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ABSTRACT 

The power scaling and frequency stabilization aspects of a high power, injection- 

locked, arc-lamp pumped Nd:YAG rod laser at 1.064 urn are considered. A complete 

theoretical analysis is performed on the Pound-Drever-Hall injection-locking technique 

used to lock the oscillation frequency of a high power laser to that of a low power 

frequency-stable laser. The explicit form of the injection-locking error signal is derived 

and an effective frequency noise control loop is established, which serves as a building 

block for describing more elaborate stabilization techniques. I achieve a 24-W, TEM00, 

linearly-polarized (97:1) output with an M2 of 1.07, using one such elaborate stabilization 

technique. I demonstrate the similarity between the frequency stability of the output field 

of an external cavity frequency-doubled laser and the injection-locked laser. I establish a 

frequency reference at 1 urn with a frequency stability of 10"13 at one second by locking 

the frequency-doubled NPRO to an electronic transition in I2. 
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CHAPTER 1. Introduction 

1.1 Motivation 

Since the invention of the laser, researchers have labored to improve its frequency 

stability and output power. High power, continuous-wave (cw), TEMoo, frequency- 

stabilized lasers serve as excellent pump sources for nonlinear optical processes, 

precision lasers for space-based measurements1 and gravitational-wave detection, and 

high-Q oscillators for coherent communication,3 high resolution spectroscopy,4 and the 

achievement of an optical clock. As an example of the stringent specifications of the 

lasers needed to support these fields, the space-based gravity-wave detector requires a 

cw, single-frequency laser of output power greater than 100 W and frequency stability 

less than 10"6 Hz/Hz1/2 at noise frequencies less than 1 kHz.5'6 

To create such a laser one generally first attempts to produce a high power, 

single-frequency source and then tries to improve the frequency stability of its output 

field. Several researchers have produced high power, cw, TEM0o outputs with lasers 

containing one or more Nd:YAG rods side-pumped by individual diodes or diode 

arrays.7"9 The highest reported cw, TEM0o output power of these transverse diode- 

pumped Nd:YAG lasers is 62 W.8 Next, one improves the frequency stability of the high 

power laser by either stabilizing its frequency to an external reference using somewhat 

complex frequency actuation schemes (Ref. 10) or injection-locking the high-power 

"slave" laser to a low-power frequency-stable "master" laser such as the NPRO (Non- 

Planar Ring Oscillator) laser created in 1985 by Kane and Byer.11'12 The injection-locked 

output displays both the high power of the slave laser and the frequency stability of the 

master laser. Since stabilization efforts of the NPRO have yielded frequency stabilities of 
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10"4 Hz/Hz1/2 at frequencies below 1 kHz,13 it is conceivable that a high power slave laser 

injection-locked to such a laser can achieve comparable stability. This makes injection- 

locking an appealing method of achieving a high-power frequency-stable output. 

Several groups have injection-locked diode-pumped Nd:YAG rod lasers to NPRO 

lasers and then attempted to further stabilize the frequency of the injection-locked, 

TEMoo output field by employing rather complex "global" stabilization schemes. The 

most noteworthy results of such efforts have been a 20 W output with a linewidth of 10 

kHz,14 a 10 W output with a frequency stability of 50 Hz/Hz1/2 at 300 Hz,15 and a 2.2 W 

output with a frequency stability of 2 x 10"4 Hz/Hz1/2 at 1 kHz.16 

In this thesis, I discuss my efforts to achieve a high power, linearly-polarized, 

TEMoo output with an arc-lamp pumped Nd:YAG rod laser, injection-locked to an NPRO 

laser, and then characterize and improve its frequency stability. As a result of these 

efforts, I report obtaining a 24 W, TEMoo, M2 ~ 1.07, linearly-polarized output with a 

linewidth of 1.5 Hz and a frequency stability of less than 1 Hz/Hz1/2 at 1 kHz. 

Before giving an overview of the thesis by chapter, I review the general method 

of achieving a high power, frequency-stable, injection-locked output while pointing out 

the unanswered questions associated with this process that are addressed in this thesis. 

1.2 Achieving a High Power Frequency-Stable Output 

To meet the requirements of a particular application, one designs a stable slave 

laser cavity that can support the required output power. Although output powers of 10 W 

have been achieved with diode end-pumped NdrYAG lasers,15 and output powers of 

nearly 18 W have been achieved with transverse lamp-pumped Nd:YAG rod lasers,17 it is 

generally agreed that transverse diode-pumping is required to achieve output powers 
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greater than 30 W.18 However, as the transverse pump power is increased, the thermal 

loading of the Nd:YAG rod increases, inducing both thermal lensing and birefringence.19 

The thermo-optical model presented by Murdough accounts for the thermal 

lensing and birefringent aspects of the Nd:YAG rod and creates an optical 2x2 matrix for 

the rod as a function of transverse pump power.20 The key assumption of the model is 

that the induced radial temperature distribution is azimuthally symmetric. To scale the 

output power of the slave laser, one can use this model to optimize the slave resonator 

length and intracavity elements to create a stable slave resonator at higher pump powers. 

But how accurately does the model predict the stable operating regime of the linearly- 

polarized, injection-locked laser? Also, in the absence of birefringent compensation, 

what limits the power-scaling efforts using an Nd:YAG rod: the bifocal property of the 

rod or the stress fracture limit of the rod? 

After scaling the power of the slave laser, one sets out to improve the frequency 

stability of the injection-locked output. To optimally reduce the frequency noise of the 

high power output field, one must understand how the noise of the incident master laser 

and the unseeded slave laser contribute to the overall noise of the injection-locked output. 

Siegman has performed an extensive analysis in which he solved the damped, driven 

wave equation describing the circulating field of the slave laser to obtain two coupled 

amplitude and phase relations for the output injection-locked electric field.21 Two groups 

have since solved these coupled equations to show that the transfer function of the master 

laser frequency noise onto the injection-locked output is a low pass filter and that of the 

slave resonator noise is a high pass filter, both of corner frequency equal to the lock range 

frequency (vLock, defined in Chapter 5).22"24 Thus, the problem of achieving a frequency- 
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stable output centers on reducing the low frequency noise of the master, and the high 

frequency noise of the slave. However, this assumes that the laser remains injection- 

locked, which is not the case when the original (unseeded) slave resonator frequency 

noise, or that of the master laser, exceeds the lock range frequency. 

To insure the laser remains injection-locked, researchers use the Pound-Drever- 

Hall (PDH) FM sideband locking technique.25 This technique is most-often used to 

stabilize the output frequency of low-power solid-state lasers, such as the NPRO, to the 

mHz level by locking the instantaneous frequency output to the resonant frequency of a 

high-finesse optical resonator.26"28 This same technique is used to lock the oscillation 

frequency of the slave laser to the instantaneous frequency input of the master laser. 

While much is known about the PDH locking of a laser to a Fabry-Perot, very little is 

known about the PDH injection-locking experiment. The explicit form of the error signal 

is needed to establish an effective control loop diagram and to determine the optimal 

experimental parameters yielding the minimum injection-locked spectral density of 

frequency noise. This control loop can be used to determine methods of measuring the 

relative frequency stability of the slave laser with respect to the master laser and the 

optimal method of further stabilizing the frequency of the injection-locked output. 

To further suppress the noise of the injection-locked output field, one can either 

prestabilize the frequency of the master laser or detect the frequency noise of the 

injection-locked output and feed it back to the master laser. The latter option treats the 

master laser as a frequency actuator in the master/slave injection-locked system. Since 

the frequency noise transfer function of the master laser onto the injection-locked output 

is a low pass filter, the optimal loop detects the injection-locked noise and feeds the low 
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frequency noise negatively back to the master laser and the high frequency noise to a 

phase modulator placed in the path of the high power output beam.24 

By detecting and reducing the frequency noise of the injection-locked output field 

with respect to a frequency reference, the stability of the injection-locked output can at 

best duplicate the frequency stability of the reference. Spectroscopy and coherent 

communications hinge upon day to day repeatability and knowledge of the exact 

frequency of the laser. Repeatability is lost and long-term stability reduced when a laser 

is locked to a reference cavity since the drift of the reference cavity length over a period 

of time causes a consequent drift in the reference frequency. To reduce the drift of the 

reference cavity length, researchers have cleverly stabilized the length of the cavity by 

mixing down the heterodyne beatnote of two lasers locked to adjacent modes of the same 

cavity and using this signal to lock the Free Spectral Range (FSR) to an electronic 

oscillator.29 This technique improves the long term stability of the beatnote frequency of 

the two lasers, but does not improve the absolute frequency stability of either of the lasers 

locked to this resonator since the absolute frequency of the resonance can still drift with 

time. To eliminate the frequency drift of the reference one compares the instantaneous 

laser frequency to the absorption frequency of an atomic or molecular transition. Since 

the frequency of such a transition is fixed, it serves as an absolute frequency reference, 

significantly improving the long-term stability of the laser. 

1.3 Overview 

In Chapter 2,1 use the thermo-optical model of Murdough to optimize the slave 

laser cavities of three arc-lamp pumped heads to scale the injection-locked, TEMoo, 

linearly-polarized output power to 28.5 W, 26.5 W, and 25 W. In the process, I verify the 
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accuracy of the model in predicting the stable operating regime of a linearly-polarized 

field. I report that when the assumptions of the model are valid, in the absence of 

birefringence compensation techniques, the bifocal property of the rod is the key limiting 

factor in the power scaling effort. However, I find that when the induced temperature 

distribution created within the rod is asymmetric it becomes the chief limitation. 

The remainder of the thesis addresses the various topics encountered in the effort 

to improve the frequency stability of the injection-locked laser. Note that these chapters 

are not arranged chronologically, but rather in the order in which I believe they 

complement each other most effectively. In actuality, most of the experiments described 

in Chapter 6 were used to develop the PDH injection-locking theory of Chapter 5. This 

theory was then used to augment the previous theory associated with the PDH locking of 

a laser to a Fabry-Perot (discussed in Chapter 4) which was later used to describe the 

frequency stabilization of the external cavity frequency-doubler (discussed in Chapter 7). 

In Chapter 3,1 introduce the control theory method of describing the problem of 

stabilizing the frequency of a laser to a reference. I introduce the particular elements of 

the feedback loop (the discriminator, servo, and actuator) which are common to all of the 

stabilization efforts of this thesis and analyze the effective frequency noise control loop 

created in both the time and frequency domains. The results of the time domain analysis 

reveal the explicit relationship between the magnitude and phase of the open and closed 

loop transfer functions of the feedback loop. This relationship was not present in the 

literature, and is needed to understand the trade-off between gain and loop efficiency 

when designing the servo element. I alter the frequency domain analysis of Ref. 30 to 

include the relative frequency stability of the reference and use the resulting frequency 
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noise control loop to derive explicit relationships between the voltage signals measured at 

two points in the control loop (labeled Ne and Na) and the open and closed loop spectral 

density of frequency noise of the laser. This simple frequency noise control loop serves 

as the starting point in modeling the frequency stabilization experiments of this thesis. 

In Chapter 4,1 alter the well-documented theory of locking a laser to a Fabry- 

Perot by performing the PDH error signal derivation in a new manner (using the damped, 

driven wave equation describing the circulating field of the Fabry-Perot). This derivation 

is more beneficial than the previous derivation of Day (Ref. 30) since it not only reveals 

the contribution of the frequency noise of the laser, but also the frequency noise of the 

reference cavity. It also reveals the explicit relationship describing the coupling of the 

amplitude and frequency noise of the incident field and the circulating and reflected 

fields of the resonator. I use the results of this derivation to review the optimal incident 

laser parameters yielding the minimal achievable closed loop spectral density of 

frequency noise.31 Next, I alter the frequency noise control loop of Chapter 3 to display 

the parameters of this new PDH error signal derivation and then use the loop to determine 

the relations between the open and closed loop spectral density of frequency noise of the 

laser and the Ne and Na point measurements. Although I find that the simple control loop 

of Chapter 3 yielded the exact same relations, I later show that this new derivation and its 

complex control loop are beneficial in describing the frequency stabilization of the 

external cavity frequency-doubler of Chapter 7. 

In Chapter 5,1 present the control theory that I developed to accurately model the 

various measurements I made to characterize the frequency stability of the injection- 

locked laser. The format of Chapter 5 is very similar to that of Chapter 4 so that straight- 
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forward comparisons can be made between the PDH locking of a laser to a Fabry-Perot 

and the PDH injection-locking experiment. I use the theory presented by Siegman and 

the frequency noise transfer functions of Barillet to derive the PDH error signal. I also 

derive an explicit expression for the lock range frequency, altered slightly from 

previously reported expressions to account for parameters particular to the PDH 

technique. I introduce an effective PDH injection-locking control loop block diagram 

and discuss how the Ne and Na point measurements can be used to determine the open 

and closed loop relative spectral density of the frequency noise of the slave laser with 

respect to the master laser. The results suggest that the simple control loop of Chapter 3 

can not adequately represent the entire injection-locking process, indicating this more 

complicated control loop diagram is necessary for modeling this experiment. Next, I 

review the global frequency noise suppression techniques presented in the literature 

(labeled Techniques 2, and 3)23'24 and compare them with another global suppression 

technique (prestabilization of the master laser, labeled Technique 1), which is generally 

assumed to be the worst stabilization scheme and thus ignored in the literature. I show 

that given the feedback loop bandwidth limitations and experimental parameters common 

to our experiments, Technique 1 should yield comparable results to Technique 2. 

In Chapter 6,1 list the results of various experiments I performed that led me to 

the theoretical description of injection-locking control theory presented in Chapter 5. I 

list the experimental results obtained when implementing Techniques 1 and 2 to improve 

the frequency stability of a high-power injection-locked laser. I report achieving a 24 W, 

TEMoo, M2 ~ 1.07, linearly-polarized injection-locked output with a linewidth of 1.5 Hz 



and a frequency stability of less than 1 Hz/Hz1/2 at 1 kHz, using a "noisy" arc-lamp 

pumped head and the worst possible stabilization scheme (Technique 1). 

The damped, driven wave equation analysis for the Fabry-Perot, in Chapter 4, and 

the slave laser resonator, in Chapter 5, produce similar expressions relating the frequency 

noise of the circulating field to the noise of the incident laser and the unseeded resonator. 

In Chapter 7,1 use this same analysis to describe the frequency stabilization of an 

external cavity frequency-doubled laser. I also show that the optimal theoretical 

frequency stabilization technique for the injection-locked laser (Technique 3 of Chapter 

5) is also the optimal technique for minimizing the frequency noise of the doubled field. 

In Chapter 8,1 discuss the absolute frequency stabilization of a 1.064 urn laser. I 

introduce five known molecules with transitions neighboring this wavelength: C2HD, 

C2H2, CO2, Cs2, and I2 (~ 532 nm). I characterize the frequency stability of one of the 

two frequency references we produced,32 using the well-documented modulation transfer 

scheme to lock the frequency-doubled NPRO to a hyperfine component of an electronic 

transition in I2.33 I report achieving a spectral density of frequency noise of 0.3 Hz/Hz1/2 

for noise frequencies less than 400 Hz and a frequency stability of 10"13 for a time 

interval of one second. I also show, via comparison, that these results are comparable to 

the results of similar lasers presented in the literature.33'34 These frequency references 

will be used in the future to characterize the frequency stability of an injection-locked 

laser stabilized to an absolute frequency reference at 1.064 urn. 

In Chapter 9,1 review the key results of this dissertation and discuss the future 

experiments and theoretical analyses necessary to further improve the frequency stability 

of an injection-locked laser at 1.064 urn. 



CHAPTER 2. Power Scaling 

In this chapter, I review the limitations of scaling the linearly-polarized, TEMoo 

output power of a ring laser resonator containing a side-pumped NdrYAG rod. I briefly 

review the thermo-optical model created by Murdough and Denman20 to monitor the 

mode-size through the rod and laser resonator stability criteria as a function of transverse 

pump power. I discuss the methods used to optimize certain laser resonator parameters to 

shift the stable operating regime of the linearly-polarized mode, predicted by the model, 

to higher transverse pump powers. 

Using these optimization techniques, I report achieving over 25 W, TEMoo, 

linearly-polarized output with three different arc-lamp pumped NdrYAG rod lasers. The 

highest polarized, TEMoo output power previously reported with a laser containing a 

single arc-lamp pumped head was 18 W and containing two pump heads was 24 W.17 

2.1 Limitations 

Consider a constrained cylindrical Nd:YAG rod transversely pumped and cooled 

with perfect azimuthal symmetry. Solving the one dimensional heat equation reveals the 

temperature distribution in the rod varies quadratically along the radial axis.19 Since the 

index of refraction is linearly dependent on the temperature of the material, it too varies 

quadratically, and the rod acts as a quadratic lens duct.35'36 The temperature gradient 

created along the rod's radial axis induces thermal strains that alter the index of refraction 

at each point in the rod. This strain-induced change in the index of refraction varies 

linearly with the photoelastic coefficient, which differs along the r and § axes of the 

Nd:YAG rod cross-section, defined in a traditional cylindrical coordinate system as 

shown in Figure 2.1. It is clear by inspection of Figure 2.1 that the polarization at each 
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point in the cross section of the linearly-polarized beam incident along the longitudinal 

axis of the rod can be decomposed into an r and <)) component. Since the indices of 

refraction differ along these axes, the incident beam undergoes a birefringent effect. 

Nd:YAGrod 

Figure 2.1. Decomposition of linear polarization along r and <j> axes. 

Koechner treated this problem extensively and obtained an expression similar to Equation 

2.1 for the radial index of refraction dependence.19 The index of Equation 2.1 is the sum 

of the index at the rod center, the temperature-induced index variation, and the stress- 

induced variation. 

nrAr) = no — VT'P* T    * in 

n-rn  -Lr -K \2  dT 

1   dn 
+ «n   a-C r,t (2.1) 

Where no is the index of refraction at the rod center, r0 is the rod radius, Lr is the rod 

length, K is the thermal conductivity, a is the thermal coefficient of expansion, C^ are 

the radial and tangential photoelastic coefficients, Pin is the transverse pump power, and 

nT is the percentage of Pin absorbed by the rod as heat. The primary difference between 

arc-lamp pumped systems and transverse diode-pumped systems in the current discussion 

is the value of nT. For diode-pumped systems r)T is much less than it's lamp-pumped 

counterpart due to the much higher efficiency in the diode-pumping process. Equation 

2.1 can be simplified and compared with the equation of a lens. In so doing, it can be 
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shown that the rod acts as a bifocal lens whose focal lengths along the r and § axes are 

inversely proportional to the transverse pump power but to varying degrees. For 

Nd:YAG, the ratio of the focal length of the § polarization is 1.2 times greater than the 

focal length of the r polarization at any given pump power. To resonate a linearly- 

polarized mode one accounts for this bifocal effect and ensures that both the r and § 

modes satisfy the stability criterion of the laser resonator. 

Two methods of scaling the output power of the laser are to increase the 

transverse pump power or augment the TEMoo mode size through the rod to increase the 

gain volume employed. Each process has its limits. First, as the pump power is 

increased, the amount of pump power dissipated as heat in the rod increases, causing a 

consequent rise in the surface stresses of the rod. The stress fracture limit is reached 

when the surface stress exceeds the tensile strength of the rod. The efficiency of the 

pump irradiance sets the value of r\j and determines the actual achievable transverse 

pump power- making diode-pumped systems more appealing than their inefficient arc- 

lamp pumped counterparts. Second, as the spot size of the circulating field increases, the 

range of transverse pump powers for which the r and § modes are both stable diminishes, 

due to the bifocussing effect of the rod.37 Eventually, a point is reached at which the 

overlap of these modes is so small that perturbations of the rod's effective focal length 

cause one or both modes to become unstable and lasing to cease. The maximum TEMoo 

spot size was reported by Cerullo et al. to be nearly 1 mm37 and later by Murdough and 

Denman to be on the order of 1.1 mm.20 

Another limitation to the power scaling effort is the azimuthal symmetry of the 

temperature distribution generated in the rod's cross section, resulting from either 
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asymmetric pumping or cooling. This non-uniformity causes optical distortion through 

the rod and increases the loss of the circulating field. It can also increase the gain of 

higher-order modes competing for gain with the TEMoo mode.38 

2.2 Thermo-Optical Model 

After a bit of manipulation and grouping of terms, Equation 2.1 can be rewritten 

as shown in Equation 2.2, in terms of the constant ßr,^ defined in Equation 2.3.20'39 

nJr) = n0-jßryPin-r
2 (2.2) 

A,=—? {- — W'«'0 (2.3) 
*    7t-r0

2-Lr-K \2 dT     ° r4) 

It is clear that ß^ is dependent on material parameters and the efficiency of the pumping 

scheme employed. A recently reported thermo-optical model uses Equation 2.2, treats 

the pumped portion of the Nd:YAG rod as a quadratic lens duct, and outputs an optical 

2x2 matrix for each of the r and § polarizations.39 Multiplying this 2x2 matrix by the 

matrices determined for the unpumped portion of the rod and the rod endface curvatures 

yields a single matrix for the rod for each polarization as a function of ß,^ and Pjn. Since 

ßr and ß<j, are constants for a given pump head and can be determined experimentally,39 

Pin is the only independent variable. Note that ß^ are the only parameters that change 

with Nd:YAG rod, pumping scheme, or pump orientation. Further, Equations 2.1-2.3 are 

valid for any pump scheme creating an azimuthally symmetric temperature distribution. 

The side-pumped rod is placed into the resonator of Figure 2.2 (which later serves 

as the slave laser for the injection-locking experiments), and optical 2x2 matrices are 

established for the optical path lengths and intracavity elements encountered by the 
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circulating field. These matrices and the matrix for the rod are used to determine the 

stability criteria of the resonator and the spot size of the circulating field (at the entrance 

of the rod) as a function of Pjn. Figure 2.3 displays a sample spot size and stability 

criteria versus transverse pump power for a particular arc-lamp pumped head. 

mirror 

Thin Film 
Polarizer R= 85% output 

coupler 
intracavity lens 

Figure 2.2. Resonator containing arc-lamp pumped Nd:YAG rod. 
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Figure 2.3. Stability criteria and mode radius versus pump power for r and $ polarizations. (From Ref. 39) 

To produce a linearly polarized output, both the r and <{> components must be 

stable (i.e. have stability criteria less than one). Therefore the overall stability zone of the 
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linearly polarized field is the range of pump powers for which both the r and (j) 

components are independently stable. Figure 2.3 shows that as the radius of each 

component increases beyond approximately 1.1 mm, its corresponding stability criterion 

exceeds one—the limit of the stable operating regime. The edges of the overall stability 

zone, shown in Figure 2.3, consist of the pump power at which the § polarization 

becomes stable, labeled as the turn-on point, and the pump power at which the r 

polarization becomes unstable, labeled as the turn-off point. 

2.3 Optimizing the Slave Resonator 

To scale the power of the TEMoo linearly-polarized output, it is necessary to shift 

the overlap of the r and <j) stability zones to higher pump powers and increase the spot size 

of the circulating field entering the Nd:YAG rod near the limit of 1.1 mm. 

To shift the stability zones to higher pump powers, the rod endfaces are curved 

and the slave resonator length is reduced. Placing a concave curvature on the rod 

endfaces compensates for the thermal lensing of the rod and the lensing effects of the 

endface bulging that occurs as the thermal loading increases. Reducing the length of the 

resonator increases the focal power that the thermal lens may have while still creating a 

stable resonator. Reducing the resonator length also reduces the spot size in the rod. To 

correct this, an intracavity diverging lens is used to increase the spot size in the rod. 

Table 2.1 lists the model-predicted effects of varying the cavity length (Lc), rod endface 

curvatures (Rend), and focal length of the diverging lens (fie) on the mode size and 

stability criterion for each of the r and § polarizations. 
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Parameter 
Alteration 

Significant Effect on mode radius and stability zone 

Decrease I Rend 1 
Both r and <|> stability zones shift to higher pump powers. 
Overlap of r and <|> stability zones diminishes. 

Decrease Lc 
Pump power stability zone turn-off point increases. 
Mode size diminishes. 

Decrease | fIC 1 
Pump power stability zone turn-on point increases. 
Mode size increases. 
Overlap of the r and cj) stability zones diminishes. 

Table 2.1. Model-predicted effects of varying different cavity parameters. 

To decrease | Red I, the rod manufacturer grinded concave surfaces into the end- 

faces of the rod. Decreasing | Rend I and | fie I refers to reducing the concave radius of 

curvature of the rod endface and the biconcave lenses, respectively (e.g. from -infinity to 

-100 cm to -50 cm, etc.). 

2.4 Experiment 

Using the model, I optimized slave resonators containing three different arc-lamp 

pump heads, to scale their linearly-polarized, TEMoo, injection-locked output power to 

the highest levels ever achieved for a single arc-lamp pumped head. I used a Coherent 

Antarres head containing a 4 mm x 100 mm rod, and lamp-pumped heads from Kigre Inc. 

and Granit Inc., each with a 5 mm by 150 mm rod. All rods were 0.8 at. % Nd doped and 

operated with a coolant temperature of approximately 10 °C. The Granit and Coherent 

heads both used a gold, dual-elliptical reflector housing, while the Kigre head had a 

BaSÜ4 close-coupled reflector housing. Each head employed a slightly different 

pumping and/or cooling scheme and thus displayed a different $r$ value. For each head, 

ßr,<() was determined (using the procedure outlined in Ref. 39) and the parameters of Table 

2.1 were adjusted. The upper limit of the pump power, Pjn,max, was either set by previous 

experience or manufacturer recommendations and was chosen several kilowatts less than 

the stress fracture limit power. Table 2.2 lists the final optimized slave laser parameters 
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for each arc-lamp pumped head. Since all heads had nearly the same physical 

dimensions, the minimum cavity length obtainable was nearly 110 cm. 

Pump 
Head 

Le 
(cm) 

Rend 
(cm) 

fie 
(cm) 

TEMoo Power 
(W) 

p. 
* m,max 

(kW) 

Coherent 110 -80 -30 26.7 10.75 
Kigre 110 -80 No Lens 22 7.15 

Granit 110 -80 -50 25 15 

Table 2.2. Optimal slave resonator parameters for each of the pump heads used. 

For each head, a slave laser resonator was configured with the optimized 

parameters of Table 2.2 and injection-locked with a 500-mW Lightwave Electronics 

Series 122 NPRO (operating near 1.064 urn), as shown in Figure 2.4. 
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Figure 2.4. Injection-Locking schematic for power scaling experiments. 

The frequency noise of the slave laser was sufficient to keep the laser from 

remaining injection-locked for any period of time. Thus, the frequency lock of the slave 

to the master was obtained using the PDH FM sideband-locking scheme, the details of 
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which will be discussed in Chapter 5. I did not optimize the output coupler of the slave 

resonator for each pump head by determining the round-trip cavity losses as discussed by 

Koechner.40 Instead I chose the coupler that yielded the highest output power with the 

Coherent head, RoC = 85 %, and assumed that the losses of each head were comparable. 

The injection-locked output was monitored using a Newport Supercavity optical 

spectrum analyzer (OSA), a Spiricon Laser Beam Analyzer, a power meter, and a 

Coherent Mode Master. The OSA monitored the ratio of the TEMoo power to any higher 

order modes, the Beam Analyzer monitored the output beam cross section, the power 

meter took all of the power scaling data (recorded as a function of electrical power 

supplied to the arc lamps), and the Mode Master measured the M2 value. The high power 

output was typically better than 97% linearly polarized with an M2 ~ 1.07. 

To verify the model, the slave resonator was first constructed with a flat-endfaced 

rod and the injection-locked TEMoo output power was measured at discrete pump power 

intervals. These output power measurements were then plotted versus lamp pump power 

along with the model-predicted r and ij> polarization stability criterion. A linear fit to the 

flat rod data was performed and extrapolated to the model-predicted stability zone turn- 

off power of the curved rod case (with identical mode size) to predict the maximum 

TEMoo output power. For all pump heads, the peak linearly-polarized output power was 

achieved at or near the predicted stability zone turn off point. The curved rod was then 

placed in the pump head and the TEM00 output power was again measured as a function 

of lamp pump power. The results of the flat rod data (its extrapolation to higher pump 

powers), the curved rod data, and the model-predicted r and <}> mode stability zones and 

mode sizes for the curved rod case were all plotted on a single graph for analysis. 
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2.5 Results 

Figures 2.5-2.7 show the experimental results obtained with the Coherent head, 

the Kigre head, and the Granit head, respectively. 
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Figure 2.5. Coherent head experimental data. 

In Figure 2.5, the maximum Coherent head curved rod output power obtained was 

approximately equal to the linear extrapolation of the flat rod data. The cavity was 

designed for a rod with 80-cm concave endface radii of curvature and used a -30-cm 

focal length intracavity lens placed opposite the pump head to ensure the stability zone 

turn-off power point equaled Pjn max(10.75 kW). This configuration produced a 26.7 W, 

stable, TEM00 injection-locked output at the upper cut-off of the r-polarization stability 

zone. The output power obtained in this case was close to the predicted value of 28.4 W 

at the intersection between the extrapolated line from the flat rod data and the vertical 

line drawn at P.      . Another data set taken with this head yielded an output of 28.5 W at 

19 



a lamp power of 10.75 kW with an intracavity lens of fIC=-25 cm. Without the lens, this 

design generally yielded an output power of 18 W at a pump power of nearly 7.75 kW. 
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Figure 2.6. Kigre head experimental data. 

Figure 2.6 displays the results of testing the Kigre head. Again, the curved rod 

output power data approaches the maximum value predicted by the extrapolation of the 

flat rod data to the head's maximum stable pump power point. For the 110-cm cavity, the 

highest output power obtained was 22.5 W at a pump power of 7.0 kW, which was very 

close to the 22 W predicted by the extrapolation of the flat rod data. At pump powers 

above 6.53 kW the output beam was increasingly multimodal. To diminish the off-axis 

modes, the beam was apertured at the entrance of the rod. Another data set taken with 

this head yielded 26.5 W TEM00 output with fic = -50 cm at a pump power of 6.67 kW. 

The Granit head, shown in Figure 2.7, was operated up to 15 kW of pump power 

while performing the standing wave cavity experiments to determine the ßr;(j) value. The 

ring cavity was designed to be stable up to this pump power, but the maximum TEM00 
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injection-locked power was obtained at 9 kW. Beyond this point, the output laser power 

was increasingly multimodal and the beam required aperturing at the exit of the rod. 

While the multimodal output beam power always increased with increased lamp pump 

power, the TEM00 power obtained after aperturing the higher order modes either leveled 

off or even decreased beyond 9 kW of pump power. Hence, while the model predicted 

that the cavity would be stable out to 12.5 kW, the highest TEMQ0 injection-locked power 

obtained with the Granit head was 25 W at a lamp pump power of 9.0 kW. 
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Figure 2.7. Granit head experimental data. 
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2.6 Discussion 

Figures 2.5 and 2.6 display excellent agreement between the model's predicted 

stability zone overlap versus lamp pump power and that obtained experimentally. In 

these cases, the linearly-polarized, TEMoo output power increased with added pump 

power until the r- polarization mode became unstable. The losses of the injected, 

linearly-polarized, TEMoo field continued to increase until the circulating field arising 
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from the injected master laser field no longer exceeded the amplitude of other slave laser 

modes and injection-locking ceased. 

On the other hand, the Granit head data of Figure 2.7 showed mixed agreement 

with the model. The lowest injection-locked output power data point was obtained at the 

predicted stability zone turn-on power point, 8.5 kW. At this point, both the r and § 

components of the linearly-polarized circulating field are stable and the losses of the 

injected master laser are small enough to obtain lock. However, the maximum TEMoo 

output power obtained with this head was found at a pump power of 9.5 kW; much lower 

than the expected Pinjmax of 13.4 kW. The discrepancy between the model and the 

experimental data was likely caused by an asymmetric temperature distribution within the 

rod. Such an asymmetric distribution invalidated the uniformity assumptions of the 

model and induced optical aberrations resulting in increased losses for the TEMoo mode. 

As the losses increased, the laser became increasingly multimodal as the pump power 

was increased beyond 9.5 kW. By aperturing the circulating field at the entrance to the 

Nd:YAG rod, I increased the losses of the higher order modes to ensure the laser 

oscillated in the TEMoo mode, but at a reduced power due to the losses of the aperture. 

2.7 Summary 

Based on these experiments it is clear that the thermo-optical model can be used 

to optimize parameters of a laser resonator containing a side-pumped Nd:YAG rod. 

However, care must be taken to ensure a symmetric temperature distribution is 

maintained at higher pump powers to reduce the losses of the linearly-polarized TEMoo 

mode. Note that no attempt was made to compensate for the birefringence of the rod. 

Recently reported compensation techniques could be used in conjunction with this model 
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to increase the overlap of the r and § stability zones and increase the pump power limit, 

beyond the bifocussing limit, to the stress fracture limit of the rod.41 

Using the optimization procedures outlined in Section 2.3,1 achieved a linearly 

polarized, TEMoo output power of 28.5 W, with an M2 of 1.07, using a Coherent Antarres 

arc-lamp pumped head. This is the highest TEMoo power of an injection-locked laser 

containing a single or even two lamp-pumped heads. 
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CHAPTER 3. Frequency Stabilization Theory 

In this chapter, I discuss the problem of improving the frequency stability of a 

laser by comparing its frequency to that of a frequency reference and establishing a 

negative feedback loop to eliminate the erroneous frequency fluctuations. I introduce 

two of the feedback loop elements, the actuator and the servo, which are common to all 

of the experiments presented in the remainder of the thesis. Also, I introduce and 

augment the control loop diagram of Ref. 30, since this simple representation serves as 

the starting point in modeling the various complex stabilization experiments discussed in 

this thesis. The scope of the discussion will remain broad to ensure a proper introduction 

is made of the various terms and concepts used throughout this thesis. 

3.1 Phase and Frequency Noise 

Consider a laser whose output electric field frequency oscillates about a carrier 

frequency, Vo. A common method of representing the instantaneous frequency splits the 

total frequency into the sum of the carrier frequency and various Fourier noise 

components oscillating at frequency vn.42 This representation is shown in Equation 3.1 in 

terms of the carrier and noise radial frequencies, «o and ©„, respectively. Throughout the 

thesis, I interchange between frequency, vx in Hz, and radial frequency, ©x in Rad/sec, 

where cox = 2n vx. 

,      /SNn '(<V+Xsd.w<vJ'sin('B»r» 
ELaser(t) = E0(t)-e

[i^-m =E0(t)-e       ■ (3.1) 

Where Ei^ser is the complex electric field, Eo is the real field amplitude, <|)Laser(t) is the 

instantaneous phase noise of the field, and S^LaserCvn) is the amplitude (in Rad) of the 

phase noise term oscillating at frequency vn. In this thesis, I consider the contributions of 
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a single noise frequency, v„, assuming that this analysis holds equally true for each 

individual noise frequency. The instantaneous frequency of the field, vLaSer(t), is the time 

derivative of the instantaneous phase term of Equation 3.1 as shown in Equation 3.2. 

= V0+Sf,Laser(
Vn)-COS(°>n

t) 

(3.2) 

The frequency of the laser oscillates about the center frequency, v0, at the oscillation 

frequency, vn, with peak frequency deviation of Sf5Laser(vn), in Hz. The relation between 

S<|,,Laser(Vn) and S^LaSer(vn) is shown in Equation 3.3. 

Sf,Laser(K) = S^Laser(v„)-V„ (3.3) 

As an example, assume we eliminate or filter all of the frequency noise of the laser 

except the component oscillating at vn. Equation 3.2 suggests that the instantaneous 

frequency of the laser, vLaSer(t), oscillates about v0. The peak frequency deviation is 

Sf,Laser(vn) and the period of the oscillation is equal to l/vn as shown in Figure 3.1. 

1 mz    vn (Hz) 
Figure 3.1. Frequency noise model. 

In actuality, we can not isolate a particular noise frequency. Instead, there are methods of 

detecting the instantaneous frequency of the laser and performing a Fourier analysis to 
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yield a plot of the spectral density of frequency noise, as shown in the second plot of 

Figure 3.1. Ideally such a graph would plot the peak frequency excursion occurring at a 

given noise frequency, Sf,Laser(v„) in Hz, as a function of the noise frequency, v„ in Hz. I 

have shown this ideal case in Figure 3.1, and drawn dotted lines to the point in the plot 

depicting a frequency noise, SfjLaser(lkHz) = 10 Hz, surrounded by the rest of the noise 

spectrum of the laser. However, due to the finite resolution of our measuring devices, we 

can not isolate noise terms at discrete frequencies, vn. Instead, we measure the total 

power (proportional to S^Laser2) in a frequency bin of width, Av, neighboring vn.43'44 The 

ratio of the power per bin to the width of the bin yields the average power detected per 

one Hz bandwidth. The square root of this average power yields the spectral density of 

frequency noise, in Hz/Hz1/2, as shown in Equation 3.4. 

+A% 
Z tWCVJinHz)2 

Sf,Laser(vn) in -§L = | "   "   A        .        (3.4) 
VHz     I A v in Hz 

The spectral density of frequency noise can be thought of as the average frequency noise 

occurring in a l Hz bandwidth neighboring v„. Throughout this thesis, I consider discrete 

noise signals, Sf,Laser(vn) in Hz, when discussing theoretical relations, but discuss actual 

noise measurements using the spectral density of frequency noise, SfiLaser(vn) in Hz/Hzl/2. 

Similarly, the spectral density of phase noise, S^Laser, spectral density of voltage 

noise, Sv, and spectral density of amplitude noise, S^Laser, are related to their discrete 

noise amplitudes through relations like Equation 3.4 and measured in units of Rad/Hzl/2, 

V/Hzl/2, and l/Hzl/2, respectively. The spectral density of voltage and amplitude noise 

will be introduced later in the thesis. 
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3.2 Frequency Control Theory (Time Domain Analysis) 

Laser frequency stabilization compares the instantaneous frequency output of the 

laser, VLaser(t), with a frequency reference, ideally of frequency VREFOO = vo, to detect the 

noise frequency oscillations, Sf;Laser(vn) of Equation 3.2. This noise is amplified and fed 

back negatively to either the laser resonator or a phase modulator placed in the output 

path of the laser, to cancel the original noise of the laser, S^Laser(vn). The steady-state 

control loop established can be represented as shown in Figure 3.2. 

Ks 

Figure 3.2. Frequency noise control loop (time domain). 

The feedback noise signal, Vfoack(t) is subtracted from the original frequency output of the 

laser, VLaser(t), in the optical frequency summer, Ei (the laser resonator or a phase 

modulator placed in the output beam path), to yield the instantaneous closed loop output 

frequency, VCL(X). The feedback noise signal is obtained by optically subtracting VREFO) 

from vciXt), and converting the resulting optical error signal, Sf^aserCvn), to a voltage 

signal in the discriminator with transfer function KD(V„), of units V/Hz. This voltage 

signal is amplified in the servo with transfer function Ks(vn), of units V/V, and sent to the 

frequency actuator which converts the signal back to an optical signal, Vft,ack(t), with 

transfer function KA(V„), of units Hz/V. 
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To obtain a better understanding of the control loop, I will trace the loop 

clockwise beginning with the unstabilized frequency of the laser, VL^I). Assume 

Sf,Laser(vn) of Equation 3.2 is real and that the complex instantaneous frequency of the 

electric field output of the laser can be represented as shown in Equation 3.5. 

VLaser(0 = ^0 + Sf,LaserK) • e^ (3.5) 

The frequency of the electric field output of the first frequency summer, Zj, is equal to 

vciXt), shown in Equation 3.6. 

VCL (0 = yLaser (0 ~ ^flack (0 (3-6) 

To determine the relationship between Vfback(t) and the original noise signal we assume 

the form of the complex feedback signal to be that of Equation 3.7. 

VßackiO = SftJback{yny^ (3.7) 

The complex amplitude of the feedback error signal is Sfjfback(vn), in Hz. Substitution of 

Equations 3.5 and 3.7 into 3.6 yields the explicit expression for v<x(t), which is sent to 

the discriminator. The discriminator compares VCLO) to VREF(t) and converts the error 

signal to a voltage signal. Assume vREF(t) is constant and equal to v0. The output of the 

discriminator is amplified in the servo and transferred back to an optical signal, Vfback(t), 

by the actuator. Substituting Equations 3.5 and 3.7 into 3.6, and tracing the feedback 

signal back to the negative input terminal of Ei yields the following expression. 

Sf,fl,ack ■ eim"' = KD(v,)-KA{vn).Ks(vn)• [SfMser -SL/back]• e,a* 
ico„t 

= GOL (Vn ) * [Sf,Laier ~ Sf,flack ] " e^"' 
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The product of the complex transfer functions of the actuator, servo and discriminator are 

grouped into a single complex open loop transfer function, GoL(vn). Solving Equation 

3.8 reveals the following relation between S^ack and Sf;Laser- 

(  G0L(v„)  ^ 
Sf,fi>ack ' Sf, Laser ~ ^CL (Vn ) ' ^f,Laser C-9) 

l + G0L(yn), 

GCL(VII) is the complex closed loop transfer function and is equal to the fraction in 

parentheses in the first expression of Equation 3.9. By representing GOL(V„) as shown in 

Equation 3.10, in terms of a magnitude and a phase, (|>oL(Vn), we can determine the 

magnitude and phase of GCL(V„) as shown in Equation 3.11. 

GoL{yn) = KD{vn)-KA{vn).Ks{yn) = \GOL{yn)\.ei^n) (3.10) 

Note that (j)oL(vn) is the sum of the individual phase delays of the discriminator, servo, 

and actuator elements. After substituting Equation 3.11 and 3.9 into 3.7, and then 

Equations 3.7 and 3.5 into 3.6, the real portion of VCLO) is found to equal Equation 3.12. 

Re[vCi (0] = v0 + SfjMer (vn) • [cosKO - \GCL (v„ )| • cos(cont + <f>CL (vn ))] (3.12) 

Solving the second and third expressions of Equation 3.11 reveals the following relation 

between <j)0L(vn) and (|)cL(Vn). 

/ 

^ci(v/J = arctan 
sin(^0i(v„)) 

\\G0L(yn^ + cos(^OL(y„))) 

Equation 3.13 is very interesting since it suggests that (|>cL(Vn) is zero regardless of the 

value of <|)oL(Vn) at frequencies where GOL(V,0 » 1. Of course, this entire derivation 

29 

(3.13) 



assumes a steady-state loop is established and thus (j>oL(vn) must remain between +/-180° 

to avoid positive feedback. I will revisit this point later when discussing servo design. 

According to Equations 3.11-3.13, the feedback signal exactly cancels the error 

signal at frequencies where G0L(vn) » 1, since GCL(V„) ~ 1 and <|)cL(Vn) ~ 0. This is 

generally true at very low noise frequencies, well within the feedback loop bandwidth. 

However, when G0L(V„) « 1 and thus GCL(vn) « 1, Equation 3.9 suggests that S#back(v„) « 

Sf,Laser(vn). Consequently, well outside the open loop gain bandwidth the noise remains 

on the output laser field, unchecked by the feedback loop. 

The above analysis exhibits the goals of the loop elements. The discriminator 

converts the optical frequency noise signal to a voltage signal. The servo provides as 

much gain as possible over the chosen bandwidth of the feedback loop. Since it is 

usually the actuator that is the limiting factor in the loop bandwidth, the actuator must 

create a flat frequency response to applied voltages for as wide a bandwidth as possible. 

3.3 Control Loop Elements 

3.3.1 Discriminator 

The control loop must discern between the correct phase and the erroneous phase 

output of the laser. Though there are several techniques of accomplishing this task,25'45 

most of the stabilization experiments of this thesis employ the Pound-Drever-Hall (PDH) 

FM sideband-locking technique.25 The discriminator is arguably the most important 

element of the feedback loop since its frequency stability and sensitivity set the limit to 

which the laser's frequency can be stabilized. Since the frequency discriminator is the 

chief difference between all of the stabilization experiments of this thesis, it will be 

discussed in detail in later chapters for each of the individual experiments. 
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For now we need only understand that the discriminator compares the 

instantaneous frequency of the output laser field to a reference frequency and outputs a 

voltage signal, in an external circuit, proportional to their difference. This process 

generates a spectral density of voltage noise, Sv,D(vn), in units of V/HzI/2. The largest 

noise source of the discriminator is usually the shot noise of the photodetector used in the 

PDH technique, as will be discussed for two particular cases in Chapters 4 and 5. 

The voltage signal leaving the discriminator is amplified by the servo and sent to 

the frequency actuator. Since the servo is much more complex than the actuator I will 

discuss the actuator now and leave the servo for last. 

3.3.2 Actuator 

The voltage output of the servo passes to the actuator to be converted back into an 

optical phase oscillation and summed with the original laser output. To do this, the 

actuator compensates for the frequency noise by adding (negatively) a frequency signal 

of equal amplitude and oscillation frequency as the noise. Sample actuators are Piezo- 

electric Transducers (PZTs), Electro-optic modulators (EOMs), Acousto-optic 

modulators (AOMs), temperature controllers, and any other device used to vary the phase 

of the circulating field of the laser resonator or the output field. Since PZTs, EOMs, and 

AOMs have the fastest responses, they are most-often used for fast frequency corrections. 

When placed in the beam path, an EOM can be used to modulate the output phase 

of the electric field. The modulation of the applied voltage creates a modulation of the 

transverse electric field applied to the EOM's crystal. This causes a modulation of the 

index of refraction encountered by the incident field and hence a modulation of the output 

phase of the field. The output phase of the electric field is the sum of the incident phase 

31 



and the EOM-induced phase as depicted by 1\ of Figure 3.2. Advantages of using an 

EOM include a large feedback bandwidth and added versatility, since it can be placed 

within the laser resonator or in the path of the laser output, assuming the circulating or 

output powers are less than the damage threshold of the EOM. Consequently, the EOM 

is usually used for the stabilization of low power lasers (less than 5 W output) and placed 

outside the laser cavity in the path of the output beam. 

On the other hand, a PZT can be used in high power laser applications since it is 

not an intracavity element. It is mounted behind a cavity mirror and is used to sweep, or 

"dither," the mirror position and thus the cavity length about its equilibrium position. 

The disadvantage of using a PZT is the low bandwidth. While an EOM bandwidth can 

be as large as several MHz, a PZT has resonances that limit its bandwidth to 10's of kHz. 

These resonances cause a nonlinear response and hence need to be avoided by our linear 

feedback loop. Thus, for high power applications, the bandwidth of the feedback loop is 

limited by the bandwidth of the actuator, which is limited by the resonances of the PZT. 

3.3.3 Servo 

The servo amplifies the voltage signal produced by the frequency discriminator 

over as wide a range of frequencies as possible so that GCL(V„) ~ 1 and <|)cL(Vn) ~ 0 in 

Equation 3.12. Usually the servo is the final loop element to be optimized. At this point 

the discriminator and actuator have been chosen and their complex transfer functions, 

KD(vn) and KA(vn), are known. The key considerations in designing the servo to produce 

a stable feedback loop are the Unity-Gain-Bandwidth (UGBW), and the phase margin of 

GOL(V„). The UGBW is defined as the range of frequencies up to and including VUG, the 

highest frequency encountering an open loop gain of one (i.e. |GOL(VUG)| = 1). The phase 
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margin is defined as the difference between the phase delay of the open loop transfer 

function occurring at VUG (i-e. <|>OL(VUG)) and -180°. To see the importance of these 

parameters we analyze the relationship between GCL(V„) and GOL(V„), of Equations 3.11 

and 3.13. The denominator of the second relation shown in Equation 3.11 approaches 

zero if (|)OL(VUG) equals -180° (corresponding to zero phase margin). Such a case causes a 

spiking of the feedback signal to a magnitude much greater than the original noise signal 

and forces the frequency of the laser to oscillate without bound. The laser output 

frequency is unable to remain locked to the reference frequency and the system is labeled 

unstable. To achieve a stable lock we monitor the phase margin at VUG to insure we avoid 

the undesirable oscillation described above. Most electronics texts suggest that a phase 

margin of 45° is required for unconditional stability of the overall loop.46 Added to this 

stability criterion, we must avoid positive feedback for all noise frequencies encountering 

an open loop gain greater than one. I have derived the loop equations using a minus sign 

in front of the feedback signal, v^fback(t), to account for the negative feedback. Thus, to 

insure stability, (|>cL(Vn) must be between zero and +/- 180° through VUG- Equation 3.13 

suggests that at noise frequencies where |GOL(V„)| » 1, the argument of the arc tangent is 

very small and <j)cL(vn) remains near zero regardless of the value of <j>oL(vn). As |GoL(vn)| 

approaches one, (|)cL(vn) approaches <j)oL(vn). This causes an added reduction in the 

effectiveness of the feedback loops of this thesis at frequencies near VUG since the open 

loop gain is small and the feedback signal is out of phase with the original noise signal. 

To optimize the noise suppression capabilities of the feedback loop while 

maintaining loop stability, we want |GOL(V„)| » 1 over the pre-determined bandwidth of 

33 



the loop, usually limited by the actuator bandwidth or the presence of actuator 

resonances, as is the case for high power applications using PZT's. To create a stable 

loop, we measure KD(vn)and KA(vn) and design a servo with as much gain as possible out 

to VUG, while avoiding positive feedback and producing a phase margin of at least 45 . 

The servos constructed to supplement the work of this thesis consisted of a series 

of operational amplifiers configured as integrators. Figure 3.3 displays the servo design 

with input and feedback resistors (Rl, R2, R3) and capacitors (Cl, C2, C3). Stages 2 and 

3 are configured as integrators and Stage 1 is used to provide DC gain adjustment. 
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Figure 3.3. Servo design. 

The corner frequency of one stage is set at or just below VUG to insure at least a 45 phase 

margin.46 Figure 3.4 displays sample gain (in dB) and phase (in degrees) versus 

frequency plots when incorporating the servo design of Figure 3.3 into the feedback loop. 
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Figure 3.4. Gain and phase of open loop transfer function. 
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Where Vü is a dummy variable equal to vn, and v^mer is set to be ~ VUG-   Figure 3.4 

shows that the DC gain is nearly 208 dB. The two integrators yield a gain versus 

frequency slope of-12 dB/Octave which "rolls out" to -6 dB/Octave at the corner 

frequency, vcorner- At this point, the phase plot shows that the phase increases with 

respect to frequency, creating a phase margin of nearly 45°. The phase plot also shows 

that the use of two integrators yields an open loop phase delay, <j)oL(vn), that ranges from 

0° to nearly -180° over a large portion of the unity gain bandwidth of the servo. This 

originally concerned me. However, as I have pointed out, Equation 3.13 shows that this 

phase error is only critical at noise frequencies near the open loop unity gain frequency, 

VUG- Thus, the servo design of Figure 3.3 creates a large DC gain at the expense of a 

reduced feedback efficiency near VUG- 

Using plots similar to Figure 3.4, one can account for the measured values of 

KA(vn), Ko(vn), and the desired VUG, and optimize the integrators of the servo to create a 

stable feedback loop. The DC voltage gain of Stage 1 is used to fine-tune VUG after the 

loop has established a stable frequency lock between the laser and reference. 

As one might expect, the voltage noise of this servo, Sv,s(v„), is primarily caused 

by the Johnson noise of the various resistors. 

3.4 Frequency Control Theory (Frequency Domain Analysis) 

To predict the performance of the feedback loop in eliminating the frequency 

noise of the laser one can determine the closed loop spectral density of frequency noise of 

the laser, Sf,cL, by analyzing the frequency noise control loop in the frequency domain. 

Before doing so, assume now that the instantaneous frequency of the reference varies 
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about the desired center frequency, vo, with a spectral density of frequency noise 

Sf,REF(vn), as shown in Equation 3.14. 

icoj vREF(t) = vQ+SfMF(yn)-e  "' (3.14) 

Figure 3.5 displays a model of the frequency noise control loop, similar to that proposed 

by Day,30 but with the addition of the frequency noise of the reference, Sf,REF(vn). 

Vo + Sf;Laser(vn) Vo + Sf)CL(vn) 

V0 + 

Sf,REF(vn) 

Figure 3.5. Frequency noise control loop (frequency domain). 

Again, KD, KS, and KA represent the transfer functions of the discriminator, servo and 

actuator. Also, Sf;Laser and Sf,cL are the spectral density of frequency noise of the original 

laser (open loop) and the stabilized laser (closed loop), respectively. SV,D is the voltage 

noise of the discriminator and Sy,s is the voltage noise of the servo. I have removed their 

frequency dependence since they are generally dominated by white noise. Ne (error 

point) and Na (actuator point) refer to the voltage signals measured at the entrance and 

exit of the servo, respectively. To determine the usefulness of the Ne and Na point 

measurements in determining Sf^aser and S^CL we must trace the signal clockwise through 
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the loop (as done by Day in Ref. 30 for the case without S^REF). Equation 3.15 displays 

the resulting closed loop spectral density of noise of the laser. 

M. Laser (^n ))* + fo K )' -Mv„ ) ■ Sy j> f + (K A (v„ ) ■ Sv>s f 

Sf,CL(Vn) = |l + G0Z(v„)| 

+ Sf,REF(Vn)-GCL(Vn) 

(3.15) 

Well within the feedback loop bandwidth, where Ks(vn) » 1, G0L(V„) » 1, and thus 

GcL(Vn) ~ 1, Equation 3.15 simplifies to Equation 3.16. 

Sf,cL(vn)*T
Lr-,+SfMF{vn) (3-16) 

KD\Vn) 

Equation 3.16 shows that the stability of the frequency reference sets a lower limit on the 

achievable frequency stability of the laser. This limit distinguishes the results of relative 

and absolute frequency stabilization (in which Sf!REF(vn) is equal to zero). In addition to 

the noise of the frequency reference, the voltage noise of the discriminator, SV,D, 

determines the minimal closed loop spectral density of frequency noise of the laser, S^CL- 

Also, in this regime, the Ne point signal is given by Equation 3.17. 

NeM = KD(vn)isffCL(v„)-SfMF(v„))^SVtD (3.17) 

Equation 3.17 shows that well within the loop bandwidth the added frequency noise of 

the reference is not visible at Ne(v„). Comparison of Equations 3.17 and 3.16 reveals that 

S^CL can be determined from Ne(vn) as shown in Equation 3.18. 

S/.CL fo)« ^4H + SfMF {v„)       ^n < VUG (3.18) 

By solving for Na(vn) in this regime one finds the following relation. 
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#>„)« — TT-7-^  Vn<VUG (3.19) 

Thus, the frequency noise of the reference is present at the Na point and unless S^REF(vn) 

« Sf,Laser(vn), the use of Equation 3.19 may give an erroneous value of Sf;Laser. 

Outside the loop bandwidth (where GOL(V„) « land Gci/vn) ~ 0) the frequency 

noise of the reference is not added to the laser (in Equation 3.15), but is still present in the 

frequency discriminator. 

Me (y„ ) * KD (v„ ) ■ [sLLaser (v„ ) - SfMF (vn )]       vn > vUG (3.20) 

The use of Equation 3.20 yields an erroneous value for Sf;LaSer (and Sf,cL since they are 

nearly equal in this regime), due to the presence of the frequency noise of the reference. 

Taken together, the results of Equations 3.18-3.20 can be grouped into the 

following expressions relating the voltage signals measured at Ne and Na to the open loop 

relative spectral density of frequency noise between the laser and the reference, S^Laser - 

Sf,REF, and the closed loop relative spectral density of frequency noise between the laser 

and the reference, Sf,cL - S^REF- 

5/,W (O - S/-JJEF (V» ) * < 

KA{v„)-Na{vn)      vn<vUG 

Ne(yn) 

(KD(vn) 
vn > VUG 

(3.21) 

WO-S/,^>j4^4H Mv/nj (3-22) 
lKD\Vn) J 

3.5 Summary 

In this chapter, I reviewed the definition of the spectral density of frequency noise 

of a laser and introduced the frequency noise control loop (in the time domain and the 

frequency domain) established in the stabilization efforts to eliminate this noise. 
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I introduced two of the feedback control loop elements - the actuator and the 

servo - since these elements are nearly identical for all of the experiments that I will 

discuss in the following chapters. I used the results of the time domain control loop 

analysis to explain the trade-off between low frequency open loop gain and reduced 

feedback efficiency at noise frequencies near the open loop unity gain point, for the 

servos used in this thesis. 

I altered the frequency domain noise control loop of Day to include the relative 

frequency stability of the reference. I used this control loop to determine the explicit 

relationship between the voltage signals measured at the entrance (Ne) and exit (Na) of 

the servo and the open and closed loop relative spectral density of frequency noise 

between the laser and the reference. Although this simple control loop does not provide a 

complete description of the frequency stabilization experiments of this thesis, it serves as 

a good starting point in establishing the more complex control loops which do accurately 

model these experiments. 

The control loop analysis suggests that other than the relative frequency stability 

of the reference, the voltage noise of the discriminator is the chief limiting factor in the 

frequency stabilization effort (see Equation 3.16). Since the discriminator is the chief 

difference between all of the experiments of this research effort, and arguably the most 

important feedback loop element, I will discuss it separately for each of the particular 

experiments considered in this thesis. 
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CHAPTER 4. Locking a Laser to a Fabrv-Perot 

In this chapter, I review the theory of stabilizing the frequency of a laser to the 

resonant frequency of a Fabry-Perot using the PDH technique. The previous derivation, 

by Day, split the incident laser field into discrete components (the carrier, the noise 

sideband, and the two modulation sidebands) and multiplied them by the reflection 

coefficient of the Fabry-Perot to obtain an explicit expression for the reflected field and 

then the error signal.30 To account for the length (and hence frequency) fluctuations of 

the Fabry-Perot one can expand the effective control loop presented by Day to account 

for the noise of the Fabry-Perot (as I have done in Figure 3.5). To actually prove Figure 

3.5 is correct one must derive the PDH error signal while accounting for the Fabry-Perot 

length fluctuations. I attempted to expand the derivation of Day to include the Fabry- 

Perot noise contributions, but the resulting equations were too complex to solve. 

Below, I derive the PDH error signal in a new manner, using the damped, driven 

wave equation to describe the circulating field of the Fabry-Perot. This derivation yields 

the same results as Day and various additional terms. I then alter the frequency noise 

control loop of Figure 3.5 to account for the parameters of this new derivation. In so 

doing, I set the stage for simple comparisons to be made with the complex injection- 

locking control loop presented in the next chapter. I briefly review the methods of 

achieving the minimal closed loop spectral density of noise and the usefulness of the Ne 

and Na points of the control loop in determining the open and closed loop relative spectral 

density of frequency noise between the laser and the Fabry-Perot. I compare the results 

of this control loop analysis to those of Chapter 3 to determine the usefulness of Figure 

3.5 in describing this process. 

40 



4.1 Derivation of Error Signal 

Figure 4.1 shows a typical PDH frequency stabilization experiment used to 

stabilize the output frequency of an NPRO, the master laser of the injection-locking 

experiments. 
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Figure 4.1. Optical Schematic of locking laser to Fabry-Perot. 

A portion of the vertically polarized field from the master laser of carrier frequency vm is 

reflected by a mirror of power reflectivity Re, and phase modulated, at a frequency vp and 

modulation index ß, to yield the field at position 1. This field, shown as a dotted line, is 

reflected by the polarizing beam-splitter cube, PBSC, and transformed by a quarter wave 

plate, X/4, into the circularly polarized field incident on the Fabry-Perot resonator at 

position 2. The reflected field, shown as a dashed line, is converted into a horizontally 

polarized field by the X/4 plate, passes through the PBSC, and is incident on the 

photodiode, PD, at position 3. 

If we consider the master laser phase noise, S^m, at a particular noise frequency, 

vn, the complex field incident on the resonator at position 2, E;nc, is shown in Equation 

4.1. Note that this equation is nearly identical to Equation 3.1 (with the addition of phase 
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modulation sidebands at cop), but I have changed from the generic symbols oo0, E0, and 

S<|),Laser to symbols with subscripts m (com, Em, and S^m) referring to the master laser. 

The last exponential term in this expression can be simplified by expanding the sine term 

as shown in Equation 4.2, using the Bessel function expansion shown in Equation 4.3 and 

using the identity shown in Equation 4.4 to the expression shown in Equation 4.5. Also, 

ß is assumed to be small enough that only zero and first order terms are non-negligible. 

icOpt        -io>pt 

sin(öy) = - ^  (4.2) 
2/ 

^"^SLW4 (4-3) 

J_k(x) = (-\)k-Jk(x) (4.4) 

= E    (a>m) + E    (com±(o„) mc v    m / mc V     m       "* p J 

(4.5) 

The last expression of Equation 4.5 splits the incident field into the spectral fraction 

neighboring the carrier frequency, cam, and the fraction near the sidebands at com +/- cop. 

The Fabry-Perot consists of two mirrors with power reflectivities Ri and R.2, 

shown in Figure 4.1, and a medium of length L and absorption coefficient oc0, in units of 

cm" . The nearest longitudinal resonant frequency to the carrier frequency of the incident 

laser is vc. The circulating field of the Fabry-Perot experiences a total energy decay rate, 

yc, equal to the sum of the decay rates due to absorption, y0, and transmission through the 
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input/output coupler (mirror Rj), ye, and mirror R2, y2. These decay rates are defined 

below in terms of the circulating field round trip time, T, and the speed of light, c.21 

rc=ro+re+r2 (4.6) 

Yo = 2^oc (47) 

1 
Ye=--^ 

1    .   (I y2 =—In 
T 

T 

\R2. 

2L       1 

FSR 

(4.8) 

(4.9) 

(4.10) 

Assume the incident field is mode matched to a longitudinal mode of the cavity, and the 

resonator is impedance matched (i.e. ye = y0 + y2). The carrier portion of the incident 

field, Einc(com) of Equation 4.5, is perfectly coupled into the resonator while the 

sidebands, Einc(com +/- cop), are well outside the cavity passband and are fully reflected. 

Based on the discussion of Siegman, one can compare the damped, driven wave 

equation for the circulating field of the Fabry-Perot resonator to a similar expression 

obtained when analyzing an equivalent RLC circuit, to derive the following expression 

for the circulating field, Ec.21 

d2Ec 
 T^ + Yc 

dt2       c    dt ̂
^f.l-l'-r.   ' 

inc v    m/ ;e-Vc   dt 

Where e is the permittivity of free space and Vc is the total spatial volume of the 

circulating field. This expression assumes that, in the steady state, all of the carrier 

(4.11) 
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portion of the field is coupled into the resonator and thus the reflection coefficient of the 

carrier field is equal to zero. 

The incident field is represented as the product of a real field amplitude, Einc, a 

phase term oscillating at ©m, and a time dependent phase noise term (j)m(t), shown in 

Equation 4.12. A similar assumed dependence for the circulating field is shown in 

Equation 4.13 with a phase term oscillating at rom and time-dependent phase term, (|>c(t). 

r*       /        \ / r,        T   /■ n\    n ieo  t      iSJ _,(v„Vsin(coj)       „ im  t      id   (t) , .  . _. 

Ec=Ec-e
iü}"'' -eiMt) (4.13) 

By substituting Equations 4.12 and 4.13 into Equation 4.11, making the slowly varying 

envelope approximation, and equating the real and imaginary portions of the resulting 

equation, we obtain the following expressions. 

dE     Y 2 ■ v c+^-Ec= ,Mf • Einc ■ cosfo -</>m] (4.14) 
dt      2      c     \£-Vc 

^ + om -coc=-p^- •^•sin[^c -</>„,} (4.15) 
dt \e-Vc    Ec 

To determine the reflected field amplitude and phase we note that the energy of the 

circulating field, Uc, is given by Equation 4.16.21 

UC=^-E2
C (4.16) 

Equation 4.17 relates the energy lost by the circulating field in transmission through 

mirror Ri to the leakage field intensity, Ir. 

ye.Uc=Ir=E2
r (4.17) 
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Substitution of Equations 4.16 and 4.17 yields an expression relating Er and Ec. 

Substitution of this expression into Equations 4.14 and 4.15 yields the following 

expression for the leakage field amplitude, Er, and phase, (|)r, just outside the mirror Ri 

traveling to the left (the dashed line in Figure 4.1). Assume <|)r = §c. 

AT? 

~^ + Y'Er =re-Einc -cosfo. -</>m) (4.18) 

^- + <om -coc=-ye -^-srnfo, -<j>m\ (4.19) 
at Er 

To solve these expressions at a given noise frequency, v„, assume that Ejnc, Er, (|)m, <j)r, and 

coc oscillate with small perturbations about their steady state values (represented with 

subscript zero) as shown below.47 

Einc=Einc,o +SEinc -e^"' = EifKfi-(l + SA,m(v„ye,a'') (4.20) 

Er = Erfl +SEr -e^"' = E^-il + S^ye'""') (4.21) 

<f>m =<t>mfi +Sfim •eUant=<f>m,o+S^m(vn)-ei(0»t (4.22) 

<f>r =<j>rfi+S<l>r-e
i<0»t =^0+S^(vnyei<o"' (4.23) 

ac=G>cQ +Scoc -e"0»' =cocß +i-con •S„>c(v„)-eto-' (4.24) 

Let S^m and S^ represent the spectral density of phase noise of the incident field and the 

leakage field and SA,m and SA,r represent their spectral density of amplitude noise, 

respectively. The inclusion of the amplitude modulation (AM) noise terms, SA,m and SAJ, 

is necessary to reveal the various AM to FM (frequency modulation) coupling terms. 

The phase noise of the resonant frequency of the cavity, S^c, has been introduced in 

Equation 4.24. Below, the product icon is simplified as the variable: s. 
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By combining the steady state solutions of Equations 4.18 and 4.19 we obtain the 

single expression for the steady state phase delay of the reflected field with respect to the 

incident field, A(|)ss, shown in Equation 4.25. I converted com, coc, and yc to their respective 

frequencies vm, vc, and 8vc, in Hz, by dividing by 2n, to obtain the last expression. 

A^« =^,o-^,o=arctan 

" ~ 

(om-coc 

Yc/ 
.     /2    . 

= arctan 
v   —v y m      v c 

Svc/ 
.     /2 - 

(4.25) 

Note that the photon lifetime of the cavity, xp, is defined as shown in Equation 4.26. 

1 1 

48 

TP = 
V7    2-x-(Sv°/ /2     Z n I    /2 

(4.26) 

Thus, the phase delay of Equation 4.25 is simply the product of the discrete radial 

frequency difference between com and coc and the time the field circulates in the cavity, xp. 

This phase delay, plotted in Figure 4.2, is the source of the PDH error signal. 

100 

A*ss(vm)'—      0 

-100 

A ° 

8v„ 

Figure 4.2. Steady state phase delay. 

By substituting the perturbations shown in the first expressions of Equations 4.20- 

4.24 into Equations 4.18 and 4.19, performing a Taylor series expansion of cosine and 

sine terms about their steady state arguments, and keeping only terms of zero and first 

order in the perturbation we obtain the following equations. The second expressions of 
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Equations 4.20-4.24 have been used to simplify these equations in terms of spectral 

densities of amplitude and phase noise. The common denominator, D, is defined below. 

D = {S + Y]    ^rn-Vc)1 (4.27) 

S + — 
V      2 

D 
St,c + 

s + - 
2) 

+ (0}m-0)cY 

D ' *Vm + '«■(ö'm-ß'c)' 

D 
■s A,m 

A,r 
s-((om-(ocy 

D ■K ,c      ^^,m) + 
2 

s + y|+k-^)' 

D 
■ s A,m 

(4.28) 

(4.29) 

These equations yield much information about the AM to FM coupling between the 

incident and reflected fields and will be discussed in Section 4.2. At present we are 

interested in the PDH error signal obtained in the experiment shown in Figure 4.1. By 

assuming com = coc and the AM of the incident field (SA,m) is negligible, Equation 4.28 

simplifies to Equation 4.30 which is simplified in terms of the variable K, defined in 

Equation 4.31. 

Yc 
f 

s + 
V        2y 

\ " ^,c +" 
2 

\ • St,m 
s + - 

l-K 

•s** + 
1 

1 + / • K $,m (4.30) 

K=       n> -    Vn, 

2 
Sv„ (4.31) 

Equation 4.30 can be rewritten in terms of frequency noise by multiplying both sides by 

v„ and switching from phase noise terms to frequency noise terms using Equation 3.3. 
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Sf,r ~ 
l'K 

l + i-K 
SU + 

1 

1 + /' • K 
■Sf,m=Tc(vn)-SLc+TL(vn).SLl (4.32) 

I have grouped the bracketed terms into the frequency noise transfer functions of the 

cavity length fluctuations, Tc(vn), and the incident laser field, TL(vn), onto the circulating 

field and hence leakage field from the resonator. Note that the transfer function of a high 

pass filter of corner frequency, Vcomer, defined as THiGHOvVcomer), is shown in Equation 

4.33 and that of a low pass filter of corner frequency, vcorner, defined as TLow(vn,vCOnier) is 

shown in Equation 4.34. 

THIGH \Vn ■>Vcomer ) - 

1 + /—^- 

(4.33) 

corner / 

*WW \Vn>V corner )~ 

1 + /.-^- 
(4.34) 

corner J 

Comparison of Equation 4.32 with 4.33 and 4.34 reveals that Tc(vn) is a high pass filter 

of corner frequency 8vJ2 (i.e. Tc(vn) = TfflGH(vn, 8vc/2)), and TL(vn) is a low pass filter of 

corner frequency dvJ2 (i.e. TL(vn) = TLow(vn, öVc/2)), as shown in Figure 4.3. 
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0.01 

Figure 4.3. Frequency noise transfer functions. 
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To understand these transfer functions, we begin by noting that the incident field 

circulates within the resonator for a time interval equal to xp. The phase fluctuations of 

the incident field are transferred directly onto the circulating field for low v„, but as vn 

increases, a point is reached at which the field oscillates too fast for the circulating field 

to follow these fluctuations instantaneously. The high frequency phase fluctuations are 

thus averaged (or integrated) over the time interval xp, yielding the low pass transfer 

function, TLOw(vn, 5v<;/2), with corner frequency hvjl. On the other hand, the cavity 

fluctuations are not on the incident field and only influence the field for the time interval 

Tp. Only when v„ is sufficiently high, such that the circulating field is present through the 

entire phase fluctuation of the cavity, does the field pick-up this phase noise. This results 

in the high pass filter, THIGH(V„, hvJ2), of corner frequency 8vc/2. 

The leakage field portion of the reflected field is shown in Equation 4.35. 

Er(a>m) = Erfi.e^.e'Re^e    > = ^ ■ J0{ß)-Em .«'«* -e        '' (4.35) 

The second expression equates Er,o to EjnC,o (from the steady-state solution of Equation 

4.18 for the impedance matched case with com = coc), which is equal to the arguments of 

Equation 4.12. However, the resonator is only perfectly impedance matched on 

resonance when com = roc and the phase delay of the circulating field with respect to the 

incident field, A<t>(vn) (defined in Equation 4.36), is zero. 

At(vn) = Re[-/• (S„ -S^)• e""] = ^V
JS—\■ (*V -S^m)■ eita"' 

l + l-K 
(4.36) 

The second expression is obtained by substituting Equation 4.30 in for S^r. It is 

interesting to note that Figure 4.2 showed that the phase noise transfer functions of the 
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Fabry-Perot and incident field differed, primarily because the incident phase noise was 

already present on the field before it interacted with the cavity. The subtraction of the 

incident phase noise, S^m, yields the phase delay, A<|>(v„), of the circulating field with 

respect to the incident field. Equation 4.36 shows that this phase delay is equally 

susceptible to S^m and S^. Note that this is the same conclusion drawn when 

considering the phase delay, A<j>ss of Equation 4.25, when considering the discrete 

frequency error case. 

The assumption that the total reflected field be zero, suggests that the leakage 

field perfectly destructively interferes with the portion of the incident field originally 

reflected from the input coupler of the cavity. To insure this assumption holds true, I 

define the reflected carrier field as shown in Equation 4.37. 

EMm) = jRc.JM).Em.e»"-e        *'       '.(l-«*«"">) (4.37) 

The second term in parenthesis represents the leakage field of Equation 4.35, with the 

phase noise term, S^, split into the sum of the incident phase noise, S^m, and the added 

phase delay, A<j). I also included a minus sign picked up with respect to the incident field 

due to transmission twice through the input/output coupler.21 The first term in 

parenthesis represents the portion of the field that does not enter the resonator, but instead 

is reflected from the input coupler with the original phase noise of the field, S^m. 

Inspection of Equation 4.37 shows that the total reflected carrier field is zero when 

A<|>(vn) is zero. I attempted to derive the explicit relation between the cavity leakage field 

amplitude and the original reflected field amplitude using the equivalent circuit 

analysis,21 as I'm sure it is a bit more complicated than that shown in Equation 4.37, but 
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was unable to do so. Equation 4.37 is adequate since it does lead to the same solution as 

previously found by Day for the PDH error signal (Ref. 30) and yields the same shot 

noise terms found by Siegman. The present technique is actually better suited to 

determining the transmitted fields of resonators, as shown in the next chapter. 

The total reflected field, at position 3 in Figure 4.1, is the sum of the carrier field 

of Equation 4.37 and the reflected sidebands of Equation 4.5. 

E,=4Rc-Em-e^.e ■[j0(ß).(l-eiA^)+2i- J, (/?) • sin *y ]     (4.38) 

Note that the phase noise of the sidebands is still S^m since they did not couple into the 

resonator. The output voltage of the photodiode is proportional to the incident field 

power, the responsivity of the photodiode, ReSp (Amp/Watt), and the current to voltage 

gain of the photodetector circuitry, Gv (in V/Amp), as shown in Equation 4.39. 

^Det^Ksp-Gv E3 (4.39) 

Substitution of Equation 4.38 into 4.39 yields the following detector voltage. 

V    ocR      G    R    \F I2   f[2-Uo(^))2-(l-cos(A^v„)))]+4.(J1(/?))2.sin2
ö>p/]+l 

Det       **'   v'   '"'  "'    \-A-JM-JM-M^Vn))Ma,A J 
(4.40) 

The third term of Equation 4.40 is the signal of interest at the modulation frequency. If 

we assume that the phase noise is small (i.e. A<j)(vn) « 1) then we can assume that 

sin A<|>(vn) ~ A(j)(vn) and the signal reduces to that shown in Equation 4.41. 

VSig *-4-KsP -Gv -Rc -\Em\2 ■ J0(ß). Jx(ß). ArtvJ-smay (4.41) 

By substituting Equation 4.36 into this expression and defining the phase delay of 

Equation 4.42, the signal can be simplified to Equation 4.43. 
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^ = -arctan(*:) (4.42) 

vSig^-ResP-Gv-Rc-\Em\2-Uß)-Ußy 
f       K       A 

yll + K2 
■ (st,c ~ st,m) • cosf ©„/ + <f> • sin(*y) 

(4.43) 

The signal of Equation 4.40 is mixed down (in quadrature) to DC as shown at 

position 4 of Figure 4.1. By substituting K back into Equation 4.42 we arrive at the 

familiar form of the error signal, shown in Equation 4.44 in terms of the spectral density 

of frequency noise of the incident master laser, Sf,m, and cavity resonant frequency, S^c, 

the total incident optical power on the Fabry-Perot, Pinc (proportional to Re |Em|2), and the 

halfwidth of the cavity reflection coefficient, hvJ2?° 

1 
VSi g=4-i?    .Gv-Pinc-J0(ß)-Mß)- 

f       \2 

1 + 

v 2 ; 

(Sfc-Sfm)      ( *\ 
Sv ■co\(°nt + <l>\  (4-44) 

Equation 4.44 can be simplified, as shown in Equation 4.45, in terms of the complex 

discriminator coefficient, Ko(vn), in units of V/Hz, and a variable r|, in units of V/Hz. 

Vsig =Rc(KD(vn).(Sf,c -SfJ-e"0"') (4.45) 

KDM = V 
l-K 

l + i-tc 

V = 
4-Res.Gv-Pinc-JM-JM 

(4.46) 

(4.47) 

Note that in the regime where vn « 8vJ2, the discriminator coefficient, KD(V„), is nearly 

linear, with slope equal to T](vn = 8vJ2) in V/Hz. 

52 



4.2 Frequency Control Theory 

The total voltage output of the discriminator is equal to the sum of the signal of 

Equation 4.44 and the voltage noise of the discriminator, SV,D- This signal is sent to the 

servo and actuator and then fed back to the laser, as discussed in Chapter 3. In Figure 

4.4,1 alter the noise control loop of Figure 3.5 to account for some of the new parameters 

of the derivation of the discriminator output of Section 4.1 and to represent the control 

loop in a manner analogous to the injection-locking control loop of the next chapter. 

vm + Sf,m(v 

Figure 4.4. Frequency noise control loop (locking laser to Fabry-Perot). 

The error signal derivation of the previous section is represented, in block diagram form, 

entirely within the dotted box. The frequency noise of the laser and the resonator are 

multiplied by their respective transfer functions and then summed onto the circulating 

field (and hence reflected field) of the Fabry-Perot, represented as EFp. The frequency 

noise of the laser is then subtracted from the output of the Fabry-Perot, multiplied by r|, 

and summed with SV,D to yield the discriminator output of Equations 4.45-4.47. The Na 

point of Figure 4.4 corresponds to the output of the servo of Figure 4.1 and the Sf,mCL 
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represents the closed loop spectral density of frequency noise of the master laser at 

position 5 in Figure 4.1. 

Tracing the signal clockwise through the loop as done in Chapter 3, yields the 

following expression for S^mCL- 

V(S/>«))2 +(KA(yn)-Ks(vnySv>D)
2 +(KA(v„)Sv,s)

2' 
*f,mCL 00 = |l + G0i(v„)| 

+ SfAVn)-GCL^n) 

(4.48) 

Well within the feedback loop bandwidth (where Ks(vn) » 1 and thus G0L(V„) » 1 and 

GcL(Vn) ~ 1), Equation 4.48 simplifies to Equation 4.49. 

Sf,mcL {vn)« -^f- + SLc (vn) (4.49) 
KD\yn) 

Equation 4.49 shows that S^mcL is limited by the frequency noise of the reference cavity, 

Sf;C, and the voltage noise of the discriminator, SV,D- Note that these expression are 

identical to Equations 3.15 and 3.16, (with Sf;CL and SfjLaser replaced by Sf,mCL and Sf,m) 

suggesting that the simplified control loop of Figure 3.5 is adequate for describing the 

locking of a laser to a Fabry-Perot. 

For the PDH technique the three greatest discriminator noise sources are the 

amplitude noise floor of the incident laser at the modulation frequency SA,m(vp), the shot 

noise of the photodetector output (assumed to be proportional to the incident DC signal), 

and the amplitude noise of the incident laser, SA,m(vn). Generally, vp is placed at a high 

enough frequency that the amplitude noise is below the shot noise level of the detected 

signal. Further, the NPROs used in this thesis contained AM noise suppression feedback 

loops and displayed SA,m of-110 dB at v„ of 1 Hz and above.12 

54 



The shot noise floor of the signal is proportional to the DC voltage output of the 

photodiode, found by isolating the DC terms of Equation 4.40. If we assume that A<j)(vn) 

« 1 and thus that the DC term due to the carrier field is zero, then the shot noise (in 

V/Hz1/2) is primarily caused by the sideband signal strength as shown in Equation 4.50. 

SV,D,SN(yH) = j2-e-IDC ■ Gv = p-e-Resp-Pinc-2-J?(ß)■ Gv (4.50) 

Where IDC is the DC current in Amps and e is the charge of an electron in Coulombs. 

The amplitude noise of the incident field induces a phase noise in the reflected 

field when rom does not equal ©c. Solution of the error signal, given the full expression of 

Equation 4.28, yields the following discriminator signal. The phase of the two cosine 

terms have been defined as the arc tangent of the ratio of the imaginary to real portions of 

the complex terms in the brackets in front of them. The last term of Equation 4.51 is the 

AM noise term shown alone in Equation 4.52. 

Vs«=4.Äw..G,.Pfcc.J0Gff).JIGff). 

6>„ S + Yc 

D 

(on\com-coc) 

( 
i 

) 

D 
•SA    -cos o)nt + <pb 

SV,D,AM (v„) = 4 • Resp ■ Gv ■ Pinc ■ J0 {ß) ■ Jx {ß) • 
vn-(vm-Vc) 

D(vn) 
■SA,m(Vn) 

(4.51) 

(4.52) 

Comparison of Equations 4.50 and 4.52 for a given experiment reveal which of these 

noise sources are greater at a given vn. To ensure the AM induced noise is negligible 

with respect to the shot noise floor we must ensure that coc = com. When the laser is 

locked, ©c does not equal ©m if there is a DC offset in the servo. To correct this, one can 
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inject a frequency noise onto the laser while it is locked to the resonance, at a dither 

frequency, v„, well above VUG to ensure it is not attenuated by the feedback loop. By 

monitoring the DC signal on the photodiode one can monitor the AM induced on the 

reflected field, SA,r(v„). According to Equation 4.29, SA,r(vn) is minimized when the DC 

offset of the servo zeroed, ensuring that coc = ©m, and the FM induced by SA,m is 

eliminated in Equation 4.28. With the AM term reduced, the shot noise becomes the 

largest noise source of the discriminator. 

By substituting Equations 4.50 and 4.47 into 4.49, one obtains the following 

minimum closed loop spectral density of frequency noise of laser (in the frequency 

regime where GOL(V„) » 1). 

Sf,mCL^n) = SfAVn) + . (vnY + 
(SvA2 

V  ^  J 
(4.53) 

^■Resp-Pinc-iUß)) 

Since e is a universal constant and Resp is set by the photodiode used, our best options for 

achieving the minimal Sf,mcL are to increase the optical power incident on the Fabry- 

Perot, and increase the finesse of the cavity, thus decreasing 8vc. Also, we can increase 

Jo(ß) by placing more power in the carrier portion of the incident field. This is done at 

the expense of the sideband power (proportional to Ji(ß)), and eventually at the expense 

of the discriminator signal power (proportional to the product of Jo(ß) and Ji(ß)). Since 

this analysis neglects the noise of the feedback electronics of the photodetector (which is 

generally within 10 dBV of the shot noise level) and other noise sources present in the 

discriminator, I generally avoided maximizing J0(ß) and usually adjusted ß for maximum 

signal strength (ß ~ 1.08 as discussed in Ref. 30). 
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Since the control theory model of Chapter 3 is very similar to that of Figure 4.4, 

the discussion of the Ne and Na point data and their relation to the open (Sf>m(vn)) and 

closed loop (Sf)mCL(vn)) spectral density of frequency noise is equally valid for this loop. 

After measuring the actuator and discriminator coefficients, one can use the Ne and Na 

point data to predict Sf,m(vn) and Sf,mCL(vn) as shown in Equations 4.54 and 4.55. 

sf,m(yn)-sLc(y„) 
Vn   >"UG 

\Na{vn)KA{vn)       DC<vn <vUG 

Ne{vn) 
{   KD(vJ 

Ne(vn) 

(4.54) 

SfMz{vn)-Su(yn)=\-?Y\ AWvn (4.55) 
I
K

DM J 

It is interesting to note that the frequency noise of the Fabry-Perot is present at Ne even 

outside the feedback loop bandwidth. 

Note that Equations 4.54 and 4.55 are identical to Equations 3.21 and 3.22, 

suggesting that the simple control loop diagram of Figure 3.5 is adequate in describing 

this experiment. 

4.3 Measuring KA, KD, and 8vc 

By monitoring the PDH error signal (obtained by mixing in quadrature) while 

sweeping the carrier frequency and two modulation sidebands of the laser through vc, one 

can measure KA, KD, and 8vc. A sample of the resulting error signal obtained when 

triggering the oscilloscope on the voltage ramp applied to the Fast PZT of the NPRO is 

shown in Figure 4.5. By deriving the PDH error signal given a frequency sweep of the 

laser frequency (while still modulated at a frequency vp), one finds the exact dependence 

shown in the first plot, with the x-axis in units of frequency, vm. 
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lime (iec) Time (sec) 

Figure 4.5. Measuring KA, KD, and 8vc using PDH Error Signal. 

The centers of the three dispersive regions occur when the laser and its two 

sidebands sweep through the resonance. Thus, vm is equal to vc+ vp, vc, and vc - vp at the 

centers of the three peaks from left to right in the first plot. To convert the oscilloscope 

x-axis from a time scale to the frequency output of the laser, v0, assume a linear PZT 

excursion, in |j,m/sec, and a consequent linear frequency excursion, in Hz/sec. The ratio 

of the frequency deviation of vo between the first and third peaks (equal to 2vp) to the 

voltage applied to the laser, AVA, to cause this deviation, is equal to KA, in Hz/V. The 

derivation of the quadrature error signal also reveals that the width of the central peak, 

expanded in the second plot, is equal to 8vc. Since the ratio of T2 to Tj is equal to the 

ratio of 8vc to 2vp, measurement of Ti and T2 and knowledge of vp yields the value of 

8vc. Next, the ratio of the peak-to-peak voltage of the PDH signal, AVD, to the frequency 

spread of the central dispersion curve, 8vc, is approximately equal to the slope of the 

central dispersion curve, KD in V/Hz. For a more accurate determination of KD at low 

frequencies, one can zoom in further on the linear portion of the PDH signal of the 

second plot. 
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4.4 Common Measurements and Results 

Several NPRO lasers were stabilized to Fabry-Perot resonators over the course of 

this thesis.49 The PZT and temperature controller of these lasers served as the fast and 

slow frequency actuator elements, respectively, of the overall feedback loop. The Fast 

PZT of the Lightwave Electronics Model 122 NPRO displayed a strong resonance near 

30 kHz, limiting VUG to 15-20 kHz. A NewFocus model 1611 low noise 1 GHz detector 

was used as the photodetector, with a ReSp of 0.6 A/W, a Gv of 250 V/A, and a maximum 

incident power of 10 mW. The Fabry-Perot used was a Newport Supercavity Model 

150c. I measured 8vc of a particular Fabry-Perot using the technique described in Section 

4.3 and using the cavity ring down technique.50 I found that the measured 8vc for both 

techniques varied by as much as 25 kHz between measurements but the ring down 

technique was much more complex and required much more time (10 minutes compared 

to 30 seconds). The average measurement of both techniques was nearly 160 kHz. 

Common values of KA and KD were found to be 5 MHz/V and 1.5 V/MHz, respectively. 

Substitution of ReSp, Pinc, and 8vc in Equation 4.54 suggests that the minimum 

S^mCL achievable by locking an NPRO to this Fabry-Perot would be nearly 4x10"4 

Hz/Hz1/2, which would produce a linewidth of less than 1 uHz, if we assumed Sf,mcL was 

white with respect to vn, and neglect S^c. However, the best linewidth achieved by 

stabilizing the master laser NPRO of this thesis was on the order of 600 mHz.49 The 

discrepancy between experiment and theory is caused by the following facts: S^mcL is 

dependent on vn, SfjC is not negligible, and other noise sources (such as line noise at 60 

Hz in the various power supplies employed) are present in such experiments. 
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4.5 Summary 

I have derived the PDH error signal obtained when locking a laser to a resonant 

frequency of a Fabry-Perot beginning with the damped, driven wave equation describing 

the circulating field of the Fabry-Perot. 

I have shown the various benefits of this analysis. First, it reveals the frequency 

noise transfer functions of the incident laser frequency noise and the frequency noise of 

the Fabry-Perot's resonant frequency onto the circulating field of the cavity. It also 

predicts the AM to FM coupling between the incident and circulating fields and reveals 

that by adjusting the servo DC offset one can eliminate this AM to FM conversion to 

optimize the signal to noise ratio of the PDH error signal. 

I have shown that while the laser's frequency noise transfer function is a low pass 

filter and the resonator's frequency noise transfer function is a high pass filter (both of 

corner frequency 6vJ2), the PDH error signal is equally susceptible to each. Also, I have 

altered the frequency noise control loop of Figure 3.5 to account for the parameters of 

this derivation and found that the analysis of this loop revealed the same results as the 

simple analysis of Chapter 3. However, the frequency noise transfer functions and the 

complex control loop of Figure 4.4 will simplify the comparison of this experiment with 

that of PDH injection-locking technique of Chapter 5, and create a basis for establishing a 

complete description of the frequency stabilization of the frequency-doubler of Chapter 7. 

Finally, I discussed the fact that the determination of the cavity bandwidth (5vc) 

using the PDH quadrature error signal was nearly as accurate as the cavity ring down 

technique and much simpler and faster to perform. 
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CHAPTER 5. Frequency Stabilization of an Injection-Locked Laser 

In this chapter, I present the control theory that I developed to model the 

frequency stabilization aspect of the injection-locking process based on the results of the 

various experiments discussed in Chapter 6. I review the derivation of the frequency 

noise transfer functions of the master laser and slave resonator onto the injection-locked 

output.23 I use these transfer functions to derive, for the first time in the literature, the 

error signal obtained when using the PDH technique to lock the oscillation frequency of 

the slave laser to the master laser. I determine the experimental parameters yielding the 

minimal achievable injection-locked spectral density of frequency noise and compare 

them to the optimal parameters derived for the case of locking a laser to a Fabry-Perot. 

Finally, I compare the theoretical results of three additional "global" stabilization 

schemes complementing the original PDH injection-locking loop. 

5.1 Passive Injection Locking 

Consider a slave ring laser cavity seeded by a master laser as show« in Figur« 5.1. 

Master €>M 

TFP^y. vf 2     A 
-25 cm 

Slave Laser 
ARC LAMPS 

R^     w   Injection-Locked 

PD 
Output 

+90° 

Figure 5.1. Injection-Locking experimental set-up. 

If a beam block is placed in the path of the master field just after point 1 in the figure to 

isolate the two lasers, the electric fields of the master and slave lasers at points 1 and.2, 
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respectively, are shown in Equations 5.1 and 5.2. The amplitude, Es, and carrier radial 

frequency, ©s, of the electric field of the slave laser are independent of the amplitude, Em, 

and carrier frequency, rom, of the master laser. Equation 5.1 also lists the amplitude, ß, 

and frequency, cop, of the modulation sidebands placed on the master laser. The phase 

noise of the master, §m(t), and slave, <|)s(t)T are defined in Equations 53 and 5.4. 

Ex=Em- e^ ■ e»"® ■ eißsHü>pt) = Em ■ e1^ ■ e^{l) ■ [j0 (ß) + 2/ • Jx iß) ■ sin(*y )]    (5.1) 

E2=Es(t)-ei03st -eim (5-2) 

^0 = S^m(con)-sin(cont) = Re{-i-S^m(o)n)-eJlo"t) <5.3) 

</,s(t) = S^(o)ft)-sm(cont) = Rc{-i-S^(con)-eJlo"t) (5.4) 

When the beam block is removed, a portion of the incident field of the master laser seeds 

the slave resonator and competes with the existing circulating field for gain in the 

Nd:YAG rod. For a range of master laser frequencies, centered at the unseeded slave 

cavity resonant frequency, cos, the circulating field created by the amplified master laser 

field exceeds the original circulating field of the slave laser. The incident field saturates 

the gain of the Nd:YAG rod at the expense of the gain of the original mode(s) of the slave 

laser. In this range of frequencies, known as the lock range (equal to 2 coLock and defined 

below), the frequency output of the slave laser is "locked" to the frequency of the master 

laser electric field. 

The damped, driven wave equation for the circulating field of the slave resonator 

is shown in Equation 5.5.21 This equation is similar to the expression obtained for the 

empty Fabry-Perot (Equation 4.11) with the addition of a polarization driving term 

arising from the slave laser gain medium. As in Equation 4.11, only the spectral portion 
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of the incident master field neighboring ©m, shown in Equation 5.6, couples into the 

resonator and seeds this process. Assume the incident field is perfectly mode-matched to 

the slave resonator. 

d2Ec 

dt2 ■ + 7c K s/      c    \e-Vc   dt dt 
E.   (a>m) mc v    >n / 

1   d2P 

s   dt2 

Einc{com) = Jo{ß)-Em V -e^=Einc V«* • *'*■« 

(5.5) 

(5.6) 

The total cavity energy decay rate, yc, the decay rate due to internal slave cavity losses, y0, 

and the decay rate due to external coupling, ye, are defined in Equation 5.7 in terms of 

the speed of light, c, the length of the slave resonator, L, the power reflectivity of the 

output coupler, RoC, and the absorption coefficient of the slave resonator medium, oto. 

rc=ro+re=
2-«o-c+7-ln — 

L \KOC ) 

(5.7) 

The circulating field oscillates at the same carrier frequency as the master field but has a 

phase noise term, (|)c(t), as shown in Equation 5.8. The polarization term is defined with a 

term driving in phase with the circulating field, %\ and a term driving out of phase, /", as 

shown in Equation 5.9.21 

£ =E-e"°^-ei*cit) 

P = (x' + i%'')-£-Ec-eio,mt • eHc{t) 

(5.8) 

(5.9) 

By substituting Equations 5.6, 5.8, and 5.9 into Equation 5.5, making a slowly varying 

envelope approximation, and equating the real and imaginary portions of the resulting 

equations, Siegman obtains two coupled expressions for Ec and <|)c. After coupling these 

expressions out of the slave resonator (to point 2 in Figure 5.1), as done in Equations 4.16 
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and 4.17 for the Fabry-Perot case, he obtains the following coupled expressions for the 

injection locked field amplitude, EiL, and phase, <J>rL. Assume <|)c = <|)IL 

^ + 7-^-EIL =ye-Einc -cosfe, -<Pm] 

21 

(5.10) 

% + *>« -<»P«ii =-Ye ~-sm[^ -#„] (5-11) 
a/ 2s/£ 

Equations 5.10 and 5.11 are nearly identical to Equations 4.18 and 4.19 obtained for the 

vacant Fabry-Perot case with two additional terms defined in Equations 5.12 and 5.13. 

rm=<om-z" (5-12) 

*V//=®,-®«-y <5-13) 

Where ym is the field growth rate and copuu is the pulled resonant frequency of the slave 

cavity. To solve Equations 5.10 and 5.11 at a given noise frequency, v„, assume Ejnc, EIL, 

(|)m, <j>iL, and ©pun oscillate with small perturbations about their steady state values 

(represented with subscript zero) just as done for Ei„c, Er, (|)m, §T and coc in Equations 4.20- 

4.24. The steady state solutions of Equations 5.10 and 5.11 yield the following 

expressions for the steady state phase delay, A$ss, of the injection-locked output field 

with respect to the incident master laser field and the lock range frequency, ©Lock- 

A<t>ss=<fiiL-<t>m =arctan 
i'a>m -co m      Wpuil 

V       Mlock        J 

(5.14) 

<o]ock=ye -^ = re •'Je'Jojf)'Em«T,e ■Toc-FSR.J0(ßyj^L (5-15) 

Where r\c is the percentage of the incident master laser mode coupled into the slave 

resonator's spatial and polarization mode.21'51 Assuming perfect mode matching, r)c = 1. 
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The second expression of Equation 5.15 is obtained by substituting the amplitude of 

Equation 5.6 into the first expression, and the final expression is obtained by noting that 

the Free Spectral Range (FSR) of a ring cavity is equal to c/L and by assuming that 

ln(l/RoC) ~ 1-Roc= Toc (the power transmission coefficient of the output coupler). Also, 

Pm and PIL are the total optical powers of the incident master laser and the injection- 

locked laser. Comparison of Equation 5.14 and 4.25 suggests that the photon lifetime of 

the circulating field is equal to l/coLOCk- Plotting Equation 5.14 yields a figure identical to 

Figure 4.2 with vc and 8vJ2 replaced by vpuii and VLock- This phase delay serves as the 

basis for the PDH error signal used to lock oopuii to ov 

Equations 5.10 and 5.11 are solved by introducing into them the perturbations of 

Eine, EIL, <|>m, <J>IL, and copun and making the same assumptions used to solve Equations 4.18 

and 4.19 (as done in Ref. 23). The injection-locked output at position 2 in Figure 5.1 is 

given by Equation 5.16 where the spectral density of phase noise, S^JL, and amplitude 

noise, SAJL, of Equations 5.17 and 5.18 have a common denominator, DIL, defined in 

Equation 5.19. 

EIL =EIL .{l + SAJL .e^\e^ V^W-') (5.16) 

St,IL = 1 

S-(s + (0Lock) 

D IL 
•% + 

+ 
S\®m-<»pull) 

((»Lock )-(s+ (»Lock ) + (®m - (»pull) 

D 1L 
4,m 

D IL 

■ s A,m 

(5.17) 

yA,IL 

S'((»m-(»PuIl) 

D IL 
' \^d>JL ~ S<t>,m ) 

DIL =(s + aLock f + (a>m - co   „ ) 

(5.18) 

(5.19) 
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As in Chapter 4, the variable s is equal to ia)n. The second term of Equation 4.29 which 

coupled SA,m to SA>r has been eliminated in Equation 5.18 since a proper discussion of the 

coupling of SA,m to SAJL in the presence of the gain medium must account for the 

saturation of the population inversion. 

If we assume that rom equals copuii, neglect SA,m, multiply both sides of Equation 

5.17 by vn, and convert phase noise terms ,S^, into frequency noise terms, Sf, then we 

arrive at the following expression in terms of the variable KIL, defined in Equation 5.21. 

■sf,m=Ts(vnysLs+TM(vnysf,„ (5.20) 

(5-21) 
^Lock       VLock 

The bracketed terms in front of Sf;S and Sf,m are the frequency noise transfer functions of 

the slave resonator frequency noise, Ts(v„), and the master laser frequency noise, TM(V„), 

onto the injection-locked output, respectively. Comparison of Equation 5.20 with 

Equations 4.33 and 4.34 reveals that Ts(vn) is a high pass filter of corner frequency vLoCk 

(i.e. Ts(vn) = THiGH(vn,vLock)), and TM(vn) is a low pass filter of corner frequency vLock 

(i.e. TM(vn) = TLow(Vn,vLock), as shown in Figure 5.2. 

,6.25-10 -_, 

vLock 
Figure 5.2. Frequency noise transfer functions of master and slave onto injection-locked output. 
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The only difference between Tc and TL of Figure 4.3 and Ts and TM of Figure 5.2 

is that the corner frequency changes from hvjl to vLock- This suggests that the only 

difference between this simplified model of injection-locking and the analysis of the 

Fabry-Perot is the photon lifetime of the circulating field. According to Equation 5.20 

and Figure 5.2, at v„« vLock, SyL is the sum of Sf,m and a much attenuated S$s. Figure 5.3 

displays the block diagram schematic of the injection-locking results of Equation 5.20 

and will serve as the building block for the control theory discussions below. 

Sf,m(v„) 

Sf,s(Vn)       *,\+    ^\  Sf^Vn) 
"2IL) : ► 

Figure 5.3. Injection-Locking frequency noise transfer functions. 

5.2 Derivation of Error Signal 

To improve the frequency stability of the injection-locked output we implement a 

PDH locking scheme to further reduce the slave resonator frequency noise contributions. 

The total field at position 2 of Figure 5.1 is the sum of the injection-locked output of 

Equation 5.16, and the reflected modulation sidebands of Equation 5.1. 

E2=e"0"'- EIL .e'^-^^ + Ti-J^-E., V*"*'-^ sinW) (5.22) 

A portion of this field is directed to the photodiode at position 3 in Figure 5.1 with a 

mirror of power reflectivity Re. The voltage output of the photodiode is proportional to 

the incident optical power at position 3, the responsivity of the photodiode, ReSp, and the 

current to voltage gain of the photodetector circuitry, Gv, as shown in Equation 5.23. 
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VDet xResp-Gv = Ksp -Gv'Rc E, (5,23) 

Substitution of Equation 5.22 into 5.23 yields the following detector voltage. 

VDel«Resp-Gv-Rc 

\E1L\
2 +A-{ji{ßf -\Em{tf -sm2 copt 

+ EIL .Eu ■ JlCffi.2f.^y).{r*W^^W^^--4 
(5.24) 

The third expression of Equation 5.24 is the signal of interest at cop. This signal is mixed 

down in quadrature and simplified just as done in Chapter 4 from Equations 4.41 to 4.44 

to yield the following discriminator output at position 4 of Figure 5.1. 

VSig «4.*^ -Gv -Rc -Jx{ß)-Em -E1L ._^L-.(s#f, -^ J-co/^Z+^l     (5.25) 
|1 + IKIL | V J 

The added phase of the cosine term is defined as shown in Equation 5.26. 

(j>IL - -arctan 
( v    ^ r n (5.26) 
\vLock J 

Equation 5.25 is simplified to Equation 5.27 by grouping terms into a PDH injection- 

locking feedback loop discriminator constant, KD,iL(vn), shown in Equation 5.28 of units 

V/Hz, and the variable, r|iL shown in Equation 5.29 of units V/Hz. 

VSig =Rc(KDJL(vn)-(Sf,s SfJ-e^) (5.27) 

KD>1L(v„) = T][L 
IK 11 

1 + IKIL 

VlL=- 
4-Rc-Resp-Gv-J}{ß)-Jl^-JJ^    A-Res-Gv-J0{ß)-Jx{ßYP« 

(5.28) 

Rc • T0c " ESR 
2-7T-V Lock 

(5.29) 

Although the frequency noise of the injection-locked output of Equation 5.20 is more 

susceptible to master laser noise at vn « vLock, Equation 5.27 shows that the PDH error 
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signal is equally susceptible to master laser and slave resonator frequency noise. Also, 

Equation 5.29 shows that the value of r|iL is very similar to r\ for the Fabry-Perot 

(Equation 4.47), but with the added term in brackets in Equation 5.29. In the regime 

where vn « VLock, it can be shown that the discriminator slope is equal to r)iL(vn = VLock)- 

When substituting the experimental values of the terms in the brackets of Equation 5.29 

into this expression, the bracketed term approximately equals 0.09. This suggests that the 

discriminator slope of the PDH injection-locking loop was generally a factor of 10 lower 

than the Fabry-Perot case in the experiments of this thesis, primarily due to the near 

factor of 10 difference between 8vJ2 (-80 kHz) and vLoCk (-750 kHz). 

5.3 Frequency Control Theory 

The discriminator error signal of Equation 5.27 is amplified by a servo of transfer 

function KSJL, and sent to the actuator of transfer function KA,IL- The actuator in this case 

is a PZT mounted behind a slave resonator mirror of Figure 5.1. Figure 5.4 shows the 

effective control loop created. 

I Sf,mCx(Vn) 

Sf,mCL(V„) 

Figure 5.4. Frequency noise control loop (injection-locking). 
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The slave resonator is considered to be a frequency summer, Is, with its original noise, 

S^s, added to the feedback noise signal, S\s. The frequency noise of the master laser, 

S^mCL, (with subscript CL for closed loop in case it has its own feedback loop) and slave 

resonator are summed, in SiL, onto the injection-locked output after being multiplied by 

their respective transfer functions. The error signal of Equation 5.27 is obtained at the 

Ne,iL point of Figure 5.4, along with the noise contributions of the discriminator, SV,D, 

primarily arising from the shot noise of the photodiode. Also, the voltage noise of the 

servo, Sv,s, is caused by the Johnson noise of its resistors as discussed in Chapter 3. 

By tracing the loop in the clockwise direction we obtain the following closed loop 

spectral density of frequency noise, SfjL, shown in Equation 5.30: 

sfAvn) = { 
P/Ay.jf +(KAJL(VJ-KSJL(K)-SV,DY +(KA,!L(K)-SV,S)

2 

\\ + GOL1L(vn)\ 
■TsCL^n} 

+ Sf,mcL(vn)-TMCL(yn) 

(5.30) 

I have grouped a few terms into an injection-locking open loop transfer function, 

GoL.iiXvn), defined in Equation 5.31, and the closed loop master and slave frequency 

noise transfer functions, TM,cL(vn) and Ts,cL(vn), defined in Equations 5.32 and 5.33. 

GOLJL (Vn ) = KA,IL i^n ) * K-SJL iVn ) ' &DAL (Vn ) (5.31) 

W + l-Kn 

T
M,CL(V„) 

"iL 

JOl,ll (O 
11 

l + G0L,z>„) 

1 + / • K IL 

\ = TM{vn) + 
l-K IL GoL,iL(vn) 

l + i-KIL   l + G0L]L(vn) 

(5.32) 

(5.33) 

Equations 5.32 and 5.33 show that the presence of the PDH injection-locking feedback 

loop alters the frequency noise transfer functions of the master and slave laser onto the 
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injection-locked output. Outside the loop bandwidth (where GOL,IL(VI,) « 1), TM,CL 

approaches its open loop value, TM, and S^IL approaches its open loop value given in 

Equation 5.20. Inside the loop bandwidth (where GOL,IL(V„) » 1), the frequency noise 

contributions of the slave resonator are greatly reduced, but the master laser frequency 

noise is transferred directly onto the injection locked output (i.e. TM,cL(vn) ~ 1). In fact, 

Equation 5.33 suggests that the PDH loop can shift the corner frequency of the master 

laser frequency noise transfer function out beyond vLoCk if the bandwidth of the injection- 

locking feedback loop, GOLJL-, is made larger than vLock- 

In the limiting case, where Ks,iL(vn) » 1, the minimal closed loop spectral density 

of frequency noise of the injection-locked output is given by Equation 5.34. 

SfJL (V„ ) «   JV'°    . ■ TS,CL (Yn ) + Sf,mCL (Vn ) ' TM,CL (vn)~— + Sf,mCIi C, ) (5.34) 
KDJL\vn) IlL 

The last expression is obtained by substituting the explicit forms of KD,IL and TS,CL, from 

Equations 5.28 and 5.32, into the first relation and assuming that TM,CL ~ 1. Note that the 

second expression is different from the similar relation obtained for the Fabry-Perot case 

(Equation 4.49), due to the presence of the master and sjave frequency noise transfer 

functions in the first expression. 

As in Chapter 4, the three primary discriminator noise sources are the residual 

AM noise of the master laser or injection-locked output at vp, the coupling of SA,m(vn) to 

the error signal if ©m does not equal copun in Equation 5.17, and the shot noise of the 

photodiode signal. Generally SA,m(vp) is negligible for the NPROs used as the master 

lasers in this thesis and SA,IL(VP) is greatly reduced by the injection-locking process to a 

negligible value with a proper selection of the ratio of Pm to PrL.22 Also, as discussed in 
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Chapter 4, a frequency noise is placed on the master laser and SA,IL(V,0 (of Equation 5.18) 

is minimized by fine tuning the servo DC offset. This ensures ©m = C0pUn and thus 

eliminates the AM to FM conversion predicted in Equation 5.17. The largest remaining 

noise source is the shot noise of Equation 5.35, assumed to be proportional to the largest 

DC signal on the photodiode (the first term of Equation 5.24). 

SV,D,SN(y„) = p-e-Resp-Rc-P!L ■ Gv (5.35) 

By introducing Equations 5.35 and 5.29 into Equation 5.34 we obtain the following 

expression for SfjL in Hz/Hz   . 

A key similarity between the minimum injection-locked spectral density of frequency 

noise (of Equation 5.36) and that of the laser locked to a Fabry-Perot (of Equation 4.53) 

is that they are both inversely proportional to the incident laser power on either the slave 

cavity or the Fabry-Perot. 

The first key difference between Equation 5.36 and Equation 4.53 is that the 

relative noise of SfjL with respect to its reference (the master laser) is nearly zero at low 

frequencies, increases without bound at higher noise frequencies, and is not a function of 

VLock- On the other hand, the relative noise of the laser locked to the Fabry-Perot is non 

zero at low noise frequencies and resembles a low pass filter of corner frequency 8v</2. 

Second, the minimum SfjL is achieved by increasing the total master laser power incident 

on the slave cavity (including sidebands). Note that Equation 5.36 suggests that 

maximizing the power in the sidebands (increasing Ji(ß)) yields a minimal relative 

frequency noise. This is opposite to what we found for the PDH locking a laser to a 
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Fabry-Perot which suggested that maximizing the power in the carrier portion of the 

signal (by increasing Jo(ß)) yielded the best signal to noise ratio. This is not surprising 

since the detector signal of the Fabry-Perot field obtained in reflection has a negligible 

carrier field contribution and a large sideband signal, while the injection-locking detector 

signal has a very large carrier signal and a small sideband field. Thus, when only 

considering shot noise, it stands to reason that the two cases would be different. 

However, as I doubted the maximizing of Jo(ß) at the expense of Ji(ß) in Chapter 

4, doing the opposite here seems to be equally questionable. After all, placing more 

power in the sidebands reduces the portion of the incident master field coupled into the 

resonator, which reduces the output power, PiL, and vLock. To understand the exact effect 

of increasing Ji(ß) a future analysis must obtain an explicit relation between the coupled 

portion of the master laser power into the slave resonator and PIL. I was unable to obtain 

such an expression though I thought such an expression should have presented itself from 

the solution of Equation 5.10 in the steady state regime, assuming perfect impedance 

matching and zero phase delay between the circulating and incident fields. I generally set 

ß ~ 1.08 since, as in Chapter 4, this analysis neglects the contributions of other 

discriminator noise sources, such as the electronics noise of the photodetector. 

Finally, it was unclear in the literature exactly what information could be obtained 

from the error and actuator points of the injection-locking loop (Ne,iL and Na>iL of Figure 

5.4). I showed that the simple addition of S^REF in Figure 3.5 accurately modeled the 

Fabry-Perot control loop in Chapter 4, but the injection-locking control loop of Figure 5.4 

is somewhat more complicated than that of the Fabry-Perot (Figure 4.4). By tracing the 
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signal clockwise through the control loop one can solve for the signal obtained at the 

error and actuator points. 

NeJL {vn) = KDJL (v„ lsf,s (y„) - SAmCL (v„)) vn » vUG (5.37) 

NaJL Vn) = „ J-\  Vn « ^UG (5'38) 

To determine the exact regimes in which Equation 5.37 and 5.38 were true, I placed 

known frequency noise signals on the master laser and monitored the error and actuator 

point signals. I found that Equation 5.37 was accurate at v„ > VUG and that Equation 5.38 

was accurate for v„ < VUG- Therefore these expressions can be rearranged into the S;ame 

format as Equations 4.54 and 4.55 for the Fftbry-Perot case. 

[sf,s(yn)-sAmCL(yn)\ 'OpenLoop 

MaJL(v„)• KAJL(vn) DC <v„< vUG 

NeAvn) 

ZDJLM 

Vn > VUG 
ism- 

ls/Avn)-S/^(vn)]aose^ = l^^ vn »vUG, vn «v^j (5.40) 

Equations 5.39 and 5.40 are identical to Equations 3.21 and 3.22 (with Sf^aser and Sf;REF 

replaced by SfjS and Sf,mcL respectively). This suggests that the simple control loop of 

Figure 3.5 is adequate in describing the relative frequency stabilization of the slave laser 

with respect to the master laser. However, this simple control loop does not describe the 

closed loop spectral density of frequency noise of the injection-locked output, SfjL- The 

added complexity of Figure 5.4 is thus necessary to describe the entire injection-locking 

process. Using this control loop, one can solve for the relative frequency noise of the 

injection-locked output with respect to the master laser input, SfjL - Sf,mcL5 well within 

the bandwidth of the control loop (where KS,IL » 1), as shown in Equation 5.41. 
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SfjL(yn)-SAmCdyJ = \-^T^-Ts(v„) vn «vUG, vn «vw \ (5.41) 

No further information can be obtained about the spectral density of frequency noise of 

the injection-locked output (with certainty) based only on the error and actuator point 

measurements of the PDH injection-locking experiment. 

5.4 Measuring KA)IL, KDJL, and vLock 

To measure the actuator and discriminator constants and the value of the lock 

range frequency we can sweep the resonant frequency of the slave resonator through the 

frequency of the master laser and its two sidebands by applying a voltage ramp to the 

Fast PZT of Figure 5.1. Derivation of the error signal for a discrete frequency sweep of 

the slave resonator reveals the exact same error signal dependence as that obtained for the 

master laser swept through the Fabry-Perot resonance of Figure 4.5. This time the x-axis 

can be converted to units of slave resonator pulled frequency, vpun, with the three peaks 

occurring at vm- vp, vm, and vm + vp. The same techniques and reasoning for the 

determination of KA, KD, and bvJ2 in Section 4.3 can be used to determine KA,IL, KD,IL, 

and VLock- Note that the full width of the central dispersive regime equals 2 x VLock- 

Another method of determining VLock is to measure KA for the master or KAJL for 

the slave resonator and place a known frequency noise (Sf;m(vn)) on the master laser or 

slave resonator(Sf,s(vn)) at a dither frequency, vn, outside the bandwidth of GOLIL, while 

the slave laser is locked to the master laser. According to the discussion of Section 5.1, 

VLock equals the maximum Sf>m or SfsS placed on the laser without the slave losing lock. 
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5.5 Further Stabilization 

According to the above analysis, the injection-locking frequency control loop 

only suppresses the noise contribution of the slave resonator. The limit of the spectral 

density of frequency noise of the injection-locked output is that of the master laser. To 

further improve the frequency stability of the high power injection-locked output we can 

implement one of three "global" feedback loops depicted in Figure 5.5. Two of the 

techniques, labeled Techniques 2 and 3 have been analyzed in the literature.24 

^Technique 3^  > To *M3 

Techniques 1&2     ^ 
< oY< 

High v„ 

To Temperature Control 

/■-- 

Low v. 

Demodulator/|^- 
Servo (1,2,3) ^ 

^  
Technique 1 

Flip-up Mirror 
........ 

PD2| 

;Ri  

\ .^-—x- 
'" — "   Roc :   Re -25 cm 

<4    Slave Laser T PD 
ARC LAMPS 

Fast 
PZT 

1 V* 

• Slow        S 
•. PZT ••vC_ * 

Lowv, 

High v„ 

Demodulator/ 
Servo (IL) 

1—IX/4 i 
Techniques 2&3 

*t OM3 

Fabry- 
Perot 

Injection-Locked 
Output 

Figure 5.5. Further stabilization. 

The basic injection-locking set-up of Figure 5.1, analyzed in Sections 5.1-5.3, is 

contained within the solid box of Figure 5.5. The three global control loops are added to 

this experiment and are contained outside the solid box of Figure 5.5. 

Technique 1 reduces the frequency noise of the incident master laser by 

prestabilizing its frequency to a reference. In Figure 5.5, a small portion of the master 

laser is reflected by mirror Ri, passed through a phase modulator, <J>M2, and sent to the 
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Fabry-Perot resonator. The PDH error signal is detected in reflection at photodiode 2 

(PD2), demodulated, amplified in the servo, and fed back to the master laser PZT (for 

"High" v„, i.e. 1 kHz < v„ < VUG) and temperature controller (for "Low" vn, i.e. DC < v„ < 

1 kHz), as discussed in Chapter 3. This technique creates two independent control loops 

to eliminate the master laser and slave resonator frequency noise separately. 

Technique 2 directs a portion of the injection-locked output to a frequency 

reference and sends the error frequency fluctuations back to the master laser. In Figure 

5.5, a portion of the injection-locked field is directed by mirror, R2, through <j)M2 (after 

flipping the "Flip-up mirror" up into the beam path), to the Fabry-Perot. Again, the PDH 

error signal is obtained in reflection, demodulated, amplified in the servo and fed back to 

the master laser PZT (for "High" v„) and temperature controller (for "Low" v„). This 

technique detects the residual injection-locked frequency noise, S^L of Equation 5.30, 

and uses the master laser as the frequency actuator to eliminate both the incident master 

laser frequency noise and the residual frequency noise of the slave resonator. 

A third option, denoted as Technique 3, is identical to Technique 2 in its detection 

of SfjL- However, the frequency noise in the regime DC < vn < VLock is fed back to the 

master laser and the noise in the regime VLock < vn < VUG to an EOM in the path of the 

injection-locked output beam, (|)M3. 

To compare the three techniques, I expand the injection-locking control loop of 

Figure 5.4 to establish effective control loops which accurately model the effects of the 

various optical and electronic components depicted in Figure 5.5. All of the control loops 

contain the injection-locking loop of Figure 5.4. Also, I designated a single master laser 

actuator transfer function, KA, and a single servo transfer function Ks for Techniques 1 
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and 2. In actuality there may be several actuators (PZT, temperature controller, EOM, 

etc.) with different transfer functions and bandwidths, requiring one servo per actuator. I 

have also assumed comparable SV,D and Sv,s for all detection schemes and servos. 

The control loop of Technique 1 is established by sending the stabilized output of 

the master laser, Sf,mCL of Figure 4.4, into the injection-locking control loop of Figure 5.5 

and is shown in Figure 5.6. 

Sf,m (Vn) Sf.mCL (Vn) 

Figure 5.6. Technique 1 frequency noise control loop. 

The resulting injection-locked closed loop spectral density of frequency noise of 

Technique 1, S$ILI(V„), is shown in Equation 5.42. 

SfJU^n)' 

ij(sAs(v„)Y -(KAIL{vn)-KSIL{vnySv^ -(Km{vnysvß)2 

■TSJCLM 

+S/AV»> 
G0L(yn) 

l+G0L(v„) 

|l+Gbi(v„)| 

■TM,CL^n) 

■TM,CL^n) (5.42) 
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Figure 5.7 shows that, in Technique 2, the output of the PDH injection-locking 

control loop of Figure 5.4, given by Equation 5.30, is passed to the Fabry-Perot 

discriminator and the detected noise is sent back to the master laser. 

Sf,m (V„) ^-v Sf,mCL (vn) 

A 

N, 

Figure 5.7. Technique 2 frequency noise control loop. 

The closed loop spectral density of frequency noise of the injection-locked output 

of Technique 2, Sf,iL2(vn), is shown in Equation 5.43. 

J(SfAvn)f -(KÄiL(yn)-Ks,iL(yn)-Sv,Df -(KAJL(vnysv,s} 

SfjniVn)- + 

|l+GOUL{yn\ ■ I1+GOL(y„) • TMCL{vn\ 

^fjynf -{KA{yn)-Ks(vnysvJ -(KA(vn>sKSf 

•TSJCLM 

+ S/Avn> 
Godyn)-TM,CL(vn) 

TM,CllVn) 

\+GOL(vn)-TMeL(vn) 

(5.43) 

Before introducing Technique 3,1 will compare the results of Techniques 1 and 2. 

Recall that TS,CL(V„) is a high pass filter of cut-off frequency, VLock, and that TM,CL(V„) is 

equal to one where GoL,iL(vn) » 1 and is a low pass filter of cut-off frequency, VLock, 
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where GoL,ii/vn) « 1. According to Equation 5.43, at vn well within the bandwidth of GOL 

and GOLJL, the noise contributions of the slave resonator are further reduced by a factor 

of GoL(Vn) in Technique 2 with respect to Technique 1. Outside the bandwidth of 

GouiXvn), the master laser transfer function TM,cL(vn) reduces the effectiveness of 

Technique 2 in eliminating the noise contribution of the master laser noise for v„ > vLock, 

but this is in the regime where the slave resonator noise contributions are the dominant 

noise source anyway. Also, even the reduced open loop gain of Technique 2 always 

exceeds that of Technique 1 in reducing the slave resonator phase noise. 

In the work of this thesis, the bandwidths of GoL,iL(vn) and GOL(V„) were limited 

by PZT resonances (to be nearly 25 kHz) and thus were both much less than VLock (~ 750 

kHz). In this limiting case, the added noise reduction of the slave laser noise in 

Technique 2 with respect to Technique 1 occurs in the regime vn « VLock where the slave 

noise contributions are already reduced by the PDH injection-locking control loop, 

GOLJL, and the high pass filter, TS,CL- In this situation, one would expect comparable 

closed loop injection-locked spectral density of frequency noise with the two techniques. 

As discussed above, the open loop transfer function of Technique 2 is reduced in 

the regime vn » VLock, by the low pass frequency noise transfer function of the master 

laser onto the injection-locked output (TM,CL (vn)). Therefore feeding back any high 

frequency signals (vn > VLock) to the master laser does not make sense. 

To improve the effectiveness of Technique 2, one splits the feedback loop into 

high (vn > VLock) and low (vn < VLock) frequency regimes, as done in Technique 3 of 

Figure 5.8. 
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Sf,m(Vn)   /—N. >f,mCL 

Figure 5.8. Technique 3 frequency noise control loop. 

The low frequency noise is fed back to the master laser as in Technique 2, but the 

high frequency noise is fed back directly to the injection-locked output through the use of 

a phase modulator, <j)M3, with actuator response, KA High- As a result, the closed loop 

injection-locked spectral density of frequency noise, Sqi3, at v„ < VLock is identical to that 

of Technique 2 (Equation 5.43 with GOL replaced by GOL,LOW defined in Equation 5.44). 

GOL,Lo» (Vn ) = KA,Lo* (Vn ) " KS,LoW (Vn ) " &D 0» ) (5-44) 

At vn > VLock, SfjL3 is given by Equation 5.45 in terms GoL,High, defined in Equation 5.46. 

'\(Su(ynf +{KA!L(y„)-KSJL(yn).SvJ +KL(vn).^sf 

Sf,II3(K)=- 
\l+Q>mfy„M1+cbLH,g/iyni 

■Tsjc/kd+SfM- 
G0[,HiglVn) 

1+WV») 
+ 

+ 
SfjYn) 

. |i+QWv»)-WvJ 
■TM,civn) + 

4\KAHigiVn) ■ Kstfigfa) ■ SV,p)  +\KA,WgiVn)" SV,s) 

\l+GOmgi^yTM,CliVni 

TOL,High< (Vn ) = KAJtlgh (vn > ' KS,High (vn ) ' KD (Vn ) 

(5.45) 

(5.46) 
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Note that both the master and slave noise contributions are reduced by a factor of 

GoL,High, which is not attenuated by the factor of TM,cL(vn) as it was in Technique 2. 

5.6 Summary 

In this chapter, I derived an explicit expression for the lock range frequency, 

accounting for the reduced power in the central carrier portion of the incident master laser 

field when using the PDH locking technique. This expression was not present in the 

literature and may have led to erroneous theoretical predictions of VLock in the literature.24 

Next, I derived, for the first time in the literature, the PDH injection-locking error signal, 

and showed that it was equally susceptible to master laser and slave resonator frequency 

noise. Comparison of the injection-locking analysis and that of the Fabry-Perot, of 

Chapter 4, revealed an apparent equivalence between hvJ2 and VLock for these two 

seemingly unrelated processes. I also showed that the minimum spectral density of 

frequency noise of the injection-locked output is achieved by maximizing the power in 

the master laser PDH modulation sidebands, which is opposite to the case of locking a 

laser to a Fabry-Perot. I established a control loop describing the injection-locking 

process and showed it to necessarily be more complicated than Figure 3.5 to accurately 

model the entire injection-locking process. I expanded the loop to determine the closed 

loop spectral density of frequency noise of three global frequency stabilization schemes. 

Techniques 2 and 3 had been introduced in the literature, with slightly different noise 

control loop models, but only the open loop transfer functions were listed.24 I also 

showed that while Technique 3 clearly yields the best theoretical results, there are 

circumstances in which Technique 2 yields only slightly better results than Technique 1, 

even though it is generally referred to in the literature as being the worst technique. 
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CHAPTER 6. Injection-Locking Experiments 

In Chapter 5,1 derived the PDH error signal and oriented the frequency noise 

control loop in such a manner that they accurately modeled the various measurements 

that I performed over the course of this effort. In this chapter, I review these 

measurements and then compare the experimental results obtained when implementing 

Techniques 1 and 2 to reduce the frequency noise of a particular injection-locked laser. 

Figure 6.1 displays the elaborate optical set-up remaining after all of the 

experiments were performed, including the experiment to compare the results of two 

global stabilization schemes (Techniques 1 and 2 of Chapter 5). I refer to this figure, 

throughout this chapter as I discuss the various measurements that led up to the final 

experimental comparison of Techniques 1 and 2. Since the set-up was quite elaborate, 

employing several control loops and various pieces of equipment, I worked with Mr. 

Joshua Bienfang on several of the experiments described below.49 
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Figure 6.1. Optical schematic of injection-locking frequency stabilization experiments. 
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The Coherent Head, described in Chapter 2, was placed in a ring resonator and injection- 

locked with NPRO 2, as shown within the solid box of this figure. The pertinent 

parameters of the injection-locking experiments were: Toc = 15%, FSR ~ 300 MHz, ß ~ 

1.08, vp = 18 MHz, Pm - 310 mW, and PrL = 22 W. The phase noise of the slave 

resonator with respect to NRPO 2 was detected and reduced using the PDH injection- 

locking scheme by feeding back to Fast PZT 1 of the slave resonator. 

6.1 Measuring KA)iL, KDjL, and VLoCk and determining PDH error signal is equally 
susceptible to master and slave laser frequency noise 

I followed the procedure outlined in Section 5.4 to measure KA,IL and KD>IL of the 

PDH injection-locking loop several times over the course of this effort. Common values 

of KA,IL and KD,iL were 75 MHz/V, and 0.1 V/MHz, respectively. A portion of NPR02 

was directed by mirror Ri through a phase modulator, <|)M2, to the Fabry-Perot, as shown 

for Technique 1 in Figure 6.1. The actuator coefficient of NPR02, KA2, was measured to 

be 5.31 MHz/V by dithering the NPRO PZT and monitoring the error signal obtained at 

PD2 as discussed in Section 4.3. I measured VLock for various values of Pm and PIL by 

measuring the width of the central dispersive regime of the error signal and by injecting 

frequency noise on the master laser or slave resonator until the slave laser lost lock. 

To determine the frequency noise that caused the slave to lose lock to the master, 

I mounted a second PZT, Fast PZT 2, with a bandwidth of ~50 kHz, to a slave resonator 

mirror and measured its actuator coefficient, KA,IL2, to be 50 MHz/V. The actuator and 

discriminator coefficients, KAJLI and KD,ILI, of the injection-locking PDH loop containing 

Fast PZT 1 were measured to be 50 MHz/V and 0.1 V/MHz. With the slave resonator 

locked to the NPR02 using Fast PZT 1,1 applied a sinusoidal voltage signal (of 

amplitude, Vsig, and frequency vn » VUG) to either Fast PZT 2 or the Fast PZT of NPR02 
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and monitored the spectral density of voltage noise, at the Ne,iL point (the input of the 

servo), of the control loop containing Fast PZT 1. The magnitude of the frequency dither, 

S^m(Vn) or Sf,s(vn) in Hz, is equal to the product of VSig and KA2 or KA,IL2, respectively. 

By applying various signals to Fast PZT 2 and the Fast PZT of NPR02,1 verified that 

Equation 6.1 was valid for v„ > VUG and Equation 6.2 was valid at vn < VUG- 

Na,IL=VSig-^- OR     Na,L=VSig-^- (6.1) 

NejL = ySis • KAI • KDjn    OR     NeJL = VSig ■ KAJL2 ■ KDJLl (6.2) 

This showed that the injection-locking control loop was equally susceptible to the 

frequency noise of the master laser and slave resonator in agreement with Equations 5.27, 

5.37, and 5.38 of the previous chapter. 

I measured VL0Ck with this same experiment by increasing Vsig until the slave laser 

lost lock and recording the highest S^m or S^s achievable before the laser lost lock. 

However, this value varied by as much as 500 kHz between measurements performed at 

the same vn or when varying v„. Since vn was limited to 50 kHz, only 40 kHz outside the 

bandwidth of the PDH injection-locking control loop, I was unable to verify if this was an 

inaccurate measurement scheme or of it was hampered in my particular case by the PDH 

feedback loop. However, the only group to report using this method stated that their 

measurements were generally off by a factor of 2 (several hundred kHz) from the 

predicted value.24 It is unclear if their error was caused by a lack of accounting for the 

reduced master laser seed power (proportional to Jo(ß) as shown in Equation 5.15) when 

employing a PDH technique or if the measurement itself is a poor indicator of VLock- 
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I also used the error signal method for determining VL0Ck several times over the 

course of these efforts and not only found the measurement to be much simpler and faster 

than the method discussed above, but also relatively precise and accurate. Table 6.1 

displays the results of measurements taken while varying Pm and PIL and compares the 

results to the predictions of Equation 5.15. 

Pm 

(mW) 

PIL 

(W) 

VLock 

Predicted 
(kHz) 

VLock 

Measured 
(kHz) 

Meas.-Pred. 

(kHz) 

155 21.3 437.778 459.5 21.722 
155 21.3 437.778 435.0 -2.778 
155 21.3 437.778 456.5 18.722 
310 19.3 650.346 750.0 99.653 
310 19.6 645.907 563.5 -82.407 
310 20.67 629.017 605.0 -24.017 
310 21.33 619.111 715.0 95.888 
310 22.53 602.400 580.0 22.4 

Table 6.1. Measurements of v^^ using error signal. 

The first three rows of the table display the repeatability of this measurement, 

with changes in vLock of less than 22 kHz between measurements. All entries in the table 

display good agreement between the predicted and measured values of VLock, and show 

that generally the difference between the two was less than 100 kHz and was often less 

than 25 kHz. 

6.2 Verifying master laser and slave resonator frequency noise transfer functions 

Although the injection-locking PDH discrimination method is equally susceptible 

to master laser and slave resonator frequency noise, the injection-locked output is more 

susceptible to master laser noise at vn« vL0Ck as predicted by Equation 5.20. In this 

section, I discuss the methods I developed to verify the frequency noise transfer functions 

of the master and slave laser since such techniques can also be used to verify the transfer 

functions of other complex processes (such as the frequency doubler of Chapter 7). To 
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verify the transfer function of the slave laser frequency noise onto the injection-locked 

output, the master laser (NPR02) was prestabilized to the Fabry-Perot using Technique 1 

(of Figure 6.1) and the slave laser was locked to the master using Fast PZT 1. A second 

NPRO (NPROl of Figure 6.1) was stabilized to an adjacent longitudinal mode of the 

same Fabry-Perot at a frequency, VFSR, away from NPR02. A portion of the injection- 

locked output, EIL, and NPROl, EREF, were mode-matched to a common spatial mode 

and mixed onto a photodiode, PD3. If we neglect the master laser modulation sidebands 

of Equation 5.22, then the field incident on PD3 varies as shown in Equation 6.3. 

EPD3 oc EIL ■ eiaJ ■ e'ReK-e,av] + EREF ■ e'^-0^ ./^hw*"""'] (6 3) 

Since NPROl was stabilized to the Fabry-Perot, we can assume S^REF « S^IL- The 

detector signal obtained near VFSR can be shown to equal Equation 6.4. 

VPD3<c2-R^-Gv^Pa-P^-^^-M^t)-Ma>FSRt) (6-4) 

The ratio of the voltage signal at VFSR + vn to the signal at VFSR is given by Equation 6.5. 

VPDA
VFSR±Vn) = Sf,lLJVn) ^ ^ 

VPDAVFSR) V„ 

Equation 6.5 suggests that the ratio of the detected noise sideband to the carrier signal at 

VFSR can be used to determine SfjL- I applied sinusoidal signals, Vsig to Fast PZT 2(KA,IL,2 

= 50 MHz/V) and compared the predicted value of Equation 5.20, shown in Equation 6.6, 

to the value found by measuring the signals at VFSR and VFSR + vn and using Equation 6.5. 

SfA^)=Sf,s{vn)-\Ts^n\ = VSig{vn)-KA,L2 ■        /VL°ck (6.6) 

n+r«/ 
vLock 

87 



I measured VLock to be ~1 MHz and applied signals of amplitude 0.1 mV and 1 mV to 

Fast PZT 2 at vn of 10, 15,19, 25, and 30 kHz. The results of the various measurements 

are shown in Figure 6.2. 

V^slmV ■   s„ 
• S(L Theoretical 
* Srt Measured 

A 

A                        A 

I* 

10k 15k 20k 25k 30k 

V^O.ImV 
■   s-.. 
• S(L Theoretical 
* SfL Measured 

A 

A                        A 

10k              15k 20k            25V            30k 

.(Hz) 

Figure 6.2. Verification of slave resonator frequency noise transfer function, Ts(vn). 

The theoretical values of Equation 6.6 are connected with a dotted line. Figure 6.2 shows 

that the spectral density of frequency noise of the injection-locked output, SfjL, 

determined from the ratio of the measurements (Equation 6.5) agrees enough with the 

predicted value of Equation 6.6 to suggest the slave resonator frequency noise, Sf;S, is 

reduced at vn « VLock by the factor Ts(vn). For comparison, I plotted the injected Sf,s on 

the same plot to show that there is clearly a factor of a hundred reduction from the 

injected Sf;S and the S^L measured. The limited bandwidth of the Fast PZT actuator made 

further measurements to check the entire transfer function, Ts(vn), at higher vn, 

impossible. Also, I did not check the transfer function of the master laser, Tm(vn), since I 

used its Fast PZT to maintain lock with the Fabry-Perot. In retrospect, I could have 

performed this measurement by placing a summing circuit on the Fast PZT input of 

NPR02 and adding a noise signal to the feedback actuator signal from the servo. 

Another, perhaps more straightforward method of verifying Equation 5.20, would 

be to lock the lasers using Technique 2 and place known noise signals on Fast PZT 2 
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(Sf,s) and the Fast PZT of NPR02 (Sf,m) with the summing circuit. If we place noise 

signals on these lasers outside the bandwidth of GOL and GOL,IL then the injection-locked 

signal of Equation 5.43 simplifies in this regime (vn» VUG of both loops) to: 

SfM
vn) = {SfAVn) ■ Ts{vK)+SfjK(vH) ■ TM(v„)\ (6.7) 

Tracing this signal clockwise through the Fabry-Perot discriminator of the frequency 

noise control loop diagram (Figure 5.7), with discriminator constant KD2, yields the 

following expression for the Ne point measurement in this regime. I have neglected the 

contributions of the discriminator noise, SV,D, and Fabry-Perot frequency noise, Sf;C. 

K(vn) = KD2(vn)-{sAs(vn)-Ts{vn) + SLm(vn)-TM(v„)\ (6.8) 

The ratio of Ne to KD2 yields the product of Sf,mpr S^s and their transfer functions. I did 

not perform this experiment since I thought of it long after I completed the last injection- 

locking experiment, but I discuss it here since I did use this same method to verify the 

frequency noise transfer functions of the external-cavity frequency doubled laser. 

6.3 PDH Injection-locking Stabilization Results 

Equations 5.39 and 5.40 display the relationship between the relative frequency 

noise of the slave laser, SfjS, and that of the incident master laser, S^m, and the voltage 

measurements made at the entrance, NejL, and exit, Na,iL, of the servo in the PDH 

injection-locking experiment. I measured the spectral density of voltage noise at Ne,n. 

and NajL, the actuator coefficient, KA,IL, and the discriminator coefficient, KD,IL, various 

times over the course of this effort. Figure 6.3 displays the most common results 

obtained for the open and closed loop relative frequency stability of the slave laser with 

respect to the master laser. This figure shows that as a result of the PDH injection- 

locking control loop, the frequency noise of the slave laser with respect to the master 
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laser was generally reduced to ~ 10 Hz/Hz1/2 out to 100 Hz. I have also plotted the value 

of the lock range frequency, VLOCIC- 

idH 

<c* 101 
Open Loop-^ 

v^-GOOkHz 

:~21kHz 

l—|-'T-ITTTI 1—i—r I'TTTI'I 1—i—r rrrrq 1—i—i i 11 MJ n—i—i i i i n 

10' 101 10° 102 103 104 

Noise Frequency, vn (Hz) 

Figure 6.3. Relative frequency noise of the slave with respect to the master. 

Notice that the open loop spectral density of frequency noise of the slave laser 

with respect to the master laser was greater than VLock at various noise frequencies. This 

explains why I was unable to passively injection-lock this system and keep the slave laser 

locked to master. Thus, the PDH control loop was required to keep the slave laser 

oscillation frequency locked to that of the incident master laser. 

6.4 Comparing Techniques 1 and 2 

The theory of Sections 5.1-5.4 was constructed based on the measurements 

discussed in Sections 6.1 and 6.2. To test the theoretical predictions of Section 5.5,1 

compared the closed loop injection-locked spectral density of frequency noise obtained 
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when implementing Techniques 1 and 2. I did not test Technique 3, since I did not have 

a phase modulator that could withstand the 20+Watt injection-locked output power. 

The slave laser was injection-locked to NPR02 and the frequency noise 

contribution of the slave resonator onto the injection-locked output was further reduced 

by implementing a PDH locking scheme, feeding back to Fast PZT 1. Technique 1, 

prestabilizing the master laser, was accomplished by removing the "Flip-up Mirror" of 

Figure 6.1 and blocking the low power beam of Technique 2. Technique 2, detecting S^L 

and feeding it back to the master, was accomplished by replacing the "Flip-up Mirror" 

and blocking the low power beam of Technique 1. 

To compare the closed loop spectral density of frequency noise of the injection- 

locked output of Techniques 1 and 2, a second NPRO, labeled NPROl, was stabilized to 

an adjacent mode of the Fabry-Perot resonator of Figure 6.1. This laser was used as a 

reference to obtain heterodyne beatnote measurements with a portion of the stabilized 

injection-locked output at photodiode 3, PD3. For comparison, the linewidth and the 

Root Allan Variance (RAV) of the heterodyne beatnote signal were measured. The 

linewidth and RAV of the heterodyne beatnote between the stabilized master laser and 

the reference laser were also measured, at PD1, to determine the lower bound of the 

linewidth and RAV data. 

The RAV is a measure of the frequency stability of the beatnote in the time 

domain and is obtained by recording N consecutive frequency measurements at a given 

time interval, x, and inserting the results into the following expression. 

1AM,. . y 
1        |  £ [fk+] ~ fk) 

^--J'V-i) <6-9) 
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Where fk refers to the frequency of the k01 measurement of the instantaneous beatnote 

frequency and Vo is the nominal frequency of the laser(s) being analyzed (e.g. -10  ). By 

varying the time interval one can measure CT(T) for various values of x and plot the results. 

Figure 6.4 displays the RAV and Table 6.2 the linewidth of the three beatnote 

measurements taken. 
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Figure 6.4. Root Allan Variance comparison of Techniques 1 and 2. 

Technique 1 
(Master Laser Prestabilized) 

Technique 2 
(Sf,iL sent to Master) 

Master (NPRO 2) 600 mHz 750 Hz 
Injection-Locked Laser 1.6 Hz 781 Hz 

Table 6.2. Comparison of beatnote linewidths. 

When stabilizing the two NPROs alone to adjacent modes of the Fabry-Perot 

cavity, both lasers exhibited shot noise limited frequency noise spectral densities out to 

about 1 kHz, measured at Ne of their respective loops. Each exhibited a minimum RAV 

of 2.2 x 10*15 for a measurement interval of 50 msec (see Figure 6.4), and yielded a 

heterodyne beatnote linewidth of- 600 mHz, see Table 6.2. These results are typical for 

NPRO lasers and demonstrate their inherent stability.13 
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For Technique 1, heterodyne detection of a 24-W beam showed a minimum RAV 

of 10"14 for a measurement time of 50 msec, and a beatnote linewidth of nearly 1.6 Hz. 

Surprisingly, Technique 2 yielded relatively poor frequency stability, despite the 

added reduction of the slave resonator phase noise predicted in Equation 5.43. 

Heterodyne detection yielded a RAV of 5 x 10"13 for a measurement time of 4 msec, and 

a beatnote linewidth of- 780 Hz. The RAV shows that the spectral density of phase 

noise rises sharply at frequencies below 100 Hz, peaking near 5 Hz. This may be caused 

by strong low-frequency amplitude fluctuations in the PDH error signal caused by 

moderate pointing instability in the high-power output field. The strong amplitude 

fluctuations cause a consequent amplitude modulation of the Fabry-Perot reflected field 

(the second term of SA,F of Equation 4.29) and can be shown to modulate KD as the 

amplitude modulation depth reaches a few percent or higher of the total output amplitude. 

Thus, incorrect frequency corrections are imposed on the laser system, raising the overall 

noise floor over the ideal case of a shot-noise-limited frequency noise floor. 

In all experiments with the high-power laser, the switching frequency of the 

power supply of the arc-lamps, at nearly 20 kHz, was apparent as a FM modulation on 

the injection-locking PDH error signal. This was determined to arise from inadequate 

electrical shielding, rather than AM to FM coupling. Line noise at 60 Hz was also 

evident and its associated value oft, labeled "x line", is shown in Figure 6.4. 

I also measured the closed loop spectral density of frequency noise of the 

injection-locked output of Technique 2 by dividing the Ne point signal of NPR02 (the 

master laser) by the Fabry-Perot discriminator constant (KD2 = 2 V/MHz). The result is 
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shown in Figure 6.5. I have assumed that the frequency noise contribution of the Fabry- 

Perot (Sf;C) is negligible. 

1 10 100000 100 1000 10000 

vn (Hz) 

Figure 6.5. Injection-locked spectral density of frequency noise (Technique 2). 

I have labeled the line noise at 60 Hz and lamp power supply noise at 20 kHz. I do not 

report SfjL of Technique 1, since I had no accurate way of measuring it. I show this plot 

only to demonstrate that even the results of Technique 2 show an Sf,iL of nearly 1 

Hz/Hz1/2 out to nearly 10 kHz. One would expect (based on the time domain 

measurements of Figure 6.4) that the frequency noise of the injection-locked output of 

Technique 1 was even better. 

6.5 Summary 

The measurements described in Sections 6.1 and 6.2 were used to generate much 

of the theory presented in Chapter 5. While feeding back the frequency noise of the 

injection-locked laser to the master laser yields the best theoretical closed loop spectral 

density of frequency noise, prestabilizing the master laser prevailed as the better 

experimental technique since it was less susceptible to pointing instability and amplitude 
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fluctuations of the injection-locked laser. By prestabilizing the frequency of the master 

laser, I obtained a cw, linearly polarized (97:1), 24-W output, with an M2 of 1.07, a 

linewidth of 1.6 Hz, and a frequency stability of less than 1 Hz/Hz1/2 out to nearly 10 

kHz. This injection-locked output represents an increase in the power of the stable low- 

power seed oscillator by a factor of 60, while increasing the bandwidth by only a factor 

of3. 

For comparison purposes, the noteworthy injection-locked results of the literature 

are a 20-W output with a linewidth of 10 kHz,14 a 10-W output with a frequency stability 

of 50 Hz/Hz1/2 at 300 Hz,15 and a 2.2 W output with a frequency stability of 2 x 10"4 

Hz/Hz1/2 at 1 kHz.16 All of these efforts reported using Technique 2 (detecting the 

injection-locked frequency noise and using the master laser as the frequency actuator) 

and "less noisy" diode-pumped heads. 
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CHAPTER 7. The Freauencv-Doubler 

In this chapter, I review my attempts to characterize and improve the frequency 

stability of the external cavity frequency-doubled NPRO that I used to establish an in-lab 

frequency reference, discussed in Chapter 8. I analyze the control loop established in 

such an experiment in a manner analogous to the loops presented in Chapters 4 and 5. I 

list the theoretical results of this analysis and compare them with the results of the 

injection-locking control loop for the sake of drawing similar conclusions regarding the 

optimal stabilization of the frequency-doubled NPRO. Finally, I list the results of 

experiments performed to test the frequency noise transfer functions of the doubler cavity 

and the incident laser onto the output frequency-doubled field. 

7.1 Doubler Cavity Frequency Noise Transfer Functions 

To lock the resonant frequency of the doubler cavity to the instantaneous incident 

frequency of a Lightwave Electronics Model 126, 500 mW, NPRO laser, I employed the 

Hansch-Coulliard locking scheme,45 shown in Figure 7.1. 

~ 532 nm 

1064 nm 

NPRO 

r:-::n...{]....^. 
X/4     U2 

Figure 7.1. Frequency Doubler. 

The nonlinear crystal is a MgO:LiNb03 crystal, temperature tuned to ~ 110 °C to 

satisfy the Type II phase matching condition.53 This locking technique takes advantage 

of the birefringent nature of the nonlinear crystal placed within the cavity and obtains an 
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error signal by comparing the reflected (non-resonant) horizontally polarized field 

(denoted with an H) with the reflected portion of the resonant vertically polarized field 

(denoted with a V). Since the technique is well documented in the literature, I will focus 

only on determining the frequency noise transfer functions. 

Assume that the bow-tie cavity is configured such that the pump field is resonant 

and the generated visible field perfectly couples out of the resonator. To determine the 

frequency noise of the output visible field we break the problem up into two steps. First, 

we can determine the frequency noise transfer functions of the incident field and the 

doubler length fluctuations onto the circulating pump field using the damped, driven 

wave equation. Second, we can solve the wave equation for the visible field, with the 

pump field driving term, to determine the output visible field frequency noise. 

We know from Chapter 4 that the frequency noise transfer function of the incident 

laser field onto the circulating field of the cavity is a low pass filter of corner frequency 

8vc/2 and that of the cavity length fluctuations was a high pass filter of similar corner 

frequency. We expect then that the only thing to change in this discussion is the value of 

8vc/2. Or in the time domain, we expect the only change to be the photon lifetime of the 

cavity, xp. 

The bow-tie ring cavity consists of four mirrors. The reflectivity of the input 

coupler, Ric, is 95% and the reflectivity of the other three mirrors is assumed to be ~ 1 (at 

1.064 urn). Therefore the chief contributing losses of the resonant pump field are the 

leakage through the input coupler and the absorption of the pump field in the nonlinear 

crystal. The circulating pump field experiences a total energy decay rate, yc, equal to the 

sum of the decay rates due to absorption, yo, and transmission through the input/output 
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coupler, ye. These decay rates are defined below in terms of the circulating field round 

trip time, T, the speed of light, c, and the total cavity length, L. 

rc=ro+re=2aoc+Y']n 

f l ^ 

V Ric J 

T = - 
1       L 

(7.1) 

(7.2) 
FSR    c 

Assume that the incident field is mode-matched to a longitudinal mode of the cavity, and 

that the resonator is impedance matched (i.e. ye = yo), so that all of the vertically polarized 

field is coupled into the resonator. The damped, driven wave equation for the circulating 

pump field, Ec, is shown in Equation 7.5 in terms of the vertically polarized portion of the 

incident laser field, Einc(V), defined in Equation 7.6. 

d2Ee dEc    ,   ,2   ~       8-ye   d 

dt2 dt e-V„   dt 
E   (V) 

e dt2 
(7.5) 

Where, as in Chapter 4, the incident field is represented as shown in Equation 7.6. 

pv -nv+pH ■nH) = Einc(v)+E.nc(H) (7.6) 

Note that pv is the vertically polarized portion of the incident field and PH is the 

horizontally polarized portion. 

Equation 7.5 can be solved in a manner similar to that done for the injection- 

locked wave equation of Chapter 5, to yield the following circulating infra-red pump 

field, Ec, with phase noise, S^IR. 

E=E-e iaj       ;Re[-i-S^„, sin(<u„f)J (7.7) 
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The phase noise transfer functions of the incident laser, S^m, and those caused by the 

doubler cavity length fluctuations, S^, onto the circulating field, S^IR, are shown in 

Equation 7.8, in terms of the variable s (defined as ioy) and the variable K defined in 

Equation 7.9. 

"V/Ä ~~ 
s 

2 . 

•S** + 
2 

2 . 

'Sfjn ~ 
i-K 

\ + i-K_ 
•<v + 

1 

l + i-K_ 
$,m 

K- 

2 

Sv„ 

(7.8) 

(7.9) 

Equation 7.7 and 7.8 reveal explicit expressions for the circulating infra-red pump 

field that is resonant in the doubler cavity for a time period equal to xp proportional to 

l/(8v</2). This field is then assumed to seed the nonlinear process within the crystal. 

Assume that the pump and generated fields are perfectly phase matched and that none of 

the generated visible field completes a round trip in the bow-tie cavity to seed the non- 

linear process at the entrance of the crystal. The nonlinear, second order, polarization 

driving term, generated by the field of Equation 7.7, can be simplified to that shown in 

Equation 7.10 in terms of the second order susceptibility at 2©m, %(2)(2©m).53 

P(2) = X^{2a>m)-E2
c oc e2icoJ .e

2iRe[-'s^sinM] (7.10) 

Since this term is the source term in the wave equation describing the generated visible 

field, we can assume that the output frequency-doubled electric field oscillates in phase 

with this driving term and can be represented as shown in Equation 7.11. 

(7.11) 
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Where the phase noise of the output visible field, S^vis, is defined to be twice that of the 

circulating infra-red field, S^IR, of Equation 7.10. 

According to the above discussion the phase, and hence frequency, noise transfer 

functions of the incident laser and the doubler cavity onto the output visible electric field 

frequency noise are shown in Equation 7.12. 

*V,ras — *• 
I'K 

l + i-K 
Sf,c + 

1 

\ + i-ic '/> (7.12) 

The effective frequency noise control loop representing the frequency-doubling process is 

shown in Figure 7.2. 

Sf,m (v„) 

Figure 7.2. Frequency noise transfer functions of the frequency-doubler. 

As discussed above, the frequency noise of the circulating infra-red field, SfjR, is the sum 

of the contributions from the incident laser, Sf,m, and those caused by cavity length 

fluctuations, Sf;C, each multiplied by their respective transfer functions. The infra-red 

field is then frequency doubled in the crystal, represented by X2, yielding the output 

visible frequency noise, Sf;vis- 

The Hansch-Gouillard frequency discrimination technique detects the relative 

frequency noise of the circulating infra-red field with respect to the frequency noise of 

the incident field by subtracting the vertically polarized leakage field (with phase noise 

\\R) with that of the reflected horizontally polarized field (with phase noise S^m). The 
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discriminator voltage output, VSjg, is shown in Equation 7.13 in terms of the discriminator 

coefficient, KD,D of Equation 7.14, and the variable r\D of Equation 7.15 

Vs,g=KD,D-{SAc-SfJ (7.13) 

KD,D ~ VD 
'    IK    ^ 

VD = 

1 + Z'K-, 
(7.14) 

(7.15) 

Where 0i is the angle between the incident laser field's polarization axis and the pump 

axis of the nonlinear crystal (the vertical axis in this case), and Pjnc is the total incident 

power on the doubler cavity. Equation 7.15 shows that the discriminator slope is 

maximized when the incident field's polarization is rotated 45° from the pump axis of the 

crystal. Since this also reduces the pump field and the generated visible field amplitude, I 

often set 9i ~ 5°. Figure 7.3 displays the effective control loop of this locking technique. 

Sf,m(v„) 

Sf,vis(vn) 
X2> ► 

Figure 7.3. Frequency noise control loop (frequency-doubler). 
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The actuator and servo coefficients are represented as KA,D and KS,D and the error and 

actuator points are represented as Ne,D and Na,D- 

By tracing the control loop clockwise as done in Chapters 3-5 for other noise 

control loops, it can be shown that the closed loop spectral density of frequency noise of 

the generated visible field is given by Equation 7.16. 

^f.VlS ~ ^' >f,m 

1 + iK- 'OL,D 

1+G OL,D 

l + ifc 
+ \\

Sf,c)    + \KA,D ' KS,D ' SV,D)   + [KA,D ' SV,S ) 

'OL,D\ 

IK 

1 + /K- 

The open loop gain of the doubler control loop, GOL,D, is defined in Equation 7.17. 

G<DL,D  — &A,D ' K-S.D 'KDyD 

(7.16) 

(7.17) 

Note that Equation 7.16 is functionally identical to the injection-locking control theory 

result of Equation 5.30. Thus, the key difference between these two processes, in the 

frequency stabilization sense, is the corner frequency of their frequency noise transfer 

functions. In this analysis the corner frequency is SvJ2 and in the injection-locking case 

it was vLock- This suggests that the theory of Section 5.5, regarding the further frequency 

stabilization of the injection-locked field using various global control loops, is equally 

valid for the further stabilization of the frequency-doubled NPRO. Thus, the optimal 

frequency stabilization of the frequency-doubled NPRO is achieved by detecting the 

frequency noise of the visible field (Equation 7.16) and feeding the high frequency (vn > 

8V(/2) noise back to a phase modulator placed in the path of the visible output and the 

low frequency noise (vn < 8vc/2) back to the laser. 
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7.2 Verifying Frequency Noise Transfer Functions 

To verify the transfer functions of Equation 7.12, and the noise control loop 

diagram of Figure 7.2,1 sent the frequency-doubled field to a PDH discriminator and 

locked the second harmonic of the NPRO to a longitudinal resonance of this reference 

cavity, as shown in Figure 7.4. 

Electronics 
To NPRO Actuator(s) 

Optics 

N„- 

Servo 

NP- 
+90 

-0- 
Mixer 

►| NPRO fr Sf,n Frequency 
Doubter 

M 

>f,VIS 

y Ri R2 

PBSC       A74    Fabry-Perot 

Figure 7.4. Locking the Frequency-Doubled NPRO to a Fabry-Perot. 

The frequency noise control loop of this set-up is quite complicated and the resulting 

closed loop spectral density of frequency noise is also rather complex. If we consider the 

frequency regime outside the open loop bandwidth of both the doubler cavity and NPRO 

feedback loops (vn > VUG) then the signal at the error point of the Fabry-Perot control 

loop, shown in Figure 7.4, is the product of the Fabry-Perot discriminator constant, KD, 

and the open loop visible frequency noise, S^vis of Equation 7.12. 

Ne-
KD' Sf,VIS  - KD 

1-K 

\ + i-K 
•2-S/,+ 

1 
1 + /' • K 

■2-S f,m (7.18) 

To test the validity of this equation, I measured the discriminator coefficient, KD, of the 

Fabry-Perot, using the technique outlined in Section 4.3, to be 0.35 V/MHz. I measured 

the NPRO actuator coefficient, KA, by sweeping the output infrared NPRO frequency 

through the resonance of a 1 urn PDH Fabry-Perot discriminator to be ~ 5.25 MHz/V. To 
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measure the actuator, KA,D, and discriminator, KD,D, coefficients of the doubler cavity I 

applied a voltage ramp to the doubler cavity PZT. The actuator coefficient was 

determined to be the ratio of the voltage applied to the PZT (causing it to sweep through 

one FSR of the cavity) to the FSR of the cavity, ~ 291 MHz. The actuator coefficient, 

KA,D, was found to be 107 MHz/V. To determine the discriminator coefficient and the 

bandwidth of the cavity, 8vc, I increased the resolution of the oscilloscope signal 

surrounding a particular resonance, as shown in Figure 7.5. 

Hue (sec) 

Figure 7.5. Hansch-Coulliard error signal determination of KDD and 8vc. 

The discriminator constant is equal to the ratio of the peak-to-peak voltage of the signal, 

AVD, to the bandwidth of the cavity, 8vc. Where 5vc can be shown in the Hansch- 

Coulliard technique to be equal to the bandwidth of the central dispersive regime of the 

error signal, measured in the frequency domain. If we assume a linear PZT response, in 

fxm/sec, and thus a linear cavity frequency response, in Hz/sec, then the bandwidth of the 

cavity, 8vc, is equal to the product of AVA of Figure 7.5 and the actuator coefficient, KA,D- 

Equations 7.19 and 7.20 represent the explicit expressions for the determination of the 

double cavity bandwidth, 8vc, and the discriminator coefficients. 

Svc=KA„-AVA (7.19) 
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KD,o=^ (7-20) 

The measured value of 6vc was 5.35 MHz and that of KD,D was 0.077 V/MHz. 

Note that the measurement of 6vc also yields a measure of how well the doubler 

cavity is impedance matched. After all, we know the value of ye of Equation 7.1 (with 

Roc = 0.95, and L ~ 1.035 m) divided by In to be nearly 2.3 MHz. If the cavity is 

perfectly impedance matched, yo will equal ye and yc will equal 2x ye. Thus, 8vc will 

equal 4.6 MHz. In this case, 8vc was measured to be 5.35 MHz and the output visible 

field power was 55 mW. On a separate occasion, with the other reference doubler cavity, 

8vc was measured to be 4.46 MHz/V and the output visible power was 95 mW, revealing 

that the cavity was certainly more impedance matched than the case considered here. 

With both the doubler cavity locked to the laser and the laser locked to the Fabry- 

Perot, I injected know voltage signals onto the laser and the doubler cavity using 

summing circuits at the exit of each of their servos. I applied 1 mV to the NPRO PZT 

(yielding an Sf,m of 5.2 kHz) and 0.005 mV to the doubler cavity PZT (yielding an SfjC of 

nearly 5.2 kHz) at slightly offset noise frequencies (Avn~ 0.5 Hz) simultaneous at vn 

ranging from 20 to 60 kHz. I verified that the voltage signals at the error point of the 

doubler control loop were equal in amplitude for each noise signal, suggesting that Sf;m 

was indeed equal to S^. I then measured the voltage signals obtained at the Ne point of 

the Fabry-Perot control loop, and divided them by KD to determine SfjVis- Figure 7.6 

compares the theoretical S^vis from Equation 7.12, for the incident laser, Sf,m, and the 

doubler cavity, SfjC, (both connected with solid lines) with the experimental value of Sf,vis 

obtained by dividing Ne by KD. 
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Figure 7.6. Results of experiment to verify visible field frequency noise transfer functions. 

Figure 7.6 shows an excellent agreement between the theoretical noise of the 

frequency-doubled field (given a 5.2 kHz input frequency noise) and the measured noise. 

This suggests that the control loop of Figure 7.3 and the closed loop spectral density of 

frequency noise of Equation 7.16 do accurately model the frequency doubler. 

7.3 Frequency-Doubler Stabilization Results 

Figure 7.7 displays the typical result of the relative frequency stabilization of the 

doubler cavity resonant frequency to the frequency of the incident NPRO laser. 

Open Loop (S,c-SfJ„) 

Noise Frequency, v (Hz) 

Figure 7.7. Relative frequency noise of doubler cavity with respect to incident NPRO. 
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According to Figure 7.7, the relative frequency noise of the doubler cavity is nearly shot- 

noise limited at a value of- 1 Hz/Hz1/2 at noise frequencies out to 400 Hz. The shot 

noise level was determined based on the DC voltage output of the photodectors of Figure 

7.1, while the laser was locked. The chief limitation to this frequency stabilization effort 

was the limited bandwidth of the PZT (~ 20 kHz) used to control the resonant frequency 

of the doubler cavity. The resulting open loop unity gain bandwidth was nearly 7 kHz. 

Despite this limitation, the combined effect of the high pass transfer function of the 

doubler cavity and this noise suppression feedback loop significantly reduce the 

frequency noise contribution of the doubler cavity onto the output visible field, of 

Equation 7.16, at noise frequencies out to at least 100 kHz. After all, with 8vc/2 ~ 2.5 

MHz, 100 kHz is still a factor of 25 below the corner frequency of the doubler cavity 

high pass filter. 

7.4 Summary 

In this chapter, I determined and experimentally verified the transfer functions of 

the incident laser and the resonant doubler frequency noise onto the output frequency- 

doubled field. I showed that the frequency noise of the visible output field is functionally 

identical to that of the injection-locked output field of Chapter 5. Consequently, I 

concluded that the optimal stabilization of the frequency-doubled NPRO is established 

using Technique 3 of Chapter 5: detecting the frequency noise of the visible field and 

feeding the low frequency (v„ < 5vJ2) noise to the NPRO and the high frequency noise 

(vn > 8vc/2) to an EOM placed in the path of the visible output field. Finally, I reported 

the common results of my efforts to reduce the frequency noise of the doubler cavity with 

respect to the incident NPRO laser. 
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CHAPTER 8. Absolute Frequency Stabilization 

Assume that the pointing instability and amplitude noise of the injection-locked 

laser are eliminated, and the open loop bandwidth of the control loops is increased. 

Given this situation, the theory of Chapter 5 suggests that Technique 3 is the best global 

frequency noise suppression scheme. However, the limit of all three global frequency 

noise suppression techniques of Chapter 5 is the relative frequency stability of the 

reference. To improve the frequency stability of the high power, injection-locked output 

one must replace the relative frequency reference (the Fabry-Perot) with an absolute 

reference: an atomic or molecular transition. 

8.1 Absolute Frequency References Near 1.064 p,m 

Much work has been done in the field of high-resolution saturation spectroscopy 

to search for atomic and molecular transitions with narrow absorption linewidths at the 

frequencies of interest for various laser applications. The results of such efforts have 

revealed the existence of at least five molecules that can serve as potential frequency 

discriminators near 1.064 urn: C2HD,54 C2H2,
55 C02,

56 Cs2,
57 and I2 (-532 nm).33'34 A 

point of interest is that the spectroscopic techniques used to gain higher sensitivity in 

searching for these transitions can easily be employed to lock the laser to the transition. 

After all, the same phase information that generates a dispersive curve centered at the 

transition is used to lock the laser to this transition. Thus, any technique that improves 

the sensitivity of the spectroscopic signal will also improve the sensitivity of the 

discriminator to frequency fluctuations of the laser when this transition is later used as a 

reference. 
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The electronic transitions of Cs2 near 1.064 urn and I2 neighboring 532 nm 

(probed with a frequency-doubled 1.064 urn laser) have been investigated in great detail 

using standard Doppler-free, pump-probe, saturation spectroscopy techniques. Since the 

lifetime of the excited state of such electronic transitions is on the order of a 

microsecond, the natural linewidth is on the order of a megahertz. Since the linewidth of 

the transition is the chief determiner of the discriminator slope, KD, (broader linewidths 

yielding smaller slopes), it is desirable to use the molecule with the narrowest absorption 

linewidth to achieve the minimal closed loop spectral density of frequency noise. 

The other three molecules (C2HD, C2H2, CO2) experience rotational-vibrational 

overtone transitions at 1 um. The lifetime of the excited states of such transitions is on 

the order of a millisecond, significantly decreasing their natural linewidth. However, 

since such transitions are inherently very weak, Doppler-free, cavity-enhanced, saturation 

spectroscopy techniques have been developed to investigate them which are much more 

sensitive than the simple pump-probe experiments. The chief limitation to observing the 

natural linewidths of these molecules is the transit-time broadening of the resonance, 

brought about by the finite interaction time of a given molecule traversing the cross 

section of the saturating field.58 Since the velocity of the molecule is inversely 

proportional to the square root of the mass of the molecule, these relatively light 

molecules are especially sensitive to this limitation. To resolve the natural linewidth, one 

can expand the saturating beam cross-section or implement a slow molecule detection 

scheme. Slow molecule optical selection is achieved by reducing the power of the 

saturating field. In so doing, the slower molecules interact with the field for a longer 

amount of time than the faster molecules. Therefore the saturation signal is dominated by 
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the contributions of the slower molecules, significantly reducing the observed linewidth 

to a value less than the transit-time limit. The use of cavity-enhanced techniques, altered 

for slow molecule detection, has yielded linewidths of 20 kHz in C2HD, a factor of 

thirteen below the transit-time limit ofthat particular experiment.59 

Of the three molecules, the narrowest theoretical linewidth is that of CO2, which 

is expected to have a transition near 1.064 urn of width 170 Hz.60 Preliminary 

experiments have yielded a saturated linewidth of nearly 410 kHz at a pressure of 5.6 

mTorr and a 100 W circulating field.56 Also, an adjacent non-saturated absorption peak 

was observed with a linewidth of nearly 100 kHz. A complete cavity-enhanced 

saturation spectroscopic investigation, employing slow molecule detection schemes 

(preferably at pressures much less than a mTorr), of several of the rotational-vibrational 

lines of CO2 neighboring 1.064 urn is necessary before discounting this molecule as the 

best possible frequency discriminator in this frequency regime. 

To perform the spectroscopy of CO2 and to characterize the frequency stability of 

a laser (or even an injection-locked laser) locked to CO2 one needs an in-lab frequency 

reference at 1.064 urn. To characterize the in-lab reference, using standard beatnote 

measurements, a second, identical in-lab reference is needed. Mr. Joshua Bienfang and I 

established two identical in-lab frequency references at 1.064 urn by stabilizing two 

frequency-doubled NPROs to the well-documented hyperfine components of the 

electronic transitions of I2, using a modulation-transfer spectroscopy technique. 

8.2 Overview 

In this chapter, I review my attempts to model the closed loop spectral density of 

frequency noise of this in-lab reference for the sake of determining the optimal noise 
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detection and suppression scheme. I expand the control loop of the frequency-doubler, 

presented in Chapter 7, to include the absolute frequency stabilization control loop 

established when locking the laser to an electronic transition in Iodine. Finally, I 

characterize the reference through Root Allan Variance (RAV) measurements of the 

beatnote of the two in-lab references, and the spectral density of frequency noise 

measured at the error point of the absolute frequency stabilization control loop. 

8.3 Characterizing the 1 um In-Lab Reference 

Using the frequency-doubled NPRO, I probed several well-documented hyperfine 

components of electronic transitions of I2 neighboring 532 nm, with the experiment 

shown in Figure 8.1. 

cjb« 
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~ 532 nm 

. 1— _ _ _ 
Resonant ■ 

• Frequency Doubler ' 

Servo K- To 
PZT 

NPRO 
^-1.06 

y 
.064 fxm Reference 

Figure 8.1. In-Lab Iodine reference. 

This is a standard FM modulation-transfer spectroscopy experiment and is described in 

some detail in the literature.33'61'62 The frequency-doubled NPRO is split into cross- 

polarized pump and probe fields. The pump field is frequency shifted by 80 MHz with 

the AOM and then phase modulated with the EOM at frequency 550 kHz. The 
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modulation sidebands of the pump field interact with the pump carrier field and the probe 

field in the nonlinear medium (I2), in a four-wave mixing process, to generate modulation 

sidebands on the probe. The probe field and its sidebands are then passed to the 

photodetector, to obtain the signal. The amplitude of the signal is proportional to the 

product of the pump field carrier and modulation sideband amplitudes (as was the case 

for every FM modulation technique of this thesis including the PDH technique). 

The actuator coefficient of the NPRO was determined to be 2.3 MHz/V, and the 

actuator coefficient of the visible field was verified with a Fabry-Perot PDH 

discriminator to be nearly 4.6 MHz/V. The discriminator coefficient was determined by 

sweeping the laser through a resonance, as shown in Figure 8.2. 

Figure 8.2. Sample Iodine dispersion curve. 

Knowledge of the visible actuator coefficient, 4.6 MHz/V, enabled me to determine the 

width of the dispersion curve (~ 1.5 MHz for this particular resonance). The ratio of the 

peak-to-peak voltage of the dispersion curve to its frequency width yielded the value of 

KD: 0.98V/MHz. 
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I locked the frequency-doubled NPRO to this transition and measured the spectral 

density of voltage noise at the entrance (Ne point) and exit (Na point) of the servo. To 

determine the exact relationship between these signals and the open and closed loop 

spectral density of frequency noise of the 1.064 um reference field of Figure 8.1,1 

established the effective control loop of Figure 8.3. 

1 um Reference, SfJ„CL(V1,) 

Figure 8.3. Frequency noise control loop (in-lab Iodine reference). 

The open loop frequency noise of the NPRO, Sf>m, is shown at the far left as the 

input to this control loop. The closed loop frequency noise output of the NPRO, Sf,mcL, is 

shown to equal that of the 1 urn reference, given the exact placement of the mirror 

directing the reference field away from the NPRO in Figure 8.1. The frequency-doubler 

control loop of Figure 7.3 is shown within the solid box and the absolute stabilization 

loop is shown to encompass this loop. 

The results of the control loop analysis are very similar to those of the injection- 

locking control loops of Chapter 5. Below, I neglect the frequency noise contributions of 
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the doubler cavity, since the doubler noise contributions are not only reduced by the 

doubler control loop but also by the high pass filter transfer function with corner 

frequency of- 2.5 MHz. Analysis of this control loop yields the closed loop spectral 

density of frequency noise of the 1 um reference field, Sf,mCL, shown in Equation 8.1, in 

terms of the closed loop frequency noise transfer function of the NPRO onto the visible 

field, TM,CL, shown in Equation 8.2. 

Sf,mCL(Vn)- 

pf,m(yn))2 + {KA(yn)-Ks(vn)-svJ+{KA(vn)-svJ 
|l + 2-W(vJ-G0i(v„)| 

(8.1) 

lM,CL (yj 

1 + i • re ■ 
G0L>D(v„) 

l + G0L;D(v„) 

l + i-rc 
(8.2) 

Note that the frequency noise of the NPRO laser is reduced by the open loop transfer 

function of the absolute frequency stabilization control loop, GOL, multiplied by the 

closed loop transfer function of the NPRO frequency noise onto the visible field, TM,CL- 

This transfer function is equal to one in the frequency regime where the doubler control 

loop open loop gain, GOL,D of Equation 8.3, is much greater than one. 

G0L,D <y„ ) = KAJ> (v„) • KS,D (yH) • KD,D (v„) (8.3) 

Since the unity gain bandwidth of the doubler control loop was limited to nearly 10 kHz, 

TM,CL becomes a low pass filter of corner frequency, 8vc/2 ~ 2.5 MHz, at frequencies 

above ~ 10 kHz. Thus, as in Technique 2 of Section 5.5, the global frequency noise 

control loop (the absolute stabilization loop in the present discussion), is reduced in 

efficiency at high noise frequencies (vn > hvjl). 
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Given the relatively high value of 8v</2 (-2.5 MHz) for my experiment, this 

reduction was negligible since the unity gain bandwidth of the absolute frequency 

stabilization control loop was nearly 20 kHz (limited by the resonance-free bandwidth of 

the PZT of the NPRO). Nevertheless, I point out the possible limitation of this 

experiment in case the experimental parameters are altered (the bandwidth of GOL 

increases significantly or 8vc is reduced) in the future. 

Tracing the signal clockwise through the elaborate control loop of Figure 8.3 

reveals the following relationship between the error (Ne) and actuator (Na) point voltage 

measurements and the open and closed loop spectral density of frequency noise of the 

NPRO. 

\KD{2-SAmCL(v„)) 

Ne(v„)> 
KD\2-SLmCL(vn) 

1 

1 + iK 

K < VUG 

v„ > VUG 

(8.4) 

SfAVn)' 

KA-Na 

N e 

2-KD- 
1 

K  < VUG 

vn > VUG (8.5) 

Well within the unity gain bandwidth of the absolute frequency stabilization control loop, 

all of the frequency-doubled NPRO noise is incident on the discriminator and the 

standard error point and actuator point relations prevail. However, outside the loop 

bandwidth the frequency noise of the NPRO is low pass filtered (with corner frequency 

equal to hvjl of the doubler cavity ~ 2.5 MHz) before it is arrives to the discriminator. 

This low pass filter transfer function must be accounted for when determining the 

original 1 um frequency noise originating from the laser. 
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8.4 Absolute Frequency Stabilization Results 

I locked my laser to a particular hyperfine component of an electronic transition 

of h- With the laser locked, I recorded the spectral density of voltage noise at Ne and Na 

of the absolute stabilization control loop and used Equations 8.4 and 8.5 to determine the 

open and closed loop spectral density of frequency noise of the 1 um reference, Sfjrn and 

Sf,mCL, respectively. Figure 8.4 displays the result of this measurement. 

co 101- 

Open Loop 1 jun Noise (Sf ) 

Closed Loop 1 |im Noise (S,mCL) 

Shot Noise Level 

10' 102 103 

-1—I   I I I 111— 

104 

I    I   I I I 11 

105 

Noise Frequency, vn (Hz) 

Figure 8.4. Spectral density of frequency noise of the 1 um reference. 

The closed loop spectral density of frequency noise of the NPRO, Sf,mcL, was 

reduced to 0.3 Hz/Hz1/2 at noise frequencies below 400 Hz, slightly above the shot noise 

level of 0.09 Hz/Hz1/2, determined from the DC voltage output of the photodiode while 

the laser was locked. This is a factor of 10 worse than the average closed loop relative 

frequency noise of the NPRO laser locked to a Fabry-Perot which was generally 0.03 

Hz/Hz1/2 over the course of the various experiments performed in this effort. This is 

partially due to the factor of five difference between the discriminator slope achieved 
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with these two locking techniques (0.98 V/MHz in this experiment compared to 5 V/MHz 

for the Fabry-Perot locking scheme). 

To further characterize the 1 urn reference, Mr. Bienfang and I directed a portion 

of our 1 urn reference beams (from the two identical references) to a photodetector to 

measure the Root Allan Variance (RAV) of the beatnote signal. Figure 8.5 displays the 

resulting RAV data (represented with a series of squares connected with a line). 
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Figure 8.5. Root Allan Variance of the beatnote of our two identical lu.m references. 

For comparison's sake, I also present the previous data obtained from similar I2 

references reported in the literature.33'34 Note that our results are very similar to the 

results of Ref. 33, as expected since we employed the identical modulation transfer 

scheme employed by this group. The reference displays a minimal RAV of lxlO"13 for a 

time interval of 1 second, about a factor of 3 higher than the lowest RAV reported by 

Ref. 33 of 3xl0"14 at a time interval of 0.8 seconds. 
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8.5 Summary 

In this chapter, I modeled the absolute frequency stabilization experiment used to 

establish an in-lab lum reference using the control theory principles presented 

throughout this thesis. I showed that the closed loop spectral density of frequency noise 

of the reference was nearly identical in form to the closed loop frequency noise 

contribution of the master laser to the injection-locked output in Technique 2 of Chapter 

5. As in Chapter 5 (Technique 3), the optimal stabilization of this laser would detect the 

frequency noise of the visible field and send the low frequency noise (vn < 8Vc/2 ) to the 

laser and the high frequency noise (vn > hvJ2 ) to a phase modulator placed in the path of 

the visible field. However, the rather large value of 8vJ2, -2.5 MHz, eliminates the need 

for this elaborate technique since the residual frequency noise of the laser at these high 

frequencies is negligible anyway. 

Finally, I characterized the frequency stability of the 1 urn reference. I reported 

that the closed loop spectral density of frequency noise was reduced to 0.3 Hz/Hz1/2 for 

noise frequencies below 400 Hz and the minimal Root Allan Variance achieved was 10" 

for a time interval of 1 second (comparable to the previously reported results of similar 

references). 
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CHAPTER 9. Summary and Future Work 

In this chapter, I review the key contributions of this thesis and discuss the 

research necessary to further improve the power and frequency stability of the injection- 

locked laser. 

9.1 Primary Contributions 

By using the thermo-optical model of Murdough, I was able to optimize the slave 

resonators containing three different arc-lamp pumped Nd: YAG rods to achieve greater 

than 25 W of linearly polarized, TEM0o, injection-locked output. 

To insure the slave laser remained injection-locked to the master laser, I 

employed the PDH stabilization technique which is most-often used to stabilize the 

output frequency of lasers to a resonant frequency of a Fabry-Perot. Based on the results 

of various measurements made on the injection-locked system, I derived an explicit form 

of the PDH injection-locking error signal based on the damped, driven wave equation 

description of the circulating field of the slave laser resonator. I found that even though 

the transfer function of the master laser frequency noise onto the injection-locked output 

is a low pass filter of corner frequency, VLOCIC, and that of the slave laser is a high pass 

filter of similar corner frequency, the PDH error signal is equally susceptible to the 

frequency noise of each. I used this error signal and the results of various measurements 

to establish a control loop diagram (Figure 5.4) that completely modeled the frequency 

stability of the injection-locked output field. I then expanded this control loop to 

compare the theoretical results of employing three different global stabilization schemes. 

Clearly Technique 3, which detects the frequency noise of the injection-locked output 

and sends the low frequency noise (v„ < VLock) to the master and the high frequency noise 
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(vn > vLock) to an EOM in the output path of the injection-locked laser, was the optimal 

technique. However, I showed that given the limited bandwidths of the control loops of 

this thesis (~ 20 kHz), which are much less than vLock (-750 kHz), the other two schemes 

(Techniques 1 and 2) yield comparable results. Technique 1 involves prestabilizing the 

master laser and Technique 2 involves detecting the frequency noise of the injection- 

locked output and feeding it back to the master laser. I tested this theory and actually 

found that Technique 1 yielded the best results, primarily due to the susceptibility of 

Technique 2 to the pointing instability of the slave laser. I reported achieving a 24-W, 

M2 ~ 1.07, linearly-polarized output with a linewidth of 1.6 Hz by injection-locking an 

arc-lamp pumped Nd:YAG rod laser to an NPRO laser and further stabilizing the output 

with Technique 1.63 

I revisited the problem of locking a laser to a Fabry-Perot, using the damped, 

driven wave equation analysis to describe the circulating field of this resonator. This 

analysis yielded three important contributions to the previous results from the literature. 

First, this analysis revealed terms describing the coupling between the frequency noise of 

the incident laser and the amplitude noise of the circulating field. I later showed that this 

coupling could be eliminated by adjusting the DC offset of the servo element of the 

feedback loop. Second, this analysis revealed the relations between the frequency noise 

of the incident laser and the resonant frequency of the Fabry-Perot cavity onto the 

frequency noise of the circulating field with the corner frequency equal to the halfwidth 

of the cavity reflection coefficient, hvJ2. Comparison of these transfer functions and 

those of the injection-locking experiment verified that their forms are identical and that 

the corner frequency of the transfer functions of each are related to the photon lifetime of 
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the circulating field of each resonator. Third, this analysis revealed the explicit 

contribution of the frequency noise associated with the Fabry-Perot onto the PDH error 

signal. 

I then used the frequency noise transfer functions of the Fabry-Perot to determine 

the relationship between the frequency noise of the electric field output of an external 

cavity frequency-doubled laser and the noise of the incident laser and the frequency noise 

associated with the length fluctuations of the external cavity. I established an effective 

control loop to describe the frequency-doubled laser and used this loop to show the 

similarity between the frequency-doubled laser and the injection-locked laser. I 

concluded that the optimal stabilization scheme for the injection-locked laser, Technique 

3, is the same as the optimal scheme for reducing the frequency noise of the external 

cavity frequency-doubled laser. Thus, the optimal scheme detects the frequency noise of 

the doubled field and feeds the low frequency noise (vn < dvjl) back to the laser and the 

high frequency noise (v„ > &vJ2) directly back to an EOM or AOM placed in the path of 

the doubled field. 

Finally, I established an in-lab 1.064 urn frequency reference by stabilizing the 

frequency-doubled NPRO to a hyperfine component of an electronic transition in h. I 

did not employ Technique 3 since I was not interested in reducing the frequency noise of 

the doubled field beyond 8vc/2 ~ 2.5 MHz. Instead, I employed Technique 2, detecting 

the frequency noise of the doubled field (using the modulation transfer discriminator 

method) and feeding it back to the laser. I reported achieving a minimum Root Allan 

Variance of 10"13 at a time interval of 1 second and showed that the stability of the in-lab 

reference was comparable to the results of similar references reported in the literature.33'34 
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9.2 Future Work 

To improve the output power and pump efficiency and reduce the frequency and 

amplitude noise of the slave laser, one must transition from arc-lamp pumping to 

transverse diode-pumping. By using the thermo-optical model of Murdough in 

conjunction with the birefringent compensation techniques recently reported,41 one 

should be able to scale the linearly-polarized TEMoo output power much greater than the 

highest currently recorded power of 62 W.8 

One can then injection-lock this laser with an NPRO laser and insure the laser 

remains locked by employing a PDH locking scheme. The chief limitation to the PDH 

injection-locking experiments of this thesis was the bandwidth of the slave cavity PZTs 

(-20 kHz). By replacing these PZTs with higher bandwidth PZTs, one can further reduce 

the relative frequency noise of the slave with respect to the master laser. 

To further improve the frequency stability of the injection-locked output beyond 

that achieved here, one should establish Technique 3 but replace the Fabry-Perot 

reference with an absolute frequency reference such as an atomic or molecular transition. 

Since the slope of the frequency discriminator determines the minimal achievable 

spectral density of frequency noise, the narrowest atomic or molecular transition is 

desired. The best candidates at 1.064 urn are C2HD and CO2. Using slow molecule 

detection schemes the narrowest linewidth achieved with C2HD has been ~ 20 kHz.59 On 

the other hand, a preliminary investigation of CO2 has yielded linewidths much greater 

than the theoretical nature linewidth of 170 Hz.56 This investigation also revealed the 

possible presence of a two-photon transition neighboring the single line investigated. An 

in-depth spectroscopic investigation of CO2 is needed to accomplish two tasks before 
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discounting this molecule as a possible frequency reference near 1.064 um. First, slow 

molecule selection techniques should be used to attempt to resolve the single-photon 

transition with respect to the two-photon transition. Second, an investigation of the other 

overtone transitions immediately neighboring this transition should be attempted to 

determine their linewidths. These transitions are ~ 40 GHz away from the line analyzed 

in Ref. 56.64'65 Although the specification of the tuning range of the NPRO is 40 GHz 

and the first line is near the center of this tuning range, it may still be possible to probe a 

neighboring transition with the NPRO. To do this, one might try tuning the temperature 

of the NPRO to the limit of its range and then applying a DC voltage to the slow 

frequency control to force the laser to oscillate at a frequency outside of its specified 

operating regime. Although this will reduce the efficiency of the laser and thus its output 

power, only 10's of mW are needed (depending on the Finesse of the cavity) for the 

cavity-enhanced spectroscopy technique. 

?,3 Conclusion 

Thus, the optimal, high power, frequency-stable laser at 1.064 (am would be 

achieved by injection-locking a transverse diode-pumped Nd: YAG rod laser with an 

NPRO laser and further stabilizing the injection-locked output to an overtone transition in 

CO2, pending the results of future spectroscopic investigations of this molecule. 
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LIST OF VARIABLES (BY CHAPTER) 

Chapter 2 

Symbol Name/Description 

cr radial photoelastic coefficient 

C,j, tangential photoelastic coefficient 

fie slave resonator intracavity lens focal length 

K thermal conductivity 

Lc slave resonator length 

Lr Nd:YAG rod length 

no index of refraction at rod center 

nr® radial index of refraction (r polarization) 

ryS> radial index of refraction (<|) polarization) 

Pin transverse pump power 

"in,max maximum allowable transverse pump power 

ro Nd:YAG rod radius 

Rend rod end-face curvature 

Roc power reflectivity of output coupler 

a thermal coefficient of expansion 

ßr radial quadratic index of rod 

ß* tangential quadratic index of rod 

T|T percentage of Pin absorbed as heat in rod 
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Chapter 3 

Symbol Name/Description 

AOM acousto-optic modulator 

Cl, C2, C3 capacitors of servo 

Eo real amplitude of electric field output of laser 

-C-Laser complex electric field output of laser 

EOM electro-optic modulator 

GCL closed loop transfer function of feedback loop 

GOL open loop transfer function of feedback loop 

KA complex actuator transfer function 

KD complex discriminator transfer function 

Ks complex servo transfer function 

Na actuator point (located at exit of servo) 

Ne error point (located at entrance to servo) 

PZT piezo-electric transducer 

R1,R2,R3 resistors of servo 

öA,Laser spectral density of amplitude noise of the laser 

Sf,REF spectral density of frequency noise of the frequency reference 

S^Sig spectral density of frequency noise of known noise signal placed on the 

laser 

Sf,CL closed loop spectral density of frequency noise of laser 

Sf,fback spectral density of frequency noise of master laser 

^*f,Laser spectral density of frequency noise of master laser 

Sv spectral density of voltage noise 

Sv,D spectral density of voltage noise of discriminator 

Sv,s spectral density of voltage noise of servo 

^<)>,Laser spectral density of phase noise of laser 

UGBW bandwidth of open loop gain transfer function 

Av frequency bin width of spectrum measurement device 
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E frequency or voltage summer 

Si frequency summer where noise frequency is subtracted from output 

frequency of laser 

<|>CL phase of closed loop transfer function of feedback loop 

YLaser instantaneous phase noise of the laser field 

<j)OL phase of open loop transfer function of feedback loop 

vCL(t) instantaneous closed loop frequency output of laser 

Vcorner corner frequency of the servo (noise frequency where gain vs. frequency 

slope changes from -12 dB/Oct to -6 dB/Oct) 

Vfback(t) instantaneous noise frequency negatively fed back to the laser 

VLaser(t) instantaneous frequency output of laser 

VREKO instantaneous frequency of the reference 

VUG unity gain frequency of open loop gain transfer function 

<00,Vo carrier frequency of laser 

co„,vn noise oscillation frequency 
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Chapter 4 

Symbol Name/Description 

c speed of light 

D common denominator of frequency noise transfer functions 

e charge of an electron 

E, field amplitude at point 1 

E2 field amplitude at point 2 

E3 field amplitude at point 3 

Ec amplitude of cavity circulating field 

üinc amplitude of electric field incident on Fabry-Perot 

Er reflected field amplitude 

FSR free spectral range 

Gv current to voltage gain of photodetector 

Ir intensity of reflected Fabry-Perot field 

JoJi zero and first order Bessel functions 

L length of Fabry-Perot 

NPRO non-planar ring oscillator (off the shelf solid-state laser from 

Lightwave Electronics, Inc.) 

PBSC polarizing beam splitter cube 

PD photodiode 

PDH Pound-Drever-Hall FM sideband locking technique 

Ri power reflectivity of input/output coupler of Fabry-Perot 

R2 back mirror reflectivity of Fabry-Pert 

R2 power reflectivity of back mirror of Fabry-Perot 

J^esp responsivity of photodiode 

S defined to equal iton 

^A,m spectral density of amplitude noise of master laser 

SA,r spectral density of amplitude noise of cavity reflected field 

Sf,c spectral density of frequency noise of cavity resonant frequency 
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Sf,m spectral density of frequency noise of master laser 

Sf,r spectral density of frequency noise of cavity reflected field 

Sv,D,AM spectral density of voltage noise at discriminator output caused by 

amplitude noise 

Sv,D,SN spectral density of voltage noise at discriminator output caused by 

shot noise 

ö((),C spectral density of phase noise of resonant frequency of the cavity 

ö(j>,m spectral density of phase noise of master laser 

S<t>,r spectral density of phase noise of cavity reflected field 

T round trip time of circulating field 

T, time it takes laser to swing through 2vp 

T2 time it takes laser to swing through 5vc 

Tc transfer function of phase noise caused by Fabry-Perot length 

fluctuations onto the circulating field 

THIGH(vn,VCorner) high pass filter with respect to vn, of corner frequency vCOrner 

TL transfer function of phase noise of incident laser onto the 

circulating field 

TLOw(Vn,VCOrner) low pass filter with respect to vn, of corner frequency vcorner 

uc energy of cavity circulating field 

Ve mode volume of cavity circulating field 

VDet voltage output of photodetector 

AVA voltage applied to NPRO PZT to cause it to swing through 2vp 

AVD voltage applied to NPRO PZT to cause it to swing through 8vc 

A(|)ss steady-state phase delay of the cavity reflected field with respect 

to the incident field 

a0 absorption coefficient of Fabry-Perot medium 

p modulation index for PDH sidebands 

5vc full width at half maximum of cavity power reflection coefficient 

8 permitivity of Fabry-Perot medium 
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<|>C phase noise of cavity circulating field 

<|>m phase noise of master laser 

(j)M phase modulator 

Yo energy decay rate due to internal losses 

Y2 energy decay rate due to transmission through mirror R2 

Yc total energy decay rate 

Ye energy decay rate due to transmission through output coupler, Ri 

*1 constant defined to simplify discriminator transfer function 

equals KD in regime vn < 8vJ2 

K ratio of noise frequency to half width at half maximum 

(i.e. vn / 5vc/2) 

X constant defined to simplify terms 

X/4 quarter wave plate 

ip photon lifetime of cavity 

Ö)c,Vc resonant frequency of cavity 

Ora,Vm 
carrier frequency of master laser 

con,vn noise oscillation frequency 

C0p,Vp PDH modulation sideband frequency 
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Chapter 5 

Symbol Name/Description 

E,L injection-locked electric field amplitude 

i^m electric field amplitude of master laser 

Es electric field amplitude of slave laser 

Na.lL actuator point of injection-locking PDH loop 

Ne.lL error point of injection-locking PDH loop 

P polarization of slave laser gain medium atoms 

PDH Pound-Drever-Hall FM sideband locking technique 

PIL power of injection-locked output 

Pm total power of master laser 

SA.IL spectral density of amplitude noise of injection-locked output 

SfJL spectral density of frequency noise of injection-locked output 

S(|)JL spectral density of phase noise of injection-locked output 

^<(>,m spectral density of phase noise of master laser 

^<|>,S spectral density of phase noise of slave laser 

TM open loop transfer function of master laser frequency noise onto 

injection-locked output (in absence of PDH loop) 

Aoc power transmission of output coupler 

Ts open loop transfer function of slave resonator frequency noise 

onto injection-locked output (in absence of PDH loop) 

VDet voltage output of photodiode 

Vsig voltage output of photodiode at modulation frequency 

A<|)Ss steady-state phase delay of injection-locked output field and 

incident master laser field 

1 in phase polarization term 

%" out of phase polarization term 

TS,CL closed loop version of Ts (in presence of PDH control loop) 

in fact TS,CL = Ts 
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<t>IL phase noise of injection-locked output field 

<i>iL phase noise of injection-locked output 

§m phase noise of master laser 

<|>s phase noise of slave laser 

TM,CL closed loop version of TM (in presence of PDH control loop) 

Ym circulating field growth rate 

TllL constant defined to simplify discriminator transfer function of 

injection-locking PDH loop 

KiL ratio of noise frequency to lock range frequency 

©p,Vp PDH modulation frequency 

©pulljVpull pulled resonant frequency of the slave resonator 

©Lock,VLock lock range frequency 

<Öm,Vm carrier frequency of master laser 

©s,Vs carrier frequency of unseeded slave laser and resonant frequency 

of the seeded slave cavity 
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Chapter 6 

Symbol Name/Description 

EIL injection-locked electric field amplitude 

EpD3 total electric field amplitude incident of PD3 

EREF electric field amplitude of reference laser, NPROl 

fk the kth RAV frequency measurement at a particular x 

FSR Free Spectral Range of Fabry-Perot reference cavity 

Gv current to voltage gain of photodiode 

KA,IL actuator coefficient of PZT mounted on slave resonator mirror for 

PDH injection-locking control loop 

KA,ILI actuator coefficient of slave resonator PZT 1 

KA,IL2 actuator coefficient of slave resonator PZT 2 

KA2 actuator coefficient of NPR02 

KD,IL discriminator coefficient of PDH injection-locking control loop 

KD,ILI discriminator coefficient of PDH injection-locking control loop 

containing slave resonator PZT 2 

N number of individual frequency measurements made to obtain 

RAV 

Na,IL actuator point of injection-locking PDH loop (located at exit of 

servo) 

Ne.lL error point of injection-locking control loop (located at entrance 

ofservo) 

NPROl reference laser for various beatnote measurements 

NPR02 master laser of PDH injection-locking system 

PD3 photodiode 3 

PDH Pound-Drever-Hall FM sideband locking technique 

PIL optical injection-locked output power 

Pm optical power of the master laser 

PREF optical power of reference laser, NPROl 

RAV Root Allan Variance time domain measurement of frequency 
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noise 

l^esp responsivity of photodiode 

Sf,IL spectral density of frequency noise of injection-locked output 

Sf,m spectral density of frequency noise of the master laser 

Sf,s spectral density of frequency noise of the slave laser 

S^IL spectral density of phase noise of injection-locked output 

ö^m spectral density of phase noise of master laser 

S(j>,REF spectral density of phase noise of reference laser, NPROl 

S()>,s spectral density of phase noise of slave laser 

TM open loop transfer function of master laser frequency noise onto 

injection-locked output (in absence of PDH loop) 

TM transfer function of master laser frequency noise onto injection- 

locked output 

loc power transmission of output coupler 

toe power transmission coefficient of slave laser output coupler 

Ts open loop transfer function of slave resonator frequency noise 

onto injection-locked output (in absence of PDH loop) 

Ts transfer function of slave laser frequency noise onto injection- 

locked output 

VpD3 voltage output of photodiode 3 

P PDH modulation index 

a RAV output: measure of frequency stability in time domain 

X time interval of a particular RAV measurement 

<OFSR,VFSR FSR frequency of the Fabry-Perot reference cavity 

0>Lock,VLock lock range frequency 

COn,Vn noise oscillation frequency 

£0m,Vm carrier frequency of master laser 

»p,Vp PDH modulation frequency 
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Chapter 7 

Symbol Name/Description 

c speed of light 

Ec amplitude of doubler cavity circulating pump field 

C-inc total incident electric field amplitude 

Ejnc(H) horizontally polarized component of incident laser field 

Einc(V) vertically polarized component of incident laser field 

serves as pump field for the frequency doubling 

Evis electric field amplitude of frequency-doubled field 

FSR Free Spectral Range of doubler cavity 

GoL,D open loop transfer function of the doubler control loop 

Gv current to voltage gain of photodiode 

KA,D actuator coefficient of PZT mounted on doubler resonator mirror 

for frequency doubling control loop 

KD,D discriminator coefficient of frequency doubling control loop 

KS,D servo coefficient of frequency doubling control loop 

Na,D actuator point of frequency doubler control loop (located at exit 

ofservo) 

Ne,D error point of frequency doubler control loop (located at entrance 

ofservo) 

Ric input/output coupler of infra-red pump field 

Roc output coupler of visible electric field 

Sf,c spectral density of frequency noise of resonant frequency of 

doubler cavity 

Sf;m spectral density of frequency noise of incident pump field from 

the laser 

Sf,vis spectral density of frequency noise of generated visible field 

ö(j),C spectral density of phase noise of resonant frequency of doubler 

cavity 

S|)),IR spectral density of phase noise of circulating infra-red pump field 
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S^vis spectral density of phase noise of generated visible field 

T round trip time of cavity circulating field 

CCo absorption coefficient of Fabry-Perot medium 

5C(2)(2com) second order susceptibility at the second harmonic frequency of 

the incident laser field 

8vc full width at half maximum of cavity power reflection coefficient 

Yo energy decay rate due to internal losses 

Yc total energy decay rate 

Ye energy decay rate due to transmission through input coupler, R;c 

TlD constant defined to simplify discriminator transfer function of 

doubler cavity control loop 

K ratio of noise frequency to half width at half maximum 

(i.e. vn / 5vc/2) 

PH horizontal component of incident laser electric field 

Pv vertical component of incident laser electric field 

Cöc,Vc resonant frequency of the doubler cavity 

K>m,Vm carrier frequency of master laser 

COn,Vn noise oscillation frequency 
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