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1   Introduction 

Background 

The United States Army is responsible for managing over 12 million acres of 
land. The Army's land management objective is to maintain realistic military 
training and testing environments while promoting land stewardship. To ac- 
complish this objective, the U.S. Army Land Condition Trend Analysis (LCTA) 
program was developed at the U.S. Army Construction Engineering Research 
Laboratory (CERL) under the sponsorship of the former U.S. Army Engineering 
and Housing Support Center (USAEHSC) as a means to inventory and monitor 
natural resources on military installations. LCTA uses standard methods to 
collect, analyze, and report natural resources data (Diersing, Shaw, and Tazik 
1992) and is the Army's standard for land inventory and monitoring (Technical 
Note [TN] 420-74-3). Over 50 military installations and training areas in the 
United States and Germany have begun or plan to implement LCTA. LCTA data 
sets currently exist for more than 40 installations and contain 1 to 10 years of 
monitoring data. Lands inventoried as part of the LCTA program include Army 
Materiel Command (AMC), Forces Command (FORSCOM), Training and Doc- 
trine Command (TRADOC), and National Guard Bureau installations. Over 75 
percent of the Army's land base is represented by LCTA data (Shaw and Kowal- 
ski 1996). 

An informal review of installation ITAM personnel indicated an interest in esti- 
mating plant diversity using LCTA data and modeling changes in plant diversity 
that result from alternative land uses. 

Objectives 

The objective of this project was to develop and test methodology to model 
changes in plant diversity using standard data from the U.S. Army's Land Con- 
dition Trend Analysis (LCTA) program. Specifically, stochastic models (those in- 
volving random variables) of plant diversity were to be developed using data 
from the White Sands Missile Range, New Mexico, LCTA program. 
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Approach 

A literature survey was conducted to identify methods of characterizing and 
modeling plant diversity. Based on results of the literature review, modeling 
techniques were selected to model plant diversity. Land Condition Trend Analy- 
sis data from the White Sands Missile Range, New Mexico, was then used to de- 
velop stochastic plant diversity models for selected plant communities. 

Scope 

The modeling techniques described in this report are applicable to any military 
installation collecting LCTA data. The specific model documented is only appli- 
cable to White Sands Missile Range. 

Mode of Technology Transfer 

The information in this report will be provided to Army ITAM personnel respon- 
sible for using LCTA data. The information will also be provided to organiza- 
tions responsible for developing and refining natural resources conservation 
methodologies through hard copy reports and through the CERL web site. 

This study is part of a larger research effort to develop and field LCTA-related 
data applications. Models and analysis techniques described in this report are 
being incorporated into other modeling efforts and systems. 
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2  Ecological Diversity and its 
Measurement 

Although the study of ecological diversity is only about 30 years old, it has been 
extensively represented in the literature during that time. There are three rea- 
sons ecologists are so interested in this topic. First, diversity is one of the cen- 
tral themes in ecology. Ecology is the scientific study of the distribution and 
abundance of organisms and the interrelationship between the organisms and 
their surroundings. Diversity studies, which address the variety and abundance 
of organisms, represent a major field of study in ecology. Second, diversity is of- 
ten seen as an indicator of the health of an ecosystem. Studies have shown that 
pollution and disturbance reduce the richness and variety of the natural ecologi- 
cal communities. The loss of natural habitat and species extinction around the 
world have served to focus international attention on the issue of diversity. 
Third, considerable debate surrounds the measurement of diversity. On the sur- 
face, biodiversity seems to be a straightforward concept. Most people have an 
intuitive sense of the word. They would acknowledge that tropical rain forests 
harbor more species than temperate woodlands and are therefore more biologi- 
cally diverse. However, the more we look at diversity, the less clearly defined it 
appears to be because diversity can be measured in so many different ways. A 
more in-depth study of diversity could reveal new and unexpected relationships 
between species and ultimately lead to a better understanding of the mecha- 
nisms involved. The study of ecological diversity over the past 30 years has 
raised three main questions: what is diversity, how is it measured, and what is 
its value in practice? 

The Concept of Diversity and its Measurements 

Diversity is one property of a biological community and consists of two compo- 
nents: variety and abundance. A large number of diversity measures have been 
devised by interpreting the relationship between variety and abundance in dif- 
ferent ways. Magurran (1988) divides the measurement of species diversity into 
three main categories. First are the species richness indices. These indices are 
essentially measures of the number of species in an ecosystem. The second cate- 
gory of diversity measures includes those models that describe the distribution of 
species abundance. The third category is the diversity indices based on the rela- 
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tive species abundance. These indices, like the Shannon index and the Simpson 
index, consolidate species richness and evenness into a single figure. 

Indices of Species Richness 

Species richness is defined as the number of species or species density in the 
community. If a complete catalogue of species in a community can be obtained (it 
is possible for small communities), the number of species provides some measure 
of understanding diversity. Because most natural communities are very large, 
however, only a limited number of species can be counted and identified by sam- 
pling. Therefore, species density (defined as the number of species per unit area, 
biomass, or number of individuals), is commonly used as species richness (Hurl- 
bert 1971; Homer 1976; Kempton and Wedderburn 1979; Kershaw and Loony 
1985). Species density estimated by sampling varies with sample size and sam- 
ple distribution. To cope with this problem Sander (1968) devised the technique 
of Rarefaction for calculating the number of species expected for all samples with 
standard sample size. Hurlbert (1971) improved Sanders' Rarefaction to produce 
an unbiased estimate of the number of species. Instead of using the number of 
species or the species density, others have used some simple indices derived from 
a combination of the number of species (S) and the number of total individuals 
(N) to represent species richness. Such indices include Margalef s index (Clifford 
and Stephenson 1975) and Menhinck's index (Whittaker 1970). The Margalef 
index (DMg) and Menhinck index (D,^) are, respectively, defined by: 

da) DM = Mg 

db) DM„ = 

5-1 
In AT 

S 

Species Abundance Models 

Species richness may be intuitive and easy to calculate but it does not contain 
any information of the relative abundance or distribution of species. In fact, spe- 
cies distributions are often more meaningful in explaining natural communities. 
Kempton and Wedderburn (1979) observe that a distribution of species is often a 
more sensitive measure of environmental disturbance than species richness 
alone. In an early study, Fisher, Corbet, and Williams (1943) found that patterns 
occur in species distribution. It is very rare to have an equal number of indi- 
viduals for all species. Instead, a few species would be very abundant, some 
would have a medium abundance, while most species have only a few individu- 
als. This observation led to the development of species abundance models. 
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Pielou (1975) developed six models of species abundance. They are the niche 
preemption model, broken stick model, overlapping niche model, truncated nega- 
tive binomial distribution, log-series distribution, and log-normal distribution. 
In a monograph of stochastic abundance models, Engen (1978) lists nine mathe- 
matical distributions related to species abundance. These are the gamma distri- 
bution, first kind beta distribution, second kind beta distribution, log-normal dis- 
tribution, Dirichlet distribution, negative binomial distribution, logarithmic 
series distribution, negative binomial beta distribution, and Poisson log-normal 
distribution. A number of other species abundance models also appear in litera- 
ture (Zipf 1965; Mandelbrot 1977; Gray 1988). In practice, four main models 
(Magurran 1988) characterize species diversity: the log-normal distribution, 
geometric series, logarithmic series, and MacArthur's broken stick model. 

The geometric series is based on the hypothesis that every species ranked from 
the most to the least abundant take the same proportion (k) of the remainder. 
The ranked abundance list is k, k(l-k), k(l-k)2, ... k(l-kf2, (l-kf1. May (1975) 
gave the probability distribution of such ranked list, F(x), which is defined as the 
probability that a randomly chosen species has size less than x. 

(2) FW-O   lnW 

ln(l-it) 

C is a constant. Geometric series pattern of species abundance is found primar- 
ily in species-poor environments or in the very early stages of a succession (Whit- 
taker 1965, 1970, 1972). 

Fisher, Corbet, and Williams (1943) derived a log-series model to describe the 
species abundance of Malayan Lepidoptera. This log-series model represented 
the first attempt to describe mathematically the relationship between the num- 
ber of species and the number of individuals in those species. In the log-series, 
the expected frequency of a species with abundance x is given by: 

(3)        fx=—, for x= 1,2, ... 
x 

The variable b (0 < b < 1) is a constant that is dependent on the sample size, and 
a (a > 0) is a constant determined by the characteristics of the community. When 
the abundance of each species is plotted on a logarithmic scale in rank, the log- 
series approximates a straight line with a slope of -a (Taylor, Kempton, and 
Woiwod 1976). The log-series provides a statistical satisfactory description of 
samples from a wide range of communities (Williams 1964; Kempton and Taylor 
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1974; Gray 1978). It can be used for small, stressed, or pioneer communities 
(May 1975; Whittaker 1965), and also for "neutral" unstressed communities 

(Caswell 1976). 

Preston (1948, 1962) observed that in many samples middle-ranked species were 
relatively numerous, and there were fewer rare species than the log-series dis- 
tribution predicted. By the log transformation of number of individuals, Preston 
found that the number of species always distributed with a truncated normal 
distribution. In a log-normal distribution, the probability density function is: 

(4) f(x) = —===exp 
x^2m*<y 

-(In x- my 

la1 

The expected size of species is calculated by: 

(5) E(S) = exp m-\— 
2 

The log-normal distribution rises from the statistical properties of large numbers 
and as a consequence of the Central Limit Theorem (May 1975). Thus, it is con- 
sidered to be the descriptor of large and mature natural communities (May 1975; 
Whittaker 1972; Gray 1978; Preston 1980; Magurran 1988). 

MacArthur (1957) first proposed the broken stick model. In this model, the re- 
source is likened to a stick broken randomly and simultaneously into S distinct 
segments. The lengths of the segments represent the "sizes" of the species. Ac- 
cording to the model, the expected size of the i-th species, xi, is: 

(6,       E(x,)=!i   I 

The broken stick model reflects a much more equitable state of affairs than those 
suggested by the log-normal, log-series, and geometric series. It has good fits for 
the communities with a few species and relative high evenness between species 
(May 1974; Pielou 1975). 

Diversity Indices 

The third kind of diversity measures include those indices based on the propor- 
tional abundance of species. Although species abundance distributions provide 
the fullest description of diversity data, there are times when a single diversity 
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index is required. When communities do not fit one model and it is desired to 
compare them by means of diversity, indices based on the proportional abun- 
dance of species provide a solution to this problem. The most commonly used 
indices are the Shannon index and Simpson index. 

The Shannon index is defined as: 

(7)       H'=-2   (pinPi) 

The parameter P; is the proportion of community members in the i-th class. 
Shannon originally proposed this diversity index as a measure of the information 
content of a code. The Shannon index assumes that individuals are randomly 
sampled from an "infinitely large" population and all species are represented in 
the sample. 

Using the fact that the probability of drawing two successive individuals be- 
longing to the same species in a random sampling is p2

i; Simpson (1949) sug- 
gested a statistic, D, that has the form of: 

(8) D = ^ 
i=l 

The parameter p; is the proportion of individuals in the i-th species and S is the 
total number of species in the community. This statistic measures a property 
that is opposite to the diversity. The diversity index corresponding to the statis- 
tic D, the Simpson index, is then given by: 

(9)       H = -InD 

The Shannon index and Simpson index are two special cases of a more general 
class of functions (H) used in mathematical theory of information (Pielou 1975). 

lnß>?) 
(10) Ha = i=l 

\-a 

s 

a->1 i=l 

(11) H1=lim(HJ = -£p,ln(p(.)     (Shannon index) 

(12) H2 = Hc=2 = -ln(^p,2) (Simpson index) 
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Using the concept of rarity, Dennis and Patil (1979) find a class of diversity func- 
tions that also leads to the Shannon index and Simpson index. 

(13) Rarity = R(pi) = ß^tl-pf] 
s 

(14) Diversity = Aß = £PiR(Pi) 
J=I 

(15) A_i = AR=_I = S-l (Species richness index) 

(16) A0 = Hm(A/?)= "Z(P/ lnP<) (Shannon index) 

S 

(17) A, =AM =1-^P,2 (Simpson index) 
1=1 

There are other diversity indices such as the Mclntosh index and Berger-Parker 
index. Mclntosh (1967) found that the Euclidean distance of the assemblage 
from the origin could be used as a measure of diversity. Berger and Parker 
(1970) use the proportional importance of the most abundant spices as the diver- 
sity measure. 

New Models of Diversity 

Hughes (1984, 1986) has completed research on the diversity measures with a 
dynamics model. In this dynamics model, the abundance (n) of the i-th species at 
time t+1 is calculated from the expression: 

(18) »;+1 = S[nl + R(l + Zni)K~Nt] 
K. 

The variable S is the survival parameter, R is the recruit parameter, Z is the ag- 
gregation parameter, and Nt is the number of total individuals. This dynamics 
model simulates the development and the progression of a theoretical commu- 
nity through time. It defines a "community" with a variable number of species 
and species abundance. 

Diversity itself is also divided into two types: species diversity and spatial diver- 
sity (structure and habitat diversity). The diversity discussed above is mainly 
concerned with species diversity. Although species diversity is the more impor- 
tant, structure and habitat diversity has special use in ecology. Habitat diversity 
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has been used as an important component of wildlife conservation evaluation 
(Fuller and Langslow 1986; Pearsall, Durham, and Eagar 1986; Usher 1986). 
MacArthur and MacArthur (1961) found that the structural diversity of a tem- 
perate woodland in North America was a much better predictor of bird diversity 
than the plant species diversity. Southwood, Brown, and Reader (1979) reported 
finding a close relationship between plant spatial diversity and insect diversity 
in woodland succession. Elton and Liller (1954) divided habitat diversity into 
four levels. The first level is the major habitat system (e.g., terrestrial or 
aquatic). The major habitat system is then divided into formation type (e.g., 
woodland or open land). When categorizing the formation type, the presence of 
vertical layers (e.g., ground flora, shrub, high canopy) is recorded. These vertical 
layers comprise the third level of habitat diversity. A fourth layer of qualifiers 
(e.g., conifer, deciduous) then describes them further. 

Different situations and studies may have different habitat classification 
schemes. Once the structure and habitat diversity is defined, the next question 
is how to measure the structure and habitat diversity Methods for measuring 
species diversity can also be used for measuring structure and habitat diversity 
(Magurran 1988). A rather different approach, differentiation diversity, is re- 
quired when we wish to ascertain how species numbers and identifiers differ be- 
tween communities or along gradients (Magurran 1988). 

The true value of studying diversity is in its application. It is believed that di- 
versity is a good indicator of the well-being of an ecosystem (Magurran 1988). 
Diversity measures have potential applications to two main ideas. First, is the 
idea of natural resources conservation, which is underpinned by the notion that 
species-rich communities are better than species-poor ones. Second is the idea of 
environmental monitoring, which assumes that the adverse effects of pollution or 
disturbance will be reflected in a reduction in diversity (or by a change in the 
shape of the species abundance distribution [Magurran 1988]). Many research- 
ers (Bechtel and Copeland 1970; Schäfer 1973; Rose 1978; Gray and Mirza 1979; 
Yapp 1979; Wu 1982; Usher 1986; Tomascik and Sander 1987) have shown suc- 
cessful applications of diversity measures. 

It should be noted, however, that all of the previously mentioned diversity meas- 
ures have some limitations. Species richness gives only the number of species or 
species density. Diversity indices based on the proportional abundance of species 
represent the number of species and their relative abundance as a single figure. 
However, they lose information about relative species abundance. Species abun- 
dance models give the fullest description of species distribution. Once the spe- 
cies distribution of a community is determined, diversity indices can be calcu- 
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lated from the distribution of species. However, species abundance models also 

have problems in application. 

Although there are many mathematical distribution models related to species 

abundance, two models have focused on the limited distributions of species: the 

log-normal and the log-series models. The log-normal model is said to fit a wide 

variety of communities that are stable and contain a large number of species, 

while the log-series model is said to be applicable to small, stressed, or unstable 

communities. Although the log-normal and the log-series models have been 

widely used and have good theoretical explanations, there are three problems 

with using these models. First, the majority of real communities may not be 

satisfactorily described by either the log-normal or the log-series. It is very rare 

to find a community with the exact log-normal distribution or log-series distribu- 

tion. Second, either the log-normal or the log-series distribution may result as 

an artifact of the sampling procedure. Combining smaller, separate samples 

may produce a log-normal distribution, even if the individual samples each show 

a log-series distribution. On the other hand, a small sample taken from a log- 

normal community may produce a distribution resembling a log-series. Third, 

even if the log-normal or the log-series distributions fit the community very well 

by the 'goodness of fit' test, the fitted log-normal or the log-series model does not 

provide a good estimation of the abundance of the most prevalent species or the 

least prevalent species. This is because the most abundant and least abundant 

species are represented at the tails of the distribution. Most biodiversity meas- 

ures like the Shannon index and the Simpson index depend on a large number of 

rare species. Also, the quality of a community is mainly determined by the most 

abundant species. Therefore, using a theoretic distribution in biodiversity 

analysis causes a precision problem. 

Although the problems discussed here are critical in a diversity study, they have 

not been solved yet. This study intends to explore a new method of measuring 
diversity and fill the gap in the recent diversity study. A new stochastic dynam- 

ics model will be developed to model both the deterministic population growth 

and population fluctuations. This model will use a variable number of species 

and species abundance to calculate any kind of diversity indices. Because both 

the dynamic changes and stochastic fluctuations are included in the new model, 

the stochastic dynamics model has the potential for extensive use in natural re- 

sources management and environmental monitoring. Future applications of 

these stochastic dynamics models include (1) providing standard diversity meas- 

ures, (2) monitoring the development of plant communities in terms of species 

diversity and structure diversity, (3) testing the significance of the influence of 
human activities on plant communities, and (4) estimating rehabilitation time 

for a disturbed plant community. 
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3  Stochastic Dynamic Models 

Although the real mechanisms for the development of a plant community are 
very complicated, mathematical models can replace the complex biological reality 
with some idealized hypothetical systems. In fact, many simplified mathemati- 
cal models can interpret complex consequences and predict the behavior of elabo- 
rate natural systems. In this report, we will discuss several population dynam- 
ics models with environmental stochasticity and demographic stochasticity. 

A stochastic dynamics model can be derived by manipulating a deterministic 
model to include demographic stochasticity and environmental stochasticity. A 
deterministic model describes the mechanisms controlling the population growth 
and decay. The values of the parameters in the deterministic model are assumed 
to be known. Whenever the initial conditions are given, the deterministic models 
provide exact predictions of future populations. In the real world, however, few 
communities have the population dynamics described by deterministic models. 
Instead, populations of most natural communities have fluctuating growth be- 
cause of demographic and environmental stochasticity (or noise). 

Turelli (1986) provides definitions of environmental stochasticity and demo- 
graphic stochasticity. Demographic stochasticity (or within-individual variabil- 
ity) is the variation of individuals who appear to be identical but have different 
life lengths and produce different numbers of offspring. Integer-valued stochas- 
tic models are typically used to investigate the consequences of the demographic 
stochasticity. Environmental factors vary unpredictably through time in ways 
that affect all individuals. This variation is called environmental stochasticity. 
Most analyses of the consequences of environmental stochasticity begin by add- 
ing a noise term in the deterministic model (May 1973; Capocelli and Ricciardi 
1974; Tuckwell 1974; Goel and Richter-Dyn 1974; Turelli 1977). This produces 
stochastic difference and differential equations with continuous ranges. 

In this paper, we first introduce a dynamics model of population growth. This 
model derives birth and death rates as they relate to population growth from the 
relationships among plants. It also derives these rates from the relationship 
between plants and the environment. The model will serve as the deterministic 
part of the stochastic model. Next, we present some well-known stochastic 
models such as birth and death processes and a diffusion process. In this part, 
we demonstrate different methods to solve a variety of stochastic differential 
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equations. Next, we will show how to incorporate both demographic noise and 
environmental noise into a single model that considers the joint effects of 
demographic and environmental stochasticity. Finally, we will apply the model 
to predict the dynamics of the understory in a bottomland forest. 

A Simulation Model of Population Dynamics 

The dynamics of the population growth of a community can be mathematically 
described if the functional behavior of the rate of growth is known. The litera- 
ture contains many different representations of the growth rate (Nisbet and 
Gurney 1982; Streifer 1974; Hallam 1986). Most of these representations have 
two basic factors in common: survivorship and recruitment. Survivorship can be 
expressed by the percentage of individuals that survive from one time period to 
the next. Recruitment is the addition of new individuals to the population by 
immigrations and births. For plant communities, the emigration can be ne- 
glected because plants usually do not emigrate once they become established in 
the community. 

A Discrete Model of Plant Population Dynamics 

Consider a 1-hectare plant community consisting of 10,000 space units (i.e., 1 
space unit = 1 m2). Each individual of i-th species occupies A' space unit. Thus, 
the space occupied by all plants at time t is A^ = Ejet'*A', where x't is the number 

of individuals of the i-th species at time t. 

The change in the number of individuals of the i-th species from time t to time 
t+1 depends on the number present at time t, the number recruited (immigration 
and birth), and the number of individuals that survive. This relationship is ex- 
pressed as: 

(1)* xl+1 = s' (*; + rs) 

where xl
t+1 and x\ are the number of individuals of the i-th species at time t+1 

and t, respectively, s1 is the net survivorship, and r1 is the net recruitment. 

* Equations in each chapter begin with (1). 
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Competition, insects and disease, senescence, and occasional catastrophe (natu- 
ral catastrophe and human disturbance) are the most important sources of mor- 
tality for terrestrial plants. Mortality (or survivorship) is incorporated into the 
model in three ways. First, the inter-specific survive rate (S) is included in the 
model as a given number ranging from 0 to 1. The inter-specific survival rate of 
the i-th species (S1) represents the intrinsic survivability of the i-th species. Sec- 
ond, to account for the mortality due to a catastrophe, the inter-specific survival 
rate is multiplied by the catastrophe index C (0<C<1). We assume that all spe- 
cies suffer from the catastrophe but their tolerances are different. Third, the 
risk of mortality from competitive interference is likely to increase with an in- 
crease in the community density. In this model we use a discrete-time analog of 
the Lotka-Volterra competition equation which is expressed as: 

(2)       Qi = gi(<^g-) 
A. 

where K is the maximum number of individuals of the i-th species and ay are 

the competition coefficients. We assume that for each i, g(x)>0, and g(x)'<0 for 
x>0 (i.e., g(x) is a positive decreasing function). Thus, the survivorship compo- 
nent of equation (1) is now written as: 

5"*C 
(3)       s' = 

I + Ö' 

The number of individuals recruited depends on the inter-specific recruitment 
potential (R'), the availability of space (A/A) at time t and the immigration (I). 
The inter-specific recruitment rate represents the rate of addition of population 
by birth. As the community develops and as space becomes occupied, the poten- 
tial for further recruitment is proportionally reduced. Therefore, the inter- 
specific recruitment potential (R1) should be multiplied by a space constraint (V) 
which is a function of the ratio of space occupied and total space, i.e., V = flA/A). 
The combined recruitment rate is: 

(4)       r! = (R1*; + DV 

Putting s' and r' in equation (1), we obtain the final version of the dynamics 
model. 
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This model produces a "community" with a variable number of species and vari- 
able population, which can then be used to calculate diversity indices. 

The Continuous Model of Plant Population Dynamics 

When the population size of a community is large, a continuous model can ap- 
proximate population growth. Let x't+dt and x\ respectively be the numbers of i- 

th species at times t+dt and t. The change in the number of individuals of the i- 
th species from time t to time t+dt is: 

<6>    ^-^[R^v-a-^H —rv,«dt 

= [^(b-d'WPdt 

Dividing dt on both sides of (6) and letting dt go to 0, we have the following dif- 
ferential equation. 

(7) 4-(*;> = ^(h-dH mj 

dt 

= *;*h + m' 

ri *Q S' * C 
where b =(R' r V) is the birth rate, d =(1 -7- ) is the death rate, m" 

1 + 0' 1+Q' 

is the net immigration rate and h1 is the net growth rate. The solution of equa- 
tion (7) is an exponential growth function with immigration. 

(8) xi = (4 + — )*exp(tit) - — 
r r 

When h>0, immigration causes an exponential increase in population growth. 
When h<0, immigration causes an exponential decrease in population growth, 
and there is high competition in the community. The new immigrants increase 
the competition and speed up the decrease of population growth. As in equation 
(5), equation (8) also produces a "community" with a variable number of species 
and variable population. 
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Demographic Stochasticity 

As discussed in the dynamics models, the birth rate, death rate, and immigration 
rate are assumed to be constant. In the natural world, however, this assumption 
does not usually hold true. Individuals of identical plant types may have differ- 
ent life lengths and produce different numbers of offspring. This variation 
among the individuals is called demographic stochasticity. There is vast litera- 
ture on the modeling of demographic noise. Turelli (1986) gives a very good 
overview of demographic stochastic models. 

In this paper we will use the birth and death processes to describe the demo- 
graphic stochasticity. The birth-death processes describe population dynamics 
with biologically accurate, interpretable birth and death rates and are applicable 
to individual numbers of every size. First, we start with an 'external birth' 
model, the Poisson process of immigration. 

The Poisson Model of Immigration 

Suppose the chance of an event (immigration) in the small time interval (t, t+dt) 
is kdt+o(dt), where the last term is a remainder term which becomes negligible 
compared with dt as dt gets smaller, and may be consequently neglected in com- 
parison with the first term. This chance >.dt is assumed to be independent of the 
number of previous happenings, and, moreover, each event is assumed to be in- 
dependent. Therefore the chance of two events (or more) occurring in the time 
interval (t, t+dt) is o(dt), and is also negligible. Let the probability of r events 
(and no more nor less) in the time interval (0,t) be pr. Then we can mathemati- 
cally represent the whole set or distribution of probabilities pr (r=0, 1, 2, ...) by 

the generating function in 9, 

(9) n(6) = i = 0 pr9i 

As the Pr are dependent on t, we note that 11(9) is also a function of t, and shall 
write it more fully as Ilt(9). Then by the rules of probability, as the increase in 
the total number of events, during the further interval dt, is independent of the 
previous total number occurring in the interval (0, t), it follows that 

nt+dt(9) = nt(9){l-A.dt+^9dt} or 

(10) ilog(Pt(q)=UQ-D 

whence, as Ilo(9) = 1, 
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(11) nt(6) = exp[Xt(9-l)], and 

(12) pr = at)r*exp(-5lt)/r! 

Equations (11) and (12) specify the Poisson distribution with mean m=A,t. When 
X is time-varying, the mean is obtained by the following equation: 

(13) m = J  ^(u)du 
o 

The Simple Birth and Death Process 

We assume that the probability for any given individual to give birth in the time 
interval (t, t+dt) is ldt while the probability of dying in that time interval is mdt. 
Equivalently, denoting by dX(t, t+dt) the increment X(t+dt)-X(t) of the population 
size in (t, t+dt) we can make the following assumptions: 

(14a) P{dX(t, t+dt) = 1/X(t) = n} = lndt + o(dt) 

(14b) P{dX(t, t+dt) =-l/X(t) = n} = mndt + o(dt) 

(14c) P{ I dX(t, t+dt) I > 1 / X(t) = n} = o(dt) 

From (14) it follows 

(15) p{dX(t, t+dt) = 0/X(t) = n} = l-(l+m)ndt + o(dt) 

From (14) and (15) we easily obtain: 

pn(t+dt) = pn(t) [l-(l+m)ndt] + pn.,(t)(n-l)ldt + pn+1(t)m(n+l)dt + o(dt) 

or, the limit as dt approaches 0: 

(16) %^ = -n(l+m)pn(t) + Kn-Dp^ (t) + m(n+l)pn+1(t) 
dt 

with the initial condition: 

\hn=j 
<17>       pHo,„*y 
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Before showing how equation (16) can be solved to determine the functions pn(t), 
let us calculate the mean population size E[X(t)] and its variance Var {X(t)} by a 
straightforward procedure. Use the definition: 

(18) E[X(t)] = n = 0 np„(t) 

and differentiate both sides with respect to t: 

(19) — E[X(t)] = n = 0 n—pn(t) 
dt dt 

=-n = 0 n2(?i+u)pn(t)+?in = 0 n(n-l)pn_(t)+fm = 0 n(n+l)pn+1(t) 

where the last equality follows from (16). Setting n-l=n and n+l=n in the second 
and third sums on the right-hand side (r.h.s.) of (19), respectively, after some 
straightforward algebra we are led to the following differential equation: 

(20) 4-EK(t)l = (X+u)E[X(t)] 
dt 

On the other hand from (19) and (20) we obtain the initial condition 

(21) E[X(0)]=j 

From (20) and (21) we immediately get 

(22) E[X(t) / X(0) =j] =j*exp[a-u)t] 

By a similar procedure an equation for 

(23) Var {X(t)} = E[X2(t)] - {E[X(t)]}2 

can be derived and solved with the initial condition 

Var {X(0)} = 0 

We have the following result: 

(24) Var{X(t)/X(0) = j}=-!/u+   j 

X- fi 
e^^e'^'-l),   l*n 
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Note that in the case X^\x this variance not only depends on the intrinsic "growth 
rate" k-\i but also on the sum X+u. The sum X+^x=R defines the noise strength, 
called demographic noise (Nisbet and Gurney 1982). 

Now we turn to the solution of equation (16). We first introduce the monument 
generating function, M(9, t), defined as follows in terms of the pns: 

(25) M(9, t) = n = 0 e^ft) 

where p is a dummy variable. Multiplying both sides of equation (16) by e6n and 
summing over n from 0 to oo, one can easily obtain: 

(26) M^fl.,^ MHffl^O 
dt oü 

with the initial condition 

(27) M(9, 0) = ee 

The general solution of equation (26) can be found by the method of characteris- 

tics, 

(28) M(9,t) = 

//v(g,Q-l 
Av(0,t)-1 

\-(Xt-\jee-\) 
\-?a(ee-\) 

,X* jJi 

J    ,* = M 

where v(0,O = -^ 
.a-p)t 

Now we define function F(s, t) as the probability generating function: 

(29) F(s, t) = n = 0 Pn(t)s
n = M(log(s), t) 

(30) F(s,t)-. 

ju(l-a)-(A-^a)s 

fj, - Xa - A(l - a)s 

\-{Xt-\\s-\) 

l-At{s-l) 

where a=ea^ 
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The meaning of A.-|a is intuitive. It is the net rate of population change. To un- 

derstand the meaning of A.+|i we introduce the diffusion approximation. We re- 

write equation (16) as 

(31) 
dt 

= .[Mn)+n(n)]p0(t)+X(n-l)p   (t)+n(n+l)pn+1(t) 
n-1 

We use Taylor expansions to approximate the various functions of n+1 in (31). 

This involves treating n as a continuous variable and reinterpreting pn(t) as a 

probability density. Discarding all terms in the Taylor expansions that are of 

third or higher order, we have the approximate equation of (31), 

(32) dpAD _ 
dt     ~ ■i[(A(/i)-M»))A(0]+Ur[(A(») + /x(»))A(0] 

With (32) it is easy to show that 

(33) E(dn) = [A.(n) - (i(n)]dt 

(34) E[(dn)2] = [A.(n)+n(n)]dt 

Equation (34) explains why we call X+u the strength of demographic noise. 

Now we have established simple closed form expressions for the probability pn(t) 

and calculated explicitly mean and variance of the population's size. All this al- 

lows us to draw an accurate picture of the population's time evolution. In par- 

ticular, we can easily get information about the extinction probability of the 

population by taking the limit of (30) as s goes to 0. 

(35) Po « = 

ju\e (*<*-"> -i)T 
Ae 

At 

l + At 

-M 

Environmental Stochasticity 

Environmental fluctuations inevitably produce fluctuations in population levels. 

A general question is how species dynamics and interactions translate 

environmental fluctuations into temporal and spatial patterns of population 

abundance.    Because there is a lack of mathematical machinery available to 
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analyze nonlinear multidimensional stochastic processes, environmental 
fluctuations are incorporated into a deterministic model in a way that is 
biologically meaningful yet mathematically tractable. The most common way 
used in the literature is to add a noise term in a differential or difference 
equation (May 1973; Capocelli and Ricciardi 1974; Tuckwell 1974; Goel and 
Richter-Dyn 1974; Turelli 1977). Here we discuss the two most common types of 
stochastic differential equations: -f- = h(x) + k(x)A(t) and dx = h(x)dt + k(x)dW. 

Stochastic Differential Equations (1) 

f = h(x) + k(x)A(t) 

We first deduce the so-called kinetic equation from Markovian property. The ki- 
netic equation is the general form of many stochastic differential equations. 
Consider a Markov process with a continuum of state values in continuous time. 
Its transition probability density function (p.d.f.), ! (x, t I XQ, tQ), satisfies the 

Chapman-Kolmogrov equation (Bartlett 1966; Ross 1983; Bharucha-Reid 1960): 

(36) fix, 11 x0, t0) = Jdy/(x, 11 y, x)/(y, x I x0, t0) 

with t>x>t0 arbitrary instants and X(t)=x, X(x)=y, X(t0)=x0. Equation (36) is to be 
looked at as a compatibility relation holding for any Markov process, but it is not 
sufficient to determine the process' transition p.d.f. To accomplish this task, fur- 
ther assumptions besides the Markov assumption are necessary. First let us re- 
write equation (36) in a differential form, 

(37) fix, t+At I x0, t0)-/(x, 11 x0, t0) = Jdy/(x, t+At I y, t)/(y, 11 x0, t0)-/(x, 11 x0, t0) 

Let us now consider an arbitrary function R(x) vanishing at the end points of the 
state space sufficiently rapidly, together with its derivatives of all orders. Multi- 
plying both sides of (37) by R(x)/At and integrating over the state space, we ob- 
tain: 

/'(*,'+At|x0,>0)-/
,(x,r|x0,r0) 

jaW?(x)- 61 

(38) =ijdxRix^dyfix,t + At\y,t)fiy,t\x0,to) 

jf dxRix) fix,t\x0,to) AM 

Substituting the Taylor expansion about the point y for R(x) in the first integral 
on the right-hand side of equation (38): 
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(39) »=i 

and taking the limit as At goes to 0, we obtain: 

|jxR(x)4= limi JdyR(y)f(y,t|x0,t0) Jdxf(x,t + At|y,t) 
&t-»0 

+ l^rty{^f(y.t|x0,to) 
n=i (40) 
limJr{dx(x-y)nf(xJt + At|y,t)} 
4t->0 

lim_f (dxR(x)f(x,t|x0,t0) 

X 
_->0 

At-»0 

or: 

(41) W(x)£ = __^^AM*o,fo)A(x,0 

having used the normalization condition: 

(42) }dxf(x,t + At\y,t) = l 

and having set: 

(43) An(xJ) = Yim-LJdy(y-xy f(y,t + At\x>t),(n=l,2,...) 
M-iO 

The integration by parts of the r.h.s. of equation (41), in which the vanishing of 
R(x) and its derivatives at the ends of integration interval is used, shows that: 

f dy^p- f(y,t\x0,to)A„(y,t) 
(44) J 

= (-1)" \txR(x)j^[Mx,t)f(x,t\x0,to)] 

Equation (41) thus yields: 

(45) ldxR(x){^-fJ
t^-§,[A(x>t)f(x,t\xo,to)]} = 0 

«=i 

Now due to the arbitrariness of the function R(x), the bracketed terms must be 
identically zero, and we have our desired result: 
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(46) *<££*> = %!=g-£r[Am{x,t)nx,t\x0,t0)] 
n=l 

This is the kinetic equation holding under the sole assumption that the process 

under consideration is Markovian. The functions An(x, t) defined by (46) are 

called infinitesimal moments of the process. 

Consider a population growth model with a stochastic growth rate due to the en- 

vironmental fluctuations: 

(47) r = "r + A(t) 

where A(t) is a noise term due to the environmental stochasticity and " r is a de- 

terministic net growth rate. Then we have a simple stochastic differential equa- 

tion: 

dx 
(48) —= x*_r+x*A(t) 

dt 

Extending the situation above, we consider a general linear equation of the type 

dx 
(49) — = h(x) + k(x)A(t) 

dt 

where h and k are assigned functions and A(t) is a stochastic process. Clearly, 

the solution of (49), x(t), is a random function. Its determination cannot be ac- 

complished unless A(t) is specified. 

Let us assume that A(t) in (49) is a stationary process with a 0 mean and with a 

rather narrow and peaked correlation function: 

(50a) E[A(t)] = gl = 0 

(50b) E[A(t1)A(t2)] = g2(t1, t2) = g2(t2-tx) 

where g2(t) is appreciably non-zero only in the neighborhood of t=0 with a very 

sharp maximum at t=0. More generally, for any group of instants tv t2, ..., tn all 

lying close to each other we set: 

(51) E[A(tx)A(t2)... A(t„)] = gn(tp t2, tn) 
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and, again, assume that the n-th order correlation function gn has a sharp maxi- 
mum at tj=t2=...=tn, being otherwise effectively 0. Finally, we assume that when 
ti; t2, ..., tr are proximal to each other, and also when tr+l, tr+2, ..., ts are proximal 
but far from the group ti; t2,..., tr and so on, then: 

(52) EtAtt,)... A(tr)A(t+1)... A(ts)A(t+1)... A(tp)... ] 

= E[A(t,)... A(tr)]E[A(tr+l)... A(ts)]E[A(ts+l)... A(tp)]... 

= gr([t1...tr)gs(tr+l...ts)gp(ts+l...tp)... 

where the functions gn have already been qualitatively specified. 

All these assumptions about the stochastic process A(t) appearing in equation 
(49) may look rather artificial at this stage, but the motivation for them will soon 
be apparent. With this in mind, let us perform a change of variable in (49) by 
setting: 

(53) y = O(x)    x=0r1(Y) 

with 

dz 
(54) <D(x) = J 

Hz) 

Then, equation (49) is changed into: 

/K« & HW A/4A (55) — = ——- + A(t) 
dt     K(y) 

upon setting: 

(56) H(y) = h[<D"l(Y)] 

K(y) = k[<D"l(Y)] 

The advantage of this procedure is that we have constructed a stochastic process 
y(t) defined by the simpler equation (55) in which A(t) appears in a purely addi- 
tive way. Due to the above assumptions on A(t), we now expect y(t), and hence 
x(t), to be Markovian. Its transition p.d.f. fy(y, t/y0) thus satisfies the kinetic 
equation which we have derived in (46). 
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(5?) ^ = g^-^^ 
To evaluate the infinitesimal moments Bn we first express the increment of y 
over a small time interval dt by means of the approximation: 

H(v)        '+f" (58) dy = y(t+dt) - y(t)        * —^fdt +   f   A(x)dx 

where, here and in the following, the value of the process at time t is considered 
as fixed. Note that equation (58) requires that H(y) and K(y) be smooth; how- 
ever, the smoothness of the sample paths of A(t) is not implied. Taking the ex- 
pectation of both sides of (58), due to (50), in the limit as dt -» 0 We obtain: 

1 H(v) (59) B^=lim(^E[dy])=-^- 
5,_>o   ot K (y) 

To calculate B2 we now square both sides of (58) and obtain: 

IT/    \ t+dt t+dt t+dt 

(60) (dy)2 * 0[(dt)2] + 2dt—^Z  f   A(T)dx +   f   A(x)dx   f   A(9)d6 
K(y) \ J, \ 

Upon taking the expectations and after dividing by dt, for small dt we are left 
with: 

t+dl t+dt 

(61) B2dt * E[(dy)2] =   \   Adx  j   g2(x-6)d9 
t i 

after making use of equation (50). Using the earlier specified qualitative behav- 
ior of g2, it then follows: 

(62) B2 * a2 with a = £ g (/u)du 

and with the result becoming exact in the limit as dt —> 0. 

Proceeding along similar fines, it is not difficult to become convinced that due to 
the assumed properties (50) and (52) of A(t) the following relationship holds: 

(63) dt*Bn(y) * E[(dy)n] = o(dt) (n = 3, 4,...) 
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Equation (57) thus becomes a forward diffusion equation: 

with Bj(y) and a2 given by (59) and (62), respectively. The conclusion is that 
equation (55) can be thought of as defining a diffusion process y(t) whose drift 
equals the deterministic part of the r.h.s. of the equation while its infinitesimal 
variance depends exclusively on the characteristics (g2(T)) of the random part of 
the equation. Furthermore, if we impose that p{y(0)=y0}=l, with y0 being non- 
random, then the specification of such a diffusion process is unique. 

Let us now examine the infinitesimal moments An(x) of the Markov process x(t) 
defined by equation (49). Denoting its transition p.d.f by fx(x, t/xo), we know that 
for small dt we have: 

(65) An(x)dt*l(x-x)\(x, dt/x)dx' 

= J[01(y,)-x]nf [a>V), dt / xMO'V)] 
z 

= JtO-V^xr^y', dt/0(x)]dy (n = I, 2, ...) 

having made use of the one-to-one transformation (53) between the transition 
p.d.f.s of the processes x(t) and y(t). Let us now expand <&~\y) as a Taylor series 
about the point y=<D(x): 

(66) V\y') = Vlmx)] + a1(x)[y'-0)(x)] + 2 a2(x)[y'-c&(x)]2 

+ n = 3 —-—,n\ 

dnF'\y' 
with an(x) = ,dyn ly=a>(x) 

It is easy to see: 

(67) ai=k(x) 

a.2=k' (x)k(x) 
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where k' (x)=dk(x)/dx 

Using (66) and (67) and taking the limit dt ->• 0, we obtain: 

(68) Ax(x) = k(x)B1[0(x)] + ^k'(x)k(x)B2[0(x)] + t ^r~ BS®^ 

Making use of equations (59) and (61) we thus find: 

<?2  dk2(x 
(69) Ai(x) = h(x) + —, dx 

Using the same procedure, we can have: 

(70) A (x) = a2k2(x) 
2 

An(x) = 0        (n=3, 4,...) 

Thus, we conclude that the Markov process x(t) defined by equation (49) is a dif- 
fusion process with drift and infinitesimal variance given by: 

(71) A1(x) = Ux) + ^^^,dx 

A» = a¥(x) 

Stochastic Differential Equations (2) 

dx = h(x)dt + k(x)dW 

In plant communities the effect of environmental fluctuations is cumulative with 
plants through time. Although the environmental stochastic influence at each 
time point can be considered as some noise, the cumulated realistic noise could 
be some other process. This case can be described by the following equation: 

(72) dx = h(x)dt + k(x)dW 

where W is some stochastic process such as Brownian motion or Wiener process. 
Equation (72) is called an Ito equation. This equation can be handled by means 
of Ito's calculus which differs in several fundamental ways from classic calculus 
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(Rozovskii 1990).   Here we give one of the major results of Ito's calculus:   Ito's 
formula, which can be used to find the solution of the stochastic model (72). 

Ito's Formula:  Let U: [0, aOH** be a continuous function with continuous par- 
tial derivatives on (0, oo)'RN: 

(73) 
d u 

U0=  it 

d u 
i=l, 2,. ..,N 

d2U 
i=l, 2,. ...N UlJ ~~ dX,iX, 

and let Xlt X,, ..., Xn be stochastic integrals defined by: 

t t 

(74) X,(t) = X(0)+J  (p^W.+ J  Vld, 
o o 

then Y defined by: 

(75) Y(t) = u(t, X.ft), X,(t),.... XN(t)) 

is also a stochastic integral and its stochastic differential is: 

N -I    N N 

(76)     dY=udt+y udx + ~y y udxdx 
i=l ^ i=l      j=l 

and the stochastic integral is: 

N       ' 

(77) Y(t) = Y(0) +     u0(s, Xx, X,,..., XN)ds +£       u,(s, X1? X,,.'.., XN)dXi + 
0 i=l      0 

;il       uti(s, X1? X,,..., XN)dXdX 
2 i=i   j=i    o 

N        ' N        < 

Y(t) = Y(0)+      u0ds+2        WlW.+ S       ujWlB + 
0 i=l      o i=l      0 
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-I    N N        ' 

■"   i=l        i=l        n 

Three simple cases of equation (75) are (1) Y(t)=u(Wt), (2) Y(t)=u(t, Wt), and (3) 

Y(t)=u(t, X(t)). 

Using Ito's formula, we can easily find the solution of (72). From (76) we can see 
that the solution x(t) is also a diffusion processes. Its drift and infinitesimal 

variance are given by: 

(78) B,(x) = h(x) 

(79) B2(x) = a¥(x) 

To make this discussion more concrete, we consider the following homogeneous 
unrestricted population growth model with environmental stochasticity. Other 
situations such as a density dependence model can be solved in a similar way. 
Taking the deterministic functions h(x) and k(x) in (58) to be rx(t) and ax(t) re- 
spectively, we have the simple model: 

(80) dx(t) = rx(t) + ax(t)dBt 

where r is the intrinsic growth rate and Bt is a Brownian motion. To solve (66), 
let Y(t)=u(x(t)=ln(x(t)), where x(t)>0. Using (62), we obtain the stochastic differ- 
ential of u(x). 

2 

(81) du(x) = (r )dt + adBt 

Thus, the solution for the simple population growth model (80) is 

2 

(82) x(t) = x(0)exp[(r )dt + adB] 

The expectation of x(t) is exp(rt)*E[x(0)]. If x(0) is fixed, the expectation is the 
same as the deterministic model. In the deterministic situation (i.e., x(t) is non- 
random), x(t)—» oo as t-> oo whenever r is positive. However, in equation (82) x(t) 
may -> oo or 0 even if r is positive. If r is greater than a2 12, x(t)-> oo almost 
surely as t-> oo. When r is less than ax(t), x(t) goes to zero almost surely as 
t—> oo. When r is equal to ax(t), the population growth is then completely con- 
trolled by the environmental fluctuations. 
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Joint Effect of Demographic and Environmental Stochasticity 

In the real world, both demographic and environmental stochasticity are un- 
avoidable. Given the difficulties of analyzing each separately, it should come as 
no surprise that few multispecies analyses incorporate both. To show how to 
model the combined effect of environmental and demographic noise, let us start 
with the birth and death process. 

We rewrite the birth and death process as: 

(83) ^^- = -na+u)pn(t) + A.(n-l)pn 1 (t) + ^(n+l)pn+l(t) 
dt 

or 

&P-, = -an+un)Pn(t) + ^,Pn, (t) + un+lPn+1(t) 
at 

where \ =nA and un=nu. A,+u=R is the strength of demographic noise. 

We suppose that the deterministic dynamics are density dependent, i.e., the lo- 
gistic growth: 

(84) dX/dt = Xr(l-X/K) 

Environmental fluctuations are included by adding a noise term g(X)dW in (84). 
The corresponding stochastic equation is given as: 

(85) dX = Xr(X)dt + g(X)dW 

where W is a standard Wiener process. Different choices for the function g(X) 
can be motivated. We take: 

(86) g(X) = aX 

In this case a describes the strength of the random fluctuation of the individual 
growth rate r(X). 

As discussed before, (85) is equivalent to a diffusion equation 

dp(x1t1 = _d_[A(x)p] + ^ 
at ax 2 ox 

(87) ^V^ = -^[A(x)P] + ^^rY[B(x)p] 
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where p(x, t) is the probability density that the individual number X shows the 
value x at time t. The coefficients are given by: 

(88) B(x) = oV 

(89) A(x) = xr(x) = xr(l-x/K) 

Next we show that the population dynamics with environmental noise, equation 
(87), can be approximated by the birth and death process (83). We first discretize 
the right-hand side of (87) by: 

d v< ^    B(x + h)-B(x) 
(90) — B(x) =  

ax h 

d2 n, ^    B(x + h)-2B(x) + B(x-h) 
(91) —TB(x) = -=  

dx2 h2 

with the discretization length h for variable x (h is usually set to 1). The deriva- 
tives of A(x) and P(x) are handled in the same way. A simple rearrangement of 
(87) with (90) and (91) and the definition: 

(92) p(nh, t) = pn(t) 

results in an equation (83) of the birth and death process. The birth and death 
rates in this case are: 

(93)     ^i^Ui^ 

1 B{nh)    A{hh). 
2[   h2 

(94) M = ±[^I_^K^I] 

In the final step we combine both discrete models, i.e., the discrete description of 
environmental noise by (83) with (93) and (94) at high individual numbers and 
the model (83) which describes demographic noise at low individual numbers. 
Therefore, our final stochastic dynamics model, which is valid for both small and 
large population communities, is the birth-death model (83) with the following 
birth and death rates: 

(95) X = - [an2 + Rn + nr(n)] 
2 
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(96) u = - [an2 + Rn - nr(n)] n    2 

where Rn is the demographic noise, and r(n) is the density dependent intrinsic 
growth rate. The simplest form of r(n) is the type of logistic growth rate, i.e., 
r(n)=r(l-n/K). 

A natural community usually has more than one species. The Lotka-Volterra or 
the Kolmogorov model can model competition among species if there are only two 
or three species in the community. Using the Lotka-Volterra model or the Kol- 
mogorov model in a highly diverse community may cause chaos because of the 
feedback. This problem can be solved by introducing the growth rate function 
r(n) as some other form of the resources. For example, if the total available re- 
source of the community is K, and the used resource at time t, is Kt, then we can 
define the growth rate of the i-th species as r'(n)=r'*(l-Kl/K) or some other form 
which can express the competition relationship among species. 

For the combined model, we want to emphasize the following points. If the den- 
sity dependence term n/K and the noise term a2n2 in equations (95) and (96) are 
omitted, we get the model with only demographic noise. This model is motivated 
by simple biological arguments and has been used with small populations by 
many authors. When the demographic noise term, Rn, is omitted, the resulting 
model is a diffusion equation, which has been considered by many authors to be 
a description of environmental noise. 
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4  Stochastic Estimation and Identification 

Quantitative population study has been very popular for several decades and its 
models have been well developed. These models fall in the categories: dynamic 
models and stochastic models. In their book, Modeling Fluctuating Populations, 
Nisbet and Gurney (1982) present the most common types of dynamics and sto- 
chastic models and the application conditions for each. 

One of the basic discrete dynamics models of plant population is the logistic 

model (Nisbet and Gurney, 1982): 

(1) xM=xk(a-bxk)-Hk+Ik, k = 0,l,... 

where, xk+1 and xk are the population size at time k+1 and k, respectively, h(x,t) is 
the harvesting, I is immigration or fertilization, and a and b are model parame- 
ters. 

Consider a more general deterministic system: 

(2) Xk+1=fk(xk,Uk), k = 0, 1, ... 

where xk e R" is the state and uk e Rm is the input at time k. 

One property of equation (2) is that if the current state xk and the input sequence 
of the system, uk, uk+1,..., uk+m are given, the future states, xk+1, xk+2, ..., xk+m+1 can be 
determined exactly. That is, the deterministic model (2) makes exact prediction 
of the future population of the plant system. 

Under special laboratory conditions and in some isolated environments, popula- 
tion growth may act in a deterministic way. However, most natural populations 
do not behave as nicely as described by the deterministic model (Hallam 1986). 
Populations fluctuate about some deterministic trend due to demographic sto- 
chasticity and environmental stochasticity (Turelli 1986). In Chapter 3 we dis- 
cussed how to model stochastic systems. 

A stochastic model is able to predict the probability that at a given time, the 
population will be of a particular size. Given the probability or the conditional 
probability of future behavior, the expectation of the population size can be 
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determined as it is in the deterministic model. In the real world, however, the 
probability distributions of most plant populations are rarely known. Because 
we often do not have descriptive information for the probability distribution, past 
data must be examined. The availability of observations from the past allows for 
an alternative method of population modeling: the technique of regression. This 
technique has become a common tool in estimation and prediction in many areas. 

One serious problem with regression models is the assumption of constant coeffi- 
cients. Because of this assumption, underlying phenomena can never be de- 
tected. Also, the reliability of the estimate of regression depends on the sample 
size. A regression model usually requires a minimal sample size of 30. However, 
population data that spans 30 or more years is not common. Sometimes we can- 
not afford to have a large sample size. Moreover, observed data used in regres- 
sion is assumed to be correct. This is not always the case. In the real world, 
most natural communities are full of noise. Observed data contains errors such 
as system noise and measurement error. For some regression models, these er- 
rors not only create a large variance, but also produce a biased estimate (Gert- 
ner, Cao, and Zhu 1995). 

To get a better grip on these problems, we introduce the theory of optimal esti- 
mation. An estimator is a process by which information can be extracted from 
data, i.e., to infer desired information by filtering out the noise from the data. 
Because the estimator combines the descriptive information and the data infor- 
mation of a system to form an estimate, the estimate usually has a lower vari- 
ance than a conventional regression estimate. The most common estimator is 
the Kaiman filter (Kaiman 1960). The filter describes how to process the meas- 
urement data for a given linear system. The theory of optimal application has 
been successfully applied in a broad range of areas. These areas include signal 
processing in communications, tracer studies in medicine, statistical image en- 
hancement, estimation of traffic densities, chemical process control, satellite or- 
bit estimation, unclear reactor parameter identification (Gelb 1974), and dendro- 
climatology (Visser and Molenaar 1988). 

Optimal Estimation 

An optimal estimator is a computational algorithm that processes measurements 
in order to deduce a minimum error estimate for the state of a system. It does 
this by using knowledge of system and measurement dynamics, assumed 
statistics of system noise and measurement errors, and with initial condition 
information. The advantages of this type of data processor are that it minimizes 
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the estimation error in a well-defined statistical sense and that it uses all 
measurement data plus prior knowledge about the system. 

There are three types of estimation problems: filtering, smoothing, and predic- 
tion (Gelb 1974). When the time at which an estimate is desired occurs at the 
last measurement point, the problem is referred to as filtering. When the time of 
interest falls within the span of available measurement data, the problem is 
termed smoothing. When the time of interest occurs after the last available 
measurement, the problem is called prediction. In the following sections we will 
discuss linear filtering and prediction, and two techniques of nonlinear approxi- 
mation. For convenience, we consider a stochastic system without input. Incor- 
porating a known input is straightforward. 

Optimal Linear Filtering 

First let us consider a discrete stochastic system without input control: 

(3)       x^=Akxk + Gkwk 
yk = ckxk+Hkvk> 

where xk eR",yk eRp,wk eRs,vk eRh; Ak, Gk, Ck, and Hk are possible time- 

varying, known matrices of appropriate dimension, x and y are, respectively, the 
state space and observation space. The basic random variables {x0, w0, ..., v0, ...} 
are all independent and Gaussian, with x0 ~ iV(0,£0), wk ~ N(0,Q), 
vk ~ N(0,R). The covariances are all known. The available information at time 
k is zk =yk:=(yk,yk^,--,y0)- The random variable xk, xk+1, and yk are jointly 

Gaussian; denote 

Pk+\\k (**+i 1/ ) ~ Nixk+\\k>s*+ii* )• 
(4) ,       .   , 

By definition, 

xk\k:=Eixk\y )>and 

(5) 
■Zm:=E{{xk-xm){xk-xm) \y }. 

Similarly, 

xk+m-=E{xk+]\y },and 
(6) T   k 

^*+l|/t:= -^ V<Xk+\ ~ Xk+\\k)\Xk+] ~ Xk+\\k)    1^   V 
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To obtain the recursion rule, we take the following steps. 

Stepl 

From (3), 

' ' ' Xk+l\k = AkXk\k. 

For convenience denote 

(8) 
Xk+\\k'-~ Xk+]       Xk+\\k' 

Xk\k'-~ Xk ~Xk\k- 

From (3) we have 

(9) xk+]\k=
Akxk\k

+Gkwk 

By the independence of xk]k and wk, 

(10) Zk+nk = AkZklkA{ + GkQGk
T 

Step 2 

Denote 

(U) yk\k-v=E{yk\y
k~x},and 

ym-\ '•- yk~ ym-\ 

Since vk and yk-1 are independent, this gives 

(19) yk\k-i = Ckxx\k-i 

yk\k-\ = ^kXk\k-\ + HkVk . 

By the independence of Jci|A. and vk 

(13) !£,,_, := cov(yk^) = C^-Cl + HkRHT
k 

From (12) and the independence of JC^..., and xkV._x, we also get 

(14) ^^,_,=I,,_,C[ 
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Step 3 

By the innovation principle, we have 

(15) xk\k~E\xk\y     >7*|*-l) 

= E {xk | /- } + (Exk yT^ )(ZtV,)"' 7*i*-. 

= Xm-\ + ^k\k-\Q [Q^k\k-\Q  + -"i-*"2k J     7*|A-1 • 

and 

(16) Si|/t = IJU_, -SW._,Q. [CkLm_xCk +HkRHk]   QI^..,. 

Therefore, the conditional density pk{k ~ N(xklk,Zklk) can be obtained from the 

following recursion relations. 

(17) xk+ilk+1 = Akxklk + Lk+l[yk+]-Ck+lAkxklki, 

xop = -^uVo, 

^*+l|*+l = (-* _ ^k+^k+\)^k+\\k, 

Zk+]lk=AkXkVcAZ + GkQG[ 

here 

Lk =^k\k-iCklCk^k\k-iCI + HkRHI] ' 

T n-1 A) = soQ [C(£0C0 +H0RH0 ] 

The recursion algorithm (17) specifies the transition function of the information 
state. It is known as the discrete Kaiman filter. The matrix L in the recursion is 
called the Kaiman gain matrix (Gelb 1974). It can be shown (e.g., Otter 1978) 
that the ordinary least squares (OLS) fitting procedure is a special case of the 
Kaiman filter (17). 

The transition from the discrete to the continuous formulation of the Kaiman 
filter is straightforward by setting time k and k+1 in the discrete case to time tk 
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and tk+„ respectively, and letting tk+] -tk=At->0. First, consider the following 

continuos stochastic system: 

(18)     x = Fx + Gw 

y = Cx + v 

where w, v are white noise processes with mean 0 and spectral density matrix Q 
and R, respectively. In this continuous case, v is equivalent to Hkvk in the dis- 
crete case. To make the transition, let us first rewrite the discrete system as a 
difference equation. 

(19) x,    = Akx,  +Gkwtk 

Al Al tt        A/   vvtt 

From this difference we have the following equivalence, valid in the limit as 
'*+,-'*=A*->0: 

Ak->I + FAt 

In the discrete case we have shown that: 

(20) -Lkm = AkLmAT
k+GkQGT

k 

This is now rewritten as: 

Ak ->• / + FAt 

In the discrete case we have shown that: 

(21) Si+1, = (/ + FAOS,, (/ + FAt)T
k + GkQGT

kAt 

Expansion yields: 

(22) *W = Zw + ^ + V + GtQPl)* + °(Af2) 

From the discrete model we also have: 

(23) z.kV. = (/-Z^Q)!^,, 
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Insert (23) into (22) and rearrange the terms we have: 

(24) 
-FZ,Q2W_, - 4Q^_,Fr + O(At) 

Now let us exam the term Lk I At 

±Lk -^^CliC^^Cl + H.RHl] 7" 1-1 

(25) = Y.m_xC
T

k[Ck-Lm_xC
T

kAt + HkRHlAtr 

= ^k\k-\ckick^k\k-icIAt + RT 

Taking the limit, we get: 

(26) limiA= ZCTR~l 

Ar->0 

and, 

t(t) = F(r)2(0 + nt)FT{t) + G(t)Q(t)GT(t) 
(27) 

-■Z(t)CT(t)R -'(0C(02(0 

2(0) = 20 

By similar manipulation, we have the state estimate of the continuos system. 

(28) i(0 = F(t)x(t) + L(t)[y(t) - C(t)x(t)] 

The matrix gain is: 

J    mc'm^t), £[W(Ov'(r)]=o 
WW M»;    |[z(0crW + GW<D(0]Ä-i(,)>    E[w(t)v'(T)] = ^(t)ö(t-T) 

Optimal Prediction 

The prediction model can be derived from the filtering model in a straightfor- 
ward fashion. The one-step predictor is given by equations (7) and (10). 
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(30) 
xk+\\k ~ AkXk\k 

x*+u* = Ak^mAk +GkQGk 

where xkV . and £w can be calculated from the filtering estimator (17). 

Using equation (3), we can derive the n-step predictor. 

Xk+n        ^k+n-\Xk+n-l + ^k+n- Wyt+n-l 

(31) 
n-\                      n-1 

xk+n =YlAk+ixk + TGk+iwk+i 
i=0                       i'=0 

Therefore, the n-step predictor is: 

n-1 
xk+n\k = i.iAk+iXk\k 

(32) 1=0 

n-1                         n-1 n-1 

zk+n\k=n Ak+izklk (u Ak+i y 
i=0                       1=0 1=0 

Nonlinear Estimation 

Now let us consider a more general case described by the nonlinear Stochastic 
Difference Equation (SDE) with discrete observations. 

(33) x = f(x,t) + w(t) 

yk 
= hk(x(tk)) + vk, k=l,2, ... 

where ftx,t) and h(x,t) are nonlinear functions, w(t) is Gaussian noise with mean 
0 and having spectral density matrix Q(t), and vk ~ N(0,Rk). One further com- 
plicated mode is the form of x = f(x,t) + g(x,t)w(t). In this case a theory for es- 
timating x(t) cannot be developed within the traditional framework of mean 
square stochastic calculus because the r.h.s. of the equation is not integratable in 
the mean square sense. This difficulty is overcome by formulating the nonlinear 
filtering problem within the context of Ito calculus. 

We first discuss the nonlinear system with the form of (33). There are two 
widely used linearization techniques: truncated Taylor expansion and statistical 
approximation (Gelb 1974). 

The Taylor expansion method is to write nonlinear function f(x,t) and h(x,t) as a 
Taylor expansion about the current estimate of the state vector. 
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f(x,t) = f(xJt) + fU(x-x)+... 
h(x,t) = h(x,t) + tU(x-x)+... 

Discarding all the terms with second or higher order, we obtain a linear ap- 
proximation of f(x,t) and h(x,t) about the current estimate of the state vector. 
The derivation of the linear filter has been discussed in the previous section. 

To obtain an accurate estimate, we need higher-order filters. One method by 
which the estimate xk can be improved is by repeatedly calculating xk , Lk, and 
Zi|jt, each time linearizating about the most recent estimate. Another method is 

to include more terms in the expansions for f(x,t) and h(x,t). 

The statistical linearization is to seek a linear approximation for a vector func- 
tion f(x) of a vector random variable x, having probability density function p(x). 
The approximation is made by change functions f(x) and h(x) in an approximate 
linear form. 

f(x)*E[f(x)] + Nf(x-x) 
(35) 

hk(x)*E[hk(x)] + Nh(x-x) 

where Nf and Nh are called the function gain matrices. They are estimated by 
using the technique of minimum mean square error. These estimates are given 

by: 

(36) 
Nf(t) = [E(fiT)-fiTW\t) 

Nh (k) = {E[hk (iw., KV, ] - hk (xm_, )x Jt_!} 2 J*_, 

Where E(ficT),  f,  x are expectations calculated assumed x ~ N(x,H). 
EIK(Xk\k-\)xl\k-\\>  hk(

xk\k-\)>  xk\k-i are expectations calculated assumed 

Because nonlinear functions f(x) and h(x) are linearized, the approximate opti- 
mal filter for the linearized system now can be found as discussed above. In 
many instances, the statistical linearization technique has better performance 
than the Taylor expansion method. However, the decision as to which types of 
filters should be used in a particular application depends upon their computa- 
tional complexity and relative performance as observed from realistic computer 
simulations. 
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Let us consider a more general nonlinear stochastic system. 

(37) xt=f{x„t) + G(x!,t)wl 

yh =h(xtt,tk) + vk 

Now suppose that we generate a reference deterministic trajectory x(t), with 
given x(t0), satisfying: 

(38) £ = /(Jc(0,0 

Define: 

(39) 8xt=xt-x(t), 

Syt = yt- y(')»and 

Linearizing (37) about x(t) by a Taylor series expansion, we obtained the line- 

arized discrete system: 

(40) 6xhi = <S>[tk+l,tk,x(tk)]Sxtk + uv, 

&ytt=Mltk,x(.tky]frctk+vk 

Where <P[tk+1,tk,x(tk)] is the state transition matrix. That is, 

(41) dO(t, x)ldt = f (t)®(t, T) , and 

<D(*,T)<I>(T,$) = <!>(*,£) 

The new noise term, wt   , is given by: 

(42) w^-JfcC/^TXzCT)^ 

which is a form of Ito's stochastic integral.  From the theorem of Ito's stochastic 
integral, it is easy to see that {wt } is a white Gaussian sequence with a mean of 
0 (Jazwinski 1970), {wtkJ~ N[0,Q(k+l)], where 
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(43) Q(k +1) = f+' <D(V, T)G(T)Ö(T)Gr(T)Or(^+1 T) dx 

Applying the linear filter to the linearized system (40), we obtain the extended 
Kaiman filter for the nonlinear system (37) (Jazwinski 1970). 

(44) xtMtt=x^+^lf(pc^t)dt. 

<45> Xt^tM = xh+A + Kltk+1, xt^h ] X [yw - h(tk+1, xt^h)] 

*tMuM =U- K^v ^ A W[tk+1,xtk+A ]}Xh+iUk {I - K[tM, xtMlh ] 

M[tk+1,xh^t]}T +K[tk+1,xtk+iUh]R(k+ l)KT[tk+l,xhiitk] 

The Kaiman gain is: 

(46) K[tk+1,xtk+iUk ] = ZthlHkM
T[tk+1,xtMttk ]{M[tk+1,xtMUh ] 

xX^M^t^x^J + Rik + l)}-1 

To improve the reference trajectory, we need some iteration algorithms in which 
the estimate r|,.+1 = «^ + K(tk+1,y]t){yk+1 -h(^,tk+1)-Mi^t^ftx^ -ri;]} 
can be improved by repeatedly calculating i=\...,l, Lfc, and T.kVc, each time 

linearizating about the most recent estimate. The following is the iterated ex- 
tended Kaiman filter with (45) replaced by the iterator (Jazwinski  1970): 

i = \...,l and xt u =r\i- The iteration starts with r^ = xtk+iitk, and terminates 

when there is no significant difference between consecutive iterates. 

Stochastic Identification 

A Kaiman filter can yield optimal performance for a linear stochastic system. 

Consider the discrete stochastic system (3) 

(47) xk+1 = Akxk + Bkuk + Gkwk 

yk=
CkXk+Hkvk, 
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The Kaiman estimator (conditional mean under given information 
**+n*+i = 4**i* + L*+Jy*+i -Ck+1Akxm],) is given by: 

(48) *fc+uft+i = 4**i*+ Lk+i[yk+1 - Ck+1AkxMk], 

The basic assumption of the Kaiman estimator is that the descriptions of A, B, G, 
C, H, Q, R, and S0 [as defined in (3)] are correct. As a practical fact, this is usu- 

ally impossible. 

Estimations of these quantities must be made and improved by the information 
from observation. Therefore, we need to develop some procedure that provides 
the best descriptions of A, G, C, H, Q, R, and Z0 from observations and other 

prior knowledge. This problem is called parameter identification. 

Consider the following system: 

p h r 

(49) yk = -£ ay^ + 2*/"*-/+ Z ctwk-i 
i=\ j=l i=0 

This is an Autoregressive Moving Average Model (ARMAX) model. The first 
term on the r.h.s. of equation (49) expressing the dependence of the current out- 
put on its own past values is the autoregressive, or AR, term. The second term is 
the external inputs (or control inputs) of the system. The last term, which is 
called the moving average (MA), is a moving combination of independent random 
variables v. 

k 

Using a shift operator, the ARMAX model (49) can be expressed as: 

(50) A{q~l)yk = q~iB(q-1)uk+C(q'1)Wk 

where q~l is a backward shift operator, i.e., q~]yk = yk_v and 

A(q~]) = \ + aiq-
]+--- + anq-p 

(51) B(q-') = b0+blq-i+- + bnq-" 

C(q-]) = l + Ciq-]+- + cnq-r 

The stationary condition of an autoregressive process, such as 
yt =axy,_x +—va y,    +et, is that all roots z0 of its polynomial, l-a,z cipz

p, 

have modules |z0|> 1.   Also, a moving average process of order r, MA(r), can be 

written as an infinite AR process if all the roots of its polynomial, 
1 - c,z crz

r, have modules greater than 1.  Such an MA process is called in- 
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vertible.  Without special notice we henceforth assume that the MA term in the 
ARMAX model is invertible. 

Least Square Mean Estimates (LSE) 

Suppose we have the data {O0,•••,<!>,,_,,yx,---,yn} and we believe that the follow- 

ing model fits the data. 

(52) yM=®T
ke+wi+l 

where wk is the error term with a mean of 0. 

LetF be a s-field generated by the data {®0, •••,$„_,,.}>!, —,y„}. Then, {wk, k £ n} 

is Fn-measurable because wk can be deduced from yk and Fk through the relation 

™J=yk+i-®
TkO- 

We also assume that {wk} is a Martingale difference sequence with respect to the 
increasing sequence of s-field {3k} which satisfies 

E[w2
k\3k_{\ = C72, a.s., for all k 

and 

Slip £[|wt|" !<?,_,]< °o, a.s., for some a > 2. 
k 

The least square method is to choose 0 to minimize 

(53) W) = f>,+1-O[0)2 

By setting -^ = 0, we obtain the LSE of 0 

(54)     ^(l^rrT0*^ 
4=0 t=0 

Suppose one more datum (On,yn+l) becomes available; then we can obtain the 

new LSE 0„+1 from the old LSE0„ 

6n+] = e+R-l<i>(yn+,-®
T

non), 
(55) 

n+l n n     n 
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Where Rn = Y]<I)
i®[ • To verify (55), we substitute the equation 

*=o 

Ö„ = (Z****)"^**^! ^ E^+i = X-A, ^ write *„_, = V*«*« 
*=0 A=0 *=0 

Let P = R~\ We obtain the LSE recursions. n n 

(56) p=p  -M^f, ,-(^0) 

For convenience, we define 6k = 0k - 9k, and wk+l = yk+x - <&k 6k. 

Theorem (LSE convergence) 

Consider the LSE algorithm defined by (55) and applied to model (52), then 

(i)        XK-wJ^OdogrrC^,)) a.s. 

(ii)       ||0jf = O(Ä^)  a.s. 

n-\ 

(iii)      Hm^7ZO*w^i=0 a.s.,herei=l,..., 2p+2, 
n->co     ""   i=o 

Moreover, if lim^min(K) = +°° ancl THRJ - eI for an large n>tnen 

limä« = o a.s. 
n-»oo 

Proof 

We will not prove results (i) to (ii) here. They can be proved by using Martingale 
convergence theorem and Kronecker's lemma (i.e., two real valued sequences {xk} 

oo AT 

and {r } satisfying r > 0, limr* = °°>  X?" < °°'then lim^X** = 0)" We only 

*-><» k=\ N->co        k=\ 

give the proof of (iv), the convergence of the estimate. 
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n-l «-! 

Since S'^ = 1 + ^ (O; )2 < 1 + Tr^ OiO[, from result (iii) we have 
k=0 k=0 

n-\ 

and 

n-\ 

e. = ö+^-iZ* 
*=0 

*w*+1 

1-1 ,.   , "-! 

0. = 0+[^J— I©4<D[]   4-^7 2**w*+i] 
*=0 4=0 

Taking the limit of the equation above, we obtain result (iv). 

Suppose we have the data {Oj.-.O,.,,)?,,-,^} at time n. The one-step predic- 

tion made by 6n is 

Denote 9; is the i-th element of 0, then the feedback law is explicitly given by 

(5.7) +6n(9 + 2)un.l+- + eH(g + h)uH_k+l 

-JUi-0» (? + * + !):?» Bn(9 + h + r)yn.r+1 

Similar results can be obtained for stochastic gradient (SG) algorithm. The SG 
algorithm is regarded as a simplification of the LSE recursions since the scalar 
gain in the SG algorithm is only the trace of the matrix gain in the LSE algo- 
rithm. 

Conditional Mean Estimates 

Let us rewrite the ARMAX model (49) as 

yk+l=®T
k9° + wM 

where Ok = (yt,--;yt_p,ut,--;ut_h,wt,--;\vt_r)
T, 6° = (al,--;ap,bl,--;bh,cl>--;cr)

T. 

The true parameter 0° is unknown and we want to identify it. 
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Theorem (conditional mean estimate) 

Assume that 6° ~ N(6,  I), {y^} is determined by yM = O[0° + w,+1) {wk}  is 

identical independent distribution (iid) with wk ~ TV^O,«?2), and {ys,Os ,s< k) is 

independent of {ws,s>k + l}.   Then 0„ = £{0°|OO, •••,<£„_, >y\>—>)>*} minimizes 
E{\\ef>-Qf\QQ,---,®n_,,yl,---,yn},andeHan& 
Pn:= E{(6P -en)(e?> -dn)

r\®0,-,®n_„y„-,yn} satisfy the recursions 

p=p       /".-OX'SH /          ®rd) 

This theorem says if {wA} is Gaussian white noise, the recursions for the condi- 

tional mean of 6° under Bayesian formulation coincides with the LSE. 

Proof 

LetV(e)=E{\\e°-0i\2\Oo,-,On_],yl,-,yn} 

e 

^2E{\(?-e\ \O0,-,On_„y],-,yn}=0 

=>0=£{^|<Do,-,«Dl_I^1,-^II} 

To prove the recursion (58), we rewrite the ARMAX model as a state space repre- 

sentation. 

en+] = en<   e0~N(e, z), 

Then we can use the Kaiman filter as discussed in the previous section 

**+l|*+l = ^kXk\k + At+1 LJVA+1 ~^k+l^kXk\kh 

^*+l|*+l = \* — A(r+l^*+l/^*+l|*, 

^*+1|*+l ~V~ ^k+]^k+l)^k+]\k, 
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Lk = S k\k-\ Cl [ Ck 2 *|*-i Cl + Hk RHl ]"' 

and make the following exchanges 

xk\k <=> ek 

2woPt 

We obtain the recursion (58). 
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5  STELLA II Modeling Process 

In the previous chapters, we have chosen and defined theoretical statistical 
measures of plant diversity and developed theoretical models for plant communi- 
ties. The stochastic dynamics models developed contain two main components: 
deterministic process and stochastic process. The deterministic model controls 
the biological dynamics of the plant communities, while the stochastic process 
simulates the biological and ecological fluctuations. When we have a good un- 
derstanding of the dynamics and stochastic behaviors of the plant community we 
are studying, the stochastic dynamics model is able to make respectable predic- 
tions for the community. Once we have chosen to use a stochastic model, there 
remains the task of selecting the mathematical approach to follow in its analysis. 
Figure 1 illustrates the sequence of decisions involved in choosing an appropriate 
model. The first decision is the specification of birth and death probabilities. 
The second is to determine the size of fluctuation due to demographic variation. 
Finally, a choice of representation of environmental variation must be made. 
Following the flow of the diagram, we can select one of the mathematical models 
discussed in Chapter 3 as our simulation model. 

Large 

Environmental 

fluctuation 

Deterministic model 

£ 
Stochastic differentiation 

Large 

Large 

Birth and death process Stochastic model with 
combined fluctuations 

Figure 1. Sequence of choosing a stochastic model. 

As we pointed out before, a stochastic model is able to predict the probability 
that the population will be of a particular size. Given the probability or the 
conditional probability of future behavior, an estimate of the population can be 
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determined as in the deterministic model. In the real world, however, we usually 
do not know the probability distribution, and we do not know the details of 
population dynamics. Instead, we must look at past data. In this case, estima- 
tion models discussed in Chapter 4 will be our choice of simulation models. 

U.S. military installations across the country cover thousands of plant commu- 
nity types. With the development of the U.S. Army Land Condition Trend 
Analysis (LCTA) program, Army-wide inventory plots have been established and 
field data have been collected on many Army installations since 1989. For this 
reason, we choose the estimation model presented in Chapter 4 as our major 
STELLA simulation model. (STELLA is a software modeling tool.) The dynam- 
ics model is used only for testing purposes. 

Consider the discrete stochastic system presented in Chapter 4. 

a)xk+]=Akxk+Gkwk 

yk ^Ckxk+Hkvk, 

where xk e Rn,yk e Rp,wk eR8,vk e Rh; Ak, Gk, Ck, and Hk are possible time- 

varying, known matrices of appropriate dimension, x and y are, respectively, the 
state space and observation space. The basic random variables {x0, w0, .., v0, ...} 
are all independent and Gaussian, with x0 ~ N(0,~L0), wk ~ N(0,Q), 
vk ~ N(0,R). The covariances are all known. The available information at time 

k is zk = yk:= (^JHVJO)' 
The random variable xk, xk+1, and yk are jointly 

Gaussian. As derived in Chapter 4, the recursion scheme was obtained by Kai- 
man filtering: 

Zk+*k=Ak-LmAl+GkQGT
k 

^oio = (I ~ L0C0 )JS0> 

Here 

Lk = ^kik AT
[CÄIA fil +HkRHk ] 1 
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L0 = 20C0 [C0I.0C0 + H0RH0 ] 

This recursion specifies the transition function of the information state. It is 
known as the discrete Kaiman filter. The matrix L in the recursion is called the 
Kaiman gain matrix. The following STELLA model uses this recursion scheme 
to model the changes of the biodiversity and population of plant communities. 

The STELLA Model 

In this study, the STELLA model is built based on the recursion scheme (2). 
Figure 2 is a STELLA map, which shows the four basic parts of our STELLA 
model: global variables, local variables, the Kaiman filter, and the outputs. A 
variable is called global if it is determined by the community type and is inde- 
pendent of the species type, such as the Shannon index, total number of species, 
total population, total number of observations, error limit, natural input, and 
human input (these are discussed in the following section). A local variable var- 
ies with the type of species. Local variables include species abundance, species 
tolerance to environmental changes, and model parameters. The model of the 
Kaiman filter is based on species. Although the structure of the model is the 
same for all species, the inputs and outputs are different for different species. 
The outputs include all the major results of the simulation both in table and 
graphic format. 

Figure 3 is a STELLA diagram that shows the structure of the estimation model 
of the Kaiman filter. The parameters and components in the model are defined 
in the recursion scheme (2). This model simulates the changes of the population 
of a single species. A multispecies community needs multiple copies of this 
model in which the structure is the same but the parameters are set differently. 
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w Global Variables     \7" 
ERROR LIMIT  HUMAN INPUT HUMAN ACTIVITY        NATURAL INPUTNATURAL 

0   0—0    o-o 

NO OF OBS TOTAL POPULATION       SHANNON INDEX TOTAL SI 

0      0 0 Q 

T 
Local Variables       \i/ 

NATURAL INPUT CURREN 

AGO C        H       R 

00       00 
HUMAN INPUT 

TOLERANCE INDEX 1 
0 

Kaiman Filter \y 

1 

Figure 2. The STELLA map of flow structure. 
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Gioba! Variables Z^l 

NO OF OBS      ERROR LIMIT      HUMAN INPUT   HUMAN ACTIVITY NATURAL INPUT   NATURAL FACTOR 

O   O     O-KD       O—O 

■  WM Local Variables ^■1 
NATURAL INPUT CURRENT OBS 

/"~N             AGO C              H R                /"^ 

5X)   O   O O   O °^ 
HUMAN INPUTI          ERROR LIMIT 

O 
TOLERANCE INDEX 1 OBSERVATION 

Kaiman Filter ^1 
STATE VARIANCE 

NEW STATE OLD STATE NEW VAR 

OBSERVATION OLD STATE 

OLD VAR 

KALMAN GAIN 

■   M Outputs z\MM 
p, llllll 
Graph Table 

Figure 3. The STELLA structure of the Kaiman filter. 
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Setting of the STELLA model 

Global Variables 

Number of observations: is the number of repeated times of observation. 

Error limit: is the tolerance of inventory errors that include sampling and non- 

sampling errors. 

Human input: is the quantified human activities, including the destruction and 

improvement activities done to the community. 

Natural input: is scaled environmental variation and natural catastrophe. The 

growth of a plant population is determined not only by its intrinsic reproduction 

and survival capabilities but also by its surrounding climatic, topographic, and 

geologic conditions. Some of these environmental factors have little variation 

over time, such as topography and soil, while others, such as temperature and 

precipitation, change daily. Some of these changes are important to the popula- 

tion growth, and some of them are not. We choose those factors that are impor- 

tant to the community and change over a relatively short period of time. Catas- 

trophes can be thought of as the extremes of environmental variation. These are 
events that affect either reproduction or survival. Catastrophes include habitat 
destruction, flood, fire, disease, drought, storm, etc. We may be able to define the 
impacts of these catastrophes on the community of interest by examining the 

historical records of catastrophes and population changes of the community. 

Total population: is the sum of the populations of all species in the community. 

Total number of species: is the total number of species appearing in the commu- 

nity during the simulation. 

s 
Shannon index: is defined as -£pt logCP,), where S is the total number of spe- 

«=i 

cies and pt is relative population of the i-th species. The Shannon index is de- 

termined by both the richness (number of species of the community) and the 

evenness (relative abundance of each species). Given the total number of spe- 

cies, the Shannon index reaches its maximum when all species have the same 
abundance.   That is, Max (H) = log(S).   Comparing the Max (H) and the true 

value of H, we know the level of the diversity of the community. 

We also calculate the population sizes of the most abundant species and their 

variances.    In most natural communities, only a few species contribute 80 
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percent or more to the total population. These abundant species usually 
determine the quality and function the community reaches. 

Local Variables 

Model parameters: model parameters A, G, Q, C, H, and R are defined in the 
schema (20). In our study, parameters G, C, and H are set to be 1. A is the net 
growth rate. When a community is in a stable stage, parameter A should be 1. 
Thus A is initialized to be 1. Q is the system noise term. It is usually unknown. 
As we proved in Chapter 4, Q does not affect the trend of estimates. Even when 
Q is initialized large, it drops very fast as more and more data enter into the 
model. R is the combined inventory error, which is determined by the population 
sized and the error limit. 

Species tolerance: the tolerance of a species is the capability of the species to re- 
sist environmental changes. It is one of the intrinsic characters of the species. 
Different species have different sensitivities to changes in their environment. 
Thus, the tolerance index is determined by our understanding of the species. 

Observation: the observation is a set of time-series data collected from the field. 
The size of the data set affects the quality of the simulation results. The more 
data we have, the more actuate the results we obtain from the simulation. 

Kaiman filter 

Stocks, Flows, Converters, and Connectors are the generic building blocks of the 
STELLA language. Stocks, flows, or converters represent variables and parame- 
ters. Connectors link related variables or parameters. This section provides a 
brief description of these building blocks, and shows how the blocks are used to 
build the Kaiman filter (2). STELLA manual (STELLA II 1994) provides details 
of modeling in STELLA. 

STOCK 

 I: In our model, stocks act as buffers within the system of plant popula- 
tions. They build up or decline whenever their associated rates of inflow and 
outflow are out of balance with one another. This buffering property of stocks 
leads to dynamic simulation of the system. There are two stock variables in the 
Kaiman filter: population and its variance. The population is the optimal esti- 
mate of the true population of a given species. The variance is the minimized 
variance of the population. These two stock variables are calculated by the Kai- 
man filter (2). 
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FLOW 

O : In STELLA, flows consist of a pipe (or conduit), flow regulator, and ar- 
row. Things flow through the conduit in the direction indicated by the arrow. 
The specific volume of the flow is calculated by the algebraic expression in the 
regulator. In the Kaiman filter, there are two types of flows: flow-in and flow- 
out. A flow-in and flow-out connect each of the stock variables in our model. 
When a new observation comes into the model, the regulator in the flow-in cal- 
culates the new population size based on the Kaiman filter, and adds the result 
into the stock. Meanwhile, the flow-out removes the old population from the 
stock. Therefore, the population size stored in the stock is updated as the recur- 

sion scheme (2) shows. 

CONVERTER 

O : Circles in STELLA represent converters; they are the containers for all 
types of information or material quantities. As their name implies, converters 
transform inputs into outputs based on the expressions in the circles. Unlike 
stocks, converters do not accumulate flows and have no memory. In our model, 
converters represent all of the global and local variables. 

Outputs 

The outputs of the model include total population size of the community, total 
number of species, the Shannon index, and the populations of the five most 
abundant species of the community and their standard deviations. These out- 
puts are presented in table and graphic formats. 
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6  A Case Study: White Sands Installation 

White Sands Missile Range was selected as the case study. The White Sands in- 
stallation is located in the desert in New Mexico. Although the species composi- 
tion here is not complicated, White Sands has a wide range of land covers, from 
pure sand with little or no vegetative cover, to highly dense plant communities. 
A single model may not be able to model the whole installation. Therefore, we 
first classify the plots of White Sands into different plant community types based 
on their species compositions. Then, we simulate the population and diversity of 
each type of plant community based on data collected from the field. 

Classification of Plant Communities 

A plant community is an interacting unit of all the populations of species within 
a prescribed region. Different communities have different species composition 
and present different patterns. A central goal of plant ecology and biology is to 
understand and model the processes and mechanisms that cause the patterns we 
see. This is no easy task. Any given habitat may contain from a few plant spe- 
cies to hundreds of different species. In a large area, especially a tropical or sub- 
tropical area, species composition is usually very complicated and vegetation 
patterns are complex. No single model can produce a satisfactory description for 
the population dynamics in all types of plant communities. A model usually 
works well within a certain type of community. Therefore, to understand the 
vegetation changes in a given area, the first task we have to accomplish is to 

classify that community. 

In most sampling designs, vegetation types or land cover types are identified 
based on satellite imagery, soil types, and vegetation information. Samples are 
then proportionally assigned to the land cover categories classified from satellite 
imagery. For a variety of reasons, classifications based on satellite imagery do 
not reflect the natural distribution of plants and land covers. The preliminary 
classification based on satellite imagery should be modified by observation in- 

formation. 

There are many different approaches to and kinds of community classification. 
The two basic methods are the ecological classification framework and numerical 
classification. The ecological classification framework combines the physical and 
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biological factors of a given region. Usually, dominant species of a plant commu- 
nity are used to represent the ecological function of the community. Thus, a di- 
rect method for ecological classification is to put samples into groups of domi- 
nant-types according their species composition. That is, samples with similar 
major species are classified into the same group. This method is direct and accu- 
rate when all samples are dominated by a few species. However, when the sam- 
ple size is very large and species composition is very complicated, the direct 
method may give a large number of dominant types. If the number of dominant 
types is limited, it is very hard, even for an experienced expert, to tell which 
group a sample should go into. Moreover, this ecological method is more or less 
subjective. Different people may have different classification schemes for the 
same data set. 

In the past three or four decades, there has been an increasing tendency to use 
numerical methods. This has largely been due to the greater objectivity of these 
methods. A common method is cluster analysis. Clustering is a method of find- 
ing groups in data. But the direct use of species abundance data in clustering 
causes the problem of putting samples with similar species composition into dif- 
ferent groups. For example, two samples (I and II) both have species A, B, C, 
and D. Sample I has the species abundance 100, 60, 40, and 10 of species A, B, 
C, and D, respectively. Sample II has the species abundance 60, 30, 20, and 5 of 
species A, B, C, and D, respectively. Although these two samples have similar 
species composition they may be placed into different groups by cluster analysis 
because the absolute difference of species composition between these two sam- 
ples is large. 

Instead of using the direct abundance, we standardize the abundance data by 
quadrate in this study. Then, we apply usual clustering methods to the stan- 
dardized data. This method overcomes the disadvantages of using direct abun- 
dance because the abundance of species is standardized to a scale of unit one for 
all samples. The clustering programming is written in the SAS statistical analy- 
sis program. We use three different clustering methods: average, centroid, and 
Ward's minimum variance, and choose the best clustering scheme after compar- 
ing the clustering results obtained by these three methods. 

Standardization of Data by Quadrat 

There are many different approaches to standardizing data onto a scale of one. 
We used quadratic standardization (scaling) in this study. The reason for using 
quadratic scaling is that this method of scaling puts appropriate weights on 
abundant species. Relative abundance, which is defined as the i-th species 
abundance divided by the total population, treats all the species as having the 
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same importance in the classification. This is not what we expect in the classifi- 
cation of a plant community. In community classification, abundant species are 
usually considered to be more important than other species. On the contrary, 
cubic or higher order scaling puts too much weight on the abundant species, and 
other species may have little or no impact on the classification. 

To understand quadratic scaling, we first define the length of a vector. The 
length of a vector is defined as the square root of the sum of the squares of all its 
elements. That is, 

(i)   L=Via2 

where Qt is the i-th element of vector Q. 

Let Q be the abundance vector of a community. Qt is the abundance of i-th spe- 

cies. Then, the standardized abundance of the i-th species, which is also called 
the importance index of the i-th species, is defined by: 

(2)    Qi = -jjQl 

Two properties of the importance index are: (1) Q' is a unit vector; that is, Qt 

ranges from 0 to 1, and Y,Qt = 1; (2) Qt is determined by the relative abundance 

rather than absolute abundance. 

Clustering Method 

The SAS clustering procedure, CLUSTER, is used to find groups of observations 
with coordinate data (species importance index). To obtain a better clustering 
result, we use three clustering methods: average linkage, centroid method, and 
Ward's minimum-variance method. 

The following notation is used, with lowercase symbols generally pertaining to 
observations and uppercase symbols to clusters: 

n = number of samples (observations); 

v = number of variables; 

G = number of clusters at any given level of the hierarchy; 

xk = i-th observation; 

CK = K-th cluster; 

Nk = number of observations in CK; 

Xk = mean vector for CK; 
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Ijjcij = Euclidean length of the vector x; 

T = X Xi - x   ', 

PG=£w,; 

BKL =WM-WK-WL $CM=Ck UQ; 

D(x, y) = distance between vectors x and y; 

D^ = distance between clusters CK and CL. 

The distance between two clusters can be defined either directly or by combina- 
torial. That is, by an equation for updating a distance matrix when two clusters 
are joined. In all combinatorial formulas below, it is assumed that clusters CK 

and CL are merged to form CM, and the formula gives the distance between the 
new cluster CM and any other cluster C,. 

Average Linkage 

In the average linkage, the distance between two clusters is defined by: 

(3)       Do. = I**, I/«c,d(x„xf)/(NKNL). 

ifd(x,y) = |x-y|   then: 

(4)       DK, = XK     XL + WK/NK + WL/NL 

The combination formula is: 

(5)       DJM=(NkDJK+NLDJL)/NM. 

In the average linkage, the distance between two clusters is the average distance 
between pairs of observations, one in each cluster. Average linkage tends to join 
clusters with small variances but is slightly biased toward producing clusters 

with the same variance. 

Centroid Method 

In the centroid method, the distance between two clusters is defined by: 

(6) D. KL XK    XL 
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If d(x,y) = ||x - v||" then the combination formula is: 

2 
(7) DJM = (NkDJK + NLDJL )/NM- NKNLDja INM. 

In the centroid method the distance between two clusters is defined as the 
Euclidean distance between their centroid or means. The centroid method is 
more robust to outliers than most other hierarchical methods. 

Ward's Minimum-variance Method 

In Ward's minimum-variance method, the distance between two clusters is the 
analysis of variance (ANOVA) sum of squares between two clusters added up 
over all the variables. At each generation, the within-cluster sum of squares is 
minimized over all partitions obtainable by merging two clusters from the previ- 
ous generation. d(x, y), Dffl and the combinatorial formulas are, respectively, de- 
fined as: 

(8) d(x,y)= llx-yll2/2 

(9) Dffi= I |XK.XL| |
2
/(1/NK+1/NL) 

(10) DJM = ((N, + NK)DJK + (N, + NL)DJL - NJDJ / (N, + NM) 

Classification Results 

The clustering results were obtained by the three clustering methods: average 
linkage, centroid method, and Ward's minimum-variance method. Tables 1 and 2 
summarize the results of cluster analysis for years 1989 and 1992, respectively. 
From Tables 1 and 2 we can see Ward's minimum variance method gives the best 
match of plots among all the three methods and a stable classification scheme 
between years 1989 and 1992. Thus we choose Ward's clustering scheme as the 
frame scheme and adjusted it by the clustering results from average linkage and 
centroid method. We suggest 18 vegetation types for White Sands (17 clusters 
plus 1 type of bare soil). The vegetation types and their major species are listed 
in Table 3. 
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Table 1. Comparison of cluster analysis results for 1989. 

Cluster 

1 

Average Linkage 

31, 33, 35, 36, 147, 150, 175 

1, 2, 10, 11, 12, 13, 14, 24, 
29, 30, 37, 41, 42, 54, 59, 73, 
80, 82, 83, 84, 85, 86, 88, 89, 
90, 92, 93, 95, 96, 110, 113, 
117, 118, 119, 120, 121, 122, 
123, 125, 132, 133, 134, 151, 
156, 157, 158, 159, 161, 166, 
180, 181, 189, 190, 191, 196 

19, 20, 26, 53, 57, 58, 68, 69, 
91, 109, 116, 129, 131, 162, 
168, 176, 200  

Centroid Hierarchical 

31, 33, 35, 36, 147, 150, 175 

1, 2, 10, 11, 12, 13, 14, 24, 
29, 30, 41, 42, 54, 59, 73, 82, 
83, 84, 85, 86, 88, 89, 90, 92, 
93, 110, 113, 117, 118, 119, 
120, 121, 125, 132, 133, 151, 
156, 157, 161, 166, 180, 181, 
189, 191 

53, 57, 68, 69, 91, 109, 129 

Ward's Minimum Variance 

31, 33, 35, 36, 147, 150, 175 

1, 10, 12, 14, 24, 29, 30, 41, 
42, 54, 59, 82, 84, 85, 86, 88, 
89, 90, 92, 93, 113, 117, 118, 
119, 120, 121, 125, 132, 133, 
156, 157, 161, 166, 189, 191 

53, 57, 68, 69, 91, 109, 129 

3, 4, 23, 25, 27, 38, 39, 56, 
60, 61, 62, 114, 115, 127, 152, 
155, 172, 195     

3, 4, 23, 25, 27, 38, 39, 56, 
60, 62, 114, 115, 127, 152, 
155, 172, 195  

3, 4, 23, 25, 27, 38, 39, 56, 
60, 62, 114, 115, 127, 152, 
155, 172, 195  

46, 49, 100, 101, 102, 112, 
177, 197 

46, 49, 100, 101, 102, 112, 
177, 197 

46, 49, 100, 101, 102, 112, 
177, 197  

6, 7, 8, 21, 22, 51, 52, 64, 
128, 130, 138, 139, 144, 160, 
164, 165, 167 

7, 21, 22, 64, 138, 139, 144, 
160, 164, 165, 167 

21, 22, 64, 138, 139, 160, 164, 
167 

70,  111,  142,  145,  171,  173, 
199 

70,  111,  142,  145,  171,  173, 
199 

70,  111,  142,  145,  171,  173, 
199 

15,  16, 94, 97,  124,  135,  178 6, 8, 15, 16, 19, 20, 26, 37, 
47, 50, 51, 52, 58, 61, 66, 67, 
71, 72, 75, 77, 78, 79, 80, 87, 
94, 95, 96, 97, 99, 106, 116, 
122, 123, 124, 128, 130, 131, 
134, 135, 137, 158, 159, 162, 
163,  168, 176,  178,  182, 184, 
190, 196, 198, 200  

19, 20, 26, 58,  116,  131, 162, 
176, 200 

5, 9, 65, 146, 153, 154, 193, 
194 

5, 9, 65, 146, 153, 154 2, 11, 13, 37, 73, 83, 110, 122, 
123, 134, 151, 158, 180, 181, 
190 

10 40, 48, 79, 98, 103, 104, 108, 
183 

40, 48, 98, 103, 104, 108, 183 40, 48, 79, 80, 95, 96, 98, 103 
104, 108, 168, 183  

11 105, 107 105, 107 5, 9, 65, 146, 153, 154, 193, 
194 

12 28, 43, 126 193, 194 6, 7, 8, 51, 52, 61, 128, 130, 
144, 159, 165, 196 

13 47, 50, 66, 67, 71, 72, 75, 77, 
78, 87, 99, 106, 137, 163, 182, 
184, 198 

28, 43, 126 50, 
76, 
184 

63, 66, 67, 71, 72, 74, 75, 
77, 78, 136, 137, 163, 182, 

14 17, 18, 81 17, 18, 81 105, 107 

15 74 74 28, 43,  126 

16 63 63 15, 16, 94, 97, 124, 135, 178 

17 

18 

19 

20 

76 76 17, 18, 81 

136 

140 

169 

136 

140 

169 

47, 87, 99, 106, 198 

140  

169 
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Table 2. Comparison of cluster analysis results for 1992. 

Cluster Average Linkage Centroid Hierarchical Ward's Minimum Variance 

1 31, 33, 36, 147, 148, 175 31, 33, 36, 147, 148, 175 31, 33, 36, 147, 148, 175 

2 1, 10, 11, 12, 13, 14, 24, 29, 
30, 41, 42, 54, 59, 73, 82, 88, 
89, 90, 92, 93, 113, 117, 118, 
119, 120, 121, 123, 125, 132, 
133, 156, 157, 158, 161, 166, 
180, 181, 189, 191 

1, 2, 10, 11, 12, 13, 14, 24, 
29, 30, 41, 42, 54, 59, 73, 82, 
88, 89, 90, 92, 93, 113, 117, 
118, 119, 120, 121, 123, 125, 
132, 133, 156, 157, 158, 161, 
166, 180, 181, 189, 191 

1, 10, 11, 12, 13, 14, 24, 29, 
30, 41, 42, 54, 59, 73, 82, 88, 
89, 90, 92, 93, 113, 117, 118, 
119, 120, 121, 123, 125, 132, 
133, 156, 157, 158, 161, 166, 
180, 181, 189, 191 

3 3, 4, 19, 20, 23, 25, 26, 27, 
38, 39, 56, 57, 58, 60, 62, 68, 
69, 91, 109, 114, 115, 116, 
127, 129, 130, 131, 152, 162, 
168, 172, 195, 200 

3, 4, 23, 27, 38, 39, 60, 62, 
127, 152, 172, 195 , 

3, 4, 23, 27, 38, 39, 60, 62, 
127, 152, 172, 195 

4 70, 77, 111, 142, 145, 151, 
171, 173, 199 

70, 77,  111, 142,  145,  151, 
171, 173, 199 

70, 77,  111, 142,  145,  151, 
171, 173, 199 

5 46, 49, 100, 101, 102, 110, 
112, 177, 197 

46, 49, 100, 101, 102, 110, 
112, 177, 197 

46, 49, 100, 101, 102, 110, 
112, 177, 197 

6 6, 7, 17, 21, 22, 35, 47, 

50, 51, 61, 64, 66, 67, 
71, 72, 74, 75, 78, 99, 
103, 106, 128, 137, 13?, 
139, 140, 141, 144, 159, 
160, 163, 164, 165, 167, 
182, 183, 184, 196, 198 

6, 7, 15, 16, 17, 19, 20, 21, 
22, 25, 26, 37, 40, 48, 50, 51, 
56, 57, 58, 64, 66, 67, 68, 69, 
71, 72, 74, 75, 78, 79, 80, 91, 
94, 95, 96, 97, 98, 104, 105, 
108, 109, 114, 115, 116, 122, 
124, 128, 129, 130, 131, 134, 
135, 137, 138, 139, 140, 141, 
144, 159, 160, 162, 163, 164, 
165, 167, 168, 176, 178, 182, 
183, 184, 190, 196, 200 

6, 7, 21, 22, 51, 64, 128, 

138, 139, 159, 160, 164, 

165, 167, 184, 196 

7 2, 15, 16, 37, 40, 48, 79, 80, 
94, 95, 96, 97, 98, 104, 105, 
108, 122, 124, 134, 135, 176, 
178, 190 

35, 47, 61, 99, 103, 106, 198 15, 16, 37, 94, 95, 96, 97, 122, 
124, 134, 135, 176, 178, 190 

8 5, 65, 146, 153 5, 65, 146, 153 26, 57, 58, 68, 69, 91, 109, 
129, 162, 168, 200 

9 28, 43, 126 28, 43, 126 19, 20, 25, 56, 114, 115, 116, 
130, 131 

10 193, 194 193, 194 2, 40, 48, 79, 80, 98, 104, 105, 
108 

11 63 63 5, 65, 146, 153 

12 107 107 28, 43, 126 

13 76 76 35, 47, 61, 99, 103, 106, 183, 
198 

14 18 18 193, 194 

15 81 81 50, 63, 66, 67, 72, 74, 75, 76, 
78, 107, 136, 137, 140, 141, 
163, 182 

16 136 136 17, 18, 71, 81, 144 

17 8 8 8 

18 154 154 154 

19 169 169 169 

20 52 52 52 
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Table 3 . Vegetation types identified at White Sands Missile Range. 

Types No. of plots Plot ID Major species 

1 3 36, 147, 175 ALOC2, PSAR, ATCA2 

2 35 1, 10, 12, 14, 24, 29, 30, 41, 42, 54, 59, 
82, 84, 85, 86, 88, 89, 90, 92, 93, 113, 117, 
118, 119, 121, 125, 132, 133, 156, 157, 161, 
166, 189, 191 

ATCA2 

3 7 53, 57, 68, 69, 91, 109, 129 FLCE 

4 17 3, 4, 23, 25, 27, 38, 39, 56, 60, 62, 114, 
115, 127, 152, 155, 172, 195 

LATR2 

5 8 46, 49, 100, 101, 102, 112, 177, 197 ARFI2, EPTO 

6 8 21, 22, 64, 138, 139, 160, 164, 167 PAIN2, LATR2, VIST, DAFO 

7 7 70, 111, 142, 145, 171, 173, 199 DAFO, PAIN2, LATR2 

8 9 19, 20, 26, 58, 116, 131, 162, 176, 200 FLCE, LATR2 

9 14 2, 11, 13, 37, 73, 83, 122, 123, 134, 151, 
158, 180, 181, 190 

ATCA2, LYBE 

10 6 15, 94, 97, 124, 135, 178 LYBE, ATCA2 

11 8 5, 9, 65, 146, 153, 154, 193, 194 VIST, DAFO, ACC02, PAIN2 

12 12 6, 7, 8, 51, 52, 61, 128, 130, 144, 159, 165, 
196 

PAIN2, LATR2, DAFO 

13 12 40, 48, 79, 80, 95, 96, 98, 103, 104, 108, 
168, 183 

EPTO, ATCA2 

14 18 50, 63, 66, 67, 71, 74, 75, 76, 77, 78, 105, 
107, 136, 137, 140, 163, 182, 184 

DAWH2, PAIN2, YUBA 

15 3 17, 18, 81 OPVI, ACGR 

16 4 47, 87, 106, 198 YUEL, POIN3 

17 1 169 DAFO, PAIN2, FLCE 

18 27 16, 28, 31, 33, 35, 43, 72, 99,110,120,126,150 

32, 34, 44, 45, 55, 143, 148, 149, 174, 179, 185, 
186,187,188,192 

Bare land 
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Simulation Results 

The STELLA model as described in Chapter 5 was used to model the population 

and divertty of the 17 plant community types. The data used for the simulation 

were from four years: 1989, 1990, 1991, and 1992. Figures 4 through 20 illus- 

trate results of the simulation for the different plant communities. 
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Figure 4. Simulation results for plant community type 1. 
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Figure 5. Simulation results for plant community type 2. 
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Figure 6. Simulation results for plant community type 3. 
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Figure 7. Simulation results for plant community type 4. 
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Figure 8. Simulation results for plant community type 5. 
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Figure 9. Simulation results for plant community type 6. 
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Figure 10. Simulation results for plant community type 7. 
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Figure 11. Simulation results for plant community type 8. 
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Figure 12. Simulation results for plant community type 9. 
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Figure 13. Simulation results for plant community type 10. 
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Figure 14. Simulation results for plant community type 11. 
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Figure 15. Simulation results for plant community type 12. 
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Figure 16. Simulation results for plant community type 13. 
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Figure 17. Simulation results for plant community type 14. 
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Figure 18. Simulation results for plant community type 15. 
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Figure 19. Simulation results for plant community type 16. 
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Figure 20. Simulation results for plant community type 17. 
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7  Summary 

This report is the culmination of a project that was designed to develop and test 
a new methodology to model changes in plant diversity. Using standard data 
from the U.S. Army's LCTA program at White Sands Missile Range, New Mexico, 
stochastic models of plant diversity were created to simulate the dynamics of the 
population growth in a number of plant communities on the installation. 

This project resulted in the development of a new model in which we demon- 
strated different methods to solve a variety of stochastic differential equations. 
We illustrated how to incorporate both demographic noise and environmental 
noise into a single model containing the joint effects of demographic and envi- 
ronmental stochasticity. This new model contains two main components: deter- 
ministic process and stochastic process. We first introduced a dynamics model of 
population growth. This model derives birth and death rates as they relate to 
population growth from the relationships among plants. It also derives these 
rates from the relationship between plants and the environment. This model 
serves as the deterministic part of the stochastic model and controls the biologi- 
cal dynamics of the plant communities. The second component of the model 
simulates the biological and ecological fluctuations. In the new model, the sto- 
chastic process is simulated with the birth and death process. This process best 
describes the demographic stochasticity because it depicts population dynamics 
with biologically accurate, interpretable birth and death rates and is applicable 
to populations of varying sizes. 

During the testing phase of the project, we needed to have clearly defined plant 
communities in order to test the model with White Sands LCTA data. We used 
Ward's minimum variance method of cluster analysis because it yielded the best 
match of plots out of the three methods of cluster analysis used to characterize 
individual plant communities on the White Sands installation. 

This diversity model complements other models that use LCTA data to deter- 
mine plant population levels. Plant population models are useful tools in that 
they enable natural resource managers to transcend current identification 
strategies and can help determine future training levels that will allow the 
maximum level of training to occur in areas with minimal impact on overall spe- 
cies diversity. Although this particular model is only applicable at the White 
Sands installation, this new model can handle a variable number of species and 
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species abundance. This capability enables it to be used to calculate any kind of 
diversity indices. Because both the dynamic changes and stochastic fluctuations 
are included in the stochastic dynamics model, re-parameterizing the model 
gives it the potential for extensive use in natural resource management and en- 
vironmental monitoring. Future applications of these stochastic dynamics mod- 
els include: providing standard diversity measures; monitoring the development 
of plant communities in terms of species diversity and structure diversity; test- 
ing the significance of the influence of human activities on plant communities; 
and estimating rehabilitation time for a disturbed plant community, thereby 
helping the Army integrate training and natural resource management. 
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