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TOWARDS A CUSTOMIZABLE PVS* 

GERALD LÜTTGENt, CESAR MUNOZt, RICKY BUTLER*, BEN DI VITO*, AND PAUL MINER* 

Abstract. PVS is a state-of-the-art theorem-proving tool developed by SRI International. It is used 

in a variety of academic and real-world applications by NASA and ICASE researchers, for whom tool cus- 

tomization and extensibility are becoming increasingly important issues. This paper shows, by referring to 

past experiences with several projects and case studies, that the customization features currently offered by 

PVS are often insufficient. It also suggests several improvements regarding PVS's customization in the short 

run and regarding its extensibility in the long run. 
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1. Introduction. PVS is a general verification system developed and maintained by the Formal Meth- 

ods Group at SRI International [32, 38, 39]. It combines a very rich specification language with a powerful, 

interactive theorem prover. The specification language of PVS is based on a classical, but typed, higher- 

order logic. The theorem prover integrates decision procedures for several kinds of theories and also allows 

one to incorporate user-defined proof strategies to automate the proof process as far as possible. NASA 

Langley [8, 30] is a long-time user of PVS, whose experiences with the theorem prover show that it is a 

well-performing tool, provided that the application under consideration can be tailored to PVS's problem 

solving style. Unfortunately, tailoring applications is difficult in practice, leading to a desire for tool cus- 

tomization and extensibility. This desire is shared by researchers at ICASE [19], whose main interest is 

the development of new verification technologies, especially heterogeneous techniques combining theorem 

proving, model checking, and type checking. 

Customization and extensibility issues within formal specification and verification tools, such as PVS, 

are becoming increasingly important topics in Formal Methods research and technology transfer. The reason 

is that only tools with a high degree of flexibility and automation can cope with the complexity of today's 

digital systems and with the usability requirements imposed by hardware and software engineers. The main 

arguments for powerful customization and extensibility within PVS concern aspects of tool integration as 

well as tool specialization. A tight integration of PVS with external tools and environments would enable the 

use of specialized decision procedures within PVS, such as for model checking various temporal and modal 

logics or for reasoning about regular languages. Vice versa, other formal and informal tools for the design 

and analysis of digital systems could profit from PVS's elegant specification language and from its theorem- 
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proving capabilities. However, in order to encourage engineers to apply formal specification and verification 

techniques, verification tools must become an integral part of engineering environments, such as UML tools 

in software design and VHDL tools in hardware design [7, 21]. Beside this aspect of tool integration, another 

desirable feature of verification tools is their specialization to particular problem domains. Naturally, this 

breaks down to two issues: (i) the specialization of the prover language in order to allow the interfacing of 

different specification languages to the verification tool under consideration, and (ii) the specialization of the 

prover itself, e.g., via user-defined proof strategies. 

This paper first gives an overview of the current customization features in PVS. By referring to four case 

studies conducted by the authors, it is shown that these features are often insufficient to tailor PVS to some 

interesting academic and real-life applications. In addition, matters regarding extensibility seem to have 

been largely ignored during the development of PVS. After a detailed analysis of the underlying issues, this 

paper then develops several suggestions on how PVS's customization features can be significantly improved 

in the short term. These suggestions concern the mechanism and language for writing proof strategies, as 

well as syntactic and semantic aspects of the PVS language. This paper also elaborates on a vision for a 

next-generation PVS which asks for tool extensibility, and, thereby, carries the idea of tool customization 

one step further. Please note that some of the observations and suggestions made in this paper have also 

been reported by other researchers, and that the developers of PVS at SRI International are partially aware 

of them for quite some time. 

The remainder of this paper is organized as follows. The next section gives an overview of the verification 

system PVS and its key components. It also surveys the customization features supported in PVS today. 

Section 3 illustrates our past experiences with customization issues in PVS, while Section 4 presents and 

discusses several suggestions on how to improve customization. The final section contains some remarks on 

tool extensibility and our concluding thoughts. 

2. PVS: An Overview. The abbreviation PVS stood originally for Prototype Verification System, 

as the tool was conceived as a prototype for research on formal verification technology. The design of 

PVS was shaped by experience with the development of specification languages and theorem provers in the 

late Seventies and in the Eighties. In particular, PVS borrows from an earlier system developed at SRI 

International, the EH DM theorem prover [23, 42]. PVS is implemented in Lisp [44] using the Common Lisp 

Object System [10] and was first publicly released in 1992; the most current release is Version 2.3. Over the 

years, PVS matured from a prototype to a robust and powerful formal specification and verification system. 

It is used by many researchers and engineers in academic and industrial sites to attack complex problems 

in a broad spectrum of application domains [38], including software systems [14], hardware systems [13], 

and embedded systems [12]. Aspects under investigation ranged from safety criticality [11], over fault 

tolerance [26], to human-computer interaction [22]. The architecture of PVS, schematized in Figure 2.1, 

reflects that PVS is mainly used as an interactive system. The interface to the system has a textual and 

command-line form and is built on top of GNU's editor Emacs [43]. At this level, the user writes formal 

specifications that are then interactively analyzed either by the type checker and the proof checker, or 

animated using the ground evaluator. 

Formal specifications are structured in so-called theories, which correspond to modules in programming 

languages [34]. During the initialization of PVS, a special, predefined theory, which is referred to as prelude 

and includes basic definitions, axioms, and propositions, is automatically loaded. A theory is an arrangement 

of declarations of mathematical and logical objects, such as types, (higher-order) functions, axioms, and 
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FIG. 2.1. Schematized architecture of PVS 

theorems. Theories can be parameterized by mathematical objects, and they can in turn be imported by 

other theories. The specification language of PVS is based on classic higher-order logic, i.e., functions are 

first-class objects and quantification over general objects is supported. However, the language is enriched with 

an expressive type system and also supports operators known from functional programming languages [25], 

such as conditionals, local declarations, first-class functions, as well as record and function overriding. 

The PVS language is strongly typed, i.e., objects need to be explicitly declared with their types [34]. 

Types supported by the system include reals, rationals, integers, strings, records, tuples, functions, tables, 

sets, and abstract data types. The type system also possesses two very powerful features, namely dependent 

types and subtypes, which are worth a closer look [41]. 

• Dependent types, e.g., dependent record types: A record type R having fields /i,... ,fn of types 

Ti,... ,Tn may be declared by R : TYPE = [# /i : 7\,... , fn : Tn #]. Here, each type Tj may 

depend on the fields A,... , fi-i- 

• Subtypes: If T is a type and P a predicate on T, then N : TYPE = {x:T I P(x)} declares a new 

type N whose elements belong to the largest subset of elements of type T that satisfy P. 

Although subtypes and dependent types are very convenient to write specifications, they make type checking 

undecidable. PVS copes with this problem by generating type correctness conditions (TCCs), i.e., proposi- 

tions that, when discharged by the user, guarantee type consistency. For example, when subtyping is used, 

a TCC is generated which states that the introduced subtype must not be empty, i.e., an object of the 

considered subtype must exist. 

'/. Existence  TCC generated for    N:   {x:T   I   P(x)} 

XJTCCl:   OBLIGATION EXISTS   (N:   {x:T   I   P(x)}):   TRUE; 

In practice, TCCs can often be discharged automatically by using proof automation tools provided by the 

system. The rich type system enables one to encode partial functions, which are per default not supported in 

PVS, by restricting a function's domain appropriately using subtyping. Moreover, the type system also allows 

the sound support of recursive functions. More precisely, each recursive function declaration must include 

a termination argument. The type checker then generates a TCC stating that the termination argument is 

valid, i.e., it gives rise to a well-founded relation. 

The proof checker [35] included in PVS is also interfaced to the Emacs editor. It constantly displays the 

current proof state in form of a proof sequent. Sequents may then be simplified by inputting proof commands, 

which may be considered as basic steps in the proof-construction process. PVS comes with a very rich set 

of proof commands that are concerned with equality reasoning, logical reasoning, and arithmetic reasoning. 

Basic proof commands deal with, e.g., skolemnization, case-splitting, or simplification. The system also 

provides a mechanism for writing proof strategies, i.e., proof scripts which are intended to increase the 

degree of automation within the theorem prover [35].   Strategies need to be written in Lisp and may use 



pre-defined proof combinators, e.g., choice, sequencing, or iteration. Some interesting proof strategies are 

already delivered with PVS, including the strategy tec specialized at discharging type correctness conditions 

and the very powerful strategy grind which combines logical and arithmetic simplifications in an intelligent 

manner. The proof checker also interfaces with decision procedures external to PVS, such as for temporal 

logics [15] and monadic second-order logic [17]. 

It is worth mentioning a feature which was introduced with the current release of PVS, namely the 

ground evaluator [36]. This component allows PVS ground expressions, i.e., executable definitions applied to 

concrete data, to be evaluated via compilation into Lisp. The efficiency of the obtained Lisp code crucially 

depends on the identification of situations of non-shared access to variables. This is done by static analysis 

techniques. Although ground evaluation is a first step towards animating specifications, the executable 

subset of the PVS language should be increased to handle certain kinds of symbolic evaluations in a future 

release of the tool. 

Regarding tool customization, there exist currently two customization features in PVS other than the 

ability to provide user-defined proof strategies. One rudimentary feature uses environment variables for 

allowing a person to work with a text editor different from Emacs, for running the tool in batch mode, 

and for deciding which set of decision procedures to use. The other more powerful feature is the library 

concept which supports one in arranging theories and adding them to the system, e.g., integrating a theory 

for reasoning about graphs [9]. However, many key features in the current release of PVS are still fixed and 

cannot be customized. This especially concerns the PVS language, including its syntax and semantics, the 

type checker, and the type correctness conditions. 

3. Past Experiences with Customization in PVS. In this section, we examine four academic 

and real-world case studies which we conducted in the past using PVS and which required us to employ 

PVS's customization features. Together the case studies cover most aspects of tool customization, including 

user-defined proof strategies, as well as syntactic and semantic issues of the PVS language. 

3.1. Case Study: SAFER. The first case study, which involves the analysis of an embedded controller 

for NASA's Simplified Aid for EVA Rescue (SAFER), aims at exploring the limits of proof automation via 

semi-custom proof strategies. SAFER is a backpack propulsion system for free-floating astronauts, intended 

as a self-rescue device. It uses 24 gaseous-nitrogen thrusters to achieve, six degree-of-freedom maneuvering 

control. Propulsion is available either on demand, i.e., in response to hand controller inputs, or through an 

automatic attitude hold (AAH) capability. 

SAFER requirements were previously formalized using PVS during a NASA pilot project in formal 

methods, details of which appear in the appendix to a NASA guidebook [29]. In a nutshell, the SAFER 

system was specified as a state machine within PVS, and its properties of interest were encoded as system 

invariants which were proved by induction on the length of paths. A set of five property classes was identified, 

with matching proof schemes later devised. After refining the PVS proof strategies, fully automatic proofs 

of 42 model properties were obtained. Many properties were expressed as a "hold-until" formula, where an 

invariant holds over each sequence of states bracketed by the earliest occurrences of a trigger condition and a 

termination condition [12]. An example of the custom proof strategies is shown below, where "state-tran" 

is provided to prove basic state transition formulas. 

(defstep state-tran   (feoptional   (exp-fnums  +)  rewrites) 

(let   ((auto-rewr   (cons   'auto-rewrite   (append rewrites   (constant-rewrites))))) 

(then   (skosimp*) 



auto-rewr (assert) 

(split-disjunctions*) 

(expand-rec-desc exp-fnums) 

(general-rewrite s) 

(ground) (lift-if) 

(grind))) 

"(state-tran):   prove  state transition properties  by expansion,   replace & hide,   grind." 

""'/.Invoking state transition property strategy") 

The sample property shown below is a direct expression of the following requirement: "Once A AH is turned 

off for a rotational axis, it remains off until a new A AH cycle is initiated.'''' 

rot_axis_stays_off:   LEMMA 

hold_until( 

LAMBDA s:   toggle(AAH_state(s))   = AAH_on AND NOT active_axes(AAH_state(s))(r), 

LAMBDA  s:   NOT active_axes(AAH_state(s))(r) , 

LAMBDA  s:   toggle(AAH_state(s))   = AAH_started, 

inputs) 

Here, the three lambda expressions, parameterized with a state variable, specify the trigger, hold, and 

until-conditions, respectively. 

Although custom proof strategies worked well in this case study, the PVS user community would benefit 

from greater insight into the prover's mechanisms. In order to implement more elaborate strategies that 

take function and lemma declarations into account, access to user theories would be needed. Since proof 

strategies, in our point of view, provide the key for making formal techniques attractive to engineers, they 

should be made as powerful and convenient as possible. 

3.2. Case Study: Rewriting for User-defined Congruences. The second case study was devoted 

to developing rewriting support for user-defined congruences in PVS. The PVS language provides an abstract 

datatype mechanism [33] for defining new languages whose syntax is given in Backus-Naur Form (BNF). 

The semantics of a variety of languages, such as process algebras [5], is often defined via a behavioral 

congruence. While these congruences may be specified in PVS's higher order logic, the prover does not 

support rewriting for them. In fact, PVS's abilities for equational reasoning are limited to rewriting regarding 

the tool's built-in notion of equality. This is in contrast to many other theorem provers, such as HOL [16] 

and Isabelle [37], which provide a means for soundly introducing rewriting with respect to equations on 

user-defined congruences. In order to circumvent this shortcoming of PVS, researchers have embedded 

process-algebraic languages in PVS using uninterpreted types [4]. Although this approach opens the door for 

using the prover's built-in equality and its rewriting machinery, it forces one to sacrifice the most powerful 

proof principle supported by theorem provers, namely structural induction. 

Our approach to the problem was based on providing a simple, customized, and conservative proof 

strategy for automating a single rewriting step with respect to a given congruence. In essence, our proof 

strategy, which is supposed to be applied to the sequent containing the term to be rewritten, only uses the 

transitivity property and the compositionality property of congruences. Especially, the strategy does not 

rely on uninterpreted PVS terms but works with PVS's abstract datatypes instead. The rewriting rule to be 

considered must be given as a lemma in PVS and serves as an argument to our strategy, which is defined as 

follows: 



(defstep context-rewrite (equation) 

(then 

(use "transitivity") 

(hide 2) 

(use equation) 

(forward-chain "congruence") 

(hide -2) 

(inst -1 extract-context) 

(auto-rewrite "subst") 

(assert) 

(stop-rewrite "subst") 

(inst?) 

(assert) 

(hide -1)) 

"Poor man's rewrite" 
ii ii \ 

Here, transitivity and congruence are lemmas in PVS stating the transitivity and congruence property 

with respect to the considered congruence, respectively, and subst is a function which substitutes a context 

variable (a context is a term with a designated free variable) by a concrete term. Our strategy also requires 

the extraction of contexts in order to get to the subterrn to which the rewrite rule equation should be 

applied. As with substitutions, extracting contexts is an easy exercise which can be performed by a function 

that is inductively defined along the structure of terms. Unfortunately, any specification of such a function 

needs to employ syntactic equality and, thus, cannot be implemented within the PVS language. Hence, the 

function extract-context for extracting contexts is directly defined in Lisp and uses a notion of syntactic 

equality which is defined internally within the PVS system. Although its definition is specific to the abstract 

datatype to which the considered term belongs, it can be automatically generated whenever an abstract 

datatype definition is introduced to PVS. However, the choice of a context may not be unique in the first 

place, since a rewrite rule may be instantiated in several ways with respect to a given term. Thus, either user 

guidance or the application of adequate heuristics is required. Since the techniques for term instantiation do 

not depend on the specific congruence under consideration, it should be possible to re-use the sophisticated 

pattern matching routines for PVS's built-in notion of equality, which are implemented as Lisp functions 

within the system. 

Unfortunately, the poor documentation of the internals of the PVS system prohibited us from re-using 

existing routines for pattern matching and term instantiation. As final consequence, we did not meet our 

objective, namely to develop support for rewriting with respect to user-defined congruences in PVS. 

3.3. Case Study: Integration of the B-Method. Although PVS is a rich tool for the analysis of 

formal specifications, it does not come with a built-in methodology for system development. In contrast, 

other tools include well-developed methodologies, such as the B-method [2], but provide very limited proof 

automation. Hence, the question arises whether, e.g., the B-method can be embedded in PVS in an elegant 

and cost-effective way. 

The B-method is a state-oriented method which covers the complete life cycle of software development. 

It provides a uniform language, the Abstract Machine Notation, to specify, design, and implement software 

systems. A specification in B is composed of a set of modules which are referred to as (abstract) machines. 



Syntactically, a machine consists of several clauses which determine its static and dynamic properties. For 

instance, the VARIABLE clause includes a set of variables that defines the state vector of the machine, the 

INVARIANT clause constrains the domain of states, and the OPERATIONS clause defines how states may be 

modified. The embedding of the B-method in PVS was done structurally [28], i.e., the expression language of 

B and the underlying logic of the abstract machine notation were encoded using the PVS language and the 

higher-order logic of PVS, respectively. More precisely, a front-end tool, called PBS [27], was implemented 

which supports the abstract machine notation in PVS. PBS works similar to a compiler as it takes an input 

file containing an abstract machine description and generates as output the corresponding embedding in the 

form of a PVS theory. This was necessary since PVS does not provide the possibility to extend the syntax 

of its specification language to accommodate the B-notation. When compiling a theory generated by PBS, 

the type checker of PVS generates type checking constraints. These correspond to proof obligations which 

assure soundness requirements of the machine under consideration, e.g., one proof obligation being that the 

machine's operations preserve the given invariant. 

The semantic encoding of the B-method in PVS's higher-order logic maps machine states into a record 

type State, whose fields are the variables of the considered machine [6]. Machine invariants are introduced 

as a constraint predicate Invariant on State: 

Invariant:   [State  —> bool]   =  invariant 

InvariantState:   TYPE =  {s:State   |   Invariant(s)} 

where invariant is the invariant of the considered machine. Operations are then described by generalized 

substitutions, a semantic structure that includes a before-after relation between states, a pre-condition pred- 

icate, and a constraint which imposes the relation on states not violating the pre-condition. Generalized 

substitutions may be specified in PVS as follows: 

Transition:   TYPE =   [# pre:   [State  -> bool],  rel:   [[State,State]   -> bool]   #] 

Constraint:    [Transition —> bool]   = 

LAMBDA   (tr:Transition):   (FORALL   (ei,e2:   State)   (NOT tr'pre(ei))   => tr'rel(ei,e2)) 

GeneralizedSubstitution:   TYPE = {trtransition   |   Constraint(tr)} 

A transition between states is implemented as a record type Transition containing a pre-condition predicate 

pre and a before-after relation rel. Only transitions satisfying predicate Constraint are considered to be 

generalized substitutions, i.e., GeneralizedSubstitution: TYPE = {tr: Transition | Constraint (tr)}. 

As an example of a generalized substitution, consider the so-called assignment substitution Xi, ... ,xn : = 

ei,... , en which is encoded as 

ASSIGN(f:[State  -> State]):   GeneralizedSubstitution = 

(# pre   := TRUE,   rel   := LAMBDA   (ei,e2:   State):   e2  = /(e2)   #) 

where / is the function satisfying /(XJ) = e;, for 1 < i < n, and f(x) = x, otherwise. Please note that the 

encoding is constructed in a way that soundness of machines maps to type correctness. 

Summarizing, although the B-machine syntax could not be integrated directly in the PVS language, 

the encoding of its semantics could be done conveniently. The latter is due to the expressive type system 

of PVS. In fact, the above encoding of machines makes use of subtypes and dependent types. However, 

type-system features absent in PVS could have simplified this task. As an example consider the situation 

where one machine imports other machines. Here, the state of the importing machine includes the states of 

the imported machine and their operations. This could have been elegantly expressed using record subtyping. 

Moreover, the proposal in [6] of a new operator for parallel substitution in the B-method suggests the utility 



TABLE 3.1 

Evaluation of the customization features used in the case studies 

Proof 

strategies 

Language 

syntax 

Language 

semantics 

SAFER good n/a n/a 

Process algebra poor faii- poor 

B-method poor fair good 

DDD good poor poor 

of general polymorphism in PVS. Last, but not least, it should be mentioned that specialized proof strategies 

for automatically discharging certain proof obligations, which arise during the translation of B-machines 

into PVS, were considered in [6]. Since the above-presented encoding strongly relies on PVS's type system, 

proof strategies would have required access to terms, types, and the type-checker. Although this access 

partially exists in form of internal Lisp functions of PVS, the lack of documentation let the attempt to write 

customized proof strategies fail. 

3.4. Case Study: Support for the DDD-Method. In the fourth case study, we have studied 

how Digital Design Derivation (DDD) techniques, which provide a solid foundation for digital hardware 

design [20], can be combined and enhanced with the deductive capabilities of PVS [26]. 

Since design derivation semantics in hardware is based on mutually recursive stream equations, a PVS 

library defining a shallow embedding of stream equations was developed [18]. The stream library is modeled 

after PVS's abstract datatype mechanism, i.e., streams are encoded as an abstract co-datatype over an 

uninterpreted non-empty type constrained by axioms. The stream library provides support for co-recursive 

function definition and proof by co-induction. Strategies were developed in order to simplify the handling of 

proof obligations related to stream definitions and to partially automate proofs by co-induction. Moreover, 

multiple levels of interaction between design derivation and PVS were explored. The requirements for the 

design derivation are expressed in the PVS language. Algorithms satisfying the requirements are verified 

in the proof system of PVS and, then, are translated into a behavioral specification for a design derivation 

tool. Within such a tool, the behavioral description is refined into a concrete design. Refinements outside 

the scope of the derivation tool, e.g., regarding circuit optimizations that require sophisticated behavioral 

reasoning, are justified externally in PVS. 

The approach described here has been illustrated by means of two significant examples, namely a fault- 

tolerant clock-synchronization circuit and an architecture for floating-point division. The examples show 

that PVS can be used effectively as a verification engine supporting DDD. However, limitations of PVS 

were experienced, both semantically and syntactically. Prom a semantic point of view, a shallow embedding 

reduces the potential to verify meta-results of the encoded theory. This is even worse in PVS, since the type 

system does not allow quantification over types. For instance, our embedding uses PVS tuples to represent 

tuples of the hardware design language, but properties concerning all tuple types cannot be expressed in 

our embedding. From a syntactic point of view, we were unable to create the desired syntactic forms for 

declaring abstract co-datatypes, since the PVS language cannot be extended. Thus, a significant portion of 

the development consisted of repeatedly creating declarations of lemmas in the specific form necessary for 

the correct operation of the strategies. A macro definition facility would have eased this task considerably. 



3.5. Summary of Experiences. Table 3.1 summarizes and evaluates our experiences regarding the 

customization features of PVS, including proof strategies and the syntax and semantics of the specification 

language. The currently most useful feature to us is PVS's mechanism for custom proof strategies, although 

this mechanism would benefit from a better documentation and although it should provide (easier) access 

to the proof sequent and the prover itself. Regarding the PVS language, it is fair to say that although the 

language is very expressive, it does not support a means for customization and extensibility, syntactically 

as well as semantically. This is a major drawback for PVS, especially when compared to other theorem 

provers, such as HOL [16], Isabelle [37], and Coq [3]. All of them allow the user to modify and extend their 

specification languages, as needed. 

Gaining theorem proving skills takes a large training investment. For formal specification and verification 

to enter common practice, high levels of proof automation are needed, as well as the ability to interface prover 

tools to languages and methodologies which are well-known to engineers. The lessons learned from the above 

case studies have demonstrated that issues of tool customization and extensibility are extremely important for 

the success of theorem provers in the engineering world, as well as for basic academic research in verification 

technology. 

4. Enhancing Customization in PVS. Customization in PVS can be improved at different levels. 

In this section, we elaborate, component by component, on suggestions aiming towards a more customizable 

PVS. We hope that this contributes to the ongoing discussion within the PVS community about how to 

achieve greater customization and extensibility. The only component of PVS, we are completely happy 

with, is its Emacs interface. Emacs is widely known as a customizable and extensible editor which provides 

a nice integration of PVS with a variety of other applications ranging from authoring tools to Internet 

applications [43]. 

4.1. Specification language. As mentioned above, the specification language of PVS is essentially a 

strongly typed functional language enriched with operators taken from higher-order logics, such as quantifiers 

over general objects [34]. However, the language is not only targeted towards axiomatic and declarative 

specification styles, but it is expressive enough to encode other styles, including algebraic specifications [33], 

tabular specifications [31], and operational specifications [31]. 

The support for algebraic and tabular specifications in PVS, however, is particular. These kinds of 

extensions require modifications to the grammar of the PVS language, and a deep knowledge of the PVS 

internals, which is currently only available to developers at SRI International but not to the public research 

community. In view of the fixed grammar of the PVS language, the support of a new syntax usually 

requires the development of an external parser, such as PBS [27] in case of the above mentioned B-method. 

Additionally, superficial string manipulation may be wired at the Emacs level. Unfortunately, these solutions 

are far from optimal since they suggest the need for decompilers, which are known for being hard to develop. 

Alternatively, one may deal with compiler-generated encodings. Since such encodings hardly reflect the 

original specifications, their formal analyses are difficult. Macro expansions would be a simple way to mimic 

the syntax of external languages. In PVS they should be implemented in a way that the components of 

the system can refer back to the unexpanded language. Therefore, users would not have to change notation 

when switching back and forth between PVS and other tools. 

Another challenging issue is the development of a mechanism to describe sub-languages of PVS. For 

instance, it might be helpful to restrict the specification language to consider only (i) finite types, in order to 



be able to detect when, e.g., model checking [15] may be applicable, (ii) strategy constructs, when integrating 

the strategy language within the PVS language as will be discussed in Section 4.3, (iii) an executable fragment, 

e.g., for driving simulations, or (iv) a decidable theory, which may allow one to use more efficient decision 

procedures. An implementation of this mechanism via the type checker is suggested in the next section. 

4.2. Type Checker. Extensions to the type checker of PVS, and in general to the type system, raise 

very delicate questions about the semantics of the system [35, 41]. For example, a naive extension of 

subtyping to consider record subtyping, such that fields may be added to records in the sense of object- 

oriented inheritance mechanisms, could render the system inconsistent. Indeed, the current set-theoretic 

semantics of PVS types, where subtypes have the meaning of subsets, is incompatible with most of the 

semantic approaches to inheritance in object-oriented languages [1, 24]. An intermediate solution to record 

inheritance in PVS is possible via the CONVERSION operator included in the PVS language. A conversion is 

a function that casts objects from one type to another. Conversions can be declared by the user, and the 

prover automatically uses them whenever necessary. However, as this latter mechanism is not controlled by 

the user, surprising errors may occur. 

Polymorphism in PVS is limited to parameterization of theories, e.g., the theory "generic [T:TYPE]: 

THEORY BEGIN ... END generic" specifies a family of theories with respect to the abstract type T. However, 

the declaration "polymorphism (T: TYPE): A = ... "is not admitted by the system. We are not aware of 

the technical implications of general polymorphism in the type theory of the system, but this feature would 

be very handy in order to elegantly integrate other notations in PVS. In fact, semantic embeddings usually 

require meta-level encoding, for which polymorphism is a prerequisite. 

Since constraining a theory is safe with respect to consistency, adding constraints to the PVS language 

might be useful to apply specialized algorithms on certain domains. For example, the type checker could be 

parameterized such that fragments of the language are recognized. Finally, the mechanism, which uses the 

type checker to automatically discharge type checking conditions, should be controllable by the user. 

4.3. Proof Checker & Ground Evaluator. In order to write more powerful proof strategies, well- 

documented access to the proof context and the proof environment is needed. The proof context includes 

terms, types, sequents, theories, and type checking conditions, with currently only the access to proof sequents 

being documented [35]. Types contain information that can be helpful to decide which decision procedures 

are applicable in the considered proof situation. Access to theories is sometimes needed for looking up the 

availability of lemmas, and access to type checking conditions might allow one to automatically discharge 

them as they arise. The proof environment includes decision procedures, the theorem prover, and the type 

checker. Decision procedures need to be accessible if one wants to write, e.g., specialized versions of the 

strategy grind. In order to be able to interface PVS to external tools, the theorem prover itself must be 

accessible. Access to the type checker is needed when creating new PVS terms within proof strategies, such 

that new terms can be safely introduced to the prover. Finally, for the strategy language one might think of 

two advancements over the current speed-efficient standard which uses Lisp functions. A more elegant and 

still efficient solution would be to provide an Application Programming Interface (API), such that external 

languages can be used for writing strategies. Thus, the PVS prover would become controllable from external 

tools. The most elegant solution, which also addresses the question of soundness of proof strategies, would 

be to include the strategy language within the PVS language by introducing new language constructs and 

some pre-defined functions. 
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Regarding the support for rewriting with respect to user-defined congruences, user control of how the 

rewriting machinery and especially the pattern matching algorithm work is required. This may also help 

to avoid the problem of broken proofs when upgrading to newer versions of PVS. In order to achieve this 

goal, either documented access to the internals of PVS must be granted or, ideally, PVS needs to allow one 

the installation of rewrite rules parameterized with the specific congruence for which those rules are valid. 

Moreover, in the case of user-defined congruences, one also wishes to add and invoke new decision procedures 

with respect to the congruence of interest. 

The ground evaluator introduced with PVS Version 2.3 should be considered an experimental feature, 

as its final functionality is still under discussion by its developers. Thus, it is too early to make detailed 

suggestions for enhancements. However, we hope that the evaluator will be extended to symbolic evaluation 

of specifications, i.e., those containing non-concrete data. This would enable the animation of a larger and 

more interesting class of specifications. The evaluator, ground or symbolic, should also be integrated with 

the other components of the system, namely the PVS language, the type-checker, and the proof-checker; 

right now, it is pretty much a stand-alone feature. 

5. Conclusions. We conclude by suggesting several short-term and long-term goals for improving 

PVS's customization and extensibility, respectively. We hope that the PVS developers at SRI International 

will adopt some of these goals for future evolutions of their tool. 

In the short run, a documentation of the PVS architecture as implemented in Lisp [44] using the Common 

Lisp Object System [10], of its interfaces, of its central classes, and of its objects should be provided. 

Moreover, an API for accessing the proof context and also the type checker within proof strategies should be 

developed. Together, this would enable all PVS users - not only those working at or visiting SRI International 

- to integrate various formal methodologies in PVS, e.g., for prototypically experimenting with heterogeneous 

verification techniques [40]. We believe, that the above suggestions will lead to a customizable PVS which 

allows for (i) increased automation via sophisticated proof strategies, (ii) tackling formalizations that are 

currently prohibited, and (iii) the division of labor for solving real-world verification problems. The latter 

point is especially important in practice, since it enables a more efficient conduct of projects by allowing a 

cleaner task separation between problem domain experts and PVS prover experts. 

[ External tools 

API for context  [ API for environment 

PVS core 

Language 
extensions 

FIG. 5.1. Architecture of an extensible PVS 

A truly extensible PVS, however, must not only be modular by allowing external tools to access the core 

of PVS via suitable APIs for both proof context and proof environment, but it must also support language 

extensions, syntactically as well as semantically. Each module customizing PVS's language must essentially 

extend the PVS core and must also provide an API in order for the new functionality to become available 

externally. An example architecture reflecting these ideas of extensibility is depicted in Figure 5.1. One may 

think of even more ambitious architectures, e.g., a more federated one, in which several tools can equally 

interact with each other. On top of the advantages of a modular PVS, an extensible verification system has 

the ability to take advantage of new theories and techniques as they occur in the field, as well as to merge 

the best of the many existing Formal Methods technologies. 
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Finally, we would like to mention that we are aware of the very delicate theoretical and technical issues 

behind our proposal. However, a more open PVS architecture is a prerequisite for research groups outside 

SRI International for being able to make more useful contributions to the PVS community. While the PVS 

language remains powerful and elegant, analysis techniques within the Formal Methods domain are becoming 

increasingly heterogeneous, drawing from a wide spectrum of specialized ideas. PVS would make an ideal 

flagship, but it cannot be the whole fleet. It would be wise to outfit PVS with a highly flexible means of 

cooperation, so that we all might enjoy a smoother cruise. 
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