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ABSTRACT 

Students and faculty from Michigan State University, in partnership with three 
other groups, are currently conducting research in a joint effort to construct a 4-meter 
telescope on a mountaintop in the Chilean Andes by the year 2002. The SOAR 
(SOuthern Astrophysical Research) project will take advantage of the telescope's size to 
observe the unique astronomic phenomena of the Southern Hemisphere in greater detail 
than ever before. Michigan State is responsible for building the Spartan IR Camera, an 
instrument that will be used for making observations at infrared wavelengths. This 
report is a compilation of five self-sufficient and informal papers describing original 
design concepts for several components of the Spartan IR Camera. The first paper 
addresses the 200 mm diameter silica window to be used as an optical barrier between the 
outside atmosphere and vacuum conditions inside the instrument. This 15 psi pressure 
gradient will cause the window to bend that is modeled by a fourth-order polynomial 
equation. The second paper illustrates the effects of gravity on the 11 individual optical 
elements that will be mounted on the optical bench of the IR Camera. The final three 
papers describe three independent design ideas for the two primary camera structures: the 
optical bench and liquid nitrogen reservoir. The structural limitations on these structures 
include: 1) they must both fit inside a space lm x .75m x .75m and 2) have a combined 
mass as far below the maximum limit of 120 kg as possible. Additional criteria state that 
the reservoir must hold at least 40 lbs (18.2 kg) of liquid nitrogen and there must not be 
any greater than a 5 arcsecond angular deflection anywhere on the top surface of the 
optical bench. Each of the three designs (labeled A through C) complies with the criteria, 
but they each have certain advantages and disadvantages with regards to total mass, 
manufacturing difficulty, etc. The decision on what design to use (if any) will have to be 
made in the relatively near future by other members of the SOAR research group at 
Michigan State. 
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1. Problem Definition 
The Spartan IR Camera requires a 200 mm diameter optical window to serve as a barrier 

between the outside atmosphere and vacuum conditions inside. Determine whether or not the 
bending in (deflection) of the window due to atmospheric pressure will significantly effect the path 
of the light passing through it. If the effect is significant, determine the equation defining the bent 
shape of the window. 

2. Assumptions and Criteria 

2.1. The preferred material for the optical window is silica. Calculations will be made 
assuming this is the material that is going to be used. 

2.2. The window is circular and therefore exhibits circular symmetry with respect to the z-axis, 
as shown in Figure 1. Its radius is 100 mm. 

atmosphere 

vacuum 

Figure 1. Optical window system of coordinates. 

2.3. The window is simply supported on all edges (at r = 100 mm, z = 0) (simply supported 
boundary condition means dz/dr is NOT = 0 at r = 100 mm). 

2.4. The window is 10 mm thick'. 

2.5. Observations will be made at wavelengths of approximately one micron (1*10"6 

meters). The maximum deflection allowable without significantly effecting 



observations is 1/10 the observing wavelength. Therefore, bending greater than 0.1 
micron constitutes a significant deflection. 

3=   Constants and Equations 

E = 73* 109 Pa (Young's Modulus for fused silica)2 

V = 0.17 (Poisson's ratio for fused silica)' 

Q = 101.3*10 Pa (atmospheric pressure at sea level) 

A = 0.2 m (radius of the optical window) 

T = 0.01 m (thickness of the optical window) 

K 
ET3 

12(1-V2) 

(Flexural rigidity or bending stiffness) 

, r,     ■    , .     -QA 

deflection(r) = 
4 f „2   Yc   ,   1/ J   \ 

MK 

r 
7i 

A 

5 + V     rl 

l + V     A1 

(Deflection in meters as a function of polar coordinate r) 

4.   Calculations and Results 

Appendix I contains the MathCad 6.0 spreadsheet used to produce the following data plots. 



def 

Figure 2. Deflection contour plot in units of meters. 
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Figure 3. Deflection as a function of distance from the center of the optical window. 

4.1. As can be seen in Figures 2 and 3, the maximum deflection is over 100 microns and 
occurs at the center of the window. This is over 1000 times greater than the maximum 
tolerable deflection. Therefore, the deflected shape of the window must be modeled 
mathematically. 

5. Mathematical Deflection Model 



5.1.The deflection equation for this system is simply a fourth-order polynomial, so the 
easiest way to model the deflected shape of the window is with an equivalent fourth- 
order polynomial expression: 

deflection = -Ar4 + Br2 -C 

A = 0.253 
B = 0.014 
C = 0.0001116 

5.2. This equation was then put into the SOAR Airy disk program and gave acceptable 
results. 

6. Minimum Thickness Requirement 

6.1. The final topic to be addressed is making sure the window will not rupture (crack, 
shatter, etc) under the load imparted on it due to atmospheric pressure. 

6.2. The equation for determining the minimum window thickness required to avoid 
rupture is" 

thickness = DJSF 
(KY P  ^ 

Aj^MOR 

D = Window diameter 

SF = Safety Factor (used a value of 4 in this calculation) 

K = 1.125 (constant factor given in the reference for simply supported 
window boundary condition) 

P = Pressure (101.3 x 103 Pa - atmospheric pressure) 

MOR = Modulus of Rupture (structural constant for a given material - silica 
in this case) 

6.3. Appendix II shows calculations made for minimum thickness using MathCad. 
Different brands of silica have different values for modulus of rupture, so the 
minimum required window thickness naturally depends on this parameter. 
Calculations based on the information available indicate that the window thickness 
will probably need to be slightly greater than the 10 mm that was assumed in 
Appendix I. However, this will not undermine the validity of the results in Appendix 
I. In fact, a greater window thickness actually helps these results because the thicker 
window will suffer less deflection than the 10 mm window. And if the deflection 
suffered by the 10 mm window is acceptable according to Airy disk analysis, then the 
deflection suffered by a thicker window will undoubtedly also be acceptable. 

7.     Conclusion 



Calculations above have shown that the 200 mm optical window will bend significantly 
under the atmospheric pressure load it will be subjected to. However, the shape of the 
window can be modeled mathematically via fourth-order polynomial and consequently be 
accounted for in order to allow the Spartan IR camera to function properly. The precise 
thickness required for the window to avoid rupture will remain unknown until the exact 
modulus of rupture for the material being used can be identified. When the time comes to 
actually build this instrument, the most practical sequence of events would be to find out 
from a given company what the modulus of rupture is for their silica, then calculate the 
minimum required thickness for a 200 mm window made of that silica, then find out if 
that company can manufacture a window of that (or a little bit greater) thickness. Finally, 
when the exact dimensions of the window to be purchased are known, go back and 
recalculate the deflected shape of the window according to the template provided here in 
the MathCad worksheet of Appendix I. Once this is accomplished, the fourth-order 
polynomial equation for the deflected shape will be defined (constants A, B, and C of 
section 5.1 will be known), and this portion of the camera will be ready for use. 
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4 Flügge, Edward. Handbook of Engineering Mechanics, 1961. (Available at MSU Engineering 
Library: TA 350.F58). 
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APPENDIX I 

circular plate deflection calculations for 10 mm plate thickness 

h := .01    Almaz Optics quoted thickness (meters) 

a:=.l plate radius (meters) 

E=7310 
Young's modulus for 
fused silica (Pa) 

v:=.17 
Poisson's ratio for 
fused silica 

K 
EhJ 

12-11 - v 

flexural rigidity (metersA3) 

maxdef 
q-a    p-t-v 

64-K   lfv 
maxdef =1.116-10 

q = 101.310 
Uniform atmospheric 
pressure load (Pa) 

SIMPLY SUPPORTED 
BOUNDARY CONDITION 

-4      max deflection is comparable to max deflection 
for the square plate, as it should be. 

i  =0,1..40 

r(i,j)  =AJx(i)2l-y(j)2 

j : = 0,1..40 

def. 

x(i)  =.005i-.1 y(j)-.005-j-.1 

4    / ,.   ..2\   /- ,.   .,2 
q-a    /    _ r(i,j)  \    51- v     r(i,j) 

'■J 64-K l + v 

def 



def 

deflec(r) 

ml =0.253 

r =0,.005...1 

64-K 

2\ U 2\ r       5 +- v     r  ' 
2      I -i- v      2 a /  \' r v     a / 

m2 =0.014 

ml 
q-a      1 

m2 ".= 
/        4' q-a 

\64-K/ \1 -t- v 

5 + v+0   1 

m3 =1.116-10 

Polynomial fit for optics program 

m3 :-- 
q-a 

\64-K/ \1 + v 

5tv 

z(r) := l-m3 +- m2-r j - ml-r 

deflect r) 

z(r) 

All deflection and 
associated equations 
come from Handbook of 
Engineering Mechanics by 
Edward Flügge, 1961 and 
can be found in the 
Engineering library at MSU 

0.12 



APPENDIX II 

Checking silica plate minimum thickness from equation given by Tony Young at U of Hawaii 
(http://kupono.ifa.hawaii.edu) 

D : = 200       Window diameter 

P :- 101.3-103       Atmospheric pressure (or pressure gradient across window due to vacuum inside 
and atmosphere outside) 

M = 41-106      Modulus of Rupture (Actually, this is the MEAN modulus of rupture for soda-lime-silica float glass, 
which has very similar rigidity properties to normal fused silica [i.e. almost exactly the same 
Young's Modulus]) 

SF = 4 Safety Factor 

K = 1.125 Constant given by Young for undamped window boundary condition 

thickness  = D-   SF- 
K_P 

4 M thickness = 10.544 mm 

Using a different Modulus of Rupture value found for fused silica on a different 
web page. M =27.310 

thickness = D-   SF---— 
<J      4M thickness = 12.922 mm 

SF = 2 Lower safety factor 

thickness =9.137 mm thickness  = D-   SF 
K P 

4 M 

Conclusion: The minimum thickness needed for the silica window to ensure that it won't shatter under atmospheric 
pressure depends on the exact modulus of rupture for the exact silica that ends up being used, as well as the 
safety factor one chooses to apply. According to the previous calculations, the safest thing to do would be to get a 
window no thinner than 15 mm. The most practical thing to do would be to find out from a given company what the 
modulus of rupture is for THEIR silica, then calculate the minimum thickness necessary for our 200mm window with 
whatever safety factor you want ot use, THEN find out if that company makes windows of a little greater than the 
calculated minimum thickness. 
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1. Problem Definition 

There will be 11 individual optical elements (mirrors, lenses, etc) mounted on the optical 
bench of the Spartan IR Camera. During use, the optical bench will normally be horizontal to the 
ground, so the vertically mounted optical elements will not suffer any appreciable positional 
changes due to gravity. However, at times the entire camera may rotate and the optical bench 
may be found in the upright position (illustrated below). In this configuration, the optical 
elements mounted on the bench will droop down at their ends due to gravity. If this drooping 
(a.k.a. deflection) makes a significant enough angle between the element's end and perfectly 
horizontal, the light coming into that element will be disrupted from its proper course and 
consequently undermine the camera's effectiveness. 

Calculate the angular deflection of an optical element in the upright position (9 in Figure 
1) and determine whether that deflection will significantly effect the camera's operation. 

Telescope mounting surface     II 

Optical elements 

Light 

Optical 1 bench * 

Figure 1. Optical bench and elements rotated 90° from the horizontal. 



2. Assumptions and criteria 

2.1. The optical elements are made of silica. 

2.2. The total mass of all optical elements is estimated to be 75 kg, so the mass of an individual 
element will be taken as 75/11 = 6.8 kg. 

2.3. The exact shape of the optical elements is not known (some may be circular, some 
rectangular, etc), so we will assume for simplicity that each is square. 

2.4. The estimated size of an optical element is 20cm wide x 20cm tall x 2cm thick. 

2 cm 
Figure2. Optical element assumed shape and dimensions. 

2.5. Each optical element must be secured to the bench by some sort of base structure and 
screws, but we will ignore any contributions from these base structures to the mass of the 
optical element. 

2.6. An angular deflection exceeding 5 arcseconds will significantly effect the light's path. 

3. Results 

3.1. The calculations are shown in Appendix I. 

3.2. The angular deflection of the optical element end was found to be just larger than 7 
arcseconds; unacceptable according to the criteria stated in Section 2. 

3.3. There are probably several ways to correct this problem, one of which is to revise the 
elements' base structures by adding side supports. Calculations in the Appendix show that 
adding 4 cm long side supports should reduce the angular deflection to just under the 
critical value of 5 arcseconds. The reason this should work is because adding side supports 
(as can be seen on the next page in Figure 3) reduces the effective area of the element 
being pulled down by gravity. 



Figure 3. Revised base structure with side supports 

3.4. There is a distinct drawback to this solution: manufacturing a base mounting structure of 
this shape will probably be rather difficult. And manufacturing this sort of base structure 
for odd-shaped (non-square) optical elements will be additionally tough. Further 
brainstorming may lead to a simpler solution. 

References 

Popov, Egor. Introduction to Mechanics of Solids, 1968. 



APPENDIX I 

Calculations (via MathCad worksheet) 

E := 73-109 Fused silica Young's modulus (N/mA2) 

v:=.17 Fused silica poisson's ratio 

a := .2 plate width (m)                      length := .2 

t := .02 plate thickness (m) 

The optical element is essentially a solid rectangular box and will be modeled as a rectangular 
beam with one end clamped and the other end free (i.e., cantilever beam boundary conditions). 

I: = —    moment of inertia (mA4) 
12 

accel =9.81    gravitational acceleration (m/sA2) 

mass : = 6.8 mass of an individual optical element (kg) 

F = mass-accel F = 66.708        Downward force on the optical element (N) 

F 

length Pressure on the optical element (modeled as uniform over the entire top 
P = 333.54 surface of the element) 

(N/m) 

maxdef 
_P- length 

def(x)  =- 

8-EI 

P 

24-E-I 

maxdef = 6.854-10 

(4 3 4\ length-^x - 4-length   x+- 3-length ) 

Maximum deflection (in meters, occurring at 
the end) 

x: = 0,.005..length 

del(x) -1M0 6 - 

Side view of deflection 



deflection angle of the end with respect to the clamped edge... 

theta rad = atan max e . .    . ... ,„-5 deflection angle in radians 
\ length / theta_rad = 3.427" 10 

theta_deg = =  theta_deg = 1.963' 10 ' deflection angle in degrees 
2-71 

theta_deg-60-60 = 7.068 deflection angle in arcseconds (close, but slightly > 5 arcseconds) 

This result shows that something must be done to reduce the angular deflection the optical 
elements will suffer when the optical bench is rotated 90 degrees from the horizontal. The 
seemingly most practical idea would be to design a base structure that provides some side 
support in addition to just attaching the one end of the element to the bench (see Figure 3 in 
Section 3). The side supports will essentially reduce the length of the element thereby reducing 
the amount of area being pulled down by gravity which will ultimately decrease the angular 
deflection at the end. Below are calculations showing how much of the side edges must be 
supported in order to reduce the end angular deflection below 5 arcseconds. We will assume the 
entire original mass of the element is still at work creating the deflection, even though probably 
just the portion hanging free beyond the side supports will come into play. This will just generate 
a sort of built-in safety factor. 

E : = 73-109       Fused silica Young's modulus (N/mA2) 

v : =. 17 Fused silica poisson's ratio 

. ,,,   . , This value was decreased from 0.2 until the 
a: = .2 plate width (m) length  =.16      angu,ar def|ection calculated below came 

, . , ,   . out to be less than 5 arcseconds. 
t := .02 plate thickness (m) 

The optical element is essentially a solid rectangular box and will be modeled as a rectangular 
beam with one end clamped and the other end free (i.e., cantilever beam boundary conditions). 

a-t3 

I = —    moment of inertia (mA4) 
12 

accel =9.81    gravitational acceleration (m/sA2) 

mass =6.8 mass of an individual optical element (kg) 

F =massaccel F = 66.708        Downward force on the optical element (N) 

P -    F 

len th Pressure on the optical element (modeled as uniform over the entire top 
P = 416.925 surface of the element) 

(N/m) 



maxdef :- 

def(x) 

P- length 

8-E-I 

P 

maxdef = 3.509* 10 
-6        Maximum deflection (in meters, occurring at 

the end) 

24-EI 

i   4 3 4\ length-^x - 4-length"-x-t- 3-length ) 
x=0,.005..length 

:.in-7 del(x) —5*10 

"I* to 

Side view of deflection 

deflection angle of the end with respect to the clamped edge... 

thcta rad : = atan   , ,    „ ,„_ , -s deflection angle in radians 
\ length / theta_rad =2.193-10 ' a 

theta rad-360 ,        ,        , „,._ ,„--? . ,.    .. .   .    , 
theta_deg = =  theta_deg = 1.257-10 ' deflection angle in degrees 

2-71 

theta_deg-60-60 =4.524 deflection angle in arcseconds 

According to these calculations, building side supports 4 cm up the edge of the element will reduce 
the end angular deflection to an acceptable level. 
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1. Problem Definition 
The space available on the SOAR telescope for the Spartan IR camera instrumentation is an area 1 x 

.75 x .75 meters. 

1 mp.fp.r 

.75 meter 

.75 meter 

Figure 1. Spartan IR camera: space available. 

Light from the telescope enters along the long axis of the 3-D rectangular area. The light must pass through the 
center of eleven individual optical elements (mirrors, lenses, etc.), so they must be aligned in the light's plane. 
Additionally, these optical elements must be kept cool by way of contact with a certain volume of liquid nitrogen 
(temperature = 77 K). This volume of liquid nitrogen must also be contained within the boundaries of the space 
pictured in Figure 1. Furthermore, the optical elements must not change from their original position by more than 
a certain fraction of the wavelength being observed at. Anything more than a slight misalignment will 
significantly affect the data collecting capabilities of the instrument. 

2. Assumptions and criteria 

2.1. The structures used to contain the liquid nitrogen and support the optical elements (a.k.a. the optical bench) 
will be made of aluminum. 



2.2. The total mass of the structure must not exceed 120 kg; and as always, the lighter the better. 
2.3. The optical bench surface must remain almost perfectly flat; under it's own weight and the weight of optical 

elements on top. Any angular deflection greater than 5 arcseconds is unacceptable. 
2.4. The entire space shown in Figure 1 will be under vacuum conditions when the instrument is being used. 
2.5. The liquid nitrogen (LN2) container must be able to hold 30 lbs (18.2 kg) of LN2 and also have a vent 

leading outside the vacuum region. 

3. Background 

The initial design called for making a single box that would contain the liquid nitrogen inside while 
allowing for optical elements to be mounted on its top. This was the preferred design because of its simplicity. 
However, with this design, the inside of the box would be subjected to atmospheric pressure (15 psi) because of 
the necessary vent leading from the LN2 storage area to the outside. Since the inside of this box would be at 15 
psi while the outside would remain at 0 psi in vacuum, the top of the box (optical bench) would bow out 
significantly due to the pressure difference. Calculations showed that the angular deflection caused by this 
"bowing out" would be over 100 arcseconds. 

This deviation from flatness is unacceptable. To remedy this problem, the basic idea is to separate the 
optical bench from the LN2 box. This way, we can pursue structures that keep the optical bench flat without 
having to deal with the annoyance of a 15 psi pressure gradient. The structural design described in the remainder 
of this paper is one of several designs developed for meeting the criteria stated in Section 2. The other designs are 
presented in separate papers similar to this one. Here, the optical bench is essentially five T-shaped beams joined 
together side by side. The T-beams are each clamped to the telescope mounting panel at one end, and free at the 
other end. The liquid nitrogen reservoir box is positioned at the top of the available space, more than 20 cm 
above the top surface of the optical bench. Illustrations of this design are provided first, followed by calculations 
to show its compliance with the criteria stated in Section 2. 

4. Design Illustrations 

vent pipe 

Figure 2a. 3-D view. 
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Figure 2b. Side view. 

LN2 reservoir box 
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Figure 2c. End view. 



5. Calculations (Shown here via MathCad worksheet) 

The sequence of calculations necessary to find the optical bench dimensions that limit the 
bench's end deflection to less than 5 arcseconds are as follows: 

1. Model the entire optical bench as 5 T-shaped beams connected side by side, and find the 
moment of inertia for these T-beams. 

2. Find the mass of an individual T-beam (and combine this with 1/5 the total mass of optical 
elements that will be mounted on top of the optical bench) to define the force and consequently 
pressure pushing down on each individual T-beam. 

3. Determine the maximum deflection (occuring at the end opposite the end that's clamped to the 
telescope). 

4. Calculate the angular deflection of the end of the T-beam by finding the arctangent of the 
maximum deflection divided by the length of the beam (1 meter). 

dens =2700 Density of Aluminum (kg/mA3) 

acxel  =9.81 Gravitational acceleration (m/sA2) 

E    70-10 Young's Modulus for Aluminum (Pa) 

T-beam moment of inertia calculations: 

length  = 1 

B  =.15 

b  =.14 

d  =.004 

H  =.24 

a =B- b        a =0.01 

4 mm 

150 mm 

10 mm 

I 
240mm 

cl 
1 |a-H"+b-d 

2 \ a-H+b-d 

h  = H - d - c2 

cl =0.098 

h = 0.094 

c2=H-cl     c2=0.142 

This moment of inertia equation comes from Handbook of Mechanics, Materials & Structures by 
Alexander Blake, 1985) 

I t B-cl"1- b-h'Va-c23) I t = 1.784-10 T-beam moment of inertia (mM) 



— (c2+- h)lengthdens 
2 

—-(c2-t- h)-lengthdens 
2 

m_tbeam : = B • H- length ■ dens - 

m_tbeam = 7.992       Mass of each of the 5 individual T-beams (kg) 

Mass of optical elements mounted on top of the T-beam (kg), assuming the 
m_optics :=— elements are uniformaly distributed over the whole bench surface so that each 

5 of the 5 individual T-beams is responsible for supporting 1/5 of the total weight. 

F : = (m_tbeam+ m_optics)-accel F = 225.552 Force on individual T-beam (N) 

q -.-         Pressure on each individual T-beam [Force/length: N/m] (uniform distribution assumed) 
length 

4 

max_def:=q' engt max_def = 2.257-10 5     Maximum deflection (in meters) 
8-E-Ij 

/max_def\ 
maxangle_rad = atan ^      j      j        maxanglejad = 2.257-1 (f5      Maximum deflection (in radians) 

i       A 
36° 

maxangle.dcg = maxanglejad-— maxangle_deg = 1.293- 10~3 Maximum deflection (in degrees) 

maxangle_arcsec : = maxangle_deg-60-60 maxangle_arcsec = 4.656       Maximum deflection (in arcseconds) 
Under 5 arcseconds, as necessary. 

benchmass : = m_tbeam-5 benchmass = 39.96 Total mass of the optical bench (kg) 

This result is only valid under the assumption that all of the optical elements will be mounted in 
such a way that their bases are resting on a portion of the bench with at least one (if not two) 
vertical support ribs underneath. This situation is illustrated on the next page. 

If the optical element bases DO NOT span a portion of the bench with ribs underneath, there exists 
a real possibility for unacceptable deflections in these areas. Calculations in the next portion of 
this section determine the T-beam dimensions necessary to make an optical bench rigid enough to 
avoid unacceptably large deflections in these inbetween-support-rib regions. These calculations 
will be undertaken modeling the inbetween regions as flat rectangular aluminum plates with the 
following boundary conditions: one short edge free, the other three edges simply supported. They 
will be made assuming probably the worst case scenario; an individual inbetween-rib region has 
three optical elements mounted on it without their bases spanning any neighboring support ribs. 
This situation is also illustrated on the next page. 



mmm®m ß 

Top view: Bases span underlying ribs Side view: Bases span underlying ribs. 
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Top view: Bases don't span underlying ribs. Side view: Bases don't span underlying ribs. 



M_optics =75 Total mass of the optics mounted on the bench (kg) 

Num_optics =11 Number of individual optical elements that will be on the bench 

M_optics 
M element:; M_element = 6.818        Mass of an individual optical element (kg) 

Num_optics 

d =.011       Inbetween-rib, flat rectangular plate thickness (m) 

B = .15        Inbetween-rib, flat rectangular plate width (m) 

length = 1 Inbetween-rib, flat rectangular plate length (m) 

M_plate : = densd-B- length M_plate = 4.455    Mass of the inbetween-rib, flat rectangular plate (kg) 

F : = (3M_element +■ M_plate)accel F = 244.363 Force on the plate (N) 

F 3 p =  p = 1.629* 10'      Pressure on the plate (N/mA2) (uniform distribution assumed) 
B-length 

K8 = .17        Constant given by Blake for our rectangular plate and boundary conditions 

maxdef 
K8-p-B 

E-d1 
maxdef = 1.505-10 Maximum deflection (in meters) 

We know the maximum deflection must occur somewhere along the middle line of the plate, and the 
nearest edge is the long edge, which is .15/2 meters away, so the greatest angular deflection is found 
by taking the arctangent of the max deflection divided by this distance to the nearest edge. 

def rad  = atan 
maxdef 

■11 
2 

def_deg = def_rad  
2-71 

def_asec  = def_deg-60-60 

def rad =2.006'10 

-3 def_deg = 1.15-10 

def asec =4.139 

Maximum deflection (in radians) 

Maximum deflection (in degrees) 

Maximum deflection (in arcseconds) 

Now we go back and re-determine the necessary bench dimensions to optimize the deflection vs. 
minimum mass relationship using this new top surface thickness of 10 mm. 



length := 1 

B -.15 

b  =.14 

d:=.01 

H=.22 

a=B-b        a=0.01 

10 mm I 

cl 
'a-H2-t-b-d2\ 

2 \ a-H+b-d 

h=H-d-c2 

cl =0.069 

h = 0.059 

150 mm 

I 

220mm 
I 
I 

10 mm 

c2=H-cl     c2 =0.151 

I t : = --(B-C1
3
- b-h3-t-a-c23) I_t = 1.832-10 " T-beam moment of inertia (mM) 

m_tbeam : = B • H- length • dens • —(c2+- h)-length dens 
2 

(c2-t- h)-length-dens 

m_tbeam = 9.72 Mass of each of the 5 individual T-beams (kg) 

F ■ = (m_tbearrn- m_optics)accel F = 242.503 Force pushing down on individual T-beam (N) 

length Pressure pushing down on each individual T-beam [Force/length: N/m] 

,        q- length 
max der -- 

8-E-I t 
max_def = 2.364* 10 '     Maximum deflection (in meters) 

maxangle_rad  =atan 
/max def\ 

maxangle_deg =maxangle_rad 

i      j      j        maxangle_rad =2.364-10 "      Maximum deflection (in radians) 

360 
2.n maxangle_deg = 1.355-10 " Maximum deflection (in degrees) 

maxangle_arcsec = maxangle_deg-60-60 maxangle_arcsec = 4.876       Maximum deflection (in arcseconds) 
Under 5 arcseconds, as necessary. 

benchmass :=m_tbeam-5 benchmass = 48.6 Total mass of the optical bench (kg) 

The total mass of the bench increases from just under 40 kg to just under 50 kg when looking at 
this worst case scenario of optical element distribution. 



The space available above the top of the optical elements mounted on the bench is approximately 
30 cm (see final diagram). So, how about using some of this available depth space and 
shortening the length of the LN2 box that will be mounted up there? (i.e., making the box 20 cm 
deep x 75 cm wide, how long does it need to be...). Remember, total volume of the box must be 
greater than .046 mA3 in order to accomodate the 40 lbs of liquid nitrogen along with allowing for 
the vent pipe end to be inside the LN2 reservoir without ever being submerged in the liquid (see 
"Liquid Nitrogen Reservoir/Optical Bench: Design C" for this calculation): 

boxlength :=-  boxlength =0.307        The box only needs to be a little over 30 cm long. 
.2-.75 

How much will this box deflect down at the end if only attached by clamped edge boundary 
condition to the telescope's mounting surface? Only a deflection of greater than about 7 cm will 
be unacceptable - if this happens, part of the box will interfere with the optics below it and may 
cause problems. 

Calculating deflection looking at side plate as a beam with its own weight plus the LN2 weight, 
modeled as a uniform pressure pushing down on top of the beam... 

Side beam dimensions (meters): b =.32    length        t = .2     thickness       a :=.006width 

(i.e. the thickness 
of each plate 
used in the box 

Assume the pressure pulling down on the box will be due to 1/2 the weight of the entire box, (6 mm)) 
uniformly distributed over the top surface of the side beam. Boundary condition: one end of the 
beam is clamped, the other end is free. 

at3 

I = —      Beam moment of inertia boxwidth : = .75 
12 

mtopbottom  =densbboxwidtha mtopbottom =3.888 

msides =denstba msides = 1.037 

mends = denstboxwidtha mends =2.43 

mbox := 2-mtopbottom -t- 2msides+- 2-mends mbox = 14.71    Mass of the LN2 
reservoir box (kg) 

total mass of the box + LN2 itself: 

tota!_mass = 2-mtopbottom ■+- 2ms ides +- 2- mends +- 18.2 total_mass =32.91 

tnf ill     TTTllQ^fc 

Each side beam must support half this weight:       half_mass  = =  half_mass = 16.455 
2 

F =half_massaccel F= 161.422 Force on each side beam (N) 

F 
Corresponding pressure on top of side beam (N/m): q : = - q = 504.442 

b 

,4 

maxdef = —— maxdef = 2.361* 10 Maximum deflection (in meters)... way less than 1 cm. 
8-E-I 



Now determine the bowing out deflection due to pressure inside the LN2 reservoir box (atmospheric 
pressure; 101.3x10A3 Pa) and whether or not this will interfere with the optical elements below. 

p = 101.3-103     atmospheric pressure (Pa) 

L ■ = .32      Width of the LN2 box (m) 

E =70109 

_ ..,       Constant given by Blake for our given top/bottom surface of the box and boundary 
condition: all 4 edges simply supported. 

h = .006 Plate thickness of top/bottom surfaces of the box (m) 

„ , i maxdef = 8.079'10 "       Less than 1cm deflection, no interference will occur. 
Eh' 

The total mass of aluminum necessary to build all the parts of this design (bench + LN2 box), assuming the first 
condition where all optical elements have bases that span one or two underneath support ribs (i.e. ignoring optical 
bench deflections that may occur in regions between underlying support ribs): 

MASS  = 39.96+-mbox MASS =54.67 

Total mass of the system INCLUDING the liquid nitrogen itself: MASS ^ 18.2 = 72.87 

Total mass of aluminum necessary to build all the parts of this design, assuming the second 
condition where worst case scenario inbetween support rib deflections ARE accounted for: 

MASS  =48.6+ mbox MASS =63.31 

Total mass of the system INCLUDING the liquid nitrogen itself: MASS +- 18.2 =81.51 



6. Conclusion 

The structural design described here meets all the performance criteria and offers two 
primary advantages: low total mass and manufacturing simplicity. The total mass of aluminum 
needed to make all the parts of this structure is somewhere around 60 kg; far less than the 120 kg 
limit. The main potential disadvantage is the overhanging liquid nitrogen reservoir. Although it 
only hangs over one-third of the optical bench below it, it may hinder accessibility to that one- 
third of the bench and make mounting optical elements in that area more difficult. If this design 
is ultimately used for the Spartan IR camera, two of the more important components that require 
further investigation are the copper thermal connection bands and the optical element bases. The 
number, size, and attachment positions of the copper bands must be sufficient to keep the optical 
bench cool enough to meet the instrument's thermal requirements. Similarly, the size and 
positioning of the optical element bases must be pursued keeping mass and angular deflection to a 
minimum. Figure 3 below provides a comprehensive depiction of Design A, including all 
important measurements (assuming there's no significant deflections on the bench inbetween 
underlying support ribs, i.e., optical element bases span one or two underlying ribs). 

75 cm 
>4cm 

Figure 3. Comprehensive design illustration. 
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1. Problem Definition 
The space available on the SOAR telescope for the Spartan IR camera instrumentation 

is an area 1 x .75 x .75 meters. 

merer 

.75 meter 

.75 meter 

Figure 1. Spartan ER camera: space available. 

Light from the telescope enters along the long axis of the 3-D rectangular area. The light must 
pass through the center of eleven individual optical elements (mirrors, lenses, etc.), so they must 
be aligned in the light's plane. Additionally, these optical elements must be kept cool by way of 
contact with a certain volume of liquid nitrogen (temperature = 77 K). This volume of liquid 
nitrogen must also be contained within the boundaries of the space pictured in Figure 1. 
Furthermore, the optical elements must not change from their original position by more than a 
certain fraction of the wavelength being observed at. Anything more than a slight misalignment 
will significantly affect the data collecting capabilities of the instrument. 



2. Assumptions and criteria 

2.1. The structures used to contain the liquid nitrogen and support the optical elements (a.k.a. 
the optical bench) will be made of aluminum. 

2.2. The total mass of the structure must not exceed 120 kg; and as always, the lighter the better. 
2.3. The optical bench surface must remain almost perfectly flat; under it's own weight and the 

weight of optical elements on top. Any angular deflection greater than 5 arcseconds is 
unacceptable. 

2.4. The entire space shown in Figure 1 will be under vacuum conditions when the instrument is 
being used. 

2.5. The liquid nitrogen (LN2) container must be able to hold 40 lbs (18.2 kg) of LN2 and also 
have a vent leading outside the vacuum region. 

3. Background 

The initial design called for making a single box that would contain the liquid nitrogen 
inside while allowing for optical elements to be mounted on its top. This was the preferred 
design because of its simplicity. However, with this design, the inside of the box would be 
subjected to atmospheric pressure (15 psi) because of the necessary vent leading from the LN2 
storage area to the outside. Since the inside of this box would be at 15 psi while the outside 
would remain at 0 psi in vacuum, the top of the box (optical bench) would bow out significantly 
due to the pressure difference. Calculations showed that the angular deflection caused by this 
"bowing out" would be over 100 arcseconds. 

This deviation from flatness is unacceptable. To remedy this problem, the basic idea is to 
separate the optical bench from the LN2 box. This way, we can pursue structures that keep the 
optical bench flat without having to deal with the annoyance of a 15 psi pressure gradient. The 
structural design described in the remainder of this paper is one of several designs developed for 
meeting the criteria stated in Section 2. The other designs are presented in separate papers similar 
to this one. Here, the optical bench is essentially a succession of T-beams stuck side by side, 
suspended from the top beams of a supporting truss structure. The LN2 box is located below and 
independent from the optical bench. Illustrations of the design are provided first, followed by 
calculations to show its compliance with the criteria stated in Section 2. 

4. Design Illustrations Truss 

Figure 2a. 3-D view. 



Figure 2b. Side View. 

Figure 2c. End view. 



5. Calculations (via MathCad worksheet) 

As can be seen in the diagrams of Section 4, the optical bench is suspended from the truss 
structure by four vertical support beams. These beams are positioned such that the bench is 
essentially divided up into three sections of equal size. Each of these sections is assumed to be 
33 cm wide x 75 cm long. Each section is made up of 5 t-beams which are 15 cm wide x 33 cm 
long. The middle section is subjected to different boundary conditions than the two end sections. 
For the calculations made in this section, we use the following assumptions: 

1. The load of optical elements on top of the optical bench will be uniformly distributed, therefore 
when we look at the whole bench as a combination of 15 t-beams (each 15 x 33 cm - see Figure 
3), each t-beam will support 1/15 of the total weight imparted by optical elements. 

2. The boundary condition for each t-beam of the middle section will be both ends simply supported 
(see Figure 3). 

3. The boundary condition for each t-beam of the two end sections will be one end clamped, other 
end free (see Figure 3). 

4. All optical elements mounted on top of the bench will have bases that span an area overlying at 
least one (if not two) of the support ribs underneath (see Figure 3). This way, problematic 
deflections that could occur inbetween the underlying support ribs are eliminated. If any optical 
elements are mounted on the bench without bases that span the underlying ribs, further 
calculations should be undertaken to ensure there are no unacceptable deflections. (See "Liquid 
Nitrogen/Optical Bench: Design A" for an example of how to determine inbetween-rib deflections). 

5. Deflections greater than 5 arcseconds are unaccpetable. (Maximum deflection will occur 
halfway between the two ends of the t-beams in the middle section, and will occur at the free end of 
the t-beams of the two end sections) 

Looking at the middle section first: 

■*9 

150mm 

5 mm I       I I 
I     I I 

I 80 mm 

_l 
5 mm 

Cl =0.016 i .    u        i o     n t\£A c2 =H- cl     c2 =0.064 

h=H-d-c2 h =0.011 



End section Middle section End section 

Figure 3a. Optical bench; combination of 15 t-beams together. 

Max deflection 

Figure 3b. Middle section (2,5,8,11,14 above) 
Boundary conditions. 

Max deflection, 

Figure 3c. End sections (1,3,4,6,7,9,10,12,13,15 
Above) Boundary conditions. 

1 

Figure 3d. Optical element bases spanning one or more underlying t-beam supports (ribs). 



This moment of inertia equation comes from Handbook of Mechanics, Materials & Structures by 
Alexander Blake, 1985) 

I t :=--(B-C1
3
- b-h3-t-a-c23 I t =5.773-10 -7 

m_tbeam = B-H- length dens 

75 

-•(c2-h h)-length-dens (c2-t- h)-length dens m_tbeam = 1.011 
Mass of individual T-beam 

m_optics 
35 _ it takes 15 t-beams to make the whole optical bench, so each is 

m_op ICS - responsible for supporting 1/15 of the optics' mass. 

F : = (m_tbeam+ m_optics)-accel        F = 58.973 Force pushing down on individual T-beam 

F 

length 
q = 177.095 Pressure pushing down on individual T-beam [Force/length] 

max def 
5 q-length 

384-E-I t 
max_def = 7.016* 10        Maximum deflection (in meters) 

max^def 
maxangle_rad   - atan 

' length \ 

\    2 

maxangle_deg : = maxangle_rad 

maxangle_rad =4.214-10        Maximum deflection (in radians) 

360 
2~ maxangle_deg = 2.414-10 Maximum deflection (in degrees) 

maxangle_arcsec := maxangle_deg-60-60 maxangle_arcsec = 0.869        Maximum deflection (in arcseconds) 

Now for the two end sections of the bench: 

4 

max def 
q-length 

8-E-U 
max_def = 6.735-10        Maximum deflection (in meters) 

/ max_def 
maxangle_rad  = atan 

\ length /        maxangle_rad =2.023-10 "      Maximum deflection (in radians) 

maxangle_deg := maxangle_rad-^ maxangle_deg = I.159-10"3 Maximum deflection (in degrees) 

maxangle_arcsec =maxangle_deg-60-60 maxangle_arcsec = 4.172        Maximum deflection (in arcseconds) 



benchmass :- 15m_tbeam benchmass = 15.172 

Keep in mind that these calculations are made assuming there is a perfectly uniform load of the 
bench weight + optics weight over the entire bench. If the distribution of optical pieces is 
non-uniform and there is an overabundance of them on one or both of the two ends of the bench, 
the deflections there might become unacceptably large. To account for this occurence, I'll 
calculate the bench beam dimensions necessary for accomodating twice the normal load on a 
single given t-beam: 

B :=.15 

b =.145 

d = .005 

H=.l 

a=B- b 

,      1 /a-H'-t-b-d 
cl : = - 

a =5-10 
2\ 

-3 

a H t-b-d 

5mm I 

cl =0.022 

150mm 

100 mm 
I 

_l 
5 mm 

c2=H-cl     c2 =0.078 

h :=H- d- c2 h =0.017 

This moment of inertia equation comes from Handbook of Mechanics, Materials & Structures by 
Alexander Blake, 1985) 

I_t : = - B-cl3-b-h3H-a-c23) I_t = 1.086-10 

m_tbeam = BH-length dens (c2+ h)lengthdens •(c2 +- h)-length-dens m_tbeam = 1.101 

Mass of individual T-beam 

m_optics =10     Twice the previously assumed load 

F    (m_tbcam+- m_optics)accel F= 108.905 Force pushing down on individual T-beam 

F 

length 
q =327.041 

Pressure pushing down on individual T-beam [Force/length] 

max def 5 q-length 

384EI t 
•^"7 max_def = 6.889* 10        Maximum deflection (in meters) 



maxangle_rad = atari 
max def 

/ length \ maxangle_rad =4.138*10 6     Maximum deflection (in radians) 

maxangle deg :=maxangle rad  , „ „„, , ~_4 .. ,**■,-, * b -   b 2-7T maxangle_deg = 2.371*10 Maximum deflection (in degrees) 

maxangle_arcsec :=maxangle_deg-60-60 maxangle_arcsec =0.853        Maximum deflection (in arcseconds) 

Now for the two end sections of the bench: 

max_def :=q eng— max_def = 6.613* 10 6    Maximum deflection (in meters) 
8-E-I t 

/max def 
i 8  ~ 1  |ength  )        maxangle_rad = 1.986*10 5      Maximum deflection (in radians) 

g  -   g g  -      2 maxangle_deg = 1.138*10 3 Maximum deflection (in degrees) 

maxangle_arcsec : = maxangle_deg-60-60 maxangle_arcsec =4.096        Maximum deflection (in arcseconds) 

benchmass := 15m tbeam benchmass = 16.521 

Accounting for non-uniform optics mass distribution only increases the necessary bench mass by about 1.5 kg. 

We must now look at how much the whole bench will sag down from its initial position due to two 
factors: 

1. The sagging of the horizontal top cross bars of the truss structure where the vertical support bars 
are attached (see Figure 4). 

2. The stretching of the vertical support bars due to the weight of the bench + optical elements 
pulling down (gravity) (assuming the weight of the bench is equally distributed so that each of the 
four bars is subjected to the same force) (see Figure 4). 



Figure 4a. Vertical support bars stretched due to optical bench load. 

Figure 4b. Truss's top cross bars sagging due to optical bench load. 



We'll look at #1 first (depicted in Figure 4b.) Here, we look at each of the top criss-crossed truss 
beams individually, and model the situation as a beam simply supported at both ends with 
equivalent point loads (P) acting at equal distances from the ends of the beam. 

m_bench : - rnjbeam-15 m_bench = 16.521 mass of the optical bench 

Total force pulling down on ea 
bars (includes mass of the optical elements). 

— H accel P = 224.455        Total force pulling down on each one of the four vertical support 
4 4 

.     length a=0417 
/37-2-JI\ Distance from the ends that the point loads act on the beam. 

cos — 
\ 360 

1 

'37-2-rt 
cos' 

L = 1.252 Length of each of the two criss-crossed truss beams. 

360 

width  =.025 
The criss-crossed truss beams are assumed to have the 

thick = .025      cross-sectional dimensions 2.5 x 2.5 cm. 

  Criss-crossed truss beams' moment of inertia. 
12 

Pa    /, T 2    .   2\ A c    , orn,„-3    Maximum amount of sag (in meters). 
maxdef = 13L - 4a i maxdef = 6.859*10        _,. ... .       ,.,     , 

24-E-I This occurs at the center of the beam. 

According to this calculation, the bench will hang down almost 7 mm from its initial position. Because there are 
no specific criteria stated for this topic, we assume this amount of sagging is acceptable. If it's not, the design 
must be revised, perhaps by increasing the cross-sectional areas of the two criss-crossed truss beams. 

Let's now look at #2: Determining how much the four vertical support bars will stretch under the 
tensile load of the bench (depicted in Figure 4a.): 

a  - .025 

A . = a-a        Cross-sectional area of each of the four vertical support beams (mA2). 

E- = 70-109 

P = 224.455 Tensile load (in Newtons) on each of the four vertical support beams. 

L ~ Al      Approximate initial length of the vertical support beams (in meters). 



delta_L= —       delta_L =2.411-10 6        A little over 2 microns. 
A-E 

This shows that the stretching of the vertical hanging bars is insignificant compared to the 
deflection of the criss-crossed truss beams above them. 

As always, the final step is looking at the total mass of the system. 

1) Truss mass 

dens : - 2700        Density of Aluminum (kg/mA3) 

2 2 
longbars : = dens-1-.025-.025 shortbars : = dens.75.025-.025 crossbars  =dens-.025-.025-V .75 +1 

endcrossbars : = dens-.025-.025-\/-752 +- .752 mass_truss := longbars-4 +- shortbars-4 +- crossbars-8 -t- endcrossbars-2 

mass_truss = 32.267 

2) Optical bench mass 

mass_bench  = m_tbcaml5 mass_bench = 16.521 

3) Vertical support bars mass 

massjiangbars  = dens-.025-.025-.47-4 mass_hangbars =3.172 

4) Liquid nitrogen reservoir mass (See "Liquid Nitrogen Reservoir/Optical Bench: Design C" for 
calculations determining the necessary dimensions for the liquid nitrogen reservoir) 

length  =.32 height: =.2 width =.75 thickness :- .006 

Mtopbottom = dens-length-width-thickness Mtopbottom =3.888 

Msides  = dens-height-length-thickness Msides = 1.037 

Mends  =densheight-width-thickness Mends =2.43 

mass_box : = 2-Mtopbottom+- 2-Msides +- 2-Mends mass_box = 14.71 

Total mass of Aluminum needed to construct this design: 

total_mass  = massjxuss +- mass_bench +- mass_hangbars +- mass_box total_mass = 66.67   kg 

Including the liquid nitrogen itself (40 lbs. worth), the total mass of the system is:        total_mass -H 18.2 = 84.87 kg 



6.   Conclusion 

This structural design satisfies all the deflection criteria and would require a total mass of 
aluminum around 67 kg. The primary disadvantage of this design is that it requires three separate 
structures: the truss, the optical bench, and the liquid nitrogen reservoir. Construction of this 
system may very well prove to be significantly more difficult than the other designs. There are 
also a number of other issues that warrant attention. First, the deflections suffered by the truss 
itself have not been specifically addressed here. Appendix I at the end of this paper provides an 
example of how to calculate such deflections. However, exactly how truss deformations will 
effect the optical bench (and consequently optics alignment) is unclear and may be beyond the 
scope of this investigation. Additionally, we must remember that this instrument may be rotated 
through any number of degrees and in various directions. Figure 5 illustrates the case where the 
instrument is "tipped up on end". Although it is again unclear what effect this configuration 
would have on the optical bench, Figure 5 shows one possibility that would almost certainly 
disrupt the optics alignment. Further calculations must be undertaken to determine exactly how 
the bench would react in such a situation. 

Figure 5. IR instrument rotated 90 degrees. 

If this design is ultimately used for the Spartan IR camera, the two other important components 
that require further investigation are the copper thermal connection bands and the optical element 
bases. The number, size, and attachment positions of the copper bands must be sufficient to keep 
the optical bench cool enough to meet the instrument's thermal requirements. Similarly, the size 
and positioning of the optical element bases must be pursued keeping mass and angular deflection 
to a minimum. Figures 6, 7 and 8 depict the three separate parts of this system (including all of 
the important measurements), and together provide a comprehensive illustration of Design B. 



Figure 6. Liquid Nitrogen Reservoir. 

Figure 7. Truss. 



8 cm 

Figure 8. Vertical supports and optical bench. 
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APPENDIX I 

Truss deflection calculations 

Quite a few assumptions are employed to make this problem reasonably solvable: 

1. The entire load of the system (optical bench + truss itself) is divided up evenly in fourths and 
applied as point loads at the four far corner joints of the truss. (See Figure A1) 

2. The only load bearing members are the diagonal and horizontal beams of the truss's sides. 
Combining this assumption with the first one, we have simplified the problem from 18 members 
down to two members. And since each of the four end joints endure the exact same load and 
have the exact same geometric shape, we really only have to solve one two-member problem and 
apply the solution four times. (See Figure A2) 

3. Only the vertical and horizontal displacements of the four end joints will be determined; the 
exact deformed shape of each of the truss members will remain unknown. If the deformed shapes 
must be known, more detailed calculations than what are shown here will have to be done. 

4. The problem will be solved using an energy method described in Handbook of Mechanics, 
Materials and Structures by Alexander Blake, 1985. (MSU Engineering Library: TA 350 .H23) 

P - 52-9.S I P = 510.12        Total load (N) (from optical bench mass + truss mass) 

a - .025 beam cross-sectional dimension (m) 

E ■ - 70-109 Young's modulus, aluminum (Pa) 

LI ■- 1.252 Length, diagonal beam (m) 

L2 = 1 Length, norizontal beam (m) 

kl . =         kl = 3.494* 107      Elastic constant, diagonal beam (N/m) 
LI 

a-a-E , „    ,„.,,- ,„7       Elastic constant, horizontal beam (N/m) 
k2 ■ =  k2 =4.375*10 

L2 

(1.662P)"    (1.327P)2 Potential energy stored in horizontal + diagonal beam (via 
2\\ 2k2 geometry calculations) 

Vertical displacement (deflection del_p) of the joint (where the two beams come together) can be 
found by taking the derivative of U with respect to P (dU/dP). 

r\    »7 y* 1     TJ 1     *"7/*r 1     O 

del p = — -i- —  del_p = 6.084* 10 "        Vertical displacement of joint (m) 
kl k2 



Figure A1. Truss loading conditions. 

diagonal beam" 

Figure A2. Load bearing members / problem definition 



The horizontal displacement of the joint is found by "applying a fictitious force Q and, after we have 
determined the horizontal displacement dU/dQ in terms of P and Q, then setting Q=0". 

U=^ + -UP-|>2 

2-kl     2-k2 

del_q=—      del_q =-1.547-10 5      Horizontal displacement of joint (m) 
k2 

Since the horizontal displacement of the upper joint is in the opposite direction from the horizontal 
displacement of the lower joint, the end vertical beams will be tilted at some angle in their deformed 
condition. The angle which the end beam makes with respect to the perfectly vertical may be 
important for optical alignment purposes: 

~2del_q= 3.095-10~5 

def_rad :=atan 3"°95 10 def_rad =4.127-10~5 radians 
\      -75      / 

dcf_deg : = def_rad  def_de« =2.364-10~3 degrees 
2-7T 

def_arc =def_deg-60-60 def_arc =8.512 Angular deflection of end beam (arcseconds) 

See Figure A3 for a pictoral representation of the truss in its deformed condition. 
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Figure A3. Side view of truss in its (exaggerated and not to scale) deformed condition. 
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1. Problem Definition 
The space available on the SOAR telescope for the Spartan IR camera instrumentation is an area 1 x 

.75 x .75 meters. 

1 mp.tp.r 

.75 meter 

.75 meter 

Figure 1. Spartan IR camera: space available. 

Light from the telescope enters along the long axis of the 3-D rectangular area. The light must pass through the 
center of eleven individual optical elements (mirrors, lenses, etc.), so they must be aligned in the light's plane. 
Additionally, these optical elements must be kept cool by way of contact with a certain volume of liquid nitrogen 
(temperature = 77 K). This volume of liquid nitrogen must also be contained within the boundaries of the space 
pictured in Figure 1. Furthermore, the optical elements must not change from their original position by more than 
a certain fraction of the wavelength being observed at. Anything more than a slight misalignment will 
significantly affect the data collecting capabilities of the instrument. 

2. Assumptions and criteria 

2.1. The structures used to contain the liquid nitrogen and support the optical elements (a.k.a. the optical bench) 
will be made of aluminum. 



2.2. The total mass of the structure must not exceed 120 kg; and as always, the lighter the better. 
2.3. The optical bench surface must remain almost perfectly flat; under it's own weight and the weight of optical 

elements on top. Any angular deflection greater than 5 arcseconds is unacceptable. 
2.4. The entire space shown in Figure 1 will be under vacuum conditions when the instrument is being used. 
2.5. The liquid nitrogen (LN2) container must be able to hold 30 lbs (18.2 kg) of LN2 and also have a vent 

leading outside the vacuum region. 

3. Background 

The initial design called for making a single box that would contain the liquid nitrogen inside while 
allowing for optical elements to be mounted on its top. This was the preferred design because of its simplicity. 
However, with this design, the inside of the box would be subjected to atmospheric pressure (15 psi) because of 
the necessary vent leading from the LN2 storage area to the outside. Since the inside of this box would be at 15 
psi while the outside would remain at 0 psi in vacuum, the top of the box (optical bench) would bow out 
significantly due to the pressure difference. Calculations showed that the angular deflection caused by this 
"bowing out" would be over 100 arcseconds. 

This deviation from flatness is unacceptable. To remedy this problem, the basic idea is to separate the 
optical bench from the LN2 box. This way, we can pursue structures that keep the optical bench flat without 
having to deal with the annoyance of a 15 psi pressure gradient. The structural design described in the remainder 
of this paper is one of several designs developed for meeting the criteria stated in Section 2. The other designs are 
presented in separate papers similar to this one. Here, the optical bench is essentially a succession of T-beams 
stuck side by side and supported on both ends by two tall rectangular beams. The LN2 box is located below and 
independent from the optical bench. Illustrations of the design are provided first, followed by calculations to 
show its compliance with the criteria stated in Section 2. 

4. Design Illustrations 

< optical bench 

box 

Figure 2a. 3-D view. 



Copper thermal conduction bands, 

—V 
—I i r ■ 

i 
 1  i 1 r 

LJ   I 
 t 

—i r- 
i 

—, 
„_ f 

_QßUp3iJ?§5P^.. 

LN2 box 

Vent pipe 

Figure 2b. Side view. 

Copper bands 
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Figure 2c. End view. 



5. Calculations (Shown here on MathCad worksheet) 

First, we need to determine what size to make the two side supporting rectangular beams. 
The size we will use depends solely on how great a deflection we want to allow. Since the total 
deflection must be less than 5 arcseconds, we'll make these two side beams thick enough and 
wide enough to allow only up to 1 arcsecond deviation from perfect rigidity. This will leave up to 4 
arcseconds deflection leeway for the optical bench part of the design. 

thick = .67      Beam height (m) „    ™ ,,,9       v/       ,   ,„   . ,     ,    A, /r,       »,;   *n\ a    v   ' E=7010 Young s Modulus for Aluminum (Pa or N/mA2) 

v ■ = .34 Poisson's ratio fro Aluminum (unitless) 
length := 1    Beam length (m) 

wid = .01     Beam width (m) 

3 
_ wid-thick" 

12 I = 2.506* 10 4 Beam moment of inertia (mM) 

dens : = 2700        Mass density of Aluminum (kg/mA3) 

accel -9.8 Gravitational acceleration (m/sA2) 

massside = dens-thickwidlength      massside = 18.09 Mass of the beam (kg) 

bcnchmass =24 (from future calculations) 

opticsmass :=75 (from SOAR documentation) 

benchmass -t- opticsmass ., ,-, ™     Total mass supported by one 
mass  = +• massside mass =67.59       ...      .,   . 2 of the side beams 

Force on the beam due to weight it must support 
F = mass-accel F = 662.382       (modeled as uniform pressure pushing down on top 

surface of the beam and includes its own weight plus the 
anticipated weight of HALF the [optical bench + optical 
elements ON the bench]) 

F _ fifio OOT    Pressure placed on the beam [Force/length] (comes out the same 
length       ~ value as Force because the length of the beam is 1 meter) 

4 

maxdef =£1^51—      maxdef = 4.719* 10 6      Maximum deflection (in meters) 
8-E-I 

  defang_rad =4.719* 10 Maximum angular deflection (in radians) 
length / 

defang_deg =defang_rad  defang_deg =2.704'10 4       Maximum angular deflection (in degrees) 
2-Jt 

defang_arcsec : = defang_deg-60-60 defang_arcsec = 0.973       Maximum angular deflection (in arcseconds) 



Now we model the optical bench as a system of 10 T-shaped beams joined side by side and find their dimensions 
such that angular deflection is limited to less than 4 arcseconds. We will first assume that all of the optical 
elements mounted on top of the bench will have bases that span at least one if not two of the vertical support ribs 
underneath the bench. After that, we will look at the possibility of deflection inbetween the underlying support ribs 
due to optical elements being mounted in these areas WITHOUT their bases spanning any ribs beneath. These two 
situations are illustrated on the previous page in the order presented in this paragraph. 

length =.75 

B  =.1 
4 

b =.09 

d = .004 

H =.09 

a=B-b        a =0.01 

cl   =I.fa-H2,b-d2| 
2 \ a-H-hb-d / 

cl =0.033 

h =H- d- c2 h =0.029 

4 mm I 

100mm 

I 
I 

90 mm 
I 
I 

10 mm 

c2=H-cl     c2= 0.057 

This moment of inertia equation comes from Handbook of Mechanics, Materials & Structures by 
Alexander Blake, 1985) 

I_t  =--(B-C|-- b-h3 + a-c23) 
3 

m__tbeam = BHIengthdens 

75 

I t = 1.083-10 

(c2-t- h)-lengthdens (c2+ h)lengthdens 

m_optics 
10 

m_optics = 7.5    Assuming optical elements are 
uniformly distributed over entire bench 

m_tbeam = 2.551 

Mass of individual T-beam 

F = (m_tbeam+- m_optics)accel F = 98.505 Force pushing down on individual T-beam 

F 

length Pressure pushing down on individual T-beam [Force/length] 

max def: - 
5 q-length 

384EI t 
max_def = 7.135'10        Maximum deflection (in meters) 

Since the situation we're modeling here is a beam clamped at both ends, the maximum deflection 
must occur at the center of the beam. Therefore, the maximum deflection angle must be found by 
taking the arctangent of the max deflection divided by half the length of the beam (75cm/2 in this 
case). 



maxangle_rad : - atan 
max_def | 

75 

2 

maxangle_.rad = 1.903* 10 5      Maximum deflection (in radians) 

rmYnncrlf*   nptr   — rmvincrlf*   rn/i*   i b ~   b b -      2-7t maxangle_deg = 1.09*10 ' Maximum deflection (in degrees) 

maxangle_arcsec :- maxangle_deg-60-60 maxangle_arcsec = 3.924       Maximum deflection (in arcseconds) 

Maximum deflection is under 5 arcseconds, even when adding in the deflection contribution from the side support 
beams. 

Summing up the masses of all the T-beams plus the two side support beams gives us the total 
mass of the optical bench system: 

total_mass : = m_tbeam-10+2- massside total_mass = 61.695 

Now we'll look at the top surface of the bench in the sections inbetween each of the vertical support beams 
underneath. We attack the calculation of deflection in these regions by modeling them as rectangular plates with 
simply supported boundary conditions on each edge. Each of these sections is .1 m wide and .75 m long. We'll 
determine the thickness necessary to prevent any angular deflection greater than 5 arcseconds assuming a worst 
case scenario with respect to loading. 

v =.34 E  =70-l09 

Optical element assumptions: 1. Element is attached to the box top (i.e. the optical bench) by 
rectangular base clamps which produce a uniform load over the 

entire t-beam section being looking at. 
2. Assume a worst-case scenario where there are two optical 

elements attached atop of one individual inbetween t-beam element. 

dens_glass  =2200 dens_clamp : = 2700        assume clamp is made of aluminum 

mass_glass = dens_glass-.2-.02-.2       mass_glass = 1.76 Mass of the glass/silica portion of the optical element 

mass_clamp = dens_clamp-.2-.03-.05        mass_clamp =0.81        Mass of the aluminum base portion 

mass_plate =dens_clamp-.l-.0156-.75        mass_plate =3.159     Mass of the aluminum optical bench section 

tot_mass ■ = (mass_clamp ■+- mass_glass)-2 + mass_plate tot_mass =8.299 

F =tot_massacceI        F = 81.33 

q = 6.506* 10 Total pressure pushing down on inbetween t-beam section (the plate) 
.25.05 [N/m*2] 



m=l,3.. 11       n = 1,3.. 11    6 terms in the expansion should be plenty 

Plate deflection equations used below are from Handbook of Engineering Mechanics by Flügge, 1961. 

.3 t  =.013       A:=.l B   =.75 
plate dimensions (meters) K: 

E-f 

12-1- v 

Flexural rigidity or bending stiffness 
(metersA3) 

maxdef =— >    >   - 
6 v 

n    m m-n- 
2        2    A 

m -t- n • — 
B2 

maxdef = 1.035*10 Maximum deflection (in meters) 

Under the given boundary conditions, we know the maximum deflection occurs at the center of the 
plate (aka bench subsection). Therefore, the maximum angular deflection can be calculated by 
finding the arctangent of the maximum deflection divided by the distance to the nearest edge 
(which here is 5 cm away). 

theta rad : = atari 

theta_deg 
2-7C 

theta_rad = 2.071-10 " Maximum angular deflection (in radians) 

theta_deg = 1.186-10 "       Maximum angular deflection (in degrees) 

theta_deg-60-60 =4.271     Maximum angular deflection (in arcseconds) 

We've shown here that the top surface of the bench must be at least 13 cm thick to avoid unacceptable angular 
deflections in a worst case loading situation. We can now re-calculate the mass of the system when the top 
surface of all the t-beams is 13 cm thick: 

length : = .75 

B = .1 

b = .09 

d = .013 

H = .09 

a = B- b a=0. 

fl 
_ 1  / 

2 \ 

a-H2 + bd2 

a-H -t-b-d 

13 mm I 

cl =0.023 

100mm 

_l 
10 mm 

c2=H-cl     c2 =0.067 

90 mm 
I 

h  =H-d- c2 h=0.01 

I_t  =-(B-C1
3
- b-h3+-a-c23 I t = 1.378-10 



rnjbeam -B-Rlength dens —(c2-h h)-length-dens 
2 

— (c2 + h)lengthdens 
2 

m_tbeam =4.192 

Mass of individual T-beam 

Summing up the masses of all the T-beams plus the two side support beams gives us the total 
mass of the optical bench system: 

total mass =m tbeam-10-i- 2-massside totaLmass = 78.097 

Now onto the LN2 reservoir box portion of the design... 

Depth available underneath the T-beam optical bench is at least 17 cm. 
First, figure out how much volume the 40 pounds (18.2 kg) of LN2 will occupy: 

densLN2 = .8 density in g/liter or g/cmA3 .8 1003 = 800        density in kg/mA3 
1000 

18.2 = 0.023       volume of LN2 in mA3 
800 

If the LN2 box spans entire area underneath the bench (1 x .75 m surface area), depth of the box 
needs to be just over twice the depth of the LN2 itself (in order to accomodate for the vent pipe): 

..    ...   *.*..->       -023     „„„, 2-.031 =0.062 Therefore, box depth must be > 6.2 cm depth of LN2:      =0.031 
1.75 

combined with top and bottom pieces of box at thickness = .8 cm, total height space needed = 7.8 cm. This is 
much less than the 17 cm available. 

So, how about using some of this available depth space and shortening the length of the LN2 
box? (i.e., making the box 15 cm deep x 75 cm wide, how long does it need to be...). 
Remember, total volume of the box must be greater than .046 mA3: 

h0Xlength = ^5 b°Xlength = °-4°9        The box only needs to be a little over 40 cm long. 
We'll make it 42 cm for the remainder of the 
calculations, just to be safe. 

How much will this box deflect down at the end if only attached by clamped edge boundary 
condition to the telescope's mounting surface? Only a deflection of greater than about 2 cm will 
be unacceptable - if this happens, part of the box will reside outside the designated space 
available and may cause problems. 

Calculating deflection looking at side plate as a beam with its own weight plus the LN2 weight, 
modeled as a uniform pressure pushing down on top of the beam... 



(all sheets of 
Aluminum box dimensions (meters):     b=.42    length        t =.15   thickness a =.008  width     aluminum 

used to 
make the 
box must be 

Assume the pressure pulling down on the box will be due to 1/2 the weight of the entire box, 8 mm thick) 
uniformly distributed over the top surface of the side beam. 

ONE CLAMPED END - CANTILEVER BEAM B.C.s ,       .J1      _ 
boxwidth =.75 

at3 

I = —      Beam moment of inertia 
12 

dens = 2700 mass density of aluminum (kg/mA3) 

accel =9.8 gravitational acceleration (m/sA2) 

total mass of the box + LN2 

mtopbottom = dens-bboxwidth-a mtopbottom =6.804 

msides = denstba msides = 1.361 

mends  = dens-t-boxwidtha mends =2.43 

mass_box  = 2 • mtopbottom +- 2 • msides -t- 2 • mends mass_box =21.19 

total_mass  = 2-mtopbottom +- 2-msides+ 2-mends +- 18.2 total_mass =39.39 

Each side beam must support half this weight:       half_mass = =  half_mass = 19.695 
2 

Force on this mass: F=half_mass-accel F= 193.009 

F 
Corresponding pressure on top of side beam:        q =- q =459.545 

g.g.j maxdef = 1.135* 10 " End deflection is way less than 1 cm 

Now determine the bowing out deflection due to pressure inside the LN2 reservoir box (atmospheric 
pressure; 101.3x10A3 Pa) and whether or not this will cause problems. 

p := 101.3-103     atmospheric pressure (Pa) 

L = .42      Width of the LN2 box (m) 

E =70109 

Constant given by Blake for our given top/bottom surface of the box and boundary 
condition: all 4 edges simply supported. 

h = .008 Plate thickness of top/bottom surfaces of the box (m) 



maxdef: = - 
3 maxdef = 0.01 1cm deflection, no problems. 

Total mass of aluminum needed to make this whole system, assuming best case where all optical 
elements have bases that span underlying ribs so inbetween plate deflections can be ignored: 

Tmass = 2massside-t- 2.551-10+ mass_box Tmass =82.88   kg 

Total mass of the system INCLUDING the liquid nitrogen: 

Tmass =2massside+2.551-10-t-mass_box+-18.2 Tmass = 101.08     kg 

Total mass of aluminum needed to make this whole system, assuming the worst case scenario 
loading condition: 

Tmass = 2-massside-i-4.19210+mass_box Tmass =99.29     kg 

Total mass of the system INCLUDING the liquid nitrogen: 

T T vi     /■ im wi K       ion -r , n ,,n sti" under the absolute Tmass  -■ 2-massside + 4.192-10-r mass box +- 18.2 Tmass = 117.49 .*nn, 
max mass of 120 kg. 



6. Conclusion 

The structural design described here meets all the performance criteria. Its primary advantage is 
manufacturing simplicity, but its leading disadvantage is how close it comes to the maximum mass limit (both 
assumption conditions give 100 kg < total mass < 120 kg). If this design is ultimately used for the Spartan IR 
camera, two of the more important components that require further investigation are the copper thermal 
connection bands and the optical element bases. The number, size, and attachment positions of the copper bands 
must be sufficient to keep the optical bench cool enough to meet the instrument's thermal requirements. 
Similarly, the size and positioning of the optical element bases must be determined keeping mass and angular 
deflection to a minimum. Figure 3 below provides a comprehensive illustration of the system including all 
important measurements (for the case where any deflections occurring inbetween underlying ribs are ignored). 

75 cm 

100 cm 

e=^ light (the optical bench must be at least 10 cm below where the light comes in, in order 
to allow room for the height of the optical elements that will be placed on top of it) 

10 cm <- 
__._ — -.___ — — — — — — ^.: ..— _—__ — — -_ __ ;•.*__-,_._. 

S.'-'.t 

j ■.■: I     /    '   " 

A 

!--■:: 

.y .y% lcm 

42 cm- 

—f 

15 cm I 
9cm 

vent pipe 

75 cm 

26 cm 

H 

Figure 3. Comprehensive design illustration. 
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