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Publication No. 
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Supervising Professor:  Roy R. Craig, Jr. 

A parameter optimization algorithm is developed based 

on the gradient projection concept.  The algorithm is applied to 

the aeroelastic optimization of a semi-infinite panel in super- 

sonic flow and to the aeroelastic-stress optimization of a delta- 

wing in supersonic flow.  The total weight is taken as the ob- 

jective function.  Constraints are placed on flutter speed and 

minimum thickness for the panel problem and on flutter speed, 

stress and minimum thickness for the delta wing problem. 

Sandwich plate structural idealization is used for both 

the panel and the delta wing problem.  During the optimization 

the core thickness is held constant while the cover skin thick- 

ness is varied.  Finite element representation is used to model 

the structures.  Constant thickness and tapered sandwich beam 

elements are used for the panel problem.  A high precision 

triangular plate bending element, developed by Cowper, Kosko, 

Lindberg and Olson, is used for the delta-wing problem.  The 

element stiffness and mass matrices are modified for linear 

iv 



cover skin thickness variation.  The element or the nodal point 

cover skin thicknesses are used as design variables (optimi- 

zation parameters). 

Two-dimensional, quasi-steady aerodynamic theory is 

used to obtain the aerodynamic forces.  The aerodynamic damping 

is included. The same finite element functions are used in 

deriving the finite element mass, stiffness, aerodynamic and 

damping matrices, i.e. they are consistent. 

In order to obtain the flutter constraint, system 

equations of motion are derived.  These equations form a qua- 

dratic eigenvalue problem which can be reduced to a linear 

eigenvalue problem where the positive real parts of the eigen- 

values indicate flutter.  The optimization procedure required 

calculation of constraint gradients.  Using analytical expres- 

sions, derivatives of the eigenvalues with respect to design 

variables are calculated efficiently. 

For stress constraints only static loading is con- 

sidered.  Von Mises yield criterion is used to derive the 

equations for stress constraints.  Stress constraints are 

placed at nodal points. 

Due to nonlinearity of the constraints the optimi- 

zation procedure incorporates constraint tolerances and pro- 

vision for returning to the constraints when they are violated. 

Different finite element combinations are studied 

for the panel problem. Using six tapered elements across the 

span, the effect of damping on the optimum shape is investi- 

gated . 



For the delta wing problem a 3 x 3 grid of triangu- 

lar bending elements is used.  The natural boundary conditions 

are placed on curvatures for the free edges as well as geo- 

metric boundary conditions for the clamped edge.  The effect 

of constraints on the optimum shape is studied by optimizing 

the structure first using only flutter and thickness con- 

straints, then using only stress and thickness constraints, 

and finally using all three sets of constraints. Total weight 

reductions of 47% to 63% are obtained depending on the combi- 

nations of constraints. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction to the Subject of Aeroelastic Optimization 

The subject of this thesis is aeroelastic optimiza- 

tion, which falls under the general subject of structural 

optimization with eigenvalue (dynamic) constraints. 

Although there are few earlier papers (mainly ref- 

erence 25), the keen interest in this subject started in the 

late 1960's.  Papers published on aeroelastic optimization 

since then present different approaches to the different aspects 

of the problem, namely the structural formulation, the aero- 

dynamic formulation, the strength formulation, the formulation 

of the optimization problem and the solution of the optimization 

problem. 

Generally the approach to the structural formulation 

falls into two groups; 

1) Continuous formulation 

2) Discrete formulation 

Several theories are available for the aerodynamic 

formulation; 

1) Strip theory 

2) Piston theory 

3) Quasi-steady aerodynamic theory 

4) Three dimensional aerodynamic theory 

Formulation of the optimization problem follows from 



the structural formulation; 

1) Control theory formulation is applied when the con- 

tinuous structural formulation is employed. 

2) Parameter optimization formulation follows the dis- 

crete structural formulation. 

There exist several approaches to the solution of the 

control theory formulation.  Among them are the following; 

1) Transition Matrix Method 

2) Gradient projection method 

The solution methods for the parameter optimization 

problem have been independently developed by mathematicians and 

numerical analysts.  Reference 13 is a good source for the 

numerical techniques available for structural optimization. 

There are two different approaches depending on the way that 

the eigenvalue constraint is handled; 

1) If the eigenvalue constraint is assumed to be an 

equality constraint, then the problem is reduced to a set of 

non-linear algebraic equations by introducing Lagrange multi- 

pliers.  Several iterative numerical techniques exist for the 

solution of non-linear algebraic equations such as the Newton- 

Raphson method and its variations. 

2) If the eigenvalue constraint is assumed to be an 

inequality constraint, then the problem can be stated as a non- 

linear mathematical-programming problem.  One of the iterative 

techniques based on gradient information can be used for the 

solution.  The most commonly used algorithms in the aeroelastic 



optimization field are; 

1) Interior penalty function method 

2) Usable-feasible directions method of Zoutendijk. 

3) Gradient projection method 

The predominant constraint in aeroelastic optimization 

is flutter. Few of the works published on aeroelastic optimi- 

zation also consider other constraint such as deflections and 

stress.  The process of handling such constraints has already 

been well established in the field of structural optimization. 

In the following some of the important works on the 

aeroelastic optimization are briefly discussed: 

In reference 4 Turner has extended his earlier work 

on structural optimization with constraints on natural frequen- 

cies (Ref. 26) to the optimization of structures with flutter 

constraints.  He uses the discrete approach but handles the 

flutter constraint as an equality constraint.  He obtains a set 

of non-linear algebraic equations by using complex Lagrange 

multipliers.  The equations are solved using the Newton-Raphson 

method.  Two examples are presented:  1) Panel Optimization 

2) Cantilever Wing Optimization.  His method can be used with 

any aerodynamic theory.  He uses quasi-steady aerodynamic theory 

for the panel problem and strip theory for the cantilevered 

wing.  The number of design variables is kept rather small 

(3 elements with constant mass and stiffness properties are 

used for both problems), presumably because of computational 

effort involved in solving non-linear equations.  No other con- 



straints are considered. 

A paper by Ashley and Mclntosh (Ref. 1) presents re- 

sults using the continuous formulation.  Several examples with 

eigenvalue constraints are discussed, among which are the opti- 

mization of a two-dimensional plate and of a cantilevered lift- 

ing surface with flutter constraints.  Quasi-steady aerodynamic 

theory with zero aerodynamic damping is used.  Equations are 

derived using control theory formulation but left unsolved for 

the two-dimensional plate problem.  An analytical solution is 

given by inspection for the cantilevered wing.  Placing con- 

straints on minimum thickness is also considered. 

Weisshaar, in reference 7, made significant contri- 

butions to both continuous and discrete approaches.  Using con- 

trol theory formulation, he obtains simultaneous non-linear 

differential equations and solves these equations using the 

"transition matrix" procedure (Ref. 27).  Among examples with 

dynamic constraints he presents solutions for the first time to 

the optimum skin thickness distribution of a simply supported 

sandwich panel in supersonic flow with different thickness con- 

straints and different mass ratios.  Quasi-steady aerodynamic 

theory is employed.  The aerodynamic damping is neglected.  He 

also presents some results using finite elements and a first- 

order gradient technique (based on Rubin's work in reference 28) 

on the same problem.  Flutter constraint gradients are calcu- 

lated numerically. 

A paper by Bhatia and Rudisill (Ref. 9) present their 

work on the optimization of complex structures with flutter 



constraints using finite elements.  The optimization procedure 

consists of three different search procedures, the first two 

are based on steepest-descent principle; one to increase the 

flutter speed, the other to decrease the structural weight. 

The third search procedure is based on gradient projection con- 

cept; it holds the structural weight constant while maximizing 

flutter speed.  The main contribution is the analytical expres- 

sions for the calculation of flutter constraint gradients.  A 

cantilevered box beam is optimized using three dimensional 

aerodynamic theory.  With only flutter and thickness constraints 

approximately 40% total weight reduction is obtained after 22 

design cycles. 

A paper by Craig (Ref. 8) present results for flutter 

optimization of a simply supported sandwich panel using finite 

elements.  Consistent element aerodynamic matrices are derived 

using quasi-steady theory with zero damping.  Two different 

optimization modes are employed both based on the gradient pro- 

jection concept.  The weight minimization mode minimizes the 

weight while holding the flutter parameter constant.  The 

Lambda-modification mode increases the flutter parameter while 

holding the weight constant.  Optimum shapes are given for five 

and nine constant thickness beam elements across the span. 

Rao in reference 19 presents a procedure for optimum 

design of aircraft wings to satisfy strength, stability, fre- 

quency and flutter constraints.  Constant stress membrane ele- 

ments and rectangular shear panels are used for structural 

idealization.  Piston theory with zero damping is used to calcu- 



late aerodynamic forces.  An interior penalty function method 

is applied to the optimization problem.  Eigenvalue gradients 

are calculated using exact expressions.  Optimum shapes are 

obtained for several supersonic aircraft wings using 4 consecu- 

tive penalty parameters and 25 to 30 design cycles. 

Miura, in reference 20, discusses a procedure to de- 

termine the optimum configuration of a lifting surface with 

aeroelastic constraints.  Sandwich plate structural idealization 

is used.  Ritz type displacement (modal) method is applied to 

derive system matrices.  Aerodynamic forces are obtained using 

piston theory with negligible damping.  The usable-feasible 

directions method of Zoutendijk is used to solve the optimiza- 

tion problem.  Constraints are also placed on stresses and de- 

flections.  The paper by Fox, Miura and Rao (Ref. 10) summaries 

the above works by Rao and Miura. 

A report put out by the Langley Research Center (Ref. 

29) gives the optimum thickness distributions of a delta wing 

for stress and thickness constraints, for flutter and thickness 

constraints and for stress, flutter and thickness constraints. 

Sandwich plate idealization and piston theory are used.  A 

finite-difference method is employed for discretization.  An 

interior penalty function approach is chosen for the solution 

of the optimization problem. 

Gwin, in reference 21, presents computer routines for 

the minimum-weight synthesis of a lifting surface with flutter 

constraint.  Three-dimensional aerodynamic theory is used. 

Different finite elements can be used to represent the struc- 



ture.  A modified version of Zoutendijk's method is coded to 

solve the parameter optimization problem.  System matrices are 

reduced using the first few natural vibration modes as gen- 

eralized coordinates.  Analytical expressions are used for 

flutter constraint gradients.  Several subsonic examples are 

presented. 

Recently, in reference 30, Pierson presented new con- 

tributions to the continuous approach.  He applied what he 

calls a gradient projection optimal control method to control 

theory formulations.  Results are presented for one and two 

dimensional solid and sandwich panels with different boundary 

conditions.  Quasi-steady aerodynamic theory is used.  A dis- 

cussion is given to handle aerodynamic damping but the pre- 

sented results are for zero damping. 

1.2  Introduction to the Present Study: 

In light of the above discussion the present work can 

be briefly described as follows: 

The discrete approach is adopted for the structural 

formulation.  Sandwich plate and finite element structural 

idealizations are used to represent the structure.  Thickness 

parameters either associated with finite elements or with nodal 

points are used as design variables.  The optimization problem 

is formulated as a non-linear mathematical-programming problem 

where the objective function is the total weight of the struc- 

ture which is linear in the design variables.  Flutter, stress 

and thickness constraints are considered.  Quasi-steady aero- 



dynamic theory with damping is used to calculate aerodynamic 

forces.  However other aerodynamic theories can also be incor- 

porated within the overall design procedure. 

The consistent mass, stiffness, aerodynamic and damp- 

ing matrices are derived for elements and for the system.  The 

flutter constraint is represented as a quadratic eigenvalue 

problem in terms of these matrices.  This is reduced to a linear 

eigenvalue problem where the eigenvalues are the complex fre- 

quencies and positive real parts of the eigenvalues indicate 

flutter.  It is possible to detect flutter phenomena involving 

modes other than the two initial modes during the optimization. 

This way of handling the flutter constraint is unique to this 

study.  In previous works on aeroelastic optimization the 

flutter constraint was placed on the flutter speed.  That makes 

it very hard to predict flutter involving modes other than the 

initial two modes.  Here the flutter speed is determined for the 

initial design and treated as a constant parameter during the 

optimization. 

The stress constraints are only considered for uni- 

form static loading, employed as a first approximation to the 

aeroelastic loading.  This is consistent with the quasi-steady 

aerodynamic theory approximation.  Von Mises yield criterion 

is used to obtain stress constraint equations.  Constraints are 

placed at finite element nodal points.  Thickness constraints 

are directly applied on design variables. 

An algorithm based on the gradient projection concept 

is developed to solve the optimization problem.  Due to non- 



linearity of the constraints, the algorithm incorporates con- 

straint tolerances.  The design change vector is composed of 

two orthogonal vectors, one in the projected gradient direction 

to reduce the objective function; the other in the orthogonal 

direction for returning to the violated constraints. 

The optimization procedure requires calculation of 

constraint gradients. Analytical expressions are derived to 

perform these calculations efficiently. 

Two example problems are considered:  A semi-infinite 

panel in supersonic flow and a cantilevered delta wing in super- 

sonic flow.  Different finite element representations are tried 

for the panel problem.  Results are compared with Weisshaar's 

(Ref. 7) and Craig's (Ref. 9) results.  Six tapered sandwich 

beam elements are used across the panel span to study the 

effect of damping on the optimum shape. 

For the delta wing problem high precision triangular 

plate bending elements (Ref. 22) are used.  Natural frequencies 

and flutter boundaries are checked against results given by 

Olson and others (Refs. 6 and 22).  The minimum-weight designs 

are obtained for flutter and thickness constraints, for stress 

and thickness constraints and for flutter, stress and thickness 

constraints. 

The main objectives of this study can be summarized 

as follows: 

1) Development of a parameter optimization algorithm 

for the minimum-weight design of lifting surfaces; an algorithm 

capable of giving an approximate design using a small number 
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of iterations. 

2) Development of equations for handling the flutter 

constraint such that is is possible to predict flutter involv- 

ing higher modes during the optimization. 

3) Development of analytical expressions for the con- 

straint gradients so that these can be calculated with minimum 

time. 

4) Study the effect of aerodynamic and structural 

damping on the minumum-weight design. 

5) Study the effect of different combinations of 

flutter, stress and thickness constraints on the minimum-weight 

design. 

1.3 Organization of the Thesis; 

In Chapter 2 the optimization formulation is pre- 

sented.  Several popular algorithms for the solution of the non- 

linear mathematical-programming problem are briefly discussed. 

Chapter 3 is for structural formulation:  Sandwich 

idealization is presented.  Equations for stresses and bending 

moments in terms of transverse displacement second derivatives 

are given.  Finite element representation is briefly explained. 

Equations for aerodynamic forces are derived in Chap- 

ter 4.  The derivation of element aerodynamic and damping 

matrices are discussed. 

In Chapter 5 equations expressing flutter, stress and 

thickness constraints in terms of design variables are derived. 
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Chapter 6 gives the derivation of equations for the 

gradient projection algorithm.  Figures explaining different 

design steps are also presented. 

The analytical expressions for flutter, stress and 

thickness constraint gradients are developed in Chapter 7. 

Chapter 8 and Chapter 9 present the results for the 

semi-infinite panel optimization and the cantilevered delta 

wing optimization respectively. 

In Chapter 10 several conclusions and suggestions for 

further research are listed. 

Appendices A, B and C are for the derivation of finite 

element matrices for the different finite elements used in the 

examples. 



CHAPTER 2 

FORMULATION OF THE OPTIMIZATION PROBLEM 

Design of aircraft structures can be cast as a non- 

linear mathematical-programming problem of the form: 

Find  p 

such that F(p)  -»■ minimum 

subject to C.(p)  £ 0;  j = 1,2,..., m 

Here  p , the vector of optimization parameters, 

should contain well chosen design variables such that when p 

is determined, the structure is essentially determined.  F(p), 

the merit (objective) function, should be so chosen that its 

minimization would drive us to a most desirable structural 

configuration, mainly a most economic one.  C.(p), 

j = 1, 2, ..., m, the constraints, should include all the cri- 

teria the structure has to satisfy for its usability. 

Most established algorithms for the solution of the 

non-linear programming problem require the calculations of the 

merit function gradient; 

VF(p)T =  {|£- , |f- ,..., !|-},M (2.1) 9p1   9p2       3pn (p) 

and the constraint gradients? 

T     3.C.   3C.      3C. 
VCj(£)   =  {9^f ' Tjt  *p}<P>' J = l'2,...,m 

(2.2) 

12 
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since along these directions the changes in F(p) and C.(p), 

j = 1,2,..., m, are maximum.  For this reason the functional 

relationship between F(p), C.(p), j = 1,2,..., m, and p should 

be mathematically known to us. 

The following definitions are in order for the clarity 

of the rest of this chapter: 

1) Any design p  is said to be feasible if it satis- ~q 

fies the relationships; 

C. (p )  <  0;  j = 1,2,..., m (2.3) 

2) Any design p  is said to be usable with respect to ~q 

a previous design Pa_i/ if the relationship; 

F(pg)  <  F(pg_1) (2.4) 

is valid. 

3) A usable-feasible design change satisfies both of 

these conditions simultaneously. 

4) A constraint is said to be "convex" if, any move 

made from the constraint along a direction orthogonal to the 

gradient vector, leads to a design in the infeasible region. 

In figure 2.1 some of the concepts described above 

are illustrated on a 2-dimensional design space (n = 2). 

2.1 Design Variables (Optimization Parameters) 

Generally, sizing parameters of the structural mem- 

bers are used as design variables in structural optimization. 

The finite element representation makes the choice particularly 
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Concave Constraint 

Linear Merit Function 

Fig. 2.1 Main Concepts for a Non-linear Mathematical Pro- 

gramming Problem 
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easy-  In the problems considered here either the finite element 

thicknesses or the nodal point thicknesses are used as design 

variables. 

2.2 Merit (Objective) Function 

The structural weight is chosen to be the merit func- 

tion in all the cases considered here.  This choice is rather 

common for aeroelastic optimization since both the initial and 

operational costs of aircraft structures are closely related to 

the structural weight. 

As shall be seen in the example problems it is very 

easy to express the structural weight in terms of either the 

finite element thicknesses or the nodal point thicknesses.  In 

all cases the structural weight will be a linear function of 

the design variables.  This fact makes the calculations of 

F(p), the merit function, and of VF(p), the merit function 

gradients particularly simple and time-saving. 

2.3 Constraints 

Most aircraft structures are required to satisfy the 

following types of design criteria: 

1. Combined stresses must be below yield for all 

structural members and for all specified loading conditions. 

2. Deflections under all specified loading condi- 

tions must be within allowable limits. 

3. Member sizes must be within practical limits. 

4. Natural frequencies must fall within allowable 
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bands. 

5.  The structure must be aerodynamically stable, 

i.e., it must be free from flutter and divergence. 

The following constraints, taken from the above list, 

are considered in the applications discussed here: 

1. Flutter:  The flutter speed of the final minimum- 

weight design must be greater than or equal to the flutter 

speed of the initial design. 

2. Stress:  The final minimum-weight design must 

satisfy the same yield criteria satisfied by the initial design. 

3. Thickness:  The member sizes of the final minimum- 

weight design must be greater than or equal to a certain per- 

centage of the member sizes of the initial design. 

In the examples discussed in Chapter 8 and Chapter 9, 

the effect of different combinations of constraints on the 

optimization is studied.  Flutter + thickness, stress + thick- 

ness, and flutter + stress + thickness combinations are con- 

sidered.  Chapter 5 contains the explicit expressions for the 

constraints as functions of p.  Stress and flutter constraints 

are non-linear; thickness constraints are linear constraints. 

2.4 Optimization Algorithms 

Three different algorithms, popular in structural 

optimization, are considered to drive the optimization process 

from p , the initial design variables, to pf, the final (mini- 

mum-weight) design variables.  These algorithms are briefly 
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discussed below: 

1.  Usable-Feasible Directions Method of Zoutendijk (Ref. 13, 

Sec. 7.2): 

The idea is to generate a sequence of feasible designs 

p , p,,..., p , p ,, such that for all q the inequality 

F(Pq+1)  1 
F(Pq) <2-5> 

is satisfied.  Here p ^  is defined as: 

p ,.  =  p  +  a* S (2.6) 
Kq+1     ~q      q ~q 

so that the qth step of the process involves the calculation of 

* the direction vector S and the step length a  . 

C.(p ) is a critical constraint at p  if C.(p ) = 0. 
J ""SI "      J   ^ 

For such critical constraints the feasibility of S  is assured 

if S  satisfies the inequality: 

S„TVC.(p>  <  0 ;  j e J (2.7) 
~q  3 ~q ° 

where J is the set of all critical constraints. 
c 

The usability of S , on the other hand, is assured if 

S  satisfies the inequality: 
~q 

Sq
TVF(pq)  <  0 (2.8) 

The determination of S satisfying the above inequali- 

ties can be cast as an auxiliary optimization problem as follows: 
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Maximize     ß 

Subject  to: 

(1) §qTvCj(Pq>      +      V     1     0   ;   j   e   Jc (2.9) 

(2) Sg
TVF(pq)      +     ß     <     0 (2.10) 

(3) S^  is normalized 

Here 6. is a pre-selected non-negative parameter to 

account for the curvature of a non-linear convex constraint. 

9. = 0 is used for a linear constraint. 

This auxiliary optimization problem is linear, pro- 

vided that a linear normalization is used for S , such as, 
~q 

-1 £ S . <_ 1.  Therefore the elements of S  and ß can be easily 

calculated by using a linear programming algorithm (simplex 

method).  If the auxiliary problem leads to ß > 0, then F(p) 

can be improved within the feasible region.  If, however, we 

obtain ß = 0 then it can be shown that p  is the optimal solu- 

tion. 

Once the direction S has been determined as above, 

determination of a  for non-linear merit functions can be cast 

as a one-dimensional minimization problem (Ref. 13, sec. 6.2.2); 

Find a  such that F(p_ + a S )  = F(a ) is minimum provided 
H ~g  4-4      g 

P +1  =  p  +  aa§  is in the feasible region.  In practice 

F(a ) is usually approximated by a quadratic function and deter- 
si 

•it 

mination of a requires calculation of F(a ) for two different 
q q 

values of a other than a = 0.  If the gradients of the merit 

function are easily obtained, then a cubic approximation can be 
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used in which case calculation of F(a ) and VF(a ) for one value 

of a other than a = 0 is needed. 
q        q 

For linear merit functions the only consideration for 

the selection of a* is the feasilibility of PQ+1«  Therefore 

a can be supplied by the user (Ref. 21). 

When a  is so obtained, the constraints are checked. 

If there is a constraint violation, an interpolation procedure 

it 
must be used to reduce the a so that we are on or near the 

q 
violated constraint, within the feasible region (Ref. 21). 

One way to increase the efficiency of the algorithm 

is to include the near-critical constraints, -e < C.(p ) < 0 
— j ~q — 

into the set of critical constraints. Here e is a positive 

parameter which can be made successively smaller when small 

values of 3 indicate that p approaches the optimal solution. 

It should be noted that the choice of scaling coef- 

ficients 8., j= 1,2,..., m, for non-linear constraints is 

intuitive, and it will affect the convergence speed of the 

algorithm considerably.  Large values for 6.'s will push the 

iteration away from the constraints and most likely away from 

the optimum point too.  Small values for 8.'s on the other 

hand will be ineffective in preventing the same constraints 

from being violated in the following steps. 

The usable-feasible directions algorithm is terminated 

when either $ or the change in F(p) becomes small. 
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2.  The Gradient Projection Method (Ref. 13, Sec. 7.3): 

This method assumes that the optimum point lies on 

one or more constraints.  Therefore the idea is to follow the 

constraints as closely as possible while reducing the merit 

function.  For this purpose the method uses the projections of 

the steepest descent direction, -VF(p ), into the manifold de- 

fined by currently active constraints, C.(p )  = 0, to calcu- 

late the vector S  (same meaning as in equation 2.6).  Thus S 

satisfies the relationships; 

Sq
TVF(pq)  <  0 (2.11) 

and 

?qTvCjV  =  ° ;  j £ Jc (2'12) 

where J is the set of all critical constraints. 

It is possible to express S  as: 

~q  =  " ?q VF(2q) (2-13) 

where P_ is the projection matrix.  P  can be calculated by 
z<3 *q 

using the projection theorem of vector calculus.  First it is 

convenient to introduce the rectangular matrix of constraint 

gradients: 

G 
~q 

VClV' vc2(eq>'-'-' 
VCmV (2.14) 

where m is the number of active constraints, so that we can 

write the feasibility condition (equations 2.12) concisely as 
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T 
G l   S   =  0 
^q ~q 

(2.15) 

The projected vector P VF(p ) can be obtained from J        ^q  ~q 
VF(p ) by substracting from it the vector G v , which is a 

~q s;M.~Si 

linear combination of the constraint gradients.  Now we can re- 

write the feasibility condition: 

G 
*q !q?F(eg

) 
- §q 

T VFLPq) " %Zq 
=     0 (2.16) 

This equation leads to: 

?q 

-t-1 
T G  G 

»q »q 
G x VF(p ) *q    "W (2.17) 

and 

P  = i - G 
~q   z       =q 

T G  G 
*q *q 

-1 

G (2.18) 

We should note that the matrix [G 6 ] is an m x m 

square matrix and can generally be inverted if the constraint 

gradients are linearly independent. 

Once S is so determined and normalized we have the 
~q 

usual equation for qth iteration step; 

Pq+1 =  P, "q^q 
(2.19) 

The determination of a can again be cast as a one- 

dimensional minimization problem if the merit function is non- 

linear, if the merit function is linear it can be given a 
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priori.  For either case a must be bounded not to violate any- 

new constraints.  Interpolation can be used to reduce a* in 
q 

case such a violation occurs. 

As formulated above the gradient projection method is 

very powerful for linear constraints but will not work very 

well for non-linear constraints.  When we are on a convex con- 

straint any move performed along S will take us out of the 

feasible region.  An extra step has to be performed to come 

back to the feasible region (see Chapter 6 for a detailed dis- 

cussion) .  For such cases, the choice of a* becomes very impor- 

tant.  A large value for a will increase the difficulty in 
Si 

coming back into the feasible region.  On the other hand, a 
* 

small value for a will mean that too many iterations will be 

required to converge to the optimum solution. 

The idea of including the near critical constraints, 

-e <_ C. (p ) <_    0 , into the set of critical constraints, to in- 

crease the efficiency of the algorithm also applies for the 

gradient projection method. 

The convergence of the algorithm can be based either 

on the amount of variation of the objective function in one 

iteration step, F(p ) -F(p  ,), or on the product S TVF(p ) 

which tends to get smaller as the optimum point is approached. 

3.  The Interior Penalty Function Method (Ref. 13, Sec. 6.3): 

The idea is first to convert the constrained mini- 

mization problem into an unconstrained minimization problem and 

then solve the unconstrained minimization problem by one of the 
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well developed methods.  The conversion is done by augmenting 

the objective function with a penalty term which is small at 

points away from the constraints in the feasible region-, but 

which gets very large as the constraints are approached.  The 

most commonly used form is the following: 

m  , 
<Mp,r)  =  F(p)  -  r I    7^T-y (2.20) 

where F(p) is to be minimized over all p satisfying 

C.(p) < 0f j = 1,2,..., m.  Here the penalty parameter r is a 
3   -    — 

positive number which must be made successively smaller in order 

to come as close to the constraints as possible. 

The most powerful mehtod so far developed to solve 

the unconstrained minimization problem is the Davidon-Fletcher- 

Powell variable metric method (Ref. 13, sec. 6.2.6) and it is 

usually coupled in practice with the interior penalty function 

approach to drive the optimization for decreasing r values. 

It proceeds as follows: 

<!>  Pq+1  =  Pq  +  "q ?q (2'21) 

where the directional vector S„ is calculated as: ~q 

(2)  S„ =  - H 7*(p„,r) (2.22) 
~q     ^q  ~q 

Here -V<|>(p i*)   is the well known steepest descent 

direction.  The matrix H is a modifier which takes care of 

the phenomenon called zig zagging which is the main cause of 

inefficiency associated with steepest descent algorithms.  We 

can write 
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fq  =  F(?q-1' §q-l' Sq' Sq-1' °q-l>               <2'23> 

where  g  =  Vcj)(prT,r) (2.24) ~q        ~q 

and     Sq-1  =  V<f,(Sq-l'r) (2.25) 

The calculation details of H will be omitted here 

but may be found in reference 13.  It can be shown that it is a 

positive definite approximation to the matrix of second partial 

derivatives (Ref. 13).  H usually is taken to be equal to the 

identity matrix I. 

(3)  Once S  is known, a  is calculated by solving 

the one-dimensional minimization problem (Ref. 13, Sec. 6.2.2): 

Find a  such that (f> (p  + a S ,r)  = <j> (a )  is minimum, provided 

p ,,  =  p  + a S  is in the feasible region.  Since <b(p,r) ~q+l     ~q    q ~q J T ~ 

is non-linear, either a quadratic or a cubic approximation can 

be used for $(a  )   as was discussed for Zoutendijk's method. 

Once a  is determined the qth step is completed. 

The following points should be noted about the in- 

terior penalty function method: 

1) The initial design must be in the feasible re- 

gion, i.e., C.(p ) < 0, j = 1,2,..., m and care must be taken 
n ~0  — 

if 

in calculating a to remain in the feasible region at all times. 

The augmented function loses its meaning outside the feasible 

region. 

2) The selection of an initial value for the penalty 
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parameter r is intuitive.  If the initial r is too large, the 

function <(>(p,r) will be easy to minimize, but the minimum may 

lie far from the optimum point of the original constrained pro- 

blem.  If, on the other hand, the initial r is too small, the 

function <j>(p,r) will be hard to minimize. 

3)  The minimum of the function <f>(p,r.) is deter- 

mined for each r. value and then r. is reduced to its next value 

r^+,.  This process continues until the convergence criteria 

for function F(p) is satisfied.  This nature of the algorithm 

tends to increase the number of iteration steps since smaller 

step sizes have to be employed near minimum points (Ref. 19). 

As described above, all three algorithms have cer- 

tain common features which can be summarized as follows: 

1) They all require the calculation of the merit 

function, the constraints, the merit function gradient and the 

constraint gradients at every iteration.  In the interior penalty 

function approach this involves all the constraints; in the 

other two methods only the currently active constraints are 

involved. 

2) All methods require a certain amount of algebra 

in the direction-finding process:  The calculation of the matrix 

H for the interior penalty function method, the linear pro- 

gramming solution for the Zoutendijk algorithm and the calcu- 

lation of the matrix P  for the gradient projection approach. 



26 

3) All the algorithms require the solution of a one- 

dimensional minimization problem, where care must be taken to 

remain in the feasible region.  For the interior penalty func- 

tion approach the one-dimensional minimization involves the 

calculations of the augmented function 4>(p,t) which is always 

non-linear, whereas for the other two methods, only the merit 

function F(p) is involved, which can be linear.  On the other 

hand, remaining in the feasible region requires very little 

effort for the interior penalty function method since the con- 

straints are inherent in the augmented function, for Zoutendijk's 

method it involves an interpolation only when new constraints 

are encountered, provided appropriate 0. values are chosen, for 

the gradient projection method, assuming we are working with 

non-linear convex constraints, an extra step is always required 

to come back to the feasible region. 

4) All methods involve certain parameters which can 

only be properly selected after enough experience with the 

particular method and with the particular optimization problem. 

The penalty parameters r. for the interior penalty function 

method, the scaling coefficients 6. for the usable-feasible 

directions method and the step size a  for the gradient pro- 

jection method. 

The above summary indicates that any choice of one of 

the algorithms over the other two is going to be problem depen- 

dent.  We have the following preliminary data for the aero- 

elastic optimization problem: 
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1) Objective function is linear in design parameters. 

2) Flutter and stress constraints are highly non- 

linear. 

3) Thickness constraints are linear. 

4) The calculation of the flutter constraint and its 

gradients are the major time consiming computational efforts. 

With this much information it is possible to discard 

the penalty function method, since it will not take advantage 

of the linearity of the objective function and since it will 

include all the constraints at all times.  Also because of its 

nature, (See page 25) it will tend to involve a larger number 

of iterations. 

To make a choice between the other two is more diffi- 

cult.  Since the objective function is linear, a one-dimensional 
it 

minimization procedure will not yield the step length a  for 

either method.  a must be determined some other way.  This can 
q 

be done empirically or can be based on some criteria such as 

the reduction in merit function (Ref. 21).  In choosing a , 

the main concern for Zoutendijk's approach will be the violation 

of new constraints whereas the main concern for the gradient 

projection method will be staying close to the feasible region. 

Proper 6. values must be selected for the Zoutendijk's approach 

whereas a proper way of coming back to the feasible region must 

be devised for the gradient projection method. 

The final choice for the optimization algorithm in 

this study is the gradient projection concept which was sub- 
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sequently modified to handle the constraint violations.  The 

main reason for this choice was to provide an alternative to 

the Zoutendijk's approach which has already been successfully 

used by several studies (Refs. 20, 21) on aeroelastic optimi- 

zation in recent years. 



CHAPTER 3 

STRUCTURAL FORMULATION 

3.1  Sandwich Idealization 

For the examples considered here a sandwich type 

structural idealization is used.  This type of structural 

idealization is well suited especially for the preliminary de- 

sign of most types of lifting surfaces.  This type of ideali- 

zation, as will be seen later, is also computationally very 

efficient. 

A sandwich plate (Figure 3.1) is the extension of the 

concept of I-beam into two-dimensions.  It consists of shear- 

carrying core material with negligible bending stiffness, 

covered on both sides with skins having high inplane stiffness. 

The following assumptions further define the model: 

1) t << d i.e., cover skins can be considered to be 

membranes with negligible bending and transverse shear stiff- 

ness. 

2) A line normal to the mid-surface in the unde- 

formed state remains straight and normal to the mid-surface 

across the core and the skins after deformation. 

3) Membrane stresses in the cover skins are constant 

across the thickness of the cover skins. 

4) Both cover material and core material are iso- 

tropic. 

29 
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Cover Skin 

T 
Fig.   3.1    Cross Section of  a Sandwich Plate 

,p (x,y) t 

P(x,y)t 

t 

Fig. 3.2  Cover Skin Thickness Distribution 



31 

With these assumptions, the following equations ex- 

pressing the membrane stresses in the cover skins in terms of 

second derivatives of the transverse displacement can be 

written: 

xy 

- Ed 

2(1 - v ) 
v 

0 

V 0 
*• 

w 
XX 

1 0 
■ 

w 
yy 

0 (l-v)_ w xy 

(3.1) 

The following equations give the plate bending 

moments in terms of second derivatives of the transverse dis- 

placement: 

f                     - 

M 
X 

1 V 0 

M 
y 

-E  d2t 
V 1 0 

2(1   -   v2) 

xy 
,                                               4 

_0 0 (l-v)_ 

w 
XX 

W 
yy 

w. xy J 

(3.2) 

In both of these equations v, the Poisson's ratio 

and E, the Young's modulus, are of cover skin material.  From 

equation (3.2) we can define the sandwich plate flexural 

rigidity term D as 

(3.3) D  = E d2t 

2(l-v') 

In all of the optimization problems discussed here, 

core thickness d is held constant and thickness t of both 

upper and lower skins is varied.  By using a non-dimensional 

scaling function p(x,y) it is possible to express a new skin 
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thickness distribution in terms of the initial uniform thickness 

distribution (Figure 3.2); 

t(x,y)  =  p(x,y)to (3.4) 

where t is the skin thickness of the initial design.  From this 

definition we have 

Po(x,y)  =  1 (3.5) 

Since the plate flexural rigidity term D is a linear 

function of t, (Eq. 3.3) the varying flexural rigidity D(x,y) 

can be expressed in terms of the initial uniform flexural 

rigidity as 

D(x,y)  =  p(x,y)DQ (3.6) 

The initial uniform mass per unit area of the sand- 

wich plate can be divided into variable and constant mass such 

that 

mQ = mv + mc = mQn  + mQ(l - n)      (3.7) 

where „, m 
n  = — (3.8) m o 

Here variable mass is the mass of the cover skins; constant 

mass is the mass of the core material.  For an actual wing, con- 

stant mass will include the mass of the spars, ribs and fuel. 

Since variable mass is a linear function of t, we can write 

m(x,y)  = mQ[p(x,y)n  +  1 - n]        (3.9) 

where m(x,y) is the total mass per unit area corresponding to a 

new cover skin thickness distribution. 

As can be seen, at any step of the optimization, by 

specifying the non-dimensional scaling function p(x,y) both 
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stiffness and mass parameters of the sandwich plate are easily 

defined in terms of the initial stiffness and mass parameters. 

3.2 Finite Element Idealization; 

Finite element idealizations are used to discretize 

the continuous structural examples.  The following finite ele- 

ments are employed: 

1) Constant thickness sandwich beam element 

2) Tapered sandwich beam element 

3) High-precision triangular sandwich plate bending 

element with linear thickness variation. 

Details of the element characteristics are in Appen- 

dices A, B, and C. 

The scaling function p(x,y) is discretized by either 

associating a p. with each element (for constant thickness ele- 

ments) or with each nodal point (for elements with linear thick- 

ness variation).  In this way a continuous function p(x,y) is 

transformed into a design variable vector p.  The initial design 

vector used in the present studies will be 

p T =  {1, 1, 1,..., 1, 1} (3.10) 

With this approach it is possible to write the mass 

and stiffness matrices in the following form: 

n 
K(p)  = I   p.K. (3.11) 
~       i  ~ 

n 
M(p)  = I   p.M. + M (3.12) 



34 

where M„ is the constant mass matrix, K. and M. are the indi- te ~ji    ~i 

vidual contributions of the design variable p. to stiffness and 

mass matrices respectively. We can further define initial mass 

and stiffness matrices as 

K  =  K(p ) (3.13) 

M   =  M(p ) (3.14) 

Using M we can write 

M„ = (1 - T))U (3.15) *c s»o 

which can be used to generate M from the initial mass matrix. 

The above representation of the mass and stiffness 

matrices enables us to generate mass and stiffness matrices for 

different design variable vectors p .  Element matrices, which J ~q ' 

are independent of the design variables.  Need only be computed 

and stored once at the beginning. 



CHAPTER 4 

AERODYNAMIC FORMULATION 

This formulation basically follows Olson's in reference 

6.  Two-dimensional, quasi-steady aerodynamic theory is used to 

obtain the aerodynamic forces.  It is assumed that the air flow 

is parallel to the x-axis (Figure 4.1) above the panel and the 

effect of any air below the panel may be neglected.  In terms 

of the transverse displacement function, W(x,y,t),. the aero- 

dynamic pressure acting on an infinitesimal element dxdy is 

dxdy   (4.1) Ap(x,y,t)  = —9 
q i /2 

_        2       - 
3W   1 ,M°° "2 x 8W 
^   U VTi  9t 

where q is the dynamic pressure, M^ is the free-stream Mach 

number, and u is the flow velocity. 

It is possible to separate the transverse displace- 

ment function w(x,y,t) into functions of space and time 

W(x,y,t)  = W(x,y)eyt (4.2) 

where, in general, u is a complex number 

\i    =     ß + iw (4.3) 

The borderline between stability and instability is defined by 

vanishing 3.  At the flutter condition the motion is given by 

elw which is harmonic. 

35 
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W(x,yft) = W(x,y)e yt 

AI = m (pn + 1—n) y W dx dy 

dx 'I 
AP: 

2q 9W 
2 _ x)l/2 "5x (Ml - 1) 

dxdy 

AP,q = 

-  NT - 2 2q  oo 
U (M2-l)3/2 

y W dxdy 

Fig. 4.1  Sandwich Panel in Supersonic Flow 
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Substitution of equation (4.2) into equation (4.1) 

allows the separation of the aerodynamic force into 

Ap =  [Apa +  Apd]e
yt (4.4) 

where 

APa - ./*  ..1/2 it *<* (4-5> 
*  00 ' 

is the primary aerodynamic force, and 

2 
,,   MT -2 

AP* =  [^ —^—TTö-ly W dxdy (4.6) d     u  (M2-1)3/2 

is the aerodynamic damping. 

Ap is a function of ■*—; to include its effect into 
SI O A 

the matrix structural equation it is necessary to derive an 

aerodynamic matrix.  This can be done by calculating the vir- 

tual work: 

V a * Apa "  ,M2
2*  1/2 (M* -1) oo 

w || dxdy  (4.7) 

where w(x,y) is the virtual displacement.  In the finite ele- 

ment representation W(x,y) will usually have the following form: 

W(x,y)  =  fT T W (4.8) 

where f is the vector of interpolation functions in x and y, 

T is the transformation matrix that relates interpolation func- 

tion coefficients to the element generalized displacements, and 

W is the vector of element generalized displacements, which are 
~e 
element nodal point displacements. 
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Introducing equation (4.8) into equation (4.7) gives 

V  =  W  A W a    ~e  ~e ~e (4.9) 

where 

A  =  T  a  T ~e     ~  ~e ~ (4.10) 

and 

-2SL 

oi-i>1/2 f |^ (fT) dxdy (4.11) 

Here A&  is the consistent aerodynamic matrix for an element. 

Apd is a function of W(x,y).  Its effect can be in- 

cluded by deriving an Aerodynamic Damping matrix, D .  Follow- 

ing the same steps as above, we can obtain 

D  =  T d T 
Äe    ~  ~e ~ (4.12) 

where 
,,  M  - 2 ,   _  2q_  °°  

-S     U  (M2 - l)3/2  y 
ffTdxdy (4.13) 

It should be noted that the double integral in equation 

(4.13) is the same as the one required for the derivation of the 

element mass matrix for constant mass. 



CHAPTER 5 

CONSTRAINTS 

In this chapter equations expressing the flutter, 

stress and thickness constraints in terms of the design variable 

vector p are derived. 

5.1 Flutter Constraint 

In order to express the flutter constraint in terms of 

p, it is necessary to write the equation of motion for the sys- 

tem.  In the finite element approach this can be derived from 

the equation of motion for an element. 

The element stiffness can be represented by the ele- 

ment stiffness matrix K which can be derived from strain energy. 

It will be a function of p(x,y) which, in turn, can be expressed 

in terms of the elements of p. 

The contribution, AI, of the inertia force (Figure 

4.1), 

AI  = m (pn + 1 ~ n)y W dxdy        (5.1) 

can be represented by the element mass matrix, M , which can be 

derived from either kinetic energy or from virtual work.  It 

will also be a function of p(x,y).  References 15 and 16 can be 

mentioned as good sources for detailed derivations of mass and 

stiffness matrices. 

The contributions of Ap , the primary aerodynamic 

39 



40 

force (Equation 4.5), and Ap,, the aerodynamic damping (Equa- 

tion 4.6), can be represented by the element aerodynamic matrix, 

A , and element damping matrix, D , derivations of which have 

already been discussed in Chapter 4. 

We can write the element equation of motion in terms 

of these matrices; 

F_  =  [K (p)  +  y2M (p)  +  A   +  y D ]W_        (5.2) ~e     ~e ~e       »e      »e ~e 

where F and W are generalized forces and displacements 

respectively.  They are related to the element nodal point de- 

grees of freedom.  We can rewrite equation (5.2) by using non- 

dimensional matrices K , M , A and D ; ~e'   ~e'   ~e ~e 

Fe  =    [D0Ke(p)    +  -/4.2ie(p)    + Jl     1/2   1% 
00 ' 

+ &,/: "1/2' ^|e]we       (5.3, 
00     * 

where £ is a convenient dimension used in scaling all finite 

element dimensions when deriving K . M . Äö and D .  It should 
KC   ~c   sjG        ~C 

be noted that D = M for p = 1.  The matrix coefficients in «e  »e 

equation (5.3) can be rearranged such that we have 

?e - Do[?e(p) + (^2 5e(p) + ao5e + V> O °e]™e   (5'4) o 

where D 

u,  =  ( °-)1/2 (5.5) 
0     m £4 o 
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is a convenient frequency scale factor 

a 
(M, 
^ ™- t~ (5.6) 

o     ,..2 2-L)1/2     Do 
00 

is the non-dimensional dynamic pressure parameter, and 

M2 - 2      , 
2q     °°     1 /r 7\ 

g«o = u   (M2 _ 1)3/2 moWo 
(5'7) 

N
  00        ' 

is the non-dimensional aerodynamic damping parameter. 

The matrices K , M , Ä and D . and vectors F  and ~e  «e  ^e    «e ~e 

W can be assembled in the usual manner to form the system equa- 
~e 
tions of motion.  For no external forces, these equations can 

be written as 

[K(p) + (£-)2 M(p) + aQA + gao<&-> D]W = 0        (5.8) 
~ ~     o ~       o 

where W is the vector of system generalized displacements, which 

are related to the system nodal point degrees of freedom.  Here 

K(p) and M(p) have the forms expressed in equations (3.11) and 

(3.12).  It should be also noted that 

D  =  M (5.9) z ~° 

where M is the same as in equation (3.14). 
~o 

For q      ¥  0 Equation (5.8) can be recognized as a 
ao 

quadratic eigenvalue problem in (J~-) .  We can reduce this equa- 
o 

tion into a set of coupled first order equations by introducing 

X = y/wo (5.10) 

V = XW (5.11) 
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and 
V 

U = K 
W 

(5.12) 

Using equations (5.10) and (5.11) in equation (5.8) 

we get 

[K + a A] W + g   D V  =  - X M V ~   o«  ~   3ao ~ ~        ~ ~ 

and from equation (5.11) we have 

V =  X W 

(5.13) 

(5.14) 

or 

and 

-M  [K + a A] W - g  M"1 D V = X V 

V  =  X W 

(5.15) 

(5.16) 

Equations (5.15) and (5.16) can be rewritten by using 

U of equation (5.12); 

C U  =  X U (5.17) 

where 

C = 

g  M-1 D - M-1[K + a  A] 
2:    «     O ~ 

(5.18) 

Equation (5.17) is a linear eigenvalue problem of size 

2N x 2N where N is the number of system degrees of freedom.  For 

under damped systems (see ref. 24 for critical damping, under 

and over damped systems) equation (5.17) has N complex conjugate 

eigenvalues and corresponding N complex conjugate eigenvectors. 
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Recall that from (5.12), the last half of the eigenvectors 

(i.e., w) are modes shapes of motion, while the eigenvalues are 

the corresponding complex frequencies scaled by u which is 

real and positive.  In the complex frequency the real part is 

the damping part, the imaginary part is the frequency of 

oscillatory motion (equations 4.2 and 4.3).  Complex mode shapes 

indicate that there are phase differences between different 

points of the structure in motion. 

In Chapter 4 it has been pointed out that the border- 

line between stability and instability is defined by the real 

part of \i  becoming zero.  Since X = y/w , the eigenvalues with 

positive real parts indicate aerodynamic instability, or flutter. 

This gives us the flutter constraint as; 

Cf =  Real (X) <  0 (5.19) 

where X is any eigenvalue of the equation (5.17). 

For a given damping parameter g   (it should be pointed 

out that any existing structural damping can be represented by 

adding a structural damping parameter to the aerodynamic damp- 

ing parameter), and matrices K, M, D and A, the flutter con- 
£   »   Z ~ 

dition can be reached by increasing a  from zero.  The value of 

a that causes flutter is called a  .  Since the final minimum- o cr 

weight design is required to have the same flutter speed as the 

initial design we have the matrices K , M » D and A and the ~o  ~o ~    ~ 

relationship 

M 
äO 
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which reduces the C matrix to; 

So 

•g   I ^ao « "So1 [5o + ao £] 

(5.20) 

For a = 0, the eigenvalues of the C matrix are sim- 

ply the damped natural frequencies of the system.  The real 

parts of all the eigenvalues will be -g  /?.  As a is increased; 

magnitudes of the imaginary parts of two complex conjugate pairs 

get closer (generally the lowest two frequency pairs are in- 

volved) .  The real parts remain the same until the imaginary 

parts become nearly equal (a required condition for energy trans- 

fer from one mode to the other).  After that, the imaginary 

parts reamin equal but increase in magnitude, the damping of one 

pair increases as the damping of other pair decreases.  At a 

= a  one pair will have g  , the other pair will have zero cr    * ^ao c 

damping, which means the motion at flutter is pure harmonic. 

For a  > a  the same trend continues; the real part of the 

flutter pair becomes positive (indicating instability), the 

other pair gets further damped, such that the equation 

Real (A,)  +  Real (A-) = -g ao (5.21) 

is always valid (see figure 5.1). 

As a is increased from zero to a the real parts 

of all the other pairs remain at ~<3ao/2' the imaginary parts 

change slightly. 
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W u2/wo 

- ß/u0fU/u0 

Fig. 5.1 The Real and Imaginary Parts of the Flutter 
Eigenvalues for Increasing a Values 

The numerical determination of a  for the initial 

uniform design requires solving equation (5.17) for different 

a    values with C matrix of equation (5.20).  Only the eigen- 

values need to be calculated.  By looking at the real parts of 

the eigenvalues it is possible to close in on a  using a bisec- 

tion method. 

During the optimization, in order to calculate the 

flutter constraint, matrix C of equation (5.18) has to be formed. 

The aerodynamic matrix A is already generated for the preliminary 

flutter analysis, the damping matrix D is obtained by storing 
as 

M .  Matrices M and K need to be generated at every design step 

according to the equations (3.11), (3.12) and (3.15).  In the 

problems considered here, the flutter constraint is kept active 
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at all design steps.  The eigenvalues of the C matrix are 

calculated by first reducing the matrix into a Hessenberg form 

(Ref. 18) and then applying QR iterations (Ref. 18) on the 

Hessenberg form.  Among the eigenvalues the pair with the lar- 

gest positive real part is chosen to be the flutter eigenvalue. 

For cases where all the eigenvalues have negative real parts, 

the pair with the smallest imaginary part in magnitude is chosen 

to be the flutter eigenvalue. 

Other points of interest:  a) During the optimization 

process, this way of expressing the flutter constraint enables 

us to detect flutter involving modes other than the original two 

modes,  b) The flutter constraint is highly non-linear in p; the 

functional relationship of the matrix C to p is through matrices 

K and M which are functions of p as expressed in equations 

(3.11) and (3.12). 

5.2  Stress Constraint 

Stress constraints are considered only for the speci- 

fied uniform static loading conditions used as a first approxi- 

mation to the aeroelastic loading. 

Von Mises yield criterion is used to obtain stress 

constraint equations.  For cover skin stresses where 

a       =  a       = a  =0, the Von Mises yield criterion reduces to zz    zy   zx    ' J 

i [(a - a )2 + a 2 + a 2 + 6 T2 ] = K2     (5.22) 6   x   y     y    x      xy 

or ? 2     2      2 
a * - a a    + a      + 3 x   = 3IT (5.23) x    x y   y      xy 
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Here K is yield strength in pure shear or 

1 
K  = (a 3   yield pure tension) (5.24) 

Using equation (3.1) for stresses we can write equa- 

tion (5.23) in terms of curvatures W  , W  and W  ; 
yy     y 

— 2[{Wxx + v V  " (Wxx + vWyy> (vWxx + V 2(1 - v) 

+  (VWXX + Wyy)
2 + 3(1-V)2 Wxy

2] = 3K2 
(5.25) 

form: 

We can reduce equation (5.25) to a standard constraint 

(v2 - v+1)(W2X + W
2
y) - (v2 4v +DWxxWyy 

+ 3(1 - v)2W2   - A < 0 (5.26) 

where 
6K2(1 - v)2 

Ed (5.27) 

In the finite element analysis, for any point on the 

structure where a stress constraint is applied, curvatures Wxx, 

W  and W  can be calculated from the element nodal point dis- 
yy    xy 

placement vector W .  Using equation (4.8) we can write 

•                        * 
w PT   1 XX ~xx 

w _ fT 

yy ~yy 

w fj, I   xy J 
(x,y) 

~xy 

«e~e (5.28) 

(x,y) 



48 

We can be obtained from the system nodal point dis- 

placement vector W, which in turn can be calculated from the 

equation of equilibrium for static loading; 

K(p)W =  L (5.29) 

where K is the system stiffness matrix and L is the load vector. 

From equations (5.28) and (5.29) we get 

W. xx 

W 
yy 

w xy 
(x,y) 

^T n f ~xx 

fT 

~yy 

fT 

~xy 

T X  W ^e^e ~ (5.30) 

- (x,y) 

where the rectangular matrix X picks up the vector W from W 

i.e: 

WQ  =  XÄ W ~e     ~e ~ (5.31) 

It should be noted that, in equation (5.30) only W 

is a function of p (according to equation (5.29)).  This fact 

will be used in deriving the equations for stress gradients in 

Chapter 7. 

Stress constraints are only considered for the delta 

wing problem.  The load vector is calculated for a uniform load 

distribution by condensing loads at the nodal points.  The in- 

tensity of the uniform load distribution is determined to pro- 

duce yield for the uniform initial design.  The constraints are 

applied at the nodal points where transverse displacement 
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second derivatives are obtained directly from nodal point de- 

grees of freedom (see Chapter 9 for details). 

5.3 Thickness Constraint 

Thickness constraints are applied on the elements of 

the design variable vector p.  Since negative thickness is not 

physically possible, the condition p. _> 0 must be satisfied by 

all pi at all stages of the optimization.  The following is the 

standard constraint equation for the ith design variable 

C.•  =  pm.  - p. < 0; 0 < p .  < 1     (5.32) ti     min   l —     — min —      w.-»*/ 

For cases where nodal point cover skin thickness para- 

meters used as design variables, the above equation is sufficient 

to constrain thickness within elements since linear thickness 

distribution is assumed. 

pmin =  0*1 is used in the optimization examples. 



CHAPTER 6 

GRADIENT PROJECTION ALGORITHM WITH 
MULTIPLE CONSTRAINTS 

The basic ideas of the gradient projection method have 

been discussed in Section 2.4 in forming a comparison with the 

other popular algorithms.  It was pointed out that the main pro- 

blem with the algorithm was to stay on or within the convex con- 

straints.  The equations for the algorithm used in this study, 

where the minimization of the objective function and returning 

to violated constraints are performed in the same step, will now 

be derived. 

We assume that at the design point p  there are in J     c ~q c 

critical constraints, which for convenience are considered to 

be numbered 1, 2, ..., m , i.e. constraints for which 

C^(p„)  >  0 , j = 1, ..., m_ (6.1) j   ~q  — c 

we want to calculate a new design point P_+1 where; 

F(p ..)  < P(p . (6.2) ~q+l       ~q) 

and 

C.(Pq+1)  <  0 , j = 1, ..., mc (6.3) 

We define Ap  as the vector required to take us from 

eq 
to eq+i' l-e' 

50 
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ßq+i   
=   eq   + % <6'4> 

Using linear approximations for F(p) and C.(p) , 

j = 1, ..., m at p  we can write AF, the change in the objec- 
c   ~q# 

tive function, and AC., j = 1, ..., m , changes in the critical 
j c 

constraints along Ap as; 

AF  =  Ap ^ VF(p ) (6.5) ~q     ~q 

AC. = APrr
T VC.(p ), j = 1, . .., m     (6.6) 

j   ~q  ] ~g ^ 

We define a norm for Ap ; 

R
q
2  =  Aeq

T Aeq 
{6-7) 

where R , the step size, is a pre-selected positive number for 
q 

this particular design step (see Sections 8.3, 9.4, 9.5 and 

Chapter 10 for the selection of the step size). 

Now the calculation of Ap  can be cast as an optimi- 

zation problem with equality constraints: 

Maximize  (-AF) 

mc Subject to  AC.  =  - C.(p ), j = 1,  , 

and  R 2  -  Apq
T Apq =  0 

so that the requirements in equations (6.2) and (6.3) are met to 

within a linear approximation. 

Using Lagrange multipliers y., j = 1, ..., mc and v 1 R 

we define the following functional: 
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m 

T   =   -Apg
T  VF(pg)      +        I   y.    [Apg

T  VC.(pg)      +     C.(pg)] 

+   vR(R
q
2 - Aeq

T Aeq> (6.8) 

(ST  =  0 gives 
m c 

-VF(pg)  + I   yjVCjtPg) - 2vRApg  =  0 (6.9) 

Aeq
TvCj(Pq)  + ^(Pg)  =  0, j = 1, ..., mc       (6.10) 

2        T 
R   -  Ap   Ap   =0 (6 11) q       ~q   ~q VO.XJ.; 

We can rewrite equations (6.9) and (6.10) using matrix 

notations as follows: 

~VF(£q)  +  gq U - 2Veq  =  9 (6.12) 

2qT ASq  +  9q  =  ? (6.13) 

where 

?q  = [VCl(Pq)' ^C2(pq), ..., VCmc(pq)] (6.14) 

T 
H   = tyl' *V *••' V1 (6.15) 

?qT = ICl<Pq>' C2(Pq) Cmc(eq>] (6-16) 

From equation (6.12) we obtain 

A6q  =  251 [~VF(Pq)  +  9q Hi (6.17) 
R ~" 
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which can be substituted in equation (6.13) to give 

1  G„T[-VF(p„)  +  G u]  +  c   =  0 (6.18) 2VR »q     
vCq'     ~qKJ     ^q 

or 

G^T G^ Vi  =  -2vp C  +  G„T VF(p ) (6.19) «q  »q ~        R ~q     «q     £q 

Assuming columns of G are linearly independent, the 

T matrix [G  G ] is nonsingular and can be inverted.  Thus equa- 

tion (6.19) yields: 

U  =  -2vn[G„
T G 1   C  + [G„T G_]   G„T VF(p)    (6.20) 

~     R «q ^q   ~q  *q «q  «q   ~q 

Using this expression for y in equation (6.17) we get 

Ap   = -^-   [G [G T G ]   G T - I]VF(p ) ~q     2vR 
l
sq

l«q  ~qJ   sq    3   ^q' 

T    _1 -G rG„  G 1  C (6.21) 
zi *q «q  ~q 

vR can be calculated by using equation (6.11).  For simplicity 

we can write 

Ap  = — e +  f (6.22) ~q    vR ~ 

where    e    =    i  [Grt[G_T G  1       Gn
T -  I]VF(p   ) (6.23) <•    s;q «q ~q  s:q  *  ~q 

!  =  -fq[^qT fq1"1 ?q (6*24> 

Now equation (6.11) can be written as 

R„2  "  <TT- eT +  fT) (^r e + f)  = 0 (6.25) q      VR ~     ~  vR ~   ~ 
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which reduces to 

[Rq
2 - c]vR

2  - bvR -  a = 0 (6.26) 

T 
where      a = e e (6.27) 

b =  2eTf (6.28) 

c =  fTf (6.29) 

Using expressions for e and f we get 

b  =  VP(p )T[G [G TG ]   G T - I][-Ga[Ga
TGn]  ]C       (6.30) ~4   ;M ZH  ^q    ^q    ~   ~q ^q ~q    ~q 

or 

b  =  VF(p )T [0]C  =  0 (6.31) 
~q   ~ ~q 

which means that e is orthogonal to f.  Using this information 

in equation (6.26) we get 

a    1/2 vR = (—2^ ) (6.32) 
Rq  "C 

and finally Ap becomes 
~q 

R 2 - c 1/2 
Ap_ = (-3— )    e + f (6.33) ~q        a        ~   ~ 

where all the terms have already been defined. 

It should be noted that 

2e  =  S (6.34) 

where S has been defined in equation (2.13).  So we have the 

design change vector Ap  as being composed of two orthogonal 
^4 
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R 2-c 1/2 
vectors, e*  = C-3 )   e, and f, where e1 is in the projected 

gradient direction along which the changes in constraints are 

zero and f is in an orthogonal direction along which the changes 

in constraints are equal to the constraint violations at pq in 

magnitude with opposite signs, that is 

G T e'  =  0 (6.35) 
*q  * 

and 
G T f =  -C (6-36) 
*q ~   ~q 

For cases where the norm of the vector f (i.e. c) is 

bigger than R 2, the equation (6.33) cannot be used for the cal- 
SI 

culation of Ap , since the term inside the square root becomes 

negative.  For such cases the following relationship is used to 

calculate Ap ; 

Ap   = -*■    f (6-37> 
~9    /c~" ~ 

where only the component required to come back to the violated 

constraints is employed and the relationship 

2    .  T . 
Rq   =  ASq  Aßq 

is still valid. 

Figures 6.1 and 6.2 illustrate the design steps given 

by equations 6.33 and 6.37 on a two-dimensional design space. 

For the example problems presented in Chapters 8 and 
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VCW 

Arc Radius =  R 

Fig.   6.1    Primary  Design  Change Vector 

Merit Function 

Feasible  Region 

vci<eq> 
Fig. 6.2 Secondary Design Change Vector 
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9, the flutter constraint is kept active at all design steps. 

Since a  is determined to produce flutter for the initial uni- 

form design, p  is on the flutter constraint.   For design steps 

where Cf <  0, Cf is set equal to zero when constructing the 

vector C . ~q 

For the delta-wing problem the stress constraints are 

considered to become active when the condition C > - e is 

satisfied for any nodal point.  Here e is a positive parameter 

which is made successively smaller as the optimum design is 

approached (see section 9.4).  For cases where -e <_  Cg £ 0, Cg 

is set equal to zero when constructing the vector C . 

Thickness constraints become active when there is a 

violation (i.e. pi <_  Pmin) • 

It should be noted that the derivation of Ap as out- 

lined above does not include any provision for stress or thick- 

ness constraints which are not active for p but becomes active 
""Si 

for p  ,.  This fact created some problems in the earlier runs 

for the delta wing optimization; mainly a stress or thickness 

constraint which was not active at a particular p became 

severely violated at p ., and it took several iterations to 

bring the design back into the feasible region during which the 

flutter constraint had to be calculated several times.  Since the 

calculation of the flutter constraint is the main time-consum- 

ing computational effort, the following procedure is used to 

reduce the computation time: After calculating p  ^ the stress 

and thickness constraints were checked, if there was a new stress 
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or thickness constraint violation, a parameter aD(0 < aD < 1) is 

calculated using linear interpolation to scale Ap  so that 
~q 

6q+l  =  Pq  +  «R AEq (6.38) 

is in the feasible region (see Figure 6.3 for a 2~dimensional 

illustration).  The procedure proved to be very successful. 

Other points of interest about the algorithm and its 

application to the aeroelastic-stress optimization are: 

1) The method maximizes (-AF) subject to returning 

back to the feasible region, but there is no guarantee that the 

condition F(p   ) < F(p ) will be satisfied, especially for 

cases where Ap  is required primarily for coming back to con- 

straints.  However the application of the algorithm showed that 

this fact does not create problems in practice. 

2) Considering the fact that the structural weight is 

a linear function of the design variables, equation (6.5) is an 

exact expression, however the equations (6.6) are exact only for 

linear constraints (e.g. thickness constraints) and are approxi- 

mate for non-linear constraints (e.g. flutter and stress con- 

straints) .  Their accuracy for non-linear constraints is a 

function of R , the step size, and the curvature of the con- 
si 

straints. 

3) Although the algorithm is capable of handling con- 

straint violations, getting far away from the feasible region 

would be undesirable since the gradient information obtained at 

such points would be misleading. 
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Pq+1   "   ßq1 

Fig.   6.3     Reduction in the  Design Change Vector Due to a 
New Constraint Violation 
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4) From 2) and 3) it becomes apparent that the choice 

of R is extremely important.  A very large value for R could 
4 q 

make the algorithm unstable.  On the other hand a very small 

value for R would mean an increased number of iterations for 

convergence. 

5) The change in the merit function from one design 

to the next, is used as the convergence criteria for the appli- 

cations (see results in Chapters 8 and 9). 

6) For a single constraint the above equations can be 

simplified by replacing G with VC(p ).  Equation (6.21) be- 

comes 

where 

%  =  2vT t|vC(pq) - VF(pq)] -^VC(pq) 

(6.39) 

A =  VC(p )T VF(p ) 

B  =  VC(p )T VC(p ) Kq      ~q 

vR can be calculated using equation (6.32).  Employing 

equation (6.39) we now have 

1      A2 
a = ±   [D _ !_] (6.40) 

C2 

c = -g- (6.41) 

where 

D =  VF(p )T VF(p ) 
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For a given p  find the critical constraints, 

calculate G  and C 
^q   ~q 

Form A = G  G 
*   *q «q 

Invert A 

Form C = B Gr, * *q 
- I Form B = G„ A 

x       *q * 
-1 

Calculate 

e = i C VF(p )* 

? " " 5 Sq 
T T 

a=e e and c=f f 

Rq is 

given 

Replace 

Pq = £q+l (0r eq+l> 

Yes 

Calculate ? 
R  - c 1/2 

No 

AP  =  (-a  -)    e + f 
Calculate 

R 
AP„ = -a f 
~q  /c~ ~ 

No 

Check Con- 
vergence 

No 

Yes 

Out 

Check for new 

Constraint 

Violations 

Calculate 

p ,. = p   +  A p„ ~q+l   ~q      ~q 

Yes 

Calculate a. *VF(p ) is constant and 
~q 

need to be calculated 
only once 

Calculate 

eq+i ■ eq 
+ aR Aeq 

Fig. 6.4 Flow Chart for the Gradient Projection Algorithm 
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These equations yield 

x       BR 
2 - C 2 1/2 

5— =  (—3 ^_) (6>42) 
R       BD - A 

and equation (6.39) becomes 

BR 2 - C2 1/2 C 
Ap  =  (__3 ^)   [| vc(p )- VF(p )] - =3. VC(p)    (6.43) BD - A       u    ~4      ~4     D ~q 

Figure 6.4 shows a simplified flow chart of the 

algorithm based on the above developments. 



CHAPTER 7 

GRADIENT CALCULATIONS 

The gradient projection algorithm developed in Chap- 

ter 6 requires the calculation of the gradients of the objective 

function and the gradients of the critical constraints.  In 

this chapter the analytical expressions used for these calcu- 

lations are derived. 

7.1 Gradients of the Objective Function 

It has already been indicated that the objective 

function used in this study is linear in the design variables. 

This means that the gradient vector VF(p ) is a constant vector 

everywhere in the design space.  It needs to be calculated only 

once and stored.  The expressions for objective functions and 

the gradients are given in the text whenever the need arises 

(Chapters 8 and 9). 

7.2 Gradients of the Flutter Constraint 

The flutter constraint was given in equation (5.19) as 

Cf =  Real (X) £ 0 

where X was determined by the complex eigenvalue problem (5.17). 

In equation (5.17) the coefficient matrix C contains the mass 

and stiffness matrices M and K, which are functions of p.  For 

the gradient calculations we need the terms g— [Real (X)] 

63 
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expressed analytically. 

Equations derived by Rogers (Ref. 11, similar equa- 

tions were given by Van de Vooren in Ref. 12) are employed to 

achieve this.  For the general eigenvalue problems with real or 

complex eigenvalues and eigenvectors 

c^Mx)^  + B(x)<b± (7.1) 

and 

a.AT(x)9.  + BT(x)9.  = 0 
i~   -l    ~   ~i 

(7.2) 

where the right and left hand eigenvectors are normalized such 

that: 
e. A <|>. = l (7.3) 

Rogers (11) gives the following expression 

ai/X  =   " 2i [ai£,x 
+ !,x]$i (7.4) 

where ,x means differentiation with respect to x. 

The flutter equation (5.17) can be put into the forms 

of equations (7.1) and (7.2).  We start from equations (5.13) 

and (5.14) and rewrite them as: 

g  DV  +  [K + a  A]W = - X M V (7.5) 

- M V = - XMW 

which can be reduced to 

(7.6) 

# !   9 
1 

6"|~~M 
Ü + 

Z     |         ~ 

g  P yao ~ K + a A z o « 

Ö U  =  0 (7.7) 
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where ü = 
y 
W as defined in equation (5.12). 

Equation (7.7) is of the same form as equation (7.1) 

By transposing equation (7.7) we get 

M 

Q 
■T 

I 
I 

0 
U + 

g  D 
ao » 

K + a A 
«     O« 

-M 

0 
Ü = 0 (7.8) 

which is analogous to equation (7.2). Here the symmetry pro- 

perty of matrices M, D and K are used. A is not symmetrical. 

Equation (7.8) can be reduced to the form 

where 

C = 

C U =  X U 

-g  M-1 D yao a  * 
I 

-M"1 [K+CC AT] 
AS      JB    *"* ** 

l  0 

(7.9) 

(7.10) 

from which the left hand eigenvectors, Ü, can be calculated 

using the eigenvalues of C matrix. 

Similar to equation (7.3) we can write 

-T U 

M 
i 
•I— 

0 M 
U  =  1 (7.11) 

by which the left and right hand eigenvectors can be normalized. 

Using the analogy of equation (7.4) and remembering 

that only M and K are functions of p, we get 
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X. 
if P- 

-T U. ~x 

M 
'PJ 
0 

0 

M 
,Pj 

0 

-M 
:,Pj 

K 

O 
U. 

(7.12) 

substituting 

A^^ =  (3i + i wi)/wo = 3± + i wi     (7.13) 

reduces equation (7.12) to 

i,Pj    i,Pj 
-T 
HI 

3-M    i  K 
l«iP^ I   Sf P-;  J_l J 

-M     ! ß.M 
s,p.  i "ls ,p. 

+ l 
W.M    !   0 
1ä,P. ,   « 
 J_J  
O     i w.M 
a      I  l*fP. 

Hi 

(7.14) 

When right hand and left hand eigenvectors U and Ü are 

calculated from equations (5.17) and (7.9) and normalized 

according to equation (7.11), the real part of the equation 

(7.14) will give us the required gradients. 

Using equations (3.11) and (3.12) for K and M, we can 

write: 

K    =  K. (7.15) 

and 

M    = M. 
*»Pj     ~D 

(7.16) 

where K. and M. are the individual contributions of the design 
~ J ^ J 



67 

variable p. to the stiffness and mass matrices respectively. 

These matrices can be assembled from element mass and stiffness 

matrices in a process similar to assembling system mass and 

stiffness matrices.  This time, however, only the elements 

associated with a particular p. will contribute. 

-        T It should be noted that C is not C , since 

-g  M-1 D 
ao ~   x 

[K + a AT]M-1 
ftj     o ~  •** 

o 
(7.17) 

which is different.  Even though C will have the same eigen- 

values as C, its eigenvectors are different from those of C. 

In practice the right and left hand eigenvectors are 

calculated by employing inverse power iteration (Ref. 18) using 

flutter eigenvalue as the spectrum shift. 

7.3 Gradients of the Stress Constraints 

Differentiation of equation (5.26) with respect to p. 

yields 

CslD.    -    2(* -u+1)(WxxMxx,pj
+wyyMyy,pj' 

" <*2 " iv  + "CWyy.Pj + wyywxx,Pj» 

+ 6(1 - V)  W W xy xy,p. (7.18) 

The gradients of the curvatures can be obtained from 

the gradients of the element nodal point displacement vector; 
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similar to equation 5.28 we can write 

W xx,p. 

W 
yy* P. 

w 
xy,p. 

(xfy) 

~fT 

~xx 

~yy 

~xy 
           __ 

T W *e~e,p. 

(x,y) 

(7.19) 

Here ^?e p can be obtained from the gradients of the system 

nodal point displacements vector W.  These in turn can be calcu- 

lated from the equation of equilibrium (Eq. 5.29): 

K(p)W =  L (7.20) 

K    W + K(p)W 
-fPj ~   a ~ ~#p. =  L n     = ° ~, p . (7.21) 

or 

K(p)W    =  - K   W 
* ~ ~#Pj       *,P-   ~ 

(7.22) 

W can be solved from equation (7.20) and W   can be solved 
-,Pj 

from equation (7.22).  Using the rectangular matrix X defined 

in section 5.2, we get; 

W 
xx,p. 

W 
yy/pj 

w 
xy, P. 

(x,y) 

fT 

~xx 

fT 

~yy 

fT 

~xy 

T X W 
~e~e~, p. (7.23) 

(x,y) 

The calculation of K   was discussed in connection 

with the flutter constraint gradients. 
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7.4 Gradients of the Thickness Constraints 

From equation (5.32) we get 

cti,Pj - -«ij <7-24> 

where 6.. is the Kronecker's delta. 



CHAPTER 8 

SEMI-INFINITE PANEL OPTIMIZATION 

The problem of semi-infinite panel optimization with 

flutter constraint is considered first since there are control 

theory and finite element solutions to this problem available 

for comparison in literature (references 7 and 8).  First, the 

computer routines to determine a  are developed, then the 

routines to calculate the flutter gradients based on equations 

of section 7.2 are coded.  The results are checked against 

gradients calculated numerically.  Once these routines are 

established, a gradient projection routine is applied to opti- 

mize the panel with only a flutter constraint.  This routine 

had already been developed and applied to problems involving 

simple algebraic merit functions of a few variables with non- 

linear constraints whose gradients were easy to evaluate. 

Different finite element combinations are tried in order to 

find the best representation from the point of view of optimi- 

zation.  Later, the multiple-constraint gradient projection 

routine, that was developed primarily for the delta wing pro- 

blem is applied to the best finite element representation to 

study the effect of damping on optimization. 

8.1 Structural Model 

The following assumptions define the structural model: 

1)  The panel has length I,   is simply supported at 

70 
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both ends in the direction of the air flow and is free of in- 

plane forces. 

2) The panel is of infinite dimension in the direc- 

tion perpendicular to the air flow, i.e. the problem is one 

dimensional. 

3) The panel is of sandwich construction. 

4) The effect of any air below the panel can be 

neglected. 

Figure 8.1 shows the cross section of the structural 

model. 

U 

Fig. 8.1 Semi-Infinite Simply Supported Sandwich 
Panel in Supersonic Flow 
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8.2  Analysis to Determine a 
 cr 

Five constant thickness beam elements are used across 

the span I  to represent the panel.  Mass, stiffness, aerody- 

namic and damping matrices for a constant thickness sandwich 

beam element are given in appendix A.  Span length I  is used to 

scale the finite element dimensions.  a  is determined for 
LI 

different damping values, g c     ^ ^ao 

In Table 8.1 first two eigenvalue pairs of the C 

matrix are presented for increasing a values and for different o 

damping parameters, g  .  The starting a values are estimated oto o 

from a graph developed by Houbolt (Ref. 2 3) which is reproduced 
2 in reference 3.  There is a TT  factor difference between the 

damping parameter g used by Houbolt and the damping parameter 

g  used in this study such that: ^ao J 

g  = g  , 2 (8.1) 

Numbers in Table 8.1 exhibit the flutter phenomenon 

clearly.  It can be seen that for small damping values the a 

for which the imaginary parts become equal is very close to a  , 

whereas for high damping values a  is much higher than the a 

for which the frequencies merge (as illustrated in figure 5.1). 

In Table 8.2 a  values and flutter frequencies are given for 

all of the damping cases considered.  In Figure 8.2, the a 

values versus <3ao/-
2  are plotted against the curve given by 

Houbolt, (His solutions are obtained by solving the differen- 

tial equation of flutter).  This shows that the a  values 
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TABLE 8.1 CRITICAL EIGENVALUES FOR INCREASING a  VALUES o 

ao 
Xl =  (f3i Ti  "lV^o X2 = (ß. +i (o2)/MO 

9 ~ = °-° 'ao 

341.25 

342.50 

* 342.901 

343.75 

0.000 +i 31.20 

0.000 +i 31.81 

0.000 +i 32.38 

+ 0.804 +i 32.40 

0.000 +i 33.45 

0.000 +i 32.92 

0.000 +i 32.38 

- 0.804 +i 32.40 

g Ä = 2.0 

341.25 

343.75 

* 344.214 

345.00 

- 1.000 +i 31.19 

- 0.196 +i 32.39 

0.000 +i 32.40 

+ 0.264 +i 32.43 

- 1.000 +i 33.43 

- 1.804 +i 32.39 

- 2.000 +i 32.40 

- 2.264 +i 32.43 

g  = I.OTT2       g /0 = 4.935 'ao              'ao/2 

361.25 

367.50 

* 374.570 

400.00 

- 1.168 +i 32.59 

- 0.579 +i 32.80 

- 0.001 +i 33.03 

+ 1.651 +i 33.87 

- 8.702 +i 32.59 

- 9.290 +i 32.80 

- 9.869 +i 33.03 

-11.52  +i 33.87 

g  = 2.OTT
2
        9„n/i  =  9-87 'ao               'ao/2 

457.50 

463.75 

* 468.594 

477.50 

- 0.414 +i 34.83 

- 0.178 +i 35.06 

0.000 +i 35.23 

+ 0.315 +i 35.54 

-19.33 +i 34.83 

-19.56  +i 35.06 

-19.74  +i 35.23 

-20.05  +i 35.54 

♦Indicates a cr 
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TABLE 8.2  PANEL FLUTTER BOUNDARIES AND FLUTTER 

FREQUENCIES FOR DIFFERENT DAMPING VALUES 

g a er Xf = +i(uf/Wo) 

0.0 342.901 +i     32.38 

1.0 343.230 +i     32.38 

2.0 344.214 +i     32.40 

I.OTT
2 374.570 +i     33.03 

1.5TT
2 414.375 +i     33.95 

2.OTT
2 468.594 +i     35.54 

6.0 

5.0 

2.0 

1.0 

3.52 

• Finite Element Results 

  Analytical Curve Given by 
Houbolt 

■ ■ ■—i—»- 
i ... ■ i 

1.5 0.5      1.0      A-a      2.0   gaoA2 

Fig. 8.2  Flutter Boundaries for Different Damping Values 
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obtained by using five constant thickness beam elements are 

slightly lower but in good agreement with the analytical solu- 

tions . 

8.3 Optimization Results 

The first set of optimization results were obtained 

by using a gradient projection subroutine which can only handle 

one constraint.  It is based on equations (6.39 - 43).  For 

this set of results only the flutter constraint was considered 

and it was kept active all the times.  Various methods of R 
q 

selection and various convergence criteria were used with 

different success in terms of number of iterations and the 

accuracy of the final results.  However the main purpose of 

this initial study was to determine a proper finite element 

model to get the optimum shapes comparable to other methods 

(mainly control theory method used by Weisshaar, in ref. 7). 

The first optimization attempt was made using the 

same model used for calculating the a  values, i.e., five con- 

stant thickness beam elements across the span with a mass ratio 

p. associated with each element.  Using    equation (A.2) 

the merit function for this model can be written as 

5 
F(p)  = I   p. (8.2) 

i=l x 

with the gradient 

VF(p)T =  {1, 1, 1, 1, 1} (8.3) 

2 
A damping parameter of g =     l.Oir    was  used to- 
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gether with a = 375.00 which is slightly (0.11%) higher than 

the a  = 374.57 (Table 8.1) for this damping.  n = 0.80 was cr 

used for the ratio of initial cover skin mass to total mass. 

The initial flutter gradients, VC.p(p ), were checked 

against numerical gradients which were obtained by calculating 

-5 the flutter eigenvalue with a small increment (e = 10  ) to 

each design variable p. successively.  The agreement was found 

to be extremely good.  During the optimization, the gradients 

were calculated for all p. and the symmetry property was used 
3Cf    9Cf 

to check the accuracy of the gradients (i.e. ~—— = ■*—— , 
9C.     3Cf 

dpl     dp5 
■rr—1 = TT—-.  See ref. 4 for the proof that the optimum shape 
3p2     3p4 
is symmetrical about mid span). 

The initial and final values for the merit function, 

the design parameters (p. and p5 are omitted because of 

symmetry), and the flutter eigenvalue pair are given in table 

8.3.  The results are also plotted in figure 8.3.  It can be 

seen that thickness constraints never come into the picture. 

The other point of interest is that the flutter frequency of 

the optimum shape is 1.62% higher than the initial value.  This 

model produced 4.96% structural weight reduction which means 

3.97% reduction in total weight.  These results are very close 

to the results presented by Craig (Ref. 8) using 5-constant 

thickness elements and zero damping. 

The crudeness of the optimum shape for constant 

thickness element suggested that linearly tapered elements be 

used.  Therefore the same problem was solved using 5 tapered 

elements across the span.  The element mass, stiffness, aero- 
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TABLE 8.3  PANEL OPTIMIZATION - 5 CONSTANT THICKNESS ELEMENTS 

(NO THICKNESS CONSTRAINT) 

g  = l.Oir2 n = 0.80 a = 375.00 o 

F(p) pl p2 p3 Xf 

INITIAL 5.000 1.000 1.000 1.000 0.0319 +i 33.041 

FINAL 4.752 0.7998 1.2377 0.6772 0.0319 +i 33.576 

TABLE 8.4  PANEL OPTIMIZATION - 5 TAPERED ELEMENTS 

(NO THICKNESS CONSTRAINT) 

g n  = l.Oir2 *ao n = 0.80 a = 375.00 o 

F(p) Pl p2 p3 Xf 

INITIAL 5.000 1.000 1.000 1.000 0.0319 +i 33.041 

FINAL 4.546 0.0795 1.2457 0.9479 0.0319 +i 33.268 

TABLE 8.5  PANEL OPTIMIZATION - 6 TAPERED ELEMENTS 

(NO THICKNESS CONSTRAINT) 

g  = l.Oir2 n = 0.80 a = 375.00 

F(p) pl p2 p3 p4 Xf 

INITIAL 6.000 1.000 1.000 1.000 1.000 0.0021 +i 33.068 

FINAL 5.057 0.0846 1.0918 1.4552 -0.1211 0.0021 +i 35.727 



78 

VD 

m 

** 

o 
00 

• 
o 

II 

tr 

r- 
r- 

• 

CM 
• l= 
o 

• 

II 

0 
Ö 

tn 
n 

00 
n 
CM 

• 

CM 

Q. 

o 
o 
00 

• 

rH 

in 

o 

CO 
CO 
OJ 
ß 
M 
U 

•H 
XI 
EH 

O 
53 

(0 
•P 
C 
(U 

(1) 
rH 
w 
to 
to 
(D 
C 
^ 
Ü 

•H 
XJ 
EH 

-P 
C 
(Ö 

■P 
CO 

0 
U O 

o 
in • 

in 
l r- 

n 
fi 
0 II 

•H 
■P     0 
(Ö   Ö 
N 

•H    »• 

■H -P 
•P c 

O (ö n 
rH  -P 

CU   CO 
c 
o fd 

PL)  CJ 

n 

oo 

fr 
•H 
fa 

CM 00 

O 

ID 

O O O 



79 

dynamic and damping matrices for tapered sandwich beam element 

are in appendix B.  This time a mass ratio p. was associated 

with each nodal point which increased the number of design 

variables from 5 to 6.  The merit function for this model is 

(using equation B.2); 

1      5       1 
P(P)  =  2-Pl + J>i + 2P6        (8'4> 

and the merit function gradient is; 

VF(p)T =  {|, 1, 1, 1, 1, |} (8.5) 

The results are given in table 8.4 and figure 8.4. 

This time the increase in flutter frequency is 0.69%.  The 

structural weight reduction is 9.08% and the total weight 

reduction is 7.27%, which show a considerable improvement over 

constant thickness element representation.  However when the 

optimum shape in figure 8.4 is compared with the optimum shapes 

obtained by control theory methods (Ref. 7, pp. 129, 132, 133) 

the inability of 5 tapered element model to reproduce the dip 

at the center became obvious.  This suggested the use of 6 

tapered elements. 
2 

The same problem (i.e. g   =  l.Oir , a = 375.00, 

n = 0.80) was also solved by using six tapered elements with 

merit function; 

1       6     1 
F(p)  = fp-L  +   I   PL  +  jP7 (8.6) 

and merit function gradient 

VF(p)  =  {1/2, 1, 1, 1, 1, 1, 1/2}       (8.7) 
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The results are in table 8.5 and figure 8.5.  It can 

be seen that this model gave the required results as far as the 

optimum shape is concerned.  However, it also indicated the 

necessity of using some sort of thickness constraints.  Without 

increasing the number of constraints two different approaches 

were tried with some success: 

1) Once the condition p. < p .  is encountered p. l   mm l 

was replaced by Pm^n  and this design variable was excluded from 

the rest of the optimization process. 

2) Every time the condition p. < p .  is encountered u l   min 

p. was replaced by Pm^n  but kept as a design variable. 

Both of these methods were effective in applying the 

thickness constraints.  However both had undesirable aspects: 

Method 1) reduced the size of the optimization problem, which 

meant solving not the original problem but a projection of it on 

a subspace.  The optimum design obtained this way was not the 

true optimum.  Method 2) interfered with the calculations of 

the gradient projection method which either meant more iter- 

actions or no convergence. 

After the gradient projection routine, which could 

handle multiple constraints, was developed for the delta wing 

problem, it was applied to the panel problem.  The same struc- 

tural model was used (i.e. six tapered elements), Pm;jn = 0.10 

and n = 0.70 were chosen to form a better comparison with the 

optimum shape given by Weisshaar (Ref. 7, p. 129).  Each thick- 

ness constraint was handled as a separate constraint according 
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to the equations (5.32) and (7.24).  Different damping values 

were used to investigate the effect of damping on the optimized 
2 

shape and weight reduction,  g  = 0.0 ITT was used instead of 

of zero damping.  This was done to avoid trouble in calculating 

the eigenvectors, since at flutter there are repeated eigen- 

values for zero damping and repeated eigenvalues cause problems 

with inverse iteration. 

The results of importance are given in tables 8.6-9. 
2 

In figure 8.6 the optimum shape for g  = 0.0ITT  is plotted 

against the control theory result given by Weisshaar who uses 

zero damping and the same Pmi_ and n.  This plot shows that the 

six tapered element model is very efficient in approximating the 

optimum shape.  In figure 8.7 all the optimum shapes for 

different dampings are plotted. 

The results show that the damping practically has no 

2 2 
effect on the optimum shape up to g^_ = I.OTT .  For g  = 1.5TT 

the optimum shape is somewhat changed but still similar.  How- 
2 

ever for q  = 2.OTT the optimum shape is drastically effected, 
ao 

The results also show that the effect of damping on weight 
2 

reduction is favorable, however slight, up to gaQ = 1.5TT .  The 

structural and total weight reductions for different models and 

for different damping values are given in table 8.10.  Percen- 

tages taken from Weisshaar's work (Ref. 7) belong to the optimum 

shape reproduced in figure 8.6. 

The increases in the flutter frequency from initial to 
2 

final design are  4.45%,   6.32%,   8.72%  and 63.8%   for gaQ;   O.OITT   , 

2 2 2 
I.OTT   ,   1.5TT   ,   and 2.OTT    respectively. 
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TABLES 8.6-9  PANEL OPTIMIZATION WITH DIFFERENT 

DAMPING VALUES - 6 TAPERED ELEMENTS 

(THICKNESS CONSTRAINTS) 

g  = O.OITT2   n = 0.70      p .  = 0.1   a = 343.1375 3ao                         min          o 

F(p) pl P2 p3 p4 xf 

INITIAL 6.000 1.000 1.000 1.000 1.000 0.0461 +i 32.404 

FINAL 5.146 0.1000 1.0853 1.3878 0.1000 0.0477 +i 33.845 

g  = I.OTT2    n = 0.70      p„.  = 0.1   a = 375.000 'ao                         mm          o 

F(p) pl p2 p3 p4 xf 

INITIAL 6.000 1.000 1.000 1.000 1.000 0.0021 +i 33.068 

FINAL 5.053 0.1000 1.0933 1.3332 0.1000 0.0024 +i 35.161 

g  = 1.5TT2    n = 0.70      pm.  = 0.1   an =  414.375 rao                         min          o 

F(p) pl p2 p3 p4 xf 

INITIAL 6.000 1.000 1.000 1.000 1.000 0.0016 +i 33.954 

FINAL 4.852 0.100C 1.1287 1.1971 0.1000 0.0017 +i 36.917 

g  = 2. OTT2   n = 0.70      p.„ = 0.1   a^ = 469.625 3ao                        min         o 

F(p) pl p2 P3 p4 xf 

INITIAL 6.000 1.000 1.000 1.000 1.000 0.0016 +i 35.310 

FINAL 2.551 0.1000 0.8490 0.3263 0.1000 0.0026 + 57.830 
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TABLE 8.10  WEIGHT REDUCTIONS FOR DIFFERENT MODELS 

Model ^ao/fr TWR SWR 

5 C.T. Elements 
n = 0.80 1.0 3.97% 4.96% 

5 Tapered Elements 

n = 0.80 1.0 7.27% 9.08% 

6 Tapered Elements 

" = °-70' pmin = °-10 

0.01 9.97% 14.25% 

1.0 11.06% 15.80% 

1.5 13.39% 19.13% 

2.0 40.23% 57.45% 

Control Theory Solu- 
tion By Weisshaar 
(Ref. 7), n = 0.70, 
p .  = 0.10 mxn 

0.0 11.51% 16.44% 

TWR: % Total Weight Reduction 

SWR: % Structural Weight Reduction 

TWR = n SWR 
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2 Damping values over g  = I.OTT  are rare for most lift- 

ing surfaces; however, they are possible, especially for members 

where a special viscous core material is used for noise 

suppression. 

To give an idea of the optimization process, step by 
2 

step results are given in table 8.11 for the g  = I.OTT  case. 

The step size, R , pattern for this run was predetermined, using 

earlier experience with single constraint gradient projection 

algorithm.  In figure 8.8 merit function and flutter constraint 

values are plotted against step sizes (positive constraint values 

indicate constraint violation).  The option of reducing step size 

when a new thickness constraint is encountered (Equation 6.38) 

has not been used for these runs. 
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CHAPTER 9 

CANTILEVERED DELTA-WING OPTIMIZATION 

The results of semi-infinite panel optimization showed 

that the aeroelastic optimization approach presented in chapters 

2, 3, 4, 5, 6 and 7 is basically feasible.  The second problem 

attempted here is the minimum-weight design of a cantilevered 

delta wing with flutter, stress and thickness constraints.  This 

problem is two dimensional and considerably larger in size com- 

pared to the panel problem.  The same structural model is used 

in the optimization problem with three different combinations 

of constraints:  1) Flutter and thickness constraints 2) Stress 

and thickness constraints 3) Flutter, stress and thickness con- 

straints.  The multiple-constraint gradient projection routine 

which was discussed in Chapter 6 was first applied to the opti- 

mization problems including the flutter constraint. 

9.1  Structural Model 

The structural model is a cantilevered delta wing with 

aspect ratio 1.  It is assumed to be of sandwich construction 

with constant core thickness d and with variable skin thickness 

t.  The air flow is assumed to be parallel to the cantilevered 

edge and at both sides of the wing.  Figure 9.1 shows the plan 

view of the delta wing.  The finite element lay-out, numbering 

of the nodal points and the elements are also shown in figure 

9.1.  The length of the clamped edge is L, which is used to 

91 
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u: Air Flow 

x 

Fig. 9.1 Cantilevered Delta Wing in Supersonic 

Flow - Finite Element Grid 
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scale all finite element dimensions. 

A high-precision triangular plate bending element deve- 

loped by Cowper (Ref. 22) and others is used for the finite ele- 

ments.  A design variable p. is associated with each nodal point. 

The cover skin thickness variation within an element is assumed 

to be linear.  The equations for the generation of element 

stiffness and mass matrices for a constant thickness plate ele- 

ment are given in reference 22.  These equations are modified to 

obtain the equations for a sandwich plate with linear cover skin 

thickness distribution.  The equations for the generation of 

element aerodynamic and damping matrices are derived.  The ele- 

ment characteristics, and the equations for the generation of 

element mass, stiffness, aerodynamic and damping matrices are 

given in appendix C.  The actual element matrices are generated 

numerically inside the computer. 

There are six nodal point degrees of freedom, namely 

the transverse deflection and its first and second derivatives 

(W. W , W , W , W , W ).  The system, therefore, has 60 de- ' x' y' xx' xy  y 
grees of freedom before the boundary conditions are applied. 

Prescribed boundary conditions are applied for the nodal points 

on the clamped edge, which are 1, 2, 4 and 7 (Figure 9.1).  The 

fixed-edge condition implies that W = W = 0 along the x-axis, 

from which we also get Wv = Wv„ = Wvv = 0.  Therefore nodal 
X     *^j;     xx 

points 1, 2, 4, and 7 will only have W  freedom.  Enforcement 

of the prescribed boundary conditions reduces the system degrees 

of freedom to 40.  These boundary conditions are essential for 

any type of structural analysis, and they can be assumed suffi- 
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cient for a load-deflection or a dynamic (natural frequencies, 

flutter boundaries etc.) type analysis.  However the second 

derivatives of the transverse deflection (W  , W  , W) ob- 
xx  xv  JLJL 

tained this way for nodal points on free edges (nodal points 3, 

6, 10, 9 and 8 at figure 9.1) will not satisfy the free edge 

natural boundary conditions for plate-bending moments (bending 

moments and second derivatives are related through equations 

3.2).  For the structural model used in optimization, in order 

to obtain more realistic stress constraints for free edge nodal 

points, these degrees of freedoms are constrained to satisfy 

the free edge conditions.  These natural boundary conditions 

reduce the number of system degrees of freedom to 29 (the alge- 

braic details for the application of boundary conditions are pre- 

sented in appendix C). 

The 40 degree of freedom system is used to obtain the 

natural frequencies and flutter boundaries of the delta wing 

which are compared to the results given in literature (Refs. 22, 

6).  The 29 degree of freedom system is also used in the same 

calculations to see the effect of additional constraining on 

natural frequencies and flutter boundaries.  Only the 29 degree 

of freedom system is used for the optimization procedures. 

Poisson's ratio v = 0.3 and skin mass ratio n = 0.80 is 

used in all the calculations presented below. 

9.2 Natural Frequencies 

Natural frequencies are calculated to check the 

accuracy of the derivation of system mass and stiffness matrices. 
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TABLE 9.1  NATURAL FREQUENCIES OF THE DELTA WING 

Mode No. Natural Fre- 
quencies Given 
by Cowper et al 
(Ref. 22) 

Natural Fre- 
quencies of 
40 D.O.F. 
System 

Natural Fre- 
quencies of 
29 D.O.F. 
System 

% 
Difference 

1 36.6419 36.6419 37.0083 1.0% 

2 139.3265 139.3265 142.7298 2.4% 

3 194.1408 194.1408 198.3996 2.2% 

4 333.829 333.829 338.277 1.3% 

5 455.374 455.374 459.011 0.8% 

6 593.238 593.238 617.275 4.0% 

7 671.342 671.342 727.063 8.4% 

8 811.612 811.612 848.693 4.5% 

9 969.650 969.650 1030.104 6.2% 

10 1126.614 1126.614 1171.494 4.0% 
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The equation; 

M"1 K W = w* W (9.1) 

is used for this purpose.  In reference 22 the first 10 natural 

frequencies are given for a cantilevered triangular plate with 

aspect ratio 1 and Poisson's ratio v = O.3.. The finite element 

lay out is exactly the same.  There, actual material and dimen- 

sional properties are used.  Since the matrices derived here 

are non-dimensional, a comparison is obtained by scaling the 

natural frequencies obtained here with a factor such that the 

first natural frequencies are identical.  Both 40 and 29 degree 

of freedom systems are used in these calculations.  The scaling 

factor is obtained with respect to the first natural frequency 

of the 40 degree of freedom system.  The results are presented 

in Table 9.1.  The natural frequencies obtained by the 40 de- 

gree of freedom system are exactly the same as the ones given 

by the authors of reference 22.  The natural frequencies ob- 

tained by 29 degree of freedom system are slightly higher be- 

cause of the extra constraining.  On the average, the first 

five frequencies are 1.5% higher, and the last five frequencies 

are 5.4% higher. 

9.3 Flutter Boundaries 

In reference 6 Olson gives the flutter boundaries for 

cantilevered delta wings, for different sweepback angles A 

(Figure 9.1) and for different finite element grids.  He uses 

the same aerodynamics with zero damping and the same finite ele- 

ments.  For A = 45° and for 3x3 grid the flutter boundary is 
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TABLE 9.2  CRITICAL EIGENVALUES FOR 40 D.O.F. SYSTEM 

(gao = 0.2468) 

ao Xl -   (ßl +1 "lVuo X2 =   (ß2  +i a2)/ao 

0.0 -  0.1234  +i     6.172 -  0.1234  +i  23.473 

70.0 -  0.1234  +i  14.196 -  0.1234  +i  21.418 

86.245 -  0.1213 +i  18.567 -  0.1255 +i  18.573 

86.3 +  0.0688 +i  18.572 -  0.3156  +i  18.572 

86.4 +  0.2583 +i  18.577 -  0.5051 +i  18.577 

88.0 +  1.1949  +i  18.653 -  1.4416  +i  18.653 

TABLE 9.3  CRITICAL EIGENVALUES FOR 29 D.O.F. SYSTEM 

(g  = 0.2468) 

ao 
Xl -   (ßl ?i  »lVioo x2 =   (ß2  +i (ü2)/(fl0 

86.35 -  0.1234  +i  16.275 -  0.1234  +i  21.535 

91.00 -  0.1234  +i   17.281 -  0.1234  +i  20.976 

95.00 -  0.1234  +i  18.682 -  0.1234  +i  19.963 

95.50 -  0.1234  +i  19.159 -  0.1234  +i 19.536 

*95.60 +  0.0754  +i  19.352 -  0.3221 +i  19.352 

107.00 +  2.8007 +i  19.914 -  3.0475 +i  19.914 

♦Indicates The Value Used For Optimization 
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given as a   =  86.254.  Here the eigenvalues of the C matrix cr ~o 

are calculated for increasing a values.  A damping value of 

g   =  0.025TT  (= 0.2468) is used.  In table 9.2 the first two ao 

eigenvalue pairs for the 40 degree of freedom system are pre- 

sented,  a  is determined roughly to be a  =86.3.  The slight cr 3 J       er ^ 

difference can be explained with the existence of small damping 

which does tend to increase the a  .  Table 9.3 is for the 29 cr 

degree of freedom system where a  is determined roughly to be 

a  =95.6.  This is a 10.8% increase from the a  for the 40 cr cr 

degree of freedom system.  The calculation of the flutter boun- 

dary is a stability problem and the elimination of any existing 

free edge moments could explain the rather considerable improve- 

ment on the flutter boundary (for the 40 degree of freedom sys- 

tem the free edge moments are not zero).  The increase in the 

flutter frequency is 4.2%. 

Using a proper scaling factor the flutter frequency for 

the 40 degree of freedom system is found to be in very good 

agreement with the results given by Olson (Ref. 6). 

9.4 Optimization Results 

Using equation (C.64) given in appendix C for the weight 

of a triangular element, the merit function can be derived to 

be; 

F(p)  =  px + 3p2 + 3p3 + 3p4 + 6p5 + 3p6 + P7 + 3p8 

+ 3p9 + p10 
(9'2) 
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From which the merit function gradients are obtained as; 

VF(p)T = '{1, 3, 3, 3, 6, 3, 1, 3, 3, 1}    (9.3) 

These expressions are used in obtaining all of the 

following optimization results. 

9.4.1 Optimization with Flutter rnd Thickness Constraints 

The first results presented here are for the optimi- 

zation of the delta wing with flutter and thickness constraints. 

The gradients of the flutter constraint are checked numerically 

(as described for the panel problem) and found to be extremely 

accurate.  The 29 degree of freedom system is used in obtaining 

the system matrices.  Other parameters for the optimization are: 

g   =  0.025TT , a  =95.6 (From table 9.3) and n = 0.80.  The ao cr 

small damping value is used to separate critical eigenvalues 

at flutter which increases the efficiency in calculating the 

corresponding eigenvectors. 

In table 9.4 the step sizes, the design variables, the 

merit function, the flutter eigenvalue, the flutter constraint 

and the active thickness constraints are presented for 21 de- 

sign steps.  The flutter constraint is kept active for all de- 

sign steps and it is defined as Cf = (3f - ßf0)/
u
0 since $fo 

corresponding to a  =95.6 was slightly greater than zero. 
vl 

These results were obtained in four different computer runs; 

the first three runs for six design steps each and the last run 

for three design steps.  On the university of Texas at Austin 

CDC 6600 each design step took approximately 21 seconds.  The 
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TABLE 9.4  DELTA WING OPTIMIZATION WITH FLUTTER 

AND THICKNESS CONSTRAINTS 

Given Rq 
0 .4 0 .4 0 .4 C .3 C ).3 

R 0 .4 0 .4 C .4 C .290 C ).3 

Design 
to. (q) 0 1 • 2 3 4 5 

pl 1.000 0.9684 0.9414 0.9222 0.9169 0.8977 

p2 1.000 0.8933 0.7977 0.7214 0.6881 0.6218 

p3 1.000 0.9476 0.9202 0.9225 0.9376 0.8769 

p4 1.000 0.8604 0.7233 0.5924 0.5086 0.4180 

p5 1.000 0.8473 0.6863 0.5072 0.3390 0.1118 

p6 1.000 1.0985 1.1789 1.2272 1.2037 1.0982 

p7 1.000 0.9748 0.9506 0.9292 0.9162 0.8901 

p8 1.000 0.8340 0.6664 0.5015 0.3979 0.3067 

p9 1.000 0.7697 0.5287 0.2773 0.1000 0.1 

p10 1.000 0.8947 0.7876 0.6809 0.6129 0.5730 

F(p) 27.000 24.132 21.243 18.302 15.988 13.296 

3f/too 0.0754 -0.0764 -0.0778 -0.0793 -0.0818 -0.0903 

f/u)0 19.352 18.618 17.827 17-035 16.624 16.393 

cf 0.00 -0.1518 -0.1532 -0.1547 -0.1572 -0.1657 

The. 

Con. 

™ 9 
- 

9 

AF/R -7. 17 -7 .22 7.35 -7 .98 -8 .97 -7. 

«~r    2 gao = 0.025TT ,  acr = 95.6, n = 0.80, Cf = (ßfq - 3fo)/ü) 
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TABLE 9.4 (Continued)  DELTA WING OPTIMIZATION WITH FLUTTER 

AND THICKNESS CONSTRAINTS 

Given 
R 

q 
0.3 0 .2 0. 2 0. 2 0.2 0.2 

R 
q .091 0 .2 0 . 164 0. 2 0.139 0.182 

Design 
No.(q) 

6 7 8 9 10 11 

pl 0.8796 0.8470 0.8189 0.7749 0.7401 0.7125 

p2 0.5721 0.4775 0.3977 0.2800 0.1973 0.1000 

p3 0.8367 0.7487 0.6756 0.5741 0.5015 0.4020 

p4 0.3804 0.2941 0.2257 0.1422 0.1000 0.1 

p5 0.1000 0.1 0.1 0.1 0.1 0.1 

p6 1.0860 1.0159 0.9601 0.8956 0.8456 0.7408 

p7 0.8769 0.8477 0.8240 0.7925 0.7715 0.7369 

p8 0.2641 0.1739 0.1000 0.1 0.1 0.1 

p9 0.1 0.1 0.1 0.1 0.1 0.1 

p10 0.5594 0.5295 0.5032 0.4611 0.4247 0.3990 

F(p) 12.634 11.254 10.123 8.904 8.069 7.077 

3f/wo -0.0904 -0.0905 -0.0906 -0.0908 -0.0914 -0.0916 

Wf/u)0 
16.330 16.741 17.120 17.678 18.171 19.515 

Cf -0.1658 -0.1659 -0.1660 -0.1622 -0.1668 -0.1670 

The. 

Con. 

5,9 5,9 5,8,9 5,8,9 4,5,8,9 2,4,5 

8,9 

AF/Rq -6.9 0 -6. 88 -6. 10 -6. 00 _i 5.47 -4.E 

9( xo 
0.02! 

. 2 
)1T , C »er = 

95.6, n = 0.80 ' Cf " " (*fc !-e fo>'M D 
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TABLE 9.4 (Continued)  DELTA WING OPTIMIZATION WITH FLUTTER 

AND THICKNESS CONSTRAINTS 

Given 
0.2 0.1 0.1 0.1 0.1 0.1 

Rq 0.2 0.1 0.1 0.1 0.1 0.1 

Design 
SIo. (q) 12 13 14 15 16 17 

pl 0.6837 0.6524 0.6373 0.6221 0.6164 0.5955 

p2 0.1 0.1 0.1 0.1 0.1 0.1 

p3 0.2611 0.3077 0.2262 0.3052 0.2133 0.2854 

p4 0.1 0.1 0.1 0.1 0.1 0.1 

p5 0.1 0.1 0.1 0.1 H 0.1 0.1 

p6 0.6115 0.5786 0.5284 0.5428 0.5444 0.5369 

p7 0.6886 0.6638 0.6390 0.6280 0.5985 0.5826 

p8 0.1 0.1 0.1 0.1 0.1 0.1 

p9 0.1 0.1 0.1 0.1 0.1 0.1 

p10 0.3824 0.3106 0.3101 0.2534 0.2790 0.2153 

F(p) 6.173 
i  

6.086 5.650 5.847 5.567 5.660 

ßf/uo 2.527 -0.0421 4.191 1.429 3.994 2.419 

f/uo 32.107 24.034 31.752 26.760 31.818 27.107 

Cf 2.452 -0.1175 4.116 1.353 3.918 2.343 

The. 

Con. 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

AF/R 
q 

-0.87 -4.35 + 1.97 -2.81 +0.93 

gao =  0.0257T   ,     acr =  95.6, n = 0.80,    cf =  (ßfq - 3f0)/u0 



103 

TABLE 9.4 (Continued)  DELTA WING OPTIMIZATION WITH FLUTTER 

AND THICKNESS CONSTRAINTS 

Given R 
q 

0.1 0.05 0. 05 0. 05 

R 
q 0.1 0.05 0. 05 0. 05 

Design 
No.(q) 18 19 20 21 

Pi 0.6006 0.5988 0.5907 0.5766 

P2 0.1 0.1 0.1 0.1 

p3 0.2154 0.2614 0.2205 0.2437 

p4 0.1 0.1 0.1 0.1 

p5 0.1 0.1 0.1 0.1 

p6 0.5900 0.6004 0.5757 0.5521 

p7 0.5568 0.5577 0.5456 0.5358 

p8 0.1 0.1 0.1 0.1 

p9 0.1 0.1 0.1 0.1 

P10 
0.2551 0.2388 0.2354 0.2021 

F(p) 5.629 5.781 5.560 5.502 

3f/wo 2.897 -0.0084 2.311 1.838 

f/U)0 
32.060 24.514 31.794 27.754 i 

cf 
2.822 -0.0838 2.236 1.762 

The. 

Con. 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

2,4,5 

8,9 

AF/Rq -0.32 +3.04 -l 1.40 -] ..17 

'ao = 0.025-rr2, acr = 95.6, n = 0.80, Cf = (ßfq - ßf0)/u< 
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calculation of the eigenvalues and the left and right hand 

eigenvectors corresponding to the flutter eigenvalue of the C 

matrix takes approximately 14 seconds. 

Table 9.4 reveals that the first thickness constraint 

violation occurs at the 4th design step at nodal point 9 which 

is the reason for reduction of R3 (i.e. norm of the design 

change vector from p3 to p4) from 0.30 to 0.290.  The second 

thickness constraint is encountered at the 6th design step for 

nodal point 5 which causes Rg to be reduced from 0.3 to 0.091. 

Thickness constraints for nodal points 8, 4 and 2 are encountered 

at design steps 8, 10 and 11 respectively.  Each time a new 

thickness constraint is encountered there is a reduction in the 

given step size due to the provision discussed in Chapter 6 

(Equation 6.38) . 

Until the 11th design step the flutter constraint is 

closely followed within the feasible region.  At design steps 

12, 14, 16, 18 and 20 the flutter occurs involving the second 

and third modes.  To clarify this phenomenon the first three 

eigenvalue pairs are given in table 9.5 for several optimiza- 

tion steps.  It can be seen that the imaginary parts of the 

eigenvalues of the second and third modes come closer as the 

optimization progresses until the 12th design step where they 

become close enough for the energy transfer necessary for the 

flutter phenomenon. 

In figure 9.2 the merit function F(p) and flutter con- 

straint Cf are plotted against step sizes.  It is interesting 

to note that there is very little weight reduction after 11th de- 
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TABLE 9.5  FIRST THREE EIGENVALUE PAIRS 

DURING OPTIMIZATION 

Design 
No. (q) 

xi=<*: , +10)-). L    1/(00 V2=(32 +i V/wo x3=(ß3 +i »3)/tto 

0 0.075 +i 19.35 - 0.322 +i 19.35 - 0.123 +i 38.03 

5 - 0.090 +i 16.39 - 0.192 +i 25.87 - 0.276 +i 42.30 

10 - 0.091 +i 18.17 - 0.209 +i 26.94 - 0.345 +i 39.29 

11 - 0.092 +i 19.51 - 0.208 +i 27.75 - 0.387 +i 37.33 

12 - 0.099 +i 22.49 + 2.527 +i 32.11 - 3.192 +i 32.49 

13 - 0.042 +i 24.03 - 0.214 +i 29.27 - 0.510 +i 34.74 

14 - 0.093 +i 25.71 + 4.191 +i 31.75 - 4.914 +i 32.06 

15 + 1.429 +i 26.76 - 1.746 +i 27.23 - 0.473 +i 35.36 

16 - 0.079 +i 25.71 + 3.994 +i 31.82 - 4.741 +i 32.14 

17 + 2.419 +i 27.11 - 2.754 +i 27.46 - 0.474 +i 35.46 

18 - 0.063 +i 24.54 + 2.897 +i 32.06 - 3.655 +i 32.42 

19 - 0.008 +i 24.51 - 0.235 +i 29.58 - 0.556 +i 34.57 

20 - 0.030 +i 25.44 + 2.311 +i 31.79 - 3.107 +i 32.22 

21 + 1.838 +i 27.75 - 2.116 +i 28.27 - 0.550 +i 34.09 
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sign which is in the feasible region.  The main reason to carry 

the optimization beyond this point was to see the behaviour of 

the flutter constraint.  At design step 19 the merit function 

is F(p,Q) = 5.781 which is minimum among feasible designs.  This ~iy 

correspond to 78.6% structural and 62.9% total weight reduction. 

It can be shown that the weight reduction at the 11th design 

step corresponds to 94% of the weight reduction achieved at the 

19th design step.  It is interesting to note that using smaller 

step sizes and greater number of design cycles best possible 

was to  obtain F(p) = 5.700.  The corresponding thickness dis- 

tribution was very similar to the design vector p,g of table 9.4. 

In figure 9.3 the plan view of the delta wing with skin 

thickness contours corresponding to the minimum-weight design 

(p,q) is presented. 

9.4.2  Optimization with Stress and Thickness Constraints 

The second set of results presented here are for the 

optimization of the delta wing to satisfy stress and thickness 

constraints.  The stress constraints are placed at the nodal 

points where the constraints can be evaluated directly from 

the second derivatives contained in the nodal point degrees of 

freedom (Equation 5.26).  It was assumed that the delta wing is 

uniformly loaded.  The load level is so adjusted that the nodal 

point with the highest combined stress (Equation 5.23) is at 

yield for the initial uniform design.  The stress constraints 

are scaled so that C = -100 means zero stress and C = 0 means s s 

yield. 
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The significant facts about 22 design steps are pre- 

sented in table 9.6.  These results were obtained in a single 

run which took approximately 90 seconds on the CDC 6600.  Each 

design cycle takes little less than 4 seconds.  Successively 

smaller values of E (same as defined in Chapter 6) were used to 

determine critical stress constraints (C  > -e).  The values 

employed were:  e = 25 for the first 6 design steps, e = 15 

for the following 6 design steps and e = 5 after the 12th de- 

sign step.  In table 9.6 the values of the critical stress con- 

straints are given.  The only active constraint for designs 0, 

1, 2, and 3 is the stress constraint at nodal point 7.  The re- 

duction of R3 from 0.30 to 0.115 is due to the violation of 

stress constraint at nodal point 8.  The reductions in R^, R„, 
6   8 

R9 and R1Q are due to the violation of thickness constraints 

at nodal points 9, 6, 2 and 3 respectively.  The reduction in 

the number of active stress constraints at design step 12 is 

due to the decrease in the value of e from 15 to 5.  The re- 

ductions in R12, R15 and R1? are due to the stress constraint 

violations at nodal points 8, 9 and 4.  The reduction in R  is 

due to the thickness constraint violation at nodal point 1. 

At the 22nd design step there are all together 10 active con- 

straints (5 thickness, 5 stress constraints) and that is equal 

to the number of design variables.  This indicates that any 

further improvement is not possible.  Although the merit func- 

tion is slightly lower for plgf p22 is a better design with 

respect to the value of the stress constraint at nodal point 9. 
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TABLE 9.6  DELTA WING OPTIMIZATION WITH STRESS 

AND THICKNESS CONSTRAINTS 

Given R 0 .4 0 .4 0 .4 0.3 0.3 

Rq 
0 .4 0 .4 0 .4 0.115 ( 3.3 

Design 
No.(q) 

0 1 2 3 4 5 

pl 
1.000 0.9552 0.9101 0.8645 0.8511 0.7923 

p2 1.000 0.8786 0.7572 0.6354 0.6002 0.4677 

p3 1.000 0.8767 0.7545 0.6337 0.5996 0.5074 

p4 1.000 0.9587 0.9220 0.8913 0.8854 0.8752 

p5 1.000 0.7551 0.5132 0.2759 0.2104 | 
 —i 

0.2032 

p6 1.000 0.8684 0.7367 0.6050 0.5671 
1 

0.4349 

p7 
1.000 1.0729 1.1476 1.2241 1.2474 1.3095 

p8 
1.000 0.8477 0.6909 0.5286 0.4793 0.5662 

p9 1.000 0.8638 0.7262 0.5861 0.5445 0.3783 

p10 
1.000 0.9554 0.9107 0.8656 0.8525 0.7906 

F(p) 27.000 23.396 19.810 16.250 15.242 13.800 

The. 
Con. 

- - - - - - 

S.Con. 7 7 7 7 7,8 7,8 

Cs2 
- - - - - - 

Cs4 
- - - - - - 

Cs7 0.0 0.22 0.36 0.63 0.47 0.05 

Cs8 
- - - -10.16 -10.05 

Cs9 
- 

r  
- - - - 

AF/Rq 
-9. 01 -8. 96 -8 .90 8.77 —/ 1.80 -4.8 1 

25 for q = 0 
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STRESS AND THICKNESS CONSTRAINTS 
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Given 
R 
a 

0.3 0.2 C ).2 0 .2 0 .2 0.2 

R 0.3 0.187 c 1.2 0 .079 0 .038 0.2 

Desigr 
So.(q) 6 7 8 9 10 11 

Pl 
0.7330 0.6952 0.6441 0.6254 0.6149 0.5347 

p2 
0.3354 0.2519 0.1405 0.1141 0.1000 0.1 

p3 
0.4156 0.3576 0.2787 0.2463 0.2277 0.1020 

p4 0.8633 0.8553 0.8479 0.8549 0.8581 0.8301 

P5 
0.1960 0.1946 0.1929 0.1786 0.1685 0.1490 

P6 
0.3074 0.2325 0.1385 0.1000 0.1 0.1 

P7 
1.3693 1.4066 1.4611 1.4803 1.4907 1.5616 

p8 
0.6540 0.7088 0.7716 0.8099 0.8288 0.8953 

p9 
0.2082 0.1000 0.1 0.1 0.1 0.1 

p10 
0.7281 0.6882 0.6340 0.6100 0.5963 0.5108 

F(p) 12.358 11.476 10.728 10.463 10.357 9.884 

The. 
Con. 

- 9 9 6,9 2,6,9 2,6,9 

S.Con 7,8 7,8 4,7,8 4,7,8 4,7,8 4,7,8 

Cs2 
- - - - - - 

Cs4 
- - -12.84 -12.81 -12.79 -12.71 

Cs7 0.05 0.02 -0.04 -0.03 -0.03 0.10 

Cs8 
-9.64 -9.29 -8.84 -8.70 -8.66 -8.10 

Cs9 
- - - - - - 

AF/Rg -4.71 -3. 74 -3. 36 -2.81 -2. 36 -2.17 

e = 15 for q = 6 - 11 
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TABLE 9.6  (Continued)  DELTA WING OPTIMIZATION 

WITH STRESS AND THICKNESS CONSTRAINTS 

Given 
R 
9 

0.2 0.1 0.1 0.1 0.1 0.1 

R 
q .003 0.031 0.1 0.1 0.099 0.1 

Design 
Ho.(q) 12 13 14 15 16 17 

pl 0.5343 0.5290 0.4726 0.4160 0.3600 0.2976 

p2 0.1 0.1 0.1 0.1 0.1 0.1 

p3 0.1000 0.1 0.1 0.1 0.1 0.1 

p4 0.8297 0.8289 0.7944 0.7592 0.7244 0.6742 

p5 0.1487 0.1269 0.1179 0.1096 0.10 22 0.1175 

p6 0.1 0.1 0.1 0.1 0.1 0.1 

p7 1.5628 1.5722 1.6149 1.6569 1.6981 1.7365 

p8 0.8964 0.8788 0.8978 0.9159 0.9330 0.9226 

p9 0.1 0.1 0.1 0.1 0.1 0.1 

p10 0.5( D92 

77 

0.5043 0.4463 0.3880 0.3300 0.2880 

F(p) 9.8' 9.690 9.517 
  1 

9.344 9.174 9.017 
The. 
Con. 2,3,6,9 2,3,6,9 2,3,6,9 2,3,6,9 2,3,6,9 2,3,6,9 

S.Con 7 7,8 7,8 7,8 7,8,9 7,8,9 

Cs2 
- - - - - - 

Cs4 -12.71 -13.57 -12.53 -11.30 -9.92 -5.21 

C7 0.09 0.10 0.01 0.01 0.01 0.05 

Cs8 -8.10 -0.62 -0.61 -0.60 -0.59 -0.49 

Cs9 
- - - - -0.01 0.38 

AF/R 
q -6 .14 J -1. 72 -1 .73 -1 .72 -1 .56 -1. 46 

e  = 5 for q = 12 - 22 
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TABLE 9.6 (Continued)  DELTA WING OPTIMIZATION WITH 

STRESS AND THICKNESS CONSTRAINTS 

Given 

S 
0.1 0.1 0.1 0.1 0.1 

R .098 0.1 0.1 0.1 0.098 

Design 
So.(q) 18 19 20 21 22 

Pl 
0.2330 0.1594 0.1022 0.1543 0.1000 

p2 
0.1 0.1 0.1 0.1 0.1 

p3 
0.1 0.1 0.1 0.1 0.1 

p4 0.6248 0.6120 0.6603 0.6123 0.6589 

p5 
0.1334 0.1132 0.1207 0.1115 0.1195 

p6 
0.1 0.1 0.1 0.1 0.1 

p7 
1.7754 1.8032 1.7417 1.8039 1.7440 

p8 
0.9126 0.9424 0.9253 0.9449 0.9274 

p9 
0.1 0.1 0.1 0.1 0.1 

PLO 
0.2534 0.3019 0.2856 0.3110 0.2887 

F(p) 8.874 8.807 8.811 8.810 8.808 

The. 
Con. 

2,3,6,9 2,3,6,9 2,3,6,9 2,3,6,9 1,2,3,6,9 

S.Con 4,7,8,9 2,4*7,8,9 2,4,7,8,9 2,4,7,8,9 2,4,7,8,9 

Cs2 
- -3.94 -3.63 -3.37 -3.09 

Cs4 -0.01 -0.06 0.01 0.00 0.01 

Cs7 0.05 -0.01 0.00 0.01 0.01 

Cs8 -0.39 -0.30 -0.30 -0.31 -0.31 

Cs9 0.35 0.72 0.08 0.15 0.12 

AF/Rq -0.67 +0.04        1     -0.01 -0.01 

e = 5 for q = 12-22 



114 

30.0. 

25.0 

20.0 

15.0. 

10.0. 

5.C 

3 4 5    6  7  8 910 11^14^6^8^20^22 

Design No. 
(Scaled by R ) 

Fig. 9.4 Progress of Delta Wing Optimization with Stress and 

Thickness Constraints 
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g. (o.ioo) 

7 (1.744) 8 (0.927) 9 (0.100) 10 (0.289) 

pm.  = 0.10 mm n = 0.80 

F(po) = 27.00 F(pf) = 8.81 

SWR:  67.5% TWR:  54% 

Fig. 9.5 Skin Thickness Contours for Minimum-Weight 

Design with Stress and Thickness Constraints 
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F(£22) = 8«808 correspond to 67.5% structural and 54% total 

weight reduction. 

In figure 9.4 the merit function F(p) is plotted 

against step sizes.  Again it can be seen that the improvement 

in the merit function after 11th design step is poor compared 

to the number of design cycles.  F(PX1) = 9.884 approximately 

correspond to 94% of the weight reduction achieved at 22nd de- 

sign step.  Using smaller step sizes and greater number of de- 

sign cycles best possible was to obtain F(p) = 8.765 with simi- 

lar thickness distribution. 

Skin thickness contours corresponding to the minimum- 

weight design (P22) satisfying stress and thickness constraints 

are presented in figure 9.5. 

9.4.3 Optimization with Flutter, Stress and Thickness Con- 

straints 

Finally the delta wing was optimized to satisfy the 

flutter, stress and thickness constraints.  The flutter con- 

straint was considered active at all design steps, stress and 

thickness constraints became active as they were violated. 

Table 9.7 presents the results for 18 design steps. 

These results were obtained in three different computer runs, 

six design steps for each run.  On the CDC 6600 each design 

cycle took approximately 24.5 seconds which included the calcu- 

lation- of the flutter constraint, the flutter constraint grad- 

ients, the critical stress constraints, the gradients of the 

critical stress constraints, critical thickness constraints and 
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Given 0 .4 0 .4 0 .4 0 .3 0 .3 

R 
q 0 .4 0 .4 0 .4 0 .263 0 .3 

Desigr 
No. (q) 0 1 2 3 

1 
4 5 

Pi 1.000 0.9649 0.9341 0.9107 0.9051 0.8695 

02 1.000 0.8935 0.7970 0.7181 0.7031 0.5729 

03 1.000 0.9444 0.9125 0.9089 0.9164 0.9245 

P4 1.000 0.9252 0.8504 0.7769 0.7513 0.7261 

05 1.000 0.8439 0.6806 0.5011 0.3275 0.2710 

06 1.000 1.0836 1.1509 1.1886 1.1597 0.9637 

07 1.000 1.0643 1.1219 1.1702 1.1890 1.2886 

08 1.000 0.8117 0.6211 0.4344 0.3477 0.4381 

09 1.000 0.7623 0.5159 0.2603 0.1000 0.1 

010 1.000 0.8938 0.7860 0.6783 0.6161 0.5096 

F(p) 27.000 24.248 21.469 18.627 16.610 15.469 

3f/uo 0.075 -0.078 -0.079 -0.081 -0.084 -0.080 

Wf/ldO 19.35 18.67 17.93 17.16 16.84 18.13 

cf 0.00 -0.153 -0.154 -0.156 -0.159 -0.155 

The. 
Con. 

- - - - 9 9 

S.Con, 7 7 7 4,7 4,7,8 4,7,8 

Cs2 - - ;- - - - 

Cs4 
- - - ' -23.0 -23.11 -22.83 

Cs7 0.00 -0.21 -.56 -1.35 -2.08 -2.16 

Cs8 - - - - -21.85 -21.32 

AF/Rq -6.8 8 -6. 95 -7.: LI -7.66 -3. 80 -3.26 

e = 25 for q = 0 - 5 
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TABLE 9.7  (Continued)  DELTA WING OPTIMIZATION 

WITH FLUTTER STRESS AND THICKNESS CONSTRAINTS 

Given 
R 
q 

0.3 0.2 0.2 0.2 0.2 0.2 

R 
q 

0.3 0.088 0.137 0.10 8 0.2 0.2 

Design 
NO.(q) 6 7 8 9 10 11 

P 
. 1 

0.8086 0.7953 0.7665 0.7417 0.7402 0.7112 

P2 
0.3855 0.3533 0.2941 0.2145 0.2324 0.2400 

p3 0.9599 0.9190 0.8763 0.9135 1.0004 1.0803 

P4 0.7084 0.7026 0.7160 0.6974 0.6893 0.7072 

p5 0.1770 0.1416 0.1000 0.1 0.1 0.1 

p6 0.9066 0.8672 0.8004 0.7660 0.6035 0.4475 

p7 
1.3985 1.4144 1.4543 1.4855 1.4833 1.4581 

p8 
0.5489 0.5082 0.5680 0.5822 j  0.5873 0.5942 

P9 
0.1 0.1 0.1 0.1      0.1 0.1 

P10 
0.3950 0.3837 0.3500 0.3266    0.2515 0.1656 

F(p) 14.492 13.794 13.235 12.975 12.714 12.442 

ßf/wo -0.083 -0.084 -0.086 -0.086 -0.086 -0.090 

uf/uo 17.78 17.92 18.24 17.98 19.29 20.36 

cf -0.158 -0.159 -0.161 -0.161 -0.161 -0.165 

The. 
Con. 

9 9 5,9 5,9 5,9 5,9 

S.Con. 7 7,8 7,8 2,7,8 2,7,8 2,7,8 

Cs2 
- -22.31 -23.26 -3.74 -4.03 -4.30 

Cs4 -22.37 -21.01 -22.42 -17.92 -18.26 -18.43 

Cs7 -2.14 -2.11 -2.10 -2.06 -2.00 -1.91 

Cs8 -20.71 -3.32 -2.93 -2.77 -2.34 -1.82 

AF/R 
q 

-7.92 -4.07 -2.42 -1.31 -1.36 -2.60 

e = 15 for q = 6 - 11 
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Given 
Rq 

0.2 0.1 0.1 0.1 0.1 0.1 0.1 

R 
<3 

0.2 0.024 0.1 0.1 0.1 0.047 0.1 

Design 
No.(q) 12 13 14 15 16 17 18 

pl 0.6776 0.6740 0.6565 0.6403 0.6297 0.6186 0.6018 

p2 0.2238 0.2204 0.2074 0.1910 0.1856 0.1627 0.1450 

p3 1.0757 1.0574 0.9636 0.8859 0.8115 0.7828 0.7120 

p4 0.7342 0.7348 0.7358 0.7392 0.7351 0.7340 0.7383 

p5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

p6 0.2649 0.2549 0.2555 0.2093 0.2741 0.2561 0.2014 

p7 1.4519 1.4567 1.4762 1.4978 1.5081 1.5220 1.5426 

p8 0.6292 0.6355 0.6540 0.6827 0.6803 0.6947 0.7256 

p9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

p10 0.1086 0.1000 0.1 0.1 0.1 0.1 0.1 

F(p) 11.922 11.839 11.582 11.262 11.198 11.032 10.711 

3f/wo -0.100 0.356 -0.092 4.928 -0.025 -0.028 5.549 

ü),/ü)0 21.77 39.41 22.78 39.07 24.77 25.06 37.15 

Cf -0.175 0.280 -0.167 4.852 -0.100 -0.103 5.474 

The. 
Con. 

5,9 5,9,10 5,9,10 5,9,10 5,9,10 5,9,10 5,9,10 

S.Con. 2,7,8 2,7,8 2,7,8 2,7,8 7,8 2,7,8 2,7,8 

Cs2 -4.54 -4.55 -4.70 -4.81 -5.06 -.31 -.45 

Cs4 -18.27 -18.19 -17.82 -17.42 -16.89 -15.65 -15.08 

Cs7 -1.79 -1.79 -1.79 -1.78 -1.71 -1.71 -1.70 

Cs8 -.82 -.82 -.73 -.58 -.27 -.24 -.07 

AF/R„ 
<J  _ - 

-3.37 -2.58 -3.19 -0.65 -3.54 -3.20 

e = 5 for q = 12 - 18 
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their gradients and the calculation of Ap using the gradient 

projection algorithm.  In the determination of active stress 

constraints, e = 25 was used for the first run, e = 15 was used 

for the second run and e = 5 was used for the last run.  The 

reductions in R3, R7, R12 are for thickness constraint vio- 

lations at nodal points 9, 5 and 10 respectively.  The reduc- 

tions in R6, Rg, R16 are for stress constraint violations at 

nodal points 8, 2 and 2 respectively. 

From table 9.7 it can be seen that until the 12th 

design step the flutter constraint is closely followed within 

the feasible region.  At design step 13, 15 and 18 the flutter 

occurs between second and third modes.  It is easier to observe 

this phenomenon from table 9.8 where first three eigenvalue 

pairs during the optimization are given.  As has previously 

been discussed for the optimization with only flutter and thick- 

ness constraints; the imaginary parts of the second and third 

eigenvalue pairs come closer during the optimization until the 

13th design step where they are close enough for the flutter to 

occur. 

At the 17th design step the merit function is 

F(P1'y) = 11.032, which is minimum among feasible designs.  This 

correspond to 59.2% structural and 47.4% total weight reduction. 

This time the merit function at the 11th design step, 

F^Sll^ = 12-442, corresponds to 91% of the weight reduction 

achieved at 17th design step.  Using smaller step sizes and 

greater number of design steps, best design obtained had a 

merit function F(p) = 10.990.  The corresponding thickness dis- 
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TABLE 9.8  FIRST THREE EIGENVALUE PAIRS 

DURING OPTIMIZATION 

Design No 
(q) 

Xl=^l ?i <->l>/wo| V<*2 ~+i  «V/uc  V=(ß3 +1 »aV-o 

0 0.075 +i 19.35 -0.322 +i 19.35 - 0.123 +i 38.03 

5 - 0.080 +i 18.13 -0.236 +i 24.59 - 0.243 +i 42.38 

10 - 0.086 +i 19.29 -0.295 +i 26.53 - 0.289 +i 41.44 

11 - 0.090 +i 20.36 -0.332 +i 29.32 - 0.311 +i 42.15 

12 - 0.100 +i 21.77 -0.437 +i 37.22 - 0.333 +i 40.72 

13 - 0.100 +i 21.97 -1.143 +i 39.14 + 0.356 +i 39.41 

14 - 0.092 +i 22.78 -0.636 +i 38.05 
  ■—— 

- 0.169 +i 39.17 

15 - 0.094 +i 23.80 -5.762 +i 38.96 + 4.928 +i 39.07 

16 - 0.025 +i 24.77 

 T 

-0.517 +i 32.98 - 0.352 +i 40.34 

17 - 0.028 +i 25.06 -0.576 +i 34.52 - 0.314 +i 38.96 

18 - 0.050 +i 26.32 -6.453 +i 37.05 + 5.549 +i 37.15 
— 
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1 (0.619) 

0.256) 

7 (1.522) 8 (0.695)      9 (0.100)      10 (0.100) 

Pmin - °-10 

F(po) = 27.00 

n = 0.80 

F(pf) = 11.03 

SWR: 59% TWR:  47.5% 

Fig. 9.7  Skin Thickness Contours for Minimum - Weight 

Design with Flutter, Stress and Thickness Constraints 
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tribution was very close to the p,_ of table 9.7. 

In figure 9.6 the merit function F(p) and flutter 

constraint Cf are plotted against step sizes.  The kink at the 

merit function plot for design number 6 is due to the reduction 

of e from 25 to 15 which releases some of the active stress 

constraints. 

Skin thickness contours corresponding to the minimum- 

weight design (g17) satisfying flutter, stress and thickness 

constraints are presented in figure 9.7. 

9.5  Discussion of Results 

The same step size, R , pattern was used to obtain 

the minimum-weight designs of a cantilevered delta wing with 

three different set of constraints.  Each time more than 90% of 

the total weight reduction was obtained within 11 design cycles. 

It was found out that with a little experience with a particu- 

lar optimization problem; the determination of a suitable step 

size pattern is not very difficult.  Experiences with different 

step size patterns also showed that the number of design cycles 

and the final minimum-weight design are not very sensitive to 

small changes in step size patterns.  These results are very 

encouraging as to the capabilities of the multi-constraint 

gradient projection algorithm. 

It was also found out that the minimum-weight design 

for stress and thickness requirements is radically different 

from the minimum-weight design for flutter and thickness re- 

quirements.  This substantiates the results reported by the 
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Langley Research Center (Ref. 29). 

Experimenting with stress optimization showed that 

using a large value for e initially and then gradually reduc- 

ing it is effective in reducing the number of design steps re- 

quired to obtain the minimum-weight design. 

The observation of the flutter constraint revealed 

that towards the end of the optimization procedure, flutter 

involving modes other than the initial two modes does occur. 

However it also became evident that any improvement in merit 

function, after such phenomenon is encountered, would be 

insignificant unless, possibly multiple flutter constraints 

were employed.  This possibility has not been investigated 

within the scope of this study. 

It is interesting to note that a design was formed by 

taking the larger of the two nodal point thicknesses between 

the minimum-weight design which only satisfy stress and thick- 

ness constraints and the minimum-weight design which only 

satisfy flutter and thickness constraints.  This design had a 

merit function F(p) = 11.292 and satisfied all stress con- 

straints but failed to satisfy the flutter constraint. 



CHAPTER 10 

CONCLUSIONS AND SUGGESTIONS 

10.1 Conclusions 

The conclusions obtained from this study can be 

summarized as follows: 

1. The proposed procedures for handling the flutter 

constraint has been proved to be very satisfactory. 

2. The analytical expressions for the calculation of 

flutter and stress constraint gradients proved to be both 

accurate and time saving. 

3. The proposed optimization algorithm which is based 

on gradient projection concept, was proved to be very effective 

in obtaining approximate feasible minimum-weight designs within 

few (10-11) design cycles.  It was also found out that the 

efficiency decreases as the optimum design is approached. 

4. Experience with panel and delta wing optimization 

problems suggested that establishing a step size pattern for a 

particular structural optimization problem is not a very diffi- 

cult task and that once this pattern is set, it can be used to 

optimize the same structural model with different combinations 

of constraints.  However, more research is required in order to 

establish more concrete conclusions. 

5. Results of panel optimization indicated that the 

effect of damping on minumum-weight designs was negligible for 
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practical damping values. However results also suggested that 

large savings are possible for members where a high structural 

damping is introduced for special reasons. 

6.  Results of delta wing optimization showed that 

optimum designs for stress and for flutter requirements are 

radically different.  This fact provides the motivation for 

combined (aeroelastic-stress) optimization approach. 

10.2  Suggestions for Further Research 

Several suggestions for the extension of this work 

are listed in the following: 

1. Introduction of the capability to handle multiple 

flutter constraints:  The results of cantilevered delta wing 

optimization showed that; a) flutter could occur between modes 

other than the initial two modes,  b) multiple mode pairs could 

be involved at a particular design step.  Such a capability 

therefore could be very effective in handling such situations 

and possibly will produce better designs. 

2. Introduction of a procedure to determine the step 

sizes automatically:  It is conceivable that a procedure can be 

developed which automatically determines step sizes, possibly 

using constraint gradient information of earlier design steps. 

However for the present it seems that the best method to deter- 

mine the step size pattern for an unfamiliar structural opti- 

mization problem is to run the optimization interactively. 

3. Introduction of modal representation to reduce the 
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size of the eigenvalue problem which represents the flutter con- 

straint.  Such a development would involve the calculation of 

required number of natural modes and the reduction of system 

matrices using these modes.  Relative effectiveness of, keeping 

the initial mode shapes throughout the entire optimization or 

updating the mode shapes as the design changes, should be 

investigated. 

4.  A study should be conducted to determine the 

relative efficiency of the different optimization algorithms on 

aeroelastic-stress optimization problems. 



APPENDIX A 

CONSTANT THICKNESS SANDWICH BEAM ELEMENT 

Pig. A.l Constant Thickness Sandwich Beam Element 

Figure A.l shows the cross section and the degrees of 

freedom of typical element. A design variable p. is associated 

with each element.  We have 

P(x)  = p± (A.l) 

and 

Fe(p)  =  P± (A.2) 

where Fe(p) is the merit function associated with an element. 

In the following, non-dimensional element stiffness, 

mass, aerodynamic and damping matrices are given in the form 

that they were employed in equations (5.3) and (5.4). 
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A.l Stiffness Matrix 

5e<P> = P. 

12 6 -12 6 

6 4 -6 2 

-12 -6 12 -6 

6 2 -6 4 

(A.3) 

A.2 Mass Matrix 

Me(p) = (p n + i - n)/420n4 

156 22 54 -13 

22 4 13 -3 

54 13 156 -22 

-13 -3 -22 4 

(A.4) 

where n is same as defined in equation (3.8) 

A.3 Aerodynamic Matrix 

£e- 6 On 

-30 6 30 -6 

-6 0 6 -1 

-30 -6 30 6 

6 1 -6 0 

(A.5) 



A.4  Damping Matrix 
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D = 
420n 

156 22 54 -13 

22 4 13 -3 

54 13 156 -22 

-13 -3 -22 4 

(A.6) 

In all the above expressions n is e 

n_ I 
a (A.7) 

where I  has the same meaning as was defined in Chapter 5, sec- 

tion 5.1.  For the panel problem, I  was taken to be the span 

length. 



APPENDIX B 

TAPERED SANDWICH BEAM ELEMENT 

Pi+^o 

Fig. B.l Tapered Sandwich Beam Element 

Figure B.l shows the main properties of a typical 

element.  A design variable pi is associated with each nodal 

point and we have 

and 

p(x)  = P± +  (Pi+1 - p±)x/a 

Fe(p)  =  |(Pi + p±+1) 

(B.l) 

(B.2) 

Non-dimensional element stiffness, mass, aerodynamic 

and damping matrices as they were used in equations (5.3) and 

(5.4) are given in the following. 
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B.l Stiffness Matrix 
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?e(p) =  P^ 

12 

6 

-12 

6 

6 

4 

■6 

2 

■12 6 

■6 2 

12 -6 

-6 4 

+   <Pi+l-Pi> 

6 

2 

-6 

4 

2 

1 

-2 

1 

-6 

-2 

6 

-4 

4 

1 

■4 

3 

(B.3) 

B.2    Mass Matrix 

Me(p) 
^Pin + i-Tij 

420n 4 

156 

22 

54 

-13 

22 

4 

13 

■3 

54 

13 

156 

-22 

-13 

-3 

-22 

4 

(pi+l -   P i)n 
840 n 

72 14 54 -12 

14 3 14 -3 

54 14 240 -30 

12 -3 -30 5 

(B.4) 

where n  is same as  defined in equation   (3.8) 
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B.3    Aerodynamic Matrix 

A 

-30 6 30 -6 
1 

-6 

-30 

0 

-6 

6 

30 
60n 3 

e 

-1 

6 

6 1 -6 0 

(B.5) 

B.4  Damping Matrix 

D = ~e 420n 

156 22 54 -13 

22 4 13 -3 

54 13 156 -22 

-13 -3 -22 4 

(B.6) 

In all the above expressions n  is 

n. I 
a (B.7) 

where I  is a convenient scaling dimension as was defined in 

section 5.1.  For the panel problem the span length I  was used 

for this purpose. 



APPENDIX C 

HIGH PRECISION TRIANGULAR SANDWICH PLATE BENDING 

ELEMENT WITH LINEAR THICKNESS VARIATION 

Figure C.l shows the plan view of a typical element. 

It has a core of constant thickness d and cover skins with 

linear thickness variation.  Each nodal point has 6 degrees of 

freedom (W, w , W . Wv . V.  W„„) .  The deflection W(£,n) 
x  y       xx  "j   yy 

within a triangular element is taken as a quintic polynomial 

(Ref. 22). 

W(£,n)  = a1 + a2£ + a3n + a4£ + a5£n + a6n + a?£
3 

+ a8£ n + ag£n  + a1Qn  + ai:[C + a12£
3n 

2 2        3       4       5       3 2 
+ a13£ n + a14£n + a15n + a16r  + »175 n 

2 3       4      5 
+ a18c n + a19^n + a20n (c.l) 

or 
20    m.  n. 

wu,n) =  I a. e x n x (c.2) 
i=l 1 

For vectors 

/=ll' a2'   '"'   <a20 
T 

a  =  la-i/ a~/ ••>/ ä««) (C.3) 

and 

üe* -  {W1' Wxl' Wyl' Wxxl' Wxyl' Wyyl' W2 W3'*'-} 

(C.4) 

we have the relationship 

a = T R WÄ (C.5) 
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*- x 

Fig. C.l Triangular Sandwich Plate Bending Element 
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where R transforms nodal point degree of fredoms from local 

coordinates ($,n) to global coordinates (xfy), and T transforms 

polynomial coefficients to nodal point degree of freedoms in 

local coordinates.  Details of the derivation of T(a,bfc) and 

R(6) can be found in reference 22 where T  is given in table 

1 and R is given in table 2. 

Using equation (C.5) for a we can write, 

where 

W(£,n)  = * T R we 

#T  _  r,
mln

nl  ,m2n
n2      ,m20n

n20. 

(C.6) 

(C.7) 

with 

mT =  {0,1,0,2,1,0,3,2,1,0,4,3,2,1,0,5,3,2,1,0} 

(C.7a) 

and 
n  =  {0,0,1,0,1,2,0,1,2,3,0,1,2,3,4,0,2,3,4,5} 

(G.7b) 

which gives us W(5,n) in terms of nodal point degree of freedoms. 

For linear cover skin thickness variation we can 

write P(£,TI) as 

p(C,n)  = {1 K  n} 

a, 

a. 

a. 

(C8) 

From equation (C.8) we obtain; 
f \ 

pl 1 -b 0~ al 

p2 
= 

1 a 0 ■ a2 

I   P3 1 0 c a 

(C.9) 
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or 
'                   ■ 

al 

a2 = 

a3 
V 

a/r      b/r      0 

•1/r      1/r      0 

-a/cr     -b/cr  1/c 

where r = a + b (Fig. C.l).  Thus we have 

f                  \ 
pl 

« p2 

p3 
I          J 

P(?,n) = U C n) 

a/r 

-1/r 

-a/cr 

b/r 

1/r 

-b/cr 1/c 

(CIO) 

(C.ll) 

which gives us p(£,n) in terms of nodal point design parameters. 

In the following the element stiffness, mass, aerody- 

namic and damping matrices are developed based on the above re- 

lations and the formulas given in reference 22 for a constant 

thickness plate. 

C.l Stiffness Matrix 

Using classical bending theory of plates, we can 

write the strain energy for an element as 

e    2 o pU,nHw^ + w^n + 2vw^?wrin + 2(i-v)w^n}d£dn 

(C.12) 

where D is the initial flexural rigidity as discussed in Chap- 

ter 3, v is the Poisson's ratio and the integration is over the 

area of the element. 
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Using expressions (C.6) for W(£,n) and (C.ll) for 

p(S,n) and carrying the integrations over the area we obtain 

Ue = I Do ?eT RT TT k T R W               (c.13) 

where 

k = p k1 + p k2 + p.k3                (C.14) 
~        ■*•»          *ss          Jaj 

12        3 The elements of k , k and k are generated in the 
as    a*         Ä 

computer according to the following expressions: 

Define 

m 
aij  = 

m^. (mi - 1) (m. - 1)                          (C.15) 

n 
aij  = 

ninj(ni " 1} {nj " 1)                         (C.16) 

mn a. .  = 2(1 - v)m.m.n.n. + v m.n.(m. - 1)(n. - 1) 
X J  X J                        X     J         X                           J 

(C.17) 
+ v m;.ni(m. - 1) (n± - 1) 

mij  » 
m. + m.                                      (C.18) 

n. .  = 
13 

n. + n.                                      (C.19) 
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Here nu, m., ru, n. are the same as the exponents of equations 

(C.2) and (C.7). 

Also define 

n F.. = a.. Fdn.. - 4,n..) + aV. Fdn.., n.. - 4) 

+ a
mnF(ra.. - 2, n.. - 2) 

Fij = a?j F<mij " 3' nij) + *ti  Fdn^ + 1, n.. - 4) 

+ a™ F(m.. - 1, n.. - 2) 

Fij = aTj F<mij " 4' nij + x> + a?j F(m.jf n.. - 3) 

mn + a. . Fdn, . - 2, n. . - 1) 
ID    X]      X3    ' 

where  F(mfn) means (Ref. 22) 

(C.20) 

(C.21) 

(C.22) 

F(m,n)  = 

Finally we have 

^nVdn    =   cn+1 {am+1 -  (-b)m+1>   , m!n*   , lm+n+2) ! 

(C.23) 

k*.  =  » Pl. - IF2. - £_F3 
ID    r ID  r 13   cr ij 

k?.  = fe 1   12  _ b_ 3 
XD    r XD  r rij  cr ij 

(C.24) 

(C.25) 

k3. 
XD 

IF?. c  ID (C.26) 

where a, b, c and r are the element dimensions (Fig. C.l). 

Thus the element stiffness matrix is 

K   =  D  RT TT{p, k1 + p, k2 + p- k3}T R (C.27) 
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or 
K   (p)   =  RT TT   {pnk1  +   p   k2  +   p   k3}   T  R (C.28) 
Ä" £    £        •*■£ *»% JÄ      %      2J 

C.2 Mass Matrix 

For sinusoidal time dependence, the kinetic energy of 

an element can be written as 

Te  . \? mU,n) W2 d? dn (C.29) 

Ae 

where w is the frequency and m(£,n) is 

m(£,n)  = mQ {p(5fn)nm + 1 - nm}       (C.30) 

as described in Chapter 3.  Here n is the same as n (Eq. 3.8) 

of the text.  Substituting the expression (C.30) for m(£,n) and 

the expression (C.6) for W(£,n) in equation (C.29) and carrying 

out the integration we obtain; 

Te  =  ^)
2mo W^ R

T TTm T R WQ (C.31) 

where 

m = ^{p-iin + p«m + p,m } + (1 - n )m     (C.32) ^     m J.%     ^JB     J% m ~ 

12  3     c The elements of m , m , m and m are generated in 

the computer according to the following expressions: 

Define 

Fij * F(mij' nij> (c-33> 

Fij = F(mij + 1' nij) (C*34) 
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Fij = F(mij' nij + 1} (c-35) 

where nu ., n^.  and F(mrn) have the same meaning as in equations 

(C.18), (C.19) and (C.23) for the stiffness matrix.  In terms 

of the above definitions we have 

1  _ a „1   1 _2   a „3 , 
mij - FFij " FFij " c¥Fij <c-36> 

m?. = fe 1 + 12 _ b_ 3 ( 
ID    r 13  r lj  er lj II..J/; 

™3      1 xn3 mij  " cFij (C.38) 

mij  = F-j (C.39) 

where a, b, c and r are the element dimensions (Fig. C.l). 

Thus the element mass matrix is 

~e = mo RT TT {nm[plml + Ppm2 + P^31 + (1 - nj mc} T R 
~(C40) 

or 

M (p) = RT TT {n [p,!!!1 + p m2 + p m3] + (1 - n ) m
C} T R 

*  «   m 1=    2-    3^ m *   « »(C.41) 

C.3 Aerodynamic Matrix 

We can use equations (4.10) and (4.11) to derive the 

aerodynamic matrix.  Since the air flow is on both sides of the 

delta wing, there will be an additional factor of 2.  Noting 

the similarity between equations (4.8) and (C.6) we can write; 
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5e " 2 E 2q   ' 

(id - 1)1/2 
? 3x 5 d^dn (C.42) 

A 

from which we can define 

a = # 1^ $T dCdn (C.43) 

A' 
For the angle 8 (Figure C.l) between the two coordi- 

nate systems we have 

?x * - 31 * cos e " an ! sin e 

T Using equation (C.7) for $ , we obtain 

(C.44) 

aij  = 
r       ..m.+m.-l    n.+n. . rm.+m. ja.+n .-1   .     n\Jr* {m.   £  x     ]       n  l     3   cos   6 -   n.   £  I     ]ni     3     sin 6}d£dri 

(C.45) 

or 

aij = mi F(mij " lf  nij* cos 6 ~ ni F(mij' nij " 1) sin e 

(C.46) 

where m.., n.. and F(m,n) have the same meaning as in equations 

(C.18), (C.19) and (C.23) for the stiffness matrix.  From the 

above definitions we can write 

-       T T 
A =  2 R T  a T R 
~e     %  ss  « * ä 

(C.47) 
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C.4 Damping Matrix 

Using equation (4.13) and replacing f by $ we can 

write 

Se - 2< 
Or,     M   "  2 

U (M2-l)3/2 ) y $ $ d£dn (C.48) 

A 

where the factor 2 accounts for the air flow on both sides of 

the element. We can define 

d = 

) l 

$ $ d£dn (C.49) 

and using equation (C.7) for $T we obtain 

d. .  = 
ID 

>.m. +m .  n. +n . , _ , 
K   i 3   n i  D d£dn 

or 

d. ■ .  = F(m. ., n. .)  = m. . 
ID       ID   ID      ij 

(C.50) 

(C.51) 

where m^ was defined by equations (C.33) and (C.39), 

above expressions and from equation (4.12) we obtain 

— T  T r> 
Do  =  2R  T

X ni  T R 

From the 

(C.52) 

It should be noted that when deriving matrices 

?e*p*' Ü?e*p*' be  and Pe the element dimensions are scaled by 

I  as discussed in Chapter 5.  For the delta wing problem the 

length of the cantilevered edge, L, (Fig. 9.1) is used for 

this purpose. 
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C.5 Boundary Conditions 

In this section equations for applying the free edge 

natural (force) boundary conditions on deflection curvatures 

are derived. 

y 

s 

Fig. C.2  Plate Free Edge and Free Edge Moments 

In figure C.2 a free edge that makes an angle a with 

the x-axis is shown.  For the (n/s) coordinate system the free 

edge plate-bending moments are M and M  .  Free edge natural 

boundary conditions given by Kirchhoff (Ref. 31) are 

Mn =  0 

3M. 
Q„ - 

hs 
n  3s = 0 

(C.53) 

(C.54) 

where Q is the free edge shear force.  Equation (C.54) requires 

the calculation of transverse displacement third derivatives. 
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For simplicity it was replaced in the present optimization 

study by the equation 

Mns = ° (C.55) 

which assumes Qn = 0. Using equation (3.2) which relates plate- 

bending moments to deflection curvatures we can reduce equations 

(C.53) and (C.55) to 

W   + V W   = 0 (C   56} nn      ss \^.oo) 

(1 " V) Wns = ° (C57) 

where v is the Poisson's ratio.  Employing second degree tensor 

transformation (Ref. 22) we can write 

Wss = Wxx cos a + 2Wxy sin a cos a + Wyy sin2a    (C.58) 

2 o 
Wnn = Wxx Sln a "  2Wxy  sin a cos  a + W

yy  cos  a (C.59) 

Wns  =-Wxx sin a cos  a + Wxy   <cos2a _  sin2a) 

+ W      sin a cos  a (C.60) 

Substituting these expressions for W  . W  and W 
ss  nn     ns 

in equations (C.56) and (C.57) we obtain 

2 2 2 2 
Wxx(sin a + v cos a) + W  (cos a + v sin a) 

- 2W   (1 - v) sin a cos a ■ 0      (C.61) 

W      sin a cos  a - W      sin a cos  a - W     (cos2a - sin2a)   = 0 ** yy xy 

(C.62) 
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which are the constraint equations used on the curvatures of 

free edge nodal points (i.e. nodal points 3, 6, 10, 9 and 8, 

Fig. 9.1) for the delta wing problem. 

It should be noted that the authors of reference 22 

do not approve such attempts to satisfy natural boundary con- 

ditions only at the nodal points (see Ref. 22, section 2.6 for 

a detailed discussion). 

C.6 Merit Function 

We can define 

Fe(p)  = p (£,n)d£dn (C.63) 

where F (p) is the merit function associated with an element. 

Using equation (C.ll) for p(£,n) we obtain 

Fe(p)  = f-   (Pl + P2 + P3) (C.64) 

which can be used to derive the merit function for the system. 
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