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Abstract 

A method is presented for calculating the length to 

area ratio of current leads for superconducting magnets that 

will minimize the heat loss caused by the lead. The method 

does not assume that the material obeys the Weidemann-Franz 

Relation; therefore, calculations can be made for ultra high 

purity metals. Sample calculations for such materials are 

made and it is shown that it is possible to effect a refriger- 

ation saving over that required fcr W-F materials. 



Foreward 

A previous analysis by Morgan has led to a method of determining the 

optimum, length to area ratio of a current carrying, gas cooled cryogenic lead 

for minimum heat loss to the cryogenic system. This analysis was based on 

the following assumptions: 

1. Perfect heat transfer occurs between the cooling gas and the lead. 

2. The specific heat of the cooling gas is constant in the 
temperature range considered. 

3. The thermal conductivity and electrical resistivity of the lead 
material as a function of temperature, is determined by the 
Weidemann-Franz-Lorenz relation. 

The first assumption is a valid approximation providing that the heat 

transfer surface and flow conditions are such that a small temperature 

difference exists between the coolant and the lead. These conditions can be 

generally satisfied. The second assumption is a good approximation 

particularly for the case of helium whose specific heat at one atm varies 

from a maximum value of 6 j/gm between 5°K and 6°K to a constant value of 

5.2 j/gm at 40 K and higher. The assumption that the material obeys the 

W-F-L law is, however, only valid for certain classes of materials, i.e., 

those which have a relatively high residual resistives. Thus, certain alloys, 

impure and strain hardened metals obey the law fairly well while very pure 

metals depart widely from this relation. Thus, in Morgan's solution for the 

W-F-L material, we are restricted to such materials as brass and impure 

copper and aluminum or pure metals that are highly cold worked. The Morgan 

solution gives a minimum heat loss that is independent of the actual choice 

of the material and is the same for all W-F-L materials. The length to 
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area ratio is then determined by supplying either the thermal or electrical 

properties of the particular choice for the lead material. 

Since high purity, strain free metals depart widely from the W-F-L law, 

Morgan's analytical solution does not provide accurate results for this case. 

2 
For example Powell, et al have determined that the Lorenz number for 99.999% 

annealed copper varies from a minimum value of 0.8 x 10  at 24 K to 1.9 x 10 

watt-ohm/( K) at higher temperatures. The electrical resistivity of the pure 

copper, in the range, 5 K to 30 K drops more rapidly than the thermal 

resistivity; thus, it can be expected that magnet leads that are more efficient 

than those which use W-F-L materials can be designed with high purity metals. 

Thus, the magnet lead problem for steady state conditions has been solved for 

the general case and is not restricted to W-F-L materials. This solution can 

be used to obtain the optimum length to area ratio of the lead, for minimum 

heat influx, provided that measured values of the thermal and electrical 

resistivities can be supplied for the material under consideration. The 

solution has been obtained by numerical analysis and examples are compared to 

the solution for the W-F-L material. It is seen that potential savings of 

about 207, of refrigeration loss is possible with commercially available high 

purity metals used for superconducting magnet leads. 

Analysis 

The following notation is used: 
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A    -    lead area, cm 

I    -    current per lead, amp. 

I" - Lorentz number, typically 2.47 x 10  watt-ohm/(K) 

T - Temperature, °K 

Q - heat flux, watts                            • 

T
0 - temperature at cold end of lead, °K 

T2 - temperature at warm end of lead, °K 

C - specific heat of coolant gas, j/gm - °K 

x - distance along lead, cm 

y - thermal impedance along lead 

m - mass of cryogen vaporized at cold end of lead, gm/sec 

h - heat of vaporization of cryogen j/gm 

1 - length of lead, cm. x = 1 is at the cold end 

p - electrical resistivity, ohm-cm 

k - thermal conductivity of lead material, watt/cm-°K 

With constant specific heat of the coolant and perfect heat transfer 

between the coolant and lead, the heat balance equation for a gas cooled 

lead has been given by Morgan and is written here as 

feUfg)'^^-#V -o (1) 

where x- 0 is at the warm end of the lead. Using the concept of thermal 

1_ 
kA impedance, i.e. dy = rj dx, the above equation can be written in terms of 
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the heat flux, Q = — . Thus, 

+ *. r (2) 

It is noted here that if the material obeys the W-F-L law, then pk■> LT 

and (2) becomes 

A3. =-cmQ - l\r 
?■ (3) 

dT 
Since Q = — , this second degree equation can be readily solved 

analytically, as Morgan has done, and the minimum value of m can be 

determined for any W-F-L material. 

If we wish to solve the general equation (2), a more elaborate 

procedure is required. We proceed as follows: 

Taking the derivative of (2) with respect to y, we obtain 

■        *t      ,;L   ^      ;^J    -Lr^^4J (4) 

In order to find the minimum value of m that will solve (2) 

dm 
dy 

equation (4) is solved with T2
 = 0 



 ,l..i.U.~WUIlli 

5 - 

Thus, the problem is described by 

d^ *£     - L< d%       *fJ 

The boundary conditions for (5) are: 

(a)  Q = mh  and  T = T   at  x = 1 
o 

(b)  Q.- 0  T = T2  and from (1) j& - phi2  at  x = 0. 

sincedk = dk  dT       da = dß.  dT 011106 dy  dT ' dy  and  dy  dy * dy 

we can write equation (5) in a more convenient form as 

(5) 

A>, _r™^ c^%-*ci[f&+*M d'-'1- J% .^ w dir diTj (6) 

Equation (6) with its boundary conditions must be solved numerically 

using supplied values of p, k and their derivatives as a function of T. If 

this were an initial value problem the solution would be quite easy since 

one could use the readily available Runge-Kutta numerical integration 

procedure. However, a method for the numerical solution of ordinary 

differential equations with values specified on each boundary is available 

only for certain restricted cases. Although there may be some general 

method that could be applied, we have solved the problem by converting it 
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to an initial value problem in conjunction with a Newton-Raphson type iteration 

procedure. The method was as follows: 

1.   An initial approximate value of the parameter, m.is selected. 

This can be determined by assuming that j' = 0 at x = 1 and thus, the 

trial value of m is - • 

2. -  Equation (6) is then solved by the Runge-Kutta method for the 

given initial conditions and the integration proceeds taking increments 

in y until T ^ T .   ' 
o 

3. At this point, the integration procedure is stopped and the 

value of Q is compared to the value it must have at the cold end. 

Thus, the error is Q(l) - mh. 

4. A correction to m is calculated using a modified Newton-Raphson 

method based on the variation of the error with m as determined by 

successive integrations. 

5. ;  Step 2 is repeated until the error is less than some pre-assigned 

value, usually 0.1 watt. Thus, the minimum heat flux length to area ' 

ratio and the temperature profile can be determined by the final 

integration of equation (6). 

In addition to the above described iteration procedure, the solution of 

the problem also requires a method of calculating p, k, -jr and -rr as a 

function of T. This is provided as follows: 



1. Typically 20 to 25 values of p and k at various temperatures are 

provided. 

2. The temperature range is broken up into three sections. In each 

of these sections a 4th or 5th polynomial is fitted to the data by a 

least squares method. 

3. The integration procedure then uses the polynomial approximations ' 

for p, k, -j~ and — to calculate the values at any temperature in the 

range considered. 

This solution has been programmed for the CDC-6600. It has been checked 

with the solution for the W-F-L materials, and agrees almost exactly. The 

method has been found to converge quite well; for helium temperature pure 

copper leads, 10 iterations were required for convergence and 6 iterations 

were required for convergence with hydrogen cooled leads. 

Numerical Examples 

For the numerical examples, 6000 ainp., helium cooled leads have been 

chosen for various materials for which published data was available. These 

materials are listed in Table I. 



TABLE I 

Material No. 

. ..V  1  v 

2  V 

'■'''■" ^3 

■ -yh. 

'■■ ,' -.5.' '■'.■ 
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Description 

99.9997. Copper Annealed 

99.999% Copper, 26% Cold-drawn 

OFHC Copper, annealed 

1100-0 Aluminum 

W-F-L material with k value similar to 2 

99.995% Aluminum single crystal 

Thermal conductivity and electrical resistivity data for materials 1 and 2 

2 
were taken from Powell et al.  Data for 3 was taken from two sources; the 

resistivity from Clark et al which had measurements to 4°K. Thermal conductivity 

for the OFHC copper (condition unknown) was taken from the NBS circular.* 

However, the curve did not extend below 23°K so that extrapolated values down 

. o 
to 4 K were estimated from the shape of other curves. Furthermore, since 

corresponding electrical and thermal measurements were not made on the same 

sample, the calculation for this material may not be reliable. The data fov 

1100-0 aluminum was taken from curves in Hall's paper.  Also, this same 

reference gave curves for the aluminum single crystal.  Table II summarizes the 

thermal and electrical data for the above materials. 



The points shown were computed'from the polynominal approximations. 

Calculated results for a 6000 amp., helium cooled lead for these materials are 

given in Table II. The temperature at the top of the lead is 300°K with no 

heat input, the temperature of the bottom was 4.5°K. Values used for the 

specific heat of helium gas and heat of vaporization of the liquid were 

5.194 j/gm - °K and 18.69 j/gm. 

TABLE III 

6000 amp. Helium Cooled Leads for Various Materials 

MATERIAL 

Optimum Length: Area Ratio, cm"1 

Heat Input at Lead Bottom, Watts 

Mass of Helium Vaporized, gm/sec. 

1 % 3- 4 5 6 

260.2 63.7 29.3 14.4 63.0 46.0 

4.7 5.1 4.6 5.6 5.8 5.4 

• 252 . 275 .247 . 300 .311 .287 

The optimization calculations show that one could expect to achieve a helium 

refrigeration saving of about 20% over that required for leads made from a W-F-L 

material by using a material such as high purity annealed copper. In this case 

actual samples of the material would have to be checked at low temperature in 

order to verify the resistance ratio. The resistance ratio for material 1 is 

1500. The cold-drawn high purity copper 2, having a resistance ratio of 138 
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represented a possible refrigeration saving of 11%. Although OFHC copper 3, 

was calculated to have a heat loss of only 4.7 w, which is almost as low as 

material 1, these results are questionable until a re-calculation can be made 

with reliable electrical resistivity and thermal conductivity data. The 

commercially pure aluminum 4, gave the same result as for a W-F-L material as 

did the data used for the aluminum single crystal, 6. 

The result for the high-purity annealed copper has verified that one can 

expect to achieve a lower loss design with ultra high purity materials since 

at the low temperature end the resistivity decreases at a faster rate than 

the thermal conductivity increases. Indeed, it would be interesting to 

speculate on the possibility of designing low loss leads of high purity single 

crystals of copper. Gniewek and Clark6 have measured the resistance ratio of 

such samples at 20,000. One might even effect an additional enhancement by 

using crystals which are grown to be oriented along certain principal axes. 
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