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The Role of the Initial Steps of Oxidation
for High Temperature Oxidation Resistance

C. Lang, M. Schiitze
Karl Winnacker - Institut
- DECHEMA
D - 60061 Frankfurt / M.

1 Introduction -4

insufficient oxidation resistance of y - titanium
aluminides above 800°C.

formation of a complex mixture of TiO, and AL,O;
‘instead of a thin, protective AL,O5 layer

gas / TiO, / (AL,Os) / TiO; + ALO; / Al depl. metal

detrimental effect of nitrogén containing
atmospheres
B niobium additions improve oxidation resistance

=>» investigation of the initial stages of oxidation
2 Experimental Procedure.

B materials: Ti36Al (mass - %)

Ti35AI5SND (mass - %)

VN,
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- Experimental Procedure

TEM sample preparation
foil samples Cross sections
. . ) b) e oxide
el.ectr.oly‘uc. jet R <<—{SEM
thinning with the .
solution H2SOsx : Tl Al

CH30HJ:9 at

d) TiAl - oxide - +

_2 5 o C composite
subsequent short
. . . : S
10n th.lnnmc for .. < Lrbaratd, AN Zn - alloy
cleaning of the EDX
surface : i

¢) TiAl - oxide -

oxidation in air /_composite dimple
from 800°C to

1000°C
- ions =
N /° 150 A sector
eﬂ_ﬁ, 40°- 80°

TEM mvestigation

nergy dispersive X - ray analysis (EDX) —® chemical composition

ight / dark field images —» scale structure and morphology
lected area diffraction (SAD)
nvergent - beam electron diffraction (CBED) — l

computer aided analysis of diffraction patterns

Iculation of interplanar spacings d by the equation: d: m.terplanar Spacing
A*L=R*d R: distance of the reflex to the
- origin on the pattern
A*L: camera constant

dexing of the dltﬁactlon patterns bv the calculated interplanar spacings and identification of
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oxide mixture
ALO; + TiO:
1 1)y ) i
1 {4 D ] ) - \ .""' —
| ' Nitride, Oxide
z BREENE 3 . :

500 nm TiAl NCP |
Schematic illustration of the oxide scale and the metal
subsurface layer of Ti36Al after oxidation for 0.5 h at
900°C in air.
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| | AlOsenrichment
TiO:2 + ALO:s
DOX( 10U n

~AlQOs3/ AION + Ti-nitrides

= S D

™ Ti-richmetal\| Yoo o= ]
| (NCP) e
. | - TiIN

e w
NCP  TiAl

~hematic illustration of the oxide scale on Ti36Al after
h of oxidation at 900°C 1n air.
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initial formation of'

M change of the

M formation of

ALOs and TiO: subsurface zone the outer ALO:3
from Ti - rich to i

Al depletion and TiAl 1 barrier

subsequent for - - o

mation of Ti - rich - oxidation => parabolic oxide

subsurface zone behaviour growth

increase of Ti -
activity and decrease
of Al - activity

formation of Ti -
nitrides / oxides at
the metal / oxide
interface caused by
the nonprotective
oxide scale

rapid oxide growth
until consumption of
the Ti - rich
subsurface zone

7 = 3 Karl-Ninnacker-institut

2 . -
Z DECHEMA S

™

different to stage I
because of the
already formed
oxide scale

linear oxide
osrowth through
repeated
formation of Ti -
nitrides, AL,O3
and TizAl at the
metal oxide

. interface

hﬁj‘\:\lv




oxide scale

metastable Al203 / TiN metastable Al2O3 /
etal / oxide AION AION
terface Ti-rich metal TiAl Ti-rich metal

e dissolution of metastable Al203/
AlON and outward diffusion of
Al

e oxidation of TiN to TiO2

v ® progressing inward oxidation at the

!

b interface
evious
terface pore Ti02 pore
) metastable Al203/ .
TIN AION TiN
TiAl . Ti-rich metal TiAl
TiAl
=13 oxide scale :
pore TiO2 pore
TiO2 pore TiO2
) metastabie Al203 / TiN metastable A[203/
AION AION
Ti-rich metal TiAl Ti-rich metal
TiAl
.)N:r\:-r/& 1 Y.YF Th s
Sz Karl-Winnacker-institut
S —— S ——————
M




T ]
oxide mixture
A - ALO;+ TiO:

coarse-grained Ti - oxide

AL7039N |

O O O O

['1Al + internal Al - oxide
- Al - rich metal

—

500 nm Ti - nitrides” D 8
\ /o

AL~ vich Al7 0N

vchematic illustration of the oxide scale on
[135AISND after 4 h of oxidation at 900°C in air

s Kar-iMinnacker-institur
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Vetal oxide mterrace of Ti33AISND atter oxidation at

900°C tor 4 h 1n arr.




® Effect of niobium addition

® no formation of an Al depleted metal
subsurface zone

@ stabilizing of a thin Al203/ AION layer
at the metal / oxide interface

— influence on 7 - TiAl phase field

— influence on the diffusion of Al and O in
the metal and the 0x1de scale (doping of
Ti0»)

— influence on the solubility of Al in TiO:

O
oxide scale

| (Ti¥b)O:

=

metal / oxide
interface

TiAl Al




amorphous layer
consisting of Ti -
und Al - oxide

U - ALO:

oxide mixture
|ALO:s + TiO:

Schematic illustration of the oxide scale and the
metal subsurface laver of Ti36Al atter
oxidation at 900°C for 4 h in pure oxvgen.
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® Eftect of nitrogen

- " :

® formation of Ti - nitrides at the metal /
oxide interface
® formation of metastable ALOs3 or AION,
respevtively, at the metal / oxide interface
instead of & - A]203

® Summary

NG
&
4)5\

é[l

NE AV
ST
| §¢

® In nitrogen containing atmospheres metastable
ALOs or AION, respectively, is formed at the
metal / oxide interface instead of @ - AL2Os.

® In the metal / subsurface zone of Ti36Al Al
depletion takes place and a new cubic phase
(NCP) with a composition between 2 - TizAl
and 7 - TiAl exists.

® During air exposure Ti - nitrides are formed at
the metal / oxide interface if an Al depletion
occurs in the metal subsurface zone. Thus a
continuous, protective Al203 layer is impeded.

® Niobium additions, which prevent Al depletion
in the metal subsurface zone and stabilize

Al2O3/ AION formation at the interface,
- improve the oxidation resistance of 7 - titanium

aluminides

: Kari-Ninnacker-institut



Development and Microstructural Assessment of TiAl-
based Alloys at the IRC

Three general points concerning low alloy additions.

(1) Additions of 2at% of elements such as Ta and W
changed yield and UTS very little, but improved creep
with respect to our base alloy of Ti 48A1 2Mn 2Nb.

(i) All other low alloying additions did little that could
not be better accomplished by processing.

(i) Grain size refinement by B addition straightforward

in base alloy but complicated in Ta and W-containing
alloys.

High Alloying additions

(1) Additions totalling about 8 - 10at% of elements
such as Nb, Ta and Zr increase properties very
signficantly. Life more complex with B2, 0.2 and y

phases and thermomechanical processing on these at
early stage in IRC.




Property Targets Based on Industrial
Specifications for LP Turbine Blades

Elongation = 2%; K, c = 30MPa m053
Yield = 400MPa; UTS = 550MPa

Alloys/processing based on derivatives of
Ti45AI2Nb2Mn, ie. low alloying additions to Tid5Al

Property Targets Based on Industrial
Specifications for HP Compressor Blades

| Elongation 3%; K. 30MPa mo5;
Yield 700MPa UTS 1000MPa

Alloys/processing based on derivatives of Ti45Al
with alloying additions of = 8at% to Ti45Al

In neither case was a creep specification forthcoming!
1000k rupture tests at two temperatures and two stress levels are
used to define relative primary and secondary creep strains

IRC in Materials for High Performance Applications
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‘The Effect of Non-Turbulent
Solidification
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Boride morphology in Ti-47A}-2Ta-1Mn-1Cr-1B-0.2Si.
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Boride Agglomerates in
Ti-47A1-2Ta-1Cr-1Mn-1B-0,

o LI

As—forged -

L2

forging axis <-—»
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| 150 nm

Typical APDBs in quenched Ti - 49Al and
diffraction patterns from regions 1 - 3

M .
UNIVERSITY COI_LEGEHI

N,

_/
IRC in Materials for @ |

OF St gh Performance Applications

THE UNIVERSITY

OF BIRMINGHAM

e —
e oo —-—— et




electron beam
direction

1/2 <101> displacement between domains 1 énd 2
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BF and DF micrographs with g = 001 (left) and
g = 111 (right) each at Bragg. Computed
images assume AR of 0.05 and appropriate
\ deviations from Bragg for 90° domain )
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Hardness traverse across sample extruded at 1380°C reduction in area 8.5
(Ti 48Al1 2Cr 2Nb 1B)

500

Lamellar Duplex

450 |

400

HY (50g)

350

woo i 1 A 1 i [} A L ] 2
0 1 2 3 4 5 6

Distance from Centre (mm)
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Massive transformation

Duplex structure

Risconlinuous coarsening

i

n two-phase 'l‘iAIubésed alloys §

Various microstructures observed
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Gamma Titanium Aluminide Alloy Technology: Status and Future

Young-Won Kim
UES, Inc., Dayton, OH 45432

(April, 1996)

Gamma alloys are emerging as revolutionary engineering materials for high temperature
structural applications. This article discusses the historical background, status and future prospect
of gamma alloy technology in the areas of fundamental understanding, alloy development/design,
process development, and applications.

Introduction

Since the first measurements of mechanical properties and oxidation resistance in a binary TiAl cast
alloy made in the early 1950's, numerous reports have confirmed many properties, beneficial to high
temperature structural applications, including low density, high temperature strength retention, high
stiffness especially at high temperatures, thermal expansion comparable to current alioys, good
oxidation resistance, and hot corrosion resistance comparable to, or better than, those of current
alloys. [1-15]

The first major gamma alioy development program was initiated by Air Force Materials Laboratory
and conducted by Pratt and Whitney from 1975-1983. This exploratory program evaluated
numerous alloy compositions through wrought processing and recommended Ti-48Al-1V-(0.1 C)as
the best alloy composition on the basis of ductility and creep resistance. Nevertheless, it's
properties in the fine duplex microstructure condition were not adequate for the requirements of any
engine components. At the end of the program, alioy castings were also evaluated; however, the
properties were found to be unsatisfactory as the large-grained cast lameliar microstructures
resulted in poor ductility and low strength. A few years later, the second major development
program initiated again by the Air Force was performed by General Electric, Schenectady from
1986-1991. Largely based on the knowledge accumulated during the first program effort and other
independent investigations, the effort identified Ti-48Al-2(Cr or Mn)-2Nb as the best second-
generation alloy composition. The alloys, produced through the rapid-solidification/wrought
processing, had a fine duplex microstructure and exhibited ductility/strength and oxidation
resistance improved over those of the first-generation gamma alloys. Understanding the effects of
alloying elements as well as composition on the properties progressed for both binary compositions
and multicomponent alloy systems [6-10].

As in most metallic materials, investment casting was used as the first process route for producing
experimental gamma components [6-10, 12, 14]. Since Howmet initiated a major investigation late
in the 1980's, several companies worldwide have tried to develop investment casting technology for
second generation gamma alloys. For the last few years, the gamma casting technology has
advanced considerably through solving various problems such as cracking, hot tearing, surface
connected porosity, filing and dimensional accuracy. In addition, much effort now appears to be
directed toward establishing low cost, consistent manufacturing processes which incorporate alloy
composition and its variations, materials properties, casting conditions and parameters, fillability,
HIP'ing and final microstructures of interest. [14].

However, as-cast/HIP'ed Ti-48Al-2Cr-2Nb is unacceptably low in ductility and strength for many
applications, due mainly to the coarse and nonuniform cast lamellar microstructure, which is not
readily removed by HIP'ing. Empirical efforts have been made to control, through annealing
treatments, the lamellar structure into finer mixtures of gamma grains and residual lamellar regions
which are called "casting duplex" microstructures of about 100-200um grain size. The casting
duplex form of Ti-47A1-2Cr-2Nb exhibits a reasonable balance of properties (though relatively low
levels), and has recently been demonstrated as a viable engineering material through rigorous
engine tests. During this period, investigations to refine cast microstructures have been made,
resulting in the development of cast XD alloys first at Howmet in 1990. Two XD alloys, Ti-(45,
47)Al-2Mn-2Nb-0.8vol%TiB2, have been tested worldwide and appear to be establishing
themselves as engineering alloys. The inoculation ability of boron in cast alloys was also used in
Jagan (IHIl) and Germany (GKSS) to develop cast alloys, Ti-47Al-1.6Fe-1.4V-2.4B and Ti-47Al-
3.5(Nb, Cr, Mn)-0.8(B, Si), respectively. [2-5]




Databases for the second-generation cast alioys are being established through extensive property
.evaluation on a few fixed processing-microstructure conditions. Most of the properties measured at
temperatures up to 760°C appear to be comparable to, or better than, when adjusted for density,
those of the counterpart Ni-base superalloys which they are to be substituted for. Fatigue crack
growth, impact resistance and ductility are of concern, and appropriate measures may be needed in
design strategy to accommodate such deficiencies.

Casting Alloys

Various gamma components for turbine engines have been identified for rotational parts such as
low pressure turbine (LPT), high pressure compressor (HPC) blades, and high pressure turbine
(HPT) blade cover plates, and stationary parts, such as transition duct beams, vanes, swiriers,
various cases, and nozzle flaps and tiles.

For the past few years, the databases and damage tolerance of various gamma alloys have been
assessed for some of the identified components, through various qualification tests including bench
tests, rig tests, and engine tests, by several companies including GE, P&W, MTU, Rolls-Royce, and
IHl. Perhaps, the most significant qualification tests were the rigorous engine tests conducted in
1993 and 1994 by GE on a full set wheel of 98 LPT cast gamma blades made of Ti-47AI-2Cr-2Nb.
The two successful engine tests including over 1500 simulated flight cycles were a milestone for
amma and planted a definite, though not totally certain, confidence on the material in the gamma
iAl community as well as designers. Through these and other tests, casting gamma alloys are
proving to be technologically sound materials and, with some design modifications pertinent to each
component, can replace nickel based superalloys in use for selected engine components.
Accelerated uses of gamma alloys in replacing the current materials will be warranted when many
uncertainties about the performance in the field are cleared or answered and low cost
manufacturing processes are demonstrated for important types of components. [3, 14, 15].

Cast TiAl alloys are also intended for use in automotive engine parts such as turbochargers and
valves. Recent engine tests show that cast TiAl turbocharger rotors exhibit better acceleration
response and higher maximum rotational speed than its counterpart, Inconel rotor. There are some
concerns in accepting a TiAl turbocharger, such as low ductility at room temperature and high
temperature (above 800°C) oxidation resistance. Nevertheless, its application appears to be
imminent, especially, in large diesel engines. Exhaust engine valves appear to be an ideal
application for gamma alloys which are expected to replace the current valves made of steel and/or
nickel-base (Inconel) alloys. The properties of gamma alloys in most microstructural forms well
exceed most of the property requirements, as was demonstrated through series of extensive
qualification engine tests conducted at GM recently. The remaining barrier appears to be
development of a low-cost, high volume manufacturing method. At present, casting and perhaps
reactive sintering are the two most important production methods, and intensive production and
alloy modification efforts to reduce the cost is underway worldwide. [3, 14, 15].

Fundamental Advances

While casting gamma technology has been progressing for producing components, the advances in
understanding of many fundamental aspects of the alloys has been impressive. The mid-section of
Ti-Al binary phase diagram has been established, and some ternary diagram work has progressed.
The sequence of transformations involving a decomposition have been qualitatively understood.
For the alloy compositions of engineering importance [Ti-(45-48)Al base], decomposition takes
place in several paths, depending on cooling rate and method, yielding lamellar structures under
relatively slow cooling, "featherK“- type structures under air cooling and massive gamma when
water-quenched. Investigations have concentrated on lamellar structures for formation mechanism,
growth kinetics and alioy design. Extensive investigations of the deformation behavior of
unidirectional lamellar material has been conducted mainly at Kyoto and Osaka Universities to
eestablish the deformation anisotropy. which is extraordinary. Fine details and various mechanical
behavior are under continuos investigation worldwide. Advanced understanding of the lamellar
structure will be crucial for designing optimal lamellar base microstructures. [4-9, 12-14).

Based on knowledge of the phase relations and transformations, progress has been made for the
last several years, in controlling and understanding of microstructures developed in wrought-
processed alloys at Wright-Patterson as well as other institutes . Four different types of standard
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microstructures were identified: near-gamma, duplex, nearly-lameliar (NL) and fully-lamellar (FL)
types. The first two are fine gamma grain based (<60um), the last two are lamellar based, and FL
material in general is large-grained (>350um). Gamma alloys show the 'so-called' ductility-
toughness inverse relation at temperatures below the BDT temperatures. Fine grain
microstructures yield improved tensile properties but low fracture toughness, and the reverse is true
for large grain FL material. This relation is explained by correlating grain size (GS), pileup-
dislocation-density, and the deformation anisotropy of the lamellar structure. However, a critical GS
appears to exist, above which further increases of toughness ceases. The anisotropy also appears
to be responsible for the abnormally high strength gain with decreasing grain size, as well as the
improvements of strength and toughness with decreasing lamellar spacing. Creep resistance is
higher for FL than duplex microstructures and appears to increase with grain size. Additions such
as Si, C, N, Ta and W appear to improve the creep resistance, although each mechanism is known
only qualitatively. High cycle fatigue resistance is excellent at least up to 800°C, but becomes
oxidation limited in general at higher temperatures. Relatively low fracture toughness and very fast
fatigue crack growth rates are of concern because the material's life will then be limited in the

resence of relatively small existing or created defects/flaws. Nevertheless, both properties are
improved in FL material and with increasing grain size. [3-5, 12, 14, 15].

Wrought Processing

It is estimated, considering the inverse ductility-toughness relation and the beneficial effects of
lamellar structures on fracture toughness, creep, high temperature fatigue properties and fatigue
crack growth resistance, that FL material having a grain size roughly in the range from 50-400 um
should show improved balance in properties. The exact magnitude should be a function of property
requirements, component configurations and dimensions (thickness) and processing method.

Since such a controlled FL grain size is difficult to produce in Ti-48Al-2Cr-2Nb, and since alloys
containing large amounts of boron (such as XD alloys) are not suitable as wrought alloys, extensive
investigations have been conducted to design refined lamellar structures in wrought alloys. Such
designed materials have been obtained in relatively thin sections: by adding small amounts (<0.3
at%) of boron (yielding TMT lameliar); through appropriate high temperature extrusion (producing
TMP lamellar); or by appropriate alloy modifications which widen/lower the high temperature (o:+f)
phase field (resulting in refined FL). Methods to contro! lamellar spacing were also developed
utilizing the lamellar formation mechanism and growth kinetics. Fundamentally, we are just

beginning to sufficiently understand the essential aspects of designing lamellar structures. [3, 4, 14]

Almost at the same time, investigations of workability and texture development during hot working
have been extensively investigated in USA, Japan and Germany. On the basis of the fundamental
understanding and using concurrently developed process modeling, advances in process
development have been realized for wrought processing in areas such as primary processing,
secondary processing, and component forming. Ingot conversion through isothermal forging,
extrusion and multistep processing has been commonly practiced with and without homogenization
treatments on a small scale. Conversion of large ingots (over 250kg) is now possible through
multistep processing, although more details have yet to be answered before production scale
practices can be implemented. Ingot breakdown by non-isothermal forging has been shown to be

feasible using a canned workpiece.

Pack-rolling technology has been advanced using both forged plates as well as prealloyed powder
compacts, with sound sheet of 800x300x1.5mm currently prgduced. The availability of the size and
microstructural homogeneity of starting plates appears to limit production of larger sheet. In
general, hot-worked gamma material is highly formable, isothermally, at temperatures as low as
900°C. Prototype blades having twisted air foils have been successfully forged isothermally, and
rolled sheet has been superplastically formed into various complex-shape parts. Forming by hot-die
forging and high rate extrusion, however, is a hurdle for gamma to overcome if wrought gamma
components are to be produced cost-effectively. Recent trials of automotive valve extrusion in
current production facilities, though limited to canned/insulated material, indicate that such high rate
forming of gamma may eventually be feasible if optimum processing conditions and parameters are
identified on preconditioned material. [6-10, 14, 15]

Production of gamma ingots has been practiced using various melting and casting methods
including induction skull melting (ISM), vacuum arc remelting (VAR), plasma arc melting (PAM) and
VIM (vacuum induction melting). Ingots having 30cm diameter are routinely produced by the VAR
technique. Ingots with 36 cm diameter and weighing more than 250kg have been produced using




VAR and PAM techniques, and production of larger ingots by PAM appears feasible. The main
concerns in scaling-up are cracking, control of chemistry (especially, aluminum level), and

. compositional variations along the ingot length. In addition, methods to produce ingots having more
refined and uniform cast structures are yet to be developed. [15]

Alloy Design

As the importance and necessity of the properties pertinent to specific components is recognized,
increasing efforts have been made for the last couple of years to develop specific materials through
microstructure control and alloy modification. In this effort focused more on wrought alloys, the
thrust was to develop lamellar-based structures which are fine enough for specific component
thicknesses and coarse enough to retain the most desirable properties. The important
microstructures developed from the effort include TMT, RFL and TMP microstructures. The most
dramatic improvements were observed in TMP materials, with strength levels reaching as high as
1000MPa at RT and more than 500MPa at 1000°C.

Nevertheless, considerably more work has to be done in various aspects such as understanding the
formation mechanisms, thermal and mechanical stability, process control including heat treatment
cycles, establishing data bases, property evaluation, and characterization of damage tolerance. It
will also be important to raise the property levels (creeﬁ and strength) by adding small amounts of
C, Si, N or O, without affecting other properties. With the above modifications, the component-
specific gamma materials are expected to exhibit improved balances of properties and/or increased
use temperatures by 50-100°C. These types of improvements appear to be possible in cast alloys
by alloy modifications (recent results at GE) and refining coarse cast lamellar grains into fine
lamellar grains by novel heat treatment cycles (results at Wright-Patterson). [3, 4, 14]. .

Further increases in use temperature of gamma material to above 850°C couid be very profitabie in
the future and may be accomplished through the development of novel processes, new alloys and
effective surface treatments (including protection) methods. The novel processing methods, which
are under exploration, are aimed at producing material having aligned lamellar structures by
directional solidification (DS) of columnar grains and/or directional extrusion (DE) of lamellar grains.
These methods have yet to show their engineering feasibility to produce the intended
microstructures and then the resulting microstructures/materials must be shown to demonstrate
their expected higher temperature capabilities as well as the damage tolerance comparable to those

_ of current gamma alloys. In the end, however, it appears inevitable to grotect the surface of any
gamma alloys if they are to be used at temperatures above 800-850°C. Several preliminary or
developmental efforts in this area, however, suggest that this is most challenging and will not
happen quickly [14].

Increases in both oxidation resistance and higher temperature strength levels may require drastic
departures in composition from the current gamma alloys. One example can be alloys containing
large amounts of Niobium. Development of such new alloys requires prolonged research efforts
which nevertheless are very much worthwhile.

Summary and Future

Gamma alloys are emerging as important engineering materials. These alloys are a rare example
of how the research community, developers, producers, and users can work closely to speed up
and steer a materials technology in the right directions. The current alloys, basically cast alloys,
developed under such remarkable collaboration meet property requirements of selected turbine, as
well as automotive, engine components. With the development of appropriate design
methodologies and cost effective manufacturing methods, these alioys are certain to be
implemented for selected applications in the near future. In the meantime, the research community
faces (new) challenges: designing engineering wrought alloys, controlling new and/or improved
processing/microstructures for immediate, specific applications, and development of new
materials/alloys for higher performance and temperature applications. This surely will be a long
road, but should be rewarding as their past effort. There is increasing evidence that the research
community is no longer naive or close-minded as too many are quick to assume. When both the
research and producer/user communities work closely together, posturing to learn from each other,
the gamma technology will be advanced even faster, finding more diversified application areas
which will benefit all communities.
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titanium aluminides,




Cooling Rate from 1550°C to 800°C
Alloy B (46.2% Al)
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Linear friction weld in 10mm Ti-48Al-2Mn-2Nb, FW10, x100. AG2210 (top) - AG2213



42676 ) JO0HM el

Backscattered electron image of HAZ microstructure of linear friction weld FW10 in Ti-
48 Al-2Mn-2Nb casting, in unetched condition, x500. Negs 42676,-77,-78,-80
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, W81, 1200°C, 20MPa.

M

, AG20

. KT

. B et LR
~ e T

Electron beam diffusion bond in Ti-48Al-2Mn-2Nb

(a) x500, AG2021 (b) x1000




—
150 nm

Bright field electron micrograph showing fine laths in 'retained o' regions of
electron beam welded Ti-48at.%Al-2at.%Mn-2at.%Nb. Arrows indicate possible
growth steps on the laths

PEATTYAL

—
50 nm
Bright field electron micrograph showing fine laths in 'retained o' regions of
electron beam welded Ti-48at.%Al-2at.%Mn-2at.%Nb. Arrows indicate possible
growth steps on the laths
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Autogenous keyhole plasma weld in Ti-48Al-2Mn-2Nb casting, x10
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Fusion zone microstructure of TIG melt W2 (300°C) run in Ti-48Al-2Mn-2Nb, close

to surface. x500. AG1620







Fusion zone microstructure of TIG melt W1 (500°C) run in Ti-48 Al-2Mn-2Nb, close
to surface. x500. AG1619




(b)

(c)

TIG melt runs in Ti-48Al-2Mn-2Nb, x5
(a) W1, 500°C, AG1630. (b) W2, 300°C, AG1629. (c) W3, 100°C, AG1628.




