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I. INTRODUCTION AND REVIEW OF THE LITERATURE

Although the use of photoelasticity in obtaining stress intensity
factors was noted by Irwin [1] in the early 1950's, broad implementa-
tion of the method was slow to develop. The reason for this is
believed due to the problems involved in extracting accurately the
stress intensity factor (SIF) from photoelastic data. Several dif-
ferent approaches have been cited for achieving this purpose for two
dimensional geometries: one developed by Marloff and his associates
[2] in 1970; one recommended by Irwin (above) and applied by Smith and
Smith [3-5]; and those developed by Kobayashi and his associates [6-9].

An attempt to quantify the errors involved in the determination
of the SIF in two dimensions through photoelasticity has been pre-
sented by Schroedl, McGowan and Smith [10]. In this study strong
emphasis was put on taking photoelastic data in a region where Irwin'é
two degree of freedom system would apply (referred to as a 'singular’
zone). Outside of this zone effects of free surfaces other than the
crack surface may dominate. A Taylor Series expansion approach (TSCM)
was developed in [10] to account for these ‘outer' effects. Inside of
this 'singular' zone crack tip blunting, finite rotations and finite
strains dominate the desired crack behavior. In [10] the crack tip
blunting is treated superficially and the last two effects are not
included. Near the tip of the deformed crack these effects are very

significant and cannot be neglected.




In many materials tensorial nonlinearities, as discussed by
Ronay and Freudenthal [11] and Poynting [12], play a large role when
strains are high. However, the materials used in stress-freezing
photoelasticity (Hysol's CP-4290 and Photolastic's PLM-4B-and PSM-8,
for example) do not exhibit any stress-strain nonlinearities, even at
high stress levels, as reported by Fessler and Mansell [13] for
Araldite. These tensorial effects are, therefore, neglected.

Determination of values of the SIF in three dimensional
problems is discussed by Smith [14]. Although Kassir and
Sih [15] have shown that locally along an embedded elliptical flaw a
two dimensional representation is still possible, the 'valid data' zone
may become so constricted that the 'inner' and 'outer' effects must be
dealt with. Smith et al [16-19] have developed the TSCM approach for
various geometries, effectively handling the ‘outer' problem. It
therefore becomes increasingly important to find a method for accounting
for not only blunting but also finite rotations and finite strains in
the tip region, the fracture aspects of which are described in [20].
| Several ap;foaches have-been dsed for deaiing with the non;1ineér
effects in the 'inner' zone. Perhaps the best known of these is exempl-
fied in the solutions of Rice and Roseng¥en [21] and Hutchinson [22].
These solutions imposed §ma11 strain restrictions on an elasto-plastic
solution using a detormation type plasticity theory with power law
constitutive relations. From the form of the linear solution a class

of functions was selected to represent the stresses and strains near




the crack tip in an asymptotic sense. The solution was reduced to an
eigenvalue problem which was solved numerically and the subsequent sin-
gularity was evaluated through use of the J integral. Ref [21] was
carried out for plane strain and Ref [22] to plane stress.

A second approach due to Knowles and Sternberg [23], [24] concerns
the same crack and loading geometry as above; however, this latter
plane strain treatment includes the effects of finite geometry change
and finite strains. A non-linear constitutive law is postulated for
large detormations using a four parameter represehtation of the strain
energy density in terms of the strain invariants. Again the asymptotic
form of the displacements is deduced from the linear problem and the
investigation reduced to an eigenvalue problem. The solution contains
two arbitrary constants, one of which is obtained through a conservation
law. This approach was then extended to clarify and improve the lowest
order asymptotic solution.

Prior to either of the above approaches 0. L. Bowie [25] studied
the effect of the small geometry change assumption on the near field of
an elliptical hole using classical theory. He found stresses of the
order of Young's Modulus and strains of order unity at the notch tip.
More recently, Mansfield [26] employed a procedure involving an incre-
mentalized classical theory of plane strain in order to estimate stresses
near the tip of a deformed crack which he took to be elliptical in shape.
His stress increments were computed from the deformed geometry and also
indicated that stresses at the crack tip were at the order of Young's

Modulus. Although neither of these two studies utilize large strain




definitions, they do concern the very near field behavior as will the
model described in the sequel.

The present study will focus on the behavior of small crack-
like ellipses (the size of these ellipses will be the same as a de-
formed crack) in an infinite plate in biaxial tension. This investi-
gation seeks to give a complete treatment of the results of crack-tip
blunting, finite rotations and finite strains while still using
linearly elastic constitutive relations. The problem will be studied
in the deformed geometry to simplify the boundary conditions and
overall approach.

In the first step of the investigation a generalized 'Airy-type’
stress function is introduced through the linear constitutive equations
to arrive at the governing equation. Next a perturbation analysis is
performed to characterize the form of the equations in the 'inner'
nonlinear region, and to determine the matching conditions of the non-
linear to the linear solution at some acceptably far distance from the
ellipse tip. The nonlinear compatibility equation is then solved in
the tip region through use of finite differences and collocation.
Finally the complete strain-displacement relations are integrated to
determine the initial geometry. The stress and strain distributions
of an initial crack will then be ascertained as a limit to the small

ellipses analyzed.




II. FORMULATION OF THE PROBLEM

The characterization of small crack-like ellipses in an infinite
plate under biaxial tension, including the effects of blunting, finite
rotations and finite displacements will now be presented. First the
governing equation applicable to the problem will be derived and the
tensorial notation will be introduced. Finally the perturbation con-
siderations‘wi11 be discussed, separating the inner from the outer
regions (i.e., nonlinear from linear); and the resulting solution
procedure will be outlined, setting the stage for the actual solution

method.
A. Notation and Formulae

The generalized curvilinear orthogonal coordinate system used
in this study is shown in Figure 2.1, and the compatibility equation

as given by Sokolnikoff [27] is

0B -
skt F U kg 5107 516 Sika) T 0 (2.1)
where
i3k1 T £51,ik T Sik,31 T Sjk,i1 T Fil,ik
“ijk T Cik,d T Ski,i T fij.k
and EaB is the contravariant metric tensor of the undéformed geometry.




Note that throughout this treatment the comma represents the covariant

derivative with respect to the deformed coordinates.

The undeformed covariant metric tenéor, haB, as given by [27]

may be written

hij = gij - 2eij s v(2.2a)
" @y - 2597) 5
- 917 - 2e1 -2e
1j = _ _ ]2“_ > . (2.2b)
~2e9 (95, - 2ep,)

so therefore .
1 j(922 - 2epp) 2¢19 } (2.2¢)

Eﬁj - _ _ _ I s
Iv I l 2812 (9-” - 2511)

with
o — — - = - - _ 2
Bl = 955917 = 209q755p = 2990007 * 4epp01p = Herz -

The 1linear constitutive relation can be written as:

- _ (0+y) 5 e
Ejk>_ E GJk E gjk ’ (2 3)

wh -5 =gi 5 i,j = 1,2,3

ere o 9 o5 i, ,2,3.
For plane strain E}j =0 if i or j = 3 so that (2.3) becomes
- _(+yv) - vl +v) == '
A R i e (2.9)
i ij - .




The only non-zero, unique compatibility equation is for
ijkl = 2121. Noting this and then introducing (2.2c)Aand (2.4) into

(2.1) and collecting terms results in:

vf] v)

+ _ — — (1 + v)
E ( n,22 " 92,11 2"12,12) VR

(017,22

91 922 12

o, 1 T I 92,22 . 2 91.11) + R Flr th Fyp
s 922 s g]] ’

22 _
+ h F22 =0, (2.5)
with
97 = 42
_ 1 +v2 - vl o }
F]] - ( E )_[‘[(.I + V) 0]],2 = géz 2232

v _ 917 _ _
+ {(1 - v) 11,1 - vEEE-GZZ’]}{(] - v) 991

922 _
- \)_.._—O‘

ay7 11,1~ 12 2H

) _
R — 922 — 2
22 = (=) LT+ v) oy “’g‘ﬁ"n,]}

F

- 911 — —~
+{(1 -v)o - V=73 H(1 -v) o
11,1 22,1 22,1
922

9o -
- v=—>-0 - 20 1],
37 1,1 7 202,2




also

1+ vy2 - U2 — =
("‘ifEJ [2{(1 - v) 022.,1 " v:r~j01],1}{(1 -v) 91,2

911
9y = | _ 992
- y=g F-{(1 -v)o - vV=——"o
app 22,2 22,1 7 Vg, 11
25 HQO - v) m - 25 .}
12,2 V0,2 T Vg, 22,2 7 712,
- {(1 - v) EH1 1 - v_}1 022 ]}{(1 - v) o 092 2
’ 922
9o —
T v=—0y )
M

1 - - q]] —
— {9y - 2 Qrv) g - ) o017 - 022]} ;

[h "9
1 = a_+v) - 92 _
|E1 {922 2 E [ v) 099 véi] 0]]]} s
1 1 +v) —
lﬁ‘l {2 E 0]2} s
—_ - f] + v) — - _
1+ v2— — — c‘22 2
- 2
iy

Introducing now a generalized 'Airy' stress-function as sug-

gested by Adkins, Green and Shield [28]:




5y = Ty G 1 €T 4 (2.6)
where
(1 e s .
;T§T ifi=1,j=2
e = | 7%%T ifi=2,3=1
0 ifi=j

Non-dimensionalizing the following variables:
- _ =2 - _ =2
M=y o 9279 o 5§ T R

%53 = poj; s, ©=pce s, W=cow o,
where C is some characteristic length and p is some characteristic

stress, and also defining a physical derivative:

/~\ i /—"‘,.i h i is not s d
1 = where 1 1 umme
4 gii —_ >

and then finally introducing these substitutions plus (2.6) into (2.5)
leads to the expression:
~ - 2 - . . 2
b Dy (3ayy + 5017)20) Byldagqqy + 2000000 + B0}
2 22 *11 CRRS AR *1122 2222

+ €f] + 2€(A3&9]] + A45922} {B]és]]]2+ 8269]222
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+

~ ~ ~ 2 ~ 2 ~ ~
B3®s171%5122 * Ba®p2 * B5oqqp * Bpa112% 220

2
112

-+

11 + 2e(Agbapy + Agiayy)d {Bdsy, 2+ Bod,

2

+

~ ~ ~ ~ 2 ~ ~
B3®a112%5002 * Ba®o11 * Bglqpp * Bgayy o)

-+

2 ~ ~ ~ ~ ~
€°20,19 102509505075 ¥ (0599725900

+ C3(85199500p + a17725775)] (2.7)
where =B (1T +v), A, = =(1 - 2v), A, = v(1 - v)
E T 2
A3 = -(1 - v), A4 = v, By = (1 - v), By = -v(1 - v)
2 ?
By= (1-v)(2-v),Bg=1-4v+2, B=(1-v)° By=v

Bg = -2v(1 = v), G =5 - 6v, Cp = =(1 - 2), C3 = 2(1 - v) .
The strain-displacement relations as shown by [27] are.

(2.8)

. —> > > >
with g=r-ry , T =Wbh, s
-> . ‘ > >
where bi are the base vectors in the deformed system, and r and r, are
the position vectors in the deformed and undeformed systems, respec-
tively. |
The boundary conditions as applied to the stress-function, &, on

a free surface (e.g., along the crack surface) are given by [28]:
¢,] =0 s @,2 =0. (2.9)

Thus the entire system of equations has been specified for an

arbitrary stress-type problem in terms of orthogonal curvilinear
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coordinates with all derivatives taken in the deformed geometry.
B. Perturbation Analysis

The problem to be considered is shown in Figuré 2.2, and consists
of a small ellipse in an infinite plate with all-around uniform
tension. At some distance from the ellipse tip the stresses are re-
duced to O(E), the strains to 0(c/E), and the displacements to
0(co/E), where ¢ is the remote tension and ¢ is one-hé]f the crack
length. Therefore, the governing equation (2.7) and the strain-dis-
placement relations (2.8) both reduce to the linear forms. Thus, the

solution of Inglis [29] applies

(cosh 2¢ - cosh 2gq)

= sinh 2 |
e nh <t {cosh 2¢ - cos 2n) ’ (2.102)
. (cosh 2& + cosh 2gg - 2 cos 2n) 2 10b
qn = STnh 2¢ (cosh 2¢ - cos 2n) ] (% : )
_ (cosh 2t - cosh 2g,)
O¢n = SINN 20 “TeGsh 28 = cos 2n) ’ (2.10c)

g _ _ {(1 - 2v) cosh 2 - 2(1 - v) cos 2n + cosh 2¢o}
¢ (cosh 2¢ - cos 2n)

,» (2.10d)

w, =0 , (2.10e)

where £ and n are the elliptical coordinates defined by x = (cosh ¢

cos n), y =sinh £ sin n; ¢ = %(] + v), the characteristic length is ¢,

2

the characteristic stress is o, and g,° is the non-dimensional root

radius of the ellipse.
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The root radius of a crack of length 2¢ after_deformation is

1/2

predicted by (2.10d) with £y = 0:w® 0 = 2¢(1 - v). The size of

the ellipses to be investigated here will be of the same order,
i.e. g5 = 0[2¢(1 - v)]. The Tocal geometry surroﬁnding the tip will
then be as shown in Figure 2.3 and the coordinates will locally be -

reduced to parabolic:

2 2 2 . _
- - 2
X = E n Eo . y = gn’ g = gEg = g = E + nz .

The ordering scheme will also change in the neighborhood of the tip:
the stresses are 0(%), the strains are 0(1), and the displacements are
0(1). Therefore, it is necessary to scale the variables so that they

are all 0(1) in this region:

o'ij = O'ije ’ E"J = E_ij s ¢ = <I>e3 .

9
- o .%§
Wi = Wy ’ ggg - gnn - o (2.]])

€

Substituting (2.11) into (2.7) yields

o2
0={1+ ZA] (¢3€€ + ¢;nn) + 4[¢s€g¢snn - ¢a£n

2
+ Ay (¢’££ * bon) 1Y By {0spepp t 2segnn * ¢’nnnn

2 2

* BZ¢’€nn

A1+ 2(R30,p, # Agés, ) {Brosess

2 2
+ +
B5¢’E£n 85¢’E£n¢’nnn}

2

+ B3¢3€€g ¢,£nn + B4¢snnn

2

AU E 2R, 4 Agtsge)) By * Badsgen

2 2 '
* B30spentonngn T Badagey ¥ Bosg, T Bgds 0, )
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+ 2¢’En {C]¢,Enn¢’ggn + C2¢: ¢

ge£® nmn

+ C3(¢3£nn¢9nnn + ¢’E££¢’£En) ’ ' o .(2.]2)>

(The ~ notation has been dropped for simplicity.)
and, the substitution of (2.11) into (2.8) leaves it virtually un-
changed. |

Since the displacements in the tip region are large, the boundary
conditions (i.e., 951 = by = 0) must be applied to the deformed
geometry. As an additional boundary condition the inner solution must
be 'matched' to the outer solution where they intersect. As Van Dyke
[30] expresses, the outer solution (i.e., linear solution in this case)
should be written in terms of the inner variables and then the
perturbation parameter, e, should be made very Sma11,.the inner solu-
tion should then be matched to the result. The inner solution would
then approach, as £ and n get large, these expressions fdr stresé,'

strain and displacement:

A G (2.13a)
m (£2 + n2)
2 .2

T n?)

2 2 : : .
G = EﬁfL___jil_Z (2.13¢c)
88 (g2 + o) ‘

2 2, ,2
i -2 e #2(l-v) n" * g (2.13d)

(£2 + n2)
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w.=0. (2.13e)

As the problem isva quaéi—e]]iptic fourth-order partial dif-
ferential equafion, there must be two boundary conditions at each of
the four edges, as shown in Figure 2.4. At the inner edge of the
ellipse (& :'go) the boundary conditions ére as- discussed above:
$op = 0 and ¢, = 0 or alternately ¢s, = 0 and ¢ = constant (where
¢, indicates the covariant derivative of ¢ in the difection normal
to the ellipse surface). Since the problem is symmetric about the
x-axis the boundary conditions along n = 0 reduces to %%'= 0 and
22%'=,0. Now the matching conditions along n = nmax and £ = g must
be reduced to quasi-boundary conditions._ Stress boundary conditions
at an interface between two materials require that the normal normal
stress and the tangential shear stress be the same on both sides.

Therefore, these conditions shall be adopted at the boundary between

the inner and outer regions (referring to Figure 2.3):

b= ¢ éi=_3i
Tinear * 32  3&yipear » 8t & = Epay
= 9% _ 29 =
¢ = %inear * 3n at n = npay

Minear ,
However, for matching to be complete the inner tangential normal stress
at the interface must also be equal to the outer tangential normal
stress. To insure this, the values of Emax and Nmax will be enlarged
until the matching occurs.

Thus the §o1ution pfocedure can be summarized:as follows: first,

a deformed geometry is chosen; then, the linear outer solution is
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computed; next the non-Tinear solution is determined subject to the
deformed geométry by finite_differences and is matched to the outer
solution at a sufficiently large distance from the crack t{p; finally,
the non-linear strain-displacement relations are integrated to

determine the displacements.




IIT. SOLUTION TO THE PROBLEM

The governing equation for the stress function will now be
solved for various ellipses with small rodt radii approaching that of
a deformed crack in an infinite plate. In order for the nonlinear
“quasi-elliptic equation to be solfved it will be first reduced to
1inéar form by a Newtonian method; the coefficients of this linearized
equation, however, will depend upon tﬁe stress funcfion itself. There-
~ fore, the equation must be solved repeated1y, updating thése coef-
ficients each time, until the solution changes within'some acceptéb]y
small amount.‘ Since the convergence of the equation is questionable
and because of the lack of experimental evidence, two general solution
methods and one Timit analysis wi11 be presented. The first method to
be discussed is a fihite-difference ana]ysis; the second is an inter-
nal collocation analysis based upon a truncated infinite orthogonal
series which satisfies the boundary conditions exactly; and finally,
the limit analysis which is based upon the integration of the strain-

displacement relations.
A. Linearization of the Governing Equation

The one equation for the stress function (2.12) may be

represented as

0 = avty + MFy + 8oF, + a3F3 - (3.7)

16
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_ 2
where A -v] + 2A](¢,Eg + ¢,nn) + 4[¢’€€¢’nn ',¢9£n

+ A2(¢9€E + ¢snn)2]

>
—
|

=1+ 2(Ag05pp + Agos ) 5 8 = 1 % 2(Age, + Agds, )
B] 2 BZ 2 B3

_— 9 + - b
B |TEEE | By |EM

£g

Ny =205 5 Fy = o Preee®renn

2 .
+ Ba/Bo b5+ B5/By dagg ¥ Be/Bo dapg s

Fp = B1/By 85, * BalBy $1g * By/B bagp e

+ Ba/Bo ¢%€€£ + Bs/B, qb2’Enn + Be/Bo ¢;€€E¢’Enn;
Fy - C1/Bo®sgnntagen * C2/Botogee®sy,

¥ C3/B°(¢’Enn¢’nnn breeeboeen) -

Expanding & in a Taylor series about some initial value of bgs ¢€n’

and $1n yields
b= bg ¥ EEA0(¢’554 ’Eé )+ nAO ¢’En ’EJ )
My (b = barl) + 0(6%)
Bol®ony = Ponrg

where  represents the initial value

and § = (¢,£€ = ¢sgg°) or (¢agn - ¢sgnk) or (¢snh - ¢sn40)

: ggy - &
EnNp = 94 =0
A 3¢,En 8¢’En
5 .
My = B Ay + (b + 2R (8agy + b))

ad”rm
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~In 1ike manner linearizing Fy, F2, and F3 and substituting these into

(3.1) yields

3 4

1 2
BO¢’€€E * Bo¢’€€n * B0¢’€nn * .BO¢’nnn

0, A 4
BOV ¢

45 6 7 _8 '
+ 80¢,gg + »BO¢,gn + 80¢,nn B B (3.2)

8 = CENE ) + EENFyn, + EENEng; 3g - EﬁnF]A] + $MMEp,
+ FE a0 4, - MU Ay + MNF8, + ﬁ”hF3A3;
B = gy + SEu,Fy + EEavdys Op = EagFy + Sards;
7g = MaqFy + MagFy + Mavhe; B = -(09Fy + 8F . 83F3)o
1 2 L3 4

+_ Bot ey T "Boozeno T Bo®eenno % B0%2nnno
5 6 7 .
. + BO¢,€€O + Bod’,gno + BOq)’rmo’
(A complete Tlisting of the quantities 1'jk]Fm, etc., and the necessary

physical covariant derivatives are listed in the Appendix.)
B. Finite-Difference Method

The governing equation, having now been reduced to a tractable
Tinear form, can now be solved by finite differences. Near the boundary
of the non1inear region (the boundary comprising the inner stress-free
border at &g or the Tinear-nonlinear interface) thé finite.difference

scheme, written at point 2 as shown in Figure 3.1a, becomes
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d4s (—‘113¢] - 60Ax%%)1 + 192¢p - 10843 + 32¢g - 3¢g) + 0(A>_<2)

dx4 'IZAx4
P
\ d
dhe (8§1 * 6AX3$01 - 96 + ¢g) * 0(ax?)
dx3 i3
)2
ol _ (93 - 20p - ¢1) # 0(ax?)
dx2 | sz
2

¢3 - 9
Bl = 2t owd)

Note that‘because of the boundary_conditions both 7 and %%)] are

known.

the finite-difference scheme written about point 3, as shown in

Fi

In the region removed from the boundary by at least two steps

gure 3.1b, becomes

4 (6 - 4o, + 6o3 - 46o + ¢7) o
&IL axt

3 (¢5 - 204 + 242 - 91)

d ¢| _ \95 4 T 02 + 2

—X = = — + 0(Ax

dx3] 28%3 (8x7)

2 - -
Q_Q} - (¢4 - 2¢g ¢])‘+ O(sz) _
3

AX

(3.4)
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(¢ - ¢2)
gg- - e~ﬂ§Z§-3-f 0(ax%)
3

Various two-dimensional combinations of the two above mentioned
vschemes are used depending upon the placement of the grid point (at
which the governing equation is being solved) in relation to the
boundaries. Two specific cases of those possible w111.be discussed
here: first, the scheme used when no boundaries are near; and second,
fhe scheme used when two boundaries are near. In the first case as
shown in Figure 3.2a the equationvwi11 be so]véd at point 13 with the

resulting expressions for the partial derivatives:

o4s|  _ (615 - 4014 + 6673 - 4419 *+ 617)
X x4

+ 0(s?)

ade | _ (479 = 2018 + 617 - 2014 * 4413 - 2012 * 69 - 26g + ¢7)

) 772

x2ay2) 5 axeny?
+ 0(82)

ot _ (023 - 4478 * 6013 - heg * 03) 2

7 7 0(s)
3y Ay

713

3, = 20un * 269, - |
Cal) (415 - 2614 2412 11) , o162

35| (919 - 2878 + 077 = dq t+ 2068 - ¢7)
2o | (e ety 99 2g 97) 42
X~y 2AXS0Yy
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3 - -2 + 2 + - ‘
235 | _ (19 = ¢17. - 2014 2 M2 * oo - 7)oy (3.5)
axay2 13 2AXAY
§-3% _ (0g3 - 2018 * 20g - 93) | 2
\ - '
ol 2 (014 - 23 ¥ 41p) | (42
8)(2”3 o 2 .
‘ - - +
% | (o9 - 017 - %9 * 1) | 2y
XY . Aaxay
13
\
v §EQ_ i} (618 - 2413 + ¢g) . 0(62)
w23 Ay2
1 (614 - 419) '
38| . 914 T 92 2
X - 2Ax +0(8%)
/13
3¢ = Sfﬂii__lﬁil + 0(62) where § is either ax or Ay.
oy 20y s
13 ‘

For the second case when two boundaries are present as shown in Figure
3.2b, the governing equation will be solved at point © with the follow-

ing expressions for the partial derivatives resulting:

i 2 . -
abe| (113410 + 608xGR), * 19269 - 1080 + 3207 - 306) 0(s?)
: a : ‘

3x4 ' 12A%
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oty ] _ (o715 - 2094 + ¢33 - 2090 * 409 - 20g + e - 294 *+ ¢3)
3X23Y2J ax2ay? '
+ 0(s2)
%l (3654 + 32679 - 108414 + 19269 - 60Ayay)4-- 113¢,) o)
9y /g 12Ay4
) 3 .
3X3)9 3ax3
2% | . (015 - 2014 * ¢1g "85 * 204 - 93) | 02
SXZByJQ ' 2AX% Ay
(3.6)
230 | _ (915 - 913 - 219 * 2¢8 + ¢5 - ¢3) + 0(62)
axay? 9 ' 2axAy?
\ |
23s]  (#19 - 96g *+ 68Y5H), + 84y )
3 - 3 + 0(6 )
3y 9 3ay _
2,) _ (410 - 20g * 4g)
X /g AX™
az“ _ (915 - 413 - ¢5 + 93) N
) + 0(8%)
IXay 4AXAY
/9
2 - 26g +
22p] . (01g - 209 * &4) 0(62)
WZ Ay2
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ﬂ] - 110~ %8) , o(s2)
2AX '
9

(¢14 - o) 2

) = 4

_QJ '“——_ﬁZi——_i+ 0(s%) .
9

o _ 2
(Note that the values of 95, 920 ¢155 610> 855 945 635 $ps 075 5x 0

and %544 are all known and treated as boundary conditions.)

Using equations (3.5) or (3.6) or an anologue of them, all of
the partia1‘dérivatives necessary in the evaluation of the needed
physical covariant derivatives in the governing equation (3.2) can be

»obtained. The region of interest should be divided up evenly in the
parabolic coordinates ¢ and n to give the necessary grid pattern as’
shown in Figure 3.3. Then at each grid point interior td the boundary
a 1inear éqUation involving a bandwidth of 3N + 1 (where N is the
number of grid points in the direction) is generated. This resulting
linear system of equations may be solved simultaneously by any direct

method, e.g. Gaussian elimination:
[Als = B | (3.7)

where [A] is a banded coefficient matrix depending upon the distri-
butidn; ¢ is the independent variable evaluated at'each grid point;
B is a vector of constants composed of 83 in equation (3.2) and the

boundary conditions. Since the coefficient matrix and the right-hand-
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side vector both depend upon the ¢ distribution, the solution must be
iterated until the change is acéeptab]y small.
C. Internal Collocation Method

The second method pursued involves selecting a series of
orthogonal polynomials which satisfy the boundary conditions exactly.

One such representation is the familiar double Fourier series:

¢=.¢ +I;4 ’gc {1-cos(‘[?—————2"(g'€°))}{1
Tinear = g pop ™ Emax " Fo)

2n -1
+ cos 6‘77“’)Iﬂﬁ} (3.8)

max

Note that this double series satisfies the symmetry condition at n = 0,

the boundary conditibns at £ = £,, the matching conditions at

& = Epaxe and the matching conditions at n = npax- There are MxN
unknown constants in this double series; these may be determined by
solving the governing equation (3.2) at MxN discrete points in the
region of interest by iteration. Figure 3.3 shows how the reaion is
to be divided up evenly (equal divisions are not necessary; however,
convergence of the method were helped by this). The resulting system

of Tinear equations maybbe solved by direct methods :

where A is a full MxN by MxN coefficient matrix depending uron the Cy,

distribution; C,, are the coefficients in equation (3.8); and B is the
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vector of constants depending on Cmn in the previous iteration.

The advantage of this method 1ies in its simb1icity of formu-

" lation and in its satisfaction of the boundary conditions exactly.

However, due to the ripples inherent in any Fourier representation,

the method became unstable for large values of M and N. Also, since
the coefficient matrix [A] in equation (3.9) is completely full, the
solution time and core size became large for even moderate numbers of
terms; The finite-difference formulation is complex because of the
many types of grids possible; however, the method is stable and the
coefficient matrix [A] in equation (3.7) is sparse and can be solved by

banded Gaussian methods with a considerable savings in computing time

.on a digital computer.

D. Integration of the Strain-Displacement Relat1ons
and Limit Analysis

Whichever method is used to determine the stress function and
subsequently the covariant strains €ij> these strains will be inte-

grated through the complete strain-displacement equations (2.8) to
|

" determine the displacements. Writing equation (2.8) in terms of the

parabolic coordinates yields

(3.9a) :

= 2 2
2egy = ZWE’E - wg’g/g - wn’E/g
2€En = Weso + Wosg = WesgWes /9 - W W g/g (3.9b)
2 = 2w, -2 ,°2/g-w 2 /a - (3.9c)
nn nen T fnon /9T Wes /0 .

(The " notation has been dropped for simplicity.)




' stability in the iterative calculations. Solving (3.9a) for w
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These equations (3.9) will be finite-differenced to yield a system of
first order ﬁon]inear differential eqdations which must be solved

simultaneously through iteration. The finite diffefence scheme to be
used here is shown in Figdre 3.4 and the resulting pértia] derivatives

solved at point 3 are

- aul . (UJ - 4U2 + 3U3) 2
X | 20X + 0(ax7)
/3
) (-ug + 4u, - 3uq)
au|  _ 5 4 3 2
59}3 = 5hy + 0(ay”) .

Since there are only two unknowns (WE and Wn) to be determined, only
two of the three equations (3.9) are necessary in the procedure.
Equations (3.9a) and (3.9c) are chosen because of their superior

£°¢E
and (3.9c) for L yields

We,g =9 (1

- w2elo? - 2ege/g )
Y T 9 (1 ¢ /iv- w£€n/92 - 2€nn/9 )’

The Tower sign will be chosen because the expression would then reduce
to the Tinear result for small strains and displacements; hence, the

above result would become

e /9= (01— w2,/q% - 2¢,,/g )
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= 1 _ 2 2 _
W ,n/9 (1 1 We'in/9 2enn/9 ).

" Introduction of a ~ to represent a physical quantity gives the follow-

ing expressions:

w. =(1-"1-w2 -2:_) (3.11a)

Esg H,E EE
L. JTT 7 . '
Wy = (1 -1 - L 2. ) , (3.11b)

(The necessary physical covariant derivatives of WE and wn are found
in the Appendix.)

After substituting the finite difference equations (3.10) intov
the linearized expressions for QE:E and Wn’n in equations (3.11), the
actual numerical procedure to find the displacements would then hegin.
Referring to Figure 3.3, the integration procedure would begin 6ne
étep from gpax (£ = gmax - 4£) and at n = 0. Since at this grid point
W, = 0 equals zero and Wen = 0 equals zero from symmetry conditions,
equation (3.11a) becomes uncounled and can be solved for We directly
without iteration. iNext the procedure steps in the positive n-direction
solving equations (3.11a) and (3.11b) simultaneously for We and W,
through iteration at each grid point until nmax 1S reached. Then
another step is taken toward ¢, (Enew = 501& - Az) and the procedure
is repeated. This stepping in both the negative ¢ and the positive

n-directions is carried out until We and W have been determined in

the entire region.

The Timit analysis consists of examining the existence of LA

in equation (3.11b) at the ellipse tip along the 1ine of symmetry.
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w2
Esn

We o is equal to zero along the line of symmetry reduces the expression

The discriminant of this equation is 1 - - ZEnn;

‘Noting that

to 1 - ZEnn. From equation (2.4) e,

n can be written in terms of the

stresses:

€pn = (1= 9) o = vogg

Along the ellipse ng equals zerb, so that En - (1 -v)o

n nn*

Inserting this result into the expression for the discriminant above

yields
discriminant = 1 - 2(1 - v) ahh‘

For wn,n to be real in equation (3.11b) the discriminant must be
greater than or equal to zero:
0<1-2(1-v)o

nn atg:g()’Y\:O;

or alternately | (3.12)
= ] v — 4
Om’l im at ¢ Egs n = 0.

To understand the result expressed in equation (3.12) more fully
it is necessary to study the unstrained metric tensor h;jj from

equation (2.2b):

(] - 28&&) ~2€gn l .

hij =94 )
_ZEET] (1 - ZErm)J

The determinant of this matrix may be written
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; 2 ~ ~ ~ 2.
lh| = ¢={(1 - Zegg) (1 - ZEnn) - Aeg, }s

along the 1ine of symmetry this expression may be simplified to
Ih] = ¢?4(1 - 2e,.) (1 - 2,0 (3.13)

If the determinant |h| is zero, this situation is equivalent to a
mapping which takes a region in the deformed geometry and transforms
it into a point in the initial geometry, i.e. an ellipse maps into a
crack (a degenerate ellipse). At the ellipse tip 8g€>becomes zero so

that equation (2.4) would give the strains:

eqn = (1 = Vo s g = ~vogs

substituting this result into (3.13) and equatirg this result to zero

gives
0=(1+ vonn) (1 - 201 - v)onn) .

Because the plate is under uniform tension it is unlikely that gnn

would ever be negative, the above equation becomes

0= (1-2(1 = )5,,) or Gy = sy - (3.14)

Comparing the results of (3.14) and (3.12) it is evident that a value
of 5nn higher than 517—4757-15 impossib}e because the ellipse would map
past a crack. Therefore the maximum stress possible at the tip of an

e de Y o 1 . :
ellipse is opay AUEEOR which only occurs if the initial geometry

is a crack of zero root radius.




IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS

The physical stresses and strains in the field surrounding the
tip will now be presented for small ellipses with Poisson's ratio
equal to one-half; the contravariant displacements in the tip region
will also be discussed. Finally, the results for these small ellipses
will be extrapolated to determine the stress field around the deformed
tip of a crack of zero initial root radius.

Throughout the following discussion reference will be made to
the terms 'physical' and 'dimensional’. A 'physical dimensional’
stress will be a stress as measured experimentally and will be denoted

ol

~ % . . %
ojj- A 'physical nondimensional' stress can be found: ojj = ojilo,

where o is the remote 'physical dimensional' stress. A covariant
* ~
stress ojj may be written as 013 = 013(52 + nd). Finally the scaled

inner variables, e.g. 95, will not have the star superscripts (*)
*
whereas the outer variables will have them, e.g. 93¢

* * wg* p*
s = .. ; PR .. : w = - : = ;
Oij = €94j €ij = €ij" e p= 2

* * oy
X = 55- s 0y = xg‘ ; where € = %-(1 +v).

€ €

A. Discussion of the Results

~ The selected root radii of the ellipses in the deformed state

range from p = 1 to 9 which corresponds to a g, of 1 to 3. The minimum

30
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root radius (p = 1) is that of a deformed crack as predicted by
Inglis [29]. The physical normal stress ann distribution along the
line of symmetry in front of the tip for g5 = 1.0, 1.3, 1.7, and 2.5
is shown in Figures 4.la, 4.2a, 4.3a, 4.4a.* The linear curve referred
to here and afterwards concerns the analysis of Inalis. The physical
normal stress 5nn distribution along the ellipse border for g, = 1.0,
1.3, 1.7 and 2.5 is shown in Figures 4.1b, 4.2b, 4.3b and 4.4b.
Examination of Figures 4.7a and 4.1b show the relative merit of the
finite difference as opposed to the collocation methods for solving
the nonlinear governing equation. As mentioned previously in Chapter
III, for a small number of terms the collocation approach gavé fair
results; however, for larger numbers of terms the approach hecame un-
stable. Therefore the finite difference approach is viewed as being
more accurate although they both give qualitatively the same results.
Referring to Figure 4.1a with gy = 1.0, the Tinear solution falls
monotonically from 2.0 at the tip of the deformed ellipse. The non-
linear (finite difference) curve rises from very close to 1.0 to a
maximum of 1.24 and then falls, approaching the linear curve from the
top. The maximum error theh is 50% and this occurs at g,. The Timit
analysis predicts fhat the value of 8nn at the ellipse tip should be
less than or equal to 1.0 and this agrees with the nonlinear results
to within 1%. Referring to Figure 4.1b with g5 = 1, both the Tinear

and the nonlinear curves fall monotonically with the linear curve being

always above.

*In all of Figures 4, points where inner and outer solutions
were matched fell well outside regions shown.
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The physical normal stress Sgg distribution‘aiong the line of
symmetry in front of the tip for 5 = 1.0, 1.3, 1.7 and 2.5 is shown
in Figures 4.1c, 4.2c, 4.3c and 4.4c. The disparity between the linear
and the nonlinear analysis for fhe physical norméi stress GEE with
£y, = 1.0 along the line of symmetry can be seen in Figure 4.1c. The
 maximum difference between thé two distributions is 0.05 and is not

significant; é]though, the disparity represents atlarge percentage
'because of the small magnitude of the stress.

In Tinear fracture mechanics the single parameter of interest’
is the stress intensity factor K which defines the field strength of
the singular behavior. For a crack, as shown in Figure 2.2, K as

| defined by Sneddon and Lowengrub [31] is 1im/§§;-§:n(x,0). The Tinear
solution with & = 0 would then give Ky 2:0573 . Defining an

—_ ek .
~"apparent" stress intensity factor as Kyp = Y2x* 0 then one obtains

E$§‘= 2X ann' Hence, in Figures 4,1&, 4.2d, 4.3d and 4.4d for _
Eg = 1.0, 1.3, 1.7 and 2.5 the apparent stress intensity factor Kpp

is shown, with the 'singular' curve representing the linear solution

fo the undeformed crack geometry (go = 0). The error involved in the
calculation of stress intensity factors for gy = 1 is'shown in Figure
4.1d. The nonlinear curve represents the Kpp that would be calculated
from data taken from an actual experiment. If the data were taken out-
side of.x = 16, there would be}oniy an error of 2%. However, the error

would rise to +20% and then drop to -100% as x decreases to zero. The

Tinear analysis predicts that the error would rise to +10% before
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dropping to -100%. These results are consistent with recent experi-
mental findings [10], [14], [18].
The physical maximum in-plane shear stress (the primary quantity

used in photoelastic experiments) T along a line originating at

max
~ the tip, perpendicular to the line of symmetry, for g = 1.0, 1.3,
1.7 and 2.5 is shown in Figures 4.7e, 4.2e, 4.3e and 4.4e. The dif-
ference between the nonlinear and the linear formulations with g5 = 1
for ;max is shown in:Figure 4.%e. The maximum difference between the
Tinear and‘the non]iﬁear is +50% and occurs at the tip} Therefore,

the Tinear approach represents the t ax distribution well until

m
y < I~p; i.e. inside of one root radius it is necessary to go to the
non]inear.representation. |

After integrating the strain displacement equat%ons (3.9) for
the covariant displacements (wg,wn) the contravariant counterparts can

then be determined:

W _ ' W,
E . & . n-_— "
w” = s wh =
(62 + n2) (£2 + n?)

These displacements can then be used to find the initial geometry:

£ - £ - wh " (4.1a)

initial final

= -
Minitial = "final ~ Y (4.1b)

The contravariant displacement w® distribution'a1ong the line of sym-
metry for g = 1.0, 1.3, 1.7 and 2.5 is shown in Figures 4.1f, 4.2f,

4.3f and 4.4f. The difference between thé linear and the nonlinear

curves for éo = 1 is shown in Figure 4.1f. The error is within 3%
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until very close to the tip: here the error rises‘to 8%. The linear
displacements would map this ellipse exactly into a crack: and there-
fore, the small difference between the displacement curves indicates
+hat the nonlinear analysis of an ellipse of &, = 1 would closely
resemble that of a crack (in the initial geometry), except near the
tip itself.

Figure 4.5 shows the variation of the physical normal stress
Snn distribution along the line of symmetry for the range of final.
deformed root radii p = 1+9. From this figure it can be seen that
the maximum value of the physical normal stress ann occurs at the
e11ipse tip (¢ = gq) for o > 1.7; however, for £o < 1.7 the maximum
occurs at some distance (& > £o) in front of the tip. This phenomenon
suggests two different types of crack growth: 1) if the root radius
of the notch is above some critical level, the flaw will extend from
the edge of the blunted notch as reported by Schijve and Jacobs [32]:

2) if the root radius of the notch is below some critical level, the

flaw will extend by the creation of crack segments ahead of the sharp
notch as cited by Yokobori [33].

The distribution of the physical normal strain Enn along the
line of symmetry in front of the tip for the range of final root radif
o = 1»9 is shown in Figure 4.6. The limit analysis showed that a
physical strain Enn value of 0.5 was impossible; %n fact, this value
would only be reached near the crack tip. The above figure bears out

this conclusion in that all of the curves are asymptotic to 0.5 at

£ = £




35

From the contravariant displacements shown in Figures 4.1f
through 4.4f the initial geometry of the ellipses can be determined
through equations (4.1). Via this procedure the initial root radii
of the deformed ellipses are found and they are presented in Figure 4.7.
The Tinear analysis as presented in this figure would give an ellipse
as the initial geometry; however, the nonlinear analysis wdu]d not
and the difference between the two curves represent the amount the
initial geometry would differ from an'e1lipse. From the extrapolation
of this curve it is clear that a crack initially with no Toad wou]d
deform into a quasi-elliptical shape with a root radius of (0.92)2.
From the dfsplacements for £y = 1.0 it is clear that the crack will
deform into an ellipse of shape g5 = 1.0 at some distance from the tfp.
It can be stated, therefore, that the behavior in the neighborhood of
the tip can be well approximated by an ellipse of £, = 0.92 and that
away from the tip the behavior can be determined by an ellipse of
Eg = 1.0.

Using Figures 4.5 and 4.7 the magnitude and the location of the
maximum normal stress annmax can be plotted with respéct to the initial
root radius as is shown in Figures 4.8 and 4.9, respectively. Ex-
trapolating the curve on Figure 4.8 the maximum normal stress anh
becomes 1.3, approximately; and referring to Figure 4.9 the Tlocation
of the maximum stress becomes x/p = 0.33, so that x = 0.33(0.92)2 =
0.28. It could be conjectured that the shift of the maximum stress in

front of the tip could be as a result of the additional constraint

in the interior of the body.




The near field zone of the present model extends to O(sz) from the
crack tip as contrasted with 0(e) in the Rice-Rosengren [21] and Hutch-
inson [22] models, and therefore is a very near field solution. The
model reveals that the strains are limited as shown in Figure 4.6;
physically this means that, upon application of small remote stresses,
the portion of the crack surfaces nearest the tip each undergo a rota-

tion of 90° in opposite directions in creating the notch tip. This

produces stresses of the order of Young's modulus at the notch tip (Fig.

as in [251;263 but these local stresses are independent of the applied
remote stress. Increasing the remote stress simply enlarges the root
radius, and with it the size of the zone affected by the finite defor-
mations. These features (i.e. stresses of the order of the modulus
and independenceof the near field stress from the remote loads) are
also found in the "cohesive" stress field of the Barenblatt model [34].
Moreover, the "hump" in the ann stress distribution shown in Figure
4.5f0r small root radii produces qualitatively the same sort of

stress distribution very near the notch tip as Neuber obtained with
his "Timiting particle size" theory for pointed notches [35].

For stress freezing photoelastic materials above critical tem-
perature, the maximum stress is expected :to be one order of magnitude
below Young's modulus and this adjustment might possibly be incor-
porated into the present model by introducing non-linear constitutive
relations. This change would also be expected to enlarge the size of

the affected zone [currently of the order of one root radius) to

perhaps several root radii.

4.5)
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B. Conclusions

A finite deformation analysis of the near field surrounding the
tfp of small crack-Tike ellipses was performed in the deformed geometry
using the complete compatibility equations and Tinear constitutive
relations.

The effects of finite strains and rotations in the tip region

of a deformed crack were found

m?® “max

) 0.33 root radii away from the tip (oﬂﬂmax =

(1) to reduce o and Enn at the iip by 50%;

(2) to move 6””ma
1.3)s

(3) to reduce pfipa] to (0.92)%;

(4) to change 8&5 insignificantly.
These contributions are all extremely local and are concentrated within
a few root radii of the tip and would not normally be measurable in
a photoelastic experiment; however, the effects of crack tip
blunting are more general and spread back to ten or more root radii.
For initial geometries with blunted tips, the regions of influence
cited above are generally the same (in terms of root radii) although
the magnitudesvof the above effects are less. The above results
suggest that blunt notches propagate from the notch tip; however,
sharp notches extend from the formation and subsequent growth of
small cracks in front of the notch.

The features of the present model are believed to be qualitatively
appropriate to behavior of photoelastic materials above critical tempera-
ture. Studies are currently underway for the inclusion of non-linear con-
stitutive relations in order to improve its quantitative predictions and

hopefully shed new Tight on the large strain region very near the crack tip.
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APPENDIX A

The coefficients iijm as they appear in equation (3.2) are
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The physical covariant derivatives of ¢ in the parabolic co-
ordinate system with h2 = g = g2 + n2 are
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The physical covariant derivatives of Vig and W, as they appear

in equatidns (3.11) and (3.9) are
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(ds)'= g‘.l,dx“dx" for the deformed geometry

(ds)z=h‘]dx"dxj for the undeformed geometry

Figure 2.1 Coordinate System
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for the elliptical coordinates

x=cosh€& coshy, y= sinh§ sinhy

- = - = =0
9,,°9,° cosh 282 cos 27, 9,°9,,

Figure 2.2 Problem Geometry
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for the parabolic coordinates

et 22 2 - - - - [ 3
x'(e':,""l) y y=¢&n9, 0“-9??-9-(6-*1)

Figure 2.3 Inner Reaion Geometry




46

_ul.
O=ge

JUD4SU0d=¢ mow.wl/l |

3URYDS UOLIRQUNIAY p'7 SNG4

&

} 992079703 %xxxv«écccﬁxxvoo

.\,

\\

payioads ¢ ¢ .vm
w, o —"]

.\\

/

PSR ISK R RTIK KRGS =

<

'0

paijioads ¢ ¢ ﬂm

xOEP =4 \‘

uojbey Jouu|

peljioeds .v .MM. xue w* 4

S s S

\\\\ N0

/ saé o
" \ e




47

j l‘/-derivotives evaluated here
/
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(a) Scheme Used Near a Boundary

L/— derivatives evaluated here
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(b) Scheme Used Away From a Boundary

Figure 3.1 One-Dimensional Finjte Difference Schemes
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(a)
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(b) Scheme Used Near Two Boundaries

‘Figure 3.2 Two-Dimensional Finite Difference Schemes
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Figure 3.
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