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Abstract 

Wavelet transforms have proven very useful for a variety of signal and image pro- 

cessing tasks. The wedgelet transform also shows promise for certain edge-dominated 

images. However, in many applications we desire to introduce adaptivity and non- 

linearities into the transforms. These are powerful extensions, but difficult to control 

within the wavelet framework. The lifting scheme provides a new, spatial intuition 

into the wavelet transform that simplifies the introduction of adaptivity. 

In this thesis, we develop several new adaptive wavelet transforms and adaptive 

multiresolution wedgelet transforms. The lifting construction permits control over the 

multiresolution properties of these transforms despite the adaptivity. We demonstrate 

the power of our new adaptive lifted transforms with successful applications to signal 

denoising and compression problems. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

In his classic treatise on the workings of the human visual system, Marr focused on 

the importance of the representation of information for various cognitive tasks [1]. 

The way in which information is represented brings out certain types of features while 

hiding others. Signal compression and estimation applications also rely heavily on 

having an efficient representation of image data; we would like to approximate a signal 

with a small number of parameters. Therefore, we seek a transform which yields an 

efficient representation while bringing out the desired features of the signal. 

The discrete wavelet transform (DWT) provides such an efficient representation 

for a broad range of real-world signals. This property has been exploited to develop 

powerful signal denoising and estimation methods [2] and extremely low-bit-rate com- 

pression algorithms [3]. However, the DWT struggles with discontinuities along con- 

tours (edges). The recently developed wedgelet transform [4] provides a more efficient 

representation for certain classes of these edge-dominated images. Our problem: Can 

we improve these transforms with adaptivity? 

1.2 Our Goal 

We claim the answer is a resounding yes; the goal of this thesis is to prove it. Lifting 

[5, 6] provides a framework to introduce adaptivity into the wavelet transform. Within 

this framework, we build several new adaptive wavelet and wedgelet transforms. We 

improve signal representation while preserving the multiresolution properties of the 



transforms. 

1.3    Thesis Layout 

We provide the background for this thesis in Chapter 2. We present a brief overview 

of the wavelet transform, and its relation to perfect reconstruction filter banks. We 

also describe the wedgelet transform. 

In Chapter 3 we present our interpretation of the lifting construction, and its rela- 

tion to the wavelet transform. We continue in Chapter 4 by building several adaptive 

wavelet transforms within the lifting framework. We also construct an adaptive mul- 

tiresolution wedgelet transform. 

In Chapter 5 we apply our new transforms to problems in signal estimation and 

image compression. We conclude in Chapter 6 with a summary of our results and 

recommendations for future research. 



Chapter 2 

Background 

2.1    The Wavelet Transform 

We provide here a brief overview of the wavelet transform. For a more thorough 

analysis, see [3, 7, 8, 9]. 

2.1.1     Construction of wavelet spaces 

One of the primary themes in multiresolution analysis is the successive projection 

of a function into "smaller" orthogonal subspaces. These subspaces will be formed 

from shifts and dilations of a low pass scaling function <j>(t) and a band pass wavelet 

function ip(t). 

Let {Vm}m€Z be a sequence of nested subspaces constructed in L2(3ft) such that 

Vm C Vm-i V m e Z. Let / be a function which exists in the subspace Vm-\ for 

some m. Let Pm be the projection operator which takes the function / G Vm-i into 

the nested subspace Vm C Vm-i. This projection operator eliminates the portion of 

/ which is not in Vm, while it does not disturb the portion of / which lies in Vm. 

Let {Wm}m€Z be another sequence of nested subspaces such that Wm C 

Vm-i V m £ Z. Further, let the span of Vm U Wm equal Vm-i, and let Vm and 

Wm be orthogonal subspaces. Thus, Vm-i = Vm@Wm and Vm n Wm = <t>. An 

example of such a set of nested subspaces is shown in Figure 2.1. 

Let Qm = l-Pm (where I is the identity operator) be the orthogonal projection 

operator which takes the function / into the nested subspace Wm C Vm-\. Thus, 

PmQm = QmPm = 0, where 0 is the zero operator. 



Figure 2.1 : Nested subspaces of the orthogonal wavelet transform. The Vm are 
spanned by shifts and dilations of a low pass scaling function, while the Wm are 
spanned by shifts and dilations of a band pass wavelet function. 

2.1.2    The wavelet recursion relation 

Let the set of functions {(j)m,i}iez be an orthonormal basis for Vm, and let the set 

of functions {ißm,i}iez be an orthonormal basis for Wm. Since Vm C Vm-i, we can 

expand 4>m,i in terms of {<fim-itk}, that is, 

k 

To find a particular coefficient Cm-i,i(k), we take the inner product of (f)m,i with 

the basis function <f>m-i,k- The inner product of two arbitrary real valued functions / 

and g is defined by 

/CO 

f(t)g(t)dt. 
■00 

Let hi(k) = {(j>m,h <f>m-i,k)■ The expansion of <j>mj, becomes 

<t>mAx) = ^2ihi{k)<l)m-i^{x). (2.1) 
k 

The set of functions (j>mii must satisfy Equation [2.1] for all m if we intend to form 

an orthogonal wavelet transform. If we desire a discrete wavelet transform (DWT), 



then we require that each (j>mji be constructed from integer shifts (I) and translates 

(2m) of a single scaling function <j>(x). In this case, Equation [2.1] becomes 

(j)(x -i) = J2h{k- 2l)4>{2x - k). (2.2) 
k 

In similar fashion, we have 

</,(x _ i) = Y^ g(k - 2l)(j>{2x - k), (2.3) 
k 

where g(k - 21) — (ipm,i,4>m-i,k)- Equations [2.2] and [2.3] are known as the wavelet 

recursion relations [3]. 

2.1.3    Construction of the discrete wavelet transform 

In section 2.1.1, we constructed a set of embedded orthogonal spaces to permit the 

multiresolution decomposition of a signal /. To perform this decomposition, we first 

assume that the signal / exists entirely in the space Vm_i for some me Z (typically 

m = 1). That is, / can be completely represented as a linear combination of the basis 

functions for Vm-i. 

The projection of / into Vm can be expanded in terms of the basis functions for 

Vm, and the projection of / into Wm can be expanded in terms of the basis functions 

for Wm, resulting in the following equalities: 

[Pmf](x)   =   ^2cm(l)<t>m>l(x) 
i 

[Qmf](x)     =     J2dm(l)ljJm>i{x), 
I 

with cm{l) = (Pmf,<t>m,i) and dm{l) = (Pmf,il>mj). 

However, since Pm + Qm = I, we can write 

/ = im]   '   tymJi 



and any particular decomposition coefficient in Vm can be written as 

Cm{l)     = (PmfAmJL} 

= ((/-Qmf)Am,l) 

= (f, <f>m,l) - (Qmf, <fim,l) 

= if,<f>m,l) ■ 

If / is expanded in terms of the basis functions for Vm-i and the results substituted 

into the expression for cm(l), then 

Cm{l)     =     (f, 4>rn,l) 

=     ((52k cm-l(k)(j)m-l,k) , 4>m,l) 

=    Sfe Cm-lW (4>m-l,k , <t>m,l) ■ 

In similar fashion, it can be shown that 

dm(l) ='Y^,Cm-i(k) (4>m-l,k,i>m,l) ■ 
k 

However, as mentioned in Section 2.1.2, for the case of the discrete wavelet trans- 

form these inner products take the form of digital filters independent of decomposition 

level, i.e., 

(<j>m,h <t>m-l,k)     =     h(k-2l) 

(^m,l,^m-l,k)     =    g(k-2l). 

Thus, if the coefficients cm_i(n) of / G Vm-i are known, then the coefficients of the 

projection of / into Vm and Wm are given respectively by 

UO   =   J]cm_1(A:)MA;-20 (2.4) 
k 

dm(l)   =   J2cm-1(k)g(k-2l). (2.5) 
k 

Equations [2.4] and [2.5] lead to the filter bank implementation of the discrete wavelet 

transform (which will be described in Section 2.2). 



Once the coefficients of the projection of / into Vm are known, the function can 

be further decomposed into the orthogonal subspaces of Vm, namely Vm+i and Wm+i, 

with the same formulas, since the discrete wavelet filters h and g are independent of 

the decomposition level m. This leads to a recursive decomposition routine, breaking 

/ down into its projections onto smaller orthogonal subspaces. ^ 

Thus, the DWT decomposition is multiscale: it consists of a set of scaling co- 

efficients CAf[n], which represent coarse signal information at scale m = M, and 

a set of wavelet coefficients dm[n], which represent detail information at scales 

m — 1,2,..., M. This recursive algorithm is the heart of the modern multiresolution 

wavelet decomposition algorithm. 

2.1.4    Reconstruction (synthesis) 

In the above sections, we demonstrated how a signal can be decomposed. Now, we 

show how to take those components and reconstruct the original signal. 

For one level of reconstruction (starting at scale m = 1), we know that the signal / 

exists in Vo, and thus can be represented as f(x) = J^k co(^)^o,fc(^)- We are given the 

decomposition coefficients ci(fc) and di(k). These coefficients represent the projection 

of / into Vi and Wx respectively. Vi®Wx = V0 and Vx n Wx = <j>, so 

f{x) = ^2cl(k)cß1,k(x) + Y,d1(k)iP1,k(x). (2.6) 
k k 

We take the inner product of both sides of equation [2.6] with <f>0jn(x). Since the 

{(j)0,n} are orthonormal, (/, <^o,n) = c0(n). From Section 2.1.2, we have 

(0i,*,0o,n)   =   h(n-2k) 

(^i,fc,0o,n)   =   g(n-2k). 

Thus, equation [2.6] becomes 

Co(n) = ^2d(k)h(n - 2k) + ^dl{k)g{n - 2k). (2.7) 



8 

where c0(n) are the coefficients of / G VQ. Equation [2.7] leads to the filter bank 

implementation of the inverse DWT (which will also be described in Section 2.2). 

Note that, for the orthogonal DWT, the digital filters h and g used in the inverse 

transform are identical to the filters used for the forward transform. 

2.1.5    Generalization to biorthogonal wavelets 

The above analysis was based on the orthogonal decomposition of our space. As noted, 

this forces the forward and inverse transform filters to be identical. We now loosen 

this restriction, and form a biorthogonal wavelet transform [3, 10]. We introduce dual 

spaces Vm and Wm, with Vm = span{0m,fc}, Vm = span{<^m,fc}, etc. The spaces must 

be biorthogonal, that is, Vm n Wm = (j) and VmnWm = fa In addition, the basis 

vectors must satisfy the biorthogonality condition, 

(</>m,k,jm,l)    =    8(k-l) (2.8) 

(</W,Vw)     =    S(k-l). (2.9) 

Figure 2.2 demonstrates such a biorthogonal decomposition of Vo = 5ß3. V\ is spanned 

by <po and <f>i, while V\ is spanned by ^0 and fa. V\ is orthogonal to its dual space, 

Wi, while Vi is orthogonal to W\. All the basis functions satisfy the biorthogonality 

condition, equations [2.8] and [2.9]. 

As before, we require recursion relations 

(f>m,l(X)     =    ^Zh{k)4>m-l,k{x) 
k 

*Pm,l(X)     =     $^0j(*O0m-l,*(aO- 
k 

However, to find h, we must take the inner product of 4>m,i with the dual function 



Figure 2.2 : Example of biorthogonal wavelet spaces in 9ft3. Span{Vi U W{\ — 3ft3 

and span lVi U wA = 3ft3. V\ ± Wi and % _L Wx. All basis functions satisfy the 

biorthogonality condition. 

</>m-l,k'- 

U>m,l , <f>m-\,k)     =    /I/ hl^ Ym-l'n ' <^n-l,fc 
n 

=   y^hi(n)S(k — n) 
n 

=   ht{k). 

In similar fashion, gi(k) = (ipm,i, <f>m-i,k)- We have the equivalent recursion relations 

with h and g for the dual basis. 

2.1.6    Construction of the biorthogonal discrete wavelet transform 

Given these dual systems, we intend to decompose a signal / which exists entirely in 

Vm-i; f(x) = J2kcm-i(k)^m-i,k(x)- We desire a decomposition 

f(X) =YLcrn(k)^m,k{X) + ^dm(k)tßm,k(x) . 



10 

Clearly, a coefficient cm(k) is found by taking the inner product of / with <f)mjk 

(due to the biorthogonality condition). This yields 

cm(k)    =    (fAm,k) 

=    ]P Cm_i (I) {j)m,k , <t>m-l,lj 
I 

=   J2cm-i(l)hk(l) , (2.10) 
I 

and 

<*„,(*) = £<v»-i(0ft(0- (2-11) 

The digital filters h and # are independent of scale. These equations determine 

the analysis portion of the biorthogonal wavelet transform, and are identical to the 

orthogonal wavelet transform equations (albeit with different filters h and g). 

2.1.7    Reconstruction with the biorthogonal wavelet transform 

To complete our analysis, we reconstruct our original signal with the biorthogonal 

wavelet transform. We are given the biorthogonal wavelet coefficients from scale m, 

that is, 

f(X) = J2cm(k)^m,k(X) +^2dm(k)^m,k{x). 
k k 

We know that / exists in Vm-i, and can be represented as 

f(x) = ^2,cm-i{k)4>m-i,k{x). 
k 

We take the inner product of these equations with <j)m-\,k and find that 

(/, (j)m-l,l)     =    Yl Cm~l W (?"»-!.* ' ^rn-1,1 / 
k 

=    Cm-i(l) 

k k 

=   J2cm(k)hk(l) + J2dm(k)9k(l)- (2-12) 
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This is identical to the reconstruction requirements for the orthogonal transform 

(Equation [2.7]), except that we use the dual filters h and g. Equation [2.10], equation 

[2.11], and equation [2.11] lead to the filter bank implementation of the biorthogonal 

discrete wavelet transform. 

2.2    Filter Banks 

In its most basic form, a filter bank is simply a collection of filters with a common 

input (or output). The analysis bank takes a common input to M channels, and 

the synthesis bank returns these channels to a single output [11, 12]. However, we 

are interested in maximally decimated filter banks, i.e., filter banks which do not 

expand the number of input samples. This is done by incorporating decimators and 

expanders into each channel of the filter bank, as shown in Figure 2.3. For maximal 

decimation, we must have £)fc -^ = 1. If Rk = M \/k, then we have a maximally 

decimated uniform filter bank [11]. 

x[n] 

"M-1V 

Analysis 
Bank 

HQ(z)^lR0 —► TR0 -* W} 
Hi(z)-+IR,  ►fR1-*G1(*)- 

a. ,(*)—i%i—^TFWI^GM» 

Synthesis 
Bank 

x[n] 

Figure 2.3 : M-channel filter bank. The analysis bank has one input and M outputs, 
while the synthesis bank takes the M channels to one output. 

Under what conditions is the output of the filter bank x[n] equal to the input 

signal x[n]? To simplify this question, we use the polyphase notation [13]. We write 
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each filter Hm{z) as: 

Af-l 

Hm(z) = ^Em,k(z
M)z-k, 

k=0 

where Em,k(z) = J2i hm(Ml+k)z-1. However, applying Em,k(z
M) to a signal and then 

downsampling by M is equivalent to downsampling the signal by M and then applying 

Em,k(z) to the result [11]. Thus, we can redraw the filter bank of Figure 2.3 as the 

polyphase filter bank of Figure 2.4 (using similar decompositions for the synthesis 

filters). Clearly the bank of delays and decimators simply splits the input signal into 

its polyphase components, and the bank of expanders and advances reassembles those 

components. Thus, if we desire perfect reconstruction (PR), i.e., x[n] = x[n], then we 

require R(z)E(z) = I 1 [11, 12]. 

x[n' 
4,M 

J,M 

J-M 
iM 

^0,0    ""     ^0,M-1 

EM-1,0 **•   EM-1,M-1 

^0,0    **•     RM-1,0 

R0,M-1 •**   RM-1,M-1 

» tn 
A.LI 

*•   I H 

-*TR^- 

I—*—i ^M-1 

E(z) R(z) 

Figure 2.4 : Polyphase representation of an M-channel, maximally decimated uniform 
ßlter bank. E(z) and R{z) are both M x M. 

In general the inverse of E(z) may not exist. If (E(z))~1 does exist, the PR system 

will not be realizable with finite impulse response (FIR) filters unless the determinant 

of E(z) is a delay. In special cases, we have 

(E(z))-1 = EH(z~1). 

When E(z) has this property and R(z) is chosen as EH(z~1), our PR system is called 

paraunitary [11, 12]. 

xThis requirement is somewhat over-restrictive, but acceptable for our discussions here.  For a 

more general analysis, see [11]. 
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2.3    Filter Bank Implementation of the Wavelet Transform 

Armed with this understanding of filter banks, we employ them to implement the 

discrete wavelet transform. As shown in section 2.1.3, at decomposition level m the 

coefficients cm(n) and dm(n) can be written in terms of the coefficients at the next 

higher level as: 

cm(n)   =   J^cm^(k)h'(k-2n) (2.13) 
k 

dm(n)   =   X>— i(k)g'(k-2n), (2.14) 
k 

where h' and g' are filters which satisfy the wavelet recursion equations 

<f>{x-l)   =   ^2ti(k-2l)4>(2x-k) 
k 

i/>(x-l)   =   *jr,g'(k-2l)<l>(2x-k). 
k 

(We add the notation ti and g' so that we can use h and g for the filters which will 

ultimately be implemented in our filter bank. We hope that this change in notation 

does not overly confuse.) 

We create new filters h and g which are "flipped" versions of the filters h' and g\ 

that is, h(n) = h'(-n) and g(n) = g'(-n). Substituting these filters h(n) and g{n) 

into equations [2.13] and [2.14] yields 

Cm(n)   =   ^2,cm-1{k)h{2n - k) 
k 

dm(n)   =   ^2cm-1(k)g(2n-k). 
k 

Note that if y(n) = (x(ri))U, then v{n) = x{2n). Thus, cm(n) and dm(n) can be 

written as 

cm{n)   =    I ^2 cm^i(k)h(n - k) \ U 

dm{n)   =    I ^2 cm-i(k)g{n -k)\U 
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Clearly, this is simply the wavelet filters h{n) and g{n) convolved with cm_i(n) 

and then downsampled by two. Thus, the forward discrete wavelet transform can be 

implemented as a filter bank with wavelet filters h and g, as shown in Figure 2.5. 

The filters h(n) and g(n) are traditionally chosen to be low pass and high pass filters, 

respectively. Thus, the coefficients cm(n) are referred to as "low pass coefficients," 

"coarse coefficients," or "scaling coefficients." The coefficients dm(n) are referred to 

as "high pass coefficients," "wavelet coefficients," or "detail coefficients" [3]. The 

transform is typically iterated on the output of the low pass band (c[n\) to create the 

series of detail coefficients at different scales. 

In similar fashion, reconstruction (from Equation [2.7]) is governed by 

Cra-i{n) = (cm(n))t2 *h(n) + {dm{n))^2 *g{n). 

Thus, the inverse DWT can be implemented as a filter bank as shown in Figure 2.6. 

As discussed in Section 2.1.5, h, g, h, and g must satisfy the biorthogonality and 

wavelet recursion requirements if the filter bank is to form a wavelet system. For 

special choices of h and g, we have h = h and g = g, and the underlying wavelet 

and scaling functions form an orthonormal wavelet system [3], as described in Section 

2.1.1. 

x[n] H(Z) i2 

G(z) -► 4,2 

c[n] 

d[n] 

Figure 2.5 :   Filter bank implementation of the wavelet transform.   Transform is 
iterated on the scaling coefficients c[n]. 
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c[n]-^t2 

d[n]-4t2 

H(z) 
A 

G(z) 

x[n] 

Figure 2.6 : Filter bank implementation of the inverse wavelet transform. With 
appropriate choices of H and G, the transform will yield a perfectly reconstructed 
output sequence. 

2.4    Wedgelets 

Wavelets provide a very economical representation for a broad class of signals. How- 

ever, they do not perform well near edges in images. Therefore, wavelets are not well 

suited for images which fall into the horizon class [4], that is, binary images with an 

edge along a contour. An example of such a horizon image is shown in Figure 2.7. 

Figure 2.7 :  Horizon image example.   A binary image with a single edge along a 
contour. 

To address this problem, Donoho created the wedgelet representation [4], which 

is near optimal for images in the horizon class. Each wedgelet is defined on a dyadic 
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square as a binary image with an edge along an edgelet. An edgelet is a straight 

line connecting two vertices. To keep the computation tractable, the edgelets are 

restricted to a discrete set of vertices along the border, typically the length of the 

border divide by some constant, M. An example of a wedgelet constructed in this 

fashion is shown in Figure 2.8. For this square, we have M = 3 vertices per side. Thus, 

our total number of wedgelets is 42, along with the complete square (no wedgelet). 

x — 

X 

 x  

0 

—? 

x 

X 

X 

1 

^<  

X 

—X 

Figure 2.8 : Wedgelet example on an arbitrary dyadic square. Each edgelet (which 
deßnes the wedgelet) is formed by connecting the vertices along the border (in this 
case, M = 3 vertices per side.) 

To approximate an image in the horizon model, we perform a dyadic decomposi- 

tion of the image. If a wedgelet (or an entire square) in a particular dyadic square 

is a good approximation to the horizon image, then we do not decompose the square 

any further. However, if the approximation does not meet our criteria, then we de- 

compose the dyadic square into four smaller squares. We then compute the wedgelets 

for these squares, and determine if any of the approximations are acceptable. This 

process continues until the overall wedgelet approximation meets our criteria. Figure 
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2.9 shows a wedgelet approximation to the horizon image of Figure 2.7. Note that 

the wedgelets are only applied at the lowest level; we only perform splits on dyadic 

squares (and not other polygons). We can approximate any image in the horizon 

class to any desired approximation error with enough dyadic splits [4]. 

v 
\ 

^ ;:i;  i 

\ 

\ 

Figure 2.9 : Wedgelet approximation to a horizon function. The underlying horizon 
function is shown with the dashed line. The dyadic decomposition continues until 
the approximation error between our string of edgelets and the contour is acceptably 
small. 
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Chapter 3 

Lifting 

The economy of the wavelet transform stems from the fact that the DWT tends to 

compress real-world signals into just a few coefficients of large magnitude. Compres- 

sion follows from the "vanishing moments" property of wavelets, which guarantees 

that the wavelet coefficients of low-order polynomial signals are zero [3]. Thus, if a 

signal is exactly polynomial, it can be completely described using scaling coefficients 

alone. In more realistic situations, the signal will not be polynomial, but may be 

well-approximated by a piecewise polynomial function. Because wavelet functions 

also have localized support, most of the wavelet coefficients of such a signal will be 

zero except those corresponding to wavelets having support near the breakpoints of 

the polynomial segments. 

It is fruitful to view the DWT as a prediction-error decomposition. The scaling 

coefficients at a given scale (m) are "predictors" for the data at the next higher res- 

olution or scale (m - 1). The wavelet coefficients are simply the "prediction errors" 

between the scaling coefficients and the higher resolution data that they are attempt- 

ing predict. This interpretation has led to a new framework for DWT design known 

as the lifting scheme [5, 6]. Our analysis builds on this interpretation. 

3.1    The Lifting Concept 

Lifting is a spatial (or time) domain construction of biorthogonal wavelets developed 

by Sweldens [5, 6]. We present here an overview of our interpretation of the lifting 

concept. 
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3.1.1     Lifting operations 

Lifting consists of iteration of the following three basic operations (see Figure 3.1): 

Split: Divide the original data into two disjoint subsets. Although any disjoint split 

is possible, in the standard lifting scheme we split the original data set x[n] into 

xe[n] — x[2n], the even indexed points, and x0[n] = x[2n + 1], the odd indexed 

points. 

Predict: Generate the wavelet coefficients d[n] as the error in predicting x0[n] from 

xe[n] using prediction operator V: 

d[n]  = x0[n]-V(xe[n]). (3.1) 

Update: Combine xe[n] and d[n] to obtain scaling coefficients c[n] that represent 

a coarse approximation to the original signal x[n]. This is accomplished by 

applying an update operator U to the wavelet coefficients and adding to xe[n\. 

c[n]  = xe[n]+U(d[n]). (3.2) 

These three steps form a lifting stage. Iteration of the lifting stage on the output 

c[n] creates the complete set of DWT scaling and wavelet coefficients Cj[n] and dj[n]} 

At each scale, we weight the Cj[n] and dj[n] with ke and k0 respectively, as shown 

in Figure 3.1. This normalizes the energy of the underlying scaling and wavelet 

functions. 

The lifting steps are easily inverted, even ifV andll are nonlinear, space-varying, 

or non-invertible. Rearranging (3.1) and (3.2), we have 

xe[n] — c[n] - U(d[n\), x0[n] = d[n] + V(xe[ri\). 

1In fact, all wavelet transforms can be factored into a series of lifting stages (with perhaps multiple 

predicts and updates per stage) [14]. 
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xe[n] k 

x[n] 
 >■ 

odd/ 
even 
split 

u 
n        k 

t>-*c[n] 

d[n] 

Figure 3.1 : Lifting stage: Split, Predict, Update. ke and k0 normalize the energy of 
the underlying scaling and wavelet functions. 

\ 
c[n] 

d[n] 
Vi 

e   >(T> xeN > 

Y 
-u 

n 
0 

p a- x0[n] > 

merge x[n] 

Figure 3.2 :  Typical inverse lifting steps: undo the Update, undo the Predict, and 
Merge the even and odd samples. 

As long as the same V and U are chosen for the forward and inverse transforms, the 

original signal will be perfectly reconstructed. The inverse lifting stage is shown in 

Figure 3.2. 

3.1.2    Predictor design 

In the simplest scenario, the prediction operator V is a linear shift-invariant filter with 

^-transform P(z). In Figure 3.3, we illustrate a symmetric, N = 4-point predictor 

p(z) = px z"1 + p2 + Pz z + p±z2. By tracing the contribution of xe[n] and x0[n] 

through the tree to the point d[n], we find the equivalent filter that would be applied 

to the original data x[n]. In vector form, we have 

g =  [-pi, 0, -P2, 1, -P3, 0, -p4]T- 

(Note the zeros at the positions corresponding to odd points in the original data, 

except for the 1 in the center.) 
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g = [-p1      o      -P2       1       -P3      o      -P4] 

xe[0]   x0[0]    xe[1]    x0[1]   xe[2]    x0[2]   xe[3] 

"^    -P2X iy    /-p3   >*-'' 

^d[1]--' 

Figure 3.3 : Prediction filtering. An N = 4 point iinear prediction filter P(z) yields 
the prediction vector g shown across the top. 

If a signal is exactly polynomial, it can be completely described using scaling 

(coarse) coefficients alone [3]. Our detail coefficients represent the "prediction errors" 

where our signal could not be completely represented by a low-order polynomial. 

Thus, the goal of the prediction step is to eliminate all low-order polynomials from 

x[n]; the residuals will be our detail coefficients. For a linear predictor, this is easily 

accomplished by the following procedure: 

Form the N x 2N - 1 Vandermonde matrix V with entries [V]fe,n = (n - l)k, 

n = 1,2, • • • , 2iV - 1, k = 0,1, • • • , N - 1. We adjust the shift I so that the n - I = 0 

column corresponds to the 1 in g, and then we delete all the even columns. We call 

the resulting matrix V°. 

Now, for the predictor to suppress all low-order polynomials, we require that 

Vg = 0. By eliminating the columns which correspond to the 0's in g, and pulling 

the column which corresponds to the center 1 out to the right, we are left with: 

V°p = [l   0---0]T, (3.3) 

where the entries in p are the prediction filter coefficients. This set of linear equations 

is readily solved, since V* is Vandermonde and thus always invertible [15, p. 120]. 
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3.1.3    Update design 

The (linear) update filter U(z) creates the coarse coefficients c[n] by updating each 

xe[n] with the nearest N wavelet coefficients d[n] from either side. The update order 

N can be chosen independently of N; however, the prediction coefficients pk must be 

fixed prior to determining the update filter in the standard lifting programme. 

In Figure 3.4, we trace the contribution of the original xe[n] and x0[n] to each 

c[n] for an N = 2 point prediction followed by an N = 4 point update with U(z) = 

U\ z~2 + u2 z~l +U3 + U4 z. In vector form, we have the equivalent filter h at the top 

of the Figure. Note that h is a function of both the update coefficients uk and the 

prediction coefficients pk. 

h = [-RU1>     M,,   mUW'   4>'1-P2
U2'PlU3' ^-P2

U3-PlU4>   U4> -P2U
4]

T 

xe[0]   x0[0]   xe[1]   x0[1]   xe[2]   x0[2]   xe[3]   x0[3]   xe[4] 

Hi \    1    /   "2   n ^    1    '  H21 n x    '    y   "2 n \    1    /    H2 

d[0] d["l]      1T        d[2] d[3] 

^ u  ^ u^    i    /Us^'u' U-i \      I      / - ' "4 

"   c[2]''' 

Figure 3.4 : Update ßltering. An N = 2 point linear predict followed by an N = 4 
point linear update yields the update vector h shown across the top. 

The update filter vector h should pass low-order polynomials into c[n] while at- 

tenuating high-order polynomials. Conversely, we can design the mirror update filter 

vector g (defined as gn = (-l)nhn) to suppress low-order polynomials. For the exam- 

ple in Figure 3.4, we have 

g = [-pi«i, -ui, (-P1U2-P2U1), -«2, (I-P2M2-P1U3), ••• 

-u3,  (-P2U3-P1U4),  -«4,  -P2Uif. 
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Since the N = 2 prediction coefficients are already determined, there are N — 4 

unknowns (the update coefficients Uk) in g. Solution of Vg = 0 as in equation [3.3] 

yields the update coefficients, which now suppress high-order polynomials. 

In summary, in the lifting scheme we design the prediction step to eliminate the 

low-order polynomial signal structure, leaving only the high-order details. We design 

the update to preserve the low-order polynomial signal structure at the next coarser 

scale. 

3.2    Equivalence between Polynomial Constraints and Van- 

ishing Moments 

3.2.1    Wavelet transform in polyphase form 

As discussed in Section 2.1, any biorthogonal wavelet transform can be represented 

as a perfect reconstruction multirate filter bank. By splitting each wavelet filter into 

its polyphase components [11], the DWT can be implemented as shown in Figure 3.5. 

x[n] 
12 

xe[n] 

12 
x0[n] 

HeW    H0W 

E(z) 

c[n] 

d[n] 

R(z) 

H (z)    G iz\ *°[ni to 

H0W    V) 
xjn]   ?0 

^  1 c. 1 ' 

x[n] 

-1 

Figure 3.5 : Wavelet filter bank in polyphase form. 

We have used the fact that H(z) = He(z
2) + z~1H0(z

2), etc., and that filtering a 

signal with He(z
2) and then downsampling by two is equivalent to downsampling the 

signal by two and then applying He(z) [11]. 
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3.2.2    Lifting in polyphase form 

The lifted wavelet transform can be written in a similar form. As discussed in Section 

3.1, lifting is comprised of a split, predict, and update. If we perform an odd/even 

split, we are working in the "polyphase domain." In this context, the predict and 

update steps are represented by the polyphase matrices shown in Figure 3.6. The 

prediction matrix passes xe[n] unchanged, but the wavelet coefficients d[n] are the 

difference between x0[n] and P(xe[n]), i.e., the failure of the odds to be predicted by 

the evens. Likewise, the update matrix passes the wavelet coefficients untouched, but 

uses these coefficients to "update" the xe[n] and create the scaling coefficients c[n]. 

X [n]     - n xe[n] 
1      0 

xeN 
 ►■ 1   U(z) cW 

z 
i« x°tn] 

-?{z) 1 
d[n] 
 ► 0     1 

d[n] 

xel"J 
 ► 

*eMto| 
1 -u(4 1      0 

0      1 
d[n] 
 ► P(z)  1 ^■ito 

x[n] 

-1 

« i-x       r^   -.■ x        11 -i x Undo Undo       .. Split       Predict        Update      Update       predjcl     Merge 

Figure 3.6 : Polyphase representation of lifting operators. 

X 

z 

[n]    , n xe[n] 
pVi2—*► 

.     x0[n] 
l-^i2 ► 

1-P(^)U(4   \}{z) 

-P(z)        1 

c[n] 
 ► 

d[n] 
 ► 

1 

?[Z) 

■uw 
Xe[nL t2 

Xo[nL t2 

|[n] 
-1 

E(z) R(z) 

Figure 3.7 : Polyphase representation of lifting with the prediction and update stages 
combined into one matrix 

Multiplying these matrices together yields the representation shown in Figure 3.7. 

Thus, we have taken the lifting process and written it in terms of the polyphase 
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matrices E(z) and R{z). Note that the one stage implementation of the lifted 

wavelet transform will not, in general, be orthogonal. Orthogonality requires that 

EH(z~1)E(z) = I [11], which forces our prediction and update filters to satisfy 

[     ' A{l-U{z)P{z)) 

U{z)U{z~1)   =   1/4. 

This will only be possible with real finite impulse response filters if P(z) and U(z) 

are constants (or delays). Therefore, we hope to interpret the general one-stage lifted 

transform as a biorthogonal wavelet transform. We equate the entries in the lifted 

polyphase matrices of Figure 3.7 with the polyphase components of the wavelet filters 

of Figure 3.5. This yields the following relations: 

He(z) = l-P(z)U(z) 

H0(z) = U(z) 

Ge(z) = -P(z) 

G0(z) = 1, 

or, equivalently, 

H(z)   =   l-P(z2)U{z2) + z-lU(z2) (3.4) 

G(z)   =   -P(z2) + z~\ (3.5) 

with similar expressions for H(z) and G(z). 

3.2.3    Vanishing moments and lifting constraints 

In a wavelet system such as that shown in Figure 2.5, the analysis filters h[n] and 

g[n] correspond to a scaling function </>(£) and a wavelet function ip(t) respectively. 

The relationship between the wavelet filters and the wavelet functions is defined by 
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the wavelet recursion relations [3], as shown in Section 2.1.2: 

(j)(t)   =   ^h[k]<l>{2t-k) 
k 

k 

The wavelet filter coefficients h[k] and g[k] can be designed by adding vanishing 

moments to the underlying scaling and wavelet via the recursion relations. In equa- 

tions [3.4] and [3.5], we have written the wavelet filters in terms of the prediction 

and update filters. Thus, we can map the vanishing moments constraints into con- 

straints on our prediction and update filters P and U. For example, if we add a zerot/l 

vanishing moment to ip(t) we have 

/OO /»00 

mdt= /    Y/g[k]<t>(2t~k) = 0. 
•oo J— OO     f. 

We switch the order of the integral and the finite summation, recognize that f <f>(2t - 

k)dt is a non-zero constant m0, and we have 

mo XI 9[k] = 0- 
k 

Thus, the sum of the coefficients g[k] must be zero.   But G{z) = -P(z2) + z~l. 

Forcing ^fc<?[A;] = 0 yields the constraint 

P1+P2 l-pjv = l- 

This is identical to the lifting constraint that we derived in Section 3.1.2 when 

we forced the prediction filter to eliminate zerot/l order polynomials! Upon further 

analysis, we find that every vanishing moment we add to the analysis wavelet function 

ip(t) is equivalent to eliminating additional polynomials in our prediction step. Once 

the coefficients of G(z) (and, thus, the prediction filter coefficients) are determined, 

we add vanishing moments to the synthesis wavelet function ip(t) via the relation 

/OO ^ /"OO ^ 

tl i>(t)dt =  /     Yl 9\k] tl <K2* - *0 = 0. 
■00 J— 00   j. 
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It is straightforward to show that each vanishing moment on the synthesis wavelet 

function ip(t) is equivalent to an additional update filter polynomial constraint, as 

derived in Section 3.1.3. 

Thus, designing a biorthogonal wavelet system by adding vanishing moments to 

the underlying wavelet functions is equivalent to eliminating and preserving poly- 

nomials with the predict and update steps, respectively. Both interpretations yield 

identical constraints on the wavelet filters h, g, h and g. However, the lifting scheme 

never explicitly utilizes the polyphase matrix representation or the underlying scal- 

ing and wavelet functions, and therefore makes the incorporation of nonlinearities 

and adaptivity into the wavelet transform more understandable. In addition, when 

we utilize the prediction and update filters in Section 4.1.1 to satisfy requirements 

other than the traditional lifting constraints, it is clear that we are sacrificing vanish- 

ing moments in the underlying scaling and wavelet functions. Thus, we can exploit 

the structure of the lifting scheme to build adaptive and nonlinear transforms, while 

carefully controlling the underlying properties of the wavelet transform. 

3.3    The Update/Predict Programme 

When the prediction and update operators are constructed via the polynomial lifting 

constraints, the output of the update step is a coarse approximation (low pass and 

downsampled) version of our signal. We need this coherent interpretation of the 

update coefficients, since they will be input to further iterations of the transform. 

After the first iteration, all subsequent predictions are based on updated coefficients. 

If we are to make effective prediction throughout the transform, we need some kind 

of structure in the update. However, if the prediction is performed with a nonlinear 

operator, it may not be possible to construct an update operator that satisfies the 

polynomial lifting constraints and provides a low pass interpretation of the updated 

coefficients. 

In addition, we need to ensure that our transform is stable.   Lossy processing 
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introduces errors into the transform coefficients, so it is crucial that the nonlinearities 

do not unduly amplify these errors. For compression, our goal is to use a high-order 

predictor in smooth regions and a low-order predictor near edges. In order to avoid 

sending side information on which predictor was chosen, we need to base the choice 

only on the xe[ri\. However, in lossy compression the decoder only has the quantized 

even coefficients xe[n] rather than the original coefficients xe[n]. If we use locally 

adapted filters, then quantization errors in coarse scales could cascade across scale 

and cause a series of incorrect filter choices leading to serious reconstruction errors. 

In the predict-then-update case, the problem of stability cannot be solved by 

synchronization alone, i.e., having the encoder make its choice of predictor based on 

quantized data. The reason is that the reconstructed values xe[n] are obtained from 

quantized low pass values c[n]. The low pass signal c[n] is a function of the prediction 

residual signal d[n], which in turn depends on what filters are chosen for prediction, 

as shown in Figure 3.8. Hence the encoder cannot obtain the quantized values xe[n] 

until it selects a predictor, and it cannot select a predictor without obtaining xe[n). 

If we are to employ a nonlinear lifting procedure for lossy coding, it is essential that 

we avoid this catch 22. 

A crafty detour (developed by Davis [16]) around these problems is to perform 

the update step first, followed by the prediction, as shown in Figure 3.9. The relevant 

equations then become 

c[n] = xe[n] + U(x0[n]),       d[n] = c[n] - V(xe[n]). 

In the update/predict programme, the roles of the update and prediction filters 

are reversed. We first design a linear update filter to preserve the first N low-order 

polynomials in the data (as in Section 3.1.3). This is equivalent to adding vanishing 

moments to the dual wavelet function ip(t). In the standard predict-first scheme, we 

first add vanishing moment to the primal wavelet function, as described in Section 

3.1.2. 

Since the update/predict lifting creates c[n] prior to d[n], the prediction operator 
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Figure 3.8 : Two-iteration lifted wavelet transform trees with predict-first (left) and 
update-ßrst (right). When predicting first, the prediction must be performed prior to 
construction of the coarse coefficients and iteration to the next scale. When updating 
first, the prediction operator is outside the loop. The coarse coefficients can be 
iterated to the lowest scale, quantized, and reconstructed prior to the predictions. 
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Figure 3.9 : Update-ßrst lifting sequence. 
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can be designed to optimize performance criteria other than polynomial suppression 

capability, without affecting the coarse approximation c[n]. For example, the pre- 

dictor could be a median filter, or a filter designed to minimize the prediction error 

energy. In Section 4.1.2, we will exploit this flexibility to design space-varying pre- 

dictors that adapt to the characteristic of the signal, while completely preserving the 

low pass interpretation and orthogonal properties of the wavelet transform. 
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Chapter 4 

Adaptive Transforms 

4.1    Introducing Adaptivity into the Wavelet Transform 

The lifting approach to wavelet design gives us a great deal of flexibility. In principle, 

we can use any linear, nonlinear, or space-varying predictor or update, and the lifting 

construction ensures that the resulting transform is invertible. We now investigate 

the capabilities of the lifting approach for adaptive DWTs that optimize data-based 

prediction measures to match the characteristics of a given signal. The motivation 

behind these new transforms is that better predictors will lead to more efficient signal 

representations. Since the compression abilities of signal transformations are key to 

successful signal processing algorithms [2], the adaptive transforms derived here have 

the potential to improve transform-based processing. 

4.1.1    Scale-adaptive transforms 

In Section 3.1, we derived the lifting construction based on a polynomial signal sup- 

pression/preservation argument. However, we alluded to nonlinear schemes based 

on other than polynomial prediction. For example, we could design a predictor for 

certain textural components, such as periodic patterns. More generally, we can let 

the signal itself dictate the structure of the predictor [17, 18]. 

In the scale-adaptive transform (ScAT), we adapt the predictor in each lifting 

stage to match signal structure at the corresponding scale. The basic idea is to use 

a linear iV-point predictor, but require that it suppress polynomials only up to order 

M < N. The remaining N - M degrees of freedom can then be used to adapt the 

predictor to the signal. 
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Specifically, at each scale we optimize the predictor over the N - M degrees of 

freedom to minimize the spatially-averaged squared prediction error. This optimiza- 

tion produces predictors that can match both polynomial and non-polynomial signal 

structure within each scale. For example, if the signal contains a regular texture, 

then a relatively low-order adaptive predictor of this form may be able to match the 

texture much better than a pure polynomial predictor of the same order. 

The optimization itself is a straightforward iV-dimensional constrained least- 

squares problem, the constraint being that we require the predictor to suppress 

M < iVtn-order polynomials. Let xG denote the odd-indexed data we wish to predict, 

let Xe, [Xe]n,fc = xe[n - k], be a matrix composed of the even-indexed data used in 

the prediction, and let p be the vector of prediction filter coefficients. The vector of 

prediction errors is then given by 

e = x0 - Xep. 

Our objective is to find the prediction coefficients p that minimize the sum of 

squared prediction errors eTe while satisfying the M < N polynomial constraints. 

Thus, we solve 

min||x0-Xep||2    subject to   V°p = [1   0---0]T, 
p 

with V° an M x iV matrix determined as in Section 3.1.2. Since V° is the first M 

rows of an N x N Vandermonde matrix with full rank, we are ensured that our M 

polynomial constraints are linearly independent. The optimal prediction coefficients 

for this constrained least squares problem can be efficiently computed using the QR 

factorization method [15, p. 567]. 

The optimal predictor attempts to "lock-on" to the dominant signal structure at 

each scale. The wavelet coefficients d[n] then represent the variations of the signal 

from this structure. Once the optimal predictor is determined, the update is designed 

using the methods of Section 3.1.3 to ensure that the dominant coarse-scale (low- 
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frequency) structure is preserved in the coarse signal approximation that is used at 

the next scale. 

Unfortunately, the effectiveness of this filter is limited, due to the large number 

of pixels at each scale (especially high scales). Our prediction filter is attempting to 

minimize the prediction error across the entire scale. However, our signals our non- 

stationary, with the structure varying significantly within each scale. It is too much 

to ask of a single filter to mimic the signal structure of an entire scale. Therefore, we 

seek an adaptive algorithm which adapts point-by-point, not just scale-by-scale. 

4.1.2    Space-adaptive transforms 

In addition to the scale-by-scale optimization described above, lifting permits us to 

instantaneously adapt the predictor to the signal and change the wavelet basis func- 

tions at each point. An example of such a transform is our space-adaptive transform 

(SpAT) [16, 17, 18]. We employ the update/predict framework of Section 3.3 and 

choose a predictor from a suite of predictors to minimize each d[n] value. 

Our adaptive algorithm performs a N = 1 point update, and then for each n 

chooses the Ne{l, 3,5,7} point prediction that minimizes the prediction error d[n\. 

These filters are a branch of the Cohen-Daubechies-Feauveau family [19, 20]. We 

chose this (1,N) family because it provides the SpAT with a great deal of flexibility 

[16]. The (1,1) filter set corresponds to a Haar (box) wavelet transform, while the 

underlying wavelet functions of the (1,7) filter set are shown in Figure 4.1. These 

wavelet functions are relatively smooth and the synthesis functions have small side- 

bands, making them a good choice for compression and signal estimation. 

A demonstration of the SpAT applied to a step edge is shown in Figure 4.2. The 

transform is able to lock-on to the dominant signal structure at each point, and avoid 

discontinuities and other high-order polynomial phenomena that would decrease the 

quality of prediction. 

When this algorithm is used for signal estimation, we choose the minimizing filter 
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(a) Analysis Scaling Function     (b) Synthesis Scaling Function 

(c) Analysis Wavelet Function    (d) Synthesis Wavelet Function 

Figure 4.1 : Top row: (a) analysis and (b) synthesis scaling functions for the order 
(1,7) Cohen-Daubechies-Feauveau Glter used in the SpAT. Bottom row: (c) analysis 
and (d) synthesis wavelet functions. These basis functions correspond to the update- 
first form of lifting. 

1    3   5   7   7   7   7 
xo-xox-o x e-x-o-x o-xo 

xe[n] x0N 
x-exo-xaxoxox-ox-o 

7   7   7   7   5   3    1 

Figure 4.2 : In the SpAT, the order N of the predictor varies with space n to minimize 
the wavelet coefficient value d[n]. Above each x[n] we give the corresponding choice 
N(n). As the predictor approaches an edge, it decreases N (chooses wavelets of 
smaller spatial support) in order to avoid the edge. 
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for each pixel, and remember the choices as side information. However, when we 

perform image compression, we cannot afford this overhead. Therefore, we choose the 

prediction operator based on the local properties of the image [21]. For each prediction 

window, we analyze the data to determine if it is well approximated by a low order 

polynomial. If it is, then we use a high-order predictor with wide support, which 

corresponds to a smooth basis function. If the data does not meet our smoothness 

criteria, we determine which pixels in the prediction window contribute to the failure. 

We classify these pixels as "edge" or discontinuity coefficients. Near these edges we 

reduce the order of the predictor so that the neighborhood we use for prediction never 

overlaps the edge. In this manner we maintain high accuracy away from edges, avoid 

large errors in the presence of edges, and achieve the same filter choices shown in 

Figure 4.2. 

4.1.3    Other adaptive schemes 

In the above sections, we described two fundamental algorithms. In the first class 

(scale adaptive), we created a prediction filter at each scale by minimizing the overall 

mean-square prediction error at that scale. It was limited due to the low number 

of free variables, compared to the large number of prediction points. Therefore, the 

filter could not effectively lock-on to the underlying structure of the image. 

In second class (spatially adaptive), we minimized the prediction error at each 

pixel by choosing the prediction filter from a predetermined family of filters. Without 

these family constraints, the algorithm could drive the prediction error to zero at each 

pixel, effectively removing all the structure from the signal. 

It is possible to combine these two ideas into a single algorithm. Instead of limiting 

the filter to a family, we instead design the prediction filter with the ScAT algorithm 

(free variables used to minimize the prediction error). However, whereas the ScAT 

created one filter for each scale, we now design a new filter for each pixel. To prevent 

the filter from removing all the information from our signal, we analyze a block of 
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data around each pixel, and allow this local data to influence the design criteria. This 

makes each prediction filter more heavily dependent on local data, instead of data 

across the entire scale as in the ScAT. 

4.1.4    Median filtering 

Median filters are well known nonlinear filters, and have been successfully incorpo- 

rated into wavelet-like decompositions by Goutsias and Heijmans [22], Hampson and 

Pesquet [23], and de Queiroz et al [24]. These decompositions show great promise 

for image compression, and all have structures similar to our lifting construction. 

Therefore, we hope to incorporate and interpret the median filter within our adaptive 

lifting scheme. 

Consider the application of an iV-point median filter predictor. For each odd 

coefficient a;[2n + l], the predictor will analyze the N nearest even coefficients x[2(n — 

k)] (iV-point data window) and choose as the prediction the median value of this data 

set. The detail coefficients d[n] = x[2n + 1] - P(x[2(n - k)]) will be the difference 

between the odd coefficients and these median values for each data window. 

Thus, for every neighborhood of N data points, the output of the median filter 

is a single member of the original data set. If, for example, the median value is the 

second data point in our window, then the output of the median filter is equivalent 

to applying the filter e2 = [0 1 0 • • • 0] to the iV-point data window. In general, let 

e* be a length-JV filter of zeros with a 1 in the ith position. If the median value of the 

data is in the ith position of the data window, then the output of the median filter 

is equivalent to applying the filter e* to the data window. Thus, median filtering is 

adaptive linear filtering, with each filter chosen from the family of {e^}^. 

Using the adaptive lifting ideas developed above, we utilize a median filter in the 

prediction step and then follow this operation by an adaptive update step, designed to 

preserve the low pass interpretation of the scaling coefficients c[n]. First, we compute 

the wavelet coefficients d[n] using the median filter. For each n, we remember which 
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ei was utilized. Then, a tree can be constructed to trace each scaling coefficient up 

to the the original data x[n], as shown in Figure 4.3. For each d[n] used to lift the 

coarse coefficient, we have a contribution from only two members of the original data 

set. This provides an update vector h as described in Section 3.1.3 and shown across 

the top of Figure 4.3. We apply the appropriate set of linear constraints to solve for 

the update filter coefficients «;. 

h = [o M,        -u,       4,        1        Ik   -4,-4rMi   u4      o] 
xe[0]   x0[0]   xe[1]   x0[1]   xe[2]   x0[2]   xe[3]   x0[3]   xe[4] 

1t A    1f    L^'ii/i ^it 
d[b] dm    iy     d[2] d[3] 

^-C[2]'' 

Figure 4.3 : Median prediction with linear update Altering. An N = 5 point median 
älter prediction followed by an N = 4 point linear update yields the update vector h 
shown across the top. 

Each scaling coefficient c[n] is constructed as a low-order polynomial approxima- 

tion to the original data.' A new set of update filter coefficients uk must be found 

for each n to ensure each c[n) has a valid polynomial interpretation. Thus, despite 

the application of the nonlinear median filter in the predict step, the update filter 

coefficients u{ adapt to ensure the scaling coefficients satisfy linear polynomial con- 

straints and are a low pass representation of the original data set. We can now iterate 

on these coefficients to maintain the recursive, multiscale properties of the wavelet 

transform. 

If we desire an update filter of length N, we must generate N update constraints. 

If N = 1, then the one-point update filter coefficient becomes u\ = 1/2 for any choice 

of median filter and any data. 
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For N > 1, we typically use all the free variables to satisfy polynomial constraints. 

However, it is possible that a single data point will be the output of multiple median 

prediction filters, as shown for xe[3] in Figure 4.3. Thus, the branches of the update 

filter tree overlap, and the resulting linear update constraints may be incompatible 

(the resulting matrix V° will be poorly conditioned). In this case, we incorporate 

the first few polynomial constraints, and use the remaining free variables to minimize 

the energy of the update filter. We have found in practice that this keeps the update 

filter coefficients from becoming highly unbalanced, even when the update filter tree 

branches are greatly overlapped. 

It is also possible to incorporate a median filter into the update step. Using 

our adaptive-filter interpretation of the median filter, we know that a median up- 

date filter will choose just one detail coefficient to update each coarse coefficient, as 

demonstrated in Figure 4.4. Regardless of the median choices (for the prediction or 

the update filters), we form each coarse coefficient by combining the even data point 

and the output of the update median filter, multiplied by ui = 1/2. As discussed 

above, such a scheme is guaranteed to satisfy the 0th polynomial constraint. This is 

the median filter subband decomposition of Hampson and Pesquet (in their paper, it 

is referred to as Nonlinear Filter 2) [23]; it can be viewed as optimal in the sense of 

polynomial approximation. 

Note that, for the N - 1 point linear update and the median filter update, the 

output of the update filter is multiplied by ux = 1/2, regardless of the median filter 

choices of the prediction filter. However, for the N > 1 point linear update, the update 

filter must adapt to the prediction choices; therefore, the update filter coefficients 

(and possibly the median filter choices) must be available as side information for the 

inverse transform to achieve perfect reconstruction. Thus, the N = 1 point linear 

update transform and median filter update transform are better suited for image 

compression, especially lossless image compression [23, 25], since they can be easily 

modified to accommodate integer-to-integer arithmetic [26]. 
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h = [o        0        1 0       -1/2      \       O] 

xe[0]   xo[0]   xe[1]   x0[1]   xe[2]   x0[2]   xe[3] 

:1    ' 
/       \ 

1!        L^'y'l/i   ^1Y 
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c[1] 
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Figure 4.4 : 5-point median filter predict followed by a 3-point median filter update. 
The update vector h shown across the top satisfies the 0th polynomial constraint 
regardless of median choices. 

4.2    Redundant Lifting 

In many applications, the redundant (shift-invariant) wavelet transform often exhibits 

superior performance over the non-redundant wavelet transform [27]. For example, 

thresholding the non-redundant transform coefficients (as is done in denoising) creates 

pseudo-Gibbs phenomena in the neighborhood of signal discontinuities. The sizes 

of these artifacts are related to the actual locations of the discontinuities. In the 

redundant wavelet transform, we average over all possible shifts of the input signal. 

This averaging usually improves the mean square error (MSE) performance of the 

transform [27]. 

Our spatially adaptive lifted transforms are designed to improve performance near 

discontinuities. Therefore, we conjecture that our algorithms should improve denois- 

ing performance, if implemented within the redundant framework. We need only to 

extend the lifted wavelet transform to the redundant case. 

A typical redundant wavelet transform is implemented as shown in Figure 4.5. By 

removing the time-varying decimators, we ensure that the transform is shift-invariant. 

Of course, the transform now takes N data points to NL transform coefficients (where 

L is the number of iterations), and not to N. Subsequent iterations of the transform 



40 

r* W(Z2) -► c2[n] 

11/      N         C1^ _»^   fV„2\   _W   H    Tr.1 
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Figure 4.5 : Two iterations of the undecimated implementation of the redundant 
wavelet transform. Subsequent iterations at scale I require application of expanded 
ßlters H(z2') and G(z2') to the coarse coefficients ci[n\. 

at scale I must use versions of the original wavelet filters, expanded by 2l. This 

implementation is often referred to as the "undecimated wavelet transform" [28]. 

However, the first step in any lifting stage is the data split; in the non-redundant 

transform, this is implemented with decimators, and all the lifting operations are 

applied to downsampled data. In the redundant transform, we do not have direct 

access to this data, since the decimators have been removed! Therefore, we must 

implement the redundant wavelet transform with the decimators intact, as shown in 

Figure 4.6. Such an implementation, where we compute the wavelet transform for all 

possible shifts and average the results, is know as the "translation invariant wavelet 

transform," or "cycle-spinning" [27]. 

In a nutshell, the lifted redundant wavelet transform is simply two non-redundant 

lifted wavelet transforms, intertwined at each scale. The first transforms still predicts 

the odd coefficients from the even coefficients, as per the standard lifting construction. 

The second, however, predicts the even coefficients from the odd coefficients. This is 

accomplished by shifting the input sequence by one and then feeding it into the same 

lifted transform. The output of this doubly combined lifted transform is equivalent 

to that from the usual redundant transform. However, by using the lifting scheme in 

this setting, we are now able to introduce adaptivity into the redundant transform, 

creating a redundant space adaptive transform using the same ideas developed in 
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Figure 4.6 : Lifting implementation of the redundant wavelet transform. Transform 
is computed on all possible shifts at each scale. Transform is iterated on both sets of 
coarse coefficients, ce[n] and c0[n}. 

Section 4.1. 

4.3    Multiresolution Wedgelet Transform 

4.3.1     Construction of a multiresolution transform based on wedgelets 

The adaptive algorithms described in section 4.1 are all based on the wavelet trans- 

form. However, wavelet coefficients decay slowly near edges, while the wedgelet 

transform [4] is near optimal for edges. Therefore, we propose an adaptive multi- 

resolution algorithm based on wedgelets. This will require three modifications to the 

basic wedgelet transform. 

First, wedgelets are designed for images in the horizon class [4], that is, binary 

images with a single edge along a contour. Our images are gray scale with varying 

amplitudes. Thus, instead of fitting each dyadic square with a single wedgelet, we 

fit each square with a constant function and a wedgelet. This expands our class of 

functions to include horizon images of varying amplitudes. 
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Second, we design each wedgelet to be orthogonal to the constant function. Al- 

though the wedgelets themselves do not compose an orthonormal set, we know that 

for each dyadic square, only a single wedgelet will be chosen. Thus, we are guaranteed 

that our final approximation (for any dyadic square) is composed of two orthonor- 

mal components. This modification makes our wedgelets similar to unbalanced Haar 

wavelets [29]. 

Third, the wedgelet transform is not truly multiresolution; it simply decomposes 

the image in space until a desired approximation error is achieved (by creating deeper 

and deeper dyadic splits). Therefore, we incorporate wedgelets into the lifting scheme 

to create a true multiresolution transform. To maintain control over the multiresolu- 

tion properties of the transform, we again use an update-first architecture (see Section 

3.3). Our lifted wedgelet transform has three steps: 

Split: Wedgelets are nonseparable, so we begin by dividing the original image x[n, m] 

into four disjoint subsets. This is performed by rectangular sampling: 

Xl[n,m] = x[2n,2m], x2[n,m] = x[2n + 1,2m], 

xs[n, m] = x[2n, 2m + 1],       x4[n, m] = x[2n + 1,2m + 1]. 

Update: We combine the four polyphase components to represent a coarse approxi- 

mation to the original image. Similar to the SpAT transform of Section 4.1.2, we 

perform a Haar update. Thus, each xi[n, m] is replaced with a coarse coefficient 

c[n, m] = (xi[n, m] + x2[n, m] + x3[n, m] + x±[n, m]) /4. 

Predict: We now generate the wavelet coefficients dk[n, m] as the error in predicting 

xk[n,m] from c[n,m] for k = 1,2,3. For our prediction operator, we analyze a 

neighborhood of c[n, m] and fit the best wedgelet to this data. This wedgelet 

is created as described above (it is comprised of a constant function and an 

orthogonal wedgelet). The projection onto the constant function is simply the 
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average value of the data. Since each wedgelet is orthogonal to the constant 

function, the best wedgelet is the one with the largest magnitude projection 

coefficient. Once this best wedgelet is found, we determine the prediction er- 

ror between this wedgelet and the polyphase coefficients Xk[n,m], k = 1,2,3. 

These prediction errors (our failure to be well approximated by a wedgelet) 

are our detail coefficients dk[n,m], k = 1,2,3. Thus, at each scale we find the 

wedgelet transform which best approximates the low pass coefficients, and use 

this approximation to predict the missing polyphase components. 

Clearly, this algorithm is adaptive, since the best wedgelet is chosen to create each 

detail coefficient at each scale. The transform is multiresolution, due to our update- 

first lifting architecture. The lifting structure also ensures that our transform is 

computationally efficient; the transform still requires only 0(N2) operations, although 

the scaling factor is increased by two orders of magnitude. Our choice of a Haar update 

preserves the orthogonality of the coarse coefficients. Since wedgelets are near optimal 

for certain classes of images, we expect that our multiresolution wedgelet transform 

will also perform well on these images. 

We immediately have two minor extensions to this algorithm. First, we can pass 

the choice of wedgelets (and possibly the wedgelet coefficients) as side information. 

Second, instead of basing the choice of wedgelet on the coarse coefficients, we could 

choose the wedgelet which minimizes the prediction error for each set of detail coef- 

ficient (similar to the SpAT). 

4.3.2    Combined wedgelet/wavelet transform 

Although the wedgelet transform is near optimal for edges, it does not match the 

performance of the wavelet transform in smooth regions. However, it is possible to 

combine the wedgelet and wavelet transforms to increase the overall performance. We 

present two methods that achieve this goal. 

First, we create a [slightly] redundant transform using both the wavelet and 
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Figure 4.7 : The [slightly] redundant wedgelet/wavelet transform. At each iteration, 
we take both the wedgelet and wavelet transform of the coarse coefficients. Total 
redundancy is approximately four. 

wedgelet basis functions. At scale 0, we take both the wedgelet and wavelet trans- 

form of our image. At scale 1, as we iterate on the coarse coefficients, we take both 

transforms for each set of coarse data. As we invert these transforms, we average the 

results. Thus, we have a system with redundancy of approximately four. An example 

of this transform is shown in Figure 4.7. 

Second, we create a critically sampled transform which chooses between the 

wedgelet approximation and wavelet approximation for each pixel. This is similar 

to the SpAT, which chooses from the (1, N) family of filters at each point. In this 

case, at each coarse coefficient, we determine if the coefficient of the best wedgelet 

is sufficiently large. If so, then we are most likely in an image region dominated 

by a large edge [30]. In this case, we assume that the wedgelet is a good predic- 

tor, and use it to create the detail coefficients. If not, then a Haar transform (or a 

smoother predictor) is used to create the details. This transform has the advantage 

of increased flexibility without increased redundancy. This makes it potentially well- 
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suited for certain image compression applications. We can extend the algorithm for 

image denoising applications by determining the best choices and passing these as 

side information. 

4.3.3    Nonlinear approximation with wedgelets 

As shown in [4] and mentioned in Section 4.3.1, wedgelets form a near optimal rep- 

resentation for images in the horizon class. Therefore, our multiresolution wedgelet 

transform has the potential to create sparse representations for these images. 

Figure 4.8 demonstrates this potential. We created a test image constructed of 

smooth (polynomial) regions separated by discontinuities along contours. We trans- 

formed the image using the Haar, Daubechies (7,9), and multiresolution wedgelet 

transforms, and retained the N largest coefficients. We then used these coefficients 

to reconstruct the image and measured the mean square error (MSE) between our ap- 

proximation and the original image. The decay of this approximation error represents 

the compression potential of the transform [31]. 

As shown in Figure 4.8, the error in the wedgelet approximation decays faster than 

both the Haar and Daubechies (7,9) approximations. We empirically determined the 

error decay for this test image. The Haar and Daubechies (7,9) errors decay as 

N*1-5, while the multiresolution wedgelet error seems to decay as N~2. This is very 

encouraging. 

Figures 4.9 and 4.10 display our test image and approximations by each of the three 

transforms. The approximations in Figure 4.9 were created by retaining N = 500 

coefficients, while the approximations in Figure 4.10 were created with N = 1700 

coefficients. These choices of N were made to keep the PSNR of the approximations in 

the 30-40 dB range. Clearly, the wedgelet transform provides the best approximation 

along the discontinuities, as expected. 

To further compare the three algorithms, we plotted the magnitude of the ap- 

proximation error for N = 350 (chosen smaller to accentuate the errors) in Figure 
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Figure 4.8 : Mean square error (MSE) of approximations to our test image (smooth 
regions separated by discontinuities along contours) versus the number of coefficients 
used in the approximation. The multiresolution wedgelet transform looks very promis- 
ing. 

4.11. The wedgelet transform and the Haar transform both struggle in the smooth 

regions. The wedgelet transform does a better job of reconstructing the edges. The 

Daubechies (7,9) transform performs well in the smooth regions, but suffers badly 

near the discontinuities. This strengthens our hypothesis that the ideal solution is 

a combination of the wedgelet transform and a smooth predictor, as described in 

Section 4.3.2. 



47 

Original Image 

Haar approximation 

Daubechies (7,9) approximation 

jjiBBIiiilSi 

fc-I 

Multiresolution wedgelet approximation 

Figure 4.9 : Approximations to our test image. In each case, N = 500 coefficients 
were used for the approximation. The wedgelet transform provides improved MSE 
performance and does a superior reconstruction job in the vicinity of the discontinu- 
ities. 
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Figure 4.10 : Approximations to our test image. In each case, N = 1700 coefficients 
were used for the approximation. The wedgelet transform provides improved MSE 
performance and does a superior reconstruction job in the vicinity of the discontinu- 
ities. 
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Daubechies (7,9) error Haar error 
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Multiresolution wedgelet error 

Figure 4.11 : Approximation errors for our test image. In each case, N = 350 terms 
were used in the approximation. The wedgelet and Haar transforms both struggle 
in the smooth regions, while the wedgelet transform has the best representation of 
the edges. The Daubechies (7,9) transform performs well in the smooth regions, but 
suffers near the discontinuities. 
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4.3.4    Wedgelets for image analysis 

As mentioned in Section 4.3.1, to find the "best" wedgelet, we must compute (at 

each pixel) the projection of the image onto all the wedgelets and choose the one 

with the largest magnitude coefficient. We also proposed in Section 4.3.2 to use this 

coefficient to make adaptive decisions. If the coefficient exceeded some threshold, we 

used wedgelets to perform our prediction; otherwise, we used a smoother wavelet. 

However, there is a great deal of information embedded in these wedgelet coeffi- 

cients. For example, if a region of an image is well modeled by a particular wedgelet, 

then the coefficient of this wedgelet will be much larger than the other coefficients. 

However, if the region is not well modeled by any wedgelet, then all the wedgelet 

coefficient will tend to be small. We can compute the variance or entropy of the 

set of wedgelet coefficients for each point in the image, and use these statistics for 

analysis. An example of the wedgelet variances for our test image is shown in Figure 

4.12. The dark areas represent image regions with high wedgelet variance, while the 

light areas correspond to low variance. Figure 4.12 demonstrates that the areas of 

high wedgelet variance are very localized and correspond to the edges of the image, 

where we expect the wedgelets to perform well. 

Thus, by analyzing the statistics of the wedgelet coefficients, we gather additional 

information about our image. The above example demonstrates how to localize areas 

near edges and can be used to better adapt our predictor to the image. However, the 

same approach could be used to determine different types of texture or to perform 

image segmentation. 
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Figure 4.12 : Wedgelet coefficient variances for the test image of Figure 4.9. Dark 
areas correspond to high variance, and are localized near the edges of the image. 
Light areas represent regions of low variance (where wedgelets perform poorly). 
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Chapter 5 

Applications 

In this chapter, we demonstrate the utility of the adaptive algorithms developed 

earlier. We have two main applications: image compression and signal denoising. 

5.1    Image Compression 

5.1.1     Compression with the SpAT 

Figure 5.1 shows compression results for an edge-dominated test image. This image 

was constructed by superimposing texture on shapes of different magnitudes and ori- 

entations. The original image was transformed and compressed to 0.67 bits-per-pixel 

(BPP) (12:1 compression) using an embedded zero-tree encoder [32]. For simplicity, 

we compress the zero-tree symbol stream with a Huffman coder, and make no effort 

to compress the quantization bit stream. 

We notice in Figure 5.1 that images transformed with the Daubechies (7,9) and 

linear (1,7) lift suffer from blurring and ringing around the edges. However, the image 

transformed with our adaptive lifted algorithm has much sharper edges. Ringing is 

reduced, edge sharpness is maintained, and the background texture is not significantly 

corrupted. These improvements are very visible in the closeup shown in Figure 5.2. 

The reason for these improvements is that edges in our new transform are represented 

in a more compact fashion, and as a result there is less degradation of the image when 

we zero out small, non-zero coefficients. 

As a performance metric, we computed the peak signal to noise ratio (PSNR), 
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where xt is the ith pixel of our original image, % is the ith pixel of our reconstructed 

image, and N is the total number of pixels. The PSNR curve (Figure 5.3) demon- 

strates that, for this edge-dominated test image, the adaptive algorithm has better 

PSNR performance than both the Daubechies (7,9) and linear (1,7) lift transforms. 

The Daubechies (7,9) PSNR curve is shown for reference only; our goal is to improve 

the performance of the linear (1,7) lift though adaptivity. 

In Figure 5.4, we see the result of our adaptive lifting algorithm on the image 

cameraman, compressed to 0.32 BPP (25:1 compression). Our prediction decisions 

were based on data quantized to 7 iterations of the zero-tree encoder to ensure that 

the decoder and encoder were synchronized. While ringing has been reduced in the 

horizontal and vertical edges, there are still some ringing artifacts in the diagonal 

direction. The reason for these remaining artifacts is that we are using a separable 

transform in which we seek to avoid horizontal and vertical edges. 

Note in Figure 5.5 the PSNR performance of our adaptive algorithm over the 

linear (1,7) lift. Each point on the PSNR curve was generated with decoder/encoder 

synchronization. Again, the performance of the popular Daubechies (7,9) transform 

is shown for reference. Although our adaptive algorithm does not match the PSNR 

performance of the Daubechies (7,9) transform, the visual quality of our algorithm is 

comparable, due to the reduction in edge artifacts. In general the adaptive algorithm 

results in much sharper decoded images. We conjecture that introducing adaptivity 

into the Daubechies (7,9) transform (a potential area of future research) would result 

in further PSNR increases. 

5.2    Signal Denoising 

In this section, we compare the performance of the new adaptive transforms with 

some of the standard Daubechies wavelets for signal denoising applications. First, 

we compare the entropies of the coefficient distributions of several well-known test 

signals to assess the level of compaction afforded by the new transforms.   Second, 
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Original Image Compressed with Daubechies (7,9) 

Compressed with Linear (1,7) Lift Compressed with Adaptive Lift 

Figure 5.1 : Edge dominated image with texture, compressed to 0.67 BPP (12:1 
compression). Note the ringing around the edges of the square in the Daubechies 
(7,9) and linear (1,7) lift images that is eliminated by the adaptive lift. 
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Compressed with Daubechies (7,9) Compressed with Adaptive Lift 

Figure 5.2 : Close-up of edge dominated image with texture, compressed to 0.67 Bits- 
Per-Pixel (BPP) (12:1 compression). Note the sharp edges and reduced ringing with 
the adaptive algorithm. 
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Figure 5.3 : Peak Signal-to-Noise Ratio (PSNR) curves for the edge-dominated test 
image of Figure 5.1. This test image was designed to demonstrate the potential gains 
of the adaptive lift. The adaptive algorithm (solid line) outperforms the Daubechies 
(7,9) transform (dash-dot) and the (1,7) linear lift (dash). The encoder and decoder 
were synchronized for the adaptive algorithm. 
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Cameraman Image Compressed with Daubechies (7,9) 
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Figure 5.4 : Cameraman image compressed to 0.32 BPP (25:1 compression). 
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0.6     0.8    1 
BPP 

Figure 5.5 : PSNR curves for the cameraman image. The adaptive algorithm (solid 
line) outperforms the linear (1,7) lift (dash), but it does not meet the PSNR per- 
formance of the Daubechies (7,9) transform (dash-dot). However, edge artifacts are 
significantly reduced by the adaptive algorithm. The encoder and decoder were syn- 
chronized for the adaptive algorithm. 
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we compare the performance of the new transforms in a signal denoising application. 

Third, we compare the redundant implementation of our adaptive transform against 

other redundant transforms. Finally, we apply our multiresolution wedgelet transform 

to image denoising. 

5.2.1 Entropy comparison 

The entropy of the transform coefficient distribution is a common measure of the 

efficiency of a signal transform [33]. If we collectively denote the scaling and wavelet 

coefficients by {wi}, then the entropy is defined as 

H(w)  =   5^lwi|2l°g2lw<|2> 
i 

assuming the normalization ]T^ [tc^ j2 = 1. 

Table 5.1 compares the entropies of the Daubechies-8 (D8) and Daubechies-2 

(Haar) DWTs to those obtained using the ScAT and SpAT. The ScAT used an N = 

N = 4 lifting construction, with M = 3 vanishing moments enforced. The first four 

signals, Doppler, Blocks, Bumps, and HeaviSine, are standard test signals introduced 

in [2]. The last signal, DoppelBlock, is a concatenation of the Doppler signal and 

the Blocks signal (hence it contains both smooth and edgy signal elements). All 

signals were 1024 samples long. The entropies in Table 5.1 show that both adaptive 

transforms perform nearly as well (or better) than the D8 or the Haar in each test 

case. 

5.2.2 Denoising with non-redundant wavelet transforms 

Because DWTs provide such a parsimonious representation for wide classes of signals, 

the DWT has proved to be a powerful tool for noise removal. The basic "wavelet 

denoising" programme [2] is described as follows. We observe L samples {a;[n]} of an 

unknown function / with additive i.i.d. Gaussian noise {f?[n]}: 

x[n]  = f[n]+r][n],     n = 0,1,... ,L - 1. 
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Table 5.1 : Entropy results for various signals and transforms. 

Signal Entropy 

D8 Haar ScAT SpAT 

Doppler 2.84 3.15 2.88 2.57 

Blocks 2.60 2.62 2.52 2.32 

Bumps 3.54 3.65 3.53 3.23 

HeaviSine 2.26 2.50 2.25 2.27 

DoppelBlock 3.54 3.60 3.41 3.15 

We compute the DWT of x and apply a "threshold" nonlinearity to the wavelet 

coefficients. When a "hard-threshold" is applied, all the small wavelet coefficients 

(those with magnitude below a given threshold T) are set to zero, while all other 

coefficients are unaffected. A "soft-threshold" sets very small coefficients to zero 

and reduces all other coefficients by the threshold amount T. In both cases, the 

scaling (coarse) coefficients are not modified. The threshold T is chosen in proportion 

to the standard deviation of the noise. If the data signal is pure Gaussian white 

noise, then this universal threshold guarantees that asymptotically, as the number of 

data points increases, the wavelet thresholding estimator tends to the zero function, 

with probability one. The inverse DWT of the thresholded coefficients produces a 

"denoised" signal. For more information see [2]. 

However, in [2] the thresholds were derived only for orthogonal wavelet transforms. 

In [34], Berkner and Wells propose new thresholds that take into account correlations 

induced by redundant wavelet transforms and biorthogonal wavelet transforms. As 

shown in Section 3.2, the SpAT and ScAT are biorthogonal transforms, since each is 

implemented with one lifting stage. Thus, in our adaptive transforms (and in all our 

redundant transforms), we adapt the thresholds for each data point and at each scale 



61 

Table 5.2 : Denoising: MSE for various signals and transforms. Each signal is cor- 
rupted with additive white Gaussian noise with standard deviation equal to 10% of 
the peak signal magnitude. 

Signal MSE 

D8 Haar ScAT SpAT 

Doppler 0.030 0.049 0.027 0.032 

Blocks 0.040 0.029 0.034 0.032 

Bumps 0.032 0.034 0.028 0.031 

HeaviSine 0.014 0.031 0.014 0.016 

DoppelBlock 0.046 0.044 0.042 0.040 

to compensate for noise correlations and variances. 

Also, in [35] smaller thresholds than those proposed in [2] were found to perform 

better (with respect to mean square error) in many denoising applications. Smaller 

thresholds (and a hard threshold for redundant denoising) are also recommended in 

[27]. Thus, the experimental thresholds in [35] are used for all of our image denoising 

and redundant denoising experiments (modified to compensate for noise correlations, 

where appropriate). 

Table 5.2 provides the mean square error (MSE) performance of the four trans- 

forms and five signals discussed in Section 5.2.1 above. In this experiment, white 

Gaussian noise of standard deviation 0.1 x maxra \x[n]\ was added to each of the test 

signals. The MSEs in Table 5.2 show again that both adaptive transforms perform 

nearly as well as (or better than) the D8 and the Haar in each test case. An example 

of the denoised signals is shown in Figure 5.6. These graphs were generated for the 

DoppelBlock signal with additive white Gaussian noise, standard deviation at 5% of 

max signal magnitude. The ScAT performs well on the smooth regions, while the 

SpAT performs well on both the smooth and edge-dominated regions. 
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(a) Original Signal (b) Noisy Signal 

(c) Denoised Signal (D8) (d) Denoised Signal (Haar) 

4 
\\ j 

Ai 
.j 

(e) Denoised Signal (ScAT) (f) Denoised Signal (SpAT) 

Figure 5.6 : Top row: (a) original DoppelBlock signal (concatenation ofDoppler and 
Blocks); (b) signal with additive white Gaussian noise, standard deviation equal to 5% 
of maximum signal magnitude. Second row: (c) signal denoised with the Daubechies 
8 orthogonal wavelet transform; (d) signal denoised with the Haar transform. Bottom 
row: (e) signal denoised with the ScAT transform; (f) signal denoised with the SpAT 
transform. 
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Table 5.3 : Denoising: PSNR for various images and transforms. Each image is 
corrupted with additive white Gaussian noise with standard deviation equal to 15% 
of the peak image magnitude. 

Image PSNR (dB) 

D8 Haar ScAT SpAT 

Cameraman 22.9 23.0 23.6 23.3 

Lenna 23.4 22.7 24.3 23.5 

Building 22.4 22.8 23.2 23.0 

Bridge 21.4 21.3 21.9 21.6 

Fruit 24.6 24.3 26.2 25.1 

For our next experiment, we applied our algorithms to several standard images. 

We extended our algorithms to two-dimensions in a separable fashion; at each scale, 

our transforms are applied to the rows and then the columns of the image. We 

added white Gaussian noise (at 15% of max image magnitude) and then denoised 

those images (using the thresholds of [35], modified for our biorthogonal and adaptive 

transforms). As our performance metric, we again computed the peak signal to noise 

ratio (PSNR) as defined in equation [5.1]. Our PSNR results are shown in Table 

5.3, while an example of the denoised cameraman image is displayed in Figure 5.7. 

The ScAT demonstrates improved PSNR performance over the other transforms. 

The SpAT improves PSNR performance over the non-adaptive orthogonal transforms 

while significantly increasing edge crispness and preserving image texture. 

Remark: no results have been presented for our space/scale adaptive transform 

presented in Section 4.1.3. Although this transform was very interesting, it did not 

perform well in our denoising experiments. We attribute this to two factors. First, 

by allowing the prediction filters to adapt to a much smaller set of data, the re- 

sulting filters can become highly asymmetric. These filters tend to not converge to 
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(a) Denoised Image (D8) (b) Denoised Image (Haar) 

(c) Denoised Image (ScAT) (d) Denoised Image (SpAT) 

Figure 5.7 : Top row: (a) Cameraman image denoised with the Daubechies 8 orthog- 
onal wavelet transform, 21.4 dB PSNR, (b) image denoised with the Haar transform, 
21.6 dB PSNR. Second row: (c) image denoised with the Scale Adaptive Trans- 
form (ScAT), 22.1 dB PSNR, (d) image denoised with the SpAT transform, 21.9 dB 
PSNR. The ScAT yields the highest PSNR while the SpAT signiGcantly reducing 
ringing around edges. 
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continuous functions, and they accentuate quantization errors when our signals are 

reconstructed. Second, following such an adaptive prediction by an adaptive update 

is very problematic. The update filters tend to also become asymmetrical, again ac- 

centuating quantization errors. In addition, in many cases the combination of skewed 

prediction coefficients leads to lifted update constraints which can not be solved; the 

update matrix V° described in Section 3.1.3 becomes ill-conditioned (or singular). 

Thus, we do not recommend the space/scale adaptive transform for signal denoising 

at this time, although we intend to pursue future research with this algorithm. 

5.2.3 Denoising with redundant transforms 

We now denoise our test signals using the redundant wavelet transform. We compare 

a redundant version of our SpAT against redundant D8 and Haar transforms. Our 

thresholds must again be increased to account for the correlations introduced by the 

biorthogonal nature of the SpAT. Also, our thresholds must be increased for all three 

transforms due to correlations introduced by redundancy [34]. We now use a hard 

threshold, since this outperforms soft thresholding within the context of redundant 

transforms [27]. 

In Table 5.4, we present the denoising performance of the redundant transforms. 

These signals were corrupted with white Gaussian noise (standard deviation equal to 

5% of the maximum signal magnitude). In all cases, a hard threshold was applied. 

As expected, our adaptive algorithm is competitive in all cases, performing nearly as 

well as (or better than) the D8 and Haar transform for each test case. An example 

of the denoised DoppelBlock signal is shown in Figure 5.8. 

5.2.4 Denoising with multiresolution wedgelet transforms 

We now compare the multiresolution wedgelet transform against other transforms in 

an image denoising environment. We expect the wedgelet transform to perform well 

near edges, but to have problems in smooth regions and regions of texture. Therefore, 
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Table 5.4 : Denoising: MSE for various signals and redundant transforms. Each 
signal is corrupted with additive white Gaussian noise with standard deviation equal 
to 5% of the peak signal magnitude. In all cases, a hard threshold was applied. 

Signal MSE 

redund D8 redund Haar redund SpAT 

Doppler 0.010 0.017 0.012 

Blocks 0.012 0.006 0.008 

Bumps 0.012 0.011 0.011 

HeaviSine 0.007 0.009 0.008 

DoppelBlock 0.015 0.014 0.013 

(a) Noisy Signal (b) Denoised Signal (Redundant D8) 

(c) Denoised Signal (Redundant Haar)    (d) Denoised Signal (Redundant SpAT) 

Figure 5.8 : Top row: (a) DoppelBlock signal with additive white Gaussian noise, 
standard deviation equal to 5% of maximum signal magnitude; (b) signal denoised 
with the Daubechies 8 redundant wavelet transform. Second row: (c) signal denoised 
with the redundant Haar transform; (d) signal denoised with the redundant SpAT 
transform. 
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we use our combined wedgelet/D4 transform; at each scale, the results of denoising 

with the wedgelet transform are averaged with the results of the D4 transform. 

We added white Gaussian noise (at 15% of peak image magnitude) and then de- 

noised those images (using the hard thresholds of [35]). As our performance metric, we 

again computed the peak signal to noise ratio (PSNR) as defined in equation [5.1], as 

well as the L°° error. As shown in Tables 5.5 and 5.6, the combined transform exceeds 

the performance of the other non-adaptive transforms used here (the Daubechies 8 

wavelet, Daubechies 4 wavelet, and the Haar wavelet). Figure 5.9 shows an example 

of the denoised "fruit" image. As expected, the wedgelet transform performs very 

well in the vicinity of edges. 

Table 5.5 : Denoising: PSNR for various images and transforms. Each image is 
corrupted with additive white Gaussian noise with standard deviation equal to 15% 
of the peak image magnitude. 

Image PSNR (dB) 

D8 D4 Haar Combined Wedgelet & D4 

Cameraman 24.4 24.8 24.6 25.7 

Lenna 24.9 24.8 24.2 26.0 

Building 24.0 24.1 24.8 25.3 

Bridge 22.5 22.3 22.2 23.8 

Fruit 26.2 26.4 25.6 27.2 
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(a) Noisy Image (b) Denoised Image (D8) 

(c) Denoised Image (Haar) (d) Denoised Image (Wedgelet & D4)     , 

•- ■■■    * I     ■■■■'■■- ■    '       •  ' 

tu&. 

Figure 5.9 : Top row: (a) noisy "fruit" image (white Gaussian noise with standard 
deviation equal to 15% of maximum image magnitude, PSNR = 20 dB); (b) image 
denoised with the Daubechies 8 wavelet transform, 26.2 dB PSNR. Second row: (c) 
image denoised with the Haar transform, 25.6 dB PSNR; (d) image denoised with the 
combined Wedgelet/D4 transform, 27.2 dB PSNR. PSNR is improved and ringing is 
reduced. 
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Table 5.6 : Denoising: L°° error for various images and transforms. Each image is 
corrupted with additive white Gaussian noise with standard deviation equal to 15% 
of the peak image magnitude. 

Image L°° by Algorithm 

D8 D4 Haar Combined Wedgelet & D4 

Camera 0.71 0.80 0.83 0.68 

Lenna 0.62 0.63 0.73 0.57 

Building 0.63 0.68 0.69 0.58 

Bridge 0.62 0.64 0.68 0.60 

Fruit 0.57 0.59 0.64 0.53 
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Chapter 6 

Discussion And Future Work 

6.1 Contributions of this Thesis 

In this thesis, we developed two new adaptive wavelet transforms (the SpAT and 

the ScAT) for signal and image estimation. We also successfully modified the SpAT 

for image compression and redundant denoising. We built an adaptive transform 

around a median filter. Finally, we created a multiresolution wedgelet transform, and 

built several extensions, all of which work particularly well on image edges. These 

transforms were made possible by our interpretation of the lifting framework. The 

success of these transforms was demonstrated with applications to signal denoising, 

image denoising, and image compression. 

6.2 Potential for Future Research 

There are several areas of potential research that we find interesting. We present here 

three of the most promising: 

6.2.1    Image compression with the wedgelet transform 

Due to the encouraging preliminary results of Section 4.3.3, we conjecture that our 

multiresolution wedgelet transform may be well suited for compression on certain 

types of images. By combining the wedgelet transform and a "smoother" predictor 

as discussed in Section 4.3.2, the transform may perform well on more general images 

than the horizon model. Since the wedgelet transform is constructed with an update- 

first architecture, we can create and quantize all the coarse coefficients before making 



71 

any wedgelet prediction decisions. Thus, the decoder and encoder can be synchronized 

(as in the SpAT) with no side information, ensuring that incorrect prediction decisions 

do not contribute to reconstruction error. We intend to make these modifications 

and determine to what class of images (and to what quantization levels) the wedgelet 

transform is well suited. 

Also, at its most basic level, the wedgelet transform is simply a pruned tree. Our 

pruning is performed in a greedy fashion, i.e., at each node we choose the wedgelet 

which is the "best fit" or minimizes our prediction error. It may be possible to find 

a global optimum, looking across scale as we prune. 

6.2.2 Signal estimation with redundant transforms 

All the image transforms created in this thesis can be implemented as redundant 

transforms. Since our adaptive transforms demonstrated improved signal denoising 

performance over non-redundant transforms, we expect redundant versions of our 

transforms to out-perform redundant versions of our competitors. 

6.2.3 Signal estimation/analysis with the wedgelet transform 

The combined wedgelet/wavelet transform (described in Section 4.3.2) performed very 

well in a signal denoising environment. However, it still suffered in smooth regions or 

regions of texture. At each scale the results of the two transforms are averaged; thus, 

if the wedgelet transform performs poorly, so will the overall transform. 

Our critically sampled wedgelet/wavelet transform (also described in Section 

4.3.2) has the potential to solve this problem, since it chooses either wedgelets or 

smooth wavelets at each pixel. Our current decisions are based on the size of the 

wedgelet coefficient, or the statistics of those coefficients (as described in Section 

4.3.4). The decision for each pixel is made independent of the other pixels. However, 

better decisions could be made by analyzing the statistics of the wavelet coefficients, 

both across scale and within scale as done in [36]. 
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Finally, these statistics (and the statistics of the wedgelet coefficients) could be 

used to improve the processing of the transform coefficients. As described in Section 

4.3.4, this information could also be used to determine image texture or perform 

image segmentation. 
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