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Development of an Early Warning Multi-criteria Fire Detection 
System: Analysis of Transient Fire Signatures using a 

Probabilistic Neural Network 

INTRODUCTION 

Early detection of fires is a critical component of the Office of Naval Research's 
Damage Control: Automation for Reduction Manning (DC-ARM) program. The research 
described in this report is a continuation of a collaboration between the Naval Research 
Laboratory (NRL) and Hughes Associates to develop and evaluate an early warning, 
multi-criteria fire detection system for use in DC-ARM [1,2]. In this program, Hughes 
Associates collected a large database containing the signatures from real and nuisance 
alarm sources for several different types of sensors. Our approach to early fire detection 
is based on the premise that a combination of sensor technologies coupled with pattern 
recognition methods could provide for faster, more accurate fire detection than any 
single sensor technology that measures a physical quantity (e.g., particles or heat) or a 
fire decomposition vapor (e.g., C02, 02). Previous research in the analysis of these fire 
signatures produced several combinations of sensors that could provide increased 
detection sensitivity, decreased detection time and improved nuisance source false 
alarm rejection [1,2]. Those experiments assumed that a baseline sensor reading could 
be obtained for the smoke detectors. 

The work described in this report takes a slightly different approach. Here we 
assume that it will not be possible to determine an appropriate baseline level and all 
analyses are performed on the raw sensor outputs. This makes the fire detection 
problem more difficult since the day-to-day variation in sensor readings is not removed. 
Using this raw data, we investigated several data analysis issues critical to developing 
an early warning, multi-criteria fire detection system including: 

1. the importance of the sensor rate of change (i.e., slope); 
2. the best sensor combinations; 
3. earliest possible fire detection times; and 
4. the optimal procedure for training the probabilistic neural network. 

EXPERIMENTAL 

In this study, the large fire signature database described in reference 2 was 
used. This database consists of data from twenty different sensors for 88 fire events 
and 38 nuisance sources. Table 1 provides a list of the twenty sensors used in this 
study. Because the MIC sensor produces three different sensor readings, a total of 22 
sensor outputs were studied. During preliminary investigations it was discovered that 
the ODM sensor stopped working during the middle of the four experiments (DCAS012, 
DCAS015, DCAS018, and DCAS019). During DCAS054 and DCAS057, the 
photoelectric smoke sensor was not operation. It was felt that these abnormal sensor 
readings might bias the neural network, so these six experiments were removed from 
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further analysis to avoid skewing the results. The resulting database contains 120 
experiments (82 fires and 38 nuisance events). For fire classification analysis, we also 
consider the period in each experiment prior to ignition. During this background or 
baseline time period, the sensors were not purposely exposed to any fire or nuisance 
products. Any changes in the sensor readings during these time periods represent the 
day-to-day or experiment-to-experiment normal fluctuations in the sensor outputs. 

Because this study involved the use of raw sensor data, any changes to the 
sensor electronics can also bias the results unless corrected. During the course of the 
120 experiments in the database, Hughes Associates changed output circuitry (gain) for 
the ODM sensor to reduce noise in the output signal. This caused the sensor readings 
to vary greatly over the course of the experiments. However, the gain correction is a 
linear function and the sensor values can be scaled so that they appear to all have the 
same gain setting. Most experiments (DCAS031-DCAS145) were conducted with a 470 
Ohm resistor, which produced sensor readings on the order of 0.16 Volts. Experiments 
DCAS009 through DCAS027 had an average baseline voltage of approximately 2.2 
volts, while DCAS028, DCAS029 and DCAS030 had baseline voltages of nearly 5.0 
volts. According to Hughes Associates, these experiments used 10,000 Ohm and 
22,000 Ohm resistors. Using a simple linear correction factor, it was possible to make 
all ODM sensor values to appear as though the 470 Ohm setting was used. The scaled 
ODM data was used for all further experiments. 

The two commercial fire detectors (SION and PHOT) were collected at 4 or 5 
second intervals compared to once per second for the other 18 sensors. The sensor 
outputs for all 20 sensors were combined using the times that the SION and PHOT 
output values were collected. This combined data file was used for all subsequent 
experiments. 

All calculations were done in MATLAB (version 5.2, Mathworks, Inc., Natick, MA) 
on a personal computer. Probabilistic neural network (PNN) training and cross- 
validation were performed using the MAGICAL program written by the authors. 
Correlation maps were created using routines from the PLS_Toolbox (version 2.1, 
Eigenvector Technologies, Inc., Manson, WA). 



Table 1. Sensor Instrumentation for Multi-Criteria Fire Detection Tests 

Number Code Name Sensor Range 
1 HCN Hydrogen Cyanide 0-25 ppm 
2 co2 Carbon Dioxide 0-5000 ppm 
3 o2 Oxygen 0-25% 
4 CO Carbon Monoxide 0-50 ppm 
5 CO-2 Carbon Monoxide 0-4000 ppm 
6 H2 Hydrogen 0-200 ppm 
7 HCI Hydrogen Chloride 0-10 ppm 
8 H2S Hydrogen Sulfide 0-5 ppm 
9 S02 Sulfur Dioxide 0-10 ppm 
10 NO Nitric Oxide 0-20 ppm 
11 N02 Nitrogen Dioxide 0-5 ppm 
12 Ethy Ethylene (hydrocarbons) 0-50 ppm 
13 TC Temperature -200-1250 °C 
14 OMEG Temperature -20-75 °C 
15 RH Relative Humidity 3-95% 
16 MICX Measuring lonization Chamber 
17 MIXY Measuring lonization Chamber 
18 MICZ Measuring lonization Chamber 
19 ODM Optical Density Meter 
20 RION Commercial Residential Ion 
21 SION Commercial Simplex Ion 1.6-10% Obs/m 
22 PHOT Commercial Photoelectric 0-19%Obs/m 

RESULTS AND DISCUSSION 

Probabilistic Neural Networks 

Pattern recognition methods provide an automated means of distinguishing 
between data classes. For multi-criteria early warning fire detection, pattern recognition 
methods treat the pre-processed sensor data as a vector ("pattern") in multidimensional 
space. Recognition of a fire is based on the clustering of the patterns in the 
multidimensional space.   Successful identification is dependent upon the sensor signals 
being able to numerically encode the fire and nuisance source signatures and that there 
are reproducible differences between the signatures of real fires and non-real fire 
events. In supervised pattern recognition, prior information about class membership is 
known for each pattern (e.g., fire or non-fire). The training set patterns are obtained by 
exposing the sensors to a wide variety of conditions (e.g., different types of fires). A 
supervised pattern recognition algorithm "learns" classification rules from the training set 
in order to predict the classification of sensor readings occurring from future events. 

Because the clustering of the fire and non-fire events lends itself to a multi-modal 
class distribution, a nonlinear method of pattern recognition is required. One type of 
supervised pattern recognition method that we have used successfully for sensor array 



pattern recognition is the probabilistic neural network (PNN) [3,4]. The PNN was used in 
our previous reports on fire detection [1,2] and will only be discussed briefly here. 

The PNN is modeled after the Parzen classifier, which implements a multivariate 
probability estimator using a probability density function (PDF). A PDF for each category 
(fires and non-fires) is generated by a series of Gaussian kernel functions centered at 
the pattern vectors in the training set. The only parameter that is optimized during PNN 
training is the width of the Gaussian kernels. In this work, an NRL developed algorithm 
for fast kernel width optimization was used [4]. Three layers of neurons or mathematical 
processing step (hidden, summation, and output) make up the composition of the PNN. 
The hidden layer stores the patterns in the training set and implements the Gaussian 
kernel function. The hidden layer has as many neurons as there are patterns in the 
training set. The summation layer contains as many neurons as there are data classes 
(two in this work) and collects the common outputs from the hidden layer neurons. The 
outputs from the summation layer are then sent to the output layer where the probability 
of being a real fire or a non-fire is computed. The pattern is placed in the category with 
the highest probability. 

The PNN algorithm was implemented using MAGICAL (MAtlab Graphical 
Interface for Classification ALgorithms), which was written by the authors. Because the 
PNN uses all the patterns in the training set to classify new patterns, leave-one-out cross 
validation (CV) was used to obtain an unbiased estimate of prediction classification 
performance. CV involves many iterations of training and testing. For each iteration, the 
PNN is trained using all the patterns in the training subset except one, called the holdout 
pattern.   The trained algorithm is then used to predict the classification of the holdout 
pattern. This process is repeated until each pattern has been left out once. The 
percentage of held out (or leave one out) patterns correctly identified is a good measure 
of how well the PNN will perform on new data. A better measure would be external 
validation using a prediction set, but the collection of additional fire data is expensive 
and time-consuming. CV offers a good compromise for the DC-ARM program. 

Alarm and Sensor Response Time Studies 

In order to determine the optimal method for training the PNN and to find the 
earliest possible times when fires could be correctly identified by a multi-criteria protocol 
several experiments were performed. In previous work, training sets for PNN fire 
detection were created at three different time periods ("slice in time"). These preliminary 
experiments were geared towards feasibility studies rather than optimization for real-time 
implementation so choosing training and prediction sets from a single point in time (i.e., 
time slice) was justifiable. Due to the dynamic nature of fires choosing when to select 
fire and nuisance patterns is difficult. Patterns taken from early in an event may appear 
much different than patterns obtained later in the experiment. In addition, there are 
many uncontrollable variables which effect the transient nature of the event, which 
makes choosing the optimal training patterns even more difficult. This aspect is much 
different than other sensor array projects for chemical detection. During the feasibility 
studies, it was determined that a large-scale optimization of the optimal times at which to 
train the PNN was not necessary. It was decided to use the alarm time of a standard 
commercial fire detector to determine when the PNN training pattern should be created. 
This decision made sense on several levels because it provided for a benchmark 
standard for comparison and several commercial smoke detectors were already part of 



the sensor suite in the fire chamber experiments. In this work, the first sets of 
experiments will continue this logic; later experiments will expand on this approach to 
include additional times for creating training sets that are not based on a commercial fire 
detector. Additional experiments will then be conducted to incorporate patterns from 
multiple training sets. 

During the data collection effort, the PHOTO commercial fire detector alarm time 
was noted for three different settings 11%, 1.63%, and 0.82% obscuration (Obs.)/m, 
representing a typical least sensitive setting, the UL Standard 268 minimum alarm level, 
and half the UL standard, respectively. The third setting corresponds to very sensitive 
smoke detector. For the remainder of the report these alarm times will be referred to as 
response time or PNN training time #1, #2 and #3, respectively. The terms, PNN 
training time and response time, will be used interchangeably throughout the report. 
There is a direct link or correlation between the two terms because a PNN trained at an 
earlier time period will generally result in a fire detection system that classifies events 
earlier (i.e., faster response) than a PNN trained using later time slices. In addition to 
the three times based on the commercial smoke detector, two methods based on all the 
sensor readings were used to obtain time periods for creating patterns for neural 
network training. These methods were based on following the fire signatures as a 
function of time until five or more sensors had deviated from baseline conditions. 
Baseline conditions were based on the mean and standard deviation sensor output for 
the first 15 data points (roughly 60 seconds) of each experiment. Ignition (fire or 
nuisance source initiation) for all experiments occurred sometime after the 60 second 
baseline period. The criteria for detection was when the sensor shift (current sensor 
output - mean baseline sensor output) for a certain number of sensors was larger than 5- 
10 times the standard deviation of the baseline sensor output. For sensor response time 
method #4, the number of sensors was set to 5 and the standard deviation criterion was 
10. While for sensor response method #5, the number of sensors was 10 and the 
standard deviation was 5. In several experiments, these criteria were too stringent and 
were never met. For those cases, the criteria were relaxed by either reducing the 
number of sensors or the standard deviation. One consideration for interpreting the 
results from the PNNs trained at the different response times is that the algorithms 
trained using time slices taken early in an event will most likely result earlier fire 
detection, but will be more prone to false alarms since the sensor readings may not have 
deviated far from the baseline. This provides the rationale for training the PNN at 
increasingly earlier time slices so that we can determine when nuisance source and 
background rejection is no longer successful. 

Table 2 contains the experiment name, experiment number, ignition time (source 
initiation) and the PNN training times (relative to the initiation of data collection) for the 
three commercial photoelectric detector (PHOT, sensor #22) settings and the two other 
sensor response methods. Alarm times for methods #1-3 can be found by subtracting 
the ignition times from the reported PNN training time. For real fire sources, the median 
difference between the most sensitive commercial fire detector setting (0.82% Obs/m) 
(sensor response method #3) and sensor response methods #4 and #5, were 89 
seconds and 0 seconds, respectively. A multi-criteria fire detection system trained at the 
sensor response time #4 should detect fires the earliest among the 5 methods, but 
because only 5 sensors were significantly different from baseline reading, this method 
may be prone to false alarms. Sensor response method #5 is interesting because it 
produced response times that were faster than the most sensitive photoelectric detector 
setting, which is based on smoke and particle detection only, half the time and was 



slower the other half. For fire scenarios that generate smoke or particles early, the 
photoelectric detector alarm starts before most of the other sensors had changed 
significantly from baseline (e.g. DCAS104, smoldering LSDSGU-14). Other types of 
fires, such as the heptane fires (e.g., DCAS024-026, DCAS041), produce larger 
amounts of fire products and cause several sensors to deviate from their baseline levels 
earlier in the event compared to smoldering fires. 

Table 2. PNN Training Times for the Five Sensor Response Methods 

Name # Ignition 
(sec) 

Sensor 
Resp. #1 
(sec) 

Sensor 
Resp. #2 
(sec) 

Sensor 
Resp. #3 
(sec) 

Sensor 
Resp. #4 

(sec) 

Sensor 
Response 
#5 (sec) 

Photo 
11% 

Photo 
1.63% 

Photo 
0.82% 

DCAS009 1 70 449 449 449 113 125 
DCAS010 2 60 440 163 163 109 113 
DCAS011 3 62 335 235 176 121 155 
DCAS013 4 90 340 227 227 143 168 
DCAS014 5 65 332 105 105 110 126 
DCAS016 6 60 1640 1145 822 633 948 
DCAS017 7 60 2576 1259 655 554 1112 
DCAS020 8 75 465 465 465 164 441 
DCAS021 9 80 590 590 590 138 277 
DCAS022 10 90 540 540 540 134 290 
DCAS023 11 60 540 540 540 151 461 
DCAS024 12 90 865 437 290 176 223 
DCAS025 13 88 885 420 264 164 264 
DCAS026 14 80 885 449 302 201 239 
DCAS027 15 178 353 244 239 201 239 
DCAS028 16 100 298 189 155 160 227 
DCAS029 17 60 510 510 510 717 612 
DCAS030 18 90 264 142 138 151 193 
DCAS031 19 95 226 151 142 159 205 
DCAS032 20 95 285 180 155 159 230 
DCAS033 21 145 289 214 210 197 210 
DCAS034 22 105 239 167 159 159 214 
DCAS035 23 113 629 629 629 247 419 
DCAS036 24 95 344 344 344 155 227 
DCAS037 25 95 659 659 659 160 248 
DCAS038 26 80 600 600 600 147 210 
DCAS039 27 60 260 260 260 138 159 
DCAS040 28 60 193 193 193 138 151 
DCAS041 29 65 789 265 185 135 172 
DCAS042 30 105 319 243 235 177 218 
DCAS043 31 85 293 252 243 168 218 
DCAS044 32 85 373 373 373 184 268 
DCAS045 33 85 374 357 336 168 265 
DCAS046 34 95 156 151 151 147 156 



Name # Ignition 
(sec) 

Photo 
11% 
(sec) 

Photo 
1.63% 
(sec) 

Photo 
0.82% 
(sec) 

Sensor 
Response 
#4 (sec) 

Sensor 
Response 
#5 (sec) 

DCAS047 35 95 168 147 147 151 159 
DCAS048 36 60 3931 667 617 390 612 
DCAS049 37 60 2639 528 512 356 684 
DCAS050 38 90 4699 3831 3781 831 1251 
DCAS053 39 60 763 210 138 117 147 
DCAS055 40 60 2005 2005 2005 1581 2399 
DCAS058 41 60 537 168 143 101 113 
DCAS059 42 60 1280 1238 1230 659 1234 
DCAS060 43 60 449 310 298 277 402 
DCAS061 44 60 1259 1229 1020 931 1166 
DCAS062 45 60 818 487 474 432 495 
DCAS063 46 60 660 660 660 172 369 
DCAS064 47 60 113 105 105 101 118 
DCAS065 48 71 731 731 731 131 177 
DCAS066 49 60 949 474 424 118 126 
DCAS067 50 60 353 248 231 118 134 
DCAS068 51 60 650 650 650 143 172 
DCAS073 52 60 325 325 325 344 349 
DCAS074 53 60 785 785 785 269 533 
DCAS075 54 60 709 655 634 256 432 
DCAS076 55 60 482 440 436 373 453 
DCAS077 56 60 432 415 407 365 432 
DCAS080 57 60 610 610 610 222 407 
DCAS081 58 60 578 578 578 268 407 
DCAS082 59 60 919 919 919 567 374 
DCAS083 60 60 978 378 374 143 1066 
DCAS084 61 60 986 982 596 533 1041 
DCAS085 62 97 402 402 402 109 121 
DCAS087 63 165 480 480 480 223 390 
DCAS088 64 130 516 491 483 147 151 
DCAS089 65 66 588 227 185 181 369 
DCAS090 66 80 818 265 210 248 768 
DCAS091 67 156 705 294 273 265 605 
DCAS092 68 60 412 412 412 420 428 
DCAS093 69 125 510 510 510 520 529 
DCAS094 70 60 126 126 126 667 386 
DCAS095 71 60 860 860 860 360 805 
DCAS096 72 60 500 441 437 428 521 
DCAS097 73 60 512 449 436 445 541 
DCAS098 74 60 482 461 457 457 495 
DCAS099 75 65 995 995 995 936 995 
DCAS100 76 60 1049 1024 1020 973 1036 
DCAS101 77 60 953 881 835 756 940 
DCAS102 78 60 663 646 629 600 688 
DCAS103 79 60 826 738 713 633 1074 



Name # Ignition 
(sec) 

Photo 
11% 
(sec) 

Photo 
1.63% 
(sec) 

Photo 
0.82% 
(sec) 

Sensor 
Response 
#4 (sec) 

Sensor 
Response 
#5 (sec) 

DCAS104 80 60 1116 915 873 1037 1137 
DCAS105 81 67 449 357 344 294 487 
DCAS106 82 103 885 692 667 630 1116 
DCAS107 83 103 1066 772 713 630 1217 
DCAS109 84 60 688 676 667 554 650 
DCAS110 85 60 537 474 465 398 524 
DCAS111 86 60 671 612 595 407 625 
DCAS112 87 60 692 579 558 449 642 
DCAS113 88 60 1062 734 684 457 642 
DCAS114 89 60 932 789 630 512 902 
DCAS115 90 73 579 491 474 382 503 
DCAS116 91 68 248 248 248 273 202 
DCAS117 92 76 277 277 277 251 352 
DCAS118 93 68 868 868 868 155 306 
DCAS119 94 71 416 416 328 160 223 
DCAS120 95 70 260 260 260 160 277 
DCAS121 96 81 378 269 265 177 256 
DCAS122 97 69 428 268 231 138 155 
DCAS123 98 73 369 348 315 160 269 
DCAS124 99 68 189 164 152 139 189 
DCAS125 100 66 281 222 210 151 214 
DCAS126 101 110 654 243 167 167 268 
DCAS127 102 68 286 286 286 156 248 
DCAS128 103 65 344 331 306 151 264 
DCAS129 104 62 298 298 223 156 231 
DCAS130 105 65 713 650 357 164 613 
DCAS131 106 63 491 185 168 168 466 
DCAS132 107 65 634 370 181 139 370 
DCAS133 108 60 860 860 860 894 894 
DCAS134 109 60 660 660 210 311 462 
DCAS135 110 60 660 660 300 549 713 
DCAS136 111 60 660 660 240 701 701 
DCAS137 112 60 1260 1260 1260 1284 1422 
DCAS138 113 60 2010 2010 2010 1565 1107 
DCAS139 114 60 960 960 960 109 164 
DCAS140 115 60 960 720 420 118 139 
DCAS141 116 60 960 960 600 105 151 
DCAS142 117 60 852 231 231 143 256 
DCAS143 118 60 516 214 159 143 302 
DCAS144 119 66 835 307 227 139 378 
DCAS145 120 60 788 176 126 117 155 
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Sensor Rate of Change 

In addition to using different times to train the PNN, we were interested in 
determining whether the sensor rate of change (i.e., slope) was important for 
discriminating between fire events, nuisance sources and background conditions. To 
investigate this issue, PNN training and prediction patterns were created using three 
different methods at each of the five PNN training times shown in Table 2. The software 
for creating training and prediction sets (create_fire_train and create_fire_pred) was 
written so that 8 different possible window sizes and combinations of slopes and 
magnitudes could be studied. However, due the large number of experiments needed to 
study the other issues, only 3 of these window selection methods was actually used. 
Table 3 lists an overview of the three methods used in this work. The first method (A) 
considered only the average sensor value (magnitude) over a five point window. 
Because data points occur roughly 4 to 5 seconds apart, the pattern magnitude is 
computed across a 20-25 second time window. Each initial pattern contained 22 
variables corresponding to each of the 22 sensors. Methods B and C augmented these 
patterns with slope information. A window size of ten was used for method 4, while 
method 8 used a window size of 10 for computing the magnitude and 25 for computing 
the slope. These window sizes (5, 10 and 25) correspond to approximately 20, 40 and 
100 seconds, respectively. The selection of these window sizes was based on the 
observation that the transient response of a fire is often on the order of minutes and that 
slope information computed from a small window would be highly susceptible to noise or 
spurious sensor changes. A larger time window (10 or 25 points) might be better for 
slope but poor for magnitude. When slope information is included in the pattern, the 
pattern vector used for PNN analysis contains 44 variables (22 magnitude + 22 slopes). 
The 22 slope variables are simply concatenated to the end of the pattern vector of 
magnitudes and in the following discussions are referred to as variables 23-44. Thus, 
variable 34 is the slope of the hydrocarbon sensor (#12). Sensor slope variables will be 
denoted in the text using the symbol A (delta) to differentiate them from sensor 
magnitudes. 

Table 3. Summary of Window Sizes and Methods Used to Create Patterns for PNN 
Analysis 

Descriptor Method A Method B Method C 
Magnitude Average sensor 

output over 20-25 s 
Average sensor 
output over 40-50 s 

Average sensor 
output over 40-50 s 

Rate of Change N/A Slope over 40-50 s Slope over 100-120 s 

Feature Selection 

The final issue under study concerned feature or variable selection for the PNN. 
In these experiments, the variables are the sensor magnitudes and slopes. Feature 
selection serves two purposes: (1) to help discern the importance of slope information 
and (2) to aid in selecting the optimal set of sensors for early fire detection. Three 
feature selection algorithms were studied in this work. The first method, calibsel, was 
studied in the previous work and is based upon simple linear regression [1,2]. Variables 
are selected based on their ability to provide a linear separating surface between fires 
and non-fires (nuisance and backgrounds). The second method, expert, is based upon 



earlier studies that suggested that certain combinations of gas sensors and 
smoke/particle detectors would perform favorably. The third method, forward selection 
PNNCV, is based on the forward selection protocol with the sum of squared error (SSE) 
from PNNCV as the criterion. The SSE is computed using equation 1, 

error 
1=1 

(                            \ 

0-/>,, )'+£(/»,., )2 ™k 
V                        **/              ) 

(1) 

where p/jk is the predicted probability of being the correct class, pu is the predicted 
probability of all the other classes, wk is the weight factor for each class, and n is the 
number of patterns in the training set. In this work the weight factor was set to one so 
that both fires and nuisances would be weighted equally. The SSE estimates how well 
the PNN will perform in prediction. Smaller SSE indicates a better trained PNN. The 
forward selection PNNCV algorithm was incorporated into a larger program called 
varselpr for performing variable selection for pattern recognition. For simplicity, the 
forward selection PNNCV routine will be termed FSPNNCVTor the remainder of the 
report. Starting with a single variable, FSPNNCV finds the variable that produces the 
lowest SSE. Then, using this sensor, the algorithm finds the best two sensor 
combination and so on until the desired number of variables is chosen. In this work, the 
maximum number of sensors chosen by the approach was limited to five. In a few cases 
both the slope and the magnitude for a sensor were selected resulting in a total of 6 
variables. Some additional experiments were conducted to determine the improvement 
that might occur when increasing the number of sensors to 10. 

Experimental Protocol 

In order to study sensor response times (time slices for training the PNN), PNN 
training protocol, and feature selection, an experimental design study was configured. 
As discussed above five different PNN training time slices were used. In these initial 
experiments only the three commercial photoelectric alarm times (denoted 1, 2, and 3, 
see Table 2) were studied.   Three window sizes were studied and listed as A (5 point 
window, magnitude only), B (10 point window, magnitude and slope), and C (10 point 
magnitude and 25 point slope) as described in Table 3. Three feature/variable selection 
methods were studied and denoted as expert, calibsel, and FSPNNCV as described 
previously. 

Each experiment consisted of six steps. 

1. Using a MATLAB script called "create_fire_train", the magnitude (and slope if 
desired) for each sensor was computed using the desired window size (A, B, or C) at 
the desired response time (Table 2). This program produced the five training sets for 
fire detection. 

2. A MATLAB script called "create_fire_pred" was then run to compute magnitudes 
(and slopes if necessary) from sensor data taken from the entire experiment (i.e., at 
every time step). Thus, the prediction set has pattern vectors from baseline to flame 
out. Patterns were created using the same window sizes (see Table 3) as the 
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training set. Prediction patterns created in this manner simulate the operation of the 
PNN in real-time as described below in step #5. 

3. Feature selection was then performed either within MAGICAL (for expert and 
calibsel) or using a stand-alone MATLAB function (varselpr) for FSPNNCV. As 
discussed earlier, the features (variables) are the sensor magnitudes and slopes. 
Feature selection is useful for determining which sensors are critical for fire detection 
at a given alarm time and the importance of slope information at a given alarm time. 

4. MAGICAL is used to perform PNN training using the variables chosen in step #3. 
PNNCV is used to estimate the prediction classification performance. 

5. Using the trained PNN from step #4 and the prediction set from step #2, the 
MATLAB script, "do_fire_pred" is run. This routine implements PNN prediction for all 
patterns taken from each entire experiment. In the eventual application of this 
technology, the PNN will not operate on selected patterns (e.g., PNNCV), but will be 
fed pattern vectors continuously and asked whether that pattern can be classified as 
a fire event. Thus, playing back each experiment and creating pattern vectors as the 
fire and nuisance events evolve simulates the real-world application and is a realistic 
validation of the multi-criteria fire detection process. 

6. The output results are formatted for easy interpretation using "do_fire_data", which is 
also written in MATLAB. 

PNN Fire Classification Results 

The results from the first series of experiments are shown in Table 4. These initial 
experiments focused on training the PNN at the alarm times for the three commercial 
photoelectric detector fire settings (sensor response times 1, 2 and 3). In this Table, the 
columns correspond to the experiment name, sensor response time method (1, 2 or 3), 
window size choice (A, B or C), the variables used for PNN training, the criteria for 
choosing the variables for PNN training (expert, calibsel or FSPNNCV), the percentage 
of patterns correctly identified in PNNCV analysis and the percentage of patterns 
experiments correctly identified in prediction using the "do_fire_pred" routine, 
respectively. The PNNCV training results are based on the 240 patterns used for 
training (82 fire, 38 nuisance and 120 baseline). For "do_fire_pred", the criteria for 
labeling a classification as successful are stringent but more realistic for real-time event 
monitoring. Success is credited for the 82 fire events when the PNN correctly identifies 
the event as a fire (i.e., "alarms") at any point after ignition. If the PNN alarms during the 
baseline period for any of the 120 experiments then the event is considered not correctly 
identified. Due to the short baseline periods for the majority of the experiments, window 
size choice C (option 8 in the MATLAB m-file), which computes the slopes from a 25 
point window, often extends past the ignition time of the experiment. Thus, few "true" 
baseline periods are incorporated into the prediction performance for this window 
selection choice. Success is credited for the 38 nuisance events only when the PNN 
does not alarm at any point during the experiment. The FSPNNCV experiments were 
run multiple times with different sensors removed. Experiments starting with "25" were 
run with sensors 15,16,17 and 18 removed (RH, MICX, MICY and MICZ). The MIC 
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sensors (16, 17 and 18) were not included in the sensor combinations in experiments 
with names starting with "26". All sensors were included in experiments with names 
starting with "27". 

Table 4. PNN Results using Sensor Response Times 1, 2 and 3 

Name Resp 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Train % 
(PNNCV) 

Pred % 

var1al1 1 A 16 21 2274125 Expert 95.00 80.83 
var1al2 2 A 1621 2274125 Expert 95.00 79.17 
var1al3 3 A 16 21 2274125 Expert 94.17 77.50 
var2al1 1 A 20 21 2241257 Expert 94.17 80.00 
var2al2 2 A 20212241257 Expert 94.58 78.33 
var2al3 3 A 20 21 2241257 Expert 94.17 75.83 
var3al1 1 A 20 21 22 4 7 12 Expert 93.75 79.17 
var3al2 2 A 20 21 22 4 7 12 Expert 93.33 78.33 
var3al3 3 A 20 21 22 4 7 12 Expert 92.50 75.83 
var4al1 1 A 21 22 4 7 12 Expert 92.92 80.00 
var4al2 2 A 21 22 4 7 12 Expert 94.17 78.33 
var4al3 3 A 21 22 4 7 12 Expert 92.50 78.33 
var5al1 1 A 16 21 22 20 18 17 7 4 Calibsel 94.17 80.83 
var5al2 2 A 22 16 21 7 20 Calibsel 92.08 75.83 
var5al3 3 A 22 16 21 7 Calibsel 89.17 75.83 
var6ah 1 A 16 21 22 20 18 17 7 4 Calibsel 94.17 80.83 
var6al2 2 A 22 16 21 7 20 Calibsel 92.08 75.83 
var6al3 3 A 22 16 21 7 20 Calibsel 88.75 75.00 
var7al1 1 A 16 21 22 20 18 17 7 4 Calibsel 94.17 80.83 
var7al2 2 A 22 16 21 7 20 18 17 Calibsel 94.17 78.33 
var7al3 3 A 22 16 21 7 20 3 18 17 Calibsel 92.92 78.33 
var8al1 1 A 16 21 22 20 18 17 7 4 Calibsel 94.17 80.83 
var8al2 2 A 22 16 21 7 20 18 17 Calibsel 94.17 78.33 
var8al3 3 A 22 16 21 7 20 3 18 17 Calibsel 92.92 78.33 
var9al1 1 B 16 21 22 20 18 17 7 24 Calibsel 95.00 80.83 
var9al2 2 B 22 16 21 44 42 26 7 20 34 24 38 

29 27 43 
Calibsel 92.92 75.83 

var9al3 3 B 22 16 43 21 44 38 7 24 26 29 42 
27 34 

Calibsel 93.33 76.67 

var10al1 1 B 16 21 22 20 18 17 7 24 4 Calibsel 94.17 80.83 
varl10al2 2 B 22 16 21 44 42 26 7 20 34 24 38 

29 27 43 
Calibsel 92.92 75.83 

var10al3 3 B 22 16 43 21 44 38 7 24 26 29 42 
27 34 40 25 39 33 

Calibsel 90.00 73.33 

var11al1 1 B 16 21 22 20 18 17 7 24 4 Calibsel 94.17 80.83 
var11al2 2 B 22 16 21 44 42 26 7 20 34 24 38 

29 27 43 40 1817 39 
Calibsel 93.75 76.67 

var11al3 3 B 22 16 43 21 44 38 7 24 26 29 42 
27 34 40 25 39 33 3 20 

Calibsel 92.50 75.00 

var12al1 1 B 16 2122 201817 7 24 4 Calibsel 94.17 80.83 

12 



Name Resp 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Train % 
(PNNCV) 

Pred % 

var12al2 2 B 22 16 21 44 42 26 7 20 34 24 38 
29 27 43 40 1817 39 

Calibsel 93.75 76.67 

var12al3 3 B 22 16 43 21 44 38 7 24 26 29 42 
27 34 40 25 39 33 3 20 

Calibsel 92.50 75.00 

var13al1 1 B 4 7 21 22 26 29 43 44 Expert 91.25 75.00 
var13al2 2 B 4 7 21 22 26 29 43 44 Expert 88.75 74.17 
var13al3 3 B 4 7 21 22 26 29 43 44 Expert 90.42 75.00 
var14al1 1 B 3 4 7 21 22 25 26 29 43 44 Expert 92.50 77.50 
var14al2 2 B 3 4 7 21 22 25 26 29 43 44 Expert 92.08 74.17 
var14al3 3 B 3 4 7 21 22 25 26 29 43 44 Expert 93.33 74.17 
var15al1 1 C 16 21 22 20 18 24 17 44 7 Calibsel 95.42 84.17 
var15al2 2 C 44 22 16 21 34 26 27 43 7 24 Calibsel 94.17 76.67 
var15al3 3 C 44 22 16 34 26 27 21 7 43 29 24 

33 
Calibsel 94.17 78.33 

var16al1 1 C 16 2122 20 18 24 17 44 7 4 Calibsel 96.25 83.33 
var16al2 2 C 44 22 16 21 34 26 27 43 7 24 20 Calibsel 94.17 76.67 
var16al3 3 C 44 22 16 34 26 27 21 7 43 29 24 

33 
Calibsel 94.17 78.33 

var17al1 1 C 16 21 22 20 18 24 17 44 7 4 43 Calibsel 95.00 81.67 
var17al2 2 C 44 22 16 21 34 26 27 43 7 24 20 

29 
Calibsel 94.17 76.67 

var17al3 3 C 44 22 16 34 26 27 21 7 43 29 24 
33 

Calibsel 94.17 78.33 

var18al1 1 C 16 21 22 20 18 24 17 44 7 4 43 26 Calibsel 95.00 80.00 
var18al2 2 C 44 22 16 21 34 26 27 43 7 24 20 

29 
Calibsel 94.17 76.67 

var18al3 3 C 44 22 16 34 26 27 21 7 43 29 24 
33 

Calibsel 94.17 78.33 

var19al1 1 C 4 7 21 22 26 29 43 44 Expert 89.58 75.00 
var19al2 2 C 4 7 21 22 26 29 43 44 Expert 92.92 75.00 
var19al3 3 C 4 7 21 22 26 29 43 44 Expert 89.58 75.00 
var20al1 1 C 3 4 7 21 22 25 26 29 43 44 Expert 92.92 77.50 
var20al2 2 C 3 4 7 21 22 25 26 29 43 44 Expert 94.17 75.00 
var20al3 3 C 3 4 7 21 22 25 26 29 43 44 Expert 90.83 75.00 
25 1  1 1 A 511 216 10 Fspnncv 94.17 82.50 
25 1 4 1 B 5 3 21 43 6 44 Fspnncv 95.42 79.17 
25 1  8 1 C 5 3 21 10 8 Fspnncv 94.17 79.17 
25 2 1 2 A 5 3 22 6 21 Fspnncv 96.25 78.33 
25 2 4 2 B 5 223619 Fspnncv 92.50 80.00 
25 2 8 2 C 5 22 3 6 44 4 Fspnncv 93.33 78.33 
25 3 1 3 A 514 2213 7 Fspnncv 92.92 76.67 
26 1  1 1 A 5 11 21 15 10 Fspnncv 95.00 85.00 
26 1 4 1 B 5 3 15 2122 Fspnncv 96.67 83.33 
26 1  8 1 C 5 315 2122 Fspnncv 96.67 83.33 
26 2 1 2 A 5 3 22154 Fspnncv 95.83 81.67 
26 2 4 2 B 5 223154 Fspnncv 93.33 82.50 
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Name Resp 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Train % 
(PNNCV) 

Pred % 

26 2 8 2 C 5 223154 Fspnncv 93.33 82.50 
26 3 1 3 A 5 15 2237 Fspnncv 93.75 79.17 
26 3 4 3 B 5 15 22 3 43 Fspnncv 93.75 74.17 
26 3 8 3 C 5 15 22 3 24 44 Fspnncv 92.50 79.17 
27 1   1 1 A 5 11 21 5 10 Fspnncv 95.00 85.00 
27 1  4 1 B 531521 17 Fspnncv 96.67 89.17 
27 1  8 1 C 531521 17 Fspnncv 96.67 89.17 
27 2 1 2 A 5 3 2217718 Fspnncv 97.92 81.67 
27 2 4 2 B 5 3 2217718 Fspnncv 95.00 81.67 
27 2 8 2 C 5 22 3 17 26 16 Fspnncv 95.83 79.20 
27 3 1 3 A 5 15 2237 Fspnncv 93.75 79.17 
27 3 4 3 B 5 15 22 3 43 Fspnncv 93.75 74.17 
27 3 8 3 C 5 15 22 3 18 27 Fspnncv 94.17 81.70 

Several interesting observations can be made from the results in Table 4. It is very 
clear that FSPNNCV finds much better combinations of variables for PNN prediction 
than either expert or calibsel. This result is not surprising however since the SSE from 
PNNCV is used as the criterion for choosing the variables. While this may appear to 
bias the sensor selection process, the prediction results validate the procedure since 
"do_fire_pred" uses sensor readings (to create pattern vectors) from times that were not 
used in the variable selection process. In general there is a strong correlation between 
good PNNCV results and good prediction performance. 

The best results found in Table 4 for response times 1, 2 and 3 were experiments 
27_1_4 (variables 5, 3, 15, 21 and 17, [C0400o, 02l RH, SION and MICY]), 26_2_4 
(variables 5, 22, 3, 15, and 4, [C0400o, PHOT, 02, RH and CO«,]), and 27_3_8 (5, 15, 22 
3, 18 and 27, [C0400o, RH, PHOT, 02, MICZ and AC0400o]), which had prediction 
performances of 89.17%, 82.5%, and 81.7%, respectively. However, if you take the 
position that the MIC sensor (variables 16-18 and 38-40) is not practical for shipboard 
use then only the results from experiments starting with "25" and "26" can be used. 
Based on this criterion, experiments 26_3_8 (variables 5, 15, 22, 3, 24 and 44, [C0400o 
RH, PHOT, 02, AC02 and APHOT]) and 26_1_1 (variables 5, 11, 21, 15 and 10, [C040oo, 
N02, SION, RH and NO]) were the best for sensor response times 1 and 3. There is a 
small drop-off in performance (89.17% to 85% at sensor response time #1 and 81.7% to 
79.17% at sensor response time #3) caused by removing the MIC sensors from the 
array. Another decrease in prediction performance for the best sensor combination is 
found if the humidity sensor (#15) is dropped from the array (var2al1 = 80%, 25_2_4 = 
80% and var4al3 = 78.33%, for sensor response times 1, 2 and 3, respectively). 

All of the results listed for the FSPNNCV sensor selection method were based on the 
assumption of a 5-sensor array. To determine whether increasing the number of 
sensors would have a large payoff in detection accuracy or nuisance rejection a small 
subset of addition experiments were performed. Variable selection was performed to 
select the best subset of 5 through 8 sensors for experiment 26_3_8, which was the best 
performing combination at the earliest alarm time (response time #3) when MIC was not 
included. The results from these experiments are given in Table 5. 
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Table 5. Results from Varying the Number of Variables Used for PNN 

Name Resp 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Training 
% 

(PNNCV) 

Pred 
% 

26 3 8 3 C 5 15 22 3 24 44 Fspnncv 92.50 79.17 

26 3 8b 3 C 5 15 22 3 24 44 20 Fspnncv 93.75 79.17 

26 3 8c 3 C 515 22 3 24 44 20 33 Fspnncv 94.58 78.33 

26 3 8d 3 C 515 22 3 24 44 20 33 29 Fspnncv 95.83 78.33 

26_3_8e 3 C 515 22 3 24 44 20 33 29 11 Fspnncv 96.67 79.17 

This small subset of experiments suggests that, at least at the earliest alarm times 
(PNN training times), adding more sensors will not dramatically improve the prediction 
results. In these experiments the slopes and magnitudes of PHOT and N02 were both 
chosen, so even though the PNN was trained on 10 variables, only 8 different sensors 
were chosen. The PNNCV results did systematically improve (92.5% to 96.7%), but the 
same trend was not seen in prediction. Thus, all further experiments will be based upon 
a 5-sensor array. 

The results in Table 4 suggest that even earlier times could be used for fire detection 
because the fire detection accuracy did not significantly degrade at the 0.82% alarm time 
(response time #3). This provides further motivation for studying the sensor response 
time approach based on finding multiple sensors that had significantly different sensor 
readings versus their baseline response. The computational effort required to repeat the 
experiments in Table 4 with two other response times is extremely large. Thus, several 
decisions were made to downselect the number of experiments to a manageable level. 
Because FSPNNCV performed so much better than the other variable selection methods 
it was used for all experiments. Also because slopes were found to be useful at the 
earliest response times, it was decided that either window method B or C was 
necessary. If slopes were not found to be important FSPNNCV would always default to 
choosing variables that were not slopes (i.e., window selection #A). Although window 
selection methods B and C performed equally well, window selection method C was 
chosen for these experiments because it was found to be slightly better for PNN 
prediction at the earliest response times when MIC was not included (e.g., 26_3_8). It 
should be noted that according to the alarm times listed in Table 2, response times 4 
and 5 are most similar to the 0.82% alarm level on the PHOT detector and thus window 
selection method C would appear to be the most suitable for these experiments. One 
additional experiment was performed to compare 5 and 6 sensor arrays for response 
time #5. Table 6 lists the results from the third series of experiments. 
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Table 6. PNN Classification Results from Response Times 4 and 5 

Name Resp. 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Train % 
(PNNCV) 

Pred.% 

Var30 4 C 3 5 15 26 27 34 
02, C04ooo, RH, ACOso, AEthy 

Fspnncv 93.75 82.50 

Var31 5 C 358 1526 
02, CO4000, H2S, RH, ACO50 

Fspnncv 95.83 87.50 

Var31B 5 C 358 15 2621 
02, C040oo, H2S, RH, ACO50, 

SION 

Fspnncv 95.83 85.00 

The results shown in Table 6 are better than those found in Table 4 when you 
consider that the alarm times are earlier than or equal to the 0.82% PHOT alarm level for 
most experiments. Recall from the discussion of Table 2 that the alarm time for 
response time #4 is 89 seconds (median value) faster than the alarm times at the 0.82% 
sensitivity level. As expected, for response time #4 slopes are very important. At this 
point during a fire or nuisance event, the sensor readings have not leveled off and the 
rate of change is critical. The slopes are slightly less important at response time #5 
since only the slope of the CO sensor (variable 26) was chosen using FSPNNCV, It is 
also surprising that for these alarm times the importance of the smoke detectors is 
diminished. The RION smoke detector (variable 21) is only the sixth sensor selected at 
response time #5 and actually degrades the overall prediction performance slightly (87.5 
to 85%), which is surprising. One of the consequences of this can be found upon further 
inspection of the misclassified events. When a smoke detector (either 21 or 22) is not 
included in PNN training an alarm is triggered during the baseline for experiment 
DCAS027. 

Another interesting observation can be found upon further inspection of the 
outputs of the PNN plotted as a function of time. An example plot from 26_3_8 can be 
found in Figure 1. In this plot, the predicted probability of being a fire (0 = no fire, 1 = 
100% certainty of being a fire) as determined by the PNN for DCAS028 (JP-5 fire) is 
plotted as a function of time. Overlaid on the probabilities are vertical lines which 
represent the ignition time (t = 100 seconds), alarm time of the PHOT sensor at the 11 % 
commercial setting (t = 298 seconds) and the fire out time (t = 705 seconds), 
respectively. The PNN was organized such that if the predicted probability was greater 
than 0.5 (i.e., 50%) then an alarm is triggered. This decision threshold is indicated on 
the figure by the horizontal dotted black line. In this example, the PNN does a very good 
job at early warning fire detection, which is not surprising since it was trained on patterns 
taken from the 0.82% alarm time reading (sensor response method #3). However, prior 
to flame out the PNN output probability drops below the 0.5 cutoff level indicating that no 
fire is present. Because the PNN has not been trained to recognize fires and nuisance 
sources under those conditions the PNN fails to work correctly. Thus, to operate in real- 
world conditions the PNN may need to be trained using patterns taken from more than 
one point in the fire (e.g., baseline, early, middle and recovery). Although this is not the 
primary focus of these experiments, it might be beneficial to the other aspects of the DC- 
ARM program. 
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Figure 1. Plot of the PNN output (predicted probability of being a fire) as a function of 
time for DCAS028 (JP-5 fire). The red, magenta and green vertical lines represent the 
times for source initiation, 11% alarm level for PHOT and the flame out. The horizontal 
dashed line is the decision threshold for the PNN, which was set to 0.5 (50% probability). 
In this experiment, fire detection is accomplished quickly (within a minute of source 
initiation) but the fire is incorrectly classified (PNN output < 0.5) as a nuisance later in the 
event. 
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Using the training sets that have already been constructed experiments were 
performed using a PNN trained from multiple time periods. A PNN trained in this 
manner may be more suitable for a universal multi-criteria fire detection method than a 
PNN trained at a single point in time. Three PNN training sets (C45, C14 and C15) were 
constructed by combining the training sets for sensor response times 1, 4 and 5. PNN 
combination training set C45 consisted of patterns taken from sensor response times #4 
and #5. Patterns taken from response times #1 and #4 were using to create PNN 
combination training set C14, while PNN combination training set C15 contained 
patterns using sensor response times #1 and #5. The PNN cross-validation and 
prediction results from the three combined training sets are shown in Table 7. 

Table 7. PNN Classification Results from Combined Training Sets 

Name Resp. 
Time 

Win. 
Size 

Choice 

Sensors Selected Sensor 
Select. 
Method 

Train % 
(PNNCV) 

Pred % 

C45 4+5 C 5 3 15 348 
COW 02, RH, AEthy, H2S 

Fspnncv 92.50 88.33 

C14 1+4 C 5 3 34158 
CC-4000, 02, AEthy, RH, H2S 

Fspnncv 90.28 85.83 

C15 1+5 C 5 3 15 21 8 
CO4000, 02, RH, SION, H2S 

Fspnncv 95.00 90.83 

The prediction results shown in Table 7 are a marked improvement over the 
results from a PNN trained using just one time period. The PNNCV results are similar to 
those found in Tables 4 and 6. However, the most noticeable difference can be found in 
the PNN output as a function of time. Figure 2 is a plot of the same experiment as 
Figure 1 (DCAS028). Using the PNN outputs from combination training set C15, it is 
clear that the PNN correctly identifies the fire during the majority of the experiment and 
recognizes when the fire has been extinguished and the room is clearing out. 
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Figure 2. Plot of the PNN output as a function of time for DCAS028 (JP-5 fire). This plot 
is similar to Figure 1 but shows the output from a PNN trained under different conditions. 
The red, magenta and green vertical lines represent the times for source initiation, 11% 
alarm level for PHOT and the flame out. The horizontal dashed line is the decision 
threshold for the PNN, which was set to 0.5 (50% probability). In this experiment, fire 
detection is accomplished quickly, but unlike the plot shown in Figure 1 the event is 
correctly classified as a fire for the duration of the event. 
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Comparison with a Commercial Detection System and Previous Reports 

In order to accurately assess the proposed NRL multi-criteria fire detection 
sensor array, it is necessary to place these results in context with the sensor arrays 
proposed in other NRL reports as well as the standard commercial systems. Our 
previous efforts in this area made the assumption that a "baseline" sensor reading could 
be found for the smoke and particle detectors so that a %obscuration per meter value 
could be determined [1,2]. The baseline would be used to calibrate the sensors at 
periodic intervals. In this work, we made the assumption that no baseline reading could 
be made and used the PNN directly on the raw values read from the smoke and particle 
sensors (MIC, PHOT, ION, SION and ODM). In both this work and our previous reports 
the gas sensors had been calibrated such that the PNN operated on engineering units 
(e.g., parts-per-million). The datasets used in references 1 and 2 also had been 
processed using a Savitsky-Golay filter, which does not lend itself to real-time operation, 
and the PNN was organized as a three-class problem (fire, nuisance, or background) 
rather than the two-class problem (real-fire or non-fire) described here. Thus, the 
datasets used in this work differ slightly from those used previously. 

Table 8 lists the PNNCV results for a commercial detection system (PHOT, 
sensor #22), the best results from a previous report by Rose-Pehrsson and co-workers 
[1] (NRL #1), the best results from this work (NRL #2), and finally (NRL #3) a 
combination derived from using the sensors from NRL #1 on the datasets used in NRL 
#2. The first column in this Table represents the sensitivity level or response method 
used to generate the training set. The previous reports discuss the results in terms of 
sensitivity levels rather than sensor response times and so that terminology is used in 
the Table when referring to the previous results (note: 11%, 1.63% and 0.82% 
sensitivity levels are the same as sensor response time #1, #2 and #3 respectively). 
Overall detection accuracy is given in the third column. This value is computed the 
same as was done previously [1] based on 120 baseline patterns, 82 real fire patterns 
and 38 nuisance source patterns. When a combined training set is used (e.g., C15), the 
overall results are based on 120 baseline patterns, 82 real fire patterns at one response 
time, 82 real fire patterns at the second response time, 38 nuisance source patterns 
from one response time, and 38 nuisance source patterns from the second response 
time, to give a total of 360 patterns. 
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Table 8. Comparison of Fire Detection Performance Between Best NRL Detection 
Algorithms and Commercial Fire Detection Systems Based On PNNCV 

Sensitivity 
Level 

Sensors Overall Fire 
Detection 

Nuisance 
Rejection 

Commercial Photoelectric Detector 
11% 22 191/252 (75.8%) 34/88 (38.6%) 31/38(81.6%) 

1.63% 22 208/252 (82.5%) 62/88 (70.4%) 20/38 (52.6%) 
0.82% 22 210/252(83.3%) 64/88 (72.7%) 20/38 (52.6%) 

NRL#1 
11% 3 8 15 21 22 234/240 (97.5%) 78/82(95.1%) 36/38 (94.7%) 

1.63% 3 8 15 21 22 234/240 (97.5%) 78/82 (95.1%) 36/38 (94.7%) 
0.82% 3 8 15 21 22 227/240 (94.6%) 74/82 (90.2%) 33/38 (86.8%) 

NRL #2 
Resp. 1 5 3 15 2122 232/240 (96.7%) 76/82 (92.7%) 36/38 (94.7%) 
Resp. 5 358 15 26 230/240 (95.8%)a 76/82 (92.7%) 36/38 (94.7%) 

Resp. 5 + 1 5 3 15 21 8 342/360 (95%)D 153/164(93.3%) 70/76(92.1%) 
NRL #3 

Resp. 1 3 8 15 21 22 231/240 (96.3%) 75/82(91.5%) 36/38 (94.7%) 
Resp. 5 3 8 15 21 22 227/240 (94.6%) 74/82 (90.2%) 33/38 (86.8%) 

Resp. 5 + 1 3 8 15 21 22 340/360 (95.6%)° 151/164(92.1%) 74/76 (97.4%) 
' two false alarms on baseline patterns (DCAS025 and DCAS099) 

b one false alarm on a baseline pattern (DCAS025) 

These results illustrate that the large improvement in performance of a multi- 
criteria fire detection system using a sensor array and a PNN compared to the standard 
commercial detection system. The detection accuracy for NRL #1 is only slight better 
than can be found for NRL #2. It is interesting that several of the sensors were common 
to both the NRL #1 array and the NRL #2 array. Because background calibrations were 
not performed for NRL #2 the importance of the smoke detectors is lessened slightly. 
Thus, many of the best sensor combinations did not need a smoke detector to 
discriminate between fire and nuisance sources, especially at the higher sensitivity 
levels. However, the results from NRL#2 also suggest that when a smoke detector is 
not included in the sensor array the chances of a false alarm on background conditions 
increases. With this in mind, NRL #3 provides an interesting compromise. This array 
uses the sensors from NRL #1 with the training sets used for NRL #2. The classification 
performance of NRL #3 is equivalent to NRL #2. This is somewhat surprising because 
sensor #5 (CO) was found to be the most important sensor during this investigation, but 
is not present in the sensor array. This further highlights the difficulty in choosing an 
optimal sensor array based purely on pattern recognition results because of the high 
cross-selectivity between the gas sensors. 

Further illustration of the impact of the cross-sensitivities can be seen in Figures 
3A-3E. These plots are maps of the linear correlation coefficient (r) at alarm time 11% 
(A), 1.63% (B), 0.82% (C), response time #4 (D) and response time #5 (E). One 
interesting observation that can be found in these maps are that the correlations 
between sensors changes dramatically during the course of an event and this impacts 
which sensors are selected by the variable selection algorithms. At the response time 
#1 (11% alarm level), sensors 5 and 8 (C040oo and H2S) are highly correlated with each 
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other (0.72) and thus NRL #2 does not employ sensor #8 (H2S). However, at response 
time #5, these sensors are not correlated any longer (0.17) and NRL #2 requires both 
sensors for high classification accuracy. Even with the smoke detectors, the correlation 
changes during the course of an event. Sensors #21 and #22 (SION and PHOT) are not 
correlated early in the event (response times #4 and #5) but become more correlated 
later in the event (response time #1). While the correlation between sensors generally 
grows as the event prolongs (response time #1) in some cases the correlation actually 
decreases. For example, sensor #3 (02) is less correlated (r = -0.51) with sensor #7 
(HCI) at response time #1 than it is at response time #5 (r = -0.62) or response time #4 (r 
= -0.85). 

Table 9 lists the real-time prediction results for the standard commercial system 
(same as Table 8) and NRL #2. These prediction results are obtained by simulating 
real-time operation of the PNN (i.e., "do_fire_pred"). As discussed previously, the real- 
time prediction results are slightly worse than those based upon the PNNCV due to the 
transient nature of fires. Fire signature patterns for a single source can change 
drastically during the course of an event. Thus, a nuisance source signature can appear 
to look more like a fire event signature to the PNN, if it has not been trained to 
discriminate between fires and nuisance sources during that portion of the event. A 
successful detection is given for the real fire events when the PNN correctly identifies 
the event as a fire (i.e., "alarms") at any point after ignition. Correct nuisance source 
rejection is credited when the PNN does not alarm at any point during the experiment. 
False positive detections occurring during the baseline period are included in the overall 
percentage correct. It should be noted that very few background patterns were actually 
tested since the NRL #2 array used a slope computed from 25 points, which is longer 
than the background period for most of the experiments. Future data collection efforts 
will need to be performed with longer baselines and typical background/ambient 
conditions. 

Table 9. Comparison of Fire Detection Prediction Performance Between Best NRL 
Detection Algorithms and Commercial Photoelectric Fire Detection Systems 

Sensitivity 
Level 

Fire Detection Nuisance 
Rejection 

Commercial Photoelectric Deted tor 
11% 34/88 (38.6%) 31/38(81.6%) 

1.63% 62/88 (70.4%) 20/38 (52.6%) 
0.82% 64/88 (72.7%) 20/38 (52.6%) 

NRL #2 
Resp. 5 81/82 (98.8%) 25/38 (65.8 %) 

Resp. 5 +1 81/82 (98.8%) 28/38 (73.7%) 
Resp. 1 80/82 (97.6%) 27/38(71.1%) 
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Correlation Map, Variables Regrouped by Similarity 
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Figure 3A. Correlation map shows the linear correlation coefficient of the 22 sensor 
outputs from the PNN training set at response time #1 (11% obs./m). Highly correlated 
variables have coefficents near +1 or -1. Variables that are not correlated have values 
near 0. 
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Figure 3B. Correlation map shows the linear correlation coefficient of the 22 sensor 
outputs from the PNN training set at response time #2 (1.63% obs./m). Highly correlated 
variables have coefficents near +1 or -1. Variables that are not correlated have values 
near 0. 
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Figure 3C. Correlation map shows the linear correlation coefficient of the 22 sensor 
outputs from the PNN training set at response time #3 (0.82% obs./m). Highly correlated 
variables have coefficents near +1 or -1. Variables that are not correlated have values 
near 0. 
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Figure 3D. Correlation map shows the linear correlation coefficient of the 22 sensor 
outputs from the PNN training set at response time #4. Highly correlated variables have 
coefficents near +1 or -1. Variables that are not correlated have values near 0. 
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Figure 3E. Correlation map shows the linear correlation coefficient of the 22 sensor 
outputs from the PNN training set at response time #5. Highly correlated variables have 
coefficents near +1 or -1. Variables that are not correlated have values near 0. 
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Similar to Table 8 these results illustrate the excellent fire detection capabilities of 
the PNN based multi-criteria sensor array. This comparison is more realistic than 
comparing PNNCV results since the commercial detection systems were operating in 
real-time mode during the experiments. Further improvements must be made to 
increase the nuisance source rejection capabilities of the NRL sensor array. One simple 
modification that can be made is to increase the classification threshold, which is 
currently set at 0.5 (50%) as shown in Figures 1 and 2. In other PNN projects at the 
NRL the classification threshold has been successfully modified to meet the needs of the 
particular application [5,6]. This will be the subject of future experiments. 

Conclusions 

1. Earliest fire detection can be accomplished without a smoke detector but is prone to 
false alarms on background readings. False alarms occurring during the baseline 
time period, when the sensors are not purposely exposed to fire or nuisance 
materials, have a higher consequence than alarms found during a nuisance event 
(when the sensors are being challenged). Smoke detectors are an excellent source 
of information regarding when a fire or nuisance event (e.g., the sensors are being 
challenged or stimulated) is occurring because the smoke detector values change 
very little from day-to-day or experiment-to-experiment. They are less useful for 
discriminating between nuisance and real fire sources. Gas sensors provide the best 
information for discriminating between nuisance and fire sources, but are sometimes 
sensitive to changes in the background/ambient conditions of the room. Ultimately 
the best sensor suite will utilize both types of sensors.   This report concludes that a 
combination of gas sensors and standard smoke detectors will provide for the best 
fire detection ability with the highest nuisance source rejection. A more difficult 
question is which gas sensors are needed. The PNNCV results point clearly to 
sensors #5 and #3 (CO and 02), respectively as the best sensors for fire 
discrimination. Another sensor that was often found to be useful was the RH sensor 
(#15). One issue that may have affected the result is that the fire experiments were 
performed in a single fire chamber. It is not clear yet whether the conditions found at 
this site will be representative to the environments found in Naval ships. Future 
testing on board the ex-USS SHADWELL [7] will be required to address this issue. 
Other sensors that frequently turn up in the analyses as being important include 
sensors 2, 7, 8, 10,11 and 12 (C02, HCI, H2S, NO, N02 and hydrocarbons). Some 
sensors are better suited for early fire detection, while others tend to be better at the 
later points in time. It should also be noted that due to the cross-sensitivities (see 
Figures 3A-3E) of the electrochemical gas sensors, a single sensor may give 
information about many different gases at once, so it should not be surprising that a 
clear cut solution is not readily apparent. In terms of which smoke detector to use, 
sensors #21 and #22 (Simplex ionization and photoelectric) were found to provide 
the most useful information to the PNN. In some cases, the best 5 sensor 
combination included both, but in most cases the FSPNNCV selected one or the 
other. 

2. This work showed that the sensor rate of change was only important early in the fire. 
At the 11% sensitivity level (response time #1) rate of change was never found to be 
important. In fact, only at the response times 3-5 did the rate of change regularly 
show up in the list of variables chosen by FSPNNCV. Even in those cases, the 
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magnitude reading was often more important than the rate of change. In several 
cases, it was found that computing the rate of change for a longer period of time (25 
points = approx. 100-150 seconds) produced slightly better classification methods. 
Perhaps determining the rate of change over an even longer time period would also 
prove to be useful. It is expected that rate of change will be important for predicting 
data at other locations (e.g., ex USS Shadwell), because the inputs the PNN will be 
independent of ambient background gas levels. Issues such as "calibration transfer" 
or "sensor standardization" will be critical for the eventual application of this 
technology, since small changes in the inputs to the PNN may have undesirable 
effects, which may result in poor detection performance or nuisance source rejection. 

3. The results shown in Tables 7 and 8 clearly point out that the best fire detection 
algorithm may need to include fire and nuisance patterns from multiple points in time 
or utilize multiple PNNs operating in parallel. For example, the PNN trained using 
alarm time #4 is geared toward detecting fires very early but is poor at discriminating 
between fire and nuisance sources that happen later in the event. This phenomenon 
is caused by the dynamic nature of fires, which causes the patterns for fires and 
nuisances sources to change during the course of an event. An interesting example 
of this can be found by interpreting the correlation maps in Figure 3. At the 11% 
alarm level, sensors 5 and 8 (C040oo and H2S) are highly correlated with each other 
and thus the FSPNNCV finds little use for sensor #8 (H2S). However, at alarm level 
#5, these sensor readings are not correlated any longer and FSPNNCV finds both 
necessary for classification. Further studies will be required to elucidate the optimal 
method of applying the PNN so that it correctly identifies events early, which is most 
pertinent to the DC-ARM program. 

4. An alternative approach to using the PNN for discrimination of fire, nuisance, and 
baseline patterns every time a new set of sensor readings are acquired would be to 
limit PNN classification decisions to cases when one of the smoke detectors reaches 
a certain criterion (e.g., 0.82% obs./m for PHOT). The ambient gas concentrations in 
a room are more apt to change quickly and thus trigger a false alarm from the PNN 
than a smoke detector such as PHOT or SION. A two-step approach, using one or 
more commercial smoke detectors as the filter or decision threshold, to reduce the 
number of PNN classification decisions has merit. A similar approach was used in 
previous NRL projects involving surface acoustic wave (SAW) sensor systems, 
which only used the PNN for cases in which a sensor frequency shift (compared to 
an established baseline) was greater than some preset threshold [5]. This two-step 
procedure greatly increased the robustness of the system and decreased the false 
alarm rate. During this work it was observed that the commercial fire systems rarely 
alarm during ambient background conditions. However, using the PNN with the 
sensor combinations studied here having both gas and smoke detectors in the array, 
several false alarms during background conditions were noted. Ultimately, a fire 
detection system with the fire detection capability of a commercial system at the 
0.82% obs./m setting and the nuisance source rejection capability of a commercial 
system at 11% obs./m would be a significant advance. The results in this report 
have shown that the PNN has excellent nuisance source rejection capability at the 
0.82% level with the data collected at the Hughes facility. A PNN trained at that 
alarm time would only have to be concerned with classifying a event as fire or 
nuisance since the chances of a true background having passed the criterion of 
0.82%> obs./m would seem unlikely. Furthermore, a nuisance event rarely reaches 
the 11%) obs./m level on PHOT and many of those that do are often bordering on 
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being classified a fire at this point. Thus, the PNN might only need to operate (i.e., 
make classification decisions) when the smoke detector readings are between the 
0.82% obs./m level and the 11% obs./m level. Anything above this level (for 
example) is automatically called a fire. 

5. The results in Table 8 demonstrate that for a single environment it is not necessary 
to convert the smoke detector data to "engineering units" (i.e., Obs/m) in order to 
have high classification accuracy. Results found using NRL #2 and NRL #3 were 
comparable to those found in earlier work (NRL #1). One of the inherent limitations 
of this approach is that, if the final sensor array utilized a different smoke detector 
than was used during the PNN training phase, a correction factor will need to be 
determined to make the data from the new unit "look" like the data collected in the 
previously used unit. In order to provide accurate classification decisions, pattern 
recognition algorithms (e.g., PNN) require that the sensor data from the final unit 
have similar characteristics to the data collected during the training phase. In some 
cases a linear correction may be adequate to transfer the PNN model. Engineering 
units may also provide a common link for sensors from different manufacturers so 
that some flexibility is gained. Newly developed sensors could potentially be 
swapped for older ones without sacrificing detection accuracy or nuisance source 
rejection. The major disadvantage of converting the sensor data to engineering units 
is that an accurate baseline is needed. Further testing on board the USS-Shadwell 
will provide help in finding the optimal approach for this application. 

6. It is the recommendation of this report that the optimal sensor combination will need 
to heavily consider practical issues such as sensor cost and maintainability in 
addition to pattern recognition performance. This work has shown that many 
different combinations of the sensors will lead to statistically equivalent discrimination 
performance. Without further experimental data from a shipboard site to use as an 
external prediction set, conclusions made in this report are also subject to bias from 
the experimental protocols used in the Hughes fire chamber tests. Thus, other 
factors will need to be considered along with the classification accuracy of the 
proposed sensor combinations to produce the best multi-criteria fire detection 
system. 
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