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ABSTRACT 

fThis article consists of two parts.  In the first part, the 

cx?_cjLJ)XOfiagation theories for brittle and quasi-brittle solids 

fracturing under a single application of the external loads are 

considered.  The emphasis has been on the dynamic aspects of 

the fracture phenomenon and the related quantitative theories. 

Thus, the problem is discussed only from the viewpoint of con- 

tinuum mechanics and classical thermodynamics.  Two theoretical 

approaches are presented in detail.  These are the dynamic crack 

propagation theory based on the concept of modulus of cohesion 

proposed by Barenblatt and various forms of the energy balance 

theory based essentially on the ideas proposed by Griffith.  A 

detailed analysis of the energy balance around the periphery of 

the crack is given and it is shown that the energy available at 

the crack periphery to create new fracture surfaces is equiva- 

lent to the crack closure energy, which is different from the 

released strain energy if the inertia effects are not negligible. 

The results are applied to plane extensional and anti-plane shear 

problems.  The techniques used in and the results obtained from 

the available experimental studies are then discussed. 

In the second part, the theories dealing with the fatigue,, 

crack propagation in plates are considered.  After a brief review 

of the existing models, a simple model based on the plastic de- 

formations around the crack tip is discussed in detail.  The 

model is intended to be largely a comparative tool in studying 

the fatigue crack propagation in structures with the same ma- 

terial but different geometries and loading conditions.  The   >> 
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results are used to analyze the experimental results obtained 

from the plates under cyclic tension with variable mean loads 

and plates under cylindrical bending.' 
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CRACK PROPAGATION THEORIES 

Introduction 

The fracture of solids may be considered as the formation 

of new surfaces in the medium in a thermodynamically irrevers- 

ible manner.  The essential feature of the phenomenon is the 

rupture of cohesive bonds in the material.  In simplified 

terms, then the fracture is a process of nucleation and growth 

and/or coalescence of voids or cracks.  Even though the de- 

tails of this process may vary with the material, the type of 

external loading and the environmental conditions, generally 

speaking from the macroscopic standpoint, one may classify the 

fracture of solids in two broad categories, namely brittle and 

ductile.  The ductile fracture is usually associated with large 

deformations, very high rates of energy dissipation and slow 

fracture velocities.  Brittle fracture is a low energy failure 

and, for unstable loading conditions, takes place in a catas- 

trophic manner, meaning that the fracture velocities are usual- 

ly high. 

The study of the fracture process for a given solid requires 

the simultaneous consideration of such widely diverse factors 

as the macroscopic effects, (e.g., the environmental and load- 

ing conditions, particularly stress states around macroscopic 

imperfections where the fracture is likely to initiate and their 

effect on the material behavior through yielding or constrain- 

ing), the nature and the composition of the material, and the 



microscopic phenomenon taking place at the locations where 

the fracture nucleates or grows.  In the lowest end of the 

scale is then the process of rupturing some cohesive bonds 

within the material.  In this range, one is interested in the 

phenomena taking place in the material within distances of 

order 10"  cm and the tools available to study the problem are 

those of quantum mechanics.  In the other end of the scale in- 

volving material behavior at distances 10  cm and up, the ma- 

terial may usually be considered as a homogeneous continuum 

and the tools of continuum mechanics and classical thermodynam- 

ics may be used to study the phenomenon.  The phenomena taking 

place within the material between these two extreme scales, 

such as dislocation movements, formation of subgrain precipi- 

tates, the slip bands and the grain inclusions and voids, are 

very heavily dependent on the micro-structure of the material 

and may require a different approach .  Thus, due to the high- 

ly complex nature of the phenomenon and, as a result, the lack 

of its full physical understanding as well as the lack of suf- 

ficiently powerful mathematical tools, at the present time, 

there is no consistent single theory dealing with all the rel- 

evant aspects of fracture, and, generally speaking, the exist- 

ing theories tend to treat the subject from only one of the 

three points of view mentioned above. 

The fracture theories based on the approach of statistical 

For a discussion and a schematic representation of various 
scales of fracture, see [1]. 



mechanics simplify and idealize the material with respect to 

the kinetics of its atomic structure on one hand and ignore 

its local geometry and mechanics with respect to microstruc- 

tures and stress state on the other. Hence, they provide some 

phenomenological insight but not a satisfactory quantitative 

theory. At this level, the approach is quite general and is 

applicable to all solids. 

Since the fracture initiation means formation of cracks 

or voids, it is essential that in studying fracture, the micro- 

structure of the material and the loading conditions should be 

considered.  This means that the mechanism may be basically 

different for crystalline and amorphous solids.  The current 

state of various theories dealing with the crack initiation 

and its growth to a certain size has been discussed in [2 to 

8] for crystalline materials and in [9- to 13] for amorphous 

polymers.  The main emphasis in all these microstructural 

theories is on the understanding of the mechanism of fracture 

initiation and they tend to be largely qualitative. 

The macroscopic theories of fracture on the other hand 

assume the existence of cracks, voids or other imperfections 

which may readily act as fracture nucleus.  The size of these 

imperfections are assumed to be sufficiently large compared 

to the characteristic dimensions of the microstructure to 

justify the use of the tools of continuum mechanics.  These 

theories consider the material to be a homogeneous continuum 

with certain, usually idealized, properties and approach the 
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problem from an entirely field point of view using the tools 

of continuum mechanics and classical thermodynamics. 

In the macroscopic approach to the problem, it becomes 

necessary to devise a "model" for the actual phenomenon and 

postulate a "criterion" for fracture.  Among such criteria, 

one may mention a maximum strain criterion proposed by 

McClintock [14] and Krafft [15], the critical stress intensity 

factor criterion of Barenblatt [16], which may be considered 

as a maximum stress or an energy criterion depending on the 

interpretation of the stress intensity factor [17] and the 

energy balance criteria.  In general terms, all the energy 

balance criteria are based on a simple thermodynamic notion 

that the fracture will ensue or continue to propagate if for 

a unit increase in fracture surface, the increase of exter- 

nally added or internally released energy is greater than the 

amount of stored and dissipated energies.  Partly due to the 

generality and physical soundness of the underlying principle 

and partly due to its flexibility, these criteria form the 

basis of by far the most widely used theories of fracture. 

The first energy balance theory was formulated by Griffith 

[18,19] for the fracture of ideally brittle materials in which 

surface free-energy is the only source of energy dissipation. 

The subsequent theories have dealt largely with the modifica- 

tion and generalization of Griffith's work.  Among the notable 

generalizations, we may mention the work by Rivlin and Thomas 

[20], who studied the tearing of a rubber vulcanizate and 
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introduced the concept of characteristic tear energy to re- 

place the surface free-energy in Griffith theory.  Rivlin- 

Thomas theory has been \/ery  useful in studying the high 

energy-type fracture and has successfully been applied to the 

fracture of polymers [21 - 24].  The modifications offered 

by Orowan [25] and Irwin [26] deal with the introduction of 

plastic work as an additional source for energy dissipation, 

extending the usefulness of the theory to the fracture of 

metallic materials.  Another significant extension of Griffith 

theory was made by Mott [27] who included the kinetic energy 

in the energy balance in studying the dynamics of fracture. 

In these theories, the rate of change of dissipative energy 

with respect to fracture area called surface free-energy, tear 

energy, fracture energy or fracture toughness plays an impor- 

tant role, is considered to be an intrinsic property of the 

material and is dependent on the environmental conditions and 

the type of loading as well as the nature and the composition 

of the material. 

In discussing the fracture of solids under a single appli- 

cation of the load, one may differentiate three types of ma- 

terial response.  One would be the so-called crystalline 

shatter of a perfect crystal with an ideally uniform geometry 

and under ideally uniform external loads.  In this case, the 

fracture may be a complete shatter of the material or the 

instantaneous rupture along a plane.  Another ideal situation 

may arise if the geometry and loading conditions are such that 

the fracture nucleation and growth, that is, the formation 



and the propagation of microcracks, take place uniformly and 

simultaneously along a certain plane.  In such a case, each 

microcrack may experience similar velocities while propagating. 

Even though these crack velocities may be somewhat limited, 

due to the multiplicity of fracture nuclei, the final phase 

of the fracture, i.e., the phase of rapid fracture propagation 

may be of wery  short duration.  A carefully grooved homogeneous 

thin sheet under uniform tension may come close to satisfying 

these conditions.  A more realistic and common material re- 

sponse is the propagation of a dominant flaw in the material. 

In this case too, for some materials, one may observe the 

coalescense of cracks or voids; however, the cracks or voids 

in question here form ahead of main propagating crack and due 

to the stress concentration caused by the main crack.  The 

term fracture or crack propagation in current literature on 

the subject is used only for the type of fracture which con- 

sists of the growth of a dominant crack and hence, this will 

be the only type of phenomenon which will be discussed in 

this chapter. 

The terminology of crack propagation is also used in con- 

nection with the growth of fatigue cracks which take place 

in materials subjected to repeated loading.  There is no sig- 

nificant change in the atomistic theories of fracture with 

regard to fatigue.  However, the microstructural and macro- 

scopic or continuum theories of fatigue differ considerably 

from those dealing with fracture under a single application 

of the load.  The microstructural theories are based on the 



slip movements taking place in the slip bands and resulting 

in the formation of intrusions and extrusions [28 - 33].  The 

main objective of these theories is to explain the mechanism 

of formation of the fatigue cracks rather than to provide a 

quantitative working tool.  Again, the quantitative theories 

of fatigue also are based on the continuum models and are 

mostly semi-empirical in the sense that they contain constants 

which have to be determined experimentally, which are not in 

a rational way related to the known simple material constants 

and into which most of the indefiniteness and perhaps some 

of the inaccuracies in the line of reasoning are lumped [34 - 

42]. 

In this article, we will consider only the quantitative 

aspects of the fracture or crack propagation theories; hence, 

in most part, the discussion will be restricted to the con- 

tinuum-based models.  In the first part, after a brief review 

of various fracture propagation theories, the more acceptable 

energy balance theory will be discussed in detail.  The fatigue 

crack propagation will be considered in the second part of 

the article. 



1.  Dynamic Crack Propagation Theories 

A given solid with a certain geometric singularity, 

usually a crack, a sharp notch or an inclusion, may fracture 

catastrophically at load levels exceeding a critical limit. 

There is ample experimental evidence that in such low energy- 

type failures, the fracture velocities in some cases may be 

of the order of magnitude of elastic wave velocities in the 

solid.  Hence, in studying the problem, it becomes necessary 

to take into account the dynamic nature of the phenomenon. 

Basically, the problem is the following: 

A given solid is subjected to a system of time-dependent 

external loads, generally consisting of surface tractions, T^ , 

surface displacements, u  and body forces F^ , and contains 

an initial imperfection which serves as a fracture nucleus 

(Figure 1).  Let A be the portion of the surface of the solid 

created as a result of fracture.  If the external loads are 

increased beyond a critical level, the fracture propagation 

will ensue.  The question is then the determination of the 

size and the shape of the fracture area A as a function of 

time— knowing the material characteristics and the environ- 

mental conditions.  At this generality, even the formulation 

of the problem does not seem to be so simple.  However, if 

we restrict ourselves to a narrow class of problems in which 

fracture takes place along a plane and the fracture area A 

is characterized by a single length parameter a(t), then the 

dynamic  problem reduces to the determination of four func- 



tions, namely the displacements u.(x.,t), (i,j = 1,2,3) and 

the characteristic fracture length, a(t).  The equations of 

motion in the deformable solid provide three equations.  The 

fourth equation necessary to complete the formulation of the 

problem will have to be provided by some kind of a failure 

theory or a fracture criterion which is discussed in the 

following sections. 

1.1  Theories Based On Statistical Mechanics 

There have been some attempts to explain the phenom- 

enon of delayed fracture in brittle solids by considerations 

based on statistical mechanics [43 - 45], These theories are 

assumed to apply to the crack initiation as well as the rapid 

crack propagation phases of fracture. For crack propagation, 

they lead to an expression of the form 

V = A e"
f(a*T»E*Q) o (1) 

where V  is the crack velocity, A is a constant, usually the 

shear wave velocity Cp, a  is the "external stress", T is the 

absolute temperature, E is the modulus of elasticity and Q 

is the energy of binding.  Depending on the author, the func- 

tion f takes various forms.  In most of these theories, the 

arguments leading to (1) are essentially based on the propo- 

sition that the velocity ratio  V0/c2 is the same as the per- 

centage of atomic bonds which have reached the energy level 

corresponding to the unstable equilibrium [43,44] and the 

reason given being that all the bonds behind the crack front 



must necessarily be ruptured.  In others, it is assumed that 

the crack growth is caused by thermal fluctuations and a 

limiting velocity of crack propagation may be obtained from 

the condition that the bond fluctuation breakage probability 

is unity [45,46].  In still others [47,48], to obtain an 

equation in the form of (1), the statistical theory of chemi- 

cal reaction rates developed by Eyring and others [49 - 52] 

has been used.  It is assumed that the propagation of fracture 

may be considered to be a unit process proceeding by jumps as 

individual pairs of atoms are separated.  Starting then with 

the Eyring equation, giving the probability of passage of a 

system over an energy barrier per unit time and assuming this 

to represent the probability of breaking a bond at the crack 

tip, a relation for the crack propagation rate may be obtained. 

Originally, these theories have been developed as 

alternatives to the critical-flaw concept of Griffith to ex- 

plain the fracture of solids— the main difference being that 

according to this approach, there is no flaw in the solid until 

it is created by the applied stress and after its creation, 

the limiting velocity, which is estimated to be approximately 

0.5 Cp, is reached very quickly.  Whatever the merit of the 

existing statistical rate-process theories in providing a 

mechanism for crack initiation may be, as pointed out by Hall 

[53], they are almost certainly incorrect as crack propagation 

theories.  Without a detailed discussion of any of these 

theories, the main objections commonly applicable to all may 

be that they are based on notions developed for systems in 

10 



equilibrium which a material undergoing fracture with near- 

sonic velocities is not and the superficial manner in which 

"the external stress" is brought into the rupture phenomenon 

at the crack tip. 

1.2 Barenblatt's Theory 

Barenblatt's theory of the so-called equilibrium 

cracks is essentially a critical flaw approach to fracture 

similar to that of Griffith leading to identical results and 

differing only in its interpretation of the stress and defor- 

mation states at the crack tip [16].  Both approaches deal 

with the problem from continuum standpoint and use the tools 

of linear elasticity.  Griffith theory is based on the energy 

balance at the crack tip.  Barenblatt, objecting to the notion 

of infinite stress at the crack tip, and to overcome the short- 

comings of the continuum elasticity within the range of inter- 

molecular distances encountered in studying the phenomenon 

around the crack tip, has introduced the effect of cohesive 

forces acting across the faces of the crack close to its tips. 

Starting with the hypotheses that a) the end region in which 

the cohesive forces are active is "very small" compared to 

crack length, b) the stresses at the crack tip are finite, and 

c) the crack surfaces close smoothly, i.e., the crack tip has 

a cusp shape rather than being parabolic as predicted by the 

elastic theory, he points out that a non-singular stress state 

obtained by the superposition of stresses due to the external 

loads and those due to cohesive forces would satisfy these 
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conditions. He thus obtains a fracture criterion by writing 

the combined stress intensity factor equal to zero. The re- 

sult is the comparison of the stress intensity factor calcu- 

lated from the external loads with a material parameter called 

the modulus of cohesion. He further indicates the relation- 

ship between the surface tension and the modulus of cohesion 

and arrives at the Griffith criterion. His further attempts 

to extend the same line of reasoning to quasi-brittle materials 

involving plastic deformations is rather unrealistic*. 

Using the hypotheses mentioned above, Barenblatt and 

others have extended the concept of the modulus of cohesion 

to propagating cracks [56 - 58].  In [56], a stationary (plane 

In the case of equilibrium cracks, the plastic zone is not a 
thin layer surrounding the crack as assumed in [16].  The shape 
is rather complex and is difficult to determine.  The problem 
which would result from its removal and subsequent replacement 
by appropriate surface tractions seems to be quite difficult 

ble mathe- 
city, Baren- 
he addressed 

h Griffith was 
h the cohesive 
render a lin- 
h i s , in real 
ould have 
ke any cohe- 
s also i n- 
tive approach 
of atomic di- 
same as the 

hin the approx- 
ree with that 
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strain) wedging of an ideally brittle solid is considered. 

The problem is that of a semi-infinite slender wedge with a 

given nose profile moving through an infinite medium at a 

constant velocity VQ.  Again, two separate stress states are 

considered:  a..(1^, due to cohesion forces, 

(i) _ GU), (i) _ 
ey 

= 0 , 0 £ e £ d, ?=x+VQt 

(2) 
active in the end region of the crack (Figure 2) and a.^ 

due to the external loads. From the solution of the wave 

equations, it is shown that in the neighborhood of the crack 

tip for y = 0 

(l) _ . _!_ j 6(t)dt = _ K_ 

w/r o  /t       /r 

(2) 

where r is a small distance from the crack tip.  In deriving 

(2), it is assumed that 6(e) and d are independent of VQ and 

depend only on the material properties; hence, K is a constant 

and is assumed to have the same value as the modulus of co- 

hesion defined for equilibrium cracks.  This velocity-inde- 

pendence of 6 and d may not be justified and will be remarked 

upon later.  Thus in any stationary problem where a semi-in- 

finite crack propagates with a velocity VQ, if the cleavage 

stress in the vicinity of the crack tip resulting from the 

external loads is given by 

(2)   N(V 
/r 

(3) 
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the finiteness condition of the stresses gives the fracture 

criterion or the equation determining the propagation velocity 

V„ as o 

N(V0) = K (4) 

Since N is the dynamic stress intensity factor for 

ay and K is a material constant, in this form Barenblatt 

criterion is similar to that of Irwin [59,60], N2 and K2 

corresponding to crack driving force and fracture toughness, 

respectively, with the difference that the dynamic fracture 

toughness as used by Irwin and others is assumed to be de- 

pendent on the crack velocity. 

The nonstationary plane crack propagation problem is 

considered in [58] where it is assumed that at t = 0, a cut 

of length 2aQ is introduced to a plane subjected to a uni- 

axial tension at infinity.  The cut is perpendicular to the 

direction of loading and is assumed to be greater than the 

critical length, so that the crack immediately starts to 

grow.  The crack propagation is assumed to consist of three 

stages:  an initial non-uniform stage associated with the 

effect of the perturbation waves originating from the crack; 

a uniform growth with constant velocity V ; the final accel- 

erated growth which may result in the branching of the crack 

(isotropic brittle materials) or attaining the Rayleigh wave 

velocity (highly anisotropic crystals and elastic half planes 

bonded with a weak non-dissipative glue).  The duration of 

14 



the initial stage is assumed to be very small and its effect 

to be negligible.  Thus for the uniform propagation stage, 

the problem may be approximated with that considered by 

Broberg [61], who gives the dynamic solution for a uniaxially 

stressed plane in which a crack starts from zero length and 

propagates at a constant velocity. 

In [58], it is assumed that the size of the end 

regions of the crack in which the cohesive forces are active 

(Figure 2) is d = V^ with the constant V] small compared to 

and independent of VQ and that the cohesive force, g, aside 

from the material constants, is a function of s/d only. 

Approximating the stress field induced by the cohesive forces 

by a stationary field discussed earlier, it is found that 

(l) 
1  d g(s/d)ds    yV^t 1 g(u)du 

ir/r o  /s ir/r o  AT 
(5) 

or defining  a "material   constant" 

/V7 1 g(u)du 
R = —i- / —— 

IT    o Ai 

(6) 

the cleavage stress is obtained as 

(l) _ - R /"? (7) 

On the other hand at y = 0 and a small distance r 

ihead of the running crack, the dynamic solution gives the 
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cleavage stress due to the external loads as [61] 

(2) ,/^?t 

F(v) = /v(l-k*v2) [4^(l-k^vJi)(l-v2) 

(v2-2) ]/{v2 [4k2 + v2(l-4k2)] K(yi-k2v2) 

- 4v2(l-k2v2) K(/T^V2T - [v"-4(l+k2)v2 + 8] E(/1-k*v2) 

+ 8(l-k2v2) E(/T^J},   k = c2/ci; v = VQ/c2   (8) 

where p is the uniaxial stress at infinity, c2 is the shear 

wave velocity, c] is the dilatational wave velocity, K and E 

are the complete elliptic integrals of first and second kind, 

respectively.  The condition of finiteness of a    at the crack 

tip then gives 

■T-  F(v) = R (9) 

Since R is a constant, (9) determines the uniform crack propa- 

gation velocity for a given load p.  The function F(v), which 

is essentially a measure of dynamic stress intensity factor for 

ay is plotted in Figure 3 for v = 1/4.  Writing (9) as 

F(v) = /2/c2 R/p, it is seen that for p less than a certain 

value p* (9) has no real solution.  For p > p*, there are two 

solutions.  Since at the smaller velocity v, , an increase in 

p results in a decrease in v, it is not acceptable on thermo- 

16 



dynamic grounds; hence, v2 is the only possible solution. 

From t = 0, then the crack will propagate at a constant veloc- 

ity v2 until its resistance reaches the value corresponding 

to the stationary propagation.  Comparing (2) and (7), it is 

seen that the uniform crack propagation phase will end at 

t2 = KW (10) 

In the last phase of crack propagation, t > t2, the 

stress intensity factor will be greater than the modulus of 

cohesion, i.e., 

/^f F(v) > K = p/^ F(v) 

and as a result the crack velocity will grow either to the 

branching velocity (isotropic materials) or to the Rayleigh 

wave velocity (highly anisotropic materials with weak cleavage 

planes). 

It should be pointed out that the hypothesis of 

finiteness of crack tip stresses, which is so strongly empha- 

sized in this particular approach to fracture, is only par- 

tially satisfied by the model outlined ..above.  The reason for 

this is that in combining the crack tip stresses a^ due 

to cohesion and a..{2)   due to the external loads, only the 

cleavage stress, oy is rendered finite.  Since for a..   X     a 

stationary solution, (that is, a solution for semi-infinite 

crack growing at a constant velocity), is used and since for 

a stationary solution and that for a uniformly growing crack 
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the stresses around the crack tip have different e as well as 

different Vo-dependence\ the combined stresses on planes other 

than 6 = 0 would still have a singularity at the crack tip. 

1,3  Discussion And Some Modifications Of Barenblatt's 

Theory 

If the plane has an initial flaw of length 2a and 

If the modulus of cohesion of the material is K, the solution 

for the equilibrium crack indicates that at an external load 

fk (11) 

the crack starts to propagate.  Hence, for this value of the 

load from (9), (10) and (11), the duration t2 of uniform crack 

growth may be obtained as 

t  -!°     ] 

2  c2 TFTVTF 

which is very small for practical ranges of F(v).  Thus, in 

most cases, t2 may be ignored and the stationary crack growth 

criterion (4), may be applied from the instant crack starts 

to propagate.  In this case, the st ress intensity factor N(V ) 

should be obtained from a dynamic solution with accelerated 

crack growth.  Since such a solution is analytically not fea- 

This can be seen by comparing the results of [61] and [621 
In [62], constant surface tractions moving with the semi-in 
f.niteecrack are applied on a finite portion of the crack 
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sible, for qualitative description of the phenomenon, one 

may assume the solution with uniform velocities to be valid 

at successive intervals.  Also, in order to apply Broberg's 

solution, we may associate the half-crack-length a with a 

time t such that a  = V t .  Recalling that v = V /c2, from 

(2), (8) and (11), we obtain 

pV^|- F(V) = K 

or 

F(V) =yv ^ (12) 

Equation (12) provides a descriptive relation between crack 

velocity and time and is obtained from the condition that at 

any given time, the stress intensity factor is equal to the 

modulus of cohesion. 

According to this simplified version of Barenblatt's 

theory, for t = t , v = 0 is the only possible velocity.  How- 

ever, in propagating cracks, p is usually slightly greater 

than the equilibrium value; hence, the crack growth will take 

place, and at a certain time, t , one may assume a nonzero 

crack velocity.  As t increases, the stress intensity factor 

will increase while resistance to crack growth remains con- 

stant.  For a few values of t, the solution of (12) is shown 

in Figure 3 which shows that if the branching does not occur 

and the external load p is held constant, the crack velocity 

would asymptotically approach the Rayleigh wave velocity. 
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If we assume with Barenblatt that the resistance to 

the crack propagation in brittle fracture comes solely from 

the cohesive forces at the crack tip, it may be argued that 

the resulting "material constant" characterizing the resistance 

will have to be a function of crack velocity.  One of the weak- 

nesses of the Barenblatt theory is that this point is handled 

in an arbitrary fashion with no physical foundation.  For ex- 

ample, one may easily argue that, in the initial stage of the 

crack propagation, the velocity V-,, of development of the 

cohesion zone size d is not constant, but is dependent on crack 

velocity V .  For simplicity, if we assume this relationship 
* 

to be linear , i.e., V-, = ßV , where 3 now is a material prop- 

erty, from (5) we obtain 

/I" 1 g(u)du 

o  AT 
(13) 

For the finiteness condition, a    + a ^2'   = 0, from (8) 

and (13), we find 

f F(v) = 

/2v 
Q, v Vc2 (14) 

For a heuristic justification, see Appendix A, where it is 
shown that in an anti-plane problem, a Dugdale type of model 
gives the velocity of the development of plastic zone size 
approximately proportional to crack velocity. 
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Now Q is a constant and (13) and (14) are valid for 

all possible crack velocities during the initial phase of the 

crack propagation.  On the other hand, for very small crack 

velocities, a    is approximately the same as the stress in 

equilibrium cracks.  Thus, letting V t = a . the initial T '       3  o     o 

crack length corresponding to the fracture initiating load p, 

and comparing (2) and (13), the constant Q is seen to be 

Q = c^K/Zä^, a-, < 1 (15) 

where K is modulus of cohesion of the material and the constant 

av is introduced to take into account the possible change in 

resistance to crack growth resulting from the change in crack 

velocity,  a, = 1 for V  = 0; for V  >_ 0, the effect of dissi- 

pation at the crack tip due to plastic deformation or viscous 

flow decreases and a,   becomes less than unity [63].  For crack 

propagation, again using the condition (see (11)) 

p = a2\/i~ K* a2 - 
1 (16) 

From (14), (15) and (16), we obtain the equation giving the 

crack propagation velocity as 

al F(v) = /v 
a2 

(17) 

It should be noted that, unlike (12), the solution of 

(17) is independent of time; that is, for a given value of 

ap/ai , the solution of (17), shown in Figure 3 as the inter- 

section of F(v) and the parabolas, is the expected uniform 
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crack velocity in an infinite plane.  According to this in- 

terpretation of Barenblatt's theory, the transition from the 

equilibrium crack to the crack propagating at a limiting 

velocity is explained by the variation in a, which depends 

on the fracture properties of the material and a2 which may 

now be assumed to be the ratio of the external load at a 

given time to the load associated with the equilibrium crack. 

This means that during the crack propagation, a decrease in 

external load, i.e., a2, would result in a decrease in crack 

velocity, if the decrease in a2 is high enough to reduce 

a^/a,, to unity, theoretically, the crack would stop.  Also, 

one may note that if the solution of (17) is above the branch- 

ing velocity, the crack would branch before the limiting ve- 

locity is reached. 

Practically all the available experimental results 

indicate that the limiting crack velocity in brittle fracture 

is approximately constant and that a reduction in the external 

loads causes a decrease in crack velocity.  This implies that 

the foregoing model conforms to the main features of the 

brittle crack propagation.  It should again be emphasized that, 

since it lacks a firm physical foundation, the model described 

above is not a theory which can be used to explain the phe- 

nomenon of fracture propagation, it is simply a convenient con- 

ti nuum model. 
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1.4 Theories Based On The Energy Balance 

Consider a solid subjected to certain external loads 

and containing an internal or an external "dominanf'crack. 

The external loads may be any one or combination of surface 

tractions, surface displacements and body forces.  In the most 

general case, thermodynamic equilibrium of the body requires 

that 

dU   dV   dT   d_D 
dt ' dt  dt  dt 

(18) 

where t is the time, U is the work done by the external loads, 

V is the recoverable (elastic) component of the stored energy, 

T is the kinetic energy and D is the sum of all the irreversi- 

ble energies such as the surface free-energy or fracture en- 

ergy, plastic work and viscous dissipation.  If T.  are the 

components of stress vector, u^ are components of the displace- 

ment vector &t  a point on the surface S with the outward 

[normal n, Fi are the body forces and p is the mass density, we 

have 

dU 
dt / / I T.n u:  dS + / / / I F1  u:  dR 

SI R       1 
(19) 

dT (20) SWJ Jp j-i ur dR 

where R is the total volume and dot indicates differentiation 

with respect to time. 

Equations (18) to (20) are valid for all solids which 
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may or may not be undergoing fracture at the time under con- 

sideration.  If we consider a special case of a linearly 

elastic solid in which the only energy dissipation takes 

place on the advancing periphery of the crack, the remaining 

two energy rates may be written as 

3 3 

HI = ! ij n ^^ dR (21) 

dD  dD dS 
It ~ ?S Tt 

dD  dA  _ dA       <. 
d~A~ dt       Yf dt   '   5 S0 + A (22) 

where SQ is the surface of the solid excluding the crack, A 

is the total crack surface, yf is the amount of energy required 

to create a unit amount of fracture surface, which will hence- 

forth be called the specific fracture energy or simply the 

fracture energy of the solid and 4r- is the measure of fracture 

velocity. 

Formally, the formulation of the problem may be com- 

pleted by introducing the equations of motion for the elastic 

sol id: 

(x+y) 
de 

8Y7 

d2u 
W2u.   + F. = p j^-  , (i = 1,2,3) (23) 

(3U../8X.J) is where x and p are the Lame's constants and e = 

the dilatation.  Equations (18) and (23) provides a system of 

four equations to determine the unknown functions u.(x.,t) and 

a(x,,t), where, assuming that fracture takes place along a 

known plane, the function a describes the plane curve repre- 

senting the crack front and replaces the function A(t) as the 
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unknown.  Because of (18), the system is highly nonlinear 

with the additional difficulty arising from the time-depend- 

ence of the surface S due to the propagating crack. 

In the absence of body forces and for solids in which 

the points of application of the external loads are so far re- 

moved from the fracture zone that the main part of the fracture 

process is completed before the first elastic waves generated 

by the fracture initiation reach the loaded boundaries, the 

term 4-r- in (18) will be zero and the released elastic energy 

will provide the necessary source for kinetic energy and dis- 

sipation.  Such is the case in long bars loaded at the ends 

and fracturing in the mid-section and very large solids with 

a dominant internal crack. -^  vanishes also in cases where 

the external loads are applied through ideally fixed grips, 

i.e., if u. = 0 on part and T.n = 0 on the remainder of S 

during fracture. 

If the problem has symmetry in geometry as well as 

the loading conditions, the function a(x.,t) and the governing 

equations (18) and (23) may be considerably simplified.  For 

example, in plane problems with internal dominant crack (gen- 

eralized plane stress, plane strain and longitudinal shear or 

anti-plane strain) a  is simply the half-crack-length and is 

function of time only and in axially symmetric problems, a is 

the radius of the (penny-shaped) crack and again depends on 

time only.  Furthermore, in the plane strain, plane  stress 

and axially symmetric problems two components, in longitudinal 
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shear problems only one component of the displacement vector 

will be unknown. In these problems, the rate of dissipation 

energy may be written as 

dD 
dt -rr  = 4 Yf a' h (plane problems) 

(24) 

dD 
dt = 2uYfa a* (axially symmetric case) 

where h is the thickness and yf is usually a function of the 

crack velocity.  Even with yf = constant, the solution of the 

problem as formulated above does not seem to be possible.  In 

what follows, we will review the quasi-static approximation 

proposed by Mott [27] and offer some modifications of the 

general theory outlined above. 

1.4.1  Mott's Theory 

The problem considered by Mott [27] was the 

propagation of a centrally located through crack in an in- 

finitely large plate subjected to a time-independent uniaxial 

tension perpendicular to the plane of the crack.  Mott's main 

contribution was his recognition that the kinetic energy must 

be included in the energy balance, and the key assumption in 

his analysis to estimate the effect of kinetic energy was that 

the stress and displacement fields for the dynamic problem are 

the same as those for the elastostatic problem with the same 

crack length.  Thus, if u, v are the components of the dis- 

placement, a(t) is the half-crack length and if 4| is small 

compared to the shear wave velocity in the material, the com- 
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ponents of the velocity at a given point in the plate may be 

written as 

3U • 3V 
U = 3 ää • V = 3 3ä 

Then kinetic energy becomes, 

T = ip-jR/[(M)2 + (!^]dxdy (25) 

where p is the mass per unit area of the plate.  Mott argued 

that since u, v are proportional to ap/E, 3u/3a and 3v/3a 

would be proportional to p/E.  Also, since a is the only 

characteristic dimension in the material, tacitly assuming 

that the domain R covers the entire plate, the area integral 

in (25) would be proportional to a2.  Hence, (25) may be 

written as 

\  kPa
2ä2 |£ (26) 

where k is now a constant and may depend only on the Poisson's 

ratio, v. Mott considered the energy balance equation (18) in 

integrated form, i.e., 

T + D + V - U (27) 

where E  is a constant.  From the elastic solution of the 
o 

plate under either fixed grip or constant stress at infinity 

for the change in the quantity U-V due to the existence of a 

crack of length 2a, we may write 

U - V _ ^p2a2 (28) 
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Thus, with the dissipative energy D = 4yfa (yf now being the 

fracture energy for plate thickness h rather than unit area), 

(27) becomes 

kpa2a2p2  irp2a2 . - 
2E* V- + 4yfa (29) 

To eliminate the constant EQ, Mott and Roberts and Wells [64] 

differentiated (29) with respect to a and assumed that — = 0, 
9a 

that is, the crack is travelling at a constant (terminal) ve- 

locity.  Also using the following Griffith condition for frac- 

ture initiation at t = 0 with crack length a and load p 

Y-F = 

p2Tia( 

2T" (30) 

From (29), they obtained 

2TTE 
1/2 1/2 

<inr>     n - /) (31) 

As pointed out by Berry [65] and Dulaney and 

Brace [66], (31) is in error because of the assumption 

3a/3a = 0.  Following largely Berry's line of reasoning and 

assuming that the applied load p is somewhat greater than the 

critical load pc obtained from Griffith condition, (30), in 

order to avoid the condition of zero crack acceleration at 

t = 0, (29) may be written as 

kPa
2a2p2  Trp2a2  2na ap 2 

    r ,   o Kc   r 
TE? E~ +  E  = Eo (32) 
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At t = 0, a = 0, a = aQ and (32) becomes 

"P2a02    +    2lra02PC2    -    c (33) 

Letting 

Pc = n P» (n £ 1) (34) 

From (32) and (33), we obtain 

2üE     an a 
a2      (1 ._£)[! . (2n

2-l)^] (35) 

which can be integrated to give the relationship between the 

crack length and time as 

1/2 1/2 .     1/2 
(3_-l)   [!_ _ (2n2-l)]   + 2n2log{(f- - 1) 
ao        ao ao 

1/2 
+ [5_ . (2n2-l)]   } - n2log(2-2n2) 

ao 

~ ^kp ' a, 
(36) 

From (35), we observe that for a>>aQ, the crack 

velocity will approach a terminal velocity Vy given by 

2TT 
1/2 

vT ■ ^       c* • c,2 = E/p 
(37) 

where c  is the velocity of the longitudinal waves for the 

material. 

Thus, the problem reduces to the evaluation of 

the constant k and then going back and investigating the valid- 
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ity of the key assumptions on which the solution is based, 

namely, the quasi-static assumption for stress and displacement 

fields and the velocity independence of fracture energy.  To 

find k, Roberts and Wells evaluated the integral given in (25) 

numerically and plotted the quantitity (2*/k)1/2 as a function 

of r/a, r being the radius of the domain R.  This was done 

partly because of convergence difficulties as r+~ and partly 

because of the fact that outside the circle r = C]t, the ma- 

terial is undistrubed and the kinetic energy density is zero, 

where c, = (E/p(1-v
2))1/2 is the dilatational wave velocity 

in plane stress.  In order to find the proper value of k, it 

was further assumed that 

a 2TT (38) 

implying that a) longitudinal and dilatational wave velocities 

are the same and, b) at time t, the crack length is a = V t, 

VT being the terminal velocity defined by (37).  For numerical 

calculations, a Poisson's ratio of 1/4 was used, hence, the 

effect of assumption a) on the result would be insignificant. 

Strictly speaking, b) is valid only for t—, however, for re- 

asonably large values of t and considering all the other 

approximations involved, its effect may also be neglected. 

Thus, for v = 1/4, it is found that /j^ = 0.38. 

If in principle, the existence of terminal ve- 

locity, VT, is accepted and if the size of the medium is suf- 

ficiently large to permit the fracture velocity to reach V 
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then the assumption of yf  = constant may always be justified. 

Even though yf  is in some cases very highly velocity and tem- 

perature-dependent, within the confines of Mott's theory, the 

fracture propagating at a terminal velocity is a steady-state 

phenomenon and hence, this variation in yf would be expected 

to affect only the acceleration stage of the crack growth. 

The definitive work relating the fracture energy to velocity 

and temperature is lacking and will be remarked upon later in 

this chapter; however, it is generally agreed that in metal 

compounds as well as polymers, the value of yf to initiate 

the fracture growth from an existing crack is higher than the 

value corresponding to the propagating crack, yf first decreases 

with the velocity and then increases with increasing crack ve- 

locities.  The high values of yf  are due to the plastic work 

or viscous dissipation at lower velocities and to the high 

energy dissipation caused by the surface roughening at very 

high velocities.  It is also worth to note that the terminal 

velocity is independent of the constant, n = pc/p and the load 

p as long as the condition for fracture initiation, p > pc, 

is satisfied. 

Main defect of the Mott's theory lies primarily 

in its quasi-static assumption for the stress and displacement 

fields.  The only quantitative argument in support of this 

assumption has been the photoelastic studies made by Wells 

and Post [67] on Columbia Resin in which the isochromatic 

fringe pattern around a running crack was photographed.  How- 

ever, a gross similarity observed between the dynamic and 
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and static fringe patterns may not necessarily mean that the 

singular behavior of the two stress states at the crack tip 

will be the same.  Since the strength of this singularity is 

the primary load factor in fracture (as a stress intensity 

factor in cleavage or through strain energy release rate or 

rate of external work flowing into the crack tip), one may 

not be justified in approximating the dynamic case with the 

static solution without a quantitative comparison of the 

corresponding stress singularities. 

Since the dynamic solution for a plate with 

a central crack propagating at a constant velocity is avail- 

able [61,68], such a comparison can easily be made.  For this, 

we refer to Figures 3 and 4.  In Figure 3, the stress intensity 

factor for the cleavage stress a     is given for the dynamic case 

as a function of the velocity ratio v = (VT/c2) and for the 

corresponding static case.  Figure 4 shows the variation of 

ae with the polar angle e for values of VT/c2 ranging from 0.2 

to 0.96.  In these figures, a Poisson's ratio of v = 0.25 has 

been used which is the same as that used in [64] to evaluate 

the kinetic energy constant k.  For v = 0.25, c     =   0.634 c 

and from Vy = 0.38 c£, we have Vy = 0.6 c2.  It is apparent 

from the figures that for a velocity ratio which is in the 

range of 0.3 to 0.6, there is a considerable difference be- 

tween static and dynamic stress intensity factors and hence, 

the quasi-static approximation for the dynamic fields does 

not seem to be justifiable.  Particularly since the energy ex- 

change takes place in the immediate vicinity of the crack tip 
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any misrepresentation of the stress and displacement fields 

in this region is likely to alter the results even if the 

gross fields away from the crack tips were approximately the 

* 
same . 

A further objection to the theory as outlined 

above may be raised on the ground that in computing the avail- 

able elastic energy from the static solution, it is essentially 

assumed that the stress wave velocities are infinite.  On the 

other hand, in the evaluation of the kinetic energy, the 

finiteness of the propagation velocities of the elastic dis- 

turbances is observed.  In the actual problem of a large plate 

subjected to loads at infinity which are increased slowly up 

to values sufficient to initiate fracture and then held con- 

stant, the available energy to overcome the dissipation and 

increase the kinetic energy comes from the released elastic 

potential within a circular region of radius C]t, C], being 

the dilatational wave velocity in plane stress.  It is obvious 

that outside this circle, the stress state is that of uniform 

tension and the velocities are zero.  A similar and much sim- 

pler situation is observed in a long slender bar of unit cross- 

section under tension a, in which the load or the grip in one 

[61]. 
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end is suddenly released.  At the instant of release, t = 0, 

the stress waves start to travel toward the loaded end, 

leaving behind an unloaded portion of the bar of length c t 

moving with a (particle) velocity ac£/E.  For this "disturbed" 

part of the bar, the released strain energy V = ~  ö
2c t is 

entirely transformed into the kinetic energy, i.e., T = 1 m v2 

ö PC.t(acJE) 
2E a2cÄt- 

In the plate problem, actually during the 

fracture propagation, the work of the external loads, U, is 

zero and V is the change in the elastic energy in the circular 

region r = C]t.  The error introduced through replacing this 

energy by its static equivalent given in (28) may be difficult 

to estimate, but is unlikely to be negligible. 

A somewhat hypothetical but a complete mathe- 

matical equivalent of Mott's problem is that of a plate with 

a central propagating crack under the influence of pressure 

P acting on the crack surfaces.  Here, U is p times the total 

volume of the gap formed by the fracture surfaces, V is the 

elastic energy stored in the circular region r = c,t, T is 

the kinetic energy of this region and D again is 4Yfa.  Initial 

values of all these energies are zero, hence, EQ = 0, and at 

time t (27) becomes 

U = T + v + D (39) 

Since the quantities U, V and T are proportional 

to a2 and D is proportional to a, it is obvious that for large 
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values of the crack length 2a, the dissipation may be neglected. 

Thus, the propagation of crack becomes the motion of a surface 

disturbance in a nondissipative medium.  Such a motion is known 

to have the velocity of the Rayleigh surface waves [69], which 

is the same as the velocity of the edge dislocations in the 

medium [70,71].  For v = 0.25, the Rayleigh velocity is 

c = 0.9194 c2 = 0.581 c  as compared to VT = 0.38 c  obtained 

in [64].  It should be pointed out that the conclusion VT = c 

is based on the following assumptions:  a) the crack is main- 

tained to run along a straight path, b) Yf is independent of 

crack velocity, c) the plate is infinitely large and loading 

conditions at infinity remain unchanged during propagation. 

In a real problem, none of these assumptions seems to be 

satisfied.  It will be seen later that because of the stress 

state around a propagating crack, above a certain velocity 

(= 0.61 c2), the original crack plane is no longer the weak 

cleavage plane and, as is amply substantiated by the experi- 

ments on glass [72], the crack tends to bifurcate.  As pointed 

out earlier, the fracture energy is not constant and for high 

crack velocities, it seems to be an increasing function of the 

velocity.  Also, for the plates of finite size, the reflected 

waves from free and loaded boundaries would complicate the 

analytical picture, however, it is not difficult to qualita- 

tively show that in the case of fixed grips or loading attach- 

ments with high inertia, the reflected waves have the effect 

of superimposed compression and hence, tend to slow down the 

propagation velocity. 
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The theory described above has also been 

applied to the cleavage of rectangular strips by Gilman [73] 

and Berry [65] where simple beam equations with quasi-static 

assumptions have been used to evaluate kinetic and potential 

energies.  In connection with this problem, it should be 

pointed out that even at very slow velocities, the growth 

direction of the cleavage crack for an isotropic homogeneous 

strip is not stable, a small deviation from the growth di- 

rection would make the crack run perpendicular to the nearest 

free boundary [74].  This instability may be removed by 

applying a longitudinal compression to the strip [75].  How- 

ever, most cleavage experiments are performed by either weak- 

ening the strip along the cleavage plane by making grooves 

along the sides [76] or using anisotropic materials with weak 

cleavage planes. 

1.4.2  Energy Balance Around The Crack Periphery 

In considering Griffith theory for equilib- 

rium cracks, Sanders [77] pointed out that the region for which 

the energy balance holds can be any portion of the body enclosed 

within a simple closed curve L surrounding the crack tip where 

the energy is being dissipated.  In three dimensional cases, 

this curve may be the profile of a toroidal region surrounding 

the crack periphery.  Thus, the Griffith criterion may be 

stated as [77], "the rate at which work is being done by 

forces acting across L equals the rate of increases of strain 

energy stored in the material inside L plus the rate at which 
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energy is dissipated by the growing crack", the rate being 

with respect to some parameter which increases with the ex- 

panding crack periphery.  For dynamic problems of propagating 

cracks, the implication of this approach is that the energy 

balance equation (18) may also be written for such a region 

by simply adding the kinetic energy component.  R and S in 

(19 to 20) then become the volume and the surface of this 

toroidal or cylindrical region generated by L (Figure 5). 

In a somewhat incomplete manner, this approach 

was considered for dynamic problems by Craggs [68], McClintock 

and Sukhatme  [78] and Kostrov [79,80],  In these papers, the 

energy balance equation is used in the form 

U* = D* (40) 

ignoring the kinetic and potential energies .  It has already 

been pointed out that for a nondi ssi pati ve system, U' = V + V. 

For small crack velocities, T* + V may indeed be negligible 

(see the example discussed below).  As the volume R or the 

curve L surrounding the crack tip shrinks to zero, the quanti- 

ties T and V as well as U approach zero, however, their time 

rates do not.  Obviously, for the energy balance, the particular 

In Craggs' paper, the criterion, equation (2.5), appears to 
be the comparison of the strain energy in the small region 
enclosing the crack and the average fracture energy for time 
increment At. Later, however, the rate at which the work is 
done by the tractions acting across a small circle surrounding 
the crack tip is evaluated and compared with the dissipation 
rate. 
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shape chosen for the region R is not important, and it is 

generally assumed that the curve L enclosing R has a fixed 

size as well as a definite shape and moves with the propagating 

crack.  As indicated by Kostrov [79], the energy rates related 

to the motion of the region R are of a smaller order of mag- 

nitude and vanish in the limit as R goes to zero. 

In [78], a semi-infinite crack growing in an 

infinite medium under longitudinal shear (applied on the crack 

surface travelling with the crack or at infinity) is considered. 

The region R is taken to be a square with the crack tip at the 

center.  The trend of the dependence of U* to the crack veloc- 

ity seems to agree with the result of the example given below. 

In [68], the energy rate equation is used to 

obtain the terminal crack propagation velocity for the plane 

problem with the central crack.  The plane strain or general- 

ized plane stress problem for the case of an internal crack 

growing at both ends with a constant velocity and uniform 

tension at infinity is solved by a much simpler method than 

that of Broberg by taking advantage of the self-similar char- 

acter of the dynamic problem and using the method due to Gold- 

stein and Ward [81].  It is found that, after going through 

a maximum at a velocity ratio v = (V0/c?) = 0.3728, U* decreases 

with increasing v, becomes zero for v = 0.721 and, apparently, 

is negative thereafter.  Hence, it is concluded that the termi- 

nal velocity for rectilinear cracks would be VT = 0.721 c? 

rather than the Rayleigh wave velocity as predicted by Baren- 
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blatt, Broberg, Stroh and others.  However, the result in [68] 

may be incorrect.  It appears that in equation (3.13) (of [68]) 

giving U" a Jacobian is missing, as the arc length used is that 

of transformed plane and not the real plane. 

Using the solution given in [68] with a small 

square region of size 62 around the crack tip, in limit for 

6->0 for one fourth of energy rate, we find 

p2tc9
2vlt   2          

IT =  -  [  tan-1 /T^v2" -1 

2uH2 /Ü7? 

(2~v2) 0/0 tan"
1 /l-kzvz + 2/N77 tan' 1       1 

2(l-k2v2)3/2 /Tv7 

<2-v2>       tan"1  —!_ 
2/l-k2v2 /l-kzvz 

-] (41) 

<4 + fe^~)  E(/TTk^J -   (v* +  
kXlw2)   >   K  i^7?J 

-   8   E^l-v2)   +  4   v2K(/l-v*) 

v  =   VQ/c2   ,   k  =   c2/c1 

where p is the stress at infinity, V is the crack velocity and 

K and E are the complete elliptic integrals of first and second 

kind, respectively.  IT/4 as obtained from (41) is shown in 
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Figure 6 as a function of velocity ratio and does seem to in- 

crease with increasing v.  In the limiting case when v->0, H 

goes to -2v2(l-k2) and the quantity in the bracket in (41) 

goes to TTV2(l-k2); thus dividing u" by V  = da/dt and sub- 

stituting V t = a, (41) reduces to 

dU = Tip2a(l-v2) 
da     2E (42) 

which becomes the Griffith criterion when put equal to y. 

The axially symmetric propagation of a penny- 

shaped crack with constant stresses acting at infinity perpen- 

dicular to the plane of the crack is considered by Kostrov 

[79].  The solution is given for constant crack velocity 

arguing that initially there may be such a phase if it is as- 

sumed that the main dissipation comes from the plastic work 

and, initially, the dimensions of the plastic zone increases 

linearly with the increasing crack radius.  Thus, assuming 

that the dissipation is proportional to the volume of plastic 

region, D becomes proportional to (V t)3 and D" to t2.  If 

such a phase exists, then u" should also be proportional to t2 

Using now this as a condition for constant velocity fracture 

growth, it is shown that the correct dynamic solution should 

have a singularity at the crack tip for stresses and velocity 

of order /t/S, 6 being a small distance from the crack tip. 

Presumably, after a while, the plastic zone size attains a 

stationary value and D' increases only linearly with t and 

since U" is still proportional to t2 crack starts accelerating 
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In the uniform crack propagation phase, the 

energy rate equation U* = D' does not contain t and provides 

an equation for the constant crack velocity V .  In [79], it 

is also shown that at VQ = cr, U* becomes zero from which it 

is concluded that V  obtained from U' = D* cannot be greater 

than or equal to the Rayleigh wave velocity.  To compute IT, 

Kostrov assumed the region R to be a rectangle with sides 26-j 

and 262 in tne r and z directions, respectively, and let 62->-0 

for fixed 6,.  Thus, integrals along <$ vanish.  However, in 

principle, IT should be independent of the shape of the 

region R and since a strip of zero thickness with different 

orientations would give different values for IT, there is some 

doubt as to the validity of the method used by Kostrov to eval- 

uate U".  This point will be discussed further in the next 

section.  In [80], Kostrov considers the plane shear problem 

which is the skew-symmetric counterpart of the plane problem 

solved by Broberg [61] and Craggs [68].  The assumptions, 

the treatment and the conclusions of [80] are the same as 
* 

thos.e for the penny-shaped crack considered in [79] . 

Recently, the penny-shaped crack problem has also been con- 
sidered by Craggs [82], where with a Barenblatt-type fracture 
criterion in mind, the stress intensity factor in az   is plotted 
against the velocity ratio. 
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1.4.3  Further Discussion Of Energy Balance And 

Crack Closure Energy 

Consider a solid fracturing along a plane. 

Let a(t) represent the periphery or the front of the propaga- 

ting crack, R be a small region surrounding the crack periphery 

and the smooth curve L be the boundary of the profile of this 

region (Figure 5).  Considering the phenomenon as a point func- 

tion in time, we state that the rate of external work done on 

the region R by the tractions acting on its surface will be 

equal to the sum of the rates of potential energy (i.e., strain 

energy), kinetic energy and the dissipative energy in the re- 

gion R: 

U* = V + T- + D' (43) 

In order to avoid the complications which may arise from the 

fact that the relative position of the curve L with respect to 

the crack front is independent of time, that is, region R 

moves with the advancing crack front, we will assume that the 

material is basically elastic, the zone of energy dissipation 

is restricted to the immediate vicinity of the crack front and 

R is large compared to this dissipation zone.  For example, if 

an appreciable portion of L goes through a part of the medium 

which has experienced plastic deformations prior to the time 

under consideration, the prediction of U' by the elastic solu- 

tion may be in error.  Obviously, if the dissipation zone 

(e.g., plastic zone) is not small compared to R, the predictions 

in V' and T' would also be in error.  The term D* in (43) in- 
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eludes the rate of change of surface tension energy and in- 

crease in thermal energy due to the plastic work or viscous 

friction in the dissipation zone. 

Now, for simplicity, consider a symmetric 

case in which in the plane of the crack, the surface tractions 

vanish on the crack surface and the shear stresses and the 

displacement perpendicular to the plane of the crack vanish 

outside the crack surface.  Let the solid be separated into 

two halves by the crack plane and be held in equilibrium by 

applying proper normal tractions on the cut plane.  Further- 

more, assume that these tractions are the same as the normal 

stress on the cut plane outside the crack surface obtained 

from the dynamic solution of the problem.  The problem for 

the half solid then would be identically equivalent to the 

original crack propagation problem.  On the other hand, the 

problem of the half solid is conceptually a simple problem in 

elastodynamics with time-dependent boundary conditions.  If 

we now consider one half of the region R, the kinetic and po- 

tential energy rate densities in this region will be the same 

as those in the original problem, the part of the work done 

by the surface tractions across L will be IT/2, i.e., same 

as in (43), and the remainder of the external work will be 

done by the fictitious tractions applied along the cut plane. 

Since there is no rupture, D" will be zero.  As the crack front 

a(t) advances the surface tractions at its periphery are re- 

leased.  Since the displacement perpendicular to the cut plane 

and the shear stresses remain to be zero ahead of the crack 
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front, it is obvious that the work of the released tractions 

will be the only contribution to the external work from the 

plane boundary of the region R.  It is also obvious that the 

time rate of this work will be a negative quantity, as the 

direction of the tractions are opposite to that of the dis- 

placement through the release period.  Calling this energy 

rate -E^/2, it is seen that E' is nothing but the time rate 

of the crack closure energy.  If a    and u are the traction 

on the cut plane and the displacement on the crack surface 

perpendicular to the plane, referring to Figure 7, we can 

write 

dEc = E- dt = 2 / 
a 

a + a' dt 

2 CT
y(
a) uy(a-a*dt) da    (44) 

The energy rate balance for the half of the 

region R may then be expressed as 

U* 

2~ 

E* c T"   V* 

2- + F- (45) 

Comparing (43) and (45), it is now seen that 

E- 
c (46) 

that is, the time rate of change of the crack closure energy 

is equal to the dissipation rate. 

Strictly speaking (46) is correct only for 

ideally brittle materials in which there is no dissipation 

other than the surface-free energy.  However, using the same argu- 
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merits as those employed by Irwin and Orowan in extending the 

Griffith theory to the quasi-brittle fracture and within the 

same degree of accuracy, (46) may also be used in the fracture 

dynamics of quasi-brittle materials.  It should be noted that 

as the crack velocity goes to zero, V-*0, T+0 and IT ap- 

proaches the rate of crack closure energy or more precisely, 

1 
lim -^ El 
a-+0 a-  c 

dEc 
3T~ 

U'   dU 
1!mn F- = dl 
a +0 

It should also be noted that in dynamical 

problems, E* is not equal to the strain energy release rate. 

In fact, considering now the whole solid with an internal plane 

propagating crack, for the spherical (disturbed) region with 

radius c,t, IT = 0 and the energy rate equation becomes 

V + T" + D' = 0 (47^ 

which, by using (46), may be written as 

V = T- + E^ (48) 

In (48), -V is the total strain energy release rate and T* 

is the rate of kinetic energy for the sphere ^t. Thus, if 

T- is not zero, the rates of strain energy release and crack 

closure energy will not be equal. The importance of (46) be- 

comes more obvious if one considers the fact that E* is the 

easiest energy rate to compute once the solution around the 

crack periphery is obtained. 
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As an example, consider the plane with a 

propagating central crack, the solution of which is available 

[61,68].  In this case, the stress on the crack plane near 

the tip at x = a is given by (8) where r corresponds to a - a 

in Figure 7 and equation (44).  From [61], the displacement 

may be obtained as 

»y-^^ - X 

8 E(/T^T - (4 + \2_-klll   ) E(vO-k^) 

k = c2/Cl , v = V0/c2 (49) 

Substituting   from   (8)   and   (49)   into   (44)   with  x  =   o   -   a'dt 

=   a  +  r   -   a'dt,   and   observing   that a*   =   VQ   =   vc2,   we  obtain 

2 r _ 2 + ., 4 
1   c.   _   *   Pz<Vtv 

4   c    4    rnr 2    [4/T^VT 
(2-v2) 

-] (50) 
/l-k2v2 

In   limit,   as   v-0,   H+  -2v2(l-k2)   and   from   (50), 

we obtain 

vc2 ~c 

dEc    TT p2C2Vt     2-rr 
E- = ^- = 2 y(i-k^) = T p2ad^2) da (51) 

which is nothing but the strain energy release (or closure 

energy) rate per unit crack extension in the static case. 
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In light of the above discussion, it now 

appears that the results found by Kostrov [79,80], are basi- 

cally correct.  However, the quantity he computed is not the 

rate of the external work, IT, done on a small region R around 

the crack periphery but the crack closure energy E^.  The 

energy balance equation (43) is invariant with respect to the 

choice of the region R and the finite terms in the quantities 

IT, V and V are independent of the size parameter 6, if 

there is only one such parameter which goes to zero in limit.. 

If there are more than one independent size parameter involved, 

the result will not be unique and will depend on the details 

of the limiting process.  Thus, for example in Kostrov's 

method, if one lets 6] , the size of rectangular region R in 

r direction, go to zero for a fixed s2, the size in z direction, 

again the volume of R is reduced to zero beforehand and hence, 

T and V would vanish but the value of U* would not be equal 

to that computed by Kostrov. 

For v = 0.25, Figure 6 shows the variation of 

E: 
£ as obtained from (50) and that of IT/4 as given by (41) 

with the velocity ratio v.  For small values of v, (e.g., 

v<.3), T* and V in R are negligible and both U" and E" are 

approximately equal to the corresponding static value.  For 

relatively large values of v, IT>E", and the difference is 

equal to T" + V in the region R.  Here, E* then may be con- 

sidered as the available energy to be used to overcome the 

dissipation or the fracture energy.  From Figure 6, it is 

seen that E' will be zero at the Rayleigh wave velocity. 
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This result is independent of v   and is quite general.  For 

example, the same conclusion was arrived at by Kostrov in the 

two problems he considered .  The clear implication of this 

result is that, provided the crack can be maintained to run 

straight, the Rayleigh wave velocity, cR, is an upper limit 

for the velocity of a propagating crack, may be attained as 

a limit only in ideally nondissipative medium (i.e., y     = 0) 

and propagation velocities above cR require energy generation 

at the crack periphery, hence, practically impossible.  This 

is perhaps, a restatement of the well-known result found by 

Eshelby [71] in connection with the moving edge dislocations. 

We may also observe from Figure 6 that E*, 

the rate of available energy, has a maximum around v = 0.6 

(for v = 0.25, v = 0.62).  Even though the value of E* in- 
c 

creases with time, t linearly, the location of its maximum 

is independent of t.  It is clear that if Yp is constant or 

does not increase with increasing crack length (i.e., with 

time and/or crack velocity) sufficiently fast, there will be 

a constantly increasing excess energy rate E* - D- which 

will accelerate the crack making its velocity to approach 

asymptotically the Rayleigh wave velocity.  For example, if 

Pc is the value of the external load at crack initiation for 

a small (existing) crack 2aQ, and Yp0 is the corresponding 

For a similar result in shear cracks, see the followin« 
section. 
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fracture energy,from Griffith theory, we have 

2EY FO 
Pc2 = ira0(l-v*) 

(52) 

Letting p = n p and v c„t = a, from (50) and (52), we obtain 

d(n, —, v.) 

(2-v2) 
 [4/T^v2" -       ] 

n2 a v2 
(53) 

1-v aQ H2 

which is shown in Figure 8 for n = 1, - 

•l-k^v*   YFO 

YF 1 and various 
FO 

values of —.  Figure 8 indicates that if YF is constant, for 
ao 

n = 1 at a = a , there will be equilibrium.  In order to start 

the propagation, n has to be - even if only slightly - greater 

than unity.  If n > 1, there is some energy available for ac- 

celeration; as v goes up the available energy for acceleration, 

E- - D* will also increase.  This will result in either branch- 
c 

ing of the crack or increase in the fracture propagation ve- 

locity approaching asymptotically the Rayleigh wave velocity. 

On the other hand, for some period of the crack 

growth if, as assumed by Kostrov, the dissipation is primarily 

due to the plastic work in a small dissipation zone around the 

crack tip, assuming this work to be proportional to the volume 

of the dissipation zone, we may write D = A^2 and from 

a = c2vt, we obtain D* = Av2t, A being a constant.  In this 

case, the fracture criterion E' = D' would not contain t and 

would provide an equation for the determination of the corre- 

sponding crack velocity, provided the constant A (which will 

be dependent on the structure of the material as well as the 
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environmental conditions) is known. Figure 9 shows such a 

result for a hypothetical value of A.  From the figure, it 

is obvious that, if the assumptions mentioned above are valid, 

the crack growth at the terminal velocity vT is stable, as 

the available energy for acceleration is positive for v<v 

and negative for v>vT. 

In real materials, it is very  unlikely that 

the conditions concerning D" and Yp would conform to either 

of the ideal cases shown in Figures 8 and 9.  However, based 

on the results found so far, some general observations may 

be made:  The experimental evidence point to the fact that 

at higher fracture velocities, the roughness of fracture sur- 

faces increases, resulting in higher fracture energies.  As 

conjectured by Irwin, this may be due to the tendency of the 

crack to branch or small cracks forming but not propagating 

at e ± 60° planes ahead of the running crack.  However, as 

seen from Figure 4, branching would not be expected to take 

place at velocities below* 0.6 c2 which seems to be higher 

For v = .25, at e = 0, 

32a„ 

39 

32a 

32a. 
0 and 0, for v = 0.629 

36 r-  > 0 for v > 0.629, j^L  < 0 for v < 0.629, meaning that 

the maximum cleavage stress for v > 0.629 will be at some 
angle other than e = 0. 
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than experimentally measured terminal crack velocities in 

isotropic materials.  An important property of the plane 

problems seems to be that the velocity at which the direction 

of the maximum cleavage stress at the crack front deviates 

from the main direction of the crack is approximately the 

same as the velocity at which crack closure energy, E", is 

maximum  (Figures 4 and 6).  Following Irwin's conjecture, 

it may be assumed that at fracture velocities above 0.6 c~, 

the fracture energy will increase with increasing velocity 

at a much higher rate.  Now, since for v < 0.6, the rate of 

the energy pumped into the region around the crack tip increases 

with increasing time and the fracture velocity, it may be ex- 

pected that the crack velocity would tend to stabilize at or 

below v = 0.6 if the increase in YF is sufficiently high.  On 

the other hand, the crack would bifurcate around or above 

v = 0.6 if Yp remains to be relatively low.  For example, the 

behavior of most metallic compounds undergoing brittle frac- 

ture belongs to the former and that of glass and some polymers 

at low temperatures belongs to the latter type response. 

It should be noted that the foregoing obser- 

vations are based on the two-dimensional analysis of infinite 

isotropic, homogeneous, elastic media subjected to time-inde- 

pendent uniform boundary conditions at infinity.  It is obvious 

This does not seem to be a general rule.  See, for example, 
the following section. 
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that if the medium is finite and "the external loads" are 

time-dependent, the reflected waves and the waves generated 

at the boundary would alter the stress state around the crack 

front.  For example, in rectangular plates with fixed grips, 

the effect of the waves reflected from grips is similar to 

that of a superimposed compressive field, thereby reducing 

the intensity of the stress field around the crack and causing 

a decrease in the crack velocity.  The oscillatory behavior 

of some of the experimentally measured crack velocities may 

be attributed to this effect. 

In the case of anisotropic materials, because 

of the changes in stress state and the behavior of fracture 

energy due to anisotropy, the situation concerning terminal 

velocity and crack branching may be somewhat different.  For 

the most part, anisotropic materials have a weak cleavage 

plane along which fracture energy, yp is lower than that for 

other orientations.  If the fracture is propagating along 

such a weak plane, tendency for crack branching would take 

place at velocities which are higher than the velocity ob- 

tained from theoretical considerations (i.e., 82a./9e2 = 0). 
ö 

As a result, in anisotropic materials, it is possible to ob- 

serve.crack velocities far in excess of those observed in iso- 

tropic materials and beyond the limit of approximately 0.6 c? 

described above.  For example, in a recent paper, Hull and 

Beardmore [83], report fracture velocities in tungsten single 

crystals as high as 0.83 c2. 
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1.4.4 An Example:  Longitudinal Shear Cracks 

In this section, we will consider the anti- 

plane equivalent of the plane problem of a propagating inter- 

nal crack in an infinite medium treated by Broberg [61], and 

Craggs [68].  The problem is that of an infinite elastic medium 

subjected to a.uniformly distributed shear load T  = q at in- 

finity and containing a (through) crack on y = 0 and |x|<a which 

grows with a constant velocity VQ, i.e., a = VQt, t being the 

time (Figure 10).  From a practical viewpoint, the problem is 

not very interesting; however, since it lends itself to a rel- 

atively simple analytical treatment, it is used here as vehicle 

to demonstrate the application of some of the ideas discussed 

in the previous sections. 

Here, it is assumed that the crack forms at the 

time t = 0 and spreads at a constant Velocity VQ in y = 0 plane. 

Because of the geometry and the loading conditions, it is also 

assumed that the perturbations arising from the motion of the 

crack are independent of z and are polarized in xy plane.  The 

only nonzero component, the z-component w, of the displacement 

vector will then satisfy the following wave equation: 

32W 
"ax"2" 

9^w 1  32W 
cj rt7 (54) 

where c? = /y/p is the shear wave velocity in the medium, y 

and p being the shear modulus and the mass density of the mate- 

rial.  The nonzero components of the stress tensor are 
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xz 
aw 
3x ' Tyz 

3w 
3y 

or 

rz 
3W 
3r ' 

y_ _3_W 
r 39 

(55) 

Equation (52) must be solved under the following conditions 

W = 0, T  = q, T  = 0 for t < 0, r > 0 
yz 

Tyz = 0 for y = 0, |x| < a = VQt (56) 

w = 0 for y = 0, |x | > a 

where dot refers to differentiation with respect to time. 

By superposition, it can be shown that the 

dynamic problem is equivalent to that in which an initially 

stress-free solid develops a small crack at t = 0 which propa- 

gates at a constant velocity V and the surface of which is 

subjected to constant tractions x  = -q for t > 0.  This 

latter problem refers to the perturbations caused by the propa- 

gating crack in the original problem and satisfies the following 

conditions: 

w = 0, w" =0 for t = 0 

T
yz 

= -q for y =  o. Ixl < v0t (57) 

w = 0 for y = 0, Ixl > V t 
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To obtain a solution for the problem which 

is valid around the crack tips, one may use the technique 

developed by Goldstein and Ward [81], for the supersonic con- 

ical fields and applied by Craggs to the plane problem [68], 

by observing that the problem has no fundamental length. 

Letting 

T = c2t, v = V /c2, a  = r/x = sech (-ß) 

z  = ? + in = sech (ß+ie) 

w Re $(?), $(?) = ♦'■(5) for n > 0, 

• (c) (j)' (?) for n < 0 (58) 

We find that the crack tips x = + VQt = ± VT in (r,e) plane 

correspond to the branch points 5 = ±v in t,   plane and the 

solution valid for small values of |?-v| can be written as 

y-rri « 2 /?-V 
(59) 

where K(v) is the complete elliptic integral of first kind. 

Equation (59) with the transformations given in (58) determines 

w and the stress components may be obtained from 

rz T 3a ' Tez 
y  3W 
ax 89 

(60) 
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First, we obtain the shear stress TQZ at 

e = 0 which, from (58), (59) and (60), may be written as 

ez TT   V 2 /£ 

/TV2" Ifl. /!_ K(V) /T^F (61) 

e=o 

where p = (a-v) T = r - a is a small distance from the crack 

tip a = VT.  For small values of v, K(v) ■+ j  and (61) reduces 

to T„ = q Ji-, which is the static solution.  The stress in- 
8z   I V 2p 

tensity factor obtained from (61) and the corresponding static 

value evaluated by using the same crack length are shown in 

Figure 11.  The variation of the stress intensity factor is 

similar to that obtained for the plane problem which is shown 

in Figure 3.  However, the velocity ratio at which it becomes 

maximum is considerably higher than the corresponding value 
* 

for the plane problem (0.694 as compared to 0.39) .  More im- 

portantly, in the shear problem, the stress intensity factor 

becomes zero at the shear wave velocity c~ rather than the 

Rayleigh wave velocity as observed in the plane problem. 

Next, we consider the variation of the shear 

stress T  in the neighborhood of the crack tip as a function 
<pz 

The values for plane problem is for v = 0.25.  In the shear 

problem |— TQ  =0 leads to 2E(v) = (l+v2)K(v), which gives 
3 V  8 Z 

v = 0.694 and is independent of the elastic constants. 
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of $ and v (Figure 12).  Noting that 

T*z = Tez cos * - Trz sin 

we obtain 

"*z 
= la /|L K(V) /T^F (cos | cos 4 

«in |- sin <j> 
+  £ ) (i-v2 sin :*)" 4 

/T-y- 

tan \\i -  /l-vz tan $ (62) 

For v-*0, (62) reduces to the static value T  = q 7|— cos |-. 

It is easily verified that $ = 0 is a root of 

IT T.  =0.  If the second derivative is taken, it is found 
3 <J>  q> Z 

that at 4 = 0 

= 0 for v2 = 1/3 

a** V < < ° for v2 < 1/3 

> 0 for v2 > 1/3 

meaning that for v > 1//3 = 0.578, the maximum of T  will occur 

in a plane other than <j> = 0.  The variation of T   in v and $ 

is shown in Figures 13 and 14.  Figure 13 shows only the in- 

dependent part of T. .  However, to have an idea about the rela- r        r ip z 

tive magnitudes of the stress intensity factors at various 
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angles - which may be important in considering branching - 

the complete v-dependence as well as the dependence on <j> has 

to be considered.  This is shown in Figure 14.  It is seen that 

velocities up to v = 0.7, the curves are rather flat and branch- 

ing may depend largely on the distribution and the orientation 

of the imperfections on the path of the running crack.  As the 

velocity approaches c«, the stress intensity factor decreases 

in the region 0 < <j> < TT/2 and continuously increases in 

j <   <t> < if. 

We now choose a small region R surrounding the 

crack tip formed by y = +6, x = a ± 6 and evaluate the energy 

rates for one half of R (i.e., 0 < y < i, a -8 < x < a + 6). 

From (58) to (60), we may write 

rz - ^ /YK(v 
IT    Y 2 

) Im 1 

[/(a-v) + i /1-v2 vej Vz 

ez - 2a /* K(v 
IT    V 2 

) Re 
[/(a-v) + i /l-vz vej </z (63) 

w 
2q  /T 

TT    V 2 

c?v 
K(v) -^- Im 

y [/(a-v) + i /T^V2" ve]1^ 

Substituting from (63) into (19) and (21), we obtain* 

Note that the quantities given in (64) and (65) and plotted in 
the figures are 1/4 of the total values. 
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U-   .  2|i c  2  V2t  K2(v)   (t^^l +  V   tan"1  }r) 

-1... 
Q2 U      9/   »   tan v 

T-   = V   = K- c  2  vH  K2(v) —r— 

(64) 

ir^y 

U*   -\T   -   V 

q2c  2^   
2       K2(v)   v2   /TT2" 

iry 

v- = /triT7 

(65) 

From the  displacement  of  the  crack  surface 

around the crack tip 

w = 4a K(V)   y/f- /T^T 
iry ""   c. 

(66) 

nd T  at e = 0 as given by (61), the rate of crack closure 
ez 

energy may also be evaluated as follows 

dEc = Ec dt = I 
a + a* 'dt 1 T  (x) w(x-a-dt) dx 

j    ez 

or 

q2c2
2t 

K
2
(V) v2 /T^r- (67) 

C     iry 

As shown for the more general problem in the previous section, 

E- is the same as IT - V - T*.  From (64) and (67), one may 
c 
easily observe that as v+0, T*-0, V-0 and substituting 
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vc2t = a, we have 

c 
vc2  vc~ = 47 q2a (68) 

which is the static value (of one fourth of the strain energy 

release rate per crack extension). 

The energy balance criterion E^ = D* may now 

be written as 

q2c,2t 
—— K2(v) v2 /TT77 = vF c2 v (69) 

For example, if y     is constant, the initial flaw size is 2a r 0 

and the corresponding critical load is q , from the condition 

of equilibrium crack we may write 

- ffaoqc2 ,  % YF W~ (70) 

Letting c£vt = a and q = n q , from (69) and (70), we obtain 

77- §- K2(v) v/l-v* = v (71) 
0 

For n = 1 and various values of a/a . this is shown in Figure 
0 

15.  From (64), it can be seen that as v-*l , the quantities 
JL. 

U", V and T approach infinity .  However, it can also be 

This could perhaps be predicted from the fact that as v+1, the 

stress intensity factor at <p  =  J approaches infinity (see Figure 
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shown that the rate of available energy U* - T" - V vanishes 

(see Figure 15).  This means that in the longitudinal.shear 

case the shear wave velocity is an upper limit for fracture 

propagation and a propagation with a velocity higher than c2 

requires energy generation rather than dissipation at the 

crack tip.  This result agrees with the Cottrell's finding that 

c2 is an upper limit for the velocity of moving screw disloca- 

tions in a crystal [70].  The simple conclusion one may draw 

from Figure 15 is that if the fracture energy, YF, is constant 

and the crack can be maintained to grow straight, then the 

propagation velocity will asymptotically approach the shear 

wave velocity. 

A significant difference between longitudinal 

shear and plane problems is that in the former, the energy 

rates IT, V, T and the stress intensity factor at <j> = 2 9° 

to infinity as the fracture velocity approaches the character- 

istic elastic wave velocity (which, in this case, is c2) where- 

as in the latter, all of these quantities remain finite as the 

characteristic wave velocity cR is approached.  Another sig- 

nificant difference is that in the shear problem E' goes 

through a maximum at a much higher velocity (approximately 

0.91 c2 vs. 0.62 c2) and the possible branching velocity is 

somewhat lower (0.578 c2 vs. 0.629 c2).  Hence, based on the 

arguments of the previous section, one possible conclusion 

which may be drawn here is the following:  in materials with 

high fracture energy, the likelihood of crack bifurcation is 
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higher in the longitudinal shear case than in plane proble ms 

As another ideal case, in this problem too 

we may assume the dissipation primarily due to plastic work 

which is proportional to the volume of the plastic zone. 

Assuming again that the characteristic plastic zone size is 

approximately linear in crack length, we may write* 

Dp - Aa* (72) 

To determine the constant A, the Griffith condition can be 

used if we assume that (72) is valid for all velocities and 

crack lengths.  Thus, if aQ is the initial flaw size, we have 

da " 2Aao =>F 
nC  0 

4y (73) 

-o " " ao 

With a = vc2t, from (72) and (73) we obtain 

D: = 
7rq( 

4y  "2 c„2v2t (74) 

Again letting q/q  = n, the energy balance criterion E* = D' 

K C   P 
becomes 

Ec  4 

D^ = 72- n2K2(v) /T^v^ = 1 
P 

(75) 

For, again, one fourth of total dissipation and per unit 
thi ckness . 
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X 

For n = 1 and 1.05, this is shown in Figure 16 according to 

which, in this idea 1 case, there is a stable propagation 

velocity f "or each g iven load ratio and it is rather high even 

if n is v€ >ry close to unity. 

Per haps the most unrealistic aspect of the 

foregoing ideal mod el is the assumption that the dissipation 

rate or the fracture energy is an increasing function in v 

for all velocities. However, in real materials, for small 

values of v, YF is known to decrease with increasing velocity. 

Hence, it is more 1 ikely that the actual dissipation rate would 

have a v- dependence more like the dashed-line shown in Figure 

16, and as a result , the terminal velocity may be considerably 

lower. 

In this simple example, one may also give an 

estimate of the plastic zone size and, particularly, examine 

its varia tion with the fracture velocity.  Using the Dugdale 

approxima tion [85] , the plastic zone size, p, is estimated to 

be (see: Appendix A) 

¥-?  c?vt f(3-, v) P - 2qJ -2 

(76) 

g_   ,     M-v2)K2(v)  
q * VJ ~ 1 - (3-)'K(v)[E(v)-(l-v2)K(v)] 

where q  is yield stress in shear at the corresponding velocity, 

vc2 and K and E are the complete elliptic integrals.  The vari- 
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ation of the function f and, for a given value of x=(q/q )= 0.2, 

the variation of AV = v] - v = p/c2t with the fracture velocity 

v are shown in Figure 17. 

The estimate given by (76) is based on the 

assumption that the plastic zone size p is small compared to the 

half-crack length a or the external load q is small compared to 

the yield stress qy.  For the static case, the Dugdale approxi- 

mation is known to give fairly good results [86].  In the dy- 

namic case, if one assumes that for the constant velocity frac- 

ture all the factors, (such as plastic waves, unloading, etc.), 

involved in the formation of the plastic zone as well as the 

shape of the plastic region remain autonomous during the frac- 

ture propagation, the model may still be used to obtain an es- 

timate of a characteristic plastic zone size.  However, the 

estimate in this case is rather qualitative and its value lies 

largely in the fact that it also gives some idea about the de- 

pendence of the plastic zone size on the fracture velocity. 

As the angular dependence of the stress intensity factor indi- 

cates (Figure 14), the shape of the plastic zone would be, par- 

ticularly at high fracture velocities, quite different than the 

static shape.. The circular shape of the plastic region corre- 

sponding to static loading would become elongated perpendicular 

to the direction of crack propagation and, as the Figures 14 

and 17 indicate, compared to a static plastic zone size for 

the same crack length, the size of the plastic region decreases 

in the direction of the crack growth and increases in the di- 

rection perpendicular to it with the increasing crack velocity. 
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Figure 18 shows such a variation where p is taken from Figure 

17 for q/q = 0.2 and the remainder is qualitative.  We hasten 

to add that, due to the unloading and the resulting residual 

stresses as the crack goes through the plastic region and, at 

high velocities due to the change in the wave velocity in the 

plastic region, the size and shape of the plastic zone would 

be modified. 

Based on the preceding discussion and the 

approximate calculation leading to (76), we may draw the 

following conclusions:  a) the hypothesis made by Kostrov to 

the effect that the plastic zone size is linearly dependent 

on. the crack length is not correct, particularly at fracture 

velocities at which dynamic effects are significant (Figure 17). 

However, since the plastic zone becomes elongated as the crack 

velocity increases, at least for longitudinal shear problems, 

the volume of the plastic region may remain approximately pro- 

portional to a2, a being the half-crack length; b) the estimate 

of the plastic work based on the Dugdale model (e.g., [87]) 

would be erroneous not only because of the variation in the 

shape of the plastic region with the fracture velocity, but 

also because of the complicated nature of the plastic energy 
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dissipation in the plastic region, particularly around its 

trailing boundary . 

y   -0 , ... -v. i Fi c i,, iig 

si Tie tractions applied on the presumed plastic zone a<lxl<a+n 
and equal in magnitude to the yield stress, as part ofthe ex- 
ternal loads, one can easily show that 6UT = 6VE, where 6U 

is the change in the external work and 6VE is the change in the 

Slhe^haCT w°rit?ngSma11 ^^ '* in crack length'  °" the 

a+p 
6UT = 4/ 

0 

•} w        a+p 

°y(x) (H 6a)dx = 4/ 
o 

3V (ff 6a)dx 9a 

a+p 
/ 
a 

4ays (f* 6a)dx = 6U «V. 

we obtain 

6U = 6VE + <5V. 

where 6U is now the variation in the external work (of a ) and 

6Vp is the change in plastic energy as interpreted in [87] and 
[92], (ay$   being the yield stress) (see:  [92]). The plastic 

fu"e.!ize p.in tnl's analysis is obtained from the condition that 
a+p be zero.  This would 

:he 

the  stress   intensity  factors   at 
mean   that   the   crack   closure   energy  at     x     "  a+p   (whic       re   tl 

relu   t  fnPunHS
3

Srd   ?Vhe  m0<Jel}   Wil1   ie  ze™   ""d   hen  e   the 
H     II6   indlcat-9   that   the   system   is   conservative 
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To have some idea about the nature of the 

energy balance around a propagating crack during the initial 

stage of the crack growth in the presence of plastic deforma- 

tions, in connection with the longitudinal shear, one more 

simple problem may be considered.  Let the plastic region 

around the propagating crack be P and the elastic-plastic 

boundary be L.  During the fracture propagation, the rate of 

the external work done by the tractions acting on L is bal- 

anced by the sum of the rates of kinetic energy, stored elastic 

energy and the plastic work in the region P and the surface- 

free energy due to the creation of new crack surface.  Some 

rough approximations to these energy rates are obtained in the 

Appendix B by using the static solution [88,89] and a quasi- 

static assumption similar to Mott's [27].  The notation for 

the analysis is shown in Figure 19 and the additional approxi- 

mating assumptions are stated in Appendix B.  For one half of 

the plastic region P around the crack tip and unit thickness, 

we have 

Trq^aa1 

T' = wV aa'(*'2+ aa") (77) 

y. _ Sirq^aa 
8^J = v; + v E    p 

D' = Ya' + V. 

In (77), V; is the rate of elastic energy, V' is the rate of 
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plastic work and y  is the surface-free energy, where 

V; = TTq4aa'/(8yq2).  U" is the rate of energy input and 

T* + V; + D' = T' + V* + ya' is the rate of stored and dissi- 

pated energies.  It is clear from (77) that 

IT < T" + V + ya' 

meaning that the initial stage of the crack propagation for 

which the assumptions stated in the Appendix B are valid, is 

stable.  That is, unlike an ideally brittle material, during 

this period, for a continuous crack growth, the external load 

has to be increased continuously.  It was observed by Felbeck 

and Orowan [90] and noted by McClintock [91] that the insta- 

bility starts after the crack goes through a distance approxi- 

mately equal to the plastic zone size.  It is obvious that, 

in the presence of plastic deformations, at the initial stage 

of the crack propagation, the energy balance theory is not 

sufficient to explain the fracture and some consideration of 

a critical strain is necessary.  Further remarks on this 

aspect of the problem will be found in the article by McClintock 

and Irwin [1]. 
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1.5  Energy Dissipation And The Experimental Studies 

A quick glance at the continuum theories on fracture 

propagation outlined in the previous sections reveals that, 

from a practical viewpoint there are two important aspects 

of the phenomenon which should firmly influence the nature of 

the theory and.the assumptions involved in its formulation. 

These are the actual kinematics of the crack growth and the 

energy dissipation during the propagation of fracture.  By 

the first, we simply mean the following:  In a brittle or 

quasi-brittle material, starting with the time of onset of 

rapid fracture, what is the behavior of the crack size vs. time 

relationship?  Is there really a terminal velocity and, if 

there is, what is its value? What is the relative duration 

of the acceleration or development period of the crack growth? 

And, most importantly, is the crack growth itself a continuous 

or an intermittent phenomenon, that is, is the fracture veloc- 

ity a monotonously increasing continuous function of time or 

is it a discontinuous and/or oscillating function with time- 

dependent mean and amplitudes? 

In formulating a fracture propagation theory, in a 

general way, the nature of the energy dissipation as well as 

its existence should be considered. The important questions 

arising in this connection would be the dependence of the 

fracture energy on the propagation velocity, the approximate 

size and the shape of the dissipative zone and the mechanism 

and thermodynamics of the energy dissipation.  The last two 
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points are raised partly to investigate the applicability of 

the linear elastic theories as working tools and the effect 

of heat generation in the dissipation zone. 

From the outset, two things are quite clear, namely 

that the answers to the two groups of questions posed above 

will have to come from very careful, thorough and, in certain 

cases, rather ingenious experimental studies, and that these 

answers may very heavily depend on the type of material and, 

to some extent, on the environmental conditions under consid- 

eration.  Putting aside the high-energy type slow fracture of 

elastomeric solids and plane stress rupture of highly ductile 

metal compounds, with respect to the kinematics of the crack 

growth, one could perhaps classify the brittle and quasi- 

brittle solids in the following manner:  a) brittle single 

crystals, b) highly brittle amorphous materials, c) polymers 

below glass transition temperature, and d) the polycrystal1ine 

metal compounds.  There is apparently sufficient experimental 

evidence to substantiate the conjecture that the fracture 

propagation is basically an intermittent process and the period 

of the velocity oscillations decreases as the "brittleness" of 

the material and the crack velocity increases.  In brittle 

crystals and certain glasses at low temperatures, the period 

may be below the detection range of measuring instruments and 

hence the propagation may, for all intents and purposes, be 

considered to be continuous.  On the other hand, in polymers 

and polycrystal1ine materials, particularly at low velocities 
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the period of velocity oscillations may be high enough to be 

detected even by the crude measuring techniques and hence may 

raise serious questions as to the applicability of the theories 

based on a continuous growth assumption. 

In this section, we will briefly review the experi- 

mental techniques and the results of notable experimental 

studies and try to take a broad look at the dissipation phenom- 

enon. 

1.5.1  Techniques For Measuring The Crack Velocity 

There are four major experimental techniques 

used to measure the velocity of a propagating crack.  In the 

following these techniques are \/ery  briefly discussed and 

proper references are given: 

A)  Velocity gages.  These consist of a series 

of conducting "wires" placed with certain intervals on the 

projected path of the crack and perpendicular to the direction 

of propagation.  They form one leg of a bridge which is, 

usually, connected to an oscilloscope.  The times at which the 

wires break due to the propagating crack is obtained from the 

trace on the oscilloscope.  Among many other investigators, 

the technique has been used by Hudson and Greenfield [93], 

Robertson [94], Hall and others in the University of Illinois 

tests [95, 96, see also 97 for summary] and Akita and Ilceda 

[98].  It is obvious that with this technique, one can only 

measure average velocities over relatively large gage lengths 
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and very little, if any, information can be gained on the 

initial acceleration range of the crack growth.  Aside from 

this, depending on the wire material and the method of bonding 

of these "wires" to the specimen, there may be serious ques- 

tions raised as to the simultaneity of the passing of the crack 

through and the breaking of the wire at a certain point.^or ex- 

ample  Robertson  in his experiments  found the metal wires 

quite unsatisfactory and had to use graphite-coated paper. 

The difficulty in this case arises from the uncertainty in the 

delay time of the breaking of the wire caused by the shear de- 

formation in the bonding agent and the extension in the metal 

wire itself. 

b)  Impedance method.  The method which was 

developed and used by Carlsson [99] consists of measuring the 

impedance between two points in a plate which are symmetrically 

located on each side of the crack and connected to a high fre- 

quency current source.  Because of the skin effect in the case 

of high frequency current, the current density near the crack 

surfaces will be very   high and independent of the crack length, 

with the exception of locations around the crack tips and the 

region near the two terminal points.  Carlsson studied the 

problem theoretically and also gave experimental calibration 

curves.  The calibration results were obtained by placing two 

half plates at a certain distance apart and simulating a crack 

by covering a certain portion of the slit with a conducting 

foil or placing conducting spacers in the slit.  Since the 

impedance can be recorded continuously using a high response 
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instrument, the method provides a continuous measurement of 

the crack length as a function of time.  In using this method, 

one should be aware of the fact that the impedance is very 

sensitive to the width of the slit which undoubtedly has a 

shape similar to an ellipse rather than a rectangle and may 

not be so easy to duplicate in calibration or to use in anal- 

ysis, and one may have to take into consideration the possible 

effect of surface irregularities of the actual fracture sur- 

faces on the impedance. 

c)  High speed photography.  This has been one 

of the more widely used techniques in recording the fracture 

propagation.  The multiple-spark camera used by Schardin and 

Struth [100,101] was capable of frame rates up to 10 per 

second.  The camera used by Wells and Post was also a multiple 

spark camera [67].  The high speed framing camera used by 

Beebe [84] could go up to 10 frames per second.  Even though 

the best results with the high speed photography are obtained 

with the transparent specimens, it can also be used for non- 

transparent materials by properly polishing the surface of the 

specimen.  For example, the Barr and Stroud rotating-mirror 

framing camera was \/ery  successfully used by van Eist [102] 

in studying the brittle fracture of steel plates in the so- 

called Robertson test plate [94].  Van Eist also used a ro- 

tating mirror streak camera in which the image is smeared over 

the film thus providing a continuous record of the fracture 

phenomenon where the crack velocity could be obtained from 

the slope of the contour of the picture. 
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d)  Ultrasonic method.  The ultrasonic method 

which was developed by Kerkhof [103,104], finds its basis in 

the well-known Wallner lines [105] formed by the interference 

of the crack front with the (transverse) waves generated 

largely at the imperfections located on the surface of the 

specimen and the path of the crack.  In the Kerkhof method, 

the surface of the specimen is modulated by continuous ultra- 

sonic waves of known frequency.  In spite of the very low 

magnitude of the stresses caused by these waves, when superim- 

posed on the stresses at the crack tip, the periodic disturbance 

they create is apparently high enough to leave time marks on 

the fracture surface which are some form of ripples and may 

be made visible by proper illumination.  The velocity of frac- 

ture propagation is evaluated from the spacing of these time 

marks or ripples and the frequency of the waves.  The technique 

is applicable to materials which have very smooth fracture sur- 

faces such as amorphous materials and single crystals.  A dis- 

cussion on the variations and various applications of the 

technique and further references on the subject will be found 

in Schardin's article [72].  Some recent applications are also 

discussed by Clark and Irwin [105]. 

Crack velocity can also be determined from the 

Wallner lines appearing on the fracture surface without the aid 

of external wave generators.  Using two sets of intersecting 

Wallner lines, Smekal [107] was able to determine the crack 

velocity in glass.  Shand [108] showed that from the geometry 

of the Wallner lines, a single line is sufficient to compute 
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the crack velocity.  In both of these cases, it is assumed that 

the transverse wave velocity of the solid is known and Shand's 

technique requires that the source of the transverse elastic 

wave be identifiable.  Recently, Hull and Beardmore [83] used 

these techniques to measure the crack velocity in tungsten 

single crystals.  In this connection, one should note that the 

distribution of surface imperfections or flaws causing the 

Wallner lines is random, hence using this technique, unlike 

the Kerkhof method, one may not be able to obtain a systematic 

record of fracture velocity. 

1.5.2 Techniques For Measuirng The Fracture Energy 

Experimental studies aimed at measuring the 

fracture energy for a given solid are largely confined to 

static problems in which interest is on the fracture initiation 

and slow fracture of elastomeric solids [11,20,21] which are 

left outside the scope of this article.  To this author's 

knowledge, the only place where a conscious effort is being 

made to experimentally study the fracture energy as a function 

of velocity and temperature and to measure its value is Irwin's 

laboratory at NRL.  The results of these studies are not yet 

available, and the velocities which are being dealt with are 

still too low.  This is one aspect of studying fracture which 

requires a great deal of ingenuity in the design and execution 

of the experiments  and a thorough understanding of the theo- 

retical problem. 

A related problem has been studied by Krafft 
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and Sullivan [109]; they found that fracture toughness (which 

is a measure of fracture energy as used in this article) de- 

creases as temperature decreases and as strain rate increases. 

They also report a relationship between plane strain critical 

stress intensity factor KIc and the crack velocity (see also 

[110]).  It is shown that KIc first decreases with increasing 

crack velocity (apparently due to the reduction of plastic 

work caused by the rate effect) and then increases with in- 

creasing velocity.  The later conclusion is based on the evalu- 

ation of data given in [97].  It should be noted that in such 

calculations, one may have to study the error involved in the 

evaluation of crack closure energy from the strain measurements 

and the static theory and separate the dynamic effects from 

the actual dissipation. 

1.5.3 A Brief Discussion Of Typical Experimental 

Studi es 

We will use the rough classification given above 

for brittle and quasi-brittle materials as a guide to discuss 

some of the typical and significant experimental results.  Even 

though the aims in these studies have been varied, within each 

group the problems studied have been more or less the same. 

Here we make no attempt for an exhaustive survey of the current 

1iterature. 

a)  Single crystals.  Fracture propagation in 

Tungsten single crystals has recently been studied by Hull and 

Beardmore [83].  The rectangular specimen had a cross-section 
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of 0.11 x 0.05 cm and it was cleaved along the 010 plane.  An 

atomically sharp crack was introduced by a localized spark 

discharge.  The temperature was varied between 20° and 300°K. 

It was observed that at low stress levels and low velocities, 

fracture surface was very smooth and Wallner lines starting 

at the edge flaws or cleavage steps could easily be detected. 

This range corresponds to a low fracture energy which is 

largely the surface-free energy of the solid.  A measured value 

of 6300 ergs/cm2 for the fracture energy compares well with the 

theoretical value of 4850 ergs/cm2 of the surface-free energy. 

As the stress and/or temperature increased, the smooth portion 

of the fracture surface diminished and the density of the 

river lines increased implying a higher fracture energy.  The 

significant result of this study is that the fracture energy 

and the average terminal fracture velocity, VT, are very highly 

dependent on the temperature.  It was found that at 77°K, 

V  = 0.6 c2. at 20°K, Vy = 0.82 c2 and at higher temperatures 

where the river lines were more pronounced, VT varied between 

0.2 c2 and 0.55 c2-  In an earlier study, the authors found 

that [111] at temperatures between 290°K and 330°K, the frac- 

ture occured by slow cleavage propagation and above 330°K 

fracture started as ductile tear and eventually became brittle. 

The only other experimental study of the frac- 

ture propagation in a single crystal was made by Gilman, Knudsen 

and Walsh on the lithium floride [112] in which the terminal 

crack velocity is found to be approximately one third of the 

longitudinal wave velocity. 
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b)  Highly brittle amorphous solids.  In this 

category, we include mostly various kinds of glasses.  The 

topic is neatly summarized and referenced in Schardin's article 

[72].  Here, we only mention some of the important results. 

The experiments indicate that in a plate under tension, with 

the exception of ballistic loading, fracture starts with a low 

velocity and, in this early stage of the fracture propagation, 

the velocity vs. time relationship is basically different than 

that predicted by theories based on Mott hypothesis (see also 

[84]).  For a given glass, the  terminal velocity V     seems to 

be independent of the temperature and the external load.  How- 

ever, VT turns out to be very highly dependent on the chemical 

composition of the material.  Also a correlation between Vy and 

the microhardness is found which leads to the following empiri- 

cal relation: 

VT = - 560 + 2.48 /^J77 

where oH is the microhardness and P is the mass density.  There 

is rather a wide scatter in VT when correlated against c2; thus 

it is concluded that the generally quoted relation VT = 0.5 c 

is at best a rough approximation. 

c)  Polymers below glass transition temperatu re, 

Experimental studies on the brittle frac- 

ture of polymers are confined to mostly velocity and stress 

measurements.  A photoelastic analysis of a CR-39 plate with 
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an edge crack under tension was made by Wells and Post [67]. 

Using a fringe multiplication technique and a multiple spark 

camera, they took successive pictures of the isochromatic 

pattern in the plate with a running crack which also provided 

a means of evaluating the crack velocity.  The main findings 

of this study is that:  a) the difference between the fringe 

orders in static and dynamic loading is quite considerable 

in regions away from the crack and is small close to the 

crack tip, b) the stress field is amplified as the crack grows, 

c) the terminal velocity is close to the prediction of Roberts 

and Wells [64], i.e., 0.38 /E/P-  The experiments seems to 

have been performed at room temperature. The last and highest 

recorded velocity in this experiment was at 7/10 of the plate 

width from the fracture initiation edge.  Because of the close- 

ness of the free boundaries, the dynamics of the problem is 

rather complicated and the deviations from the infinite plate 

with a central crack, on which all the existing theories are 

based, are as yet unknown. 

Beebe in his experiments used a plate with 

a central crack of "Homalite 100", a photoviscoelastic polyester 

resin polymer, and arrived at somewhat similar conclusions.  How- 

ever, even though there is always a possibility of 15% error in 

the analysis of isochromatics, his results for the stress field 

around the crack tip are quite conclusive in agreeing with the 

dynamic solution given by Broberg [61] rather than the static 

solution.  The terminal velocity found by Beebe was 0.315 c2 

at 24°F and 0.342 c2 at -40°F.  Similar to Schardin's results 
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for glass, Beebe observed that the branching took place in all 

specimens tested at high (initial) loading rate and the crack 

length at which the branching started was dependent on the 

level of the external load, decreasing with the increasing 

load.  Contrary to Carlsson's findings [113], his results 

indicate that the branching is not related to the elastic waves 

reflected from the unloaded sides of the plate.  He also con- 

cludes that a model based on the Mott type analysis is inade- 

quate to represent the early stages of the crack growth phe- 

nomenon. 

Cotterell [114] used polymethyl methacrylate 

(plexiglas) plates with central or edge cracks in his fracture 

propagation studies.  The crack velocity was measured by a 

velocity gage (formed by lines of silver paint) which is stated 

to give the average velocity within 5% accuracy.  The maximum 

velocity prior to branching observed in these experiments is 

about 0.26 c], which increases to 0.36 c] if the fracture is 

guided along a pre-cut groove.  These experiments too do not 

reveal any conclusive effect of reflected waves.  Cotterell 

also gives values for fracture toughness of the material as a 

function of the crack velocity.  However, these results should 

at best be considered as qualitative.  As seen from Figure 3, 

the stress intensity factor will be dependent on time (or crack 

length) and Broberg's solution is for constant velocity crack 

starting with zero length.  From the velocity profiles reported 

by Cotterell, it is rather difficult to justify the use of 

Broberg's solution to obtain reliable quantitative results. 
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Besides, in dynamic problems, except for very low velocities, 

the stress intensity factor squared is not proportional to the 

crack closure energy as may be seen from Section 1.4 of this 

article.  In these experiments too, it was found that the 

roughness of the fracture surface increases with increasing 

crack velocity. 

d) Polycrystalline materials.  For an under- 

standable reason, a great deal of experimental work has been 

done on the fracture of structural steel and aluminum-copper 

alloys.  Felbeck and Orowan [90] studied the fracture propaga- 

tion in 3/4 inch thick ship structure steel plates with an 

edge crack.  A hydraulic machine used for testing, hence, there 

was considerable load relaxation during crack propagation which 

caused occasional crack arrest.  One of the important results 

found in these experiments was that, to reinitiate the crack 

propagation after the arrest, the external load had to be 

raised over the arrest value, and, at the tip of the arrested 

crack, there was extensive plastic deformations leading to the 

formation of a narrow zone of fibrous fracture, which was again 

followed by rapid brittle fracture. 

An extensive series of tests were carried 

out on structural steel by Hall and his associates [95 - 97] 

at the University of Illinois.  In these tests, the interest 

was centered on the brittle fracture behavior of ship-structure, 

steels below the transition temperature.  The specimens were 

3/4 to 1 1/8 inch thick, 2 ft. or 6 ft. wide and 18 ft. long. 
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They were cooled by dry ice to 0°F or -10°F and subjected to 

19,000 psi tension.  A notch-wedge impact technique was used 

to initiate the fracture.  The crack velocities were obtained 

by placing SR-4 type A-9 resistance gages on the path of the 

propagating crack.  Some tests were performed on plates with 

residual stresses to study the slow-down and arrest of the 

propagating crack.  The residual stresses were put into the 

plate by cutting two tapered slots on each side and filling 

them with welds which results in a tensile field near the 

sides between the welded slots and a compressive field in the 

central region of the plate.  In thö regular plates, the 

measured crack velocities varied between 1500 and 5900 fps.* 

while in plates with residual stresses, in the compressive re- 

gion, crack velocities as low as 50 fps. were observed.  The 

strain measurements in the prestressed plates clearly showed 

that as the crack velocity decreased, the intensity of the 

stress field around the tip of the running crack also decreased 

In the conclusion of these studies, a critical stress criterion 

is proposed for the cleavage propagation which states that at 

the boundary of the plastic zone, the stress has to be higher 

than a critical value for the propagation of fracture.  As 

shown in [97], this is basically a critical stress intensity 

criterion. 

nJc^^^r^cn5' ^r?ck vel°city as high as 7550 fps. has been 
observed [115]; with c2 = 10,400 fps., it corresponds to a 

velocity ratio MJc2   = 0.725.  Even though high, this however 
can be explained (see Section 1.4 above) 
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The main difficulty with these tests is 

that, the grip conditions, the geometry of the specimen and 

the notch-wedge impact make the theoretical analysis quite 

complicated and none of the existing dynamic solutions can 

be applied with any kind of confidence.  A yery  promising 

start towards obtaining an analytical solution to the problem 

was made by Gaus [116].  He used a lattice model to numerically 

analyse the transient strain distribution associated with 

cracks propagating in small finite jumps.  Mainly due to the 

inadequacy of the computer used at the time, the results had 

to be considered qualitative, which were in agreement with the 

main trends of the experimental findings.  However, this line 

of approach, which seems to be a good possibility to deal with 

the effect of free boundaries, irregular geometry and nonsym- 

metric external loads (such as the lateral impact), has not 

been pursued further. 

Similar tests on structural steel were 

performed by Akita and Ikeda [98] which gave quite similar 

results.  It was found that the average crack velocities in- 

creased with increasing initial tension prior to initiation 

of fracture and decreased with increasing test temperature. 

The tensile stress was varied between 50 and 20 kg/mm2 and 
* 

the test temperature between -70°C and -10°C . 

The approximate dynamic solution used in [98] has an incorrect 
singularity, hence the correlations and comparisons given are 
of doubtful value. 
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Perhaps not as extensive but more signifi- 

cant tests on structural steel were performed by Carisson [113] 

and van Eist [102].  Carisson used an impedance method for 

velocity measurements and showed that the fracture propagation 

in structural steel (under given test conditions) is inter- 

mittent (see also Tipper [117]); the microcracks form and grow 

ahead of the main crack and then join it.  Carisson also studied 

and pointed out the effect of the non-symmetric (i.e., shear) 

components of the stresses around the crack tip on the crack 

branching.  The shear stresses simply tilts the direction of 

the cleavage plane [17] and hence may be considered one of the 

causes of crack branching.  One of the conclusions arrived at 

by Carisson, which does not seem to be widely accepted [84, 

114], is that branching is nucleated at locations where the 

reflected waves from the free boundary interfere with the 

stresses at the crack tip.  The reflected dilatational waves 

reduces the dependence of the cleavage stress aQ on the angle 

6 and the shear waves tend to tilt the cleavage plane. 

Van Eist [102] used a Robertson apparatus 

in his experiments, thus crack arrest took place at higher 

temperatures.  By means of a streak camera, a continuous record 

of crack length vs. time was obtained.  Crack velocities were 

measured also by using high speed framing camera.  The test 

temperatures were varied from -35°C (with solid carbon dioxide 

coolant) to room termperature (arrest temperature:  27°C).  Van 

Eist also found that the fracture propagates in discrete steps 

ranging from as high as 30 mm. near the arrest temperature to 
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2 mm. at lower temperatures and the halting times varied between 

20 microseconds for high and 1 microsecond for low temperatures. 

However, it should be recognized that in the tests on structural 

steel, the fracture is basically plane strain, but the pictures 

and the crack velocity measurements refer to the crack as ob- 

served on the surface.  Even though there is no evidence of 

large scale plastic deformations on the surface of the specimen 

ahead of a running crack, it is difficult to interpret the less- 

discernible contrast ahead of the main crack seen on the pictures 

taken by the framing camera in van Elst's tests in terms of the 

actual crack front.  Hence, categorical statements about the 

details and the nature of stepwise fracture propagation and 

particularly about their sizes will have to wait for the con- 

duct of further studies.  In principle, however, van Elst's re- 

sults, particularly the stress distribution ahead of the running 

crack obtained by using the photo-stress coating, seem to pro- 

vide conclusive evidence about the intermittent character of 

the fracture propagation in structural steel. 

1.5.4 Some Remarks On The Energy Dissipation 

In the ideally brittle materials surface-free 

energy is the only mode of energy dissipation during fracture 

propagation.  Crystalline brittle solids exhibiting no rheo- 

logical or plastic behavior, rate-independent glasses and some 

polymers at very low temperatures may be included in this group. 

In such materials, the energy dissipation or the fracture en- 

ergy per unit crack extension, yf. is directly related to the 
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geometry of the fracture surface, that is, yf increases with 

the increasing surface roughness.  The irregularity of the 

fracture surface may present itself in various forms.  In 

single crystals, one may observe cleavage steps which develop 

when the crack front intersects lines of screw dislocations 

[62].  Or, crack may wander from one crystallographic plane 

to another if the crystal does not have a cleavage plane which 

is substantially weaker than the others.  In the polycrystal1ine 

materials, due to the random orientation of the grains, generally 

the crack entering a grain is not parallel to the weak cleavage 

plane, as a result it becomes segmented in order to maximize 

its surface lying parallel to the preferred cleavage plane [62]. 

In the case of amorphous solids such as glass and polymers, 

the surface roughness takes the form of commonly observed rib 

structure and hackles. The rib structure or the river line 

pattern is generally observed during the initiation period of 

the crack propagation (or, the reinitiation period of the ar- 

rested crack) and is considered to be the cause for the rela- 

tively high value of fracture energy at the initiation of crack 

growth.  The development of hackles may be attributed to the 

formation of microcracks ahead of the main crack and in planes 

which are not co-planar with the main crack.  Whatever the 

cause of these surface irregularities, it is generally agreed 

that they absorb energy (which may be, in some cases, ^pro- 

portionately high compared to the relative increase in the area 

of fracture surface because of the particular mechanism creating 

the irregularity) and the intensity of roughness increases with 
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the increasing fracture velocity (above a certain velocity) 

and, in most cases, with the increasing temperature. 

In brittle fracture of most polymers and quasi- 

brittle fracture of metal compounds and some single crystals, 

which constitute by far the largest group of materials of 

technological interest, the dissipation phenomenon taking place 

during fracture propagation is much more complicated.  In such 

materials, the main component of energy dissipation is due to 

the viscous effects or the plastic deformations and the contri- 

bution of surface-free energy is rather insignificant.  The 

main reason for the complexity of the problem in this case lies 

in the fact that the irreversible effects such as viscous and 

plastic deformations are \/ery  highly dependent on the geometry 

of the solid, details of the stress state around the propagating 

crack, the microstructure and the constitutive properties of 

the material and the environmental conditions, and most of these 

factors do not lend themselves to manageable analytical treat- 

ment.  Furthermore, some of these factors may vary from material 

to material quite drastically, hence preventing simple generali- 

zations . 

On the other hand, concerning the propagation of 

brittle fracture, there are some simple commonly observed facts 

which are enumerated below for the sake of subsequent discussion: 

a) For materials with preferred (weak) cleavage 

planes, the fracture velocity may reach very high values (0.8 c2 

and over) and ^et no branching would take place. 
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b) For materials with isotropic or near- 

isotropic fracture properties, there seems to be a maximum 

fracture velocity depending on the particular environmental 

conditions, which may not be exceeded and at which the crack 

branching takes place.  Usually this limiting velocity is in- 

dependent of the level of the external loads which simply 

control the duration of the time in which this velocity is 

attained in a given situation.  In most cases, this velocity 
32% 

is much lower than that corresponding to j^ =  0, a^  being 

the cleavage stress at the crack tip and <|> being the angle 

measured from the crack direction; the former generally varies 

between 0.3 c2 and 0.6 c2 and the latter is around 0.6 c2. 

c) The limiting crack velocity, among other 

factors, seems to depend on the chemical composition and the 

microstructure of the material. 

In addition to these, based on the theoretical 

studies, we make the following observations: 

a) In fracture propagation problems, the 

inertia effects are not negligible, the dynamic solution rather 

than static should be used and the kinetic energy should be 

included in any kind of energy balance. 

b) If the dissipation zone around the crack 

tip is small, the available energy to be used to overcome the 

dissipation around the crack tip can be obtained from 

IT - V Ec 
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where IT, V, T* are, respectively, the time rates of external 

work, elastic energy and kinetic energy for a small region 

surrounding the crack tip and E" is the rate of crack closure 

energy. If D* is the rate of dissipative energy, then at con- 

stant velocity crack growth E' = D*. For a given velocity, if 

the calculated E" is greater than D' corresponding to the same 

velocity, the excess energy will be used to accelerate the crack 

c)  Provided the crack can be maintained to run 

straight, the theoretical limits for the velocity of fracture 

propagation are the shear wave velocity in longitudinal shear 

problems and the Rayleigh wave velocity in plane and three-di- 

mensional problems, meaning that fracture propagation at veloc- 

ities exceeding these limits require energy generation (rather 

than dissipation) around the crack periphery. 

Similar to Griffith criterion, we first state 

that the crack will propagate in the direction of maximum 

E*/D* ratio.  This presumably is the reason for curved cracks 

and cracks with irregular shapes. 

Next, we consider the case in which D", the 

dissipation rate around the propagating crack is an increasing 

function of velocity.  D" may also depend on the crack length 

as mentioned in Section 1.4.  From Figure 6, we observe that, 

up to a certain velocity (^0.6 c2), E^ is a linear function in 

time and also an increasing function of velocity.  In the 

neighborhood of a given fracture velocity, it may be possible 

that a further increase in the crack velocity would cause a 
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steep increase in D*; furthermore, it may also turn out that 

combined with the other effects at the crack tip (such as non- 

symmetric stress components and small imperfections), the total 

dissipation D* in a forked crack may give a MOWE^/D' ratio. 

In this case, the crack would branch.  The propagation of each 

branch would in turn be governed by the respective E'/D" ratios 

in the resulting dynamic problem with the new geometry.  This 

may be a possible explanation of crack branching at relatively 

low velocities (0.3 c2 to 0.5 c^). 

As for the two most important questions con- 

cerning the fracture propagation, namely the actual kinematics 

of the crack growth and the nature of energy dissipation, it 

is tempting to conjecture that the crack propagation is in- 

herently an intermittent process, that in the limiting case 

of an ideal crystal, the atomic spacings may constitute a propa- 

gation step and that in the other extreme of quasi-brittle poly- 

crystalline metal compounds and polymers at below and near the 

brittle-ductile transition temperature, the series of micro- 

cracks forming, growing and joining ahead of the main crack may 

cause the discontinuous growth with relatively large steps. 

In between, one may argue that the size of these steps becomes 

smaller as the "brittleness" and the degree of homogeneity of 

the material increases.  Even though this is clearly an over- 

simplified picture and the question cannot be isolated from the 

microstructure of the material, it may be important in raising 

the question concerning the possible differences between the 

dynamic responses obtained by treating the problem as a con- 
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tinuous or intermittent phenomenon.  This is one of the areas 

which requires careful experimental as well as analytical 

attention. 

At this point, the greatest hope in throwing 

some light on the fracture energy lies in performing some 

meaningful experimental work in which all the relevant factors 

can be controlled and their effects can be separated.  There is 

not much sense in trying to estimate Yf from the strain measure- 

ments around the propagating crack if the fracture velocity is 

not constant for a substantial period of time, the region is 

not free from the influence of the reflected waves, the relative 

locations and timings of the points where the strains are measured 

with respect to the propagating crack cannot with a reasonable 

degree of accuracy, be determined* and the initial and the 

boundary conditions as well as the geometric configuration 

assumed for the theoretical analysis cannot experimentally be 

duplicated within again a reasonable degree of approximation. 

In this connection, two analytical problems which emerge as 

being important are the elastic (dynamic) analysis of the ac- 

celerating crack and the dynamic elastic-plastic problem of the 

constant velocity propagation of fracture.  Since the intensity 

of the stress state around the crack tip grows with the growing 

crack length, it is reasonable to expect that, to a certain 

degree, the dissipation zone as well as the dissipated energy 

*In this sense, the photoelastic specimen or the photostress 
coating offers an advantage. 
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will also grow with the growing crack.  It is then important 

to have a simplified dynamic model for the plastic region in 

order to have some idea about the plastic work.  As seen from 

the Appendix B and the related discussion in Section 1.4, a 

quasi-static model is completely insufficient for this purpose. 

For small crack velocities, the inertia effects are, of course, 

negligible and a quasi-static model taking into consideration 

the rate dependence of the phenomenon may be adequate.  In 

this range, for example, the strain rate effects explain the 

decrease in Yf following the onset of rapid fracture. 

92 



1.6 Summary 

In the first part of this article, the crack propaga- 

tion theories in brittle and quasi-brittle solids fracturing 

under a single application of the external loads have been 

discussed,  in particular, the dynamic aspects of the phenomenon 

have been emphasized and the discussion has been restricted to 

the theories based on the approach of continuum mechanics and 

classical thermodynamics. 

First, the dynamic crack propagation theory based on 

the concept of the modulus of cohesion proposed by Barenblatt 

and his co-workers has been presented, a critical discussion 

has been given and some modifications have been offered.  The 

main advantage of this theory lies in its simplicity and direct- 

ness and its main objectionable feature is the weakness of the 

underlying physical argument. 

Next, the theories based, in one form or another, on 

the energy balance at the periphery of the propagating crack 

have been considered.  The physical basis of these theories, 

which simply consists of the first law of thermodynamics, is 

basically very sound.  However, because of the complexity of 

the required mathematical analysis and the lack of our physical 

understanding of the energy dissipation phenomenon resulting 

from the fracture of solids, considerable difficulty has been 

encountered in their applications.  In general terms, an energy 

balance theory may be stated as, "in a fracturing solid, the 

crack will propagate along a surface offering the least thermo- 
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dynamic resistance and the velocity of the propagation at the 

crack periphery will depend on the difference between the rate 

at which the work is done on the solid by the external loads 

and the sum of the rates of stored recoverable energy, the 

kinetic energy and the dissipative energy".  The reason for 

crack branching is seen to be inherent in the statement of the 

theory. Also, it is obvious that in real materials, the phe- 

nomenon is basically a non-equilibrium type process. 

Largely because of mathematical expediency, the existing 

theories deal only with the idealized cases.  In this article, 

after formulating the general problem, the theory based on the 

quasi-static assumption proposed by Mott has been presented and 

its results have been discussed.  Next, an energy balance theory 

for brittle and quasi-brittle materials considering the energy 

exchange process only in the close neighborhood of the crack 

periphery has been developed.  It is shown that the energy 

available at the crack periphery to create new fracture surfaces 

or to overcome the dissipative energy due to fracture is equiva- 

lent to the crack closure energy which is not equal to the strain 

energy release if the inertia effects are not negligible.  One 

of the main conclusions of this theory is that if the crack can 

be maintained to propagate along a plane, the Rayleigh wave v< 

locity in the plane and axially symmetric problems and the sh< 

wave velocity in the anti-plane problems form the upper limits 

for the respective fracture propagation velocities, meaning 

that for propagation beyond these velocities, energy has to be 

generated rather than dissipated at the crack periphery.  In 

re- 

lear 
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practice, such high velocities can be attained as a limit 

provided the medium is very large, the fracture energy is 

either independent of the fracture velocity or does not increase 

with it appreciably and because of its geometry (e.g., deeply 

gorroved or weakly bonded specimens) or constitution (e.g., 

highly anisotropic specimens) the medium has a preferred weak 

fracture plane.  The energy balance theory in the revised form 

is then applied to plane extensional and anti-plane shear prob- 

lems with propagating central cracks. 

The experimental work involving the techniques of crack 

velocity and fracture energy measurements have been reviewed. 

The important techniques for velocity measurements, namely, 

the velocity gages, the impedance method, high speed photography 

and the ultrasonic methods, have been briefly discussed.  The 

results of some typical experimental studies dealing with the 

dynamic aspects of the fracture propagation phenomenon have been 

discussed by loosely classifying them in four groups, which are 

single crystalls, highly brittle amorphous solids, polymers 

below glass transition temperature and polycrystal1ine materials. 

The published results of the experimental studies so far provide 

very little information about the nature of the dissipation 

phenomenon in general and the velocity variation of the fracture 

energy and the size of the dissipation zone in particular.  There 

seems to be an agreement about the discontinuous character of the 

crack growth in structural steel- a behavior which has not been 

observed in other materials.  This question apparently cannot 

be isolated from the microstructure and the degree of "brittleness" 
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of the material and one may cautiously conjecture that fracture 

phenomenon is essentially an intermittent process where the 

period of velocity oscillations depends on the microstructure 

and the "brittleness" of the solid, decreasing rapidly as the 

degree of brittleness and amorphousness of the material in- 

creases. 

Finally, the general question of crack branching and 

its relation to the variation of dissipative energy and the 

stress state around the crack periphery has been discussed. 

1.7  Suggestions For Further Research 

After reviewing the present state of our knowledge on 

the dynamics of fracture propagation in solids, it is not dif- 

ficult to conclude that, compared to other areas of research 

dealing with the mechanical response of deformable solids, the 

field is rather in its primitive stage.  This has been due to 

the highly complex nature of the problem rather than a general 

lack of interest in it.  The importance of the topic has long 

been recognized and it has been studied by a great number of 

investigators at the atomic, microstructural and continuum levels 

Further research is needed obviously at all these levels.  How- 

ever, reflecting only one point of view, the following recommen- 

dations deal only with the studies based on a continuum type of 

approach.  Again, ductile fracture propagation has been left 

out of the considerations. 

The efforts to develop partially empirical crack propa- 

gation models will have to continue.  However, the success of 
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these efforts will depend as much on the soundness of the 

underlying physical principles and the understanding of the 

fracture propagation mechanism in a given type of material as 

on the effectiveness of performing the required mathematical 

analysis.  Perhaps the first question which requires clarifi- 

cation and further study is the nature of an acceptable failure 

criterion.  The existing criteria such as the cohesion modulus 

of Barenblatt, critical strain of McClintock and the energy 

balance seem to be far from satisfactory; or at least, they are 

not developed to the point that they can be used as prediction 

tools.  It is quite conceivable that a single criterion or model 

applicable to all materials undergoing brittle fracture may not 

be possible to develop or practical to consider. 

There is a strong possibility that the actual kine- 

matics of the crack growth and the mechanism of fracture may 

be sufficiently different in materials with basically different 

microstructures (e.g., amorphous vs. polycrystal1ine) to warrant 

a closer look at the fracture propagation at the microstructural 

level before adopting a particular continuum model.  In this 

connection, one question concerns the continuous vs. intermittent 

propagation of the crack.  If the discontinuous nature of the 

fracture growth is severe enough to alter the dynamic stress 

distribution around the crack, it may have to be taken into 

account in the formulation as well as the application of the 

fracture propagation theory.  Photoelastic studies of van Eist 

indicate that this may be the case in structural steel.  How- 

ever, further quantitative studies are obviously needed.  Another 
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related question is whether this discontinuity is due to the 

formation of the microcracks or voids ahead of the propagating 

crack or not.  This may introduce an element of randomness 

into the discontinuous fracture propagation, if that is the 

case.  These questions will have to be answered primarily 

through experimental studies on various types of materials. 

At present, perhaps the most important area which re- 

quires close attention and systematic experimental studies is 

the process of energy dissipation resulting from the creation 

of new fracture surfaces.  The question has a bearing on such 

important phenomena as fracture stability, crack branching, 

terminal velocity and crack arrest.  It is easy to argue that 

the energy dissipation will exhibit itself in the form of sur- 

face-free energy, plastic work and/or viscous friction.  The 

important questions are, where and how these phenomena take 

place, how do they depend on the fracture velocity, the micro- 

structure and the environmental conditions, and what is the 

significance of the transformation of the great bulk of this 

energy into heat.  These studies too will have to be performed 

on all the typical groups of materials behaving in brittle or 

quasi-brittle manner. 

In the type of studies mentioned above, it is important 

to keep the available theoretical solutions in mind and design 

the experiments in such a way that the secondary effects such 

as those caused by the geometry, the reflected waves and in- 

plane shear, can be avoided or estimated and then studied by 
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introducing them in a controlled manner. 

Analytical problems, the solutions of which would 

be desirable to obtain are, in most part, rather difficult. 

From the viewpoint of studying the dynamics of crack propaga- 

tion, the following may be mentioned among such problems: 

A solution for an accelerating crack for the simplest 

possible case; 

Development of a theoretical method for the evaluation 

of the size of plastic enclave, taking into consideration the 

effect of the plastic waves.  For plane loading, even the static 

problem has no closed form solution.  For this as well as the 

accelerating crack problem, anti-plane shear case may be man- 

ageable if a numerical approach is used. 

The estimate of the effect of reflected waves from the 

free boundaries of a rectangular plate with a propagating cen- 

tral crack. 

The effect of unloading waves from the grips. 
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Fatigue Crack Propagation 

It is generally accepted that in structures subjected to 

repeated external loads, the microcracks may be nucleated very 

early in the fatigue life.  As a result, it has been common 

practice to consider the fatigue life of a given part in 

three phases, namely the nucleation and the propagation phases 

of the fatigue cracks and the final failure.  Final failure 

simply is the fracture of the solid under a single application 

(i.e., last quarter cycle) of the load and may be treated with 

the techniques covered in the previous sections.  However, the 

distinction between the first two phases does not seem to be 

as clear.  Some investigators prefer to include the propagation 

of microcracks as a separate phase between the phases of nucle- 

ation and macrocrack propagation.  The question as to at what 

size or stage a microcrack becomes a macrocrack cannot, of 

course, be divorced from the microstructure and overall geom- 

etry of the material— the grain size and the smallest local 

dimension of the solid being the two most important factors. 

With due consideration to the microstructure of the medium, 

one may, for example consider the crack as being a macrocrack 

if it is large enough to permit the application of the notions 

of a homogeneous continuum.  By fatigue crack propagation, in 

this article, we will understand the growth of macrocracks and 

assume that the continuum approach is applicable. 

According to the most widely accepted microstructural 

theories, the basic mechanism of crack nucleation as well as 
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its propagation is the cyclic slip and resulting extrusions 

and intrusions [28 - 33].  The percentage of fatigue life of 

the structure which is spent during each one of these two 

phases depends largely on the geometry of the particular part. 

If the part is rather bulky with no distinct stress raiser, 

the nucleation period of the fatigue crack would be very long 

compared to the propagation period.  In such cases, the tech- 

niques used for the prediction of fatigue life are based on 

the studies leading to S-N type curves.  On the other hand, in 

structures with severe stress concentrations, particularly in 

thin plates and shells, the formation of a dominant macrocrack 

takes place relatively very early in the fatigue life and 

hence, in terms of the number of load cycles, the propagation 

phase constitutes the major portion of the total life. 

Up to now, the main objective of microstructural fatigue 

theories has been to provide a rational mechanism by which 

the nucleation and propagation of fatigue cracks can be ex- 

plained.  Due to the extreme complexity of the problem at this 

level, these theories are, as yet, far from providing quanti- 

tative working tools.  Such tools, on the other hand, have 

been developed by approaching the problem from the continuum 

viewpoint.  In what follows, we will first briefly review some 

of the existing continuum models for fatigue crack propagation, 

then discuss a simple model in some detail and present some 

experimental results. 
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2.1  A Review Of Continuum Models 

Partly due to the fact that crack propagation repre- 

sents a large portion of the fatigue life mostly in thin plates 

and shells, partly because of the importance of fatigue in such 

elements as they appear in the airplane design and ship-build- 

ing and partly because of the analytical simplicity of the 

problem resulting from a two-dimensional idealization, the 

existing quantitative continuum models of fatigue crack propa- 

gation have almost exclusively dealt with a plate with a straight 

through crack subjected to uniaxial repeated extensional loads. 

If a is the half-length or the length of the crack and n is 

the number of load cycles, in all these models, it is assumed 

that 4^- is a continuous function of such variables as the ex- 
dn 

ternal load, the dimensions and the material properties.  The 

primary objective is then to determine this function. 

One of the earlier continuum models is due to Head 

[34].  In his analysis, Head considered an infinite plate with 

a central crack of length 2a and subjected to one-dimensional 

repeated loads with the range value a.  By using a mechanical 

model in which he assumed rigid-plastic work-hardening elements 

ahead of the crack tip and elastic elements over the remainder 

of the plate, he arrived at the following relationship: 

da 

dn 

C-jc^a 
3,3/2 

(ays-a)p 
1/2 

(78) 

where a   is the yield stress, p is plastic zone size and C] 
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is a constant which depends on the mechanical properties of 

the material and has to be determined experimentally. 

In Head's analysis, p was assumed to be constant 

during the propagation of the crack.  It was pointed out by 

Frost and Dugdale [35] that p is not independent of the crack 

length and is proportional to a2a.  On the basis of dimensional 

analysis, Frost and Dugdale arrived at the conclusion that 

the crack propagation rate, -rjj- is linearly dependent on the 

crack length.  From the experimental data, they also observed 

that -T— is proportional to a3 and hence proposed the following 

model: 

dn   2 (79) 

where C2 is a characteristic parameter of the material. 

Again, using dimensional and similarity analysis in 

a more elegant fashion, Liu [38] also arrived at the conclusion 

that 

-j— = F(a ,a )a dn       m (80) 

where F is a function of the mean (a ) and the range (a) com- 
m 

ponents of the external loads.  Liu further analyzed the prob- 

lem [122] by considering a hysteresis energy dissipation model 

and pointed out that the effect of the mean stress in crack prop- 

agation is not significant and the function F is proportional 

to a2: 

da 
air = Ca2a (81) 
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McEvily and Illg [36], approaching the problem from 

a somewhat different point of view, argued that the local 

stress immediately ahead of the crack tip is raised to the 

fracture level as a result of work hardening under cyclic load 

thus causing rupture.  It was then stated that the crack propa- 

gation rate 4^- must be a function of the maximum stress around 3 dn 

the crack tip: 

dW = f(amax) 
(82) 

Assuming the crack as being a flat elliptic hole, amax may be 

expressed as 

ma x = Ksa= (1 +2/|), (83) 

where K  is the static stress concentration factor and p is 
s 

the radius of curvature at the tip region of the crack.  The 

specific form of the function (82) was given by McEvily and 

Illg by analyzing the experimental results (on the aluminum- 

copper alloys) in the following form: 

10<ho<&> 0.00509 Ksa 5.472 - 
34 

Ksa-34 
(84) 

Observing that a/a" = k is the stress intensity factor 

for the configuration under consideration, Hardrath and McEvily 

later [118] pointed out that (82) may also be considered to be 

a function k.  From (83), it is indeed seen that c*  v - 2k//p", 
ill a X 

as 1<<2/a/p.  This point was independently observed by Paris, 

pointed out in various publications [39,42,119,120] and elu- 
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cidated in his thesis [121].  The central point in this argu- 

ment is that the stress intensity factor is a parameter which 

represents both the geometry and the external loads and is the 

true measure of the stress state around the crack tip.  Hence, 

it should be the most important factor affecting the crack 

growth rate. 

Similar continuum models have been developed by Mc- 

Clintock [123] and Schijve [37]. A critical analysis of various 

models mentioned above is given in [42], where on the basis of 

a broad range of data, it was tentatively concluded that 

^ = C4k\ k = a/ä (85) 

the constant C. being a function of the material parameters 

(see Figures 20 and 21).  In a discussion of [42], McEvily 

pointed out that even though the fourth power model (85) repre- 

sents the data on high strength aluminum alloys quite satis- 

factorily, it is not so satisfactory for some other copper 

alloys.  He further argued that crack growth rate would be 

proportional to the energy stored in the plastic zone.  As- 

suming that the density of this energy around the crack tip 

can be represented by k2 and the relevant volume of the plastic 

zone by that of a rectangular strip ep ahead of the advancing 

crack, one obtains 

da 
dn k2ep (86) 

where e is a constant and p is the plastic zone size.  For 
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small values of p/a ratio, it can be shown that p„k2 and hence 

(86) reduces to (85).  If p/a is not small, p is no longer 

proportional to k2, which explains the higher powers observed 

in the copper alloys referred to by McEvily [124]. 

Recent work on the fatigue crack propagation indicates 

that there is a sudden surge of enthusiasm for using the stress 
* 

intensity factor as a correlation parameter , partly no doubt 

due to the appealing simplicity of the approach.  Even though 

the underlying basic idea seems to be sound, the user should 

be aware of its potential as well as the limitations.  In the 

following section, this point will be elaborated somewhat 

further. 

2.2 A Simple Model 

The primary aim of all the continuum models is to 

provide the design engineer with a quantitative tool which can 

be used in predicting fatigue crack growth characteristics in 

a given structure under given external loads and environmental 

conditions.  On one hand, to be useful, the model must be 

relatively simple and must contain only the field parameters of 

the system which are readily available to or can be evaluated 

by the design engineers.  On the other hand, to have a wide 

range of application without significant modifications, it 

must have a sound physical basis, that is, it must conform as 

See, for example, the papers presented at the 1966 Annual 
Meeting in Atlantic City, New Jersey. 
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closely as possible to the basic features of the microstruc- 

tural theories which are known to correctly explain the 

phenomenon of fatigue.  Thus, one of the important functions 

of such a model would be that it can be used to predict the 

crack growth characteristics of structures with more compli- 

cated geometries and subjected to more complex loading condi- 

tions from the results of simple one-dimensional experiments, 

that is, it would serve as a basis of comparison in fatigue 

studies and predictions. 

If one considers then the composition and the micro- 

structure of the actual materials, the diversity in geometry, 

loading conditions and environment, and finally the nebulous 

state of the microstructural fatigue theories, even to talk 

about quantitative predictions by means of a unified model 

would sound rather pretentious.  However, here too, once again 

empiricism seems to come to one's aid.  In technical literature 

today, there is a great wealth of experimental fatigue data 

which has been attempted for correlation in every conceivable 

way.  The output in these studies has been invariably the 

(surface) measurements of the size of fatigue cracks äs a 

function of load cycle.  The results of no two experiments may 

be identical, but there is an apparent similarity in the trends 

and separately, all seem to be surprisingly very smooth.  This 

then indicates that no matter what the complexity of the phe- 

nomenon, a semi-empirical continuum approach to the problem 

is justified. 
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However, this seemingly smooth growth of macrocracks 

should be understood in light of relatively low sensitivity 

or detection power of the measuring instruments and as an 

average of basically irregular fracture propagation in indi- 

vidual grains and through the grain boundaries.  Neither the 

crack front is a smooth curve remaining parallel to a given 

direction as it propagates nor is the fracture surface a 

mirror-smooth plane.  Some fractographic studies indicate that 

the crack grows in every cycle [37,125,126] (e.g., in aluminum 

copper alloys), and some indicate the growth as being basically 

discontinuous [118,127] (e.g., in aluminum-zink alloys and 

cold-rolled aluminum).  Also, there is every indication that 

the direction of observed striations depends on the orientation 

of the particular grain and is not necessarily perpendicular 

to the gross crack growth direction [125]. 

Against this background then, in order to derive a 

quantitative model, we will now assume that at the microstruc- 

tural level the crack nucleation and growth are caused by 

cyclic slip which is a geometric consequence of dislocation 

movements along the glide planes.  In the whole, the fatigue 

crack propagation is due to the formation, the growth and the 

coalescence of microcracks, be it at the tip of the main crack 

or ahead of it and co-planar or not.  It then appears that 

since at the microstructural level, dislocation motions are 

the most important factor contributing to the (local) nucle- 

ation, growth and propagation of the fatigue cracks, in the 

final analysis, the (continuum) factors controlling the density 
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of these dislocations and the forces moving them have to be 

the primary factors which influence the fatigue crack propaga- 

tion. Thus, we will start with the following simple expression 

for the crack growth rate [37,129]: 

Aa _ 
An 4>mb (87) 

where a is the characteristic length of the fatigue crack 

(e.g., half-crack-length in a wide plate with a central crack), 

n is the number of load cycles, m represents some kind of an 

average (on the primary glide planes along the crack front) 

of the total number of moving dislocations which could possibly 

contribute to the crack extension, f is a coefficient repre- 

senting the fraction of the total number of dislocations which 

effectively contribute to the crack growth (0<C|><1) and b is 

the magnitude of the Burgers vector.  It is generally assumed 

that [37] at low growth rates, the dislocations move towards 

the crack and "flow" into the tip region (the dislocation- 

absorption mechanism) and at high rates, due to the presence 

of high shear stresses, they are "generated" at the crack tip 

(the dislocation-generation mechanism).  It is more likely that 

both mechanisms may be active simultaneously, the former being 

more dominant in low rates and the latter in high rates. 

It is obvious that the quantities <j> and m will depend 

on the microstructure of the particular material as well as 

the field variables such as the geometry, temperature and 

stress (or strain) distribution around the crack front.  One 

109 



of the basic deficiencies of the continuum models (including 

the present one) is their inability to account for the micro- 

structural effects (even as simple and as important a factor 

as grain size) in a quantitative and rational manner, or, in 

fact, their total exclusion of such factors from the consider- 

ations.  Thus, even if the whole reasoning leading to the re- 

lationship between <j> and m on one hand and the continuum vari- 

ables on the other is flawless, the model is bound to be only 

partially successful.  This, of course, is the reason for the 

discrepancies observed in correlating against the same paramet 

(such as the stress intensity factor), the fatigue results ob- 

tained for basically the same material with different micro- 

structures.  The continuum models for a complex phenomenon 

such as fatigue must then be viewed in light of this somewhat 

serious limitation. 

er 

To relate the mi crostructural variables <f> and m to 

continuum variables around the crack front, here we will assume 

that the dislocation movements are concentrated mostly in the 

plastic zone and those confined to a plane emanating from the 

crack front will primarily be responsible for the creation of 

a new surface in a given cycle.  Quantitatively, these two 

groups of variables are related by 

ep = pAb (88) 

where Ep is the plastic strain, P is the dislocation density, 

A is the total area swept by the dislocations and b is the 

magnitude of the Burgers vector.  Thus, it may be assumed that 
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the factor m will be a function of a representative length of 

the plastic zone measured from the crack tip and the magnitude 

of the plastic strains.  At present, the only reliable infor- 

mation on plastic strains is available for the longitudinal 

shear of virgin material [88,89].  Hence, on account of a 

lack of quantitative information about plastic strains in 

plane problems under repeated loads and considering the fact 

that the plastic zone size, p, is dependent on the distribution 

of these strains, with the simplifying assumption of geometric 

similarity, it may conversely be assumed that the magnitude of 

the plastic strains will be dependent on the plastic zone size. 

Since m refers to the total number of dislocations in a given 

glide plane, it may then be expressed as a function of maximum 

plastic zone size: 

■ ■ VP..x> <89) 

It is easy to argue that the coefficient <j> will have 

to be a function of the factors compelling the dislocations to 

move.  We also recognize that the crack growth is due to the 

phenomena taking place within the plastic region and that the 

true measure of the severity of the forces moving the disloca- 

tions in the plastic region is the magnitude of the plastic 

strains.  Thus, we may assume 4» to be a function of the range 

value of the plastic strains, or following a similar argument 

as before, a function of a corresponding range component of the 

plastic zone size, pr: 

♦ - f2(Pr) (90> 
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As shown by Schijve [37] and Crews and Hardrath [130], the 

strains around the tip of a crack or notch stabilizes after 

the first few load cycles and hence it is not unreasonable to 

talk about the maximum or range values of plastic strains or 

corresponding plastic zone sizes. 

The nature of the functions f] and f£ is unknown ex- 

cept that they are monotonically increasing functions and 

vanish at zero.  Thus, within given ranges of p   and D 
•max    Hr' 

f}   and f2 may be approximated by appropriate power functions 

as follows: 

fl(Pmax> ~-  Vmax • f2^r) a  Vr" (91) 

where A], A2, a}   and a2 are positive constants.  Combining the 

constants and considering the crack growth as a continuous 

process, (87) may then be written as 

dn     pmax Pr (92) 

From the arguments leading to (92), it is clear that 

the nature of the functions f] and f2, and hence, the values 

of the constants A, 0] and ^  will be different for different 

materials as well as for the same material with different 

microstructures.  Also, because of the limited scope of the 

approximations given by (91), the constants U] and <»2 are ex- 

pected to depend on the range of the variables p   and n 
'may    u H*,» 

attaining greater values for great 
max 

er Pmax and Pr-  Tnus» the 
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possibility of a universal power law has been ruled out. 

In order to apply the model given by (92), analytical 

estimates of pmaY and pr and experimental evaluation of the 
Ilia X        i 

constants A, Q], <*2 will be needed.  Even though the exact 

solutions are not available, the plastic zone sizes may be 

closely estimated in various ways.  The technique used by 

Dugdale [85] for this purpose and later extended to work- 

hardening materials by Rosenfield, Dai and Hahn [131] appears 

to be fairly realistic and the estimate seems to agree with 

the experimental results quite satisfactorily.  Dugdale's 

technique is based on the removal of the stress singularity 

at the crack tip by introducing a rigid plastic strip ahead 

of the crack.  For the plane problem with a central crack of 

length 2a, Dugdale model gives 

® 

[sec($2—) - 1] (93) 
2a ys 

where a°° is the uniaxial stress at infinity and ays is the 

yield stress.  To find estimates for pmax and pr, in (93), 

a°° may be replaced by the maximum and the range value of the 

cyclic stress while using a somewhat greater value for ays 

because of the work-hardening in the material.  Note that if 

the width-to-crack length ratio-in the plane is not sufficiently 

made. 

large, necessary corrections for Pmax and p„ will have to be 

For small scale yielding, that is, if the plastic zone 

size is small compared to the crack length, (93) may be approx- 
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imated as 

P - 2 ^27—)  " 2 (77->  k2 
ys        ys 

max /i" and k = o" /a, it then follows that 

(94) 

where k = a"/? is the stress intensity factor.  With k 
max 

max 
ys yS 

(95) 

where ar = (amax - amin)/2.  With (95), the crack propagation 

model, (92) becomes 

£=Bk     ]   k     2 
dn max     r 

or  letting   3 =   (amax  +  amin)/( Gmax   "   amin)'  we  have 

ft-Bd + ß)
2ai sy^ (96) 

The obvious advantage of (96) is that as long as the small 

scale yielding approximation is valid, it is applicable to all 

plane problems with a propagating through crack - not just the 

infinite plane with a central crack loaded at infinity, for 

which it is derived. 

To demonstrate the applicability of the model as a 

comparative tool, we consider the problem of cylindrical bending 

of a thin plate.  In this case, the plastic zone size pL is 
b 
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estimated to be [127] 

TTO. 

Pb = a[sec(^—) - 1] 
ys 

(97) 

where a.™ is the value of the surface stress at infinity. 

Again for small scale yielding, we may write 

1 
b max 2 Kb max **ö~' 'br 

1 1,2  (_I \ 
2 Kbr l4ays

; (98) 

where k. =   aT  /a is the stress intensity factor in bending. 

Because of the similarity of fracture modes, if one assumes 

that the constants A, a, and a- in (92) will be the same for 

extension and bending, substituting from (98) into (92), we 

obtain 

da 2a,  k.  2(a,+a9) w = B(1+ß)    (4n) (99) 

Comparing with (96), it is found that 

1 da        .     *br kk. 
2(o'l+a2)  l+ßb 

2al da 

1 + ß     dn 
(100) 

that is, if the fatigue crack growth characteristics for ex- 

tension is known, for the same material crack growth rate for 

bending may be obtained from (100). In (100), the subscript 

b refers to the bending case. Finally, it should be pointed 

out that in the model discussed above, the effects of micro- 

structure, the temperature and other environmental factors 
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such as the atmospheric conditions have not been taken into 

account.  It is believed that the empirical constants A (or, 

B), a-, and a- are sufficient to account for the variations in 

loading conditions and geometry, but it is doubtful that by 

any proper adjustments they can be made to fully account for 

the other factors mentioned above; in fact, it is doubtful 

that any continuum model can. 

2.3 Some Experimental Results 

As an application of the model given in the form of 

(96), we will consider the experimental data given by Broek 

and Schijve [130]*.  In [130], 2024-T3 and 7075-T6 aluminum 

alloy plates with central cracks were used as specimens and 

the primary purpose was a systematic study of the effect of 

mean stress on the crack growth rate, where ß was varied be- 

tween 1.13 to 4.8.  In the following analysis, the stress in- 

tensity factors were corrected for plate width by using Isida's 

results [131]. 

In analyzing the results of [130], first the crack 

growth rates da/dn were correlated against k  for each value 
2a-. 

of ß, noting that for a fixed ß, B(l+ß)   is constant.  In 

a log-log plot, this gives the values for 2(a,+a2) which are 

seen on column 2 of Tables I and II.  Column 3 in the tables 

In the data given in [130], for all specimens o°°     /a       was less 
msx y s 

than 0.5; thus the error involved in the respective plastic zone 
sizes because of the approximations (95) will be less than 15% 
(see:  [127]). 
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shows the correlation coefficients, r for the least square 

straight-line fits of log (j~) vs. log kr<  The closeness of 

r to unity indicates that within the range under consideration, 

the assumption of the power relationship is justified.  For 

all tests, 2(a-|+a2) ranged between 3.05 and 4.34, with an 

average of 3.62 for 2024-T3 and 3.9 for 7075-T6.  Column 4 in 
2a, 

the tables give the values of B(l+e)   obtained from (96) by 

using the average values for 2(a,+a2).  The values of B and a, 
2a, 

were then obtained from the log-log plot of B(l+ß)   vs. 

(1+ß).  In this case too, least square straight line fits re- 

sulted in correlation coefficients very close to unity.  Using 

these values, the crack growth rates for the tests reported in 

[130] may be expressed as 

^ = 2.679 . 10'19 (1 + B)1*72 k^3'62 for 2024-T3 r 

(101) 

4| = 6.221 . 10"20 (1+e)1*78 kr
3*9  for 7075-T6 

For extreme values of ß, the experimental results and 

the solution given by (101) are shown in Figures 22 and 23. 

The figures indicate the shift in the theoretical curves as 

well as in the experimental data for varying values of ß. 

Considering the fact that the scale is logarithmic, parallel 

to the da/dn axis, the shift is not insignificant. 
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Figures 24 and 25 show the crack propagation rates 

in 2024-T3 and 7075-T6 aluminum plates with central cracks 

and subjected to cylindrical bending [127].  Comparable ex- 

tensional results for ß=0 were obtained earlier by Illg and 

McEvily [132] and are shown in Figures 26 and 27.  The summary 

of these results is seen in Table III.  Columns 3, 4 and 5 show 

the exponent 2(a-.+a2), the constant B and the correlation co- 

efficient r for a best fit in the log-log plot of -^  vs. k^. 

In the case of ß=0, from (100) it is seen that the crack growth 

rate in bending may be obtained by multiplying the crack growth 

rate for the extension corresponding to the same stress intensity 
-2(a-.+a2) 

factor by 2        .  From (96) and (99), we thus obtain: 

da 

ext. 

2 (a-, +a0)  da 
B kr      , <Hn> bend 

B(^>)2(Va2) 
(102) 

In (102), because of the similarity of fracture modes, 

as a first approximation, it was assumed that the constants B, 

a-, and a2 would have the same values in extension and bending. 

Table III indicates that different set of values are obtained 

not only for bending and extension but for each group of tests 

in either type of loading.  Hence, to compare the crack growth 

rates under extension and bending, we may have to select an 

appropriate fixed value for 2(a-,+a2).  For convenience, here 

we select 2(a,+a2) = 4 and express the experimental results in 

the following form 

ldnJ ext. 

Di 1.4   /da_\ 
b  Kr • ldn; = B' X4 k 

bend br (103) 
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From (102), it is seen that the theoretical value of x   is 0.5 

whereas the experimental values are shown in Table III.  Con- 

sidering the possible differences in the materials used in the 

extension and bending tests and the approximation involved in 

selecting the common exponent 2(ai+a2)» the agreement seems to 

be acceptable. 

Figure 28 shows the crack growth rates in extension 

and bending, (the latter shown only by its scatter band covering 

95% of the population) plotted against the plastic zone size. 

In a limited sense, Figure 28 may be considered as a verifica- 

tion of the model given by (92) as well as the fact that the 

constants B and a-,+cx2 are essentially the same for bending and 

extension.  However, due to the very limited nature of the data, 

this conclusion should be regarded as tentative and any firm 

statements to this effect will have to wait for the results 

of further studies. 

Finally, we will make the following remarks concerning 

the importance and necessity of the plastic zone size and the 

plastic strains as correlation parameters in analyzing the 

fatigue crack propagation phenomenon: 

a)  In the presence of any appreciable plastic de- 

formations, the plastic strains and the plastic zone size are 

the true measure of mechanical phenomena taking place around 

the periphery of the propagating crack and their range of appli- 

cation is not restricted by the stress ratio ^/a     .     In this 

respect, for example, it is difficult to justify the use of 
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the stress intensity factor as a correlation parameter for 

high values of a/a™. 

b) In certain configurations with theoretically 

same stress intensity factor, it is possible to have very dif- 

ferent growth rates which cannot be predicted with the stress 

intensity factor as the correlation parameter but could easily 

be explained by using the plastic zone size.  The plate bending 

vs. extension discussed above is one example.  Perhaps as a more 

important example, one could mention flat vs. shear or plane 

strain vs. plane stress modes of crack propagation in relatively 

thin plates.  Although this point may require a more careful 

and extensive study, the results given by Schijve [133] indicate 

a definite change in the crack growth rates at the flat-to-shear 

transition point, growth rates being higher in the shear mode. 

Since for the same intensity factor, the plastic zone size in 

plane stress is greater than that corresponding to plane strain, 

the model outlined above seems in principle to account for this 

variation. 

c) Plastic deformations may be considered as the nat- 

ural link between purely nechanical continuum variables and the 

microstructure of the material.  As mentioned earlier, an ele- 

mentary rational fatigue model should include not only the me- 

chanical factors but also some of the important microstructural 

factors such as the grain size.  The chances of success towards 

developing such an integrated model may be improved if one tries 

to link the important microstructural factors quantitatively 

to the plastic deformations. 
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2.4 Summary 

In this part, the continuum theories of the fatigue 

crack propagation have been reviewed.  The existing theories 

deal, almost exclusively, with the propagation of fatigue 

cracks in thin plates under symmetric plane extensional loads, 

and consider only the effects of mechanical continuum variables. 

The results are invariably expressed by a model of the form 

where 4^- is the crack growth rate, a represents the external 
dn 

loads, usually the range value of the cyclic stress, a is the 

half-crack length and C is a material constant which is to be 

determined experimentally. Aside from the technological im- 

portance of the problem, the investigators in this field have 

been encouraged by the smooth and monotonic nature of the ex- 

perimental data in their search for a continuum model, partic- 

ularly in the form of power functions. 

In recent years, the use of the stress intensity factor 

as the correlation parameter in analyzing the fatigue results 

has acquired considerable prominence.  The main reasons for 

this seem to be the simplicity and the universality of the con- 

cept as well as the fact that almost all the existing theories 

can fully or approximately be expressed in terms of the stress 

intensity factor.  However, in using it, certain inherent limi- 

tations of the concept should be kept in mind, namely that, 
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a)  in the presence of appreciable plastic deformations around 

crack tip, it no longer represents the true mechanical condi- 

tions, b)  it fails to distinguish between two basically differ- 

ent phenomena which may have same numerical values for stress 

intensity factors (for example, plane strain vs. plane stress 

and plane extension vs. cylindrical plate bending). 

The model based on the plastic deformations around the 

crack front has been developed partly to overcome these limita- 

tions and partly for the belief that a quantity based on the 

plastic deformations may prove to be a more rational correlation 

factor if one eventually considers incorporating some of the 

important microstructural effects into the crack propagation 

theories. 

To demonstrate the application of the model, the crack 

propagation in plates with variable mean stress and the fully- 

reversed cylindrical bending problem have been considered.  Anal- 

ysis of bending results indicate that the model may prove to be 

adequate as a satisfactory comparative tool in studying fatigue 

crack propagation in the same material under different type of 

loading conditions. 

2.5  Suggestions For Further Research 

Perhaps one of the most important areas in the study 

of fatigue crack propagation which requires close attention is 

the quantitative analysis of microstructural and environmental 

effects and the inclusion of some of the more important of these 
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effects in an integrated theory.  Particularly, among these 

areas which should be studied, one may include the effect of 

grain size ranging from the fine grained materials to the 

case in which the grain size is no longer small compared to 

the smallest geometric dimension. 

The effect of orientation and distortion of the grains 

(e.g., due to the cold working).  In some cases, this effect 

may be studied as an anisötropic continuum phenomenon by 

taking into consideration the variations in the mechanical bulk 

properties of the material with changing directions.  However, 

since these variations are insignificant compared to the ob- 

served changes in the fatigue crack growth characteristics in 

the material*, a satisfactory explanation cannot be obtained 

without considering the microstructure. 

Environmental effects, emphasizing the temperature and 

the atmospheric conditions. 

Another area which needs to be studied is the plastic 

deformations around the front of a propagating crack with the 

cyclic nature of the load taken into consideration and the re- 

lated problems such as ductile-to-brittle and flat-to-shear 

transition phenomena which are observed in thin plates.  This 

problem requires experimental as well as extensive analytical 

effort. 

For example, Schijve [133] reports that in the 2024-T3 aluminum 
plates loaded perpendicular to the direction of rolling,the crack 
growth rate was 40% higher than that observed in the specimens 
loaded parallel to the rolling direction. 
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A group of problems which is worthwhile to investigate 

is related to certain macroscopic factors.  Among these, we 

may mention a systematic study of the effect of plate thickness, 

frequency of loading, time-dependent nature of the magnitude 

(and possibly the frequency) of the external loads (random or 

deterministic) and the complex nature of the loading conditions 

giving rise to theoretically more than one mode of fracture 

at the crack tip.  For example, Schijve [135] reports that the 

crack growth rate increases with increasing plate thickness and 

slightly decreases with increasing frequency.  Qualitatively, 

one may explain the former by a statistical size effect and 

the latter by the strain rate effects.  However, a quantitative 

analysis would be very useful. 

From the practical viewpoint, the cumulative effect 

of the varying load amplitudes on the crack propagation rate 

is one of the most important factors which merits a systematic 

study and which may have to be thoroughly understood before 

any meaningful attempt can be made to study the crack growth 

phenomenon under random loads. 
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TABLE   I 

(2024-T3,   Ref.   130) 

2(a-|+a2) 

B(l+ß)      '-10,ö 

(2(a.,+ci2)   =   3.62) 

4.80 3.584 .988 

3.60 3.814 .967 

3.00 3.639 .982 

2.25 3.697 .980 

1.85 4.176 .982 

1.80 3.378 .981 

1.38 3.816 .984 

1.41 3.445 .979 

1.13 3.048 .976 

3.715 

2.827 

2.332 

1.661 

1 .544 

1.428 

0.961 

1.112 

.719 
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TABLE II 

(7075-T6, Ref. 130) 

4.80 

3.60 

3.00 

2.25 

1 .85 

1 .80 

1 .38 

1.41 

1 .13 

2(a-j+a2) 

4.199 

3.817 

4.262 

3.731 

4.343 

3.462 

4.208 

3.463 

3.644 

.989 

.989 

.983 

.977 

.983 

,984 

,991 

,984 

976 

4 

B(l+3)      '.10iy 

(2(ai+a2)   =   3.9) 

28.719 

18.559 

14.311 

9.594 

5.148 

7.390 

4.272 

4.704 

2.939 
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TABLE III 

Thickness 

(in) 

7075-T6 .050 

Bare and Clad .100 

Bending, ß=0   .120 

2024-T3 .050 

Bare and Clad .080 

Bending, ß=0 .100 

.125 

.160 

2(a-|+a2) 

3.06 

3.21 

4.19 

4.43 

4.35 

3.99 

2.89 

2.62   10 -18 

8.80   10 

2.83       3.80   10 

5.35 10 

5.20 10 

1 .08 10 

3.99 10 

9.20 10 

•19 

■17 

■23 

-24 

-23 

-22 

■18 

(2(ai+a2)   =   4) 

.87 

.96 

.99 

.96 

.97 

.97 

.99 

.98 

.460 

.474 

.479 

.483 

.493 

.500 

.502 

.441 

7075-T6 

Extension,   B=0     .081 

[132] 

3.68       4.12   10 
-20 98 

2024-T3 

Extension,   ß=0     .081 

[132] 

3.84       2.09   10 
•20 .99 
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LIST OF SYMBOLS 

a 

c. 

E 

v 

A , y 

P 

k 

p. q 

Vo 

V 

r,   e 

x, y, z 

u 1 (u , v, w) 

U 

V 

T 

Half-crack length 

Dilatational wave velocity; 

c,2 = (A' + 2y)/p, x' = A for 

plane strain, \'   = 2Ay/(x+2y) for 

plane stress 

Shear wave velocity; c2
2 = y/p 

Rayleigh surface wave velocity 

Longitudinal wave velocity; c 2 = E/p 

Young's modulus 

Poisson's ratio 

Lame's constants; x   =   Ev/(l+v)(l-2v) 

V   =   E/2(l+v) 

Mass density 

= c2/Cl 

Stresses at infinity 

Crack velocity 

= Vo/c2 

Polar coordinates 

Rectangular coordinates 

Components of displacement vector 

Time 

= Cpt 

Fracture energy 

Work of the external forces 

Elastic potential 

Kinetic energy 
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°ij (ax' V'1 

£ij (ex' "xy"*) 
da 
dn 

Kr* max 

P» Pb 

qy 

°ys 

Dissipative energy 

Components of stress tensor 

Components of strain tensor 

Fatigue crack growth rate 

Range and maximum values of stress 

intensity factor for cyclic loads 

Plastic zone size 

Yield stress in shear 

Yield stress in extension 
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APPENDIX A 

AN ESTIMATE OF THE PLASTIC ZONE IN THE SHEAR PROBLEM 

In order to examine the validity of the ideal model pro- 

posed by Kostrov [79,80] and used in Sections 1.4.3 and 1.4.4 

of this chapter, namely that the characteristic plastic zone 

size around the periphery of the propagating crack is pro- 

portional to the characteristic size of the crack itself, we 

will give an estimate of the plastic zone size by using a 

method due to Dugdale [85].  In the case of propagating longi- 

tudinal shear crack, the problem is the following:  Let the 

velocity of an internal crack in an infinite medium under 

anti-plane shear be V = vc«; assume that the only plastic de- 

formation in the solid takes place along very thin strips lying 

in the plane of the crack and ahead of the crack tips and let 

the propagation velocity of the (outer) ends of these strips 

be V, = v,c2; further, assume that in the plastic strips, the 

stress state is uniform and equal to the value of yield stress 

of the material in shear, q ; what is the velocity V-j? 

The criterion to be used to determine V-, is that the stress 

state at x = + V,t obtained from the superposition of stresses 

due to the external load q at infinity and tractions T  = q 

on the crack surface V t<|x|<V,t in a medium containing a propa- 

gating crack of length 2V-,t be nonsingular.  A similar problem 

for a plane with a semi-infinite crack and subjected to trav- 

elling pressure on the crack surface was considered by  Goodler 

and Field [37]. 
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For shear stress x  = q at infinity, the solution valid 

for small values of U-v-, | was found to be (see Section 1.4.4) 

4 ( ) : 2g_L v K(vJ  "* 
1       yTr   '   ]  /?^-V^ 

(A.l) 

For the solution due to the tractions T  = q on the crack 

surface, VT<|X|<V,T, we obtain 

q„T   1    -v   v-,   /a2-v-,2 

•2(0 = - ■J-——— (/    W1)-—-7=; 
iryi /?Z-V-| z  -V,   V   (a-c) /1-ff1 

da 

which, for small values of |c-v,|, may be written as 

*2U) 
2c)v             ] 

^ V,F(v, ,a, )    
y TT 1 /^T 

(A.2) 

sin a, = 

rVi2_y2 

1-v2 

where F(v,, a,) is the elliptic integral of first kind. 

From (A.l) and (A.2), the condition of finiteness of the 

stresses at x = Fv,x may be obtained as 

q K(v]) = q F(vn ,<*.,) (A.3) 

Noting that AV = v, - v is small compared to v and using the 

asymptotic expansions for the elliptic integrals (A.3) may be 

reduced to the following more convenient form: 
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(A.4) 

f(fl- v) -  z(1-v*)K»(v)  
T\   ' '   1.(3_)

Z
K(V)[E(V)-(1-V2)K(V)] 

It is easily verified that as v+0 (A.4) reduces to the ex- 

pression giving the plastic zone size, p, in the static case. 

In fact, multiplying (A.4) by t, letting AVT = p and vx = a, 

we find 

ir2q2a 
= Sq*~ My 

(A.5) 

which is the result obtained in static problem for small scale 

yielding [86].  After determining v] from (A.4), the plastic 

zone size is obtained from p = (v-,-v)c2t. 
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APPENDIX B 

EVALUATION OF VARIOUS ENERGIES IN THE PLASTIC REGION 

To have some idea about the nature of energy balance around 

a running crack in the presence of plastic deformations, in a 

very simple manner, we compute below various components of 

energies for the longitudinal shear problem.  For simplicity, 

we do this under rather restrictive assumptions, namely, that 

the crack velocity is small, hence the quasi-static assumption 

similar to that made by Mott [27] is valid, there is no strain 

hardening,  the plastic region is small compared to the crack 

length, is circular and remain so while the crack is growing 

and, more importantly, that the time rates of the external 

work done by the tractions on the plastic zone boundary, the 

plastic work, the stored elastic energy and the kinetic energy 

in the plastic region may be approximately evaluated by neg- 

lecting the effects of unloading, residual stresses and plastic 

waves arising from the motion of the plastic region with the 

moving crack.  This last assumption is rather severe and may 

diminish the reliability of the results; however, it may be 

justified only by considering the fact that all these effects 

remain somewhat autonomous during the crack propagation and 

the error involved may not be great enough to change the nature 

of the qualitative conclusions. 

For the longitudinal shear problem, in the circular plastic 

region ahead of the crack tip, the displacement and the strains 

may be written as follows [88,89]: 
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w(r,e,a) = J-ä. sin e 

(B.I) 

rz 
= 0 y     . sii£°J_± u» 'fi7  no   r ez  pqy  r 

where the notation is shown in Figure 19.  From the quasi- 

static assumption, we have W - |f a".  For one-half of the 

plastic region and the unit thickness, we then obtain 

T = 
. 7 p cos  e 

2 
1 / '/ pw'2  r dr de 

TTpq8a2a'2 

64y*qu° 
o  o 

T'   =   3^qyaa-   U-2  +  aa'-) 

(B.2) 

7 p cos e 
V = / / £VYez 

0   0 J 

1 q  ) + i- q*]  r dr de y   Hyy        2y   ^y 

Sirq^a2 

T6?q7 
(B.3) 

V   = Sirg^aa' -^7 

U-   =  /  T__ W   ds  =  / <Tez dr + Trz r de)w' 

(B.4) 

U*   = 
irg^aa 
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>ta2 
In (B.3), V is the sum of elastic energy V,- = ^       •>   and the 

t I by Q /■ 

plastic  work  V. 
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FIGURE  1 - SOLID WITH AN INTERNAL CRACK 

FIGURE  2 - COHESIVE STRESSES AT THE CRACK TIP 
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Dynamic Case 
Corresponding Static Case 

F (vh 

FIGURE  3 - STRESS INTENSITY FACTOR VS. VELOCITY RATIO 
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FIGURE  4 - ANGULAR VARIATION OF THE CLEAVAGE STRESS 
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FIGURE  6 - RATES OF EXTERNAL WORK AND CRACK CLOSURE ENERGY 
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FIGURE  5 - SMALL REGION AROUND THE CRACK PERIPHERY 

a-adt a a a+adt 

FIGURE  7 - NOTATION FOR THE CALCULATION OF E' 
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FIGURE 11 - STRESS INTENSITY FACTOR VS. .VELOCITY RATIO IN 

ANTI-PLANE SHEAR 

150 



yz 

FIGURE 10 - PLANE UNDER LONGITUDINAL SHEAR 

FIGURE 12 - NOTATION FOR SHEAR CLEAVAGE 
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FIGURE 14 - ANGULAR VARIATION OF SHEAR CLEAVAGE STRESS 
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FIGURE 15 - ENERGY RATES VS. VELOCITY RATIO 
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FIGURE 17 - RELATIVE SIZE OF PLASTIC ZONE 
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FIGURE 18 - POSSIBLE SHAPE OF THE PLASTIC ZONE 

FIGURE 19 - PLASTIC ZONE AROUND THE CRACK TIP 
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FIGURE 20 - CRACK GROWTH RATE IN 2024-T3 ALUMINUM PLATES IN 

TENSION 
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FIGURE 21 - CRACK GROWTH RATE IN 7075-T6 ALUMINUM PLATES IN 

TENSION 
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FIGURE 22 - CRACK GROWTH RATE IN 2024-T3 ALUMINUM PLATES WITH 

VARIABLE MEAN LOAD 

160 



kr(lb./in.
3/2) 

FIGURE 23 - CRACK GROWTH RATE IN 7075-T6 ALUMINUM PLATES WITH 

VARIABLE MEAN LOAD 

161 



10" 

lO"3- 

I 5- 

2024-T3,BARE a CLAD    ° 
2h = 0.080,0.100,0.125 in.    ° 

10 

d(2a) 
dn 

(in Aye) 

10" 

10 
rS 

2x10 -7 

10 10 

krb(lb./in3/2) 

10 

FIGURE 24 - CRACK GROWTH RATE IN 2024-T3 ALUMINUM PLATES UNDER 

BENDING 
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FIGURE 25 - CRACK GROWTH RATE IN 7075-T6 ALUMINUM PLATES UNDER 

BENDING 
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FIGURE 26 - CRACK GROWTH RATE IN 2024-T3 ALUMINUM PLATES UNDER 

FULLY-REVERSED EXTENSION 
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FIGURE 27 - CRACK GROWTH RATE IN 7075-T6 ALUMINUM PLATES UNDER 

FULLY-REVERSED EXTENSION 
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