
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden; to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

25.Jan.00

3. REPORT TYPE AND DATES COVERED

THESIS
4. TITLE AND SUBTITLE

CLOSELY SUPERVISED REACTIVE CONTROL OF AN UNINHABITED
AERIAL VEHICLE

6. AUTHOR(S)

CAPT GLASSCO ROY G

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT SCHOOL OF CE SERVICES
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F Yob- H^
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

124
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

AFIT/GAE/EN Y/99 J-01

Abstract

Currently, control of an uninhabited aerial vehicle (UAV) in flight is accomplished

by manual control or a prior prescription of waypoints. The use of waypoints requires

knowledge of vehicle position from either an Internal Navigation System (INS) or by using

the Global Positioning System (GPS). This thesis proposes an alternative control method

that incorporates some of the beneficial aspect of both fully manual and fully autonomous

operation. Utilizing an on-board camera, an operator can control an uninhabited aerial

vehicle by manually choosing desired targets of interest. The flight path of the uninhabited

vehicle is determined autonomously from the camera gimbal angles. Specifically, the

camera azimuth angle and elevation angle are transformed by an autopilot, providing

commands to the aircraft. In this shared control operation, the operator of the payload (i.e.

camera), has close supervision of the aircraft. The aircraft using an on-board computer is

given autonomous control of aircraft flight, reducing personnel requirements. The aircraft

controls the operations to alter flight path to reorient the aircraft to fly towards a target and

at a specified range, loiter over the target. In the most basic mode of operation, the camera

operator must manually track the target providing continuous updates to the camera angles.

In an advanced mode of operation with the use of an INS or GPS, the aircraft

autonomously determines the camera angles from a single locked target position that the

operator specifies. The camera angles autonomously determined are referred to as virtual

camera angles and are used to control the aircraft in the same manner as real camera angles.

With the use of the virtual camera angles, the operator is free to look for other targets or

perform other tasks. As an added safe mode, in the event of data transmission loss, the

Xll

DnC QUALITY INSPECTED 3 20000307 030

aircraft will fly straight and level in its current direction. This control method is being

validated in the CAVE Automated Virtual Environment (CAVE) facility located at Wright

Patterson AFB and owned and operated by Wright State University. The CAVE is a virtual

environment with the projection of a 3-D scene onto the four walls and floor of a 3.1m x

3.1m room. The use of the CAVE facility provides a test bed to evaluate different modes

of operator control and human interface factors associated with the control of an UAV.

The aircraft flight simulator used is FLSM with the flight characteristics of an F-16

aircraft.

Xlll

AFIT/GAE/ENY/99J-01

CLOSELY SUPERVISED REACTIVE CONTROL
OF AN UNINHABITED AERIAL VEHICLE

THESIS

Roy Glen Glassco, B.S.

Captain, USAF

AFIT/GAE/ENY/99J-01

Approved for public release; distribution unlimited

AFIT/GAE/EN Y/99 J-01

The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

AFIT/GAE/ENY/99J-01

CLOSELY SUPERVISED REACTIVE CONTROL OF AN
UNINHABITED AERIAL VEHICLE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Masters in Aeronautical Engineering

Roy Glen Glassco, B.S.

Captain, USAF

Air Force Institute of Technology

Wright Patterson AFB, OH

June, 1999

Approved for public release; distribution unlimited

AFIT/GAE/ENY/99J-01

CLOSELY SUPERVISED REACTIVE CONTROL OF AN
UNINHABITED AERIAL VEHICLE

Roy Glen Glassco, B.S.
Captain

Approved:

Dr. Curtis H. Spenny date
Air Force Institute of Technology
Committee Chairman

Dr. Bradley S. Liebst date
Air Force Institute of Technology
Committee Member

Dr. Kuldip S. Rattan date
Wright State University
Committee Member

Dr Daniel W. Repperger date
Air Force Research Laboratory,
Human Effectivness Directorate
Committee Member

Acknowledgments

I want to thank my wife and family for being there and toughing it out during this

trying period. My daughter, Brianna Nicole was born midstream of my education and

became my inspiration and strength. My son, Kyle Liam, bore the negative brunt of my

schooling becoming second to my homework. And my wife, Michelle Marie, kept the

household together and me on track. With great appreciation, I wish to thank Dr. Curtis

H. Spenny, my thesis advisor. Together and after long hours of discussion, we have

produced a most admirable product. I wish to apologize for the short time frame I have

expressed upon my advisor and committee members. Dr Leibst, Dr Rattan, and Dr

Reppereger, thanks for coming through for me in the end. I have enjoyed learning,

discussing and working with you. I also want to say thank you to Dr. Paul King,my

academic advisor, and Dr. Palazotto for being there to listen to my ideas. I especially

want to thank Karen Dobbyn for all her hard work in helping me get this thesis completed

in the proper format. I wish to express my sincerest thanks to Scott Isabella and Randy

Green of the CAVE facility for all their hard work and help in accomplishing a working

demonstration. Last but not least, I would like to thank all my friends, who have helped

me along the way, especially JIM YEROVI for proof reading and editing my thesis.

Table of Contents

Page
Acknowledgments v

Table of Contents vi

List of Figures ix

List of Tables xi

Abstract xii

Chapter 1. Introduction 1

1.1 Overview 1

1.2 Background 3

1.2.1 UAV Usage 4

1.2.2 Navigation 6

1.2.3 UAV Control 8

1.3 Problem Statement 9

1.4 Objectives 10

1.5 Accomplishments 11

1.6 Air Force Impacts 13

Chapter 2. Closely Supervised Reactive Control Theory 15

2.1 Frame of References 15

2.2 Camera Angles 20

2.2.1 Range Information 21

2.2.2 Virtual Camera Angles 23

2.2.3 Desired Camera Angles 24

VI

page
2.2.4 Delta Camera Deflections 27

2.3 Governing Equation for Aircraft Control 28

Chapter 3. CSRC's Automatic Flight-Control System 30

3.1 Waypoint Definition by Operator Mode 30

3.1.1 Operator Modes 30

3.1.1.1 Operator Mode One 30

3.1.1.2 Operator Mode Two 32

3.1.1.3 Operator Mode Three 33

3.1.1.4 Operator Mode Four 34

3.2 Aircraft Flight Modes 35

3.3 Velocity Hold 42

3.4 Altitude Hold 45

3.5 Automatic Control Theory 48

3.5.1 Classical Control Theory 48

3.5.2 Modern Control Theory 49

Chapter 4. Cave Simulation 50

4.1 CAVE Facility 50

4.2 Simulation vs. Real 54

4.3 Simulation Hierarchy 55

4.4 Source Code 57

4.5 Additional Code 58

4.6 Results 58

Vll

page
Chapter 5. Conclusion/Recommendations 65

Appendix A. Demonstration Source Code 68

Appendix B. Triangulation Method 116

Bibliography 124

Vita i 125

List of Figures

Page

Figure 1. Notional Employment Profiles 5

Figure 2. Multiple Waypoint Navigation 7

Figure 3. Waypoint Bypassing 7

Figure 4. Predator Workstation 9

Figure 5 CSRC Waypoint Usage 13

Figure 6. Notation for Body Axes 16

Figure 7. Relationship between Body and Inertial Axes Systems 17

Figure 8. Camera Angles with respect to Body Frame 19

Figure 9. Turn Range 36

Figure 10. Aircraft in Level Turn 39

Figure 11. Flight Mode One Roll Schedule 40

Figure 12. Scheduled Roll Rate Command 42

Figure 13. Thrust Command Flowchart 44

Figure 14. Scheduled Pitch Rate Command for Theta Error 47

Figure 15. Haptic Joystick 51

Figure 16. Thrustmaster Front View 52

Figure 17. Thrustmaster Rear View 52

Figure 18. Simulation Structure 55

Figure 19. Mission Profile 59

Figure 20. Aircraft Commands 60

IX

Page
Figure 21. Right Turn 61

Figure 22. Ae Camera Angles 62

Figure 23. Altitude Hold 63

Figure 24. Velocity Hold 64

Figure 25. Triangulation Overview 116

Figure 26. XZ Plane 117

List of Tables

Page

Table 1. UAV Control 11

Table 2. Flight Modes 11

Table 3. Operator Modes 12

Table 4. Target Bubbles 35

Table 5. Deflection Damping 38

Table 6. Operator Inputs 53

Table 7. Source Code Subroutines 57

XI

AFIT/GAE/ENY/99 J-01

Abstract

Currently, control of an uninhabited aerial vehicle (UAV) in flight is accomplished

by manual control or a prior prescription of waypoints. The use of waypoints requires

knowledge of vehicle position from either an Internal Navigation System (INS) or by using

the Global Positioning System (GPS). This thesis proposes an alternative control method

that incorporates some of the beneficial aspect of both fully manual and fully autonomous

operation. Utilizing an on-board camera, an operator can control an uninhabited aerial

vehicle by manually choosing desired targets of interest. The flight path of the uninhabited

vehicle is determined autonomously from the camera gimbal angles. Specifically, the

camera azimuth angle and elevation angle are transformed by an autopilot, providing

commands to the aircraft. In this shared control operation, the operator of the payload (i.e.

camera), has close supervision of the aircraft. The aircraft using an on-board computer is

given autonomous control of aircraft flight, reducing personnel requirements. The aircraft

controls the operations to alter flight path to reorient the aircraft to fly towards a target and

at a specified range, loiter over the target. In the most basic mode of operation, the camera

operator must manually track the target providing continuous updates to the camera angles.

In an advanced mode of operation with the use of an INS or GPS, the aircraft

autonomously determines the camera angles from a single locked target position that the

operator specifies. The camera angles autonomously determined are referred to as virtual

camera angles and are used to control the aircraft in the same manner as real camera angles.

With the use of the virtual camera angles, the operator is free to look for other targets or

perform other tasks. As an added safe mode, in the event of data transmission loss, the

Xll

aircraft will fly straight and level in its current direction. This control method is being

validated in the CAVE Automated Virtual Environment (CAVE) facility located at Wright

Patterson AFB and owned and operated by Wright State University. The CAVE is a virtual

environment with the projection of a 3-D scene onto the four walls and floor of a 3.1m x

3.1m room. The use of the CAVE facility provides a test bed to evaluate different modes

of operator control and human interface factors associated with the control of an UAV.

The aircraft flight simulator used is FLSEVI with the flight characteristics of an F-16

aircraft.

Xlll

CLOSELY SUPERVISED REACTIVE CONTROL
OF AN UNINHABITED AERIAL VEHICLE

Chapter 1. Introduction

1.1 Overview

With the continuing advances in technology, more autonomous aircraft are

becoming available, and as the level of autonomy increases, the level of manual control

decreases. For UAV operation, the level of manual and autonomous operation to

optimize mission effectiveness is one of the most significant developmental issues. This

thesis is intended to demonstrate shared control, one in which the aircraft can navigate

autonomously with the human providing close supervision [11]. The level of shared

control used incorporates some of the beneficial aspects of both fully manual and fully

autonomous operation. The 'man-in-the-loop' will manually provide positioning

commands for the uninhabited aerial vehicle via an onboard camera. The aircraft will

accept the commands and autonomously determine the required flight profile to reach the

desired position. This configuration allows the human to concentrate on where the

aircraft is and what information is collected. The human located at a master site controls

the camera manually. In the basic mode of operation, manual control of the camera is

used to provide continous updates to the camera angles. The human operator can switch

the aircraft to an advanced mode of operation in which the aircraft will fly autonomously

using virtual camera angles based upon the aircraft position and target position. The use

of these modes allows the joint control of aircraft navigation. In both modes, the aircraft

uses the camera angles, real or virtual, to determine the appropriate navigation

commands.

In the terminology of telerobotics, this level of control falls within the category of

teleoperation in which the human is at the master site and the aerial vehicle and payload

is the slave [13]. The roles assigned apply well to the currently accepted definitions of

supervisory control and shared control. The aircraft is given the role in which precision,

repetition, rapid response, and a high level of understanding with little variation are

needed (i.e. controlling aircraft flight). The human is given the tasks to monitor the ever-

changing environment and make supervisory decisions for the aircraft [13]. For example,

the human is better equipped to track an evasive target.

A reactive system is a system which is designed to react to changing events in the

physical world in a predictable way [10]. The missions of tactical aircraft and

reconaissance UAV's are examples of reactive systems for which reaction times are

relatively short. The implication of close supervision is that the reaction of the system is

of sufficient importance that the operator will be attentive to assure satisfactory

performance. Attentiveness may take the form of: 1) monitoring automated operation

and intervening as required or 2) manually performing aspects of the mission for which

automated operation is impractical. The need for close supervision of automated

operation results from concern with the ability of the system to react satisfactorily under

circumstances that differ from those for which the system was designed. The challenge

is to design the most effective operator interface for a closely supervised reactive system.

Using a virtual environment, the CAVE Automated Virtual Environment, this

thesis will demonstrate the level of shared control instantiated. This demonstration uses

the FLSM flight simulator with the flight characteristics of an F-16 aircraft. The use of

this particular F-16 simulator necessitated the development of an autonomous controller

with inputs to the aircraft in terms of angular rates. When the CAVE visual scene is

projected to represent the operator seated in the aircraft, the operator visually senses the

aircraft's angular rates. This sensing promoted the use of angular rates as the input

command as opposed to control surface deflections. Neither the case of the seat fixed to

the camera nor fixed inertially (bird's eye view) was evaluated. This demonstration

provides a testbed for evaluation of other levels of shared control and various human

interface factors.

1.2 Background

A discussion of what is currently available is included to aid the understanding of the

characteristics "closely supervised reactive control (CSRC) of an uninhabited aerial

vehicle (UAV)" offers. The UAV reacts by steering the aircraft utilizing an automatic

flight-control system (AFCS). Aircraft steering by an AFCS is accomplished via "en

route navigation" or "terminal approach" navigation. In the course of developing a

working demonstration, an AFCS was designed to include velocity control and altitude

hold. This task proved difficult from the aspect that the only input commands available

with FLSIM are stick commands. The stick commands that a human pilot does

instinctively from visual and kinesthetic cues are not easily translated into control logic.

However, the use of an F-16 as the simulator platform made this development easier

since the inputs are angular rates rather than control surface deflections. In order, to

evaluate the strengths and weaknesses of the AFCS logic developed to control velocity

and altitude, a description of current control theories is discussed in the aircraft autopilot

design section.

1.2.1 UAV Usage

Given the unique features that UAVs can provide to operational flexibility, the

various methods of employment need to be determined. The questions, how, what, where

and why must be answered to utilize UAVs effectivley. Figure 1 shows various possible

employments of UAVs. Current applications of UAVs in the Air Force are high altitude

and medium altitude reconaissance. Current levels of technology available in payload

sensors like radar, ultraviolet, infrared and visual make reconnaisance at these altitudes

possible. Combining this possibility with the low threat and minimally changing

environment, make the use of autonomous UAVs a strong desireability. In the future,

UAVs may be employed in combat missions such as standoff search and destroy or close

combat support. These missions operate in a more aggressive environment and require

UAV operational flexibility. The need for flexibility may necessitate some manual

control of the UAV. The Air Force is currently addressing the level of autonomous

control for tactical UAV. Figure 1 also shows a brief description of the communication

and navigation systems currently in place to support Air Force requirements. Without

this vast system, UAV operational deployments would not be possible or plausible. This

system allows UAVs to navigate successfully and communicate effectively.

3

OPERATIONAL INTEL COLLECTION:
Broad Area Coverage and

Spot Target Potential

TACTICAL INTEL COLLECTION:
Area Search and Target Track Potential

(w/in Echelon's Area of Interest)

VARIED NEEDS
Require a

Family of UAVs

SUPPORT TO THEATER OPERATIONS BY ECHELON
- Precision x Depth x Timeliness -

Right Information to Right Commander at Right Time

Figure 1. Notional Employment Profiles [13]

1.2.2 Navigation

Basic aircraft control requires steering, the determination of the change in vehicle

motion required to obtain a desired result. Steering can be accomplished directly from a

pilot applying stick commands or by an automatic flight-control system (AFCS) using

steering errors [12]. AFCS's reduces operator workloads by automatically navigating an

aircraft. This navigation can be accomplished by "en route" navigation or "terminal"

navigation. It is en-route navigation that is related to the reconaissance task which this

thesis addresses.

"En route" navigation operates in a "fly-to" mode, in which the aircraft navigates

between two points. This can be done either radially or directly. In "en route"

navigation, course changes are determined from the error in the aircraft position and a

selected waypoint. This method of navigation is also known as "waypoint" navigation.

The waypoints are defined as geographic points in terms of latitude and longitude or

bearing and distance [12]. They can be combined to form a set of waypoints defining a

mission profile. Each waypoint can have a change in course heading, speed, altitude or

any other mission dependent parameter associated with it. As the aircraft reaches a

waypoint, a single change or a combination of changes occurs. Figure 2 shows the use of

multiple waypoint to change course headings along a mission profile. Figure 3 indicates

the information necessary when transitioning to fly toward another waypoint.

WPT4

True
north

;

DSR /
IK /

WPTIo-""

Perform track change

Figure 2. Multiple Waypoint Navigation [12]

Distance - R *tan (Ay/2)

WP WP 1+2

R - turn radius
Ay - change of heading from AB to BC

Figure 3. Waypoint Bypassing [12]

"Terminal" navigation provides relative aircraft position to a selected touchdown

point [12]. This mode of navigation can be used for autonomous landing guidance or for

missile guidance to target. With the use of radar, dead reckoning and/or forward-looking

infrared (FLIR), terminal navigation to the endpoint is accomplished [12]. Course

corrections are determined from the error in aircraft position and termination point. At

great distances, the definition of the termination point does not have to be accurate. The

definition can be updated as the termination point is approached increasing navigation

accuracy.

1.2.3 UAVControl

Due to the level of currently available unclassified/non-proprietary information

available, the discussion on current UAV control is kept to a top level. In the past and in

current operations, the majority of the UAV systems available require a pilot operator to

manually control the aircraft. Though the aircraft is uninhabited, its flight is not

autonomous, for the aircraft itself does not determine the flight path. This manner of

operation can be found in systems like the Predator, Dragon Drone, Eagle Eye and

NASA's extreme altitude and long endurance (ERAST) platforms [5]. Figure 4 shows

the workstation used by the Predator program. This system requires two operators. One

operator controls the aircraft, while the other controls the payload. Each operator station

has a set of aircraft controls, stick, throttle and rudder pedals. Each station's screen has

the ability to display any aircraft instruments. This allows redundancy in aircraft control.

In standard operation, the left console is for the payload operator while the right is for the

aircraft operator.

Figure 4. Predator Workstation [2]

Autonomous flight, via waypoints is used for some UAVs. A mission profile

containing waypoints is developed prior to flight and the UAV flies autonomously from

waypoint to waypoint [13]. This method is comparable to the waypoint navigation used

by many commercial autopilots and can be found on platforms such as Cypher and

Global Hawk and the recently cancelled Darkstar [4, 13]. A major drawback to this

method is the difficulty with changing waypoints and the high accuracy of aircraft

position required. This drawback, however, can be minimized with simplifications in

waypoint defining and improvements in the navigational system. As technological

advances in INS and GPS continue, the error associated with aircraft position diminishes,

leaving only the degree of difficulty with changing waypoints as the only significant

drawback.

1.3 Problem Statement

The overall issue is what is the best combination of manual and autonomous

control to obtain the best UAV system performance. This thesis does not attempt to

answer this issue but rather provides a concept for evaluation. CSRC gives the camera

operator indirect control of the aircraft and gives the aircraft autonomous control of the

flying.

1.4 Objectives

The objectives were to design a control theory in which the uninhabited aerial

vehicle's flight is automated, while the human still retains indirect control and situational

awareness of the UAV's position and to develop a demonstration for evaluating system

performance. In the Predator platform, the pilot operates the aircraft based on the needs

of the camera operator. CSRC is designed to reduce the Predator manpower

requirements from two operators to one. In CSRC, aircraft operation is still subject to the

camera operator's requirements. The role of aircraft flight, however, is removed from the

pilot operator and given to the aircraft. Based upon the camera operator's requirements,

the aircraft flies autonomously to a designated location. The demonstration is designed to

show operator interface and aircraft operation.

In the presence of well-refined guidance systems that are able to autonomously

track a target, the use of manual tracking may seem unnecessary. A desired role to be

performed by CSRC is the tracking of evasive targets such as tanks. Current autonomous

tracking algorithms are unable to effectively track hidden or multiple targets. This

scenario requires a human to make objective decisions based upon situational awareness.

To handle all possible situations the control of tracking targets was left to the human.

CSRC has characteristics of both manual control and autonomous control. In the

manual mode of flight, CSRC operates like a remotely piloted UAV in direct response to

the camera operator. In the shared mode, it effectively operates by creating and

navigating to operator selected waypoints, leaving the operator free to scan with the

camera in search of other targets. Table 1 shows a comparison of who is in control in the

Predator program, Global Hawk, and CSRC.

10

Table 1 UAV Control

Predator Global Hawk CSRC
Manual Mode

CSRC
Shared Mode

AirCraft
Navigation

Pilot
Operator

Autonomous Camera
Operator

Autonomous

Payload
Control

Camera
Operator

Autonomous Camera
Operator

Camera Operator

CSRC was not developed with any specific employment criteria. An objective of

CSRC was that it be able to be incorporated into any mission platform. However,

emphasis was placed on the role of tactical UAVs where the role of search and target

tracking is the mission.

1.5 Accomplishments

In the development of this thesis, a working demonstration of the theory was

accomplished. The demonstration shows that the theory can be applied to virtually any

current UAV/aircraft, and various modes of operation can be employed. The modes of

operation are broken into two categories: aircraft flight modes, determined autonomously

by the aircraft and operator control modes, determined manually through the operator

interface. The aircraft autonomously selects one of two modes in which to operate as

shown in table 2.. In flight mode one, the aircraft turns and flies a straight path at a

constant altitude toward a selected target. In flight mode two, the aircraft will circle a

selected target at a determined standoff range and constant altitude.

Table 2 Flight Modes

Flight Mode
Flight Mode One
Flight Mode Two

Description
Turn and fly towards target
Circle Target

11

The decision to switch between flight modes one and two is done autonomously

by the aircraft based upon distance from target. The operator interface allows four modes

of controls. Operator mode 1 (Free fly mode), the aircraft responds to all camera inputs,

as the operator manually manuevers the camera the aircraft will follow. In operator mode

two (Target locked mode), the aircraft flies towards a specified target and once within

turn range of the target, the aircraft will circle the specified target. In this mode, the

target is fixed and the camera is free to move. In operator mode three (Straight and

level), the aircraft flies straight and level on the current heading while the camera is free

to move. In operator mode four (Level turn), the aircraft flies a level turn at a fixed bank

determined by the operator, while the camera is free to move. Table 3 shows the flight

modes and operator modes and their relationships.

Table 3 Operator Modes

Flight Mode One Flight Mode Two Camera Angles
Free Fly • ^* Real
Target Locked • • Virtual
Straight and Level • NO Virtual
Level Turn • NO Virtual

* This operation is not included in the demonstration

All modes of operation have been successfully demonstrated in the CAVE

facility. In addition, the theory is demonstrated to be robust enough to handle re-

targeting at any point in flight operations. This ability allows the camera operator to

track a moving target or a new target without the aircraft responding abnormally. In the

course of developing the demonstration, it was necessary to develop a method for

controlling altitude and velocity using only standard throttle and flight stick commands.

12

Both have been accomplished successfully with an adequate level of accuracy and

stability.

Steering of the UAV by CSRC was accomplished via "en-route" or waypoint

navigation. Figure 5 demonstrates how waypoints are used by CSRC. Instead of altering

heading towards a new waypoint, when the waypoint is reached the aircraft enters a

circling pattern around the waypoint until a new waypoint is defined.

Waypoint to be Defined v **

HE Aircraft Mode 2

Aircraft Mode 1

Figure 5. CSRC Waypoint Usage

Waypoints are established by the operator using a joystick to position a "target

bubble" on the desired target. In order to determine the waypoints in a global coordinate

system, aircraft position must be known. This thesis assumes that this information will

always be available from either an INS or GPS. In operator modes two, three and four

the camera angles are determined virtually from the aircraft position and the waypoint

position, both in global coordinates.

1.6 Air Force Impact

This thesis addresses an alternative way of controlling UAV's from what is

currently used by the Air Force. The value of this method, CSRC, is not addressed but

13

left for future assessment. Of more important interest than CSRC as a whole are the

components of the control method developed. In the development of a working

demonstration, different algorithms were required to obtain the necessary information to

operate correctly. The various aspects, taken individually, could have significant impacts

on different Air Force programs. As a minimum, the employment of this control method

as a whole could reduce the operator requirements for programs such as the Predator.

Individually, the algorithm for waypoint definition could be employed by Global Hawk

reducing operator workload and time requirements. Additionally, modifying the

algorithm for waypoint definition leads to a method capable of triangulating onto a target

using only two aircraft or one aircraft taking two separated measurements and obtaining

the same level of accuracy as three.

14

Chapter 2. Closely Supervised Reactive Control Theory

2.1 Frame of Reference

In order to understand CSRC, it is necessary to understand the various frames of

reference used. The first frame of reference is a frame fixed to the Earth where North is

represented by the x axis, East is by the y axis, and z is positive in downward vertical

direction toward the center of the earth [6]. This frame has it's origin at 0.0 degrees

latitude and 0.0 degrees longitude and is referred to as the Earth fixed frame. The Earth

fixed frame allows the determination of aircraft position and target position in terms of

global coordinates.

A second frame with the same axes as the Earth fixed frame is attached to the

center of gravity of the aircraft. It is important to accept that this axes sytsem is fixed to

the center of gravity of the aircraft with no rotation allowed. This frame is only allowed

to translate from the Earth fixed frame. This frame will be referred to as the vehicle

carried vertical frame or fixed inertial frame [6].

In the development of the equations of motion for an aircraft, an axis system fixed

to the aircraft is used, known as the body frame, b. A discussion of the equations of

motion is limited to defining the moments and the angular rates and the axes about which

they rotate. The first moment and rate is the rolling moment (L) and roll rate (p). This

set rotates about the x axis; the axis out the nose of the aircraft. The second set is the

pitching moment (M) and rate of pitch (q), which rotate about the y axis; the axis out the

right wing of the aircraft. The third moment and rate is the yawing moment (N) and yaw

rate (r). This moment and angular rate rotate about the z axis; the axis straight down

15

from the aircraft [7]. All axes are assumed to originate at the center of gravity. Figure 6

shows a graphical representation the fixed body frame.

L — rolling moment p = rate of roll

M = pitching moment q = rate of pitch

N = yawing moment r = rate of yaw

[X, Y, Z] = components of resultant aerodynamic force

[u, v, w] = components of velocity of G relative to atmosphere

Figure 6. Notation for Body Axes [7]

The orientation of any reference frame can be described by three consecutive

rotations whose order is important [9]. The angles associated with these rotations are

known as the Euler angles. The first rotation is about the zb axis and is known as the

yaw angle, \j/. The second rotation is about the yi axis and is referred to as the pitch

angle, 9. The final rotation is about the x2 axis and is called the roll angle, f Figure 7

shows the three rotations and the relationship between the body (b) and inertial (f) axes

systems.

16

X2 = X3 = Xj,
X2, X3

Zf- *1

X2/ X3 = Xjj

Vv Y2
- Yv Y2

zf, ZT / First Rotation Zf, ZT / Second Rotation Za Zb z2 Third Rotation

Figure 7. Relationship between Body and Inertial Axes Systems [9]

With the Euler angles, the flight velocity components in the fixed inertial frame

'dx dy dz^
dt ' dt ' dt

, can be determined from the velocity components in the body frame

(u,v,w), using matrix algebra. This is accomplished by multiplying the three rotational

matrices to obtain a transformation matrix as shown below [3].

dx

dt u
dy \=\A V
dt
dz w

dt

(1)

17

where

rß/

cos ©cos1? sinOsinGcos^-cosOsin1? cos <£ sin 0cos ^ + sin <E> sin *F

cosösin*? sin O sin 0 sin ¥ + cos O cos *F cos O sin 0 sin *¥ - sin O cos *F

-sin0 sin O cos© cos O cos 0

(2)

The superscript, BI, denotes that this rotational matrix determines components in

the body frame from the components in the inertial frame. Conversely, the inverse matrix

LIB would indicate components in the inertial frame in terms of those in the body frame.

This annotation will be used consistently throughout this thesis.

Similar to the relationship between the axes velocities, a relationship between the

(• • • A
angular velocities and the Euler rates, O 0 *P , is obtained using a jacobian matrix.

1 0 -sin0

0 cosO cos© sin O

0 -sinO cos© cos <&
kH (3)

Conversely, we can determine the Euler rates in terms of the angular rate through

the following inverse jacobian matrix.

1 sin O tan 0 cos O tan 0

0 cosO -sin<J>

0 sin <& sec 0 cos <X> sec 0

[p

\q -[/-I
-
P

q. -H
P

q
[r r r

(4)

Lastly, a fourth reference frame is required. This frame is fixed to the camera that

rotates with respect to the aircraft body frame. Two angles are required to locate the

camera frame with respect to the body frame. The first is the azimuth angle defined as 8

and is about the Zb axis. The second is the elevation angle defined as X and is about the

carried Xb axis. Rotation about the yc axis, the line-of-sight direction of the camera is

unnecessary to solve the problem. It therefore is not included in the rotation matrix.

Figure 8 shows the sensor angles with respect to the body axis.

PLATFORM (orSENSOR)
Rcos A. cos £

Cftrg«t)

Figure 8. Camera Angles with respect to the Body Frame [12]

With the definition of the camera angles, a rotational matrix relating components

in the camera frame with those in the body frame is defined as LCB, where:

ZT =

cose sine 0

-cos A sine cos A cose sin A

sin A sine -sin A cose cos A
(5)

Using a jacobian matrix, the angular rates of the camera can be determined in the

aircraft body frame as shown below.

(6)

CSRC places the origin of all frames of reference, except for the Earth fixed

frame, at the center of gravity of the aircraft. This assumption relieves the need to

account for any translation, requiring only the rotations.

CO
X

k . =

kJ B

-sine 0" •

cose 0 A

0 1 £

19

2.2 Camera Angles

CSRC requires the steady state or nominal camera angles to be determined in

order to operate correctly. These camera angles are referred to as the desired camera

angles and are a function of aircraft orientation and flight mode. To correctly calculate

the camera angles certain information is required. In the first flight mode (turn and fly

towards the target), the range to the target is needed besides the three Euler angles and

the two camera angles. This range can be obtained either from an onboard sensor or

calculated with the five required angles and the height above target. When calculated

from the height above target, the range accuracy is affected by the assumption that the

target is at sea level and the height above target is the aircraft's true altitude, which may

not be true. With the use of radar to measure height above terrain providing the absolute

altitude, range accuracy can be increased but is still subject to the assumption that the

target is at the same terrain height below the aircraft. In the three operator modes, (free

fly, straight and level, and coordinated level turn), accuracy of range is not important.

This is because range is only used to calculate the desired angles and the calculations will

produce the same results regardless of range as long as there is similarity. The similarity

required is discussed in the section on desired camera angles. Note that all three of these

modes correspond with flight mode one (turn and fly towards the target). Operator mode

two, in which the UAV flies to and circles the target, does require a higher level of

accuracy in order to calculate the range at which to start circling. Along with the

determination of entry into flight mode two (circling), continued operation in this mode

requires accurate updates of range in order to function correctly. Operator mode two as

simulated requires an additional piece of information. In order to fix the target in the

20

Earth Fixed frame, it is necessary to know the global coordinates of the aircraft's

position. This can be obtained from an onboard inertial navigation system (INS) or from

GPS. The source of the information is immaterial, only the accuracy. For continued

operation, updates to aircraft position are necessary. It will be shown that from a locked

target position and from aircraft position, camera angles can be determined as if the

camera was continously tracking the target. These camera angles will be referred to as

virtual camera angles. The case in which aircraft position was not available is not

demonstrated and will be addressed in the simulation chapter.

2.2.1 Range Information

In this section, it will be shown how range can be obtained from only the height

above the target and the five angles. Recalling the two rotational matrices, L and L ,

equations (5) and (2), the rotational matrix, LCI, is developed through the matrix

multiplication of these two matrices.

[L
C/
]=[L

CB
IL

B/
]=

A. ^12 A.i

■^21 L22 ■^23

^31 •^32 L33

(7)

where

21

Ln =cosecos0cosvF + sin£(sinOsin0cosvF-cos0sinlF)

L12 = cos e cos 0 sin *F + sin e (sin O sin 0 sin *P + cos 0 cos *P)

L)3 = -cose sin 0 + sine sin <5 cos 0

L21 = - cos A sin e cos 0 cos *F + cos A cos e (sin O sin 0 cos ^ - cos <J> sin *P)

+ sin A(cos O sin 0 cos *P + sin O sin T)

L22 = - cos A sin e cos 0 sin *F + cos A cos e (sin <& sin 0 sin *F + cos O cos *F)

+ sin A(cos O sin 0 sin ¥ - sin O cos W)

L23 = cos A sin ec sin 0 + cos A cos e sin $ cos 0 + sin A cos O cos 0

L31 = sin A sin e cos 0 cos ^ - sin A cos e (sin O sin 0 cos ¥ - cos <& sin *F)

+ cos A(cos O sin 0 cos ^ + sin O sin *P)

L32 = sin A sin e cos 0 sin *¥ - sin A cos e(sin O sin 0 sin W + cos <£ cos *F)

+ cos A(cos $ sin 0 sin ¥ - sin <& cos VF)

L„ = -sin A sine sin©-sin A cose sin O cos© + cos A cos O cos 0

(8)

_,33

This matrix allows the determination of position vector in the camera frame

relative to that in the fixed inertial frame.

(9)

0' Dx

R | =\L4 Dy

0 c Dz

where

Rc=jDxJ+DyJ+DzJ (10)

Dxi, Dyi, and Dzi are the inertial frame components of the target position with

respect to the UAV. Because the direction cosine matrix, L , is an orthogonal matrix the

range in the inertial frame is equal to the range in the camera frame. Solving equation (9)

with a known Dzi, the following is obtained:

Dx,

Dy,=

(J T — J T

k ~31^12 _ Ml-"32 ,

Ml^33 ~ -^31^13

^31M2 — Ml-^32

Dz,

■Dz,

(11)

22

As shown, the range can be determined from just Dzi and the five rotation angles.

Using the method previously discussed to determine X, Y, and Z positions in the global

coordinates, a more accurate method to triangulate onto a target using two data points is

addressed in Appendix B.

2.2.2 Virtual Camera Angles

CSRC can operate in a shared mode in which the camera operator is free to move

the camera without impacting flight. This mode is implemented through the

determination of virtual camera angles. Virtual camera angles are the angles the camera

would have if the camera continued to track the target. A method to calculate these

camera angles is necessary. The calculations below are the ones used by the simulator to

determine not only the virtual camera angles but, for simulation purposes, the real camera

angles as well and will be discussed in chapter 3. Using equation (2), the rotational

matrix relating the inertial frame to the body frame, the distances to the target in the body

frame are found from the Euler angles and the distances in the inertial frame:

(12)

Dx Dx

Dy 1 =]f."i Dy

Dz B Dz
J 1

where, Dx, Dy, and Dz are the distances from the aircraft to the target in the respective

subscripted frames. The solution to equation (12), the distances in the body frame, is

then incorporated into the following equation:

(13)

J B

f°l Dx

R = [L
CB
I Dy

0 c Dz

where

23

Rc=^Dx2
B+Dy2

B+Dz2
B (14)

Rc could have also been found using equation (10), since the range is the same in

all frames. Solving equation (13), the virtual camera angles are found to be the

following:

DxB tane = —

(15) DyB

tan/L = —
(DxB sine - DyB cose)

To insure that we are using the most accurate and up to date virtual angles, the

distance to the target is constantly being recomputed with navigation information for the

UAV.

2.2.3 Desired Camera Angles

Calculating the desired camera angles is accomplished with the virtual camera

angle equations, equations (12, 13, 14, and 15), with certain conditions placed upon the

determination of the body frame distances. In essence, the desired camera angles are

themselves virtual camera angles. The desired camera angles are the nominal camera

angles that would be present if the aircraft were in a steady state condition. The desired

camera angles are broken up into sets associated with the different flight modes.

The first set of desired camera angles is the one representative of level flight.

This set of desired camera angles helps determine target location for correct entry into the

circling turn associated with flight mode two (circling) and determine if and when roll-

over should occur. (Roll-over is a turning maneuver used during the entry into the

circling turn, as discussed in section 3.2). To calculate the level flight camera angles, the

24

virtual camera angle equations are reapplied with LBI being modified. LBI is simply

recalculated with 0 and ty set equal to zero. Having done this, the angles calculated will

be those associated with no roll or pitch, ie. level flight.

For the correct operation of flight mode one (turn and fly towards the target),

another set of desired camera angles is required. The need for such a set may not be

obvious. It could be assumed that the desired azimuth angle, e, will always be off the

nose of the aircraft which corresponds to -90 degrees in level flight. It could also be

assumed that the desired elevation angle, X, should always be 180 degrees corresponding

to a target on the same plane as the aircraft. These assumptions, however, are incorrect.

To understand why they are incorrect, two cases are considered. The first case is the

aircraft in straight and level flight, no pitch or roll. The second is the aircraft with a bank

angle, <]) equal to 90 degrees and a pitch angle, 9 equal to zero degrees. In both cases the

target is considered to be located 45 degrees to the right of the nose and 45 degrees

below. In the first case, the azimuth angle, e, would signify the change in heading while

the elevation angle, X., would reflect the range to the target. Now in the second case, e

would not represent the change in heading but rather the range to the target, and A, would

signify the change in heading. This second case demonstrates that the desired camera

angles are dependent upon aircraft orientation. In order to account for aircraft

orientation, a set of desired camera angles needs to be calculated as if the target is

directly in front of the aircraft with the current aircraft orientation. This requires

modifying the Dx and Dy of the target in the inertial frame. This is done by taking the

25

sine and cosine of the current heading and translating the distances to the target to a

position in front of the aircraft.

Dx\ = cos(heading)*t arg et _ range

Dyx = - sm(heading)*target_ range

where target_range is defined as:

t arg et _ range = *JDx, + Dy, (17)

After modifying these values, the virtual camera angle equations are used to

determine the flight mode one desired camera angles. Since, the modifications are made

using the same range information given from the camera angles, real or virtual, all angles

will be proportional to each other. This proportionality insures that similarity is met and

confirms that in flight mode one (turn and fly towards the target), range accuracy is not

important. Similarity allows inaccurate range information to be used without any impact

upon the flight qualities of flight mode one operation.

For flight mode two (circling), two additional sets of desired camera angles are

needed, representing the steady state camera angles in a left turn and in a right turn.

These sets do not use the target range information as in the determination of the previous

set but rather the turn radius determined from the current velocity and the user specified

load factor. Using the turn radius, the desired camera angles represent not only the

aircraft orientation to the target but also the standoff range. This allows the desired

camera angles to determine the range to the target without checking the actual range.

Using the turn radius and current heading, new Dx and Dy's are determined for each turn

direction. For a right turn, the current heading is modified by subtracting 90 degrees.

This modification places the target off the right wing.

26

Dx2R = cos(heading - 90") * turn - radius

Dy2R = -sm(heading - 90") * turn - radius

The turn radius is defined as:

V2

turn _ radius = —, (19)
W«2-i

where V is the velocity, g is the acceleration of gravity, and n is the load factor, more

commonly known as the number of g's. Subtracting 90 degrees is required because of

the coordinate system used by the scene generator. Unlike conventional heading angles

with 90 degrees being east and 270 degrees being west, the scene generator associates 90

degrees with west. For a left turn, equation (18) is used with 90 degrees added to the

heading rather than subtracted, placing the target of the left wing.

As before, after the modification, the virtual camera angle equations are reapplied

to obtain the desired camera angles. In flight mode two, since the desired camera angles

are not calculated using the target range information, range accuracy does not effect the

calculation of the correct desired camera angles. However, in order to calculate the

correct delta camera deflection from virtual camera angles range accuracy is important.

Any inaccuracy will be reflected in incorrect virtual camera angles.

2.2.4 Delta Camera Angles

With the desired camera angles and the actual camera angles, the deflection

required to return the aircraft to a nominal position is determined. This deflection will be

used by the governing equation for aircraft flight control. Prior to determining the delta

camera angles, Ae and Ak, all camera angles are required to be within ±180 degrees. If

an angle is greater than 180 degrees then 360 degrees will be subtracted from it.

27

Conversely, if an angle is less than -180 degrees then 360 degrees will be added to it.

For example, an £ of 270 degrees will be modified to -90 degrees. The delta camera

deflection are then calculated as follows:

Ae = e, ■ , - e
denred (20)

AA = A - Xdesind

The reason why the AX, equation is different from the Ae equation is the

coordinate system used. All elevation angles, X, downward from the aircraft to the target

are negative. This is opposite from the frames of reference used, where the zc axis is

positive in the downward direction. As with the camera angles, all delta camera

deflections are modified to be within ± 180 degrees.

2.3 Governing Equation for Aircraft Flight Control

Using vector algebra, the angular rates of the camera can be defined in the inertial

frame through the following equation.

coa =coCB+coB' (21)

This equation implies that the angular rates of the camera in the inertial frame,

of1, is the sum of the angular rates of the camera in the body frame, coCB, and the angular

rates of the body in the inertial frame, (0BI. By manipulating equation (21), G)BI is

obtained as shown below. This set of angular rates is commonly expressed in aircraft

body frame components as p, q, and r, and as shown in equation (4) using the inverse

Jacobian, the Euler rates can be determined from the angular rates.

COBI =<Oa -COCB ={q\ = J*'\<d\ (22)

•

p •
q

jBI • — J • 0
•

r ¥

28

By multiplying the angular rates by infinitesimal time, dt, a relationship between

infinitesimal angles is obtained:

A<D

A0

AY

where

1 sin O tan© cosOtan©

0 cos^> -sinO

0 sin<Dsec© cos O sec©

x{A}=J-B'x{dt*{coc'-coCB)}

(23)

dt*

1 0 -sin©

0 cosO cos© sin O

0 -sinO cosöcosO

0*

X- 0 • —

kJ /

-sine 0"
[All

cose

0

Ü

1

xW|
0)cz\ is the camera angular rate about the z axis of the inertial frame. The remaining

camera angular rates are nominally zero for the two flight modes demonstrated. With the

governing equation, the inputs to an automatic flight-control system, AFCS, can be

determined via camera angles by using the delta camera deflections required to orientate

the aircraft to the desired position. In the case of desired constant altitude, the governing

equation is further reduced to just A\|/, since the remaining two AZ's are not needed to

control aircraft position in the xy plane. The remaining two, A0 and A<j> would reorient

the aircraft to obtain the desired deflection, thus conflicting with the desired change in

position and causing a direct change in altitude. Therefore, the changes in pitch and roll

are determined from the desired change in yaw, A\\f, by the AFCS. Thus pitch and roll

are not directly a function of the camera angles but rather indirectly through A\|/, which is

a function of AX and Ae. With A\j/, an AFCS is used to steer the aircraft to the desired

heading.

To further simplify the governing equation, the infinitesimal time, dt, is assumed

to be a unit of one.

29

Chapter 3. CSRC's Automatic Flight-Control System

3.1 Waypoint Definition by Operator Mode

CSRC's automatic flight-control system (AFCS) controls the UAV flight using

waypoints. The waypoints are determined by the camera operator. The method by which

the waypoints are set varies with the different operator modes. The operator controls the

position of the waypoints using a haptic joystick that controls camera position. The mode

of operation is selected by a switch located on the joystick (shown in figure 11).

3.1.1 Operator Modes

As stated, the operator can toggle through the mode of operations by a switch

located on the joystick. The first mode of operation is free fly (operator mode one). By

depressing the switch on the joystick, the mode of operation will change to target locked

(operator mode two). If the aircraft is in flight mode two (circling) each additional

pressing of the switch will lock in a new target. When the aircraft is in flight mode one

(turn and fly towards target) a pressing of the switch will change the mode of operation to

straight and level (operator mode three). A third depression will enter level turn

(operator mode four). Any additional depresses will cycle from operator mode one

through operator mode four.

3.1.1.1 Operator Mode One

In operator mode one the waypoint is determined from the line of sight of the

camera. The waypoint established by a bubble projected on the operator's screen where

the camera bore sight intersects the terrain is constantly changing with camera

movement. The changing of the waypoint causes the AFCS to react to camera position.

The distance to the waypoint in the inertial frame is determined from the range to the

30

Dx 0

Dy I 4L-4 R

Dz I
0

waypoint, the three Euler angles and the two camera angles by modifying equation (9) as

follows:

(24)

where, L"CI is the inverse rotational matrix relating the camera components in terms of the

inertial frame. R is the range to the target. Since the desired camera angles for both

flight modes associated with operator mode one use the distance from the aircraft to

waypoint in the determination, the range to the target does not require high accuracy.

The desired camera angles will be proportional to the real camera angles insuring that

similarity is met.

In operator mode one, conditions are placed on the range to the target in the xy

plane. To avoid the UAV from instantaneously entering flight mode two, a minimum

range is set to the turn radius. This requires the operator to select a target outside the turn

radius of the aircraft, promoting stable aircraft operation in response to operator inputs.

R min = turn _ radius

and (25)

t arg et _ range > R min

Since it is inconceivable for the operator to see over the horizon, a maximum range is

established. This maximum range is set to the distance the camera can see five degrees

below the nose of the aircraft at the current true altitude.

R max = true _ altitude * tan(85°)

and (26)

t arg et _ range < R max

31

therefore

R min < t arg et _ range < R max
(27)

In all modes, a green targeting bubble is used to represent the line of sight of the

camera. Each operator mode has a colored bubble associated with it representing the

position of the waypoint. Different colored bubbles are used as an indicator to the

operator of which mode of operation the UAV is using. In the free fly mode, there is

only the green bubble.

3.1.1.2 Operator Mode Two

When the operator toggles the mode of operation into operator mode two, the

current camera position is used to lock a waypoint. In order to lock the waypoint to the

correct desired position, the range information must be accurate. Any inaccuracy will

result in the distance to the waypoint not being correctly determined. In addition to the

information used to calculate the distance to the waypoint, the position of the aircraft in

the inertial frame is required to determine the waypoint position. The position of the

waypoint is determined from the aircraft position plus the distance to the target in the

inertial frame.

(28)

Any inaccuracy in the aircraft position will also affect the accuracy of the

waypoint position. An incorrect waypoint location will not affect the operation of flight

mode one but will affect when the transition from flight mode one to flight mode two

occurs. This transition may occur earlier or later than desired depending on the position

of the waypoint. The proper standoff range while in flight mode two will also be

J\- J % AC
rDx

1 ^T
. = <

*AC ■ +< Dy

A/-T- / .AC . / Dz

32

affected. These effects are a result from the virtual camera angles used in operator mode

two being calculated from the waypoint position. Incorrect waypoint position means

incorrect virtual camera angles. In operator mode two, CSRC's AFCS uses the

governing equation with the virtual camera angles rather than the actual camera angles to

navigate the UAV. The use of virtual camera angles allows the operator to maneuver the

camera without influencing UAV flight. Once a target is locked into a waypoint, the

operator is free to search for other targets.

In operator mode two, a red bubble will be placed over the waypoint. This red

bubble indicates the target position and will remain with the target. In addition to the red

bubble, the green bubble is present representing the camera's current line of sight. In

operator mode two, the UAV turns and flys to the locked waypoint (flight mode one) and

once there circles the target (flight mode two). After the UAV establishes itself in a

circling turn around the target, the operator may reselect the locked position using the

green bubble and pressing the switch on the joystick. This will cause the red bubble to

move to the new position and update the waypoint. The UAV will remain in flight mode

two until a position outside twice the turn radius is selected. When a position outside this

range is selected, the aircraft will leave flight mode two and enter flight mode one. When

in flight mode one, an additional press of the switch will toggle to operator mode three.

3.1.1.3 Operator Mode Three

Operator mode three (straight and level) is the most simple of the four operator

modes. When the switch is toggled to this mode, the current heading is locked. The

distance to the waypoint in the inertial frame is then determined using the current heading

and the turn radius as the range. Since the virtual camera angles and desired camera

33

angles use the same distance information, similarity is met. For this reason, the turn

radius can be used as the range without any impact upon flight performance. As with

operator mode two, in operator mode three, CSRC's AFCS uses virtual camera angles

instead of the real camera angles. Operator mode three uses a blue targeting bubble.

This targeting bubble is always directly ahead of the aircraft at a distance equal to the

turn radius and moves with the aircraft.

3.1.1.4 Operator Mode Four

Operator mode four (level turn) is very similar to operator mode three. In

operator mode three the target angle was zero, thus the angle to the desired target in the

global coordinate system was simply the current heading. In operator mode four, the

target angle is set by the operator. When the switch on the joystick is toggled to operator

mode four, the current offset of the green bead to the nose of the aircraft is locked as the

target angle. The distance to the waypoint in the inertial frame is then determined using

the current heading plus the target angle and the turn radius as the range.

Dx, = sm(current _ heading +1 arg et _ angle) * turn _ radius

Dy, = concurrent _ heading +1 arg et _ angle) * turn _ radius

This causes the aircraft to constantly alter heading in an attempt to reach the offset

target. The angle of bank for this level turn is set equal to the offset angle. For example,

selecting the target to be 10 degrees to the right of the nose of the aircraft will result in

the aircraft performing a 10 degrees banked level turn to the right. A one to one ratio was

used to promote the greatest range of turn angles. Both operator modes three and four are

considered "carrot" modes. An achieveable but unobtainable goal is placed in front of

the aircraft that moves with the aircraft. Thus, the virtual camera angles and the desired

34

camera angles are held constant and since they are calculated using the same distance

information, similarity is met. Therefore, the use of the turn radius as the range has no

impact upon flight performance. As with operator mode two and operator mode three,

CSRC's AFCS uses virtual camera angles instead of the real camera angles in operator

mode four. Operator mode four has a yellow targeting bubble. This targeting bubble

moves with the aircraft at the selected offset.

Table 4. Targeting Bubbles

Color Description
Green Line of Sight of the Camera
Red Locked Target (Waypoint)
Blue Straight and Level
Yellow Level Turn

3.2 Aircraft Flight Modes

The aircraft has two flight modes as previously mentioned: 1) Turn and fly

towards a waypoint and 2) Circle a target (waypoint). In order to determine when to

transition between flight modes, a turn range based upon turn radius is calculated. This

range is calculated as if the aircraft is approaching straight at the target and a turn into the

circling mode turn, meets the turn radius tangentially. This can be seen graphically by

figure 9.

35

tamraßflc

Figure 9. Turn Range

The length of the tangent is equal to the turn range by the equation below:

turn _ range = ^3* turn _ radius2 (30)

This turn range is checked against the range to the target to determine the entry

into flight mode two (circling). The turn rate associated with the calculated turn radius,

equation (19) is calculated using the following equation.

V
CO

turn radius
(31)

where Co is the turn rate and V is the UAV velocity. Entry into flight mode two is then

determined by the following conditions: 1) target range is less than or equal to the turn

range and 2) aircraft is currently in flight mode one (turn and fly towards the target).

t arg et _ range < turn _ range (32)

If these conditions are met, the UAV enters flight mode two. If the conditions are

not met, the UAV remains in flight mode one. If the aircraft is already in flight mode

two, it will remain in this mode until the target range is greater than or equal to two times

the turn radius.

36

t arg et _ range > 2 * turn _ radius (33)

This condition allows the variation in range from the target to be one turn radius

without changing flight modes. This allows flexibility in re-targeting while in flight

mode two.

Prior to turn entry, it is necessary to determine whether the UAV will be turning

in a left or right circle. This is accomplished with the level desired camera epsilon angle.

This camera angle indicates the location of the target with respect to the aircraft. If the

target is located directly in front of the aircraft or to the right, a right circling pattern is

desired. Obviously, if the target is to the left, a left circling pattern is desired. It is also

necessary to determine which direction the UAV should turn to enter the turning circle.

If the target is in front and to the left or behind and to the right, the entry turn will be to

the right. Conversely, if the target is in front and to the right or behind and to the left, the

entry turn will be to the left. After the turn direction is determined by the automatic flight

control system, the turn rate and aircraft mode two delta camera deflections are set for the

desired direction. If a right turn is desired, the turn rate will be positive and the delta

camera deflection will be the set of camera deflections known as 'mode two R'. A left

turn will have a negative turn rate and delta camera deflection set known as 'mode two

L\

Prior to determining the A\|/ from the governing equation, equation (23), the delta

camera deflections will be damped against oscillations caused by small fluctuations. The

flight mode one deflections will be checked for target lock on. If the deflections are

within the range ± .01 degrees for AA, and ± .03 degrees for Ae, the UAV is considered to

have completely turned towards the target. When this occurs, the allowable variations

37

are increased to ± 1.0 degrees for AX and ±3.0 degrees for Ae. If these variations fail

then lock on is considered lost. In flight mode two, AX and Ae are both allowed to vary ±

1.0 degrees. An additional constraint is place upon the use of Ae in flight mode two. If

the range to the target is greater than 100.0 meters, Ae will be set to zero giving AX, sole

control of determining A\|/. This constraint allows a quicker response to correct target

range. Any time the deflections are within the allowed variations they will be set to zero.

Table 5. Deflection Damping

Flight Mode One Target Locked On Flight Mode Two

Ae ±0.03 ±3.0 ±1.0*
AX ±0.01 ±1.0 ±1.0

* Only when target range is within 100.0 meters

Once flight mode determination and deflection oscillations are accounted, A\|/ is

determined. In flight mode one, equation (23) is simplified by setting pz
c j; = 0.0 since

the camera has no turn rate about the target. In flight mode two, prior to using equation

(23), two turn entry flight maneuvers are accomplished. The first maneuver is the initial

turn entry. This maneuver is accomplished in the direction previously determined and at

the calculated turn rate. The second maneuver is accomplished when the UAV achieves

the target off the desired wing, and is called the roll over maneuver. The roll over

manuever simply rolls the aircraft from its current bank angle through zero degrees of

bank to the correct bank angle. These two maneuvers are required due to the sign

changes that occur during turn entry and roll over. These two maneuvers also prevent a

singularity in the Ae calculation from occuring when the target transitions directly below

the aircraft body. The sign changes, if used directly in equation (23) would cause

38

oscillations and greatly degrade the quality of the entry into the desired turn. After both

maneuvers are accomplished, equation (23) is used to determine A\|/. In flight mode two,

jö)z
c }, will be set to the turn rate previously calculated.

Before the roll desired is determined from A\|/, Ay will be modified to be within ±

180 degrees. Av|/ is also damped in flight mode two from small fluctuations in camera

deflections. In order to determine the roll desired, the bank required for level flight and

the desired number of g's must be determined. This bank angle, <|>, and the lift, L, are

such that the component of the lift in the vertical direction must equal the weight as

shown in figure 10 [1].

Front view

Figure 10. Aircraft in a Level Turn [1]

39

The bank angle is determined by solving the following equation:

Lcos(j) = W

where

L (34)

W
= n

solving for <|)

0 =cos -i
rn
Knj

(35)

Where L is the lift of the UAV, W is the weight, n is the g_load and § is the desired bank

angle. In flight mode one, any change in heading, A\|/, greater than 3.0 degrees will result

in a desired roll equal to the desired bank angle calculated by equation (35). Any change

less than 3.0 degrees will be linearly reduced by the change divided by three, A\|/ / 3.0,

until zero change is reached. The use of 3.0 degrees allows for a controlled roll out onto

target. Roll-outs faster than this result in the aircraft unrolling faster than changes in

heading. This causes periodic pauses in the roll out. Figure 11 graphically depicts the

scheduled roll angles for a change in heading, A\|/.

{> desired

M
•AW

■{> desired

Figure 11. Flight Mode One Roll Schedule

40

In flight mode two, the desired roll is determined by the ratio of the desired

change in heading over the turn rate, coc
z \. The ratio is used based upon the fact that if the

aircraft is in a perfect turn around the target where the delta camera deflections are zero,

the change in heading would equal the turn rate. If the aircraft is outside the desired

target range or drifting away from the target, the Ay calculated by equation (23) is

greater than the turn rate. Thus, the ratio is greater than one and the roll desired is greater

than the desired bank resulting in a tighter turn correcting the delta deflections. An

aircraft inside the desired target range or drifting toward the target results in a roll desired

less than the bank desired. The variation of the roll desired from the bank desired is

limited to a maximum variation determined by the variance from the turn radius times 5.0

degrees as seen in the following equation:

Max variance =
' target_range '

*5.0 (36)
turn _ radius

This limitation allows for greater changes as the distance from the desired target

range increases. By limiting the roll desired, stability in flight mode two is greatly

increased and oscillations are reduced.

With the roll desired determined, the roll-rate command to FLSIM is calculated.

The roll rate command is determined by the error between the roll desired and the actual

roll of the aircraft, §. If the roll error is greater than 60.0 degrees (value determined by

bank angle of a 2g turn), the roll rate command is set to 1.0 or the maximum roll. As the

error becomes less than 60 degrees, the roll rate is linearly dampened by 1.0/60.0 until

zero error is achieved. Figure 12 shows the scheduled roll rate command for roll error.

41

roll rate command

1-

-60.0

60.0

■ -1

roll error

Figure 12. Scheduled Roll Rate Command

3.3 Velocity Hold

Though all the equations are capable of handling any value of velocity, it is

desired to hold velocity to a constant. In FLSM, velocity is controlled via thrust

commands. Since velocity is a function of thrust, altitude and aircraft orientation, the

thrust command must change with continuing changes in flight. This is accomplished by

using an error in the velocity from desired velocity. The desired velocity is initially set

equal to the current velocity when the transition between standard aircraft operation and

UAV control occurs. After the transition, the desired velocity may be increased or

decreased by a switch on the thrust master joystick. When a change in the desired

velocity occurs, a counter is reset allowing a new zero lift, angle of attack to be

determined for the new velocity.

A change in the thrust command is accomplished using the error between the

desired velocity and the actual velocity and comparing the actual velocity with the

42

previous velocity. The actual change in the thrust command is determined using these

parameters with the following set of conditions: 1) If the velocity error is positive and the

change in velocity is not increasing, the thrust command is increased by 0.001. 2)

Conversely, if the error is negative and the change in velocity increases, the thrust

command decreases by 0.001. To provide increased stability and to prevent significant

overshooting of the desired velocity, the gains are changed when the error of the velocity

is within 1.0 m/s. Therefore, conditions 3) and 4) modify the thrust command by a factor

of 0.001 times the error when the error is within 1.0 m/s. Figure 13. shows the decision

making process for determining thrust command changes.

43

Thrust =+0.001

Thrust =- 0.001

Thrust =+0.001 "Velocity error

Thrust =+0.001 »Velocity error

Figure 13. Thrust Command Flowchart

44

3.4 Altitude Hold

Similar to velocity, all equations are capable of handling any value of altitude.

However, it is strongly desired to have a constant altitude. In FLSM, altitude is

controlled via the pitch rate command. The pitch rate command must be continuously

updated since the pitch required to hold a constant altitude is a function of altitude,

velocity and bank of the aircraft. Changes to the pitch rate command are accomplished

by using an error in the pitch, 0, and the desired pitch. Similar to the desired velocity, the

desired altitude is initially set equal to the current altitude when the transition between

standard aircraft operation and UAV control occurs. After the transition, the desired

altitude is increased or decreased by a switch on the thrust master joystick.

Controlling altitude is a two-fold process. As previously stated, since pitch is a

function of altitude, velocity and bank of the aircraft, the desired pitch must be

continuously updated from the error in altitude. The condition set for controlling altitude

is more complicated than the condition set for controlling velocity and is explained in the

order in which the conditions occur. First, every time the aircraft rolls out of a turn, the

theta desired is reset to the theta for zero lift. This condition allows for a quick return to

the angle of attack required for zero lift without using the modification algorithm and

increases the stability of holding altitude. Without this condition, the response time to

hold a constant altitude becomes sluggish and big altitude changes may occur.

Next, the desired theta is modified based upon the altitude error. If the change in

altitude, as measured by the vertical velocity indicator (VVI), is greater than the error in

altitude divided by 15.0, and is changing in the wrong direction, theta desired is modified

by 0.005 times the difference in the desired VVI and the actual VVI. The condition upon

45

the maximum change rate is used to help stabilize the correction to the desired altitude

and prevent significant overshooting. The small gain is used to prevent rapid changes in

the desired theta when there is a theta error greater than 0.25 degrees. If the theta error is

within 0.25 degrees, the gain is increased to 0.01. Next, if the error in altitude is less than

0.5 meters, theta desired is set to theta for zero lift. Because, theta for zero lift is initially

set to zero and may not be the correct theta, modifications to this value are accomplished.

Initially, the first time the error in altitude is within 0.5 meters, theta for zero lift is set to

the current desired theta. After the initial setting, theta for zero lift is modified by 0.0001

whenever the altitude error is less than 0.5 meters and the VVI is changing in the wrong

direction.

The use of changing in the wrong direction is important to the success of this

algorithm scheme. The control of altitude is highly subject to overshooting. If

modifications were accomplished any time the VVI was in the wrong direction, an

uncontrolled oscillation would occur. The use of changing in the wrong direction

dampens these oscillations and allows zeroing in on the desired altitude.

After determining the desired theta, the error in theta is calculated by the

difference in the actual pitch and the desired pitch. This error is used to determine the

pitch rate command for altitude. Whenever this error is greater than 5.0 degrees, the

pitch rate is set to 1.0 or the maximum pitch rate. If the error is between 1.0 and 5.0

degrees, the pitch rate is set to the error divided by 10.0. If this error is less than 1.0

degrees, the gain is set to 5.0/6.75. These gains were determined by experimentation.

Figure 14 shows the scheduled changes to pitch rate for theta error.

46

Pitch Rate

1
.74 l*Theta error - -

Theta error

-- .741 Theta error

Figure 14. Scheduled Pitch Rate Command for Theta error

Whenever the aircraft is in level flight, the pitch rate command as determined

above is the only input into the total pitch rate commanded to FLSEVI. Whenever the

aircraft is in a banked turn, the pitch rate required to hold altitude is not enough. In this

situation, an additional pitch rate is added to the total pitch rate command. This pitch rate

addition is initially set to the value of the desired roll angle (in degrees) divided by 100.0.

This pitch rate addition is necessary, since to turn an aircraft, two requirements must be

met. An aircraft must have bank and pitch. Since the pitch rate initially added may or

may not hold the aircraft to a constant altitude, this pitch rate is also modified. The

modification to the pitch rate command in a turn is accomplished whenever the aircraft is

climbing or descending, the change in pitch rate is less than 0.0009 and the aircraft

altitude is changing in the wrong direction. The requirement of the change in pitch rate

to a small error prevents this pitch rate from being arbitrarily modified simultaneously

when the altitude hold algorithm is making the needed changes. When a modification to

this pitch rate is required, it will be modified by 0.001.

47

Lastly, pitch rates are added to produce a total pitch rate. This total pitch rate is

subject to the maximum of 1.0. Any time the pitch rate is greater than 1.0, it will be set to

1.0. With the commanded pitch rate and the previously determined roll rate, FLSM is

provided the stick commands in terms of these rates.

3.5 Automatic Control Theory

Auto-pilots require an extensive knowledge of the system being flown and some

method of controlling it. Two theories are currently accepted for accomplishing this.

The first method, classical or conventional control theory can be dated back to the

1930's. The second method more commonly known as modern control theory has been

around since the 1960's [9]. Both methods have their strengths and weaknesses and both

are widely used. Both systems use a closed-loop scheme with some form of feedback to

obtain an error signal. These systems are discussed to help the reader understand the

value of the previously discussed AFCS design.

3.5.1 Classical Control Theory

The classical control theory is based on frequency response. It uses root-locus

technique, transfer functions and Laplace transforms to determine aircraft response to

desired inputs. In classical control theory, a transfer function is defined in terms of the

Laplace transform of the output over the Laplace transform of the input [9]. Using a

root-locus technique, the roots of the transfer function are obtained and the stability of the

system is determined. From the roots and the transfer function, the gains required in the

closed-loop feedback system are determined to provide stable aircraft's response to the

input in order to obtain the desired output. A strength of this method is that compared to

its counter part, it is relatively simple and the calculations are readily accomplished

48

without the use of a computer. This method can also be applied to steady state and time

domain problems. A weakness of this system is that it is normally limited to second-

order, while many systems are usually of a higher order. However, a good approximation

can be obtained by representing a higher order system be a second-order. In essence, the

strength of this method becomes its weakness as complexity increase.

3.5.2 Modern Control Theory

Modern control theory applies a more systematic approach to control system

design. With modern control theory, the system is represented by a system of first-order

differential equations [9]. Due to the complexity of this method, a computer is required

to solve the problem. In modern control theory, the equations of motion are written in the

state-space form. The physical system is reduced to a set of differential equations and the

state variables and equation are used to describe the system. From the system of

equations, the eigenvalues are determined and the feedback gains are calculated. Using

the feedback gains, the system is returned quickly to the desired equilibrium state. A

strong advantage of the modern control theory is that with the use of optimization

techniques, optimal control systems can be designed. Another strength is that modern

control theory is suitable for control systems with multiple inputs and can be used to

determine the optimum set of control surface deflections.

49

Chapter 4. Cave Simulation

4.1 CAVE Facility

The CAVE is 3.1 x 3.1 x 3.1-meter, with four rear-projected walls and a down-

projected floor (Pyramid Video). Imagery is created by an SGI Onyx with InfiniteReality

graphics. Images are displayed by CRT projectors (M8500, Electrohome). A magnetic

tracking system is employed to monitor the position and orientation of the user's head and

hand (Flock of Birds, Ascension Technology), while stereo images are created by use of

LCD shutter glasses (CrystalEyes, Stereographies). In addition, the user's finger-pinch

gestures are sensed to provide a means to interact with the virtual environment

(PinchGloves, Fakespace). The PinchGlove was not used by CSRC but is required to

enter the demonstration. The addition of the fourth wall provides complete immersion in

the azimuthal dimension (the only non-imaged area is directly overhead), allowing the

operator to monitor and interact with the environment to the rear as well as to the sides

and the front.

The VERITAS CAVE emphasizes multisensory displays. The off-the-body

projection system of the CAVE limits the ability to integrate haptic stimulation (since

haptic stimulators are likely to be visible to the user). Nevertheless, a force-feedback

manual control stick (IE-2000, Immersion Corp.) is integrated for manipulating objects

and controlling the virtual environment. CSRC uses this haptic joystick without the

force-feedback features and as shown in figure 15, has two programmable switches built

into it.

50

Figure 15. Haptic Joystick

Also used in conjunction with the haptic joystick is a thrustmaster joystick shown

in figures 16 and 17. The thrustmaster joystick has a one dimension sliding position

along with two radial switches, one four position spring toggle, one three position toggle,

one two position toggle, and two press switches, all whose functions are programmable.

Table 6 addresses the various operator inputs used and their functions.

51

Figure 16. Thrustmaster Front View

Figure 17. Thrustmaster Rear View

52

Table 6. Operator Inputs

Operator Input Function

PinchGlove Used to enter demonstration

Haptic Joystick X Position Controls X position of camera wrt aircraft

Haptic Joystick Y Position Controls Y position of camera wrt aircraft

Haptic Joystick Top Hat Switch Toggles Operator modes

Haptic Joystick Trigger Places Bombing run target

Thrustmaster 4 way (Up-Down) Changes Desired Altitude

Thrustmaster 4 way (Left-Right)
Thrustmaster 3 way

Changes Desired Velocity
Toggles between UAV demo mode and normal
control mode

Thrustmaster 2 way Switches Speedbrake in and out

Thrustmaster Radial #1 Changes operator's overhead view (zooms in and
out from cockpit)

Thrustmaster Radial #2 Changes operator's front view (rotates around the
aircraft)

Thrustmaster Switch #1
Thrustmaster Switch #2

Exits Demo (Eject)
Changes starting locations

Thrustmaster Sliding position Disabled in UAV mode

To support a broad variety of synthetic environment research activities, with

special focus on defense-related applications, commercial image generation software with

the CAVE projection systems (Vega, Multigen-Paradigm) has been integrated. This

software provides a number of high-level development tools but still allows access and

the optimization of the underlying capability of the hardware platform (via SGI

Performer and OpenGL). Furthermore, the chosen software platform permits options

such as importing CAD and terrain data (MultiGen II, Multigen-Paradigm), simulation of

flight dynamics (FLSIM, Virtual Prototypes, Montreal, Canada), simulation of ground

vehicle dynamics (Clarus Drive), simulation of manufacturing processes (Clarus

Manufacturing), and interfacing with display and control devices (Clarus InteractiveVR).

53

In the current application within the CAVE, a scene representing a 60km by 80km

of geotypical terrain is used. The terrain features are a composite of several real locations

and have been selected to provide specific operational challenges in close physical

proximity (e.g., mountains and canyons next to open plains). The software tools

available in VERITAS support the creation of large geospecific terrain scenes based on

Defense Mapping Agency data (e.g., Digital Terrain Elevation Data, DTED, for terrain

heights and Digital Feature Analysis Data, DFAD, for cultural features, with satellite or

other photography providing texturing data). The limit on representing any specific

physical location is the availability of digital data for that location.

4.2 Simulation vs. Real

As with any simulation, there are aspects that differ from the real world. The

selection of the CAVE facility was based on the desire to minimize those differences.

The unique characteristics of the CAVE facility, allows a user to be immersed in a virtual

environment similar to the real world, but there are some differences. The cave has no

software or hardware tools available to emulate actual camera angles. For this reason, the

real camera angles are calculated (i.e. simulated) the same way the virual camera angles

are determined.

Depending on future control sites, the simulation of flying and being able to see

all the surrounding area may or may not be real. It is possible to achieve this but may not

be practical. A real control site may limit the operator to only the camera view, while the

CAVE views everything. The demonstration fixed the operator's chair to the aircraft,

having the front wall always display where the aircraft was heading. This allowed the

operator to sense what the aircraft doing. It is possible to fix the chair to the camera and

54

have the front wall show what the camera is seeing. This configuration is not

demonstrated and is left for future evaluation.

The actual experience of flying is only as real as the flight dynamics being

modeled. The use of FLSM with the F-16 flight characteristics provided a realism

beneficial to the demonstration. Aircraft response to operator inputs simulated actual

expected results. The software used to model the environment allows for disturbance

simulation. If desired, wind and wind gusts can be simulated allowing the evaluation of

aircraft response. All results presented in the demonstration do not included any wind or

wind gusts.

Despite the shortcomings of the CAVE, the demonstration developed proved to be

very realistic and successfully validated CSRC.

4.3 Simulation Hierarchy

In order to understand the source code developed for the demonstration, an

understanding of the software structure used by the simulator is required.

Figure 18 depicts the structure of the simulation from the operator input to the aircraft

response.

Source Code (myshm.c)

Operator* ^ Stick ■^Fq

200 fps

J^Z

\ Waypoint
Determination $ Camera Angles ^

Governing
Equation -^ APCS

Shared Memory \ • y

< i [FLSIM fc
Scene Generator

30§>s

Figure 18. Simulation Structure

55

The source code developed is primarily a front-end processor. It is titled

myshm.c, found in Appendix A, and is coded in UNIX C. This code communicates with

FLSM and with the shared memory. The shared memory is a segment of memory that is

accessed by both the source code and by myvega.c, the scene generation code. Since the

source code is the only segment that contains the control theory, it is the only one

provided in this thesis. The scene generation code is modified to place the camera

targeting bubbles in the scene and has no impact on the theory presented. The code for

FLSM is only available in compilation format, which is unreadable.

The source code operates at a frame rate of 200 frames per second, while the

scene generator operates at a frame rate of 30 frames per second. This indicates, that the

source code updates both FLSIM and the shared memory and is re-updated by them at a

rate of 200 times per second. Though the scene generation code does not contain any

control theory, it provides a piece of information used by the source code to determine

camera angles. For this reason, the difference in frame rates has an impact on the

demonstration. This impact is minimized with code in myshm.c. The source code

determines the camera angles based on the aircraft position and the waypoint position.

The waypoint position is calculated using the height above target. The height above

target is measured using an I vector. I vectors can only be measured by the scene

generator. Therefore, this information needs to be passed from the scene generator to the

source code. The difference in frame rates causes a lag in the proper height above target

to be sent to the source code. This lag is only noticeable in operator mode two. In

operator mode two, the waypoint position is normally locked the instant the operator

toggles into this mode. The z position of the target may not be correct with the x and y

56

position at that instant. In order to work around this issue, a heartbeat of the scene

generator was established. This heartbeat indicates to the source code everytime it is

updated by the scene generator. Delaying the locking of the waypoint until the source

code is updated insures that the z position matches the x and y position.

4.4 Source Code

The source code is the heart of the simulation. The source code shown in

Appendix A is the beginning of one encompassing demonstration to be used by the

CAVE. Parts of the code are not used by CSRC but are needed by another task. Table 7

shows the various subroutines and gives a description of what is performed.

Table 7. Source Code Subroutines

Subroutine Description
Declarations Includes header files, defines constants, declares variables

and subroutines
*u shm init Creates shared memory segment
*u_shm_exit Detaches the shared memory segment from the process

address space
HapticStick Reads stick inputs
Getlnputs Reads all other input devices, (glove, thrustmaster, etc)
main Calls all subroutine in the order necessary
InitFlsim Initializes FLSIM
ResetFlsim Resets FLSIM
RunFlsim Sets variables in FLSIM and reads variables from FLSIM,

Waypoint Position is also determined here
CameraAngles Calculates the camera angles (real and virtual) from the

waypoint
Pilot This is CSRC, determines the desired and delta camera

angles, determines steering requirements, controls altitude
and velocity, and commands FLSIM

WriteLandingData Not used by CSRC

WriteCrashData Not used by CSRC
WriteContinuousData Not used by CSRC
ReadContinuousData Not used by CSRC

57

As annotated by Table 7, the subroutine Pilot is where CSRC really occurs.

RunFlsim represents the interface between the operator and the UAV, while

CameraAngles calculates the camera angles that would be read directly from the camera

if this were implemented as real hardware. All other subroutines are either a function of

the CAVE environment itself or not used by CSRC.

4.5 Additional Code

In addition to controlling the UAV, the source code has incorporated a bombing

run in the Pilot subroutine. This code was included to demonstrate the ability of the

control theory to control an UAV all the way to and through putting bombs on target.

The bombing run is based on gravity bombs with no environmental disturbances. Using

the height above target and aircraft velocity, the time to impact and the range at which to

drop the bombs is determined. During a bombing run, entry into flight mode two is

prohibited until after bomb release. After bomb release, the aircraft will either enter the

circling mode if within the turn range or wait for this condition to be met.

4.6 Results

The results, from the demonstration, successfully validate the proposed control

theory. The theory is demonstrated to be robust enough to handle varying conditions and

all modes of operation, operator and flight. A mission profile, figure 19, was developed

to demonstrate all the capabilities of CSRC as coded in the demonstration.

58

Target
Turn;

Target Rcsdcct,
Mode two

* 72,79 sec

Target Resdect,
Mode one

Mole t*o
Locked,

215 sec

and Ijevel,

230 sec

Level Turn,
Mndcone

Figure 19. Mission Profile

This mission profile was tested in the CAVE facility with the following results.

The times indicated represent a change in flight mode or operator mode. Figure 20 shows

the relationship between the roll command and the determined change in heading, A\|/.

Also shown is how the pitch command is influenced by the roll command. Of particular

interest is how quickly the roll responds to A\|/, especially in operator mode one.

59

Aircraft Commands

Time (Sec)

c . i : 1 i
«

■ \ > 1 1 : I 5JL. V 'Mi] .Mi . . \i

b

nttFKAbm] . Hfi i upsi
 pitch
 roll

Lli_ui.
Mi"!!" "nF r 'p
| Ol "v| i-J. -i U +!-rl blk: no 1 J»Ci
roxn o re en >jq Jiroicgri t

^PT r
•JC

ii« s uui u \yi ij

if; : \i i . |; : ! II |

Figure 20. Aircraft Commands

Between 0 and 20 seconds, the operator is in free fly mode. In this mode, the A\|/

is constantly changing with operator movement of the camera. This results in what

appears to be an oscillation but is actually equation (23) reacting to operator inputs.

During the time frame of 30 to 120 seconds the UAV is operating in the target locked

mode and flying in flight mode two. In this region, the camera angles used are virtual

camera angles and do not vary greatly. During this time, small corrections are made

keeping the aircraft at the desired distance from the target. Figure 21 shows a closer view

of what is occuring with A\[/ and how it is related to the camera deflection angles during

flight mode two in a right turn.

60

Changes in Right Turn

(0

Q

DE2R
DL2R

DPsi

Time (Sec)

Figure 21. Right Turn

As seen, A\j/ changes are small once a circling turn is entered and a direct

reflection to the camera X deflection can be seen. At 72 seconds, a change in the target is

accomplished. This can be seen in Figure 21 by the sudden increase in Ae. The response

to this sudden change as shown is relatively stable and the aircraft remains in the circling

turn. The A\|/ changes reorient the aircraft to turn around the new target without having

to fly towards the target first. This result is of great significance. Current UAV

operations do not respond in this manner and are unable to successfully track moving

targets. Figure 22 shows the camera e deflection angles as determined throughout the

mission profile. This figure shows how A\|/ responds to the different deflection angles

depending upon which mode of flight the UAV is operating.

61

W
"CB *•>

a

Delta Epsilon Camera Angles

:£
t«y*1

i
 0"0i O Oil

' IV>' 1V>

~0~ *

Time (Sec)

D Epsilon 1
D Epsilon 2R
DPsi

Figure 22. Ae Camera Angles

As seen between 0 and 30 seconds the Av|/ is determined from Ael and between

30 and 125 seconds, where the UAV is in a right turn, A\|/ is determined from Ae2R.

Figure 23 shows how well altitude was held to the desired altitude during the mission

flown. As seen, the altitude was relatively stable with only a deviation of approximately

50 meters until the end of the profile where a shallow level turn was occuring. Given

enough time, the altitude hold algorithm would have corrected this deviation and stabilize

on the desired altitude.

62

Constant Altitude

2000

1900
^ 1800
w 1700
■g 1600
■S 1500
** 1400

1300
1200

• Desired Altitude

•Altitude

-i—i—i—i—i—i—i—i—i—i—i—

OIO^O)tD-'-1-i-'-1IOMIO
OOOOON>-&.OCDOI\3-fc».

OOOOOOOO

Time (Sec)

Figure 23. Altitude Hold

Finally, figure 24 demonstrates how well velocity was held to the desired

velocity. Velocity, as shown, is somewhat oscillitory. However, the maximum deviation

was only 4 m/s from the desired and this occurred early in the mission. As the mission

progressed the deviation decreased. Changes in flight modes can be seen by the sudden

increases in velocity as the aircraft's bank angles changes. This is a result of velocity

being a function of pitch which is dependent upon the bank angle.

63

Jfl

o
o
0)
>

156

154

152

150

148

146

144

- ,"" li" ill «jii

■ i i • •
! > >

VM-

Constant Velocity

ON>-^0>00-»--^-^-J--^tON)K)
OOOOOI\3.Ji.Cn00ON>-&.

oooooooo
Time (Sec)

-Desired Velocity

■ Velocity

Figure 24. Velocity Hold

The results shown demonstrate the ability of CSRC to handle a diverse mission profile.

CSRC is capable of handling an aggressive mission without any significant adverse

reactions. Overall, the demonstration confirms the stability of CSRC.

64

Chapter 5. Conclusion/Recommendations

In conclusion, the theory developed and presented here is valid. As demonstrated,

CSRC works. The goal of reducing the operator workload by allowing autonomous control

of the UAV flight was achieved. Though the control theory was presented as a whole

package, the individual parts are the strengths of CSRC. CSRC demonstrated the ability to

track moving targets without the need for the aircraft to exit it's current turn. By remaining

in a turn, aircraft response is stable and target tracking is improved. CSRC also provides a

method to determine waypoints autonomously from aircraft position and a selected target.

For UAVs that operate using waypoints, but require human operators to determine them

manually, CSRC can provide a reduction in operator workload required during a mission.

Using CSRC, new waypoints can be determined in a more timely fashion while under

flight, increasing mission efficiency.

The development of the control algorithm for velocity and altitude hold, as required

for the demonstration shows that an aircraft can be successfully controlled by a method

other than classical or modern control theory. With the ability of modern control theory to

optimize control surface deflections or the development of proper gains based upon

classical control theory to increase aircraft performance stability, the best method of control

remains an issue for future evaluation.

Of considerable benefit is CSRC's ability to triangulate using two data points. This

method shows that any aircraft capable of obtaining its global position and measuring two

sensor angles relative to a target can determine a target's position.

Additionally, the use of CSRC can be applied to all types of missions. In missions

where close proximity to the Earth is necessary and terrain following is required, CSRC

65

can be combined with an terrain mapping algorithm using task priority. As demonstrated

in the CAVE, CSRC can be turned on and off without any impact upon aircraft

performance.

It is recommended that continuation of research pertaining to CSRC should occur.

The following is a recommended list of potential applications and investigations:

Man-machine interface studies:

1) Four wall projection versus one wall.

2) Various forms of human interaction with the UAV.

3) Capability to handle rapidly moving targets.

4) Level of parameter settings available to the operator.

5) Effects of time delay and/or communication loss.

6) Evaluation of the seat fixed to the aircraft versus fixed to the camera.

7) Comparison of CSRC versus the Predator 2-Operator workstation.

CSRC Extensions:

8) Incorporation of an autonomous threat reaction.

9) Incorporation of autonomous terrain mapping.

10) Alternative aircrafts (F-16 vs A-10)

Improvements/Evaluations:

11) Improvments to the velocity and altitude hold.

12) Test with aircraft perturbations.

13) Test with camera servo dynamics.

14) Test with wind and sensor noise.

66

This list is far from complete. It is only the beginning of where CSRC can lead.

With the Navy and other Department of Defense offices investigating options for new

Tactical Terminal to interface with various UAVs, suggestions 1 and 2 are recommended

as the front runners for future investigation. The Human Factors issues need to be

addressed and employed with CSRC.

As an added safety benefit, collision avoidance can be incorporated into

navigation control via priority tasking [8]. Task priority allows an automated system to

attempt to accomplish a set of goals. By prioritizing, the system must first be able to

accomplish the first task before consideration to the second task can be given [8].

Collision avoidance can be given either first priority or second priority and is

accomplished autonomously without operator involvement. By giving collision

avoidance first priority, the UAV will avoid a collision, if possible, and then will navigate

from the camera angles.

Finally, in support of public consideration is the fact that this is a shared control

problem. At all times, there is a man-in-loop. During NASA's history, this has always

been an issue of concern. The public fears the negative impacts a completely autonomous

system is capable of achieving.

67

Appendix A

Demonstration Source Code

/**
**

/**/

/* MODULE PURPOSE */
/* */
/* */
/**/

/**/

/* INCLUDED FILES */
/**/

int fn;
int CrashDataWritten=0;
int GoodLandings=0;
#define CRASH 0
#defineLAND 1

float RMSx,RMSy;
double TotalSquaresX,TotalSquaresY;
long TotalN;

int Flag=0;

float AngleA,StickExponent;

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
#include <math.h>

#include "sig_earth_obj.h"
#include "flsim_manager.h"
#include "haptics.h"

68

static Flsim_Global_Data *gdp;

#define Xnav 0
#defineYnav-1000.0
#define GLOVE 0
#define THRUSTMASTER 1
#define IMMERSION 2
int InputMode = IMMERSION;

#define NO_DATA 0
#define LANDING_DATA 1
#define CONTINUOUS 2
#define BOTH 3
#define PLAYBACK 4
#defineF16 0
#defineC130 1
#define B747 2

/*control variables*/
int XmitCount = 0;
int AirCraft = F16;
int FlsimRunning=0;
float Thrust=0.0;
float StickJoyX,StickJoyY;
float JoyX=0.0,JoyY=0.0;
intStickLatched=0,StickLatchCount=0;
float JoyXlatched=0,JoyYlatched=0;
float WheelX=0.0;
float Flaps=0.0,Spoiler=0.0;
int SpeedBrake = l,Gear = 1;
int HapTrig=0,HapTop=0;
float Ant=0.0,Rng=0.0;

/*Wind Variables*/
#define TURB_MAX 0.33333
#define TWO_PI 2 * 3.14159
#define MAX_SINES 7
float Kx;
float Ky;
float WindTime = 0.0;
float WindX,WindY;
float PerX[MAX_SINES] = {0.251,2.135,3.894,5.401,6.657,8.415,9.922};
float PerY[MAX_SINES] = {0.251,2.135,3.894,5.401,6.657,8.415,9.922 };
float AmpX[MAX_SINES] = { 0.99, 0.95,0.93, 0.85, 0.75, 0.68, 0.59 };

69

float AmpY[MAX_SINES] = { 0.99, 0.95,0.93, 0.85, 0.75, 0.68, 0.59 };
float OffsetX[MAX_SINES];
float OffsetY[MAX_SINES];

#define LANDING_TIMEOUT 10 /*in seconds*/
#define CRASH_TMEOUT 1 /*in seconds*/
long FrameCounter;
long OOBcounter;
int FileContinuous = 0;
int Crashed=0, Wow=0, OutOfBounds=0, IdleFlsim=l, SnapShotTaken=0;
int TakeData=0, Practice=0, Subject, Block, N, Location, Haptics=0;
int Turbulance=0, Clouds=0, Trial;
int StartFlag = 1;
int count = 0;
float last_x,last_y,last_z;
float X_Start;
float Y_Start;
float Z_Start;
float H_Start;
float V_Start;

/*UV Variables */
int uv_latch=0, uv_b = 0, uv_targ_lock, uv_switch, uv_mode = 1;
int uv_hat_latched = 0, uv_lock_on =0, uv_bomb_hit = 0;
int uv_bomb_run = 0, uv_bomb = 0, uv_bomb_away = 0, uv_bomb_drop = 0;
int uv_on = 0, uv_turn_dir, uv_turn_dir_init, uv_theta_des_reset = 1;
float uv_hat,uv_hat_offset, uv_radar, uv_bomb_range, uv_drop_time;
float uv_bomb_x, uv_bomb_y, uv_bomb_z, uv_bomb_h, uv_bomb_v;
float uv_bomb_time = 0.0, uv_bomb_z_init, uv_z_GC;
float uv_bomb_dt, uv_drop_time_rel, uv_bomb_x_init, uv_bomb_y_init;
float uv_stick_angle, uv_stick_x, uv_stick_y, uv_targ_angle_AC;
float uv_targ_angle, uv_targ_angle_GC, uv_targ_angle_GC_Stick;
float uv_targ_dx_AC, uv_targ_dy_AC, uv_targ_dz_AC, uv_targ_hyp;
float uv_targ_max_stick, uv_targ__min_stick, uv_targ_angle_AC_Stick;
float uv_targ_dx_AC_stick, uv_targ_dy_AC_stick, uv_targ_dz_AC_stick;
float uv_targ_hyp_stick, uv_targ_angle_stick, uv_AC_dz_stick;
float uv_targ_dx_GC, uv_targ_dy_GC, uv_targ_dz_GC, uv_x_GC, uv_y_GC;
float uv_targ_dx_GC_stick, uv_targ_dy_GC_stick, uv_targ_dz_GC_stick;
float uv_cam_dx, uv_cam_dy, uv_cam_dz, uv_cam_epsilon, uv_cam_lambda;
float uv_cam_Depsilon_model, uv_cam_Dlambda_model;
float uv_cam_Depsilon_mode2, uv_cam_Dlambda_mode2L;
float uv_cam_Dlambda_mode2, uv_cam_Depsilon_mode2L;
float uv_cam_Depsilon_mode2R, uv_cam_Dlambda_mode2R;
float uv_cam_lambda_mode2L, uv_cam_epsilon_mode2R;
float uv_cam_lambda_mode2R, uv_cam_epsilon_mode2L;

70

float uv_cam_lambda_model, uv_cam_epsilon_model, uv_Rx_model;
float uv_Ry_model, uv_Rx_level, uv_Rz_mode2L;
float uv_Rz_model, uv_cam_lambda_level, uv_cam_epsilon_level;
float uv_Ry_level, uv_Rz_level, uv_Rx_mode2L, uv_Ry_mode2L;
float uv_Rx_mode2R, uv_Ry_mode2R, uv_Rz_mode2R, uv_targ_dx_mode2R;
float uv_targ_dy_mode2R, uv_targ_dy_mode2L, uv_targ_dx_mode2L;
float uv_targ_dx_model, uv_targ_dy_model, uv_targ_dx_level;
float uv_G_load, uv_VVI, uv_VVI_set, uv_VVI_des, uv_theta_des=0.0;
float uv_turn_rate, uv_pitch_rate_turn, uv_pitch_rate_alt;
float uv_desired_alt, uv_targ_dy_level, uv_pitch_rate_turn_init;
float uv_pitch_rate_turn_mod, uv_theta_zero = 0.0;
float uv_h, uv_p, uv_r, uv_Rx, uv_Ry, uv_Rz, uv_R;
float uv_dpsi, uv_psi, uv_dpsi_set, uv_theta, uv_phi, uv_cos_psi;
float uv_cos_theta, uv_cos_phi, uv_sin_psi, uv_sin_theta, uv_sin_phi;
float uv_roll_rate, uv_pitch_rate, uv_roll_desired;
float uv_pitch_rate_old, uv_pitch_rate_new, uv_pitch_Drate, uv_Dtheta;
float uv_n=2.0, uv_dg, uv_bank_desired, uv_Droll, uv_Alt_hold, uv_Dalt;
float uv_targ_locked_x, uv_targ_locked_y, uv_targ_locked_z;
float uv_stick_angle_angle, uv_targ_angle_angle, uv_targ_angle_zero;
float uv_targ_dx_zero, uv_targ_dy_zero, uv_targ_dz_zero;
float uv_targ_dx_angle, uv_targ_dy_angle, uv_targ_dz_angle;
float uv_cam_Depsilon_mode2_init, uv_turn_radius_stick;
float uv_targ_x_GC_stick, uv_targ_y_GC_stick, uv_targ_z_GC_stick;
float uv_Vel_des, uv_Vel=200.0, uv_Dvel, uv_Vel_set, uv_Vel_new;
float uv_Theta_lock_one = 0.0, uv_theta_set, range_check, uv_thr;
float uv_targ_range, uv_turn_range, uv_turn_radius;
float uv_cam_epsilon_level_init, uv_h_vel, uv_bank_max_var;
float uv_x_vel, uv_y_vel, uv_z_vel, uv_x_acc, uv_y_acc, uv_z_acc;
float uv_p_vel, uv_r_vel, uv_h_acc, uv_p_acc, uv_r_acc;
float uv_x_last,uv_y_last,uv_z_last, uv_x_vel_last, uv_y_vel_last;
flaot uv_z_vel_last;

/* LOCAL CONSTANTS */

#define PI 3.14159
#define MAX_SECONDS 120
#define AIRPORT_ALT 0.0
#define METERS_PER_FEET 1.0/3.28
#define FEET_PER_METER 3.28
#define SECS_PER_HOUR 3600.0f
#define METERS_PER_KNOT 1852.0
#define DEFAULT_SHMKEY 0x30f7dl01
#define FRAMES PER SECOND 200.0

71

#define NOONE_ACCESSING 0
#define MAIN_ACCESSING 1
#define FLSM_ ACCESSING 2
#define FLSM_RESET 0
#define FLSM_RUN 1
#define FLSMJDLE 2

/**

/* LOCALDATA */

/* */

/* Shared-memory segment layout */
/* */

typedef struct {

char status;
char mode;
int uv_on;
float ant;
float rng;
int start;
int stop;
int haptrig;
int haptop;
int aircraft;
int TakeData;
int practice;
int Subject;
int Block;
intN;
int Location;
int Haptics;
int Turbulance;
int Clouds;
int Trial;
int uv_mode;
float AC_dz;
float targ_dz_GC;
float targ_dz_zero;
float targ_dz_angle;
int targ_lock;
int uv_switch;
float stick_x;
float stick_y;

72

float xstart;
float ystart;
float zstart;
float hstart;
float vstart;
int onground;
float glovejoyy;
float glovejoyx;
float glove_thr;
float joyy;
float joyx;
float thr;
float flaps;
float spoiler;
int speedbrake;
int gear;
float hat;
float vvi;
float x;
float y;
float z;
float h;
float p;
float r;
float h_instr;
float p_instr;
float r_instr;
float knots;
float slip;
int flightended;
int landingstatus;
float angleA;
float stickexponent;
int shmOK;
int cockpitOK;
int vegaheartbeat;
int bomb;
int bomb_drop;
int bomb_hit;
float bomb_x;
float bomb_y;
float bomb_z;
int demohaptics;
int democlouds;
int dog;

73

} U_Otw_Shm;

static U_Otw_Shm *shmptr = NULL;
static int shmid = -1;

static volatile U_Otw_Shm *shm = 0;

extern void cpt_TransmitInfo(void);
extern void cpt_ReceiveInfo(void);
extern void cpt_Init(void);

void InitFlsim(void);
void ResetFlsim(void);
void RunFlsim(void);
void CameraAngles(void);
void Pilot(void);
void WriteLandingData(void);
void WriteCrashData(void);
void WriteContinuousData(void);
void ReadContinuousData(void);

/* PUBLIC FUNCTIONS CODE SECTION */

/* */

/*u_shm_init()Creates,initializes and attaches the OTW shared-memory */
/*segment. */
/* */

/* Returned value A valid pointer to the shared-memory segment if */
/* successful or NULL if an error occured. */
/* */

U_Otw_Shm *u_shm_init(void)
{

key_t shmkey;

shmkey = DEFAULT_SHMKEY;

printf("key = %x, size = %d \n", shmkey, sizeof(*shmptr));

/* */

/* Create (if necessary) the shared-memory segment */

74

/* */
shmid = shmget(shmkey, sizeof(*shmptr), IPC_CREAT I 0666);

if(shmid==-l){
perror("\nError - Can't get (create) shared-memory segment");
return(NULL);

/* */

/* Attach the segment to the process */
/* */

shmptr = (U_Otw_Shm *)shmat(shmid,0,0);

if (shmptr == (U_Otw_Shm *) -1) {
perror("\nError - Can't attach to shared-memory segment");
return(NULL);

}

/* */
/* Lock the segment in memory */
/* */

if (shmctl(shmid,SHM_LOCK,0))
perror("\nWarning - Can't lock shared-memory segment");

/* */
/* Initialization completed successfully */
/* */

return(shmptr);

}

/* */
/*u_shm_exit()Detaches the OTW shared-memory segment from the process*/
/*address space and removes the segment if no more */
/*processes are attached. */
/* */

/* Returned value None */
/* */

void u_shm_exit(void)
{

struct shmid_ds shmds;

75

/* y
/* Step 1: Detach the shared-memory segment */
/* *i

I* v

/* The segment is attached if its pointer is non-NULL */
/* v

if (shmptr)
if (shmdt(shmptr))

perror("\nWarning - Can't detach shared-memory segment");
else

shmptr = NULL;

/

/* Step 2: Remove the shared-memory segment if no longer in use */
/

/* v

/* Do we previously obtained a valid shared-memory ID? */
/* y

if(shmid !=-l)

/* */

/* Get the associated data structure */
/* */

if(shmctl(shmid,IPC_STAT,&shmds))
perror("\nWarning - Can't obtain shared-memory data structure")-

else

/* */

/* How many processes are attached? */
/* *;

if (shmds.shm_nattch == 0)

/* */

/* Remove the shared-memory segment */
/* y

if (shmctl(shmid,IPC_RMID,0))
perror("\nError - Can't remove shared-memory segment");

CISC

76

shmid = -l;

}

/*** Hantirs ***/

void HapticStick(void)
{
Haptics = shm->Haptics;

AngleA = 180.0 - (atan2f(Xnav - uv_x_GC, Ynav - uv_y_GC) * FLSM_RTD);
if (AngleA > +180.0) AngleA -= 360.0;
if (AngleA < -180.0) AngleA += 360.0;

/* if ((AngleA < -90.0) II (AngleA > 90.0))
OutOfBounds= 1;

RFG*/

/*printf("\n\rAngleA = %7.2f", AngleA);*/

if(abs(AngleA)<30.0){

if (StickExponent == 2.0) {
if (((1.0/30.0) * AngleA) >= 0)

hap_Xin = -powf((1.0/30.0) * AngleA,StickExponent);
else

hap_Xin = +powf((1.0/30.0) * AngleA.StickExponent);

}
else

hap_Xin = -powf((1.0/30.0) * AngleA,StickExponent);

hap_Yin = 0.0;
}
else

hap_Xin = 0.0;

if(!Haptics){
hap_Mode = CPT_HAP_POSlTION;
hap_Yin = 0;
hap_Xin = 0;

}
else

hap_Mode = CPT_HAP_FORCE;

77

if(abs(AngleA)<30.0){

if (StickExponent == 2.0) {
if (((1.0/30.0) * AngleA) >= 0)

hap_Xin = -powf((1.0/30.0) * AngleA,StickExponent);
else

hap_Xin = +powf((1.0/30.0) * AngleA,StickExponent);
}
else

hap_Xin = -powf((l.0/30.0) * AngleA,StickExponent);

hap_Yin = 0.0;
}
else

hap_Xin = 0.0;

if(IHaptics) {
hap_Mode = CPT_HAP_POSITION;
hap_Yin = 0;
hap_Xin = 0;

}
else

hap_Mode = CPT_HAP_FORCE;
}

/* GET TNPUTS ** */

void Getlnputs(void)
{
/* if (XmitCount < 50) {

cpt_TransmitInfo();
XmitCount++;

*/

cpt_TransmitInfo();
cpt_ReceiveInfo();

StickExponent = shm->stickexponent;

if (InputMode == GLOVE)
{

Thrust = shm->glove_thr;
JoyX = shm->gloveJoyx;
JoyY = shm->glove_joyy;
Flaps =0.0;

78

Spoiler = 0.0;
SpeedBrake = 1;

if (InputMode == THRUSTMASTER)
{

JoyX = cpt_Analog[CPT_THM_JOYX];
JoyY = cpt_Analog[CPT_THM_JOYY];

if (InputMode == IMMERSION)
{

JoyX = cpt_Analog[CPT_HAP_JOYX] - JoyXlatched;
JoyY = cpt_Analog[CPT_HAP_JOYY] - JoyYlatched;

if (IStickLatched && (StickLatchCount++ > 400)) {

JoyXlatched = JoyX;
JoyYlatched = JoyY;
StickLatched = 1;

/* printf("JoyX = %5.2f JoyY = %5.2f\n\r",JoyX,JoyY); */

if ((InputMode == THRUSTMASTER) II (InputMode == IMMERSION)) {

Thrust = cpt_Analog[CPT_THM_THR];
Flaps = cpt_Analog[CPT_THM_ANT];
Spoiler = cpt_Analog[CPT_THM_RNG];
Ant = cpt_Analog[CPT_THM_ANT];
Rng = cpt_Analog[CPT_THM_RNG];

/* if (cpt_PosTrans(CPT_HAP_TOP)) SpeedBrake++;
if (SpeedBrake > 1) SpeedBrake = 0;

*/
SpeedBrake = 1;

/* HapTrig = cpt_PosTrans(CPT_HAP_TRIG);
HapTop = cpt_PosTrans(CPT_HAP_TOP);

if (cpt_PosTrans(CPT_HAP_TRIG)) {
HapTrig = 1;
shm->haptrig = 1;

}

79

*/
/*

*/

if (cpt_PosTrans(CPT_HAP_TOP))
HapTop = 1;
shm->haptop = 1;

if (cpt_PosTrans(CPT_T6))
shm->start = 1;

if (cpt_PosTrans(CPT_Tl)) {
shm->stop = 1; /*now turns on uav*/

/* printf("Ant = %5.2f Rng = %5.2f\n\r",Ant,Rng); */

/* printf("\n\rTGl = %5i T6 = %5i DOG = %5i",

cpt_Switch(CPT_TGl),cpt_Switch(CPT_T6),cpt_Switch(CPT_DOG));
*/

shm->joyx =JoyX;
shm->joyy =JoyY;
shm->ant = Ant;
shn»rng = Rng;
shm->thr = Thrust;
shm->flaps = Flaps;
shm->spoiler = Spoiler;
shm->gear = Gear;
shm->speedbrake = SpeedBrake;

shm->dog = cpt_Switch(CPT_DOG);

}

/^fc sk ^t ^k ifc ^k ^k ^k sk sk sk sk sk 5fc 5k 5k sk rfc ifc 5k 5fe ik 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5fc 5k 5k rfc 5fc 5k 5k rfc 5k 5fc 5k 5k 5k 5k 5k 5k 5k 5k 5fc 5k 5k 5k 5fc 5k 5k 5k 5k 5fc 5k 5k 5k 5k 5k /

int main(void)
{

timespec_t currentTime;
timespec_t startTime;
double seconds;
int i;

charstr[200];

80

charINPUT[50];
int il, i2;
FILE *Fi;

/*
sprintf(INPUT,"DATA.DEFAULT");

Fi = fopen(INPUT, "r");

fgets(str,81,Fi);
puts(str);
sscanf(str, "%i", &il);
printf("%3i\n", il);
fgets(str,81,Fi);
puts(str);
sscanf(str, "%i", &i2);
printf("%3i\n", i2);
*/
/*exit(0);*/

/* */

/* attach to shared memory */
/* */

while(!(shm = u_shm_init())){
sginap(100);
printf("Waiting for shared memory\n");

}

Kx = 0.0;
Ky = 0.0;

/*Compute wind constants given TURB_MAX*/
for(i=0;i<MAX_SINES;i++) {

Kx += AmpX[i];
Ky += AmpY[i];

}
Kx = TURB_MAX * (1.0/Kx);
Ky = TURB_MAX * (1.0/Ky);

cpt_Init();

InitFlsimO;

shm->status = NOONE_ACCESSING;
shm->mode = FLSIM_IDLE;

81

shm->start = 0;
shm->stop = 0;
shm->cockpitOK = 0;
shm->shmOK =0;
shm->demohaptics = 0;
shm->democlouds = 0;
shm->dog = 0;

cpt_PosTrans(CPT_T6);

clock_gettime(CLOCK_REALTIME, &startTime);

while (1=1) {

shm->cockpitOK = cpt_OK;
shm->shmOK = 1;

seconds = 0;

while (seconds < (1.0/FRAMES_PER_SECOND)) {

clock_gettime(CLOCK_REALTIME, ¤tTime);

seconds = (currentTime.tv_sec - startTime.tv_sec) +
(currentTime.tv_nsec - startTime.tv_nsec)/1000000000.0;
}

clock_gettime(CLOCK_REALTIME, &startTime);

/* printf("\n\rSECONDS = %12.5f %12.5f",(float)seconds,seconds-0.0025);
*/

while (shm->status == MAIN_ACCESSING);

shm->status = FLSIM_ACCESSING;

cpt_OK = 0;

Getlnputs();

if (shm->mode == FLSIM_RESET) {
ResetFlsim();
fm_manager_dispatch(1.0/FRAMES_PER_SECOND);
RunFlsim();
shm->mode = FLSM RUN;

82

FlsimRunning = 0;

if (shm->mode == FLSMJRUN)
{
FlsimRunning = 1;

if(!IdleFlsim)
{

RunFlsim();

if (uv_on)
{

CameraAngles();
PilotO;

}
}

}

shm->status = NOONE_ACCESSING;

if (FlsimRunning)
fm_manager_dispatch(1.0/FRAMES_PER_SECOND);

if(!IdleFlsim)
HapticStick();

else {
hap_Mode = CPT_HAP_POSITION;
hap_Yin = 0;
hap_Xin = 0;

float LatLon2Meters(float LatLon)

return LatLon * FLSIM_RTD * 40030000.0 / 360.0;

float Meters2LatLon (float Meters)

return Meters / (FLSIM_RTD * 40030000.0 / 360.0);

83

void InitFlsimO
{

CrashDataWritten=0;

shm->landingstatus = CRASH;

TotalSquaresX = 0.0;
TotalSquaresY = 0.0;
TotalN = 0;

uv_theta_des = 0.0;
uv_lock_on = 0;
uv_targ_lock = 0;

if (StartFlag)
{

gdp = fm_manager_init();
if(gdp = 0)
{

printf("fm_manager_init\n");
exit(O);

}
StartFlag = 0;

if (fm_profile_download_begin() < 0) {
printf("fm_profile_download_begin\n");
exit(O); }

if (fm_profile_atmos_by_name("Default") < 0) {
printf('' fm_profile_atmos_by_name\n");
exit(O); }

if (fm_profile_user_by_name("Default") < 0) {
printf("fm_profile_user_by_name\n");
exit(O); }

fm_profile_earth(0.0, 0.0, SIG_EARTH_USER,
6378206.4, 6356583.8);

switch(F16/* AirCraft*/){

caseF16:
if (fm_profile_aircraft_by_name("F16") < 0) {

printf(" fm_profile_aircraft_by_name\n");

84

/*
case C130:

case B747:

exit(0); }

break;

if (fm_profile_aircraft_by_name("C130") <0) {
printf("fm_profile_aircraft_by_name\n");
exit(O); }

break;

if (fm_profile_aircraft_by_name("B747") < 0) {
printf(" fm_profile_aircraft_by_name\n");
exit(O); }

break;

}

if (fm_profile_download_end() < 0) {
printf("fm_profile_download_end\n");
exit(O); }

fm_config_pilot_source("all=EXTERNAL");
}

void ResetFlsim()
{

int i;

Flag = 0;

last_x = 0.0
last_y = 0.0
last z = 0.0

OutOfBounds = 0;
Crashed = 0;
Wow = 0;
shm->flightended = 0;

SpeedBrake = 1;

/*randomize offsets for wind*/

85

for (i=0;i<MAX_SINES;i++) {
OffsetX[i] = (float)((int)rand()%360)*TWO_PI/360.0;
OffsetY[i] = (float)((int)rand()%360)*TWO_PI/360.0;

FileContinuous = 0;
FrameCounter = 0;
OOBcounter = 0;
IdleFlsim = 0;
SnapShotTaken = 0;

uv_hat_latched = 0;

/*for experiment*/
TakeData = shm->TakeData;
Practice = shm->practice;
Subject = shm->Subject;
Block = shm->Block;
N = shm->N;
Location = shm->Location;
Haptics = shm->Haptics;
Turbulance = shn»Turbulance;
Clouds = shm->Clouds;
Trial = shm->Trial;

Y_Start = shm->ystart;
X_Start = shm->xstart;
Z_Start = shm->zstart;
H_Start = shm->hstart;
V_Start = shm->vstart;

AirCraft = shm->aircraft;

/*V_Start = 0.0;*/

if (fm_manager_stop() < 0) {
printf(" fm_manager_stop\n");

InitFlsimO;

sginap(2);
/* printf("STARTV = %5.2f\n",shm->vstart); */

fm_config_initial_conditions(

86

Meters2LatLon(Y_Start*METERS_PER_FEET), /*lat*/
Meters2LatLon(X_Start*METERS_PER_FEET), /*lon*/
Z_Start*METERS_PER_FEET, /*radar alt*/
AIRPORT_ALT*METERS_PER_FEET, /*ground elev*/
0.0, /*ground pitch*/
0.0, /*ground roll*/
0.3, /*fuel load*/
0.0, /*flap pos*/
0.0, /*slat pos*/
0.0, /*cla pos*/
1, /*rwy condition*/
shm->onground, /*on ground*/
0, /*gear out*/
V_Start*0.514,/*Knots2metersperesecond*/ /*spd*/
(360.0 - H_Start) / FLSIM_RTD /*hdg*/

);

printf(
"\n\rLocation : X=%9.2f Y=%9.2f Z=%9.2f H=%7.2f V=%9.2f OG=%li

HAT=%9.2f",
X_Start, Y_Start,
Z_Start, H_Start,
V_Start, shm->onground, shm->hat);

/* 55.667, 120mph*/

if (fm_manager_start() < 0) {
printf(" fm_manager_start\n");
exit(0);

/* fm_manager_dispatch(1.0/FRAMES_PER_SECOND);

fm_runtime_set_flaps(Flaps);
fm_runtime_set_throttle(Thrust, Thrust, Thrust, Thrust);

*/
}

void RunFlsim(void)
{

int i;

if (!uv_on) {

if (cpt_Switch(CPT_RAD_U)) {

87

shm->demohaptics = 1;
}

if (cpt_Switch(CPT_RAD_D)) {
shm->demohaptics = 0;

}
if (cpt_Switch(CPT_RAD_R)) {

shm->democlouds = 1;
}

if (cpt_Switch(CPT_RAD_L)) {
shm->democlouds = 0;

}

}

printf("\n\rH=%5i C=%5i",shm->demohaptics,shm->democlouds);

WindX = 0.0;
WindY = 0.0;

for(i=0;i<MAX_SINES ;i++)

WindX += Kx*(AmpX[i] * sinf(TWO_PI*WindTime/PerX[i]+OffsetX[i]));
WindY += Ky*(AmpY[i] * sinf(TWO_PI*WindTime/PerY[i]+OffsetY[i]));

}

if (ITurbulance)

WindX = 0;
WindY = 0;

WindTime += 1.0/((float)FRAMES_PER_SECOND);

uv_on = shm->uv_on;

fm_runtime_set_throttle(Thrust, Thrust, Thrust, Thrust);

fm_runtime_ap_basic_off();

/* printf("THRUST = %8.3f\n",shm->thr); */

StickJoyX = JoyX + WindX;
StickJoy Y = Joy Y + WindY;
if (StickJoyX > +1.0) StickJoyX = +1.0;

if (StickJoyX < -1.0) StickJoyX = -1.0;
if (StickJoyY > +1.0) StickJoyY = +1.0;
if (StickJoyY < -1.0) StickJoyY = -1.0;

/*printf("\n\rX=%5.2f Y=%5.2f",StickJoyX, StickJoyY);
*/

if (!uv_on)
fm_runtime_set_stick(S tick Joy Y, StickJoyX);

/* fm_runtime_set_flaps(shm->flaps);
fm_runtime_set_spoiler(shm->spoiler);

*/
fm_runtime_set_flaps(1.0);
fm_runtime_set_spoiler(1.0);

/* if(ISpeedBrake)
fm_runtime_set_spd_brk_out();

*/
/* if (SpeedBrake)
*/

fm_runtime_set_spd_brk_in();

WheelX = JoyX;
if ((JoyX > -0.005) && (JoyX < 0.005)) WheelX = 0.0;
fm_runtime_set_steering_wheel(0.005*WheelX);

/* if (!uv_hat_latched)
{
uv_hat_offset = shm->hat;
uv_hat_latched = 1;

}
*/

uv_hat_offset = 0;
uv_hat = shm->hat-uv_hat_offset;

uv_radar =
gdp->instruments.runtime_output.flsim.flight.alt_radar;

Crashed = gdp->position.runtime_output.flsim.crashed;
Wow = gdp->undercarriage.runtime_output.flsim.installation->wow;

/*
printf("\n\rCrashed = %i Wow = %i OutOfBounds = %i",
Crashed, Wow, OutOfBounds);
*/

OOBcounter++;

89

/* if (OOBcounter > (MAX_SECONDS*FRAMES_PER_SECOND))
OutOfBounds = l;

RFG*/
if (SnapShotTaken)
FrameCounter++;

else
{

TotalSquaresX += (double)pow(JoyX,2);
TotalSquaresY += (double)pow(JoyY,2);
TotalN++;

if (Crashed II (Wow && (FrameCounter >= LANDING_TIMEOUT *
FRAMES_PER_SECOND)) II OutOfBounds)

{
if(!CrashDataWritten)
WriteCrashData();
shm->flightended = 1;
shm->mode = FLSMJDLE;
IdleFlsim = 1;

}
/*
if(!Flag){
printf("\n\rCrashed = %i RadarAlt = %9.1f Hat = %9.2f",
Crashed, uv_radar,uv_hat);
Flag=l;
}
*/

if ((Crashed II Wow II OutOfBounds) && .'SnapShotTaken)
{
RMSx = (float) sqrtf(TotalSquaresX/((double)TotalN));
RMSy = (float) sqrtf(TotalSquaresY/((double)TotalN));

if ((TakeData == LANDING_DATA) II (TakeData == BOTH))
WriteLandingData();

SnapShotTaken = 1;

if (FrameCounter == (CRASH_TMEOUT * FRAMES_PER_SECOND))
{
WriteCrashData();

GoodLandings++;

90

shm->landingstatus = LAND;

printf("\n\r\n\rNO. OF GOOD LANDINGS = %i\n\r\n\r",GoodLandings);

}

if ((TakeData == CONTINUOUS) II (TakeData == BOTH))
WriteContinuousData();

last_x = uv_x_GC;
last_y = uv_y_GC;
last_z = uv_z_GC;

shm->vvi = uv_VVI = gdp->instruments.runtime_output.flsim.flight.vsi;
shm->x = uv_x_GC =

LatLon2Meters(gdp->position.runtime_output.flsim.ecg.lon);
shm->y = uv_y_GC =

LatLon2Meters(gdp->position.rantime_output.flsim.ecg.lat);
shm->h_instr = uv_h =

-gdp->instruments.runtime_output.flsim.flight.true_hdg * FLSIMJRTD;
shm->p_instr = uv_p =

gdp->instruments.runtime_output.flsim.flight.pitch * FLSIM_RTD;
shm->r_instr = uv_r =

gdp->instraments.rantime_output.flsim.flight.roll * FLSIM_RTD;
shm->z = uv_z_GC =

gdp->instruments.runtime_output.flsim.flight.alt_baro;
shm->knots = gdp->instruments.runtime_output.flsim.flight.ias

* (SECS_PER_HOUR / METERS_PER_KNOT);
uv_Vel = gdp->instruments.runtime_output.flsim.flight.ias;

if (!uv_on)
{
uv_Vel_new = uv_Vel;
uv_Alt_hold = uv_z_GC;

uv_G_load = gdp->instraments.runtime_output.flsim.flight.g_load;

shm->h = -gdp->attitude.runtime_output.flsim.psi*FLSIM_RTD;
shm->p = gdp->attitude.runtime_output.flsim.theta*FLSIM_RTD;
shm->r = gdp->attitude.rantime_output.flsim.phi*FLSIM_RTD;
uv_h_vel = -gdp->attitude.runtime_output.flsim.psi_dot*FLSIM_RTD;
uv_p_vel =

gdp->attitude.runtime_output.flsim.theta_dot*FLSIM_RTD;
uv_r_vel = gdp->attitude.runtime_output.flsim.phi_dot*FLSIM_RTD;

91

uv_h_acc= -gdp->attitude.runtime_output.flsim.psi_dot_dot*FLSIM_RTD;
uv_p_acc= gdp->attitude.runtime_output.flsim.theta_dot_dot*FLSIM_RTD;
uv_r_acc = gdp->attitude.runtime_output.flsim.phi_dot_dot*FLSIM_RTD;

shm->slip = gdp->forces.runtime_output.flsim.wcs.acc.y;

uv_x_vel_last = uv_x_vel;
uv_y_vel_last = uv_y_vel;
uv_z_vel_last = uv_z_vel;

uv_x_vel = (uv_x_GC - last_x) * FRAMES_PER_SECOND;
uv_y_vel = (uv_y_GC - last_y) * FRAMES_PER_SECOND;
uv_z_vel = (uv_z_GC - last_z) * FRAMES_PER_SECOND;

uv_x_acc = (uv_x_vel - uv_x_vel_last) * FRAMES_PER_SECOND;
uv_y_acc = (uv_y_vel - uv_y_vel_last) * FRAMES_PER_SECOND;
uv_z_acc = (uv_z_vel - uv_z_vel_last) * FRAMES_PER_SECOND;

if (TakeData == PLAYBACK) ReadContinuousData();

fm_runtime_set_hat(shm->hat-uv_hat_offset, uv_z_GC, 0.0, 0.0);

shm->uv_mode = uv_mode;
uv_stick_x = -JoyX;
uv_stick_y = -Joy Y;

uv_AC_dz_stick = shm->AC_dz;
uv_targ_dz_GC_stick = shm->targ_dz_GC;
uv_targ_dz_zero = shm->targ_dz_zero;
uv_targ_dz_angle = shm->targ_dz_angle;

/* Creates a dead spot in the stick if in flight mode 1 */
if (uv_mode == 1)
{
if ((uv_stick_x < 0.05) && (uv_stick_x > -0.05))

uv_stick_x = 0.0;
if ((uv_stick_y < 0.05) && (uv_stick_y > -0.05))

uv_stick_y = 0.0;
}

/* Protects a divide by zero */
if ((uv_stick_x == 0.0) && (uv_stick_y == 0.0))

uv_stick_angle = 0.0;
else

uv_stick_angle = -atan2f(uv_stick_x,uv_stick_y) *FLSIM_RTD;

92

uv_targ_angle_AC_Stick = uv_stick_angle;

/* minus angle due to scene coordinate system being +90 deg equals west*/
uv_targ_angle_stick = (-uv_h + uv_stick_angle);

/* Determines stick angle in global coordinate system */
if (uv_targ_angle_stick > 180.0)

uv_targ_angle_GC_Stick = uv_targ_angle_stick - 360.0;
else if (uv_targ_angle < -180.0)

uv_targ_angle_GC_Stick = uv_targ_angle_stick + 360.0;
else

uv_targ_angle_GC_Stick = uv_targ_angle_stick;

/* Limits the max range to a camera angle of 85 degrees */
uv_targ_max_stick =

sqrt(pow((uv_AC_dz_stick*tanf(85*FLSM_DTR)),2));

/* Determines the turn radius based upon Velocity and max g's(n) */
uv_turn_radius_stick = pow(uv_Vel,2)/

(9.8 * sqrtf(pow(uv_n,2)-l));

/* Forces the target to be outside 2*turn radius */
uv_targ_min_stick = sqrt(4*pow(uv_turn_radius_stick,2));

/* Allows target to be anywhere when in turn mode */
if (uv_mode == 23)

uv_targ_min_stick = 0.0;

/* Determines the range to target based upon distance allowed and stick angle */
uv_targ_hyp_stick =

sqrtf(pow(uv_stick_x,2)+pow(uv_stick_y,2))*uv_targ_max_stick;

if (uv_targ_hyp_stick < uv_targ_min_stick)
uv_targ_hyp_stick = uv_targ_min_stick;

/* Calculates the distances based upon stick angle and range (both AC & GC) */
uv_targ_dx_AC_stick = cosf(uv_targ_angle_AC_Stick *

FLSM_DTR)*uv_targ_hyp_stick;
uv_targ_dy_AC_stick = sinf(uv_targ_angle_AC_Stick *

FLSIM_DTR)*uv_targ_hyp_stick;
uv_targ_dx_GC_stick = sinf(uv_targ_angle_GC_Stick *

FLSIM_DTR)*uv_targ_hyp_stick;
uv_targ_dy_GC_stick = cosf(uv_targ_angle_GC_Stick *

FLSIM_DTR)*uv_targ_hyp_stick;

93

/*Determine the XYZ target position from the AC position and distances */
uv_targ_x_GC_stick = uv_x_GC + uv_targ_dx_GC_stick;
uv_targ_y_GC_stick = uv_y_GC + uv_targ_dy_GC_stick;
uv_targ_z_GC_stick = uv_z_GC - uv_targ_dz_GC_stick;

uv_switch = 1;

/* Toggles top hat through Operator modes */
if (cpt_PosTrans(CPT_HAP_TOP))
{
uv_targ_lock++;
uv_s witch = 0;

uv_lock_on = 0;

if (uv_targ_lock > 3)
uv_targ_lock = 0;

/* If in turn locks out operator mode 2 & 3 */
if (uv_mode == 23 && uv_targ_lock > 1)

uv_targ_lock = 1;

/* Sends synch signal to shared memory for coordination with scene */
if (uv_targ_lock ==1)
{
uv_latch = 1;
shm->vegaheartbeat = 0;

/* Locks camera angle in operator mode 2 */
if (uv_targ_lock == 2)
{
if (-uv_h> 180.0)
uv_targ_angle_zero = -uv_h - 360.0;

else if (-uv_h<-180.0)
uv_targ_angle_zero = -uv_h + 360.0;

else
uv_targ_angle_zero = -uv_h;

}

/* Locks camera angle in operator mode 3 */
if (uv_targ_lock == 3)
uv_stick_angle_angle = uv_stick_angle;

}

94

/* Set target locked position for different operator modes */
if (uv_targ_lock == 0)
{
uv_targ_locked_x = uv_targ_x_GC_stick;
uv_targ_locked_y = uv_targ_y_GC_stick;
uv_targ_locked_z = uv_targ_z_GC_stick;

}

if (uv_targ_lock == 1 && uv_latch && shm->vegaheartbeat)
{
uv_latch = 0;
uv_targ_locked_x = uv_targ_x_GC_stick;
uv_targ_locked_y = uv_targ_y_GC_stick;
uv_targ_locked_z = uv_targ_z_GC_stick;

}

if (uv_targ_lock == 2)
{
uv_targ_dx_zero = sinf(uv_targ_angle_zero *

FLSIM_DTR)*uv_targ_min_stick;

uv_targ_dy_zero = cosf(uv_targ_angle_zero *
FLSIM_DTR)*uv_targ_min_stick;

uv_targ_locked_x = uv_x_GC + uv_targ_dx_zero;
uv_targ_locked_y = uv_y_GC + uv_targ_dy_zero;
uv_targ_locked_z = uv_z_GC - uv_targ_dz_zero;

}

if (uv_targ_lock == 3)
{
uv_targ_angle_angle = (-uv_h + uv_stick_angle_angle);

if (uv_targ_angle_angle > 180.0)
uv_targ_angle_angle = uv_targ_angle_angle - 360.0;

else if (uv_targ_angle_angle < -180.0)
uv_targ_angle_angle = uv_targ_angle_angle + 360.0;

else
uv_targ_angle_angle = uv_targ_angle_angle;

uv_targ_dx_angle = sinf(uv_targ_angle_angle *
FLSIM_DTR)*uv_targ_min_stick;

95

uv_targ_dy_angle = cosf(uv_targ_angle_angle *
FLSIM_DTR)*uv_targ_min_stick;

uv_targ_locked_x = uv_x_GC + uv_targ_dx_angle;
uv_targ_locked_y = uv_y_GC + uv_targ_dy_angle;
uv_targ_locked_z = uv_z_GC - uv_targ_dz_angle;

}

/* Calculates distance to target from locked position and AC position */
uv_targ_dx_GC_stick = (uv_targ_locked_y - uv_y_GC);
uv_targ_dy_GC_stick = (uv_targ_locked_x - uv_x_GC);
uv_targ_dz_AC_stick = uv_targ_dz_GC_stick = (uv_z_GC -

u v_targ_locked_z);

/* Back calculates angle to target */
if ((uv_targ_dy_GC == 0.0) && (uv_targ_dx_GC == 0.0))
uv_targ_angle_GC = 0.0;

else
uv_targ_angle_GC =

atan2f(uv_targ_dy_GC,uv_targ_dx_GC)*FLSIM_RTD;
uv_targ_angle = uv_targ_angle_GC + uv_h;

if (uv_targ_angle > 180.0)
uv_targ_angle_AC = uv_targ_angle - 360.0;

else if (uv_targ_angle < -180.0)
uv_targ_angle_AC = uv_targ_angle + 360.0;

else
uv_targ_angle_AC = uv_targ_angle;

uv_targ_hyp = sqrtf(pow(uv_targ_dx_GC,2)+pow(uv_targ_dy_GC,2));

uv_targ_dx_AC = cosf(uv_targ_angle_AC * FLSIM_DTR)*uv_targ_hyp;
uv_targ_dy_AC = sinf(uv_targ_angle_AC * FLSEM_DTR)*uv_targ_hyp;

/* Obtains Euler angles and trig values from FLSEV1 */
uv_phi = gdp->attitude.runtime_output.flsim.phi; /*roll*/
uv_psi = gdp->attitude.runtime_output.flsim.psi;/*heading*/
uv_theta = gdp->attitude.runtime_output.flsim.theta;/*pitch*/
uv_cos_phi = gdp->attitude.runtime_output.flsim.cos_phi;
uv_cos_theta = gdp->attitude.runtime_output.flsim.cos_theta;
uv_cos_psi = gdp->attitude.runtime_output.flsim.cos_psi;
uv_sin_phi = gdp->attitude.runtime_output.flsim.sin_phi;
uv_sin_theta = gdp->attitude.runtime_output.flsim.sin_theta;
uv_sin_psi = gdp->attitude.runtime_output.flsim.sin_psi;

96

if (!uv_switch)
shm->uv_switch = uv_switch;

shm->targ_lock = uv_targ_lock;

}

/* Determines the camera angles for simulation purposes */
void CameraAngles(void)
{
/* Calculates the distance in the Aircraft frame from GC position */

uv_Rx = uv_cos_theta * uv_cos_psi * uv_targ_dx_GC_stick
+ uv_cos_theta * uv_sin_psi * uv_targ_dy_GC_stick
- uv_sin_theta * uv_targ_dz_GC_stick;

uv_Ry = (uv_sin_phi * uv_sin_theta * uv_cos_psi - uv_cos_phi *
uv_sin_psi)* uv_targ_dx_GC_stick

+ (uv_sin_phi * uv_sin_theta * uv_sin_psi + uv_cos_phi *
uv_cos_psi)* uv_targ_dy_GC_stick

+ uv_sin_phi * uv_cos_theta * uv_targ_dz_GC_stick;
uv_Rz = (uv_cos_phi * uv_sin_theta * uv_cos_psi + uv_sin_phi *

uv_sin_psi)* uv_targ_dx_GC_stick
+ (uv_cos_phi * uv_sin_theta * uv_sin_psi - uv_sin_phi *

uv_cos_psi)* uv_targ_dy_GC_stick
+ uv_cos_phi * uv_cos_theta * uv_targ_dz_GC_stick;

/* Determines the range */
uv_R = sqrtf(powf(uv_Rx,2) + powf(uv_Ry,2) + powf(uv_Rz,2));

/* Calculates epsilon, azimuth angle */

if ((uv_Rx == 0.0) && (uv_Ry == 0.0))
uv_cam_epsilon = 0.0;

else
uv_cam_epsilon = atan2f(-uv_Rx,uv_Ry);

/* Calculates lambda, elevation angle */

if ((uv_Rz == 0.0) && ((uv_Rx * sinf(uv_cam_epsilon)
- uv_Ry * cosf(uv_cam_epsilon)) == 0.0))

uv_cam_lambda = 0.0;
else
uv_cam_lambda = atan2f(-uv_Rz,

(uv_Rx * sinf(uv_cam_epsilon)
- uv_Ry * cosf(uv_cam_epsilon)));

97

/* Checks */
uv_cam_dx = cosf(uv_cam_epsilon)* uv_Rx + sinf(uv_cam_epsilon)

* uv_Ry;
uv_cam_dy = - cosf(uv_cam_lambda) * sinf(uv_cam_epsilon)* uv_Rx

+ cosf(uv_cam_lambda) * cosf(uv_cam_epsilon)* uv_Ry
+ sinf(uv_cam_lambda) * uv_Rz;

uv_cam_dz = sinf(uv_cam_lambda) * sinf(uv_cam_epsilon)* uv_Rx
- sinf(uv_cam_lambda) * cosf(uv_cam_epsilon)* uv_Ry

+ cosf(uv_cam_lambda) * uv_Rz;
}

/* Actual flight command determination and commands */
void Pilot(void)
{
/* Toggles for changing desired altitude and velocity */

if (cpt_Switch(CPT_RAD_U)) {
uv_Alt_hold++;

}
if (cpt_Switch(CPT_RAD_D)) {

uv_Alt_hold—;
}
if (cpt_Switch(CPT_RAD_R)) {
uv_Vel_new++;

}
if (cpt_Switch(CPT_RAD_L)) {
uv_Vel_new~;

}

/* Toggles for changing desired altitude and velocity */

/* Set velocity desired to new velocity and resets counter for zero lift AOA */
if ((uv_Vel_new - uv_Vel_des) != 0.0)
{
uv_Vel_des = uv_Vel_new;
uv_b = 0;

}

/* Determines velocity error */
uv_Dvel = uv_Vel_des - uv_Vel;

98

/* Throttle algorithm, Alters throttle setting until velocity changes in direction of desired
velocity, when velocity is within lm/s of desired velocity, gains are reduced from a
constant to a variable to help zero in on desired velocity */

if (uv_Dvel > 1.0 && uv_Vel < uv_Vel_set)
uv_thr = uv_thr + 0.001;

else if (uv_Dvel < -1.0 && uv_Vel > uv_Vel_set)
uv_thr = uv_thr - 0.001;

else if (uv_Dvel > 0.0 && uv_Dvel < 1.0 && uv_Vel < uv_Vel_set)
uv_thr = uv_thr + 0.001 *uv_Dvel;

else if (uv_Dvel < 0.0 && uvJDvel > -1.0 && uv_Vel > uv_Vel_set)
uvjhr = uv_thr + 0.001 *uv_Dvel;

/* Sets check parameter to determine direction of velocity change */
uv_Vel_set = uv_Vel;

/* Set throttle */
fm_runtime_set_throttle(uv_thr, uv_thr, uv_thr, uv_thr);

/* Calculates aircraft position based upon Angles and range */

uv_Rx = -cosf(uv_cam_lambda) * sinf(uv_cam_epsilon)* uv_R;
uv_Ry = cosf(uv_cam_lambda) * cosf(uv_cam_epsilon)* uv_R;
uv_Rz = sinf(uv_cam_lambda) * uv_R;

uv_targ_dx_GC = -((uv_cos_theta * uv_cos_psi) * uv_Rx
+ (uv_sin_phi * uv_sin_theta * uv_cos_psi -

uv_cos_phi * uv_sin_psi) * uv_Ry
+ (uv_cos_phi * uv_sin_theta * uv_cos_psi +

uv_sin_phi * uv_sin_psi) * uv_Rz);

uv_targ_dy_GC = -((uv_cos_theta * uv_sin_psi) * uv_Rx
+ (uv_sin_phi * uv_sin_theta * uv_sin_psi +

uv_cos_phi * uv_cos_psi) * uv_Ry
+ (uv_cos_phi * uv_sin_theta * uv_sin_psi -

uv_sin_phi * uv_cos_psi) * uv_Rz);

uv_targ_dz_GC = -((- uv_sin_theta) * uv_Rx
+ (uv_sin_phi * uv_cos_theta) * uv_Ry
+ (uv_cos_phi * uv_cos_theta) * uv_Rz);

uv_targ_range = sqrt(pow(uv_targ_dx_GC,2)+pow(uv_targ_dy_GC,2));
uv_turn_radius = pow(uv_Vel,2)/(9.8 * sqrtf(pow(uv_n,2)-l));

/* Determines epsilon as if Aircraft is in level flight */

99

uv_Rx_level = cosf(-uv_h * FLSIM_DTR) * uv_targ_dx_GC
+ sinf(-uv_h * FLSIM_DTR) * uv_targ_dy_GC;

uv_Ry_level = - (sinf(-uv_h * FLSIM_DTR)) * uv_targ_dx_GC
+ (cosf(-uv_h * FLSIM_DTR)) * uv_targ_dy_GC;

uv_Rz_level = uv_targ_dz_GC;

if ((uv_Rx_level == 0.0) && (uv_Ry_level == 0.0))
uv_cam_epsilon_level = 0.0;

else
uv_cam_epsilon_level = atan2f(-uv_Rx_level,uv_Ry_level);

if ((uv_Rz_level== 0.0) && ((uv_Rx_level *
sinf(uv_cam_epsilon_level) - uv_Ry_level *
cosf(uv_cam_epsilon_level)) == 0.0))

uv_cam_lambda_level = 0.0;
else

uv_cam_lambda_level = atan2f(-uv_Rz_level,
(uv_Rx_level * sinf(uv_cam_epsilon_level)-
uv_Ry_level *cosf(uv_cam_epsilon_level)));

/* Determines the desired camera angles for Model flight */
/* Desires targ off nose ie. dx_AC = range, dy_AC = 0 */

uv_targ_dx_model = cosf(uv_h * FLSIM_DTR)*uv_targ_range;
uv_targ_dy_model = -sinf(uv_h * FLSIMJDTR)*uv_targ_range;

uv_Rx_model = uv_cos_theta * uv_cos_psi * uv_targ_dx_model
+ uv_cos_theta * uv_sin_psi * uv_targ_dy_model
- uv_sin_theta * uv_targ_dz_GC;

uv_Ry_model = (uv_sin_phi * uv_sin_theta * uv_cos_psi -
uv_cos_phi * uv_sin_psi) * uv_targ_dx_model

+ (uv_sin_phi * uv_sin_theta * uv_sin_psi +
uv_cos_phi * uv_cos_psi) * uv_targ_dy_model

+ uv_sin_phi * uv_cos_theta * uv_targ_dz_GC;
uv_Rz_model = (uv_cos_phi * uv_sin_theta * uv_cos_psi +

uv_sin_phi * uv_sin_psi) * uv_targ_dx_model
+ (uv_cos_phi * uv_sin_theta * uv_sin_psi -

uv_sin_phi * uv_cos_psi) * uv_targ_dy_model
+ uv_cos_phi * uv_cos_theta * uv_targ_dz_GC;

if ((uv_Rx_model == 0.0) && (uv_Ry_model == 0.0))
uv_cam_epsilon_model = 0.0;

else
uv_cam_epsilon_model = atan2f(-uv_Rx_model,uv_Ry_model);

100

if ((uv_Rz_model== 0.0) && ((uv_Rx_model *
sinf(uv_cam_epsilon_mode 1)-
uv_Ry_model * cosf(uv_cam_epsilon_model)) == 0.0))

uv_cam_lambda_model = 0.0;
else
uv_cam_lambda_model = atan2f(-uv_Rz_model,

(uv_Rx_model * sinf(uv_cam_epsilon_model)-
uv_Ry_model * cosf(uv_cam_epsilon_model)));

/* Determines the desired camera angles for Mode2 flight */
/* Desires targ off rt wing ie. dx = 0, dy = turn_radius, mode 2R */

uv_targ_dx_mode2R = cosf((uv_h-90.0) *
FLS IM_DTR) *uv_turn_radius;

uv_targ_dy_mode2R = -sinf((uv_h-90.0) *
FLS IM_DTR)*uv_turn_radius;

uv_Rx_mode2R = uv_cos_theta * uv_cos_psi * uv_targ_dx_mode2R
+ uv_cos_theta * uv_sin_psi * uv_targ_dy_mode2R
- uv_sin_theta * uv_targ_dz_GC;

uv_Ry_mode2R = (uv_sin_phi * uv_sin_theta * uv_cos_psi -
uv_cos_phi * uv_sin_psi) * uv_targ_dx_mode2R

+ (uv_sin_phi * uv_sin_theta * uv_sin_psi +
uv_cos_phi * uv_cos_psi)* uv_targ_dy_mode2R

+ uv_sin_phi * uv_cos_theta * uv_targ_dz_GC;
uv_Rz_mode2R = (uv_cos_phi * uv_sin_theta * uv_cos_psi +

uv_sin_phi * uv_sin_psi)* uv_targ_dx_mode2R
+ (uv_cos_phi * uv_sin_theta * uv_sin_psi -

uv_sin_phi * uv_cos_psi)* uv_targ_dy_mode2R
+ uv_cos_phi * uv_cos_theta * uv_targ_dz_GC;

if ((uv_Rx_mode2R == 0.0) && (uv_Ry_mode2R == 0.0))
uv_cam_epsilon_mode2R = 0.0;

else
uv_cam_epsilon_mode2R = atan2f(-uv_Rx_mode2R,uv_Ry_mode2R);

if ((uv_Rz_mode2R== 0.0) && ((uv_Rx_mode2R *
sinf(uv_cam_epsilon_mode2R) - uv_Ry_mode2R *
cosf(uv_cam_epsilon_mode2R)) == 0.0))
uv_cam_lambda_mode2R = 0.0;

else
uv_cam_lambda_mode2R = atan2f(-uv_Rz_mode2R,

(uv_Rx_mode2R *
sinf(uv_cam_epsilon_mode2R) -

uv_Ry_mode2R *

101

cosf(uv_cam_epsilon_mode2R)));

/*Desires targ off It wing ie. dx = 0, dy = -turn_radius, mode 2L */
uv_targ_dx_mode2L = cosf((uv_h+90.0) *

FLS M_DTR)*uv_turn_radius;
uv_targ_dy_mode2L = -sinf((uv_h+90.0) *

FLS IM_DTR)*uv_turn_radius;

uv_Rx_mode2L = uv_cos_theta * uv_cos_psi * uv_targ_dx_mode2L
+ uv_cos_theta * uv_sin_psi * uv_targ_dy_mode2L
- uv_sin_theta * uv_targ_dz_GC;

uv_Ry_mode2L = (uv_sin_phi * uv_sin_theta * uv_cos_psi -
uv_cos_phi * uv_sin_psi) * uv_targ_dx_mode2L

+ (uv_sin_phi * uv_sin_theta * uv_sin_psi +
uv_cos_phi * uv_cos_psi) * uv_targ_dy_mode2L

+ uv_sin_phi * uv_cos_theta * uv_targ_dz_GC;
uv_Rz_mode2L = (uv_cos_phi * uv_sin_theta * uv_cos_psi +

uv_sin_phi * uv_sin_psi) * uv_targ_dx_mode2L
+ (uv_cos_phi * uv_sin_theta * uv_sin_psi -

uv_sin_phi * uv_cos_psi) * uv_targ_dy_mode2L
+ uv_cos_phi * uv_cos_theta * uv_targ_dz_GC;

if ((uv_Rx_mode2L == 0.0) && (uv_Ry_mode2L == 0.0))
uv_cam_epsilon_mode2L = 0.0;

else
uv_cam_epsilon_mode2L = atan2f(-uv_Rx_mode2L,uv_Ry_mode2L);

if ((uv_Rz_mode2L== 0.0) && ((uv_Rx_mode2L *
sinf(uv_cam_epsilon_mode2L) - uv_Ry_mode2L *
cosf(uv_cam_epsilon_mode2L)) == 0.0))

uv_cam_lambda_mode2L = 0.0;
else

uv_cam_lambda_mode2L = atan2f(-uv_Rz_mode2L,
(uv_Rx_mode2L *

sinf(uv_cam_epsilon_mode2L)-
uv_Ry_mode2L *

cosf(uv_cam_epsilon_mode2L)));

/* Insures camera angles are in +- 180 degrees, ie. no 270 degrees */
if (uv_cam_epsilon_model < -PI) uv_cam_epsilon_model +=2*PI;
if (uv_cam_epsilon_model >PI) uv_cam_epsilon_model -= 2*PI;
if (uv_cam_epsilon_mode2R < -PI) uv_cam_epsilon_mode2R += 2*PI;
if (uv_cam_epsilon_mode2R > PI) uv_cam_epsilon_mode2R -= 2*PI;
if (uv_cam_epsilon_mode2L < -PI) uv_cam_epsilon_mode2L += 2*PI;
if (uv_cam_epsilon_mode2L > PI) uv_cam_epsilon_mode2L -= 2*PI;

102

if (uv_cam_lambda_model < -PI) uv_cam_lambda_model += 2*PI;
if (uv_cam_lambda_model >PI) uv_cam_lambda_model -= 2*PI;
if (uv_cam_lambda_mode2R < -PI) uv_cam_lambda_mode2R += 2*PI;
if (uv_cam_lambda_mode2R > PI) uv_cam_lambda_mode2R -= 2*PI;
if (uv_cam_lambda_mode2L < -PI) uv_cam_lambda_mode2L += 2*PI;
if (uv_cam_lambda_mode2L > PI) uv_cam_lambda_mode2L -= 2*PI;

/* Determines the delta camera angles */
uv_cam_Depsilon_model =uv_cam_epsilon_model- uv_cam_epsilon ;
uv_cam_Dlambda_model = uv_cam_lambda -uv_cam_lambda_model;
uv_cam_Depsilon_mode2R = uv_cam_epsilon_mode2R - uv_cam_epsilon;
uv_cam_Dlambda_mode2R = uv_cam_lambda - uv_cam_lambda_mode2R;
uv_cam_Depsilon_mode2L = uv_cam_epsilon_mode2L - uv_cam_epsilon;
uv_cam_Dlambda_mode2L = uv_cam_lambda - uv_cam_lambda_mode2L;

/* Insures camera angles are in +- 180 degrees, ie. no 270 degrees */
if (uv_cam_Depsilon_model <-PI) uv_cam_Depsilon_model += 2*PI;
if (uv_cam_Depsilon_model >PI) uv_cam_Depsilon_model -= 2*PI;
if (uv_cam_Depsilon_mode2R < -PI) uv_cam_Depsilon_mode2R += 2*PI;
if (uv_cam_Depsilon_mode2R > PI) uv_cam_Depsilon_mode2R -= 2*PI;
if (uv_cam_Depsilon_mode2L < -PI) uv_cam_Depsilon_mode2L += 2*PI;
if (uv_cam_Depsilon_mode2L > PI) uv_cam_Depsilon_mode2L -= 2*PI;
if (uv_cam_Dlambda_model <-PI) uv_cam_Dlambda_model += 2*PI;
if (uv_cam_Dlambda_model >PI) uv_cam_Dlambda_model -= 2*PI;
if (uv_cam_Dlambda_mode2R < -PI) uv_cam_Dlambda_mode2R += 2*PI;
if (uv_cam_Dlambda_mode2R > PI) uv_cam_Dlambda_mode2R -= 2*PI;
if (uv_cam_Dlambda_mode2L < -PI) uv_cam_Dlambda_mode2L += 2*PI;
if (uv_cam_Dlambda_mode2L > PI) uv_cam_Dlambda_mode2L -= 2*PI;

uv_turn_range = sqrt(3*pow(uv_turn_radius,2));
range_check = uv_targ_range - uv_turn_radius;

/* Set turn rate based upon velocity and turn radius, also protects a divide by zero by
always setting turn rate to at least 1.0 */

if (uv_Vel == 0.0 II uv_turn_radius == 0.0)
uv_turn_rate = 1.0;

else
uv_turn_rate = uv_Vel / uv_turn_radius;

/* If in mode 1 and target enters turn range, initializes turn, mode 21, else remains in
mode 1 or reenter mode 1 when target exits 2*turn radius */

if (uv_targ_range <= uv_turn_range && uv_mode == 1)
uv_mode = 21;

else if (uv_targ_range >= (2 * uv_turn_radius))
uv mode = 1;

103

if (cpt_PosTrans(CPT_HAP_TRIG) && uv_targ_lock == 1)

uv_bomb++;
if (uv_bomb > 1) uv_bomb = 0;

}

if (uv_targ_lock != 1)
uv_bomb = 0;

if (uv_targ_dz_GC_stick >= 0.0)
uv_drop_time = sqrtf(2.0*uv_targ_dz_GC_stick/9.8);

else
uv_drop_time = 0.0;

uv_bomb_range = uv_turn_radius + uv_Vel * uv_drop_time;

if ((uv_drop_time > 0.0) && (uv_targ_range > uv_bomb_range) &&
uv_bomb)

uv_bomb_run = 1;

if (!uv_bomb)
uv_bomb_run = 0;

shm->bomb = uv_bomb_run;

if (uv_bomb_run)
uv_mode = 1;

if (uv_targ_range <= uv_Vel * uv_drop_time && uv bomb run)
{
uv_bomb_away = l;
uv_bomb_hit = 0;
uv_bomb_x_init = uv_x_GC;
uv_bomb_y_init = uv_y_GC;
uv_bomb_z_init = uv_z_GC;
uv_bomb_h = uv_h;
uv_bomb_v = uv_Vel;
uv_bomb_drop = 1;
uv_bomb_time = 0.0;
uv_bomb_dt = 1.0/FRAMES_PER_SECOND;
uv_drop_time_rel = sqrtf(2.0*uv_targ_dz_GC_stick/9.8);

104

if (uv_bomb_drop)
{
uv_bomb_x = uv_bomb_x_init - sinf(uv_bomb_h * FLSMJDTR) *

uv_bomb_v * uv_bomb_time;
uv_bomb_y = uv_bomb_y_init + cosf(uv_bomb_h * FLSIM_DTR) *

uv_bomb_v * uv_bomb_time;
uv_bomb_z = uv_bomb_z_init - 0.5*9.8*pow(uv_bomb_time,2);
uv_bomb_time += uv_bomb_dt;
if (uv_bomb_time >= uv_drop_time_rel)
{
uv_bomb_hit= 1;
uv_bomb_drop = 0;
uv_bomb = 0;

}
}

shm->bomb_drop = uv_bomb_drop;
shm->bomb_hit = uv_bomb_hit;
shm->bomb_x = uv_bomb_x;
shm->bomb_y = uv_bomb_y;
shm->bomb_z = uv_bomb_z;

if (uv_bomb_run && uv_bomb_away)
{

uv_bomb_run = 0;
uv_bomb_away = 0;

}

/* Determines turn direction and sets parameter for initialization termination, direction is
determined based upon initial target location */

if (uv_cam_epsilon_level >= -PI/2 && uv_cam_epsilon_level <= PI/2
&& uvjnode == 1)

{
uv_turn_dir = +l;
uv_cam_epsilon_level_init = uv_cam_epsilon_level;

else if ((uv_cam_epsilon_level < -PI/2 II
uv_cam_epsilon_level > PI/2) && uv_mode == 1)

{
uv_turn_dir = -l;
uv_cam_epsilon_level_init = uv_cam_epsilon_level;

/* Set direction for turn entry */
if (uv_cam_epsilon_level < 0.0 && uv_mode == 1)

105

uv_turn_dir_init = -1;
else if (uv_cam_epsilon_level > 0.0 && uvjnode == 1)

uv_turn_dir_init = +1;

/* Set turn rate and mode 2 values based upon turn direction */
if (uv_turn_dir == 1)
{
uv_turn_rate = uv_turn_rate;
uv_cam_Depsilon_mode2 = uv_cam_Depsilon_mode2R;
uv_cam_Dlambda_mode2 = uv_cam_Dlambda_mode2R;

}
else if (uv_turn_dir == -1)
{
uv_turn_rate = -uv_turn_rate;
uv_cam_Depsilon_mode2 = uv_cam_Depsilon_mode2L;
uv_cam_Dlambda_mode2 = uv_cam_Dlambda_mode2L;

}

/* Dampens mode 1 oscillation by small fluctations in deltas */
if ((uv_cam_Dlambda_model*FLSIM_RTD < .01

&& uv_cam_Dlambda_model*FLSIM_RTD > -.01)
&& (uv_cam_Depsilon_model*FLSIM_RTD < .03

&& uv_cam_Depsilon_model*FLSIM_RTD > -.03))
uv_lock_on = 1;

if ((uv_cam_Dlambda_model*FLSIM_RTD > 1.0
II uv_cam_Dlambda_model*FLSIM_RTD < -1.0

II uv_cam_Depsilon_model*FLSIM_RTD > 3
II uv_cam_Depsilon_model*FLSIM_RTD < -3)
&& uv_lock_on)

uv_lock_on = 0;

if (uv_cam_Dlambda_model*FLSIM_RTD < 1.0
&& uv_cam_Dlambda_model*FLSIM_RTD > -1.0 && uv_lock_on)

uv_cam_Dlambda_model = 0.0;

if (uv_cam_Depsilon_model*FLSIM_RTD < 3
&& uv_cam_Depsilon_model*FLSIM_RTD > -3 && uv_lock_on)

uv_cam_Depsilon_model = 0.0;

/* Dampens mode 2 oscillations by small fluctations in deltas always gives lambda sole
control when target is at a greater distance than 100 meters. This prevents epsilon from
slowing down range correction */

if (uv_cam_Dlambda_mode2*FLSIM_RTD < 1.0
&& uv_cam_Dlambda_mode2*FLSIM_RTD > -1.0)

106

uv_cam_Dlambda_mode2 = 0.0;
if ((uv_cam_Depsilon_mode2*FLSIM_RTD < 1.0

&& uv_cam_Depsilon_mode2*FLSIM_RTD > -1.0)
II (range_check > 100.0 II range_check < -100.0))
uv_cam_Depsilon_mode2 = 0.0;

/* Determines termination of turn entry and entry into roll over, mode 22 */
if ((((uv_turn_dir == 1) && (uv_cam_epsilon_level_init < 0.0)

&& (uv_cam_epsilon_level > 0.0)) II
((uv_turn_dir == 1) && (uv_cam_epsilon_level_init > 0.0)

&& (uv_cam_epsilon_level < 0.0)) II
((uv_turn_dir == -1) && (uv_cam_epsilon_level_init < 0.0)

&& (uv_cam_epsilon_level > 0.0)) II
((uv_turn_dir == -1) && (uv_cam_epsilon_level_init > 0.0)

&& (uv_cam_epsilon_level < 0.0))) && (uv_mode ==21))
uv_mode = 22;

/* Determines change in psi, for different flight modes */
if (uv_mode== 1)
{
uv_dpsi = (((uv_sin_phi / uv_cos_theta) * (-

uv_cam_Dlambda_model) *
sqrt(pow(cosf(uv_cam_epsilon),2)))

-((uv_cos_phi / uv_cos_theta) *
uv_cam_Depsilon_model)) * FLSIM_RTD;

if (uv_mode ==21)
uv_dpsi = uv_turn_dir_init * uv_turn_rate * FLSIM_RTD;

if (uv_mode == 22)
uv_dpsi = uv_turn_rate * FLSIM_RTD;

if (uv_mode == 23)
{

uv_dpsi = (((uv_sin_phi / uv_cos_theta) * (uv_sin_phi * uv_cos_theta *
uv_turn_rate - uv_cam_Dlambda_mode2

* sqrt(pow(cosf(uv_cam_epsilon),2))))
+ ((uv_cos_phi / uv_cos_theta) * (uv_cos_phi *

uv_cos_theta * uv_turn_rate - uv_cam_Depsilon_mode2))) *
FLSM_RTD;

}

/* Insures change angle is +- 180 */
if (uv_dpsi > 180.0) uv_dpsi -= 360.0;

107

if (uv_dpsi < -180.0) uv_dpsi += 360.0;

/* Helps dampen oscillations in turn, by keeping delta psi constant within small camera
angle fluctations */

if (uv_mode == 23 && uv_cam_Dlambda_mode2 == 0.0 &&
uv_cam_Depsilon_mode2 == 0.0)

uv_dpsi = uv_dpsi_set;

/* Determines desired bank angle based upon max g load desired */
uv_bank_desired = acosf(l/uv_n)*FLSIM_RTD;

/* Determines desired roll angle based upon delta psi and mode */
/* In mode 1 all turns greater than 1 degree set to desired bank,

else dampens out roll desired as delta psi approaches zero */
if (uv_mode== 1)
{
if (uv_dpsi > 3.0)
uv_roll_desired = uv_bank_desired;

else if (uv_dpsi < -3.0)
uv_roll_desired = -uv_bank_desired;

else
uv_roll_desired = uv_dpsi * uv_bank_desired / 3.0;

}

/* If in operator mode 3, constant angle level turn sets roll angle to delta psi */
if (uv_targ_lock ==3)

uv_roll_desired = uv_dpsi;

/* If mode 2 roll desired is set to a ratio of delta psi to the desired turn rate, allows
correction for range, by increasing bank in range outside turn radius and decreases bank
for range inside turn radius. Also for purposes of insuring no great changes in roll, limits
roll to a maximum variation. */

if (uv_turn_radius == 0.0)
uv_bank_max_var = 0.0;

else
uv_bank_max_var =

sqrt(pow((range_check/uv_turn_radius),2))*5.0;

if (uv_mode ==21 II uv_mode == 22 II uv_mode == 23)
{
uv_roll_desired =

(uv_dpsi/(sqrt(pow(uv_turn_rate,2))*FLSIM_RTD))*uv_bank_desired;
if (uv_roll_desired > uv_bank_desired + uv_bank_max_var)
uv_roll_desired = uv_bank_desired + uv_bank_max_var;

else if (uv_roll_desired < -(uv_bank_desired +

108

uv_bank_max_var))
uv_roll_desired = -(uv_bank_desired + uv_bank_max_var);

}

if (uv_mode == 23 && uv_turn_dir == 1 && uv_roll_desired <
(uv_bank_desired - uv_bank_max_var))

uv_roll_desired = (uv_bank_desired - uv_bank_max_var);
if (uv_mode == 23 && uv_turn_dir == -1 && uv_roll_desired > -

(uv_bank_desired - uv_bank_max_var))
uv_roll_desired = -(uv_bank_desired - uv_bank_max_var);

/* Prohibits rolling opposite direction once in a turn */
if (uv_mode == 23 && uv_turn_dir == 1 && uv_roll_desired < 0.0)
uv_roll_desired = 0.0;

if (uvjmode == 23 && uv_turn_dir == -1 && uv_roll_desired > 0.0)
uv_roll_desired = 0.0;

/* Prohibits rolls of +- 90 degrees */
if (uv_roll_desired >= 89.0)
uv_roll_desired = 89.0;

else if (uv_roll_desired <= -89.0)
uv_roll_desired = -89.0;

/* Calculates the roll error */
uv_Droll=uv_roll_desired-uv_phi*FLSIM_RTD;

/* Determines if roll over is complete, then enters final turn */
if (uv_mode == 22 && uv_Droll < 0.02 && uv_Droll > -0.02)
uv_mode = 23;

/* Uses roll error to control roll rate, set for 2g turn, as roll error approaches zero, roll rate
is damped out */

if((uv_Droll)>60.0)
uv_roll_rate = 1.0;

else if ((uvJDroll) < -60.0)
uv_roll_rate = -1.0;

else
uv_roll_rate = (1.0/60.0)*(uv_Droll);

/* Set initial pitch rate for turn equal to roll angle desired */
uv_pitch_rate_turn_init = sqrt(pow(uv_roll_desired,2)) / 100.0;

/* Set altitude error */
uv_Dalt = uv_z_GC - uv_Alt_hold;

109

/* Set the climb/descent rate based upon altitude error, allows greater changes to correct
faster */

uv_VVI_des = -(uv_Dalt/15.0);

if (uv_phi*FLSIM_RTD > .5 II uv_phi*FLSM_RTD < -.5)
uv_theta_des_reset = 1;

if (uv_phi*FLSIM_RTD < .5 && uv_phi*FLSIM_RTD > -.5
&& uv_theta_des_reset)

{
uv_theta_des_reset = 0;
uv_theta_des = uv_theta_zero;

}

/* Algorithm for control altitude, determines theta desired, control variable in
determining pitch error */
/* Modifies theta desired, if climing or descending to fast or in wrong direction, has two
value of modification, one when too fast or wrong direction and a second when the theta
error is within +-.25. */

if (((uv_VVI < uv_VVI_des) && (uv_VVI < uv_VVI_set)
&& uv_Dalt > 0.0) II ((uv_VVI > uv_VVI_des)

&& (uv_VVI > uv_VVI_set) && uv_Dalt < 0.0))
uv_theta_des = uv_theta_des - .005 * (uv_VVI - uv_VVI_des);

else if ((uv_Dalt < 0.0 && uv_VVI < uv_VVI_des
&& uv_VVI < uv_VVI_set && uvJDtheta < 0.25

&& uvJDtheta > -0.25)11 (uv_Dalt > 0.0 && uv_VVI > uv_VVI_des
&& uv_VVI > uv_VVI_set && uv_Dtheta < 0.25
&& uv_Dtheta > -0.25))

uv_theta_des = uv_theta_des - .01 * (uv_VVI - uv_VVI_des);

/* Initializes the theta for zero lift */
if ((uvJDalt < 0.50) && (uv_Dalt > -0.5) && uv_b == 0)

uv_theta_zero = uv_theta_des;
uv_theta_des = uv_theta_zero;
uv_b = uv_b + 1;

/* Set desired theta to theta zero if altitude error +- .5 */
if ((uv_Dalt < 0.50) && (uv_Dalt > -0.5))
uv_theta_des = uv_theta_zero;

/* Modifies theta zero */
if ((uv_Dalt < 0.00) && (uv_Dalt > -0.50) && uv_b == 1

&& uv_Dtheta < .05 && uv_Dtheta > -.05 && uv_VVI < 0.0

110

&& uv_VVI < uv_VVI_set)
{
uv_theta_zero = uv_theta_zero + .0001;
uv_theta_des = uv_theta_zero;

}
else if ((uv_Dalt < 0.50) && (uv_Dalt > 0.0) && uv_b == 1

&& uv_Dtheta < .05 && uv_Dtheta > -.05 && uv_VVI > 0.0
&& uv_VVI > uv_VVI_set)

{
uv_theta_zero = uv_theta_zero - .0001;
uv_theta_des = uv_theta_zero;

}

/* Determines theta error for pitch rate determination */
uv_Dtheta = (uv_theta_des-(uv_theta*FLSM_RTD));

/* Determines pitch rate for altitude hold, maximizes rate if error greater than 5.0
degrees, else dampens out rate as error approaches zero, has three ranges < 1, 1 to 5, and
>5. */

if (uv_Dtheta > 5.0 && uv_theta < uv_theta_set)
uv_pitch_rate_alt = 1.0;

else if (uv_Dtheta < -5.0 && uv_theta > uv_theta_set)
uv_pitch_rate_alt = -1.0;

else if (uv_Dtheta < 1.0 && uv_Dtheta > -1.0)
uv_pitch_rate_alt = (5.0/6.75)*uv_Dtheta;

else
uv_pitch_rate_alt = (l/10.0)*uv_Dtheta;

/* Determines if pitch rate is stabilized for modification of turn pitch rate */
uv_pitch_Drate = uv_pitch_rate_old - uv_pitch_rate_new;

/* Modifies pitch rate for turn if pitch rate is stable and aircraft is still climbing or
descending */

if (uv_pitch_rate_turn_init != 0.0 && uv_pitch_Drate <= 0.0009
&& uv_pitch_Drate >= -0.0009 && uv_Dalt < 0.0
&& uv_VVI < uv_VVI_set && uv_VVI < 0.0)
uv_pitch_rate_turn_mod = uv_pitch_rate_turn_mod + 0.001;

else if (uv_pitch_rate_turn_init != 0.0
&& uv_pitch_Drate <= 0.0009 && uv_pitch_Drate >= -0.0009
&& uv_Dalt > 0.0 && uv_VVI > uv_VVI_set && uv_VVI > 0.0)
uv_pitch_rate_turn_mod = uv_pitch_rate_turn_mod - 0.001;

/* Sets pitch rate for turn equal to the initial value plus the modification */
uv_pitch_rate_turn = uv_pitch_rate_turn_init +

uv_pitch_rate_turn_mod;

111

if (uv_pitch_rate_turn_init == 0.0)
uv_pitch_rate_turn = 0.0;

/* Sum the two variables of pitch rate */
uv_pitch_rate = uv_pitch_rate_turn + uv_pitch_rate_alt;

/* Limits pitch rate to +- 1.0 */
if (uv_pitch_rate > 1.0)
uv_pitch_rate = 1.0;

if (uv_pitch_rate < -1.0)
uv_pitch_rate = -1.0;

/* Sets values for direction determination */
uv_VVI_set = uv_VVI;
uv_theta_set = uv_theta;
uv_pitch_rate_old = uv_pitch_rate_new;
uv_pitch_rate_new = uv_pitch_rate_alt;
uv_dpsi_set = uv_dpsi;

/* Sets stick at desired rates */
fm_runtime_set_stick(uv_pitch_rate, uv_roll_rate);

}

/*=======================WRTTEDA7A=========:=================*/

void WriteLandingData(void)
{

int P, n, i;
char str[250];
char OUTPUT[50];

if (Practice)
{

if (Clouds)
sprintf(OUTPUT,"DATA.SJ%i.BK%i.N%i.PC", Subject, Block, N+l);
else
sprintf(OUTPUT,"DATA.SJ%i.BK%i.N%i.P", Subject, Block, N+l);

else
sprintf(OUTPUT,"DATA.SJ%i.BK%i.N%i", Subject, Block, N+l);

fn = open(OUTPUT, 0_WRONLY I 0_CREAT I 0_TRUNC);

sprintf(str," SUB BLK N LOC HAP TUR CLD TRI X_RMS Y_RMS
X_POS Y_POS Z_POS X_VEL Y_VEL Z_VEL X_ACC

112

Y_ACC Z_ACC");
strcat(str," H_POS P_POS R_POS H_VEL P_VEL

R_VEL H_ACC P_ACC R_ACC CRA WOW OOB\n");
write(fn, str, 225);

sprintf(str,
"%4i%4i%4i%4i%4i%4i%4i%4i%9.5f%9.5f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f
%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f%9.2f",

Subject, Block, N+l, Location, Haptics, Turbulance, Clouds,
Trial, RMSx, RMSy, uv_x_GC, uv_y_GC, uv_z_GC, uv_x_vel,
uv_y_vel, uv_z_vel, uv_x_acc, uv_y_acc, uv_z_acc, uv_h, uv_p,
uv_r, uv_h_vel, uv_p_vel, uv_r_vel, uv_h_acc, uv_p_acc, uv_r_acc

);
write(fn, str, 225-13);

void WriteCrashData(void)
{

charstr[250];

CrashDataWritten = 1;

sprintf(str,
"%4i%4i%4i\n",
Crashed, Wow, OutOfBounds);

write(fn, str, 13);

close(fn);
}

void WriteContinuousData(void)
{

int P, n, i;
charstr[200];
charOUTPUT[50];

if (FrameCounter < 4) return;

if (IFileContinuous) {

sprintf(
OUTPUT,"DATA.%SBJli.BLK% li.N% li.LOC% li.HAP% li.TUR% li.CLD% li.TRL%
li",

113

}

Subject, Block, N+l, Location, Haptics, Turbulance, Clouds, Trial);

FileContinuous = open(OUTPUT, 0_WRONLY I 0_CREAT I
0_TRUNC);

sprintf(str," WOW X_JOY Y_JOY X_WND Y_WND SBK X_POS
Y_POS Z_POS X_VEL Y_VEL Z_VEL X_ACC Y_ACC Z_ACC
H_POS P_POS R_POS H_VEL P_VEL R_VEL H_ACC P_ACC
R_ACC\n");
write(FileContinuous, str, 163);

sprintf(str,"%4i%4i%7.3f%7.3f%7.3f%7.3f%4i%7.2f%7.2f%7.2f%7.2f
%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f
%7.2f%7.2f%7.2f\n",

Wow, Crashed, JoyX, Joy Y, WindX, WindY, SpeedBrake, uv_x_GC,
uv_y_GC, uv_z_GC, uv_x_vel, uv_y_vel, uv_z_vel, uv_x_acc,
uv_y_acc, uv_z_acc, uv_h, uv_p, uv_r, uv_h_vel, uv_p_vel,
uv_r_vel, uv_h_acc, uv_p_acc, uv_r_acc);

write(FileContinuous, str, 163);

if (Crashed II OutOfBounds II (Wow && (FrameCounter >=
LANDING_TIMEOUT * FRAMES_PER_SECOND))) {
close(FileContinuous);
IdleFlsim = 1;

void ReadContinuousData(void)
{

int P, n, i;
char str[200];
charINPUT[50];

if (IFileContinuous) {

sprintf(INPUT,"DATA.DEFAULT",
Subject, Block, N, Location, Haptics, Turbulance, Clouds, Trial);

FileContinuous = open(INPUT, 0_RDONLY);

/* fscanf(FileContinuous, str); */

114

}
I*

fscanf(FileContinuous,

"%4i%4i%7.3f%7.3f%7.3f%7.3f%4i%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f
%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f\n",

Wow, Crashed, JoyX, JoyY, WindX, WindY, SpeedBrake, uv_x_GC,
uv_y_GC, uv_z_GC, uv_x_vel, uv_y_vel, uv_z_vel, uv_x_acc,
uv_y_acc, uv_z_acc, uv_h, uv_p, uv_r, uv_h_vel, uv_p_vel,
uv_r_vel, uv_h_acc, uv_p_acc, uv_r_acc);

*/
if (Crashed II (Wow && (FrameCounter >= LANDINGJTIMEOUT *

FRAMES_PER_SECOND))) {
close(FileContinuous);
IdleFlsim = 1;

}
}

115

Appendix B
Triangulation Method

Triangulation is a method in which a position can be determined from outside

sources. In normal practice, triangulation is usually accomplished with three data points.

Using the algorithm in CSRC for range information, triangulation can be accomplished

using only two points. Figure 25 shows an overview of how two data points represented by

two different aircrafts can triangulate onto a target. Using the range information algorithm,

points a and b can be obtained from the aircraft's position, orientation and sensor angles.

These two points, along with two additional points directly below the aircraft, are

positioned at sea level and are obtained from the assumption that DZ is the aircraft's

position above sea level.

Aircraft 1
(X1,Y1,Z1)

(XI, Y 1,0) (Xa,Ya,0) (Xb, Yb, 0)

Aircraft 2
(X2, Y2, Z2)

(X2, Y2, 0)

Figure 25. Triangulation Overview

From figure 25, there are six known data points. These six points located in a 3-

dimensional plane are reduced to a 2-dimensional plane. By eliminating the y

116

components, these data points are brought to an XZ plane, as shown in figure 26.

Conversely, the x components could be eliminated to obtain a YZ plane.

(XI, Zl)

(X2, Z2)

(XI, 0)

Figure 26. XZ Plane

In figure 26, the data points, x and z components, are used to determine the distances

between each point. Using trigonometry, the three angles of a triangle formed with the

target position can be calculated from these distances. With the calculated angles and

distances, the height of the target above sea level can be determined. Reapplying the

range information algorithm with the known DZ from either data point to the target, the

target's XYZ position is determined. Two mathcad solutions are provided to

demonstrate this method. Each solution has a different set of aircraft position and

orientation along with a different target location. Both solutions were able to determine

the target's height above sea level with an accuracy of 100%. This accuracy is subject to

the two data points used. As the distance between the two data points is reduced a

singularity is approached. The minimum distance required was not determined and is left

for future evaluation.

117

ei:=

Case One:

:10.oJL vi:=0.O— d>i:=60.0— e2:=-0.O— v2:=-135.0— <|>2:=0.O—
180 180 180 180 180 180

Rl:=

cos(61)-cos(\|/l) cos(61)-sin(\|/l) -sin(91)

sin(<|)l)-sin(ei)-cos(\|/l)-cos(<t>l)'sin(\|/l) sin(<|) l)-sin(91)-sin(\|/l) + cos(<|>l)-cos(\|/l) sin(<])l)'Cos(61)

cos(<|>l)-sin(91)-cos(\|/l) + sin(<|>l)-sin(\]/l) cos(<]>l)-sin(91)-sin(\|/l)- sin(<])l)-cos(v|fl) cos(<)>l)-cos(91)

R2:=

cos(62)-cos(i|/2) cos(62)-sin(V|/2) -sin(92)

sin(<|)2)'sin(e2)'Cos(\(;2)-cos((j)2)-sin(v2) sin(<|>2)-sin(92)'sin(\|/2)-»-cos(<t>2)'Cos(y2) sin(<t>2)-cos(92)

cos((()2)-sin(e2)-cos(v2) + sin(<t)2)'sin(\|/2) cos(<t>2)-sin(92)-sin(v|/2)- sin((|)2)'Cos(v2) cos(<|)2)-cos(92).

0.985 0 -0.174 -0.707-0.707 0

Rl= 0.15 0.5 0.853 R2= 0.707-0.707 0

0.087 -0.866 0.492 J [0 0 1

Xl:=200 Yl:=3000 Zl :=1000C

X2:=-6000 Y2:=-200 Z2:=500
XT:=100 YT:=1000 ZT:=50

DX1:=XT-X1 DYi:=YT-Yl DZ1:=ZT-Z1
DX2:=XT-X2 DY2:=YT-Y2 DZ2:=ZT-Z2

DX1 = -100 DYU-2-103 DZl=-9.95-103

DX2=6.M03 DY2=1.2«103 DZ2 = ~450

Camera Angle Determination:

1.629-103

"9.50M03

-3.176*10

8l:=atan(—) edeg := el-— edeg = 9.731
\Ryl/ 7t

Rxl" DXl" Rxl'

Ryl :=R1- DY1 Ryl =

.Rzl. DZ1. Rzl.

A,l := atari
-Rzl

(Rxl-sin(El)-Rylcos(el))

-5.162-103

3.465M03

-450

Xdeg:=wi^ Weg = 18.236
%

"RX2" DX2" Rx2~

Ry2 :=R2. DY2 Ry2 =

Rz2 DZ2 Rz2.

e2 := atari
/-Rxi
\Ry2

180
edeg:=e2 edeg = 56.129

7t

X2 :=atan
-Rz2

(Rx2sin(e2)- Ry2-cos(e2))
Adeg:=A2i^

n Xdeg =~4.14

118

Data Points a and b:
DZ1:=0-Z1 £ :=el X \=M 0 :=91 y :=yl if :=<|>1

Lj, =cosecos0cos4/ + sine(sin$sin0cosxF-cos0sin*P)

L12 = cos e cos 0 sin *F + sin e(sin O sin 0 sin *F + cos 0 cos VF)

L13 =-cose sin 0 + sine sin0cos©

L21 =- cos A sin e cos 0 cos *F + cos X cose (sin O sin© cos *F- cos O sin *F)

+ sin A(cos <1> sin 0 cos *F + sin <3> sin VF)

L22 =-cosAsinecos©sinxF + cos/lcose(sinOsin@sinxF + cosOcoslF)

+ sin A(cos <I> sin 0 sin T - sin <3> cos XF)

L23 = cos X sin ec sin 0 + cos X cos e sin O cos 0 + sin X cos <& cos 0

L31 =sin/lsinecos0cosxF-sinAcose(sin<I>sin0cosvF-cosOsinlF)

+ cos A(cos O sin 0 cos *F + sin O sin *F)

L32 = sin Xsin e cos 0sin ^ - sin X cose(sin O sin 0sin *F + cosO cos XF)

+ cos A(cos <& sin 0 sin T - sin $ cos ¥)

L33 = - sin X sin e sin 0 - sin A cos e sin O cos 0 + cos X cos O cos 0

iwi-"*L13-L3SL12n71 pv, -LH-L33- L31-L13 n„
L31L12-L11-L32 L31L12-L11-L32

DX1= "100.503 DY^-2.01'103

Xb:=Xl + DXl Yb:=Yl + DYl

Xb = 99.497 Yb = 989.95

DZ2:=0-Z2 e :=E2 X :=X2 9 :=62 y :=\|/2 <|) :=<|)2

Lu =cosecos0cos4/ + sine(sinOsin0cosvP-cos0sinxF)

L12 = cos e cos 0 sin *F + sin e (sin <D sin 0 sin *F + cos 0 cos *F)

L13 = -cose sin 0 +sine sin<I>cos0

L21 =-cos/lsinecos0cosxF + cosAcose(sinOsin0cosvF-cosOsin^/)

+ sin A(cos O sin 0 cos *P + sin O sin *F)

L22 =-cos/Lsinecos0sinxF + cosAcose(sinOsin0sinvF + cosOcosxF)

+ sin A(cos 3> sin 0 sin *¥ - sin O cos T)

L23 = cos A sin ec sin 0 + cos A cos e sin <& cos 0 + sin X cos O cos 0

L31 = sin X sin e cos 0 cos ¥ - sin A cos e (sin O sin 0 cos *¥ - cos O sin *F)

+ cos A(cos O sin 0 cos *F + sin O sin *F)

L32 = sin Xsin e cos 0sin *F - sin X cose(sin O sin 0sin *F + cos <& cos *F)

+ cos A(cos O sin 0 sin ¥ - sin <E> cos *P)

L33 = - sin X sin e sin 0 - sin X cos e sin O cos 0 + cos X cos <2> cos 0

119

DX2._L32-L13-L33.L12pvo DY2;=LH-L33- LSI-LIS.^

L31-L12-L11-L32 L31L12-L11L32

DX2= 6.77&103 DY2= 1.33>103

Xa:=X2+DX2 Ya:=Y2+DY2

Xa = 777.778 Ya=1.133-103

Triangulation Method:

Dl:=Xl-Xb Dl = 100.503 al :=VD1
2
 + DZ1

2
 al= MO

D2:=X2-Xa D2 =-6.778* K1 10? a2 :=^D22 +■ DZ22 a2 = 6.796M03

Al:=asin(|DZ2l) Aldeg:=Ali^ Al = 0.074 Aldeg =4.219
a2 / 7i

A2 :=asin[|DZ1') A2deg :=A2-^ A2 = 1.561 A2deg = 89.424
al / TC

a:=Xa-Xb a = 678.28

A3:=TC-A1-A2 A3 = 1.507

.,, ._Aol80 A3deg :=A3-—

A3deg = 86.357

c :=sin(Al)'.
sin(A3)

c = 50.003

z:=c-sin(A2) z = 50

120

Case Two:

ei:=-0G— yi:=45.0— d>i:=0.O— 62:=-10.O— \|/2:=-0.0— ^)2:=30.oiL
180 180 180 180 180 180

Rl

cos(91)-cos(yl) cos(91)-sin(\|/l) -sin(ei)

sin((|)l)-sin(ei)-cos(\|/l)-cos((|)l)-sin(\|/l) sin(<j>l)-sin(91)-sin(yl) + cos(<|)l)-cos(\|/l) sin(<|)l)'COs(81)

cos(<|>l)-sin(91)-cos(\|fl)-i-sin(<j>l)-sin(\|/l) cos(<|)l)-sin(91)-sin(\|/l)-sin(<|> l)-cos(\|/l) cos(<|)lVcos(61)

R2:=

cos (62) -cos (y2) cos(62)-sin(y2) -sin(62)

sin(<t>2)-sin(92)-cos(\|/2)-cos(<|>2)'sin(\|/2) sin(<|)2)-sin(62)-sin(Y2)-|-cos(<|>2Vcos(Y2) sin(<t>2)-cos(62)

cos(<t>2)-sin(92)-cos(\|/2)-l-sin(<!>2)-sin(v|/2) cos(<|>2)-sin(92)'sin(i|/2)- sin(<|>2)-cos(vi/2) cos(<|)2)-cos(92).

0.707 0.707 0

Rl= -0.707 0.707 0 R2 =

0 0 1

Xl:=200 Yl:=3000 Z1:=1000C

X2:=-6000 Y2:=2000 Z2:=5000C
XT:=100 YT:=1000 ZT:=500

DXi:=XT-Xl DYi:=YT-Yl
DX2:=XT-X2 DY2:=YT-Y2

0.985 0 0.174

-0.087 0.866 0.492

-0.15 -0.5 0.853

DX1=-100

DX2=6.M03

DY1 = -2«10

DY2=-1»103

DZ1 :=ZT-Z1
DZ2:=ZT-Z2

DZ1—9.5-103

DZ2=-4.95«104

Camera Angle Determination:

Rxl DX1 Rxl

Ryl :=R1- DY1 Ryl

Rzl DZ1 Rzl

-1.485-10"

-1.344>10J

-9.5*10

/-Rxl\ , . t 180 , .„„,„
el :=atan edeg :=el-— edeg =-47.862

\Ryl/ K

XI :=atan
-Rzl

(Rxl-sin(el)-Ryl-cos(el))

i on
Xdeg:=W^T taieg= 78.097

71

Rx2' DX2' "Rx2"

Ry2 :=R2- DY2 Ry2 =

Rz2 DZ2 Rz2

-2.588»10J

-2.57>10t

-4.26>10

I-RX2\ , ._ 0 180 ,
E2 :=atan| edeg :=e2- edeg ■

>Ry2/ *
"5.735

121

-Rz2 Meg:=^2— Weg = 58.722
n

X2 :=atan
(Rx2-sin(e2)- Ry2'COs(e2))

Data Points a and b:
DZ1:=0-Z1 e :=el X :=U 6 :=61 y :=yl (|) :=(|)1
Ln = cos £ cos 0 cos ^ + sin e (sin $ sinQ cos T-cos© sin *F)

L12 =cosecos0sinxF + sine(sinOsin0sinxF + cos0cosxF)

L13 = -cos e sin 0 + sine sin <£ cos©

L21 = - cos A sin e cos 0 cos *F + cos A cos e (sin O sin 0 cos ¥ - cos O sin *F)

+ sin A(cos O sin 0 cos *¥ + sin O sin *P)
L„ = -cosAsinecos0sin¥ + cosAcose(sinOsin0sinxF-l-cos<I>cos4') J22

+ sin A(cos <E> sin 0 sin *F - sin O cos *F)

L23 = cos A sin ec sin 0 + cos X cos e sin O cos 0 + sin X cos O cos 0

L31 = sin A sin e cos 0 cos ¥ - sin X cos e(sin O sin 0 cos ¥ - cos O sin *F)

+ cos A(cos O sin 0 cos *F + sin <& sin *F)

L32 = sinAsinecos0sinY-sinAcose(sin$sinQsinxF + cos<E>cos4')

+ cos A(cos <1> sin 0 sin ¥ - sin O cos ¥)

- sin X sine sin G
L32L13- L33L12

L33 = -sin A sin e sin 0 - sin A cos e sin $ cos 0 +cos A cos O cos©

DXl :=:
L31L12-L11-L32

:DZI DY1 :=

DXl ="105.263
Xb:=Xl+-DXl Yb:=Yl+DYl

Xb = 94.737 Yb = 894.737

L11-L33-L31L13

L31-L12-L11-L32

DY^^.IO^IO3

DZ1

DZ2:=0-Z2 £ :=e2 A. :=X2 e :=62 \/ :=xß <|> :=<|>2

Ln = cose cos 0cos*F + sin e(sin <E> sin 0 cos ¥ - cos 0sin *F)

L12 = cos e cos 0 sin ¥ + sin e(sin O sin 0 sin *F + cos 0 cos *F)

-13 -cos e sin 0 + sin e sin <& cos 0

L21 = - cos X sin e cos 0 cos *F + cos X cos e (sin O sin 0 cos ^ - cos <& sin *F)

+ sin A(cos O sin 0 cos *F + sin <E> sin *F)

L22 = - cos A sin e cos 0 sin *F + cos A cos e(sin O sin 0 sin *F + cos O cos XF)

+ sin A(cos 3> sin 0 sin ^ - sin O cos *?)

L„ = cos A sin ec sin 0 + cos A cos e sin <3> cos 0 + sin A cos O cos 0 ->n

L31 = sin A sin e cos 0 cos ¥ - sin A cos e (sin O sin 0 cos Y - cos <D sin VF)

+ cos A(cos O sin 0 cos *P + sin O sin *F)

L32 = sin A sin e cos 0 sin *F - sin A cos e (sin O sin 0 sin ¥ + cos O cos *P)

+ cos A(cos <& sin © sin ^ - sin O cos XF)

J33 - sin A sin e sin 0 - sin A cos e sin O cos 0 + cos A cos <J> cos 0

122

rV2,.L32.L13-L33.L12n79 Dy2;=HiHhHlH_3.DZ2
L31-L12-L11L32 L31L12- L11-L32

DX2=6.162>103 DY2=-1.01*103

Xa:=X2+DX2 Ya:=Y2+DY2
Xa= 161.616 Ya = 989.899

Triangulation Method:

Dl:=Xl-Xb Dl= 105.263 al :=A/D1
2
-I-DZ1

2
 al = 1-104

"3 ". :=VD22 +■ r™2 -" c ™a1 n4 D2:=X2-Xa D2 = -6.162«10J a2 :=<JD2 -t-DZ2 32 = 5.03*10

Al ^asinj1 DZ2I\ Al = 1.448 Aldeg:=Ali^ Aldeg = 82.975
a2 J %

180
n71 ,, A2deg :=A2'

A2:=asin||DZ1|l A2=1.56 n A2deg = 89.397
al

a:=Xa-Xb a = 66.879

A3:=TC-A1-A2 A3 =0.133

A3deg:=A3i^ A3deg= 7.628
7C

c:=sin(Al)- - c = 500.028
sin(A3)

z:=C'sin(A2) z = 500

123

Bibliography

[I] Anderson, John D. Jr. Introduction to Flight (Third Edition). New York:
McGraw-Hill Book Company, 1989.

[2] ASI. http: //www.ga.com/asi/aero.html.

[3] Craig, John J. Introduction to Robotics Mechanics and Control (Second Edition).
Reading, Massachusetts: Addison-Wesley Publishin Company, 1989.

[4] Cypher, http://www.sikorsky.com/programs/cypher/index,html.

12 March 1999.

[5] ERAST "Environmental Research Aircraft and Sensor Technology".
http://www.dfre.nasa.gov/projects/erast/erasth.html#partners.
12 March 1999.

[6] Etkin, Bernard. Dynamics of Atmospheric Flight. New York: John Wiley &
Sons, Inc., 1972.

[7] Etkin, Bernard. Dynamics of Flight - Stability and Control (Secopnd Edition).
New York: John Wiley & Sons, Inc., 1982.

[8] Nakamura, Yoshihiko. Advance Robotics Redundancy and Optimization.
Reading, Massachusetts: Addison-Wesley Publishin Company,1991.

[9] Nelson, Robert C. Flight Stability and Automatic Control (Second Edition).
Boston: WCB/McGraw-Hill, 1998.

[10] Rechtin, Eberhardt and Maier, Mark W. The Art of Systems Architecting. Boca
Raton, Florida: CRC Press, 1997.

[II] Sheridan, Thomas B. Telerobotics, Automation, and Human Supervisory Control.
Cambride, Massachusetts: The MIT Press, 1992.

[12] Siouris, George M. Aerospace Avionics Systems, A Modern Synthesis. San
Diego: Academic Press, Inc., 1993.

[13] US Atlantic Command (USACOM). HAE UAV Joint Employment, Concept of
Operations. 15 July 1998.

124

Vita

Captain Roy Glen Glassco was born on 07 September 1969 in Cleveland, Ohio.

He graduated from North Olmsted High School in North Olmsted, Ohio in 1987. He

attended the U.S. Air Force Academy, graduating with a Bachelor of Science in

Aeronautical Engineering in May 1992. Upon graduation, he received his regular

commission in the USAF and served his first tour of duty at Los Angeles AFB,

California. In Los Angeles, he was a program manager on the Block 6 Division of the

Defense Meteorological Satellite Program. As a member of DMSP, he served as the

Advanced Technology Team Lead. In February 1995, he entered Under Graduate Pilot

training at Laughlin AFB, TX. He was released early from UPT and came to Wright

Patterson AFB, OH to become a structures engineer on the PW-F100-229 and GE-F110-

129 fighter engines in September 1995. He later became the lead structures engineer for

the PW-F117 C-17 engine. In September 1997, he entered the School of Engineering,

Air Force Institute of Technology on a Dayton Area Graduate Studies Institute

scholarship to obtain a Master of Science in Aeronautical Engineering. His next

assignment is with the Air Force Research Laboratory, Munitions Directorate at Eglin

AFB, Florida.

Permanent Address:

30331 Sugarsand Ln

North Olmsted, OH 44070

125

