

become extremely large due to cache misses. For example, two Doppler bins in the same range cell 
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Figure 8. Data redistribution from Doppler filter processing task to easy beamforming task. CPI 

data subcube of size JxJx ^ is reorganized to subcube of size Zf**- x|xJ before 

sending from one processor in Doppler filter processing task to another in easy beamforming 

task. 

and the same channel are stored in contiguous memory space. After data reorganization, they are 

# • J element distance apart. Therefore, if P0 is small and the size of CPI data subcube partitioned 

in each processor is large then it is quite likely that expensive data reorganization will be needed 

which becomes a major part of communication overhead. The algorithms which perform data 

collection and reorganization are crucial to exploit the available parallelism. Note that receiving 

data from weight computation tasks does not involve data reorganization or data collection because 

they have the same partitioning strategy (along dimension N.) 

5.4   Pulse Compression 

The input to the pulse compression task is a 3-dimensional complex data cube of size N xM xK, 

as shown in Figure 9. This data cube consists of two subcubes of size Neasy x M x K and Nhard x 

MxK which are received from easy and hard beamforming tasks respectively. Pulse compression 

involves convolution of the received signal with a replica of the transmit pulse waveform. This is 

accomplished by first performing tf-point FFTs on the two inputs, point-wise multiplication of the 

intermediate result and then computing the inverse FFT. The output of this step is a 3-dimensional 
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Figure 9. Partitioning strategy for pulse compression task. Data cube is partitioned across 

dimension iV into P5 processors. 

real data cube of size .V x M x K. The parallelization of this step is straightforward and involves 

the partitioning of data cube across the N dimension. Each of the FFTs could be performed on an 

individual processor and hence each processor in this task gets an equal amount of computation. 

Partitioning along the X dimension also results in an efficient accessing mechanism for contiguous 

memory space when running FFTs. Since both beamforming and pulse compression tasks use 

the same data partitioning strategy (along dimension N), no data collection or reorganization is 

needed prior to communication between these two tasks. After pulse compression, the square of 

the magnitude of the complex data is computed to move to the real power domain. This cuts data 

set size in half and eliminates the computation of the square root. 

5.5    CFAR Processing 

The input to this task isanJVxMxif real data cube received from the pulse compression task. 

The sliding window constant false alarm rate (CFAR) processing compares the value of a test cell 

at a given range to the average of a set of reference cells around it times a probability of false alarm 

factor. This step involves summing up a number of range cells on each side of the cell under test, 

multiplying the sum by a constant, and comparing the product to the value of the cell under test. 

The output of this task, which appears at the pipeline output, is a list of targets at specified ranges, 

Doppler frequencies, and look directions. The parallelization strategy for this step is the same as 

for the pulse compression task. Both tasks partition data cube along the N dimension. Also, no 

data collection or reorganization is needed in pulse compression task before sending data to this 
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n 

inBuf[2] 

outBuf[2] 

number of CPIs 

input data buffer 

output data buffer 

1 for i 4- 0 to n - 1 

2 prev 4- (i - 1) mod 2 

3 cur 4- i mod 2 

4 next <- (i +1) mod 2 

5 to ■<- read timer 

6 post async receives for mBuf[next] 

7 wait for completion of previous receives for inBuf[cur] 

8 data unpacking on inBuf[cur] 

9 ti 4- read timer 

10 computation on inBuf[cur] and result in outBuf[cur] 

11 <2 «- read timer 

12 data packing for outgoing message on outBuffcur] 

13 post async sends for outBuf[cur] to next task 

14 wait for completion of sends for outBuf[pret;] 

15 <3 4- read timer 

Figure 10. Implementation of timing computation and communication for each task. A double 

buffering strategy is used to overlap the communication with the computation. Receive time = 

t\ — t0, compute time = t2 — h, and send time = t$ — t2. 

task. 

6   Software Development and System Platform 

All the parallel program development and their integration was performed using ANSI C lan- 

guage and message passing interface (MPI) [24]. This permits easy portability across various 

platforms which support C language and MPI. Since MPI is becoming a de facto standard for 
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high-performance systems, we believe the software is portable. 

The implementation of the STAP application based on our parallel pipeline system model has 

been done on the Intel Paragon at the Air Force Research Laboratory, Rome, New York. This 

machine contains 321 compute nodes interconnected in a two-dimensional mesh. The Paragon 

runs Intel's standard Open Software Foundation (OSF) UNIX operating system. Each compute 

node consists of three i860 RISC processors which are connected by a system bus and share a 64M 

byte memory. The speed of an i860 RISC processor is 40 MHz and its peak performance is 100M 

floating point operations per second. The interconnection network has a message startup time of 

35.3 //sec and a data transfer time of 6.53 nsec/byte for point-to-point communication. 

In our implementation, a double buffering strategy was used both in receive and send phases. 

During the execution loops, this strategy employs two buffers alternatively such that one buffer 

can be processed during the communication phase while the other buffer is processed during the 

compute phase. Together with the double buffering implementation, asynchronous send and re- 

ceive calls were employed in order to maximize the overlap of communication and computation. 

Asynchronous communication means that the program executing the send/receive does not wait 

until the send/receive is complete. This type of communication is also referred to as non-blocking 

communication. The other option is synchronous communication which blocks the send/receive 

operation till the message has been sent/received. The general execution flow and the approach to 

measure the timing for each part of computation and communication is given in Figure 10. We 

used MPI timer, MPLWtime(), because this function is portable with high resolution. 

7   Performance Results 

We specified the parameters that were used in our experiments as follows: 

• range cells (K) = 512, 

• channels (J)= 16, 

• pulses (N) = 128, 

• receive beams (M) = 6, 
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Table 1. The number of floating point operations for the PRI-staggered post Doppier STAP 

algorithm to process one CPI data. 

Task number of floating point operations 

Doppler filter processing 79,691,776 

hard weight computation 197,038,464 

easy weight computation 13,851,792 

easy beamforming 28,311,552 

hard beamforming 44,040,192 

pulse compression 38,928,384 

CF/H processing 1,690,368 

Total 403,552,528 

• easy Doppler bins (Neasy) = 72, and 

• hard Doppler bins (Nhard) = 56. 

Given these values of parameters, the total number of floating point operations (flops) required for 

each CPI data to be processed throughout this STAP algorithm is 403,552,528. Table 1 shows the 

number of flops required for each task. A total of 25 CPI complex data cubes were generated as in- 

puts to the parallel pipeline system. Each task in the pipeline contains three major parts: receiving 

data from the previous task, main computation, and sending results to the next task. Performance 

results are measured separately for these three parts, namely receiving time, computation time, and 

sending time. In each task timing results for processing one CPI data were obtained by accumu- 

lating the execution time for the middle 20 CPIs and then averaging it. Timing results presented in 

this paper do not include the effect of initial setup (first 3 CPIs) and final iterations (last 2 CPIs). 

7.1   Computation Costs 

The task of computing hard weights is the most computationally demanding task. The Doppler 

filter processing task is the second most demanding task. Naturally, more compute nodes are 

assigned to these two tasks in order to obtain a good performance. For each task in the STAP algo- 
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Figure 11. Performance and speedup of computation time as a function of number of compute 

nodes for all tasks. 

rithm, parallelization was done by evenly dividing computational load across the compute nodes 

assigned. Since there is no intra-task data dependency, no inter-processor communication occurs 

within any single task in the pipeline. Another way to view this is that intra-task communication 

is moved to the beginning of each task within the data redistribution step. Figure 11 gives the 

computation performance results as functions of numbers of nodes and the corresponding speedup 

on the AFRL Intel Paragon. For each task, we obtained linear speedups. 

7.2   Inter-task Communication 

Inter-task communication refers to the communication between sending and receiving (distinct and 

parallel) tasks. This communication cost depends on both processor assignment for each task as 

well as on the volume and extent of data reorganization. Tables 2 to 6 present the inter-task com- 
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Table 2. Timing results of inter-task communication from Doppler filter processing task to its 

successor tasks. Time in seconds. 

easy weight hard weight easy BF hardBF 

# nodes 16 56 112 16 16 

Doppler 

filter 

send recv send recv send recv send recv send recv 

8 .1332 .4339 .1332 .3603 .1332 .4441 .1332 .4509 .1332 .4395 

16 .0679 .1780 .0679 .1048 .0679 .1837 .0679 .1955 .0679 .1843 

32 .0340 .0511 .0332 .0034 .0340 .0563 .0340 .0646 .0340 .0519 

munication timing results. Each table considers pairs of tasks where the number of compute nodes 

for both tasks are varied. In some cases timing results shown in the tables contain idle time for 

waiting for the corresponding task to complete. This happens when receiving task's computation 

part completes before the sending task has generated data to send. 

From most of the results (Tables 2 to 6) the following important observations can be made. First, 

when the number of nodes is unbalanced (e.g., sending task having small number of nodes while 

the receiving task has large number of nodes), the communication performance is not very good. 

Second, as the number of nodes is increased in the sending and receiving tasks, communication 

scales tremendously. This happens for two reasons. One, each node has less data to reorganize, 

pack and send and each node has less data to receive; and two, contention at sending and receiving 

nodes is reduced. For example, Table 2 shows that when the sending task's number of nodes is 

increased from 8 to 32, the communication times improve in a superlinear fashion. Thus, it is 

not sufficient to improve the computation times for such parallel pipelined applications to improve 

throughput and latency. 

In Figure 10 receiving time for each loop is given by subtracting ti from t0. Since computation 

has to be performed only after input data has been received, receiving time may contain the waiting 

time for the input, shown in line 4. Sending time, h - t2, measures the time containing data 

packing (collection and reorganization) and posting sending requests. Because of the asynchronous 

send used in the implementation, the results shown here are visible sending time and the actual 

sending action may occur in other portions of the task. Similar to the receiving time, sending 
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Table 3. Timing results of inter-task communication from easy weight computation task to easy 

beamforming task. Time in seconds. 

easy beamforming 

# nodes 8 16 

easy 

weight 

send recv send recv 

4 .0005 .1956 .0007 .2570 

8 .0088 .0883 .0004 .0905 

16 .0768 .0807 .0003 .0660 

Table 4. Timing results of inter-task communication from hard weight computation task to hard 

beamforming task. Time in seconds. 

hard beamforming 

# nodes 8 16 

hard 

weight 

send recv send recv 

28 .0007 .1798 .0007 .2485 

56 .0100 .1468 .0065 .0765 

112 .1824 .1398 .0005 .0543 

time may also contain waiting time for the completion of sending requests in the previous loop, 

shown in line 8. Especially in the cases when two communicating tasks have uneven partitioned 

parallel computation load, this effect becomes more apparent. With large number of nodes, there 

is tremendous scaling in performance of communicating data as the number of nodes is increased. 

This is because the amount of processing for communication per node is decreased (as it handles 

less amount of data), amount of data per node to be communicated is decreased and traffic on 

links going in and out of each node is reduced. This model scales well for both computation and 

communication. 
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Table 5. Timing results of inter-task communication from easy and hard beamforming tasks to 

pulse compression task. Time in seconds. 

pulse compression 

# nodes 8 16 

easy 

BF 

send recv send recv 

4 .0069 .5016 .0069 .5714 

8 .0036 .1379 .0036 .2090 

16 .0580 .0771 .0022 .0569 

hard 

BF 

send recv send recv 

4 .0054 .5016 .0054 .5714 

8 .0029 .1379 .0030 .2090 

16 .1159 .0771 .0017 .0569 

Table 6. Timing results of inter-task communication from pulse compression task to CFAR 

processing task. Time in seconds. 

CFAR processing 

# nodes 4 8 

pulse 

compr 

send recv send recv 

4 .0099 .3351 .0098 .3348 

8 .0053 .0662 .0051 .1750 

16 .1256 .0435 .0028 .1783 

7.3   Integrated System Performance 

Integrated system refers to the evaluation of performance when all the tasks are considered to- 

gether. Throughput and latency are the two most important measures for performance evaluation 

in addition to individual task computation time and inter-task communication time. Table 7 gives 

timing results for three different cases with different node assignments. 

In section 5 equations (1) and (2) provide the throughput and latency for one CPI data set. The 

measured throughput is obtained by placing a timer at the end of last task and recording the time 
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Table 7. Performance results for 3 cases with different node assignments. Time in seconds. 

case 1: total number of nodes = 236 

#nodes recv comp send total 

Doppler filter 32 .0055 .0874 .0348 .1276 

easy weight 16 .0493 .0913 .0003 .1408 

hard weight 112 .0555 .0831 .0005 .1390 

easy BF 16 .0658 .0708 .0021 .1387 

hardBF 28 .0936 .0414 .0010 .1361 

pulse compr 16 .0551 .0776 .0028 .1355 

CFAR 16 .0910 .0434 - .1344 

throughput 

latency 

7.2659 

0.3622 

case 2: total nur nber of nod es = 118 

#nodes recv comp send total 

Doppler filter 16 .0110 .1714 .0668 .2492 

easy weight 8 .0998 .1636 .0003 .2637 

hard weight 56 .0979 .1636 .0005 .2621 

easy BF 8 .1302 .1267 .0036 .2605 

hardBF 14 .1782 .0822 .0017 .2622 

pulse compr 8 .1027 .1543 .0051 .2621 

CFAR 8 .1742 .0864 - .2606 

throughput 

latency 

3.7959 

0.6805 

case 3: total nut nber of noc es = 59 

#nodes recv comp send total 

Doppler filter 8 .0219 .3509 .1296 .5024 

easy weight 4 .1796 .3254 .0003 .5053 

hard weight 28 .1779 .3265 .0006 .5050 

easy BF 4 .2439 .2529 .0068 .5037 

hardBF 7 .3370 .1636 .0032 .5039 

pulse compr 4 .1806 .3067 .0097 .4970 

CFAR 4 .3240 .1723 - .4963 

throughput 

latency 

1.9898 

1.3530 
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is second. 

-ID # of nodes I 236    | 118 59 
 .  

equation 7.1019 3.7919 1.9791 

throughput real 7.2659 3.7959 1 1.9898 

equation 0.5362 1.0346 1 1.9996 

latency I     real I 0.3622 | 0.6805 1 1.3530 

dlffere„ce between eve, >oop «ha, is between two successive colons of the p      ne J^ 

latt„cy because it retires synchronizing clocks a, the «rs, taslc and ,ast .as, s node . TtaMo 

„tain the mcured latency, «He «,m.ng measurement should be made by first readmg time a, bo 

1 task and las« tasK when tbe first «* is ready to read a new input data. Th,s can be done by 

^Igasignalfrom.henrs, — - ■.-—*.«-«•-—.''.- 

In fact, the latency given in equation (2) represents     upp 

tasks contains «he time of waiting for input from previous task. This waiting time portion ove*Ps 

2 the computation t,me in the previous „as and shouid be eluded from the latency Tta 

le iatency Its are conservative vaiues and the rea, latency is expected to be sm,ler than this 
l.However,he1a,e„cygivenfromequationa,indica,eS.hew„rs..aseperformanceforour 

implementation. The real latency equation, therefore, becomes 

real latency = To + nua(7j, T,) +1? + T6 

shown in Table 7. From these 
whereT'=T,- idle time at receiving, i - 3,4, 5, and6. 

Table's gives the throughput and latency results for the 3 cases 

3 cases t, s clear that even for latency and throughput measures we obtain linear speedups f om 

„Zerimen, Given that this scale up is up to compute 23b nodes (we were lirmted to these 
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Table 9. Performance results for adding 4 more nodes to Doppler filter processing task to case 

2 in Table 7. Time in seconds. 

total number of nodes = 122 

# nodes recv comp send total 

Doppler filter 20 .0090 .1395 .0540 .2024 

easy weight 8 .0519 .1633 .0003 .2155 

hard weight 56 .0486 .1644 .0005 .2135 

easy BF 8 .0815 .1272 .0037 .2124 

hardBF 14 .1232 .0823 .0018 .2073 

pulse compr 8 .0519 .1543 .0051 .2113 

CFAR 8 .1240 .0864 - .2105 

throughput 

latency 

5.0213 

0.5498 

number of nodes due to the size of the machine), we believe these are very good results. 

As discussed in section 4, tradeoffs exist between assigning nodes to maximize throughput and 

to minimize latency, given limited resources. Using two examples, we illustrate how further per- 

formance improvements may (or may not) be achieved if few extra nodes are available. We now 

take case 2 from Table 7 as an example and add some extra nodes to tasks to analyze its affect 

to the throughput and latency. Suppose that case 2 has fulfilled the minimum throughput require- 

ment and more nodes can be added. Table 9 shows that adding 4 more nodes to Doppler filter 

processing task not only increases the throughput but also reduces the latency. This is because 

the communication amount for each send and receive between Doppler filter processing task to 

weight computation and to beamforming tasks is reduced (Table 9). So, clearly adding nodes to 

one task not only affects that task's performance but has a measurable effect on the performance 

of other tasks. By increasing the number of nodes 3%, the improvement in throughput is 32% and 

in latency is 19%. Such effects are very difficult to capture in purely theoretical models because of 

the secondary effects. 

Since the parallel computation load may be different among tasks, bottleneck problems arise 

when some tasks in the pipeline do not have proper numbers of nodes assigned. If the number of 
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Table 10. Performance results for adding 16 more nodes to pulse compression and CFAR 

processing tasks to the case in Table 9. Time in seconds. 

total number of nodes =138 

# nodes recv comp send total 

Doppler filter 20 .0091 .1395 .0541 .2027 

easy weight 8 .0516 .1633 .0003 .2152 

hard weight 56 .0488 .1644 .0005 .2137 

easy BF 8 .0819 .1273 .0037 .2129 

hardBF 14 .1301 .0823 .0018 .2142 

pulse compr 16 .1337 .0775 .0028 .2140 

CFAR 16 .1701 .0434 - .2135 

throughput 

latency 

4.9052 

0.4247 

nodes assigned to one task with heavy work load is not enough to catch up the input data rate, this 

task becomes a bottleneck in the pipeline system. Hence, it is important to maintain approximately 

the same computation time among tasks in the pipeline system to maximize the throughput and 

also achieve higher processor utilization. One bottleneck task can be seen when its computation 

time is relatively much larger than the rest of the tasks. The entire system's performance degrades 

because the rest of the tasks have to wait for bottleneck task's completion to send/receive data 

to/from it no matter how many more nodes assigned to them and how fast they can complete their 

jobs. Therefore, poor task scheduling and processor assignment will cause significant portion of 

idle time in the resulted communication costs. In Table 10 we added a total of 16 more nodes to 

pulse compression and CFAR processing tasks to the case in Table 9. Comparing to case 2 in Table 

7, we can see that the throughput increased. However, the throughput did not improve compared to 

the results in Table 9, even though this assignment has 16 more nodes. In this case, the weight tasks 

are bottleneck tasks because their computation costs are relatively higher than other tasks. We can 

see that the receiving time of the rest of tasks are much larger than their computation time. A 

significant portion of idle time waiting for the completion of weight tasks is in the receiving time. 

On the other hand, we observe 23% improvement in the latency. This is because the computation 
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time is reduced in the last two tasks with more nodes assigned. From equation (3), the execution 

time of these two tasks, T'h and Tg, decreases and therefore the latency is reduced. 

8 Conclusions 

In this paper we presented performance results for a PRI-staggered post-Doppler STAP algorithm 

implementation on the Intel Paragon machine at Air Force Research Laboratory, Rome, New York. 

The results indicate that our approach of parallel pipelined implementation scales well both in 

terms of communication and computation. For the integrated pipeline system, the throughput and 

latency also demonstrate the linear scalability of our design. Linear speedups were obtained for 

up to 236 compute nodes. When more than 236 nodes are used, the speedup curves for the results 

of throughput and latency may saturate. This is because the communication costs will become 

significant with respect to the computation costs. 

Almost all radar applications have real-time constraints, hence a well designed system should be 

able to handle any changes in the requirements on the response time by dynamically allocating or 

re-allocating processors among tasks. Our design and implementation not only shows tradeoffs in 

parallelization, processor assignment, and various overheads in inter and intra-task communication 

etc., but it also shows that accurate performance measurement of these systems is very important. 

Consideration of issues such as cache performance when data is packed and unpacked, and impact 

of the parallelization and processor assignment for one task on another task are crucial. This is 

normally not easily captured in theoretical models. In the future we plan to incorporate further op- 

timizations including multi-threading, multiple pipelines and multiple processors on each compute 

node. 
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Abstract 

This paper presents experimental results for 
a parallel pipeline STAP system with I/O task 
implementation. In our previous work, a paral- 
lel pipeline model was designed for radar signal 
processing applications on parallel computers. 
Based on this model, we implemented a real 
STAP application which demonstrated the per- 
formance scalability of this model in terms of 
throughput and latency.   The parallel pipeline 
model normally does not include I/O task be- 
cause the input data can be provided directly 
from radars.   However, I/O can also be done 
through disk file systems if radar data is stored 
in disks first.   In this paper, we study the ef- 
fect on system performance when the I/O task 
is incorporated in the parallel pipeline model. 
There are two alternatives for I/O implemen- 
tation: embedding I/O in the pipeline or hav- 
ing a separate I/O task.   We used the parallel 
file systems on the Intel Paragon and the IBM 
SP to perform parallel I/O and studied its ef- 
fects on the overall performance of the pipeline 
system. From these two I/O implementations, 
we discovered that the latency may be improved 
when the structure of the pipeline is reorganized 
by merging multiple tasks into a single task. 
Finally, we investigated the problem of data re- 
distribution embedded in the parallel I/O when 

special hardware is not available to pre-process 
the raw signal data before it enters the pipeline 
system. All the performance results shown in 
this paper demonstrated the scalability of paral- 
lel I/O implementation on the parallel pipeline 
STAP system. 

1    Introduction 

In this paper we build upon our ear- 
lier work where we devised strategies for 
high performance parallel pipeline implemen- 
tations, in particular, for Space-Time Adap- 
tive Processing (STAP) applications [2, 8]. 
A modified Pulse Repetition Interval (PRI)- 
staggered post-Doppler STAP algorithm was 
implemented based on the parallel pipeline 
model and scalable performance was obtained 
both on the Intel Paragon and the IBM SP. 
Normally, this parallel pipeline system does 
not include disk I/O costs. Since most radar 
applications require signal processing in real 
time, thus far we have assumed that the signal 
data collected by radar is directly delivered to 
the pipeline system, as shown in the overall 
radar and signal processing system of Figure 
1. 

In practice, the I/O can be done either di- 
rectly from a radar or through disk file systems. 
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Figure 1. Data flow of a radar and signal pro- 
cessing system using parallel computers. 

In this work we focus on the I/O implementa- 
tion of the parallel pipeline STAP algorithm 
when I/O is carried out through a disk file sys- 
tem. Using existing parallel file systems, we 
investigate the impact of I/O on the overall 
pipeline system performance. Two designs of 
I/O are employed: in the first design the I/O 
is embedded in the pipeline without changing 
the task structure and in the other a sepa- 
rate task is created to perform I/O operations. 
With different I/O strategies, we ran the par- 
allel pipeline STAP system portably and mea- 
sured the performance on the Intel Paragon 
at California Institute of Technology and on 
the IBM SP at Argonne National Laboratory 
(ANL.) The parallel file systems on both the 
Intel Paragon and the IBM SP contain mul- 
tiple stripe directories for applications to ac- 
cess disk files efficiently. On the Paragon, two 
PFS file systems with different stripe factors 
were tested and the results were analyzed to 
assess the effects of the size of the stripe fac- 
tor on the STAP pipeline system. On the IBM 
SP. the performance results were obtained by 
using the native parallel file system, PIOFS, 
which has 80 stripe directories. 

Comparing the two parallel file systems with 
different stripe sizes on the Paragon, we found 
that an I/O bottleneck results when a file sys- 
tem with smaller stripe size is used. Once a 
bottleneck appears in a pipeline, the through- 
put which is determined by the task with max- 
imum execution time degrades significantly. 
On the other hand, the latency is not sig- 
nificantly affected by the bottleneck problem. 

This is because the latency depends on all the 
tasks in the pipeline rather than the task with 
the maximum execution time. Furthermore, 
when evaluating the performance results of the 
two I/O designs, we observed that the latency 
can be improved by merging two tasks in the 
pipeline. In this paper, we also examine the 
possibility of improving latency by reorganiz- 
ing the task structure of the STAP pipeline 
system. 

A sequence of raw signal data sets collected 
by a radar form the input to the STAP pipeline 
system. Each of these raw data sets is in 
the form of a three dimensional array. How- 
ever, the three dimensions of this array are 
not organized in a way such that each Fast 
Fourier Transformation (FFT) in the Doppler 
filter processing task can be performed in a sin- 
gle processor. Without special hardware sup- 
port to pre-process the collected raw data, data 
redistribution is needed before delivering the 
data to the Doppler filter processing task. In 
the real application we implemented, this pre- 
processing work includes data type conversion 
and corner turn on the three-dimensional ar- 
ray. Using a software approach, we also embed- 
ded pre-processing operation on the raw data 
in the two I/O designs and compared their per- 
formances. 

The rest of the paper is organized as follows: 
in Sections 2 and 3, we briefly describe our pre- 
vious work, the parallel pipeline system model 
and its implementation on a STAP algorithm. 
The characteristics of the parallel file systems 
tested in this paper are described in Section 4. 
The I/O design and implementation are pre- 
sented in Section 5 and their performance re- 
sults are given in Section 6. Section 7 presents 
the implementation when tasks are combined 
to improve latency. The software approach to 
pre-processes raw signal data is described in 
Section 8. Conclusions are given in Section 9. 
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Figure 2. Model of the parallel pipeline sys- 
tem. The set of pipelines indicates that the 
same pipeline is repeated on subsequent in- 
put data sets. Each task for all input in- 
stances is executed on the same number of 
compute nodes. 

2    Model of the parallel pipeline 
system 

The system model for the type of STAP ap- 
plications considered in this work is shown in 
Figure 2. A pipeline is a collection of tasks 
which are executed sequentially. The input to 
the first task is obtained normally from sen- 
sors or other input devices and the inputs to 
the rest of the tasks in the pipeline are the 
outputs of their previous tasks. The set of 
pipelines shown in the figure indicates that the 
same pipeline is repeated on subsequent input 
data sets. Each block in a pipeline represents 
one parallel task, which itself is parallelized on 
multiple compute nodes. 

2.1   Data dependency 

In such a parallel pipeline system, there exist 
both spatial and temporal parallelism that re- 
sult in two types of data dependencies, namely, 

z 

Left-right shift Many to many 

P   P   P ri  ri  ri 

Figure 3. Two types of data redistribution: 
corner turn and left-right shift. Corner turn 
involves an all-to-all personalized communi- 
cation and left-right shift involves a many-to- 
many communication. 

spatial data dependency and temporal data de- 
pendency [3, 4]. Spatial data dependency can 
be classified into inter-task data dependency 
and intra-task data dependency. Intra-task 
data dependencies arise when a set of subtasks 
needs to exchange intermediate results during 
the execution of a parallel task in a pipeline. 
Inter-task data dependency is due to the trans- 
fer and reorganization of data passed onto the 
next parallel task in the pipeline. Temporal 
data dependency occurs when some form of 
output generated by the tasks executed on the 
previous data set are needed by tasks execut- 
ing the current data set. We will later see that 
STAP has both types of data dependencies. 

2.2   Data redistribution 

In the parallel pipeline system shown in Fig- 
ure 2, compute nodes are partitioned into sev- 
eral disjoint groups and each group is assigned 
to exactly one task in the pipeline. Data trans- 
fer between two tasks represents interprocessor 
communication between two groups of com- 
pute nodes. Since the data access patterns of 
one task may be different from its successor 
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tasks, communication patterns can be either a 
corner-turn or a left-right shift pattern, shown 
in Figure 3. 

Given a three-dimensional array as a 
pipeline system input, the data partitioning 
can be done along one of the array's three 
axes. Any single data layout will not always 
provide efficient computation for data access 
along two orthogonal axes. This communica- 
tion pattern is called a corner-turn commu- 
nication. The corner-turn communication in- 
volves a complete exchange (all-to-all person- 
alized) of data between two groups of compute 
nodes. The left-right shift communication pat- 
tern occurs when an array is partitioned along 
the same axis between two consecutive parallel 
tasks. It does not involve data reorganization 
and each node in one task only communicates 
with some of the nodes in its successor task (a 
many-to-many communication.) 

3    Parallel pipeline STAP system 

In our previous work [2], we described 
the parallel pipelined implementation of a 
PRI-staggered post-Doppler STAP algorithm. 
This STAP algorithm consists of five steps: 
l)Doppler filter processing, 2)weight computa- 
tion. 3)beamforming, 4)pulse compression, and 
5)CFAR processing. The design of the parallel 
pipelined STAP algorithm is shown in Figure 4. 
The parallel pipeline system consists of seven 
tasks. Both the weight computation and the 
beamforming tasks are divided into two parts, 
namely, "easy" and "hard" Doppler bins. The 
hard Doppler bins are those in which signif- 
icant ground clutter is expected and the re- 
maining bins are easy Doppler bins. The main 
difference between the two is the amount of 
data used and the amount of computation re- 
quired. 

The input data set for the pipeline is ob- 
tained from a phased array radar and is formed 
in terms  of a coherent  processing interval 

P|    (T,) 

r>   <T.) r«  (T.) 

Pake CFAR 

Ibporti 

- ^- Data from previous time instance 
-^- Data from current time instance 

Figure 4. Implementation of parallel pipelined 

STAP. Arrows connecting task blocks repre- 

sent data transfer between tasks. 

(CPI). Each CPI data set is a 3-dimensional 
complex data cube. The output of the pipeline 
is a report on the detection of possible targets. 
Each task i, 0 < i < 7, is parallelized by evenly 
partitioning its work load among Pi compute 
nodes. The execution time associated with 
task i is T{. For the computation of the weight 
vectors for the current CPI data cube, data 
cubes from previous CPIs are used as input 
data. This introduces temporal data depen- 
dency. Temporal data dependencies are rep- 
resented by arrows with dashed lines in Figure 
4 where TDij represents temporal data depen- 
dency of task j on data from task i. In a similar 
manner, spatial data dependencies SDij can 
be defined and are indicated by arrows with 
solid lines. 

Throughput and latency are two impor- 
tant measures for performance evaluation on 
a pipeline system. 

throughput= 
max Ti 
0<i<7 

(1) 

latency = T0 + max(T3, T4) + T5 + T6.    (2) 

The temporal data dependency does not af- 
fect the latency because weight computation 
tasks use data from the previous time instance 
rather than the current CPI. The filtered CPI 
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data cube sent to the beamforming task does 
not wait for the completion of its weight com- 
putation. This explains why Equation (2) does 
not contain 7\ and T2. A detailed description 
of the STAP algorithm we used can be found 
in [1, 9]. 

4    Parallel file systems 

Only input part of parallel I/O was imple- 
mented on the STAP pipeline system because 
most applications like STAP send their detec- 
tion results to display devices in real time. The 
input to the STAP pipeline system is a series 
of CPI data sets captured by the radar. To test 
our parallel pipeline system with regard to I/O 
performance, these CPI data sets were stored 
in the parallel file system and provided to the 
pipeline system through machine's I/O nodes. 
We used the parallel I/O library developed by 
Intel Paragon and IBM SP systems to perform 
read operations. 

4.1   Intel Paragon PFS file system 

The Intel Paragon OSF/1 operating system 
provides a special file system type called PFS, 
for Parallel File System, which gives appli- 
cations high-speed access to a large amount 
of disk storage [7]. PFS file systems are op- 
timized for simultaneous access by multiple 
nodes. Each PFS file system consists of multi- 
ple stripe directories. Each stripe directory is 
the mount point of a separate UNIX file sys- 
tem. A PFS file system collects together sev- 
eral file systems into a unit that behaves like 
a single large file system. A file stored in PFS 
is distributed, or striped, across the stripe di- 
rectories that make up the PFS file system. 
The performance of accessing a single PFS file 
is significantly improved by multiple stripe de- 
vices providing disk data simultaneously. The 
amount of data from a PFS file that is stored 
in each stripe directory is determined by the 

PFS file system's stripe unit. The stripe units 
on all Paragon parallel systems at Caltech are 
64K bytes. Two PFS file system were tested : 
one has 16 stripe directories (stripe factor 16) 
and the other has a stripe factor of 64. 

We used the Intel Paragon NX library to im- 
plement the I/O of the parallel pipeline STAP 
system. Since only input part of the I/O is 
needed for providing a series of CPI data sets 
to the pipeline, only read operations are in- 
vestigated. Subroutine gopen() was used to 
open CPI files globally because it offers bet- 
ter performance and causes less system over- 
head. NX library provides six I/O modes for 
an application to access files: M.UNIX, M.LOG, 
M.SYNC, M.RECORD, M.GLOBAL, and M.ASYNC. 
A file's I/O mode is set when the file is opened 
with gopen(). Only non-collected I/O mode 
M-ASYNC was used because it provided an ef- 
ficient parallel read operation. This mode has 
the following characteristics on an opened PFS 
file: 

• every node has its own file pointer 

• read operations are not synchronized 

• read can be for variable-length, unordered 
records 

This mode allows multiple reads to access 
a single file simultaneously without agreement 
on record size or file offset among nodes. If 
read operations access exclusive portions of a 
file, it behaves like each compute node reads 
from its own file independently. In the pipeline 
system, the number of nodes to read CPI files 
may vary and, therefore, the length of the sub- 
set of CPI file for each node to read can be 
different. Besides, only the nodes in the first 
task of the pipeline system issue read opera- 
tions, rather than all nodes allocated for the 
whole application. This explains why we used 
M-ASYNC mode and it is also the only feasible 
and efficient way to read disk files in parallel. 
All other collective I/O modes provided by the 
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OSF/1 operating system require that all nodes 
in the application perform the same I/O oper- 
ations and, hence, accessing files by a subset 
of the nodes is prohibited for these modes. In 
addition, we used asynchronous I/O function 
calls: ireadO and ireadoff() in order to overlap 
I/O operations with the computation and com- 
munication. 

4.2   IBM SP PIOFS file system 

The IBM AIX operating system provides 
a parallel file system called Parallel I/O File 
System (PIOFS) which is designed for IBM 
RS/6000 SP to allow fast parallel access to 
large temporary data files [6]. The PIOFS on 
the IBM SP at ANL is made up of 5 servers. 
Four of the servers have 4 Serial Storage Archi- 
tecture (SSA) disks while the fifth is the direc- 
tory server. Each of the 4 SSA disks is parti- 
tioned into 5 slices. Therefore, there are a total 
of 80 slices (striped directories) in the ANL PI- 
OFS file system. The default basic striped unit 
(BSU) is 64K bytes. A file stored in the PIOFS 
is physically divided into several blocks with 
each equal to the size of one BSU, and these 
blocks are stored in the 80 striped directories 
in a round-robin manner. 

IBM PIOFS supports existing C read, write, 
open and close functions. In addition to a 
UNIX-like I/O interface, PIOFS also supports 
logical partitioning of files. A processor can in- 
dependently specify a logical view of the data 
in a file, a subfile, and then perform I/O on 
this subfile with a single call. In our STAP I/O 
task implementation, we store all CPI files in 
the ANL PIOFS using the default BSU, 64K 
bytes. As for the Intel Paragon, CPI files are 
stored across 80 striped directories in the PI- 
OFS file system. However, unlike the Paragon 
NX library, asynchronous parallel read/write 
subroutines are not supported on IBM PIOFS. 
The overall performance of the STAP pipeline 
svstem will be limited by the inability to over- 

Parallel 
File 

System       Round 
Robin 

Scheduling 

Parallel Pipeline System 

RADAR 

Figure 5. Four CPI data files are read from the 
parallel file system into the pipeline system 
in a round-robin manner. 

lap I/O operations with computation and com- 
munication. 

5    Design and implementation 

A total of four CPI data sets stored as four 
files in the parallel file systems were used on 
both the Caltech Paragon and the ANL SP. 
Each of the four CPI files is of size 8M bytes. 
On the Paragon, these files are opened glob- 
ally (or collectively) by all compute nodes al- 
located in the whole application during the 
STAP pipeline system's initialization. On SP, 
these four files are opened only by the compute 
nodes that perform the I/O task. During each 
of the following steps after the initialization, 
only nodes assigned to the first task perform 
read operations from the parallel file system. 
We assume that the radar writes its collected 
CPI data into these four files in a round-robin 
manner. Similarly, the STAP pipeline system 
was also designed to read these four files in a 
round-robin fashion but at times that are dif- 
ferent from the times at which the radar writes. 
This is shown in Figure 5. In this manner, the 
problem of data inconsistency for read/write 
operations between the radar and the STAP 
parallel pipeline system is minimized. 

All nodes allocated to the first task (the I/O 
nodes) of the pipeline read exclusive portions 
of each CPI file with proper offsets.  Because 
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Figure 6. I/O task is embedded in the Doppler 
filter processing task of the STAP pipeline 
system. 

the number of I/O nodes may vary due to dif- 
ferent node assignments to the I/O task, the 
length of data for the read operations can be 
different. The read length and file offset for 
all the read operations are set only during the 
STAP pipeline system's initialization and is 
not changed afterward. Therefore, in each of 
the following iterations, only one read function 
call is needed. On the Paragon, since asyn- 
chronous read subroutines were used, an addi- 
tional subroutine waiting for the read's com- 
pletion was also required in each iteration. 

5.1   I/O task implementation 

Two designs for the I/O task were imple- 
mented in the STAP pipeline system. The 
first one, shown in Figure 6, embeds the par- 
allel I/O in the first task of the pipeline, i.e. 
in the Doppler filter processing task. The 
Doppler filter processing task now consists of 
three phases, reading CPI data from files, com- 
putation, and sending phases. The second I/O 
implementation creates a new task for reading 
CPI data and this task is added to the begin- 
ning of the pipeline. Figure 7 shows the struc- 
ture of the overall pipeline system with this 
implementation. The only job of this I/O task 
is to read CPI data from the files and deliver 
it to the Doppler filter processing task. 

Figure 7. A separate I/O task for reading CPI 

data is added to the STAP pipeline system. 

6    Performance results 

Performance results are given for the two 
I/O implementations on the parallel pipeline 
STAP system. For each implementation, par- 
allel file systems on the Paragon and the SP 
were tested. On the Paragon, we used two 
PFS file systems, one with 16 stripe directo- 
ries and the other with 64 stripe directories. 
On the SP, only the parallel file system with 
80 striped directories was tested. On both ma- 
chines, the stripe unit for the parallel file sys- 
tems is 64K bytes. The size of each CPI data 
file is 8M bytes that results in 128 stripe units 
distributed across all stripe directories in all 
the parallel file systems. 

6.1    I/O embedded in the first task 

In the first I/O implementation on the 
Paragon, the Doppler filter processing task 
reads its input from CPI files using asyn- 
chronous read calls. A double buffering strat- 
egy is employed to overlap the I/O operations 
with computation and communication in this 
task. Table 1 shows the timing results for this 
implementation on the Paragon PFS file sys- 
tem with 16 stripe directories. Three cases of 
node assignments to all tasks in the pipeline 
system are given, each doubles the number of 
nodes of another. The throughput scales well 
in the first two cases, but degrades when the 
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Table 1. Performance results on the Paragon 
with the I/O embedded in the Doppler filter 
processing task. 

Table 2. Performance results on the Paragon 
with the I/O embedded in the Doppler filter 
processing task. 

PFS stripe factor = 16 PFS stripe factor = 64 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0101 .2566 .0916 .3584 

easy weight 3 .1317 .2214 .0002 .3534 

hard weight 28 .0684 .2838 .0003 .3525 

easy BF 3 .1451 .1921 .0003 .3375 

hard BF 4 .1596 .1756 .0002 .3354 

pulse compr 4 .1070 .1979 .0298 .3347 

CFAR 2 .1983 .1361 - .3343 

throughput 
latency 

2.9560 
0.9804 

case 2: total number of nodes = 112 Time in seconds 

# nodes recv   | comp send total 

Doppler filter 24 .0178  1 .1292 .0663 .2134 

easy weight 6 .0856  1 .1110 .0002 .1968 

hard weight 56 .0483   I .1423 .0059 .1965 

easy BF 6 .0939  ! .0958 .0003 .1901 

hard BF 8 .0906  i .0885 .0003 .1795 

pulse compr 8 .0648   ! .0993 .0150 .1792 

CFAR 4 .1107 .0683 - .1790 

throughput 
latency 

5.4996 
0.5171 

case 3: total number of nodes = 224 Time in seconds 

# nodes recv comp send total 

Doppler filter 48 .0871   ! .0619 .0317 .1807 

easy weight 12 .1056   i .0557 .0002 .1616 

hard weight 112 .0905  i .0724 .0009 .1639 

easy BF 12 .1080  1 .0482 .0003 .1565 

hard BF 16 .1030   1 .0509 .0003 .1542 

pulse compr 16 .0983   | .0502 .0078 .1562 

CFAR 8 .1217 .0343 - .1561 

throughput 
latency 

6.2708 
0.3292 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0314 .2461 .0916 .3691 

easv weight 3 .1262 .2216 .0002 .3480 

hard weight 28 .0628 .2840 .0003 .3471 

easy BF 3 .1397 .1921 .0003 .3321 

hard BF 4 .1537 .1756 .0002 .3295 

pulse compr 4 .1011 .1977 .0298 .3286 

CFAR 2 .1920 .1363 - .3282 

throughput 
latency 

3.0111 
0.9787 

case 2: total number of nodes = 112 Time in seconds 

# nodes recv comp send total 

Doppler filter 24 .0107 .1280 .0557 .1944 

easy weight 6 .0787 .1111 .0020 .1917 

hard weight 56 .0453 .1427 .0039 .1919 

easy BF 6 .0860 .0959 .0003 .1823 

hard BF 8 .0878 .0885 .0003 .1766 

pulse compr 8 .0615 .0995 .0151 .1761 

CFAR 4 .1077 .0682 - .1759 

throughput 
latency 

5.6068 
0.5143 

case 3: total number of nodes = 224 Time in seconds 
# nodes recv comp send total 

Doppler filter 48 .0069 .0673 .0309 .1052 

easv weight 12 .0510 .0559 .0002 .1071 

hard weight 112 .0355 .0733 .0019 .1106 

easv BF 12 .0526 .0483 .0003 .1013 

hard BF 16 .0471 .0515 .0003 .0989 

pulse compr 16 .0407 .0503 .0080 .0990 

CFAR 8 .0642 .0343 - .0985 

throughput 
latency 

10.0262 
0.2871 
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Intel Paragon 

Table 3. Performance results on the SP with 
the I/O embedded in the Doppler filter pro- 

cessing task. 

PIOFS stripe factor = 80 

case 1: total number of nodes =18 Time in seconds 
# nodes recv comp send total 

Doppler filter 6 .1172 .0734 .1966 .3872 

easy weight .2717 .1070 .0001 .3788 

hard weight .1590 .2194 .0002 .3786 

easy BF .2927 .0829 .0001 .3757 

hard BF .2595 .1177 .0002 .3775 

pulse compr .2230 .1545 .0001 .3776 

CFAR .2941 .0828 - .3770 

throughput 
latency 

2.6715 
1.2353 

case 2: total number of nodes = 30 Time ii lseconds 
# nodes recv comp send total 

Doppler filter 8 .1109 .0543 .1031 .2683 
easy weight 1 .1471 .1045 .0002 .2518 
hard weight 14 .1523 .1072 .0002 .2597 

easy BF 2 .2189 .0412 .0001 .2602 

hard BF 2 .1999 .0606 .0001 .2606 

pulse compr 2 .1801 .0777 .0001 .2579 

CFAR 1 .1801 .0801 - .2602 
throughput 

latency 
3.8319 
0.7810 

case 3: total number of nodes = 60 Time i n seconds 
# nodes recv comp send total 

Doppler filter 16 .1044 .0304 .0474 .1823 

easy weight 2 .1314 .0547 .0001 .1862 

hard weight 28 .1303 .0566 .0002 .1871 

easy BF 4 .1571 .0219 .0002 .1792 

hard BF 4 .1492 .0298 .0002 .1792 

pulse compr 4 .1370 .0396 .0001 .1767 

CFAR 2 .1399 .0403 - .1802 

throughput 
latency 

5.5364 
0.5004 

Intel Paragon 

■ itripc factor * 16 
■ itripc factor * 64 

II     II 
56 112 124 

Number of Nodes 

IBM SP 

56 112 224 
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18 30 60 
Number of Nodes 

18 30 60 
Number of Nodes 

Figure 8. Performance results for the STAP 
pipeline system with parallel I/O embedded in 
the Doppler filter processing task. This figure 

corresponds to Tables 1,2, and 3. 

total number of nodes goes up to 224. In this 
case, we observe that the timing results of the 
receive phase in the first task are relatively 
higher than the other two phases, the compute 
and send phases. The I/O operations for read- 
ing CPI data files here become a bottleneck 
for the pipeline system. This bottleneck forces 
the rest of the following tasks in the pipeline 
system to wait for their input data from their 
previous tasks. 

Table 2 gives the timing results for the 
same cases as in Table 1, but on a Paragon 
PFS file system with 64 stripe directories. 
Both throughput and latency showed linear 
speedups. In the first two cases with 56 and 
112 nodes, the results of throughput and la- 
tency are approximately the same for both 
file systems with 16 and 64 stripe directo- 
ries. However, in the case with 224 nodes, 
we observe that the I/O bottleneck is relieved 
by using 64 stripe directories. The efficiency 
of I/O operations plays an important role in 
the overall performance of the pipeline system. 
The I/O task may become a bottleneck in the 
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pipeline and directly affect the throughput re- 
sults. 

On the other hand, a linear speedup was ob- 
tained for the latency results. The I/O bottle- 
neck problem does not affect the latency signif- 
icantly. We can observe that in the case with 
224 nodes, the latency of using 16 stripe direc- 
tories is slightly greater than using 64 stripe di- 
rectories. This can be explained by examining 
the throughput and latency equations, (1) and 
(2), shown in Section 3. Unlike the through- 
put that depends on the maximum of the ex- 
ecution times of all the tasks, the latency is 
determined by the sum of the execution times 
of all the tasks except for the tasks with tem- 
poral dependency. Therefore, even though the 
execution time of the Doppler filter processing 
task is increased, the delay does not contribute 
much to the latency. Comparing Tables 1 and 
2, the latency did not degrade significantly and 
still scaled well in the case with 224 nodes. Fig- 
ure 8 shows the performance results of this I/O 
design in bar charts. 

Detailed timing results for the IBM SP at 
ANL are given in Table 3. The stripe factor 
of the PIOFS file system is 80. Because PI- 
OFS does not provide asynchronous read/write 
subroutines, the I/O operations do not overlap 
with computation and communication in the 
Doppler filter processing task. Hence, the per- 
formance results for throughput and latency on 
the SP did not show the scalability as on the 
Paragon, even though the SP has faster CPUs. 

6.2   A new I/O task 

In the second I/O task implementation, a 
new task is added to the beginning of the 
pipeline. This new task only performs the op- 
erations of reading CPI files and distributing 
CPI data to its successor task, Doppler fil- 
ter processing task. The STAP pipeline sys- 
tem then has a total of 8 tasks. Tables 4, 5, 
and 6 show the performance results for this 

I/O design. Corresponding to Tables 1, 2, and 
3, all tasks have the same numbers of nodes 
assigned, except for the I/O task. The I/O 
bottleneck problem still occurs when using the 
Paragon PFS system with 16 stripe directo- 
ries. When using the file system with 64 stripe 
directories, the throughput results improved. 
The bar charts shown in Figure 9 represent the 
throughput and latency results of Tables 4, 5, 
and 6. 

Comparing the two I/O designs, we observe 
that the throughput results are approximately 
the same for both implementations. However, 
the latency results for the separate I/O task 
design are worse than the embedded implemen- 
tation. This phenomenon can be explained by 
examining the throughput and latency equa- 
tions. The equations for the throughput and 
latency for the STAP pipeline system are 

throughputs = 
max Ti 
0<:<8 

(3) 

and 

latency* = To+Ti+max(T4,T5)+T6+T7) (4) 

where T, is the execution time for the task i. 
The throughput of a pipeline system is de- 

termined by the task with the maximum exe- 
cution time among all the tasks. From Tables 
4 and 5, we observe that the Doppler filter pro- 
cessing task has the maximum execution time 
among all the tasks in the cases with a total 
of 60 and 120 nodes. In the case of 240 nodes 
on the PFS file system with 16 stripe direc- 
tories, the maximum execution time occurs in 
the parallel I/O task. Using PFS with 64 stripe 
directories, the hard weight computation task 
has the maximum execution time in the case of 
240 nodes. Compared to Tables 1 and 2, the 
throughput results have no significant change 
because the tasks with the maximum execu- 
tion time are the same for every correspond- 
ing pair in all cases. All these tasks have the 

B-44 



Table 4. Performance results on the Paragon 
with the I/O implemented as a separate task. 

Table 5. Performance results on the Paragon 
with the I/O implemented as a separate task. 

PFS stripe factor = 16 PFS stripe factor = 64 

case 1: total number of nodes = 60 Time in seconds 
# nodes recv comp send total 

Parallel read 4 .0191 - .3997 .4187 

Doppler filter 12 .0122 .3240 .2375 .5738 

easy weight 3 .2032 .2217 .0002 .4252 

hard weight 28 .1390 .2846 .0003 .4239 

easy BF 3 .2210 .1911 .0003 .4124 

hard BF 4 .2327 .1753 .0003 .4083 

pulse compr 4 .1800 .1977 .0295 .4072 

CFAR 2 .2706 .1362 - .4068 
throughput 

latency 
2.4127 
1.9186 

case 2: total number of nodes = 120 Time in seconds 

# nodes recv comp send total 

Parallel read 8 .0559 - .1604 .2163 
Doppler filter 24 .0254 .1221 .0839 .2313 
easv weight 6 .0920 .1110 .0004 .2034 
hard weight 56 .0526 .1432 .0045 .2003 

easv BF 6 .1003 .0960 .0003 .1966 

hard BF 8 .0918 .0928 .0003 .1849 

pulse compr 8 .0727 .0999 .0151 .1877 
CFAR 4 .1185 .0683 - .1867 

throughput 
latency 

5.3883 
0.9226 

case 3: total number of nodes = 240 Time in seconds 
# nodes recv comp send total 

Parallel read 16 .1269 - .0276 .1545 
Doppler filter 48 .0833 .0463 .0245 .1541 

easy weight 12 .0891 .0558 .0002 .1451 

hard weight 112 .0749 .0724 .0004 .1477 

easy BF 12 .0975 .0485 .0003 .1463 

hard BF 16 .0924 .0516 .0003 .1443 

pulse compr 16 .0869 .0502 .0077 .1448 

CFAR 8 .1104 .0343 - .1447 

throughput 
latency 

6.8438 
0.3890 

case 1: total number of nodes = 60 Time in seconds 
# nodes recv comp send total 

Parallel read 4 .0628 - .3391 .4019 

Doppler filter 12 .0085 .2670 .1755 .4510 

easy weight 3 .1425 .2217 .0002 .3645 

hard weight 28 .0763 .2847 .0003 .3613 

easy BF 3 .1621 .1914 .0003 .3537 

hardBF 4 .1740 .1759 .0002 .3501 

pulse compr 4 .1213 .1980 .0296 .3489 

CFAR 2 .2125 .1362 - .3488 

throughput 
latency 

2.8234 
1.7309 

case 2: total number of nodes = 120               Time in seconds 
# nodes recv comp send total 

Parallel read 8 .0362 - .1685 .2047 

Doppler filter 24 .0280 .1084 .0786 .2151 
easy weight 6 .0816 .1111 .0024 .1951 
hard weight 56 .0461 .1438 .0003 .1903 

easy BF 6 .0914 .0959 .0003 .1877 

hard BF 8 .0891 .0908 .0003 .1802 

pulse compr 8 .0672 .0999 .0151 .1822 

CFAR 4 .1131 .0683 - .1815 
throughput 

latency 
5.5262 
0.9137 

case 3: total number of nodes = 24 0               Time in seconds 
# nodes recv comp send total 

Parallel read 16 .0171 - .0617 .0788 
Doppler filter 48 .0073 .0502 .0290 .0864 
easy weight 12 .0503 .0558 .0002 .1063 

hard weight 112 .0305 .0724 .0029 .1057 

easy BF 12 .0491 .0489 .0004 .0984 

hard BF 16 .0417 .0540 .0004 .0961 

pulse compr 16 .0393 .0502 .0078 .0973 
CFAR 8 .0629 .0343 - .0972 

throughput 
latency 

10.2111 
0.5193 
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Table 6. Performance results on the SP with 
the I/O implemented as a separate task. 

PIOFS stripe factor = 80 

case 1: total number of nodes = 20 Time in seconds 

# nodes recv comp send total 

Parallel read 2 .1787 - .1413 .3200 

Doppler filter 6 .0045 .0724 .2548 .3316 

easy weight 1 .2269 .1047 .0001 .3317 

hard weight 7 .1165 .2150 .0013 .3329 

easy BF 1 .0641 .0822 .2082 .3545 

hard BF 1 .0416 .1179 .1874 .3469 

pulse compr 1 .1459 .1538 .0656 .3653 

CFAR 1 .2926 .0801 - .3727 
throughput 

latency 
2.6670 
2.6715 

case 2: total number of nodes = 34 Time in seconds 

# nodes recv comp send total 

Parallel read 4 .1230 - .0594 .1823 

Doppler filter 8 .0264 .0549 .0913 .1726 

easy weight 1 .0639 .1043 .0001 .1683 

hard weight 14 .0598 .1090 .0003 .1692 

easy BF 2 .0576 .0415 .0814 .1805 

hard BF 2 .0593 .0596 .0579 .1768 

pulse compr 2 .0278 .0784 .0803 .1864 

CFAR 1 .1092 .0804 - .1896 

throughput 
latency 

5.2819 
1.2766 

case 3: total number of nodes = 68 Time in seconds 

Parallel read 
Doppler filter 
easy weight 
hard weight 

easv BF 
hard BF 

pulse compr 
CFAR 

# nodes 

8 
16 

28 

throughput 
latency 

recv 

.1100 

.0455 

.0901 

.0839 

.1158 

.0813 

.1008 

.1074 

comp 

.0283 

.0535 

.0554 

.0208 

.0483 

.0391 

.0404 

send 

.0185 

.0631 

.0001 

.0001 

.0035 

.0089 

.0054 

total 

.1285 

.1369 

.1437 

.1395 

.1401 

.1385 

.1453 

.1478 
6.5063 
0.6531 
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Figure 9. Performance results for the imple- 
mentation using a separate I/O task. This fig- 
ure corresponds to Tables 4,5, and 6. 

same number of compute nodes assigned and 
hence have approximately the same computa- 
tion time. Therefore, the execution times of 
these tasks have no significant differences for 
both cases and the throughput results do not 
change significantly. 

The latency, on the other hand, is the sum of 
the execution times of all the tasks except for 
the tasks with temporal data dependency, that 
is, easy and hard weight computation tasks (T2 

and T3, respectively.) In the design with a sep- 
arate I/O task, the latency contains one more 
term than the embedded I/O implementation: 
the execution time of the new task, T0. There- 
fore, the latency results become worse in this 
implementation. 

7    Task Combination 

From the comparison of performance results 
for the two I/O task implementations, we no- 
tice that the structure of the STAP pipeline 
system can be reorganized to improve the la- 
tency. The first implementation that embeds 
I/O in the Doppler filter processing task can 

B-46 



be viewed as combining the first two tasks of 
the second implementation that uses a sepa- 
rate task for I/O. As shown in Section 6.2, the 
first I/O implementation has a better latency 
performance, while the throughput results are 
approximately the same. 

7.1    Improving latency 

We investigate whether the latency can be 
further improved by combining multiple tasks 
of the pipeline into a single task. We consider 
Tables 1, 2, and 3 as an example and combine 
the last two tasks, the pulse compression and 
CFAR processing tasks, into a single task. In 
order to make a fair comparison, we keep the 
total number of nodes allocated to the whole 
pipeline system to be the same. The number 
of nodes assigned to this single task is equal 
to the sum of the nodes assigned to the two 
tasks in the original pipeline. In this case, no 
communication costs between pulse compres- 
sion and CFAR processing tasks are incurred. 
Tables 7, 8, and 9 give the timing results cor- 
responding to Tables 1,2, and 3 with the same 
total number of nodes assigned to the pipeline 
system. Figure 10 shows the bar charts of the 
throughput and latency results for Tables 7, 8. 
and 9. Figure 11 gives a comparison of per- 
formance results of the STAP pipeline system 
with and without task combining. We observe 
that the latency improves for all cases on both 
Paragon PFS and SP PIOFS file systems when 
the last two tasks are combined. 

This improvement can also be explained 
by examining the latency equation. Before 
task combination, the latency equation for the 
STAP pipeline system with 7 tasks is 

latency7 =T0 + max(T3, T4) + T5 + T6.    (5) 

Let W5 and We be the workloads for tasks 5 
and 6, respectively. The execution times for 
task 5 and 6 are 

and 

W5 

-T5 
(6) 

We 
-HS 

(7) 

where C* and V* represent the communication 
time and the other parallelization overhead for 
task i respectively. Similarly, let T5+6 be the 
execution time of the task that combines tasks 
5 and 6 running on P$ + Pe nodes: 

W5 + We 
^5+6 =    D    ,    D     + C5+6 + V5+6. (8) 

"5 + "6 

By subtracting Equations (6) and (7) from 
Equation (8), we have 

T5+6 — (T5 + T6) 
Wh + W6     W5     W6 

P5 + P6       P5      Pe 
+   C5+6 — C$ — Ce 

+   V5+6-V5-Ve (9) 

where 

W5 + We     W5 

P5 + P6       Ps 
-w5Pi - 

We 

Pe 
WePi 

P5P6(P5 + Pe) 
<   0. (10) 

Communication for the combined task oc- 
curs only when receiving data from tasks 3 and 
4. Prior to the task combination, the same 
communication takes place in the receive phase 
of task 5. The difference is the number of nodes 
used between the two tasks. Since P5+6 > P5, 
the data size for each received message from 
tasks 3 and 4 to the combined task is smaller 
than that for task 5. Besides, in task 5, C5 in- 
cludes the communication cost of sending mes- 
sages from task 5 to task 6 which does not oc- 
cur in the combined task. Hence, we have 

'5+6 <c5 (11) 

The remaining overhead, V{, is due to paral- 
lelization of task i.   Since the operations in 
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Table 7. Performance results on the Paragon 
with pulse compression and CFAR tasks 
combined. 

Table 8. Performance results on the Paragon 
with pulse compression and CFAR tasks 
combined. 

PFS stripe factor = 16 PFS stripe factor = 64 

case 1: total number of nodes = 56 Time in seconds 
# nodes recv comp send total 

Doppler filter 12 .0094 .2589 .0908 .3591 
easy weight 3 .1307 .2230 .0002 .3540 

hard weight 28 .0660 .2868 .0003 .3531 
easv BF 3 .1449 .1930 .0003 .3382 
hard BF 4 .1616 .1756 .0003 .3375 

PC + CFAR 6 .1517 .1863 - .3380 
throughput 

latency 
2.9243 
0.7913 

case 1: total number of nodes = 56 Time in seconds 

case 2: total number of nodes =112 Time in seconds 
# nodes recv comp send total 

Doppler filter 24 .0194 .1294 .0656 .2145 
easy weight 6 .0831 .1111 .0002 .1944 
hard weight 56 .0468 .1427 .0046 .1940 

easv BF 6 .0914 .0958 .0003 .1874 
hard BF 8 .0892 .0887 .0004 .1784 

PC + CFAR 12 .0869 .0935 - .1804 
throughput 

latency 
5.5340 
0.4221 

case 3: total number of nodes = 224 Time in seconds 
# nodes recv comp send total 

Doppler filter 48 .0953 .0623 .0323 .1900 
easy weight 12 .1056 .0558 .0003 .1617 
hard weight 112 .0930 .0726 .0004 .1661 

easv BF 12 .1116 .0484 .0003 .1603 
hard BF 16 .1063 .0513 .0004 .1579 

PC -1- CFAR 24 .1079 .0513 - .1592 
throughput 

latency 
6.1478 
0.2948 

# nodes recv comp send total 

Doppler filter 12 .0319 .2485 .0915 .3718 

easy weight 3 .1265 .2218 .0002 .3485 

hard weight 28 .0631 .2839 .0003 .3473 
easy BF 3 .1400 .1921 .0003 .3324 

hard BF 4 .1533 .1756 .0003 .3292 
PC + CFAR 6 .1449 .1860 - .3309 

throughput 
latency 

3.0027 
0.7957 

case 2: total number of nodes = 112                Time in seconds 
# nodes recv comp send total 

Doppler filter 24 .0104 .1301 .0528 .1933 
easy weight 6 .0774 .1111 .0002 .1887 
hard weight 56 .0438 .1427 .0022 .1886 

easy BF 6 .0853 .0959 .0003 .1815 

hardBF 8 .0869 .0886 .0004 .1759 
PC + CFAR 12 .0838 .0936 - .1773 

throughput 
latency 

5.6029 
0.4197 

case 3: total number of nodes = 224                Time in seconds 
# nodes recv comp send total 

Doppler filter 48 .0071 .0676 .0306 .1054 
easy weight 12 .0522 .0559 .0002 .1083 
hard weight 112 .0347 .0730 .0031 .1108 

easy BF 12 .0533 .0482 .0004 .1018 
hard BF 16 .0481 .0512 .0003 .0997 

PC + CFAR 24 .0489 .0514 - .1003 
throughput 

latency 
9.8853 
0.2392 
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Table 9. Performance results on the SP with 
pulse compression and CFAR tasks com- 
bined. 

PIOFS stripe factor = 80 

IBM SP IBM SP 

IS 30 60 
Number of Nodes 

J_l 
18 30 60 

Number of Nodes 

case 1: total number of nodes = 18 Time in seconds 
# nodes recv comp send total 

Doppler filter 6 .1320 .0728 .1894 .3942 
easy weight 1 .2844 .1023 .0001 .3868 
hard weight 7 .1738 .2131 .0002 .3870 

easy BF 1 .3039 .0823 .0001 .3862 
hard BF 1 .2677 .1182 .0002 .3862 

PC + CFAR 2 .2683 .1194 - .3877 
throughput 

latency 
2.5754 
0.9388 

case 2: total number of nodes = 30 Time i n seconds 
# nodes recv comp send total 

Doppler filter 8 .1105 .0550 .1055 .2710 
easy weight 1 .1711 .1026 .0002 .2739 
hard weight 14 .1570 .1077 .0002 .2649 

easy BF 2 .2225 .0417 .0001 .2644 
hard BF 2 .2051 .0608 .0002 .2661 

PC + CFAR 3 .1878 .0793 - .2671 
throughput 

latency 
3.7492 
0.6255 

case 3: total number of nodes = 60 Time ii i seconds 
# nodes recv comp send total 

Doppler filter 16 .1044 .0279 .0462 .1786 
easy weight 2 .1350 .0515 .0002 .1867 
hard weight 28 .1238 .0568 .0002 .1808 

easy BF 4 .1582 .0210 .0002 .1794 
hard BF 4 .1485 .0300 .0003 .1787 

PC + CFAR 6 .1397 .0414 - .1810 
throughput 

latency 
5.5356 
0.4207 

Figure 10. Performance results for the STAP 
pipeline system that combines the pulse com- 
pression and CFAR tasks into a single task. 
This figure corresponds to Tables 7, 8, and 9. 

tasks 5 and 6 are sets of individual subroutines 
which require no communication within each 
single task, parallelization is carried out by 
evenly partitioning these subroutines among 
the nodes assigned. Due to this computational 
structure, the overhead for these two tasks be- 
comes negligible compared to their communi- 
cation costs. From Equations (9), (10), and 
(11) we can conclude that 

T5+6 < T5 + Tß (12) 

Therefore, the new latency equation of the 
STAP pipeline system with the last two tasks 
combined becomes 

latencye   =   T0 +max(T3,r4) + T5+6 

<   latencyr (13) 

Combining the last two tasks, therefore, re- 
duces the latency. 

Table 10 gives the percentage of improve- 
ment in latency when the last two tasks are 
combined. These improvements were made 
without adding any extra nodes to the pipeline 
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Figure 11. Performance comparison of the 
pipeline system with and without task com- 
bining. The throughput results remain ap- 
proximately the same. Latency is improved 
when the last two tasks are combined. 

system. We observe that the percentage de- 
creases as the number of nodes goes up. Nor- 
mally, scalability of the parallelization tends to 
decrease when more processors are used. This 
also explains the trend for the percentage im- 
provement shown in Table 10. Notice that the 
tasks that can be combined to improve the la- 
tency do not include tasks with temporal data 
dependency. It is because only those tasks with 
spatial data dependency contribute to the la- 
tency. 

7.2   Improving throughput 

The throughput results, on the other hand, 
do not change significantly when the two tasks 
are combined. This is because the throughput 

Table 10. Percentage of latency improvement 
when the Pulse compression and CFAR tasks 

are combined into a single task. 

Paragon: PFS 
# nodes 

16 stripe dir 
64 stripe dir 

56 

19.3% 
18.7% 

112 
18.4% 
18.4% 

224 

10.4% 
16.7% 

SP: PIOFS 
# nodes           18          30          ÖU     || 

80 stripe dir    24.0%    19.9%    15.9% 

is determined by the task with the maximum 
execution time among all the tasks, which is 
still the maximum in the new pipeline system. 
Assuming that Tmax is the maximum execution 
time before task combination, the throughput 
is given by 

throughput = 

where 

max Ti 
0<i<7 

>   max(T5,Te) 

From Equations (6), (7), and (8), the execution 
time of the new combined task becomes 

AT5 + P6T( 6^6 
15+6 

P5 + P6 

P5 max(T-0, T6) + P6 max{T5, T6) 

P5 + Pe 
=   max{T5,T6) (14) 

< 

and the new maximum execution time becomes 

T =   max(To,Ti,T2,T3,T4,T5+6) 

<   max(To,Ti,T2,T3,T4,T5,Te) 

=     ■'■max- 
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Therefore, the throughput will not decrease af- 
ter task combination because 

range bin 

throughputs   = 
1 

> 

T 

Lmax 
=   throughput.      (15) 

Both latency and throughput can be im- 
proved simultaneously when one of the com- 
bined tasks determines the throughput of the 
pipeline system. Suppose that either task 5 or 
task 6 has the maximum execution time among 
all the 7 tasks in the STAP pipeline system, 
that is, 

Tmax   =   max(T5,T6) 

>   max Ti. 
0<t<4 

(16) 

Notice that none of these two tasks has tem- 
poral data dependency. From Equation (13), 
we have latency improvement when tasks 5 
and 6 are combined. From Equations (15) and 
(16), the throughput is increased. The reduc- 
tion of execution time of both tasks 5 and 6 
contributes to the latency as well as to the 
throughput. Therefore, not only the through- 
put can be increased, but the latency can be 
also reduced. Note that in our experiment re- 
sults shown in the previous section, the task 
with the maximum execution time is neither 
task 5 nor task 6, that is, Tmax > max (T5,T6). 

8    Raw CPI data redistribution 

The presentation in this paper up to now as- 
sumed that a special hardware is available to 
pre-process the raw CPI data received by the 
radar before delivering it to the STAP pipeline 
system. However, this special purpose equip- 
ment may not perform very efficiently or may 
not be available. We investigate the possibility 
of implementing this data pre-processing op- 
eration using a software approach.   Actually, 

c • 
E 
o • 

1« 

1X1X16 

H H 
512 range bins 

phased array radar 

1x512x16 128x512x16 

snap shot   CPI data cube 

Figure 12. Raw CPI data received from a 
phased array radar is used to form a 128 x 
512 x 16 three dimensional data cube. 

Air Force Research Laboratory (AFRL) per- 
formed a real time STAP demonstration using 
exactly the same signal processing algorithm 
as ours onboard an airborne platform in May 
1996 [11, 10]. The radar was a phased array 
L-Band radar with 32 elements organized into 
two rows of 16 each. Only the data from the 
upper 16 elements were processed with STAP. 
This data is a 1.25 MHz intermediate frequency 
(IF) signal that is 4:1 oversampled at 5 MHz. 
The number representation at IF is 14 bits, 2's 
complement and is converted to 16 bit base- 
band real and imaginary numbers. Special in- 
terface boards were used to digitally demod- 
ulate to baseband. The signal data formed a 
raw 3-dimensional data cube called coherent 
processing interval (CPI) data cube comprised 
of 128 pulses, 512 range gates (32.8 miles), and 
16 channels, shown in Figure 12. These special 
interface boards were also used to corner turn 
the data cube so that CPI is unit stride along 
pulses. It speeds the subsequent Doppler pro- 
cessing on the High Performance Computing 
(HPC) systems. Live CPI data from a phased- 
array radar were processed by a ruggedized ver- 
sion of the Paragon computer. The STAP al- 
gorithm was performed on this computer using 
the raw data from the 16 columns of the phased 
array. 
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All experiments described in the previous 
sections assumed that this special purpose 
hardware was used to pre-process the raw CPI 
data such that each CPI data cube is corner- 
turned from 128 x 512 x 16 to 512 x 16 x 128 
and each complex element in a CPI is type- 
converted from two 16-bits real numbers to 
two 32-bits real numbers (type float in C lan- 
guage.) The operations of corner turn and CPI 
data partitioning among compute nodes are 
illustrated in Figure 13. The reason for the 
corner turn operations is that the major op- 
erations in the Doppler filter processing task, 
the Fast Fourier transforms (FFTs), need to 
be performed along the pulse dimension of the 
CPI cube. That is, 128-point FFTs are per- 
formed for every range and channel. The cor- 
ner turn operation, here, is to allow each FFT 
to be computed on a single compute node in 
the Doppler filter processing task. Given this 
hardware, the parallel pipeline STAP system 
can directly process the CPI data without re- 
distributing it among the compute nodes once 
the CPI data is read from the disk. 

16 channels 

(a)RawCPI:  128X512X16 

16 channels 

(c) CPI partitioned in I/O task 

-        128 pulses 

(b) Corner-turned CPI:   512X16X128 

128 pulses 

(d) CPI partitioned in Doppler 
filter processing task 

Figure 13. (a) Raw CPI data received from the 
radar as a 128 x 512 x 16 data cube, (b) 
Corned-turned CPI data cube of size 512 x 
16 x 128. (c) Raw CPI partitioned among 4 
reading nodes, (d) Corned-turned CPI parti- 
tioned among 5 nodes. 

8.1    Corner turn and type conversion 

Without hardware support for the opera- 
tions of corner turn and type conversion, the 
parallel pipeline STAP system has to include 
this in its implementation. In order that every 
FFT can be processed in a single compute node 
in the Doppler filter processing task, the CPI 
data has to be partitioned along the dimension 
of range cells among the compute nodes as- 
signed, shown in Figure 13(d). Note that two 
consecutive pulses in a raw CPI data cube are 
stored in disks at a distance of 512 • 16 com- 
plex numbers. By partitioning the raw CPI 
along the range dimension, each sub-CPI data 
for one node consists of several pieces of non- 
contiguous data. For instance, we use 4 nodes 
to read a raw CPI data cube and it results in 
a sub-CPI of size 128 x 128 x 16. That is, each 

sub-CPI has 128 pieces of data and each piece 
is of size 128 x 16. Although contents of each 
data piece are stored contiguously in disks, the 
128 data pieces themselves are not adjacent to 
each other. To obtain the sub-CPI data re- 
quired by each node, two implementations for 
reading CPI data can be done: 

1. Every node performs several read opera- 
tions directly from the disks. Each read 
is for a data piece of a sub-CPI. After the 
sub-CPI data is read, type-conversion op- 
erations are applied. 

2. Using a two-phase I/O access strategy [5], 
the CPI data is first read using data dis- 
tribution which conforms with the distri- 
bution of CPI data over the disks. This 
results in each node making a single, large, 
and contiguous disk space access.     In 
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Figure 14. Implementation of parallel reading of raw CPI data from disks and its distribution for the 

Doppler filter processing task. 

the second phase, the sub-CPI data is 
type-converted, corner-turned, and redis- 
tributed among the nodes to match the 
desired data distribution. 

Two-phase I/O access strategy has been 
shown to improve the I/O performance signifi- 
cantly. This method first reduces the I/O bot- 
tleneck from disks to compute nodes by mak- 
ing all the file accesses large and contiguous. 
Second, the data redistribution uses the inter- 
processor communication network with higher 
bandwidth and higher degree of connectivity. 

8.2   Implementation 

To read CPI files in parallel, we implemented 
the two-phase I/O access strategy on the two 
STAP pipeline system I/O designs described in 
Section 5. The implementation for the reading 
of CPI files for the STAP pipeline system with 
a separate I/O task is shown in Figure 14. In 
this implementation, each node in the I/O task 
performs the following steps: 

1. uses one read operation to read an exclu- 
sive part of CPI data. In other words, the 
CPI data is partitioned into exclusive sub- 
sets and node i in the I/O task reads the 
iih subset of each CPI file. 

2. performs the corner turn and type conver- 
sion operations on the sub-CPI data. 

3. redistributes the sub-CPI data with other 
nodes in the I/O task such that each node 
receives all parts of sub-CPI data it is re- 
sponsible for. Data exchange in this step 
is an all-to-all personalized communica- 
tion within the same group of nodes. 

4. sends the re-organized sub-CPI data to 
the Doppler filter processing task. The 
communication pattern in this step is a 
left-right shift communication. Notice 
that the number of nodes assigned to 
the I/O task may be different from the 
Doppler filter processing task. 
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Table 11. Performance results on the Paragon 
with the I/O implemented as a separate task 
in which the corner turn and type conversion 
are embedded in the receive phase. 

Table 12. Performance results on the Paragon 
with the I/O implemented as a separate task 
in which the corner turn and type conversion 
are embedded in the receive phase. 

PFS stripe factor = 16 PFS stripe factor = 64 

case 1: total number of nodes = 64 Time in seconds 
# nodes recv comp send total 

Parallel read 8 .3256 - .0003 .3259 
Doppler filter 12 .0634 .1744 .0907 .3285 
easy weight 3 .1053 .2215 .0002 .3270 
hard weight 28 .0403 .2849 .0003 .3255 

easy BF 3 .1204 .1923 .0003 .3131 
hard BF 4 .1346 .1757 .0003 .3105 

pulse compr 4 .0812 .1978 .0302 .3092 
CFAR 2 .1726 .1361 - .3087 

throughput 
latency 

3.2079 
1.2516 

case 2: total number of nodes = 128               Time in seconds 
# nodes recv comp send total 

Parallel read 16 .1485 - .0099 .1585 
Doppler filter 24 .0037 .0976 .0580 .1593 
easy weight 6 .0528 .1110 .0002 .1639 
hard weight 56 .0161 .1435 .0038 .1634 

easv BF 6 .0515 .0969 .0004 .1488 
hard BF 8 .0555 .0894 .0003 .1452 

pulse compr 8 .0313 .1000 .0151 .1464 
CFAR 4 .0777 .0682 - .1459 

throughput 
latency 

6.7809 
0.7797 

case 3: total number of nodes = 256                Time in seconds 
# nodes recv comp send total 

Parallel read 32 .1041 - .0004 .1045 
Doppler filter 48 .0241 .0453 .0244 .0937 
easy weight 12 .0499 .0559 .0002 .1060 
hard weight 112 .0319 .0729 .0008 .1056 

easv BF 12 .0516 .0486 .0003 .1005 
hard BF 16 .0474 .0518 .0003 .0996 

pulse compr 16 .0411 .0499 .0079 .0989 
CFAR 8 .0643 .0343 - .0986 

throughput 
latency 

9.9740 
0.3713 

case 1: total number of nodes = 64 Time in seconds 
# nodes recv comp send total 

Parallel read 8 .3242 - .0004 .3246 
Doppler filter 12 .0575 .1742 .0956 .3272 
easy weight 3 .1039 .2214 .0002 .3255 
hard weight 28 .0375 .2849 .0003 .3227 

easy BF 3 .1197 .1921 .0003 .3121 
hard BF 4 .1275 .1830 .0002 .3108 

pulse compr 4 .0789 .1980 .0296 .3065 
CFAR 2 .1693 .1360 - .3053 

throughput 
latency 

3.3022 
1.2889 

case 2: total number of nodes = 128               Time in seconds 
# nodes recv comp send total 

Parallel read 16 .1471 - .0163 .1633 
Doppler filter 24 .0048 .1004 .0669 .1722 
easy weight 6 .0601 .1109 .0002 .1712 
hard weight 56 .0214 .1430 .0059 .1703 

easy BF 6 .0524 .0970 .0003 .1497 
hard BF 8 .0605 .0895 .0003 .1503 

pulse compr 8 .0369 .0994 .0149 .1512 
CFAR 4 .0825 .0681 - .1506 

throughput 
latency 

6.5610 
0.8300 

case 3: total number of noc ies = 25 6               Time in seconds 
# nodes recv comp send total 

Parallel read 32 .0908 - .0005 .0913 
Doppler filter 48 .0015 .0507 .0244 .0766 
easy weight 12 .0434 .0559 .0002 .0995 
hard weight 112 .0248 .0727 .0005 .0980 

easy BF 12 .0455 .0499 .0003 .0957 
hard BF 16 .0390 .0548 .0004 .0942 

pulse compr 16 .0349 .0505 .0078 .0932 
CFAR 8 .0590 .0342 - .0932 

throughput 
latency 

10.5710 
0.4629 
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Table 13. Performance results on the Paragon 
with the I/O implemented in the Doppler filter 
processing task in which the corner turn and 
type conversion are embedded in the receive 
phase. 

Table 14. Performance results on the Paragon 
with the I/O implemented in the Doppler fil- 
ter processing task in which corner turn and 
type conversion are embedded in the receive 
phase. 

PFS stripe factor =16 PFS stripe factor = 64 

case 1: total number of nodes = 31 Time in seconds case 1: total number of nodes = 31 Time in seconds 
# nodes recv comp send total 

Doppler filter 8 .3188 .2584 .1354 .7127 
easy weight 2 .3794 .3321 .0002 .7118 
hard weight 14 .1446 .5669 .0004 .7119 

easy BF 2 .4164 .2865 .0002 .7031 
hard BF 2 .3405 .3478 .0002 .6886 

pulse compr 2 .2313 .3949 .0583 .6845 
CFAR 1 .4121 .2724 - .6845 

throughput 
latency 

1.4411 
1.9326 

case 2: total number of nodes = 60                 Time in seconds 
# nodes recv comp send total 

Doppler filter 16 .1505 .1296 .0681 .3482 
easy weight 3 .1277 .2216 .0002 .3495 
hard weight 28 .0629 .2849 .0003 .3481 

easy BF 3 .1419 .1918 .0003 .3340 
hard BF 4 .1537 .1756 .0002 .3295 

pulse compr 4 .1003 .1985 .0298 .3286 
CFAR 2 .1918 .1363 - .3281 

throughput 
latency 

3.0129 
0.9789 

case 3: total number of nodes = 120               Time in seconds 
# nodes recv comp send total 

Doppler filter 32 .0863 .0660 .0349 .1872 
easy weight 6 .0780 .1110 .0002 .1893 
hard weight 56 .0431 .1429 .0019 .1879 

easv BF 6 .0842 .0961 .0003 .1806 
hard BF 8 .0886 .0880 .0003 .1770 

pulse compr 8 .0616 .0995 .0151 .1763 
CFAR 4 .1079 .0683 - .1762 

throughput 
latency 

5.5923 
0.5047 

case 4: total number of nodes = 238               Time in seconds 
# nodes recv comp send total 

Doppler filter 64 .0625 .0364 .0192 .1181 
easy weight 12 .0675 .0557 .0003 .1234 
hard weight 112 .0494 .0721 .0004 .1219 

easy BF 12 .0732 .0482 .0004 .1218 

hard BF 14 .0649 .0511 .0003 .1164 

pulse compr 16 .0587 .0501 .0078 .1166 

CFAR 8 .0821 .0344 - .1165 
throughput 

latency 
8.4272 
0.2925 

# nodes recv comp send total 

Doppler filter 8 .3196 .2586 .1355 .7138 
easy weight 2 .3804 .3321 .0003 .7128 
hard weight 14 .1455 .5670 .0004 .7129 

easy BF 2 .4174 .2865 .0002 .7042 
hard BF 2 .3413 .3480 .0003 .6896 

pulse compr 2 .2321 .3949 .0582 .6852 
CFAR 1 .4129 .2724 - .6852 

throughput 
latency 

1.4390 
1.9368 

case 2: total number of nodes = 60 Time in seconds 
# nodes recv comp send total 

Doppler filter 16 .1504 .1298 .0757 .3558 
easy weight 3 .1341 .2216 .0002 .3559 
hard weight 28 .0697 .2849 .0004 .3550 

easy BF 3 .1486 .1913 .0003 .3402 
hard BF 4 .1524 .1828 .0002 .3355 

pulse compr 4 .1007 .1989 .0317 .3313 
CFAR 2 .1918 .1363 - .3280 

throughput 
latency 

3.0618 
1.0159 

case 3: total number of noc les = 12 0                Time in seconds 
# nodes recv comp send total 

Doppler filter 32 .0835 .0647 .0455 .1937 
easy weight 6 .0872 .1111 .0002 .1985 
hard weight 56 .0469 .1430 .0074 .1973 

easy BF 6 .0934 .0959 .0003 .1896 
hard BF 8 .0864 .0895 .0003 .1762 

pulse compr 8 .0618 .0998 .0151 .1768 
CFAR 4 .1080 .0683 - .1763 

throughput 
latency 

5.6552 
0.5264 

case 4: total number of no( ies = 23 8                Time i a seconds 
# nodes recv comp send total 

Doppler filter 64 .0617 .0327 .0190 .1134 
easy weight 12 .0675 .0558 .0002 .1236 
hard weight 112 .0497 .0724 .0004 .1225 

easy BF 12 .0735 .0482 .0003 .1220 
hardBF 14 .0652 .0511 .0003 .1166 

pulse compr 16 .0590 .0500 .0077 .1167 
CFAR 8 .0824 .0343 - .1167 

throughput 
latency 

8.4237 
0.2927 
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Figure 15. Performance results for the imple- 
mentation using a separate I/O task in which 
the corner turn and type conversion are em- 
bedded in the receive phase. This figure cor- 
responds to Tables 11 and 12. 

In the first I/O design that embeds the I/O 
in the Doppler filter processing task, the only 
difference is that it is without step 4, the left- 
right shift communication. In addition, all 
the steps are performed within the same group 
of nodes. The sub-CPI data redistribution is 
performed within the same group of compute 
nodes in the Doppler filter processing task. As 
opposed to the inter-task data dependency dis- 
cussed in Section 2, this data redistribution re- 
sults in an intra-task data dependency. The 
intra-task dependency exists when intermedi- 
ate results need to be exchanged during the ex- 
ecution of a single parallel task in the pipeline. 

8.3   Performance results 

The performance results for the implemen- 
tation using a separate I/O task are given in 
Tables 11 and 12, for Paragon PFS file systems 
with 16 and 64 striped directories, respectively. 
Figure 15 shows the bar charts corresponding 
to Tables 11 and 12. Linear speedups were ob- 
tained for both throughput and latency. 

The performance results for the implemen- 
tation with the I/O task embedded in the 
Doppler filter processing task is shown in Ta- 
bles 13 and 14, for Paragon PFS file systems 
with 16 and 64 striped directories, respectively. 
Figure 16 shows the bar charts corresponding 
to Tables 13 and 14.    We observe that the 

Figure 16. Performance results for the imple- 
mentation when the parallel I/O, corner turn, 
and type conversion are embedded in the re- 
ceive phase of the Doppler filter processing 
task. This figure corresponds to Tables 13 
and 14. 

throughput and latency show linear speedups 
till the case with a total of 120 nodes. The tim- 
ing for performing read CPI data from disks, 
corner turn, type conversion, and CPI data re- 
distribution are included in the receive phase 
of the Doppler filter processing task. When we 
increase the number of nodes from 32 to 64 
in the Doppler filter processing task, the per- 
formance of the receive phase does not scale 
up linearly. This is because of the increasing 
cost of the all-to-all personalized communica- 
tion in the sub-CPI data redistribution. The 
size of each CPI data in our experiments is 
128 • 512 • 16 • (2 • 4 bytes) = 8M bytes. With 64 
nodes, the size of data in each send/receive of 
the all-to-all personalized communication be- 
comes ^gF = 2K bytes.   In the all-to-all 

04-04 
personalized communication, each node has a 
total of 64 read/receive calls whose communi- 
cation startup time overwhelms the message 
transmission time with respect to the relatively 
small size of the messages (2K bytes each.) 

9    Conclusions 

In this work, we studied the effects of 
parallel I/O implementation on the parallel 
pipeline system for a modified PRI-staggered 
post-Doppler STAP algorithm.   The parallel 
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pipeline STAP system was run portably on 
Intel Paragon and IBM SP and the overall 
performance results demonstrated the linear 
scalability of our parallel pipeline design when 
the existing parallel file systems were used in 
the I/O implementations. On the Paragon, 
we found that a pipeline bottleneck can re- 
sult when using a parallel file system with a 
relatively smaller stripe factor. With a larger 
stripe factor, a parallel file system can deliver 
higher efficiency of I/O operations and, there- 
fore, improve the throughput performance. 

This paper presented two I/O designs which 
are incorporated into the parallel pipeline 
STAP system. One embedded I/O in the orig- 
inal pipeline and the other used a separate 
I/O task. By comparing the results of these 
designs, we found that the task structure of 
the pipeline can be reorganized to further im- 
prove the latency. Without adding any com- 
pute nodes, we obtained performance improve- 
ment in the latency when the last two tasks 
were combined. We also analyzed the possibil- 
ity of further improvement by examining the 
throughput and latency equations. 

We also investigated a software approach to 
implement raw data pre-processing which can 
often be done by a special purpose hardware. 
The performance results demonstrate that the 
parallel pipeline STAP system scaled well even 
with a more complicated I/O implementation. 
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ABSTRACT OF DISSERTATION 

This dissertation presents a parallel pipelined computational model for radar signal 

processing applications. Performance results for the design and implementation of a 

real Space-Time Adaptive Processing (STAP) application on parallel computers are 

presented. The dissertation also discusses the process of software development for 

such an application on parallel computers when latency and throughput are both 

considered together and presents tradeoffs considered with respect to inter and intra- 

task communication and data redistribution. The results show that not only scal- 

able performance was achieved for individual component tasks of STAP but linear 

speedups were obtained for the integrated task performance, both for latency as well 

as throughput. Multi-threaded design for the STAP application is also presented 

for the parallel machine with SMP nodes. It is shown that the performance is en- 

hanced when a multi-threaded implementation is employed. In this dissertation, we 

also study the effect on system performance when the I/O task is incorporated in the 

parallel pipeline computational model. There are two alternatives for I/O implemen- 

tation: embedding I/O in the pipeline or having a separate I/O task. From these 

two I/O implementations, we discovered that the latency may be improved when the 

structure of the pipeline is reorganized by merging multiple tasks into a single task. 

All the performance results shown in this work demonstrated the scalability of the 

parallel pipeline STAP system. 
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Chapter 1 

Introduction 

A key requirement for Moving Target Indicator (MTI) radars is that they are small in 

size, light in weight, and consume low power so that they can be installed on platforms, 

such as airborne radars, undersea sonars, and ground moving radar stations. In 

order to fulfill these requirements, radar signal processing systems were traditionally 

built by using custom VLSI circuits. Most of these Application Specific Integrated 

Circuits (ASICs) are contemporary non-commercial products designed for special 

purposed uses. However, the use of non-commercial products results in a higher cost 

of system development. To reduce the cost, system designers nowadays tend to use 

Commercial-Of-The-Shelf (COTS) products because they offer lower cost hardware, 

faster development, and higher reliability while adhering to the size, weight, and 

power requirements [1]. 
High Performance Computing (HPC) systems are becoming a feasible alterna- 

tive due to the progress made in hardware as well as software support in the last 

few years. Since HPC systems are made of COTS products, they are replacing the 

custom VLSI based radar systems. Furthermore, HPC systems offer advantages of 

affordability, scalability, reusability, and flexibility over the traditional custom VLSI 

based solutions. These powerful machines have traditionally been used to solve scien- 

tific problems which require a large number of computational operations. There are 

many radar signal processing applications such as Space-Time Adaptive processing 
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(STAP) that are computational intensive and must operate in real time [2]. Such 

applications may benefit from the use of HPC systems. This dissertation investigates 

the use of HPC systems for the STAP application. Specifically, a new computa- 

tional model is developed and performance enhancement achieved by this model is 

demonstrated. 

1.1    Parallelism in STAP 

To design a radar signal processing system on HPC platforms, we first have to under- 

stand the parallelism embedded in the radar applications. In this work, we will focus 

on the investigation of parallelization and performance evaluation for STAP algo- 

rithms. These algorithms have of considerable interest to the radar signal processing 

community for some time. They present a challenge to signal processing systems 

which are required to operate in real time. 

STAP applications entail filtering, convolution and correlations, inner and outer 

products, solvers (direct or iterative), Fast Fourier Transforms (FFTs), etc. A major- 

ity of individual processing steps in this application domain exhibit Single Program 

Multiple Data (SPMD) parallelism. Therefore, an overall integrated system can be 

thought of as a collection of communicating SPMD programs, that is, at a higher level 

there exists task parallelism. This parallelism can be further divided into two cate- 

gories; namely, spatial and temporal parallelism. Spatial parallelism refers to parallel 

computation on data from the same time instance. Temporal parallelism refers to the 

performance of tasks on data from different time instances [3, 4, 5]. 

Ideally, the parallelization of a STAP application must be done by partitioning all 

the computational load evenly across the processors to achieve maximum efficiency. 

However, this strategy may not be feasible for the type of STAP applications to be 

parallelized in a real HPC environment. From the hardware point of view, the archi- 

tecture of a computer system basically consists of three most essential components: 

CPU, cache memory, and main memory. Compared to the main memory, the cache 

is a small capacity and high speed memory used as a buffer between a CPU and the 
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main memory. The purpose of a cache memory is to reduce the time the CPU must 

spend waiting for data to arrive from the slower main memory. When a memory re- 

quest is generated by the CPU, the request is first presented to the cache, and if the 

cache cannot respond, the request is then presented to the main memory. The cache 

memory is usually divided into instruction cache and data cache. Since a STAP 

application has many processing steps that are executed in sequence on the input 

signal data, this application contains several different instructions sets. If a STAP 

application is parallelized on all processors in a HPC system, each processor must 

execute all the instruction sets which results in a poor utilization of the instruction 

cache. The effect of cache miss can become a significant execution overhead in the 

real computational environment. 
An alternative implementation strategy for a STAP application is called pipelin- 

ing. The idea of pipelining is that the rate of execution of instructions can be in- 

creased by overlapping the execution of different instructions among processors. The 

pipelining technique can achieve the same throughput results as parallelization on all 

processors. Consider a job with workload W executed on P processors. The paral- 

lelization on all P processors produces a throughput of £. The pipelining technique 

can achieve the same throughput after the pipeline is filled which takes W time. 

Figure 1 illustrates the effects of the two implementations on the throughput result. 

For most of the radar applications including STAP, the input data is an indefinite 

sequence of signal data sets collected by the sensors to be processed by the signal 

processing system. In addition, a STAP application has a sequence of processing steps 

in which the output of each step is the input of its successor. Therefore, the pipelining 

implementation is more appropriate for the design of a STAP system due to the 

nature of the STAP application. From the hardware point of view, the utilization of 

instruction cache for every processor in a pipeline can be enhanced by executing only 

one set of instructions. However, the communication overhead due to data transfer 

between processors in the pipeline may cause a performance degradation for the 

integrated system. In the real STAP application, this overhead can be tolerated since 

the size of each signal data set is moderate compared to many scientific applications. 
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Figure 1. The effect of parallelism and pipelining on the system throughput. 

Also, the communication costs can be reduced by overlapping communication and 

computation in the pipeline. 

In this work, we design a parallel pipeline computational model for STAP which 

combines both the parallelization and pipelining techniques. The pipeline in this 

model consists of several tasks where each task represents a processing step in a 

STAP algorithm. The input of one task in the pipeline is the output of its previous 

task. Each task is then parallelized by partitioning its workload evenly across the 

processors assigned to this task. Since many of the same operations in a task are 

repetitively performed on its input data and the size of data for each operation is 

relatively small, the sequential version of these operations is used instead of using a 
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Figure 2. Basic structure for the computational model of the parallel pipeline system. 

Taski is parallelized on Pi processors. 

parallel algorithm. In this manner, the communication between processors within a 

single task is reduced to a minimum. Figure 2 illustrates the basic structure of the 

parallel pipeline computational model. In this work, a real STAP application based 

on this model was implemented on several HPC systems and the performance results 

demonstrate the linear scalability of this model. 

1.2    Shared Memory versus Distributed Memory 

HPC Systems 

Shared-memory multiprocessor architectures are the oldest form of parallel processing 

architecture. All processors in a shared-memory system have equal access to the 

system memory through a system bus. The shared-memory architecture is favored 

because it is the most affordable way to achieve scalability by plugging processors into 

the system board and then providing an improved performance. There is no inter- 

processor communication overhead in this system because processors communicate 

with each other by accessing the common memory. However, there are disadvantages 

for these types of systems. First, a cache is associated with each processor, which 

raises the problem of cache coherence. A given piece of data which refers to an 

address in the main memory can be present at the same time in several caches, 

so when a processor updates data, a cache-coherency protocol must prevent other 

processors from accessing the non-updated copies of that piece of data.   On the 
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Table 1. Characteristics of shared-memory and distributed-memory HPC systems. 

Shared-Memory System Distributed-Memory System 

Processors Multiple Multiple 

Communication Access via shared memory Message passing 

Operating System A single copy across 

all processors 

One copy per node 

Interconnection System bus Data network 

Overhead Access to common data 

structures 

Communication costs 

hardware side, the parallelism is restricted by the number of processors that can be 

connected to a single system bus and the cache/memory transfers and cache-coherency 

traffic increase with the number of processors. On the software side, the operating 

system must be designed such that multiple accesses to common data structures are 

protected. The execution streams on processors must synchronize their accesses to 

common data by using locks to prevent simultaneous updating. 

Distributed-memory massively parallel processor architecture is defined as a po- 

tentially large set of compute nodes linked by a specialized inter-processor connection 

network. The interconnection network provides a scalable bandwidth with a very low 

latency; e.g., in the order of a few tens of microseconds. Each compute node has 

its own processor and private memory as well as its own copy of the operating sys- 

tem. Compute nodes in this type of a system communicate with each other through 

message passing over the interconnection network. Compared to the shared-memory 

system, the inter-processor communication overhead may become large enough to 

degrade the performance of the distributed-memory system. Table 1 summarizes the 

characteristics of these two multiple processor architectures. 

A hybrid system that combines both the characteristics of shared and distributed- 

memory architectures is implemented on Intel Paragon MP system. In the Paragon 
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MP system, a large number of compute nodes are interconnected by a high speed 

fabric data network and each compute node is a shared-memory system with a small 

number of processors. The communication between compute nodes is done by message 

passing through the data network. In this work, we investigate the implementation 

of the parallel pipeline STAP system on the Paragon MP system. By using the 

multi-threading technique, we evenly divide the computational workload across all the 

processors in every single compute node. Our goal is to determine the performance 

enhancement that can be obtained using a small number of shared-memory processors 

at each compute node. 

1.3 Disk I/O 

Since most radar applications require signal processing in real time, we assume that 

the signal data collected by the radar is directly delivered to the signal processing 

system. In addition, the output of the processing system is assumed to be sent to 

a terminal that displays the detected target in real time. Therefore, the parallel 

pipeline STAP system normally does not include disk I/O costs. However, with the 

recent advances in both hardware and software aspects of parallel I/O techniques, 

parallel file systems can provide powerful disk I/O performance. High data transfer 

bandwidth between disks and computing systems is achieved by using file systems 

with multiple stripe directories. In this work, we also investigate the impact of I/O 

on the overall parallel pipeline STAP system performance when the signal data is 

obtained through parallel file systems. 

1.4 Processor Assignment 

Optimal use of resources is particularly important in high-performance embedded 

applications due to limited resources and other constraints such as desired latency or 

throughput [6]. The throughput requirement says that when allocating processors to 

tasks, it should be guaranteed that all the input data sets will be handled in a timely 
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manner. That is, the processing rate should not fall behind the input data rate. The 

response time criteria, on the other hand, require the minimization of computation 

latency on a particular set of data input. 
In this work, we investigate the effect of processor assignment in the parallel 

pipeline system on the throughput and latency. Throughput can always be improved 

by increasing the number of processors assigned to the task with the maximum ex- 

ecution time among all the tasks in the pipeline system. From the study of the 

experimental results, the latency may be improved by reorganizing the task structure 

in the parallel pipeline system. With the fixed total number of processors, tradeoffs 

exist between assignment of processors to maximize the overall throughput and as- 

signment of processors to minimize the latency. We will examine the possibility of 

improving the results for both latency and throughput. 

1.5    Organization of the Dissertation 

This dissertation is organized as follows. Chapter 2 first discusses the traditional 

design of radar signal processing systems and states the advantages of HPC based 

systems over VLSI based systems. Then, we propose the parallel pipelined compu- 

tation model for real time signal processing applications, especially for STAP ap- 

plications. By analyzing the computational characteristics of STAP algorithms, we 

describe the structure of this model with respect to the characteristics found in the 

STAP algorithm and also discuss some parallelization issues and approaches. 

In Chapter 3, the implementation of a modified PRI-staggered post-Doppler STAP 

application based on our parallel pipeline computational model on HPC systems 

is described. A general description of the STAP algorithm used is given and its 

associated parallelization approaches are also presented. We ran the codes portably 

and obtained the performance results on Intel Paragon, IBM SP, and SGI Origin. 

We present the performance results with regard to computation and communication 

costs as well as the overall system throughput and latency. 

Chapter 4 describes the multi-threaded implementation of the parallel pipeline 
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STAP system on the Intel Paragon MP system. We compare the performance results 

between the systems that use single processor nodes and the ones that use SMP nodes. 

We also discuss the limited performance gain resulting from using the thread-safe 

versions of numerical libraries developed on the Paragon MP system. The decision 

of processor assignment is studied when extra compute nodes are available to be 

added into the pipeline system. This decision presents the tradeoff between increasing 

throughput and reducing latency. 

In Chapter 5, we study the effect on system performance when disk I/O is incor- 

porated in the parallel pipeline model. Two alternatives for I/O implementation are 

presented: embedding I/O in the pipeline or having a separate I/O task. We use the 

parallel file systems on the Intel Paragon and the IBM SP to perform the parallel I/O 

and study its effect on throughput and latency. From these two I/O implementations, 

we discover that the latency may be improved when the structure of the pipeline is 

reorganized by merging multiple tasks into a single task. The possibility of improving 

latency is also examined. 

Chapter 6 gives conclusions and outlines further research topics. 
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Chapter 2 

Parallel Pipeline System Model 

Traditional radar signal processing systems have been built using custom VLSI in 

order to meet real-time requirements. Custom VLSI based systems satisfy the re- 

quirements for small size and light weight such that they can be installed on airborne 

platforms. However, custom VLSI can only be used for special purpose radar equip- 

ments and have to be re-designed when different signal processing algorithms are to 

be employed. Due to the technological advances in recent years, High Performance 

Computing (HPC) systems that provide the necessary computational power to solve 

many scientific problems are becoming practical. These systems offer advantages 

of programming generality, software portability, architectural flexibility, affordabil- 

ity, and performance scalability over the systems using traditional custom VLSI. 

Equipped with powerful processors, HPC systems are attractive in real-time embed- 

ded environments, such as radar signal processing applications. 

Most radar applications such as Space-Time Adaptive Processing (STAP) are com- 

putationally intensive and must operate in real time which require performance levels 

of Tera FLoating point Operations Per Second (TFLOPS) [2]. Since this work focuses 

on the parallelization of STAP algorithms for HPC environments, we first analyze the 

computational requirements of STAP algorithms. Based on the computational char- 

acteristics of STAP algorithms, we have designed a parallel pipeline computational 

model.   This model permits us to significantly improve the performance of STAP 
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applications on HPC systems. 
This chapter is organized as follows. Section 2.1 compares the approaches of 

using custom VLSI and HPC systems in radar signal processing applications. Sec- 

tion 2.2 presented an overview of STAP algorithms and describes the computational 

characteristics of most STAP applications. Section 2.3 discusses the related work on 

parallelization of STAP applications in the current literature. The parallel pipeline 

model is presented in Section 2.4. The parallelization issues of this model are given 

in Section 2.5. 

2.1    Custom VLSI versus HPC Systems 

Traditionally, radar signal processing systems were built based on custom VLSI. In 

these systems, VLSI was used to implement several hardware components for special 

purpose operations, for example, Fast Fourier Transforms (FFT) processors, linear 

algebra solvers, matrix multipliers/etc. This VLSI based systems satisfy the embed- 

ded system requirements of small size, light weight, and fit into the limited space 

on airborne platforms. However, in order to achieve the required computational per- 

formance, the software developed for these systems use low level languages. This 

restricted the programming flexibility provided by these systems. In addition, signifi- 

cant design modification was often required when porting across different application 

environments. Therefore, the VLSI based design can only suffice for one signal pro- 

cessing application on one VLSI board. Due to this application specific nature, the 

hardware development for each individual application leads to higher overall costs. 

In recent years, the radar signal processing area has evolved significantly. Many 

new algorithms have been proposed and developed to solve detection problems in 

different environments. Most of these algorithms such as STAP require higher com- 

putational power in the order of TFLOPS. Adequate processing power is not provided 

by the current custom VLSI based systems to perform these computations in real time. 

Hence, different approaches for the design of embedded real time signal processing 

systems are needed. 
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High performance computing (HPC) systems are becoming mainstream due to the 

progress made in hardware as well as software support in the last few years. These 

powerful machines were used to solve scientific problems, such as grand challenge 

problems, which require a large number of computational operations. The current 

commercial HPC systems are developed by integrating commercial-off-the-shelf com- 

ponents interconnected by a high speed data network. Typically, a single processor in 

HPC systems offers performance in the range 100 Mega FLoating point Operations 

Per Second (MFLOPS) to 600 MFLOPS. Different architectures of HPC systems are 

implemented such as the classical Symmetrical Multi-Processor (SMP), cluster, or 

Massively Parallel Processor (MPP) systems. 

SMP systems were introduced for mainframe systems during the 1960s. The SMP 

architecture is favored because of its affordability to achieve scalability by simply 

plugging in additional processor boards and thus providing an improved performance. 

From the hardware point of view, an SMP system may contain more than one proces- 

sor. Every processor in an SMP system has its own private cache memory but shares 

all other system resources such as the main memory and I/O. Figure 3(a) illustrates 

the architecture of an SMP system. As opposed to SMPs, clusters are loosely coupled 

computers where each member computer of the cluster is a system with fully features 

that is able to function independently from the others. The interconnection in a clus- 

ter system is based on a high speed Local Area Network (LAN), for example, Ethernet 

or FDDI. Figure 3(b) illustrates the architecture of a cluster HPC system. An MPP 

configuration can be defined as a potentially large set (several hundreds) of CPUs 

called nodes, linked by a specialized interconnection network. Such an interconnec- 

tion is based on proprietary technology of individual manufacturers which provides 

scalable bandwidth with a very low communication latency. Each node has its own 

processor(s), memory, and I/O channels, as well as its own copy of the operating 

system. Figure 3(c) illustrates the architecture of an MPP system. 

In contrast with the custom VLSI based systems, HPC systems offer advantages of 

architectural flexibility, performance scalability, and software portability. HPC sys- 

tem architectures can be scaled in size to suit the requirements of radar applications. 
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Table 2. Feature comparison between custom VLSI and HPC systems. 

Custom VLSI HPC Systems 

Hardware components Special purpose General purpose 

Computation Fine grain Coarse grain 

Communication Systolic Message passing or 

shared memory 

Software design Low level language High level language 

Architecture flexibility No Yes 

Scalability No Yes 

Portability No Yes 

Afibrdability No Yes 

On these HPC systems, software can be implemented in high level programming lan- 

guages. Use of standardized programming languages and software libraries such as 

Message Passing Interface (MPI) [7] permits easy portability across various platforms. 

With recent advances in micro-system technologies, it is now feasible to manufacture 

light weight, small size, and low power versions of these HPC computers for real-time 

embedded radar systems. Table 2 compares the features of custom VLSI and current 

HPC systems. 

Digital signal processing is one of the core technologies central to the operation of 

radar systems. Most signal processing algorithms are characterized by the need for 

high-performance and involve repetitive, numerical-intensive tasks which are ideally 

suitable to be parallelized on HPC systems. For embedded real time radar signal 

processing applications, we have designed a parallel pipeline computational model 

on the HPC systems. This model was designed for these applications to meet their 

low latency and high throughput requirements. Our work focused on the parallel 

implementation and performance evaluation of this model for a Space-Time Adaptive 

processing (STAP) algorithm. STAP is a typical class of signal processing methods 

whose parallelization is highly desirable. In the next section, we briefly describe the 
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STAP algorithms and study the computational characteristics of these algorithms. 

2.2    Overview of Space-Time Adaptive Processing 

The basic purpose of a radar (radio detection and ranging) is to detect the presence 

of an object of interest and provide information concerning that object [8]. A radar 

device transmits a waveform into the atmosphere and then listens for the echoes as 

the transmitted waveform reflects back from surrounding objects.  Various types of 

information, such as range, velocity, angular coordinates, size, etc., can be obtained 

from the incoming echoes to detect the desired targets.  Range information can be 

inferred from the amount of time it takes the transmitted signal to travel to a target 

and then arrive back at the receiver. Directional information can be attained by scan- 

ning the surrounding space with a directed beam. Velocity or target movement can be 

determined through measuring the Doppler shift induced in the reflected waveform. 

Relative motion between a signal source and a receiver creates a Doppler shift of the 

source frequency. When a radar system intercepts a moving object that has a radial 

velocity component relative to the radar, the reflected signal's frequency is shifted. 

Moving-target indication (MTI) radar is a special purpose Doppler radar that is de- 

signed to measure the shift between the transmitted frequency and the frequency 

of reflections received from possible targets.   The MTI radar rejects signal returns 

from stationary or unwanted slow-moving targets, such as buildings, hills, tree, sea, 

and rain, and retains detection information on moving targets such as aircrafts and 

missiles [9]. 
In our work, we focus on the study of Space-Time Adaptive Processing (STAP) 

algorithms which refer to a class of radar signal processing methods that operate on 

data collected from a set of sensors over a given time interval [2]. The object of these 

methods is to extract the desired signal from potential target returns comprised of 

Doppler shifts resulting from radar platform motion, clutter returns, and interfer- 

ence including jamming and sensor noise. The sections that follow provide a brief 

overview of the numerical operations and computational characteristics of general 
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STAP algorithms. For a thorough theoretical analysis of STAP, the reader is referred 

to [2, 10, 11]. 

2.2.1    STAP Algorithms 

The computational requirements to determine the optimal solution for STAP prob- 

lems are in the order of 109 to 1012 FLOPS which is too large to process in the allotted 

time for real-time operations. With the computational power of current HPC sys- 

tems, this method is not completely feasible within the time deadline. Hence, various 

heuristic methods have been developed which attempt to approximate the optimal 

solution while reducing the computational requirement. 

Generally speaking, a heuristic STAP algorithm consists of five primary processing 

stages: Doppler filter processing, adaptive weight calculation, beamforming, pulse 

compression, and Constant False Alarm Rate (CFAR) processing. The input data 

to the STAP algorithms are serial sets of echo returns collected by a radar in a 

sequential manner. Each data set is composed of range, pulse, and channel digital 

samples. Consequently, a three-dimensional data cube represents each set of STAP 

input data which is commonly referred to as a Coherent Processing Interval (CPI.) 

Each CPI data is processed through all stages of the STAP algorithms but only 

a portion of CPI data may be actually needed in the heuristic approach. Various 

STAP algorithms exist and the difference is basically the order of processing stages 

that the CPI data goes through. An overview of the STAP process for pre-Doppler 

and post-Doppler architectures is shown in Figure 4. 

The pre-Doppler STAP performs a reduced dimension space-time adaptive nulling 

function through adaptive combination of the input antenna element data. This 

algorithm is classified as pre-Doppler STAP because the beamforming is performed 

on the data prior to Doppler filter processing. Figure 4(a) illustrates the processing 

function chain for this architecture. The post-Doppler STAP performs a reduced 

dimension space-time adaptive nulling function through adaptive combination of the 

input beam space data and is classified as post-Doppler STAP because beamforming 
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Figure 4. Operation stages performed in two radar signal processing algorithms: (a) 

pre-Doppler STAP and (b) post-Doppler STAP. A series of CPI data sets represent signals 

collected in different time intervals. 

is performed after the Doppler filter processing. Figure 4(b) illustrates the processing 

function chain for this architecture. The major operations for all processing stages in 

STAP are described as follows. 

Doppler filter processing The Fast Fourier Transform (FFT) operations are used 

to transform the CPI data to the Doppler domain. There is an FFT operation 

for every range and channel. The size for each FFT is equal to the number of 

pulses in a CPI data cube. 

Adaptive weight calculation For each bin in the Doppler domain, the weight vec- 

tors are calculated by solving the least squares problem on the matrix of training 

data. The training data is selected from all range gates to provide a good es- 

timate of the interference.   The least squares solution consists of Quadratic 
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Residue (QR) decomposition and back substitution where the QR decomposi- 

tion is the most computational intensive operation in a STAP algorithm. 

Beamforming The resulting weight vectors are then applied to the CPI data for 

every Doppler bin. The application is performed by matrix-matrix multiplica- 

tion. 

Pulse compression In this step, the received signal is convolved with a replica of 

the transmit pulse waveform. This is performed with forward FFTs, vector- 

vector pointwise multiplications, and inverse FFTs for every Doppler bin and 

receive beam. 

CFAR processing Various CFAR techniques have been developed to detect targets 

by comparing radar signal returns to an adaptive threshold such that a constant 

false alarm rate is maintained. Cell-averaging CFAR (CA-CFAR) and ordered 

statistics CFAR (OS-CFAR) are two well-known methods where CA-CFAR is 

often used for a homogeneous environment of non-stationary Gaussian noise 

and OS-CFAR is used for the non-homogeneous environment of Gaussian noise. 

The operations involved in CA-CFAR are additions and multiplications while 

OS-CFAR involves sorting which is more computational intensive. 

2.2.2    Computational Characteristic Analysis 

Some general computational characteristics exist in most of the STAP algorithms [10]. 

We now examine these characteristics and the potential parallelization strategies. 

• A STAP algorithm contains a sequence of processing steps or stages. Each step 

uses many identical operations on its input data. These identical operations 

can be performed independently on different sub-sets of data. Since many of 

these operations are carried out repetitively, an efficient parallelization strategy 

is to partition the input data across processors such that these operations can 

be performed sequentially in each processor without communicating with the 
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Figure 5. Data used for Doppler filter processing and Weight computation in STAP 

algorithms. 

other nodes. For instance, during Doppler filter processing, several FFTs of the 

same size are evaluated. Instead of using a parallel algorithm for each FFT, 

many sequential FFTs are computed in each processor. 

. The data access pattern in one step may be different from that of the sub- 

sequent step. Each input data set collected by the radar is organized as a 

three-dimensional complex data cube (CPI data cube.) In the Doppler filter 

processing, data for the FFTs is distributed orthogonally in the cube relative 

to the data for solving the least squares solutions in the weight computation. 

Figure 5 illustrates the data access patterns for these two steps. However, 

parallelization can only be done by partitioning the data cube across several 

processors along one of the three axes. Therefore, corner turn on the data 

cube is required between these two steps. The strategy for data redistribution 

among processors to achieve the operations of corner turn is critical due to the 

possibility of having high communication overhead between the two steps. 

C-34 



• The size of each input data set at each step of STAP is moderate and. much 

smaller than those found in grand challenge scientific applications. Normally, 

the size of each input data set for radar signal processing applications ranges 

from IM to 100M bytes. The communication overhead due to parallelization is 

most likely embedded in the data redistribution between two consecutive steps 

and its cost depends on the size of the data processed in these two steps. With 

moderate size of data in most STAP applications, the primary communication 

will concentrate on the data transfer between two tasks whose access patterns 

to the same set of data are orthogonal to each other. 

• A sequence of signal data sets received by a radar arrives in a continuous fashion 

and each data set has to be processed through all steps in the STAP algorithm. 

Data processed in the sequence of steps is like a systolic pipeline that operates 

on one input data set after another. Parallelization can be done such that one 

processor performs only one of these steps in order to keep the execution simple 

and efficient. The radar signal processing applications have a serial or chain- 

like structure which make themselves amenable to pipelining. In this work, we 

have designed a model of the parallel pipeline system. This model treats each 

step as an individual task and assigns groups of processors exclusively to all the 

tasks to perform the computation in parallel. The details of this model will be 

discussed in the next section. 

• The most important requirements for radar signal processing applications are 

throughput and latency. The throughput requirement says that all the input 

data sets should be handled in a timely manner. That is, the processing rate 

should not fall behind the incoming data rate. The latency criteria, on the 

other hand, require the minimization of the response time on a particular set 

of data input. Furthermore, high throughput provides high accuracy for target 

detection and low latency represents a real time response. The goal for the 

design of parallel STAP systems is to be able to keep up with the incoming 

data rate while minimize the data processing time. Therefore, task scheduling 
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for each STAP process stages on an HPC systems needs to be done carefully to 

meet these two requirements. 

2.3    Related Work 

Since the parallelization of STAP applications is highly desirable, several efforts have 

been devoted to designing efficient parallel STAP algorithms on HPC systems.  In 

May 1996, Air Force Research Laboratory (AFRL) performed a real time STAP 

demonstration using a Pulse Repetition Interval (PRI)-staggered post-Doppler STAP 

algorithm onboard an airborne platform [12, 13]. These experiments were performed 

as part of the Real-Time Multi-Channel Airborne Radar Measurements (RTMCARM) 

program.   The radar in the RTMCARM experiments was a phased array L-Band 

radar with 32 elements organized into two rows of 16 each. Only the data from the 

upper 16 elements were processed with STAP. This data was derived from a 1.25 

MHz intermediate frequency (IF) signal that was 4:1 oversampled at 5 MHz.  The 

number representation at IF was 14 bits, 2's complement and was converted to 16 bit 

baseband real and imaginary numbers. Special interface boards were used to digitally 

demodulate IF signals to baseband. The signal data formed a raw 3-dimensional data 

cube called coherent processing interval (CPI) data cube comprised of 128 pulses, 512 

range gates (32.8 miles), and 16 channels.  These special interface boards were also 

used to corner turn the data cube so that CPI is unit stride along pulses. It speeds the 

subsequent Doppler processing on the High Performance Computing (HPC) systems. 

Live CPI data from a phased-array radar were processed by a ruggedized version of 

the Paragon computer. 
The ruggedized version of Intel Paragon system consists of 25 compute nodes run- 

ning the SUNMOS operating system. Figure 6 depicts the system implementation. 

Each compute node has three i860 processors accessing the common memory of size 

64M bytes as a shared resource. The CPI data sets were sent to the 25 compute 

nodes in a round robin manner and all three processors worked on each CPI data 

set as a shared-memory machine. The system processed up to 10 CPIs per seconds 
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Figure 6. Implementation of the ruggedized version of Intel Paragon system in RTM- 

CARM experiments. 

(throughput) and achieved a latency of 2.35 seconds per CPI. This implementation 

used compute nodes of the machine as independent resources to run different instances 

of CPI data sets. No communication among compute nodes was needed. This ap- 

proach can achieve desired throughput by using as many nodes as needed, but the 

latency is limited by what can be achieved using the three processors in one compute 

node. More information on the overall system configuration and performance results 

can be found in [13, 12]. 
Other related work such as [10, 14, 15, 16] parallelized high-order post-Doppler 

STAP algorithms by partitioning the computational workload among all processors 

allocated for the applications. In [10, 14], they focused on the design of parallel ver- 

sions of subroutines for FFT and QR decomposition. The total communication time 

increases as the number of processors increases. The fine grain parallelism generates 

many short messages for each operation of parallel FFT and QR decomposition and 
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incurs significant communication overhead. In [15, 16], the implementations opti- 

mized the data redistribution between processing steps in the STAP algorithms while 

using sequential versions of FFT and QR decomposition subroutines. A multi-stage 

approach was employed in [17] which was an extension of [15, 16]. A beam space 

post-Doppler STAP was divided into three stages and each stage was parallelized on 

a group of processors. A technique called replication of pipeline stages was used to 

replicate the computational intensive stages such that different data instance is run on 

a different replicated stage. Their effort focused on increasing the throughput while 

keeping the latency fixed. For other related work, the reader is referred to [18,11, 19]. 

2.4    Parallel Pipeline Computational Model 

Based on the study of computational characteristics of STAP algorithms, we have 

designed a computational model of the parallel pipeline system which is suitable for 

STAP applications. Figure 7 shows this system model and illustrates the computa- 

tional characteristics found in these applications. 

A pipeline is a collection of tasks which are executed sequentially on an input data 

set. The input to the first task of a pipeline is obtained normally from radar sensors 

or other input devices with the inputs to the remaining tasks coming from outputs 

of previous tasks. The set of multiple pipelines shown in the figure indicates that the 

same pipeline is repeated on subsequent input data sets. Each block in a pipeline 

represents one parallel task, which itself is parallelized on multiple (different number 

of) processors. That is, each task is decomposed into subtasks to be performed in 

parallel. Therefore, each pipeline is a collection of parallel tasks. From the archi- 

tecture point of view, compute nodes (or nodes) in a HPC system are partitioned 

exclusively into several groups and every task is assigned a group of compute nodes. 

The number of nodes assigned to one task may be different from other tasks. In this 

model, no compute node is assigned to more than one task and at least one node is 

assigned to a task. 

From the single compute node point of view, the execution flow for a task in the 
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Figure 7. Model of the parallel pipeline system. Note that Task{ for all input instances 

is executed on the same number of processors. 

parallel pipeline consists of three phases: receive, compute, and send phases. During 

the receive phase in a task, a compute node receives data as the input of this task 

from the nodes assigned to the previous task. In the send phase, the data resulting 

from the compute phase is transferred to the nodes in the successor task. Figure 8 

illustrates the execution flow of a single compute node in a parallel pipeline system. 

In both the receive and send phases, communication involves data transfer between 

two groups of nodes where no common node is in these two groups simultaneously. 

The communication also involves message packing in the send phase and unpacking 

in the receive phase. Therefore, data redistribution strategy plays an important role 

in determining the communication performance. In the compute phase, computa- 

tional work load in each single task is evenly partitioned among all compute nodes 

assigned in order to achieve the maximum efficiency. For the parallel systems with 
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Figure 8. Execution flow of a single compute node in a parallel pipeline system. For 

each individual task, there are three phases: receive, compute, and send. 

multiple processors in each compute node (SMP system), multi-threading technique 

can be employed to further improve the computation performance. We will discuss 

the implementation of multiple threads in the parallel pipeline system in Chapter 4. 

2.4.1    Data Dependencies 

In such a parallel pipeline system, there exist both spatial and temporal parallelism 

[3, 4, 5]. Spatial parallelism is one in which similar operations are applied in all parts 

of the input data. That if, the input data for one task can be divided into many 

granules and distributed to its subtasks which may execute on different processors 

in parallel. Each task operates on the output data of the previous task as its input 

and produces an output which becomes the input for the next task. The type of data 

and data structures may be different for each task in the system but each form of 

data can be partitioned into several granules to be processed in parallel. Temporal 

parallelism is present when tasks are repeated on a time sequence of input data sets. 

The processing of each set of input data can be done in parallel with the processing 

of data sets of other time instances. 

Both spatial and temporal parallelism result in two types of data dependencies 
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and flows, namely, spatial data dependency and temporal data dependency. Spatial 

data dependency can be classified into inter-task data dependency and intra-task 

data dependency. Intra-task data dependencies arise when a set of subtasks needs to 

exchange intermediate results during the execution of a parallel task in a pipeline. 

The exchange of data may be needed during the execution of the algorithm, or to 

combine the partial results, or both. Inter-task data dependency is due to the transfer 

and reorganization of data passed onto the next parallel task in the pipeline. Inter- 

task communication can be communication from the subtasks of the current task to 

the subtasks of the next task, or collection and reorganization of output data of the 

current task and then redistribution of the data to the next task. The choice depends 

on the underlying architecture, mapping of algorithms and input-output relationship 

between consecutive tasks.   Temporal data dependency occurs when some form of 

output generated by the tasks executed on the previous data set are needed by tasks 

executing the current data set. In the next chapter, we will see that STAP algorithms 

have both types of data dependencies. 

2.5    Parallelization Issues and Approaches 

Applications such as STAP entail multiple algorithms (or processing steps), each of 

which performs particular functions, to be executed in a pipelined fashion. Multiple 

pipelines need to be executed in a staggered manner to satisfy the throughput re- 

quirements. Each task needs to be parallelized for the required performance, which, 

in turn, requires addressing the issue of data distribution on the subset of processors 

on which a task is parallelized to obtain good efficiency and incur minimal commu- 

nication overhead. Given that each task is parallelized, data flow among multiple 

processors of two or more tasks is required and, therefore, communication scheduling 

techniques become critical. The problem of input-output of data is another crucial 

problem and is more challenging in this scenario because data must be redistributed 

within the pipeline in a timely manner to guarantee the throughput and latency 

requirements. 
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Figure 9. A pipeline system with spatial data dependency only. 

2.5.1    Throughput and Latency 

Throughput and latency are two important measures for performance evaluation on 

a pipeline system. Given a parallel pipeline system with n tasks, the throughput of 

the pipeline system is the inverse of the maximum execution time among all tasks, 

i.e., 

throughput = 
max Ti 
0<i<n 

(1) 

where Ti represents the execution time of task i.   Figure 9 gives an example of a 

parallel pipeline system with 4 tasks. In this example, the throughput of the pipeline 

system is 

throughput^ — 
max T 
0<i<4 

(2) 

To maximize the throughput, the maximum value of T{ should be minimized. In other 

words, no task should have an extremely large execution time. With limited number 

of processors, the processor assignment to different tasks must be made in such a way 

that the execution time of the task with highest computation time is reduced. 

The latency of this pipeline system is the time between the arrival of one data 

set at the system input and the time at which the result data set is available at the 
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Figure 10. A pipeline system with both spatial and temporal data dependencies. 

system output. Therefore, the latency for processing one data set is the sum of the 

execution times of all the tasks except for the tasks with temporal data dependency, 

i.e., 
n-l 

(3) latency = ^ Tj - ]T Tt 
i=0 i€TD 

Notice that temporal data dependency (TD) exists when a task processes data sets 

in previous time instances and its results is applying to the data set in current time 

instance. The temporal data dependency does not affect the latency because the 

task with temporal data dependency is operating on previous data sets at any time 

instance and its following tasks do not wait for its completion on current time instant 

data set. In the example shown in Figure 9, no temporal data dependency exists in 

the pipeline system and its latency is 

latency^ =■ T0 + max(Ti, T2) + T3. 
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Figure 10 shows an example of a parallel pipeline system with both spatial and 

temporal data dependencies. In this example, a temporal data dependency exists 

between task 2 and task 3. The latency for this pipeline system becomes 

latency'^ = To + T\ + T$ 

while the throughput is still the same as Equation (1), 

1 
throughput 4 = T- 

0<i<4 

To reduce the overall system latency, every parallel task must be allocated more 

processors to decrease its execution time and consequently the overall execution time 

of the integrated system. 

2.5.2    Data Redistribution 

In an integrated system which implements several tasks that feed data to each other, 

data redistribution is required when it is fed from one parallel task to another. This 

is because the way data is distributed in one task may not be the most appropri- 

ate distribution for another task for algorithmic or efficiency reasons. For example, 

given an input two-dimensional array, one task may process it in a row major fash- 

ion. The next task that receives this two-dimensional array may require a column 

major order. To ensure efficiency of continuity of memory access, data reorganiza- 

tion and redistribution are required in both intra-task and inter-task communication 

phase. In inter-task communication, data redistribution also allows concentration of 

communication at the beginning and the end of each task. 

In the parallel pipeline system shown in Figure 7, compute nodes are partitioned 

into several disjoint groups and each group is assigned to exactly one task in the 

pipeline. As one group of nodes completes its computation on one set of input data, 

its output is to be transferred to its successor group or groups, depending on the 

structure of the pipeline. Data transfer between two tasks represents interprocessor 

communication between two groups of compute nodes. Since the data access patterns 
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Figure 11. Two types of data redistribution: corner turn and left-right shift. Corner 

turn involves an all-to-all personalized communication and left-right shift involves a 

many-to-many communication. 

of one task may be different from its successor tasks, communication patterns can be 

either a corner-turn or a left-right shift pattern. 

We now use an example to explain these two types of data redistribution. Given 

a three-dimensional array as the input to one parallel task, the array is evenly par- 

titioned into several sub-arrays across multiple compute nodes assigned to this task. 

This partitioning can be done along one of the array's three axes due to the efficiency 

of memory access. However, after the completion of computation, partitioning of the 

output array of one group along the same axis may not be suitable for its successor 

group. Since any single data layout will not always provide efficient computation for 

data access along two orthogonal axes, the data re-mapping problem exists when in- 

termediate data is transmitted between different parallel tasks. This communication 

pattern is called a corner-turn communication pattern, shown in Figure 11(a). A 

three-dimensional array is partitioned along axis z for task p with 3 compute nodes 

while it is partitioned along axis x for task q with 4 nodes.  Therefore, it may be 
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necessary to reorganize the data during message packing in the send phase of one 

task and message unpacking in the receive phase of its successor task. The com- 

munication pattern of corner-turn data redistribution involves a complete exchange 

(all-to-all personalized) pattern between two groups of compute nodes. 

On the other hand, the left-right shift communication pattern occurs when an 

array is partitioned along the same axis between two consecutive parallel tasks. In 

Figure 11(b), a three-dimensional array is partitioned along axis x for both p and q 

tasks. Left-right shift communication pattern does not involve data reorganization. 

Each node in one task only communicates with some of the nodes in its successor 

task (a many-to-many communication.) Therefore, the communication overhead of 

left-right shift pattern is much less than the corner-turn pattern. 

Efficient runtime functions and strategies have been developed to perform data 

redistribution within the same group of processors [20, 21, 22, 23]. These techniques 

reduce the communication time on irregular all-to-all redistribution by minimizing 

node contention. However, our parallel pipeline system model requires data redis- 

tribution between two different groups of processors and those algorithms were not 

designed for the case of our model. In the next chapter, we present several efficient 

redistribution algorithms which focus on communication between different sets of 

processors. 

2.5.3    Task Scheduling and Processor Assignment 

An important factor in the performance of a parallel system, is how the computa- 

tional load is mapped onto the processors in the system. Ideally, to achieve maximum 

parallelism, the load must be evenly distributed across the processors. In recent years, 

much research has been devoted to the problem of mapping large computations onto 

a system of parallel processors. Various aspects of the general problem have been 

studied, including different parallel architectures, task structures, communication is- 

sues, and load balancing [3, 24]. The problem of statically mapping the workload of 

a parallel algorithm to processors in a distributed memory system, has been studied 
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under different problem models, such as [25, 26]. The mapping policies are adequate 

when an application consists of a single task, and the computational load can be 

determined statically. These static mapping policies do not model applications con- 

sisting of a sequence of tasks (algorithms), where the output of one task becomes the 

input to the next task in the sequence. 
Optimal use of resources is particularly important in high-performance embedded 

applications due to limited resources and other constraints such as desired latency or 

throughput [6]. When several parallel tasks need to be executed in a pipelined fashion, 

tradeoffs exist between assigning processors to maximize the overall throughput and 

assigning processors to minimize a single data set's response time (or latency.) The 

throughput requirement says that when allocating processors to tasks, it should be 

guaranteed that all the input data sets will be handled in a timely manner. That 

is, the processing rate should not fall behind the input data rate. The response 

time criteria, on the other hand, require minimizing the latency of computation on a 

particular set of data input. 
To reduce the latency, each parallel task must be allocated more processors to re- 

duce its execution time, and consequently, the overall execution time of the integrated 

system. But it is well known that the efficiency of parallel programs usually decreases 

as the number of processors is increased. Therefore, the gains in this approach may 

be incremental. On the other hand, throughput can be increased by increasing the 

latency of individual tasks by assigning them fewer processors, and therefore, increas- 

ing efficiency, but at the same time having multiple streams active concurrently in a 

staggered manner to satisfy the input-data rate requirements. We will present these 

tradeoffs and discuss various implementation issues in the later chapters. 

2.6    Summary 

This chapter first compared two competing approaches to build a radar signal pro- 

cessing system namely by using custom VLSI and HPC systems. Due to the techno- 

logical advances in recent years, HPC systems are becoming a practical alternative 
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that provide the necessary computational power to solve many scientific problems. 

These systems offer advantages of programming generality, software portability, archi- 

tectural flexibility, affordability, and performance scalability over the systems using 

traditional custom VLSI. 
An overview of radar signal processing, especially the STAP algorithm, was pro- 

vided. The computational characteristics embedded in most of the existing STAP 

algorithms were analyzed. Based on the studies of these characteristics, we designed 

a parallel pipeline computational model that is suitable for the type of STAP appli- 

cations. Parallelization issues of this model on HPC systems were also addressed in 

this chapter. These issues involve data redistribution between two groups of proces- 

sors and processor assignment among tasks in the pipeline. In the next chapter, we 

implement a STAP application using our parallel pipeline model to demonstrate the 

performance efficiency and scalability that this model can achieve. 

C-48 



Chapter 3 

Parallel Pipelined STAP System 

Space-time adaptive processing (STAP) is a well known technique in the area of 

airborne surveillance radars used to detect weak target returns embedded in strong 

ground clutter, interference, and receiver noise. STAP is a 2-dimensional adaptive 

filtering algorithm that attenuates unwanted signals by placing nulls in their directions 

of arrival and Doppler frequencies. Most STAP applications are computationally 

intensive and must operate in real time. High performance computers are becoming 

mainstream due to the progress made in hardware as well as software support in 

the last few years. They can satisfy the STAP computational requirements of real- 

time applications while increasing the flexibility, affordability, and scalability of radar 

signal processing systems. However, efficient parallelization of a STAP algorithm 

which has embedded in it different processing steps is challenging, and requires several 

optimizations. 
This chapter describes our parallel pipelined implementation of a Pulse Repetition 

Interval (PRI)-staggered post-Doppler STAP algorithm. The design and implemen- 

tation of the application is portable. Performance results are presented for the Intel 

Paragon at the Air Force Research Laboratory (AFRL), IBM SP at Argonne National 

Laboratory (ANL), and SGI Origin at Northwestern University. AFRL successfully 

installed their implementation of the STAP algorithm onboard an airborne platform 

and performed four flight experiments in May and June 1996 [12]. These experiments 
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Figure 12. RTMCARM system block diagram. 

were performed as part of the Real-Time Multi-Channel Airborne Radar Measure- 

ments (RTMCARM) program. The RTMCARM system block diagram is shown in 

Figure 12. In that real-time demonstration, live data from a phased array radar was 

processed by the onboard Intel Paragon and results showed that high performance 

computers can deliver a significant performance gain. However, that implementation 

used compute nodes of the machine only as independent resources in a round robin 

fashion to run different instances of STAP (rather than speeding up one instance of 
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STAP.) Using this approach, the throughput may be improved, but the latency is 

limited by what can be achieved using one compute node. 

For our parallel implementation of this real application we have designed a model 

of the parallel pipeline system described in Chapter 2 where each pipeline is a col- 

lection of tasks and each task itself is parallelized. This parallel pipeline model was 

applied to the STAP algorithm with each step as a task in a pipeline. This permits 

us to significantly improve latency as well as throughput. 

This chapter describes parallelization process and performance results. In addi- 

tion, design considerations for portability, task mapping, parallel data redistribution, 

parallel pipelining as well as system-level and task-level performance measurement 

are discussed. Finally, the performance and scalability of the implementation for a 

large number of processors is demonstrated. 

This chapter is organized as follows: Section 3.1 presents an overview the STAP 

algorithm we implemented in our work, Section 3.2 presents specific details of parallel 

pipeline STAP implementation. Section 3.3 describes the software development and 

the configurations of system platforms we used in the experiments. Performance 

results are presented in Section 3.4. 

3.1    Algorithm Overview 

The adaptive algorithm, which cancels Doppler shifted cluttei returns as seen by 

the airborne radar system, is based on a least squares solution to the weight vector 

problem. This approach has traditionally yielded high clutter rejection, but suffers 

from severe distortions in the adapted main beam pattern and resulting loss of gain 

on the target. Our approach introduces a set of constraint equations into the least 

squares problem which can be weighted proportionally to preserve main beam shape. 

The algorithm is structured so that multiple receive beams may be formed without 

changing the matrix of training data. Thus, the adaptive problem can be solved once 

for all beams which lie within the transmit illumination region. The airborne radar 

system was programmed to transmit five beams, each 25 degrees in width, spaced 
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20 degrees apart. Within each transmit beam, six receive beams were formed by the 

processor. 

The algorithm consists of the following steps: 

1. Doppler filter processing, 

2. Weight computation, 

3. Beamforming, 

4. Pulse compression, and 

5. CFAR processing. 

Doppler filtering is performed on each receive channel using weighted Fast Fourier 

Transforms (FFT's). The analog portion of the receiver compensates the received 

clutter frequency to center the clutter frequency at zero regardless of the transmit 

beam position. This simplifies indexing of Doppler bins for classification as "easy" or 

"hard" depending on their proximity to mainbeam clutter returns. For the "hard" 

cases, Doppler processing is performed on two 125-pulse windows of data separated 

by three pulses (a STAP technique known as "PPJ-stagger"). Both sets of Doppler 

processed data are adaptively weighted in the beamforming process for improved 

clutter rejection. In the "easy" case, only a single Doppler spectrum is computed. 

This simpler technique has been termed Post Doppler Adaptive Beamforming and 

is quite effective at a fraction of the computational cost when the Doppler bin is 

well separated from mainbeam clutter. In these situations, an angular null placed in 

the direction of the competing ground clutter provides excellent rejection. Selectable 

window functions are applied to the data prior to the Doppler FFT's to control 

sidelobe levels. The selection of a window is a key parameter in that it impacts the 

leakage of clutter returns across Doppler bins, traded off against the width of the 

clutter passband. 

An efficient method of beamforming using recursive weight updates is made pos- 

sible by a block update form of the QR decomposition algorithm. This is especially 
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significant in the "hard" Doppler regions, which are computed using separate weights 

for six consecutive range intervals. The recursive algorithm requires substantially less 

training data (sample support) for accurate weight computation, as well as providing 

improved efficiency. Since the hard regions have one sixth the range extent from which 

to draw data, this approach dealt with the paucity of data by using past looks at the 

same azimuth, exponentially forgotten, as independent, identically distributed esti- 

mates of the clutter to be cancelled. This assumes a reasonable revisit time for each 

azimuth beam position. During the flight experiments, the five 25 degree transmit 

beam positions were revisited at a 1-2 Hz rate (5-10 CPIs per second.) 

The training data for the easy Doppler regions was selected using a more tradi- 

tional approach. Here, the entire range extent was available for sample support, so 

the entire training set was drawn from three preceding CPIs for application to the 

next CPI in this azimuth beam position. In this case, a regular (non-recursive) QR 

decomposition is performed on the training data, followed by block update to add in 

the beam shape constraints. 

Pulse compression is a compute intensive task, especially if applied to each receive 

channel independently. In general, this approach is required for adaptive algorithms 

which compute different weight sets as a function of radar range. Our algorithm, 

however, with its mainbeam constraint, preserves phase across range. In fact, the 

phase of the solution is independent of the clutter nulling equations, and appears 

only in the constraint equations. The adapted target phase is preserved across range, 

even though the clutter and adaptive weights may vary with range. Thus, pulse 

compression may be performed on the beamformed output of the receive channels 

providing a substantial savings in computations. 

In the sections to follow, we present the process of parallelization and software 

design considerations including those for portability, task mapping, parallel data re- 

distribution, parallel pipelining and issues involved in measuring performance in im- 

plementations when not only the performance of individual tasks is important, but 

overall performance of the integrated system is critical. We demonstrate the perfor- 

mance and scalability for a large number of processors. 
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3.2    Design and Implementation 

The design of the parallel pipelined STAP algorithm is shown in Figure 13. The 

parallel pipeline system consists of seven basic tasks. We refer to the parallel pipeline 

as simply a pipeline in the rest of this chapter. The input data set for the pipeline is 

obtained from a phased array radar and is formed in terms of a coherent processing 

interval (CPI). Each CPI data set is a 3-dimensional complex data cube comprised of 

K range cells, J channels, and N pulses. The output of the pipeline is a report on the 

detection of possible targets. The arrows shown in Figure 13 indicate data transfer 

between tasks. Although a single arrow is shown, note that each represents multiple 

processors in one task communicating with multiple processors in another task. Each 

task * is parallelized by evenly partitioning its work load among P{ processors. The 

execution time associated with task *, Tu consists of the time to receive data from 
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the previous task, computation time, and time to send results to the next task. 

The calculation of weights is the most computationally intensive part of the STAP 

algorithm. For the computation of the weight vectors for the current CPI data cube, 

data cubes from previous CPIs are used as input data.   This introduces temporal 

data dependency.  For example, suppose that a set of CPI data cubes entering the 

pipeline sequentially are denoted by CPU, t = 0,1,....   At any time instance i, 

the Doppler filtering task is processing CPU and beamforming task is processing 

CPIi-i. In the meanwhile, the weight computation task is using past CPIs in the 

same azimuthal direction to calculate the weight vectors for CPU as described below. 

The computed weight vectors will be applied to CPU in the beamforming task at 

next time instance i +1. Thus, temporal data dependencies exist and are represented 

by arrows with dashed lines, TDlfl and TD2)4, in Figure 13 where TDid represents 

temporal data dependency of task j on data from task i. In a similar manner, spatial 

data dependencies SDid can be defined and are indicated in Figure 13 by arrows with 

solid lines. 
Throughput and latency are two important measures for performance evaluation 

on a pipeline system. The throughput of our pipeline system is the inverse of the 

maximum execution time among all tasks, i.e., 

throughput = —. v4) 
max li 
0<i<7 

To maximize the throughput, the maximum value of % should be minimized. In other 

words, no task should have an extremely large execution time. With a limited number 

of processors, the processor assignment to different tasks must be made in such a way 

that the execution time of the task with highest computation time is reduced. 

The latency of this pipeline system is the time between the arrival of the CPI data 

cube at the system input and the time at which the detection report is available at 

the system output. Therefore, the latency for processing one CPI is the sum of the 

execution times of all the tasks except weight computation tasks, i.e., 

latency = T0 + max{T3, T4) +T$ + T6 (5) 
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Equation (5) does not contain Tx and T2. The temporal data dependency does 

not affect the latency because weight computation tasks use data from the previous 

instance of CPI data rather than the current CPI. The filtered CPI data cube sent to 

the beamforming tasks do not wait for the completion of its weight computation but 

rather for the completion of the weight computation of the previous CPI. For example, 

when the Doppler filter processing task is processing CPU, the weight computation 

tasks use the filtered CPI data, CPU-U to calculate the weight vectors for CPU- At 

the same time, the beamforming tasks are working on CPU-i using the data received 

from the Doppler filter processing and weight computation tasks. The beamforming 

tasks do not wait for the completion of the weight computation task when processing 

CPIi-i data. The overall system latency can be reduced by reducing the execution 

times of the parallel tasks, e.g., T0, T3, T4, T5, and T6 in our system. 

Next, we briefly describe each task and its parallel implementation. A detailed 

description of the STAP algorithm we used can be found in [27, 28]. 

3.2.1    Doppler Filter Processing 

The input to the Doppler filter processing task is one CPI complex data cube received 

from a phased array radar. The computation in this task involves performing range 

correction for each range cell and the application of a windowing function (e.g. Plan- 

ning or Hamming) followed by a iV-point FFT for every range cell and channel. The 

output of the Doppler filter processing task is a 3-dimensional complex data cube of 

size Kx2JxN which is referred to as staggered CPI data. In Figure 13, we can see 

that this output is sent to the weight computation task as well as to the beamforming 

task. 
Both the weight computation and the beamforming tasks are divided into easy 

and hard parts. These two parts use different portions of staggered CPI data and the 

associated amounts of computation are also different. The easy weight computation 

task uses range samples only from the first half of the staggered CPI data while the 

hard weight computation task uses range samples from the entire staggered CPI data. 
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Figure 14. Partitioning strategy for Doppler filter processing task. The CPI data cube is 

partitioned among P0 processors across dimension K. 

On the other hand, easy and hard beamforming tasks use all range cells rather than 

some of them. Therefore, the size of data to be transfered to weight computation 

tasks is different from the size of data to be sent to beamforming tasks. In Figure 13, 

thicker arrows connected from Doppler filter processing task to beamforming tasks 

indicates that the amount of data sent to the beamforming tasks is more than the 

amount of data sent to the weight tasks. 

The basic parallelization technique employed in the Doppler filtering processing 

task is to partition the CPI data cube across the range cells, that is, if P0 processors 

are allocated to this task, then each processor is responsible for ^ range cells. The 

reason for partitioning the CPI data cube along dimension K is that it maintains an 

efficient accessing mechanism for continuous memory space. A total of K ■ 2 J N-point 

FFTs are performed and the best performance is achieved when every JV-point FFT 

accesses its N data sets from a continuous memory space. Figure 14 illustrates the 

parallelization of this step. The inter-task communication from the Doppler filter 

processing task to weight computation tasks is explained in Figure 15(b). Since only 

subsets of range cells are needed in weight computation tasks, data collection has to 

be performed on the output data before passing it to the next tasks. Data collection 

is performed to avoid sending redundant data and hence reduces the communication 

costs. 
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3.2.2    Weight Computation 

The second step in this pipeline is the computation of weights that will be applied to 

the next CPI. This computation for N pulses is divided into two parts, namely, "easy" 

ana "hard" Doppler bins, as shown in Figure 15(a). The hard Doppler bins (pulses), 

Nhard, are those in which significant ground clutter is expected. The remaining bins 

are easy Doppler bins, Neasy. The main difference between the two is the amount 

of data used and the amount of computation required. Not all range cells in the 

staggered CPI are used in weight calculation and different subsets of range samples 

are used in easy Doppler bins and hard Doppler bins. 

To gather range samples for easy Doppler bins to calculate the weight vectors 

for the current CPI, data is drawn from three preceding CPIs by evenly spacing 

out over the first one third of K range cells of each of the three CPIs. The easy 

weight computation task involves Neasy QR factorizations, block updates, and back 

C-58 



substitutions. In the easy weight calculation, only range samples in the first half 

of the staggered CPI data are used while hard weight computation employs range 

samples from the entire staggered CPI. Furthermore, range extent for hard Doppler 

bins is split into six independent segments to further improve clutter cancelation. To 

calculate weight vectors for the current CPI, range samples used in hard Doppler 

bins are taken from the immediately preceding staggered CPI combined with older, 

exponentially forgotten, data from CPIs in the same direction. This is done for 

each of the six range segments. The hard weight computation task involves 6Nhard 

recursive QR updates, block updates, and back substitutions. The easy and hard 

weight computation tasks process sets of 2-dimensional matrices of different sizes. 

Temporal data dependency exists in the weight computation task because both 

easy and hard Doppler bins use data from previous CPIs to compute the weights for 

the current CPI. The outputs of this step, the weight vectors, are two 3-dimensional 

complex data cubes of size Neasy x J x M and Nhard x 2 J x M for easy and hard weight 

computation tasks, respectively, where M is the number of receive beams. These two 

weight vectors are to be applied to the current CPI in the beamforming task. Because 

of the different sizes of easy and hard weight vectors, the beamforming task is also 

divided into easy and hard parts to handle different amounts of computation. 

Given the uneven nature of weight computations, different sets of processors are 

allocated to the easy and hard tasks. In Figure 13, Pi processors are allocated to 

easy weight computation and P2 processors to hard weight computation. Since weight 

vectors are computed for each pulse (Doppler bin), the parallelization in this step 

involves partitioning of data along dimension N, that is, each processor in easy weight 

computation task is responsible for ^** pulses while each processor in hard weight 

computation task is responsible for ^^ pulses, as shown in Figure 16. 

Notice that Doppler filter processing and weight computation tasks employ dif- 

ferent data partitioning strategies (along different dimensions.) Due to different par- 

titioning strategies, an all-to-all personalized communication scheme is required for 

data redistribution from Doppler filter processing task to the weight computation 

task.  That is, each of the Pi and P2 processors needs to communicate with all P0 
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Figure 16. Partitioning strategy for easy and hard weight computation tasks. Data cube 

is partitioned across dimension N. 

processors allocated to the Doppler filter processing task to receive CPI data. Since 

only subsets of Doppler filter processing task's output are used in the weight compu- 

tation task, data collection is performed before inter-task communication. Although 

data collection reduces inter-task communication cost, it also involves data copying 

from non-continuous memory space to continuous buffers. Sometimes the cost of data 

collection may become extremely large due to hardware limitations (e.g. high cache 

miss ratio.) When sending data to the beamforming task, the weight vectors have 

already been partitioned along dimension N which is the same as the data partition- 

ing strategy for the beamforming task. Therefore, no data collection is needed when 

transferring data to the beamforming task. 

3.2.3    Beamforming 

The third step in this pipeline (which is actually the second step for the current CPI 

because the result of the weight task is only used in the subsequent time step) is 

beamforming. The inputs of this task are received from both Doppler filter process- 

ing and weight computation tasks, as shown in Figure 13. The easy weight vector 

received from easy weight computation task is applied to the easy Doppler bins of 
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the received CPI data while the hard weight vector is applied to hard Doppler bins. 

The application of weights to CPI data requires matrix-matrix multiplications on two 

received data sets. Due to different matrix sizes for multiplications in easy and hard 

beamforming tasks, uneven computational load results. The beamforming task is also 

divided into easy and hard parts for parallelization purposes. This is because the easy 

and hard beamforming tasks require different amounts and portions of CPI data, and 

involve different computational loads. The inputs for the easy beamforming task are 

two 3-dimensional complex data cubes.  One data cube which is received from the 

easy weight computation task is of size Neasy x M x J. The other is from Doppler 

filter processing task and its size is ATeasy x J x K. A total of Neasy matrix-matrix 

multiplications are performed where each multiplication involves two matrices of size 

M x J and J x K, respectively. The hard beamforming task also has two input data 

cubes which are received from Doppler filter processing and hard weight computation 

tasks. The data cube of size SNhard x M x 2 J is received from hard weight compu- 

tation task and the Doppler filtered CPI data cube is of size Nhard x2JxK. Since 

range cells are divided into 6 range segments, there are a total of 6Nhard matrix- 

matrix multiplications in hard beamforming.  The results of the beamforming task 

are two 3-dimensional complex data cubes of size Neasy x M x K and NhaTd xMxK 

corresponding to easy and hard parts respectively. 

In a manner similar to the weight computation task, parallelization in this step also 

involves partitioning of data across the N dimension (Doppler bins.) Different sets of 

processors are allocated to easy and hard beamforming tasks. Since the cost of matrix 

multiplications can be determined accurately, the computations are equally divided 

among the allocated processors for this task. As seen from Figure 13, this task requires 

data to be communicated from the first as well as the second task. Because data is 

partitioned along different dimensions, an all-to-all personalized communication is 

required for data redistribution between Doppler filter processing and beamforming 

tasks. The output of the Doppler filter processing task is a data cube of size K x 

2J x N which is redistributed to the beamforming task after data reorganization in 

the order of N x K x 2J. Data reorganization has to be done before the inter-task 
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communication between the two tasks takes place, as shown in Figure 17. 

Data reorganization involves data copying from non-continuous memory space and 

its cost may become extremely large due to cache misses. For example, two Doppler 

bins in the same range cell and the same channel are stored in contiguous memory 

space. After data reorganization, they are ^ • J element distance apart. Therefore, if 

P0 is small and the size of CPI data subcube partitioned in each processor is large then 

it is quite likely that expensive data reorganization will be needed which becomes a 

major part of communication overhead. The algorithms which perform data collection 

and reorganization are crucial to exploit the available parallelism. Note that receiving 

data from weight computation tasks does not involve data reorganization or data 

collection because they have the same partitioning strategy (along dimension N.) 
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Figure 18. Partitioning strategy for pulse compression task. Data cube is partitioned 

across dimension N into P5 processors. 

3.2.4    Pulse Compression 

The input to the pulse compression task is a 3-dimensional complex data cube of size 

NxMxK,as shown in Figure 18. This data cube consists of two subcubes of size 

Neasy xMxK and NhardxMxK which are received from easy and hard beamforming 

talks respectively. Pulse compression involves convolution of the received signal with 

a replica of the transmit pulse waveform.  This is accomplished by first performing 

X-point FFTs on the two inputs, point-wise multiplication of the intermediate result 

and then computing the inverse FFT. The output of this step is a 3-dimensional real 

data cube of size N x M x K. The parallelization of this step is straightforward and 

involves the partitioning of data cube across the N dimension.  Each of the FFTs 

could be performed on an individual processor and hence each processor in this task 

gets an equal amount of computation. Partitioning along the N dimension also results 

in an efficient accessing mechanism for continuous memory space when running FFTs. 

Since both beamforming and pulse compression tasks use the same data partitioning 

strategy (along dimension N), no data collection or reorganization is needed prior to 

communication between these two tasks. After pulse compression, the square of the 

magnitude of the complex data is computed to move to the real power domain. This 

cuts data set size in half and eliminates the computation of the square root. 
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3.2.5    CFAR Processing 

The input to this task is an N x M x K real data cube received from the pulse 

compression task. The sliding window constant false alarm rate (CFAR) processing 

compares the value of a test cell at a given range to the average of a set of reference 

cells around it times a probability of false alarm factor. This step involves summing 

up a number of range cells on each side of the cell under test, multiplying the sum by a 

constant, and comparing the product to the value of the cell under test. The output 

of this task, which appears at the pipeline output, is a list of targets at specified 

ranges, Doppler frequencies, and look directions. The parallelization strategy for this 

step is the same as for the pulse compression task. Both tasks partition data cube 

along the N dimension. Also, no data collection or reorganization is needed in pulse 

compression task before sending data to this task. 

Figure 19 illustrates the organization of input/output data cubes for all tasks in 

this STAP algorithm. All data cubes shown in this figure are partitioned along its 

first dimension across the assigned processors in every task. For example, the input 

data cube to the Doppler filter processing task organized as K x J x N is partitioned 

along dimension K. 

3.3    Software Development and System Platform 

All the parallel programs development and their integration was performed using 

ANSI C language and message passing interface (MPI) [7]. All the functions needed 

for data redistribution etc. were developed in the same fashion. This permits easy 

portability across various platforms which support C language and MPI. Since MPI is 

becoming a de facto standard for high-performance systems, we believe the software is 

portable. To facilitate upward or downward scalability, the number of processors, data 

sizes and other important parameters are runtime inputs so that the same program 

can be run on different number of processors without compiling it again. This allows, 

for example, the same function to be executed on 2, 4 and so on, number of processors. 
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Table 3. Configurations of the system platforms on which we ran the parallel pipeline 

STAP codes. 

AFRL 

Paragon 

ANL 

IBMSP 

NWU 

SGI Origin 

Configuration MPPf Cluster Cluster 

CPU Type i860 RISC P2SC* MIPS R10000 

RAM (MByte) 64 256 1024 

MFLOPS/proc 100 480 390 

MHz /proc 40 120 195 

No. nodes 232 80 8 

No. proc/node 3 1 1 

Execution mode     dedicated 
 1  

dedicated time shared 

tMPP: Massively Parallel Processor 

tP2SC: Power 2 SuperScalar chip 

The High Performance Computer (HPC) system we used to test our STAP code 

are: 232-node Intel Paragon at the Air Force Research Laboratory, 80-node IBM SP 

at Argonne National Laboratory, and 8-node SGI Origin at Northwestern University. 

Their system configurations are given in Table 3. 
In our implementation, a double buffering strategy was used both in receive and 

send phases. During the execution loops, this strategy employs two buffers alterna- 

tively such that one buffer can be processed during the communication phase while 

the other buffer is processed during the compute phase. Together with the double 

buffering implementation, asynchronous send and receive calls were employed in order 

to maximize the overlap of communication and computation. The general execution 

flow and the approach to measure the timing for each part of computation and com- 

munication is given in Figure 20. 
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n : number of CPIs 

inBuf[2]      : input data buffer 

outBuf[2]    : output data buffer 

1 for  i <- 0 to n - 1 

2 prev «— (i — 1) mod 2 

3 cur <— i mod 2 

4 next <- (i + 1) mod 2 

5 to «- read timer 

6 post async receives for inBuf[next] 

7 wait for completion of previous receives for inBuf[cur] 

8 data unpacking on iiiBuf[cw] 

9 ti <- read timer 

10 computation on inBuf[cur] and result in outBuf[cur] 

11 t2 •<— read timer 

12 data packing for outgoing message on outBuf[cur] 

13 post async sends for outBuf[cur] to next task 

14 wait for completion of sends for outBuf[preu] 

15 t3 <— read timer 

Figure 20. Implementation of timing computation and communication for each task. A 

double buffering strategy is used to overlap the communication with the computation. 

Receive time = U - t0, compute time = t2 - *i, and send time = t3 - -t2. 
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Table 4. The number of floating point operations for the PRI-staggered post Doppler 

STAP algorithm to process one CPI data. 

Task number of floating point operations 

Doppler filter processing 79,691,776 

hard weight computation 197,038,464 

easy weight computation 13,851,792 

easy beamforming 28,311,552 

hard beamforming 44,040,192 

pulse compression 38,928,384 

CFAR processing 1,690,368 

Total 403,552,528 

3.4    Performance Results 

We specified the parameters that were used in our experiments as follows: 

• range cells (K) = 512, 

• channels (J) = 16, 

• pulses (N) = 128, 

• receive beams (M) = 6, 

• easy Doppler bins {NeaSy) = 72, and 

• hard Doppler bins {Nhard) = 56. 

Given these values of parameters, the total number of floating point operations 

(flops) required for each CPI data to be processed throughout this STAP algorithm 

is 403,552,528. Table 4 shows the number of flops required for each task. A total of 

25 CPI complex data cubes were generated as inputs to the parallel pipeline system. 
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Each task in the pipeline contains three major parts: receiving data from the previous 

task, main computation, and sending results to the next task. Performance results 

are measured separately for these three parts, namely receiving time, computation 

time, and sending time. In each task timing results for processing one CPI data were 

obtained by accumulating the execution time for the middle 20 CPIs and then aver- 

aging it. Timing results presented in this chapter do not include the effect of initial 

setup (first 3 CPIs) and final iterations (last 2 CPIs). 

3.4.1    Computation Costs 

The task of computing hard weights is the most computationally demanding task. The 

Doppler filter processing task is the second most demanding task. Naturally, more 

processors are assigned to these two tasks in order to obtain a good performance. 

For each task in the STAP algorithm, parallelization was done by evenly dividing 

computational load across processors. Since there is no intra-task data dependency, no 

inter-processor communication occurs within any single task in the pipeline. Another 

way to view this is that intra-task communication is moved to the beginning of each 

task within the data redistribution step. Figure 21 gives the computation performance 

results as functions of numbers of processors and the corresponding speedup on the 

AFRL Intel Paragon. For each task, we obtained linear speedups. 

3.4.2    Inter-task Communication 

Inter-task communication refers to the communication between sending and receiv- 

ing (distinct and parallel) tasks. This communication cost depends on both processor 

assignment for each task as well as on the volume and extent of data reorganization. 

Table 5 presents the inter-task communication timing results. Each sub-table consid- 

ers pairs of tasks where the number of processors (# proc) for both tasks are varied. 

In some cases timing results shown in the tables contain idle time for waiting for the 

corresponding task to complete. This happens when receiving task's computation 

part completes before the sending task has generated data to send. 
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Table 5. Timing results of inter-task communication. Time in seconds. # proc: number 

of processors. 

easy weight hard weight easy BF hard BF 

# proc 16 56 112 16 16 

Doppler 

filter 

8 

16 

32 

send recv send recv send recv send recv send recv 

.1332 

.0679 

.0340 

.4339 

.1780 

.0511 

.1332 

.0679 

.0332 

.3603 

.1048 

.0034 

.1332 

.0679 

.0340 

.4441 

.1837 

.0563 

.1332 

.0679 

.0340 

.4509 

.1955 

.0646 _  

.1332 

.0679 

.0340 

.4395 

.1843 

.0519 

easy beamforming 

# proc 8 16 

easy 

weight 

4 

8 

16 

send recv send recv 

.0005 

.0088 

.0768 

.1956 

.0883 

.0807 

.0007 

.0004 

.0003 

.2570 

.0905 

.0660 

hard beamforming 

#proc 8 16 

hard 

weight 

28 

56 

112 

send recv send recv 

.0007 

.0100 

.1824 

.1798 

.1468 

.1398 

.0007 

.0065 

.0005 

.2485 

.0765 

.0543 

pulse compression 

# Proc 8 16 

easy 

BF 

4 

8 

16 

send recv send recv 

.0069 

.0036 

.0580 

.5016 

.1379 

.0771 

.0069 

.0036 

.0022 

.5714 

.2090 

.0569 

hard 

BF 

4 

8 

16 

send recv send recv 

.0054 

.0029 

.1159 

.5016 

.1379 

.0771 

.0054 

.0030 

.0017 

.5714 

.2090 

.0569 

CFAR processing 

#proc 4 8 

pulse 

compression 

4 

8 

16 

send recv send recv 

.0099 

.0053 

.1256 

.3351 

.0662 

.0435 

.0098 

.0051 

.0028 

.3348 

.1750 

.1783 

From most of the results the following important observations can be made. First, 

when the number of processors is unbalanced, the communication performance is not 

very good. Second, as the number of processors is increased in the sending and 

receiving tasks, communication scales tremendously. This happens for two reasons. 

One, each processor has less data to reorganize, pack and send and each processor 

has less data to receive; and two, contention at sending and receiving processors is 

reduced. Thus, it is not sufficient to improve the computation times for such parallel 

pipelined applications to improve throughput and latency. 

In Figure 20 receiving time for each loop is given by subtracting h from t0. Since 
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computation has to be performed only after input data has been received, receiving 

time may contain the waiting time for the input, shown in line 4. Sending time, t3-t2, 

measures the time containing data packing (collection and reorganization) and posting 

sending requests. Because of the asynchronous send used in the implementation, 

the results shown here are visible sending time and the actual sending action may 

occur in other portions of the task. Similar to the receiving time, sending time 

may also contain waiting time for the completion of sending requests in the previous 

loop. With large number of processors, there is tremendous scaling in performance 

of communicating data as the number of processors is increased. This is because the 

amount of processing for communication per processor is decreased (as it handles less 

amount of data), amount of data per processor to be communicated is decreased and 

traffic on links going in and out of each processor is reduced. This model scales well 

for both computation and communication. 

In Figure 20 receiving time for each loop is given by subtracting tx from t0. Since 

computation has to be performed only after input data has been received, receiving 

time may contain the waiting time for the input, shown in line 4. Sending time, t3-i2, 

measures the time containing data packing (collection and reorganization) and posting 

sending requests. Because of the asynchronous send used in the implementation, the 

results shown here are visible sending time and the actual sending action may occur in 

other portions of the task. Similar to the receiving time, sending time may also contain 

waiting time for the completion of sending requests in the previous loop, shown in line 

8. Especially in the cases when two communicating tasks have uneven partitioned 

parallel computation load, this effect becomes more apparent. With large number 

of processors, there is tremendous scaling in performance of communicating data as 

the number of processors is increased. This is because the amount of processing for 

communication per processor is decreased (as it handles less amount of data), amount 

of data per processor to be communicated is decreased and traffic on links going in 

and out of each processor is reduced. This model scales well for both computation 

and communication. 
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3.4.3    Integrated System Performance 

Integrated system refers to the evaluation of performance when all the tasks are 

considered together. Throughput and latency are the two most important measures 

for performance evaluation in addition to individual task computation time and inter- 

task communication time. Table 6 gives timing results on the AFRL Paragon for three 

different cases with different processor assignments. The performance results on the 

ANL SP and SGI Origin at Northwestern University are given in Table 7. 

In Section 3.2 equations (4) and (5) provide the throughput and latency for one 

CPI data set. The measured throughput is obtained by placing a timer at the end 

of last task and recording the time difference between every loop (that is between 

two successive completions of the pipeline.) The inverse of this measure provides 

the throughput. On the other hand, it is more difficult to measure latency because 

it requires synchronizing clocks at the first task and last task's processors. Thus, 

to obtain the measured latency, the timing measurement should be made by first 

reading time at both first task and last task when the first task is ready to read a 

new input data. This can be done by sending a signal from the first task to the last 

task's processor when the first task is ready for reading the new input data. Then 

the timer for last task can be started. 

In fact, the latency given in equation (5) represents an upper bound because 

the way we time tasks contains the time of waiting for input from previous task. This 

waiting time portion overlaps with the computation time in the previous tasks and 

should be excluded from the latency. Thus the latency results are conservative values 

and the real latency is expected to be smaller than this value. However, the latency 

given from equation (5) indicates the worst-case performance for our implementation. 

The real latency equation, therefore, becomes 

real  latency = T0 + maxfö, T{) + T'b + T6 (6) 

where T[ = T{ - idle time at receiving, i = 3, 4, 5, and 6. 

Figure 22 gives the throughput and latency results corresponding to the 3 cases in 

Table 6. From these 3 cases, it is clear that even for latency and throughput measures 
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Table 6. Performance results on the Intel Paragon for 3 cases of processor assignments. 

Time in seconds. # proc: number of processors. 

case 1: total number of processors = 236 

#proc recv comp send total 

Doppler filter 32 .0055 .0874 .0348 .1276 

easy weight 16 .0493 .0913 .0003 .1408 

hard weight 112 .0555 .0831 .0005 .1390 

easy BF 16 .0658 .0708 .0021 .1387 

hard BF 28 .0936 .0414 .0010 .1361 

pulse compr 16 .0551 .0776 .0028 .1355 

CFAR 16 .0910 .0434 - .1344 

estimated 
throughput 

latency 

7.1019 

0.5362 

measured 
throughput 

latency 

7.2659 

0.3622 

case 2: total number of processors = 118 

# proc recv comp send total 

Doppler filter 16 .0110 .1714 .0668 .2492 

easy weight 8 .0998 .1636 .0003 .2637 

hard weight 56 .0979 .1636 .0005 .2621 

easy BF 8 .1302 .1267 .0036 .2605 

hard BF 14 .1782 .0822 .0017 .2622 

pulse compr 8 .1027 .1543 .0051 .2621 

CFAR 8 .1742 .0864 - .2606 

estimated 
throughput 

latency 

3.7919 

1.0342 

measured 
throughput 

latency 

3.7959 

0.6805 

case 3: total number of processors = 59 

#proc recv comp send total 

Doppler filter 8 .0219 .3509 .1296 .5024 

easy weight 4 .1796 .3254 .0003 .5053 

hard weight 28 .1779 .3265 .0006 .5050 

easy BF 4 .2439 .2529 .0068 .5037 

hard BF 7 .3370 .1636 .0032 .5039 

pulse compr 4 .1806 .3067 .0097 .4970 

CFAR 4 .3240 .1723 - .4963 

estimated 
throughput 

latency 

1.9791 

1.9996 

measured 
throughput 

latency 

1.9898 

1.3530 
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Table 7. Performance results on IBM SP and SGI Origin. 

IBMSP IBMSP 
case 1: total nodes = 52 Time in seconds 

node recv comp send total 

Doppler 8 .0068 .0593 .0964 .1625 

easy wgt 2 .1208 .0525 .0001 .1734 

hard wgt 28 .1048 .0639 .0001 .1689 

easy BF 4 .1072 .0605 .0001 .1678 

hard BF 4 .1069 .0615 .0002 .1686 

PC 4 .1146 .0527 .0001 .1674 

CFAR 2 .1296 .0402 - .1699 

estimated 
throughput 

latency 

5.7654 

0.6684 

measured 
throughput 

latency 

5.9104 

0.4273                | 

case 3: total nodes = 8 Time in seconds 

node recv comp send total    | 

Doppler 1 0.0484 .4240 .7688 1.2412 

easy wgt 1 1.1360 .1051 .0001 1.2412 

hard wgt 2 0.4950 .7464 .0001 1.2415 

easy BF 1 1.0047 .2352 .0001 1.2399 

hardBF 1 1.0018 .2387 .0001 1.2406 

PC 1 1.0418 .1986 .0001 1.2405 

CFAR 1 1.1602 .0802 - 1.2404 

estimated 
throughput 

latency 

0.8055 

4.9627 

measured 
throughput 

latency 

0.8057 

2.5973 

IBMSP 
case 2: total nodes = 26 Time in seconds 

node recv comp send total 

Doppler 4 .0129 .1070 .2031 .3230 

easy wgt 1 .2230 .1021 .0001 .3252 

hard wgt 14 .2182 .1072 .0001 .3255 

easy BF 2 .2052 .1185 .0001 .3238 

hard BF 2 .2054 .1189 .0001 .3244 

PC 2 .2231 .0989 .0001 .3221 

CFAR 1 .2439 .0809 - .3248 

estimated 
throughput 

latency 

3.0179 

1.2942 

measured 
throi 

lat 

ghput 

ency 

3.0810 

|                0.9062 

SGI Origin 
case 4: total nodes = 8 Time in seconds 

Doppler 

easy wgt 

hard wgt 

easy BF 

hardBF 

PC 

CFAR 

node 

estimated 

measured 

1 

comp 

0.0695 

1.4808 

0.9531 

1.3615 

1.3395 

1.3973 

1.5326 

throughput 

latency 

throughput 

latency 

.6437 

.0924 

.6208 

.2001 

.2220 

.1638 

.0303 

send 

.8540 

.0000 

.0005 

.0005 

.0012 

.0018 

total 

1.5671 

1.5732 

0.6352 

6.2554 

0.6395 

3.0983 

1.5744 

1.5620 

1.5627 

1.5628 

1.5629 
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Figure 22. Throughput and latency for the 3 cases in Table 6. Measured results are 

obtained from the experiments while estimated results are obtained from applying indi- 

vidual tasks' timing to equations (4) and (5). The unit of throughput is number of CPIs 

per second. The unit of latency is second. 

we obtain linear speedups from our experiments. Figure 23 shows the performance 

results corresponding to Table 23. We were limited to these number of processors 

due to the size of the machines. Both throughput and latency results scale well on 

the IBM SP at ANL. Given that this scale up is up to 236 processors on the Paragon 

and 52 processors on the SP, we believe these are very good results. 

As discussed in Chapter 2, tradeoffs exist between assigning processors to max- 

imize throughput and to minimize latency, given limited resources. Using two ex- 

amples, we illustrate how further performance improvements may (or may not) be 

achieved if few extra processors are available. We now take case 2 from Table 6 as an 

example and add some extra processors to tasks to analyze its effect to the throughput 

and latency. Suppose that case 2 has fulfilled the minimum throughput requirement 

and more processors can be added. Table 8 shows that adding 4 more processors to 

Doppler filter processing task not only increases the throughput but also reduces the 

latency. This is because the communication amount for each send and receive be- 

tween Doppler filter processing task to weight computation and to beamforming tasks 

is reduced (Table 8). So, clearly adding processors to one task not only affects that 
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Figure 23. Throughput and latency results correspond to the cases in Table 7. 

task's performance but has a measurable effect on the performance of other tasks. 

By increasing the number of processors 3%, the improvement in throughput is 32% 

and in latency is 19%. Such effects are very difficult to capture in purely theoretical 

models because of the secondary effects. 

Since the parallel computation load may be different among tasks, bottleneck 

problems arise when some tasks in the pipeline do not have proper numbers of pro- 

cessors assigned. If the number of processors assigned to one task with heavy work 

load is not enough to catch up the input data rate, this task becomes a bottleneck 

in the pipeline system. Hence, it is important to maintain approximately the same 

computation time among tasks in the pipeline system to maximize the throughput 

and also achieve higher processor utilization. One bottleneck task can be seen when 

its computation time is relatively much larger than the rest of the tasks. The entire 

system's performance degrades because the rest of the tasks have to wait for bottle- 

neck task's completion to send/receive data to/from it no matter how many more 

processors assigned to them and how fast they can complete their jobs. Therefore, 

poor task scheduling and processor assignment will cause significant portion of idle 

time in the resulted communication costs. In Table 9 we added a total of 16 more 

processors to pulse compression and CFAR processing tasks to the case in Table 8. 

Comparing to case 2 in Table 6, we can see that the throughput increased. However, 

the throughput did not improve compared to the results in Table 8, even though this 

assignment has 16 more processors. In this case, the weight tasks are bottleneck tasks 
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Table 8. Performance results for adding 4 more processors to Doppler filter processing 

task to case 2 in Table 6. Time in seconds. 

total number of processors i = 122 

#proc recv comp send total 

Doppler filter 20 .0090 .1395 .0540 .2024 

easy weight 8 .0519 .1633 .0003 .2155 

hard weight 56 .0486 .1644 .0005 .2135 

easy BF 8 .0815 .1272 .0037 .2124 

hard BF 14 .1232 .0823 .0018 .2073 

pulse compr 8 .0519 .1543 .0051 .2113 

CFAR 8 .1240 .0864 - .2105 

throughput 

latency 

5.0213 

0.5498 

because their computation costs are relatively higher than other tasks. We can see 

that the receiving time of the rest of tasks are much larger than their computation 

time. A significant portion of idle time waiting for the completion of weight tasks 

is in the receiving time. On the other hand, we observe 23% improvement in the 

latency. This is because the computation time is reduced in the last two tasks with 

more processors assigned. Prom equation (6), the execution time of these two tasks, 

T5 and T^, decreases and therefore the latency is reduced. 

3.5    Summary 

In this chapter we presented the design and implementation for a PRI-staggered post- 

Doppler STAP algorithm implementation on the Intel Paragon machine at AFRL, the 

IBM SP at ANL and SGI Origin at Northwestern University. The performance results 

indicate that our approach of parallel pipelined implementation scales well both in 

terms of communication and computation. For the integrated pipeline system, the 

throughput and latency also demonstrate the linear scalability of our design.   Our 
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Table 9. Performance results for adding 16 more processors to pulse compression and 

CFAR processing tasks to the case in Table 8. Time in seconds. 

total number of processor: i = 138 

#proc recv comp send total 

Doppler filter 20 .0091 .1395 .0541 .2027 

easy weight 8 .0516 .1633 .0003 .2152 

hard weight 56 .0488 .1644 .0005 .2137 

easy BF 8 .0819 .1273 .0037 .2129 

hard BF 14 .1301 .0823 .0018 .2142 

pulse compr 16 .1337 .0775 .0028 .2140 

CFAR 16 .1701 .0434 - .2135 

throughput 

latency ... 

4.9052 

0.4247 

design and implementation not only shows tradeoffs in parallelization, processor as- 

signment, and various overheads in inter and intra-task communication etc., but it 

also shows that accurate performance measurement of these systems is very impor- 

tant. Consideration of issues such as cache performance when data is packed and 

unpacked, and impact of the parallelization and processor assignment for one task on 

another task are crucial. This is normally not easily captured in theoretical models. 
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Chapter 4 

Multi-Threaded Design and 

Implementation 

In this chapter, we present the multi-threaded design and implementation for the 

parallel pipelined STAP system on Intel Paragon MP system. The Intel Paragon 

at the Air Force Research Laboratory (AFRL), Rome, New York, is an MP system 

which has three processors on each compute node board. By running UNIX OSF/1 

operating system, each node can run multiple processes and each process can have 

multiple threads at the same time. In this chapter, we focus on the design of the 

parallel pipeline system and its implementation using multi-threading on this system. 

Our goal is to determine the performance enhancement that can be achieved when 

using small SMPs on each node of a large parallel computer for such an applica- 

tion. We also discuss the process of software development for such an application on 

parallel computers when latency and throughput are both considered together and 

present their tradeoffs. We demonstrate the performance improvement and scalability 

on different numbers of compute nodes for both threaded and non-threaded imple- 

mentations. The performance improvement results for the threaded implementation 

over non-threaded implementation are provided. Due to limitations of software in 

the Intel Paragon, the improvement is not as good as expected on the system with 

multi-processors on each compute node board. 
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Figure 24. The architecture of a Symmetrical Multi-Processor system. 

The rest of the chapter is organized as follows: Section 4.1 describes the archi- 

tecture of symmetrical multi-processor systems and the multi-threaded programming 

environment on the Intel Paragon MP system. Section 4.2 presents the multi-threaded 

design and implementation of the parallel pipeline STAP system. Performance results 

are given in Section 4.3. 

4.1    Symmetrical Multi-Processor System 

Symmetrical Multi-Processor (SMP) systems were introduced during the 1960s for 

mainframe computers. The concept of multiprogramming was first introduced on 

uni-processors with the goal of providing scaleup by overlapping CPU and I/O times 

and to support the time sharing of system resources by numerous users. Figure 24 

illustrates the architecture of an SMP system. In an SMP system, there are multiple 

processors each having its own private cache memory and having an equal access to 

the other system resources such as the main memory and I/O. The SMP architecture 

is favored in the 1990s because it is the most affordable way to achieve scalability; 

i.e., just plugging in one processor board provides an increase in performance. 

The development of the SMP programming environment was based on the fact 

that the main memory is common and is accessible to all processors running in the 

system. With the introduction of threads, or lightweight processes, the basic concept 

of multiprogramming is to allow more than one execution stream to work on the 

same workload. Each thread is an independent execution stream that synchronizes 
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Figure 25. The architecture of an Massively Parallel Processing system with SNIP nodes. 

its accesses to common data in the main memory with other threads by using locks 

to prevent simultaneous updating. The operating systems running on the SMP sys- 

tems must have proper scheduling algorithms to evenly distribute all threads among 

available processors. In this way, multiple threads with the same copy of binary code 

can be executed concurrently on more than one CPU and, therefore, the SMP system 

scalability is achieved. 
The Massively Parallel Processing (MPP) computers with SMP nodes are config- 

ured with a large set of SMP nodes linked by high speed interconnection data network. 

Processor communication within the a SMP node is carried out by accessing shared 

main memory. Processors in different SMP nodes communicate with each other using 

message passing through the interconnection data network. The architecture of an 

MPP system with SMP nodes is given in Figure 25. An Intel Paragon MP system is 

an example of this type of architecture. 
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Figure 26. The architecture of an Intel Paragon MP system. 

4.1.1    Intel Paragon MP System 

We implemented our parallel pipeline model of the STAP algorithm on the Intel 

Paragon XP/S parallel computer located at Air Force Research Laboratory (AFRL) 

in Rome, New York.   The compute partition of this machine consists of 307 MP 

nodes, each with 64M byte RAM. All 307 MP nodes are connected by a high-speed 

node interconnect network and are configured in a two-dimensional mesh.   Of the 

307 MP nodes, 232 are general compute nodes which run users' applications.  Ev- 

ery Paragon MP node is a SMP system with three i860 processors on each compute 

node board.   The architecture of a Paragon MP node is illustrated in Figure 26. 

Each of the three processors has its own private cache memory but shares the main 

memory with the other two processors. The operating system is a version of UNIX 

OSF/1. By running this operating system, the three processors in each compute node 

are configured with two processors as general application processors and one proces- 

sor as message coprocessor which is dedicated to message passing.  Multi-threaded 

programming environment is supported on a Paragon system [29]. The threads are 

implemented as POSIX threads which are based on the POSIX Threads Extension 

[C language] P1008.4a/D4 (Draft 4), August 1990. Therefore, the programs that use 
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POSIX threads may not be portable to other systems. 

Since two out of the three processors in the Paragon MP system are configured as 

general application processors, threads in a multi-threaded program on the MP system 

can run on either of the two application processors. Each thread runs independently, 

but shares resources with other threads. For example, all the threads in a single 

process share the main memory. Each compute node acts just like a parallel shared 

memory system with two processors. Ideally, if multi-threaded programs have no 

concurrent write operations, a speedup of 2 can be expected by using threads on a 

compute node of the Paragon MP system. 

4.2    Design and Implementation 

The STAP algorithm we implemented is described in Chapter 3. The structure of the 

parallel pipelined STAP system is the same as shown in Figure 13. From a single task 

point of view, the execution flow consists of three phases: receive, compute, and send 

phases, shown in Figure 8. In this chapter, only the compute phase is to re-designed 

so as to embed multiple threads. 

4.2.1    Threads in the Compute Phase 

The Intel Paragon at the AFRL is an MP system which has three processors on each 

compute node board. In each compute node, two out of the three processors are 

configured as general processors to run application code while the third is a message 

coprocessor which is dedicated to message passing. With this configuration, only 

the compute phase for each task in our parallel pipeline system is implemented with 

threads. The reason for not implementing threads in the communication phase is that 

the Paragon message-passing library is not thread-safe. Also, if more than one thread 

performs message passing, the message-passing performance may degrade and results 

may be incorrect. The message passing thread can be the main thread or any other 

thread. However, a thread other than the main thread will experience higher message 
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main thread loops 

second thread loops 

Figure 27. Implementation of two threads in the compute phase. The main thread signals 

the second thread to perform its computation. After completion of its computation, the 

second thread signals back to the main thread. 

latency than the main thread. Besides, one processor has already been configured as 

message coprocessor which is dedicated to message passing and the communication 

performance has been sufficiently improved on the Paragon system. 

Since there are only two application processors in each compute node, each com- 

pute phase in every task will have two threads implemented. For each task, the main 

thread in the compute phase sends a signal to the second thread when the input data 

is ready at the receive phase. Both threads then perform the computation on two 

processors concurrently. Once the second thread completes its computation, it sig- 

nals the main thread that its output data is ready so that the main thread can start 

the send phase. While the main thread is performing the message passing calls, the 

second thread is waiting for its input signal from the main thread. These two signal 

operations involve two synchronizations of two threads using a mutually exclusive 

access semaphore. Figure 27 gives the execution flows of two threads in the compute 

phase. 
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4.2.2    Software Development 

All the parallel program development and their integration was performed using ANSI 

C language. The libraries linked include standard C math library, message passing 

interface (MPI) library [7], POSIX thread library, and Kuck and Associates' CLASS- 

PACK basic math library [30]. CLASSPACK library includes several basic linear 

algebra subroutines (BLAS) and Fast Fourier transform subroutines. The BLAS con- 

tains useful vector and matrix operations for dense numerical linear algebra programs. 

All subroutines in CLASSPACK library have been tuned for optimal performance on 

the Intel Paragon. The thread-safe versions of these libraries are also provided in 

the Intel Paragon and linked by the multi-threaded version of parallel pipeline STAP 

implementation. 
In our implementation, a double buffering strategy was used both in receive and 

send phases. During the execution loops, this strategy employs two buffers alterna- 

tively such that one buffer can be processed during the communication phase while 

the other buffer is processed during the compute phase. Together with the double 

buffering implementation, asynchronous send and receive calls were employed in order 

to maximize the overlap of communication and computation. The general execution 

flow and the approach to measure the timing for each part of computation and com- 

munication is given in Figure 20. 

4.3    Performance Results 

The implementation of the STAP application based on our parallel pipeline system 

model was done on the Intel Paragon at the Air Force Research Laboratory, Rome, 

New York. Each CPI complex data cube is a 512 x 16 x 128 three-dimensional array. 

A total of 25 CPIs were generated as inputs to the parallel pipeline system. In each 

task, timing results for processing one CPI data cube were obtained by accumulating 

the execution time for the middle 20 CPIs and then averaging it. Timing results 

presented in this chapter do not include the effect of initial setup (first 3 CPIs) and 
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final stage (last 2 CPIs). Each task in the pipeline contains three parts: receiving 

data from the previous task, main computation, and sending results to the next task. 

Performance results are measured separately for these three parts, namely receive 

time, compute time, and send time. Since the multiple thread strategy is implemented 

in the compute phase only, we first discuss the compute time for each task in the 

pipeline and then present the performance results for the integrated pipeline system. 

4.3.1    Compute Time 

The task of computing hard weights is the most computationally demanding task. The 

Doppler filter processing task is the second most demanding task. Naturally, more 

compute nodes are assigned to these two tasks in order to obtain a good performance. 

For each task in the STAP algorithm, parallelization was done by evenly dividing 

computational load across compute nodes assigned. Figure 28 gives the performance 

results for different tasks during the compute phase on the AFRL Intel Paragon. It 

includes the execution time, the corresponding speedup, and the threading speedups 

when using two threads over a non-threaded implementation, all as functions of num- 

bers of compute nodes. For each task, we obtained linear speedups for both two 

threads and single thread implementations. From Figure 28(b), the speedups when 

using two threads are approximately the same as using a single thread. 

Assuming that the execution time of a non-threaded implementation of a task is tx 

and the execution time of its threaded implementation is t2, we define the threading 

speedup for threaded over non-threaded implementation as 

s = ± (7) 
h 

Since two processors are employed in the threaded implementation, we have | < t2 < 

tx and therefore 1 < s < 2. The threading speedups for all the tasks during the com- 

pute phase are given in Figure 28(c). By running on two processors at the same time, 

the two threaded STAP code ideally can have a threading speedup of 2. However, in 

most cases, the actual threading speedups do not approach this ideal value. This may 
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Figure 28. Performance of different tasks during the compute phase as a function of 

the number of compute nodes: (a) execution time, (b) speedups, and (c) threading 

speedups. 
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be caused by the limitation of implementation of the operating system, OSF/1, and 

the implementation of linked thread-safe libraries. On an Intel Paragon MP system, 

scheduling of threads is handled by the operating system kernel. Users do not have 

control over or get information about which processor runs which thread. On the 

other hand, the implementation of thread-safe versions of linked libraries most likely 

contains overheads of concurrent read/write operations when multiple threads are 

taken into consideration. Although each thread in a process executes independently, 

it shares resources with other threads, for example, the memory. Concurrent read 

and write operations prevent the threaded implementation from obtaining a linear 

speedup, even if two processors are used concurrently. 

4.3.2    Integrated System Performance Evaluation 

Integrated system performance evaluation refers to the evaluation of performance 

when all the tasks in the pipeline are considered together. Throughput (number of 

CPIs per second) and latency (number of seconds per CPI) are the two most im- 

portant measures for performance evaluation on the parallel pipeline system. Tables 

10 and 11 provides detailed timing results for three cases of different compute node 

assignments, each with threaded and non-threaded implementations. These timing 

tables include computation time and communication time of each task for processing 

one CPI. Because of the asynchronous send and receive calls used in the implementa- 

tion, the results shown here are communication times that can actually be measured. 

Figure 29 gives the estimated and measured throughput and latency values corre- 

sponding to Tables 10 and 11. Given timing results for each individual task, estimated 

throughput and latency are obtained by applying these individual timing results to 

Equations (4) and (5), shown in Section 3.2 of Chapter 3. The measured throughput 

and latency are obtained by placing a timer at the end of the last task and recording 

the time difference between every loop (that is, between two successive completions 

of the pipeline.) The measured throughput results are very close to the estimated 

ones both for threaded and non-threaded implementations. However, the measured 
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Table 10. Performance results of non-threaded implementation for 3 cases of nodes 

assignments. 
case 1: total number of nodes = 176 Time in seconds 

# nodes recv comp send total 

Doppler filter 32 .0052 .0860 .0344 .1256 

easy weight 8 .0482 .0824 .0004 .1310 

hard weight 84 .0373 .0947 .0003 .1323 

easy BF 18 .0752 .0561 .0002 .1315 

hard BF 14 .0547 .0696 .0002 .1246 

pulse compr 16 .0364 .0834 .0085 .1284 

CFAR 4 .0597 .0677 - .1273 

estimated 
throughput 

latency 

7.5579 

0.5128 

measured 
throughput 

latency 

7.7403 

0.3985 

CARP. 2: total nu mber of no des = 10 2 Time in seconds 

# nodes recv comp send total 

Doppler filter 16 .0102 .1761 .0701 .2563 

easy weight 4 .0957 .1640 .0003 .2600 

hard weight 56 .1184 .1410 .0003 .2597 

easy BF 8 .1409 .1178 .0003 .2590 

hard BF 8 .1335 .1214 .0003 .2551 

pulse compr 8 .0746 .1653 .0150 .2548 

CFAR 2 .1199 .1351 - .2550 

estimated 
throughput 

latency 

3.8460 

1.0251 

measured 
throughput 

latency 

3.8677 

0.7767 

rase 3: total nu mber of no des = 51 Time i n seconds 

# nodes recv comp send total 

Doppler filter 8 .0193 .3471 .1364 .5028 

easy weight 2 .1827 .3273 .0003 .5102 

hard weight 28 .2293 .2815 .0003 .5110 

easy BF 4 .2715 .2347 .0003 .5065 

hard BF 4 .2538 .2423 .0002 .4963 

pulse compr 4 .1359 .3297 .0293 .4949 

CFAR 1 .2256 .2695 .0000 .4950 

estimated 
throughput 

latency 

1.9569 

1.9992 

measured 
throughput 

latency 

1.9962 

1.5151 
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Table 11. Performance results of threaded implementation for 3 cases of nodes assign- 

ments. 
case 1: total number of nodes = 176 Time in seconds 

# nodes recv comp send total 

Doppler filter 32 .0052 .0618 .0369 .1039 

easy weight 8 .0605 .0538 .0004 .1146 

hard weight 84 .0518 .0615 .0004 .1137 

easy BF 18 .0680 .0439 .0004 .1123 

hard BF 14 .0447 .0602 .0004 .1054 

pulse compr 16 .0399 .0608 .0084 .1091 

CFAR 4 .0701 .0376 - .1076 

throughput 
estimated               latency 

8.7243 

0.4329 

throughput 
measured                latency 

9.1895 

0.3248 

case 2: total number of nodes = 105 Time in seconds 

# nodes recv comp send total 

Doppler filter 16 .0101 .1246 .0739 .2086 

easy weight 4 .1190 .0992 .0004 .2185 

hard weight 56 .1238 .0909 .0004 .2151 

easy BF 8 .1223 .0946 .0002 .2171 

hard BF 8 .1035 .1056 .0003 .2094 

pulse compr 8 .0805 .1151 .0153 .2109 

CFAR 2 .1357 .0735 - .2091 

throughput 
estimated                ,atency 

4.5757 

0.8457 

throughput 
measured                ,atency 

4.6916 

0.6108 

case 3: total number of nodes = 51 Time n seconds 

# nodes recv comp send total 

Doppler filter 8 .0201 .2502 .1429 .4132 

easy weight 2 .2241 .1939 .0003 .4183 

hard weight 28 .2388 .1777 .0004 .4169 

easy BF 4 .2301 .1832 .0004 .4136 

hard BF 4 .1935 .2070 .0003 .4009 

pulse compr 4 .1447 .2262 .0298 .4006 

CFAR 1 .2546 .1451 - .3997 

throughput 
estimated                Jatency 

2.3905 

1.6272 

throughput 
measured                ,atency 

2.4590 

1.2046 
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Figure 29. Estimated and measured values of throughput (number of CPIs per second) 

and latency (seconds per CP1) for both threaded and non-threaded implementations. 

latency results are smaller than the estimated ones. It is because some tasks may 

need to wait for their input data from the previous tasks and this waiting time ac- 

tually overlaps with the computation time of the previous tasks. This waiting time 

should be excluded from the actual latency value. The latency obtained from Equa- 

tion (5) yields the worst-case performance for our implementation. The real latency 

is expected to be smaller than the estimated value. 

Figure 30 shows the speedups and threading speedups achieved by the threaded 

implementation for both latency and throughput corresponding to three cases of 

compute node assignments. From these experiments, it is clear that for latency and 

throughput measures we obtain linear speedups for both threaded and non-threaded 
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Figure 30. Performance results of integrated pipeline system for threaded and non- 

threaded implementations, corresponding to Tables 10 and 11. 

implementations. Given that this scale up is up to 176 compute nodes (we were 

limited to this number of nodes due to the size of the machine), we believe these are 

very good results. 

4.3.3    Tradeoff Between Throughput and Latency 

As discussed in Chapter 2, tradeoffs exist between the assignment of compute nodes 

to maximize the overall throughput and the assignment of compute nodes to mini- 

mize latency, given limited resources. Using an example, we illustrate how further 

performance improvements may (or may not) be achieved if a few extra compute 

nodes are available. We now take the case with 102 nodes from Tables 10 and 11 as 

an example and add some extra compute nodes to the pipeline to analyze its effect 

on the throughput and latency.  Extra compute nodes were added to each- task in 
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increments of two nodes at a time. The resulting throughput and latency are plotted 

in Figure 31. 
When extra compute nodes were added to Doppler filter processing tasks, the 

throughput increased and latency reduced. From Equations (4) and (5), this im- 

provement was obtained because the execution time, T0, is reduced. However, when 

the number of nodes added is more than 8, both throughput and latency degrade. 

This is because the Doppler filter processing task finishes its computation on the new 

CPI so fast that the actual sending operations for the previous CPI have not been 

carried out yet. The Doppler filter processing task is forced to wait until the previous 

send operations complete. At this moment, the clock has already been read for the 

new CPI to be used later to calculate the throughput and latency. The waiting time 

increases Doppler filter processing task's execution time, T0, and therefore degrades 

the throughput and latency. 

When compute nodes are added to easy and hard weight computation tasks, the 

resulting throughput and latency have no significant changes. This is because the 

latency does not contain the execution time of weight computations, as indicated 

in Equation (5). In the case with 102 nodes, we observe that the Doppler filter 

processing task has the maximum execution time among all tasks. From Equation 

(5), the throughput is affected only by the execution time of Doppler filter processing 

task. Therefore, further reduction of the execution time for weight computations does 

not improve the throughput. 

However, when extra compute nodes are added to either the beamforming or the 

pulse compression task, we observe that the latency is reduced. This is because the 

execution times T3,T4, and T5 reduce in Equation (5). The throughput, on the other 

hand, is still not improved because the Doppler filter processing task is still the task 

with the maximum execution time among all tasks. 

Given additional compute nodes, Figure 31 presents the tradeoffs between increas- 

ing the throughput and reducing the latency, when assigning nodes to the tasks in the 

pipeline. Let us consider the case with 102 compute nodes in Tables 10 and 11 that 

has satisfied the maximum response time requirement (latency) and more compute 

C-94 



Doppier Filter Processing 

*   threaded 
-•- non-threaded   . 

2     4     6     8     10    12    14    16 
Number of extra nodes added 

5.5 

S      S 
Q. 

3     4** e 
e  4 

3.5 

3 

Easy Weight Computation  -   threaded 
— non-threaded ' 

2      4     6      8     10    12    14    16 
Number of extra nodes added 

5.5 

=      5 
a. 
M  4.5 
£ 
e  4 

3.5 

3 

Hard Weight Computation -   threaded 
«- non-threaded 

2     4     6     8    10    12    14    16 
Number of extra nodes added 

5.5 

=      S 
a. 
M 4.5 
a 
e  4 

3.5 

3 

Beamforming —■ threaded 
•*- non-threaded 

2      4      6      8     10    12    14    16 
Number of extra nodes added 

S3 

3      S 
a 
*!  4.5 
o 
e  4 

3.5 

3 

Pulse Compression -*- threaded 
~- non-threaded 

2      4      6      8     10    12    14    16 
Number of extra nodes added 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

Doppler Filter Processing 

-   threaded 
<- non-threaded 

0     2     4     6     8    10    12    14    16 
Number of extra nodes added 

0.9 

0.85 

0.8 

^0.75 

I   °-7 

3 0.65 

0.6 

0.55 
0.5 

0.9 

0.85 

0.8 

^0.75 

I   °-7 

J0.65 

0.6 

0.55 

0.5 

0.9 

0.85 

0.8 

0.75 
£■ |   °-7 

3 0.65 

0.6 

0.55 

0.5 

0.9 

0.85 

0.8 

^0.75 

1 °-7 

2 0.65 

0.6 

0.55 

0.5 

Easy Weight Computation  •••• threaded 
— non-threaded 

0     2      4      6      8     10    12    14    16 
Number of extra nodes added 

Hard Weight Computation - threaded 
— non-threaded 

0     2      4      6      8     10    12    14    16 
Number of extra nodes added 

Beamforming — threaded 
«- non-threaded 

0      2      4      6      8     10    12    14    16 
Number of extra nodes added 

Pulse Compression 
-i——i—-i 1 1  

--' threaded 
— non-threaded 

0      2      4      6      8     10    12    14    16 
Number of extra nodes added 

Figure 31. Throughput and latency results by adding 2 nodes at a time to each task. 
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Table 12. Performance results of non-threaded implementation for adding 4 more com- 

pute nodes to the Doppler processing task and 4 more compute nodes to pulse com- 

pression task to the case 2 in Table 10. 

total number of nodes = 110 Time in seconds 

# nodes recv comp send total   || 

Doppler filter 20 .0084 .1429 .0579 .2092 

easy weight 4 .0473 .1639 .0003 .2114 

hard weight 56 .0708 .1404 .0003 .2115 

easy BF 8 .0901 .1176 .0003 .2079 

hardBF 8 .0796 .1224 .0003 .2024 

pulse compr 12 .0813 .1135 .0108 .2057 

CFAR 2 .0701 .1348 - .2049 

estimated 
throughput 

latency 

4.7271 

0.8276 

measured 
throughput 

latency 

4.8368 

0.6650                  1 

nodes can be added. We observed that only the addition of nodes to the Doppler 

filter processing task can increase the throughput. Similarly, for the case with 102 

compute nodes that has satisfied the minimum throughput requirement, only beam- 

forming and pulse compression tasks are candidates for the addition of more compute 

nodes to reduce the latency. 
Compute node assignment can also be made in such a way that throughput and 

latency are both improved simultaneously. We again take case 2 (with 102 compute 

nodes) from Tables 10 and 11 as an example and add 8 more compute nodes to 

analyze its effect on the throughput and latency. Tables 12 and 13 show the results 

of adding 4 compute nodes to the Doppler filter processing task and 4 nodes to the 

pulse compression task. By increasing the number of compute nodes by 7.8%, the 

improvement in throughput is 25.1% and in latency it is 14.4% for the non-threaded 

implementation. Meanwhile, the threaded implementation shows 19.7% improvement 

in throughput and 10.6% improvement in latency. From these experimented results, 
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Table 13. Performance results of threaded implementation for adding 4 more compute 

nodes to the Doppler processing task and 4 more compute nodes to pulse compression 

task to the case 2 in Table 11. 

total number of nodes = 110                            Time in seconds 

# nodes recv comp send total 

Doppler filter 20 .0082 .1026 .0681 .1789 

easy weight 4 .0905 .0998 .0004 .1907 

hard weight 56 .0990 .0900 .0005 .1895 

easy BF 8 .0894 .0955 .0003 .1851 

hard BF 8 .0644 .1100 .0003 .1747 

pulse compr 12 .0799 .0865 .0109 .1773 

CFAR 2 .1023 .0736 " .1759 

throughput 
estimated                ,atency 

5.2427 

0.7172 

throughput 
measured                ,atency 

5.6137 

0.5458 

we can draw the following conclusions.   Extra compute nodes can be assigned to 

the task that has the maximum execution time among all tasks.   In this way, the 

execution time of this task is reduced and according to Equation (4), the throughput 

is increased. From Equation (5), latency is the sum of several tasks' execution time. 

Extra compute nodes can be added to those tasks which benefit the most, that is, 

the tasks with greatest reduced execution time when more nodes are assigned. The 

sum of these tasks can be reduced the most and therefore it minimizes the latency. 

4.4    Summary 

In this chapter we presented performance results for a PRI-staggered post-Doppler 

STAP algorithm implementation on the Intel Paragon machine at Air Force Research 

Laboratory, Rome, New York.  This Paragon machine is an MP system which has 
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three processors on each compute node board. By taking advantage of this architec- 

ture, a multi-threaded implementation is presented and compared to the non-threaded 

implementation. Performance results indicate that our approach of parallel pipelined 

implementation scales well both in terms of throughput and latency whether the 

multi-threaded technique is used or not. Our design and implementation not only 

shows tradeoffs in parallelization, compute node assignment, and various overheads 

in inter-task communication etc., but it also shows that accurate performance mea- 

surement of these systems is very important. 
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Chapter 5 

I/O Implementation 

In this chapter we build upon our work in the previous chapters where we devised 

strategies for high performance parallel pipeline implementations, in particular, for 

Space-Time Adaptive Processing (STAP) applications [31, 32]. A modified Pulse 

Repetition Interval (PRI)-staggered post-Doppler STAP algorithm was implemented 

based on the parallel pipeline model and scalable performance was obtained both on 

the Intel Paragon and the IBM SP. Normally, this parallel pipeline system does not 

include disk I/O costs. Since most radar applications require signal processing in real 

time, thus far we have assumed that the signal data collected by radar is directly 

delivered to the pipeline system, as shown in the overall radar and signal processing 

system of Figure 32. 
In practice, the I/O can be done either directly from a radar or through disk 

file systems. In this chapter, we focus on the I/O implementation of the parallel 

pipeline STAP algorithm when I/O is carried out through a disk file system. Using 

existing parallel file systems, we investigate the impact of I/O on the overall pipeline 

system performance. Two designs of I/O are employed: in the first design the I/O 

is embedded in the pipeline without changing the task structure and in the other a 

separate task is created to perform I/O operations. With different I/O strategies, we 

ran the parallel pipeline STAP system portably and measured the performance on the 

Intel Paragon at California Institute of Technology and on the IBM SP at Argonne 
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Figure 32. Data flow of a radar and signal processing system using parallel computers. 

National Laboratory (ANL.) The parallel file systems on both the Intel Paragon and 

the IBM SP contain multiple stripe directories for applications to access disk files 

efficiently. On the Paragon, two PFS file systems with different stripe factors were 

tested and the results were analyzed to assess the effects of the size of the stripe factor 

on the STAP pipeline system. On the IBM SP, the performance results were obtained 

by using the native parallel file system, PIOFS, which has 80 stripe directories. 

Comparing the two parallel file systems with different stripe sizes on the Paragon, 

we found that an I/O bottleneck results when a file system with smaller stripe size is 

used. Once a bottleneck appears in a pipeline, the throughput which is determined 

by the task with maximum execution time degrades significantly. On the other hand, 

the latency is not significantly affected by the bottleneck problem. This is because 

the latency depends on all the tasks in the pipeline rather than the task with the 

maximum execution time. Furthermore, when evaluating the performance results of 

the two I/O designs, we observed that the latency can be improved by merging two 

tasks in the pipeline. In this chapter, we also examine the possibility of improving 

latency by reorganizing the task structure of the STAP pipeline system. 

A sequence of raw signal data sets collected by a radar form the input to the 

STAP pipeline system. Each of these raw data sets is in the form of a three dimen- 

sional array. However, the three dimensions of this array are not organized in a way 

such that each Fast Fourier Transformation (FFT) in the Doppler filter processing 

task can be performed in a single processor. Without special hardware support to 

pre-process the collected raw data, data redistribution is needed before delivering the 
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data to the Doppler filter processing task. In the real application we implemented, 

this pre-processing work includes data type conversion and corner turn on the three- 

dimensional array. Using a software approach, we also embedded pre-processing op- 

eration on the raw data in the two I/O designs and compared their performances. 

The rest of the chapter is organized as follows: The characteristics of the parallel 

file systems tested are described in Section 5.1. The I/O design and implementation 

are presented in Section 5.2 and their performance results are given in Section 5.3. 

Section 5.4 presents the implementation when tasks are combined to improve latency. 

The software approach to pre-processes raw signal data is described in Section 5.5. 

5.1    Parallel File Systems 

Only input part of parallel I/O was implemented on the STAP pipeline system because 

most applications like STAP send their detection results to display devices in real 

time. The input to the STAP pipeline system is a series of CPI data sets captured 

by the radar. To test our parallel pipeline system with regard to I/O performance, 

these CPI data sets were stored in the parallel file system and provided to the pipeline 

system through machine's I/O nodes. We used the parallel I/O library developed by 

Intel Paragon and IBM SP systems to perform read operations. 

5.1.1    Intel Paragon PFS File System 

The Intel Paragon OSF/1 operating system provides a special file system type called 

PFS, for Parallel File System, which gives applications high-speed access to a large 

amount of disk storage [29]. PFS file systems are optimized for simultaneous access 

by multiple nodes. Each PFS file system consists of multiple stripe directories. Each 

stripe directory is the mount point of a separate UNIX file system. A PFS file system 

collects together several file systems into a unit that behaves like a single large file 

system. A file stored in PFS is distributed, or striped, across the stripe directories 

that make up the PFS file system. The performance of accessing a single PFS file is 
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significantly improved by multiple stripe devices providing disk data simultaneously. 

The amount of data from a PFS file that is stored in each stripe directory is deter- 

mined by the PFS file system's stripe unit. The stripe units on all Paragon parallel 

systems at Caltech are 64K bytes. Two PFS file system were tested : one has 16 

stripe directories (stripe factor 16) and the other has a stripe factor of 64. 

We used the Intel Paragon NX library to implement the I/O of the parallel pipeline 

STAP system. Since only input part of the I/O is needed for providing a series of CPI 

data sets to the pipeline, only read operations are investigated. Subroutine gopen() 

was used to open CPI files globally because it offers better performance and causes 

less system overhead. NX library provides six I/O modes for an application to access 

files: M-UNIX, M.LOG, M.SYNC, M.RECORD, M.GLOBAL, and MJVSYNC. A file's I/O mode 

is set when the file is opened with gopen(). Only non-collected I/O mode MJVSYNC 

was used because it provided an efficient parallel read operation. This mode has the 

following characteristics on an opened PFS file: 

• every node has its own file pointer 

• read operations are not synchronized 

• read can be for variable-length, unordered records 

This mode allows multiple reads to access a single file simultaneously without 

agreement on record size or file offset among nodes. If read operations access ex- 

clusive portions of a file, it behaves like each compute node reads from its own file 

independently. In the pipeline system, the number of nodes to read CPI files may 

vary and, therefore, the length of the subset of CPI file for each node to read can be 

different. Besides, only the nodes in the first task of the pipeline system issue read 

operations, rather than all nodes allocated for the whole application. This explains 

why we used MJVSYNC mode and it is also the only feasible and efficient way to read 

disk files in parallel. All other collective I/O modes provided by the OSF/1 operating 

system require that all nodes in the application perform the same I/O operations 

and, hence, accessing files by a subset of the nodes is prohibited for these modes. In 
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addition, we used asynchronous I/O function calls: iread() and ireadoff() in order to 

overlap I/O operations with the computation and communication. 

5.1.2    IBM SP PIOFS File System 

The IBM AIX operating system provides a parallel file system called Parallel I/O File 

System (PIOFS) which is designed for IBM RS/6000 SP to allow fast parallel access 

to large temporary data files [33]. The PIOFS on the IBM SP at ANL is made up 

of 5 servers. Four of the servers have 4 Serial Storage Architecture (SSA) disks while 

the fifth is the directory server. Each of the 4 SSA disks is partitioned into 5 slices. 

Therefore, there are a total of 80 slices (striped directories) in the ANL PIOFS file 

system. The default basic striped unit (BSU) is 64K bytes. A file stored in the PIOFS 

is physically divided into several blocks with each equal to the size of one BSU, and 

these blocks are stored in the 80 striped directories in a round-robin manner. 

IBM PIOFS supports existing C read, write, open and close functions. In addition 

to a UNIX-like I/O interface, PIOFS also supports logical partitioning of files. A 

processor can independently specify a logical view of the data in a file, a subfile, 

and then perform I/O on this subfile with a single call. In our STAP I/O task 

implementation, we store all CPI files in the ANL PIOFS using the default BSU, 64K 

bytes. As for the Intel Paragon, CPI files are stored across 80 striped directories in the 

PIOFS file system. However, unlike the Paragon NX library, asynchronous parallel 

read/write subroutines are not supported on IBM PIOFS. The overall performance of 

the STAP pipeline system will be limited by the inability to overlap I/O operations 

with computation and communication. 

5.2    Design and Implementation 

A total of four CPI data sets stored as four files in the parallel file systems were 

used on both the Caltech Paragon and the ANL SP. Each of the four CPI files is 

of size 8M bytes.   On the Paragon, these files are opened globally (or collectively) 
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Figure 33. Four CPI data files are read from the parallel file system into the pipeline 

system in a round-robin manner. 

by all compute nodes allocated in the whole application during the STAP pipeline 

system's initialization. On SP, these four files are opened only by the compute nodes 

that perform the I/O task. During each of the following steps after the initialization, 

only nodes assigned to the first task perform read operations from the parallel file 

system. We assume that the radar writes its collected CPI data into these four files 

in a round-robin manner. Similarly, the STAP pipeline system was also designed to 

read these four files in a round-robin fashion but at times that are different from the 

times at which the radar writes. This is shown in Figure 33. In this manner, the 

problem of data inconsistency for read/write operations between the radar and the 

STAP parallel pipeline system is minimized. 

All nodes allocated to the first task (the I/O nodes) of the pipeline read exclusive 

portions of each CPI file with proper offsets. Because the number of I/O nodes may 

vary due to different node assignments to the I/O task, the length of data for the 

read operations can be different. The read length and file offset for all the read 

operations are set only during the STAP pipeline system's initialization and is not 

changed afterward.   Therefore, in each of the following iterations, only one read 
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Figure 34. I/O task is embedded in the Doppler filter processing task of the STAP pipeline 

system. 

function call is needed. On the Paragon, since asynchronous read subroutines were 

used, an additional subroutine waiting for the read's completion was also required in 

each iteration. 

5.2.1    I/O Task Implementation 

Two designs for the I/O task were implemented in the STAP pipeline system. The first 

one, shown in Figure 34, embeds the parallel I/O in the first task of the pipeline, i.e. 

in the Doppler filter processing task. The Doppler filter processing task now consists 

of three phases, reading CPI data from files, computation, and sending phases. The 

second I/O implementation creates a new task for reading CPI data and this task is 

added to the beginning of the pipeline. Figure 35 shows the structure of the overall 

pipeline system with this implementation. The only job of this I/O task is to read 

CPI data from the files and deliver it to the Doppler filter processing task. 
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Figure 35. A separate I/O task for reading CPI data is added to the STAP pipeline system. 

5.3    Performance Results 

Performance results are given for the two I/O implementations on the parallel pipeline 

STAP system. For each implementation, parallel file systems on the Paragon and the 

SP were tested. On the Paragon, we used two PFS file systems, one with 16 stripe 

directories and the other with 64 stripe directories. On the SP, only the parallel file 

system with 80 striped directories was tested. On both machines, the stripe unit for 

the parallel file systems is 64K bytes. The size of each CPI data file is 8M bytes that 

results in 128 stripe units distributed across all stripe directories in all the parallel 

file systems. 

5.3.1    I/O Embedded in the First Task 

In the first I/O implementation on the Paragon, the Doppler filter processing task 

reads its input from CPI files using asynchronous read calls. A double buffering 

strategy is employed to overlap the I/O operations with computation and communi- 

cation in this task. Table 14 shows the timing results for this implementation on the 
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Paragon PFS file system with 16 stripe directories. Three cases of node assignments 

to all tasks in the pipeline system are given, each doubles the number of nodes of 

another. The throughput scales well in the first two cases, but degrades when the 

total number of nodes goes up to 224. In this case, we observe that the timing results 

of the receive phase in the first task are relatively higher than the other two phases, 

the compute and send phases. The I/O operations for reading CPI data files here 

become a bottleneck for the pipeline system. This bottleneck forces the rest of the 

following tasks in the pipeline system to wait for their input data from their previous 

tasks. 
Table 15 gives the timing results for the same cases as in Table 14, but on a 

Paragon PFS file system with 64 stripe directories. Both throughput and latency 

showed linear speedups. In the first two cases with 56 and 112 nodes, the results of 

throughput and latency are approximately the same for both file systems with 16 and 

64 stripe directories. However, in the case with 224 nodes, we observe that the I/O 

bottleneck is relieved by using 64 stripe directories. The efficiency of I/O operations 

plays an important role in the overall performance of the pipeline system. The I/O 

task may become a bottleneck in the pipeline and directly affect the throughput 

results. 
On the other hand, a linear speedup was obtained for the latency results. The 

I/O bottleneck problem does not affect the latency significantly. We can observe that 

in the case with 224 nodes, the latency of using 16 stripe directories is slightly greater 

than using 64 stripe directories. This can be explained by examining the throughput 

and latency equations, (4) and (5), shown in Section 3.2 of Chapter 3. Unlike the 

throughput that depends on the maximum of the execution times of all the tasks, the 

latency is determined by the sum of the execution times of all the tasks except for the 

tasks with temporal dependency. Therefore, even though the execution time of the 

Doppler filter processing task is increased, the delay does not contribute much to the 

latency. Comparing Tables 14 and 15, the latency did not degrade significantly and 

still scaled well in the case with 224 nodes. Figure 36 shows the performance results 

of this I/O design in bar charts. 
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Table 14. Performance results on the Paragon with the I/O embedded in the Doppler 

filter processing task. 

PFS stripe factor = 16 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0101 .2566 .0916 .3584 

easy weight 3 .1317 .2214 .0002 .3534 

hard weight 28 .0684 .2838 .0003 .3525 

easy BF 3 .1451 .1921 .0003 .3375 

hardBF 4 .1596 .1756 .0002 .3354 

pulse compr 4 .1070 .1979 .0298 .3347 

CFAR 2 .1983 .1361 - .3343 

throughput 

latency 

2.9560 

0.9804 

case 2: total number of nodes = 112 Time in seconds 

# nodes recv comp send total 

Doppler filter 24 .0178 .1292 .0663 .2134 

easy weight 6 .0856 .1110 .0002 .1968 

hard weight 56 .0483 .1423 .0059 .1965 

easy BF 6 .0939 .0958 .0003 .1901 

hard BF 8 .0906 .0885 .0003 .1795 

pulse compr 8 .0648 .0993 .0150 .1792 

CFAR 4 .1107 .0683 - .1790 

throughput 

latency 

5.4996 

0.5171 

case 3: total number of nodes = 224 Time in seconds 

# nodes comp send total 

Doppler filter 48 .0871 .0619 .0317 .1807 

easy weight 12 .1056 .0557 .0002 .1616 

.1639 hard weight 112 .0905 .0724 .0009 

easy BF 12 .1080 .0482 .0003 .1565 

hardBF 16 .1030 .0509 .0003 .1542 

pulse compr 16 .0983 .0502 .0078 .1562 

CFAR .1217 .0343 .1561 

throughput 

latency 

6.2708 

0.3292 
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Table 15. Performance results on the Paragon with the I/O embedded in the Doppler 

filter processing task. 

PFS stripe factor = 64 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0314 .2461 .0916 .3691 

easy weight 3 .1262 .2216 .0002 .3480 

hard weight 28 .0628 .2840 .0003 .3471 

easy BF 3 .1397 .1921 .0003 .3321 

hardBF 4 .1537 .1756 .0002 .3295 

pulse compr 4 .1011 .1977 .0298 .3286 

CFAR 2 .1920 .1363 - .3282 

throughput 

latency 

3.0111 

0.9787 

case 2: total number of nodes =112 Time in seconds 

# nodes recv comp send total 

Doppler filter 24 .0107 .1280 .0557 .1944 

easy weight 6 .0787 .1111 .0020 .1917 

hard weight 56 .0453 .1427 .0039 .1919 

easy BF 6 .0860 .0959 .0003 .1823 

hard BF 8 .0878 .0885 .0003 .1766 

pulse compr 8 .0615 .0995 .0151 .1761 

CFAR 4 .1077 .0682 - .1759 

throughput 

latency 

5.6068 

0.5143 

case 3: total number of nodes = 224 Time in seconds 

# nodes recv comp send total 

Doppler filter 48 .0069 .0673 .0309 .1052 

easy weight 12 .0510 .0559 .0002 .1071 

hard weight 112 .0355 .0733 .0019 .1106 

easy BF 12 .0526 .0483 .0003 .1013 

hard BF 16 .0471 .0515 .0003 .0989 

pulse compr 16 .0407 .0503 .0080 .0990 

CFAR 8 .0642 .0343 - .0985 

throughput 

latency 

10.0262 

0.2871 
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Table 16. Performance results on the SP with the I/O embedded in the Doppler filter 

processing task. 

PIOFS stripe factor = 80 

case 1: total number of nodes = 18 Time in seconds 

# nodes recv comp send total 

Doppler filter 6 .1172 .0734 .1966 .3872 

easy weight 1 .2717 .1070 .0001 .3788 

hard weight 7 .1590 .2194 .0002 .3786 

easy BF 1 .2927 .0829 .0001 .3757 

hard BF 1 .2595 .1177 .0002 .3775 

pulse compr 1 .2230 .1545 .0001 .3776 

CFAR 1 .2941 .0828 - .3770 

throughput 

latency 

2.6715 

1.2353 

case 2: total number of nodes = 30 Time in seconds 

# nodes recv comp send total 

Doppler filter 8 .1109 .0543 .1031 .2683 

easy weight 1 .1471 .1045 .0002 .2518 

hard weight 14 .1523 .1072 .0002 .2597 

easy BF 2 .2189 .0412 .0001 .2602 

hard BF 2 .1999 .0606 .0001 .2606 

pulse compr 2 .1801 .0777 .0001 .2579 

CFAR 1 .1801 .0801 - .2602 

throughput 

latency 

3.8319 

0.7810 

case 3: total number of nodes = 60 Time in seconds 

# nodes recv comp send total 

Doppler filter 16 .1044 .0304 .0474 .1823 

easy weight 2 .1314 .0547 .0001 .1862 

hard weight 28 .1303 .0566 .0002 .1871 

easy BF 4 .1571 .0219 .0002 .1792 

hard BF 4 .1492 .0298 .0002 .1792 

pulse compr 4 .1370 .0396 .0001 .1767 

CFAR 2 .1399 .0403 - .1802 

throughput 

latency 

5.5364 

0.5004 
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Figure 36. Performance results for the STAP pipeline system with parallel I/O embedded 

in the Doppler filter processing task. This figure corresponds to Tables 14,15, and 16. 

Detailed timing results for the IBM SP at ANL are given in Table 16. The stripe 

factor of the PIOFS file system is 80. Because PIOFS does not provide asynchronous 

read/write subroutines, the I/O operations do not overlap with computation and 

communication in the Doppler filter processing task. Hence, the performance results 

for throughput and latency on the SP did not show the scalability as on the Paragon, 

even though the SP has faster CPUs. 

5.3.2    A New I/O Task 

In the second I/O task implementation, a new task is added to the beginning of 

the pipeline.  This new task only performs the operations of reading CPI files and 
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distributing CPI data to its successor task, Doppler filter processing task. The STAP 

pipeline system then has a total of 8 tasks. Tables 17,18, and 19 show the performance 

results for this I/O design. Corresponding to Tables 14, 15, and 16, all tasks have 

the same numbers of nodes assigned, except for the I/O task. The I/O bottleneck 

problem still occurs when using the Paragon PFS system with 16 stripe directories. 

When using the file system with 64 stripe directories, the throughput results improved. 

The bar charts shown in Figure 37 represent the throughput and latency results of 

Tables 17, 18, and 19. 

Comparing the two I/O designs, we observe that the throughput results are ap- 

proximately the same for both implementations. However, the latency results for the 

separate I/O task design are worse than the embedded implementation. This phe- 

nomenon can be explained by examining the throughput and latency equations. The 

equations for the throughput and latency for the STAP pipeline system are 

throughputs = ^r (8) 
max li 
0<i<8 

and 

latency* = T0 + T1 + max(T4, T5) + T6 + T7, (9) 

where Tj is the execution time for the task i. 

The throughput of a pipeline system is determined by the task with the maximum 

execution time among all the tasks. From Tables 17 and 18, we observe that the 

Doppler filter processing task has the maximum execution time among all the tasks 

in the cases with a total of 60 and 120 nodes. In the case of 240 nodes on the PFS file 

system with 16 stripe directories, the maximum execution time occurs in the parallel 

I/O task. Using PFS with 64 stripe directories, the hard weight computation task 

has the maximum execution time in the case of 240 nodes. Compared to Tables 14 

and 15, the throughput results have no significant change because the tasks with 

the maximum execution time are the same for every corresponding pair in all cases. 

All these tasks have the same number of compute nodes assigned and hence have 

approximately the same computation time. Therefore, the execution times of these 
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Table 17. Performance results on the Paragon with the I/O implemented as a separate 

task- PFS stripe factor = 16 

case 1: total number of nodes = 60 Time in seconds 

# nodes recv comp send total    1 

Parallel read 4 .0191 - .3997 .4187 

Doppler filter 12 .0122 .3240 .2375 .5738 

easy weight 3 .2032 .2217 .0002 .4252 

hard weight 28 .1390 .2846 .0003 .4239 

easy BF 3 .2210 .1911 .0003 .4124 

hard BF 4 .2327 .1753 .0003 .4083 

pulse compr 4 .1800 .1977 .0295 .4072 

CFAR 2 .2706 .1362 - .4068 

throughput 

latency 

2.4127 

1.9186 

case 2: total number of nodes = 120 Time in seconds 

# nodes recv comp send total 

Parallel read 8 .0559 - .1604 .2163 

Doppler filter 24 .0254 .1221 .0839 .2313 

easy weight 6 .0920 .1110 .0004 .2034 

hard weight 56 .0526 .1432 .0045 .2003 

easy BF 6 .1003 .0960 .0003 .1966 

hard BF 8 .0918 .0928 .0003 .1849 

pulse compr 8 .0727 .0999 .0151 .1877 

CFAR 4 .1185 .0683 - .1867 

throughput 

latency 

5.3883 

0.9226 

case 3: total number of nodes = 240 Time in seconds 

# nodes recv comp send total 

Parallel read 16 .1269 - .0276 .1545 

Doppler filter 48 .0833 .0463 .0245 .1541 

easy weight 12 .0891 .0558 .0002 .1451 

hard weight 112 .0749 .0724 .0004 .1477 

easy BF 12 .0975 .0485 .0003 .1463 

hard BF 16 .0924 .0516 .0003 .1443 

pulse compr 16 .0869 .0502 .0077 .1448 

CFAR 8 .1104 .0343 - .1447 

throughput 

latency 

6.8438 

0.3890 
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Table 18. Performance results on the Paragon with the I/O implemented as a separate 

task. PFS stripe factor = 64 

case 1: total number of nodes = 60 Time in seconds 

# nodes recv comp send total 

Parallel read 4 .0628 - .3391 .4019 

Doppler filter 12 .0085 .2670 .1755 .4510 

easy weight 3 .1425 .2217 .0002 .3645 

hard weight 28 .0763 .2847 .0003 .3613 

easy BF 3 .1621 .1914 .0003 .3537 

hard BF 4 .1740 .1759 .0002 .3501 

pulse compr 4 .1213 .1980 .0296 .3489 

CFAR 2 .2125 .1362 - .3488 

throughput 

latency 

2.8234 

1.7309 

case 2: total number of nodes = 120 Time in seconds 

# nodes recv comp send total 

Parallel read 8 .0362 - .1685 .2047 

Doppler filter 24 .0280 .1084 .0786 .2151 

easy weight 6 .0816 .1111 .0024 .1951 

hard weight 56 .0461 .1438 .0003 .1903 

easy BF 6 .0914 .0959 .0003 .1877 

hard BF 8 .0891 .0908 .0003 .1802 

pulse compr 8 .0672 .0999 .0151 .1822 

CFAR 4 .1131 .0683 - .1815 

throughput 

latency 

5.5262 

0.9137 

case 3: total number of nodes = 240 Time in seconds 

# nodes recv comp send total 

Parallel read 16 .0171 - .0617 .0788 

Doppler filter 48 .0073 .0502 .0290 .0864 

easy weight 12 .0503 .0558 .0002 .1063 

hard weight 112 .0305 .0724 .0029 .1057 

easy BF 12 .0491 .0489 .0004 .0984 

hard BF 16 .0417 .0540 .0004 .0961 

pulse compr 16 .0393 .0502 .0078 .0973 

CFAR 8 .0629 .0343 - .0972 

throughput 

latency 

10.2111 

0.5193 
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Table 19. Performance results on the SP with the I/O implemented as a separate task. 

PIOFS stripe factor = 80 

case 1: total number of nodes = 20 Time in seconds 

# nodes recv comp send total 

Parallel read 2 .1787 - .1413 .3200 

Doppler filter 6 .0045 .0724 .2548 .3316 

easy weight 1 .2269 .1047 .0001 .3317 

hard weight 7 .1165 .2150 .0013 .3329 

easy BF 1 .0641 .0822 .2082 .3545 

hard BF 1 .0416 .1179 .1874 .3469 

pulse compr 1 .1459 .1538 .0656 .3653 

CFAR 1 .2926 .0801 - .3727 

throughput 

latency 

2.6670 

2.6715 

case 2: total number of nodes = 34 Time in seconds 

# nodes recv comp send total 

Parallel read 4 .1230 - .0594 .1823 

Doppler filter 8 .0264 .0549 .0913 .1726 

easy weight 1 .0639 .1043 .0001 .1683 

hard weight 14 .0598 .1090 .0003 .1692 

easy BF 2 .0576 .0415 .0814 .1805 

hardBF 2 .0593 .0596 .0579 .1768 

pulse compr 2 .0278 .0784 .0803 .1864 

CFAR 1 .1092 .0804 - .1896 

throughput 

latency 

5.2819 

1.2766 

case 3: total number of nodes = 68 Time in seconds 

# nodes recv comp send total 

Parallel read 8 .1100 - .0185 .1285 

Doppler filter 16 .0455 .0283 .0631 .1369 

easy weight 2 .0901 .0535 .0001 .1437 

hard weight 28 .0839 .0554 .0001 .1395 

easy BF 4 .1158 .0208 .0035 .1401 

hard BF 4 .0813 .0483 .0089 .1385 

pulse compr 4 .1008 .0391 .0054 .1453 

CFAR 2 .1074 .0404 - .1478 

throughput 

latency 

6.5063 

0.6531 
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Figure 37. Performance results for the implementation using a separate I/O task. This 

figure corresponds to Tables 17,18, and 19. 

tasks have no significant differences for both cases and the throughput results do not 

change significantly. 

The latency, on the other hand, is the sum of the execution times of all the tasks 

except for the tasks with temporal data dependency, that is, easy and hard weight 

computation tasks (T2 and T3, respectively.) In the design with a separate I/O task, 

the latency contains one more term than the embedded I/O implementation: the 

execution time of the new task, T0. Therefore, the latency results become worse in 

this implementation. 
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5.4    Task Combination 

From the comparison of performance results for the two I/O task implementations, we 

notice that the structure of the STAP pipeline system can be reorganized to improve 

the latency. The first implementation that embeds I/O in the Doppler filter processing 

task can be viewed as combining the first two tasks of the second implementation that 

uses a separate task for I/O. As shown in Section 5.3.2, the first I/O implementation 

has a better latency performance, while the throughput results are approximately the 

same. 

5.4.1    Improving Latency 

We investigate whether the latency can be further improved by combining multiple 

tasks of the pipeline into a single task.   We consider Tables 14, 15, and 16 as an 

example and combine the last two tasks, the pulse compression and CFAR processing 

tasks, into a single task.   In order to make a fair comparison, we keep the total 

number of nodes allocated to the whole pipeline system to be the same. The number 

of nodes assigned to this single task is equal to the sum of the nodes assigned to 

the two tasks in the original pipeline. In this case, no communication costs between 

pulse compression and CFAR processing tasks are incurred.  Tables 20, 21, and 22 

give the timing results corresponding to Tables 14, 15, and 16 with the same total 

number of nodes assigned to the pipeline system.   Figure 38 shows the bar charts 

of the throughput and latency results for Tables 20, 21, and 22. Figure 39 gives a 

comparison of performance results of the STAP pipeline system with and without 

task combining. We observe that the latency improves for all cases on both Paragon 

PFS and SP PIOFS file systems when the last two tasks are combined. 

This improvement can also be explained by examining the latency equation. Be- 

fore task combination, the latency equation for the STAP pipeline system with 7 

tasks is 
latency, = T0 + max(T3, T4) +T5 + T6. (10) 
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Table 20. Performance results on the Paragon with pulse compression and CFAR tasks 

combined. 

PFS stripe factor = 16 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0094 .2589 .0908 .3591 

easy weight 3 .1307 .2230 .0002 .3540 

hard weight 28 .0660 .2868 .0003 .3531 

easy BF 3 .1449 .1930 .0003 .3382 

hard BF 4 .1616 .1756 .0003 .3375 

PC + CFAR 6 .1517 .1863 - .3380 

throughput 

latency 

2.9243 

0.7913 

case 2: total number of nodes = 112 Time in seconds 

# nodes recv comp send total 

Doppler filter 24 .0194 .1294 .0656 .2145 

easy weight 6 .0831 .1111 .0002 .1944 

hard weight 56 .0468 .1427 .0046 .1940 

easy BF 6 .0914 .0958 .0003 .1874 

hardBF 8 .0892 .0887 .0004 .1784 

PC + CFAR 12 .0869 .0935 - .1804 

throughput 

latency 

5.5340 

0.4221 

case 3: total number of nodes = 224 Time in seconds 

# nodes recv comp send total 

Doppler filter 48 .0953 .0623 .0323 .1900 

easy weight 12 .1056 .0558 .0003 .1617 

hard weight 112 .0930 .0726 .0004 .1661 

easy BF 12 .1116 .0484 .0003 .1603 

hardBF 16 .1063 .0513 .0004 .1579 

PC + CFAR 24 .1079 .0513 - .1592 

throughput 

latency 

6.1478 

0.2948 
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Table 21. Performance results on the Paragon with pulse compression and CFAR tasks 

combined. 

PFS stripe factor = 64 

case 1: total number of nodes = 56 Time in seconds 

# nodes recv comp send total 

Doppler filter 12 .0319 .2485 .0915 .3718 

easy weight 3 .1265 .2218 .0002 .3485 

hard weight 28 .0631 .2839 .0003 .3473 

easy BF 3 .1400 .1921 .0003 .3324 

hard BF 4 .1533 .1756 .0003 .3292 

PC + CFAR 6 .1449 .1860 - .3309 

throughput 

latency 

3.0027 

0.7957 

case 2: total number of nodes =112 Time in seconds 

# nodes recv comp send total 

Doppler filter 24 .0104 .1301 .0528 .1933 

easy weight 6 .0774 .1111 .0002 .1887 

hard weight 56 .0438 .1427 .0022 .1886 

easy BF 6 .0853 .0959 .0003 .1815 

hard BF 8 .0869 .0886 .0004 .1759 

PC + CFAR 12 .0838 .0936 - .1773 

throughput 

latency 

5.6029 

0.4197 

case 3: total number of nodes = 224 Time in seconds 

# nodes recv comp send total 

Doppler filter 48 .0071 .0676 .0306 .1054 

easy weight 12 .0522 .0559 .0002 .1083 

hard weight 112 .0347 .0730 .0031 .1108 

easy BF 12 .0533 .0482 .0004 .1018 

hardBF 16 .0481 .0512 .0003 .0997 

PC + CFAR 24 .0489 .0514 - .1003 

throughput 

latency 

9.8853 

0.2392 
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Table 22. Performance results on the SP with pulse compression and CFAR tasks com- 

bined. 

PIOFS stripe factor = 80 

case 1: total number of nodes = 18 Time in seconds 

# nodes recv comp send total 

Doppler filter 6 .1320 .0728 .1894 .3942 

easy weight 1 .2844 .1023 .0001 .3868 

hard weight 7 .1738 .2131 .0002 .3870 

easy BF 1 .3039 .0823 .0001 .3862 

hard BF 1 .2677 .1182 .0002 .3862 

PC + CFAR 2 .2683 .1194 - .3877 

throughput 

latency 

2.5754 

0.9388 

case 2: total number of nodes = 30 Time in seconds 

# nodes recv comp send total 

Doppler filter 8 .1105 .0550 .1055 .2710 

easy weight 1 .1711 .1026 .0002 .2739 

hard weight 14 .1570 .1077 .0002 .2649 

easy BF 2 .2225 .0417 .0001 .2644 

hardBF 2 .2051 .0608 .0002 .2661 

PC + CFAR 3 .1878 .0793 - .2671 

throughput 

latency 

3.7492 

0.6255 

case 3: total number of nodes = 60 Time in seconds 

# nodes recv comp send total 

Doppler filter 16 .1044 .0279 .0462 .1786 

easy weight 2 .1350 .0515 .0002 .1867 

hard weight 28 .1238 .0568 .0002 .1808 

easy BF 4 .1582 .0210 .0002 .1794 

hardBF 4 .1485 .0300 .0003 .1787 

PC + CFAR 6 .1397 .0414 - .1810 

throughput 

latency 

5.5356 

0.4207 
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Figure 38. Performance results for the STAP pipeline system that combines the pulse 

compression and CFAR tasks into a single task. This figure corresponds to Tables 20, 

21, and 22. 

Let Wb and W6 be the workloads for tasks 5 and 6, respectively. The execution times 

for task 5 and 6 are 
(11) 

and 

P5 

*6 

(12) 

where d and V{ represent the communication time and the other parallelization 

overhead for task i respectively. Similarly, let r5+6 be the execution time of the task 
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Figure 39. Performance comparison of the pipeline system with and without task com- 

bining. The throughput results remain approximately the same. Latency is improved 

when the last two tasks are combined. 
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that combines tasks 5 and 6 running on P5 + P6 nodes: 

By subtracting Equations (11) and (12) from Equation (13), we have 

T5+6 - (T5 + T6) 

~    P5 + Pe       Ps      Pe 
+   C5+6 — C$ - Ce 

+   V5+e-V5-V6 (14) 

where 

W5 + W6     Wb 

P5 + Pe       P$ 
-W5Pi - 

w6 

p6 

W6Pi 

P5Pe(P5 + Pe) 
<   0. (15) 

Communication for the combined task occurs only when receiving data from tasks 

3 and 4. Prior to the task combination, the same communication takes place in the 

receive phase of task 5. The difference is the number of nodes used between the two 

tasks. Since P5+6 > ^5, the data size for each received message from tasks 3 and 4 to 

the combined task is smaller than that for task 5. Besides, in task 5, C5 includes the 

communication cost of sending messages from task 5 to task 6 which does not occur 

in the combined task. Hence, we have 

'5+6 < G, (16) 

The remaining overhead, Vu is due to parallelization of task t. Since the operations 

in tasks 5 and 6 are sets of individual subroutines which require no communication 

within each single task, parallelization is carried out by evenly partitioning these 

subroutines among the nodes assigned.   Due to this computational structure, the 
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Table 23. Percentage of latency improvement when the Pulse compression and CFAR 

tasks are combined into a single task. 

Paragon: PFS 

# nodes 56 112 224 

16 stripe dir 19.3% 18.4% 10.4% 

64 stripe dir 18.7% 18.4% 16.7% 

SP: PIOFS 

# nodes 18 30 60 

80 stripe dir 24.0% 19.9% 15.9% 

overhead for these two tasks becomes negligible compared to their communication 

costs. From Equations (14), (15), and (16) we can conclude that 

T5+6 < T5 + Te (17) 

Therefore, the new latency equation of the STAP pipeline system with the last 

two tasks combined becomes 

latency^   —   TQ + max(T3, T4) + T$+e 

<   latenqjj (18) 

Combining the last two tasks, therefore, reduces the latency. 

Table 23 gives the percentage of improvement in latency when the last two tasks 

are combined. These improvements were made without adding any extra nodes to the 

pipeline system. We observe that the percentage decreases as the number of nodes 

goes up. Normally, scalability of the parallelization tends to decrease when more 

processors are used. This also explains the trend for the percentage improvement 

shown in Table 23. Notice that the tasks that can be combined to improve the 

latency do not include tasks with temporal data dependency. It is because only those 

tasks with spatial data dependency contribute to the latency. 
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5.4.2    Improving Throughput 

The throughput results, on the other hand, do not change significantly when the two 

tasks are combined. This is because the throughput is determined by the task with 

the maximum execution time among all the tasks, which is still the maximum in the 

new pipeline system. Assuming that Tmax is the maximum execution time before task 

combination, the throughput is given by 

1 
throughput = —— 

J-max 

where 

Tmax     =     ™<%Ti 0<i<7 

>   max(Ts,T6) 

From Equations (11), (12), and (13), the execution time of the new combined task 

becomes 

P5T5 + P6T6 
Tb+e   *       Pb + Pe 

P-0 max{T5,T6) + P6 max(T5,T6) 

~ P5 + Pe 
=   max{T5,T6) (19) 

and the new maximum execution time becomes 

T'max   =   rnax{T0,Ti,T2,T3,T4,T5+e) 

<   max(TQ,Ti,T2,T3,TA,TrnTe) 

=     J- max • 

Therefore, the throughput will not decrease after task combination because 

1 
throughput?,   =   — 

max 
l 

> 
J-max 

=   throughput-?. (20) 
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Both latency and throughput can be improved simultaneously when one of the 

combined tasks determines the throughput of the pipeline system. Suppose that 

either task 5 or task 6 has the maximum execution time among all the 7 tasks in the 

STAP pipeline system, that is, 

Tmax   =   max(T5,T6) 

>   max Ti. (21) 
0<i<4 

Notice that none of these two tasks has temporal data dependency. From Equation 

(18), we have latency improvement when tasks 5 and 6 are combined. From Equations 

(20) and (21), the throughput is increased. The reduction of execution time of both 

tasks 5 and 6 contributes to the latency as well as to the throughput. Therefore, not 

only the throughput can be increased, but the latency can be also reduced. Note that 

in our experiment results shown in the previous section, the task with the maximum 

execution time is neither task 5 nor task 6, that is, Tmax > max (T5,T6). 

5.5    Raw CPI Data Redistribution 

The presentation in this chapter up to now assumed that a special hardware is avail- 

able to pre-process the raw CPI data received by the radar before delivering it to the 

STAP pipeline system. However, this special purpose equipment may not perform 

very efficiently or may not be available. We investigate the possibility of implement- 

ing this data pre-processing operation using a software approach. Actually, Air Force 

Research Laboratory (AFRL) performed a real time STAP demonstration using ex- 

actly the same signal processing algorithm as ours onboard an airborne platform in 

May 1996 [12, 13]. The radar was a phased array L-Band radar with 32 elements 

organized into two rows of 16 each. Only the data from the upper 16 elements were 

processed with STAP. This data is a 1.25 MHz intermediate frequency (IF) signal 

that is 4:1 oversampled at 5 MHz. The number representation at IF is 14 bits, 2's 

complement and is converted to 16 bit baseband real and imaginary numbers. Spe- 

cial interface boards were used to digitally demodulate to baseband. The signal data 
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Figure 40. Raw CPI data received from a phased array radar is used to form a 128 X 

512 X 16 three dimensional data cube. 

formed a raw 3-dimensional data cube called coherent processing interval (CPI) data 

cube comprised of 128 pulses, 512 range gates (32.8 miles), and 16 channels, shown 

in Figure 40. These special interface boards were also used to corner turn the data 

cube so that CPI is unit stride along pulses. It speeds the subsequent Doppler pro- 

cessing on the High Performance Computing (HPC) systems. Live CPI data from a 

phased-array radar were processed by a ruggedized version of the Paragon computer. 

The STAP algorithm was performed on this computer using the raw data from the 

16 columns of the phased array. 

All experiments described in the previous sections assumed that this special pur- 

pose hardware was used to pre-process the raw CPI data such that each CPI data 

cube is corner-turned from 128 x 512 x 16 to 512 x 16 x 128 and each complex element 

in a CPI is type-converted from two 16-bits real numbers to two 32-bits real numbers 

(type float in C language.) The operations of corner turn and CPI data partitioning 

among compute nodes are illustrated in Figure 41. The reason for the corner turn 
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operations is that the major operations in the Doppler filter processing task, the Fast 

Fourier transforms (FFTs), need to be performed along the pulse dimension of the 

CPI cube. That is, 128-point FFTs are performed for every range and channel. The 

corner turn operation, here, is to allow each FFT to be computed on a single compute 

node in the Doppler filter processing task. Given this hardware, the parallel pipeline 

STAP system can directly process the CPI data without redistributing it among the 

compute nodes once the CPI data is read from the disk. 

5.5.1    Corner Turn and Type Conversion 

Without hardware support for the operations of corner turn and type conversion, the 

parallel pipeline STAP system has to include this in its implementation. In order that 

every FFT can be processed in a single compute node in the Doppler filter processing 

task, the CPI data has to be partitioned along the dimension of range cells among the 

compute nodes assigned, shown in Figure 41(d). Note that two consecutive pulses in 

a raw CPI data cube are stored in disks at a distance of 512 • 16 complex numbers. By 

partitioning the raw CPI along the range dimension, each sub-CPI data for one node 

consists of several pieces of non-contiguous data. For instance, we use 4 nodes to read 

a raw CPI data cube and it results in a sub-CPI of size 128 x 128 x 16. That is, each 

sub-CPI has 128 pieces of data and each piece is of size 128 x 16. Although contents 

of each data piece are stored contiguously in disks, the 128 data pieces themselves 

are not adjacent to each other. To obtain the sub-CPI data required by each node, 

two implementations for reading CPI data can be done: 

1. Every node performs several read operations directly from the disks. Each read 

is for a data piece of a sub-CPI. After the sub-CPI data is read, type-conversion 

operations are applied. 

2. Using a two-phase I/O access strategy [34], the CPI data is first read using data 

distribution which conforms with the distribution of CPI data over the disks. 

This results in each node making a single, large, and contiguous disk space 
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access. In the second phase, the sub-CPI data is type-converted, corner-turned, 

and redistributed among the nodes to match the desired data distribution. 

Two-phase I/O access strategy has been shown to improve the I/O performance 

significantly. This method first reduces the I/O bottleneck from disks to compute 

nodes by making all the file accesses large and contiguous. Second, the data redistri- 

bution uses the inter-processor communication network with higher bandwidth and 

higher degree of connectivity. 

5.5.2    Implementation 

To read CPI files in parallel, we implemented the two-phase I/O access strategy on the 

two STAP pipeline system I/O designs described in Section 5.2. The implementation 

for the reading of CPI files for the STAP pipeline system with a separate I/O task is 

shown in Figure 42. In this implementation, each node in the I/O task performs the 

following steps: 

1. uses one read operation to read an exclusive part of CPI data. In other words, 

the CPI data is partitioned into exclusive subsets and node i in the I/O task 

reads the ith subset of each CPI file. 

2. performs the corner turn and type conversion operations on the sub-CPI data. 

3. redistributes the sub-CPI data with other nodes in the I/O task such that each 

node receives all parts of sub-CPI data it is responsible for. Data exchange in 

this step is an all-to-all personalized communication within the same group of 

nodes. 

4. sends the re-organized sub-CPI data to the Doppler filter processing task. The 

communication pattern in this step is a left-right shift communication. Notice 

that the number of nodes assigned to the I/O task may be different from the 

Doppler filter processing task. 

C-130 



16 channels 

Raw CPI stored in disks 

parallel read 

sup 1 

Corner turn 
+ 

Type conversion 

sup 2 

It channels 
--H       r- 

128 /P pulses 

intra-task data 

1.   «^   <U 

ft* redistribution v     m 

step >  */T77 

128/P pulses 
128 pulses 128 pulses 

Figure 42. Implementation of parallel reading of raw CPI data from disks and its distri- 

bution for the Doppler filter processing task. 

In the first I/O design that embeds the I/O in the Doppler filter processing task, 

the only difference is that it is without step 4, the left-right shift communication. 

In addition, all the steps are performed within the same group of nodes. The sub- 

CPI data redistribution is j>erformed within the same group of compute nodes in 

the Doppler filter processing task. As opposed to the inter-task data dependency 

discussed in Section 2.4.1 of Chapter 2, this data redistribution results in an intra- 

task data dependency. The intra-task dependency exists when intermediate results 

need to be exchanged during the execution of a single parallel task in the pipeline. 

5.5.3    Performance Results 

The performance results for the implementation using a separate I/O task are given 

in Tables 24 and 25, for Paragon PFS file systems with 16 and 64 striped directories, 

respectively.   Figure 43 shows the bar charts corresponding to Tables 24 and 25. 
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Table 24. Performance results on the Paragon with the I/O implemented as a separate 

task in which the corner turn and type conversion are embedded in the receive phase. 

PFS stripe factor = 16. 
case 1: total number of nodes = 64 Time in seconds 

# nodes recv comp send total 

Parallel read 8 .3256 - .0003 .3259 

Doppler filter 12 .0634 .1744 .0907 .3285 

easy weight 3 .1053 .2215 .0002 .3270 

hard weight 28 .0403 .2849 .0003 .3255 

easy BF 3 .1204 .1923 .0003 .3131 

hard BF 4 .1346 .1757 .0003 .3105 

pulse compr 4 .0812 .1978 .0302 .3092 

CFAR 2 .1726 .1361 - .3087 

throughput 

latency 

3.2079 

1.2516 

case 2: total number of nodes = 128 Time in seconds 

# nodes recv comp send total 

Parallel read 16 .1485 - .0099 .1585 

Doppler filter 24 .0037 .0976 .0580 .1593 

easy weight 6 .0528 .1110 .0002 .1639 

hard weight 56 .0161 .1435 .0038 .1634 

easy BF 6 .0515 .0969 .0004 .1488 

hardBF 8 .0555 .0894 .0003 .1452 

pulse compr 8 .0313 .1000 .0151 .1464 

CFAR 4 .0777 .0682 - .1459 

through 

latenc 

)Ut 

y 

6.7809 

0.7797 

case 3: total number of nodes = 256 Time in seconds 

# nodes recv comp send total 

Parallel read 32 .1041 - .0004 .1045 

Doppler filter 48 .0241 .0453 .0244 .0937 

easy weight 12 .0499 .0559 .0002 .1060 

hard weight 112 .0319 .0729 .0008 .1056 

easy BF 12 .0516 .0486 .0003 .1005 

hardBF 16 .0474 .0518 .0003 .0996 

pulse compr 16 .0411 .0499 .0079 .0989 

CFAR 8 .0643 .0343 - .0986 

throughput 

latency 

9. 

0. 

3740 

3713 
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Table 25. Performance results on the Paragon with the I/O implemented as a separate 

task in which the corner turn and type conversion are embedded in the receive phase. 

PFS stripe factor = 64. 
case 1: total number of nodes = 64 Time in seconds 

 n 
# nodes recv comp send total    || 

Parallel read 8 .3242 - .0004 .3246 

Doppler filter 12 .0575 .1742 .0956 .3272 

easy weight 3 .1039 .2214 .0002 .3255 

hard weight 28 .0375 .2849 .0003 .3227 

easy BF 3 .1197 .1921 .0003 .3121 

hard BF 4 .1275 .1830 .0002 .3108 

pulse compr 4 .0789 .1980 .0296 .3065 

CFAR 2 .1693 .1360 - .3053 

throughput 

latency 

3.3022 

1.2889 

case 2: total number of nodes = 128 Time in seconds 

# nodes recv comp send total 

Parallel read 16 .1471 - .0163 .1633 

Doppler filter 24 .0048 .1004 .0669 .1722 

easy weight 6 .0601 .1109 .0002 .1712 

hard weight 56 .0214 .1430 .0059 .1703 

easy BF 6 .0524 .0970 .0003 .1497 

hard BF 8 .0605 .0895 .0003 .1503 

pulse compr 8 .0369 .0994 .0149 .1512 

CFAR 4 .0825 .0681 - .1506 

throughput 

latency .. 

6.5610 

0.8300 

case 3: total number of nodes = 256 Time ir seconds 

# nodes recv comp send total 

Parallel read 32 .0908 - .0005 .0913 

Doppler filter 48 .0015 .0507 .0244 .0766 

easy weight 12 .0434 .0559 .0002 .0995 

hard weight 112 .0248 .0727 .0005 .0980 

easy BF 12 .0455 .0499 .0003 .0957 

hard BF 16 .0390 .0548 .0004 .0942 

pulse compr 16 .0349 .0505 .0078 .0932 

CFAR 8 .0590 .0342  |      - .0932 

throughput 

latency 

10.5710 

|                        0.4629 
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Figure 43. Performance results for the implementation using a separate I/O task in which 

the corner turn and type conversion are embedded in the receive phase. This figure 

corresponds to Tables 24 and 25. 

Linear speedups were obtained for both throughput and latency. 

The performance results for the implementation with the I/O task embedded in 

the Doppler filter processing task is shown in Tables 26 and 27, for Paragon PFS 

file systems with 16 and 64 striped directories, respectively. Figure 44 shows the 

bar charts corresponding to Tables 26 and 27. We observe that the throughput and 

latency show linear speedups till the case with a total of 120 nodes. The timing for 

performing read CPI data from disks, corner turn, type conversion, and CPI data 

redistribution are included in the receive phase of the Doppler filter processing task. 

When we increase the number of nodes from 32 to 64 in the Doppler filter processing 

task, the performance of the receive phase does not scale up linearly. This is because 

of the increasing cost of the all-to-all personalized communication in the sub-CPI data 

redistribution. The size of each CPI data in our experiments is 128 • 512 • 16 • (2 • 4 

bytes) = 8M bytes. With 64 nodes, the size of data in each send/receive of the 

all-to-all personalized communication becomes 8^" = 2K bytes. In the all-to-all 

personalized communication, each node has a total of 64 read/receive calls whose 

communication startup time overwhelms the message transmission time with respect 

to the relatively small size of the messages (2K bytes each.) 
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Table 26. Performance results on the Paragon with the I/O implemented in the Doppler 

filter processing task in which the corner turn and type conversion are embedded in 

the receive phase. 

PFS stripe factor = 16 

case 1: total nodes = 31 Time in seconds 

node recv comp send total 

Doppler 8 .3188 .2584 .1354 .7127 

easy wgt 2 .3794 .3321 .0002 .7118 

hard wgt 14 .1446 .5669 .0004 .7119 

easy BF 2 .4164 .2865 .0002 .7031 

hard BF 2 .3405 .3478 .0002 .6886 

PC 2 .2313 .3949 .0583 .6845 

CFAR 1 .4121 .2724 - .6845 

throughput 

latency 

1.4411 

1.9326 

case 2: total nodes = 60 Time in seconds 

Doppler 

easy wgt 

hard wgt 

easy BF 

hardBF 

PC 

CFAR 

node 

16 

28 

throughput 

latency 

.1505 

.1277 

.0629 

.1419 

.1537 

.1003 

.1918 

comp 

.1296 

.2216 

.2849 

.1918 

.1756 

.1985 

.1363 

send 

.0681 

.0002 

.0003 

.0003 

.0002 

.0298 

3.0129 

0.9789 

total 

.3482 

.3495 

.3481 

.3340 

.3295 

.3286 

.3281 

case 3: total nodes = 120 Time in seconds 

node recv comp send total 

Doppler 32 .0863 .0660 .0349 .1872 

easy wgt 6 .0780 .1110 .0002 .1893 

hard wgt 56 .0431 .1429 .0019 .1879 

easy BF 6 .0842 .0961 .0003 .1806 

hard BF 8 .0886 .0880 .0003 .1770 

PC 8 .0616 .0995 .0151 .1763 

CFAR 4 .1079 .0683 - .1762 

throughput 

latency 

5.5923 

0.5047 

case 4: total nodes = 238 Time in seconds 

node recv comp send total 

Doppler 64 .0625 .0364 .0192 .1181 

easy wgt 12 .0675 .0557 .0003 .1234 

hard wgt 112 .0494 .0721 .0004 .1219 

easy BF 12 .0732 .0482 .0004 .1218 

hard BF 14 .0649 .0511 .0003 .1164 

PC 16 .0587 .0501 .0078 .1166 

CFAR 8 .0821 .0344 - .1165 

throughput 

latency 

8.4272 

0.2925 
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Table 27. Performance results on the Paragon with the I/O Implemented In the Doppler 

filter processing task in which corner turn and type conversion are embedded in the 

receive phase. 

PFS stripe factor = 64 

case 1: total nodes = 31 Time in seconds 

node recv comp send total 

Doppler 8 .3196 .2586 .1355 .7138 

easy wgt 2 .3804 .3321 .0003 .7128 

hard wgt 14 .1455 .5670 .0004 .7129 

easy BF 2 .4174 .2865 .0002 .7042 

hard BF 2 .3413 .3480 .0003 .6896 

PC 2 .2321 .3949 .0582 .6852 

CFAR 1 .4129 .2724 - .6852 

throughput 

latency 

1.4390 

1.9368 

case 2: total nodes = 60 Time in seconds 

node recv comp send total 

Doppler 16 .1504 .1298 .0757 .3558 

easy wgt 3 .1341 .2216 .0002 .3559 

hard wgt 28 .0697 .2849 .0004 .3550 

easy BF 3 .1486 .1913 .0003 .3402 

hard BF 4 .1524 .1828 .0002 .3355 

PC 4 .1007 .1989 .0317 .3313 

CFAR 2 .1918 .1363 - .3280 

throughput 

latency 

3.0618 

1.0159 

case 3: total nodes = 120 Time in seconds 

node recv comp send total 

Doppler 32 .0835 .0647 .0455 .1937 

easy wgt 6 .0872 .1111 .0002 .1985 

hard wgt 56 .0469 .1430 .0074 .1973 

easy BF 6 .0934 .0959 .0003 .1896 

hard BF 8 .0864 .0895 .0003 .1762 

PC 8 .0618 .0998 .0151 .1768 

CFAR 4 .1080 .0683 - .1763 

throughput 

latency 

5.6552 

0.5264 

case 4: total nodes = 238 Time in seconds 

node recv comp send total 

Doppler 64 .0617 .0327 .0190 .1134 

easy wgt 12 .0675 .0558 .0002 .1236 

hard wgt 112 .0497 .0724 .0004 .1225 

easy BF 12 .0735 .0482 .0003 .1220 

hard BF 14 .0652 .0511 .0003 .1166 

PC 16 .0590 .0500 .0077 .1167 

CFAR 8 .0824 .0343 - .1167 

throughput 

latency 

8.4237 

0.2927 
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Figure 44. Performance results for the implementation when the parallel I/O, corner turn, 

and type conversion are embedded in the receive phase of the Doppler filter processing 

task. This figure corresponds to Tables 26 and 27. 

5.6    Summary 

In this work, we studied the effects of parallel I/O implementation on the parallel 

pipeline system for a modified PRI-staggered post-Doppler STAP algorithm. The 

parallel pipeline STAP system was run portably on Intel Paragon and IBM SP and the 

overall performance results demonstrated the linear scalability of our parallel pipeline 

design when the existing parallel file systems were used in the I/O implementations. 

On the Paragon, we found that a pipeline bottleneck can result when using a parallel 

file system with a relatively smaller stripe factor. With a larger stripe factor, a parallel 

file system can deliver higher efficiency of I/O operations and, therefore, improve the 

throughput performance. 
This chapter presented two I/O designs which are incorporated into the parallel 

pipeline STAP system. One embedded I/O in the original pipeline and the other 

used a separate I/O task. By comparing the results of these designs, we found that 

the task structure of the pipeline can be reorganized to further improve the latency. 

Without adding any compute nodes, we obtained performance improvement in the 

latency when the last two tasks were combined. We also analyzed the possibility of 

further improvement by examining the throughput and latency equations. 
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We also investigated a software approach to implement raw data pre-processing 

which can often be done by a special purpose hardware. The performance results 

demonstrate that the parallel pipeline STAP system scaled well even with a more 

complicated I/O implementation. 
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Chapter 6 

Summary and Conclusions 

This dissertation has proposed a parallel pipeline computational model for radar sig- 

nal processing applications on high performance computers. This model is designed 

for those radar applications that are computationally intensive and are required to 

operate in real time. We addressed the advantages of HPC systems over the tradi- 

tional VLSI based designs in terms of scalability, flexibility, and affordability. In this 

work, we focused on STAP algorithms which is representative of radar signal process- 

ing methods whose parallelization is highly desirable.  Based on the computational 

characteristics of STAP algorithms, the proposed parallel pipeline model captures the 

computational requirements for this type of application. Although we focused on a 

specific STAP algorithm and implemented it on the parallel pipeline model through- 

out the dissertation, this computational model is suitable for the system design of 

other signal processing applications as well. 

In addition to the spatial data dependency, all signal processing applications with 

space-time relationship show temporal data dependency as well. In the design of 

the parallel pipeline computational model, these two types of data dependencies are 

incorporated. The parallelization issues for this model include data redistribution and 

processor assignment. Data redistribution is divided into two categories: inter-task 

and intra-task. Inter-task data redistribution occurs when two groups of processors 

in two different tasks need to exchange data with each other while intra-task data 
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redistribution involves data transfer among the same group of processors in one task. 

Both types of data redistribution show two communication patterns: corner turn 

or left-right shift. In the corner-turn communication pattern, messages need to be 

packed on the sender side and unpacked on the receiver side. Message packing and 

unpacking both involve data reorganization whose efficiency depends on the message 

size and the machine's cache performance. 

Processor assignment is one of the most important issues in the implementation 

of the parallel pipeline model for the embedded real-time signal processing applica- 

tions. Performance of throughput and latency are two key requirements for this type 

of applications. Within a single task, the strategy of data partitioning across the 

processors assigned to this task determines the efficiency of the parallelizations of 

this task. In the integrated pipeline system, processor assignment affects the overall 

system performance in terms of throughput and latency. Tradeoffs exist when assign- 

ing processors to the tasks such that the throughput is increased and the latency is 

reduced. These two goal may require two different processor assignments. 

A real radar application was used in the implementation of our parallel pipeline 

computational model. This application is based on a modified PRI-staggered post- 

Doppler STAP algorithm. AFRL also implemented the same algorithm on a ruggedi- 

zed version of the Paragon computer by using compute nodes of the machine only as 

independent resources in a round robin fashion to run different signal data instances. 

The implemented system had been installed onboard an airborne platform and suc- 

cessfully performed four flight experiments. Using our proposed parallel pipeline 

model, we implemented the same application on Intel Paragon, IBM SP and SGI 

Origin. The performance results indicate that our approach scales well both in terms 

of communication and computation. The throughput and latency results also demon- 

strate the linear scalability. 

Given additional processors, tradeoffs exist between assigning these processors 

to increase the throughput and to reduce the latency. Throughput of a pipeline 

system depends on the task with the maximum execution time among all tasks in the 

pipeline. To improve the throughput, processors should be assigned to the task with 
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the maximum execution time. On the other hand, latency is determined by the sum 

of the execution times of the tasks without temporal data dependency. Additional 

processors can be assigned to those tasks which benefit the most, that is, the tasks 

whose execution time is reduced the most when more nodes are assigned. 

To explore the possibility of further performance improvement, the multi-threaded 

design of the parallel pipeline STAP system was implemented on the Paragon MP 

system. Paragon MP system is a massively parallel processing machine with SMP 

nodes. Each SMP node in the Paragon MP system has three processors sharing the 

main memory, I/O interface, and other common resources. The thread library imple- 

mented on the Paragon uses POSIX threads which is not standardized yet. Since the 

message-passing part of the library is not thread-safe, the multi-threaded design was 

only implemented in the compute phase of the STAP pipeline system. The approach 

for using multiple threads is straightforward by dividing the computation load further 

within each compute node. Performance results indicated that the parallel pipelined 

implementation scales well for both throughput and latency when the multi-threaded 

technique is used. Although the concurrent read/write problems limit the multi- 

threading performance when designing a thread-safe library, our model still provides 

significant performance improvement by using the Paragon thread-safe numerical li- 

braries. 
To study the effect of disk I/O performance on our parallel pipeline model, we 

incorporated the I/O task designs into the parallel pipeline STAP system. We used 

the existing parallel file system on the Paragon and SP to perform the read operations 

of input data to the STAP system. Two I/O task designs were presented in this 

work. One embedded I/O in the original pipeline and the other used a separate task 

to perform I/O. We ran the codes using two parallel file systems on the Paragon, 

each with different sizes of stripe directories. The parallel file system with large 

stripe directories can deliver higher efficiency of I/O operations to relieve the I/O 

bottleneck problem in a pipeline system. On the other hand, when comparing the 

two I/O designs, the throughput results were approximately the same. However, the 

latency results for the first design were better.   This observation leads to the fact 
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that the task structure of the pipeline can be reorganized to further improve the 

latency. We combined the last two tasks into a single task and maintained the same 

number of processors assigned to the whole system and demonstrated this observation. 

A theoretical analysis was also given by examining the equations of latency and 

throughput. 

A software approach to implement raw signal data pre-processing which can often 

be done by a special purpose hardware was investigated. The raw data pre-processing 

involves operations of corner turn and type conversion of a three dimensional data 

cube. The corner-turn operation in the I/O task can be viewed as a two-phase 

I/O access strategy. Operation of corner turn also represents the intra-task data 

dependency in the parallel pipeline system. With a more sophisticated I/O task, the 

parallel pipeline STAP system scaled well for both throughput and latency. 

6.1    Suggestions for Future Work 

There are several issues that can be further studied. First, the data redistribution 

operation between two exclusive groups of processors or even among more than two 

groups of processors can be further investigated. Since the task structure of a pipeline 

can be complicated as several processing tasks whose data need to be transferred 

among several groups of processors, data redistribution can require communication 

from one group to another group, one group to many groups, many groups to one 

group, or many groups to many groups of processors. We call this problem a group- 

to-group data redistribution problem. Development of this type of communication 

structure is a new research area. In the literature, primitive communication patterns 

have been well addressed and many optimized approaches have been developed for 

several architectures. The group-to-group communication structure can be designed 

based on these primitive communications or a brand new approach needs to be de- 

veloped. 

Optimization of processor assignment in a parallel pipeline system is normally not 

easily captured by a theoretical analysis. The fact is that the execution time of a task 
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is determined by its communication and computation time. Even if the computa- 

tion time of one task can be predicted given a number of processors, the overlapping 

nature of a pipeline model can hide the communication costs in the other phases of 

this task, especially when asynchronous send and receive are used with double buffer- 

ing. Further research on the optimization of processor assignment may first focus on 

situations with simple communication patterns presented in the inter-task data re- 

distribution, e.g., a parallel pipeline system with only left-right shift communication. 

Then more general problems can be addressed with more complicated communication 

patterns. 
Since almost all radar applications have real-time constraints, a well designed 

system should be able to handle any changes in the requirements on the throughput 

and latency by dynamically allocating or re-allocating processors among tasks. With 

the capability of interaction with users, the STAP system may need to fine tune some 

of the signal processing parameters after preliminary detection results are obtained. 

To design an interactive radar system which is capable of performing processor re- 

assignment in real time may need to take several issues into consideration, such as 

overhead of pipeline re-initialization, change of inter-task communication pattern, 

and so on. This appears to be a fruitful area of research. 
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Parallel Ozturk Algorithm User's Manual 

1. Introduction 

Ozturk algorithm is one of the goodness of fit tests used to check 
consistency of a null hypothesis against a given sample of random data. 
For certain real-time applications of the Ozturk algorithm, it is 

essential that the processing time is within some acceptable limits. 
Employing parallel machines seems to be one way of reducing the processing 
time. Please refer to our final report 'ozturk.ps' for the details of 
program characteristics, parallelization strategy and final results. 

2. How to extract source code? 

A. download ozturk.tar.gz to your local workstation 
B. 'gunzip ozturk.tar.gz' then you will get ozturk.tar 
C. use 'tar xvf ozturk.tar' to extract the archive. It will create 

a subdirectory new 
D. There are two subdirectories under new, one is 

new_hp: directory for the source code running on HP workstations 
new_sp: directory for the source code running on IBM SP2 

3. How to compile the source code? 

First copy the source code to the platform you are going to be runnin 
on. 

For both SP and HP, there is a single makefile, just type make and you 
should get the executables respectively. 

4. How to run the executables? 

On HP workstations, you need to edit a machine list in a file to 

indicate which machines are you going to run the code on. such as in 
the new_hp directory you will find out a text file 'machines', each line 
corresponds to a HP workstation in my local area network. You need to 
configure it for workstations in your own local area network. 

To run the code on 4 nodes, use 'mpirun' with the following arguments: 
1 mpirun -np 4 -machinefile machines ozturk ' 
where, ozturk is executable. The ozturk will be running on the first 
four machines in machines file. 

On IBM SP2, you need to edit a command script, a sample cmd 'ozturk.cmd' 
requesting 4 nodes is given under the directory new_sp. To run submit the 
job, use 'llsubmit' command as follows: 

'llsubmit ozturk.cmd1 

The results will be directed to 'ozturk.out'. 

5. How to configure input file? 

Edit 'ozturk.init' under new_hp and new_sp directories respectively. 

5. Further questions? 

send your email to xhshen@ece.nwu.edu 
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Abstract 

Ozturk algorithm is one of the goodness of 
fit tests used to check consistency of a null 
hypothesis against a given sample of random 
data. For certain real-time applications of the 
Ozturk algorithm, it is essential that the pro- 
cessing time is within some acceptable limits. 
Employing parallel machines seems to be one 
way of reducing the processing time. 

In this report we discuss the paralleliza- 
tion of this algorithm on a variety of parallel 
machines. Our current results indicate that 
the algorithm scales well up to 6-8 processors 
depending on the architecture of the paral- 
lel machine. Further scaling is impeded by 
some inherently sequential portions of the al- 
gorithm. 

'This work was supported by Air Force Materials 
Command under contract F30602-97-C-0026 

1    Introduction 

In the analysis of random data, situations are 
encountered where there may be various sta- 
tistical models or hypotheses that need to be 
checked against the data. In a typical sce- 
nario, one would like to check whether a par- 
ticular distribution (the null hypothesis) con- 
sistently represents the data from a certain 
experiment. Several tests have been proposed 
for this purpose and the test developed by 
Professor Aydin Ozturk (commonly known as 
Ozturk Algorithm [1]) is the focus of this re- 
port. 

Ozturk algorithm is one of the goodness of 
fit tests used to check consistency of a null 
hypothesis against a given sample of random 
data. Since the algorithm is often used to 
process real time data, it is necessary to re- 
duce the time needed to process each sample 
of data. For large sample sizes, it is observed 
that the computation time of the Ozturk al- 
gorithm is not acceptable. 

One way to achieve improved processing 
speed is by employing multiple processors. 
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The algorithm in the original sequential form 
exhibits very little parallelism which can ex- 
ploited by conventional parallelizing compil- 
ers on distributed and distributed shared 
memory parallel machines. However, there 
exists significant amount of parallelism which 
can be exploited by hand parallelizing the 
code. In the current work we attempt to im- 
prove the execution time of this algorithm by 
employing multiple processors. 

As the original sequential code changed 
later, so we presented two sets of results. 

In the next few sections we discuss our 
initial experience in parallelizing this algo- 
rithm on a variety of parallel machines for 
the original code: IBM SP2 - a 16 processor 
distributed memory multiprocessor, IBM J30 
- an 8 processor symmetric multiprocessor, 
SGI Origin 2000 - an 8 processor distributed 
shared memory multiprocessor and a cluster 
of HP 9000 work-stations. For the new code, 
the results from SP2 and HP work-stations 
are presented. 

To ensure portability across different paral- 
lel architectures we have adopted the message 
passing style of parallel programming. Fur- 
ther, we have used standard message passing 
interface namely the MPI [2, 3, 4, 5]. 

The rest of the paper is organized as fol- 
lows. In Section 2 we look more closely at 
the original sequential implementation of the 
Ozturk algorithm and study how the com- 
putation time is distributed among various 
phases of the algorithm. With this in mind, 
we evolve a parallelization strategy which is 
discussed in Section 3. Section 5 describes 
the code changes from the original sequen- 
tial code. The results of running our paral- 
lel Ozturk algorithm on a variety of parallel 
machines are presented in Section 4 and 6. 
Finally we conclude with Section 7. 

2    Breakup   of   computa- 
tion time 

Before deciding the parallelization strategy, 
the sequential algorithm was profiled to study 
the breakup of computation time in different 
phases of the algorithm. The original algo- 
rithm which was implemented in FORTRAN 
has around 50 functions. None of these ex- 
hibit significant loop level parallelism which 
can be exploited by conventional paralleliz- 
ing compilers. Manual parallelization seems 
to be the only way to parallelize this algo- 

rithm. 
Among these 50 functions, two top level 

functions namely mstar and eexpuv together 
contribute to more that 80% of the execution 
time (the function mstar along with the func- 
tions called by it contributes to more than 
50% of the time and eexpuv along with the 
functions called by it contributes to 30% of 
the time). There also exist other parts of 
the algorithm, which contribute to roughly 
15-20% of the time, that are difficult to par- 
allelize either due to I/O or due to fine gran- 

ularity. 
Our current parallelization strategy mainly 

concentrates on portions of the algorithm 
which contribute to roughly 80% of the time. 

3    Parallelization Strategy 

Our emphasis is on arriving at a portable 
parallel implementation of the Ozturk algo- 
rithm which can run on a variety of parallel 
machines with little or no modification. We 
found that a message passing style of paral- 
lel programming met this goal. We used the 
standard message passing interface namely 
MPI as a portable interface due to its wide 
availability. The overview of our parallel im- 
plementation is shown in Figure 1. 

The circles marked by P0...Pn indicate pro- 
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Sequential processing 

mstar processing eexpuv processing mstar processing 

Figure 1: Architecture of parallel Ozturk algorithm 

cessors Po---Pn- The sequential parts of the 
algorithm are run on PQ. The computation 
in mstar and eexpuv is shared by all the pro- 
cessors in parallel. Whenever a parallelizable 
phase of the algorithm is encountered, the 
computation as well as the data is farmed 
out to all the processors. These processors 
work on their portions of the data in paral- 
lel and join together at the end of the par- 
allel phase. Different MPI primitives like 
MPI_BCAST, MPI_GATHER and MPIJIEDUCE are 
used to achieve computation partitioning as 
well as interprocessor communication. The 
algorithm proceeds as a sequence of alternat- 
ing sequential and parallel phases. 

4    Experimental     Results 
of Old Code 

We have ported our parallel Ozturk algorithm 
on a range of parallel architectures - loosely 
coupled network of work stations to tightly 

coupled shared memory multiprocessors. Ta- 
ble 1 lists these architectures and some of the 
related numbers. 

Three different sizes (100, 250 and 500 
points) of input sample data were tried to 
see how the algorithm scales with sample size. 
Figure 2 shows the processing time for these 
samples on different number of processors for 
these parallel machines. 

execution time on SGI Origin 2000 is the 
least among all the four parallel architec- 
tures. This is both because of the higher per- 
formance of each processor ( 195 MHz ) as 
well as better communication bandwidth sup- 
ported ( 60 MB/sec) by this machine. The 
MPI running on Origin is a special imple- 
mentation of the standard MPI which proba- 
bly makes best use of the distributed shared 
memory architecture. 

Though the IBM J30 is also a shared mem- 
ory machine, the performance of the algo- 
rithm is not as good as that on Origin pri- 
marily because of the lower processor speed ( 
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machine 
HP 9000 
IBM SP2 
SGI Origin 

2000 
IBM J30 

architecture 
NOW2" 
multicomputer 
DSM3 

SMP4 

processor 
PA7200 
P2SC 
R10000 

PowerPC 604 

clock 
120 MHz 
120 MHz 
195 MHz 

112 MHz 

comm b/w1 

800 KB/sec 
24 MB/sec 
60 MB/sec 

3 MB/sec 

nodes 
8 

16 
8 

8 

MPI 
MPICH 
IBM MPI 
SGI MPI 

MPICH 

Effective, point to point 
2 Network of workstations 

distributed shared memory multiprocessor   Symmetric multiprocessor 

Table 1: Platforms on which the Old parallel Ozturk algorithm has been ported 
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Table 2: Old code: Execution times for different data sizes on various machines 
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112 MHz) and also the poor communication 
bandwidth (3 MB/sec). On the other hand, 
though the SP2 processor is slightly faster ( 
120 MHz ) and supports a much higher com- 
munication bandwidth (24 MB/sec), J30 al- 
ways performs slightly better. We suspect 
that this could be due to I/O overheads since 
the programs running on SP2 were accessing 
a remote file system as compared to the pro- 
grams on J30 which accessed a local file sys- 
tem. Also, the higher communication band- 
width of SP2 may not have given an edge 
since the algorithm appears to be compute 
bound rather than communication bound. 

Our observation that communication band- 
width does not play a major role in this appli- 
cation stands justified when we compare the 
performance of the algorithm on SP2 and the 
network of HP workstations. Architecturally 
both are distributed memory multiprocessors 
except that SP2 has a high bandwidth com- 
munication fabric ( 24 MB/sec ) as compared 
to the low speed LAN ( 800 KB/sec ) con- 
necting the HP NOW. For small number of 
processors, both perform almost identically. 
The difference shows up for larger number of 
processors probably because of the reduced 
concurrency in the communication on the HP 
NOW. 

For small input sizes, only Origin seems 
to keep up with the near linear speed up. 
However, SP2 catches up and to some ex- 
tent scales better than Origin for larger in- 
put sizes. Overall, both Origin as well as SP2 
seem to scale up very well. Among the ma- 
chines, HP NOW seems to saturate early. 

The speed-up curve seems to taper off be- 
yond 6 to 7 processors in most of the cases. 
This is understandable given the fact that 
the parallelized code still has some sequential 
part which would definitely start dominating 
as we increase the number of processors irre- 
spective of the architecture. 

5    Code Changes 

The original sequential code has been 
changed later. The changes include: 

ORIGINAL MODS: (1) added subroutine 
to read/process an ASCII parameter file (2) 
removed references to encode/decode; re- 
placed with formatted read/writes 

FOLLOW-ON MODS: (1) explicitly de- 
clared variable types in the common blocks 
(2) modified position of '-o' argument in the 
makefile; make would ignore '-o' option if 
last argument on the line. (3) removed ref- 
erences to 'structure' keyword in subroutine 
'initialize-pgm.f. 

The changes of ozturk code do not affect 
the parallelization method, so the new paral- 
lel code did the same way of parallelization as 
the old one, i.e. concentrates on mstar and 
eexpuv functions which take up most of the 
execution time. 

6    Experimental     Results 
of New Parallel Code 

We have ported the new parallel Ozturk al- 
gorithm on Network of HP workstations and 
two IBM SP2 machines: one is a 16-node ma- 
chine at Center for Parallel and Distributed 
Computing(CPDC) at Northwestern Univer- 
sity and one is a 80-node machine at Argonne 
National Lab. Table 3 lists these machines. 

We also tried three different sizes (100, 250 
and 500 points) of input sample data to study 
the scalability. Figure 4 shows the processing 
time for these samples on different number of 
processors for these parallel architectures. 

Our results show that the execution time 
on Argonne's SP2 is the best of all parallel 
architectures and the network of HP work- 
stations is the worst. This is because net- 
work of workstations is loosely coupled with 
poor communication bandwidth.    The Ar- 
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gonne's SP2 has higher communication band- 
width (104Mbytes/s) than CPDC's although 
they have the same kind of CPU. In addition, 
the CPDC has to access a remote filesystem 
when it reads the input, this may introduce 
some overhead. Therefore, Argonne's SP al- 
ways outperforms CPDC's SP. 

All parallel architectures demonstrate good 
scalability. The only exception is Network of 
workstations on the small input size (100), 
because it's loosely coupled with poor com- 
munication bandwith.     But when the in- 
put size is large enough, its execution time 
also decreases appropriately as the number 
of nodes increases.   One observation is that 
the larger input size, the better speedup can 
be achieved.    Another observation is that 
the rate of performance gain decreases as the 
number of node becomes large, this is due to 
the sequential part of the code may dominate 
the performance. 

Note, the old results can not be compared 
to the new results since our SP2 and SGI Ori- 
gin systems have been upgraded a lot and the 
former results can not be repeated. 

7    Conclusion 

them. The remaining parts are left sequen- 
tial and are executed by one of the processors 
(processor 0). This results in the early satu- 
ration of the algorithm for larger number of 
processors since the sequential portions dom- 
inate. We observe that some of the sequen- 
tially is introduced by I/O which probably 
could be eliminated. 
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HP 9000 
IBM SP2 
IBM SP2(Argonne) 

architecture 
NOW2 
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Abstract 

This user manual consists of three chapters.   The first chapter presents the design and im- 

plementation of parallel pipelined Space-Time Adaptive Processing (STAP) algorithms on 

parallel computers.   The second chapter describes the detection performance of STAP algo- 

rithm. The third chapter describes the commands of using the parallel pipeline STAP source 

codes. In the last chapter, default scripts are given for running the parallel pipeline STAP 

codes on three High Performance Computing (HPC) systems. In particular, the manual de- 

scribes the issues involved in parallelization, our approach to parallelization and performance 

results on an Intel Paragon.  The process of developing software are also discussed for such 

an application on parallel computers when latency and throughput are both considered to- 

gether and presents tradeoffs considered with respect to inter and intra-task communication 

and data redistribution.   The results show that not only scalable performance was achieved 

for individual component tasks of STAP but linear speedups were obtained for the integrated 

task performance, both for latency as well as throughput. 
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Chapter 1 

Design and Implementation of 

Parallel Pipelined STAP on Parallel 

Computers 

Space-time adaptive processing (STAP) is a well known technique in the area of airborne 

surveillance radars, which is used to detect weak target returns embedded in strong ground 

clutter, interference, and receiver noise. Data processing for STAP refers to a 2-dimensional 

adaptive filtering algorithm which attenuates unwanted signals by placing nulls in the fre- 

quency domain with respect to their directions of arrival and/or Doppler frequencies. Most 

STAP applications are computationally intensive and must operate in real time. High per- 

formance computers are becoming mainstream due to the progress made in hardware as well 

as software support in the last few years. They can satisfy the STAP computational require- 

ments of real-time applications while increasing the flexibility, affordability. and scalability 

of radar signal processing systems. However, efficient parallelization of STAP, which consists 

of several different algorithms is challenging, and requires several optimizations. 

This manual describes our parallel pipelined implementation of a Pulse Repetition Inter- 

val (PRI)-staggered post-Doppler STAP algorithm. The design and implementation of the 

application is portable. Performance results are presented for the Intel Paragon at the Air 

Force Research Laboratory (AFRL), Rome, New York. AFRL has successfully implemented 

this STAP algorithm onboard an airborne platform and performed four flight experiments 

in May and June 1996 [1]. In that real-time demonstration, live data from a phased array 

radar was processed by Intel Paragon machine and results showed that high performance 

computers can deliver a significant performance gain.  However, that implementation only 
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used compute nodes of the machine as independent resources in a round robin fashion to 

run different instances of STAP (rather than speeding up one instance of STAR) Using 

this approach, the throughput may be improved, but the latency is limited by what can be 

achieved using one compute node. The algorithm consists of the following steps: 

For our parallel implementation of this real application we have designed a model of parallel 

pipeline system where each pipeline is a collection of tasks and each task itself is parallelized. 

This parallel pipeline model was applied to the STAP algorithm with each step as a task in 

a pipeline. This permits us to significantly improve latency as well as throughput. For the 

detail of our implementation and performance results on Intel Paragon, please refer to [2]. 

1.1    Algorithm Overview 

The adaptive algorithm, which cancels Doppler shifted clutter returns as seen by the airborne 

radar system, is based on a least squares solution to the weight vector problem. This 

approach has traditionally yielded high clutter rejection, but suffers from severe distortions 

in the adapted main beam pattern and resulting loss of gain on the target. Our approach 

introduces a set of constraint equations into the least squares problem which can be weighted 

proportionally to preserve main beam shape. The algorithm is structured so that multiple 

receive beams may be formed without changing the matrix of training data. Thus, the 

adaptive problem can be solved once for all beams which lie within the transmit illumination 

region. The airborne radar system was programmed to transmit five beams, each 25 degrees 

in width, spaced 20 degrees apart. Within each transmit beam, six receive beams were 

formed by the processor. 

The algorithm consists of the following steps: 

1. Doppler filter processing, 

2. Weight computation, 

3. Beamforming. 

4. Pulse compression, and 

5. CFAR processing. 

Doppler filtering is performed on each receive channel using weighted Fast Fourier Trans- 

forms (FFT's). The analog portion of the receiver compensates the received clutter frequency 
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to center the clutter frequency at zero regardless of the transmit beam position. This sim- 

plifies indexing of Doppler bins for classification as "easy" or "hard" depending on their 

proximity to mainbeam clutter returns. For the "hard" cases, Doppler processing is per- 

formed on two 125-pulse windows of data separated by three pulses (a STAP technique 

known as "PRI-stagger"). Both sets of Doppler processed data are adaptively weighted in 

the beamforming process for improved clutter rejection. In the "easy" case, only a sin- 

gle Doppler spectrum is computed. This simpler technique has been termed Post Doppler 

Adaptive Beamforming and is quite effective at a fraction of the computational cost when 

the Doppler bin is well separated from mainbeam clutter. In these situations, an angular 

null placed in the direction of the competing ground clutter provides excellent rejection. 

Selectable window functions are applied to the data prior to the Doppler FFT's to control 

sidelobe levels. The selection of a window is a key parameter in that it impacts the leakage 

of clutter returns across Doppler bins, traded off against the width of the clutter passband. 

An efficient method of beamforming using recursive weight updates is made possible by a 

block update form of the QR decomposition algorithm. This is especially significant in the 

"hard" Doppler regions, which are computed using separate weights for six consecutive range 

intervals. The recursive algorithm requires substantially less training data (sample support) 

for accurate weight computation, as well as providing improved efficiency. Since the hard 

regions have one sixth the range extent from which to draw data, this approach dealt with 

the paucity of data by using past looks at the same azimuth, exponentially forgotten, as 

independent, identically distributed estimates of the clutter to be cancelled. This assumes 

a reasonable revisit time for each azimuth beam position. During the flight experiments, 

the five 25 degree transmit beam positions were revisited at a 1-2 Hz rate (5-10 CPIs per 

second.) 

The training data for the easy Doppler regions was selected using a more traditional ap- 

proach. Here, the entire range extent was available for sample support, so the entire training 

set was drawn from three preceding CPIs for application to the next CPI in this azimuth 

beam position. In this case, a regular (non-recursive) QR decomposition is performed on the 

training data, followed by block update to add in the beam shape constraints. 

Pulse compression is a compute intensive task, especially if applied to each receive channel 

independently. In general, this approach is required for adaptive algorithms which compute 

different weight sets as a function of radar range. Our algorithm, however, with its mainbeam 

constraint, preserves phase across range. In fact, the phase of the solution is independent 

of the clutter nulling equations, and appears only in the constraint equations. The adapted 

target phase is preserved across range, even though the clutter and adaptive weights may 
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Figure 1.1: Model of the parallel pipeline system. (Note that Task for all input instances is 

executed on the same number of processors.) 

vary with range. Thus, pulse compression may be performed on the beamformed output of 

the receive channels providing a substantial savings in computations. 

In the sections to follow, we present the process of parallelization and software design 

considerations including those for portability, task mapping, parallel data redistribution, 

parallel pipelining and issues involved in measuring performance in implementations when 

not only the performance of individual tasks is important, but overall performance of the 

integrated system is critical. We demonstrate the performance and scalability for a large 

number of processors. 

1.2    Model of the parallel pipeline system 

The system model for the type of STAP applications considered in this work is shown in 

Figure 1.1. This model is suitable for the computational characteristics found in these 

applications. A pipeline is a collection of tasks which are executed sequentially. The input 

to the first task is obtained normally from sensors or other input devices and the inputs 
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to the rest of the tasks in the pipeline axe the outputs of their previous tasks. The set of 

pipelines shown in the figure indicates that the same pipeline is repeated on subsequent input 

data sets. Each block in a pipeline represents one parallel task, which itself is parallelized 

on multiple (different number of) processors. That is, each task is decomposed into subtasks 

to be performed in parallel. Therefore, each pipeline is a collection of parallel tasks. 

In such a system, there exist both spatial and temporal parallelism that result in two 

types of data dependencies and flows, namely, spatial data dependency and temporal data 

dependency [3, 4, 5]. Spatial data dependency can be classified into inter-task data depen- 

dency and intra-task data dependency. Intra-task data dependencies arise when a set of 

subtasks needs to exchange intermediate results during the execution of a parallel task in a 

pipeline. Inter-task data dependency is due to the transfer and reorganization of data passed 

onto the next parallel task in the pipeline. Inter-task communication can be communication 

from the subtasks of the current task to the subtasks of the next task, or collection and 

reorganization of output data of the current task and then redistribution of the data to 

the next task. The choice depends on the underlying architecture, mapping of algorithms 

and input-output relationship between consecutive tasks. Temporal data dependency occurs 

when some form of output generated by the tasks executed on the previous data set are 

needed by tasks executing the current data set. We will later see that STAP has both types 

of data dependencies. 

1.2.1    Parallelization issues and approaches 

Applications such as STAP entail multiple algorithms (or processing steps), each of which 

performs particular functions, to be executed in a pipelined fashion. Multiple pipelines need 

to be executed in a staggered manner to satisfy the throughput requirements. Each task 

needs to be parallelized for the required performance, which, in turn, requires addressing 

the issue of data distribution on the subset of processors on which a task is parallelized to 

obtain good efficiency and incur minimal communication overhead. Given that each task 

is parallelized, data flow among multiple processors of two or more tasks is required and, 

therefore, communication scheduling techniques become critical. 

Inter-task data redistribution 

In an integrated system which implements several tasks that feed data to each other, data 

redistribution is required when it is fed from one parallel task to another. This is because 
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the wav data is distributed in one task may not be the most appropriate distribution for an- 

other task for algorithmic or efficiency reasons. For example, given an input two-dimensional 

array, one task may process it in a row major fashion. The next task that receives this two- 

dimensional array may require a column major order. To ensure efficiency of continuity of 

memory access, data reorganization and redistribution are required in the inter-task com- 

munication phase. Data redistribution also allows concentration of communication at the 

beginning and the end of each task. 

We have developed runtime functions and strategies that perform efficient data redistribu- 

tion [6]. These techniques reduce the communication time by minimizing contention on the 

communication links as well as by minimizing the overhead of processing for redistribution 

(which adds to the latency of sending messages). We take advantage of lessons learned from 

these techniques to implement the parallel pipelined STAP application. 

Task scheduling and processor assignment 

An important factor in the performance of a parallel system, is how the computational load 

is mapped onto the processors in the system. Ideally, to achieve maximum parallelism, the 

load must be evenly distributed across the processors. The problem of statically mapping 

the workload of a parallel algorithm to processors in a distributed memory system, has been 

studied under different problem models, such as [7, 8]. The mapping policies are adequate 

when an application consists of a single task, and the computational load can be determined 

statically. These static mapping policies do not model applications consisting of a sequence 

of tasks (algorithms), where the output of one task becomes the input to the next task in 

the sequence. 

Optimal use of resources is particularly important in high-performance embedded appli- 

cations due to limited resources and other constraints such as desired latency or throughput 

[9]. When several parallel tasks need to be executed in a pipelined fashion, tradeoffs exist 

between assigning processors to maximize the overall throughput and assigning processors 

to minimize a single data set's response time (or latency.) The throughput requirement says 

that when allocating processors to tasks, it should be guaranteed that all the input data 

sets will be handled in a timely manner. That is, the processing rate should not fall behind 

the input data rate. The response time criteria, on the other hand, require minimizing the 

latency of computation on a particular set of data input. 

To reduce the latency, each parallel task must be allocated more processors to reduce its 

execution time, and consequently, the overall execution time of the integrated system. But 
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Figure 1.2: Implementation of parallel pipelined STAP. Arrows connecting task blocks repre- 

sent data transfer between tasks. 

it is well known that the efficiency of parallel programs usually decreases as the number 

of processors is increased. Therefore, the gains in this approach may be incremental. On 

the other hand, throughput can be increased by increasing the latency of individual tasks 

by assigning them fewer processors, and therefore, increasing efficiency, but at the same 

time having multiple streams active concurrently in a staggered manner to satisfy the input- 

data rate requirements. We next present these tradeoffs and discuss various implementation 

issues. 

1.3    Design and implementation 

The design of the parallel pipelined STAP algorithm is shown in Figure 1.2. The parallel 

pipeline system consists of seven basic tasks. We refer to the parallel pipeline as simply a 

pipeline in the rest of this paper. The input data set for the pipeline is obtained from a 

phased array radar and is formed in terms of a coherent processing interval (CPI). Each CPI 

data set is a 3-dimensional complex data cube comprising of K range cells, J channels, and 

N pulses. The output of the pipeline is a report on the detection of possible targets. The 

arrows shown in Figure 1.2 indicate data transfer between tasks. Note that although a single 

arrow is shown, each represents multiple processors in one task communicating with multiple 
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processors in another task. Each task * is parallelized by evenly partitioning its work load 

among P processors. The execution time associated with task 2, Tu consists of the time to 

receive data from the previous task, computation time, and time to send results to the next 

task. 
The calculation of weights is the most computationally intensive part of the STAP algo- 

rithm. For the computation of the weight vectors for the current CPI data cube, data cubes 

from previous CPIs are used as input data. This introduces temporal data dependency. For 

example, suppose that a set of CPI data cubes entering the pipeline sequentially are denoted 

by CPU, i = 0,1,.... At any time instance i, the Doppler filtering task is processing CPU 

and beamforming task is processing CPU-,. In the meanwhile, the weight computation task 

is using CPU-i, CPU-2, • • • to calculate the weight vectors for CPU. The resulted weight 

vectors will be applied to CPU in the beamforming task at next time instance i + 1. Thus, 

temporal data dependencies exist and are represented by arrows with dashed lines, TDh3 

and TD2,4, in Figure 1.2 where TD^ represents temporal data dependency of task j on data 

from task i. In a similar manner, spatial data dependencies SDUj can be defined and are 

indicated in Figure 1.2 by arrows with solid lines. 

Throughput and latency are two important measures for performance evaluation on a 

pipeline system. The throughput of our pipeline system is the inverse of the maximum 

execution time among all tasks, i.e., 

throughput = —. U--v 
max ±i 
0<t<6 

To maximize the throughput, the maximum value of T{ should be minimized. In other words, 

no task should have an extremely large execution time. With limited number of processors, 

the processor assignment to different tasks must be made in such a way that the execution 

time of the task with highest computation time is reduced. 

The latency of this pipeline system is the time between the arrival of the CPI data cube 

at the system input and the time at which the detection report is available at the system 

output. Therefore, the latency for processing one CPI is the sum of the execution times of 

all the tasks except weight computation tasks, i.e.. 

latency = T0 + maxT, + T5 + T6. (1.2) 
X—0,4 

The temporal data dependency does not affect the latency because weight computation tasks 

use data from the previous instance rather than current CPI. The filtered CPI data cube 

sent to the beamforming task does not wait for the completion of its weight computation. 
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N pulses 

Figure 1.3: Partitioning strategy for Doppler filter processing task. CPI data cube is parti- 

tioned among PQ processors across dimension K. 

This explains why equation (1.2) does not contain 7\ and T2. The overall system latency 

can be reduced by reducing the execution times of the parallel tasks, e.g., T0, T3, T4, T5, and 

TO in our system. 

Next, we briefly describe each task and its parallel implementation. A detailed description 

of the STAP algorithm we used can be found in [10, 11]. 

1.3.1    Doppler filter processing 

The input to the Doppler filter processing task is one CPI complex data cube received from 

a phased array radar. The computation in this task involves performing range correction 

for each range cell and the application of a windowing function (e.g. Hanning or Hamming) 

followed by a N-point FFT for every range cell and channel. The output of the Doppler filter 

processing task is a 3-dimensional complex data cube of size K x 2 J x N which is referred 

to as staggered CPI data. In Figure 1.2. we can see that this output is sent to the weight 

computation task as well as to the beamforming task. 

Both the weight computation and the beamforming tasks are divided into easy and hard 

parts. These two parts use different portions of staggered CPI data and the associated 

amounts of computation are also different. Easy weight computation task uses range samples 

only from the first half of the staggered CPI data while hard weight computation task uses 

range samples from the entire staggered CPI data. On the other hand, easy and hard 

beamforming tasks use all range cells rather than some of them. Therefore, the size of data 

to be transfered to weight computation tasks is different from the size of data to be sent to 

beamforming tasks. In Figure 1.2, thicker arrows connected from Doppler filter processing 

task to beamforming tasks indicates that the amount of data sent to the beamforming tasks 

is more than the amount of data sent to the weight tasks. 
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Figure 1.4: Parallel inter-task communication from Doppler filter processing task to easy and 

hard weight computation tasks requires different sets of range samples. Data collection needs 

to be performed before the communication. This can be viewed as irregular data redistribution. 

The basic parallelization technique employed in the Doppler filtering processing task is to 

partition CPI data cube across the range cells, that is, if P0 processors are allocated to this 

task, then each processor is responsible for f range cells. The reason for partitioning CPI 

data cube along dimension K is that it maintains an efficient accessing mechanism for contin- 

uous memory space. A total of K-2J iV-point FFTs are performed and the best performance 

is achieved when every iV-point FFT accesses its N data sets from a continuous memory 

space. Figure 1.3 illustrates the parallelization of this step. The inter-task communication 

from Doppler filter processing task to weight computation tasks is explained in Figure 1.4. 

Since only subsets of range cells are needed in weight computation tasks, data collection has 

to be performed on the output data before passing it to the next tasks. Data collection is 

performed to avoid sending redundant data and hence reduces the communication costs. 

1.3.2    Weight computation 

The second step in this pipeline is the computation of weights that will be applied to the next 

CPI. This computation for N pulses is divided into two parts, namely, "easy" and "hard" 

Doppler bins, as shown in Figure 1.5.   The hard Doppler bins (pulses), Nhard, are those 
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Figure 1.5: Staggered CPI data partitioned into easy and hard weight computation tasks. 

in which significant ground clutter is expected. The remaining bins are easy Doppler bins. 

The main difference between the two is the amount of data used and the amount of ■" 'easy 

computation required. Not all range cells in the staggered CPI are used in weight calculation 

and different subsets of range samples are used in easy Doppler bins and hard Doppler bins. 

To gather range samples for easy Doppler bins to calculate the weight vectors for the 

current CPI. data is drawn from three preceding CPIs by evenly spacing out over the first one 

third of K range cells of each of the three CPIs. Easy weight computation task involves Neasy 

QR factorizations, block updates, and back substitutions. In the easy weight calculation, 

only range samples in the first half of the staggered CPI data are used while hard weight 

computation employs range samples from the entire staggered CPI. Furthermore, range 

extent for hard Doppler bins is split into six independent segments to further improve clutter 

cancelation. To calculate weight vectors for the current CPI, range samples used in hard 

Doppler bins are taken from the immediately preceding staggered CPI data by evenly spacing 

out over each of six segment ranges. The hard weight computation task involves 6Nhard 

recursive QR updates, block updates, and back substitutions. The easy and hard weight 

computation tasks process sets of 2-dimensional matrices of different sizes. 

Temporal data dependency exists in the weight computation task because both easy and 

hard Doppler bins use data from previous CPIs to compute the weights for the current CPI. 

The outputs of this step, the weight vectors, are two 3-dimensional complex data cubes 

of size Neasy x J x M and Nhard x 2J x M for easy and hard weight computation tasks 

respectively, where M is the number of receive beams. These two weight vectors are to be 

applied to the current CPI in the beamforming task. Because of the difference sizes of easy 

and hard weight vectors, beamforming task is also divided into easy and hard parts to handle 
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Figure 1.6: Partitioning strategy for easy and hard weight computation tasks. Data cube is 

partitioned across dimension N. 

different amounts of computation. 

Given the uneven nature of weight computations, different sets of processors are allocated 

to the easy and hard tasks. In Figure 1.2. Pi processors are allocated to easy weight compu- 

tation and P2 processors to hard weight computation. Since weight vectors are computed for 

each pulse (Doppler bin), the parallelization in this step involves partitioning of data along 

dimension N. that is. each processor in easy weight computation task is responsible for -^ 

pulses while each processor in hard weight computation task is responsible for *W pulses, 

as shown in Figure 1.6. 
Notice that Doppler filter processing and weight computation tasks employ different data 

partitioning strategies (along different dimensions.) Due to different partitioning strategies, 

an all-to-all personalized communication scheme is required for data redistribution from 

Doppler filter processing task to the weight computation task. That is, each of the P, and 

P2 processors needs to communicate with all P0 processors allocated to the Doppler filter 

processing task to receive CPI data.  Since only subsets of Doppler filter processing task's 

output are used in the weight computation task, data collection is performed before inter- 

task communication. Although data collection reduces inter-task communication cost, it also 

involves data copying from non-continuous memory space to continuous buffers. Sometimes 

the cost of data collection may become extremely large due to hardware limitations (e.g. 

high cache miss ratio.)   When sending data to the beamforming task, the weight vectors 

have already been partitioned along dimension N which is the same as the data partitioning 

strategy for the beamforming task. Therefore, no data collection is needed when transferring 

data to the beamforming task. 
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1.3.3    Beamforming 

The third step in this pipeline (which is actually the second step for the current CPI because 

the result of the weight task is only used in the subsequent time step) is beamforming. The 

inputs of this task are received from both Doppler filter processing and weight computation 

tasks, as shown in Figure 1.2. Easy weight vector received from easy weight computation 

task is applied to the easy Doppler bins of the received CPI data while hard weight vector is 

applied to hard Doppler bins. The application of weights to CPI data requires matrix-matrix 

multiplications on two received data sets. Due to different matrix sizes for multiplications in 

easy and hard beamforming tasks, uneven computational load results. The beamforming task 

is also divided into easy and hard parts for parallelization purposes. Recall that the weight 

computation task was divided due to algorithmic reasons. Easy and hard beamforming tasks 

require different amounts and portions of CPI data, and involve different computational 

loads. 

The inputs for the easy beamforming task are two 3-dimensional complex data cubes. One 

data cube which is received from the easy weight computation task is of size NeaSy x M x J. 

The other is from Doppler filter processing task and its size is Neasy x J x K. A total of 

Neasy matrix-matrix multiplications are performed where each multiplication involved two 

matrices of size M x J and J x K respectively. Hard beamforming task also has two input 

data cubes which are received from Doppler filter processing and hard weight computation 

tasks. The data cube of size 6Nhard x M x 2J is received from hard weight computation 

task and the Doppler filtered CPI data cube is of size Nhard x 2J x K. Since range cells 

are divided into 6 range segments, there are a total of 6Nhard matrix-matrix multiplications 

in hard beamforming. The results of the beamforming task are two 3-dimensional complex 

data cubes of size .Veasy xM x K and Nhard x M x K corresponding to easy and hard parts 

respectively. 

In a manner similar to the weight computation task, parallelization in this step also in- 

volves partitioning of data across the N dimension (Doppler bins.) Different sets of processors 

are allocated to easy and hard beamforming tasks. Since the cost of matrix multiplications 

can be determined accurately, the computations are equally divided among the allocated pro- 

cessors for this task. As seen from Figure 1.2, this task requires data to be communicated 

from the first as well as the second task. Because data is partitioned along different dimen- 

sions, an all-to-all personalized communication is required for data redistribution between 

Doppler filter processing and beamforming tasks. The output of Doppler filter processing 

task is a data cube of size K x 2 J x N which is redistributed to the beamforming task after 
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Figure 1.7: Data redistribution from Doppler filter processing task to easy beamforming task. 

CPI data subcube of size KxJx^ls reorganized to subcube of size ^fxfxj before 

sending from one processor m Doppler filter processing task to another in easy beamforming 

task. 

data reorganization in the order of N x K x 2J. Data reorganization has to be done before 

the inter-task communication between the two tasks takes place, as shown in Figure 1.7. 

Data reorganization involves data copying from non-continuous memory space and its 

cost may become extremely large due to cache misses. For example, two Doppler bins in 

the same range cell and the same channel are stored in contiguous memory space. After 

data reorganization, they are f • J element distance apart. Therefore, if P0 is small and the 

size of CPI data subcube partitioned in each processor is large then it is quite likely that 

expensive data reorganization will be needed which becomes major part of communication 

overhead. The algorithms which perform data collection and reorganization are crucial 

to exploit the available parallelism. Note that receiving data from weight computation 

tasks does not involve data reorganization or data collection because they have the same 

partitioning strategy (along dimension N.) 

E-19 



M 
beams 

K  range cells 

Figure 1.8: Partitioning strategy for pulse compression task. Data cube is partitioned across 

dimension N into P$ processors. 

1.3.4    Pulse compression 

The input to the pulse compression task is a 3-dimensional complex data cube of size NxMx 

K. This data cube consists of two subcubes of size Neasy x M x K and Nhard x M x K which 

are received from easy and hard beamforming tasks respectively. Pulse compression involves 

convolution of the received signal with a replica of the transmit pulse waveform. This is 

accomplished by first performing Appoint FFTs on the two inputs, point-wise multiplication 

of the intermediate result and then computing the inverse FFT. The output of this step 

is a 3-dimensional real data cube of size N x M x K. The parallelization of this step is 

straightforward and involves the partitioning of data cube across the N dimension. Each of 

the FFTs could be performed on an individual processor and hence each processor in this 

task gets an equal amount of computation. Partitioning along the N dimension also results 

in an efficient accessing mechanism for continuous memory space when running FFTs. Since 

both beamforming and pulse compression tasks use the same data partitioning strategy 

(along dimension TV), no data collection or reorganization is needed prior to communication 

between these two tasks. 

1.3.5    CFAR processing 

The input to this task is an N x M x K real data cube received from the pulse compression 

task. The sliding window constant false alarm rate (CFAR) processing compares the value 

of a test cell at a given range to the average of a set of reference cells around it times a 

probability of false alarm factor.   This step involves summing up a number of range cells 
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on each side of the cell under test, multiplying the sum by a constant, and comparing the 

product to the value of the cell under test. The output of this task, which appears at 

the pipeline output, is a list of targets at specified ranges, Doppler frequencies, and look 

directions. The parallelization strategy for this step is the same as for the pulse compression 

task. Both tasks partition data cube along the N dimension. Also, no data collection or 

reorganization is needed in pulse compression task before sending data to this task. 

1.4    Software development 

All the parallel programs development and their integration is being performed using C 

language and message passing interface (MPI) [12]. All the functions needed for data redis- 

tribution etc. are also being developed in the same fashion. This permits easy portability 

across various platforms which support C language and MPI. Since MPI is becoming a de 

facto standard for high-performance systems, we believe the software will be portable. To 

facilitate upward or downward scalability, the number of processors, data sizes and other 

important parameters are runtime inputs so that the same program can be run on different 

number of processors without compiling it again. This allows, for example, the same function 

to be executed on 2, 4 and so on, number of processors. 
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Chapter 2 

Detection Performance of STAP 

algorithm 

The algorithm which has been parallelized is a PRI-staggered post-Doppler STAP algo- 

rithm. Assume the data cube consists of N pulses, J channels, and K range cells. With 

this algorithm, Doppler filtering is first performed separately on the N pulses received in 

each channel. In effect, this produces at each channel the output of N Doppler filters which 

subdivide the Doppler frequency interval into N contiguous Doppler bins. The intention is 

that each Doppler filter is designed to have suitably low side lobes such that it rejects all of 

the clutter with Doppler frequencies outside of the filter passband. In this way, the residual 

clutter along the clutter ridge is localized in term of its spatial frequencies. Adaptive spatial 

filtering is subsequently performed to reduce the residual clutter. 

The philosophy of the post-Doppler STAP algorithm is illustrated in the Figure 2.2. Let 

• d = inter-channel spacing 

• fT — pulse repetition frequency 

• A0 = wavelength of transmitted carrier frequency 

• va = velocity of airborne platform in x-direction 

• 8 = elevation angle 

• d> = azimuth angle 
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radar platform 

scatter 

Figure 2.1: Radar platform - array in x-z plane parallel to x axis. 9 

0 = azimuth angle. 

= elevation angle and 

Assuming no velocity misalignment (i.e. zero crab angle), the clutter return from a point 

scattered in the (0, <?) direction has a normalized Doppler frequency given by 

2v"        a ■   A. UJ = cos v sm <p 
/rAo 

and the normalized spatial frequency equals to 

d       a ■   A v = — cos 0 sm (p. 
Ao 

It follows that the clutter returns appear upon the clutter ridge specified by 

(2.1) 

(2.2) 

(2.3) 

where 

0 = 
2^a 

frd 
(2.4) 

The Figure 2.2 shows the clutter ridge corresponding to ß = 1. Ideally, the Doppler filter 

rejects all of the clutter outside its passband (the shaded area in the Figure). The spatial 

frequencies of the residual clutter are then localized to the shaded region shown in the Figure 

2.2. Adaptive spatial filtering is then used to remove the residual clutter. A target within 

the Doppler filter will be easy to detect when it is located far from the clutter ridge. The 
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Figure 2.2: Philosophy of the post-Doppler STAP algorithm. 

target becomes more difficult to detect as it moves toward the clutter ridge and it may not 

be possible to detect the target when it is too close to the clutter ridge. 

When the side lobes of the Doppler filter are not sufficiently low, the strong clutter in the 

main beam of the radar transmitter will not be completely rejected by the Doppler filter. 

The adaptive spatial filter will then attempt to remove this clutter as well. In the process, 

the signal power received from the target may be reduced making it more difficult to detect 

the target. 

The problem becomes more difficult when frequency aliasing occurs. This will be the 

case when ß > 1. Then more than one clutter ridge will appear within the passband of 

the Doppler filter. As a result, the target is more likely to be close to a clutter ridge and. 

therefore, more difficult to detect. Additional clutter ridges may appear within the passband 

of the Doppler filter when there is velocity misalignment (i.e., a nonzero crab angle). The 

clutter ridge then expands into an ellipse which can be troublesome when there is significant 

antenna gain in the backward looking direction. Frequency aliasing aggravates the problem. 

Because the clutter covariance matrix is unknown, it must be estimated. Typically, this 

is done using secondary (or training) data from nearby range cells. In a severely non- 

homogeneous environment, the secondary data will not be representative of the clutter data 

in the range cell under test. As a consequence, the spatial adaptive filter may do a poor job 
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of cancelling the localized clutter along the clutter ridge and a target may not be detected. 
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Chapter 3 

Using parallel pipeline STAP 

commands 

In this chapter, we describe the parallel pipeline STAP source file structures and explain the 

commands to perform the following tasks on various HPC system platforms: 

• compiling and linking application, 

• running application, 

• input data files, and 

• output data files. 

The target machines for current implementations are Intel Paragon, IBM SP, and SGI Origin. 

Besides, the source codes can also be ported to other machines with modification on linked 

libraries. 

3.1    Source files 

All source files are written in standard ANSI C language. Several make files have been incor- 

porated with the source files: Makefile, Makefile. common, Makefile .paragon, Makefile. sp, 

and Makefile. sgi. According to the make file, Makefile. common, source files are generally 

consist of 8 groups: 

1. Doppler filter processing (FILTER-GRP), 
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Table 3.1: Source file names for each of 7 tasks. 

Doppler filter 

easy weight 

hard weight 

easy beamforming 

hard beamforming 

pulse compression 

CFAR 

täk\ sending phase |    computation phase |        receiving phase 

random-gen.cpi.c 

wt-easy-grp-recv.c 

wt-hard.grp-recv. c 

bf_easy_grp_recv.c 

bf-hard-grp-recv.c 

pc_grp_recv.c 

cfar_grp_recv.c 

rawToFFT.c 

easy.dop.c 

hard.dop.c 

beamforming jeasy. c 

beamforming_hard. c 

pulse.compress. c 

cfar .detection, c 

filter-grp-send.c 

wt.easy-grp-send.c 

wtJiard_grp-send.c 

bLeasy-grp-send.c 

bfJiard-grp-send.c 

pc.grp-send.c 

0 

2. easy weight computation (WT_EASY_GRP), 

3. hard weight computation (WT.HARD.GRP), 

4. easy beamforming (BF_EASY_GRP), 

5. hard beamforming (BF_HARD_GRP), 

6. pulse compression (PC-GRP). 

7. CFAR processing (CFAR.GRP), and 

8. utility subroutines. 

3.2    Libraries 

Libraries used in the source codes include Message Passing Interface (MPI) [12], standard 

ANSI C math library, Basic Linear Algebra Subroutines (BLAS) library, and Fast Fourier 

Transform(FFT) library. Since most of the HPC platforms support ANSI C language and 

MPI. the part of source codes linking with MPI and ANSI C math libraries are portable. The 

header file for using MPI library is mpi.h and for using ANSI C math library is math. h. The 

libraries linked are libmpi.a and libm.a or libmpi.so and libm.so. On the other hand, there are 

various implementations of the BLAS and FFT libraries on different system platforms. The 

following is the list of BLAS and FFT libraries implemented on the HPC system platforms 

that parallel pipeline STAP source codes have been ported successfully. 

• Intel Paragon running OSF/1 operating system 
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- CLASSPACK Basic Math Library [13], 

- CLASSPACK Signal Processing Library [14]. 

- header file: kai_c.h. 

- library files: libkmath.a and libksignal.a. 

• IBM SP running AIX operating system 

- Engineering and Scientific Subroutine Library (ESSL) [15], 

- header file: essl.h. 

- library file: libessl.a. 

• SGI Origin running IRIX 6.4 or 6.5 operating system running MIPS R10000 CPUs 

- SGI/Cray Scientific Library (SCSL) [16], 

- library file: libscs.so. 

3.3    Compiling and Linking 

Make files are available for compiling the source codes on different HPC platforms: 

• Makefile, 

• Makefile.common, 

• Makefile.paragon, 

• Makefile.sp, and 

• Makefile.sgi. 

Since the compiling and linking environments differ among target HPC systems, the make 

file with extension, paragon, sp, and sgi are for Intel Paragon, IBM SP, and SGI Origin 

respectively. To compile the source codes on Intel Paragon, use the command 

7. make -f Makefile.paragon 

To compile the source codes on IBM SP. use the command 
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*/. make -f Makefile, sp 

To compile the source codes on SGI Origin, use the command 

7, make -f Makefile.sgi 

The resulted executable file is main_f. 

Users can also use other C compiler options by modifying the macro CFLAGS in Makefile. common. 

In Makefile. common, two macros defined for compiling are 

DFLAGS        = -DFLOAT.TYPE 

CFLAGS        = -02 

The macro CFLAGS specifies compiling options. A flag -02 is given to specify the level of 

optimization for the object code is 2. For example, users can change it to -g for debugging 

purpose. Please see the online manual of C compiler for detail of all flags on the system 

platform used. Macro DFLAGS is a list for define macros for compiling. A defined macro 

FLOAT-TYPE shown here makes the application compiled with all real numbers declared in 

the source program using float type (single precision). If this variable list is given empty, 

i.e. 

DFLAGS 

the application is compiled with all real numbers using double type (double precision). 

3.4    Running the program 

The program execution environments also differ among target HPC systems, We now explain 

how to run the program on Intel Paragon. IBM SP, and SGI Origin. 

3.4.1    Intel Paragon 

To run in interactive mode, a partition of compute nodes must first be made. Usually, 

partition of interactive mode is made under . compute partition. By using command "lspart 

-r .", a list available partitions is shown such that users can reserve a group of compute nodes 

under desired partition tree. 
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7, lspart - -r . 

USER GROUP ACCESS SIZE FREE RQ EPL PARTITION 

root daemon 754 10 10 SPS 5 io 

root daemon 754 6 6 SPS 5 service 

root daemon 777 28 28 SPS 5 sunmos 

root daemon 777 1 1 SPS 5 atm_hippi 

root daemon 766 30 30 SPS 5 ditp 

root daemon 744 232 232 SPS 5 compute 

.sunmos: 

root daemon 777 28 28 SPS 5 interactive 

.compute: 

root daemon 766 85 85 SPS 5 OPEN 

.compute. DPEN: 

pottsg AFIT 766 4 4 SPS 5 test 

wkliao PAHPES 766 16 16 SPS 5 stap 

For example, to make a partition with 16 compute nodes under . compute partition, a user 

can use the command 

7. mkpart -sz 16 OPEN.stap 

For more information of making partition, please refer Paragon User's Guide [17]. A com- 

mand line to execute the application interactively can be 

7. main_f -sz 16 -pn OPEN.stap. 

3.4.2    IBM SP 

To run in interactive mode, a command "mpirun" is for launching an MPI application. A 

command can be as simple as 

7. mpirun -np 16 main_f 

3.4.3    SGI Origin 

To run in interactive mode, the command "mpirun" is also available on SGI Origin for 

launching an MPI application. A command can also be as simple as 
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'/, mpirun -np 16 main_f 

3.5 Input CPI data 

The input CPI data sets for this parallel pipeline STAP application are generated by a C 

random number generator, random(). Every processor in Doppler filter processing group 

calls the function random-gen-cpi() in file random^en.cpi. c with its processor id as the 

random seed. Therefore, when the number of processors assigned to Doppler filter processing 

group differs, the overall CPI data differs. If users want to use real CPI data as inputs, please 

refer to the Debugging section to set the debug flag in filter-grp. c. 

3.6 Compute node assignment 

The file proc.dat controls the compute node allocations on the program.  An example of 

this file is: 

# processor numbers assigned for each group 

32 16 112    16    28    16    16 

16    8    56      8    14      8      8 
8    4    28      4      7      4      4 

where the comments followed by # in each line are ignored. In this example, the program 

will execute three times, each with different numbers of compute nodes assigned to each of 

the 7 groups of tasks. That is. the first line in this example will assign 

• 32 compute nodes to FILTER-GRP. 

• 16 compute nodes to WT_EASY_GRP, 

• 112 compute nodes to WT_HARD_GRP, 

• 16 compute nodes to BF_EASY_GRP, 

• 28 compute nodes to BF_HARD_GRP, 

• 16 compute nodes to PC.GRP, and 

• 16 compute nodes to CFAR-GRP, 
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and so forth. Before running the program, users should allocate sufficient number of compute 

nodes. This is, the number of reserved compute nodes should be at least greater than the 

total number specified in the file proc.dat. In the above example, 236 the the smallest 

number needed to run the program. 

3.7    Parameter file 

The parameter file for the parallel pipeline STAP application is param.dat. The program 

reads this file and checks the ranges of the given parameters before it actually runs. An 

example of par am. dat is 

-k 512 # number of range cells 

-j     16 # number of channels 

-n 128 # number of pulses 

-r     3 # number of reference CPIs 

-m     24 # total number of CPIs (besides the reference CPIs) 

-p     3 # number of zero padding 

-w Hanning # windowing function: Hanning or Hamming 

-h     56 # number of hard Doppler bins 

-e     26 # number of range samples for easy weight 

-u     0.3333 # fraction of range cells for extracting easy weight samples 

-s    39 # number of range samples for hard weight 

-g     6 # number of segments for each hard Doppler bin 

-1      5 # number of broad transmit beams 

-d     2 # broad transmit beams direction 

-b     6 # number of receive beams for each broad transmit beam 

-V SVs # filename of the steering vector (in Matlabe 4.0) 

-c      0.5 # beam constraint weight 

-f      0.05 # frequency constraint weight 

-o     0.6 # forgetting factor 

-C replica # filename for replica array used in pulse compression 

-a     2 # number of guard cells for the sliding window 

-i     10 # number of range cells for the window size 

-q     12.7 # false alarm factor 

-v     0.0001 # probability of false alarm for order statistic CFAR 

-y     o.O # guessing left boundary root of solving threshold equation 

-z 100.0 # guessing right boundary root of solving threshold equation 
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-x 0.0001 # accuracy of bisection root finding for solving threshold 

_t i7     # order number for order statistic CFAR 

-R 17400    # recording start range (in meters) 

-S 1.0E6 # A/D sampling frequency (in Hz) 

_N i6    # number of bits representing one CPI element 

-P 61.1E-6 # transmit pulse width (in seconds) 

-F 450.0E6 # transmit frequency (in Hz) 

-B 0.5E6 # transmit bandwidth (in Hz) 

-D 0.333 # azimuth element spacing (in meters) 

_A go    # mechanical boresight azimuth (degree) 

_E 3    # mechanical boresight elevation (degree) 

where the comments followed by # are ignored. 

3.8    Description of user specified parameters 

A description of user specified parameters are given as follows. 

-k value number of range cells for one CPI data cube. 

-j value number of channels for one CPI data cube. 

-n value number of pulses for one CPI data cube. 

-m value total number of CPIs (besides the reference CPIs). This number should be at least 

one. The measured timing results are obtained by recording the process time of the 

middle CPIs. The first two and last two CPI process time do not count. 

-r value number of previous reference CPIs for weight computation tasks. Reference CPIs 

are used to calculated the adaptive weight vectors that is applied to the current CPI 

in beamforming task. The suggested default value is 3. 

-p value number of zeros padded for each Doppier FFT. For example, given 128 pulses, if 

3 zero padding and 2 staggers are chosen then a set of FFTs is performed on the first 

125 pulses and another set of FFTs performed on the last 125 pulses. In each case the 

last 3 samples are padded with zeros. This value depends on the number of pulses. 

The default values is 3. 
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QR 
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block update matrix 

back 
substitute 

wts 16 

constraintWeight = abs( first column of QR matrix) 

k = constraintWeight * beamConstraintWeight 

Figure 3.1:  Weight vector calculation for one easy Doppler bin, given 16 channels, 26 easy 

range samples, 3 reference CPIs, and 6 receive beams. 
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preserved for next step 
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39 CPIi-1 
QR 

decomposition 

\R 

avgPower 

16 
16 16 

ßl 81 

avgPower : abs(first column of QR matrix) / 39 

a : from DFT_matrix[6][128] in stagger_dft.h 

a = (o 
ß : (freqConstraintWeight * avgPower,   0) 

8 : freqConstraintWeight * avgPower * -a 

Figure 3.2: Weight vector calculation for one hard Doppler bin (Initial step), given 2 staggers. 

16 channels, 39 range samples, and 6 receive beams. 
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PI 

back 
substitute 

wts 32 

avgPower : abs(first column of QR matrix) / 39 

k : beamConstraintWeight * avgPower 

a : from DFT_matrix[6][128] in stagger_dft.h 

a = (o 

ß : (freqConstraintWeight * avgPower,   0) 

5 : freqConstraintWeight * avgPower * -a 

Figure 3.3:   Weight vector calculation for one hard Doppler bin (successive step), given 2 

staggers. 16 channels. 39 range samples, and 6 receive beams. 
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-w value windowing coefficient name for Doppler filter processing on each staggered CPI. It 
can be Harming or Hamming windows. The default windowing coefficient is Hanning 

window. 

-h value number of Doppler bins for hard case of adaptive weight computation. The sug- 

gested default value is (pulses • ^g). 

-e value number of range cell samples for easy weight computation. This refers to the 

number of range samples from each reference CPI to be used in the matrix on which 

a QR factorization is performed for easy weight computation. Figure 3.1 shows the 

QR factorization used in easy weight computation, given 16 channels and 3 reference 

CPIs. The suggested default value is ^^freffeT^cks • 

-u value fraction of range cells for extracting sample range cells for easy weight computation. 

The suggested default value is |. 

-s value number of range cell samples for hard weight computation. This refers to the num- 

ber of range samples from each reference CPI to be used in the matrix on which a QR 

factorization is performed for hard weight computation. Figures 3.2 and 3.3 shows the 

QR factorization used in hard weight computation, given 16 channels and 3 reference 

CPIs. The suggested default value is 39. For best performance the value should be 

chosen to utilize the entire machine cache such that the whole QR factorization matrix 

can fit in the cache. 

-b value number of receive beams for each broad transmit beam. 

-g value number of range segments for hard Doppler bins. The default value of the number 

of hard segments is 6. One weight vector is computed for each hard segment. The 

user may increase the number of hard segments when needed for improved clutter 

cancelation performance at the expense of increasing computation time. 

-1 value number of broad transmit beams. 

-d value the broad transmit beam direction. This value should be from 0, 1, ... (number of 

broad transmit beams -1). 

-V filename filename for steering vector (the filename without suffix .mat). This file must 

be in Matlab 4.0 format. The size of the steering vector should be (number of broad 

transmit beams * number of receive beams * number of channels). 
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-c value beam constraint weight. To preserve the main beam shape, the beam constraint 

weight is chosen to be large. To emphasize clutter cancelation at the expense of beam 

shape, the beam constraint weight is chosen to be small. Figures 3.1, 3.2, and 3.3 show 

this constant used in QR factorizations in both easy and hard weight computation, 

given 16 channels and 3 reference CPIs. The suggested default value is 0.5. 

-f value frequency constrain weight. Frequency constraints are included to reflect the desire 

for gain in the Doppler bin of interest. Large values of the frequency constraint weight 

result in large gain. Figures 3.2 and 3.3 show this constant used in QR factorizations 

in hard weight computation. The default value is 0.05. 

-o value forgetting factor used in QR factorization. Data from several reference CPIs are 

used. The forgetting factor is employed to diminish importance of the older data. 

Figure 3.3 shows this constant used in QR factorizations only in the successive steps 

of hard weight computation. The default value is 0.6. 

-C filename filename for replica complex array used in pulse compression (the filename with- 

out suffix .mat). This file must be in Matlab 4.0 format. The replica array must be of 

size the least number of power of 2 that is greater than or equals to number of range 

cells. 

-a value number of guard cells on each side of a test cell. The sliding window constant false 

alarm rate (CFAR) processing compares the value of a test cell at a given range to 

the average of a set of reference cells that surround it times a false alarm factor. The 

default value is 2. 

-i value number of reference cells to each side of the test cell is called the window size. The 

default value is 10. 

-q value the false alarm factor, a threshold sealer used to control the number of false alarms. 

Increasing this factor reduces the number of false alarms at the expense of target 

detections. The default value is 12.7 

-v value probability of false alarm for order statistic CFAR 

-y value guessing left boundary root of solving threshold equation 

-z value guessing right boundary root of solving threshold equation 

-x value accuracy of bisection root finding for solving threshold 

E-38 



-t value order number for order statistic CFAR 

-R value recording start range (in meters) 

-S value A/D sampling frequency (in Hz) 

-N value number of bits to represent one CPI element 

-P value transmit pulse width (in seconds) 

-F value transmit frequency (in Hz) 

-B value transmit bandwidth (in Hz) 

-D value azimuth element spacing (in meters) 

-A value mechanical boresight azimuth (degree) 

-E value mechanical boresight elevation (degree) 

-T to run in two threads in SMP system. 

The required parameters are -k -j -n -m -r -b -1 -d -V -R -S -N -P -F -B -D -A -E. An 

example for weight computation of using 128 pulses, 16 channels, 26 easy range samples, 39 

hard range samples, 3 reference CPIs, and 6 receive beams is shown in Figure 3.1, 3.2, and 

3.3. 

3.9    Results output 

The resulted output consists of the output of detected target report and the performance 

timing report. The output of detected target report is given in file cfar.out .mat, if the 

debugging flag DEBUG_CFAR_PRINT_RESULT is set in file cfar^grp. c. 

The timing results are stored in the file timing. This file gives the communication and 

computation time for each of 7 tasks and the measured latency (in seconds) and throughput 

(in number of CPI data cubes) as well. An example of timing output is 

total processors = 118 
nop       recv comp send       total 

Doppler filter &    16 & 0.0110 & 0.1714 & 0.0668 & 0.2492 
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easy weight k 8 & 0.0998 k 0.1636 k 0.0003 k 0.2637 

hard weight & 56 & 0.0979 k 0.1636 & 0.0005 k 0.2621 
easy BF & 8 & 0.1302 & 0.1267 & 0.0036 & 0.2605 

hard BF & 14 & 0.1782 & 0.0822 & 0.0017 & 0.2622 

pulse compr k 8 & 0.1027 k 0.1543 & 0.0051 & 0.2621 

CFAR detection k 8 & 0.1742 k 0.0864 & 0.0000 & 0.2606 

Estimated throughput = 3.7919 

Estimated Latency   = 1.0342   

Measured throughput = 3.7959 

Measured latency   = 0.6805 

3.10    Debugging 

Several defined macros are used for debugging purposes. They are designed for read from 

and write to Matlab files. The Matlab files used in this code are restricted for Matlab 4.x 

only (because Matlab 5.x and above have some headers at the beginning of the .mat files.) 

These macros only exist in the main subroutines of 7 tasks. Therefore, debugging can be 

done for each individual task by checking its input and output data files. Table 3.2 gives the 

names of these macros in each main subroutines. 

E-40 



Table 3.2: Debugging macros for file main subroutines of 7 tasks. 

subroutine 

filter-grp.c 

purpose 

DEBUG JILTER-READ.CPI-MAT 

DEBUG JILTER._PRINT-RECV.CPI 

DEBUG JFTLTER-PRINT_RESULT 

wt-easy-grp.c 

wt_hard.grp.c 

DEBUG.WT_EASY_PRINT.RECV.CPI 

DEBUG-WT-EASY_READ-CPI 
DEBUG.WTJEASY.PRINT.RESULT 

DEBUG.WT_HARD.PRINT_RECV.CPI 

DEBUG.WT_HARD.READ.CPI 
DEBUG.WT_HARD.PRINT_RESULT 

bLeasy-grp.c 

bLhard-grp.c 

DEBUG_BF_EASY_PRINT_RECV.CPI 
DEBUG_BF_EASY_PRINT_RECV.WTS 

DEBUG_BF_EASY.READ.CPI 
DEBUG-BF-EASY-READ-WTS 

DEBUG_BF_EASY_PRINT_RESULT 

DEBUG_BF_HARD_PRINT.RECV.CPI 
DEBUG_BF_HARD_PRINT_RECV.WTS 

DEBUG_BF_HARD_READ-CPI 
DEBUG-BF-HARD-READ-WTS 

DEBUG_BF_HARD.PRINT_RESULT 

pcgrp.c 

cfar-grp.c 

DEBUG_PC_PRINT.RECV.BF 

DEBUG-PC-READ.BF 

DEBUG-PCPRINTJRESULT 

DEBUG.CFAR-PRINT.RECV.PC 

DEBUG.CFAR.READ-PC 

DEBUG.CFAR-PRINT_RESULT 

read CPI from Matlab files 

print received CPI to Matlab files 

print result filtered CPI to Matlab 

files  
print received CPI to a Matlab file 

read CPI samples from a Matlab file 

print result weight vectors to a 

Matlab file   

print received CPI to a Matlab file 

read CPI samples from a Matlab file 

print result weight vectors to a 

Matlab file 
print received CPI to a Matlab file 
print received weight vectors to a 

Matlab file 
read CPI from a Matlab file 
read weight vectors from a M-tlab file 

print result beamformed data to a 

Matlab file 

print received CPI to a Matlab file 

print received weight vectors to a 

Matlab file 
read CPI from a Matlab files 
read weight vectors from a Matlab file 

print result beamformed data to a 

Matlab file ___ 

print received beamformed data to a 

Matlab file 
read beamformed data from a Matlab 

file 
print result pulse compression data to 

a Matlab file   

print received CPI to a Matlab file 

read pulse compressed data from a 

Matlab file 
print result CFAR detection data to a 

Matlab file 
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Chapter 4 

Examples of Running Codes 

This chapter gives three examples of running parallel pipeline STAP codes, one for each of 

Intel Paragon, IBM SP, and SGI Origin machines. All input parameters and data files given 

here are the same across these three machines. The only difference are the compiling and 

executing commands. Users can use the following examples to run the program and obtain 

the same output results to make sure the proper use of the program. 

The source code package has already been set to this example as the default options. Users 

can compile and execute these codes without modifying anything and check with the output 

results shown in this chapter. 

4.1    Parameter files 

There are two parameter files: proc.dat and param.dat. Node assignments to the tasks in 

the STAP pipeline system is given in file proc. dat. File param. dat provides all parameters 

that are relative to the signal processing. 

The example of the file proc. dat: 

'/, cat proc.dat 

8 2 28 4 4 4 2 

The example of the file param. dat: 

7, cat param.dat 
-k   512    # number of range cells 

-j     16    # number of channels 
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-e 

-u 

-s 

-n    128     # number of pulses 

_r     3     # number of reference CPIs 

_m    24    # total number of CPIs (besides the reference CPIs) 

_p     3    # number of zero padding 

-v Hanning    # windowing function: Hanning or Hamming 

_n     56     # number of hard Doppler bins 

26    # number of range samples for easy weight 

0.3333 # fraction of range cells for extracting easy weight samples 

39    # number of range samples for hard weight 

_g     6    # number of segments for each hard Doppler bin 

_1     5    # number of broad transmit beams 

-d     2     # broad transmit beams direction 

_b     6    # number of receive beams for each broad transmit beam 

_V    sVs     # filename of the steering vector (in Matlabe 4.0) 

_c     0.5   # beam constraint weight 

-f     0.05  # frequency constraint weight 

0.6   # forgetting factor 

■C replica    # filename for replica array used in pulse compression 

2     # number of guard cells for the sliding window 

10     # number of range cells for the window size 

-q     12.7   # false alarm factor 

0.0001 # probability of false alarm for order statistic CFAR 

0.0   # guessing left boundary root of solving threshold equation 

100.0   # guessing right boundary root of solving threshold equation 

0.0001 # accuracy of bisection root finding for solving threshold 

17    # order number for order statistic CFAR 

-R  17400     # recording start range (in meters) 

-S      1.0E6 # A/D sampling frequency (in Hz) 

_N     16     # number of bits representing one CPI element 

-p     61.1E-6 # transmit pulse width (in seconds) 

-F    450.0E6 # transmit frequency (in Hz) 

-B     0.5E6 # transmit bandwidth (in Hz) 

-D     0.333 # azimuth element spacing (in meters) 

_A    go    # mechanical boresight azimuth (degree) 

_E     3    # mechanical boresight elevation (degree) 

-o 

-a 

-i 

-v 

-y 

-z 

-x 

-t 
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4.2 CPI data files 

The default setting is using random generated CPI data as program input. The output of 

the program only shows the performance timing results. However, four CPI data files are 

also provided for the code testing: cpiO.mat, cpil.mat, cpi2.mat, and cpi3.mat. These 

files are in Matlab 4.0 format. If users would like to see the target detection report of these 

four CPI data, two define macros have to be set: 

• DEBUG_FILTER_READ_CPI_MAT in file f ilter_grp.c and file f ilter_grp_np.c 

• DEBUG_CFAR_PRINT_RESULT in file cf ar_grp. c and cf ar^grp_nt. c. 

Also, the total number of CPI data sets has to be set to 1 in the file param.dat, i.e., 

-m 1 # total number of CPIs  (besides the reference CPIs) 

The results of target report will be saved as a Matlab file, cfar_out .mat. Please refer to 

Section 4.5 to see the target output for using these 4 CPI files. 

Otherwise, uses can test the program for observing the performance results by doing the 

following: 

1. not setting any define macros in all files 

2. set the number of CPI data sets to any number larger than 20. 

In this case, the program generates random numbers for CPI data as inputs to the STAP 

pipeline system. This will eliminate the overhead of reading and writing Matlab files into 

the disk. In this way. the performance timing results contain purely computation and com- 

munication costs on the parallel machines. 

4.3 Compiling 

The multi-threading implementation only works on Intel Paragon with SMP nodes. There- 

fore, there are two choices to compile the source codes on Paragon. To obtain the multi- 

threaded execution codes on Intel Paragon, use the command 

'/, make -f Makefile.paragon 
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a multi-threaded execution code, main.f, will be generated. To obtain the single-threaded 

execution codes on Intel Paragon, use the command 

'/. make -f Makefile.paragon nt 

a single-threaded execution code, main_nt, will be generated. 

On the IBM SP and SGI Origin, only single-threaded implementation work even if the 

multi-threaded code is compiled. To compile the source codes on IBM SP, use the command 

7. make -f Makefile.sp 

to obtain a multi-threaded execution code main J or 

'/. make -f Makefile.sp nt 

to obtain a single-threaded execution code main^it To compile the source codes on SGI 

Origin, use the command 

•/. make -f Makefile.sgi 

to obtain a multi-threaded execution code mainjf or 

7. make -f Makefile.sgi nt 

to obtain a single-threaded execution code main_nt. 

4.4    Executing 

The following commands are for running the codes interactively. On Intel Paragon, 

% main_nt -sz 52 -pn OPEN.stap 

assuming the partition .compute.OPEN.stap has been built. On IBM SP, 

'/, mpirun -np 52 main.nt 

On SGI Origin, 

7. mpirun -np 52 main_nt 
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To run the program in the batch mode on Paragon, the command 

'/. qsub -eo -o $HOME/STAP/q_out -q q512 -IP 52 -IT 20:00 -x scpt.file 

submits a batch job requiring 52 processors, maximum 20 minutes, script file name scpt_f ile 

on the batch queue named q512. The script file, scptjf ile, is 

7. cat scpt_file 

$HOME/STAP/main_nt 

To submit a batch job on IBM SP, use the command 

7. spsubmit -np 52 -progtype M -maxtime 20 -stdout q_out main.nt 

and it will submit a batch job requiring 52 processors and maximum 20 minutes execution 

time and stndard output to the file q_out. 

4.5    Output 

The performance timing results are given in file timing.  An example of output using 52 

nodes on the Intel Paragon is 

total processors =    52 

nop        recv comp send        total 

Doppler filter & 8 & 0.0213 & 0.2670 & 0.1349 & 0.4232 

easy weight & 2 & 0.0897 & 0.3331 & 0.0003 & 0.4231 

hard weight & 28 & 0.1364 & 0.2851 & 0.0003 & 0.4218 

easy BF &      4 & 0.2752 & 0.1433 & 0.0003 & 0.4188 

hard BF &      4 & 0.2360 & 0.1754 & 0.0003 & 0.4117 

pulse compr & 4 & 0.1839 & 0.1973 & 0.0293 & 0.4106 

CFAR &      2 & 0.2740 & 0.1363 & 0.0000 & 0.4103 

Estimated throughput = 2.3630 

Estimated Latency        = 1.6628   

Measured   throughput = 2.3865 

Measured   latency       = 1.0766 

An example result on IBM SP is 
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total processors =    52 
nop        recv comp send        total 

Doppler filter & 8 & 0.0068 & 0.0593 & 0.0964 & 0.1625 

easy weight & 2 & 0.1208 & 0.0525 & 0.0001 & 0.1734 
hard weight & 28 & 0.1048 & 0.0639 & 0.0001 & 0.1689 

easy BF & 4 & 0.1072 & 0.0605 & 0.0001 & 0.1678 

hard BF & 4 & 0.1069 & 0.0615 & 0.0002 & 0.1686 

pulse compr & 4 & 0.1146 & 0.0527 & 0.0001 & 0.1674 

CFAR & 2 & 0.1296 & 0.0402 & 0.0000 & 0.1699 

Estimated throughput = 5.7654 

Estimated Latency = 0.6684 

Measured throughput = 5.9104 

Measured latency = 0.4273 

Users can also test the output of target detection results when using provided 4 CPI 

Matlab data files. If the program is compiled to generate the target detection output, there 

are one output shows total number possible targets and one out Matlab file stores the target 

detection report. When total number of CPIs (besides the reference CPIs) is set to one, the 

output should be 

Total number of possible targets = 148 

There is also a target report file. cfar_out .mat, generated in Matlab format. This file 
can be loaded into Matlab software and printed into a file by running a Matlab subroutine 
name tg_rpt() provided in directory MAT. The results specified 148 targets each with three 

elements: Doppler bin number, receive beam number, and range cell number. 

*/, matlab 

<MATLAB(R)> 

(c) Copyright 1984-98 The MathWorks, Inc. 

All Rights Reserved 

Version 5.2.0.3084 

Jan 17 1998 

To get started, type one of these: helpwin, helpdesk, or demo. 
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For product information, type tour or visit www.mathworks.com. 

>> load cfar_out; 

» tg_rptCdefault_target.txt', cfar_out,  128,  6, 450); 

» quit 

1036948 flops. 

7, cat default_target.txt 

Doppler bin #      recv beam #     range # 

6 1 136 

6 2 320 

7 2 193 

7 3 193 

7 . 4 193 

8 1 44 

8 1 45 

13 5 276 

16 5 170 

18 2 234 

18 3 234 

18 4 234 

19 6 139 

20 1 364 

20 6 139 

20 6 140 

23 2 282 

24 5 52 

27 4 300 

32 3 365 

32 3 366 

32 4 277 

41 1 335 

42 1 173 

42 5 208 
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44 

45 

46 

49 

49 

53 

53 

55 

55 

57 

57 

58 

58 

58 

58 

61 

67 

70 

71 

71 

72 

72 

78 

78 

79 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

81 

81 

4 

5 

4 

1 

2 

1 

6 

2 

2 

1 

2 

3 

3 

4 

4 

4 

6 

6 

2 

6 

2 

2 

5 

5 

3 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

1 

1 

174 

67 

67 

122 

122 

364 

164 

429 

430 

412 

412 

216 

217 

216 

217 

342 

89 

58 

392 

445 

325 

326 

108 

109 

253 

204 

205 

204 

205 

204 

205 

204 

205 

204 

205 

203 

204 
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81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

81 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

82 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

4 

5 

5 

5 

5 

6 

6 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

205 

206 

203 

204 

205 

206 

203 

204 

205 

206 

147 

203 

204 

205 

206 

203 

204 

205 

206 

204 

205 

203 

204 

205 

206 

203 

204 

205 

206 

203 

204 

205 

206 

203 

204 

205 

206 
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82 

82 

82 

82 

82 

82 

83 

83 

83 

83 

83 

83 

83 

83 

83 

83 

83 

83 

83 

83 

92 

92 

96 

107 

112 

112 

112 

112 

112 

112 

112 

118 

118 

118 

119 

119 

119 

5 

5 

5 

5 

6 

6 

1 

1 

2 

2 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

6 

6 

4 

2 

1 

2 

2 

2 

3 

3 

4 

1 

3 

4 

2 

2 

3 

203 

204 

205 

206 

204 

205 

204 

205 

204 

205 

203 

204 

205 

203 

204 

205 

338 

203 

204 

205 

136 

322 

92 

122 

211 

211 

282 

283 

282 

283 

283 

216 

445 

306 

386 

387 

386 
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119 

121 

121 

121 

121 

124 

125 

125 

126 

126 

126 

127 

total number of targets = 148 

3 387 

2 405 

2 406 

3 405 

3 406 

1 359 

4 142 

5 142 

3 403 

5 402 

6 402 

6 436 

4.6    Script to run with defaults 

Script files axe included in the software package for users to run the STAP code using the 

defaults described in this Chapter. Three scripts files are available for three High Perfor- 

mance Computers: Intel Paragon at California Institute of Technology, IBM SP at Argonne 

National Laboratory, and SGI Origin at Northwestern University. The machine platforms 

are shown in Table 4.1. 

The script files are: 

• Paragon - script .paragon 

• SP - script_sp 

• Origin - script_origin 

Users can run these script files on each of three machines to compile and run the code in one 

time by using command: 

• Paragon - 7. sh script_paragon 

• SP - 7. sh script_sp 

• Origin - 7. sh script .origin 
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Table 4.1: System platforms 

AFRL 

Paragon 

ANL 

IBMSP 

NWU 

SGI Origin 

CPU Type i860 RISC P2SCt MIPS R10000 

RAM (MByte) 64 256 1024 

MFLOPS/proc 100 480 390 

MHz /proc 40 120 195 

No. nodes 232 80 8 

No. proc/node 3 1 1 

Execution mode dedicate dedicate time share 

fP2SC: Power 2 SuperScalar chip 
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