DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

Final Proceedings of The EOARD/IRC-sponsored International Workshop on Gamma Aluminide Alloy Technology

held from 1 to 3 May 1996 at The IRC in Materials for High Performance Applications The University of Birmingham

SECTION THREE

The organisers wish to thank the United States Air Force European Office of Aerospace Research and Development for its contributions to the success of this conference

in

Materials for High Performance Applications

Final Proceedings of The EOARD/IRC-sponsored International Workshop on Gamma Aluminide Alloy Technology

held from 1 to 3 May 1996 at The IRC in Materials for High Performance Applications The University of Birmingham

SECTION THREE

Reproduced From Best Available Copy

UNIVERSITY OF WALES SWANSEA

THE UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF WALES SWANSEA CONSORTIUM

Funded by the Engineering and Physical Sciences Research Council

AQF00-05-1328

REPORT DOC	UMENTATION PAG	E	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of in gathering and maintaining the data needed, an collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 2220 1. AGENCY USE ONLY (Leave blank)	formation is estimated to average 1 hour pend completing and reviewing the collection of for reducing this burden to Washington Heb2-4302, and to the Office of Management and 2. REPORT DATE	r response, including the ti f information. Send comm adquarters Services, Direc d Budget, Paperwork Red 3. REPORT TY	me for reviewing instructions, searching existing data sources, ents regarding this burden estimate or any other aspect of this storate for Information Operations and Reports, 1215 Jefferson uction Project (0704-0188), Washington, DC 20503. PE AND DATES COVERED
	18 April 1997		Conference Proceedings
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
International Workshop on Ga	mma Aluminide Alloy Technology		F6170896W0160
6. AUTHOR(S)			
Conference Committee			
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)	4	8. PERFORMING ORGANIZATION REPORT NUMBER
University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom			N/A
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
EOARD PSC 802 BOX 14 FPO 09499-0200			CSP 96-1032-3
11. SUPPLEMENTARY NOTES			
Proceedings are in four sections.			
12a. DISTRIBUTION/AVAILABILITY ST/	TEMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.			A
13. ABSTRACT (Maximum 200 words)		<u></u>	
The Final Proceedings for Inte	mational Workshop on Gamma Titaniur	n Aluminide Alloy Techi	nology, 1 May 1996 - 3 May 1996
The Topics covered include: Technologies	Fundamental research issues for u	nderstanding the eme	rging class of Gamma Titanium Aluminide Alloy
14. SUBJECT TERMS		<u>, ,,,,,,,, , , , , , , , , , , , , , ,</u>	15. NUMBER OF PAGES
			16. PRICE CODE N/A
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19, SECURITY CLAS	SIFICATION 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLAS	SIFIED UL
NSN 7540-01-280-5500		.	Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

²⁹⁸⁻¹⁰²

Gamma Alloy Technology: Fundamentals and Development

Young-Won Kim

UES-Materials & Processes Dayton, OH, USA

Fundamentals Processing Microstructural Evolution Structure/Property Relationships Designing Microstructures Component-Specific Alloy Design Forming and Application Summary and Future Direction

(April 1996)

Fundamentals

. .

العلم المتعاط معهد الاعتقاف المعرفة العامة والوقائية المامية إذا الالتي والمروق مسي منها ما الدامي م

 $\sqrt{}$

Phase Relations and Transformations

Microstructural Evolution

Deformation Mechanism

Alloying Effects

Deformation and Fracture Behavior

Environmental Resistance

Alpha Decomposition

At Very Slow Cooling Rate

At Intermediate Cooling Rates

Lamellar Structure Formation Stacking Fault Mechanism Gamma Precipitation and Growth

Ordering

No Compositional Changes Involved Compositional Changes Involved

Effects of Composition and Cooling Rate

At Fast Cooling Rates

Widmanstätten Structures

Massively-Transformed Gamma

Formation of α_2 Phase

CRmax

2

- (--

. 1

18

n y tari i Ny kataona

Ti-43AI : Homogenized and DTA Cooled

Cooling Rate vs Lamellar Spacing (Ti-47AI)

0.2 °C/min

50°C/min

|--|

-1 muj0.05

÷

4

Ŀ,

Cooling Rate (R) vs Lamellar Spacing (λ)

DTA SPECIMENS OF HOMOGENIZED ALLOYS

en a servage ange de angener dan sensi par La serva dan serva dan serva participation dan serva participation d

.-.

Processing Routes for Gamma Alloys

and the second second

1cim (90-95)

and a first second state of the second state of the state state and second state second states

Microstructural Evolution and Control

Principle

Phase Relation and Transformation

In Practice

Formation/Growth Kinetics, Distribution and Morphology Depend on Starting Microstructural and Compositional Conditions.

Controlling Factors

Temperature and Time Heating Rate, Cooling Rate, and Scheme Aging Method and Condition

Starting Material

Cast Product Ingot Wrought-Processed Material PM Processed Material Material Processed by Other Processes

Processing

en de carre

Ingot Preparation

Methods: ISM; PAM; VAR; VAR-Skull Size Limitations (?) Compositional/Microstructural Issues

NNS Casting

Investment vs. Permanent-Mold

ISSUES: Refinement; Porosity/Hip-Cycle Thin-Section Casting

Wrought Processing

Primary: Conversion; Mill Production Secondary: Forming, Rolling, etc. Heat-Treatment Cycles Joining; Machining

> a series and a series of the series of th The series of the

Other Processes

Processing Routes for Gamma Alloys

Kim (90-95)

一些人人的第三人称单数使用的复数形式使用的感情和情况的

ปประวัติการณ์มีการการณ์จะการสร้างการการ

Microstructure Control in Castings

Standard Alloys

Ti-47Al-(1-2)Cr-(2-4)(Nb,Ta,W)-(0-0.2)Si

As-Cast Microstructures Non-uniform; Lamellar Base

Controlled Microstructures Refining and Uniformization Practical: Casting Duplex Desired: NL; Refined FL

Boride-Containing Alloys

XD Gamma Alloys Ti-(45, 47)Al-4(Cr,Mn)-2Nb-0.8TiB2 TMT-Type Microstructures

Others: IHI; GKSS Inoculation by Borides

Microstructures in Castings

Casting RFL

As-Cast

 T_{CC} - ΔT Treated

.

المحرفة المحرف المحرفة المحرفة

• ...

المراجع المحمد المحمد ما المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم

. محتام به این اینکتران

and a consistence

÷

حمد بدعد عدادة وأعدامه مركزة

والمحصلة ومساوية الالالان والمتعاور محمد والمتعطين

.

Microstructure Control in Wrought Alloys

Standard Alloys

•

Ti-47Al-(0-3) (Cr,Mn,V)-(0-6) (Nb,Ta,Mo,W)

جانبت الاصار بمعاجبته المنصر البنار البنجر بالصالح ليام الإطابة ورجامهم بمحاد البار الوراب

As-Processed Microstructures Fine Mixture of Gamma and Alpha-2

Heat Treatments Yield Standard Microstructures

Standard Microstructures

Types

Near-Gamma (NG) Duplex (DP) Nearly-Lamellar (NL) Fully-Lamellar (FL)

Inverse El/K1c Relationship Difficulties in Designing

Effort on Fundamental Understanding

Designed Microstructures

TI-46AL ALLOY CIGAR

Alloy K5's: Isothermally-Forged (1150°C/70/70)

à.

- 48Al Ti - 47AI - x₂SI l - x₁Si 47AI

Isothermally forged(85%) microstructures

50 µm

Alloy K5: Isothermally-Forged and Duplex-Treated

and the second secon

Alloy G1 : Forged + (α + γ) Treated + Air Cooled

Microstructures of Gamma Alloys

1

Sec. 2

م کر می اورون استان میرون اور در مرکز میرون ایرون میرون ایرون مرکز میرون میرون میرون میرون میرون میرون

Lamellar Grain Size Control in Wrought Alloy K5

Wrought Alloy K5 after High Temperature Treatments

-175

..

Forged (88%) AND HEAT TREATED (1200°C/2 HR/AC + 1000°C/24 HR/AC) <u>ALLOY 616</u>

a de la companya de l

. . . .

τ.

RT Tensile Curves in Duplex/NL Microstructures

n i in y milin na in

a magna ann an mar ann

Duplex Microstructures in Alloy G1

Indirectly Aged

Directly Aged

a a specimental a normal state and a second state of the second state of the second state of the second state o The second state of the second The second state of the second The second state of the second The second state of the The second state of the second state the second state of the second sta

n na sana na na mangana Mangana na m Mangana na ma

Structure/Property Relationships

General Mechanical Behavior

Tensile Fracture Toughness Creep Fatigue; FCG,

Inverse Ductility/FT Relationship

Deformation and Fracture Behavior

Tensile Loading Cyclic Loading Creep Loading

Damage Tolerance and Life Prediction

n na sana na sa Na sana na sana

Microstructure Optimization

1270°C/4h/AC/RT

1270°C/4h/FC/900°C/AC + 900°C/48h/AC

Weak Yield Point

K5 Duplex: Et=0.5%

Weak Yield Point

Strong Yield Point

1270°C/4h/AC/RT

1270°C/4h/FC/900°C/AC + 900°C/48h/AC

ш

Tensile Fracture Surfaces of Alloy G1 in Various Microstructural Conditions

e en la grande de la construction d La construction de la construction d La construction de la construction d

مىشىمىمەمە مىسىر بارىدىنىدى _{مەر}ىر بايا مىلى بىرى

Alloy K5 RFL Flat Gage Tensile Specimen Surface Deformed at RT $(\sigma_o/\sigma_y=328/474 \text{ MPa}; \lambda_L=0.3 \mu m)$

يعادرون والعاري والم

a far a f The far a far a

· ·

Deformed Microstructure of Alloy G1 at 1.9% Tensile Strain

and the second second

Alloy K5 RFL Tensile Specimen Flat Gage Surface Deformed at RT σ_{5/ϵ_5} =524 MPa/0.78% (σ_{0/ϵ_0} =328/0.19)

÷

RT Tensile Transgranular Fracture of FL Gamma Alloys: (a) Overall, (b) Interlamellar and Translamellar, (c, d) Translamellar Cleavage with Interlamellar Deformation

Fully-Lamellar

e the second second

1.1

Duplex

RT Tensile Fracture Features of TiAl alloys in FL and Duplex Microstructural Conditions

Grain-Size//Yield-Stress Relations in TiAl

Specimen/Grain Size Effect on Tensile Properties

Corrected Hall-Petch Relation in FL TiAl

in the second

Hall-Petch Relations in TiAl Alloys

 \mathbf{V}

Hall-Petch Relations in TiAl Alloys

Duplex Material

σ_y = σ'₀ = k_dd^{-1/2} k_d ~1 MPa√m Relatively isotropic

Fully-Lamellar Material

 $\sigma_y=\sigma_o+k_{d\lambda}d^{-1/2}$

 $k_{d\lambda}=\text{2.5 MPa} \sqrt{m} ~(\text{for } \lambda\text{=1}~\mu\text{m})$ Combined Effect of d and λ

 $k_{dy} = k_{d} \left(\tau^*_{avg} / \tau^*_{s} \right) = f_{tn} \left(\lambda \right)$

Orientation vs. Yield-Stress in the (x+ 0 z) Lath Structure

· • .

이는 것이 많이 가슴을 물을 즐기 위한 것같다.

Ti-(46.5-47)AI- (4-6)(Cr,V,Nb,M)

Tensile Fracture of FL Alloy G5 at 750°C

Tensile Properties of Alloy K5

(Dependence on Microstructure, Temperature and Strain Rate)

Tensile Fracture of Alloy K5 (Duplex) in Air at 600°C [YS/UTS/EI : 396/545/3.6]

Away from Cl

CI Site

μm Far Below Fracture Surface

Near CI site

Away From Cl

20

۰,

Tensile Deformation and Fracture of a Duplex Alloy K5 at 800°C in Air

20 µm

Temperature Effect on Fracture Mode

(Dependence on Microstructure, Temperature and Strain-Rate) **Tensile Properties of Alloy K5**

Effect of Strain Rate on BDT in Alloy K5

1.00

Dependence of Flow Stress on Strain-Rate and Temperature

Factors Controlling Tensile Properties

Microstructure

Types: Duplex vs. FL

Features

Grain Size and Morphology GB Morphology Lamellar Spacing (LS) α₂/γ Ratio (α₂ vol%)

Uniformity

Composition

 α_2/γ Ratio; LS

Cleavage Strength

Interfacial Bond Strength

Grain Size Effects on Tensile and Toughness

Fracture Resistance and Near-Tip Plasticity at RT

General Tensile Yielding vs. Near-Crack-Tip Plasticity at KIc

a nation againm an ann. An tPlastic Deformation and Microcking Around the Advancing Crack Tip in a FL Alloy G1 CT Specimen under a Monotonic Tension Loading at RT

Interlamellar and Translamellar Deformation in Crack-Tip and Ligament Regions

Fracture Toughness

Grain Size Effect

Lamellar Spacing Effect

4

200 µm

T-Cracks Involving Delamination, and Both Inter- and Trans-lamellar Slip/Twinning

Effect of displacement rate on the K-resistance curves of the G1L alloy at 800°C.

Fracture Process in Lamellar TiAl Alloys at 800°C

Creep Resistance of Alloy K5

Stress Exponents

Larsen-Miller Plot

Alloy K5 RFL Specimen Crept at 800°C to 18.7% in Air Under (138-173-207-242-285 MPa) Step Stress Conditions

1

. Ţ.

Effect of Al₂O₃ Layer on Creep

Nemoto (94)

Figure 2 Effects of the deviation from the stoichiometry on the variation of compressive yield strength of $(Ti_{0.51}Al_{0.49})_{99.5}C_{0.5}$, $(Ti_{0.50}Al_{0.50})_{99.5}C_{0.5}$ and $(Ti_{0.49}Al_{0.51})_{99.5}C_{0.5}$ $C_{0.5}$ during aging at 1073 K.

Figure 3 Temperature dependence of compressive yield strength of $(Ti_{0.51}Al_{0.49})_{99.5}C_{0.5}$ and $(Ti_{0.50}Al_{0.50})_{99.5}C_{0.5}$ aged at 1073 k for 3.6×10^4 s (10 h), and $(Ti_{0.49}Al_{0.51})_{99.5}C_{0.5}$ aged at 1073 k for 3.6×10^3 s (1 h). Data for binary and ternary TiAl are also included.

9658-1

.

an fan her fallen en fr

de la sinc.

1997 - T. (1997) 1997 - T. (1997) 1997 - T. (1997)

· · · · · ·

Υ,

.

 $\sigma_m = 430 \text{ MPa}$; $C_f = 2,310$

 $\sigma_m = 330 \text{ MPa}$; Cf = 7.2x 10⁶

 \mathcal{L}

Fatigue Deformation and Fracture of FL Alloy K5 at 800° C and R=0.1 in Air (UTS = 500 MPa)

Fatigue Fracture of Alloy K5 in Various Conditions at 800°C and R = 0.1 in Air

Load-Controlled Fatigue Failure of FL Alloy K5

(R=0.1 / 870°C / Air)

 σ_{max} =350 MPa / Nf=9.6x10⁵

↑ \ \

Near CI Site

10 µm

Near Cl

Away from Cl

 σ_m = 625 MPa / Cf = 1629

Away from Cl $\sigma_m~=575~MPa~/~C_f~=1.36~x~10^6$

Fatigue Fracture of a Duplex Alloy K5 at 600°C in Air (R = 0.1; UTS = 583 MPa)

Specimen Geometry Effect at <BDTT

1.40

HCF of Alloy K5 in Duplex at 800°C (Effect of Frequency and Fatiguing Time)

Effect of Frequency on HCF (at 800°C)

High Stress Regime $(\sigma_{max} > \sigma_y)$

Frequency-dependent (need investigation) High-rate deformation

Low Stress Regime $(\sigma_{max} > \sigma_y)$

Frequency-independent Time-dependent Creep deformation important

Creep Fatigue

Suggested at Low Stresses Mean Stress: $\sigma_{avg} = (\sigma_{max} + \sigma_{min})/2$

conditions.

FCG of Alloy K5

Fatigue Deformation and Failure

Fatigue behavior in gamma alloys consists of:

Deformation period (remarkably long), **Crack initiation and growth** (to a critical size) **Rapid crack propagation** (to failure) Below BDTT, flat SN curves are observed. The fatigue strength is controlled by tensile properties.

Duplex microstructure (preferred)

Above BDTT, fatigue life depends on tensile deformation behavior under high applied stress (>YS). Under low stresses (<YS), fatigue strength appears related to creep resistance.

Fully-lamellar microstructure (preferred)

Fracture takes place transgranularly below BDTT and boundary fracture becomes predominant at higher temperatures.

Alloy Design

Alloy Selection

Microstructural Optimization

Considerations

Mechanical Data and Behavior Damage-Tolerance & Life-Prediction Microstructural Controllability

Derive Optimum Microstructures Devise Process & Treatment Schemes

Chemistry Modification

Promote Desired Microstructures Improve Mechanical Behavior Enhance Environmental Resistance

Design of Microstructures

Property Requirements Dimensional Considerations Component-Specific Microstructures Scaled-up Process Development

Designed Microstructures

Refined FL (RFL)

Alloy Modification Innovative Heat Treatments

TMT Lamellar (TMTL)

Boron Addition Heat Treatments

TMP Lamellar (TMPL)

Extrusion Forging Aging

Aligned Lamellar

Directionally Solidified (DS) Directionally Worked : DELM; DFLM

Other Types: Under Exploration

Chemistry Modification

(Standard: NG, DP, NL and FL)

Optimized Microstructural Features

(Wrought Alloys)

Lamellar Structure Base

Grain Size: 50-400 µm

GB Morphology

Slip Transmission Bond Strength

Lamellar Spacing < 2µm

Strength; Strain-to-Failure Toughness; Creep

α_2 Volume Fraction: 5-30 %

Strength; Ductility; Toughness Anisotropy

Texture Consideration

Duplex Microstructures (?)

RFL vs. TMTL Microstructures

TMT Lamellar Microstructures

Wrought Processed Alloys Boron Additions: 0.05-0.5 % HW plus Alpha Treatment Advantages/Disadvantages

Cooling-Rate and Boron -Content on Alpha Decomposition

Alloy K1: As-Forged; Near Gamma; Duplex; and TMTL microstructures

بودر کې د د د د د د د د د د د د د د د د و مروم د د و د

100 дш

Alloy K2 (Ti-46.8AI-2Cr-4.0Nb-0.3B): Boride Distribution

Alloy K7: TMT-Treated (1390°C/1.5h/AC) and Annealed (1300°C/24h/AC)

TMP Lamellar Microstructures

K5SC Alloy TMPL Extrusion LT-Section

A TMP Microstructure in a 4822 Extrusion

Thermal Stability of TMP Lamellar Extrusions

.

Flow Curves of Lamellar Alloys

2

Strengths of RFL/TMPL Gamma Alloys

MIcrostructure on RT Tensile Properties

Ń

GS/LS/YS Relations in TiAl FL Alloys

Alloy K8 TMP-Lamellar Extrusion

Long-Transverse (LT)

Alloy K5S: Effect of Ram Speed on the Alpha-Forged Microstructure

K5S (Ti-46.2AI-2Cr-3Nb-0.2W-0.2Si): Directionally Alpha-Forged

-

A Discrete Lamellar Structure in Alloy K5

.

Advances in Microstructural Control

Metals & Ceramics Division

Gamma Microstructure/Property Relationships:

Good	25-30	2-2.5	100	85	1991	TMP Lamellar
Gocd	23-28	1.4-2.0	58	43	1991	Cast Nearly Lamellar*
Very Good	22-30	0.4-0.9	75	50	1990	Fully Lamellar
Fair	14	2-2.5	105	06	1990	Nearly Lamellar
Fair	12	3-4	80	65	1988	Duplex (G+L)
CREEP (<950°C)	K (ksi√in)	EL (%)	UTS (ksi)	YS (ksi)	YEAR	STRUCTURE
	-		•	-		

*Howment Co, Cast Ti-48AI-2Mn-2Nb

NTWC SHAMAN AND AND AND AND

م به منه این در معتقد می در معتقد می در در میده میکویی به درمد معتود می در در ماه می میکویی میکوه میکو معتود می در در ماه میکویی میکوی میکوه میکویی میکویی

TMP LAMELLAR STRUCTURE HAS BEST BALANCE OF PROPERTIES Properties of Titanium-Base Alloys and Superalloys

·, •,

Property	Ti-Base	Ti3Al-Base	TiAI-Base	Superalloys
Structure	hcp/bcc	DO19	L10	fcc/L12
Density (g/cm3)	4.5	4.1-4.7	3.7-3.9	7.9-8.5
Modulus (GPa)	95-115	110-145	160-180	206
Yield Strength (MPa)	380-1150	200-990	350-600	800-1200
Tensile Strength (MPa)	480-1200	800-1140	440-700	1250-1450
Ductility (%) at RT	10-25	2-10	1-4	10-25
Ductility (%) at HT(°C)	12-50 (550)	10-20 (660)	10-60 (870)	20-80 (870)
Fracture Toughness (MPa/m) at RT	30-60	13-30	12-35	30-90
Creep Limit (°C)	600	750	750a-950b	800-1090
Oxidation Limit (°C)	600	650	800*-950+	870*-1090**

a Duplex; b Fully-lamellar microstructures; * Uncoated; + ** Coated; + Expected

·....

Component Forming

(Wrought Processing)

Turbine Engine Components

Blades

Alloy/Microstructures Mill product + Machining Impression Forging to NNS Isothermal Hot-Die Forming Heat Treatment

Disks

Mill Product + Machining Impression Forging to NNS Isothermal Hot-Die Forming Heat Treatment

Engine Valves

Automotive Engines

Aircraft Engines

3882 · · ·

 \sim

Automotive Valve Forming

- 44 - 44

Cast Valve

Casting

Hipping

Passenger Car

Wrought Valve

Isothermal Forging

Production Die Extrusion/Forging Preconditioning: IM; PM High Rate Extrusion of Preforms High Rate Head Forging Microstructure Control

Head/Stem Joining

High Performance

2 cm

-- . . .

-.

Wrought Gamma Engine Valve

....

1st Step: Partial Extrusion

~ ; . ;

Preform

S Ν В

6

G10 Valve Extrusion: Transverse Sections

Applications

Aircraft Gas Turbine Engines

Automotive Engines

Land-Based Gas Turbine Engines

Others

Cast 4822 Gamma Transition Duct Beam GE-90 Engine for Boeing 777

COMPONENT AND ENGINE STRUCTURAL ASSESSMENT RESEARCH

Gamma Titanium HPC 6th Stage Blades

Participants:

P&W	Cast "XD" Ti-47AI-2Nb-2Mn-0.8%TiB2
Rolls Royce	Cast "XD" Ti-45AI-2Nb-2Mn-0.8%TiB2
Allison ADC	Wrought Alloy 7
GE	Wrought Ti-48AI-2Cr-2Nb

Schedule:

Design and fabrication
Delivery to P&W
Proof spin (P&W)
F113 Core test 100 hrs (AEBC)
Engine toolo - 2000 TAG ayelee (P&W)
<u> Opin pittostto failura (P8/M, UK) -</u>

96 **3**

96 **-**

96**-1**

Other gamma Ti components:

- HPG inner shroud-
- combuctor cwirlors
- pozzlo tiloo-

16

4822 Cast Gamma LPT Blades for GE CF6-80C2

Cast and Chem-milled Engine Tested for over 1000 cycles

Summary and Future

Continuous Alloy Exploration/Design Casting vs Wrough Alloys Continuous Search for Fundamentals Process Development Component-Specific Alloy Design Search for Application Areas Understand Practicality Collaboration/Exchange