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1.0 SCOPE OF THE RESEARCH PROJECT 

This Phase I SBIR research report describes the creative concept, the component designs, the experiment 
analysis, and the proof of concept demonstration for using a dual head-mounted noise canceling 
microphone with an adaptive digital filter created by Standard Object Systems, Inc. (SOS) for speech 
recognition in noisy environments. The primary research goal is to improve computer speech recognition 
in noisy environments. Both DOD and commercial users have identified the failure of computer speech 
recognition in real world situations as a critical problem. The following introduction provides a brief 
summary of sound signal processing and adaptive digital filtering to improve noisy speech recognition. 

SOS has applied its technology in phonetic speech recognition, digital signal processing, software 
development, audio hardware engineering, and acoustic speech science to perform this research. 
Numerous experiments were conducted with adaptive filters, noise models, speech recognizers, auditory 
feature models, and dual microphone PC hardware designs. The results of this Phase I effort are 
documented in this report, and in the accompanying CD ROM of sound files and data, and in the proof of 
concept demonstration conducted at the AFRL in Wright Patterson AFB. 

Section 2 of this report provides an in-depth presentation of multiple adaptive digital filter designs and the 
performance results from the SOS experiments for noisy speech recognition. Section 3 addresses 
hardware design and interface software aspects of multiple PC microphones and sound cards. Section 4 
compares several available PC speech recognition software products that SOS used to test the filter 
speech signals, and provides an analysis of the testing results. Section 5 presents the three auditory 
feature models analyzed by SOS for Phase II incorporation within the SPSR tool kit. Section 6 describes 
the operation of the SPSR tool kit and the modifications to use auditory feature data for noisy speech 
recognition. Section 7 defines the SBIR Phase II prototype development research plan and the Phase III 
commercial product. Section 8 gives a summary of the OV10 research task accomplished in Phase I, and 
Section 9 concludes the report. 

1.1 SIGNAL PROCESSING AND SPEECH RECOGNITION 

Signal processing is the science of encoding and decoding the information inherent in a signal. A signal 
is a means to convey information. Most often signals are energy traveling in the form of waves. The 
energy can be almost any waveform, sound, radar, electrocardio, etc., and the signals are recorded in 
graphs. Information extracted from any waveform can be difficult to interpret if the signal has been 
impaired, which usually occurs because the signal is noisy, distorted or incomplete. 

In human speech communication the voice conveys words as acoustic signals. Humans can hear the 
words, and can extrapolate meaning even if the signals have been distorted. Machines cannot hear, they 
only process digitized information. This requires that the curve of a wave, a non-discrete analog signal, 
be transformed into discreet increments, or frequency domain, that can each be assigned a numeric value 
and be manipulated mathematically. The frequency domain identifies the frequency components of a 
sound, and from these components it is possible to approximate how the human ear perceives the sound. 
Speech recognition uses signal processing to segment a voiced signal into digital segments of data and 
compare those segments to known speech patterns. This requires complex algorithmic methods that have 
evolved with the availability of faster computers. With complex algorithms and neural networking 
computers appear to be able to hear and understand. But they cannot understand if they do not receive a 
clear signal, thus noise in speech recognition remains a paramount problem. 
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1.2 SPEECH RECOGNITION AND NOISE 

Noise is any unwanted sound. That is the definition for humans. For computers the definition of noise is 
irrelevant or meaningless information occurring along with desired information in the input or the output. 
The difference is important, because computers hear things humans do not notice. Humans have the 
ability to tune out the sound of their own breathing, the person at the next desk, the hum of a motor, or 
honking horns in the traffic outside the window. Computers are not subjective. They hear and attempt to 
process everything, even their own electrical noise. 

In speech recognition noise refers not just to the interference of external sounds. There are stutters, 
wheezes, lisps, and clicks which, although an integral part of an individual's speech, contain no 
information and actually distort the speech signals to be recognized. These artifacts identify noisy 
speakers, and present a challenge for speech recognition engines. Because this type of noise cannot be 
separated from the actual voice input, it falls outside the parameters of this research. This project is 
focused on the additive noise, that not coming from the speaker, and the negation of it with adaptive 
filtering technologies which have not been used before. 

1.3 NOISE AND FILTERS 

The term filter describes a device, either hardware or software, which will enhance signal processing. As 
mentioned, the difficulties in signal processing are when the signal has noise, is distorted or is incomplete. 
Filters perform three functions. They can filter, smooth, or predict a signal or segments of a signal to 
enhance information processing. Filtering extracts information about a signal as it is being received. The 
danger in filtering is the risk of negating signals that have information value. If the transmission has 
gaps, smoothing can delay the processing for an instant in order that subsequent signals can be patched 
back into the earlier gap. This is often more reliable than filtering, as it does not rely on real time 
decisions. Prediction involves the anticipation of the future signal based upon data already received. 

Filters can be classified as either linear or nonlinear. A filter is linear if the signal at the output is a linear 
function of the observations applied to the filter input. Otherwise the filter is nonlinear. Linear filter 
theory requires the data to be formulated by some statistical criterion and approached as discrete-time 
signals. It is often the case that to formulate a statistical criterion about the data requires a priori 
information about the statistics of that data. In other words, you have to know what the noise is before 
you can remove it. In the real world of filtering in noisy environments, having a priori knowledge of 
noise is not always possible. 

A different strategy employs an adaptive filter. The adaptive filter relies on a recursive algorithm that is 
self-designing, which allows the filter to perform in situations where complete knowledge of the relevant 
signal is not available. It is a process where the parameters of the adaptive filter are updated from each 
iteration to the next, and the parameters become data dependent. An adaptive filter is in reality a 
nonlinear device, however they are commonly classified as linear or nonlinear. An adaptive filter is said 
to be linear if the estimate of a signal is computed adaptively as a linear combination of the available set 
of observations applied. Otherwise the adaptive filter is said to be nonlinear. 

The filtering process can be described as either a time domain computation or a frequency domain 
computation. A time domain filter processes the sound samples one at a time based on the sample values, 
it does not compute frequency estimates. A frequency domain filter processes blocks of sound samples 
usually estimating the frequency components using a discrete Fourier transform.   Voiced speech has a 
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signal range between 100 Hz and 3000 Hz while unvoiced speech ranges up to 6000 Hz frequency. The 
Nyquist sampling limit says that a digital sample rate must be at least twice the highest frequency in the 
signal. The experiments conducted in this research sampled the speech signal at 16,000 Hz and the plan 
for Phase II is to use a 20,050 Hz sample rate. 

Speech recognition systems use a microphone, usually spaced just a few inches from the speaker's mouth, 
for speech input. Usually these microphones have some filtering device to cancel noise. They often do 
not work well, as the noise signals are superimposed on the speech signals. The SOS design for an 
adaptive filter for speech recognition employs two microphones, one positioned at the speaker's mouth 
and one mounted behind the speaker's head, pointing away from the speaker. Each microphone feeds 
into separate sound cards in the computer so the signals are processed separately. The signals from 
behind the speaker represent mostly noise. The signals from the microphone at the mouth contain mostly 
speech with noise. The adaptive filter identifies the noise signal processed on one sound card and looks 
for similar spectra on the signal from the other sound card. It then removes any matching noise signal 
from the speech signal, often by applying the inverse of the signal. This is called noise canceling. 

For experimental purposes SOS has created six filters. For each filter design the hardware configuration, 
the microphone, sound cards, and connectors remain the same. The software carries the signal processing 
and statistical algorithms; and these are different in each of the six filters. Phase I, the research 
experiments, take the following steps: 
• Four speech recognition engines were selected. 
• These four recognition engines were given speech samples from the TBVIIT recorded speech and the 

results recorded. 
• Four different noise levels are systematically added to the speech samples. 
• The four speech recognition engines were given the same speech samples, with different levels of 

added noise, and the results recorded. The performance is expected to decline proportionally with the 
amount of added noise. 

• The noise samples were processed through the six adaptive filters. 
• The four speech recognition engines were tested with the filtered noise samples, and the results 

recorded. 

The object of the experiments is to determine when one filter works better than the others, and whether 
any one filter may be best suited to work with a specific recognizer. The results provide a proof of 
concept for the Phase II design and development of a single optimized filter process for speech 
recognition noise cancellation. 
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2.0 ADAPTIVE FILTER FOR DIGITAL NOISE CANCELLATION 

The ARO 1995 workshop for spoken human machine dialogue recognized voice as the logical choice for 
command and control in a vehicle, where it is difficult to use a mouse, touch screen, or keyboard. It also 
identified vehicle noise as a major factor in the mounted war, which factors battlespace, weapons firing, 
shock and vibration with covert operations that may require soft or whispered speech. Accurate speech 
recognition is hindered by noise and distortion. Distortion is due to equipment and environment. It is 
usually modeled as a linear effect that can be compensated for in known situations. Acoustic noise is 
modeled as additive to the speech signal, and special microphones are used to reduce it. 

Figure 2.0-1 Adaptive Noise Canceling Filter 

Head 
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The adaptive filter signal enhancement for noisy environments will be accomplished as shown in Figure 
2.0. Adaptive filters are used to solve four general categories of signal processing applications: 

1) Identification of a linear model of a noisy process. 
2) Inverse modeling to determine the best-fit parameters to a noisy process. 
3) Prediction of the current value of a noisy signal. 
4) Canceling interference such as echoes, noise, and beamforming. 

The goal of environmental noise removal from a speech signal falls into the fourth category. Adaptive 
noise canceling is the removal of noise from a received signal in a changing manner to improve the signal 
to noise ratio. Naive direct filtering of noise from a signal can produce disastrous results by increasing the 
average power of the output noise. When proper provisions are made to control filtering with an adaptive 
process, however, it is possible to achieve superior performance over direct filtering. 
The proposed adaptive noise canceling filter will use a dual input non-causal closed loop adaptive 
feedback filter: 
1) The signal source d(t) will be from a directional head mounted microphone. 
2) The noise source nl(t) will be from an ear piece mounted wide field microphone. 
3) The signal source d(t) is the speech signal s0(t) corrupted with additive noise n0(t).  The signal and 

noise are uncorrelated and real valued. 
4) The noise source receives a noise signal nl(t) that is uncorrelated to the speech s(t) but correlated to 

the noise n0(t) in a way that can be modeled as a cross correlation with lag. 
5) The noise estimate is computed by an adaptive filter to create an estimate of the additive noise n2(t) 

by using the filtered signal source sl(t). 
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6) The filtered signal source sl(t) is created by subtracting the noise n2(t) from the signal source d(t). 
7) The filter is non-causal with output time t less than input time T since the speech used in speech 

recognition can have a delay prior to speech recognition. 

The reduction of acoustic noise in speech such as in a military vehicle can be accomplished with adaptive 
noise canceling. Reference microphones are placed so that they capture only the noise. For a non-causal 
application such as speech recognition, the weighted and smoothed estimate of the noise is removed from 
the signal that is delayed for input to the speech recognizer. In a digital system, the effective recognition 
of silence can reduce the latency delay in the speech processing by only processing speech utterance 
signals. 

A widely published successful mathematical approach to the adaptive filtering problem is to solve for the 
maximum likelihood estimate of the speech wave in the presence of the noise. The general algorithm is 
to compute the maximum a posteriori (MAP) estimator that optimizes the probability density function of 
the unknown parameters given a model of the noisy observations. This algorithm has sizable 
computational requirements, and is sensitive to control parameters for an automatic enhancement process. 

The adaptive noise removal for speech recognition enhancement uses a reference noise signal input to 
create an estimate of the noise to subtract from the speech signal at a time prior to the current signals. 
The output from the noise removal is used to control the adaptation and time lag to minimize the mean 
square value of the delayed speech output for recognition. This will result in the minimum mean square 
error speech signal for recognition. 

SOS is interested in alternative approaches by comparison to this general adaptive filter and the enhanced 
speech signal data. With respect to the speech signal, three noise environment models will be considered: 
stationary, non-stationary, and quasi-stationary. A stationary noise environment is defined by the rate of 
change of the optimal prediction filter that is constant, such as an idling engine or electronic hum. A non- 
stationary noise environment is defined by the rate of change of the optimal prediction filter that changes 
more rapidly than the speech prediction, such as a gunshot or ringing. A quasi-stationary noise 
environment is defined by the rate of change of the optimal prediction filter that is of the same time order 
as the speech filter, such as other nearby speakers or radio chatter. SOS will investigate the relative rates 
of change of the optimal speech filter versus the optimal noise filter for each of these noise environments. 

During Phase II testing a number of simplifying assumptions will be tested as alternative approaches to 
determine the best trade off between speech enhancement and operational implementation. For example: 
the use of an all pole model for the speech parameters; the use of a two step sequential estimation process 
rather than iteration; the use of spectral constraints on filter pole locations; the use of time domain 
smoothing for vocal tract constraints; and the use of line spectral pairs as a simpler alternative to other 
spectrum models. In all cases, the SOS evaluations will be made on a perceptual and spectral basis to 
determine the best adaptive digital filter for speech signal pre-recognition enhancement. 

2.1 TRADITIONAL APPROACHES TO NOISE CANCELING 

A high noise environment makes intelligible speech communication difficult, both between people, and 
between people and equipment. Speech intelligibility is highly affected by noisy vehicles. Although 
automatic speech recognition is affected dramatically by even moderate noise, a computer speech 
recognition system has two unusual advantages in removing noise.   An adaptive non-causal filter can 
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effectively predict and remove the vehicle noise, and modifications to the recognition process can 
improve the accuracy with a priori knowledge of the noise environment. There is no unique solution to 
linear adaptive filter problems. Rather, a set of tools exists using various recursive algorithms, each of 
which offers specific desirable features. The challenge in adaptive filtering is to understand the 
capabilities and limitations of the various adaptive filtering algorithms and to select the appropriate 
algorithm for the application at hand. 

Numerous options exist in the classification of linear adaptive filters. The following table organizes 
several published algorithms into three classes by sample and block updates. The following acronyms are 
used in the table: LMS least mean square, DCT discrete cosine transform, GAL gradient adaptive lattice, 
RLS recursive least squares, SOBAF self orthogonalizing block adaptive filter, and LS least squares. 

Algorithm Class 
Stochastic Gradient 
Orthogonalizing 
Least Squares  

Sample Update Block Update 
LMS Block LMS 
DCT-LMS, GAL SOBAF 
RLS Block LS 

2.1.1 Least Mean Square (LMS) Algorithm 

Widrow and Hoff originated the least-mean-square (LMS) algorithm in 1960. It is a member of the 
stochastic gradient class of algorithms, which is different than the method of steepest descent that uses a 
deterministic gradient. The significant feature of the LMS algorithm is its simplicity. It does not require 
correlation functions or matrix inversion. In general the LMS process involves these operations: 

1. The computation of a transverse filter output u(n) from tap weights w(n). 
2. A known desired response function d(n). 
3. Generation of an estimation error e(n) = d(n) - u(n). 
4. Adaptive adjustment of the filter tap weights w(n). 
5. Minimization of the estimation error e(n). 

This is usually implemented as a feedback loop. The tap input and desired response are from a jointly 
wide sense stationary environment. For this environment the steepest descent is down the ensemble- 
averaged surface while the LMS behaves differently due to gradient noise. The stability of the LMS 
algorithm can be convergent in the mean square under certain step size conditions. In summary, the LMS 
algorithm is simple in implementation yet capable of high performance by adapting to its external 
environment. The LMS algorithm operates on stochastic inputs that makes the allowed set of directions 
per step of the iteration cycle quite random. 

A common example of LMS use in adaptive noise canceling is the recovery of information corrupted by a 
known interference signal such as a sine wave noise in digital information. The traditional solution is a 
narrow band notch filter tuned to the sine wave frequency. But if this interference frequency drifts over 
time, an adaptive noise-canceling filter is required. The filter designed for this situation using the LMS 
algorithm has two characteristics: 
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1. The noise filter is an adaptive notch filter whose center frequency is determined by the interference 
frequency and is tunable. 

2. The notch can be made very sharp at the interference frequency by choosing a small enough step size 
parameter. 

The key questions in any adaptive filter design are the selection of the parameters to optimize the step 
size, the noise rejection, and the response characteristics of the system. These parameters are often 
chosen by modeling the desired ideal system and mathematically optimizing the model to determine the 
"best" parameter values. SOS proposes to replace this a priori modeling approach with the use of a 
Genetic Algorithm that will evolve a set of parameters for a complex changing noise environment. 

The LMS algorithm computational summary: 
• Parameters: number of filter taps "n", step size "s" 
• Initialize: tap weight vector w(n) = 0 
• Input Data: u(n) tap vector, d(n) desired response 
• Compute estimated tap weights: w(n+l) at step n+1 
• Compute error: e(n) = d(n) - {w(n) u(n)} 
• Compute update: w(n+l) = w(n) + s u(n) e(n) 

2.1.2 Frequency Domain Adaptive Filtering 

The previous section described the use of the LMS algorithm for time domain filtering. A finite impulse 
response (FIR) filter set of weights is adapted to a changing noise source in the time domain using small 
step sizes. It is equally feasible to perform the adaptation of filter parameters in the frequency domain 
using the Fourier transform that traces back to Walzman and Schwartz in 1973. The two major reasons to 
use frequency domain adaptive filters are as follows: 

1. Often the adaptive filter has a long impulse response that may require the use of infinite impulse 
response filters in the time domain, which leads to instability. 

2. Frequency domain adaptive filters can improve the convergence and response of the LMS algorithm 
by exploiting the orthogonality properties of the discrete Fourier transform. 

One approach to increasing the speed of large FIR filters is to use a block implementation that uses 
parallel processing. The incoming data is sectioned into L-point blocks and the adaptation is on a block 
basis rather than on a sample basis. The convergence property of the block LMS algorithm is similar to 
the standard approach. Within the conditions of long filters and slowly changing signals this method 
often works very well. 

Given a noise removal application where the block LMS algorithm is a reasonable approach, the question 
is how to create a fast LMS algorithm. The computation of the block LMS algorithm involves the linear 
convolution of the inputs with the tap weights and the update equation is a linear correlation between the 
tap inputs and the error signal. The fast Fourier transform (FFT) provides a powerful tool for performing 
fast convolution and correlation. This implies a frequency domain method for the efficient 
implementation of the block LMS algorithm. Specifically the adaptation of the filter parameters is 
performed in the frequency domain and was called the fast LMS algorithm by Clark in 1982. The 
following summarizes the fast LMS computations for block data: 
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Parameters: m block size, s step size 
Initialize: W(0), P(0), k block number 
Compute per input block: 
U(k) transformed input FFT[u] 
y(k) overlap and save convolution data IFFT[U W] 
e(k) = d(k) - y(k) error signal 
E(k) = FFT[e] frequency domain error 
D(k) frequency domain desired response 
P(k) = IFFT[ DUE] linear correlation 
Update weights: W(k+1) = W(k) + s FFT[P] 

2.1.3 Tracking Time Varying Systems 

The operation of adaptive filters in nonstationary noise environments involves the real world problem of 
tracking time varying systems. The problem is that the minimum of the error surface is no longer fixed. 
The adaptive filter has to track the minimum point of the error surface, which must change slowly enough 
to be identified. Tracking is a steady state process as contrasted with convergence, which is a transient 
phenomenon. In practice an adaptive filter must pass from a transient mode to a steady state mode before 
tracking can be accomplished. The rates of convergence and tracking are two different properties that are 
not necessarily possessed simultaneously by an adaptive filter. 

Nonstationary environments arise in two fundamental ways. The desired response may be time varying 
or the stochastic input process may vary with time. Both of these conditions have an affect on an adaptive 
filter implementation. For the LMS filter the variation in the desired response implies that the correlation 
matrix for the inputs remains constant while the cross correlation between the inputs and response is time 
varying. When the stochastic input process varies both the correlation and cross correlation is time 
varying. This is usually the case for the noise removal from speech application. A popular model for time 
varying systems is a first order Markov process described by the following equation: 

w(n+l) = kw(n) + n(0,Q) 

where w() is the tap weights vector, n is the step, k is a fixed model parameter, and n() is a noise vector 
with zero mean and Q correlation. The desired response vector d() is defined by: 

d(n) = w(n) u(n) + v(n) 

where u( ) is the input vector and v() is the measurement noise. The error signal e() of the process is 
defined by: 

e(n) = w(n) u(n) + v(n) - we(n) u(n) 

where we( ) is the estimated tap weight vector at step n. In order to apply the LMS algorithm in this 
situation the we will assume independent process noise with the input vector, and white measurement 
noise.Recent advances in adaptive LMS filter algorithm research have been made by Benveniste (1990) 
and have been supported by application designs by Brossier (1992) and a proof of convergence provided 
by Kushner (1995). The result is an LMS design with adaptive gain wherein we propose to set the 
parameters by using a Genetic Evolution method. 
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A number of computational experiments are planned during the development of the LMS adaptive noise 
filtering algorithm. These experiments will be programmed using a variety of software tools such as 
MATLAB, MathCAD, BASIC, C++, and other programs. There are three purposes for the experiments: 

1. Verify the correctness of the filter equations by independent development. 
2. Validate the performance of the filter under known test conditions. 
3. Proof of concept demonstration with noisy speech data. 

An algorithm design and test specification using MATLAB that describes the algorithm processing, the 
independent verification of computer programming, the validation of predicted performance under known 
conditions, and the experimental performance with noisy speech data. 

2.2 ADAPTIVE FILTER EXPERIMENTS 

During the Phase I design, SOS constructed a number of adaptive filter experiments as a proof of concept 
demonstration of the feasibility of this noise canceling technology. The following table classifies the six 
selected prototype filters by linear and nonlinear computation, time domain and frequency domain 
processing, the number of microphone inputs, and the unique speech signal reconstruction method. 

NU 
M 

NAME L/NL TD/FD MIC RECONSTRUCTION 

1 Linear Adaptive Filter Bank L FD 2 Triangular IFFT Coherent 

2 Magnitude FFT NL FD 2 Original Phase + Filt Mag 

3 Log Magnitude FFT NL FD 2 Original Phase + Filt Mag 

4 LMS ALE L TD 1 None, Time Shifted Output 

5 Mag FFT with Iterative Recon NL FD 2 Phase Iteration 

6 Iterative Recon with Spectral Sub NL FD 1 Noise Est by Scale Function 

The following sections discuss each of these prototype adaptive filters in detail. Filter 1 is a linear 
adaptive filter that adjusts FIR coefficients per frequency bin for overlapping signal data blocks. In 
general the filtered sound performs better for speech recognition programs than it sounds to the human 
ear. Filter 2 is a magnitude FFT experiment that accepts two sound signal inputs and produces a filtered 
speech signal as output. Filter 3 is a log magnitude FFT version of Filter 1 that scales the noise by the 
logarithm of the magnitude to approximate the response characteristic of the human ear. In general both 
of these filters sound clear but are not easily classified by the speech recognizer programs. 

Filter 4 is a least mean square adaptive line enhancer filter that uses N speech samples to predict 2 * N 
samples ahead. It is a linear time domain computation that removes voiced speech from noise. The filter 
is limited to voiced speech signals and, as expected, performs poorly with the speech recognition 
programs. 

Filter 5 is a magnitude FFT adaptive filter that scales by the noise magnitude and uses iterative 
reconstruction for overlapping dual signal stream data blocks. Filter 6 uses the Filter 5 computation to 
remove the estimated noise from a single signal input stream. In general the reconstructed speech sounds 
of these two filters are more clear to the human ear and are easily classified by the speech recognition 
algorithms. 
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NUM 

_4_ 
_5_ 

6 

NAME 
Linear Adaptive Filter Bank 
Magnitude FFT 
Log Magnitude FFT 
LMS ALE 
Mag FFT with Iterative Recon 
Iterative Recon with Spectral Sub 

AVG % 
29.58% 
13.24% 
14.46% 

-22.06% 
6.54% 

18.06% 

MAX% 
36.93% 
26.80% 
24.18% 

-10.46% 
15.69% 
27.12% 

AVG N 
90.5 
40.5 

44.25 
-67.5 

20 
55.25 

MAXN 
113 
82 
74 

-32 
48 
83 

The goal of the Phase I filter prototypes is to create a baseline design for the Phase II noise canceling 
filter development. Each of the six prototypes was tested with the same set of speech and noise signal 
files to produce a sound input file for speech recognition as shown in the above figure. Four speech 
recognizers were tested against each of the sound files to determine the correct word recognition 
performance. The two speech recognition performance values are for the average and maximum word 
recognition improvement. Based on the results of the speech recognition performance and subjective 
listening to the sound files, a baseline design for a Phase II adaptive noise canceling filter for speech 
recognition performance enhancement was created. 
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2.2.1 Filter 1 - Linear Adaptive Filter Bank Experiment 

The linear adaptive filter bank experiment accepts two sound signal inputs and produces a filtered speech 
signal as output. This frequency domain process computes block overlapped FFTs for both the noise 
signal and the speech plus noise signal. This adaptive filter is designed to process noise observations 
from a head-mounted microphone and a desired speech signal from the boom microphone. The 
computational processing is shown in the following figure. This experimental program was programmed 
in MATLAB and the full listing is included in the appendix as file NFILT1.M. 

Set frame length and step size to block both signals and use Hamming window tapering 

Remove means and preemphasize by (1 - Alpha) for both speech and noise signals 

Zero Pad inputs to multiple of overlap for power of two FFT computations 

Compute real FFT and conjugate magnitude for both speech and noise blocks 

Use LMS to estimate sub band using noise and compute least square filtered speech 

Synthesize speech signal frames using real portion of inverse FFT of speech minus noise 

Deframe filtered speech to create single output by adding triangular taper windows 

Inverse emphasis transformation to create filtered speech signal for output 

The linear adaptive filter adjusts the FIR coefficients per frequency bin for overlapping signal data blocks. 
It predicts the speech signal by using noise as the common portion of the two signal streams that is to be 
removed. The multi bin speech signal is recovered from the frequency domain using a triangular taper 
and an inverse complex FFT for coherent reconstruction. In general the filtered sound performs better for 
speech recognition than it sounds to the human ear. 
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2.2.2 Filter 2 - Magnitude FFT Experiment 

The magnitude FFT experiment accepts two sound signal inputs and produces a filtered speech signal as 
output. This frequency domain process computes block overlapped FFTs for both the noise signal and the 
speech plus noise signal. This nonlinear adaptive filter is designed to process noise observations from a 
head-mounted microphone and a desired speech signal from the boom microphone. The computational 
processing is shown in the following figure. This experimental program was programmed in MATLAB 
and the full listing is included in the appendix as file NFILT2.M 

Set frame length and step size to block both signals and use Hamming window tapering 

Remove means and preemphasize by (1 - Alpha) for both speech and noise signals 

Zero Pad inputs to multiple of overlap for power of two FFT computations 

Compute real FFT and absolute magnitude for both speech and noise blocks 

Use LMS to estimate sub band using noise and compute least square filtered speech 

Synthesize speech signal frames using real scaled FFT of speech 

Deframe filtered speech to create single output by adding triangular taper windows 

Inverse emphasis transformation to create filtered speech signal for output 

The magnitude FFT adaptive filter scales the noise magnitude and uses the original phase for overlapping 
signal data blocks. It uses a least squares magnitude PSD estimate to remove noise as the common 
portion of the two signal streams. The multi bin speech signal is recovered from the frequency domain 
using a triangular taper and an inverse complex FFT with the original speech phase. In general the 
filtered speech sounds clear to the human ear but is not as easily classified by the speech recognition 
algorithms. 
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2.2.3 Filter 3 - Log Magnitude FFT Experiment 

The log magnitude FFT experiment accepts two sound signal inputs and produces a filtered speech signal 
as output. This frequency domain process computes block overlapped FFTs for both the noise signal and 
the speech plus noise signal. This nonlinear adaptive filter is designed to process noise observations from 
a head-mounted microphone and a desired speech signal from the boom microphone. The computational 
processing is shown in the following figure. This experimental program was programmed in MATLAB 
and the full listing is included in the appendix as file NFILT3.M 

Set frame length and step size to block both signals and use Hamming window tapering 

Remove means and preemphasize by (1 - Alpha) for both speech and noise signals 

Zero Pad inputs to multiple of overlap for power of two FFT computations 

Compute real FFT and logarithm magnitude for both speech and noise blocks 

Use LMS to estimate sub band using noise and compute least square filtered speech 

Synthesize speech signal frames using real scaled antilogarithm FFT of speech 

Deframe filtered speech to create single output by adding triangular taper windows 

Inverse emphasis transformation to create filtered speech signal for output 

The log magnitude FFT adaptive filter scales the noise by the log magnitude to approximate the response 
characteristic of the human ear by the transformation: 

LOG[ 1 + A * MAG(FFT) ] 

It uses a least squares log magnitude PSD estimate to remove noise as the common portion of the two 
signal streams. The multi bin speech signal is recovered from the frequency domain using a triangular 
taper and an inverse complex FFT with the original speech phase. In general the log magnitude filtered 
speech sounds clear to the human ear and is more easily classified than the magnitude filter. 
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2.2.4 Filter 4 - Least Mean Square Adaptive Line Enhancer Experiment 

The least mean square adaptive line enhancer (LMS ALE) experiment accepts two sound signal inputs 
and produces a filtered speech signal as output. This time domain process uses both the noise signal and 
the speech plus noise signal. This linear adaptive filter is designed to process noise observations from a 
head-mounted microphone and a desired speech signal from the boom microphone. The computational 
processing is shown in the following figure. This experimental program was programmed in MATLAB 
and the full listing is included in the appendix as file NFILT4.M 

Set LMS ALE parameters: N = 20 , M = 2 * N, convergence 10-8 

Initialize LMS Variables: u, w, Y, e 

Iterate on LMS variables: y = w*u, e = u-y, W = W + u*e 

Compute time delayed speech output in proper time slot 

The least mean square adaptive line enhancer filter uses N speech samples to predict 2 * N samples 
ahead. It predicts the voiced speech signal by removing noise from the signal on a sample by sample 
basis. No unvoiced noise is removed and the reconstruction is on a single sample basis. In general the 
filtered sound performs poorly for speech recognition and it contains high frequency components in the 
output sound. 
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2.2.5 Filter 5 - Magnitude FFT with Iterative Reconstruction Experiment 

The magnitude FFT filter with iterative reconstruction experiment accepts two sound signal inputs and 
produces a filtered speech signal as output. This frequency domain process computes block overlapped 
FFTs for both the noise signal and the speech plus noise signal. This nonlinear adaptive filter is designed 
to process noise observations from a head-mounted microphone and a desired speech signal from the 
boom microphone. The computational processing is shown in the following figure. This experimental 
program was programmed in MATLAB and the full listing is included in the appendix as file NFILT1.M 

Set frame and step to block signals with Hamming window and set to dual microphone 

Remove means and preemphasize by (1 - Alpha) for both speech and noise signals 

Zero Pad inputs to multiple of overlap for power of two FFT computations 

Compute real FFT and conjugate magnitude for both speech and noise blocks 

Use LMS to estimate sub band using noise and compute least square filtered speech 

Synthesize speech signal frames using real portion of inverse FFT of speech minus noise 

Deframe filtered speech with triangular taper windows and iterate on scale factor 

Inverse emphasis transformation to create filtered speech signal for output 

The magnitude FFT adaptive filter scales the noise magnitude and uses iterative reconstruction for 
overlapping signal data blocks. It uses a least squares magnitude PSD estimate to remove noise as the 
common portion of the two signal streams. The multi bin speech signal is recovered from the frequency 
domain using a triangular taper and an inverse complex FFT with the original speech phase. Iterative 
improvement is performed on the scale factor to match the magnitudes. In general the reconstructed 
speech sounds clearer to the human ear and is more easily classified by the speech recognition algorithms. 
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2.2.6 Filter 6 - Iterative Reconstruction with Spectral Subtraction Experiment 

The magnitude FFT filter with iterative reconstruction and spectral subtraction experiment accepts one 
sound signal input and produces a filtered speech signal as output. This frequency domain process 
computes block overlapped FFTs for both the noise portion of the signal and the speech portion. This 
nonlinear adaptive filter is designed to process speech plus noise observations from a single boom 
microphone. The computational processing is shown in the following figure. This experimental program 
was programmed in MATLAB and the full listing is included in the appendix as file NFILT5.M using 
optional parameters for a single microphone 

Set frame and step to block signals with Hamming window and set to single microphone 

Remove means and preemphasize by (1 - Alpha) speech and estimate average noise 

Zero Pad inputs to multiple of overlap for power of two FFT computations 

Compute real FFT and conjugate magnitude for both speech using average noise estimate 

Use LMS to estimate sub band using noise and compute least square filtered speech 

Synthesize speech signal frames using real portion of inverse FFT of speech minus noise 

Deframe filtered speech with triangular taper windows and iterate on scale factor 

Inverse emphasis transformation to create filtered speech signal for output 

The magnitude FFT adaptive filter scales the noise magnitude signal sample and performs iterative 
reconstruction with spectral subtraction for overlapping signal data blocks. It uses a least squares 
magnitude PSD estimate to remove the estimated noise as the common portion of the single signal stream. 
The multi bin speech signal is recovered from the frequency domain using a triangular taper and an 
inverse complex FFT using iterative reconstruction with spectral subtraction.   Iterative improvement is 
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performed on the scale factor to match the magnitudes.   In general the single microphone reconstructed 
speech sounds clearer to the human ear and is easily classified by the speech recognition algorithms. 

2.3 PHASE II ADAPTIVE FILTER DESIGN 

The implementation of the adaptive filter in Phase II of this program will be based on the Phase I 
prototypes and test results. Two configurations are planned for delivery. First, an alpha configuration 
that executes on a desktop computer will be developed during year one of the project. This filter will be 
programmed in C++ and fully instrumented to provide test and evaluation data. This alpha configuration 
will be suitable for processing recorded speech input and producing recorded audio output. The second 
configuration is the beta delivery implemented for real-time execution possibly with a DSP unit with 
multiple microphone inputs and speech signal outputs. This configuration will be capable of 
demonstration in an operational environment test during year two of the project. 

Single or Dual Microphone Signal Inputs 

Synchronization of Speech Signals 
Transfer Function between Microphones 

Speech Activity Detection 

Time Domain Processing 
Energy and Zero Crossings 

Voiced and Unvoiced Classification 

Frequency Domain Processing 
First Order LPC Computation 

Voiced Period Processing 

Linear Algorithm Using Filter 1 or 4 
Experimental Selection and Tuning 

Speech Signal Reconstruction 

Combine Three Sound Periods 
Smooth Reconstruction Parameters 

Unvoiced Period Processing 

Nonlinear Algorithm Using Filter 5 or 6 
Experimental Selection and Tuning 

Direct Input Feature Computation 

Time and Frequency Domain Data 
SPSR Feature Computation Interface 

Based on the Phase I adaptive filter experiments, SOS has created a baseline Phase II design for an 
adaptive noise canceling filter that will improve speech recognition performance.    The design is a 
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combination of the results from the Phase I proof of concept filter experiments. This proposed Phase II 
design has three major processing components. First, a speech activity detector with a voiced/unvoiced 
state classifier. Second a linear filter for voiced period speech processing. Third, a nonlinear filter for 
unvoiced period speech processing. The combination of these three stages will result in the development 
of an innovative and unique noise cancellation system targeted to speech recognition enhancement. This 
design is similar to the front end processing used in low bandwidth sound compression systems such as 
CELP. No application references to speech recognition have been found in a preliminary search of the 
online PTO database and the ICASSP publication CD ROM literature. It is anticipated that SOS will 
apply for a provisional patent disclosure based on this novel design. The previous figure illustrates the 
Phase II baseline data flow and computational processes. 

A number of problems have been identified while performing the Phase I filter experiments. The 
adaptive parameters may be over fitted to the data causing modulation of the output speech signal. 
Reconstruction phase errors often result in chirping artifacts in the output speech signal. Single 
microphone systems have problems removing impulse noises. Dual microphone systems need a good 
transfer function estimation between the two signal sources. Specialized processes will be needed to 
remove impulse noise effects and to compensate for moving noise sources including head microphone 
movements. The baseline Phase II design will allow experiments and improvements to correct these 
deficiencies. 

The single microphone input allows the use of a single PC sound card so that no hardware modification is 
required to operate the filters. The processing for the dual microphone requires synchronization of the 
two signals to the sample level. Both hardware characterization and software correlation estimates will 
be used to accomplish this estimation. The estimation of the transfer function between the two 
microphones is required to compensate for gain differences. Errors in the transfer function estimate lead 
to a mismatch in the gain compensation for the two microphones. 

The speech activity detection is common for speech recognition systems. The usual approach is to use 
time domain computations with a lag in the signal-input buffer. The computations include absolute signal 
energy estimation corrected for the mean noise level and signal zero crossings per second that estimates 
the fundamental speech frequency. The ratio of these two estimates is used with a noise sensitive 
threshold to detect speech or silence. Errors in speech activity detection will lead to substituting silence 
noise levels for sibilants and whisper phoneme signals. 

The classification of unvoiced or voiced speech is a frequency domain computation usually performed by 
a first order linear prediction coefficient computation. This process is a common front end for low 
bandwidth speech compression such as CELP coders. Errors in voiced or unvoiced classification will 
only affect the transition period of these phonemes. 

The voiced period filter processing will utilize either or both the linear adaptive filter bank and the LMS 
ALE time domain filter. The selection and tuning of these filters will be an experimental process affected 
by the noise environment, the speech recognition performance, and the computational loading. In general 
speech recognizer programs perform best on voiced phonemes, often above 90% accuracy, so only the 
minimum processing should be required to remove noise. The motivation for this is that voiced speech 
usually accounts for 30% or more of the articulation period, thus a considerable savings in computations 
may be possible with this approach. 
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The unvoiced period filter processing will utilize the magnitude FFT with interactive reconstruction. The 
algorithm is adjusted for the dual microphone input case or for the single microphone case. The removal 
of noise from short phoneme articulation signals such as plosives is a very difficult task. This is the most 
sensitive part of the processing and will require the most detailed computations. 

The signal reconstruction will recombine the three sound periods of silence, voiced and unvoiced signals 
into a low noise speech signal. An alternative to this reconstruction is to use the sound period data 
directly to compute speech recognition feature data. This can be accomplished by a direct access to the 
recognition process as in the SOS SPSR tool kit or through specialized programming for the HTK or 
Sphinx II systems as an example. Most commercial speech recognition programs do not allow access to 
this level of training detail. 
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3.0 MICROPHONE DESIGN ANALYSIS 

3.1 SIGNALS AND CONNECTIONS 

There are many variables that must be considered when interfacing audio equipment to a computer sound 
card for either sound recording or speech recognition. It must be kept in mind that numerous sound card 
manufacturers have different input configurations. SOS had an experience with a PC based mobile data 
terminal manufacturer who wanted to add speech recognition input to their custom system. They had 
built a PC microphone-input interface. Unfortunately it was badly placed on the circuit board near a high 
frequency timer. The automatic timer generated an audio frequency square wave noise starting after the 
first five seconds of microphone input. Software speech recognition systems would accept the first few 
words and then fail. A major redesign of an in-production product was required. The lesson learned is 
that when the technical information supplied with the sound card is unclear, the manufacturer should be 
contacted 

3.1.1 Signal Levels 
Audio and recording microphones put out a very weak signal - less than 1/1000th of a volt, or 1 millivolt. 
Audio inputs on computer sound cards, even though they may be labeled "Mic In" or be identified by a 
small microphone-shaped icon, often are not designed to accept such a low signal level. Most sound card 
inputs require a minimum signal level of at least l/100th of a volt (10 millivolts); some older 8-bit cards 
need l/10th of a volt (100 millivolts). This discrepancy means that if a typical audio microphone is 
connected to a sound card input, the user will have to shout into the microphone or hold it just an inch or 
so away (or both) in order to produce a strong enough signal for the sound card to respond. 

There are two possible solutions. One option is to increase the sensitivity of the sound card input, so that 
it can more easily detect the signal from the microphone. The software supplied with some sound cards 
allows the user to increase the sensitivity or "gain" of the input, either with a click-and-drag input level 
control or a set of check boxes that double, triple, or quadruple the sensitivity. Increasing the sensitivity 
of the input will always add some noise, so only as much gain as necessary should be added. 

If the input sensitivity cannot be increased, it is possible to amplify the microphone signal before it goes 
into the sound card input. This can be done by running the microphone signal through a device called a 
mic preamplifier or mic-to-line amplifier. A microphone mixer can also be used if it has an output that 
will provide adequate signal level to the sound card input. In this case, the mixer is used only for its 
preamplification function and not its mixing capability. Either way, you have to know the typical output 
level of the microphone from the microphone's specification sheet and the sensitivity of the sound card 
input in order to know how much amplification is needed, and to determine whether a particular mic 
preamp or mixer will do the job. 

3.1.2 Impedance Matching 
Impedance is how much a device resists the flow of an AC signal, such as audio. Impedance is similar to 
resistance, which is how much a device resists the flow of a DC signal. Both impedance and resistance are 
measured in ohms. When referring to microphones, low impedance is less than 600 ohms, medium 
impedance is 600 ohms to 10,000 ohms, and high impedance is greater than 10,000 ohms. 

In the early part of the 20th century, it was important to match impedance. Bell Laboratories found that 
to achieve maximum power transfer in long distance telephone circuits, the impedances of different 
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devices should be matched. Impedance matching reduced the number of vacuum tube amplifiers needed. 
The tubes were expensive, bulky, and heat producing. In 1948, Bell Laboratories invented the transistor- 
a cheap, small, efficient amplifier. The transistor utilizes maximum voltage transfer more efficiently than 
maximum power transfer. For maximum voltage transfer, the destination device called the load should 
have impedance of at least ten times that of the sending device called the source, which is known as 
bridging. This is the most common circuit configuration when connecting audio devices, however with 
modern audio circuits matching impedance can actually degrade audio performance. 

Audio mixers often have inputs labeled as low impedance. Actually, these inputs have impedances 
between 1000 ohms and 2000 ohms in order to properly bridge the low impedance microphone. A low 
impedance microphone may always be connected to input with higher impedance. However, the 
microphone may not always be able to provide enough signal strength to properly drive the mixer's audio 
input. Compare the microphone's output level or sensitivity to the required mixer input level. When a 
microphone is connected to a mixer input with lower impedance, there would be some loss of the 
microphone signal. As a rule of thumb, a loss of 6dB or less is acceptable. 

Impedance for computer audio interfaces is important because the relationship between the impedance of 
a microphone and the impedance of the sound card to which it is connected can have a significant effect 
on how much of the microphone's signal is actually transferred to the sound card. For acceptable results, 
the output impedance of the microphone must be less than the input impedance of the sound card. If the 
impedance of the microphone is the same or higher than the input impedance of the sound card, some or 
all of the microphone's signal strength will be lost by an effect called loading. The higher the 
microphone's impedance compared to that of the sound card, the more signal will be lost. Connecting a 
high impedance microphone to a sound card with input impedance of 600 ohms will result in so much 
signal loss that the speaker's voice will be inaudible. Audio system microphones typically have output 
impedance of less than 600 ohms, and most sound cards have input impedance of 600 to 2,000 ohms, so 
impedance is not usually a problem. 

3.1.3 Connector and Wiring Considerations 
The most visible problem encountered when connecting an audio microphone to a sound card is that 
different connectors are used. Because of their limited width, computer sound cards can only 
accommodate very small connectors. The 3.5-mm (1/8") miniplug used on most Walkman-type personal 
stereos is the most popular type. The standard 1/4" and XLR connectors used on professional 
microphones are far too big to fit into a single card slot. Just as important as the type of connector used is 
the wiring scheme used. XLR connectors have three connection points (either pins or sockets). 
Professional microphones with XLR connectors use an industry-standard balanced wiring scheme, with 
two of the pins used to carry audio and the third as a ground connection. There is no standard for the 
wiring of the 3.5-mm miniplug connectors used on sound cards, so the actual wiring scheme varies 
depending on the manufacturer of the card. 

The 3.5-mm miniplug is commonly available in two different configurations. Most sound cards use a 
three-segment version, often called a stereo connector since it is generally used to carry two separate 
channels of audio in addition to providing a ground connection. When used as a microphone connector, 
the end portion of the connector called the Tip usually carries the audio signal. The center portion of the 
connector, called the Ring, is sometimes used to carry low-voltage DC power required by the microphone 
supplied with the sound card. The third section called the Sleeve is used as the ground connection. On the 
two-segment or "mono" version, the Tip of the connector carries audio and the Sleeve is used for ground. 
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DC power cannot usually be supplied through a mono 3.5-mm miniplug. Some sound cards have an 
additional stereo input labeled line in. This is designed to accommodate the stereo signal from a VCR, 
CD player, or tape deck, and is not suitable for use as a microphone input. 

3.2 MICROPHONE TECHNOLOGIES 

The type of power needed by the condenser microphone and the way that it is provided are important 
issues that may affect whether a particular professional microphone will work with a particular sound 
card, and how the cable connecting them together should be configured. 

3.2.1 Dynamic Vs. Condenser Microphones 
Different types of microphones use different methods of converting the acoustic energy created by a 
sound source, such as voice into electrical energy, which can be amplified, processed, recorded, or 
transmitted. The two most popular types of microphones are the dynamic and the condenser, sometimes 
called an electret. The primary difference for sound cards is that condenser microphones require a source 
of DC power to operate. Dynamic microphones do not require any external powering. 

One type of power, called bias voltage, provides power for a small transistor inside the microphone 
element or head. The other type is called phantom power, and is used to operate a small preamplifier, 
which slightly amplifies the signal or provides frequency contouring. The preamplifier may be housed 
inside of the microphone handle or, in the case of small lavalier or gooseneck microphones, in an external 
tube or pack. The preamplifier used by professional condenser microphones is not the same as the 
microphone-to-line amplifier mentioned earlier, which also goes by the name preamplifier. Some audio 
system condenser microphones are designed to accommodate an internal battery, while others require 
phantom power from a microphone mixer or power supply. The microphones supplied with computer 
sound cards often operate on bias voltage supplied by the sound card through the Ring portion of the 
stereo miniplug connector. So far, sound cards cannot provide the phantom power used by many 
professional condenser microphones. 

To connect a professional microphone with a three pin XLR output connector to the 3.5-mm miniplug 
mic input of a sound card, a special cable must be purchased or made. For the microphone to work 
properly, the cable must have the proper type of connector for the sound card with a two-conductor mono 
or three-conductor stereo miniplug and be wired correctly. The correct wiring scheme depends on the type 
of microphone and the wiring of the sound card microphone input. 

3.2.2 Connecting Professional Dynamic Microphones 
The wires that are connected to pins 1 and 3 of the XLR connector should both be connected to the Sleeve 
of the mono miniplug. The wire that is connected to pin 2 of the XLR should be connected to the Tip of 
the miniplug. If the soundcard uses a stereo miniplug, the configuration is slightly different. The wires 
that are connected to pins 1 and 3 of the XLR connector should both be connected to the Sleeve of the 
stereo miniplug. The wire that is connected to pin 2 of the XLR should be connected to the Tip of the 
miniplug. No connection should be made to the Ring of the miniplug, because dynamic microphones do 
not require external DC power. Sometimes it is impossible to tell if the connector on a sound card is of 
the mono or stereo variety. If a cable that is equipped with a mono connector is plugged into a sound card 
input that uses a stereo connector, the microphone should still work. This is because the Ring portion of 
the sound card jack will make contact with the Sleeve portion of the miniplug on the mic cable, which 
will connect any DC bias voltage to ground. 
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3.2.3 Connecting Audio Condenser Microphones 
Connecting an audio condenser microphone to a sound card can be complicated, because there are so 
many variations between different brands of microphones in terms of bias voltage requirements. Phantom 
power is a defined audio industry standard and is usually the same regardless of the brand, but no sound 
cards are able to provide it. The following three alternatives are the possible situations. If the microphone 
can operate on an internal battery, no external source of power is needed and the mic can be connected to 
the sound card using the same wiring scheme as for a dynamic type. If the microphone is a handheld or 
gooseneck style with an internal preamplifier that requires phantom power because a battery cannot be 
accommodated, it cannot be connected directly to the sound card. These microphones must be connected 
to a dedicated phantom power supply or a microphone mixer that has this feature; the output of the power 
supply or mixer is then connected to the input of the sound card using the same method as for a dynamic 
mic. If the microphone is a lavalier (tie-clip), headworn, or other type with a separate tube-or box-style 
preamplifier that requires phantom power, it may be possible to bypass the preamplifier and connect the 
microphone directly to the sound card input. This is only an option if the sound card can provide the 
proper bias voltage that was being provided by the preamplifier. 

3.2.4 Adapting Condenser Microphones to the Sound Card 
Some condenser microphones can be operated on the bias voltage that is supplied by the sound card. Bias 
voltage is usually between 3 and 9 volts DC; some microphones can operate on a range of voltages, while 
others require a specific voltage. To operate a condenser microphone without its preamplifier directly 
from the bias voltage supplied by the sound card requires replacement or modification of the cable that 
connected the microphone to the preamp. It is critical to know both the requirements of the microphone 
and the wiring scheme and amount of bias voltage available from the sound card input. Specifically, you 
must know if the cable that connected the condenser microphone to the preamplifier is a one conductor 
shielded cable or a two conductor shielded cable. Keep in mind that signal level and electrical impedance 
are still important, and a condenser mic operating solely on bias voltage may have a higher impedance 
than one with the preamp connected. The output impedance of the mic should be less than, or equal to, the 
sound card input impedance. It is more common to find two conductor shielded cable, where one 
conductor is used to carry the audio signal and the other carries the DC power. The shield is used as the 
ground, and should be connected to the Sleeve of the miniplug. The bias conductor should be connected 
to the Ring, and the audio conductor to the Tip of the miniplug. If a condenser microphone uses only one 
conductor shielded cable, the conductor carries both the audio signal and the bias voltage at the same 
time. In this case you must add some circuitry to separate the audio signal from the bias voltage. It 
involves a resistor and a capacitor and will fit inside of most miniplug connectors that can be 
disassembled. 

3.2.5 Microphone Issues 
Because computer sound card inputs use the unbalanced wiring scheme, microphone cables longer than 
15 feet will usually pick up electromagnetic interference or cause the sound to become muffled. To 
preserve sound quality, use the shortest mic cable possible. If pin 3 of the XLR connector is wired to the 
Tip of the miniplug instead of pin 2, the polarity of the signal will be inverted. The microphone will 
sound the same to the human ear, but voice recognition software will probably not recognize the sound 
waveform, resulting in a high error rate. 

If the microphone or other audio source to be used is equipped with something other than a three-pin XLR 
connector, a little research must be done to find out which portion of the connector carries the audio and 
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which is connected to ground. The audio signal should always be routed to the Tip of the miniplug 
connector on the sound card, and the ground should be connected to the Sleeve of this connector. No 
connection should be made to the Ring on stereo connectors. Cables for this application are available that 
terminate in a mono 1/4" phone plug on one end and a stereo 3.5mm phone plug on the soundcard end, 
with no connection to the Ring. A standard audio patch cable combined with an adapter can also suffice. 
Microphones equipped with 1/4" plugs usually have audio on the Tip and use the Sleeve as the ground. 
These microphones often have a high impedance (about 10,000 ohms), which means that only a fraction 
of their output signal will be transferred to a low impedance (600 to 2,000 ohms) sound card input. 

3.2.6 Speech Recognition Microphones 
For accurate speech recognition, the software must receive clear, intelligible sound from the microphone. 
For this to happen, the microphone must be placed in an area where it receives relatively noise-free sound 
from the talker. The following guidelines will help you to get the best performance from a microphone 
and speech recognition software. 

Place the microphone close to the talker. As the background noise level increases, the ratio of signal to 
noise decreases and the performance of the voice recognition software degrades. The noisier the room is, 
the closer the microphone must be placed to the talker to provide sufficient signal-to-noise ratio for good 
voice recognition. In most situations, a talker-to-mic distance of less than one foot is optimum. In noisy 
environments, the mic should be within 6 inches of the talker's mouth for good results; a headworn, 
lavalier/tie-clip, or gooseneck-type microphone is usually the best choice. 

Use a directional microphone. Unidirectional microphones, referred to as noise-canceling by some 
manufacturers, which are less sensitive to sounds coming from the rear and sides can help isolate your 
voice from ambient noise. Unidirectional microphones also help when the primary noise source is directly 
behind the microphone, such as the computer fan or hard drive. A unidirectional microphone aimed at the 
computer operator may still pick up noise from sources located behind the operator. 

Use a windscreen or pop filter. Windscreens prevent air currents from the mouth from striking the 
microphone abruptly, which can cause a popping or thumping noise. These cannot be interpreted by the 
speech recognition software. Condenser microphones are usually more sensitive to popping than dynamic 
types. 

3.2.7 Critical Distance and Microphone Placement 
A microphone is the first component in any audio recording or speech recognition system. Its function is 
to convert acoustic sound waves into an equivalent electrical signal. This signal can then be recorded, 
transmitted, amplified, or modified. However, a microphone cannot effectively sort out desired sound of 
direct speech from undesired reverberation (reflected speech). Also, a microphone cannot improve the 
acoustic environment in which it is placed. 

In every room, there is a distance measured from the talker where the direct speech and the reflected or 
reverberant speech are equal in intensity. In acoustics, this is known as the Critical Distance and is 
abbreviated Dc. If a microphone is placed at Dc or farther from a talker, the speech quality picked up will 
be very poor. This poor sound quality is often described as echoey, reverberant, or bottom of the barrel. 
The talker's words will also be hard to understand as the reflected speech overlaps and blurs the direct 
speech. 
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The estimation of Dc for a room can be computed experimentally with the following simple tools and 
procedure. 
Tools required: 

25 foot tape measure 
Sound level meter (Radio Shack part #32-2050 or equivalent) 
Portable "boom box" with FM radio 

Dc estimation procedure: 
Place the "boom box" in one end of the room in place of a talker. Tune the FM receiver between 
stations. This steady "white" noise will be used instead of a talker. 
Extend the tape measure from the "boom box" to the far side of the room. Lock the tape measure 
in place. It is the reference for distances. 
Set the sound level meter to "A" weighting, "slow" response, "90"dB range. Using the tape 
measure as a guide, place the sound level meter microphone one foot from the "boom box". 
Increase the "boom box" volume until the sound level meter needle points to "0", which is 90dB 
of sound pressure level (SPL). 
Move the sound level meter back to the 2 foot mark. The meter reading will drop 4 - 6 dB. 
Reset the meter to the "80" dB range. Move the meter to the 4 foot mark. The meter reading 
should again drop 4 - 6 dB. 
Continue to double the distance each time the meter is moved. When the distance is doubled, the 
meter should drop 4 - 6 dB if Dc has not been reached. 
During one of these meter moves, the meter reading will not drop the predicted 4 - 6dB, but will 
remain relatively constant in level over several feet. Note the distance where the meter reading 
first remains steady. 

This is Dc, the Critical Distance. In general, an omnidirectional microphone should be placed no farther 
from the talker than 30% of Dc, e.g. if Dc is 10 feet, an omnidirectional may be placed up to 3 feet from 
the talker. A unidirectional microphone (cardioid, supercardioid, or shotgun) should be positioned no 
farther than 50% of Dc, e.g. if Dc is 10 feet, a unidirectional may be placed up to 5 feet from the talker. 

3.3 NOISE CANCELING MICROPHONES 
Noise canceling microphones are advantageous in noisy environments since they pick up desired sounds 
that are close to the user while rejecting unwanted noise that is farther away. Earlier sections discussed 
the digital filter (software) portions of the noise canceling microphone. This section explains how a noise 
canceling microphone operates and details the mechanical construction of acoustic passive and electronic 
active noise canceling microphones. Frequency response, polar pattern and noise canceling performance 
measures are discussed for both types of noise canceling methods. Lastly, test results for both types of 
microphones in a speech recognition application are given and summary conclusions drawn. 

3.3.1 Acoustic Noise Canceling Microphone Construction 
A microphone is an acoustic to electronic transducer. Its internal diaphragm sympathetically moves from 
the compression and rarefaction of sound wave energy that reaches it. This movement of the diaphragm is 
converted to an electronic signal. A noise-canceling microphone measures the pressure difference in a 
sound wave between two points in space. 

The construction of an "acoustic" noise canceling microphone has both sides of its diaphragm equally 
open to arriving sound waves. The two sides of the diaphragm are separated by the front to rear port 
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distance "D." Because of this port separation, the magnitude of sound pressure is greater in the front than 
in the rear of the diaphragm and slightly delayed in time. These two effects create a net pressure 
difference (Pnet = Pfront - Prear) across the diaphragm that cause it to move. In this manner, an acoustic 
passive noise canceling microphone measures and responds to the net pressure difference in an arriving 
sound wave between two different points in space. 

3.3.2. Electronic Noise Canceling Microphone Construction 
The electronic active noise canceling microphone is similar in principal to the acoustic noise canceling 
microphone in that it measures the net pressure difference in a sound wave between two points in space. It 
does so by utilizing an array of two "pressure" microphones arrange in opposing directions with the 
spacing between the two front ports being a distance "D". A typical pressure microphone utilized in the 
array is constructed with the rear diaphragm port sealed to the acoustic wave front while the front is open. 
The result is the diaphragm movement represents the absolute magnitude of the compression and 
rarefaction of the incoming sound wave and not a pressure difference between two points. An array of 
two pressure microphones achieves noise canceling characteristics because the output signal of each 
microphone is electrically subtracted from the other by an operational amplifier. The operational amplifier 
output signal is Mic out Pmicl - Pmic2. Just like the acoustic passive microphone, it represents the net 
pressure difference of the sound wave between the distance "D." 

3.3.3 Characteristic Frequency Response 
The characteristic frequency response caused by phase shift in a noise canceling microphone applies to 
both acoustic and electronic noise canceling microphones. The length of the front to rear port separation, 
distance "D," determines where the peak and dip in frequency response will occur. A larger port 
separation results in the characteristic peak and dip occurring at a lower frequency. 

A second factor creating a net pressure difference across the diaphragm is the impact of the inverse square 
law. This law states that the intensity of sound emanating from a source is reduced by a factor equal to the 
square of the distance from the source. This means that if the sound pressure difference between the front 
and rear ports (Pnet) of a noise canceling microphone was measured near the sound source and again at a 
farther distance from the source, the near field measurement would be greater than the far field. In other 
words, the microphone's net pressure difference and therefore output signal, is greater in the near sound 
field than in the far field. The inverse square law effect is independent of frequency. 

The net pressure that causes the diaphragm to move is a combination of both the phase shift and inverse 
square law effect. These two factors influence the frequency response of the microphone differently 
depending on the distance to the sound source. For distant sound, the influence of the net pressure 
difference from the inverse square law effect is weaker than the phase shift effect, thus the rising 20 dB 
per decade frequency response dominates the total frequency response. As the microphone is moved 
closer to the sound source, the influence of the net pressure difference from the inverse square law is 
greater than the phase shift, thus the total microphone frequency response is largely flat. The difference in 
near field to far field frequency response is a characteristic of all noise canceling microphones and applies 
equally to both acoustic and electronic noise canceling microphones. 

The increase in frequency response, or sensitivity, in the near field compared to the far field is a measure 
of noise cancellation. Consequently the microphone is said to be noise canceling. The microphone is also 
referred to as a differential or gradient microphone since it measures the gradient difference in sound 
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pressure between two points in space. The boost in low frequency response in the near field is also 
referred to as the proximity effect. 

A sound wave has a maximum net pressure between two points when the axes of the points aim at the 
sound source. When the axis of the points turn perpendicular 90 or 270 degrees to the sound source, zero 
net pressure exists because both points see the same amplitude and phase of the wave front. Since a noise- 
canceling microphone measures pressure difference, the maximum microphone output signal occurs when 
the front to rear port axis points directly at the sound source. Likewise, the minimum microphone output 
occurs when the axis is turned 90 or 270 degrees away from the sound source. As a result, the noise- 
canceling microphone has a figure-of-eight or "bi-directional" polar pattern. 

In summary, simple acoustic passive and electronic active noise canceling microphones are very similar 
in frequency response, polar pattern and noise cancellation performance because of the fundamental 
means of measuring the pressure difference between two points in a sound wave. The SOS development 
of a digital adaptive filter for noise cancellation involves far more complex acoustics, noise modeling, and 
signal processing than the existing technologies. 

3.3.4 Speech Recognition vs Microphone Performance 
The use of voice applications on personal computers is exploding. Audio applications like Internet 
telephony, computer telephony, videoconferencing and speech recognition are transforming the PC into 
the preferred communications appliance for millions of users. High quality, directional microphones are 
required to enable these voice applications and deliver the user benefits intended by the application 
developers. However, many applications are designed with the microphone as an afterthought. This often 
results in the selection of an incorrect microphone element and poor acoustic implementation into the 
product. Severe performance degradation can result when the microphone is not viewed as a critical 
performance element in PC speech recognition applications. By selecting the proper microphone element 
(unidirectional, omnidirectional, noise canceling, etc.) and implementing it correctly, developers can 
vastly improve the performance of their speech recogntion applications without incurring any significant 
additional expense. 

3.4 DUAL MICROPHONE SYSTEM FOR AN ADAPTIVE DIGITAL FILTER 

The SOS adaptive digital filter for noise cancellation process is described in Section 2. The hardware to 
implement this process requires the following components: 

• A head mounted acoustic speech input microphone 
• A head mounted environment noise microphone 
• Dual analog to digital converters operating up to 20KHz 
• Digital signal processing to produce filtered speech data 
• Computer storage and processing to analyze system performance 

The Phase I desktop computing system developed for the proof of concept and design of the adaptive 
noise canceling filter is shown below: 
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Speech Input 
Microphone 

Noise Input 
Microphone 

Sound Card Audio 
Signal Digitizer 

Sound Card Audio 
Signal Digitizer 

Desktop Personal Computer 

Pentium Processor 400 MHz 
64 MB RAM Memory 
8 GB Hard Disk Storage 
Local Area Network Interface 
Windows Operating System 
Nuance 6 Speech Recognition 
SPSR Phonetic Speech Recognition 
TIMIT Speech Corpus Test Data 

Figure 3.4 Adaptive Noise Canceling Filter Development System 

SOS has developed software for this system to perform the following tasks: 
• Control two sound cards to input simultaneous audio data for analysis 
• Store, display, playback, and analyze sound files in non real time 
• Adaptive noise filter of two sound files to create speech input for Nuance 
• Nuance 6 speech recognition application to test filter performance 
• SPSR Tool Kit phonetic speech recognition to test filter performance 

The primary goals of this computing configuration are to design and develop an adaptive noise-canceling 
filter with a proof of concept demonstration of this technology to justify Phase II prototype development. 
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4.0 SPEECH RECOGNITION SYSTEMS 

Spoken communication is not a simple process; it has a wide variety of tones, accents, languages, and 
speaker variations. In the past, most speech recognition approaches have attempted to exploit numerous 
special circumstances to achieve reliable and rapid performance. These circumstances, whether limited 
vocabularies, discrete word pronunciation, various quantizations, or precomputed finite state models, all 
fail in a real world speech-processing environment. A current approach is a fundamental analysis of the 
basic acoustic unit of all spoken languages, the phoneme. The reliable detection, classification, and 
identification of a spoken phoneme is key to high accuracy speech recognition. 

All speech recognition systems contain a front-end processor. This preprocessor extracts the important 
parameters from the speech signal and passes them to the recognition process to match up words and 
phrases. Ideally, preprocessor outputs should be invariant both to noise and to changes in the acoustic 
environment. Since humans are the best noise preprocessors and the best speech recognizers, the 
modeling of the human auditory system provides the clue to improved noisy environment performance 
over current statistical speech recognition systems. 

The systems being tested are commercial in the sense they can be purchased, but only dictation systems 
come off the shelf, ready for a novice to employ. In order to utilize a speech recognition engine the 
following steps are necessary: 

1. Select a speech recognition engine. Four different speech recognizers were chosen for this research. 
Nuance and SPSR are the topic of other ongoing research at SOS, and were therefor of interest in 
these tests. Whisper, the speech recognizer offered by Microsoft was selected, because all things 
Microsoft have the likelihood of becoming the industry standard. The IBM package was selected for 
similar reasons. All four of the engines chosen are SAPI compliant. 

2. Implement Microsoft SAPI to interface between the speech engine and Visual Basic or C++ code. 
SAPI provides the communication standard between the speech engine, which is the computational 
core program, and the graphical user interface (GUI) which speaks to and for the user. It has become 
the industry standard programming interface that allows various programming languages to interface 
to a wide variety of speech recognition engines, and will eventually allow interoperability between 
the speech engines. For this implementation of SAPI, a Visual Basic GUI using ActiveX controls, 
formats, and scores the experiments. 

3. Create grammar rules and vocabulary words for the words recognized. At a given point in the 
statistical recognition process, in order to reduce computation and increase accuracy, the recognizer 
restricts acceptable inputs from the user depending upon rules of grammar. The examples below 
pertain to grammar rules for air traffic controllers: 
♦ A defined grammar. Air traffic controllers have a defined list of words they use to convey their 

landing and take off commands. 
♦ Word order.   An air traffic controller will say " Cleared for take off," rather than "Take off 

cleared for." 
♦ Context free. Recognition of each word is independent of the surrounding words. 
♦ Finite state. A sentence cannot run on forever. It will have an end point. 
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These tasks, which must be completed before testing can be initiated, are demonstrated in greater detail in 
the first speech engine section pertaining to Nuance. The individual results of each speech engine are 
provided in the following sections and the overall comparisons are summarized and analyzed at the end of 
this section. 

4.1 NOISE AND SPEECH MODELS 

The TEVIIT corpus of read speech has been designed to provide speech data for the acquisition of 
acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition 
systems. TIMIT has resulted from the joint efforts of several sites under sponsorship from the Defense 
Advanced Research Projects Agency - Information Science and Technology Office (DARPA-ISTO). 
Text corpus design was a joint effort among the Massachusetts Institute of Technology (MIT), Stanford 
Research Institute (SRI), and Texas Instruments (TI). The speech was recorded at TI, transcribed at MIT, 
and has been maintained, verified, and prepared for CD-ROM production by the National Institute of 
Standards and Technology (NIST). This file contains a brief description of the TIMIT Speech Corpus. 
Additional information including the referenced material and some relevant reprints of articles may be 
found in the printed documentation which is also available from NTIS (NTIS# PB91-100354). 

Figure 4.1-1 Dialect Distribution of Speakers 
Dialect 
Region(dr)    #Male   #FemaIe    Total 

1 31 (63%) 18 (27%)   49 (8%) 
2 71 (70%) 31 (30%) 102 (16%) 
3 79 (67%) 23 (23%) 102 (16%) 
4 69 (69%) 31 (31%) 100 (16%) 
5 62 (63%) 36 (37%)   98 (16%) 
6 30(65%) 16(35%)  46(7%) 
7 74 (74%) 26 (26%) 100 (16%) 
8 22(67%) 11(33%)  33(5%) 

All 438 (70%) 192 (30%) 630 (100%) 

The dialect regions are: 
drl: New England 
dr2: Northern 
dr3: North Midland 
dr4: South Midland 
dr5: Southern 
dr6: New York City 
dr7: Western 
dr8: Army Brat (moved around) 

TIMIT contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers from 8 major 
dialect regions of the United States. Figure 4.1-1 shows the number of speakers for the 8 dialect regions, 
broken down by sex.   The percentages are given in parentheses.   A speaker's dialect region is the 
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geographical area of the U.S. where they lived during their childhood years. The geographical areas 
correspond with recognized dialect regions in U.S. (Language Files, Ohio State University Linguistics 
Dept., 1982), with the exception of the Western region (dr7) for which dialect boundaries are not known 
with any confidence, and dialect region 8 where the speakers moved around a lot during their childhood. 

The SOS Noise Generation Program prototype was created using MATLAB 5.1 modeling a planar world 
with microphones and sound sources, Figure 4.1-2. There are four different source types and each source 
may be filtered. Each source can either be a wav file, a gaussian function, uniform function, or an 
impulsive function. The noise sources are given as (x,y) locations with in the planar space. The 
microphones were modeled using a frequency response filter to model the gain of the mic. The output 
files are the calculated sound that the mic "hears". For simplification all objects are treated as omni- 
directional point sources, and there are no "walls" to create sound reflections or reverberations. 

Figure 4.1-2 MATLAB Noise Model Diagram 
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There are two TIMIT sentences that are spoken by all speakers in the 8 different dialect regions. Using 
both male and female speakers will gives 16 sample sentences. Each of these 16 sentences are processed 
by the four recognition programs. The steps to test the effectiveness of the Adaptive Noise Filter are as 
follows: 
• Run 16 selected sentences through the four recognizers. 
• Add noise using Noise Model Generator until recognition rate drops to an average of 15% 
• Run noisy file through adaptive noise filter 
• Run filtered files through the same speech recognizers and evaluate the effects of filters 
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Figure D.4.1-3 shows the wave form of a TIMIT sentence viewed using audio file viewer called 
GoldWave. The following Figure 3.7 shows a TIMIT wav file after noise has been added to it. Notice 
the few spikes and the noisy waveforms when loaded in GoldWave: 
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4.2 SRI NUANCE 

Nuance Communications was founded in 1994 as commercial spin-off of SRI International. They lead 
the market in the development of speech recognition, language understanding and speaker verification 
software to automate access to information and services over-the-phone. Nuance focuses on customer 
service applications in call centers, particularly within the financial services and travel industries. Their 
products enable a user to speak to a computer over the telephone in everyday conversation in a variety of 
languages including U.S. English, U.K. English, Australian English, German, Japanese and Latin 
American Spanish. 

Nuance 6 is recognized in the industry for its highly accurate speech recognition, available across a range 
of accents, languages, devices, and platforms. It employs a distributed client/server architecture to achieve 
scalability'in large call centers for even complex systems. The Nuance Developers' Toolkit is a powerful 
and flexible set of tools for creating, prototyping, testing and monitoring Nuance 6 and Nuance Verifier 
applications. The toolkit enables any developer to create all the components of a speech application, 
without any prior speech recognition experience. 

Part of the Nuance Developers Toolkit Version 6.2 is the ActiveX Speech Channel (NASC), a convenient 
and simple way to add speech recognition and control to Visual Basic programs. NASC was designed to 
run on Windows NT 4.0 software platform with Service Pack 3 installed, and was developed with Visual 
Studio 97 with Service Pack 3 installed and ATL Control. 

Figure 4.2-1 Nuance Grammar Builder 
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The Nuance Java based Grammar Builder lets you create, compile, and test Nuance grammar packages. 
The Grammar Builder provides a single environment for grammar development, including a rich 
graphical user interface. Figure 4.2-1 shows a simple grammar built with the Nuance's Grammar Builder. 
The sentences are the first two sentences from the TIMIT Speech Corpus. This grammar will recognize 
either of the two sentences even if a few of the words are incomprehensible. 

Included in the Nuance Developers Speech Recognition Developers Toolkit is a Visual Basic ActiveX 
sample speech recognition program that uses the Nuance ActiveX Speech Channel (NASC). The 
Microsoft SAPI interface can be used to build a similar speech recognition program to recognize a set of 
sphere format wave files. The pertinent information this program will provide are the words recognized, 
the percentage recognized correct, and a Nuance statistic for confidence rating. 

Figure 4.2-2 Nuance Sample VB Application 
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Recognition Using NUANCE 
(Words Correct out of 176) Percent Correct 

SA1 167 94.9% 

SAls 107 60.8% 

SAlfl 141 80.1% 

SAlf2 101 57.4% 

SAID 96 54.5% 

SAlf4 59 33.5% 

SAlf5 (filt5a) 110 62.5% 

SAlf6 (filt5b - single mic) 120 68.2% 

(Words Correct out of 160) 
SA2 139 86.9% 

SA2s 82 51.3% 

SA2fl 110 68.8% 

SA212 68 42.5% 

SA2f3 75 46.9% 

SA2f4 50 31.3% 

SA2f5 (filt5a) 78 48.8% 

SA2f6 (filt5b - single mic) 95 59.4% 

(Words Correct of 176) Percent Correct 

SA1 167 94.9% 

SAls 52 29.5% 

SAlfl 124 70.5% 

SAlf2 90 51.1% 

SAIO 98 55.7% 

SAlf4 8 4.5% 

SAlf5 (filt5a) 81 46.0% 

SAlf6 (filt5b - single mic) 98 55.7% 

SA2 139 86.9% 

SA2s 44 27.5% 

SA2fl 85 53.1% 

SA2f2 60 37.5% 

SA2f3 71 44.4% 

SA2f4 9 5.6% 

SA2f5 (filt5a) 63 39.4% 

SA2f6 (filt5b - single mic) 76 47.5% 
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4.3 MICROSOFT WHISPER 

Whisper is the speech recognition engine provided by Microsoft. Whisper speech recognition 
fundamentally functions as a pipeline that converts PCM (Pulse Code Modulation) digital audio from a 
sound card into recognized speech. To enhance pattern recognition, the PCM digital audio is transformed 
into the frequency domain, using a windowed fast-Fourier transform. The fast Fourier transform analyzes 
every l/100th of a second, and converts them into a graph of the amplitudes of frequency components, 
describing the sound heard for that 1/100th of a second. The speech recognizer has a database of several 
thousand such graphs called a codebook. The sound is identified by matching it to the closest entry in the 
codebook and producing a number that describes the sound. This number is called the feature number. 

♦ The input to the speech recognizer begins as a stream of 16,000 PCM values per second. By using 
fast Fourier transforms and the codebook, it is boiled down into essential information, producing 100 
feature numbers per second 

In an ideal world, each feature number could be matched to a phoneme. If a segment of audio resulted in 
feature #52, it could always mean that the user made an "h" sound. If this were true, it would be easy to 
figure out what phonemes the user spoke. Unfortunately, this is not the case for a number of reasons. 
Every time a user speaks a word it sounds different, and they do not produce exactly the same sound for 
the same phoneme. And the sound of a phoneme can change depending on what phonemes surround it. 
The "t" in "talk" sounds different than the "t" in "attack" and "mist". The sound produced as a phoneme 
changes from the beginning to the end of the phoneme and is not constant. The beginning of a "t" will 
produce different feature numbers than the end of a "t". 

For the speech recognitizer to learn how a phoneme sounds, a training tool is passed hundreds of 
recordings of the phoneme. It analyzes each 1/100 th of a second of these hundreds of recordings and 
produces a feature number. From these it learns statistics about how likely it is for a particular feature 
number to appear in a specific phoneme. Hence, for the phoneme "h", there might be a 55% chance of 
feature #52 appearing in any 1/100 th of a second, 30% chance of feature #189 showing up, and 15% 
chance of feature #53. Every 1/100 th of a second of an "f sound might have a 10% chance of feature 
#52, 10% chance of feature #189, and 80% chance of feature #53. The probability analysis done during 
training is used during recognition. The 6 feature numbers that are heard during recognition might be: 

52,52,189,53,52,52 

The recognizer computes the probability of the sound being an "h" and the probability of it being any 
other phoneme, such as "f. The probability of "h" is: 

80% * 80% * 30% * 15% * 80% * 80% = 1.84% 

The probability of the sound being an "f' is: 

10% * 10% * 10% * 80% * 10% * 10 % = 0.0008% 

You can see that given the current data, "h" is a more likely candidate. 

The sound of a phoneme will change depending upon what phoneme comes before and after. You can 
hear this with words such as "he" and "how". You don't speak a "h" followed by an "ee" or "ow", but the 
vowels intrude into the "h", so the "h" in "he" has a bit of "ee" in it, and the "h" in "how" as a bit of "ow" 
in it. Speech recognition engines solve the problem by creating tri-phones, which are phonemes in the 
context of surrounding phonemes. Thus, there exists a tri-phone for "silence-h-ee" and one for "silence-h- 
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ow". Since there are roughly 50 phonemes in English, you can calculate that there are 50*50*50 = 
125,000 tri-phones. Because there are so many, similar sounding tri-phones are grouped together. 

When the speech recognizer starts to listen it has one hypothesized state. It assumes the user is not 
speaking and that the recognizer is hearing the "silence" phoneme. Every 1/100th of a second it 
hypothesizes that the user has started speaking and adds a new state per phoneme, creating 50 new states, 
each with a score associated with it. After the first 1/100 th of a second the recognizer has 51 
hypothesized states. 

In 1/100 th of a second, another feature number comes in. The scores of the existing states are 
recalculated with the new feature. Then, each phoneme has a chance of transitioning to yet another 
phoneme, so 51 * 50 = 2550 new states are created. The score of each state is the score of the first 1/100 
th of a second times the score if the 2 nd 1/100 th of a second. After 2/100 ths of a second the recognizer 
has 2601 hypothesized states. 

This same process is repeated every l/100th of a second. The score of each new hypothesis is the score of 
the parent hypothesis times the score derived from the new 1/100th of a second. In the end, the hypothesis 
with the best score is what's used as the recognition result. Of course, a few optimizations are introduced. 
If the score of a hypothesis is much lower than the highest score then the hypothesis is dropped. This is 
called pruning. The optimization is intuitively obvious. If the recognizer is millions of times more 
confident that it heard "h eh 1 oe" than "z z z z," then there's not much point in continuing the hypothesis 
that the recognizer heard, "z zzz". However, if too much is pruned then errors can be introduced since 
the recognizer might make a mistake about which phoneme was spoken. 

4.4 IBM VOICETYPE 

The IBM Voice Type Developers Tool Kit for Windows provides programmers with the necessary tools 
to develop applications that incorporate speech recognition. It includes a robust set of application 
programming interfaces (API) to access speech resources. It contains utility programs that enable 
developers to define and manage what a user can say within an application. 

In this application, speech recognition is the process of translating what you say to the computer into text 
or commands by identifying and interpreting individual components of human speech. Voice Type 
provides this capability. Our units of speech are words. On paper words are made up of letters. When 
spoken, they are made up of sounds. When you go from the spoken word to the written word, you must 
make the conversion from sound to letters. There are other factors, which can make the job even more 
difficult. Background noise can make understanding harder. 

The Voice Type developers tool kit supports both dictation and command and control interface 
applications. It is a speaker independent system so that most users can use it without any training, 
however enrollment is possible and will improve accuracy. A speech aware application is designed to 
respond to voice input. Some or all of the input comes from spoken words and are acted upon as 
commands, translated into text, or represent data. 

The heart of the system is the speech recognition engine. It is a program that recognizes speech input and 
translates it into text for computer processing. Speech aware applications access the speech engine 
through the speech manager API (SMAPI). A vocabulary is a list of words that the speech engine uses to 
match the speech input.  A word usage model provides statistical information on word sequences.   An 
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application specifies a set of active words through a vocabulary. Grammar vocabularies are words 
contained in a grammar created for the application that specifies word sequences to recognize. 

Pronunciations are the possible phonetic representations of words. Words can have multipe 
pronunciations and identical pronunciations can represent multiple words. Voice Type includes a 
dictionary builder to add word pronunciations. It also includes a grammar compiler to specify 
vocabularies and word sequences. 

The Voice Type speech engine handles the complex task of taking raw audio input and translating it to 
text. It accepts speech plus noise into the acoustic processor that has a signal processor and a labeler. 
The signal processor produces a set of features at one hundredth of a second intervals. The labeler 
converts the features into a stream of labels that identify sound categories. Word matching is performed 
after acoustic processing. First a fast word match performs an approximate match against all words in the 
vocabulary. Then a language model analyzes the probabilities of sequences of words. This is followed 
by a detailed acoustic match that performs a more accurate match on the smaller set of words. Last a 
decoder that selects the most likely sequence of words given the acoustic and language scores. 

The IBM speech engine does not allow access to the training features for use of auditory model data. It 
does work from both stored sound files and real time speech input to perform repeatable performance 
tests with multiple adaptive filter outputs. 

4.5 SOS SPSR TOOL KIT 

The SOS approach to phonetic speech recognition is based on linguistic feature processing to detect, 
classify, and identify phoneme signatures. The details of the phonetic speech processing cycle 
implemented in the SPSR Tool Kit. Phonemes are the common sound units produced by all speakers in 
all languages. They are created dynamically by a complex vocal tract filter applied to acoustic energy 
generated by pulses of air and radiated by the lips, nose, and cheeks. 

The SOS approach analyzes the speech sound to detect a set of features that characterize the underlying 
phonemes for stable acoustic segments. A number of parallel classification algorithms use the features to 
estimate the actual phoneme for each segment. These independent classification methods include 
Bayesian statistics, metric templates, neural networks, Markov models, and fuzzy logic functions. The 
resulting estimates are combined to determine the most likely phonemes in an utterance using a 
combination of dynamic programming and statistical data processing. Linguistic and lexical methods are 
used to convert the resulting phonemes to text for output from the speech recognition system. This 
unique algorithm performs speech recognition for most human languages, is speaker independent and 
naturally continuous. 
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5.0 AUDITORY MODELS FOR NOISY SPEECH RECOGNITION 

SOS is investigating three separate auditory models for application to noisy speech recognition. Each 
model has a different basis, but they are all similar in using physiological models of hearing for speech 
recognition features. This is in contrast to the statistical methods that use signal processing to transform 
speech into features that can be used to train and test a pattern based speech recognition system. 

The first method is an auditory physical simulation, APS, developed by SOS. This model uses 
continuous differential equations to represent the coupled components in the hearing process. The second 
method is a published ensemble interval histogram, EIH, model of the cochlea and hair cell transduction 
to create numerical features. The third model is the auditory image model, AIM, developed by Roy 
Patterson and others at Cambridge University. In each case SOS has developed or acquired a computer 
program that will be used to analyze numerical feature data for use in phonetic speech recognition. 

5.1 AUDITORY PHYSIOLOGY SIMULATION - APS 

SOS has chosen to use an engineering approach to the development of an auditory physiology simulation 
(APS) of the hearing process for speech recognition. This approach comes from years of signal 
processing in industry and is based on the practical experience of modeling a number of diverse real 
world systems. Engineers use these modeling methods in highly competitive fields to obtain hard facts 
concerning the design and operation of real physical systems. A good deal of engineering consists of 
starting from a real physical system, such as hearing, and creating an abstract performance model. This is 
different from the research science methodology of starting with an abstract model and testing its fit to the 
real world situation. An advantage of the scientific research method is that the abstract model yields a 
clean single-ended problem having only one solution - the correct one. The real world often has many 
solutions. 

Figure 5.1-1 Physical Simulation Components of APS Model 

Sound Outer 
Ear 
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Ear 

^ Inner 
Ear 

^ Auditory 
Nerve  w w 

Features 

Real engineering systems are dirty systems, cluttered with messy problems, and noisy data. In a real 
physical system, the ideal spring has mass, the mass is flexible, the damping is nonlinear, etc. This is 
especially true in the new field of biomedical engineering models of human systems such as hearing. An 
engineering model converts a physical system into an abstract system by making decisions on modeling 
each component. This requires scientific knowledge, real world data, and intuition. Such a model may be 
within a small or large percent error of instrumented real world data. 

The physiological data presented in the first section was used to build the following APS model. The 
first decision was the number of coupled components to use in the simulation model. The decision to 
start with four physiological components is shown in Figure 5.1-1. This is based on using the mechanical 
coupling model for the outer ear to inner ear model shown in Figure 5.1-2. 
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Figure 5.1-2 Example Physical Analogues to Model Using 
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The ultimate goal of an engineering model is to design a product. In this case the product is a computer 
program for extracting numerical features from speech signals that represent the auditory nerve data used 
by the human brain to recognize speech. The physical response of the basilar membrane as a function of 
frequency shown in Figure 5.1-3 provides the coupling of the inner ear to the auditory nerve response. 
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Figure 5.1-3 Example Basilar Membrane Displacement for Stapes Excitation to Calibrate 
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Continuous system simulation is an important tool of engineering that is used in product design, analysis, 
and testing. The simulation of the components of the hearing process using differential equations is the 
basis of the APS model. SOS is starting with a simple coupled system as shown in Figure 5.1-4. As a 
first approximation, each of the four components is represented by a second order harmonic system with a 
forcing function. These components were modeled with the VISSIM program, and each component has a 
separate model. 

Figure 5.1-4 Example APS Model and Submodels Developed Using VISSIM 
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Figure 5.1-5 Outer Ear Model 

These models represent a preliminary attempt at creating an engineering simulation model of the auditory 
process, Figure 5.1-5. The top level window shows the coupling of the signal input with the outer ear 
model shown above. The outer ear displacement is coupled to the middle ear, which is coupled to the 
inner ear. The inner ear is coupled to the auditory nerve to produce a series of electrical pulses as shown 
in Figure 5.1-6. As this research progresses, the parameters of each model will be calibrated to physical 
data to model the auditory process. The goal is the simplest model that captures the auditory response 
that can be solved in a closed form for rapid computation of feature data. 
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Figure 5.1-6 Inner Ear Pulses 

5.2 ENSEMBLE INTERVAL HISTOGRAM - EIH 

The ensemble interval histogram models the cochlea and the hair cell transduction to create numerical 
features from digitized speech signals. The signal processing consists of a filter bank that models the 
frequency selectivity at various points along a simulated basilar membrane, and a nonlinear processor for 
converting the filter bank output to neural firing patterns along a simulated auditory nerve. 
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In this EIH model, the mechanical motion of the basilar membrane is sampled using 165 IHC channels, 
equally spaced, on a log-frequency scale, between 150 and 7000 Hz. The corresponding cochlear filters 
are based on actual neural tuning curves for cats. Sample amplitude responses of 28 of these filters (i.e., 
about 1 in 8 from the model) are shown in Figure 5.2-1. The phase characteristics of these filters is 
minimum phase, and the relative gain, measured at the center frequency of the filter, reflects the 
corresponding value of the cat's middle ear transfer function. 

Figure 5.2-2 Block Diagram of EIH Computation Model 
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The next stage of processing in the EIH model is an array of level crossing detectors that models the 
motion-to-neural activity transduction of the hair cell mechanisms, Figure 5-2-2. The detection levels of 
each detector are pseudo-randomly distributed (based on measured distributions of level firings), thereby 
simulating the variability of fiber diameters and their synaptic connections. 
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Figure 5.2-1 Frequency Response of Cat Basilar Membrane 
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The output of the level-crossing detectors represents the discharge activity of the auditory nerve fibers. 
Figure5.2-3 shows simulated auditory nerve activity, for the first 60 msec of the vowel/o/in the word 
"job," as a function of both time and the "characteristic frequency" of the IHC channels. (Note the 
logarithmic scale of the characteristic frequency, which represents the place-to-frequency mapping on the 
basilar membrane.) In Figure 5.2-4, a level-crossing occurrence is marked as a single dot, and the output 
activity of each level-crossing detector is plotted as a separate trace. Each IHC channel contributes seven 
parallel traces (corresponding to the seven level-crossing detectors for each channel), with the lowest 
trace representing the lowest-threshold level-crossing detector. If the magnitude of the filter's output is 
low, only one level will be crossed, as is seen for the very top channels of the figure. However, for large 
signal magnitudes, several levels will be activated, creating a "darker" area of activity in the figure. 
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Figure 5.2-3 Magnitude of EIH Time Frequency Resolution for a Vowel 
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Figure 5.2-4 EIH Response Example Calculation for a 
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The level-crossing patterns represent the auditory nerve activity, which, in turn, is the input to a second, 
more central stage of neural processing, which gives the overall ensemble interval histogram (EIH). 
Conceptually, the EIH is a measure of the spatial extent of coherent neural activity across the simulated 
auditory nerve. Mathematically, it is the short-term probability density function of the reciprocal of the 
intervals between successive firings, measured over the entire simulated auditory nerve in a characteristic 
frequency-dependent time-frequency zone. 

As a consequence of the multilevel crossing detectors, the EIH representation preserves information about 
the signal's overall energy. To illustrate this point, consider the case in which the input signal is a pure 
sinusoid and the characteristic frequency of a selected channel is shown, Figure 5.2-4. For a given 
intensity A, the cochlear filter output will activate only some low level-crossing detectors. For a given 
detector, the time interval between two successive positive-going level crossings is computed. Since the 
histogram is scaled in units of frequency, this interval contributes a count to the ## bin. For the input 
signal in Figure 5.2-4, all of the intervals are the same, resulting in a histogram in which the magnitude of 
each bin, save one, is zero. 

Figure 5.2-5 Example EIH Histogram Calculation for a Sinusoid 

As the signal amplitude increases, more levels are activated. As a result, this cochlear filter contributes 
additional counts to the bin of the EIH. Since the crossing levels are equally distributed on a log- 
amplitude scale, the magnitude of any EIH bin is related, in some fashion, to decibel units. However, this 
relation is not a straightforward one because there are several sources contributing counts to the bin in a 
nonlinear manner. Figure E shows an input signal s(t) driving five adjacent cochlear filters with an 
amplitude response and a phase response. Due to the shape of the filters, more than one cochlear channel 
will contribute to the bin. In fact, all the cochlear filters will contribute to a bin of the EIH, provided that 
the signal exceeds any of the level-crossing thresholds. In Figure 5.2-5 only cochlear filters 2, 3, and 4 
are contributing nonzero histograms to the EIH. The number of counts is different for each filter, 
depending on the magnitude of the signal. 
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One goal of auditory-based signal processing is to make the signal more robust to noise and reverberation 
than alternative spectral analysis procedures such as the filter-bank method or the LPC method. Figure 
5.2-5 illustrates how well the EIH model achieves this goal. Shown in the figure are the log magnitude 
spectra of a clean (no noise) and a noisy (signal-to-noise ratio of 0 dB) speech signal processed by a 
standard Fourier filter bank (curves on the left) and by the EIH model (curves on the right). Also shown 
are LPC polynomial fits to the original signal spectrum (on the left) and to the EIH signal spectrum (on 
the right) for both the clean signal and the noisy signal. This figure clearly shows a tremendous 
sensitivity of the Fourier and LPC analyses to noise for the original signals. (This is especially seen in the 
LPC polynomial fits.) In the EIH case, the log magnitude spectra are almost unaltered by the noise, and 
the LPC polynomial fits are extremely close to each other. The implication of the above results for 
speech recognition is that the EIH model has potential for use in recognizing speech robustly in noisy and 
reverberant environments. 

Figure 5.2-6 Example SOS Model to Compute EIH Feature 
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SOS is in the process of creating an EIH program based on the published description. Figure 5.2-6 shows 
the initial results from the filter bank to a square wave input (390 Hz) that detected the input frequency 
with the proper narrow band (12.7 Hz) filter. Initial histogram data is shown below the filter bank for the 
selected band. The EIH bandpass filter designs are zero phase shift FIR filters for each EIH band. 
Continued work will implement the interval histogram computation and feature output. 

5.3 AUDITORY IMAGE MODEL - AIM 

The Applied Psychology Unit at Cambridge University has developed a time-domain model of auditory 
processing to simulate the auditory images produced by complex sounds like music, speech, bird song, 
engines, etc that represent initial sensations or perceptions of a sound rather than images of past events 
recalled from memory. 
The Auditory Image Model (AIM) constructs its simulation of what we hear in three stages: 

• Using an auditory filter bank, it converts the digitized sound wave into a simulation of the basilar 
membrane motion (BMM) that the sound would produce in the cochlea. 

• Using a bank of haircell simulators, it 'transduces' the BMM into a simulation of the Neural 
Activity Pattern (NAP) that the sound would produce in the auditory nerve. 

• Finally, it applies a new form of Strobed Temporal Integration (STI) to each channel of the NAP 
to convert the array of NAP channels into the model's simulation of our auditory image of the 
sound. 

The NAP includes 'phase-locking' information encoded by the inner haircells because it is assumed that 
this information plays an important role in auditory perception and speech perception. STI performs 
temporal integration without destroying the phase-locking information of regular sounds ~ the phase 
locking information that we hear. Thus, AIM is a time-domain auditory model for studying the role of 
phase locking and temporal fine-structure in auditory perception. Sequences of auditory images can be 
replayed to produce cartoons of auditory events that illustrate the dynamic response of the auditory 
system to everyday sounds. 

When an event occurs in the world around us, a car roaring past or a cat meowing, information about the 
event flows to us in light waves and sound waves. Our eyes form a visual image of the event, our ears 
form an auditory image of the event. The two are then combined with any other sensory inputs to produce 
our initial experience of the event. Auditory Image Model (AIM) research is primarily concerned with the 
development of a theory of auditory images and the application of that theory to speech and music 
perception. 

At the Applied Psychology Unit, a time-domain model of auditory processing has been developed to 
simulate the auditory images produced by complex sounds. It converts digitized sound waves into a 
simulation of the Neural Activity Pattern (NAP) produced by the cochlea in response to a sound, and then 
applies a new form of Strobed Temporal Integration (STI) to the NAP to convert it into a high-resolution 
auditory image of the sound. The NAP includes the phase-locking information encoded by the inner 
haircells because it is assumed that this information plays an important role in auditory perception and 
speech perception. STI performs the temporal integration without destroying the phase-locking 
information of regular sounds,the phase locking information that we hear. Thus, AIM is a time-domain 
auditory model for studying the role of phase locking and temporal fine-structure in auditory perception. 
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One of the primary objectives of AIM is to explain the prominent role of octaves in music perception. The 
logarithmic spiral, base 2, provides means of representing octaves in time-domain models of hearing. It is 
simply a different mapping of the information in the auditory image, but it has the useful property of 
concentrating periodicity information in the auditory image. The spiral mapping is available in AIM 
(genspl) and it forms the basis of a module that extracts global parameters from the auditory image for 
pitch, pitch strength, and loudness. SOS has acquired the latest version of the AIM computer program 
from Cambridge University and is in the process of implementing it on a desktop PC in Windows. This 
will be compared to the EIH and APS models to determine the most usable auditory features to use in a 
speech recognition proof of concept. 
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6.0 SPSR PHONETIC SPEECH RECOGNITION TOOL KIT 

The SOS Phonetic Speech Recognition (SPSR) software uses digital signal analysis methods for phoneme 
detection and identification rather than a linguistic analysis based on a specific language or dictionary. 
The premise of this approach is that speech consists of a set of finite length sound units that remain 
constant for short time periods. These sound units are referred to as phonemes, and they are the signals 
that will be detected and identified in the dynamic and noisy speech signal processing environment. In 
the first step the sound is converted to digital form and grouped into short time segments. Each segment 
is analyzed and a set of phonetic features are computed. The features are used to classify the segments 
into phonemes. Based on the classification, the actual phonemes are detected and identified for a group 
of segments. This is followed by a lexical process to determine syllables and text from phoneme strings. 
Figure 6.0-1 illustrates the acoustic segmentation process implemented in the SPATIAL speech analysis 
tool. This tool is aimed at using the TMIT speech data as input and developing measures of the signal 
and labeled phoneme to classify acoustic segments of sound as classes of speech articulation. 

rtsPATIAL - SOS Phonetic Analysis of TIMIT foi IPA Algorithms 

-] 1 1 1 1 1 I                        I                          I II. 
she        had              jour dart,                suit                 in greas»                    wash                        water all          seat 
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Figure 6.Ö-1 SPATIAL Analysis Tool 

The end to end speech recognition will combine the adaptive noise removal filter with the existing SOS 
phonetic speech recognition processing. The SPSR Tool Kit uses digital signal analysis methods for 
phoneme detection and identification rather than precomputed models based on a specific language or 
dictionary. The premise of this approach is that speech consists of a set of finite length sound units that 
remain constant for stable time segments. These sound units are referred to as phonemes, and they are the 
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signals that will be detected and identified in the dynamic and noisy speech signal-processing 
environment. The steps in this process are illustrated in Figure 6.0-2, where first the sound is filtered to 
remove noise. 

This time delayed enhanced digital speech signal is grouped into acoustic class segments. Each segment is 
analyzed, and a set of phonetic features is computed. The features are used to classify the segments into 
phonemes. Based on the classification, the actual phonemes are detected and identified for a group of 
segments. This is followed by a sound pattern search to determine words and a parse to determine 
grammatically correct phrases, and a lexical process to create text output. SOS will modify the existing 
SPSR Tool Kit algorithms to include EIH phonetic features that are noise resistant and the use of noisy 
spelling algorithms for vocabulary words. The VIGOR genetic algorithm will be used to optimize the 
parameters for acoustic segment identification and phoneme classification. 

Figure 6.0-2 End to End Noisy Speech Recognition Processing 
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6.1 PHONETIC FEATURE TRAINING 

The goal of phonetic feature training is to determine a set of speech signal features that can be used to 
recognize spoken phonemes. These features capture the essence of the speech and reject the non- 
information parts of the acoustic signal. The physical voice articulators produce the speech acoustic 
signal in order to communicate a stream of phonemes. These physical mechanisms are in a stable 
position for only a short time period varying from 80 to 200 ms and then they transition to the next 
spoken phoneme. 

A common mathematical model of the speech signal is to separate the voice excitation signal and the 
vocal tract filter. The excitation is assumed periodic with a pitch equal to the frequency of the voiced 
phonemes or to be white noise for unvoiced phonemes. The phonetic features are then defined by the 
vocal tract filter coefficients for each sound. The most successful speech recognition training features are 
the Mel Frequency Cepstral Coefficients (MFCC). 

The information bandwidth of the speech signal is under 7 Khz so that the 16 Khz sample rate of the 
TIMIT speech results in a bandwidth of 8 Khz. The physical articulator rate allows a signal sample block 
size of 0.01 seconds which is approximately 512 samples at 16 Khz. This allows an efficient power of 
two block size for fast Fourier transform calculations. The digital signal processing to compute the MFCC 
data is shown in the Figure 6.1-1. The computations consist of the following digital signal processing 
blocks. A preemphasis FIR filter to boost the high frequency energy. The tapering of the signal data 
block by Hammings method to reduce the sampling artifacts in the frequency domain. A discrete Fourier 
transform to compute the frequency domain amplitude and phase for this signal sample block. The 
construction of frequency domain Mel band filters that are spaced linearly below 1 Khz and 
logarithmically above lKhz. The computation of the signal cepstrum to remove the excitation signal. 
The inverse of the cepstrum to compute the vocal tract filter coefficients to be used as the speech training 
data. 
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The TIMIT acoustic phonetic spoken database is used as the source of phoneme training data. Each 
labeled phonetic speech segment is computed to determine the MFCC data values. These are 
accumulated to determine statistical speech models for each phoneme by gender and dialect. The 
resulting training database is represented as a table of phonemes that is compared to incoming speech 
blocks to estimate the phoneme contained in the speech signal. 

Figure 6.1-1 MFCC Speech Feature Digital Signal Computation 

Digitized Speech Signal at 16 Khz for TIMIT Training Data 

Preemphasis First Order FIR Filter: x(n) = s(n) - a * s(n-1) where a = 0.95 

Hamming Window Tapering: y(n) = x(n) * w(n) for 512 samples 

Fourier Transform using FFT: W(n) = FFT(y(n)) 

Mel Band Filter Banks: Linear Spacing below 1 Khz and Log above: U(n) 

Cepstrum Computation: C(n) = Log( | U(n) | ** 2 ) 

Inverse Fourier Transform: MFCC(n) = IFFT( C(n)) for Coefficients 

6.2 PHONEME RECOGNITION 

The phonetic detection step in the recognition stage is unique to the SOS approach and consists of parallel 
classification processes for each acoustic segment of speech. Each classification method takes in the 
feature data for a speech segment and produces an estimate of which phoneme is the best match for this 
segment. The methods are independent and all of the estimates are combined to create the most likely 
estimate. The output is a matrix by acoustic segment of the probability of each phoneme called the 
phonetic lattice. 

The key to this approach is the detection and identification of phonemes, which are seen to be universal 
and fundamental to human speech communication. This method differs dramatically from other speech 
recognition methods that are based on matching sound templates, on deriving statistical models of word 
structure, or on code book quantizations. This is a computationally intensive method that requires high 
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speed digital processing to achieve real time performance. The process is scaleable so that more 
processing resources lead to more accurate speech recognition. The design is modular so that processing 
can be distributed for parallel computing execution. 

This phonetic speech recognition process is implemented as standard software objects in C++. They are 
portable across multiple platforms including PCs, workstations, and DSPs. A prototype version of the 
SOS process was tested on the Japanese Hiragana language with good results. An IPA prototype is 
available using the NIST developed TIMIT speech corpus for eight regional accents. The phonetic 
feature generation is the first step in the recognition process. It consists of parallel processes for each 
segment of speech. The energy and zero crossings are computed from the time domain signals for the 
segment. An SOS designed unity gain and zero phase shift finite impulse response filter is used to 
represent each of the Mel scale frequency bands to estimate the features. The segment is windowed and 
zero filled to perform a radix two fast Fourier transform used to estimate the power spectrum density 
features. A correlation method is used to compute the linear prediction coefficients that are transformed 
into the Cepstrum coefficient features. 

The phonetic detection step in the recognition stage is unique to the SOS approach and consists of five 
parallel processes for each segment of speech. Each method takes in the feature data for a speech 
segment and produces an estimate of which phoneme is the best match for this segment. The methods are 
independent, and all of the estimates are combined to create the most likely estimate. The first method 
matches the features to a table of stored features by using a minimum absolute difference metric. The 
second method uses a multilayer feed forward neural network to classify the input features. The third 
method uses a Bayesian statistical estimator to compute the conditional probability of each phoneme 
based on the features. The fourth method uses a probabilistic Markov model to classify the features. The 
fifth method uses a fuzzy logic classifier to estimate the membership function for each phoneme set. The 
sets of all phoneme estimates are combined for each segment to estimate the best phoneme. This 
probabilistic process is the ideal point to compensate for specific phonetic uncertainty due to high non- 
stationary noise. 

The continuous speech recognition algorithm processes all of the speech segments in an utterance. The 
goal is to process the stream of discrete phonetic segment probabilities to determine the maximum 
likelihood estimate of the uttered phonemes. Each of the phoneme classification algorithms provides an 
estimated probability of occurrence vector for all phonemes. Three techniques are used compute the best 
estimate of the uttered phonemes. First, dynamic programming is used to select phonemes that maximize 
the probability of phoneme sequence occurrence with a Lagrange multiplier control to compensate for 
specific phoneme noise masking. Second, a Markov chain model is used to maximize the estimated 
phoneme sequence while allowing for dropouts due to noise masking. Third, an assignment based 
heuristic algorithm is used to select the most likely sequence of phonemes that includes the uncertainty 
due to the noisy environment. The result is a lattice of likely phonemes with start times and durations to 
input to the phonetic word pattern search and grammar parsers. 

6.3 VOCABULARY AND GRAMMAR RECOGNITION 

The International Phonetic Alphabet (IPA) used by SOS contains the phonemes for the speech sounds 
found in over 350 of the languages in the world. The exact number of distinct phonemes needed to 
represent a language is a matter of judgment among linguists. American English has 48 phonetic sounds 
in the ARPABET representation. Hiragana, the Japanese phonetic language, has only 20 phonetic sounds 
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that can combine to form only 72 unique syllables. As another example, German is phonetically rich and 
has over 60 phonetic sounds. Western languages usually have over 5,000 separate syllables units that 
form into words. The IPA symbols selected by SOS for American English based on a study of a large 
phonetic dictionary, the TIMIT word set, and published pronunciation statistics. SOS exploits this data by 
initially segmenting a speech utterance into six acoustic categories with high accuracy. This dramatically 
reduces the computation as compared to other methods that often process speech in fixed time steps of 
one hundred per second. The SOS approach results in an average of 80% saving in computing time. 

The identification of spoken words is constrained in this experiment to the TIMIT domain vocabulary. 
Using the TIMIT corpus the number of words is approximately 6000. SOS has a process to convert a 
phonetic lattice to a word lattice given a pronunciation vocabulary for the domain. In general the percent 
correct word recognition is a good measure of the speech recognition performance. 

The 2000 TIMIT sentences can be recognized using a simple word occurrence statistic due to the low 
perplexity of the corpus. SOS computes the correct sentence recognition performance but does not 
consider this data to be a meaningful measure of the speech recognition performance. In general only two 
or three words need to be recognized in order to determine the correct sentence. 

The techniques for searching phonetic dictionaries to transform phonemes into words have been 
developed by numerous stenographic dictation methods over a number of years. In general, court 
recorders type phonetic representations, rather than text, by using chord key stenographic equipment and 
proprietary phonetic encoding methods. Software exists to convert this phonetic representation to text 
transcriptions in many languages. SOS has modified a common public domain method for word 
recognition that generates output compatible with other systems for phonetic text conversion in 
specialized fields such as law and medicine. The unique part of the SOS implementation is the use of 
approximate pattern matching algorithms on the input phonetic lattice to produce a set of most likely 
words stored as a word lattice. 

Humans make use of many non-acoustic sources of information in addition to phonetic data for speech 
translation including syntax, semantics, pragmatics, and dialog. Statistical methods such as trigrams have 
evolved to predict the next most likely word in an utterance, and are powerful approaches for perplexity 
reduction for dictation systems. A common measure of the difficulty of lexical processing is the 
perplexity of the language, which refers to the number of different branches required to identify the 
correct word in a full graph of the language. 

One of the key problems in continuous speech recognition is the unreliable recognition of word 
boundaries in an utterance. The SOS approach uses a modified parsing algorithm that operates on three 
levels. First, the rapid recognition of a small set of control keywords such as ON, OFF, etc. Second the 
acoustic level using the phonetic word data produces multiple candidate phrases for an utterance. Third 
the grammar level selects the most likely phrase based on non-acoustic language information. This 
process is based on using a BNF grammar that is defined for the phrase structure of the language using 
the industry standard SRCL. The parser is applied in a top down approach to select the candidate phrase 
that best fits the language, Figure 6.3-1. Semantic tests are applied to reject nonsensical wording, format 
numbers, and punctuate where possible. Since people do not speak in a proper written language format, 
the editing to produce acceptable text is a post recognition task. 
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PAGER - Phonetic Alphabet Grammar Evaluation and Recognition 
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Figure 6.3-1  Example of SOS Visual Grammar Parsing Tool for an ATC Input 

The SOS recognition process has three steps where performance measurements can be taken. First the 
temporal filter of the phoneme probabilities increases the number of correct phoneme identifications. The 
gain from this filter for successful phoneme recognition is usually over thirty percent. Step two is the 
phonetic word recognition process using a specialized vocabulary search algorithm. Step three is the 
grammatical sentence recognition process which is specific to the speech recognition domain. 

6.4 MULTILINGUAL SPEECH RECOGNITION AND TRANSLATION 

The following sections describe the multilingual speech recognition and language translation capability 
planned for the SPSR tool kit. SOS has created a unique computer language translation system using a 
PROLOG interpreter written in C++. This integrates with the set of C++ phonetic speech recognition 
software objects in the SPSR tool kit. The objective is to create a translation system with a multilingual 
speech recognition input that will operate in noisy portable environments. The existing SOS technology 
will satisfy these objectives as explained in the following sections. The goal for the design is to create a 
prototype by combining the phonetic speech recognition, noise filtering, and language translation 
technologies into a Phase II prototype system. As an example, this prototype will allow an English only 
speaker to create a simple bilingual translator for Spanish and automatically generate the two language 
vocabularies with phonetic word representation for bilingual speech recognition. 

SOS is prepared during Phase II of this research program to use these objectives to survey the current 
state of the art in spoken multilingual translation. It will search the field for current developments to 
analyze and incorporate the best research results available.    SOS will design a specific system for 
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language translation with speech recognition in high noise military environments for Phase II prototype 
development and Phase III product commercialization. 

Figure 6.4-1 Technical Objectives for a Spoken Language Translation System 
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APPLICATIONS 

DESIGN APPROACH 

Phonetic word models for pronunciation 
Statistical and logical translator generation 
Portable PROLOG interpreter in C++ 
Genetic Algorithm to evolve parameters 

Uses samples of English speakers from TIMIT 
Eight dialect regions, multiple native accents 
Multiple independent feature classifiers 
Portable Pentium PC, C++, no other hardware 

Phonetic dictionary with 200,000+ IPA entries 
Phonetic lattice search by sound patterns 
IPA covers over 350 spoken languages 

Five minute phonetically rich sentence set 
Session to session speaker characteristic file 
Parameters for existing classification algorithms 
Single user tracking in multi speaker situations 

Model: stationary, non-stationary, quasi 
Adaptive digital filtering for noise cancellation 
Two channel inputs with PC output 

Interrogation, check points, intelligence 
Triage, history, interview, rounds 
Documentation, examination, boarding 
Crowd control, questioning, directions  

6.4.1 Technical Objectives for a Spoken Language Translation System 

Figure 6.4-1 presents the specific technical objectives to be achieved by this language translation system 
with speech recognition in noisy environments alongside the design approach using the technology that is 
described in the following sections. The following are the technical objectives for Phase II of this 
research program: 

1. Accurate translation of utterances for sample task specific dialogues 
2. Effective speech recognition input in a noisy mobile environment 
3. Simple authoring for translator using an English sentence set 
4. Target languages: Spanish, French, Italian, Portuguese, etc. 
5. Selection of commercial computing platform suitable for translation 
6. Test and evaluation of translation system in a field environment 

The following SOS technology description sections address each of these objectives. 
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Figure 6.4.2 SOS Process to Generate a Bilingual Translation Program 

PROLOG 
Translation 
Program 

Baseline 
English 
Sentences * Multiple 

Off the Shelf 
Commercial 
Translator 
Programs 

\ SLATS 
Translator 
Generator ^ r 

\ k v    Iterate 

SOS PROLOG Target 
Language 
Sentences 

ii 

C ++ Pr ogram 

6.4.2 Automatic Language Translator Generation 

SOS has developed a novel language translator system that will be used for speech translation in noisy 
environments. The system is unique in that it requires no linguistic expertise or knowledge of the target 
language to author a translator for a task specific domain application. It is automatic in that no manual 
intervention is required to create a working program. This PROLOG program can be combined with the 
phonetic speech recognition system to produce a speech to speech translation system. 

The SOS spoken language acquisition and translation system (SLATS) is based on using a single source 
language, currently English, for the authoring input as shown in Figure 6.4-2. To use it, a set of baseline 
domain sentences is created in the source language that over-describes the task domain vocabulary. This 
set of sentences is translated to the target language by a series of commercial off the shelf translation 
programs. The target translations are then retranslated to the source language, and this process is repeated 
until the bilingual translations are stable with no changes in vocabulary. 

The SLATS program reads the bilingual sentences and automatically derives a vocabulary, a phrase 
substitution set, and semantic correction rules as shown in Figure 6.4-3. On the left side is the derived 
vocabulary data and on the right are the predicate logic translator statements in PROLOG. The bottom 
window has performance data for the test case based on this sentence set. The following Figure 6.4-4 
illustrates the baseline sentences input in English and translated to Spanish for this example. 

SOS has developed a PROLOG interpreter in C++, called SPIN, that executes the predicate logic 
declarations and translates source language input text to translated target language text. Initial 
experiments have been conducted with SLATS for target language translators, including Spanish, French, 
German, Italian, and Portuguese, using two popular off the shelf translation programs. The results for a 
small task-specific domain using the popular Wagner-Fisher evaluation algorithm from NIST, modified 
for translation comparisons, are shown in Figure 6.4-5. Research and development is continuing on the 
SLATS program based on the above results to improve the translator generation to over 90% and to 
evaluate it for other languages. SOS is using the 33 language Universal Translator Deluxe from 
Language Force to investigate the following additional languages: 

Arabic, Chinese, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, Greek, Hebrew, 
Hungarian, Indonesian, Latin, Japanese, Korean, Norwegian, Polish, Romanian, Slovak, 
Swahili, Swedish, Tagalog, Turkish, Ukrainian, and Vietnamese 
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Figure 6.4-3 Example Output of the SOS Translator Generation Program 

hi. SLATS - Statistical Language Acquisition and Translation System- SOS Inc.-1999   fltiu El 

file    Edit   View    Help 

Bi Lingual Sentence Language Translation Analysis     PROLOG - Predicate Logic Translator Statements 

JAtord Pairs 18 Source 21 Target 26 H 
0 35 the la 
1   23 beer cetveza 
2  23 is es 
3  20 a una 
4 15 good buena 
5  13 with con 
6  12 cold fra ;v- J 

7 8 dark oscura 
8 7 food comida 
9 6 bottle botella 
10 G of de 
11   6 cheese queso ::':.:.'] 

12  4 hot caliente 
13  3 in en 
14  3 not no 
15  3 summer verano 
16  3 drink bebida 
17  3 bread pan 
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PROLOG Language Statements 
"Vocabulary 18 
word (the, I a). 
word(beer.cerveza). 
word(is.es). 
word(auna). 
word(good.buena). 
word (with. con). 
word(cold.fra). 
word (dark, oscura). 
word(food,comida). 
word (bottle, böte 11 a), 
word (of, de). 
word(cheese.queso). 
word (hot caliente). 
word(in.en). 
word(notno). 
word(summer, verano). 
word(drinkbebida). 
word (bread, pan). 
Source Language Word Pair Phrases 24 

pair([acold ],[unafra ]). 
pair([ cold beer ].[cervezafra ]). 
pair([beeris ],[ cetveza es ]). 

Multi Lingual 
Translator 
Performance 

Total Sentences 25 Percent Correct 76.4 
Total Words Source 194 Target 195 Match 132 
Missed Words A Transposed 17 Wrong 46 
Phrase Types 0= 5,1 = 23, 2= 86, 3= 81. Semantic Rules 1 

Status 7/11/99 10:53 AM /A 
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Figure 6.4-4 Example Baseline Sentence Set Used in Spanish Translation 

original sentences 
a cold beer is good with the food 
the dark beer is sweet 
a bottle of beer is good with the food 
the dark beer is good in a bottle 
a bottle of dark beer is refreshing 
the beer is not good with the sweet food 
the dark beer is good in winter 
a bottle of cold dark beer is a summer drink 

a cold bottle of beer is a good drink 
a bottle of cold beer is a good drink 
the cold beer is good 
the dark beer is good 
the hot beer is not good in summer 
the hot bread is good with the beer 
the sweet cheese is not good with the beer 
the cheese is good with the cold beer 
the hot food is good with the cold beer 
the cold food is good with the dark beer 
the food is good with the beer 
a cheese is good with a cold beer 
the dark beer is good with a cheese 

original sentencia 
una cerveza fria es buena con la comida 
la cerveza oscura es dulce 
una botella de cerveza es buena con la comida 
la cerveza oscura es buena en una botella 
una botella de cerveza oscura estä refrescändose 
la cerveza no es buena con la comida dulce 
la cerveza oscura es buena en invierno 
una botella de cerveza oscura fria es una bebida de 

verano 
una botella fria de cerveza es una bebida buena 
una botella de cerveza fria es una bebida buena 
la cerveza fria es buena 
la cerveza oscura es buena 
la cerveza caliente no es buena en verano 
el pan caliente es bueno con la cerveza 
el queso dulce no es bueno con la cerveza 
el queso es bueno con la cerveza fria 
la comida caliente es buena con la cerveza fria 
la comida fria es buena con la cerveza oscura 
la comida es buena con la cerveza 
un queso es bueno con una cerveza fria 
la cerveza oscura es buena con un queso 

In addition to this translation system other systems with higher performance and more accurate target 
language productions are being investigated. SOS will apply this novel approach of using multiple large 
domain translation systems to automatically produce task specific translators for this speech recognition 
in noisy environments project. 

Figure 6.4-5 Performance Results for Multilingual Translator Program 

MEASURE SPANISH FRENCH GERMAN ITALIAN PORTUGUESE 

SENTENCES 27 27 27 27 27 

WORDS 155 155 161 155 155 

MISSED 26 31 30 30 18 

INSERT 4 3 11 8 3 

OMIT 2 6 1 4 2 

SUB 17 19 12 20 9 

ACCURACY 83.2% 80% 81.3% 80.6% 88.3% 

6.4.3 Natural Language Processing and Translation with PROLOG 
Natural language processing, understanding, and translation has been a computational linguistic research 
topic since the 1950s. One of the popular tools for NLP has been logic programming and PROLOG in 
particular. A primary goal of logic programming is to formally capture the notion of logical evaluation by 
declaring a set of predicate conditions and posing questions which can be answered by true or false, 
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employing a formal unification procedure. The development of PROLOG to implement predicate logic in 
France and England in the 1970s led to significant applications in natural language processing. Predicate 
logic, logic programming, and PROLOG have become among the most popular research tools for natural 
language understanding. As a result, SOS developed a PROLOG interpreter in C++ as the natural 
language processing and translation interface for the output of its phonetic speech recognition tool kit. 
Numerous applications in spoken language understanding are possible with this development. The Figure 
6.4-6 illustrates the SOS PROLOG interpreter (SPIN) execution of a simple example of a context free 
grammar to parse sentences. 

There exists a number of commercial PROLOG programming systems, however, each is integrated with a 
particular operating system and computing platform which require large computer platforms. The design 
of the SOS PROLOG interpreter is to be a set of C++ objects that can be compiled as part of a larger 
spoken language system, which does not depend on any features of the operating system. Natural 
language applications developed on other PROLOG systems can also be executed by the SPIN program. 
In actuality, it is easier to develop a PROLOG application on a commercial system that has input, output, 
and user interface capabilities. However, the SPIN program is ideal for deploying the speech translation 
for a noisy environment system since it will interface with a C++ speech recognition front end program 
and a speech synthesis output program. 

Figure 6.4-6 Example SPIN PROLOG Translation Program 

M C:\SPIN\VPROLOG.EXE 

INPUT FILE:testcfg 
Initializing...  please wait...  Done. 

% context free grammar 

Ö3Z3 
d 

sent(P0,P) 
np(PG.P) 
up(P0,P) 
up(P0,P) 
noun(P0,P) 
noun(P0,P) 
noun(P0,P) 
noun(P0,P) 
tran(P0,P) 
intran(P0, 
% example 
word(henry 
word(works 
sent(0,2) 
xx VES 

:-np(P0.P1).up(P1,P). 
noun(P0,P). 
tran(P0,P1),np(P1,P). 
intran(P0,P). 
:-word(henry,P0,P). 
:-word(sidney,P0,P). 
:-word(programming,P0,P) 
: -word(accounting,P0,P). 
:-word(does,P0,P). 
P):-word(works,P0,P). 
sentence 
,0,1). 
,1,2). 
9 

J 

t\A 
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7.0 NOISY SPEECH RECOGNITION RESEARCH PLAN 

The following research plan to evaluate the performance of the adaptive noise filter for noisy speech 
recognition corresponds to the three phase developments of the SBIR program.  Phase I is a design and 
proof of concept demonstration of the feasibility of the proposed SOS technology. Phase II is a prototype 
development using the design in Phase I to create an engineering model for test and evaluation. Phase III 

is the development of a commercial product based on the engineering prototype. 

PROJECT PHASES                                    ACTIVITIES 

PHASE 1 

Phase 1 Report 
Demonstration 

Analysis and Research Tasks 

Prototype System Design 
Proof of Concept Unit 
Performance Testing 

v 

PHASE II YEAR 1 

Phase II Interim Report 
Initial Prototype Unit 

Prototype Development Tasks 

Dual Microphone Input System 
Adaptive Digital Noise Filters 
Auditory Feature Models 
Modify SPSR Tool Kit 

i r 

PHASE II YEAR 2 

Phase II Final Report 
Final Prototype Unit 

Prototype Test and Evaluation Tasks 

Calibration and Operation 
Accuracy and Precision 
Operational Demonstration 
Analysis and Documentation 

i ' 

PHASE III 

DOD Deployment 
Commercial Product 

Commercial Product Development 

Hardware Specification 
Software Specification 
Production Engineering 
Cost and Pricing 
Marketing and Advertising 
Production and Distribution 
Sales and Support 
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7.1 PHASE I DESIGN AND PROOF OF CONCEPT 

The results of the Phase I design and proof of concept for using an adaptive digital filter in noisy speech 
recognition are as follows: 

• Design and program a known noise model for speech recognition testing. 
• Develop the adaptive digital filter for noisy speech signal inputs. 
• Test the adaptive digital filter with the Nuance speech recognition system. 
• Analyze the performance of the adaptive digital filter for speech recognition. 
• Select noise-canceling microphones for the testing as Nuance system input. 

7.2 PHASE II PROTOTYPE DEVELOPMENT 

The anticipated tasks for the Phase II prototype developments for using an adaptive digital filter for noisy 
speech recognition are as follows: 

Design the end to end adaptive digital filtering for noisy speech recognition. 
Build a dual microphone and sound card PC hardware system. 
Program a baseline adaptive digital filter based on Phase I experiments. 
Test the adaptive filtering and dual microphone with speech recognition programs. 
Analyze and test the three auditory models explored during Phase I. 
Program the selected auditory models to define speech recognition features. 
Analyze the integration of these components with the SPSR Tool Kit. 
Modify the SPSR to use auditory model features for training and recognition. 
Integrate all components into a single test and evaluation system for AFRL. 
Define and conduct operational test and evaluation with USAF supplied data. 

Single or Dual Microphone PC Sound Input Hardware and Software 

Hardware 
Dual Creative Labs Compatible 16 Bit Sound Cards 
Signal Sampling Max 20,050 Hz for 8 Bits Data Per Card 
Head Mounted Noise Microphone 
Boom Mounted Speech Microphone 
Optional Push To Talk (PTT) Speaker Button 
Optional Digital Signal Processor (DSP eg TI320C30) 

Software 
Dual Sound Card Interface Device Driver 
Dual Sound Stream Real Time Data Manager 
Calibration Tone Generation and Synchronization 
White and Pink Noise Test Generation 

Three components were identified for Phase II development into the prototype system. The first 
component is the single or dual microphone hardware for a PC and software for the Windows SAPI 
speech recognition interface. The following figure illustrates the content of this component. This 
component design will be based on the proof of concept demonstration unit using commercial off the 
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shelf microphones, sound cards, and system software interfaces. During Phase II, an integrated hardware 
design will be developed for a Phase III. This commercial product will use both off the shelf components 
and an SOS designed DSP-based add in PCI bus card to reduce the computational load and improve 
performance. 

The second component to be developed in Phase II is the adaptive digital filter for noise cancellation in 
speech recognition systems. The design created during Phase I is a synthesis based on the filtering 
experiments performed for the proof of concept demonstration. Three functions were identified as shown 
in the figure below. The first function is to determine the state of the incoming signals as speech or 
silence, and if it is a speech signal, then to classify it as voiced or unvoiced. In the second function, two 
adaptive filters will be applied depending on the classification. A linear filter will be used for voiced 
speech and a nonlinear filter will be used for unvoiced speech. The third function is to either reconstruct 
a low noise speech signal for processing by commercial speech recognition programs or to transfer the 
filter data directly to a modified speech recognition system such as SPSR or some other usable product. 

Adaptive Digital Filter for Speech Recognition Noise Cancellation 

Speech Signal State Determination 
Speech Activity Detection 
Voiced or Unvoiced Speech Classification 

Adaptive Noise Filters 
Linear Voiced Speech Period Filter 
Nonlinear Unvoiced Speech Period Filter 

Speech Recognition Interface 
Filtered Speech Sound Reconstruction 
Direct Data Transfer into Speech Recognizer 

The third component to be developed in Phase II is the computation of auditory feature data that is 
resistant to noisy speech. Three candidates were identified in Phase I and will be analyzed for potential 
performance gains as shown below. The selected models will be incorporated into the SOS SPSR Tool 
Kit for testing in the baseline system. 

Auditory Feature Models for Speech Recognition 

Auditory Physiology Simulation (APS) 
Prototype and Test Computations 
Train SPSR Speech Recognition Process 
Test Speech Recognition Improvement 

Ensemble Interval Histogram (EIH) 
Prototype and Test Computations 
Train SPSR Speech Recognition Process 
Test Speech Recognition Improvement 

Auditory Image Model (AIM) 
Prototype and Test Computations 
Train SPSR Speech Recognition Process 
Test Speech Recognition Improvement 
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Figure 7.2-1 illustrates the computations and data flow of the baseline system designed for Phase II 
prototype development. The system allows either one or two microphone speech input with or without 
push to talk signals. The three function adaptive digital filter designed in Phase I is implemented as 
separate modules that can be executed concurrently or in a DSP. The filtered signals are then processed 
either by commercial speech recognition systems or by the SPSR Tool Kit or other programmable 
recognizers. 

Single or Dual Microphone Interface with Optional Push To Talk Noise Cueing on Speech Input 

Speech Activity Detection by PTT and/or Time Domain Energy and Zero Crossing Computations 

Voiced or Unvoiced Speech Classification with Frequency Domain LPC Computations 

I 
Voiced Speech Period Adaptive Linear Filter Computed in either Time or Frequency Domain 

Unvoiced Speech Period Processing using an Adaptive Nonlinear Frequency Domain Filter 

1 I 
Speech Reconstruction with Smoothing 

I 
Direct Data Transfer in Frequency Domain 

Commercial Speech Recognition Systems SPSR and other Recognition Tool Kits 

Computation of Auditory Features for Speech Recognition and Training 

Phonetic Speech Recognition with SPSR and other Available Tool Kits 

I 
Performance Analysis for Accuracy, Precision, Reliability, Latency, and Computational Loading 

Figure 7.2-1 Data flow of Prototype System 
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7.3 PHASE in COMMERCIAL PRODUCT 

The anticipated tasks for the Phase III commercial product development based on the Phase II prototype 
are given below. The following product configurations will be considered for production: 

• Software only single microphone CD ROM for speech recognition software by mail order. 
• Software only dual microphone system for higher performance by mail order. 
• Dual microphone headset with sound card add in kit for retail sales. 
• Dual microphone headset with high performance DSP card add in kit for retail sales. 
• Custom systems for Medical, Legal, Industrial, and Government installations. 

Each of these products will require the following tasks to bring it to market successfully. During Phase II 
these tasks will be defined in detail as part of the commercial product development anticipated in Phase 
III. 

• Hardware Specification Task. The development of the detailed PC hardware component 
selection is a primary cost item in off the shelf systems. The major hardware items are 
microphones, sound cards, and digital signal processors. 

• Software Specification Task. The selection of three types of software are critical to the success of 
this product; the operating system, such asWindows 95/98/NT/2000; the commercial speech 
recognizers such as Nuance, IBM, Microsoft, Dragon, Philips, etc.; and the tool kit software 
modified for the auditory features, such as SPSR, HTK, etc. 

• Production Engineering Task. It is anticipated that SOS will perform the product engineering and 
subcontract the production of any hardware to competitive bidders including microphones, circuit 
boards, and complete systems. 

• Cost and Pricing Task. Several models of this product will be created ranging from software only 
to full systems. The cost and pricing will include allowances for OEMs, distributors, mail order, 
and retail distribution. 

• Marketing and Advertising Task. SOS will form cooperative relationships with speech 
recognition software companies, microphone manufacturers, and custom system developers to 
create marketing and advertising campaigns. 

• Production and Distribution Task. SOS will minimize the in house production and distribution of 
any product beyond the software level. 

• Sales and Support Task. SOS will provide telephone and internet direct sales and product support 
help. 

8.0 OV10 3G NOISE REMOVAL TEST AND RESULTS 

The OV10 is a noisy Vietnam era aircraft with two propeller engines used primarily for observation at 
low altitudes. WPAFB has instrumented one of these planes for noise data collection and research. Two 
CD ROMs were provided with OV10 digitized speech data and text transcriptions. The CDs contain 
eleven subjects recorded with various spoken utterances into a boom microphone. In addition the OV10 
aircraft noise was recorded from a fixed cockpit location microphone. Five different environments were 
recorded for each speaker: laboratory, hanger, 1-G turn, 2-G turn, 3-G turn. Each environment has 50 
digitized speech files and two text files. The noise removal and speech recognition tests were performed 
using the 3-G speech and cockpit noise data. 
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The configuration of the microphones in the OV10 is not arranged in accordance with the SOS design. 
The SOS design requires a fixed distance between the two microphones. The speech microphone is 
placed at the mouth to collect speech and environmental noise. The noise microphone is placed a fixed 
distance from the speech microphone, such that when the speaker turns his head or moves, that distance 
does not vary. In the OV10 recorded data the noise microphone located behind the speaker records the 
distinct propeller noise of the engines, but does not record any speech signal. Therefor the correlation 
between the signal received from the noise microphone and the ambient noise portion of the signal 
received from the speech microphone is very low. 

For the SOS adaptive filter process to remove noise, the correlation between the speaker microphone 
noise signal and the noise microphone signal must be high. A correlation of 0.9 would yield a potential 
10-dB reduction of the ambient noise in the speech signal while a value of 0.5 would yield a 3-dB 
reduction. A low correlation would in fact remove speech as well as noise resulting in a degradation of 
the recognition accuracy for the filtered speech data versus the unfiltered data. This is the phenomenon 
observed in this test of the OV10 data. To verify this result, the OV10 speech data was filtered with a 
series of bandpass filters tuned to the frequency range of speech. The hypothesis is that if the speech 
accuracy improves using non adaptive filters and decreases with adaptive filters, then the two signal 
inputs have uncorrelated noise signals. 

SOS tested the adaptive digital filters on the 3G OV10 data, which had the lowest speech recognition 
accuracies. Matlab scripts were used to run the filters on the recorded data of the eleven speakers. Each 
original speech file was filtered with the corresponding background noise file to produce a set of filtered 
files. For example, a speech file, D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001.wav, was run 
through the different filters with the corresponding background file, D:\OV10-A Speech 
Database\Background\Sub 11 - RR\3g\001 .wav. No data processing problems were encountered with the 
OV10 data. 

From this the following five filtered files were produced by the SOS adaptive digital noise removal filters: 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f1.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f2.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f3.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f5.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f6.wav 

These were run through the Nuance speech recognition program, and the results were categorized by 
filter and speaker. In addition the 3G OV10 test data was also run through fixed non adaptive bandpass 
filters with different pass band frequency ranges. They were named according to the following naming 
conventions: 

D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f7.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f8.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001f9.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001fa.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001fb.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001fc.wav 
D:\OV10-A Speech Database\Speech\Sub 11 - RR\3g\001fd.wav 
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These were processed using Nuance's speech recognition program, and the results were categorized by 
filter and speaker. For each recognition instance, Nuance calculates a confidence rating. The sum of the 
confidences ratings is another indication for performance. The following tables summarize the OV10 test 
results beginning with the description of the five adaptive filters. 

Filter Description: 
NUM NAME L/NL TD/FD MIC RECONSTRUCTION 

1 Linear Adaptive Filter L FD 2 Triangular IFFT Coherent 

2 Magnitude FFT NL FD 2 Original Phase + Mag 

3 Log Magnitude FFT NL FD 2 Original Phase + Mag 

4 LMS ALE L TD 1 None, Time Shifted Output 

5 Mag FFT /Iter Recon NL FD 2 Phase Iteration 

6 Single Mic Iter Recon NL FD Noise Est by Scale Function 

7 BandPass 100-4000Hz L TD Minimum Ripple 
8 BandPass 100 - 3200Hz L TD Minimum Ripple 
9 BandPass 200 - 4000Hz L TD Minimum Ripple 
A BandPass 200 - 3200Hz L TD Minimum Ripple 
B BandPass 100 - 2400Hz L TD Minimum Ripple 

C BandPass 100 - 2800Hz L TD Minimum Ripple 

D BandPass 200 - 2800Hz L TD Minimum Ripple 

This speech recognition results summary for unfiltered and filtered processing includes the average 
percent correct words recognized and the sum of the Nuance confidence scores. In all cases the adaptive 
filters (1 to 6) decreased the accuracy and confidence indicating that a portion of the speech signal was 
removed and a portion of the noise was not removed. The parameters were not able to be set reliably for 
Filter 4 and no results were obtained for this test. For the bandpass filters (7 to D) the accuracy improved 
in each case indicating that the low frequency and high frequency noise was affecting the speech 
recognition performance. 

Results Summary: 
Num Filter Name Average 

Percent Words 
Correct 

Standard 
Deviation Taken 
Across Speakers 

Confidence 
Score Sum 

Unitized 
Confidence 

Score 
Original 3GOV10 Data 76.6% ±10.4% 18412 0.73 

1 Linear Adaptive Filter 70.2% ±11.1% 12830 0.38 
2 Magnitude FFT 67.5% ±7.2% 8004 0.07 
3 Log Magnitude FFT 69.7% ±7.3% 9637 0.17 
4 LMS ALE N/A N/A N/A N/A 
5 Mag FFT /Iter Recon 62.0% ±8.9% 6957 0.00 
6 Single Mic Iter Recon 70.2% ±6.6% 10591 0.23 
7 BandPass 100-4000Hz 80.4% ±7.9% 21503 0.93 
8 BandPass 100-3200Hz 80.7% ±8.0% 21603 0.94 
9 BandPass 200-4000Hz 80.3% ±8.7% 21745 0.94 
A BandPass 200 - 3200Hz 80.9% ±8.6% 21789 0.95 
B BandPass 100-2400Hz 80.4% ±8.2% 21330 0.92 
C BandPass 100-2800Hz 80.9% ±8.1% 21952 0.96 
D BandPass 200 - 2800Hz 81.2% ±8.2% 22608 1.00 
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The following tables report the speech recognition accuracy of estimated words, total words, and percent 
correct. Each table is for a separate filter with all of the subjects listed from the OV10 data. 

OV10 Original 3G Data: 
Subject Estimated TOTAL Percent Correct 

1 143 207 69.1% 
2 180 280 64.3% 
3 216 280 77.1% 
4 200 274 73.0% 
5 205 280 73.2% 
6 233 271 86.0% 
7 184 275 66.9% 
8 267 281 95.0% 
9 247 280 88.2% 

10 180 280 64.3% 
11 234 280 83.6% 

Average 2289 2988 76.6% (±10.4%) 

Confidence Sum 18412 

Linear Adaptive Filter 
Filter 1 Data: 

Subject Estimated Total Percent Correct 
1 133 207 64.3% 
2 155 280 55.4% 
3 211 280 75.4% 
4 193 274 70.4% 
5 196 280 70.0% 
6 212 271 78.2% 
7 163 275 59.3% 
8 257 281 91.5% 
9 219 280 78.2% 

10 153 280 54.6% 
11 206 280 73.6% 

Average 2098 2988 70.2% (±11.1%) 

Confidence Sum 12830 
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Magnitude FFT 
Filter 2 Data: 

Subject Estimated TOTAL Percent Correct 

1 140 207 67.6% 

2 153 280 54.6% 

3 199 280 71.1% 

4 208 274 75.9% 

5 180 280 64.3% 

6 173 271 63.8% 

7 187 275 68.0% 

8 228 281 81.1% 

9 181 280 64.6% 

10 171 280 61.1% 

11 198 280 70.7% 

Average 2018 2988 67.5% (±7.2%) 

Confidence Sum 8004 

Log Magnitude FFT 
Filter 3 Data: 

Subject 
Estimate Total Percent Correct 

1 141 207 68.1% 

2 155 280 55.4% 

3 207 280 73.9% 

4 216 274 78.8% 

5 184 280 65.7% 

6 179 271 66.1% 

7 190 275 69.1% 

8 227 281 80.8% 

9 199 280 71.1% 

10 175 280 62.5% 

11 210 280 75.0% 

Average 2083 2988 69.7% (±10.4%) 

Confidence Sum 9637 
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LMS ALE 
Filter 4 Data: 
The parameters were not able to be set reliably for Filter 4 and no results were obtained for this test. 

Mag FFT liter Recon 
Filter 5 Data: 

Subject Estimated Total Percent Correct 

1 118 207 57.0% 

2 161 280 57.5% 

3 167 280 59.6% 

4 181 274 66.1% 

5 156 280 55.7% 

6 171 271 63.1% 

7 150 275 54.5% 

8 223 281 79.4% 

9 196 280 70.0% 

10 134 280 47.9% 

11 196 280 70.0% 

Average 1853 2988 62.0% (±8.9%) 

Confidence Sum 6957 

Single Mic Iter Recon 
Filter 6 Data: 
Subject Estimated Total Percent Correct 

1 148 207 71.5% 

2 167 280 59.6% 

3 197 280 70.4% 

4 210 274 76.6% 

5 177 280 63.2% 

6 195 271 72.0% 

7 189 275 68.7% 

8 229 281 81.5% 

9 204 280 72.9% 

10 173 280 61.8% 

11 209 280 74.6% 

Average 2098 2988 70.2% (±6.6%) 

Confidence Sum 10591 
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Band Pass Filter 100 
Filter 7 Data: 

- 4000Hz 

Subject Estimated Total Percent Correct 

1 162 207 78.3% 

2 204 280 72.9% 

3 230 280 82.1% 

4 223 274 81.4% 

5 211 280 75.4% 

6 228 271 84.1% 

7 192 275 69.8% 

8 268 281 95.4% 

9 250 280 89.3% 

10 196 280 70.0% 

11 237 280 84.6% 

Average 2401 2988 80.4% (±7.9%) 

Confidence Sum 21503 

Band Pass Filter 100 
Filter 8 Data: 

- 3200Hz 

Subject Estimated Total Percent Correct 

1 162 207 78.3% 

2 205 280 73.2% 

3 230 280 82.1% 

4 227 274 82.8% 

5 216 280 77.1% 

6 229 271 84.5% 

7 192 275 69.8% 

8 268 281 95.4% 

9 250 280 89.3% 

10 196 280 70.0% 

11 236 280 84.3% 

Average 2411 2988 80.7% (±8.0%) 

Confidence Sum 21603 
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Band Pass Filter 200 
Filter 9 Data: 

4000Hz 

Subject Estimated Total Percent Correct 
1 159 207 76.8% 

2 194 280 69.3% 
3 238 280 85.0% 
4 225 274 82.1% 

5 218 280 77.9% 

6 225 271 83.0% 

7 184 275 66.9% 

8 266 281 94.7% 

9 254 280 90.7% 
10 200 280 71.4% 
11 236 280 84.3% 

Average 2399 2988 80.3% (±8.7%) 

Confidence Sum 21745 

Band Pass Filter 200 
Filter A Data: 

- 3200Hz 

Subject Estimated Total Percent Correct 
1 158 207 76.3% 
2 199 280 71.1% 
3 238 280 85.0% 
4 229 274 83.6% 

5 219 280 78.2% 

6 228 271 84.1% 
7 184 275 66.9% 
8 269 281 95.7% 
9 254 280 90.7% 

10 203 280 72.5% 

11 235 280 83.9% 
Average 2416 2988 80.9% (±8.6%) 

Confidence Sum 21789 

DOD Phase I SBIR AF99-103, Standard Object Systems, Inc.   75 



Advanced Audio Interface for Phonetic Speech Recognition in a High Noise Environment 

Band Pass Filter 100 
Filter B Data: 

2400Hz 

Subject Estimated Total Percent Correct 

1 162 207 78.3% 

2 203 280 72.5% 

3 231 280 82.5% 

4 222 274 81.0% 

5 217 280 77.5% 

6 230 271 84.9% 

7 191 275 69.5% 

8 268 281 95.4% 

9 251 280 89.6% 

10 193 280 68.9% 

11 233 280 83.2% 

Average 2401 2988 80.4% (+8.2%) 

Confidence Sum 21330 

Band Pass Filter 100 - 2800Hz 
Filter C Data: 
Subject Estimated Total Percent Correct 

1 162 207 78.3% 

2 207 280 73.9% 

3 231 280 82.5% 

4 225 274 82.1% 

5 215 280 76.8% 

6 229 271 84.5% 

7 189 275 68.7% 

8 266 281 94.7% 

9 253 280 90.4% 

10 197 280 70.4% 

11 243 280 86.8% 

Average 2417 2988 80.9% (±8.1%) 

Confidence Sum 21952 
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Band Pass Filter 200 - 2800Hz 
Filter D Data: 
Subject Estimated Total Percent Correct 

1 159 207 76.8% 

2 205 280 73.2% 

3 237 280 84.6% 

4 229 274 83.6% 

5 214 280 76.4% 

6 234 271 86.3% 

7 195 275 70.9% 

8 268 281 95.4% 

9 248 280 88.6% 

10 195 280 69.6% 

11 241 280 86.1% 

Average 2425 2988 81.2% (±8.2%) 

Confidence Sum 22608 

The speech recognition results from such a small sample of speakers and environments are statistically 
inconclusive. The filtered speech recognition rates were decreased as compared to unfiltered speech for 
the OV10 data by 7 to 9 percent. Several reasons exist for this anomaly. The correlation between the 
noise and speech signals was low. This is not the design environment for the adaptive filters. The pilot 
speech was clear with both low and high frequency noise. The Nuance speech recognizer is not designed 
to perform best in this situation. Further tests with other speech recognizers may provide different results. 
The SOS adaptive filters are not designed to remove the uncorrelated noise present in the OV10 data. 
The filters removed a portion of the speech signal while also removing the noise signal resulting in a 
speech recognition loss. It is not possible to modify the SOS designed adaptive filters for an uncorrelated 
noise environment that would result in improved performance of the Nuance speech recognition. The use 
of band pass linear filters in the time domain did improve the Nuance speech recognition accuracy. The 
most important result is that the it is necessary to use the SOS dual input fixed orientation head mounted 
microphones to collect correlated noise for successful adaptive filtering. 

9.0 CONCLUSIONS 

This Phase I research and development study has investigated the effect of creating an adaptive digital 
filter system to improve noisy speech recognition performance. The following five separate research 
tasks were successfully completed during the six-month research period. 

1. Additive noise modeling and test data generation for adaptive filter development. Four noise models 
were created which degraded the speech recognition performance considerably. The TIMIT 
common sentences were used as test data with male and female speakers from all of the eight 
American dialect regions. This data provides a useful benchmark for evaluating noisy speech 
recognition. 

2. The implementation and testing of several off the shelf commercial speech recognition systems for 
use with the test data in Task 1, and the use of a preliminary version SPSR system under development 
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by SOS for the navy as a Phase II SBIR project. Performance results were obtained for word 
recognition accuracy under identical test conditions for each system. 

3. The design, programming, and testing of adaptive digital filter software for use with the speech 
recognition systems. Six variations of linear, nonlinear, time domain, frequency domain, with one or 
two microphones were developed. These were tested with all of the noisy speech test data and 
compared to create a baseline design for the Phase II system. A novel and unique three stage design 
was created that exploits the speech recognition aspect of the adaptive filter. 

4. Development, test, and evaluation of a dual microphone and sound card PC hardware and system 
software unit for use in evaluating live and recorded noisy speech test data. The hardware and 
software engineering to create a PC based dual microphone and dual sound card test system. This 
system will evolve into the Phase II prototype unit and the Phase II commercial unit. 

5. The investigation of auditory models to create noise resistant features for speech recognition software 
training and the modification of the SPSR tool kit to use this feature data for both training and 
recognition. Two existing scientific research auditory models, the AIM and EIH, were investigated 
for computational tractability and recognition feature computation. An additional model APS was 
developed by SOS as a new approach to auditory modeling specifically for noisy speech recognition. 
In addition the SPSR tool kit was investigated as the target speech recognition system to test these 
three feature models during Phase II. 

6. A test of the SOS adaptive filters with USAF supplied OV10 data from two cockpit microphone 
recordings was performed. The noise data was found to be uncorrelated and not suitable for adaptive 
filtering. It was suitable for SOS bandpass filtering which improved the performance on the least 
accurate 3G data by over 25% using the Nuance speech recognizer. 

The result of this Phase I research indicate that a successful Phase II prototype development can be 
accomplished at low risk and with a high potential value to the USAF and as a commercial product for the 
PC based speech recognition marketplace. SOS is fully prepared with the people and facilities to 
undertake this Phase II project within the SBIR schedule and budget. 
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