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■ Year 2 Progress Report Principal Investigator: C. M. Rutter 

I. Introduction 
The purpose of this Department of Defense Breast Cancer Research Program Career Development Award 
is enabling Dr. Rutter to develop biostatistical methods for breast cancer research. Dr. Rutter's focus is on 
evaluating the accuracy of breast cancer screening. This four year program includes advanced training in 
the epidemiology of breast cancer, training in clinical detection of breast cancer, development of statistical 
methodology, and graduate teaching. A basic knowledge of the epidemiology, disease process and 
detection of breast cancer will guide the development of statistical methods designed to address analysis 
problems encountered when evaluating mammography. Proposed statistical research focuses on receiver 
operating characteristic (ROC) analysis. ROC analysis provides accuracy measures for ordinal tests and is 
a more general analysis strategy than other methods devised for dichotomous test outcomes. Therefore, 
the proposed research will have implications for both ordinal scale and dichotomous test analyses. 
Additional research will explore accuracy measures specific to dichotomous test outcomes, including 
sensitivity, specificity, and positive and negative predictive values. 

Funding number: DAMD17-97-1-7193 
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II. Year 2 Achievements 

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection and treatment 
During this second award year, Dr. Rutter has continued to attend Breast Cancer Surveillance Consortium 
(BCSC) meetings [1], and has presented her research to the BCSC's Statistical Coordinating Center. The 
BCSC is a multi-site NCI-funded study evaluating the performance of mammography in a community 
setting.   Ongoing participation in BCSC meetings has provided Dr. Rutter with important practical 
information about radiologists' interpretation of mammograms, and the timing and execution of 
diagnostic procedures. 

Statistical Research Aims 
Dr. Rutter has continued to expand her knowledge of statistical methods for diagnostic and screening test 
assessment. In particular, her thoughts have been clarified through participation in the Diagnostic Methods 
working group at the University of Washington's Department of Biostatistics. 

Technical Objective 2: Statistical Research. Aim 1: Develop methods for multiple patient assessments. 
Dr. Rutter has continued to work toward publishing her article describing bootstrap approaches for multi- 
site, multi-reader diagnostic test data. A brief version of this article was rejected by Biometrics. A more 
complete version, which includes percentile intervals and comparisons to an analytic estimator, has been 
submitted to Academic Radiology (see Appendix B). The analysis used for this bootstrap paper can be 
conducted using a relatively simple SAS macro. During her third funding year, Dr. Rutter will generalize 
this macro and examine ways to make it more broadly available, for example via the SAS users group 
webpage. 

Dr. Rutter has no plans for further development of this research pathway. This reflects her increased 
knowledge of data collection and use by radiologists, and also reflects recent developments in statistical 
methodology. As described in her year one progress report, generalized estimating approaches for 
diagnostic data have been fully developed [2,3]. These models can accommodate correlated rating data, 
and estimation of models can be carried out using standard statistical software packages. In addition, the 
limited robustness of ROC curve analysis [4] limits the usefulness of robust covariance adjustments.' 

More importantly, multi-site data are not likely to be used when assessing screening mammography. In 
the screening setting, laterally is important but quadrant location within the breast is less important 
because women go on to further diagnostic assessment. Because screening assessments affect the entire 
woman, rather than the breast, statistics that deal with data at the woman-level are most informative. The 
best approach to these data combines breast-level ratings in conjunction with disease state. When a 
woman has bilateral disease, the lowest (least likelihood of disease) rating given to her two breasts is used 
for analyses, capturing potential undercalling of disease. When a woman has unilateral disease, the rating 
given to her diseased breast is used for analyses. Although this ignores overcalling in the non-diseased 
breast, it incorporates critical disease detection information. When a woman does not have disease, the 
maximum (most likelihood of disease) rating is used, capturing overcalling of disease. 
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In the diagnostic setting, both laterality and quadrant are important. These data can be analyzed using GEE 
methods [2,3]. Unfortunately, rating data are generally not collected at the quadrant level. Analysis at the 
quadrant level can also be limited by the accuracy of localization by the gold standard (e.g., pathology 
reports or cancer registry outcomes). 

Technical Objective 3: Statistical Research, Aim 2: Extend exact methods for ordinal regression models 
Development of methods for small samples has been deferred to year 3. Instead, Dr. Rutter has focused 
on methods for adjusting for measurement error in disease status. 

Technical Objective 4: Statistical Research, im 3: Develop methods to adjust for measurement error in 
disease status 
Several authors have explored methods for estimating test accuracy when there are multiple test outcomes 
with no true gold standard.[5-11] Some articles have described methods that allow estimation of accuracy 
in the complete absence of gold standard information.[10,l 1] Over the last year, this topic has been of 
great interest to the Diagnostic Methods working group. Methods that handle missing disease status rely 
on latent variable approaches when the 'definitive' diagnosis is uncertain. These solutions are not 
satisfying because they hinge on a latent, unobserved, disease state. In this case, the referent populations 
are unknown, making comparisons across studies, or from studies to clinical practice, extremely difficult. 
Consider a situation where misclassification can be extreme: screening for alcohol abuse and dependence. 
Suppose there was a new blood test for alcohol abuse and dependence. To test the accuracy of this new 
blood test, the natural reference standard is the Diagnosis and Statistical Manual (DSM) definition of 
alcohol abuse and dependence [12], assessed using a questionnaire. This reference standard is likely to 
misdiagnose some people. However, one of the key purposes of the DSM diagnostic guidelines is 
standardization that allows comparability of independent research. New statistical methods allow 
estimation of sensitivity and specificity relative to an unobserved true state. Unfortunately these 
approaches leave the research community to ponder the meaning of these sensitivities and specificities. 
Exactly what the test detects is unclear because it is essentially undefined, rendering these estimates 
useless. 

An alternative approach is to clearly define the reference standard, and to improve reference standards as 
necessary. In the context of screening mammography, the accepted standard is biopsy and two years of 
follow-up data. Currently, a cancer is "missed" by screening if it occurs within two years of a disease- 
negative screening. Incorporation of stage-of-disease information could improve this gold standard. In 
this case, a cancer is "missed" by screening if it occurs within two years of a disease-negative and the 
woman is node positive. Other information, such as tumor size or grade, could be incorporated into this 
definition. This approach acknowledges the goal of screening mammography: early detection of disease. 

Technical Objective 5: Develop and teach a course in methods for assessing diagnostic tests. 
As the 1999 Genentech Distinguished Professor, Dr. Margaret Pepe will teach a special topics course on 
Medical Diagnostic Testing at the University of Washington's Department of Biostatistics in Spring 2000. 
Dr. Rutter will work with Dr. Pepe developing course materials and lectures, and will guest lecture. 
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Progress Toward Other Grant Aims 
Dr. Rutter is working toward publishing her article (co-authored with Constantine Gatsonis) describing 
models for meta-analysis of diagnostic test data (see Appendix C). These methods were developed as a 
way to appropriately combine sensitivities and specificities from several studies, but can also be applied to 
sensitivity/specificity results from several sites within a multi-site study or from several mammography 
centers within a study. This article was recently rejected by Statistics in Medicine, and Dr. Rutter is in the 
process of revising the article for resubmission to an alternate journal. 

Dr. Rutter has examined the correlation between test and clinical performance measures of 
mammographic interpretation (see Appendix D). This article was submitted to Journal of Clinical 
Epidemiology and is in the process of a second review following an encouraging "revise and resubmit". 
Direct estimation of mammographers' clinical accuracy requires the ability to capture screening 
assessments and correctly identify which screened women have breast cancer. This clinical information is 
often unavailable and when it is available its observational nature can cause analytic problems. Problems 
with clinical data have led some researchers to evaluate mammographers using a single set of films. 
Research based on these test film sets implicitly assumes a correspondence between mammographers' 
accuracy in the test setting and their accuracy in a clinical setting. However, there is no evidence 
supporting this basic assumption. Dr. Rutter used hierarchical models and data from 27 mammographers 
to directly compare accuracy estimated from clinical practice data to accuracy estimated from a test film 
set. There was no evidence of correlation between clinical and test accuracy. These findings raise 
important questions about how mammographer accuracy should be measured.   Dr. Rutter has presented 
these findings to the BCSC, and plans to present to a wider audience at the International Conference on 
Health Policy Statistics: Methodologie Issues in Health Services and Outcomes Research in December 
1999. 

During her year two funding period, Dr. Rutter also coauthored a paper describing the design of the 
mammography rereading studies.[13] (see Appendix E) 

In the last two years of grant funding, Dr. Rutter plans to shift her research goals somewhat, to better align 
them with current needs in mammography research. One new goal is development of methods that handle 
data collected using the Breast Imaging Reporting and Data System (BI-RADS).[14] This standardized 
set of mammographic interpretations proscribed by the American College of Radiology lexicon improves 
data collection by virtue of standardizaton. However, the inclusion of an interpretive code for additional 
work-up complicates evaluation of mammographic accuracy. The additional work-up category does not 
fit neatly into an ordinal outcome scale. These cases include a mix of women, for example, it could 
naturally include both women with suspected cysts (benign disease) and women with suspicious findings 
that need additional evaluation. Models need to be developed to handle these kinds of data. One possible 
approach to these data is extension of two-part models employed in econometrics.[15] The first part of 
the model would estimate the probability of an interpretation based on the current mammogram (i.e., 
additional workup not requested). The second part of the model would describe ordinal outcomes among 
observations with an interpretation of the current mammogram. Inference is drawn from the combined 
results from these two model steps. 
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III. Summary 

Dr. Rutter remains on track with her stated goals, making significant progress towards proposed research 
goals.   At this point in her career development award, she has shifted some of her proposed research in 
response to her increased knowledge of breast cancer screening and advances in statistical methodology. 
Statistical approaches for dealing with errors in the gold standard no longer seem feasible. Instead, the 
focus of research should be on development of more adequate reference standards. New research 
problems have come to the fore. Dr. Rutter has addressed the validity of assessing mammographers 
accuracy using test film sets and in the future plans to address analytic problems related to the BI-RADS 
data collection system. 

Key Research Accomplishments, Year 2: 
• Published article: Pepe MS, Urban N, Rutter C, Longton G "Design of a study to improve accuracy in 

reading mammograms," Journal of Clinical Epidemiology, 50: 1327-38,1997. 
• Submitted article: Rutter CM. Bootstrap estimation of diagnostic accuracy using patient-clustered 

data, Academic Radiology. 
• Submitted article: Rutter CM, Taplin S. Assessing mammographers' accuracy: A comparison of 

clinical and test performance, Journal of Clinical Epidemiology. 
• Developed a clear plan for teaching and developing a course on Medical Diagnostic Testing at 

University of Washington with Dr. Margaret Pepe. 
• Ongoing participation in Diagnostic Methods working group at the University of Washington's 

Department of Biostatistics 
• Ongoing participation in Breast Cancer Surveillance Consortium meetings 
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Appendix A. Statement of Work 

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection and 
treatment. 

Task 1: Months 1-4: Review of information on the epidemiology, diagnosis and treatment of breast 
cancer as suggested by Dr. Margaret Mandelson. 

Task 2: Months 1-48: Attend seminars sponsored by the Seattle Breast Cancer Research Program. 

Technical Objective 2: Statistical research, aim 1: develop methods for multiple patient 
assessments. 

Task 3: Month 6: Review current research for generalized estimating equation and random effect 
approaches for nonlinear models. 

Task 4: Months -11: Test bootstrap, robust covariance adjustment and generalized estimating equation 
methods for breast-level analyses using simulation studies. 

Task 5: Months 12-21: Develop methods for woman-level analysis, possibly including software 
development for random effects in generalized ordinal regression models. 

Technical Objective 3: Statistical research, aim 2: extend exact methods for ordinal regression 
models 

Task 6: Month 22: Review current research in exact methods. 

Task 7: Months 23-34: Extend exact methods and write computational algorithms and programs to 
compute distributions of sufficient statistics. 

Technical Objective 4: Statistical research, aim 3: Develop methods to adjust for measurement 
error in disease status 

Task 8: Month 36: Review current research in errors-in-measurement models. 

Task 9: Months 37-48: Develop simple combined corrections for verification and follow-up bias. These 
methods will be extended to allow adjustments in general ordinal regression models. 

Technical Objective 5: Develop and teach a course in methods for assessing diagnostic tests. 

Task 10: Months 1-24: Collect relevant references and outlining lectures for the methods course. During 
this time, specific lectures may be presented in other University of Washington courses. 

Task 11: Months 25-36: Offer methods course at University of Washington through the Department of 
Biostatistics. 
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Appendix B 

Bootstrap Estimation of Diagnostic Accuracy 
using Patient-Clustered Data 

CM Rutter 

submitted to Academic Radiology 
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Bootstrap Estimation of Diagnostic Accuracy using Patient-clustered Data 

Abstract 

Rationale and Objectives: This article describes simple asymptotically consistent bootstrap 

estimation of test accuracy statistics. Unlike most other methods, the bootstrap approach can 

account for correlation due to multiple diagnostic modalities, multiple readers, and assessment 

at multiple body sites. Bootstrap methods are easy to apply, even in complicated settings. 

Methods: The performance of bootstrap estimates is evaluated and compared to analytic esti- 

mates using a simulation study. Bootstrapping is demonstrated using data from a study comparing 

two angiography methods. 

Results: Analytic and bootstrap estimators had similar coverage rates. Bootstrap estimates were 

slightly better in some cases, and analytic estimators were slightly better in others.   Bootstrap 

percentile intervals had better coverage than asymptotic normal bootstrap intervals. 

Conclusions: Bootstrapping is a useful method for estimating confidence intervals for the area 

under the ROC curve, sensitivity and specificity when data are correlated. 

Keywords: area under the receiver operating characteristic curve (AUC), sensitivity, specificity. 



1. Introduction 

Diagnostic evaluation often requires simultaneously assessing disease at multiple body sites. Ex- 

amples of multi-site diagnostic assessments include screening mammography to detect breast 

cancer, computed tomography of the liver to detect metastatic colorectal cancer(Zerhouni et al, 

1996), and magnetic resonance angiography of leg vessels to detect occlusive peripheral vascular 

disease (Baum et al, 1995). Although the accuracy of these multi-site tests can be estimated 

using information from a single body site, studies that use all available information have more sta- 

tistical power. Reducing site level data to patient level data is the simplest approach to multi-site 

diagnostic assessment. However, composite patient-level measures of true state and test outcome 

reduce the amount of information about test accuracy contained in multi-site assessments. These 

composite measures also ignore disease localization, information that can be more important for 

treatment decisions than global determination of disease presence. 

Estimates of diagnostic accuracy that use multi-site data need to account for within patient 

correlation. Methods for handing multiple assessment of a single site, by different modalities 

or readers, are well developed. Song (1997) gives an overview of current approaches. These 

methods require that patients are either diseased or not diseased, and do not allow true state to 

across the different sites within patients. 

When disease state is dichotomous, logistic regression models can be used to estimate the 

relationship between true state and test outcomes (e.g., Baum et al, 1995). When data are 

clustered within patients, standard methods can be used to adjust the logistic regression coefficient 



covariance matrix for within patient correlation (Lipsitz and Harrington, 1990). The logistic model 

conditions on test results and estimates their association with disease state. These models do 

not result in standard accuracy measures, making comparisons to other studies difficult. 

Obuchowski described a method for estimating standard errors for the area under the em- 

pirical receiver operating characteristic curve based on sums of squares (Obuchowski, 1997). 

Obuchowski's method allows estimation of the standard error of the AUC for a single test, or the 

standard error of the difference between AUC statistics for two tests. Obuchowski's approach 

requires definition and calculation of appropriate sums of squares, and this can become compli- 

cated when there are multiple sources of correlation. For example, when patients are evaluated 

at multiple sites by more than one test with each test independently evaluated by more than one 

reader. 

Pepe recently proposed a general regression methodology that allows multi-site assessments 

(Pepe, 1998). This regression approach estimates the effects of covariates on the receiver op- 

erating characteristic (ROC) curve. The interpretation of the regression model depends on the 

functional form chosen for the ROC curve. Coefficients estimated from a logistic model are inter- 

pretable as the log-odds of correctly classifying a diseased subject for a fixed false positive rate. 

Pepe suggests using bootstrap resampling to estimate standard errors of regression coefficients 

when correlated data are included in these models. 

This article demonstrates a very simple bootstrap approach for estimating true positive rates, 

false positive rates, and the area under the ROC curve for multi-site test outcome data. This 

bootstrap approach is useful for simple comparisons between tests, when there are no covariates. 

When using regression approaches,  bootstrap estimates can provide supplemental descriptive 



statistics. The bootstrap approach is easy to use when there are multiple sources of correlation 

and resulting confidence intervals are asymptotically consistent. 

2. Nonparametric Accuracy Statistics: sensitivity, specificity, AUC 

The accuracy of imaging tests is based on radiologists' interpretations of disease state. These 

interpretations are typically measured using a 5-point ordinal scale that ranges from 'definitely 

not diseased' to 'definitely diseased'. True positive rates, false positive rates, and the area under 

the receiver operating characteristic curve are the basic statistics used to measure test accuracy. 

These statistics condition on true disease state, treating disease state as fixed and known and 

treating test outcomes (ratings) as randomly distributed outcomes. When disease state is known 

without error, these accuracy statistics are independent of disease prevalence. 

When test outcomes are dichotomous, sensitivity and specificity measure test accuracy. Sen- 

sitivity is the probability of a positive test outcome (indicating presence of disease) when the 

target disease is present. Specificity is the probability of a negative test outcome when the dis- 

ease is absent. When test outcomes are ordinal, sensitivity and specificity can be calculated by 

dichotomizing outcomes. However, a single sensitivity-specificity pair cannot completely describe 

the accuracy of an ordinal test because both rates depend on test stringency. Receiver operating 

characteristic (ROC) curve analysis accounts for the tradeoff in these rates as test stringency 

varies. Suppose the ordinal outcome of a diagnostic test, U, takes values in {1,2,... ,K} with 

increasing values of U corresponding to stronger evidence of disease. There are K + 1 possi- 

ble ways to dichotomize the ordinal test, including 'all positive' and 'none positive', and each 

is associated with a sensitivity-specificity pair.   The empirical ROC curve is drawn by plotting 



pairs of observed rates, (1-specificity) versus sensitivity, and connecting the K + 1 consecutive 

points with straight lines. The empirical ROC curve provides a simple graphical description of 

test performance. 

The overall accuracy of an ordinal test can be summarized by the area under the ROC curve 

(AUC). The AUC estimates the probability of correctly ranking a randomly selected (diseased,not- 

disease) pair on the ordinal test scale; It ranges from 0 to 1, with the value 1 corresponding to a 

perfect diagnostic test. A test that is no better than chance has an AUC equal to one half. The 

AUC statistic is unbiased and asymptotically normally distributed. The test of H0 : AUC = 1/2 

based on the asymptotic distribution is equivalent to a Mann-Whitney test (Hanley and McNeil, 

1982). The AUC test is essentially a test for differences in the distribution of test outcomes in 

diseased and not-diseased groups. 

3. Bootstrap estimation of sensitivity, specificity, AUC 

Sensitivity, specificity, and the area under the receiver operating curve (AUC) are all generalized 

U-statistic of order 1: Each of these statistic is a sum of functions of statistically independent 

quantities (Lee, 1990). Because sensitivity, specificity and the AUC are U-statistics, bootstrap 

resampling provides consistent point and interval estimates (Bickel and Freedman, 1981; Arcones 

and Gine, 1992). 

Let tj = (Ui,ti2, ■ ■ ■ ,tim)' be the vector of ordinal test outcomes across m sites for the ith 

subject and let dt = (du,di2, ■ ■ ■, dimy be the corresponding vector of true states, where dij = 1 

if the jth site of the ith patient is diseased and d^ = 0 otherwise.  Written in U-statistic form, 



sensitivity and specificity for the kth cutpoint are: 

sensitivityfc = — V <f>k(U, d*)        and        specificity*. = — V(l - 4>k(U, (1 - d,))) 
«D    i nD    i 

with kernel function <pk{tu dj) = Ej h(Uj)dij where <5fc(£) = 1 if t > k, and Sk(t) = 0 otherwise. 

The associated sample sizes are no = EiEj<% and % = Ei-Ej(l _ dij)-  Here Z) indicates 

presence of disease and D indicates absence of disease. 

The AUC statistic is given by: 

T,(i,j)eD T,(i>j>)eD4>(tij,ti'j>) 
AUC = 

with kernel function 

ip(tij,ti'j') = ( 

1 . if  tij > t{iji 

n      IT     Lij — Li1 jl 

0   if   Uj < ti>j> 

When both diseased and not diseased sites can occur within a patient, the sum corresponding to 

the AUC statistic includes functions of correlated pairs of diseased and not-diseased observations, 

violating U-statistic properties. However, relatively few correlated (D, D) pairs are included in 

the sum. Let pp be the patient-prevalence of disease, and let ps be the expected proportion of 

sites with disease given a patient has disease. If all patients with disease have the same number 

of affected sites, then the proportion of correlated (£>, D) pairs is 

(l-PpPs)N' 

When all patients have a single disease state, ps = 1, there are no correlated (D,D) pairs. The 

number of correlated pairs is maximized at \/N when all N patients have disease (pp = 1). When 



there are correlated pairs, the U-statistic properties of the AUC statistic can be maintained by 

excluding correlated pairs from AUC sums. In most cases this exclusion is unnecessary because 

the number of correlated comparisons quickly becomes negligible as sample size increases. This 

article examines bootstrap resampling that is directly applied directly to AUC statistics, without 

excluding correlated pairs. 

Bootstrap samples are constructed by stratifying patients on overall disease state (any or 

none) and drawing patients, the independent units, with replacement from these strata. Re- 

sampling patient-level data incorporates all sources of within patient variability. Stratifying the 

bootstrap samples by patient-level disease state corresponds to conditioning on true disease state, 

a property of the accuracy statistics sensitivity, specificity and AUC, and reflects the sampling 

strategy often used when evaluating diagnostic test performance. Accuracy statistics are calcu- 

lated for each bootstrap sample. Point estimates are simple averages of statistics. The accuracy 

of two tests can be compared by calculating the difference in accuracy statistics for each boot- 

strap sample, incorporating between test correlation. Standard errors are estimated by observed 

standard errors across bootstrap samples. Standard errors should be based on at least 100 draws. 

Confidence intervals can be estimated using bootstrap estimated standard errors, with a normal 

approximation. Confidence intervals can also be estimated using percentiles, though this requires 

at least 1,000 bootstrap draws. 

4. Angiography Study 

Contrast angiography (CA) is the usual method for mapping vascular occlusion prior to bypass 

surgery in patients with peripheral vascular disease.   Magnetic resonance angiography (MRA) 



is an alternative method for obtaining the same diagnostic information. MRA is less invasive 

than CA because it does not require injection of contrast materials. The ability of CA and 

MRA to correctly identify open vessel segments was compared using a prospective study, with 

intraoperative angiography used as the gold standard.(Baum et al, 1995) Patients were evaluated 

at 15 sites (vessel segments). Analyses were based on 96 patients with peripheral vascular 

disease who had intraoperative angiography results and at least one preoperative angiographic 

tests (eleven patients were missing an MR assessment). On average, 33% of each patient's 

vessel segments were occluded. Overall, 335 of 932 segments with gold standard information 

were occluded (36%). Study radiologists rated the occlusion of each vessel segments using a 

five-point scale: 1) normal; 2) minimal disease (<50% stenosis); 3) stenotic (a single lesion with 

> 50% stenosis but not fully occluded); 4) diffuse disease (multiple lesions with > 50% stenosis 

but not fully occluded); 5) fully occluded. Ratings within patients were moderately correlated, 

with similar degrees of correlation for the two tests. Overall, correlation (based on Kendall's r) 

was 0.20 for CA and 0.19 for MRA. Correlation between sites with the same disease state was 

0.49 for CA and 0.46 for MRA. Correlation between sites with different disease states was -0.34 

for CA and -0.36 for MRA. Correlation between CA and MRA ratings of the same site was 0.62. 

Original analyses examined both detection of near-normal (patent) vessel segments (ratings 

1 and 2) and detection of open segments (ratings 1 through 4). Both methods were similar in 

their ability to detect open vessel segments: both had 81% specificity, CA had an 83% sensitivity 

and MRA had an 85% sensitivity. In detecting patent segments, CA was less sensitive than 

MRA (77% versus 82%) but more specific (92% versus 84%). Based on these descriptive data 

and statistical tests for differences in odds ratios, the original investigators concluded that CA 
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and MRA had similar diagnostic ability. Bootstrap estimation allows us estimate AUC statistics 

for patent segments, to examine whether differences are likely due to a threshold effect, and to 

place confidence intervals on estimated sensitivity and specificity. We report bootstrap percentile 

intervals based on 1000 bootstrap samples. Bootstrap estimates of sensitivity were CA: 76% with 

95% Cl (70.5,81.8) and MRA: 82% with 95% Cl (76.8,87.0). Bootstrap estimates of specificity 

were CA: 93% false positive rate with 95% Cl (89.8,95.9); MRA: 84% with 95% Cl (79.4,88.1). 

CA and MRA had similar empirical AUC statistic. The empirical AUC for CA was 0.879 with 95% 

confidence interval (0.847,0.910). The empirical AUC for MRA was 0.874 with 95% confidence 

interval (0.844,0.904). The bootstrap estimate of the difference in AUC statistics was 0.005 with 

95% confidence interval (-0.035,0.044). 

5. Simulation Study 

This simulation study describes characteristics of bootstrap accuracy and compares them to 

Obuchowski's analytic estimates (Obuchowski, 1997). Bootstrap confidence intervals based on 

normal approximations were based on 100 bootstrap samples. Bootstrap confidence intervals 

based on percentiles were based on 1000 bootstrap samples. Comparisons focus on the observed 

coverage of 95% confidence intervals for differences between two AUC statistics. The description 

of bootstrap estimates also includes coverage rates for estimated false positive rates. 

Simulated data represent comparisons between two tests (A and B) with outcomes on a 5- 

point ordinal scale. Test A has an empirical AUC equal to 0.8 and specificities equal to (0.5, 

0.7,0.9.0.95). Test B has the same specificities and an AUC statistic equal to 0.80 or 0.85. The 

bootstrap's ability to handle multiple sources of variability was evaluated by simulating outcomes 
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for two readers per test. The overall diagnostic accuracy of each test was based on the average of 

the two readers' AUC statistics. Data simulated for two readers assumes that readers evaluating 

the same test had equal accuracy, with the same specificities and the same AUC statistics. Two 

reader bootstrap AUC estimates were calculated by estimating each reader's AUC statistic then 

averaging these within each bootstrap sample. 

Ordinal test outcomes were simulated by categorizing continuous multivariate normal (MVN) 

psuedodeviates. One MVN pseudodeviate of length 4m was generated for each patient-observation, 

where m is the number of sites within patients. Each independent MVN pseudodeviate repre- 

sents a single patient's unobservable continuous test outcome for 2 tests and 2 readers. Within 

patient correlation was induced on the continuous scale. Simulations examine the characteristics 

of estimators for three within subject correlation structures: independent, compound symmetry, 

and disease-dependent. Under the compound symmetry structure, multiple observations within 

subjects are equicorrelated, with correlation equal to 0.50. The disease-dependent structure is 

identical to the compound symmetry structure with one exception: Under the disease-dependent 

structure, observations from sites with different disease states (i.e., (D,D) pairs) are negatively 

correlated, with correlation equal to -0.50. 

Simulations examine 3 sampling scenarios. Under the first scenario (small N) 100 patients, 

50 with disease and 50 without, are evaluated at 4 sites. Under the second scenario (large m) 

100 patients, all with disease, are evaluated at 15 sites. Under the third scenario (large N), 

500 patients, 250 with disease and 250 without, are evaluated at 4 sites. For all scenarios, 

patients with disease are expected to have disease at half of the sites. The number of disease- 

positive sites for each patient was simulated using a binomial random number generator. Ordinal 
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ratings were derived from MVN deviates by assuming an underlying bivariate normal ROC model 

(Hanley, 1989). That is, 'cut points' for each for the five rating categories are set equal to 

0o = -oo, 6k = $-1(l - specificity^), k = 1,..., 4, and 65 = +oo. Given /i and 6, sensitivities 

were sensitivityfc = $(6k + ß). Desired empirical AUC statistics were obtained with ß =1.29 

for AUC=0.80 and ß =1.949 for AUC=0.85. For disease negative sites, the ordinal rating 

corresponding to the MVN deviate y is equal to k when 0fc_! < y < 6k. For disease positive 

sites, the MVIM deviates are first shifted by an appropriate ß, with simulated ratings based on 

categorizing y + fx. 

Simulation results were based on 5,000 simulated data sets for each combination of AUCB 

(0.80 or 0.85), sampling scenario (small N, large m, or large N), and correlation structure 

(independent, equicorrelated, and disease-dependent). 

6. Simulation Results: 

Table 1 shows the observed within-patient correlation in the simulated categorical data. These 

rating data are inherently correlated, since diseased sites were more likely to have high scores 

than not diseased sites. 

Table 2 shows coverage rates of 95% confidence intervals for the difference between AUQ4 

and AUCB based on Obuchowski's analytic estimator, the single reader bootstrap percentile 

interval and the two reader bootstrap percentile interval. Coverage rates for normal-approximation 

bootstrap intervals are not shown because they were similar to percentile intervals, with slightly 

poorer coverage properties. In general, coverage rates of the percentile interval fell between 

coverage rates for the analytic and bootstrap percentile intervals. Both the sampling scenario 

and the correlation structure affected the observed coverage rates, but true differences between 
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the two AUC statistics did not affect coverage. Within the small N and large m sampling schemes, 

intervals estimated from data with compound symmetry correlation tended to have coverage rates 

that were further from the 95% level than estimates based on independent data The bootstrap 

and estimates had very similar coverage rates for the small N and large N scenarios. The analytic 

estimator had better coverage for the large m scenario. Single reader and two reader bootstrap 

estimates had similar coverage rates. 

The analytic estimator and the single reader bootstrap estimator had similar mean squared 

errors (MSE's). Across simulated data sets, the MSE of the bootstrap estimate for one reader was 

less than 0.1% higher than the MSE of the analytic estimate. The MSE of two reader bootstrap 

estimates were approximately half the MSE of either single-reader estimate. 

Table 4 shows coverage rates of bootstrap percentile interval estimates for specificities. Cov- 

erage rates were generally less than the nominal level, but improved as the specificity decreased 

from 0.95 to 0.50 and as the amount of data available for estimation increased Percentile intervals 

had better coverage rates than asymptotic normal intervals (not shown). When specificity was 

0.95, a few (less than 1%) of the asymptotic normal bootstrap intervals fell outside of the (0,1) 

range. 

7. Discussion 

Diagnostic evaluation often involves testing patients at multiple sites. Bootstrap and analytic 

estimation methods allow simple comparisons of AUC statistics based on clustered patient data. 

These methods are asymptotically consistent. However, evaluation of diagnostic tests often in- 

volve relatively small sample sizes.   We used a simulation study to evaluate the small sample 

13 



characteristics of Obuchowski's analytic AUC estimator and bootstrap AUC estimators applied to 

ordinal test data. When comparing two tests with one reader per test, the bootstrap and analytic 

estimators had very similar performance. Both methods produced confidence intervals with ob- 

served coverage rates below the nominal level. Coverage rates of bootstrap percentile confidence 

intervals were nearly identical to asymptotic normal intervals for AUC statistics. However, per- 

centile intervals had better coverage than asymptotic normal intervals for proportions. Although 

these methods are asymptotically consistent, simulations suggest that when test outcomes are 

ordinal and tests are relatively accurate, large samples are needed before asymptotic results hold. 

The simulations presented in this article demonstrated poorer performance for Obuchowski's 

estimator than was originally reported. There are important difference in the simulations in this 

article and those presented by Obuchowski. Two key differences are site-level prevalence of disease 

and the scale of the test outcome. In the smallest sample setting, patient level disease prevalence 

was 50% and among patients with disease an average of 50% of sites were affected, resulting 

in a 25% overall site-level prevalence. Obuchowski simulated data with an overall 50% site-level 

prevalence. Obuchowski also generated outcomes on a continuous 0 to 100 scale, rather than 

the 5-point ordinal scale more commonly found in radiology. The continuous scale allows more 

variability in true positive (fc) and false positive (fp) rates. A comparison between continuous 

scales is also more informative than a comparison between corresponding ordinal scales because 

there are no ties. 

Simulation studies examine the behavior of estimators in specific settings. The simulation 

study examined plausible scenarios. In radiology research tests outcomes are often measured 

on 5-point ordinal scale, and these tests can be highly accurate withe relatively high specificity. 
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Overall sample sizes are often small, including 100 or fewer subjects. There were some important 

assumptions that may limit the conclusions that can be drawn from simulation study findings. 

One important assumption made for these simulations was that the two tests compared had the 

same underlying sensitivities. Perhaps the strongest assumption made for simulated data was 

that when two readers were involved they each had identical ROC curves. In real life settings, 

readers ROC curves will almost certainly differ. In this context, the investigator must determine 

whether there is value in the estimate of the average AUC statistic. 
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Table 1. Average observed correlation of simulated rating data (Kendall's 

r) between tests when both have AUC = 0.80 and between readers evaluating 

Test A. 

correlation structure 

type of correlation compound disease 

independence symmetry dependent 

between sites, same disease state 0.199 0.478 0.478 

between sites, different disease state 0.164 0.457 0.457 

between tests, same site 0.000 0.348 -0.240 

between readers, same site 0.200 0.478 0.478 
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Table 2.   Observed coverage rates of 95% confidence intervals.   In all 

cases AUCA = 0.8. Small N simulations generate data from 50 diseased patients 

and 50 not diseased patients, each evaluated at 4 sites by both tests. Large m 

simulations generate data from 100 diseased patients, each evaluated at 15 sites 

by both tests. Large N simulations generate data from 250 diseased patients 

and 250 not diseased patients, each evaluated at 4 sites by both tests. 

correlation sampling desi gn 

structure estimator small N large m large N 

independent analytic 0.934 0.932 0.946 

1 reader bootstrap 0.939 0.944 0.946 

2 reader bootstrap 0.935 0.947 0.949 

equicorrelated analytic 0.936 0.934 0.952 

1 reader bootstrap 0.939 0.946 0.950 

2 reader bootstrap 0.939 0.947 0.950 

disease dependent analytic 0.939 0.936 0.950 

1 reader bootstrap 0.940 0.943 0.948 

2 reader bootstrap 0.938 0.944 0.950 
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Table 3.   Observed coverage rates of 95% confidence intervals.  In all 

cases AUCA = 0.8. Small N simulations generate data from 50 diseased 

patients and 50 not diseased patients, each evaluated at 4 sites by both 

tests. Large m simulations generate data from 100 diseased patients, each 

evaluated at 15 sites by both tests. Large N simulations generate data from 

250 diseased patients and 250 not diseased patients, each evaluated at 4 sites 

by both tests. 

correlation structure small N large m large N 

fp=0.95 

independent observations 

asymptotic normal 0.929 0.936 0.941 

percentile 0.942 0.941 

equicorrelated, correlation=0.5 

asymptotic normal 0.912 0.923 0.936 

percentile 0.926 0.926 

correlation dependent on disease state 

asymptotic normal 0.911 0.912 0.940 

percentile 0.926 0.928 

jp=0.50 

independent observations 

asymptotic normal 0.942 0.942 0.946 

percentile 0.944 0.949 

equicorrelated, correlation=0.5 

asymptotic normal 0.941 0.942 0.948 

percentile 0.948 0.947 

correlation dependent on disease state 

asymptotic normal 0.941 0.941 0.950 

percentile 0.948 0.941 
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A hierarchical regression approach to 

meta-analysis of diagnostic test accuracy evaluations 

Summary 

An important quality of meta-analytic models for research synthesis is their ability to account 

for both within- and between- study variability. Currently available meta-analytic approaches for 

studies of diagnostic test accuracy work primarily within a fixed-effects framework. In this paper 

we describe a hierarchical regression model for meta-analysis of studies reporting estimates of 

test sensitivity and specificity. The model allows more between- and within-study variability than 

fixed-effect approaches, by allowing both test stringency and test accuracy to vary across studies. 

It is also possible to examine the effects of study specific covariates. Estimates are computed using 

Markov Chain Monte Carlo simulation, allowing flexibility in the choice of summary statistics. We 

demonstrate our modelling approach using a recently published meta-analysis comparing three 

tests used to detect nodal metastasis of cervical cancer. 

keywords: summary ROC curve, Bayesian methods, sensitivity, specificity. 



1. Introduction 

The need for systematic review and synthesis of published evidence on the accuracy of diagnostic 

tests has increased in recent years. The information from such reviews is a key element of clinical 

and health policy decision making regarding the use of diagnostic tests; it is also essential for 

guiding the process of technology development and evaluation in diagnostic medicine [1, 2]. 

Statistical methods for meta-analysis of diagnostic test evaluations have focused on the 

analysis of studies reporting estimates of test sensitivity and specificity, the most commonly 

used measures of diagnostic performance, and have worked within the fixed-effects framework 

[1, 2, 3, 4, 5, 6, 7, 8, 9]. A fundamental concern in the synthesis of such studies is derivation of 

summary measures of test performance. These measures must account for the tradeoff between 

sensitivity and specificity as the threshold for positivity varies along some explicit or latent scale. 

This tradeoff has been widely recognized in the evaluation of diagnostic tests and has led to the 

development of Receiver Operating Characteristic (ROC) methodology [10]. In the context of 

meta-analysis, simple averaging or pooling across studies can provide misleading conclusions, as 

can be readily seen from a simple example. If three studies report the following estimates of test 

sensitivity and specificity: (.10, .90), (.80, .80), and (.90, .10), the average pair of sensitivity and 

specificity is (.60, .60) and lies completely outside the domain of the original studies (see also 

[1, 2, 6]). 

Differences in positivity threshold constitute an important source of variation across studies 

evaluating a diagnostic modality. Study characteristics, such as technical aspects of the diagnostic 

test, patient and disease cohorts, study settings, experience of readers, and sample size are also 

potential contributors to between-studies variations in the estimates of diagnostic performance. 



In the fixed effects setting, regression models have been proposed for exploring these sources of 

variability [4, 5]. The use of regression models provides a flexible and powerful framework for 

meta-analysis. However, the number of covariates that can be accommodated in such models is 

limited. In addition, these fixed-effects regression models may not provide realistic accounts of 

the uncertainty associated with covariate estimates. 

In this paper, we expand on earlier work [5] and present a hierarchical model formulation of 

the problem of combining information across studies reporting estimates of test sensitivity and 

specificity. The structure of the model is similar to that of models proposed for the meta-analysis 

of treatment studies [11, 12, 13]. The observed variation is partitioned into within- and between 

studies components. Each component consists of a systematic part and a random part, with the 

former attributed to covariates and the latter to unexplained variation. The hierarchical model 

makes it possible to pool information across studies and derive smoothed estimates of covariate 

effects, components of variance and individual study quantities. In addition, simple extensions of 

the hierarchical structure can incorporate patient-level information within each study, when such 

information is available. 

We present our approach using data from a recently published meta-analysis comparing the 

diagnostic performance of three imaging modalities for the detection of lymph node metastases in 

women with cervical cancer [14]. In section 2 we survey fixed effects approaches to the problem. 

The hierarchical regression model is presented in section 3. We take a fully Bayesian approach to 

model fitting and checking and use Markov Chain Monte Carlo estimation techniques. Technical 

issues are discussed in section 3 and the analysis of the example is presented in section 4. The 

final section summarizes our methodological and subject matter conclusions. 



2. Meta-anaiytic models for diagnostic test data 

The simplest setting for the methods discussed in this paper involves meta-analyses in which each 

of m studies contributes a vector Z{ of study-level covariates {% = l,...,ra) and a 2x2 table of 

summary data, showing the agreement between the binary test result and the definitive disease 

information ("gold standard"). We will use the following notation: 

Test: 

0=no    l=yes 

Truth:    no 

yes 

ym ym 

3/»io Vm 

rito 

rin 

The observed rates of true and false positive test results are then defined as TPi = ym/nn 

and FPi = ym/nio .   In some meta-analyses more than one 2x2 table is available from each 

study. For example, patients may be examined using several tests in a study, leading to correlated 

binary test results studies. 

2.1 Summary ROC (SROC) curve 

In the absence of patient and study level covariates, a simple graphical summary of test accuracy 

is provided by the summary ROC curve (SROC) [4]. The curve is constructed by computing the 

quantities 

Di = logit(TP) - logit(FPi)       and       St = logit(TPi) + logit(FPi) 

for each study and fitting the linear model 

Di — a + bSi + d (1) 



where e* is random error. The model can be fitted using ordinary or weighted least squares, 

or robust regression methods. Weights can be used to account for between-study differences in 

overall sample size or precision. However, weights cannot simultaneously capture differences in 

sample size within the disease-positive (n^) and disease-negative (ni0) groups. These two sample 

sizes affect the precision of estimated TP and FP rates independently. In practice, weighted 

and unweighted models can produce very different results, and there is no clear way to choose 

between these models. 

Using the estimates of a and b, a plot of the summary ROC curve can be drawn, with FP 

on the x-axis and TP on the y-axis. This SROC model corresponds to the assumption that 

the observed differences across studies result from different thresholds for test positivity. The 

summary curve is symmetric if b = 0, implying constant log-odds across the studies under review. 

Study level covariates can be incorporated in straightforward manner into equation (1) to provide 

an exploratory analysis of the effects of study characteristics. Several summaries of the SROC 

curve have been proposed and can be used to make comparisons between modalities. However, 

the SROC model does not account for error in Sj and this can bias parameter estimates[15] and 

summaries that are functions of these estimates. Further exploration is needed to determine the 

effect of ignoring error in Sj on both point estimation and coverage rates of estimated confidence 

intervals. 

An alternative approach to constructing an SROC curve was proposed by Kardaun and 

Kardaun[3], who assumed that (logit(rPi),logit(FPj)J follows a bivariate normal distribution 

and postulated a linear relationship between the two components of the bivariate mean. Profile 

likelihood is used to derive estimates of the slope and intercept in this model, which includes 



variability in both rates. Difficulties incorporating covariates into this model limit its usefulness. 

2.2 Binomial regression model 

A regression model for the meta-analysis of (TPi, FPi) pairs was first discussed in [5] and was 

motivated by the ordinal regression formulation of ROC analysis [16, 17,18]. In brief, if W denotes 

the degree of suspicion about the presence of an abnormality, elicited on an ordinal categorical 

scale with J categories, the parametric ROC model is equivalent to the ordinal regression model 

g(P[W > j\X]) = (8j + aX)exp(-ßX), where X is a covariate denoting the (binary) true 

disease status. The conceptual basis of the model is an assumption that the observed responses 

W represent a categorization of a latent variable, with distribution corresponding to the link 

function, g(-). The probit link implies a Gaussian latent variable and is commonly used for single- 

study receiver operating characteristic analysis [10]. We use the logit link throughout this article 

because under the logit model, regression parameters estimate log-odds ratios. 

As discussed in [5], an ordinal regression model with a logistic link and J = 2 can be used 

in the meta-analysis of studies reporting pairs of {TPi, FPi). Under this model, the numbers 

of positive tests from each study, yiji,i = l,...,m,j = 0,1 are assumed to follow binomial 

distributions, y^i ~ Binomial(njj, 7T;J), in which the probability of a positive test modelled as: 

TTij = logir1 ((^ + aXij)e-ßXi>). (2) 

As in the ROC context, the 0j's will be called the "positivity criteria" (or "cutpoint parameters"), 

a the'accuracy parameter" and ß the "scale parameter". The tradeoff between TP and FP is 

modelled through their joint dependence on 6. The binomial regression model is estimated by 

maximum likelihood and accounts for error in both TPi and FPi rates. 



It can be readily seen that the binomial regression model (2) implies a linear relationship 

between logit(TP) and logit(FP). This linearity is a basic assumption in the two SROC models 

discussed earlier and implies a natural correspondence between SROC and the binary regression 

analysis. Like the SROC model, the simple binary regression model (2) assumes that observed 

differences across studies result from different positivity thresholds (#;). Tests are assumed to 

have the same accuracy and scale parameter across studies. In addition, as discussed in [5], more 

elaborate versions of (2) can be formulated, in which parameters other than 9 vary across studies 

and study level covariates are included. In practice, making choices among such elaborate models 

is not a straightforward matter. An important consideration in making such choices is to ensure 

that the resulting model is identifiable. 

3. Hierarchical regression analysis 

3.1 Model 

Hierarchical regression analysis extends the binomial regression model to more fully account for 

both within and between study variability in TP and FP rate. The model allows the inclusion 

of patient- and study-level covariates, if such information is available, and has the following 

structure: 

Level I (Within-study variation)    The number of positive tests from the i-th study, t/;oi and 

ym, are assumed to follow binomial distributions, with the probability of a positive test given by: 

Try = logir1^ + ouXi^e-^] (3) 

where X^ denotes the true disease status for cases in the ij-th cell. Under this hierarchical SROC 

model (HSROC), both positivity criteria (0j) and accuracy parameters (a*) are allowed to vary 
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across studies. 

Level II (Between-study variation) Study-level parameters in (3), a* and Q{, are assumed to 

be Normally distributed, with mean determined by a linear function of study-level covariates. In 

the case of a single covariate Z affecting both the cutpoint and accuracy parameters, the model 

can be written as: 

► conditionally independent 
ei\e,rZi,al ~ N(e + 7zua

2
9) 

Oi\A,\,Zi,<Tl   ~   N{K + \Zuol) 

The coefficients 7 and A model systematic differences in positivity criteria and accuracy across 

studies, due to the covariate Z. However, more general formulations of the model can be 

considered in which more than one covariate is included and different covariates are used for 

'cutpoint' and 'accuracy' regression equations. 

Level III     The specification of the hierarchical model is completed by the choice of prior 

distributions for the remaining unknown parameters. In particular, we chose: 

6 ~ Uniform[^1,^2];    7 ~ Uniform[/i7l,/z72];   crj ~ r_1(£ei,£e2) 

A ~ Uniform[/iQi,//Q2];   A ~ Uniform[^1,^2];   o\ ~ r_1(^Ql,^a2) 

ß ~ Uniform[^1,^2] 

The parameters 0, A, ß, 7, A, a| and o^ are assumed to be mutually independent. The 

parameters, ^0, (j,7, £0, ßa, n\,£a, /j,ß, are assumed to be fixed and are chosen to reflect expected 

ranges. 

Summary ROC (SROC) curves can be derived using the expected values of A + XZ and ß. 

If true disease state is coded | for disease positive cases and — \ for not diseased cases, then for 
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a given value of the covariate Zit the model-based true positive rate can be expressed as: 

TP(FP) = logit"1 ((logit(FP)eW2 + E(A + AZ^e^2) 

The SROC curve is drawn by plotting (FP,TP(FP)) for FP € [0,1]. Extrapolation beyond the 

available data can be discouraged by plotting curves only over the observed range of FP. 

3.2. HSROC Model fitting 

Inference from the HSROC model is based on the posterior distributions of model parameters. 

Because the models we consider are not conjugate, closed form expressions for posterior distribu- 

tions do not exist. Posterior quantities are estimated by simulating observations from the posterior 

distribution using Markov Chain Monte Carlo (MCMC) simulation [19]. These simulated values 

from the full posterior distribution are used to estimate marginal distributions of interest, such 

as posterior distributions of particular parameters or functions of parameters. 

To enable estimation, each covariate was centered at zero. When estimating the fixed effect 

binomial regression model, covariate centering is required for model identifiability [16]. Under the 

hierarchical regression model, centering the covariate vector helps to reduce correlation between 

consecutive draws. 

3.2.1 Conditional distributions 

The conditional distributions of Level II parameters (0, A, oj, a\, 7 and A) are standard distribu- 

tions or truncated versions of standard distributions. For example, the conditional distribution of 

A given A, z, o\, a, and fxa is proportional to a Normal distribution with mean YT=\ (ai ~ ^Zi)/m 

and variance o\jm over the range [ßQi,ßa2]- Variance parameters, o\ and aj, have conjugate 
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priors, so that 

-1    m 

(cr2 |A, z, a, A,£a) ~ T-^^ai + m/2), (- £(<* " A - AZ,)2 + 1/W1). (4) 
z i=i 

The conditional distributions of 6 and oj are analogous. Finally, the conditional distribution 

(\\A, al, a, fix) is proportional to a normal distribution with mean 

Zi=i Zi{0Li - A) 

and variance ^/(Ei Z?) over the range [^AI,/-^]- 

The conditional distributions of Level I parameters (6it on and 0) are not standard. The 

conditional distribution of study specific accuracies, (ai\yi,ni,Zi,A,al,6i,ß), is a Binomial- 

Normal product, 

-p(-(a-(tt^))2)nfc)^(1-^)'—' . 
The conditional distribution of 9i has similar form. The conditional distribution of the scale 

parameter, (ß\y,n,Z,0,a,pß), is proportional to the product of 2m Binomials, 

nn("eW(i-^>("*i-B') 

with positive probability over the range [nßi,ßß2]- 

3.2.2 Metropolis steps 

We simulated draws from the nonstandard conditional distributions of ß, 6i and a, using an 

adaptive Metropolis step [20]. The Metropolis algorithm works by simulating candidate draws 

from a jumping distribution. Candidate draws are accepted if they increase the posterior density, 

otherwise the chain stays at the current draw.   The scale parameter (ß) was sampled using a 
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univariate Normal jumping distribution. Study-level parameters (9itai) were jointly sampled using 

a bivariate Normal jumping distribution. Normal variance and variance-covariance matrices were 

calculated using a multiple of the inverse information matrix evaluated at the current values of 

unknown parameters. Because low rejection probabilities can indicate that the jumping distrib- 

ution is underdispersed relative to the target distribution, covariance matrices were inflated so 

that rejection rates varied between 20% and 40% for all parameters [21]. 

3.2.3 Choice of priors 

Prior ranges for 0, A and ß should be chosen to reflect subject matter knowledge about the 

diagnostic modalities under review. In general, the interval [-10,10] covers all reasonable values 

of 0. Similarly, the interval [-5,5] covers all reasonable values of ß. Because we expect positive 

test results, indicating disease, to be more common among patients with disease, the interval 

[—2,20] covers all reasonable values of A. 

Selection of the Inverse Gamma priors for the between-study variance parameters, oj and a^, 

is more difficult. The goal in making this choice is to select a relatively diffuse distribution, which 

nevertheless does not assign much probability to very large values of the variance parameters. 

For example, although a r_1(0.1,1) is quite diffuse, it assigns unduly large weight to large values 

of a; the lower quartile of the T-1(0.1,1) distribution is 28.35. We chose a r_1(l, 2) prior for 

variance parameters because this covers the expected range of variability in these data. Quartiles 

of the r_1(l,2) distribution are 1.44, 2.89, and 6.96. The probability that an r-1(l,2) random 

variable is greater than 9 is 0.20. 

3.2.4 Parameter estimation The goal of estimation is description of the posterior distribution of 

model parameters and summary statistics that are functions of model parameters. Posterior 95% 
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credible intervals were estimated by empirical 2.5% and 97.5% posterior percentiles of simulated 

draws. The mode of symmetric posterior distributions was approximated by the mean value 

across simulated draws (i.e., 0, A, and ß). The mode of asymmetric posterior distributions was 

approximated by the median value across simulated draws (i.e., a} and a^). 

3.2.5 Assessing convergence 

Estimation was based on draws from several chains started at extreme points in the parameter 

space. The CODA program[22] was used to evaluate the convergence to the target distribution. 

We relied primarily on examination of trace plots and estimates of scale reduction proposed by 

Gelman and Rubin[21]. The scale reduction statistic is essentially the ratio of the between chain 

variance to the within chain variance. 

3.2.6 Diagnostics 

Diagnostic statistics were used to evaluate possible model misspecification, overall goodness of 

fit, and to identify of outlying and possibly influential data points. Our approach roughly follows 

the suggestions of Weiss [23]. 

Checks for model misspecification were restricted to evaluation of the prior distributions for 

study-specific parameters 8 and a. Recall that we assume that both statistics are normally 

distributed. Under the exchangeable model (i.e. 7 = A = 0), the sums of squares Sg = 

Y,i{0i - 0)2/cr| and Sa = Ei(«i - A)2/^ should follow a a x2 distribution with m degrees of 

freedom, where m is the number of studies in the meta-analysis. Under the nonexchangeable 

model sums of squares are of the form Sa = £t(<*t - A - XZif/a^. Because large values 

of tail probabilities suggest misspecification of prior distributions, we estimate p(ot) = P(Sa < 

X2mfi.o25) + P(Sa > x^o.975). and p(6) = P(S6 < xLfims)+ ?($<> > Xm,o.975). to evaluate these 
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priors. 

Global goodness of fit can be evaluated using two chi-square discrepancy statistic. The first 

is based on estimated counts: 

n2      = W fan - E(yjji\mM' data))2 

^count     2.2.        E(yijl\mode\, data) 

where y^i is the number of subjects testing positive in not-diseased (j = 0) and diseased (j = 1) 

groups. -Dcount 's cornPared to axL distribution. The second global goodness of fit statistics 

is based on continuity-corrected log-odds ratios: 

D2 _ y (log(ORcc)i - £(log(OÄcc)ilmodel, data))2 

los(or)       i v/mr(log(0JRcc)i|model, data) 

where log(Oi?cc)i is the observed continuity corrected log-odds ratio for the i-th study. 

Outliers and potentially influential points were identified using plots of sensitivity versus speci- 

ficity and by examining chi-square residuals, e.g., {yij—E(yij\model, data))2/£,(yij|model, data)). 

The sensitivity of the model to potentially outlying and influential points can be examined by 

removing these points and re-estimating parameters. 

4. Example: Evaluation of Lymph Node Metastases 

4.1. Data 

To demonstrate the hierarchical model, we reanalysed data from a published meta-analysis of 

diagnostic imaging tests used to detect lymph node metastasis in patients with cervical cancer 

[14]. This study compared three tests for detection of lymph node metastasis: lymphangiography 

(LAG), computed tomography (CT), and magnetic resonance imaging (MR). Data were combined 

from 37 studies, of which 17 examined LAG, 19 examined CT and 10 examined MR. Nine studies 
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examined more than one test.    Observed true positive and false positive rates are shown in 

Figure 1. 

Figure 1 about here ] 

The original analysis by Scheidler and colleagues used a fixed effect SROC [4], Q* statistics, 

and likelihood ratio statistics to compare tests. The Q* statistic corresponds to the estimated 

true positive rate at the point on the SROC curve where the sensitivity is equal to the specificity 

of the test. SROC curves were estimated separately for each test type. In addition, likelihood 

ratio statistics were used to describe the post-test change in odds of disease. The likelihood 

ratio negative (LR~) estimates the post-test odds of disease given a negative test. The likelihood 

ratio positive (LR+) estimates the post-test odds of disease given a positive test. Scheidler et al 

concluded that the three test had similar diagnostic performance. Although the analysis did not 

find statistically significant differences among the modalities, the authors noted that MR seemed 

to perform somewhat better than CT or LAG. 

4.2 HSROC Computations 

We used HSROC analysis to derive summaries of the diagnostic performance of the three modal- 

ities, allowing different expected cutpoint (0) and accuracy (A) parameters for each modality. 

Because the shape of the three SROC curves looked different we allowed separate scale parame- 

ters (ß) for each test. Because the spread of the observed points the three SROC curves seemed 

to differ across modalities, we allowed separate variance parameters (cr|, a^) for each modality. 
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In these analyses, we coded disease state as +| for disease positive cases and -\ for disease 

negative cases. 

The model was estimated using the combined set of data from all modalities but did not 

explicitly include correlation terms for data derived from studies that compared two or all three 

of the modalities. In particular, 2 studies examined CT and LAG, 4 studies examined CT and 

MR, and 2 studies examined CT twice. Although it is possible to extend the model to cover 

such correlations, the cross-tabulated data from studies evaluating more than one modality were 

not available. Because we expect positive correlation between diagnostic test results, we expect 

that ignoring this correlation could cause a slight conservative bias in comparisons between tests. 

Results from the combined analysis were compared to those from analyses conducted separately 

for each modality. 

The sampler was run using 8 independent MCMC chains. Experimental runs showed that 

the sampler was slowly mixing. To ensure coverage of the target distribution, estimation was 

based on multiple sequences with overdispersed starting points. Because of high between-draw 

correlation, every 50"1 iteration was saved from each sequence of 100,000 simulated draws. 

Metropolis covariance parameters were updated every 1,000 iterations to maintain rejection rates 

between 20% and 40%. Eight different chains were run, with starting points based on ß, 6 

and A: ß® <E {-2.5,2.5}, e<°> € {-5,5}, and A<°> G {-1,10}. Starting values for the prior 

variability of study specific cutpoints (of) and accuracies (o£) were set to 9, nearly half of what 

we believe is a reasonable range for 0* and a». All parameters had estimated scale reduction 

statistics[20] that were between 1.00 and 1.09 and most were between 1.00 and 1.01, indicating 

that the sampler had converged. All saved iterations were used to evaluate convergence, but the 
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first 5,000 were excluded from point and interval estimation. 

Summary statistics were calculated for each draw of the sampler, and these values were used 

to estimate their posterior modes and 95% credible intervals. The summary statistics we used 

were the overall likelihood ratio positive, overall likelihood ratio negative, overall TP rate, and 

overall FP rate. These overall performance estimates were calculated for each test. Statistics 

describing overall test performance were functions of parameters describing performance across 

studies: the level I model parameter ß and level II model parameters describing expected values 

of study-level parameters. For example, overall TP and FP rates for CT are estimated from: 

TPCT   =   logit-1[(eCr + Acr/2)e-^/2] 

FPCT   =   logir1[(0Cr-Acr/2)e/3^/2] 

The (TPCT, FPCT) pair summarizes the overall performance of the CT. Likelihood ratio statistics 

were estimated using overall TP and FP for each test, for example, LRQT = TPCT/FPCT and 

LRCT = (1-TPCT)/(1-FPCT). 

Probability estimates were based on the overall proportion of times a statement was true. 

These estimates also exclude the first 5,000 iterations. 

4.3. Results 

Table 1 shows parameter estimates based on MCMC estimation. Although 95% credible 

intervals for all three scale parameters included zero, there was evidence that the scale parameter 

for LAG was different than the scale parameters for CT. The estimated mode of PLAG — PCT 

was 1.34, with 95% credible interval (0.068,2.71). The positivity criteria across studies of LAG 

tended to be less variable than the positivity criteria used in studies of both CT (with estimated 

probability 0.910) and MR (with estimated probability 0.960). 
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[ Table 1 about here ] 

Figure 2 shows estimated SROC curves based on estimated expected values of (ALACPLAG), 

(ACT,PCT), and (AMR,PMR)- TO avoid extrapolation beyond the data, curves are plotted over 

the observed ranges of false positive rates. 

Figure 2 about here ] 

Comparisons based on overall measures of test performance show that CT and MR tended to 

have lower expected FP and TP rates than LAG (Table 2). There was also evidence of differences 

in the likelihood ratio positive and likelihood ratio negative of the three modalities (Table 2). The 

estimated probability that LAG had a better (lower) LR~ than CT was 0.951. LAG also had a 

lower LR~ than MR with an estimated probability of 0.761. This is evidence that negative LAG 

results are more informative than negative CT or MR results. On the other hand, the likelihood 

ratio positive (LR+) for LAG was worse (lower) than the LR+ for CT with probability 0.866, and 

worse than the LR+ for MR with probability 0.976. This is evidence that positive CT or MR 

results are more informative than positive LAG results. 

[ Table 2 about here ] 
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4.4. Model checks 

There was no evidence of significant lack of fit in the HSROC model. Estimated TP and FP rates 

were close to observed values (x74=23.45, p-value=1.000), as were estimated log-odds ratios 

(X37=7.71, p-value=1.000). Chi-square degrees of freedom for goodness-of-fit statistics were 

calculated using the number of independent studies. Normal distributions seemed to reasonably 

approximate the distribution of outpoint parameters (observed 5% tail probability=4.41%) and 

accuracy parameters (observed 5% tail probability=4.44%). 

None of the study results were identified as influential based on chi-square residuals.  Fitted 

plots showed two points with outlying FP rates for LAG. Results from analyses that excluded 

these points were similar to results based on the full data set and therefore these studies were 

retained in analyses. 

5. Discussion 

The hierarchical summary ROC (HSROC) model for combining estimated pairs of sensitivity and 

specificity from multiple studies extends the currently used fixed-effects summary ROC (SROC) 

model. The HSROC model describes within-study variability using a binomial distribution for 

the number of positive tests in diseased and not diseased patients. An underlying ROC model 

that allows variability in both the positivity criteria and accuracy across studies determines the 

binomial probabilities. Variation in positivity criteria and accuracy is modelled using a Normal 

distribution, with a linear regression in the mean that allows dependence on study-level covariates. 

More heavy tailed distributions (such as t or Cauchy) can also be used instead of a Normal in 

the second level of the hierarchical model. As is commonly the case with hierarchical regression 
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models, the HSROC model allows more complete accounting of between-study variability than is 

possible with fixed-effects formulations. In addition, the HSROC model provides more realistic 

accounting of within-study variability that the original fixed-effects SROC model [4], which used a 

Normal error distribution and did not account for the measurement error in the primary covariate. 

The HSROC approach provides a flexible modelling framework that can be extended when 

more information is available. For example, when studies report results from more than one 

modality, the hierarchical model can be appropriately extended to incorporate within-study cor- 

relation. This extension requires information about the joint distribution of test results, either 

from multiple similar pairs across several studies, from cross-tabulation of test results within 

studies, or from patient-level data within studies. When patient level information is available, 

the within-study (Level I) model can be extended to incorporate patient-level covariates. This 

extended model can also be applied to data from a single study when results are clustered within 

participating institutions and/or readers (see [24] for a hierarchical analysis of ROC data). 

The fully Bayesian approach to model fitting, although computationally intensive, leads to 

simulated values from the posterior distribution of the parameters, on the basis of which the 

analyst can easily calculate summaries of the posterior distribution of a broad range of functions 

of the parameters. For example, in our reanalysis of the Scheindler data we derived estimates 

of functionals of the posterior distribution of likelihood ratio statistics, and differences between 

likelihood ratio statistics for the three modalities. On the basis of these estimates it appears 

that LAG provides different clinical information than CT or MR, even though all three tests had 

similar overall accuracy. Bayesian modelling allowed us to express these findings via probabilistic 

statements.   Such probabilistic estimates may be easier to interpret than classical frequentist 
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summaries. 

The Bayesian model also allows description of sources of variability. The differences we found 

in the variability of positivity criteria were consistent with the technological development of these 

three tests. At one extreme, LAG is a widely used standard diagnostic test with well developed 

positivity criteria. At the other extreme, MR was a new diagnostic approach at the beginning of 

the meta-analyzed time period, without an accepted positivity criteria. The estimated variability 

of cutpoint parameters was low for LAG. The variability of CT cutpoints was more than twice 

the variability of LAG cutpoints, and the variability of MR cutpoints was more than four times 

the variability of LAG cutpoints. This suggests that MR accuracy could be improved through the 

definition and adoption of good positivity criteria. 

The advantages of the HSROC model come at a price: estimation requires Markov Chain 

Monte Carlo (MCMC) simulation. MCMC estimation requires programming, simulation, eval- 

uation of convergence and model adequacy, and synthesis of simulation results. Programming 

the MCMC simulation can be time consuming. Although some versions of the proposed model 

can be fitted within publicly available software (BUGS[25]) the full analysis is elaborate and, 

depending on the specific model under consideration, may require extensive programming. Even 

if the burden of programming task was eliminated, implementation of MCMC simulation will still 

entail nontrivial analysis tasks including evaluation of convergence and the adequacy of prior dis- 

tributions and this requires some statistical expertise. However, the increased complexity of the 

proposed analysis must be measured against the advantages from the approach, including more 

realistic assumptions, more precise description of the impact of covariates, and greater flexibility 

in choice of descriptive statistics. 
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Figure 1. Detection of Lymph Node Metastases, using lymphangiography (LAG), computed 

tomography (CT) or magnetic resonance (MR) imaging: Observed true positive (TP) and false 

positive (FP) rates are from data reported across 37 studies that were originally meta-analyzed 

by Scheilder and colleagues[14]. 

Figure 2. Estimated summary receiver operating characteristic curves for lymphangiography 

(LAG), computed tomography (CT) and magnetic resonance (MR) imaging, based on hierarchical 

regression modelling. 
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Table 1. Hierarchical ROC parameter estimates: 

estimated posterior modes with 95% credible intervals in parenthesis. 

parameter 

6 

A 

ß 

LAG 

test type 

CT MR 

-0.178 (-0.783,0.492) -1.900 (-3.050,-1.090) -1.800 (-3.210,-0.731) 

0.248 ( 0.090,0.587) 0.653 ( 0.202, 1.570) 1.070 ( 0.264, 3.160) 

2.360 ( 1.660,3.120) 3.720 ( 2.290, 6.030) 3.920 ( 2.350, 6.330) 

1.080 ( 0.271,2.780) 0.395 ( 0.106, 1.150) 0.852 ( 0.148, 2.900) 

0.658 (-0.273,1.720) -0.683 (-1.650, 0.125) -0.350 (-1.430, 0.587) 

Table 2. Overall rates and likelihood ratios: 

posterior modes with 95% credible intervals in parenthesis 

test type 

LAG 

CT 

MR 

false positive rate       true positive rate 

0.141 (0.080,0.220) 0.666 (0.578,0.750) 

0.070 (0.044,0.102) 0.486 (0.324,0.643) 

0.047 (0.019,0.090) 0.542 (0.298,0.757) 

ikelihood ratio negative    likelihood ratio positive 

0.389 (0.288,0.502) 

0.553 (0.390,0.719) 

0.480 (0.260,0.729) 

5.03 (2.96,8.51) 

7.15 (4.63,10.60) 

12.8 (5.91,24.5) 

27 



o O 

(X 
A 

oq Ä O 
CD 

°     A**           " 
ATD 

0   A o 
CD X   * 

A 

CD O C5> 
*-• m 
i_ A O 
n. 
I- <<t A O 

O 

\ 

X 

X^A o 
CM 
CD AX 

O 
Ä   A Ö 

o 

o LAG 
A CT 
X MR 

i 1 1 r— 

0.0 0.2 0.4 0.6 

FP rate 

0.8 1.0 



CD 

oo 
ö 

CD 
ö 

Ö 

CM 
Ö 

O 
d 

0.0 0.2 0.4 0.6 0.8 1.0 

FP rate 



•Year 2 Progress Report __^ Principal Investigator: C. M. Rutter 

Appendix D 

Assessing Mammographer Accuracy: 
A comparison of clinical and test performance 

CM Rutter and S Taplin 

submitted to Journal of Clinical Epidemiology 

Funding number: DAMD17-97-1-7193 



June 7, 1999 

Assessing Mammographers' Accuracy: 

A comparison of clinical and test performance 

Carolyn M. Rutter and Stephen Taplin 

Group Health Cooperative of Puget Sound, Center for Health Studies 

This study was supported, in part, by grants CA63731 from the National Cancer Institute and 

BC962461 from the U.S. Department of Defense. 

We wish to acknowledge the careful work of Kari Rosvik and Deb Seger who made this study 

possible, and the many mammographers who gave their time to this study. We want to especially 

thank Mary Kelly, MD and Donna White, MD who provided valuable leadership. 

Address correspondence to: 

Carolyn Rutter 

Group Health Cooperative, Center for Health Studies 

1730 Minor Avenue, Suite 1600 

Seattle, WA 98101 

email: rutter.c@ghc.org 

phone: 206.287.2190 

fax: 206.287.2871 

1 



Assessing Mammographers' Accuracy: 

A comparison of clinical and test performance 

Abstract 

Direct estimation of mammographers' clinical accuracy requires the ability to capture screening 

assessments and correctly identify which screened women have breast cancer. This clinical infor- 

mation is often unavailable and when it is available its observational nature can cause analytic 

problems. Problems with clinical data have led some researchers to evaluate mammographers 

using a single set of films. Research based on these test film sets implicitly assumes a corre- 

spondence between mammographers' accuracy in the test setting and their accuracy in a clinical 

setting. However, there is no evidence supporting this basic assumption. In this article we use 

hierarchical models and data from 27 mammographers to directly compare accuracy estimated 

from clinical practice data to accuracy estimated from a test film set. We found no evidence of 

correlation between clinical and test accuracy. These findings raise important questions about 

how mammographer accuracy should be measured. 

keywords: sensitivity, specificity, hierarchical models, mammography. 

running title: Assessing Mammographers' Accuracy: clinical versus test performance 



1. Introduction 

Screening mammography is an effective method of detecting early stage breast cancer. However, 

the diagnostic value of a mammogram depends on both the technical quality of the film and 

a mammographer's ability to interpret that film. In the last decade mammographic technol- 

ogy has been relatively stable, allowing researchers to focus on the subjective interpretation of 

mammograms (e.g.,[l, 2]). 

The Mammography Quality Standards Act recognized the effect of mammographers' inter- 

pretations on screening assessments and encouraged medical audits of mammographers' clinical 

assessments. Evaluating mammographers' performance using clinical assessments is intuitively 

appealing, because this is 'real life' performance. For many researchers, the medical audit is 

the gold standard measure of performance.[3] However, our ability to draw conclusions about the 

performance of particular mammographers from these clinical assessments is limited because each 

mammographer reviews a different set of films. The difficulty of films varies with characteristics 

of the women evaluated (e.g., breast density), characteristics of lesions (e.g., size), and charac- 

teristics of technical film quality (e.g., positioning). Variability in film difficulty results in chance 

differences among mammographers. Systematic differences in the difficulty of films reviewed 

can also occur, for example, when mammographers tend to send difficult cases to a particular 

colleague. Differences in the number of films reviewed also affects comparisons between mammo- 

graphers through the variability of estimated performance. Because performance estimates based 

on fewer patients tend to be more variable, and therefore more extreme, comparisons that ignore 

differences in variability can be misleading. Statistical models have a limited ability to adjust for 

differences in the films read by each mammographer.[4, 5] 

Estimation of clinical accuracy is further complicated by the influence that clinical assessments 

have on the probability of detecting breast cancer. Screening accuracy estimation focuses on the 

correspondence between a mammographer's clinical interpretation and a woman's true disease 

state. Because most women only undergo biopsy if a mammographer finds an abnormality, 

undetected breast cancer cases emerge symptomatically or during a second screening exam. Thus, 

undetected breast cancer can only be identified when follow-up information exists. A one year 

follow-up is generally used, with women classified as disease positive at the time of a screening 



mammogram if breast cancer is diagnosed within one year.[3] 

Estimation and comparison of clinical screening performance is also hampered by the relatively 

low incidence of breast cancer. The one year incidence of invasive breast cancer is approximately 

3.5 per 1,000 among American women who are over 49 years old.[6] Low incidence rates make it 

difficult to precisely estimate a mammographer's rate of cancer detection, since most mammog- 

raphers will evaluate very few cancers in a single year. 

Standardized testing of mammographers is an alternative way to estimate their accuracy. Us- 

ing standardized film sets removes many of the problems with clinical data. Each mammographer 

views the same films in the same setting and with the same patient information. Test sets exclude 

films from women without necessary follow-up information, so that true disease state is known 

with a high degree of certainty. Test sets can also include more films from women with breast 

cancer than would be seen in clinical practice, allowing more precise estimation of sensitivity. In 

summary, use of a test film set controls for film difficulty, film quality and the information pre- 

sented during film evaluation, offering a relatively simple method of estimating mammographers' 

accuracy under standardized conditions. 

Although estimating accuracy from assessments of standardized film sets avoids many of the 

problems with clinical data, the artificial conditions introduce other problems. Mammographers 

know that in the test setting their decisions will not affect patient care. The test itself may be 

burdensome given time constraints. There is also evidence suggesting that the higher prevalence 

of disease in test film sets introduces bias. Egglin[7] found that radiologists were more likely to 

interpret arteriograms as positive for pulmonary emboli when viewed in a higher prevalence film 

set, regardless of true disease state. When this 'context bias' exists, sensitivity increases with 

increasing prevalence while specificity decreases. 

Studies describing mammographer variability based on test film sets (e.g.,[l, 2]) implicitly 

assume a strong correlation between mammographers' performance estimated from test sets and 

mammographers' performance in clinical practice.    However, this assumption has never been 

tested. In this article we directly compare mammographers' clinical and test performance. 

2. Data 

We analyzed data from 27 mammographers practicing at a large staff model not-for-profit health 



maintenance organization (HMO). The mammographers included in this study were voluntary 

participants, though this group essentially included all of the mammographers practicing with the 

HMO at the time of the study. 

Both clinical and test data sets use films from women who remained enrolled in the HMO 

for at least two years after their index mammogram. Women with breast cancer were identified 

using the regional Surveillance Epidemiology and End Result registry.[8] Our reference standard 

for true disease state called a woman 'disease positive' at the time of her screening mammogram 

if either invasive cancer or ductal carcinoma in situ were detected within the following two years. 

We used a two year definition because routine follow-up care included mammographic follow-up 

at either one year or two year intervals, depending on a woman's particular risk factors for breast 

cancer. 

Clinical Data: Clinical data used mammographers' final interpretations and recommendations 

based on mammograms from asymptomatic women screened from 1990 through 1994. Mam- 

mographers interpretations and recommendations have been collected as part of clinical practice 

for every mammogram evaluated since 1986, using standardized data collection forms. During 

the time period we examined, mammographer interpretations could be coded as 'negative', 'in- 

conclusive', or 'positive'. Final interpretations and recommendations were combined and coded 

into one of five possible clinical assessments: 1) negative mammogram and recommendation for 

mammographic follow up at 1 year or later; 2) inconclusive mammogram and recommendation 

for mammographic follow up at 1 year or later; 3) inconclusive mammogram and recommenda- 

tion for follow up in less than 1 year (short interval follow-up); 4) inconclusive mammogram and 

recommendation for biopsy or surgical referral; and 5) positive mammogram. 

Test Data: Mammographers were evaluated using test film sets during late 1994 and early 

1995. As part of an educational intervention, each mammographer assessed the same set of 

screening mammograms. Test mammograms were drawn from the population of women screened 

between 1985 and 1991, using stratified random sampling. Most (92.5%, 111/120) films were 

selected from the 1990/1991 time period. Films were stratified by the woman's true disease 

state and the original (clinical) mammographer's assessment. We defined recommendations for 

short interval follow-up, request for additional work-up, referral to biopsy, and positive mammo- 



gram interpretations as positive mammographic assessments, corresponding to clinical assessment 

categories 3, 4 and 5. Based on each screened woman's true state and dichotomöus clinical as- 

sessment, we created four strata: true positive (TP) films (positive assessment, breast cancer 

within one year); false negative (FN) films (negative assessment, breast cancer within one year); 

true negative (TN) films (negative assessment, no breast cancer); and false positive (FP) films 

(positive assessment, no breast cancer). From these strata, we randomly selected 23 TP films, 

9 FN films, 72 TN films, and 16 FP films. Because of the stratified sampling scheme, the test 

film set was not representative of the mix of films seen in clinical practice: it included an excess 

of films from women with breast cancer and films that originally lead to incorrect assessments. 

Out of these 120 films, 7 films (3 TP films and 4 FP films) were excluded from analyses because 

marks were placed on films during the course of the study. To allow correspondence with the 

clinical analyses, the reference standard for test films was recalculated, using a 2 year follow-up 

period. Applying the 2 year follow-up caused one TN film to be recoded as a FN. Within the 113 

test mammograms used for analyses, original readers were 67% sensitive and 86% specific. The 

average age of screened women who contributed films to the test set was 50 years, ranging from 

40 to 87 years. 

Mammograms were displayed at each participating mammography clinic in a dedicated reading 

room. Films were displayed in four sets of 30, and each set was displayed for 2 weeks. Mammog- 

raphers scheduled a time to review films and were given 1 hour to read each set of 30 films. Each 

'film' included a two-view mammogram, representing a single screening event, and the woman's 

most recent prior two-view screening mammogram. Prior mammograms were unavailable for 

43 women (38%). No additional clinical information was provided, and mammographers were 

not provided with the disease prevalence in the test set. Mammographers provided one rating 

for each breast, using standardized data collection forms. The 5 possible screening assessments 

were: 1) negative or benign; 2) probably benign (short interval follow-up needed); 3) possibly 

abnormal (additional views needed); 4) suspicious abnormality (biopsy should be considered); and 

5) highly suggestive of malignancy. Each mammographer provided data that was at least 98% 

complete (222/226 ratings) and 15 of the 27 mammographers provided complete data. There 

were no apparent patterns of missing data between mammographers. These breast-level ratings 



were recoded as woman-level assessments. If the woman was diagnosed with breast cancer within 

two years of the mammogram, then the rating given to the breast with disease was used in the 

analyses. If the woman did not develop cancer in the following two years, then the maximum of 

the two breast ratings was used. 

3. Methods 

We are primarily interested in the degree of correlation between mammographers' accuracy mea- 

sured in a clinical setting and accuracy measured in a test setting. The accuracy measures we 

focused on are sensitivity and specificity. Sensitivity is the proportion of women with breast can- 

cer who had a positive mammogram assessment. Specificity is the proportion of women without 

breast cancer who had a negative mammogram assessment. 

Calculation of sensitivity and specificity requires definition of a positive assessment. For 

clinical assessments, we defined ratings 3, 4 and 5 as positive mammograms, corresponding to 

recommendations for short interval follow-up or biopsy. Unfortunately, test assessments do not 

completely match clinical assessments. This is partly because clinical assessments were based on 

final recommendations whereas the test scale included a recommendation for additional views. 

Clinical data did not include recommendations for additional views because this is an intermediate 

clinical recommendation, with final recommendations based on these additional views. Given the 

difference in these two measurement scales, we defined positive outcome in the test set as a 

recommendation for short interval follow-up, additional views, or biopsy in the test data set, 

corresponding to ratings 2, 3, 4, or 5. Mammographers' ratings of test films were based on an 

explicitly ordinal scale that defined a recommendation for additional films (possibly abnormal) as 

more strongly indicative of disease than a recommendation for short interval follow-up (probably 

benign). 

3.1 Statistical Model 

We used a hierarchical model to describe mammographers' test and clinical performance measures, 

and to examine relationships between these measures. Each mammographer contributed data 

from two 2x2 tables, showing the overall agreement between their assessments and womens' 

disease state. We use the following notation: 



Mammographic Interpretation: 

negative positive 

Breast Cancer:     no 

yes 

Vijoo VijOl 

UijW Viju riiji 

Where i = l,...,ra, indicates mammographer and j = 1,2 indicates the data source (l=test 

and 2=clinical). 

The model we use accounts for within mammographer variability in estimated sensitivity and 

specificity by modeling the number of positive assessments each mammographer gave to diseased 

(Viju) and not-diseased (yijoi) women with Binomial(niji,7riji) and Binomial(ni:7o-7rijo) distrib- 

utions. By using the observed sample sizes in Binomial distributions for each mammographer 

and data set, the model accounts for differences in the amount of data available. The binomial 

probability of a positive test is based on receiver operating characteristic models,[9] and is given 

by: 

itijk = \og\t~1 (9ij + oiijDijk) 

If Dijk was coded 0 for disease negative films and 1 for disease positive films, then under this 

model the ith mammographer evaluates the jth data set with specificity equal to 1 - logit_1(%) 

and sensitivity equal to logit-1 (% + atj). It is simpler to explain the interpretation of % and 

aü in terms of false positive rates (equal to 1 - specificity) and true positive rates (equal to 

the sensitivity). The parameter % captures the ith mammographer's overall tendency to give 

positive assessments, so that true positive rates increase with increasing false positive rates. The 

parameter a^ captures the difference between true positive and false positive rates and measures 

the log-odds ratio of a positive test for films with breast cancer relative to films without breast 

cancer. As in the ROC context, we call di5 "cutpoint parameters" and a{j "accuracy parameters". 

The parameters 6{j and a^ could be calculated directly from the data. However, they are 

not estimable when either sensitivity or specificity is 100%, a situation that is more likely when 

a mammographer evaluates few films. The hierarchical model uses all available information 

to better estimate these individual parameters. Under the hierarchical model, both cutpoint 

parameters (%) and accuracy parameters (£**_,-) are assumed to vary across mammographers and 



data sources. We assume 0^ and o^- follow a bivariate normal distribution, implemented as: 

en\euaei   ~   iV^,^) 1 
> conditionally independent 

«ii|Ai,o-ai   ~   JVfAi.o^) J 

and 

0i2|Öii,021,..-,^i,e2,r,Crö2   ~  JV(ej + T(«a-is,U^)   1      ....     „  .  .       ,   + > conditionally independent 
ai2|aii,a2i,---,ami,A2)A,ffa2   ~   iV(A2 + A(aa - ^E^iöa),^) j 

Thus, the model assumes that within each data set, mammographers' cutpoint and accuracy 

parameters are (conditionally) independent. The linear regression models for 0i2 and e*j2 build in 

correlation between cutpoint parameters and correlation between accuracy parameters, with: 

corr(0a,0i2)   =   p9   = 

corr^i, ai2)   =   pa   = 
AcrQi 

These correlation parameters are more informative than the between dataset correlation of sen- 

sitivity or specificity. Correlation in sensitivity and specificity can be driven by mammographers' 

overall tendency to provide positive calls. The correlation parameters pg and pa separate the 

overall tendency to call a film positive from the ability to distinguish between films from women 

with and without breast cancer. Under this model, pe measures the correlation between cut- 

point parameters that are associated with overall preponderance to call a film 'positive' while 

pa measures association between accuracy parameters that are independent of these cutpoint 

parameters. 

Because the regression model is centered, the expected value of 0i2 is 02 and the expected 

value of (Xii is A2. Assuming that % and a^ are normally distributed and linked via a regression 

model allows fuller use of the available data, resulting in better estimation. Mammographer's 

cutpoint and accuracy parameters are smoothed toward overall expected values 6j and Ay, with 

the degree of smoothing determined by the amount of data each contributes to the model. 

Estimates for mammographers with less data will tend to be nearer to expected values than 
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estimates for mammographers with more data, while corresponding interval estimates widen to 

reflect lack of information available for these parameters. 

The hierarchical model is completed by specifying prior distributions for the remaining un- 

known parameters. Priors were chosen to cover the range of plausible values of parameters and 

were selected to be uninformative. We used a Normal(O.lO) prior for 61, 62, Ai, and A2l and 

a Normal(0,100) prior for r and A. We used an inverse gamma, r_1(0.5,2), for a6i, a$2, aai 

and CTQ2- This prior is diffuse, but does not overweight large values. Quartiles of the r_1(0.5,2) 

distribution are 3.03, 8.80, and 39.41. The parameters Oi, 02, Ai, A2, r, A, a61, ag2, aal and 

aa2 are assumed to be mutually independent. 

This model was estimated using the BUGS program.[10] To improve estimation, the disease 

state indicator Ajfc was centered so that Ajfc = \ for disease positive films and Dijk = — | for 

disease negative films. This transformation does not affect the interpretation of the parameters 

aijk and 0^. Standard model diagnostics were used to assess convergence of the sampler, as 

described in the CODA manual.[11] These models resulted in estimated posterior distributions 

for the model parameters. We present estimated posterior modes and 95% credible intervals 

based on the 2.5% and 97.5% percentiles. The posterior mode was estimated by the posterior 

mean for approximately symmetric distributions, and by the posterior median for skewed posterior 

distributions. 

4. Results 

There was wide variability in the amount of clinical data available for each mammographer 

(Table 1). The 27 mammographers clinically evaluated an average of 1890 films during the four 

year period (range 232 to 3818), and saw an average of 15 mammograms from women with 

breast cancer (range 1 to 32). The average clinical prevalence rate across mammographers was 

8 cancers per 1,000 mammograms. 

Plots of the sensitivity and specificity suggest moderate positive correlation between clinical 

and test performance. Figure 1 shows that overall, mammographers tended to be both more 

sensitive and more specific in clinical practice. The observed correlation between clinical and test 

sensitivities was -0.096; correlation between specificities was 0.446. 
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[ Table 1 about here ] 

[ Figure about here ] 

The hierarchical model accounts for within mammographer variability in sensitivity and speci- 

ficity and accounts for differences in the number of films read in clinical practice. The model can 

be used to better estimate each mammographers' clinical and test-based sensitivity and speci- 

ficity, and thus to better estimate between dataset correlation in sensitivity and specificity. Model 

based estimates of sensitivity and specificity combine information from the entire sample with each 

mammographer's information. The degree to which estimates differ from observed values reflects 

the amount of data available, the values of other parameter estimates (i.e., On, 6^, &n, &.&< rand 

A) and underlying distributional assumptions. Estimates of clinical specificity were equal to model 

estimates because these were based on large numbers of films. In contrast, estimates of clinical 

sensitivity were more strongly influenced by additional information, especially for mammographers 

who evaluated very few films. Model-based estimates of between dataset correlation of sensitivity 

and specificity were similar to observed correlation estimates. Correlation between clinical and 

test sensitivity was 0.185 with 95% credible interval (-0.269,0.593). Correlation between clinical 

and test specificity was 0.408 with 95% credible interval (0.161,0.616). 

We found little evidence of correlation between clinical and test performance parameters 

(Table 2). Our point estimate of correlation between clinical and test cutpoints was moderate 

(p0 = 0.220) although the 95% credible interval was broad and covered zero. The estimated 

probability that pe > 0 was 89.3%. Our point estimate of the correlation between clinical and 

test accuracies was near zero (pa = —0.026). 

We found expected overall differences in test and clinical accuracy. The test film set was 

constructed to be more difficult than films seen in usual clinical practice, and as expected the 

estimated mean clinical accuracy parameter (A2) was greater than the estimated mean test 

accuracy parameter (Ai), indicating that overall readers were more accurate when evaluating 

clinical data than test data. 
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Point estimates also demonstrated that mammographers had an overall tendency to give more 

positive assessments in their clinical practice than in the test setting (mode 62 > mode ©i), 

even though the prevalence of breast cancer was much higher in the test setting. 

Estimated between mammographer variability tended to be higher in clinical practice than in 

the test setting (e.g., aj2 > a^ and a^2 > a^), possibly reflecting wider variability in the films 

each mammographer reads in clinical practice, or the relatively small number of cancer films each 

mammographer evaluated over the course of four years in clinical practice. 

[ Table 2 about here ] 

5. Discussion 

These results represent a comprehensive comparison of mammographers' assessments in test 

and clinical settings. The clinical data was based on automated collection of mammographers' 

interpretations and recommendations. The data systems also allowed two year follow-up of each 

woman screened. The test data included a relatively large set of 113 mammograms and included 

30 cancers. Finally, our statistical model allowed for differences in the number of films each 

mammographer assessed during clinical practice. 

There was general agreement between observed values and hierarchical model results. Mam- 

mographers tended to be less accurate when evaluating the more difficult test film set, and 

tended to give more positive assessments in their clinical practice. Thus, we found no evidence 

of context bias as described by Egglin[7]. That is, mammographers did not tend to make more 

positive assessments in the higher prevalence test film set. However, we cannot conclude from 

this study that context bias does not exist, because the test context included both a higher disease 

prevalence and a more difficult set of films. 

Model-based estimates of between dataset correlation of sensitivity were stronger than ob- 

served correlation, and the estimated between dataset correlation of specificity was statistically 

different from zero. However, between dataset correlation of sensitivity and specificity appears to 

be driven by correlation in the mammographers tendency to call tests positive rather than corre- 

12 



lation in their accuracy evaluating the two data sets. We found moderate, but not statistically 

significant, correlation between mammographers' overall preponderance to identify cancer using 

the two data sources. But there was no apparent correlation between the hierarchical model's 

accuracy parameters. 

We do not believe that the lack of correlation between clinical and test performance resulted 

from differences in outcome scales. The basic assumption that we are testing is that these two 

measures are correlated because both are measures of the same underlying construct, mam- 

mographer accuracy. We are not interested in the equality of these two measures; we expect 

these accuracy estimates to differ because of differences in film difficulty, film quality, and the 

information provided to mammographers. 

We do not believe that the lack of correlation between clinical and test performance resulted 

from dichotomizing the outcome scales. We did not attempt to model the ordinal outcomes 

directly or via the area under the receiver operating characteristic (ROC) curve because in both 

clinical and test settings mammographers' maximum false positive rates were relatively low. 

Because of this, the area under their ROC curves were strongly influenced by false positive 

rates that were outside of the observed data range especially for clinical data. The sensitivity 

and specificity pairs we used in analyses contained most of the information available from ROC 

curves. 

There are many possible explanations for the lack of correlation in these data. Our 'gold 

standard' for true disease state was based on a two-year follow-up interval, and misclassification 

of diseased and not diseased women may have attenuated observed correlation. Our sample of 27 

mammographers may have been too small to detect statistically significant correlation, although 

point estimates suggest there was not clinically relevant correlation in accuracies. Examining 

mammographers practicing within the same HMO may have reduced variability so that correlation 

was not observable. Many of the mammographers in this study worked together and discussed 

difficult cases with each other on a day-to-day basis. Finally, lack of correlation may have 

resulted from differences in the type of films included in the two data sets. Clinical data included 

assessments of exams based on imaging studies, such as ultrasound and magnification views. If 

evaluation of 2 view mammograms requires different skills than evaluation of additional work- 

13 



up images, then the inclusion of these films in the clinical set could attenuate the estimated 

correlation between clinical and test accuracy. However, excluding these films would drastically 

reduce the number of cancer cases included in the clinical set and could bias comparisons by 

reducing the clinical data set to films that the original reader was able to assess without additional 

work-up. Because these results were unexpected, we must consideration possible explanations. 

However, these explanations are ultimately conjecture. 

The apparent lack of correlation between test and clinical assessments could be interpreted 

in at least two ways. One interpretation is that evaluations based on clinical assessments and 

evaluations based on test film sets are measuring two different kinds of accuracy. Because we 

are interested in clinical performance, concluding that test-based assessments of accuracy are 

different from clinical accuracy means either throwing out the test data sets as a reasonable 

means of mammographer evaluation, or seeking out ways to make test evaluations more com- 

parable to clinical evaluations. A second interpretation is that the apparent lack of correlation 

between clinical and test performance resulted from differences in the clinical case mix of partic- 

ipating mammographers. Clinical data included assessments based on both standard screening 

mammograms and screening mammograms that included additional work up, such as ultrasound 

and magnification views. We do not know how these different types of films were distributed 

across mammographers, or whether there were any informal systems of referral at the mammog- 

raphy centers. Systematic differences between mammographers could also have been introduced 

through differences in screened populations, for example, differences in the average age of women 

screened. Concluding that the clinical data are problematic means either throwing out the clinical 

data as a means of mammographer evaluation, or seeking out ways to make the clinical evalu- 

ations more comparable across mammographers. Unfortunately, our analyses cannot guide our 

conclusions about clinical and test data, though they caution us against extrapolating results 

from one setting into another. 
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Table 1. Mammographic Assessments of 27 Mammographers: Rate of 

positive assessments, indicating disease, with the total number of assessments in 

parenthesis. 

Test Data Clinical Data 

specific ity sensitivity specificity sensitivity 

mammographer (N) (N) (N) (N) 
1 0.880 [83] 0.897 [29) 0.922 (1715] 1.000 (14) 

2 0.687    | [83; 0.833 [30) 0.816 (1492] 1.000 (14) 

3 0.687    | [83; 0.833 [30) 0.804 (2341] 0.929 (14) 

4 0.880    ( [83] 0.833    < [30) 0.823 (2129] 0.933 (15) 

5 0.867    ( [83] 0.800    | [30) 0.896 (2818] 0.880 (25) 

6 0.756    | [82] 0.733    < [30) 0.917 (2221] 0.941 (17) 
7 0.867    | [83] 0.767    | [30) 0.965 (1733] 0.684 (19) 

8 0.904    | [83] 0.700    | [30) 0.911 (2045] 0.917 (12) 

9 0.867    ( [83] 0.833    < [30) 0.879 (1742; 0.826 (23) 

10 0.831     ( [83] 0.800    < [30) 0.832 (1435; 0.833 (12) 

11 0.867    ( [83] 0.800    | [30) 0.915 (3299] 0.935 (31) 
12 0.831    ( [83] 0.724    < [29) 0.865 (230] 1.000 (2) 
13 0.867    | [83] 0.833    | [30) 0.870 (971] 0.800 (10) 

14 0.904    ( [83] 0.867    | [30) 0.877 (675] 0.500 (2) 
15 0.783    ( [83] 0.833    < [30) 0.881 (2546] 0.955 (22) 

16 0.880    ( [83] 0.800 [30) 0.930 (44i; 1.000 (1) 
17 0.855    | [83] 0.867    | [30) 0.883 (3167] 0.960 (25) 
18 0.854    ( [82] 0.867 [30) 0.822 (1451] 1.000 (11) 
19 0.771     | [83] 0.833 [30) 0.901 (3786; 0.875 (32) 
20 0.904    | [83] 0.767 [30) 0.905 (1276; 0.714 (7) 
21 0.855    | [83] 0.833 [30) 0.908 (3186] 0.800 (25) 
22 0.904    | [83] 0.733 [30) 0.880 (2585] 0.947 (19) 

23 0.855 [83] 0.793 [29) 0.943 (1643] 0.846 (13) 

24 0.807 [83] 0.828 [29) 0.913 (1726] 1.000 (10) 

25 0.819 [83] 0.767 [30) 0.864 (1151] 1.000 (4) 
26 0.892 [83] 0.900 [30) 0.920 (2169] 0.842 (19) 

27 0.759 [83] 0.833 [30) 0.867 (663] 0.833 (6) 
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Table 2. Hierarchical model estimates from the posterior distribution. 

parameter and description 

Estimates 

mode    95% credible region 

0i: expected cutpoint parameter, test data 

Ai: expected accuracy parameter, test data 

-0.100    (-0.330,    0.125) 

3.322     (2.888,    3.553) 

02: expected cutpoint parameter, clinical data 

A2: expected accuracy parameter, clinical data 

0.066    (-0.216,    0.352) 

4.361     (3.928,    4.798) 

OQ^. between-mammographer variance of cutpoints, test data 

a^: between-mammographer variance of accuracy, test data 

of2: between-mammographer variance of cutpoints, clinical data 

cr^2: between-mammographer variance of accuracy, clinical data 

0.261     (0.153,    0.489) 

0.409     (0.215,    0.823) 

0.337     (0.190,    0.658) 

0.502     (0.247,    1.096) 

r: regression coefficient, cutpoint parameters 

A: regression coefficient, accuracy parameters 

0.560    (-0.341,    1.530) 

-0.048    (-1.020,    0.945) 

PQ\ correlation between clinical and test cutpoints 

pa: correlation between clinical and test accuracy 

0.220    (-0.142,    0.486) 

-0.026    (-0.477,    0.446) 

18 



d 

oo 
d 

CO 
g 

ü 

d 

CD 
d 

d 

0.5 0.6 0.7 0.8 0.9 1.0 

test 

Figure 1A. Sensitivity in clinical practice versus sensitivity in a test setting for 

27 mammographers. 
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Design of a Study 
to Improve Accuracy in Reading Mammograms 
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ABSTRACT. This paper is concerned with the design and analysis of mammography reading studies. In particu- 
lar we consider studies aimed at evaluating interventions to improve the accuracy with which mammograms 
are read. A simple randomized design is suggested in which a relatively large group of readers read sets of mammo- 
grams before and after an intervention phase. We propose solutions to three difficult statistical issues that arise 
in the context of such studies: (i) the choice of primary outcome measure; (ii) the data analysis technique to 
be employed; and (iii) the methodology for calculating sample sizes for readers and images to be read. 

First, we argue in favor of using sensitivity and specificity as the primary outcome measures rather than receiver 
operating characteristic (ROC) curves in mammography studies, although the latter are considered state of the 
art for many types of radiology reading studies. We argue that sensitivity and specificity are more clinically 
relevant and conceptually more straightforward than ROC curves. Second, we suggest a bivariate approach to 
data analysis for evaluating intervention effects on sensitivity and specificity. This accommodates the correlations 
inherent between these measures and allows for estimation of joint effects on them. Finally we propose a method 
for power calculations that uses computer simulation techniques. Simple formulas for sample size calculations 
are not available in part because variability in accuracy amongst readers and variation in difficulty among images 
introduce complexity into power calculations. The simulation method that we propose accommodates such 
complexity and is easy to implement. 

The methodology was motivated by a study'funded by the Department of Defense to evaluate the potential 
efficacy of an educational intervention. In the context of this study we illustrate the steps involved in power 
calculations and apply the data analytic techniques to the sort of data expected to result from this study. Though 
the proposed methods were motivated by this particular study, the statistical considerations are relevant more 
broadly in mammography and indeed in other types of radiologic imaging studies. Standards for the conduct of 
radiologic reading studies are not yet well developed, as they are for randomized clinical trials and for case- 
control studies. We hope that the discussion in this paper will add to the dialogue necessary for development 
of such standards, j CLIN EPIDEMIOL 50;12:1327-1338, 1997. © 1997 Elsevier Science Inc.  

KEY WORDS. ROC curves, sensitivity and specificity, computer simulation, diagnostic tests, screening 

1. INTRODUCTION 

Mammography screening for breast cancer has been shown 
to be associated with decreased breast cancer mortality, at 
least in women over the age of 50 years [1]. Major efforts 
are currently underway to improve participation by women 
in screening programs [2]. Nevertheless, there is concern 
about the quality of mammography screening and there is 
general agreement that improvements in quality may lead 
to improvements in the performance of mammography as 
a screening modality. Quality might be improved for exam- 
ple by improving the imaging procedures. Alternatively, im- 

'Address for correspondence: Margaret Sullivan Pepe, Fred Hutchinson 
Cancer Research Center, Program in Biostatistics, 1124 Columbia Street, 
MP-665, Seattle, Washington 98104. 

Accepted for publication on 20 August 1997. 

provements in the accuracy with which mammographers in- 
terpret mammograms may improve the performance of 
screening mammography. Recent studies [3,4] have shown 
that there is considerable variability amongst radiologists in 
their interpretations of screening mammograms. Elmore et 
d. [3] observed that sensitivities ranged from 74% to 96% 
and that specificities ranged from 35% to 89% among 10 
radiologists reading 150 selected mammograms. Beam et d. 
[4] using a much larger sample of 108 radiologists, each read- 
ing 79 mammograms, found sensitivities in the range of 47- 
100% and specificities in the range of 35-99%. These obser- 
vations suggest that improvement in interpretation may be 

possible. 
As part of a project called the Mammography Quality 

Improvement Project (MQIP) funded by the Department 
of Defense and aimed at improving the quality of mammog- 
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raphy screening in rural communities, we are developing an 
educational program to improve the accuracy with which 
radiologists interpret mammograms. The educational inter- 
vention is composed of a series of five sessions in which 
mammographers read films and are provided with immedi- 
ate feedback on the accuracy of their interpretations. Feed- 
back is provided using a laptop personal computer that is 
mailed to the radiologist prior to his reading session. The 
computer program emphasizes the particular features of each 
mammogram that are relevant to determining the disease 
status of the woman screened. Eventually it may be possible 
to disseminate this sort of intervention over computer net- 
works thus making it attractive in terms of easy accessibility 
and low cost. 

To evaluate the impact of such an intervention on im- 
provements in diagnostic accuracy it will eventually be nec- 
essary to perform a study of radiologists' interpretations of 
screening mammograms in their actual practices. As a pre- 
liminary step to such a large-scale study, we will evaluate 
the intervention effects in a more controlled setting. Spe- 
cifically, we will have a number of radiologists read a se- 
lected set of mammograms before and after the intervention 
and evaluate changes in accuracy. The mammograms in- 
cluded in this controlled study will be composed of about 
50% from women with disease, a proportion much larger 
than would be observed in practice but necessarily high to 
estimate sensitivity rates in a small-scale study. Mammo- 
grams will be selected to represent a reasonably broad range 
of interpretive difficulty. 

The purpose of this paper is to elucidate some of the key 
statistical issues in the design of such a controlled reading 
study. Standards for the design of such studies are not well 
developed. This contrasts with therapeutic clinical trials 
and epidemiologic studies where the basic elements of study 
design are now fairly well standardized [5]. The question we 
propose to address in this reading study, namely evaluation 
of an intervention effect in a controlled setting, is a stan- 
dard sort of question addressed in diagnostic imaging re- 
search. Hence the design issues which are dealt with here 
will have implications for future studies in mammography 
and in other diagnostic test settings. These same issues also. 
arise in reading studies designed to compare different im- 
aging modalities. The key issues concern the choice of rele- 
vant primary outcome measures, appropriate data analysis 
strategies, and methodology for power calculations that in- 
corporates variability among radiologists and among images. 
Broader issues in regards to study designs for evaluating im- 
aging tests have been discussed in a more general sense in 
the literature [6,7]. 

In Section 2, we consider two sets of measures that can 
be used to define accuracy in reading mammograms; first, 
sensitivity and specificity and second, ROC curves. We ar- 
gue in favor of the former, in part, because they are more 
clinically relevant and most easily understood, but also be- 
cause the latter can provide inappropriate conclusions con- 

cerning intervention benefits. In Section 3, we detail the 
basic elements of the statistical design of our study that 
could be considered a prototype for evaluating intervention 
effects in diagnostic radiology. An approach to joint analy- 
sis of sensitivity and specificity is outlined in Section 4. In 
Section 5, we describe methodology for power calculations 
that are appropriate for the proposed design and analysis. 
We propose the use of computer simulation methods for 
calculating power because they allow for complex designs 
and can easily incorporate variability amongst radiologists 
and images. Having described the steps involved in calculat- 
ing power in Section 5, we then apply these procedures to 
the proposed MQIP study in Section 6, in order to illustrate 
the methods. Concluding remarks follow in Section 7. 

2. MEASURES OF ACCURACY 
2.1 Definitions 

A radiologist reading a set of mammograms for a woman in 
our study will classify each breast according to his or her 
suspicion of its showing malignancy. The ACR lexicon for 
rating a breast [8] which we will employ, defines a 5-point 
scale with category 1 indicating "normal, routine follow-up 
recommended," 2 indicating "benign, routine follow-up," 3 
indicating "probably benign, early recall recommended," 4 
indicating "suspicious for cancer, consider biopsy," and 
5 indicating "highly suspicious for cancer, biopsy recom- 
mended." A common definition of a screen positive mam- 
mogram is one that receives a rating of 4 or greater. These 
are mammograms that are sufficiently suspicious for cancer 
that biopsy is recommended and hence they have an impact 
on clinical practice. Sometimes a rating of a 3 or greater is 
considered positive. Because of the clinical implications of 
ratings 4 and 5, we will focus on the positivity criterion of 
category >4 here. 

Given a definition for screen positivity, since there is a 
rating for each breast, one can calculate sensitivities and 
specificities with either "woman" or "breast" as the unit of 
analysis. The latter includes all non-diseased breasts (in- 
cluding non-diseased breasts from women with cancer), as 
the denominator for specificity and all diseased breasts as 
the denominator for sensitivity. However, since the conse- 
quences of false positive and false negative errors relate to 
the woman (rather than the breast), it seems more clinically 
relevant to use woman rather than breast as the unit of anal- 
ysis. Thus, for example, we count the proportion of women 
with disease who have it detected as the sensitivity, rather 
than defining the sensitivity to be the proportion of diseased 
breasts which are'detected. This accords with previous liter- 
ature [3]. One could use the maximum of the ratings for the 
left and right sides as the woman level rating for calculation 
of sensitivity and specificity. Occasionally, however, a 
woman with unilateral disease may not have it detected in 
the affected side but will have a positive mammogram on 
the unaffected side. In this case, using the maximum rating 
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will inappropriately inflate the sensitivity. We define sensi- 
tivity instead as the proportion of women with disease who 
have it detected (a rating of M) on the affected side. The 
specificity is the proportion of women without disease who 
have a maximum rating of less than 4- 

ROC analysis is a statistical technique used to describe 
accuracy of diagnostic tests when the test outcome is either 
ordinal or continuous as opposed to binary. The rating data 
generated in radiology reading studies are ordinal and ROC 
analysis is often considered optimal for the analysis of such 
studies as is evidenced, for example, in a recent issue of 
Academic Radiobgj [9]. An ROC curve is constructed by 
varying the criterion used for defining a positive mammo- 
gram from "rating >2" to "rating ^5," plotting the associ- 
ated sensitivity and 1-specificity values against each other, 
and finally fitting a curve to the points so that the curve is 
anchored at (0,0) and (1,1). Various algorithms exist for 
fitting a curve, the most notable being the Dorfman-Alf al- 
gorithm based on the binormal model [10] and the empirical 
nonparametric method that simply connects observed ROC 
points linearly. The area under the ROC curve is usually 
used to summarize accuracy. Again we suggest that woman 
rather than breast should be the unit of analysis in defining 
the ROC curve. That is, in calculating the sensitivity corre- 
sponding to the criterion "rating > K," it should be defined 
as the proportion of women with cancer who have a rating 
of 5: K on an affected side. 
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FIGURE 1. An hypothetical setting where the sensitivity and 
specificity associated with the clinically relevant criteria are 
unchanged but the empirical ROC curves indicate a benefit 
of intervention. The (false positive, true positive) points as- 
sociated with categories 5,4, 3, and 2 are (0.10,0.30), (0.25, 
0.70), (0.45, 0.85), and (0.75, 0.95) respectively, pre-inter- 
vention; and (0.10, 0.60), (0.25, 0.70), (0.45, 0.85), and 
(0.55, 0.95), respectively, post-intervention. 

2.2 ROC Analysis Versus Sensitivity and Specificity 

ROC analysis was developed originally for diagnostic tests 
with results on some arbitrary scale. Its primary advantage 
is that it allows one to assess the inherent capacity of the 
test to distinguish between diseased and non-diseased sub- 
jects without linking the test to some particular threshold 
for defining screen positive [11,12]. This seems appropriate 
in radiology experiments when image ratings are arbitrary 
numbers with no specific clinical meaning attached to 
them. In that case, shifts in the distributions of ratings are 
of no consequence as long as they are equally shifted for 
diseased and non-diseased subjects. In mammography, how- 
ever, mammogram ratings have very specific clinical mean- 
ings and consequent clinical implications. Uniform shifts 
in the frequencies with which rating categories are chosen 
can have major clinical implications. 

Moreover, in contrast to the prototype setting for ROC 
analysis, shifts between certain diagnostic categories are of 
more importance than others. For example, as noted by Ko- 
pans [13], whether an image is rated in category 4 versus 
category 5 has no clinical impact. Similarly classifications 
in category 1 versus category 2 are clinically irrelevant. 
However, shifts between categories 4 or 5 and between 1 
or 2 can have a big impact on the ROC analysis. To illus- 
trate this consider the setting shown in Fig. 1. The effect 
of intervention in this setting is to shift classifications of 

diseased observations from category 4 to category 5 and clas- 
sification of non-diseased patients from category 2 to cate- 
gory 1. Though these changes are of no clinical import, the 
ROC type analysis indicates a benefit for the intervention. 
Thus an ROC analysis can indicate a benefit of intervention 
even though a clinically relevant benefit does not exist. 

Of even more concern is the fact that a clinically relevant 
benefit of intervention can occur even when the ROC 
curves pre- and post-intervention are the same. Consider 
the ROC curve depicted in Fig. 2 for such a situation. The 
location on the ROC curve of the points associated with 
the criterion "rating ^ category 4" indicate that sensitivity 
was significantly increased without decreasing specificity. 
This clinically relevant improvement in test accuracy does 
not manifest itself in an improvement in the ROC curves 
since the pre- and post-intervention curves are the same. 
(Interestingly, classic binormal ROC curves do not fit the 
situation depicted in Fig. 2 and a binormal ROC analysis 
in this setting may incorrectly indicate that the ROC curve 
post-intervention is improved over that pre-intervention). 

The fact that ROC analysis can yield inappropriate con- 
clusions regarding the clinically relevant effects of interven- 
tion argues against its use for the primary analysis of mam- 
mography reading study data. Another valid argument for 
not using an ROC analysis is that it is complicated and 
not easily understood by clinicians. Moreover, the so-called 
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FIGURE 2. An hypothetical setting where ROC curve is un- 
changed by the intervention but there is a clinically relevant 
benefit. The sensitivity associated with the clinically rele- 
vant criterion is improved from 0.50 to 0.70 while the associ- 
ated false positive rate remains unchanged at 0.09. The 
(false positive, true positive) points associated with catego- 
ries 5,4, 3, and 2 are (0.03, 0.27), (0.09, 0.50), (0.15, 0.83), 
and (0.39, 0.93) pre-intervention and (0.03, 0.27), (0.09, 
0.70), (0.15,0.83), and (0.39,0.93) post-intervention. These 
points before intervention are labeled with circles and after 
intervention are labeled with triangles. 

"area under the curve" that summarizes the ROC curve in 
a single number has an interpretation that is not well known 
or easily understood. It can be interpreted as the probability 
that a radiologist will have a greater suspicion of cancer 
from a mammogram from a woman with disease than from 
a woman without [14]. This probability, however, seems to 
be of more theoretical than practical relevance. 

We propose using the more clinically meaningful quanti- 
ties of sensitivity and specificity for the primary data analysis 
and employing ROC analysis as a secondary descriptive de- 
vice. Though ROC analysis may be statistically more power- 
ful in some settings, statistical power is of secondary impor- 
tance relative to clinical relevance. Any study should be 
designed so that it has adequate power to detect changes in 
the quantities that are of practical relevance. Hence, we 
suggest that power calculations for a mammography reading 
study should be based on the ability to detect changes in 
sensitivity and specificity rather than on the basis of de- 
tecting changes in ROC curves. 

3. STUDY DESIGN 

We now describe the basic elements of the design that we 
propose for studies evaluating intervention effects on read- 
ing accuracy in mammography. In this prototype design, ra- 

diologists are randomly assigned to intervention and control 
groups, with the number in the former being denoted by RT 

arid the number in the latter denoted by Re. Two image 
sets are constructed with M images in each set S = 1,2. In 
set S, a number Mp are from women with disease and this 
number may differ between the two sets. Each reader reads 
one set of images before the intervention period and one 
set after. It is important that the sets before and after inter- 
vention be different since readers may remember, to some 
degree, images that they have previously read. Half of the 
readers chosen at random in each of the intervention and 
control groups read set 1 before intervention and set 2 after 
intervention. The other half read them in the opposite or- 
der: set 2 followed by set 1. This cross-over of film sets elimi- 
nates the possibility of systematic bias due to film sets. The 
design is balanced in the sense that set 1 is read equally 
often before and after the intervention phase in both the 
intervention and control groups, and similarly for set 2. 
Readers are told the approximate prevalence of diseased im- 
ages, i.e., (Mb + MD)/2M and that this varies between the 
two sets. The rationale for telling the readers the approxi- 
mate prevalence is that it will become apparent in any case 
after reading the first set of images and that a priori knowl- 
edge of it should reduce the potential impact as much as 
possible on the observed improvement in accuracy. Readers 
will use the ACR lexicon to classify mammograms and for 
each reading it will be determined if it is screen positive or 
negative according to whether the rating is at least 4 or less 
than 4. 

Images for inclusion in the study need to be selected so 
that average sensitivity and specificity at the baseline assess- 
ment are relatively low. That is, improvements in accuracy 
should be possible with the sets of images chosen. If, in the 
absence of intervention all images from women with disease 
were easily identified as such, the observed sensitivities pre- 
and post-intervention would be close to 1 and a change in 
sensitivity would not be identifiable regardless of the actual 
effect of intervention. Thus at least some of the diseased 
images should be difficult but not impossible to identify as 
being from women with disease. Analogous considerations 
apply to specificity and the choice of non-diseased images 
included in the study. 

4. DATA ANALYSIS 

Having described the basic elements of the design and the 
choice of primary outcomes, we turn now to the strategy 
for data analysis. There are two components to the analysis. 
The first concerns a comparison of post- versus pre-inter- 
vention reading accuracy among the Rj readers in the inter- 
vention group. The second is the comparison of changes 
from pre- to post-intervention between the intervention 
and control groups. We first consider the former analysis, 
in part because it allows us to define notation most easily. 

The purpose of this data analysis is to compare the overall 
sensitivity pre-intervention with that post-intervention 
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and to compare the overall specificity pre-intervention with 
that post-intervention. If ST-pr<. and STtPm, denote the observed 
pre- and post-intervention sensitivities for radiologist r, 
then the observed change in the overall sensitivity AT(sen- 
sitivity) is the average change in sensitivities across radiolo- 
gists in the intervention group: 

üT(sensitivity) = — /   (S,iP(« - Sr,pr(.). Rrtr 
Similarly the observed change in the overall specificity in 
the intervention group is 

"T 

/^(specificity) = — )   {F,,^ ~ Fr,p„) 
RT^T 

where Fr,pre and FTiPÜSt denote the observed pre- and post- 
intervention specificities for radiologist r. Variance estima- 
tors for ^(sensitivity) and ^(specificity) are provided in 
the appendix. Although ^(sensitivity) and ^(specificity) 
are sample means of changes in sensitivities and specificities, 
their variances are not given by the usual variance formulae 
for sample means. Indeed such sample variances would over- 
estimate the variability. Rather the correct variance estima- 
tors rely on acknowledging that there are in essence two strata 
of radiologists in the design, which are defined by the order- 
ing of the two image sets which are rated. The variances of 
/iT(sensitivity) and ^-(specificity) are averages of stratum- 
specific variances, as shown in Appendix A. 

Sensitivity and specificity are highly correlated parame- 
ters. Radiologists with high sensitivities tend to have low 
specificities. This will happen for example if they have a 
low threshold for classifying images as diseased. Similarly, 
changes in sensitivities and specificities induced by the in- 
tervention may be highly correlated. In particular, if the 
intervention simply changes the implicit threshold a radiol- 
ogist has for classifying a mammogram as diseased then the 
sensitivity and specificity will both be changed but in oppo- 
site directions. Thus it is important to assess joint effects of 
intervention on sensitivity and specificity and to account 
for correlations between them in making inference. This 
can be accomplished by employing a bivariate analysis ap- 
proach which is a special case of multivariate analysis, and 
for which there is a large statistical literature [15]. Using 
this approach to test the hypotheses that the true average 
sensitivity and specificity are unchanged by the interven- 
tion, H0: /^(sensitivity) = /tr(specificity) = 0, a chi-square 
test statistic is calculated. This statistic is a function of the 
observed average changes, ^(sensitivity) and ^(specifi- 
city), their variances and also their correlation. An expres- 
sion for the chi-squared statistic is provided in the Appendix. 

In addition to simply testing the hypothesis of no inter- 
vention effect, it will be important to provide a confidence 
region for the intervention effects on sensitivity and speci- 
ficity based on the observed data. That is, a range of inter- 
vention effects, {/iT(sensitivity), Ar(specificity)}, which are 
consistent with the observed data. Such a joint 95% confi- 

dence region is defined formally as the set of values (x,y) 
for which the hypothesis H0: {^-(sensitivity) = x, /^(spec- 
ificity) = y} is not rejected at the 5% significance level. 
This region is an ellipse, centered at the observed interven- 
tion effect (iT(sensitivity), ^(specificity)). We refer the 
interested reader to the text [15] by Johnson and Wichern 
(1988, section 5.2) for technical details regarding its calcu- 
lation. Code for calculating such regions has been written 
by Murdoch and Chow for the S-PLUS statistical software 
package and can be obtained from the S-archive on the 
Statlib computer site (http://lib.stat.cmu.edu). In a similar 
fashion a joint confidence region for the overall average 
sensitivity and specificity pre- or post-intervention can be 
calculated. It is calculated using the observed radiologist 
specific sensitivities and specificities pre- and post-interven- 
tion, and requires only calculation of the means, variances 
and correlations for these parameters. To illustrate these 
analyses, Fig. 3 displays joint confidence regions based on 
a simulated data set. In our opinion these confidence regions 
provide a simple summary of the information contained in 
study data regarding intervention effects on reading accu- 
racy. In the simulated data, the analyses show that sensitiv- 
ity was increased by the intervention whereas there is no 
evidence of change in specificity. 

So far we have considered the comparison of post- versus 
pre-intervention reading accuracy within the intervention 
group. To attribute changes in accuracy to the intervention 
it will be necessary to compare the changes in the interven- 
tion group with those in the control group. Without the 
control group comparison, observed changes might be at- 
tributed to other factors, such as the increased reading prac- 
tice or increased awareness of reader fallibility induced by 
participation in the study. Thus, turning now to the com- 
parison of intervention and control groups, the main hy- 
pothesis to be tested is that the changes in sensitivity and 
specificity in the intervention group are the same as those 
in the control group. Using a subscript T to denote the in- 
tervention group and subscript C to denote the control 
group, the null hypothesis is H0, -dc(sensitivity) = /lT(sen- 
sitivity), /lc(specificity) = /lT(specificity). A test statistic 
that has a chi-square distribution with 2 degrees of freedom 
is described in the appendix for testing this hypothesis. Joint 
confidence regions for the differences in changes between 
the groups, namely /lT(sensitivity) - /lc(sensitivity) and 
/lT(specificity) - /lc(specificity), can be calculated using 
methods analogous to those described earlier for the pre- 
versus-post-intervention comparison. 

5. METHODOLOGY 
FOR POWER CALCULATIONS 

Power calculations for the reading study are somewhat com- 
plicated. They must accommodate the facts that readers 
vary in their accuracy parameters of sensitivity and specific- 
ity, that their sensitivities and specificities are likely nega- 
tively correlated, that images vary in difficulty and that a 
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FIGURE 3. Joint confidence regions for sensitivity and speci- 
ficity both pre and post intervention (upper panel) along 
with a joint confidence region (lowerpanel) for the changes 
in these parameters. Data used in this illustration were gen- 
erated using computer simulation methods described in sec- 
tions 5 and 6. Points correspond to observed data for individ- 
ual radiologists. 

bivariate analysis approach will be employed. These factors 
together make analytic expressions for sample size intracta- 
ble. We instead take a computer simulation approach to 
power calculations. The simulation approach to power cal- 
culation is a general and standard method and indeed soft- 
ware has been developed for certain types of applications 
[16]. The basic idea is to repeatedly simulate data as it is 
expected or hoped to arise in the course of the "study, and 
determine how often the null hypothesis is rejected. By 
definition the statistical power of the study is the proportion 
of simulated studies in which the null hypothesis is rejected. 
One calculates the power in this fashion using various sam- 
ple sizes until a sample size is found that provides adequate 

power. This indirect computer intensive approach to sample 
size calculation is easily accomplished with modem com- 
puters. 

5.1 Models for Pre- and Post-intervention Accuracy 

To simulate study data we need to define precisely the 
mechanisms giving rise to the data. We therefore need to 
make assumptions about the reading accuracies before and 
after intervention. For this purpose we suppose that before 
intervention a reader correctly assesses a woman with tumor 
as being diseased with probability P^,. The probability P° 
depends on the image denoted by i and on the reader, de- 
noted by r. The probabilities P° will presumably be higher 
if the tumor is clearly visible in image i than if it is not. 
The probabilities will also be higher if the radiologist is con- 
servative and is inclined to recommend biopsy for border- 
line cases. We let SD be the sensitivity of the average radiol- 
ogist to the average film from a woman with tumor. The 
variability among films in terms of the difficulty that readers 
have in assessing them, is captured by specifying a distribu- 
tion for the sensitivities that the average reader has in as- 
sessing the films. Here we assume that the average reader's 
sensitivity to films varies uniformly in an interval (SD — aP, 
SD + aP) across different films. Thus for the average radiolo- 
gist, easier films are read with sensitivity closer to SD + aP 
and more difficult films are read with sensitivity closer to 
SD — aP. In a similar fashion, on the average film from a 
diseased woman, the sensitivity of different readers is as- 
sumed to vary uniformly in an interval (SD — b°, S° + bP) 
across radiologists. Thus radiologists with high sensitivity 
to the average film will have sensitivity closer to SD + bD. 
In the appendix we detail a logistic model with random ef- 
fects (also called a mixed model) for the probabilities P£, 
that give rise to inter-image and inter-reader variability as 
postulated here. It is assumed that on the logistic scale there 
are no interactions between reader and image specific effects 
on the sensitivity. 

Observe that for the purposes of simulating data, by speci- 
fying SD and aP we can now generate a random image effect 
by choosing a random number in (SD ± aD) that corresponds 
to the sensitivity an average radiologist has for detecting it. 
Similarly, having a specified SD and b° we are in a position 
to generate a random reader effect by choosing a random 
number in (SD — \P, SD + b°) that corresponds to his sensi- 
tivity to the average film. The logistic model displayed in 
the appendix then yields the probability P,,r that that reader 
has of correctly assessing that image as diseased. 

Analogous considerations apply to the determination of 
randomly generated specificities which vary across radiolo- 
gists and across images from women without disease. Values 
for parameters Fß, bP and aP need to be specified in order 
to define the data generating process. Here, F^is the proba- 
bility that the average radiologist will correctly assess the 
average non-diseased image as such, radiologists vary uni- 
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formly in (FD - bü, Fß + bD) in their specificities to the 
average non-diseased film, and images from women without 
disease vary uniformly in (Fß - aP, FD + a6) in the probabil- 
ities of the average reader correctly classifying them. The 
sensitivities and specificities from single radiologists should 
be correlated. In the Appendix we describe how negative 
correlation between sensitivities and specificities within ra- 
diologists can be built into the data simulation mechanism. 

In summary, for each study radiologist we simulate his/ 
her sensitivity and specificity to the average diseased and 
non-diseased films, respectively, by randomly sampling cor- 
related numbers from (SD - b°, SD + b°) and (Fe - bD, FD 

+ bD), respectively. For each study film we determine the 
sensitivity or specificity that an average radiologist has for 
it by randomly sampling a number from (SD — aP, SD + aP) 
or (F° - aP, F° + aP). Finally, for each combination of film 
i and radiologist r, we can calculate P,° or P,D

r, which is the 
probability that the radiologist will assess that image cor- 
rectly. 

The PP, and Pfr pertain to probabilities before interven- 
tion in the treatment and control groups. One also needs 
to specify treatment effects in order that corresponding 
probabilities after intervention can be calculated. We pos- 
tulate that after intervention the quantities SD and FD are 
changed to new values but that the variations among read- 
ers and among images remain the same. In the Appendix 
we define in a mathematically precise way a logistic model 
that incorporates such intervention effects. 

5.2 Simulated Study Data Qeneration 

Having specified statistical models for pre- and post-inter- 
vention rating probabilities that incorporate variation 
among radiologists and among images, we now turn to the 
simulation of study data in accordance with the study design 
that we proposed in section 3. The first step is to generate 
images and image sets. This entails generating M diseased 
images (i.e., M image-specific parameters, one for each im- 
age), generating M non-diseased images, and finally from 
the 2M films choosing M at random without replacement 
to form film set 1. The remaining M films constitute film 
set 2. The next step is to generate Ry intervention readers 
and Rc control readers and assign them film sets. That is, 
for each of RT + Rc readers we generate pairs of pre- and 
post-intervention sensitivities and specificities to average 
diseased and non-diseased films according to the models de- 
scribed in section 5.1. Of the total RT + Rc readers, RT are 
assigned at random to the intervention group and the re- 
maining Rc to the control group. Finally film set orderings 
are assigned to the readers with half of the intervention 
readers selected at random being assigned set 1 first and the 
other half assigned set 2 first. Similarly, Rc/2 control readers 
are assigned set 1 followed by set 2 and the other Rc/2 read- 
ers are assigned film sets in the opposite order. 

The final step in generating data for a simulated study is 

to actually generate the readings for each reader and image 
combination. That is, for each reader and for each of the 
M films in his/her pre-intervention set, a binary random 
variable is generated which is his/her assessment of whether 
or not that image shows disease using the probability 
P£iiPre if the image is diseased and 1 - Pß,pre if the image is 
not diseased. Similarly, for each of the M films in his/her 
post-intervention set a similar binary random variable is 
generated using P° iP0St or 1 - Pö

ii>poa noting that the pre- and 
post-probabilities differ by different amounts for interven- 
tion-versus-control radiologists. 

Having generated the simulated study data the test statis- 
tics of interest can now be calculated. Data are simulated 
(first the probabilities, then the ratings) and results calcu- 
lated under the same assumptions and study design many 
times, with 1000 or 5000 simulated datasets being typical 
numbers used for power calculations. The proportion of sim- 
ulated studies in which the null hypothesis is rejected is 
the calculated study power for that design and under those 
assumptions. 

6. POWER CALCULATIONS: 
RESULTS FOR THE MQIP STUDY 

To fix ideas, we now illustrate the computer simulation 
method for power calculations in the MQIP study. This il- 
lustration also identifies some sources of data to guide as- 
sumptions for power calculations. 

We need to choose assumed parameters for the baseline 
sensitivities and specificities, for the variations among radi- 
ologists and among images and for intervention effects of 
interest. We assume that the median sensitivity pre-inter- 
vention, SD, in our study will be in the range of 0.70 to 
0.80. This accords with previous studies that found median 
sensitivities of 0.70 and 0.80 [3,4]. Median pre-intervention 
specificity will also be assumed to lie in the range of 0.70 
to 0.80. Beam et al. [4] found a median specificity of 0.94 
for mammograms from women with normal mammograms 
and a median specificity of 0.60 for mammograms from 
women with benign disease. Elmore et al. [3] found a median 
specificity of 0.94. In contrast to these studies, we will in- 
form the radiologists of the average prevalence that is 
higher than that expected in a practical screening setting. 
Because of this and the fact that the films in our study will 
be somewhat difficult, we anticipate an initial specificity 
lower than observed in those studies. The variation amongst 
radiologists in sensitivities and specificities will be assumed 
such that bD = 0.20 and b° = 0.20, which is in agreement 
with the range of approximately 40% in sensitivities (and 
specificities) among radiologists observed in Beam's study. 
We could find no data on inter-image variability to suggest 
appropriate values for aD and aP. We assume that they are 
of the same order of magnitude as the inter-rater variability 
parameters, aP = aP = 0.20. With regard to intervention 
effects of interest, we consider that changes of 10 percentage 
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TABLE l. Power to detect a 10% increase in sensitivity and no effect on specificity in the intervention group 

Readers 
per group 
(RT) 

20 
20 
20 
20 
20 
20 
20 
20 

30 
30 
30 
30 
30 
30 
30 
30 

40 
40 
40 
40 
40 
40 
40 
40 

Films 
per set 
(M) 

30 
30 
30 
30 
45 
45 
45 
45 

30 
30 
30 
30 
45 
45 
45 
45 

30 
30 
30 
30 
45 
45 
45 
45 

Pre-intervention 
sensitivity 

Power 
Pre-intervention 

specificity 
Within 

intervention group 

0.70 
0.70 
0.80 
0.80 
0.70 
0.70 
0.80 
0.80 

0.70 
0.70 
0.80 
0.80 
0.70 
0.70 
0.80 
0.80 

0.70 
0.70 
0.80 
0.80 
0.70 
0.70 
0.80 
0.80 

0.70 
0.80 
0.70 
0.80 
0.70 
0.80 
0.70 
0.80 

0.70 
0.80 
0.70 
0.80 
0.70 
0.80 
0.70 
0.80 

0.70 
0.80 
0.70 
0.80 
0.70 
0.80 
0.70 
0.80 

0.70 
0.66 
0.79 
0.77 
0.81 
0.82 
0.91 
0.92 

0.81 
0.83 
0.93 
0.91 
0.94 
0.95 
0.99 
0.99 

0.92 
0.94 
0.97 
0.98 
0.98 
0.99 
0.99 
0.99 

Comparison with 
control group 

0.38 
0.34 
0.45 
0.44 
0.48 
0.53 
0.61. 
0.64 

0.48 
0.52 
0.60 
0.61 
0.66 
0.66 
0.80 
0.79 

0.61 
0.60 
0.73 
0.75 
0.79 
0.80 
0.88 
0.89 

All tests are two sided and are tested at a significance level of 0.05. 

points in either sensitivity or specificity are of interest. 
However, we calculated power for a variety of intervention 
effects. 

Practical considerations concerning time and cost dictate 
the range of sample sizes that are feasible and therefore, for 
which power calculations are performed. We anticipate that 
no more than approximately 80 radiologists are available 
for the reading study in the rural communities in which our 
mammography quality improvement study is being con- 
ducted. To maximize power, equal numbers of radiologists 
are assigned to control and intervention groups. Therefore 
the number of radiologists per group to be considered for 
power calculation purposes will be in the range of 20-40. 
Experience suggests that readers can comfortably read no 
more than 45 films per session. We therefore calculated 
power for experiments in which the number of films per set, 
M, was either 30 or 45. 

Estimates of power based on computer simulations are 
shown in Table 1. Though results are shown only for inter- 
vention effects on sensitivity with no effect on specificity, 
because of the symmetry inherent in the design, the same 
power calculations hold for a 10% change in specificity with 
no change in the sensitivity. Observe that the power is far 
larger for the within intervention group assessment of 

change than for the between group comparison of change. 
This is to be expected since the variability involved in com- 
paring two random changes is greater than the variability 
involved in comparing a single change with the null hy- 
pothesis of no change. We also observe from Table 1 that 
the power is less when the baseline sensitivity is 0.70 than 
when it is 0.80. This is due to the relatively larger binomial 
variance for the lower baseline rate. To be conservative we 
focus on this lower rate. Interestingly, the baseline specific- 
ity had little impact on the power to detect an intervention 
effect on the sensitivity. 

The target power for our study design is 90%, which 
allows a 10% chance of an inconclusive result when the 
intervention increases sensitivity from 0.70 to 0.80. For the 
within intervention group comparison this cannot be 
achieved with 20 readers, but it can be achieved with 30 
readers if 45 images are included in each image set. The 
between group comparison, however, has a power of only 
66% in this case. Even with use of our maximum resources, 
i.e., 40 readers per group and 45 images per reading set, the 
power is only 80%. This allows for a 20% chance of an 
inconclusive result even when there is a clinically impor- 
tant intervention effect on diagnostic accuracy. 

For the MQIP study we chose not to include a control 
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TABLE 2. Study power to detect various configurations of 
changes in the intervention group using a study design with 
30 readers and 45 films per set 

Pre-intervention 
sensitivity ■dj-(sens) Jr(spec) Power 

0.60 +0.10 0.00 0.90 

0.70 +0.10 0.00 0.95 

0.80 +0.10 0.00 0.98 

0.60 +0.05 0.00 0.35 

0.70 +0.05 0.00 0.39 

0.80 +0.05 0.00 0.50 

0.60 +0.05 +0.05 0.66 

0.70 +0.05 +0.05 0.68 

0.80 +0.05 +0.05 0.71 

The pre-intervention specificity is assumed to be 0.70 in all cases. The 
intervention induced change in sensitivity as denoted 4T(sens) and in 
specificity is denoted /lT(spec). 

group in the reading study component, but instead to focus 
the study on the within group comparison. The power cal- 
culations were an important contribution to this decision 
but other considerations also played a role. Radiologists 
would have little motivation to participate in the control 
arm whereas they would receive continuing medical educa- 
tion (CME) credit for participation in the intervention arm. 
The possibility that those in the control arm would learn 
from the baseline assessment was also a concern and thus 
we were concerned that it might not even be feasible to 
construct a true control group. Finally, it was felt that if we 
found a definite positive change in the intervention group, 
then this would provide sufficient motivation to proceed 
with more comprehensive controlled studies in the future. 
Thus we chose to study only the intervention effects in the 
intervention group and to use sample sizes of 30 radiologists 
each reading sets of mammograms from 45 women before 

and after intervention. 
The simulation program allowed us the flexibility to ex- 

plore the performance of this study design in a variety of 
settings other than that assumed for the primary sample size 
calculation. First we calculated the probability of rejecting 
the null hypothesis for settings where there was no inter- 
vention effect. Recall that inference for the test statistic is 
based on a chi-square statistic and is theoretically valid with 
large samples. However, this study entails relatively small 
samples. We used the simulations to check the adequacy of 
the large sample theory in our study. To do this we gener- 
ated data under the null hypothesis. The rejection probabil- 
ity was approximately 0.06 in the settings we studied, indi- 
cating that the true significance level of the test is slightly 
higher than the target of 0.05 but adequate for our purposes. 

We next explored the power of this study design and sam- 
ple sizes to detect an array of intervention effects. Results 
are shown in Table 2. Although the study has adequate 
power to detect a change in sensitivity (or specificity) of 
0.10 even when the pre-intervention sensitivity is as low 
as 0.60, it has little chance of detecting a smaller change 

of 0.05. On the other hand, if small changes of the order of 
0.05 occur in both the average sensitivity and in the average 
specificity there is. a good chance that the simultaneous ef- 

fects will be detected. 

7. DISCUSSION 

Diagnostic imaging technology is already a basic component 
of medical care and continues to develop at a rapid pace. 
It is clearly important to assess the accuracy with which 
readers can diagnose disease using such technologies, to 
evaluate the effects of training strategies and to compare 
methods. Implications for public health can be enormous. 
Unfortunately, statistical methodology for evaluating and 
comparing imaging methods has not received much atten- 
tion by biostatisticians and epidemiologists involved in pub- 
lic health research. Rather the literature is concentrated in 
radiology research journals, has generally focused on small 
scale studies involving only a few readers and has ignored 
clinical implications associated with different diagnostic 
categories. We believe that it is time to bring the discussion 
about study design and analysis for evaluating imaging tech- 
nology to the broader community of epidemiologists and 
statisticians involved in public health. This is particularly 
important as interest increases in the accuracies and costs 
of these imaging methods. By presenting our thoughts on 
the design and analysis of a study to evaluate an educational 
intervention on the interpretation of mammograms, we 

hope to stimulate such discussion. 
The choice of primary outcome measure is the most basic 

element of any study design. We chose to consider the sensi- 
tivity and specificity as the basis for evaluating intervention 
effects. This conflicts with initial statistical reviewers of our 
study design who were of the opinion that ROC analysis was 
the only appropriate and indeed the state-of-the-art basis for 
evaluating an intervention effect. We now argue that in 
mammography where specific clinical actions are associated 
with diagnostic rating categories, sensitivity, and specificity 
provide   a   more   clinically   relevant   and   conceptually 
straightforward basis for comparison than does ROC analy- 
sis. Moreover this approach allows us to evaluate effects on 
false positive as well as true positive rates. In contrast ROC 
analysis does not quantify the false positive rates directly 
but in a sense only uses it to standardize the true positive 
rate. We do not dismiss ROC analysis entirely but rather 
we regard the analysis of the specific rating categories of 
secondary importance and focus the design on sensitivity 
and specificity. Thus the MQIP study was designed to ensure 
adequate power to detect changes in the most clinically rel- 

evant quantities. 
We also needed to decide upon the analysis techniques 

for making statistical inference about sensitivity and speci- 
ficity. We propose to simultaneously estimate sensitivity 
and specificity using multivariate methods. Sensitivity and 
specificity as we have defined them are average sensitivities 
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and average specificities of radiologists in our study. They 
can also be interpreted as marginal or population average 
quantities, in the sense of being the probability that a dis- 
eased (or non-diseased) image will be correctly interpreted 
as such in the study. The distinction between the popula- 
tion average and average radiologist-specific interpretations 
has to do with whether one considers the accuracy parame- 
ters to be based on data pooled across radiologists (popula- 
tion average) or to be based on calculation of the accuracy 
parameter for each radiologist and then averaging the re- 
sults. In our study these quantities coincide because all radi- 
ologists expect to read the same numbers of films. In studies 
where this is not the case, the distinction should be consid- 
ered and a decision should be made regarding which of the 
two entities is most relevant. 

The approach we propose for statistical inference is rela- 
tively straightforward, being based on methods for inference 
about sample means. Confidence intervals are based on the 
variance-covariance matrix of the estimated (sensitivity, 
specificity) parameters or their changes amongst radiolo- 
gists. Possible non-normality of the average estimates may 
be an issue in our study, though for the settings considered 
in the power calculation this did not appear to be the case. 
An alternative approach to inference which might be more 
robust would follow the marginal regression modeling ap- 
proach described by Leisenring, Pepe, and Longton [17]. 
One could formulate logistic regression models for the popu- 
lation average sensitivity and 1-specificity as 

logit {Prob[screen positive | image diseased]} 

= To + 7ib 

logit {Prob[screen positive | image non-diseased]} 

= T]o + mb 

where the logit function is logit {x} = In {x/(l - x)} and 
b is 0 if the image was read before the intervention and 1 
if it was read after the intervention. The changes in the 
true and false positive rates are now quantified in the odds 
ratio parameters % and 77,, respectively, and joint confi- 
dence intervals can be calculated. By adding an interaction 
term between b and I, where I is an indicator of the radiolo- 
gist being in the control or intervention groups: 

logit {Prob[screen positive | image diseased]} 

= To + 7\b + Jibl 

logit {Prob[screen positive | image non-diseased]} 

= Vo + f)\b + Tjibl 

a comparison of the changes in the intervention and control 
groups can be made by testing if the parameters y1 or 772 are 
0. Though this logistic regression modeling approach may 
provide more robust confidence intervals, we felt that the 
simpler approach described earlier was adequate for power 
calculations. 

The prototype reading study we have described concerns 
evaluating the effect of an intervention on the change in 
accuracy parameters. We note, however, that most of our 
discussion is also relevant to the comparison of accuracies 
associated with different imaging modalities. Suppose for 
example, that there are two sets of women (denoted by set 
1 and set 2) from which images have been made using two 
modalities. A natural study design to compare the modal- 
ities would entail readers assigned to read one set of films 
produced with one modality and the other set of films pro- 
duced with the other modality. Using the notation 1(A) to 
denote set 1 produced with modality A and similarly for the 
other combination, readers read either {1(A) and 2(B)} or 
{2(A) and 1(B)}. Considering that the ordering may also 
influence accuracy parameters, this yields four groups of 
readings, {1(A), 2(B)}, {2(B), 1(A)}, {2(A), 1(B)} and 
{1(B), 2(A)}. A balanced cross-over design would assign 
radiologists randomly to these four reading assignments. 
The difference in the sensitivity and specificity between 
modality A and B can be calculated by simply pooling all 
relevant readings for modality A and similarly for modality 
2. Inference for the difference follows in the same fashion 
as that described for the change induced by intervention in 
the intervention group of our study but that now there are 
4 rather than 2 strata of radiologists defined by the image 
reading set assignments. 

Power calculations for reading studies are not straightfor- 
ward due in part to correlations induced by images and read- 
ers. That is, for each image there are multiple readings. 
Moreover, each reader provides multiple readings and radi- 
ologist specific sensitivities and specificities are correlated. 
We propose simple analyses for dealing with these factors 
but power calculations required a computer simulation ap- 
proach. We found the process of developing the computer 
simulation study to be a useful exercise. It compels one to 
think through the processes generating study data. It also 
allows one to experiment with the assumptions and design 
easily. For example, we considered designs that included a 
larger number of film sets to be read in the study and found 
that the study power was decreased slightly due to the extra 
variation introduced. Computer simulations also allow one 
to check how test statistics perform under the null hypothe- 
sis with sample sizes proposed in the study. Hence one can 
check if inference based on large sample theory is valid in 
the setting where it is to be applied. We suggest that simula- 
tion studies are a useful approach to power calculations in 
any setting, though given the complexities in radiology 
reading studies, the case for the technique in this setting is 
particularly strong. 
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APPENDIX A 
1 VARIANCE ESTIMATORS FOR CHANGE IN 
OVERALL SENSITIVITY AND SPECIFICITY 

The change in the overall sensitivity defined in Section 4 can be 

written formally mathematically as 

üT(sensitivity) = 
RT 

S    ) 
Lr:(.»rder = 1,2) 

1    (!" 
der ■= I.Z) 

border - 2,1) ■> 

where Sr.pre is the observed sensitivity for radiologist r with his pre- 
intervention film set and SIlP<M is the corresponding quantity post- 
intervention. Observe that the order of film sets essentially defines 
two strata in this setting and the notation (order =1,2) (or [order 
= 2,1]) used to denote the stratum in the summation indicates 
that it includes only radiologists assigned sets in the order set 1 
first and set 2 second (or set 2 first and set 1 second). The variance 
of iT(sensitivity) can be estimated using the variance of a stratified 
sample mean V = 0.5 (V(U, + V(2il))/RT, where V(u) is the sample 
variance of the quantities (S,^ - S,„J in the stratum (order = 
1,2), and V2 is the analogous quantity in the other stratum. The 
ratio iT(sensitivity)/>/v can be compared with a standard normal 
distribution to test for a change in the sensitivity which is statisti- 

cally significantly different from 0. 

2. Chi-Square Test Statistics for Bivariate Analyses 

To simultaneously test the null hypotheses that both the sensitiv- 
ity and specificity are unchanged in the intervention group, H0: 
JT(sensitivity) = 0 = ^(specificity), the following test statistic 

can be used 

[iT (sensitivity) AT (specificity)] ^ 
AT (sensitivity) 
üT(specificity) 

where the square bracket notation is used to denote vectors and 
Xj' is the inverse of a square matrix If. This matrix IT is a vari- 
ance-covariance matrix for the two-dimensional statistic [^(sen- 
sitivity) iT(specificity)], and is the analogue of the variance V 
defined above in relation to the one-dimensional quantity 4T(sen- 

sitivity). Formally we write 

L = 0.5 
■e-MU)       ^>«.D + 
Z—iT jL-ll 

•/(RT - 1) 

where iV'" is the sample variance-covariance matrix for the quan- 
tities {Sr,„w - S,^ iv« - F,^} in the stratum (order = 1,2), 
and iV2" is the analogous quantity calculated for the other stra- 
tum. The test statistic is compared with a standard chi-square dis- 
tribution with 2 degrees of freedom in order to test the null hy- 
pothesis concerning changes in sensitivities and specificities. 

Consider now the component of the data analysis concerning 
the comparison of changes between intervention and control 
groups. Using a subscript C to denote the control group in analogy 
with our use of the subscript T to denote the intervention group, 
we define the statistics ^c(sensitivity), Ac(specificity) and lc- 
The estimated differences between the groups in changes of sensi- 
tivities and specificities can be written as A~T (sensitivity) - 
Ac(sensitivity) and iT(specificity) - 4c(specificity), respectively. 
The hypothesis that the changes are the same for intervention and 

control groups can be tested by comparing the statistic 

[iT(sens) - ic(sens) iT(spec) - ic(spec)] 

iT(sens) - 4c(sens) 

iT(spec) - ic(spec) 
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with the quantiles of a chi-square distribution with 2 degrees of 
freedom, where we use the abbreviations "sens" and "spec" to de- 
note "sensitivity" and "specificity" in the above expressions. 

3. Mixed Models for Reading Accuracies 

Section 5 outlines a statistical model for sensitivity and specificity 
parameters which vary with reader and image. Here we present a 
more formal and precise definition of this model. For radiologist 
r on diseased film i, we write the chance of correctly identifying 
it as diseased pre-intervention using a logistic model as 

PR = exp {jfi + y? + AD}/(1 + exp {ff + y? + ßP}) 

where yf and ß? are random variables specific to this film and 
radiologist, respectively. For the average radiologist ßP = 0, and 
for the average film yP = 0. Thus for the average radiologist on 
the average film the sensitivity is SD = exp{;UD}/(l + exp{/iD}). 
The films vary in difficulty in the sense that the average radiologist 
has a lower sensitivity on some films and a higher sensitivity on 
others. Mathematically this translates into allowing yf to vary. 
We choose it as a random variable so that the average radiologist's ■- 
sensitivity to different films varies uniformly in an interval (SD — 
aP, SD + aP). Technically this is achieved by letting yf = In 
{UP/(1 - Ü?)} - HD where U? is a random variable with a uni- 
form distribution in (SD - aP, SD + aP). The radiologists also vary 
amongst themselves in their sensitivities to the same film and this 
inter-rater variation translates into allowing ßP to vary. We simu- 
lated data so that on the average diseased film (i.e., yf = 0) the 
sensitivities of radiologists varied uniformly in (SD — bP, SD + bD). 
Again, technically we let ß? = In {U?/(l - Uf)} - flD where 
U? is a random variable with a uniform distribution on the interval 
(SD - bD, SD + bD). 

Turning now to specificities, we write the specificity for radiolo- 
gist r on non-diseased film j pre-intervention as 

Pft = exp {fi0 +• rf + #}/(l + exp {M° + y<> + y8?» 

where in analogy with the above notation for diseased films, the 

average .radiologist on the average film has specificity FD = 
exp{^D}/(l + exp{^D) and parameters aP and bD indicate varia- 
tion in the specificity with film and radiologist. As argued in sec- 
tion 5, data should be generated so that the ßP and )8r°are nega- 
tively correlated. We incorporated this into the simulation by first 
generating the sensitivity radiologist-specific random effect param- 
eter, ß°, (i.e., his/her sensitivity to the average film) which is 
based on the random variable U?, and then letting the correspond- 
ing random variable for the specificity random effect be defined 

U? = - FD - (U? - SD) § 
Thus if the radiologist's sensitivity is x X bD above the average 
radiologist's sensitivity to the average film, SD, his/her specificity 
will be x X bD below the average specificity to the average film. 

Our model postulates that after intervention the quantities Fß 

and SD are changed to new values but that the radiologist and 
image-specific parameters remain unchanged. Thus, suppose that 
after intervention the sensitivity of the average radiologist to the 
average film is exp(jUD + a°}ftl + exp{flD + of}). Then the 
chances that radiologist r will correctly classify film i pre- and post- 
intervention are 

PD 
* r,i,pre exP{//D + y? + ß?}l(l + exP{^D +y? + ß°}) 

and 

PJU = exp{/iD + a° + y? + /??} 

/(I + exPLuD + aD + tf> + £?})> 

respectively. Similarly the postulated change in F specifies a pa- 
rameter a0 (analogous to cP) which facilitates calculation of post- 
intervention specificities. Having chosen values for the various pa- 
rameters (//D, aD, aD, bD) and (fi°, a0, a0, b°), this completes 
the first step of the simulation power calculation method, namely 
specification of accuracy parameter distributions pre-intervention 
and intervention effects. 


