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NOMENCLATURE 

A-|-A3, Bg-Bö' ^i"^3   Coefficients as defined in (2.7) 

b Base vectors in the deformed system 

c Dimensional 1/2 crack length as shown in 

Figure 2.2, mm 

E Young's modulus, N/mm 

e1J Permutation tensor defined by (2.6) 

Fll' ^12' F13       Coefficients as defined in (2.5) 

F-], F2, F3 Coefficients as defined in (3.1) 

g-jj ,  g1J Covariant and contravariant, respectively, 

deformed metric tensors nondimensionalized by 

ij 
9ij = 9ij/^ ; gij = g^'/c2 

h-jj, h J Covariant and contravariant, respectively, 

undeformed metric tensors nondimensionalized 

by hid = F-jj/F2 ; hij = h^/f 

K Stress intensity factor, N/mm ' 

KjH Theoretical stress intensity factor, N/mm ' 

KAp Apparent stress intensity factor, N/mm ' 

r, rQ Position vector in the deformed and undeformed 

systems, respectively, mm 

w.j, w1 Covariant and contravariant displacements, 

respectively, nondimensionalized by w- = w./c" ; 

w1 = vP/c 

11 i 



IV 

x, y Local cartesian coordinates nondimensionalized 

by x = x/c", y = y/c 

°ß - ß Coefficients as defined in (3.2) 

A, A-is A2» A3       Coefficients as defined in (3.1) 

e Perturbation parameter 

£.,•-: Covariant strain tensor 

eijk' eiikl Strain functions as defined by (2.1) 

C Displacement vector 

n, £ Local orthogonal curvilinear coordinates as 

shown in Figure 2.2 

e Sum of physical normal stresses 

v Poissons ratio 

50 Value of £ at boundary of ellipse 

p Ellipse root radius nondimensionalized by 

P = P/C 

a Dimensional remote normal stress, psi 

a-jj, a1J Covariant and contravariant, respectively, 

stress tensor nondimensionalized by a-■ = a-- -/cT 

xmax Maximum in-plane shear stress nondimension- 

alized by xmax = Tmax/a 

Outer and inner, respectively, stress function 

nondimensionalized by $ = W/cö~,  <f> = $/c"2ö" 

Determinant of A-jj 



Superscripts 

Dimensional quantity 

Physical quantity 

Inner variable 

Outer variable 
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I. INTRODUCTION AND REVIEW OF THE LITERATURE 

Although the use of photoelasticity in obtaining stress intensity 

factors was noted by Irwin [1] in the early 1950's, broad implementa- 

tion of the method was slow to develop. The reason for this is 

believed due to the problems involved in extracting accurately the 

stress intensity factor (SIF) from photoelastic data. Several dif- 

ferent approaches have been cited for achieving this purpose for two 

dimensional geometries: one developed by Marloff and his associates 

[2] in 1970; one recommended by Irwin (above) and applied by Smith and 

Smith [3-5]; and those developed by Kobayashi and his associates [6-9]. 

An attempt to quantify the errors involved in the determination 

of the SIF in two dimensions through photoelasticity has been pre- 

sented by Schroedl, McGowan and Smith [10]. In this study strong 

emphasis was put on taking photoelastic data in a region where Irwin's 

two degree of freedom system would apply (referred to as a 'singular' 

zone). Outside of this zone effects of free surfaces other than the 

crack surface may dominate. A Taylor Series expansion approach (TSCM) 

was developed in [10] to account for these 'outer' effects. Inside of 

this 'singular' zone crack tip blunting, finite rotations and finite 

strains dominate the desired crack behavior. In [10] the crack tip 

blunting is treated superficially and the last two effects are not 

included. Near the tip of the deformed crack these effects are very 

significant and cannot be neglected. 

1 



In many materials tensorial nonlinearities, as discussed by 

Ronay and Freudenthal [11] and Poynting [12], play a large role when 

strains are high. However, the materials used in stress-freezing 

photoelasticity (Hysol's CP-4290 and Photolastic's PLM-4B and PSM-8, 

for example) do not exhibit any stress-strain nonlinearities, even at 

high stress levels, as reported by Fessler and Mansell [13] for 

Araldite. These tensorial effects are, therefore, neglected. 

Determination of values of the SIF in three dimensional 

problems is discussed by Smith [14].' Although Kassir and 

Sih [15] have shown that locally along an embedded elliptical flaw a 

two dimensional representation is still possible, the 'valid data' zone 

may become so constricted that the 'inner' and 'outer' effects must be 

dealt with. Smith et al [16-19] have developed the TSCM approach for 

various geometries, effectively handling the 'outer' problem. It 

therefore becomes increasingly important to find a method for accounting 

for not only blunting but also finite rotations and finite strains in 

the tip region, the fracture aspects of which are described in [20]. 

Several approaches have been used for dealing with the non-linear 

effects in the 'inner' zone. Perhaps the best known of these is exempl- 

fied in the solutions of Rice and Rosengfen [21] and Hutchinson [22]. 

These solutions imposed small strain restrictions on an elasto-plastic 

solution using a detormation type plasticity theory with power law 

constitutive relations. From the form of the linear solution a class 

of functions was selected to represent the stresses and strains near 



the crack tip in an asymptotic sense. The solution was reduced to an 

eigenvalue problem which was solved numerically and the subsequent sin- 

gularity was evaluated through use of the J integral. Re£ [21] was 

carried out for plane strain and Ref [22] to plane stress. 

A second approach due to Knowles and Sternberg [23], [24] concerns 

the same crack and loading geometry as above; however, this latter 

plane strain treatment includes the effects of finite geometry change 

and finite strains. A non-linear constitutive law is postulated for 

large detormations using a four parameter representation of the strain 

energy density in terms of the strain invariants. Again the asymptotic 

form of the displacements is deduced from the linear problem and the 

investigation reduced to an eigenvalue problem. The solution contains 

two arbitrary constants, one of which is obtained through a conservation 

law. This approach was then extended to clarify and improve the lowest 

order asymptotic solution. 

Prior to either of the above approaches 0. L. Bowie [25] studied 

the effect of the small geometry change assumption on the near field of 

an elliptical hole using classical theory. He found stresses of the 

order of Young's Modulus and strains of order unity at the notch tip. 

More recently, Mansfield [26] employed a procedure involving an incre- 

mental i zed classical theory of plane strain in order to estimate stresses 

near the tip of a deformed crack which he took to be elliptical in shape. 

His stress increments were computed from the deformed geometry and also 

indicated that stresses at the crack tip were at the order of Young's 

Modulus. Although neither of these two studies utilize large strain 



definitions, they do concern the very near field behavior as will the 

model described in the sequel. 

The present study will focus on the behavior of small crack- 

like ellipses (the size of these ellipses will be the same as a de- 

formed crack) in an infinite plate in biaxial tension. This investi- 

gation seeks to give a complete treatment of the results of crack-tip 

blunting, finite rotations and finite strains while still using 

linearly elastic constitutive relations. The problem will be studied 

in the deformed geometry to simplify the boundary conditions and 

overall approach. 

In the first step of the investigation a generalized 'Airy-type' 

stress function is introduced through the linear constitutive equations 

to arrive at the governing equation. Next a perturbation analysis is 

performed to characterize the form of the equations in the 'inner' 

nonlinear region, and to determine the matching conditions of the non- 

linear to the linear solution at some acceptably far distance from the 

ellipse tip. The nonlinear compatibility equation is then solved in 

the tip region through use of finite differences and collocation. 

Finally the complete strain-displacement relations are integrated to 

determine the initial geometry. The stress and strain distributions 

of an initial crack will then be ascertained as a limit to the small 

ellipses analyzed. 



II. FORMULATION OF THE PROBLEM 

The characterization of small crack-like ellipses in an infinite 

plate under biaxial tension, including the effects of blunting, finite 

rotations and finite displacements will now be presented. First the 

governing equation applicable to the problem will be derived and the 

tensorial notation will be introduced. Finally the perturbation con- 

siderations will be discussed, separating the inner from the outer 

regions (i.e., nonlinear from linear); and the resulting solution 

procedure will be outlined, setting the stage for the actual solution 

method. 

A. Notation and Formulae 

The generalized curvilinear orthogonal coordinate system used 

in this study is shown in Figure 2.1, and the compatibility equation 

as given by Sokolnikoff [27] is 

e..,, + h**6 (e.,„ e., - e.,  e.. ) = 0 , (2.1) 
ijkl      v Jk3 llo  jlß lka 

where 

Eijkl  = Eji.ik + Fik,jl  " ejk,il  ■ eil,jk 

cijk = eik,j + ekj,i  " eij,k 

and h^ is the contravariant metric tensor of the undeformed geometry. 



Note that throughout this treatment the comma represents the covariant 

derivative with respect to the deformed coordinates. 

The undeformed covariant metric tensor, haß, as given by [27] 

may be written 

hij = gij " 2£ij 
(2.2a) 

or 

hij = 
(gn - 2e]1)    -2e12 

:12 (g22 - 2722) 
(2.2b) 

so therefore 

r»J 
j(g22 2e22) 

nl     [     2e12 (g„  - 2Ell) 

12 

Jll  " Hi 

y , (2.2c) 

with 

hi = g22g-,-j - 2g-ne
22 " 2922en + 4e22Ei2 " 4ei2 

The linear constitutive relation can be written as: 

:jk 
(1   + v) - vQ - 
^-E       ajk     r9jk ' 

_     _ l -ij where       Q = a-    = g     a. i,j = 1,2,3. 

(2.3) 

For plane strain e-j,- = 0 if i or j = 3 so that (2.3) becomes 

^jk 
LL±A   -     . vQ  + v) eg, 

E ajk E 9jk 
(2.4) 

-    -i     -ij - where 0 = a. = g      a.. i,j = 1,2. 



The only non-zero, unique compatibility equation is for 

ijkl = 2121. Noting this and then introducing (2.2c) and (2.4) into 

(2.1) and collecting terms results in: 

22 
(1  + v)   /- .  - o- \ (1   + v)   /- 

E        hi,22 + °22,11   " 2a12,l2}  " VE~X hi, 

+ "22,11  +f^   "22,22 +^^ll,n) +Fl1   Fn  +F2 F12 

+ h22 F22 = 0  , (2.5) 

with 

?n _ 
+ {(1   - v)  allsl   - v^a22jl}{(l   - v)  a22J 

922 _ _ 
-vÜ7an,i  "2a12,2}] ■ 

+ {(1   -v)7llfl   -v|iä22JH(l   -v)ä22)1 

?22- 9- M 
- v|^"all,l   " 2a12,2>J   > 



F12 =  (4^)2[2{(1   - v)  a22jl   - v|2-a11>1}{(1   - v)  a^ 

911 -;      .       ,,, , - 922 - 
v=r_a22,2}■" {(1  " v) a22,l  " ^^TJ 922 

2oi2,2}{(1 -v)on,2-vg22°2Z*2"20l^l} 

_ 9"n - - 
{(1  - v) a-|i  i  - v=—a22,l^^  ~ v) a22,2 

"22 

922 ;—— 
'911 
v=-°n,2} ' 

also 

|h] = gn g22 - 2 (1 E       t1 " 2v) &U 9"22 + °22 9n) 

1 +     2 -    - -    -      °22     an 2 

+ 4(-T-)   [on   a22-v(l   -v)9ll   g22  (-7+^,7) 

- a12  ] 

Introducing now a generalized  'Airy'  stress-function as sug- 

gested by Adkins, Green and Shield [28]: 



-      -        ai     ßj - 
TSt *  9Sa %  e       e       *' 1J 

(2.6) 

where 

JJ - 

•H 

/jl 

if i = 1, j = 2 

if i = 2, j = 1 

if i = j 

Non-dimensionalizing the following variables: 

-     _ -2 -     _ -2 -     _ 
911  " c gll       '      g22      c g22      '      eij      EiJ 

aij = paij        '      * = P^ * 
w = cw 

where c is some characteristic length and p is some characteristic 

stress, and also defining a physical derivative: 

: . A,i 
where i is not summed, 

and then finally introducing these substitutions plus (2.6) into (2.5) 

leads to the expression: 

o    ~ ~  2 
0 = {1 + 2EA! (*,22 + $sll) + 4e* [$,n $,22 - *>12 

+ A2  ($,22 + $}11)  ]} B0{$51111  + 2$,1122 + $»2222} 

+ e{l   + 2e(A3*sll   + A4$,22>  {B1$,11]
2+ B2$,-,22

2 
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+ B3*,111*,122 
+ B4i,222

2+ B5i,112
2+ B6$,112$,222} 

+ e{l  + 2e(A3$,22 + A4*,n)}  {B^,^^ B2i,112
2 

+ B3i,112i,222 + B4i,in
2+ B5i,122

2+ Bg»,^»,^} 

+ e
22i,12  {C^.,225,^2 + C2i511]i,222 

+ C3($,122i,222 + inil*>112)> (2.7) 

where      e = | (1 + v), A]  = -(1  - 2v), A? =    v(l  - v) 

A3 =  -(1   - v), A4 = v,  B0 =  (1   - v),  B1   = -v(l   - v) 

B2 =  (1   - v)(2 - v),  B3 = 1   - 4v + 2v2,  B4 =  (1   - v)   ,  E >5-2 

B6 = -2v(l   - v), C1  = 5 - 6v, C2 = -(1   - 2v),  C3 = 2(1  - v)    • 

The strain-displacement relations as shown by [27] are 

2eiJ=Wi,J+Wj,i   -glkwi,i  \,3   ' 
(2.8) 

->-»■->             ■*■       IV               i       i i 
with       x. = r - r0      ,      c = w b.      ,     w   = g JWj 

where b^  are the base vectors in the deformed system, and r and r0 are 

the position vectors in the deformed and undeformed systems, res ;pec- 

tively. 

The boundary conditions as applied to the stress-function , $, on . 

a free surface (e.g., along the crack surface) are given by [28]: 

*.-i = o    ,    *,2 = 0 . (2.9) 

Thus the entire system of equations has been specified fo r an 

arbitrary stress-type problem in terms of orthogonal  curvilinear 
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coordinates with all derivatives taken in the deformed geometry. 

B. Perturbation Analysis 

The problem to be considered is shown in Figure 2.2, and consists 

of a small ellipse in an infinite plate with all-around uniform 

tension. At some distance from the ellipse tip the stresses are re- 

duced to 0(a), the strains to 0(a/E), and the displacements to 

0(ca/E), where a" is the remote tension and c is one-half the crack 

length. Therefore, the governing equation (2.7) and the strain-dis- 

placement relations (2.8) both reduce to the linear forms. Thus, the 

solution of Inglis [29] applies 

= sinh 2 (cosh 25 - cosh 2e0) (2J0a) 
^        (cosh 2£ - cos 2nj 

« -  sinh 25 {c°f 2l  !r
COSh 2€° 7 2 C0S 2n)  , (2.10b) nn      ^   (cosh 2c - cos 2n) 

(cosh 2? - cosh 250) ,„ ,. « 
% = Sinh 2n (cosh 25 - cos 2n)    ' (2JOc) 

5 _  {(1 - 2v) cosh 25 - 2(1 - v) cos 2n + cosh 250
} i0 THA\ 

„ =e (cosh 25 - cos 2n) ' CZ.lOd) 

wn = 0  , (2.10e) 

where 5 and n are the elliptical coordinates defined by x = (cosh 5 

cos n), y = sinh 5 sin n; e = F-0 + v), the characteristic length is c, 

the characteristic stress is a, and 50 is the non-dimensional root 

radius of the ellipse. 
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The root radius of a crack of length 2c after deformation is 
/   , F        1/2 

predicted by (2.10d) with K0 =  0:w^ = p  = 2e(l - v). The size of 

the ellipses to be investigated here will be of the same order, 

i.e. £0 = 0[2e(l - v)]. The local geometry surrounding the tip will 

then be as shown in Figure 2.3 and the coordinates will locally be 

reduced to parabolic: 

,2   2   2 

x =   ~\~l°  • y = *"'      9 = % = %n -  5 + *    ' 

The ordering scheme will also change in the neighborhood of the tip: 

the stresses are O(-), the strains are 0(1), and the displacements are 

0(1). Therefore, it is necessary to scale the variables so that they 

are all 0(1) in this region: 

°ij = aije  '  ^ij = eij  »  * = $e3  , 

-  -      hz wi = wi    '  9« = 9nn = ^ (2.11) 

Substituting (2.11) into (2.7) yields 

0 = {1 + 2A, (*,55 + 4,^)  + 4[*,55*fT)n - *,£ 

+ A2  (♦•« + Nn^} Bo ^*5«e + 2*'^nn + ♦»nnnn 

+ {1  +2(A3*,55+A4*,Tin)>  {BlH^2
+ B2*,Cnri

2 

+ B3*^5 *'?nn + M'nnn^ B5*'«n + V Wnnn1 

+ {1  +2(A3+,nn+A4*ies)}  {B^,nnTi
2

+ B2*,K 
2 

n 

+ B3*W'nnn + B4*'5«
2+ B5Hnn2+ B6*'e«*W 
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+ C,(<!>Sc. <t,   + i>,Pr.^,      ) , (2.12) 

(The  notation has been dropped for simplicity.) 

and, the substitution of (2.11) into (2.8) leaves it virtually un- 

changed. 

Since the displacements in the tip region are large, the boundary 

conditions (i.e., <j>,-| = $,2 = 0) must be applied to the deformed 

geometry. As an additional boundary condition the inner solution must 

be 'matched' to the outer solution where they intersect. As Van Dyke 

[30] expresses, the outer solution (i.e., linear solution in this case) 

should be written in terms of the inner variables and then the 

perturbation parameter, e, should be made very  small, the inner solu- 

tion should then be matched to the result. The inner solution would 

then approach, as z,  and n get large, these expressions for stress, 

strain and displacement: 

°™ "    (c2 + n2) 
(2-13a> 

-  - n(52 " 50
2) 

^ ~ (62 + °2) (2J3b) 

°« " ^ 2 " t] (2-130 

;e , <] - 2-) j + *0 -^"2 + fr2    (2.i3d) 
(^ + nz) 
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wn = 0 . (2.13e) 

As the problem is a quasi-elliptic fourth-order partial dif- 

ferential equation, there must be two boundary conditions at each of 

the four edges, as shown in Figure 2.4. At the inner edge of the 

ellipse (c =.'£0) the boundary conditions are as discussed above: 

<j>,£ = 0 and $,n  = 0 or alternately 4S = 0 and 4 = constant (where 

<j),n indicates the covariant derivative of 4 in the direction normal 

to the ellipse surface). Since the problem is symmetric about the 

x-axis the boundary conditions along n = 0 reduces to -^ = 0 3n and 

—| = 0. Now the matching conditions along n = nmax and 5 = 5max must 
3n 
be reduced to quasi-boundary conditions. Stress boundary conditions 

at an interface between two materials require that the normal normal 

stress and the tangential shear stress be the same on both sides. 

Therefore, these conditions shall be adopted at the boundary between 

the inner and outer regions (referring to Figure 2.3): 

4 = 4 Bjfe. _ li. 

'linear ' H     35linear'  
at « = W 

34 _ 34 
* = linear >     3TI 

= 3Tu . at ^ = ^max linear , 

However, for matching to be complete the inner tangential normal stress 

at the interface must also be equal to the outer tangential normal 

stress. To insure this, the values of £_.„ and nmav/ will be enlarged max    max 3 

until the matching occurs. 

Thus the solution procedure can be summarized as follows: first, 

a deformed geometry is chosen; then, the linear outer solution is 
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computed; next the non-linear solution is determined subject to the 

deformed geometry by finite differences and is matched to the outer 

solution at a sufficiently large distance from the crack tip; finally, 

the non-linear strain-displacement relations are integrated to 

determine the displacements. 



III. SOLUTION TO THE PROBLEM 

The governing equation for the stress function will now be 

solved for various ellipses with small root radii approaching that of 

a deformed crack in an infinite plate. In order for the nonlinear 

quasi-elliptic equation to be solved it will be first reduced to 

linear form by a Newtonian method; the coefficients of this linearized 

equation, however, will depend upon the stress function itself. There- 

fore, the equation must be solved repeatedly, updating these coef- 

ficients each time, until the solution changes within some acceptably 

small amount. Since the convergence of the equation is questionable 

and because of the lack of experimental evidence, two general solution 

methods and one limit analysis will be presented. The first method to 

be discussed is a finite-difference analysis; the second is an inter- 

nal collocation analysis based upon a truncated infinite orthogonal 

series which satisfies the boundary conditions exactly; and finally, 

the limit analysis which is based upon the integration of the strain- 

displacement relations. 

A. Linearization of the Governing Equation 

The one equation for the stress function (2.12) may be 

represented as 

0 = AV4<j> + A-|F] + A2F2 + A3F3 (3.1) 

16 
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where       A = 1 + 2A] (<J>,^ + <fr,nn) + AU*^*^ - .<|>,*n 

+ A2U,^ + <0,nri)
2] 

A| = 1  + 2(A3*,5C + A4*fmi)     ;    A2 = 1  +-2(A3*,nT) + A^)   ; 

Bl      2 B2 2     ^3 
A'3 = 2**5n    ;      Fl  BB^*,555+i;*,«nn.+B0*»«5*i5nn 

+ VBo *>nnn 
+ B5/B0 »>5?T1 

+ B6/B0 ♦ •«„♦w 

F2 = BT/B0 ^nnn + B2/B0 ^Kn + B3/B0 <j»Kn<h nnn 

+ B4/B0 *^K + B5/B0 ^ + B6/B0 ♦,555*,Cnn; 

F3 = ^/BQ*,^*,^ + C2/B04>,^?<|>, 
nnn 

+ Ca/Bof*.^*.,^ + WW 

Expanding A in a Taylor series about some initial  value of $„, <J>    , 

and ^n yields 

A = A0 + «A0(*,K - *,^0) + 5nAo(*.5n " <J)'do) 

+ ™An(<h       -4,    I  )  + 0(62) 

where     represents the initial value 

and 6 =  («f,,^ - 4,^) or (4,Cn - 4,^) or U,^ - 4,J0) 

8A 
with ??A = jf— = 2A1  + 4(*.      + 2A2U,?? + 4,^)) 

'5? 

?nA 
3A 

3+, 5n ^ 

9A 
nnA = ^;=2A1  + 4(*'« + 2A2(*'« + Nn» 
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In like manner linearizing F-|, F^, and F3 and substituting these into 

(3.1) yields 

4 

V4* + lßo*-55? + V*55T, + V»5T,n+ V' nnn 

+ V« + V*. + Vnn = 8ß (3'2) 

where       °g = A; ^6 = 55SA1 + ^^2
ä2 + ^F3A3 

2ß = ttr,^- + ??nF2Ä2 + ^F3A3; 33 = Enn^. + Cnnp^ 

+ CTinF3A3; 
4ß = m\^ + nTiriF2A2 + nT1T1F3A3; 

5ß = C^  + 5€A2p2 + ^AV^; 6
3 = 5nA3F3.+ ^AV4*; 

7ß = ^V-,  + nnA2F2 + nnAvV, 8ß = -(A^  + A2F2 + A3F3)0 

+ ] V'5«b + V'«no + V'Snno + V'nnno 

7, 
of ??o o^'Cno o >~„«» nno 

(A complete listing of the quantities i^klFm, etc., and the necessary 

physical covariant derivatives are listed in the Appendix.) 

B. Finite-Difference Method 

The governing equation, having now been reduced to a tractable 

linear form, can now be solved by finite differences. Near the boundary 

of the nonlinear region (the boundary comprising the inner stress-free 

border at 50 or the linear-nonlinear interface) the finite difference 

scheme, written at point 2 as shown in Figure 3.1a, becomes 



d4* 

dx4 
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(-113(1)]  - 60Ax°|-)-,  + 192*2 " 108*3 + 32H " %) + 0(Ax ) 

12AX4 

4, (8*| + 6Axgf)1  - 9(f>2 + <j>4) + 0(Ax2) d^* 

dx3 

d2< 
dx2 

d*_ 
dx 

3AX3 

(*3 - 2*2 - *]) + 0(Ax2) 

AX
2 

(3.3) 

-^W, 

d*, 
Note that because of the boundary conditions both *-j and ^) are 

known. 

In the region removed from the boundary by at least two steps 

the finite-difference scheme written about point 3, as shown in 

Figure 3.1b, becomes 

d4* 
dx4" 

d3* 

- U5 - 4*4 + 6*3 - 4*2 + ♦]) + 0(&x2) 

3 Ax4 

dxc 

d2* 

= (*5-2*4^2*2-*l)+o(Ax2) 

(3.4) 

2AX3 

dx2 
= (*4 - 2*3 -*l)+ 0^2) 

3      Ax 
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dx -*2)-iO(Ax2) 
2AX 

Various two-dimensional combinations of the two above mentioned 

schemes are used depending upon the placement of the grid point (at 

which the governing equation is being solved) in relation to the 

boundaries.    Two specific cases of those possible will be discussed 

here:    first, the scheme used when no boundaries are near; and second, 

the scheme used when two boundaries are near.    In the first case as 

shown in Figure 3.2a the equation will  be solved at point 13 with the 

resulting expressions for the partial derivatives: 

ax 
=  ^15 " 4*14 + 6^3 " 4(h2 + «Ml) + 0(62) 

13 
AX^ 

jit 
9x29y2 

- ^19 " 2(h8 + ^17 

13 

+ 0(<52) 

2<(>14 + H-\3 - 2*12 + <J>9 " 2*8 + +7) 

Ax^Äy2 

^ 
9y- 

(^23 - 4<h8 + ^13 " 4(i>8 * *3) + 0^2) 

13 
Ay 

93<f> 
3 

9x°j 
=  ^15 " 2(h4 + 2(h2 " *n) + 0(fi2j 

13 2Axv 

93c[> 
2 

9x 9y 
=  (^19 - 2<h8 + *17 " ^9 + 2tj)8 ~ ^ + 0/62j 

13 
2AX Ay 



21 

93j, 1      =  (4>19 - <t>17i- ^14 + 2(h2 + *9 - ^ + 0(62) 

13 2AxAy2 3x3V2j 

(3.5) 

3y3J 13 

U23 - 2^8 + 2<j>8 - »3) + 0^2j 

2Ay3 

3x'' 13 

(■»14 - 2>13 + ^ 4. o(62) 
AX2 

3x3y 
13 

4AxAy K    ' 

2 1 
3   <j> 

3y2J 13 

(j>18 - 2<j>13 + <j>8) +        2 

Ay2 

3X 
(*14 " ^12) 

2Ax 
+ 0(62) 

13 

3y 
= i*18JL*8') x n#*2 

13 
2Ay 

+ 0(5^)    where 6 is either AX or Ay. 

For the second case when two boundaries are present as shown in Figure 

3.2b, the governing equation will be solved at point 9 with the follow- 

ing expressions for the partial derivatives resulting: 

3X 

(-113*10 + 60Ax|i)1(J + 192+g - 108<|>8 + 32*7- 3<(>6) ? 

12AX* 
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3% 

3x2ay2
/ 

(<f>15 - 2<j)-|4 + 4>-|3 - 2IJ>IQ + 4<J)g - 2(|)g + <j>g - 2<J>^ + fy^) 

2    2 
AX Ayc 

_3%_ 

sy4j 

+ 0'(fi2) 

(-3(^24 + 32<j)i9 J4A 108^)14 + 192<j>9 - 60Ay3J-)4 - 1134»4)[        2 

12Ayfl 0(6') 

3 

3X3 

=  (-8»10 + 6Ax|i)1Q + 9^ - <fr7) + o(fi2j 

3AX3 

3x23y, 

33(j) 

3x3y2 

(<j>15 - 2^4 + <fr13 - (»5 + 2(j)4 - $3) +        2j 

2Ax2Ay 

(4>15 - <j>l3 -  2<fr10 + 2<|>8 + 4)5 - »3) +        2j 

2AxAy2 

(3.6) 

3y3, 3Ay3 

3x' 

a  (<ho - 2j>9 + *8) + 0(g2) 

AX2 

32(j) 
3xsy 

Ul5 " <h3 " ^5 + ^3) +    (s2s 
4AxAy {    } 

0 

3y2 

(<f,14   ~   2<j>g  + 
+  0(62) 

Ay' 
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2± 
3X 

(^0 " *8> + 0(62) 
2AX 

It] = (^"*4)+0(g2) 
9y 2Ay 

9 

(Note that the values of ^5'  *20» ■ *15» *10' *5' *4' *3' <f,2' *h ' 3x 
10 

A  M and ^J- are all known and treated as boundary conditions.) 
4 

Using equations (3.5) or (3.6) or an anologue of them, all of 

the partial derivatives necessary in the evaluation of the needed 

physical covariant derivatives in the governing equation (3.2) can be 

obtained. The region of interest should be divided up evenly in the 

parabolic coordinates £ and n to give the necessary grid pattern as 

shown in Figure 3.3. Then at each grid point interior to the boundary 

a linear equation involving a bandwidth of 3N + 1 (where N is the 

number of grid points in the n direction) is generated. This resulting 

linear system of equations may be solved simultaneously by any direct 

method, e.g. Gaussian elimination: 

[A]<f> = B (3.7) 

where [A] is a banded coefficient matrix depending upon the distri- 

bution; $ is the independent variable evaluated at each grid point; 

B is a vector of constants composed of °ß in equation (3.2) and the 

boundary conditions. Since the coefficient matrix and the right-hand- 
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side vector both depend upon the <f> distribution, the solution must be 

iterated until the change is acceptably small. 

C. Internal Collocation Method 

The second method pursued involves selecting a series of 

orthogonal polynomials which satisfy the boundary conditions exactly. 

One such representation is the familiar double Fourier series: 

MM ? TT(F      F \ 
<fr = <h- +   z      E    Cm„ {1  - cos  pip u " ^°\)} {1 

9l""»r     m=i n=l    mn ^max '*<>)' 

+ cosl^^)} (3.8) 
^max 

Note that this double series satisfies the symmetry condition at n = 0, 

the boundary conditions at E, =  £0, the matching conditions at 

5 = 5maX5 and the matching conditions at n = nmax- There are MxN 

unknown constants in this double series; these may be determined by 

solving the governing equation (3.2) at MxN discrete points in the 

region of interest by iteration. Figure 3.3 shows how the region is 

to be divided up evenly (equal divisions are not necessary; however, 

convergence of the method were helped by this). The resulting system 

of linear equations may be solved by direct methods: 

[A]Cmn = B (3.9) 

where A is a full MxN by MxN coefficient matrix depending upon the Cmn 

distribution; Cmn are the coefficients in equation (3.8); and B is the 
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vector of constants depending on Cmn in the previous iteration. 

The advantage of this method lies in its simplicity of formu- 

lation and in its satisfaction of the boundary conditions exactly. 

However, due to the ripples inherent in any Fourier representation, 

the method became unstable for large values of N! and N. Also, since 

the coefficient matrix [A] in equation (3.9) is completely full, the 

solution time and core size became large for even moderate numbers of 

terms. The finite-difference formulation is complex because of the 

many types of grids possible; however, the method is stable and the 

coefficient matrix [A] in equation (3.7) is sparse and can be solved by 

banded Gaussian methods with a considerable savings in computing time 

on a digital computer. 

D. Integration of the Strain-Displacement Relations 
and Limit Analysis 

Whichever method is used to determine the stress function and 

subsequently the covariant strains e-jj, these strains will be inte- 

grated through the complete strain-displacement equations (2.8) to 
i 

determine the displacements. Writing equation (2.8) in terms of the 

parabolic coordinates yields 

2     2 
2e?£ = 2w?,? - w?,?/g - w^/g (3.9a) 

2eSn = Vn + V? ^ V?Vn/g ~ VnV?/g (3'9b) 

%n = 2Vn - Vn2/9 - V A ' (3'9c) 

(The     notation has been dropped for simplicity.) 
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These equations (3.9) will be finite-differenced to yield a system of 

first order nonlinear differential equations which must be solved 

simultaneously through iteration. The finite difference scheme to be 

used here is shown in Figure 3.4 and the resulting partial derivatives 

solved at point 3 are 

Sru 
9X 

9U 
9y 

3 

(ui - 4uo + 3uo)   , ?> -J g2_^_3_ + O(AX2) 

(-u5 + 4u4 - 3u3)     2 

2Ay — +  °^ > 

Since there are only two unknowns (w, and w ) to be determined, only 

two of the three equations (3.9) are necessary in the procedure. 

Equations (3.9a) and (3.9c) are chosen because of their superior 

stability in the iterative calculations. Solving (3.9a) for w 
S'5 

and  (3.9c) for w       yields 
n'n - 

we,5 
s 9 (1  ± /]  _ Wn25/g2 _ 2HK/g  ) 

VT, = 90i V-w52n/g2-.2enn/g  )' 

The lower sign will  be chosen because the expression would then reduce 

to the linear result for small  strains and displacements; hence, the 

above result would become 



w  /q = n>n/y 

Introduction of a 

inq expressions: 

"e.5 = (' 

Vn = (1 

(The necessary phys 

in the Appendix.) 

After substiti 

the linpan*7pd pxnvf 
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/es the 

w are 
n 

(3.10) 

c f-3 11 

follow- 

(3.11a) 

(3.11b) 

found 

into 

to represent 

/92 - 2^/g ). 

a physical quantity gi^ 

- 'l - w 2 2hz ] 

- V\  -  w / - 2enn ) 

ical covariant derivatives of w and 

jting the finite difference equations 

K^innc ■fnr w    anrl w    in am rat inn 

actual numerical procedure to find the displacements would then begin. 

Referring to Figure 3.3, the integration procedure would begin one 

step from £max (5 = ?max - AS) and at n = 0. Since at this grid point 

w^ = 0 equals zero and w_ ' = 0 equals zero from symmetry conditions, 

equation (3.11a) becomes uncoupled and can be solved for w£ directly 

without iteration, jNext the procedure steps in the positive ^-direction 

solving equations (3.11a) and (3.11b) simultaneously for w and w 

through iteration at each grid point until nmax is reached. Then 

another step is taken toward £0 (snew = £0-|d - A?) and the procedure 

is repeated. This stepping in both the negative 5 and the positive 

n-directions is carried out until w? and w have been determined in 

the entire region. 

The limit analysis consists of examining the existence of w 

in equation (3.11b) at the ellipse tip along the line of symmetry. 
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~ 2   ~ 
The discriminant of this equation is 1 - w>.  - 2^. Noting that 

w_  is equal to zero along the line of symmetry reduces the expression 

to 1 - 2e . From equation (2.4) enT1 can be written in terms of the 

stresses: 

Along the ellipse a££. equals zero, so that e  - (1 - v) a    . 

Inserting this result into the expression for the discriminant above 

yields 

discriminant = 1 - 2(1 - v) am. 

For w  to be real in equation (3.11b) the discriminant must be 

greater than or equal to zero: 

0 < 1 - 2 (1 - v) ann  at ? = 50» n = 0; 

or alternately (3.12) 

nn - 2(1 - v) u 

To understand the result expressed in equation (3.12) more fully 

it is necessary to study the unstrained metric tensor h-jj from 

equation (2.2b): 

hij = 9 
(1 - 2e«)    -2 

The determinant of this matrix may be written 
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|h| = g2((l - 2SK) (1 - 2lm)  - 4i?n
2}; 

along the line of symmetry this expression may be simplified to 

|h| = g2{(l - 2lKK)  (1 - 2lm)} (3.13) 

If the determinant |h| is zero, this situation is equivalent to a 

mapping which takes a region in the deformed geometry and transforms 

it into a point in the initial geometry, i.e. an ellipse maps into a 

crack (a degenerate ellipse). At the ellipse tip o^  becomes zero so 

that equation (2.4) would give the strains: 

substituting this result into (3.13) and equating this result to zero 

gi ves 

0 = (1 + va^)   (1 - 2(1 - v)om)   . 

Because the plate is under uniform tension it is unlikely that ann 

would ever be negative, the above equation becomes 

o MI - 2(i - v)~om) or ann = 2rnbr • {3J4) 

Comparing the results of (3.14) and (3.12) it is evident that a value 

of ö  higher than y(i      v)  
1S impossible because the ellipse would map 

past a crack. Therefore the maximum stress possible at the tip of an 

ellipse is amax = jTTZ—T' wnicn only occurs if the initial geometry 

is a crack of zero root radius. 



IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS 

The physical stresses and strains in the field surrounding the 

tip will now be presented for small ellipses with Poisson's ratio 

equal to one-half; the contravariant displacements in the tip region 

will also be discussed. Finally, the results for these small ellipses 

will be extrapolated to determine the stress field around the deformed 

tip of a crack of zero initial root radius. 

Throughout the following discussion reference will be made to 

the terms 'physical' and 'dimensional'. A 'physical dimensional' 

stress will be a stress as measured experimentally and will be denoted 
* *  -~_ * _ 

ö-jj. A 'physical nondimensional' stress can be found: a-jj = o-jj/a, 

where ä is the remote 'physical dimensional' stress. A covariant 

stress a-jj may be written as a^  = ^^(C2 + n2). Finally the scaled 

inner variables, e.g. °ij, will not have the star superscripts (*) 
* 

whereas the outer variables will have them, e.g. °-JJ: 

aij = eaij* ; eij = eiJ* ; w = e ; p %2 

x*    y_j?L        o 
x = -=■ ; y = 2 ; where e = f C + v)' 

s2 

A. Discussion of the Results 

The selected root radii of the ellipses in the deformed state 

range from p = 1 to 9 which corresponds to a K0  of 1 to 3. The minimum 

30 
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root radius (p = 1) is that of a deformed crack as predicted by 

Inglis [29]. The physical normal stress a^  distribution along the 

line of symmetry in front of the tip for £0 = 1.0, 1.3, 1.7, and 2.5 

is shown in Figures 4.1a, 4.2a, 4.3a, 4.4a.* The linear curve referred 

to here and afterwards concerns the analysis of Inglis. The physical 

normal stress a     distribution along the ellipse border for £0 
= l-®> 

1.3, 1.7 and 2.5 is shown in Figures 4.1b, 4.2b, 4.3b and 4.4b. 

Examination of Figures 4.1a and 4.1b show the relative merit of the 

finite difference as opposed to the collocation methods for solving 

the nonlinear governing equation. As mentioned previously in Chapter 

III, for a small number of terms the collocation approach gave fair 

results; however, for larger numbers of terms the approach became un- 

stable. Therefore the finite difference approach is viewed as being 

more accurate although they both give qualitatively the same results. 

Referring to Figure 4.1a with E,0  = 1.0, the linear solution falls 

monotonically from 2.0 at the tip of the deformed ellipse. The non- 

linear (finite difference) curve rises from very  close to 1.0 to a 

maximum of 1.24 andithen falls, approaching the linear curve from the 

top. The maximum error then is 50% and this occurs at £0. The limit 

analysis predicts that the value of a     at the ellipse tip should be 

less than or equal to 1.0 and this agrees with the nonlinear results 

to within VL    Referring to Figure 4.1b with £0 = 1, both the linear 

and the nonlinear curves fall monotonically with the linear curve being 

always above. 

*In all of Figures 4, points where inner and outer solutions 
were matched fell well outside regions shown. 
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The physical normal stress o„ distribution along the line of 

symmetry in front of the tip for £0 = 1.0, 1.3, 1.7 and 2.5 is shown 

in Figures 4.1c, 4.2c, 4.3c and 4.4c. The disparity between the linear 

and the nonlinear analysis for the physical normal stress a     with 

£0 = 1.0 along the line of symmetry can be seen in Figure 4.1c. The 

maximum difference between the two distributions is 0.05 and is not 

significant; although, the disparity represents a large percentage 

because of the small magnitude of the stress. 

In linear fracture mechanics the single parameter of interest 

is the stress intensity factor K which defines the field strength of 

the singular behavior. For a crack, as shown in Figure 2.2, K as 

defined by Sneddon and Lowengrub T31] is linr2x* a    (x,0). The linear 
X-K)_ 

solution with 5o = 0 would then give KTH as a^c  • Defining an 

(AP 

KAP 

'apparent" stress intensity factor as KAP = '2x* o  » then one obtains 

K   /2x am.    Hence, in Figures 4.Id, 4.2d, 4.3d and 4.4d for 

C0 = 1.0, 1.3, 1.7 and 2.5 the apparent stress intensity factor K/\p 

is shown, with the 'singular' curve representing the linear solution 

to the undeformed crack geometry U0 
= 0). The error involved in the 

calculation of stress intensity factors for £0 = 1 is shown in Figure 

4.1d. The nonlinear curve represents the K/\p that would be calculated 

from data taken from an actual experiment. If the data were taken out- 

side of x = 16, there would be only an error of 2%.    However, the error 

would rise to +20% and then drop to -100% as x decreases to zero. The 

linear analysis predicts that the error would rise to +10% before 
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dropping to -100%. These results are consistent with recent experi- 

mental findings [10], [14], [18]. 

The physical maximum in-plane shear stress (the primary quantity 

used in photoelastic experiments) xmax along a line originating at 

the tip, perpendicular to the line of symmetry, for X0 =  1-0, 1.3, 

1.7 and 2.5 is shown in Figures 4.1e, 4.2e, 4.3e and 4.4e. The dif- 

ference between the nonlinear and the linear formulations with K0 =  1 

for xmax is shown in Figure 4.1e. The maximum difference between the 

linear and the nonlinear is +50% and occurs at the tip. Therefore, 

the linear approach represents the xrnax distribution well until 

y < l~p; i.e. inside of one root radius it is necessary to go to the 

nonlinear representation. 

After integrating the strain displacement equations (3.9) for 

the covariant displacements (w^,wn) the contravariant counterparts can 

then be determined: 

WF wn 

U2 + n2)        U2  + r)2) 

These displacements can then be used to find the initial geometry: 

initial = 5final " wC (4"1a) 

initial = ''final " ^ • (4'lb> 

The contravariant displacement w? distribution along the line of sym- 

metry for K0 =  1.0, 1.3, 1.7 and 2.5 is shown in Figures 4.If, 4.2f, 

4.3f and 4.4f. The difference between the linear and the nonlinear 

curves for £0 
= 1 is shown in Figure 4.If. The error is within 3% 
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until very close to the tip: here the error rises to 8%.    The linear 

displacements would map this ellipse exactly into a crack; and there- 

fore, the small difference between the displacement curves indicates 

that the nonlinear analysis of an ellipse of ?0 = 1 would closely 

resemble that of a crack (in the initial geometry), except near the 

tip itself. 

Figure 4.5 shows the variation of the physical normal stress 

a     distribution along the line of symmetry for the range of final, 

deformed root radii p = l->9. From this figure it can be seen that 

the maximum value of the physical normal stress o^  occurs at the 

ellipse tip U  = Co) for S0 L
1-7'» however, for Co < 1-7 the maximum 

occurs at some distance U  > 50) in front of the tip. This phenomenon 

suggests two different types of crack growth: 1) if the root radius 

of the notch is above some critical level, the flaw will extend from 

the edge of the blunted notch as reported by Schijve and Jacobs [32]; 

2) if the root radius of the notch is below some critical level, the 

flaw will extend by the creation of crack segments ahead of the sharp 

notch as cited by Yokobori [33]. 

The distribution of the physical normal strain enn along the 

line of symmetry in front of the tip for the range of final root radii 

p = 1+9 is shown in Figure 4.6. The limit analysis showed that a 

physical strain l^  value of 0.5 was impossible; in fact, this value 

would only be reached near the crack tip. The above figure bears out 

this conclusion in that all of the curves are asymptotic to 0.5 at 

5 = 50. 
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From the contravariant displacements shown in Figures 4.1f 

through 4.4f the initial geometry of the ellipses can be determined 

through equations (4.1). Via this procedure the initial root radii 

of the deformed ellipses are found and they are presented in Figure 4.7. 

The linear analysis as presented in this figure would give an ellipse 

as the initial geometry; however, the nonlinear analysis would not 

and the difference between the two curves represent the amount the 

initial geometry would differ from an ellipse. From the extrapolation 

of this curve it is clear that a crack initially with no load would 

deform into a quasi-elliptical shape with a root radius of (0.92) . 

From the displacements for ?0 = 1.0 it is clear that the crack will 

deform into an ellipse of shape £0 = 1.0 at some distance from the tip. 

It can be stated, therefore, that the behavior in the neighborhood of 

the tip can be well approximated by an ellipse of £0 
= °-92 and that 

away from the tip the behavior can be determined by an ellipse of 

to  = 1.0. 

Using Figures 4.5 and 4.7 the magnitude and the location of the 

maximum normal stress 5    can be plotted with respect to the initial nT1max 
root radius as is shown in Figures 4.8 and 4.9, respectively. Ex- 

trapolating the curve on Figure 4.8 the maximum normal stress anri 

becomes 1.3, approximately; and referring to Figure 4.9 the location 

of the maximum stress becomes x/p = 0.33, so that x = 0.33(0.92)2 = 

0.28. It could be conjectured that the shift of the maximum stress in 

front of the tip could be as a result of the additional constraint 

in the interior of the body. 
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The near field zone of the present model extends to 0(e) from the 

crack tip as contrasted with 0(e) in the Rice-Rosengren [21] and Hutch- 

inson [22] models, and therefore is a very  near field solution. The 

model reveals that the strains are limited as shown in Figure 4.6; 

physically this means that, upon application of small remote stresses, 

the portion of the crack surfaces nearest the tip each undergo a rota- 

tion of 90° in opposite directions in creating the notch tip. This 

produces stresses of the order of Young's modulus at the notch tip (Fig. 4.5) 

as in [25][26] but these local stresses are independent of the applied 

remote stress. Increasing the remote stress simply enlarges the root 

radius, and with it the size of the zone affected by the finite defor- 

mations. These features (i.e. stresses of the order of the modulus 

and independence of the near field stress from the remote loads) are 

also found in the "cohesive" stress field of the Barenblatt model [34]. 

Moreover, the "hump" in the a     stress distribution shown in Figure 

4.5for small root radii produces qualitatively the same sort of 

stress distribution very  near the notch tip as Neuber obtained with 

his "limiting particle size" theory for pointed notches [35]. 

For stress freezing photoelastic materials above critical tem- 

perature, the maximum stress is expected to be one order of magnitude 

below Young's modulus and this adjustment might possibly be incor- 

porated into the present model by introducing non-linear constitutive 

relations. This change would also be expected to enlarge the size of 

the affected zone (currently of the order of one root radius) to 

perhaps several root radii. 
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B. Conclusions 

A finite deformation analysis of the near field surrounding the 

tip of small crack-like ellipses was performed in the deformed geometry 

using the complete compatibility equations and linear constitutive 

relations. 

The effects of finite strains and rotations in the tip region 

of a deformed crack were found 

(1) to reduce a    9  xm,Y and enn at the tip by 50%; 

(2) to move am       0.33 root radii away from the tip (%nmax 
'max 

1.3) 
2 

(3) to reduce pfjnai to (0.92) ; 

(4) to change a^ insignificantly. 

These contributions are all extremely local and are concentrated within 

a few root radii of the tip and would not normally be measurable in 

a photoelastic experiment; however, the effects of crack tip 

blunting are more general and spread back to ten or more root radii. 

For initial geometries with blunted tips, the regions of influence 

cited above are generally the same (in terms of root radii) although 

the magnitudes of the above effects are less. The above results 

suggest that blunt notches propagate from the notch tip; however, 

sharp notches extend from the formation and subsequent growth of 

small cracks in front of the notch. 

The features of the present model are believed to be qualitatively 

appropriate to behavior of photoelastic materials above critical tempera- 

ture. Studies are currently underway for the inclusion of non-linear con- 

stitutive relations in order to improve its quantitative predictions and 

hopefully shed new light on the large strain region very  near the crack tip. 
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APPENDIX A 

The coefficients 1J Fm as they appear in equation (3.2) are 

5CA = 2A1  + 4(<f>,nn + 2A2  (<J>,^ + +,nn));  
CnA = -8<f.,Cn 

™A = 2A1  + 4(<|.,KK + 2A2  (+,e5 + +,nn));  ^A-,  = 2A3 

T1T1A1  = 2A4; 
55A•= 2A4; 

nnA = 2A3; ^A = 2; 

«5Fl = ZB^Bo ^ + B3/B0 ♦,5nn; «nFl = 2B5/B0 ^ + B6/B0 0-,^ 

5nnFl = 2B2/B0 ^ + B3/B0 *,^; nnnFl = 2B4/B0 ^ + B6/B0 ^ 

«eF2 = 2B4/B0 ^ + B6/B0 4,,^; 5^F2 = 2B2/B0 ^^ + B3/B0 ^ 

^F2 = 2B5/B0 <f>9Cnn + B6/B0 *,K5; 
nnriF2 = 2B1/B0 ^ + B3/BQ ^ 

^F3 = C2/B0 ^ + C3/B0 *,^i «*F3 * C1/B0 ^ + C3/B0 «^ 

«W3 = CT/BO 4,,^ + C3/Bo.t,nnn; ™F3 = C2/B0 *,^c + C3/B0 4>^nn  • 

The physical  covariant derivatives of <f> in the parabolic co- 

ordinate system with h2 = g = £2 + n    arr? 

v * "  (IF   29C2^" + 9# ~4<f 3"P" "4g 3^ 

_4I jr|*    _4H Ä + i 1% + £ l£i)/g2 
g  9£3r^       g  9rid       g  85"       g  3i/ 

_ Ä _3i 3?i + .33. l!i_ + 3U
2 - n2) ii _6 a 3*)/h3 

C55      v953     g H2       g 9?9n g2       95       9    8ri ♦.«r " L,3  Jg 3?2   
3
g a?9n   

3    g2    ..    n2 

, = (_»k. -2IL 1% -3i ail. + n/g.l!t + .g^ Ü 
Y  CCn a^2sn       g   3^2       g   3£3n 3n

2 9Z   9? 

41 



42 

+ 3Üi-£l it)/h3 

,3.       , .2 

'5nn 
i 934> + 5 afi. _3IL a <fr   -2IO. -3^   " n ) Ü 
358n2    g 952     g 959n      g 9n2 g2       9? 

g^ 9n 

<b nnn 
/93<j) +3i 92<j>     _3]1 9^1 _5£n   31 ^t  -  Ti   )   9j>.)/h3 

8n3  g 959n  g 9n2  g2 9?    g2  9n 

= (!fi_£i?±+!L!i,/g 
'55 52 g 9? g 9n; 

*        =  (111.. aM. Ilt)/q 
''Sn      v3c3n     g 95     g 9n;/y 

,,      = (9fi+I M.. n 9i)/g . 
■    ™        9n2      g 95      g 9n 

The physical  covariant derivatives of w? and wn as they appear 

in equations  (3.11) and (3.9) are 

Wr   >-  ~   ( 

3W, 
w, 

5>5     v95      g   5     g   TI 
wj/g 

w 5,n =  ( 
9W£ 
9^T 

9Wr 

V5 = {W 

n 
- Wr 
g  c 

g   * 

wn)/g 

?wn)/g 

w 
n»n 

,9wn      5 
(—- + - Wr V9ri g     ^ 

wn)/g 
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(ds) = g..dx*dx,/   for the deformed   geometry 
V 

2 ' 
(ds) sh/.dx'dx"7   for the undeformed   geometry 

Figure 2.1    Coordinate System 
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for the elliptical coordinates 

x = cosh £    cosh 17 ,    y= sinh£   siring 

a   - a.s cos 
»9 3       *l   '22       'II 

h 2g -cos 2i),   9|2
S92|

S° 

Figure 2.2    Problem Geometry 
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for the parabolic  coordinates 

*rr ?? 

Figure 2.3 Inner Region Geometry 
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