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1    INTRODUCTION 

This report summarizes the work we have performed for the project entitled "Real-Time 

Simulation Technologies for Complex Systems." The objective of this effort has been to 

develop and study three novel complementary directions that may be summarized as follows: 

1. Speed up the inherently slow simulation process of complex systems by exploiting new 

concurrent and parallel techniques. 

2. Exploit the hierarchical structure in multi-resolution simulation models by decompos- 

ing them in ways which preserve statistical fidelity. 

3. Explore new ways to extract metamodels for complex systems from simulation. We have 

been specifically targeting a radically different metamodeling approach using neural 

networks. 

The scope of the project has been to develop specific methodologies and algorithms and 

test them on benchmark problems in C4I application areas. Thus, appropriate simulation 

models were built, and algorithms based on the proposed new techniques were developed and 

tested. In many cases, the benchmark problems studied are the same or extensions of the 

ones developed during our previous project entitled "Enabling Technologies for Real-Time 

Simulation" (see also [5]). 

As in our last report [5], we begin by briefly outlining some of the major challenges 

faced by modeling and simulation techniques for complex systems and the approaches we 

are following to address these challenges (Section 1.1). We then describe the organization of 

this report (Section 1.2). 



1.1    Issues in Modeling and Simulation of Complex Systems 

Simulation is widely recognized as one of the most versatile and general-purpose tools avail- 

able today for modeling complex processes and solving problems in design, performance 

evaluation, decision making, and planning. This includes C4I environments, where most 

problems confronted by designers and decision makers are of such complexity that their 

analysis and solution far surpass the scope of available analytical and numerical methods; 

this leaves simulation as the only alternative of "universal" applicability. 

The importance of discrete event simulation has given rise to a number of commercially 

available software packages (e.g., SIMAN, SLAM, SIMULA, SIMSCRIPT, MODSIM, EX- 

TEND) whose applicability ranges from very generic to highly specialized. However, the 

use of typical simulation software is limited by factors such as the following: (a) One must 

have thorough knowledge of the specific tool at a detailed technical level before attempting 

to use it in a modeling effort, (b) One must be an experienced programmer, in addition 

to a decision maker, (c) In order to make decisions based on simulation, one usually needs 

to run a large number of simulations and then carefully manage all output data collected 

on a case-by-case basis, (d) The field of simulation was developed primarily as a special 

branch of statistics involving dynamical phenomena. Manual handling and analysis of in- 

put/output data is still the norm, while design of interfaces, componentware interoperability, 

intelligent and automated analysis of output have been neglected. For example, the practice 

of Object Oriented Programming (OOP), with few exceptions, is still nascent in simulation 

languages despite the fact that the OOP idea actually originated in simulation. In addition, 

hardware advances, such as massively parallel computers and workstation networking, are 

only beginning to be noticed in simulation theory and practice, (e) The ultimate purpose of 

simulation is often system performance evaluation and optimization. However, simulation is 

notoriously computer time-consuming when it comes to parametric studies of system perfor- 



mance. Unless substantial speedup of the performance evaluation process can be achieved, 

systematic performance studies of most real-world problems are beyond reach, even with 

supercomputers. 

With this brief discussion in mind, we identify below some of the issues that we believe 

constitute the major challenges faced by simulation technology today, and introduce some 

key ideas which have been the subject of further study in this project. 

1.  "What if" capability and concurrent simulation. A major goal of any simulator 

is to provide the capability to explore a multitude of "what if" scenaria.  The obvi- 

ous way to obtain answers to N "what if" questions is to perform (N + 1) separate 

simulations: one for some baseline scenario and N additional ones for each "what if" 

question. If a typical simulation run takes T time units, this procedure requires a total 

of (N + 1)T time units. In concurrent simulation, this objective is met by performing a 

single baseline simulation, but endowing it with the capability to generate all (N + 1) 

desired simulations concurrently.   This is accomplished by exploiting an intelligent 

sharing of data which results in a total simulation time of (T + c) « {N + 1)T, where 

c represents the overhead corresponding to this "intelligent data sharing". Concurrent 

simulation can be carried out on any sequential computer. The universal applicability 

of this approach has been the subject of our work during the previous and current 

projects. Although this issue has been resolved through the development of the Time 

Warping Algorithm (TWA) (see [7]), one of the findings of this project is that its com- 

putational efficiency significantly depends on how it is implememented on any given 

computer platform. 

2. Hierarchical simulation and statistical fidelity. In modeling complex systems it is 

impossible to mimic every detail through detailed simulation. The common approach 

is to divide the whole system hierarchically into modules with different simulation 



resolutions. The lower, high resolution, level simulator generates reports which are 

then taken as inputs for the higher level simulator. Current practice is to use the mean 

values of variables from the lower level reports as the input to the higher level. This 

implies that significant statistical information (i.e., statistical fidelity) is lost in this 

process, resulting in potentially completely inaccurate results. Especially when the 

ultimate output of the simulation process is of the form 0 or 1 (e.g., "lose" or "win" a 

combat), such errors can provide the exact opposite of the real output. Our effort has 

been directed at developing an interface between the two simulation levels to preserve 

the statistics to the maximum extent that the available computing power allows. In 

our previous project [5] we initiated a study of an approach based on clustering or path 

bundle grouping which was further pursued in this project. 

3. Metamodeling through Neural Networks. The main idea of metamodeling is 

to extract as much information from simulation as possible and process it so as to 

build a surrogate model of the system of interest which is much simpler (yet accurate) 

to work with. This is essentially analogous to constructing a function F(xi,... ,XN) 

from only selected values observed under selected combinations of values of x\,..., xjy. 

The problem, of course, is that the actual function we are trying to approximate 

with F(xi,... ,XTV) is unknown. The most common approach is to try and build a 

polynomial expression. This is often inadequate because if the shape of the actual 

curve corresponding to F(x\,..., x^) includes sudden jumps and asymptotic behavior 

(which is very often the case from experience), then polynomial fits to such curves are 

known to be poor. Thus, obtaining a metamodeling device of "universal" applicability, 

i.e., one capable of generating functions of virtually arbitrary complexity, remains 

an open issue. This project has explored neural networks as offering this capability, 

including some benchmark models and problems that have been analyzed with these 

techniques. 



1.2    Report Organization 

The contents of this report may be outlined as follows. 

• Section 2: The basic theoretical framework for explaining the concurrent simulation 

algorithms we have developed is first reviewed. Based on this framework, a general 

concurrent simulation approach was developed under our previous project, where a de- 

tailed Time Warping Algorithm (TWA) was also introduced. The concept of "speedup" 

was used in order to provide a clear quantitative measure of the improvement provided 

by concurrent simulation over conventional simulation techniques. This report includes 

the following new findings from our project: (a) extensions of the TWA that enhance its 

range of applications, (b) further investigations based on the speedup factor and some 

explicit numerical results, and (c) a study of the statistical significance of estimates 

obtained through the TWA. In addition, Section 2.7 describes the use of Concurrent 

Simulation in complex resource allocation problems requiring answers to a large num- 

ber of 'what if" questions in a near-real-time setting to support decision making in a 

C4I setting. 

• Section 3 The stochastic fidelity preservation issue in multi-resolution models of com- 

plex systems is discussed in detail. The Path Bundle Grouping (PBG) approach is 

described as a way to maintain stochastic fidelity in hierarchical simulations. The 

PBG approach is related to the theory of cluster analysis. We have reviewed different 

aspects of this theory in order to compare them to the Adaptive Resonance Theory 

(ART) neural network we have developed for the purpose of automating the task of 

path bundle grouping. We also report on an interesting "real-world" application we 

encountered in the course of this project. 

• Section 4 We review the main concepts involved in using neural networks as universal 

function approximators. A particular type of neural network, the Cascade Correlation 

5 



Neural Network (CCNN) was developed for the purposes of this project for its ability 

to build itself to an appropriate size as part of its learning process during the training 

phase. This was used in [5] on a testbed model using the Tactical Electronic Re- 

connaissance Simulator(TERSM). This section includes several numerical results and 

comparisons with polynomial metamodels previously derived, as a continuation of a 

study initiated earlier and presented in [5]. A new benchmark problem is studied based 

on an Aircraft Refueling and Maintenance System (ARMS) model. 

• Section 5 We present the main conclusions of our study, including lessons learned 

and recommendations. We also outline our ongoing work and some future research 

directions. 

2    CONCURRENT SIMULATION 

A major objective of this project is motivated by the time-consuming nature of system 

performance exploration through simulation: to obtain answers to N "what if" questions, 

(N + 1) simulations are needed. Therefore, our goal is the following: From a single simu- 

lation, obtain answers to all N "what if" questions simultaneously. The main idea behind 

the approach we used to solve this problem is to observe the evolution of a single sample 

path of the Discrete Event System (DES) under study, called the nominal sample path, as it 

operates under some parameter. As the sample path evolves, observed data (e.g., event oc- 

currences and their corresponding occurrence times) are processed to concurrently construct 

the set of sample paths that would have resulted if the system had operated under a set 

of different (hypothetical) parameters. Using these "concurrently constructed" hypotheti- 

cal sample paths, it is possible to "concurrently estimate" the corresponding performance 

measures which can be used in the design of the actual system. 

In this section we review the principles of concurrent simulation for solving the fundamen- 



tal "sample path constructability problem" (Section 2.1). We use the concept of a stochastic 

timed state automaton as a modeling framework for general DES, allowing us to describe a 

procedure for constructing sample paths of DES, a formal way of characterizing the function 

of any discrete event simulation software package (Section 2.2). In Section 2.3 we summarize 

the concurrent simulation method developed in our previous project [5] for solving the sam- 

ple path constructability problem, culminating with the Time Warping Algorithm (TWA). 

In Section 2.4 we summarize extensions that we were able to obtain during the course of this 

project. A significant part of our effort was also directed at investigating the computational 

efficiency of the TWA and our findings are summarized in Section 2.4. In Section 2.5, we 

also address the issue of statistical significance of estimates obtained through the TWA. In 

an Appendix to this Final Report we have included a copy of a recently published paper 

entitled "Concurrent Sample Path Analysis of Discrete Event Systems", which presents the 

"concurrent simulation" algorithm and its analysis in more detail. 

2.1    The Sample Path Constructability Problem 

We adopt the modeling framework of a stochastic timed state automaton (£,X,T,f,x0) [4] to 

characterize the function of any discrete event simulator. Here, £ is a countable event set, 

A' is a countable state space, and T(x) is a set of feasible (or enabled) events, defined for all 

x e X such that T(x) C £. The state transition function f(x, e) is defined for all x € X, 

e e T(x), and specifies the next state resulting when e occurs at state x. Finally, x0 is a given 

initial state. The definition is easily modified to (£,X,T,p,p0) in order to include probabilistic 

state transition mechanisms. In this case, the state transition probability p(x'; x, e') is defined 

for all x, x' e X, e' € £, and is such that p{x'; x, e') = 0 for all e' <£ T(x). In addition, p0{x) 

is the pmf P[x0 = x], x e X, of the initial state x0. 

Assuming the cardinality of the event set £ is N, the input to the system is a set of 



V1 = {Vl(l),t;1(2),...} 

VN = {vN(l),vN(2),---} 

DES 
(Oo) f('o) 

DES 
Wi) 

Figure 1: The sample path constructability problem for DES 

event lifetime sequences {Vi, • • •, V^}, one for each event, where V,- = {t>;(l),u;(2), • • •} is 

characterized by some arbitrary distribution. Under some system parameter 60, the output 

is a sequence f(0o) = {(ek,tk), k = 1,2,---} where ek e S is the fcth event and tk is its 

corresponding occurrence time (see Figure 1). Based on any observed £(0O), we can evaluate 

L[€(&o)], a sample performance metric for the system. For a large family of performance 

metrics of the form J(60) = E[L[£(60)]], L[£(60)] is therefore an estimate of J(60). Defining a 

set of parameter values of interest {00,0U ■ ■ •, 9M}, the sample path constructability problem 

is: 

For a DES under 0o, construct all sample paths f (0i), • • •, £(#M) given a realiza- 

tion of lifetime sequences V1, ■ ■ •, Vjy and the sample path £(60). 

For simplicity, we assume that the system we are modeling satisfies the following three 

assumptions. Extensions allowing the relaxation of these assumptions are possible and are 

described in [7] (see Appendix). 

(Al) Feasibility Assumption: Let xn be the state of the DES after the occurrence of 



the nth event. Then, for any n, there exists at least one r > n such that e € T{xr) for 

any e € £■ 

• (A2) Invariability Assumption: Let 5 be the event set under the nominal parameter 0o 

and let Em be the event set under 9m^6Q. Then, Em = E. 

• (A3) Similarity Assumption: Let Gi(60),i € £ be the event lifetime distribution for the 

event» under 60 and let G,-(0m), i £ S be the corresponding event lifetime distribution 

under 6m. Then, Gt-(0O) = Gi(6m) for all i € E. 

Assumption Al guarantees that in the evolution of any sample path all events in E will 

always become feasible at some point in the future. Note that a DES with an irreducible state 

space immediately satisfies this condition. Assumption A2 states that changing a parameter 

from 0o to some 6m ^ 0o does not alter the event set E. More importantly, A2 guarantees 

that changing to 6m does not introduce any new events so that all event lifetimes for all 

events can be observed from the nominal sample path. Finally, assumption A3 guarantees 

that changing a parameter from 60 to some Qm + 60 does not affect the distribution of one 

or more event lifetime sequences. This allows us to use exactly the same lifetimes that we 

observe in the nominal sample path to construct the perturbed sample path. In other words, 

our analysis focuses on structural system parameters rather that distributional parameters. 

However, it is possible to handle the latter at the expense of some computational cost, as 

described in Section 2.4. 

2.2    Sample Path Construction Procedure 

First, let £(n, 6) = {ej : j = 1, • • •, n}, with e, € E, be the sequence of events that constitute 

the observed sample path up to n total events. Although f(n,0) is clearly a function of the 

parameter 0, we will write £(n) to refer to the observed sample path.  Next we define the 



score of an event i e £ in a sequence f(n), denoted by sf = [£(n)],-, to be the non-negative 

integer that counts the number of instances of event i in this sequence. 

We introduce two additional variables, tn to be the time when the nth event occurs, and 

t/;(n), i € T(xn), to be the residual lifetime of event i after the occurrence of the nth event 

(i.e., it is the time left until event i occurs). On a particular sample path, just after the nth 

event occurs the following information is known: the state xn from which we can determine 

T(xn), the time tn, the residual lifetimes r/,-(n) for all i € r(a;n), and all event scores s", i € S. 

The following equations describe the dynamics of the timed state automaton. 

step 1: Determine the smallest residual lifetime among all feasible events at state xn, denoted 

by y*n: 

step 2: Determine the triggering event: 

en+i = arg   min {y,-(n)} (2) 

step 3: Determine the next state: 

Zn+i = /(arn,e„+i) (3) 

step 4'- Determine the next event time: 

tn+l =tn + Vl (4) 

step 5: Determine the new residual lifetimes for all new feasible events i G r(xn+i): 

VAn + 1) - | üf.(an + 1}     tf ,- = en+i or • ^ r(Xn)       for all, € r(*n+1)       (5) 

10 



step 6: Update the event scores: 

n+i = Js? + l     ift = e„+i (6) 
1 y sf otherwise 

Equations (l)-(6) describe the sample path evolution of a timed state automaton. These 

equations apply to both the observed and any constructed sample paths through concurrent 

simulation. 

2.3    The Time Warping Algorithm (TWA) 

The Time Warping Algorithm is a specific procedure for accomplishing concurrent simula- 

tion. It was introduced and described in our previous project [5], so that we limit ourselves 

here to a brief review. 

We begin by summarizing the necessary notation. We use £(k) = {ej : j = 1, • • •, k} to 

denote any constructed sample path under a different value of the parameter 0, where h is 

the number of events in that path. It is important to realize that k is actually a function 

of n, the number of event observed on the nominal path. This is because the constructed 

sample path is coupled to the observed sample path through the observed event lifetimes; 

however, for the sake of notational simplicity, we refrain from continuously indicating this 

dependence. The score of event i in a constructed sample path is denoted by st = [£(&)]«• In 

what follows, all quantities with the symbol " t " refer to a typical constructed sample path. 

Associated with every event type i € S in f (n) is a sequence of s? event lifetimes 

V,-(n) = {Vi(l), •••,«.•(«?)}     for aUie£ 

The corresponding set of sequences in the constructed sample path is: 

V,-(fc) = Hl),-,Ä     for alli€5 

11 



which is a subsequence of Vt-(n) with k < n. In addition, we define the following sequence 

of lifetimes: 

Vi(n, k) = {u,-(i* + 1), • • •, Vi{s?)}     for all i € £ 

which consists of all event lifetimes that are in V,-(n) but not in V;(fc). 

Next, define the set 

A(n,k) = {i:ie£,s?>s*} (7) 

which is associated with V,-(n, fc) and consists of all events i whose corresponding sequence 

V;(ra,fc) contains at least one element. Thus, every i € A(n,fc) is an event that has been 

observed in £(n) and has at least one lifetime that has yet to be used in the coupled sample 

path £(fc). Hence, A(n, k) should be thought of as the set of available events to be used in 

the construction of the coupled path. 

Finally, we define the following set, which is crucial in our approach: 

M(n, k) = T(xk) - (T(xk-i) - {h}) (8) 

where, clearly, M(n, k) C £. Note that ek is the triggering event at the (k- l)th state visited 

in the constructed sample path. Thus, M(n, k) contains all the events that are in the feasible 

event set T(xk) but not in r(xjt-i); in addition, ek also belongs to M(n,k) if it happens that 

ejt G r(xfc). Intuitively, M(n,k) consists of all missing events from the perspective of the 

constructed sample path when it enters a new state xk: those events already in T(xk-i) which 

were not the triggering event remain available to be used in the sample path construction 

as long as they are still feasible; all other events in the set are "missing" as far as residual 

lifetime information is concerned. 

With this notation, we now present the Time Warping Algorithm (TWA). 

12 



Time Warping Algorithm (TWA): 

1. INITIALIZE 

n := 0, fc := 0, tn := 0, ik := 0, xn := x0, xk = x0, 

yi{n) = Vi(l) for all i € T{xn), s? = 0,# = 0 for all i € S, 

M(0,0):=r(xo), A(O,O):=0 

2. WHEN EVENT en IS OBSERVED: 

2.1 Use (l)-(6) to determine en+u xn+u tn+u Vi{n + 1) for a11 * e rfan+i). sf+1 for 

all t e £.' 

2.2 Add the en+i event lifetime to Vj(n + 1, k): 

<rt   _LI  M   _   J V,-(n,fc)+ «,-(*?+ 1)    ifi = en+1 
Vi(n + I,fcj   -   jv,-(n,fc) otherwise 

2.3 Update the available event set A(n,fc): A(n + 1, fc) = A(n,k) U {en+i} 

2.4 Update the missing event set M(n, k): M(n + 1, fc) = M(n, k) 

2.5 IF M(n + 1, k) C A(n + 1, fc) then Goto 3. ELSE set n <- n + 1 and Goto 2.1. 

3. TIME WARPING OPERATION: 

3.1 Obtain all missing event lifetimes to resume sample path construction at state 

Xk- 

<■ m - J Vi^ + ^   for * G M(n + *'fc) 
yi\k) - | £.(£. _ !)      otherwise 

3.2 Use (l)-(6) to determine ek+u h+u h+u Hk + l) for a11 * € r(*fc+i) n (r(z*) ~ 

{efc+i}), st1 for all i € £. 

3.3 Discard all used event lifetimes: 

Vi(n + 1, fc + 1) = Vi(n + 1, fc) - «,-(3? + 1) for all ieM{n + 1, fc) 
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3.4 Update the available event set A(n + 1, k): 

A(n + 1, k + 1) = A(n + 1, k) - {i : i e M{n + 1, k), sf+1 = s?+1} 

3.5 Update the missing event set M(n + 1, k): 

M(n + 1, k + 1) = T(xk+1) - (T(xk) - {h+i}) 

3.6 IF M{n + l,k + 1) C A(n + l,k + 1) then fc «- jfc + 1 and Goto 3.1.  ELSE 

fc<-fc + l,n(-n + l and Goto 2.1. 

The computational requirements of TWA are minimal (adding and subtracting elements 

to sequences, simple arithmetic, and checking the subset condition in steps 2.5 and 3.6 

above. Rather, it is the storage of additional information that constitutes the major cost of 

the algorithm. 

2.4    Extensions of the TWA 

In section 2.1 we stated three assumptions that were made to simplify the development of 

our approach and keep the TWA notationally simple. It turns out that we can extend the 

application of TWA by relaxing these assumptions at the expense of some extra work. 

In A2 we assumed that changing a parameter from 0O to some 6m ^ 60 does not alter 

the event set £. Clearly, if the new event set, Sm is such that Sm C £, the development and 

analysis of TWA is not affected. If, on the other hand, S C Sm, this implies that events 

required to cause state transitions under 6m are unavailable in the observed sample path, 

which make the application of our algorithm impossible. In this case, one can introduce 

phantom event sources which generate all the unavailable events, provided that the lifetime 

distributions of these events are known.  The idea of phantom sources can also be applied 
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to DES that do not satisfy Al. In this case, if a sample path remains suspended for a long 

period of time, then a phantom source can provide the required event(s) so that the sample 

path construction can resume. 

In A 3 we assumed that changing a parameter from 60 to some 9m ^ 90 does not affect 

the distribution of one or more event lifetime sequences. This assumption is used in step 2.2 

of the TWA where the observed lifetime Vi(s? + 1) is directly suffix-added to the sequence 

V;(ra+1, k). Note that this problem can be overcome by transforming observed lifetimes V; = 

{v,-(l), u,-(2), • • •} with an underlying distribution G<(0O) into samples of a similar sequence 

corresponding to the new distribution Gi(Bm) and then suffix-add them in V,-(n+l, k). This is 

indeed possible, if G{{90),Gi(6m) are known, at the expense of some additional computational 

cost for this transformation (for example, see [4]). One interesting special case arises when 

the parameter of interest is a scale parameter of some event lifetime distribution (e.g., it is 

the mean of a distribution in the Erlang family). Then, simple rescaling suffices to transform 

an observed lifetime u,- under 60 into a new lifetime vt under 0m: 

Finally note that in a simulation environment it is possible to eliminate the overhead 

which is due to checking the subset condition in step 2.5. In order to achieve this we need 

to eliminate the coupling between the observed and constructed sample paths. Towards 

this goal, we can simulate the nominal sample but rather than disposing the event lifetimes 

we save them all in memory. Once the simulation is done, we simulate one by one all the 

perturbed sample paths exactly as we do with a "brute force" simulation scheme but rather 

than generating the required random variates we read them directly from the computer 

memory. In this way we trade off computer memory for higher speedup. A quantification of 

this tradeoff is the subject of ongoing research. 
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2.5    Comparative Speedup Analysis 

To define the speedup factor associated with concurrent simulation, suppose that the sam- 

ple path constructed through our coupling approach were instead generated by a separate 

simulation whose length is defined by iV total events. Let T/v be the time it takes (in CPU 

time units) to complete such a simulation run. Further, suppose that when the nominal 

simulation is executed with TWA as part of it, the total time is given by Tfc + TK, where 

Tfc is the simulation time without the TWA and TK is the additional time involved in the 

concurrent construction of a sample path with K < N events. We then define the speedup 

factor due to TWA as 

s - ^ (s> TK/K 

Thus, if a separate simulation (in addition to the one for the observed sample path) were 

to be used to generate a sample path under a new value of the parameter of interest, the 

computation time per event is TN/N. If, instead, we use the TWA in conjunction with the 

observed path, no such separate simulation is necessary, but the additional time per event 

imposed by the approach is TK/K, where K < N in general. 

A number of simulation results that include speedup computations relative to "brute 

force" simulation (i.e., separately simulating N parameter settings) were included in [5]. 

Another interesting issue we have addressed is that of comparing the speedup performance 

of the TWA to two other known methods for concurrent simulation, Augmented System 

Analysis ASA and the Standard Clock method SC, both of which are limited to Markovian 

event processes. As expected, both techniques can achieve higher speedup than the TWA, 

as indicated in Figure 2 for an M/M/l/K system studied over a range of values for K. 

ASA can achieve a speedup of up to 30, considerably higher than both SC and TWA, 

however, it is only applicable to systems with exponential event lifetime distributions (with 

the possibility of one non-Markovian event process, as noted in section 1). SC can achieve 
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a speedup of up to 8, however it is also limited to exponential event lifetime distributions 

(unless approximations are used for systems with general distributions). In Figure 2, the 

speedup for the TWA turns out to be in the vicinity of 2. 

Finally, note that from the definition of speedup (9), one would expect that it is not a 

function of the number of concurrently constructed sample paths. Intuitively, suppose that 

one is interested in concurrently constructing M sample paths. Therefore, using brute force 

it would take MTN time units to generate MN events, while using any other constructability 

technique it would require MTK time units to construct MK events. Hence, the speedup 

factor should be independent of M. However, the number of constructed events depends on 

the parameter settings as well. For this reason, the number of constructed events is given 

by MK - K0 (not MK). Therefore, 

MTNjMN       _IJV/K_  Kg \ 

~ MrK/(MK - K0) ~ rK\N     NMJ 

which implies that it approaches a constant as M becomes larger. 

2.6    Statistical Significance of Estimates obtained through TWA 

As indicated earlier, the constructed sample path may remain suspended for extended periods 

of time while waiting for one or more of the missing events. This in turn, implies that while 

the length of the observed sample path (N) is long enough to guarantee that the observed 

measures are statistically significant, the length of the constructed sample path (K) may 

not become long enough to provide such accuracy. Figure 3 shows the ratio (K/N) for 

an M/M/l/K queueing system when there are four classes of customers and the observed 

sample path has five buffer slots (i.e., K = 5). First note that when all events occur with 

similar frequency, the K/N ratio converges quickly (M/M/l/7 curve), whereas, when there 

is a rare event (class 4 arrival) often the constructed sample path is forced to wait for long 
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Figure 2: Speedup of ASA, SC and TWA, for an M/M/l/K system. 

intervals until the rare event is observed which causes the K/N ratio to become small. 

Once the missing event is observed, a large number of events may be immediately processed 

allowing K/N to increase again. This results in the initial large oscillations observed in 

Figure 3 which eventually diminish as N grows larger. 

In addition, note that the parameter setting also affect the K/N ratio. In the case of a 

single buffer slot (M/M/l/1), the blocking probability is much larger than in the observed 

sample path, therefore, several observed departure events are not constructed because the 

corresponding customer was lost. For this reason, K/N converges to a value less than one 

(in this case 0.85). On the other hand, when the constructed sample path has nine slots, 

the observed and constructed sample paths have comparable blocking probabilities therefore 

most of the observed event are also constructed, so the K/N ratio is closer to one. 
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2.7    Resource Allocation and Concurrent Simulation 

Resource allocation is a basic problem one encounters in numerous aspects of C4I systems 

(e.g., allocating ammunition or platforms to different missions, sensors to different platforms, 

communication bandwidth to battle space entities). The mathematical representation of such 

resource allocation problems is as follows. Let r € Z% be the decision vector or "state". In 

general, there is a set of feasible states denoted by Ad such that r G Ad represents a constraint. 

For example, in a typical resource allocation problem, r,- denotes the number of resources 

that user i is assigned subject to a capacity constraint of the form Ad = {r : £i=1 r,- = K). 

In a stochastic setting, let Ld(r,w) be the cost incurred over a specific sample path (denoted 

by u) and Jd(r) be the expected cost of a system operating under r.  Then, the discrete 
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optimization problem we are interested in is the determination of r* € Ad such that 

Jd{r*) = min Jd(r) = min Ew[Ld(r,u)] (10) 
r£Ad reAd 

In general, this is a notoriously hard stochastic integer programming problem. Even in a 

deterministic setting, where we may set Jd(r) = Ld(r,uj), this class of problems is NP-hard. 

When the system operates in a stochastic environment (e.g., in a resource allocation setting 

users request resources at random time instants or hold a particular resource for a random 

period of time) and no closed-form expression for Ew[Ld(r,u)] is available, the problem is 

further complicated by the need to estimate Eu[Ld(r,u)]. This generally requires Monte 

Carlo simulation or direct measurements made on the actual system, approaches which are 

generally computationally intensive and slow for the purpose of rapid decision-making. 

With this motivation, we have worked toward developing resource allocation algorithms 

that can take explicit advantage of Concurrent Simulation methods such as the TWA dis- 

cussed in the previous section. We outline below our basic approach and include in the 

Appendix a paper [16] that provides technical details and sample numerical results. The key 

idea is to transform the original discrete set Ad into a continuous set over which a "surrogate" 

optimization problem is defined and subsequently solved. At every step of the continuous 

optimization process, the continuous state obtained is mapped back into a feasible discrete 

state; based on a realization under this feasible state, new sensitivity estimates are obtained 

that drive the surrogate problem to yield the next continuous state. The proposed scheme, 

therefore, involves an interplay of sensitivity-driven iterations and continuous-to-discrete 

state transformations. The key issue then is to show that when (and if) an optimal alloca- 

tion is obtained in the continuous state space, the transformed discrete state is in fact r* in 

(10). 

Clearly, he ability to obtain sensitivity estimates with respect to discrete decision vari- 

ables is a critical component of this approach.  Concurrent Simulation methods are ideally 
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suited to meet this objective and provide the synergy required between real-time decision 

making approaches and the need for rapid simulation-based information to support these 

approaches. The Appendix provides additional material that details this approach as an 

application of Concurrent Simulation. 

3    STOCHASTIC FIDELITY IN MULTI-RESOLUTION 

SIMULATION MODELS 

In modeling complex systems through simulation, such as theater-level combat or large 

scale high speed communication networks, it is impossible to mimic every detail. The most 

common approach is to hierarhically decompose the whole system into modules with different 

simulation resolutions. The low resolution module consists of some coarse-grained equations, 

which are used to model the large scale, low resolution behavior. The coefficients of these 

"low resolution" equations are derived from the high resolution module, which executes 

some detailed, smaller scale simulations. The interfaces between these modules are critical. 

Common practice is to use the overall average of the high resolution results as the input 

to the low resolution simulator. This neglects the facts that (a) the high resolution results 

could have dramatically different qualitative features and should not be just "averaged" 

quantitatively, and (b) even when the high resolution simulation paths are qualitatively 

similar, the variance of the paths still needs to be accounted for in the low resolution module. 

To address (a) our approach is to cluster the high resolution combat simulation sample 

paths according to their features and use the averages over each cluster as inputs for the low 

resolution module.  To address (b) our approach is to derive new low resolution dynamics 

that would account for the higher moments of the high resolution simulation paths. In the 

following, we first discuss the issue of clustering large dimensional data. 
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Clustering. The problem of systematically clustering data has drawn considerable re- 

search attention. Later in this section, we give a brief review of some classical clustering 

algorithms. These algorithms are too time-consuming when the data vector dimensions are 

high. In this project, we have considered the neural network (NN) technology, specifically 

a NN type known as ART NN, where ART stands for Adaptive Resonance Theory, as de- 

veloped by Carpenter and Grossberg [3]. The key component in the ART NN design is a 

feedback mechanism that stabilizes the learning process. The input data is mixed with the 

trial feature for competitive learning, forming a feedback control loop where the input data 

is the external input, while the trial feature is the output which is fed back to mix with the 

input to stabilize the system. The key for success is of course the tuning of the feedback 

gain! This is motivated by human learning processes: enforcing already learned prototypes 

on the new data. It turns out that this is quite successful in ART clustering. Some numerical 

results are reported in [17] and included in the Appendix. 

The ART NN is designed to deal with a classical dilemma in data clustering: if the 

requirement for distinct high resolution paths is too tight, then the resulting number of 

clusters will be too large to provide any benefit; if the requirement is too loose, then the 

resulting clusters will not in fact contain any characteristic features of the high resolution 

paths they encompass. The ART NN resolves this dilemma in this way: it tries to learn the 

similarities between high resolution paths, and create "prototype" clusters; as the process 

going on, it matches further data with existing prototypes. If no match is found, then a 

new prototype is created. Thus, previously learned information is never eroded by new 

knowledge. 

Deriving low resolution dynamics. We now discuss the issue of deriving low resolu- 

tion dynamics, in which, the variability of the high resolution simulation paths is considered. 

Here is the basic idea: given a set of low resolution differential equations, these equations 

are based on the assumption that the high resolution output is deterministic.   The high 
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resolution simulation is used to determine the coefficients of the low resolution differential 

equations. Since the actual high resolution paths are random, the low resolution dynamics 

should be modified. In the case of combat simulation, our proposed such modification is 

based on the analysis of the basic Lanchester equation. However, the principle is generally 

applicable for hierarchical simulation models. 

The two ideas described above are of general importance.   Combat modeling is just 

a typical example of a multi-time/space-scale system.  Multiple-time-scale phenomena are 

encountered in numerous fields, including computer networks, manufacturing engineering, 

real-time systems, battlefield (combat) simulation, and physics. For example, in high-speed 

networks, traffic sources operate on at least three different time scales:   connections for 

seconds to minutes, bursts within a connection for tens to hundreds of milliseconds, packets 

within a burst of the order of tens to hundreds of microseconds per packet. These present 

a tremendous challenge to the performance analyst.  For instance, to study algorithms for 

establishing network connections in teleconferences (scale of minutes), one must capture the 

essential effects on those connections of bursty packets (scale of milliseconds). As another 

example, the lifetime of real-time processors can be several thousand hours; however, when a 

processor fails, fault detection, recovery, and the consequent switchover to another processor 

must take place in a few milliseconds. The life time of a processor has a quite different time- 

scale from the failure detection and recovery process. A third example, from control theory, 

is controlling the position of a rotating flexible steel shaft pinned at one end, such as a flexible 

robotic manipulator. The slow subsystem would correspond to the motion of the center of 

mass as the object rotates, while the fast subsystem would correspond to the vibrational 

motion of the flexible shaft or the position of the free end of the vibrating shaft. Simulating 

such systems using traditional methods is very time-consuming, since the simulator has to 

work at the highest level of time resolution. 

23 



3.1    Hierarchical Simulation 

A general hierarchical simulation scheme is summarized in Figure 4(a). A hierarchical sim- 

ulation consists of high-resolution, and low-resolution (or coarser), modules. The high- 

resolution module is the usual discrete-event simulation, while the lower-resolution module 

consists of one or more of the following components: differential equations (used for example 

in combat [23] and semiconductor simulations [19]), standard discrete-event simulation, and 

fluid simulation [25] (currently being developed by our research group and showing promise 

in computer network simulation). There is an interface between the two modules which 

forwards some statistics of the high-resolution module output (usually, the average) to the 

lower-resolution module. The design of the interface is often critical to the success of the 

entire simulation. Very little attention has been paid to this area: it is one of the main focal 

points of our research. 

Hierarchical Simulation 
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Space —*- Suhspaces 

1 High Resolution 

(a) Basic Hierarchical Simulation Scheme 

Overall State Space 
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Figure 4: Hierarchical Simulation Structure 

Hierarchical simulation is a common practice, but the design is always ad hoc. A sys- 

tematic design and analysis framework is definitely needed. In this project, we developed 

some fundamental components of such a framework. As mentioned above, the key issue 

in hierarchical simulation is the design of the interface between the hierarchies. Common 

practice is to use the average as the statistics to be passed to the lower-resolution module. 
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This is always highly unsatisfactory, since the mean often obscures even the most important 

features of the high resolution output. In this part of the work, we develop methods to iden- 

tify suitable techniques to provide higher-resolution output to the lower-resolution module. 

Our research is based on the theory of random perturbations in dynamic systems (see, e.g. 

[12, 18]) and the clustering of large vectors using neural networks (see, e.g. [3]). 

Impact of Higher Moments. To show why higher moments of the high-resolution 

module are needed as inputs to the lower-resolution module, let us consider the case of 

hierarchical combat simulation. This is an important application area and its structure is 

typical of most hierarchical simulation problems. 

In the following, we will present a greatly simplified and idealized treatment of combat 

simulation. Actual combat simulations are far more complex (e.g., the COSAGE package 

has 27,000 lines of SIMSCRIPT); however, this simplified version will be a good expository 

example. 

In combat simulation, the high-resolution component is mostly event-driven, while the 

lower-resolution simulator is typically a generalization of the well-known Lanchester attrition 

equation [21]. This consists of a set of linear differential equations, stating that the attrition 

of one side is proportional to the strength of the other side. Incidentally, the Lanchester 

equations are also used in economics to model competition between large corporations. 

The basic Lanchester equations are 

b(t) = -0r(t),       r(t) = -cb{t) (11) 

where b(t), r(t) denote the respective strengths at time t of the two sides engaged in combat. 

Given the initial conditions, 6(0) = 60, r(0) = r0 and information on the coefficients 0,c, 

these equations can be solved. 

The coefficients, 0, c, are estimated using a high-resolution discrete-event simulator. By 
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the very nature of their creation, these estimates have an uncertainty associated with them. 

It is important to study the effect of this uncertainty on the behavior of the Lanchester 

equations and ultimately its output, which is the final output of the entire combat simulator. 

In the following discussion, purely for brevity of the description, we will assume that c 

is known perfectly, while 6 is a random variable, in fact, however, both 6 and c are random 

[14]. 

Assume 9 is random, with E[9] = fi, Var[0] = a2. To understand the impact of the 

uncertainty (randomness) in 6, we proceed as follows. Let a be a sample value of 8. Then, 

we can conveniently treat b and r as functions of both a and t; that is, write them as 

b(a,t),r(a,t). Let b(a,t), r(a,t) satisfy 

—b(a, t) = -ar(a, t),       —r(a, t) = -cb{a, t) (12) 

such that 6(o,0) = b0, r(a,0) = r0. 

iFvom these equations we can easily derive differential equations for db(a,t)/da and 

dr(a, t)/da and the second derivatives. These derivatives can determine the second order 

statistics of the basic quantities b(0,t),r(6,t), which would be lost in the current "mean 

value" practice. These derivatives will also provide some refined approximations for E[b(6, t)] 

and E[r(6,t)]. In particular, if a is small we would have 

E[b(6,t)}   «   6(M) + I^i£)^ (13) 

E[r(6,t)]   «   r(M) + I*!rjMa» (14) 

Some immediate observations are: 

• The traditional method of using the mean of the high-resolution simulation results as 

the coefficients of the Lanchester equation could cause serious bias due to the variance. 
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• Such a bias can be significantly reduced by using high-order statistics. 

The above has been an idealized treatment; in actuality, the attrition equations are far more 

complicated. However, the principle outlined here is clearly generic and holds for more com- 

plicated cases as well. Actually, the principal idea is generally applicable to hierarchical 

simulation in many other areas such as the modeling of manufacturing systems, semiconduc- 

tor device [19], and telecommunication networks. 

We now describe an application in a hierarchical combat simulation model we have worked 

on. This model, called "Concept Evaluation Model (CEM)", has been used by the U.S. Army 

Concept Analysis Agency. The high resolution module in this model is called "COmbat 

SAmple GEnerator (COSAGE)" and it generates battle paths at division or lower levels. 

The high resolution module contains a set of attrition equations based on the Lanchester 

principle and is called "ATtition CALculation (ATCAL)". The attrition equations for the 

direct fire/point fire case are: 

(ANk){j = NiiRATE^Pijkil - (1 - Aijk)Nk] l[[l - Aijk>]Nk> 
k' 

ANk = (1 - e-ANk/W*)Nk 

where: 

• (ANk)ij is attrition of the fcth vehicle by the jth weapon of the tth vehicle, 

• Wi,Wk are the average number of the tth (red) and the fcth (blue) vehicles, 

• (RATE)ij denotes the rounds that the jth weapon of the tth vehicle can fire during 

an engagement, 

• Pijk is the probability of kill per round, 
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• Aijk is the target availability - the fraction of time that the fcth target is available for 

the jth weapon of the ith vehicle, 

• k' is the index of vehicles that have higher priority than k. 

To implement the perturbation analysis described above we need to calculate derivatives 

such as d(ANk)ij)/dPijk from the above equations. The implementation is straightforward. 

Clustering. As briefly discussed before, another important issue in presenting the results 

of the high-resolution module to the low-resolution module is that of aggregating the high- 

resolution results. 

Quite often, the system being simulated is such that the high-resolution simulator pro- 

duces so widely divergent outputs that it does not make sense to summarize its output over 

the entire sample space. In such cases, we must subdivide the sample space into segments, 

and get the high-resolution simulator to produce an appropriate input to the low-resolution 

simulator for each such segment. We have dealt, in the previous sections, with the issue 

of how to generate appropriate statistics for each segment. Here, we will consider how to 

carry out the subdivision of the sample space. Essentially, the low-resolution simulation will 

be broken down into a number of distinct simulations, one for each segment of the sample 

space, as depicted in Figure 1(b). 

To carry out such a segmentation, the high-resolution paths need first to be grouped 

by their common features. These features then determine the corresponding low-resolution 

model. Each high-resolution output group then feeds a corresponding low-resolution simu- 

lator. 

To group the high-resolution sample paths, we need to perform clustering analysis for 

usually huge dimensional data. The exact clustering is very time-consuming. The practice 

of classifying objects according to perceived similarities is the basis for much of science and 
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engineering. Organizing data into sensible groupings is one of the most fundamental modes 

of understanding and learning. Clustering methods have been widely applied in pattern 

recognition, image processing, and artificial intelligence. In this project, we dealt with 

clustering methods for the preservation of statistics in hierarchical simulation. 

A large collection of clustering algorithms is available in a variety of scientific disciplines 

and new clustering programs continue to appear in the scientific literature. Our focus has 

been on Adaptive Resonance Theory (ART) to cluster high-dimensional data vectors. Ad- 

vantages of this approach include its computational efficiency, as well as allowing the user 

to easily control the degree of similarity of patterns placed on the same cluster. Our experi- 

mental results corroborate these observations. 

ART neural networks were developed by Carpenter and Grossberg [3] to understand the 

clustering function of the human visual system. They are based on a competitive learning 

scheme and are designed to deal with the stability/plasticity dilemma in clustering and 

general learning. It is clear that too much stability would lead to a "stubborn" mind, while 

too much plasticity would lead to unstable learning. ART neural networks successfully 

resolve this dilemma by matching the input pattern with the prototypes. If the matching 

is not adequate, a new prototype is created. In this way, previously learned memories are 

not eroded by new learning. In addition, the ART neural network implements a feedback 

mechanism during learning to enhance stability. 

Our experiments of using ART neural networks with combat simulation paths have been 

quite successful [6]. We believe further improvement with the ART structure can lead to 

a fundamental breakthrough in large data clustering, which is needed in complex systems 

modeling. A neural network could be developed into a generic numerical clustering tool for 

many important problems in intelligent data analysis. 

It is worth mentioning that during this project we located an alternative non-parametric 
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clustering method recently been introduced by Domany and co-workers [2] which holds 

promise for application to large databases. The idea is to embed the data in a spin model 

with each data point represented by a single spin. The distance between nearby points 

determines the strength of a ferromagnetic coupling between the spins. A procedure akin 

to simulated annealing is then applied to this spin system. Using standard Monte Carlo 

methods for equilibrating spin systems at some temperature, the temperature is lowered to 

a range where data points with sufficient similarity are clustered. By adjusting the temper- 

ature in the "superparamagnetic" regime, coarse or fine-grained clustering can be achieved. 

It remains an open issue to identify the possible application of this scheme to general data 

clustering and specific tasks involved in combat simulation. 

An Application to a "real-world" complex system. During the course of the 

project, we encountered an interesting opportunity to test the clustering techniques we de- 

veloped in the case of a complex manufacturing system. In particular, in working with a 

large metal manufacturer we were faced with the issue of supplying a low-resolution model 

of a large plant with the necessary parameters for running it, much like the coefficients of 

the Lanchester equation in (11). These parameters are to be obtained from detailed (high- 

resolution) models of the process plans (or flowpaths) for over 10,000 products manufactured 

in the plant. A flowpath is a specific sequence of Production Centers (PCs) with different 

processing characteristics at each PC (there are over 100 such PCs). Thus, each flowpath 

may be thought of as corresponding to a unique product; however, since the low-resolution 

model cannot possibly handle input data for over 10,000 flowpaths, the objective is to group 

products with similar flowpaths. For purposes such as forecasting, capacity planning, and 

lead-time estimation (among others) it is in fact indispensable to have such product groups 

available: not only it is conceptually infeasible to work with over 10,000 distinct products, it 

is also practically impossible to input such high-dimensional data for over 10,000 products 

and 100 PCs into modeling and decision support tools.   Moreover, even if there were an 
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automated way to accomplish this, it would be unrealistic to expect anyone to manipulate 

or interpret output data with information such as inventory levels and lead times for many 

thousands of distinct products. 

In the effort to establish groups (or clusters) of products based on similarities in flowpaths 

and processing characteristics, an initial project was set up with plant experts given the task 

to "manually" create such groupings. The project was quickly abandoned: in addition to 

the sheer product volume which makes this task prohibitive, it is also difficult to rationally 

quantify "similarities" in flowpaths and processing data without some systematic means of 

doing so. We were able to accomplish this task using the clustering techniques we have 

developed and obtained a "compression" of over 10,000 products to 25-100 product clusters 

(depending on the aggregation accuracy required, which is completely controlled by the 

analyst). Of particular interest is the fact that the plant experts who reviewed the results 

we obtained found "by hindsight" the clusters defined by our method consistent with their 

expectations. 

As mentioned above, it should be possible to evaluate the result of a particular grouping 

(or clustering) of flowpaths and to compare it to alternative groupings so as to determine the 

appropriate level of flowpath aggregation desired depending on the application of interest. 

For some tasks, less than 100 groups may be amply adequate, while for others it may be 

necessary to use a form of grouping based on tighter similarity requirements that would yield 

several hundred flowpath clusters aggregated into product groups. In general, the "tighter" 

the similarity requirements imposed, the larger the number of resulting clusters is likely 

to be. This capability is an integral part of the clustering tools we are developing and is 

captured by the so-called "vigilance parameter". 

31 



3.2    Basic Concepts of Clustering 

In this section, we report our review of some basic concepts in data clustering techniques. 

This review is important because it not only give the background information for our work, 

it also motivates ideas and concepts for possible new techniques. 

3.2.1 Classification and Clustering 

Classification is the actual or ideal arrangement of patterns which are alike, and the separa- 

tion of those which are not; the purpose of the arrangement is to shape and keep knowledge, 

to analyze the structure of phenomena, and to relate different aspects of a phenomenon. 

Applications of classification in science include Library Science and Information Retrieval, 

Mathematics, Biology, Physics and Chemistry, Social and Political Science. 

Clustering is the mathematical technique designed to reveal classification structures in 

data collected from real-world phenomena; the purpose of clustering is to (a) analyze the 

structure of the data, (b) relate different aspects of the data to each other, and (c) assist in 

classification design. 

A typical problem is of the following form: Given a set of entities, determine its subsets 

(called clusters), which are homogeneous and well separated. Homogeneity means that 

entities in the same cluster should resemble each other; separation means that entities in 

different clusters should not. 

3.2.2 Clustering Framework 

The basic framework of clustering consists of eight elements: 

1. Sampling: Select a set O = {Oi, O2,..., ON} of N entites. 
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2. Data collection:: Observe or measure p characteristics on each of the entities of 0. 

This leads to a data matrix X of size N xp with binary entries for observations and 

real entries for measurements. 

3. Dissimilarity: Construct a matrix D = (dkt) of size JVxJV, which is generated from 

data matrix X. Dissimilarities satisfy the following properties: 

• Symmetry: dki = du 

• Non-negativity: dki > 0 

• Vanishing diagonal elements: dkk = 0, for /, k = 1,2,..., N. 

The Euclidean distance on a Euclidean plane is an example. 

4. Types of clustering: 

We list some of the most important clustering. 

1) Subpartition SPM = {Ci,C2,...,CM} of 0 with M clusters:C,- C 0,Cj ^ 0,C; n 

Cj = 0for»,j = l,2,...,M. 

Note that here the clusters are not required to cover the entire set 0; 

2) Partition PM = {Cu C2,..., CM} of 0 into M clusters: Cj + 0, dClC, = 0, lif=lCj = 

0;for»,i = l,2,...,M. 

Note that here the clusters are required to cover the entire set O; 

3) Covering COM = {CUC2,...,CM} of 0 by M clusters: Cj ^ ^U^Cj = O; for 

i = l,2,...,M; 

4) Hierarchy HSp = {SPUSP2,..., SPK) of subpartition of 0: Set of K subpartitions 

SPUSP2,...,SPK of 0 such that d € SPk,Cj € SPt and k > I =► C7,- C dordnC,- = 

0. 

Note that here the clusters are not required to cover the entire set O; 
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5) Hierarchy H = {Pi, P2, • ••■, PN} of partition of 0: Set of N partitions Pi, P2,..., PN 

of 0 such that C,- € PK, CJ 6 P/ and k > I =*• Ct- C C,- or C,- n Cj = 0. 

Note that here the clusters are required to cover the entire set 0. 

5. Criterion: Select a criterion to evaluate the clusterings of the type decided upon in 

Step 4. Such a criterion may be of one of the following types: 

1) Threshold-type criteria, in which a single dissimilarity determines this value. 

2) Sum-type criteria, in which a sum of dissimilarities involving one entity determines 

this value. 

3) Sum-sum-type criteria, in which all dissimilarities between pairs of entities of the 

cluster are used to determine this value. 

6. Algorithm: Choose or devise an algorithm for the problem defined in Steps 4 and 5. 

7. Computation: Determine the clusterings of 0 which optimize the chosen criterion, with 

the algorithm of Step 6. 

8. Interpretation of results; Try to use descriptive statistics to summarize the character- 

istics of each cluster. 

We now turn our attention to the description of a class of concrete clustering algorithms 

referred to as "sequential clustering." 

3.2.3    Sequential Clustering 

The principle of sequential clustering is as follows. Most commonly used paradigms in cluster 

analysis, such as hierarchical clustering and partitioning, imply that all entities should be 

assigned to clusters. However, in most cases, this is unnatural: some entities fit poorly into 

any clusters, or they are just noise.   Thus, sequential clustering searches within the data 
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(whatever structure there is and nothing more), isolates clearly apparent clusters one at a 

time, and stops when this cannot be done anymore. A similar procedure is often used in 

image processing where objects are recognized one after another. 

Following the basic framework of the previous section, the sequential clustering scheme 

works as described next. 

Step 1: Sample. Select entities among which clusters are to be found. 

Step 2: Data. Measure characteristics of the entities and obtain the sample data matrix X. 

Step 3: Dissimilarities. Based on the sample data matrix X ,compute dissimilarities between 

pairs of entities, and obtain the dissimilarities matrix D = (dij). 

Step 4: Criterion. Choose a criterion to evaluate the homogeneity and separation of the 

clusters to be obtained. 

Step 5: Choosing K entities among N. According to the criterion of Step 4, determine a best 

subset of K entities of O as an optimal cluster C*(usually K is considered as a parameter). 

Step 6: Significance test. Apply formal or informal tests to evaluate if the cluster C* found 

in Step 5 corresponds to some part of the structure inherent to 0, or only to noise. In the 

former case, record the list of entities of C*, remove them from 0 and return to Step 5; in 

the latter case proceed to Step 7. 

Step 7: Interpretation of results. Describe the clusters found sequentially by the lists of their 

entities and various techniques of descriptive statistics. Proceed to a substantive interpreta- 

tion of these results. 

To complete a seqential algorithm, one must specify how to choose K entities from 

N entities and which significance test applies. It is also important to choose the most 

appropriate clustering criterion for the specific application. In Figures 5, 6 and 7 we illustrate 
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three different criteria in two-dimensional space. These concepts and related issues will be 

further explored in future research. 

(•5Ü 

Figure 5: Sequential clustering with minimum diameter criterion. 

In summary, clustering is a statistical tool. It aims at extracting a possible cluster 

structure from a large data set. Based on the selection of clustering type, criterion for 

clusters and significance test, there are many kinds of clustering algorithms. The choice of 

the algorithm depends on the specific problem and on computational capacity. Traditional 

clustering algorithms are tantamount to global optimization for a selected objective function 

(criterion). They often imply huge computational complexity and are NP-hard. As the need 

for clustering is increasing, especially for large-dimension data sets, more efficient approaches 

are required. Some new approaches, such as those based on neural networks and probabilistic 

methods, have emerged and have shown to be efficient for some problems. In the next section 

we review the basic principles of an approach based on Adaptive Resonance Theory (ART) 
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Figure 6: Sequential clustering with minimum radius criterion 

neural networks, and present concrete algorithms we have used in this project. 

3.2.4    Clustering using Adaptive Resonance Theory (ART) 

As we mentioned in the Introduction, this part of our work is motivated by our Path Bundle 

Grouping approach in hierarchical combat simulation. In dealing with hierarchical simulation 

models one needs to consider grouping the sample paths generated from the high resolution 

simulators so as to provide appropriate input statistics to the lower resolution simulator. 

This requires clustering very high dimensional data vectors (the sample paths from the high 

resolution simulator). Classical clustering algorithms are not efficient for this purpose. We 

have used this approach in the Concept Evaluation Model (CEM) of the Concept Analy- 

sis Agency in order to group the sample paths from the high resolution Combat Sample 
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Figure 7: Sequential clustering with maximum split. 

Generator (COSAGE) and generate the input to the lower resolution Attrition Calculation 

(ATCAL). Concrete numerical results are reported in [17]. 

The common algorithm used for clustering in the ART framework is closely related to the 

well-known fc-means clustering algorithm. Both use single prototypes to internally represent 

and dynamically adapt clusters. The fc-means algorithm clusters a given set of input patterns 

into k groups. The parameter k thus specifies the coarseness of the partition. In contrast, 

ART uses a minimum required similarity between patterns that are grouped within one 

cluster. The resulting number k of clusters then depends on the distances (in terms of the 

applied metric) between all input patterns, presented to the network during training cycles. 

This similarity parameter is called vigilance and is denoted by p. 

The first step in the ART algorithm is the preprocessing stage. It is the creation of an 
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input pattern as an array with a constant number of m elements. ART requires the same 

pattern size for all patterns, i.e., the dimension of the input space into which all cluster 

regions shall be placed. Any of the already formed prototypes is of the same dimension m. 

In addition, the elements of an input pattern must fit constraints concerning, for example, 

value bounds or the geometric length of the array viewed as a vector.   These constraints 

are characteristics of the different types of ART networks and are needed to make the input 

comparable to the cluster prototypes. Once the input pattern is formed, it is compared to 

the n stored prototypes in a search stage.  If the degree of similarity between the current 

input pattern and the best fitting prototype J is at least as high as a given vigilance p, this 

prototype is chosen to represent the cluster containing the input. The degree of similarity 

is typically limited to the range [0,1].   If the similarity between input pattern and best 

fitting prototype does not fit into the vigilance interval \p, 1], then a new cluster has to be 

installed, where the current input is most commonly used as the first prototype or "cluster 

center".  Otherwise, if one of the previously committed clusters matches the input pattern 

well enough, it is adapted by slightly shifting the prototype's values toward the values of the 

input array. 

The primary processing module of the ART network is a competitive learning net- 

work, as shown in Figure 8. The m neurons of an input layer Fx register the values 

of an input pattern 7" = (ti,t2, • • • ,*m)- Every neuron of an output layer F2 receives 

a bottom-up net activity th built from all Fi-outputs S = I. The vector elements of 

T = (ii,t2,---,i„)can be seen as the result of comparisons between input pattern / and 

prototypes Wx = (tou, • ■ ■ ,wlm),.. .,Wn = {wnU-■ ■ ,wnm) These prototypes are stored in 

the synaptic weights of the connections between Fi- andF2- neurons. Only an Fr neuron 

J, receiving the highest net activity tj, sets its output to 1, while all other output neurons 

remain 0: 

_ j 1   if tj > max(ifc : k ^ j) ,^s 
Uj' ~ I  0 otherwise 
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One possible way to compute net activities tj, and by that measure the similarity between I 

and Wj, is the weighted sum 

m 

tj=Y,WVii (16) 
i=l 

Variations on this measure are often employed because the value tj exerts great influence 

on the resulting cluster. After an F2-winner J has been found, the corresponding prototype 

Wj = (wu, • • •, wmj) is adapted to the input pattern I. One suitable method for adaptation 

is to move Wj slightly toward input pattern I as follows: 

^new) = ^/+(l_^).^old) (17) 

where the constant learning rate rj £ [0, 1] is chosen to prevent prototype Wj from moving too 

fast and therefore destabilizing the learning process. Prototypes for this kind of competitive 

learning network can be initialized either with random values or with values of randomly 

chosen input patterns from the training sequence. 

Competitive learning networks of this kind tend toward unstable categorization whenever 

the distances between single input patterns vary in too wide a range. Additionally, there is 

no way to control either the number of clusters produced by the network, or the minimum 

similarity of patterns in one cluster. In ART, this problem is solved by extending the 

competitive learning network as shown in Figure 9. A second set of connections is added, 

sending the F2-output U back to layer F\. The synaptic top-down weights Wij of these 

connections are, except for a possible scaling factor, identical to the bottom-up weights W,j. 

The top-down net activity V is usually calculated by 

n 
vJ = Ylurwji (18) 

3=1 

This leads to 

V = U- Wj{ = Wj (19) 
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Figure 8: A simplified representation of the competitive learning network 

because all F2-outputs, except «j, are set to 0 [see (1)]. So input layer Fi receives prototype 

Wj, representing the current winning cluster J, as net activity. Next, the most complex 

part of signal processing in ART networks takes place, i.e., matching prototype Wj with 

input pattern I. This task is completed in ways characteristic to the different types of 

ART networks and, uses extensions to the internal structure of layer Fi. This yields a 

single matching value which is compared to the vigilance p, defining the minimum similarity 

between an input pattern and the prototype of the cluster it is associated with. If the 

matching value is smaller than vigilance p, the current winning F2-neuron is removed from 

the competition by a reset signal. The reset signal forces the activation F2-neuron J to 0 and 

another F2-neuron is activated, receiving the highest net activity tj of all non-reset output 

neurons. Once a prototype is found that leads to a matching value with input pattern /, 

at least as high as vigilance p, no further reset signal is applied and the network attains 

resonance. The position of the last winning F2-neuron indicates the final cluster for input 
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Figure 9: Basic layout of an ART network 

I, and the associated prototype is adapted. 

Figure 10 demonstrates the similarity concept in the ART2 network. We emphasize that 

the coordinates may be scaled to provide rich flexibility. 

The initial values of prototypes that have not yet been accessed by an input pattern, 

provide for two key features: 

1. Previously accessed prototypes are first compared to the input pattern before an un- 

committed prototype is chosen. 

2. If none of the committed clusters matches the input pattern well enough, search will 

end with recruitment of an uncommitted prototype. 

The basic structure of an adaptive resonance neural network involves three groups of 

neurons: 
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Figure 10: Similarity in ART2 is measured by the angle 

• Fl layer: the input processing field 

• F2 layer: the cluster units 

• Reset mechanism: the mechanism to control the degree of similarity of patterns placed 

on the same cluster. 

The Fl layer has two parts: the input portion, denoted by Fl(a), and the interface 

portion, denoted by Fl(b). In ART2, some processing may occur in the input portion. The 

interface portion combines signals from the input portion and the F2 layer to compare the 

similarity of the input signal to the weight vector for the cluster unit, which has been selected 

as a candidate for learning. 

To control the similarity of patterns placed on the same cluster, there are two sets of 

connections (each with its own weights) between each unit in the interface portion of the 
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input field and each cluster unit: 

• The Fl(b) layer is connected to the F2 layer by bottom-up weights 6^-; each 6,j is the 

weight on the connection from z-th Fl unit to the j-th F2 unit. 

• The F2 layer is connected to the Fl(b) layer by top-down weights tj,-; each i,-,- is the 

weight on the connection from j-ih F2 unit to the i-th Fl unit. 

The F2 layer is a competitive layer: the cluster unit with the largest net input becomes 

the candidate to learn the input pattern, the activations of all other F2 units are set to 0. 

Then, the interface units combine information from the input and cluster units. 

Whether the cluster unit is allowed to learn the input pattern depends on how similar 

its top-down weight vector is to the input vector; the decision is made by the reset unit, 

based on the signals it receives from the input and interface portions of the Fl layer. If 

the cluster unit is not allowed to learn, it is inhibited and a new cluster unit is selected as 

the candidate. A graphical representation of an ART2 neural network structure is shown in 

Figure 11, where the operations involved are listed below: 

Wi 
Xi = 7+W\\' Vi = f(Xi) + t>f(Qi); 

Vi Pi 
Ui   =   ^+W\\' g,'=^ftpi|; Pi = Ui + dU; 

0   otherwise 
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Figure 11: Structure of a typical ART2 neural network 

4    METAMODELING USING NEURAL NETWORKS 

The purpose of "metamodeling" is to capture complex input/output relationships embodied 

in a simulator so as to obtain simulation data quickly and efficiently. It is well known 

that multilayer neural networks are universal function approximators [9]. As such, they are 

often used for non-parametric modeling, and are well suited to the task of metamodeling, as 

detailed in our previous report [5]. To briefly summarize the discussion that may be found 

in Section 3 of [5], a neural network is a device (i.e., software) which conceptually consists 

of many "neurons" with "weights" attached to them. By adjusting the weights, a neural 

network is capable of generating response surfaces (i.e., outputs) of extreme generality. The 

idea of using "neurons" comes from the "stimulus-response" paradigm that our human brain 

neurons seem to conform to. The metamodeling procedure we have pursued consiusts of the 

following basic steps. 

First, a large-scale simulation with possibly hundreds or thousands of inputs and hundreds 

or thousands of outputs is executed. The neural network is a device that we have separately 
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designed (completely independently of the simulator) which is fed by the exact same inputs 

and outputs of the simulator; it does not, however, intrude in any way into it. While the 

simulator is running, the neural network observes the inputs and outputs and it "learns" 

from them. This is called "training" the network. One can visualize the neural network as 

an "entity" which is highly intelligent but has no knowledge of anything initially to apply 

its intelligence to. As it observes the simulation unfold, however, it learns from the basic 

cause-effect (i.e., input-output) relationships it observes. In fact, all the neural network does 

is adjust its weights so as to emulate the behavior it observes as closely as possible. 

When the training is done, the simulator can be taken away. The neural network is now 

the surrogate model: we may give it some inputs (as if we were giving them to the simulator) 

and it immediately gives us an output (as the simulator would). So, we can think of it as a 

"function" which responds to any input by providing some output, except that there is no 

explicit mathematical expression or formula - just a device (a software routine) that acts as 

the model. 

The main advantages of a neural network were discussed in [5]. It was also pointed out 

that in order to take full advantage of such an approach, one must design the neural network 

appropriately and develop efficient ways to accomplish the all-important training process. 

In [5], we also introduced the Cascade Correlation Neural Network (CCNN) as a type of 

multilayer neural network that builds itself while it learns [10, 15, 20]. The CCNN starts 

small and makes itself larger during training which usually leads to faster learning and better 

performance. 

One of the objectives of this project was to pursue the study of benchmark problems and 

evaluate the effectiveness of metamodeling using neural networks. In our earlier work, we 

concentrated on the Tactical Electronic Reconnaissance Simulation (TERSM) model [22]. 

TERSM has been extensively studied and was used by previous researchers to develop and 
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evaluate polynomial metamodels [8, 27, 26] that we were able to compare with our proposed 

CCNN metamodeling approach extensively in [5]. 

While TERSM has provided an excellent testbed to study the feasibility of the CCNN 

metamodeling approach, it lacks some of the features that constitute real challenges to 

metamodeling. For one, TERSM lacks significant randomness. As provided to us, TERSM 

is deterministic. For another, TERSM does not exhibit asymptotic relationships which are 

very common in practice. Exposing such asymptotic behaviors often requires very long 

simulation runs. Avoiding long simulation runs is one of the real benefits of metamodeling. 

Additionally, asymptotic behaviors can be very difficult for polynomials to capture, and 

provide one of the primary motivations for the use of more powerful metamodeling methods 

like the CCNN we are investigating. With this motivation in mind, we introduced in [5] 

a new testbed system we called the Aircraft Refueling and Maintenance System (ARMS). 

This system can be viewed as a high-resolution component of a combat simulation model 

whose output is used by a lower-resolution model. In Section 5.1, we review the ARMS 

model. In Section 5.2, we present results from a simulation study we have performed, and 

in Section 5.3, we include the results from our CCNN metamodeling effort applied to the 

ARMS benchmark problem. 

4.1    The Aircraft Refueling and Maintenance System (ARMS) 

The basic ARMS model is shown in Figure 12. As illustrated, ARMS is a multiclass queueing 

system. Jobs from each class n = l,...,N arrive with average rates A„ to separate arrival 

queues with capacities Cn (possibly infinite). The system has 9 tokens. At block 1, the jobs 

compete for tokens on a priority basis, with the class 1 jobs having the highest priority. The 

job waiting in the highest priority arrival queue will be the first to get a token when one 

becomes available.  After getting a token, the jobs enter a service queue with capacity Cs. 

47 



At block 2 the jobs are selected from the service queue according to some service discipline 

(e.g., first in first out (FIFO)) and routed to one of k = 1,..., K servers. The time to service 

a job is a random variable //(n, k) which can vary as a function of the job class n and the 

particular server k. Upon completing service, the jobs proceed to block 3, where the token 

is returned to a token pool, and the job leaves the system. 

h- 

semis 

Figure 12: The basic ARMS queueing model. 

The basic ARMS queueing model is very general and can be used to represent a large 

variety of Air Force C4I operations. For example, such a model can be used to represent 

computer networks, communications systems, or logistics problems. The specific problem we 

will consider is the aircraft refueling and maintenance system (ARMS) shown in Figure 13. 

The ARMS problem has aircraft requesting to land at a particular site (airport or aircraft 

carrier) for refueling and/or maintenance purposes. Depending on aircraft type, a priority is 

assigned to each aircraft so that high-priority ones are served first. Since landing capacity and 

associated maintenance resources are limited, a specific number of "permits" (i.e., tokens) are 

available. An aircraft is, therefore, forced to wait until it receives a permit. Upon receiving 

a permit, the aircraft is guided to a refueling/maintenance area. If the resources required to 
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complete the refueling/maintenance process are not immediately available (e.g., personnel, 

tools, spare parts, fuel), the aircraft is further delayed. When the aircraft completes service, 

the permit is returned to the permit pool, and the aircraft proceeds to take off and return to 

action. In studying this system, one is interested in minimizing the expected "down time" 

of an aircraft, with more emphasis given to certain types of aircraft (the ones given higher 

priority). At the same time, one is interested in keeping service costs within acceptable levels. 

From a modeling standpoint, one must therefore determine functional relationships such as 

the expected down time of a priority 1 aircraft with respect to factors such as the number 

of permits; or the number of maintenance resources allocated to the refueling/maintenance 

process. 
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Figure 13: The aircraft refueling and maintenance system (ARMS). 

A preliminary analysis focused on the 3-class, single server ARMS model shown in Fig- 

ure 14 was reported in [5]. In this model, the class 1 jobs have the highest priority, and 

the class 3 jobs the lowest. Job arrivals are assumed Poisson with rates A„, where n is the 

customer class. In order for a job to be served, it must have one of 6 tokens. Jobs with 

tokens queue up to be served by a single server. At the completion of service, the jobs leave 
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the system, and the tokens are returned to the token pool for reuse. When different classes 

of jobs are competing for tokens, the class with the highest priority gets one first. Jobs in 

the same class compete for tokens on a first come, first served (FCFS) basis. The arrival 

queues have capacity C„, and the server queue has capacity Cs = 6. Jobs in the server queue 

may be served FIFO (with no distinction made between jobs from different classes), or they 

may be served according to priority (with the highest priority jobs moving to the front of 

the queue). In any case, service is nonpremptive (once a job begins service, service cannot 

be interrupted, and will continue until completion), and the service time is an exponential 

random variable with parameter \in. 

h 

m 

h 

Figure 14: System used for analysis. 

4.2    Modeling and Simulation Analysis of ARMS 

In order to study the ARMS, i.e., understand its basic dynamic behavior and develop a 

simulation model for it, a detailed discrete event system (DES) description was developed 

in [5]. We review it here so as establish the basic notation and terminology required. We 

begin by defining the state of the ARMS model as follows, 
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1 

Qn e 0,1,..., Cn - number of class n jobs in the n-th arrival queue 

Qq e 0,1,..., 6 - number of tokens in the token pool 

Qs G 0,1,..., 0 - number of jobs in the server queue (recall Cs = 6) 

where n € 1,2,3. State changes in the system are caused by four types of events, 

An - arrival of a class n job to the n-th arrival queue 

Aq - arrival of a token to the token pool 

As - arrival of a job+token pair to the server queue 

Ds - departure of a job+token pair from the server 

Job arrival events are always feasible. Token arrival events are only feasible when there are 

jobs being serviced (i.e., when there are jobs in possession of a token). Server arrival events 

are only feasible when tokens are available in the token pool. Departure events from the 

server are only feasible when there a job is being serviced. 

The state transition mechanism describing how the state of the system changes in re- 

sponse to the various events is given below. 

Job Arrival - An 

(1) Qn > 0,Qn < Cn -> Qn = Qn + 1 

(2) Qn = Cn-*Qn = Qn, record blocking of a class n job 

(3)Qn = 0,Q9 = 0->-Q„ = l 

(4) Qn = 0, Qq > 0 ->> Qq = Qq - 1, schedule As to occur immediately 

(5) Qn = 0, Qq > 0, Qs = 0 -+ Qq = Qq - 1, schedule Ds to occur in \xn seconds 

In equation (1) a class n job arrives to find its arrival queue not empty, but not at capacity 

either. The job is added to the back of the queue, where it must wait behind the other jobs 

in the queue before it can compete for a token. Jobs in the same class compete FCFS with 

other jobs in the same class for a token. In equation (2) a class n job arrives to find its arrival 
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queue at capacity. Since the arrival queue is full, the job is blocked, and not allowed to enter 

the system. Blocking is usually undesirable, and should generally be avoided. In equation 

(3) a class n job arrives to an empty arrival queue, but finds that no tokens are available. 

The job, therefore, must wait in its arrival queue for a token to become available. In equation 

(4) a class n job arrives to an empty arrival queue, and finds a token available (this implies 

that all other arrival queues must be empty). The job takes the token from the token pool, 

and proceeds to the server queue. This triggers an As event to occur immediately. Finally 

in equation (5) a class n job arrives to find an empty arrival queue, an available token, and 

an empty server queue. This job takes a token from the token pool, and immediately begins 

service. The service time for the job is //n, and a service completion event Ds is scheduled 

to take place in \xn seconds. 

Service Completion - Ds 

(1) Qs = 0 —)■ record performance for this job, schedule Ag 

(2) Qs > 0 —>■ record performance for this job, schedule Ag, Qs = Qs — 1, schedule Ds 

In equation (1) a job has just completed service and no other jobs are waiting in the server 

queue for service. The system time (down time) for the job is recorded, the job leaves the 

system, and the token is returned to the token pool (by scheduling an Ag event to occur 

immediately). In equation (2) a job has just completed service, and other jobs are waiting 

for service in the server queue. As before, the system time for the job that just completed 

service is recorded, the job leaves the system, and the token is returned to the token pool. 

In addition, the server queue is decremented, and the job at the front of the server queue 

begins service. The time to service this job will be fin, and a service completion event Ds is 

scheduled to take place in /j,n seconds. Note, when the server queue is a priority queue, the 

high priority jobs are shuffled to the front of the queue. Otherwise, jobs are served in the 

order they arrived to the server queue, independent of their priority. 
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Server Queue Arrival - Aa 

(1) Qs = 0 ->• schedule Ds 

(2)Qs>0->Qs = Qs + l 

In equation (1) a job-ftoken pair arrives to the server queue. Since the server queue is 

empty, the job immediately begins service. The time to service the job is //„, and a service 

completion event Ds is scheduled to take place in pn seconds. In equation (2) a job+token 

pair arrives to the server queue. In this case, the server queue is not empty, so the job is 

added to the queue. If the server queue is a priority queue, the job is placed behind the last 

job in its class. Otherwise, the job is placed at the back of the queue, independent of its 

priority. 

Token Queue Arrival - Ag 

(l)Qe>O^Qe = Qe + l 

(2) Qe = 0, Qn > 0 -¥ Qn = Qn - 1 (highest priority), schedule As 

(3) Qe = 0,Qn = 0^Qe = l 

In equation (1) a token is returned to the token pool. Since the token pool is not empty, the 

token is added to the pool. Note, the token pool will contain tokens only when all arrival 

queues are empty. In equation (2) a token returning to the token pool finds that the token 

pool is empty, and that there is a job in at least one of the arrival queues. In this case, the 

job at the front of the highest priority arrival queue takes the token, leaves its arrival queue, 

and proceeds to the server queue. In equation (3) a token returning to the token pool finds 

that the token pool is empty, and that there are no jobs waiting in any of the arrival queues. 

In this case, the token remains in the token pool. 

Based on the DES description above, a simulator was developed, and data were collected 

to assess the effects that the various parameters have on the system performance.   The 

53 



0.4 0.6 

Class 2 Arrival Rat« 

0.75 

Figure 15: Effect of changing the class 2 arrival rate when the server queue has priorities. 

performance measure we use is the mean system time for each job class. The system time is 

the interval from when a job arrives to the system to the time the job completes service and 

leaves the system. In the ARMS problem, the service time is the "down time" of an aircraft. 

For the experiments that follow, the arrival queues are assumed to have infinite capacities, 

i.e., Cn = oo for n = 1,2,3. 

4.2.1    Arrival Rate Analysis 

Some preliminary results for this analysis were reported in [5] and are briefly reviewed here 

before extending them. 

Figure 15 shows what happens when the server queue is a priority queue, which allows 

the higher priority jobs to jump to the front. In this case, the class 3 jobs really suffer. Not 

only do the class 3 jobs get starved for tokens, but even when they do get a token, they 

keep getting pushed to the rear of the server queue. The class 1 jobs, on the other hand, are 

unaffected by the arrival rate of the class 2 jobs. 

Figure 16 shows the effect of changing the arrival rate of the class 3 jobs when the server 
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Figure 16: Effect of changing the class 3 arrival rate when the server queue is FIFO. 

queue is FIFO. As can be seen, the effects of changing the class 3 arrival rate are very similar 

to the effects of changing the class 2 arrival rate. As the class 3 arrival rate increases, the 

system times of the other two classes increase, because they have to wait longer in the server 

queue. But, again, no matter how high the arrival rate of the class 3 jobs gets, the system 

times of the class 1 and 2 jobs will never go much higher than about 21 seconds (1 second 

waiting for a token, 19 seconds waiting in the server queue, and 1 second being served). 

Figure 17 shows what happens when the server queue is a priority queue. In this case, 

the class 1 and 2 jobs are unaffected by the class 3 arrival rate. 

To summarize, we have seen that changing the arrival rate of the class 1 jobs has a 

significant effect on the system times of the other classes. When the server queue is FIFO, 

with no distinction between classes, we saw that increasing the arrival rate of the lower 

priority jobs effects the system times of the higher priority jobs by forcing them to wait 

longer in the server queue. We did notice, however, that, regardless how high the arrival 

rate of the lower priority jobs becomes, the system times of the high priority jobs never 

exceeds a certain ceiling that depends on the number of tokens in the system. When the 

server queue is has priorities, and allows high priority jobs to jump to the front of the queue, 
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Figure 17: Effect of changing the class 3 arrival rate when the server queue has priorities. 

the behavior is different. In this case, the arrival rates of the lower priority jobs have little 

effect on the system times of the high priority jobs. The low priority jobs, however, are 

severely effected by increases in the arrival rates of high priority jobs. We also noticed a 

characteristic which is typical of queueing systems: As the arrival rate increases, the service 

times asymptotically approach infinity. As a final remark, we note that, as the arrival rates 

becomes high, very long simulation runs are required to collect statistically reliable data. 

This is a common feature of queueing systems: When the system is running at or near 

its stability limits (the point where jobs begin to arrive faster than the server can possibly 

process them), long simulation runs are needed to collect statistically reliable performance 

data. 

4.2.2    Service Time Analysis. 

Here we see how changing the service time of the class n jobs affects the system times of 

the other classes. As before, we set the number of tokens to 9 = 20, so that the token loop 

can be neglected. We set the arrival rates for each class to be equal at Ai = A2 = A3 = 0.2 

jobs/second. Then we varied the service time for one class at a time. The service times for 
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Figure 18: Effect of changing the class 1 service time when the server queue is FIFO. 

the classes that were not being varied were set to /i = 1 second. For the experiments in this 

section, the server queue is FIFO, with no distinction between job classes. 

Figure 18 shows what happens when we change the service time of the class 1 jobs. As 

we see, the effect is very similar to increasing the arrival rate of the class 1 jobs. That is, 

as the service time of the class 1 jobs increases, the other two classes become starved for 

tokens, and their system times begin to increase. The mechanism by which this happens is 

as follows: As the service time increases, the probability that a class 1 job will be waiting 

when a token becomes available increases. The class 1 jobs take the tokens, and the other 

two classes are forced to wait. As the system time of the class 1 jobs becomes increasingly 

larger, the other job classes never get a token, and their arrival queues become unstable. 

Eventually, the arrival rate of the class 1 jobs exceeds the rate at which the system can 

process them (because of the long service time), and the class 1 arrival queue will also go 

unstable. As we saw before, the onset of instability is marked by an asymptotic rise in the 

system time. 

As seen in Figure 19 and Figure 20, the effects of changing the service times of the class 

2 and class 3 jobs has very much the same effect as changing their arrival rates. 
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Figure 19: Effect of changing the class 2 service time when the server queue is FIFO. 

Class 3 Service Time 

Figure 20: Effect of changing the class 3 service time when the server queue is FIFO. 
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To summarize, changing the service time has an effect that is very similar to changing 

the arrival rate. As the service time of the class 1 jobs increases, these jobs utilize most of 

the tokens, and the other two classes suffer. As the service time of the class 2 jobs increases, 

they make use of any tokens not used by the class 1 jobs, and the class 3 jobs suffer. As the 

service time of the class 3 jobs increases, the other two classes must wait behind them in the 

server queue. As before, if the server queue were a priority queue and not a FIFO queue, 

the lower priority classes would have much less effect on the higher priority classes. 

4.2.3    Token Influence. 

Here we look at the effect of changing the number of tokens. To do so, we fix the arrival 

rates of the three job classes to Ai = A2 = A3 = 0.30 jobs/second and their service times to 

H! = [i2 = (j,3 = 1 second/job. Then we varied the number of tokens. 

Figure 21 shows what happens as the number of tokens is decreased from 0 = 20 down to 

0 = 1. In this figure, the server queue is FIFO, with no distinction between classes. What is 

interesting is that the system times of the class 1 and class 2 jobs actually goes down as the 

number of tokens is decreased. This happens because, as the number of tokens is decreased, 

the time that a job must wait in the server queue is decreased. Consequently, the overall 

system time is decreased. The number of tokens indicates the maximum number of jobs that 

can be present in the server queue. When jobs in the server queue are served FIFO, more 

tokens means longer waiting in the server queue. For the class 3 jobs, however, their system 

times increase as the number of tokens is decreased. This is because the probability that a 

class 1 or class 2 job will be waiting when a token becomes available increases as the number 

of tokens decreases, and the class 3 jobs become starved for tokens. 

Figure 22 shows what happens when the server queue has priorities. As can be seen, the 

system times, in this case, are unaffected by the number of tokens. When there are many 
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Figure 21: Effect of changing the number of tokens when the server queue is FIFO. 
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Figure 22: Effect of changing the number of tokens when the server queue has priorities. 
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Input Variable Lower Limit Upper Limit 
Ai (customers/sec) 0.1 1.0 

A2 0.1 1.0 

A3 0.1 1.0 
9 1 20 

Table 1: Range of interest for each input variable 

tokens, the jobs wait in the server queue. When there are few tokens, the jobs wait in their 

respective arrival queues. The amount of time they wait, however, does not change. All that 

changes is where they wait. 

4.3    Metamodeling of ARMS using a Cascade Correlation Neural 

Network 

For the purposes of metamodeling, we concentrated on the relationship between four inputs: 

Ai,A2, A3 (arrival rates for the three customer classes), and 9 (number of tokens); and the 

output, J = si, i.e., the service time of the class 1 (highest priority) jobs. The service time 

is considered to be the time from the job arrival at the system to the time the job finishes 

service and departs the system. In the context of aircraft refueling and maintenance, this is 

the "downtime" or amount of time that an aircraft is not available for service. The range of 

inputs are given in Table 1.. 

This four-input single-output case was also studied using polynomial metamodels based 

on the techniques reported in [8, 27, 26] and also used in our earlier work [5]. 

Some CCNN results on ARMS metamodeling were partly reported in [6] (included in the 

Appendix). In this section, we have assembled all our numerical results, including some new 

3-D plots for the ARMS model. 
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We have three sets of data: 

• Training set for CCNN, size=500, uniformly randomly generated in the input range 

• Test set, size=500, uniformly randomly generated in the input range 

• Training set for 4th-order polynomial, size=49, generated by layered CCD design [5],[6]. 

The 4th order polynomial metamodel we used is given in [6] and a square root transfor- 

mation to the output is used. For CCNN training, we used two schemes: 

• CCNN(I): The output is simply rescaled version (here the factor is 0.1) of the real 

output 

• CCNN(II): Natural log transformation to the real output is used. 

When the arrival rate approaches the service rate, the output rapidly increases, so it is 

reasonable to make use of a log transformation which has the property of "flattening" the 

output curve and making the learning task easier. 

Results are shown in Table 2. The CCNN(I) in the table has 25 hidden units; the 

CCNN(II) has 23 hidden units. Although the training of the CCNN is done according to 

the mean squared error (MSE), we also look at the mean squared relative error (MSRE) 

which provides a better picture of the actual metamodel performance. ^From our earlier 

work, we know that the ARMS output can explode when the parameters approach a certain 

region. The MSRE is therefore more appropriate than the MSE in showing how a metamodel 

performs on the whole range. The MSRE is defined as 
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Polynomial 
CCNN(I) 

CCNN(II) 

training set (size:49) 
1.874 (11.0%) 
85.81 (64.2%) 
86.69 (27.0%) 

training set (size:500) 
22.76 (35.0%) 
3.438 (13.5%) 
6.890 (12.3%) 

test set (size:500) 
17.74 (34.3%) 
13.01 (22.9%) 
10.57 (16.3%) 

Table 2: CCNN and polynomial metamodeling results of ARMS 

where e,- is the error and y,- is the output. The numbers in the Table 2 show the MSE and, 

in parenthesis, the square root of the MSRE expressed as a percentage value. 

It can be seen from Table 2 that the 4th order polynomial performs well on the 49-point 

training set. However, the MSRE values are quite high for the other two 500-point sets. 

This is attributed to the fact that most points in the 49-point data set are for extreme cases 

where certain A; values are too large or the number of tokens is too small. 

Note that CCNN(I) achieves good training results without too many hidden units. How- 

ever, it cannot be well generalized to the test data set and performs poorly for the 49-point 

set due to the choices of extreme values. 

The CCNN(II) results show improvement for all data sets, especially when we look at 

the MSRE criterion. This is due to taking the log of the output, which makes the surface 

"flatter" as already mentioned. 

Next, we present some 3-D plots for the ARMS model in Figures 23 through 31. 

Figures 23 through 25 show the case where we fix A2 = 0.25, A3 = 0.3 and vary Ai and 

9. This corresponds to a case where class 2 and class 3 jobs have relatively comparable 

and moderate traffic. We can observe the service time of class 1 for different class 1 arrival 

rates and different amounts of tokens. From Figure 23, we see that Si increases in both 

dimensions (Ai and 9) and goes up drastically on the edge (0.8 < Ai < 1). Figure 24 shows 

the corresponding CCNN(I) metamodel yielding MSE = 10.18 and VMSRE = 29.1%. 
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Figure 25 is the CCNN(II) result, with MSE = 10.58 and VMSRE = 19.1%. 

Figures 26 through 28 are for the case where A2 = 0.2, A3 = 0.4. The shape is not much 

different from that in the previous setting. The performance for CCNN(I) and CCNN(II) are, 

MSE = 9.72, VMSRE = 25.0% and MSE = 8.15 and VMSRE = 18.1%, respectively. 

Figures 29 through 31 show the case when we fix A: = 0.3,6 — 10, that is, we observe 

the influence of lower priority classes on class 1 jobs for a particular class 1 arrival rate 

and amount of tokens in the system. From Figure 29 we see a surface with much smaller 

variation in the output. The surface is mostly flat for large values of A2 and A3, but has 

a rather sharp slope at the corner for small A2,A3. Figures 30 and 31 show the results of 

CCNN(I) and CCNN(II), with MSE = 1.153, VMSRE = 26.9% and MSE = 0.776 and 

VMSRE = 10.7%, respectively. It is interesting to note that CCNN(I) seems to learn the 

flat shape better than CCNN(II) although the overall performance of the former is not as 

good as that of the latter. 

Observe that the 3-D plots for the simulated data show some very rough surfaces, espe- 

cially for the first two cases where the output increases significantly. The spikes at the edge 

are the result of insufficient sample sizes (the stopping condition for all our simulations is 

defined by the number of jobs served exceeding 1000). Recall that when Ai increases, the 

queueing system will become unstable. 

Finally, we performed another series of experiments where the sizes of training sets for 

both polynomial and CCNN metamodels are increased. Results are given by Table 3. The 

polynomial is obtained using a 500-point training set; the CCNN(II) with 23 hidden units is 

trained using a 1000-point data set. The results suggest that additional training points for 

the polynomial metamodel do not lead to better performance, and the same is true for the 

CCNN metamodel. 
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Figure 23: Simulation: Output Si vs. (Ai,0), A2 = 0.25, A3 = 0.3 
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Figure 24: CCNN(I): Output Si vs. (Ai,0), A2 = 0.25, A3 = 0.3 
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Figure 25: CCNN(II): Output Sx vs. (Al50), A2 = 0.25, A3 = 0.3 

8: number of tokens 

Figure 26: Simulation: Output Si vs. (Ai,0), A2 = 0.2, A3 = 0.4 
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6: number of tokens 

Figure 27: CCNN(I): Output Si vs. (Ai,0), A2 = 0.2, A3 = 0.4 

0      0 
6: number of tokens 

Figure 28: CCNN(II): Output Si vs. (Xu9), A2 = 0.2, A3 = 0.4 
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Figure 29: Simulation: Output Si vs. (A2,A3), Ai = 0.3,0 = 10 

Figure 30: CCNN(I): Output Si vs. (A2,A3), Ax = 0.3,9 = 10 
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Figure 31: CCNN(II): Output Si vs. (A2,A3), Xi = 0.3,0 = 10 

49 point set training set (size:500) test set (size:500) 

Polynomial 102.0 (80.0%) 8.073 (21.9%) 10.83 (22.0%) 
49 point set training set (size: 1000) test set (size:500) 

CCNN(II) 80.26 (23.2%) 7.929 (12.7%) 11.35 (13.7%) 

Table 3: CCNN and polynomial trained using larger data set 
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5    CONCLUSIONS AND FUTURE RESEARCH DI- 
RECTIONS 

In this section, we summarize the main findings, lessons learned, and recommendations for 

future directions that have resulted from this project. 

Concurrent and Parallel Simulation. A basic theoretical framework underlying 

concurrent simulation algorithms is one of the accomplishments of this project, capitalizing 

and extending the results of our earlier work. Based on this framework, we have developed a 

general (i.e., not limited by specific modeling assumptions) concurrent simulation approach 

implemented through the Time Warping Algorithm (TWA) and quantified and compared 

the effectiveness of this algorithm to conventional repetitive simulation through the concept 

of "speedup". We have found that the speedups achieved by concurrent simulation are 

significantly affected by such factors as the particular computer hardware used and the data 

structures selected. This suggests the need for a further exploration of different ways to 

implement the TWA and its variants. 

Application of concurrent simulation techniques to parallel processing environments promises 

at least one additional order of magnitude in speedup over concurrent simulation on se- 

quential processors.   The integration of computer simulation methodologies with parallel 

processing architectures is a direction that holds great promise. 

Stochastic Fidelity and Multi-resolution Simulation. One of the accomplishments 

of this project is to document and substantiate the stochastic fidelity issue that arises in hi- 

erarchical simulation. Simple averaging of the output data from a high resolution simulator 

to generate input data for a low resolution simulator is inadequate and occasionally dramat- 

ically erroneous. Resolving this issue is associated with the problem of systematic clustering 

methods that "bundle" high resolution output data in a way that incorporates the statistical 
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information lost through simple averaging. Our research over various clustering methods has 

led us to the path bundle grouping approach based on Adaptive Resonance Theory presented 

in Section 3.2.4. A crucial research direction to be pursued in the future is the development 

of fast clustering algorithms to group the huge dimensional data generated from typical high 

resolution simulators. Our investigation of the ART2 neural network for this purpose has 

led to promising results and identified key issues to be addressed. 

The nature of this line of research is such that significant progress is made through ex- 

tensive empirical work and experimentation with benchmark problems. We therefore believe 

that such problems need to be defined and thoroughly explored at the same time as specific 

analytical or numerical tools are developed. 

Metamodeling through Neural Networks. The metamodeling procedure we have 

studied combines simulation of a complex system with the process of training a neural 

network to become a surrogate model of this system. This exploits the ability of a neural 

network to act as a universal function approximator. Using a Cascade Correlation Neural 

Network (CCNN), a multilayer neural network that builds itself while it learns, we were able 

to study concrete models and problems demonstrating that neural network metamodels are 

significantly more accurate than their polynomial counterparts, especially when asymptotic 

behavior in input-output relationships is involved; such is the case in the ARMS case, as 

detailed in Sections 4.2 and 4.3. 

Important issues we have identified in this component of our project include: (a) De- 

termining the training data size for metamodeling through neural networks. An interesting 

direction, for example, is the investigation of adaptive mechanisms and segmentation of a 

problem to develop separate models for different regions of the input space, (b) Improving 

the learning efficiency and speeding up the learning process of a neural network. As an 

example, starting from several different initial points (multi-starts) seems to substantially 
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help training, but has yet to be studied in a systematic framework. 
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APPENDIX 

This Appendix contains reprints of publications that are relevant and provide supporting 

documentation for this report. 
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Abstract The sample path constructability problem for Discrete Event Systems (DES) involves the observation 
of a sample path under a particular parameter value 6 of the system with the requirement to concurrently construct 
multiple sample paths of the DES under different values using only information available along the given sample 
path. This allows the on-line estimation of performance measures /(0), not available in closed form, over a 
range of values of 6. We present a sample path coupling approach that solves the problem without imposing 
any restrictions on the event processes in the system. A specific "time warping" algorithm is described and its 
performance is analyzed in terms of computational cost. Our approach is illustrated through a number of simulation 

results. 

Keywords: discrete event systems, sample path construction, concurrent estimation, timed state automaton 

1.   Introduction 

A typical problem one faces in the design, control, and optimization of Discrete Event 
Systems (DES) is that of determining how some performance measure 7(0) varies as 
a function of some parameter 9. As a rule, analytical expressions for 7(0) are simply 
unavailable, thus forcing one to resort to repetitive simulation or on-line trial-and-error 
techniques. This requires the generation of a sample path of the system at least once for 
every value of 9 of interest. It is easy to see how tedious (if at all feasible) this process 
becomes, especially when 9 is a vector and the DES is stochastic, requiring large number 
of sample paths to achieve desired levels of statistical accuracy. 

It is by now well-documented in the literature that the nature of sample paths of DES can 
be exploited so as to extract a significant amount of information, beyond merely an estimate 
of 7(0). It has been shown that observing a sample path under some parameter value 0 
allows us to efficiently obtain estimates of derivatives of the form dJ/dB which are in many 
cases unbiased and strongly consistent (e.g., see Cassandras, 1993; Glasserman, 1991; 
Ho and Cao, 1991) where Infinitesimal Perturbation Analysis (IPA) and its extensions are 
described). Similarly, Finite Perturbation Analysis (FPA) has been used to estimate finite 
differences of the form A7(A0) or to approximate the derivative dJ/d6 through A7/ A0 
when other PA techniques fail. Of particular interest are often parameters 0 that take values 
from a discrete set {9l,...,9m} (e.g., queueing capacities, threshold values in certain control 
policies), in which case we desire to effectively construct sample paths under any 9\,..., 9m 

by just observing a sample path under one of these parameter values. All of the methods 
developed to date, regardless of specific details, have been motivated by the same objective: 
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From a single sample path under 9 extract information to estimate the derivative dJ/dd or 
the response of the system, J(9'), under other parameter values 6' ^ 9. This information 
can be extremely useful in sensitivity analysis and optimization of DES. It is also the case 
that structural properties of a DES, such as monotonicity and convexity, are revealed by 
this type of sample path analysis (see also Glasserman and Yao, 1994). 

In this paper, we will concentrate on the general sample path constructability problem for 
DES. That is, given a sample path under a particular parameter value 9, the problem is to 
construct multiple sample paths of the system under different values using only information 
available along the given sample path. A solution to this problem can be obtained when 
the system under consideration satisfies the Constructability Condition (CO) presented in 
Cassandras and Strickland (1989a,b). Suppose that a sample path of the system is observed 
under parameter 9 and we would like to construct the corresponding sample path under 
some 9'. Then (CO) consists of two parts. The first part is the Observabilty Condition 
(OB) which states that at every state the feasible event set of the constructed sample path 
must be a subset of the feasible event set of the observed sample path. The second part is 
a requirement that all lifetimes of feasible events conditioned on event ages are equal in 
distribution. 

Unfortunately, (CO) is not easily satisfied. Nonetheless, two methods to date have been 
developed making it possible to construct multiple sample paths at different parameter 
settings from a single sample path at some extra cost. In particular, the Standard Clock 
(SC) approach (Vakili, 1991) solves the sample path constructability problem for models 
with exponentially distributed event lifetimes by exploiting the well-known uniformization 
technique for Markov chains. This approach allows the concurrent construction of multiple 
sample paths under different (continuous or discrete) parameters at the expense of introduc- 
ing "fictitious" events. Chen and Ho (1995) have proposed a generalized SC approach that 
uses approximation techniques to extend the SC approach to systems with non-exponential 
event lifetime distributions. On the other hand, Augmented System Analysis (ASA) (Cas- 
sandras and Strickland, 1989a,b) solves the constructability problem by "suspending" the 
construction of one or more paths during certain segments of the observed sample path in 
a way such that the stochastic characteristics of the observed sample path are preserved. In 
ASA, it is still necessary to assume exponential event lifetime distributions, although, with a 
minor extension it is possible to allow at most one event to have a non-exponential lifetime 
distribution (see Cassandras, 1993; Cassandras and Strickland, 1989b for details). 

In this paper we develop and analyze an approach for solving the constructability problem 
for general DES (Cassandras and Panayiotou, 1996). We emphasize that the proposed 
scheme is suited to on-line sample path construction, where actual system data are processed 
for performance estimation purposes. In contrast, the SC approach is only relevant in the 
context of simulation-based analysis (although it is possible to adapt the SC to on-line 
applications (Cassandras et al., 1990), but with considerable effort). Moreover, unlike 
SC and ASA, our approach can be used in systems with arbitrary lifetime distributions 
without involving any of the approximations suggested in the generalized SC method in 
(Chen and Ho, 1995). The central idea of our approach is quite simple: when an event 
on the observed sample path under 9 occurs and causes a state transition, its lifetime is 
stored. These stored lifetimes are used as the input to multiple concurrent sample path 
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generators (e.g., simulators) under different parameter values ff # 0. Thus, instead of 
separately generating lifetimes for each event which is common in the observed and each 
constructed sample path we use the lifetimes that have been directly observed. Whenever a 
constructed sample path enters a state such that the feasible event set includes events which 
have not yet occurred on the observed sample path (i.e., no lifetimes have been observed 
for these events), the construction is suspended until the required events and corresponding 
lifetimes become available on the nominal path. Therefore, the constructabihty condition 
is bypassed at the expense of a process for starting/stopping each sample path construction. 
In this paper we will define this process, study its properties and compare its effectiveness 
to other approaches. The viewpoint we adopt in the sample path constructabihty problem 
is one of coupling the observed process under 9 to all processes under different 6 # 6 
and then deriving event-driven dynamics that describe this coupling. Also, note that in 
certain cases event lifetimes may not be directly observable, in which case they need to be 
recovered from the output available, a problem referred to as invertibility (Park and Chong, 

1995). ,.,. , 
It is worth pointing out that this concurrent sample path constructabihty approach can be 

used in two different modes. Primarily, it can be used on-line as a concurrent estimation 
scheme. In addition, for a class of systems, it can be used off-line as a concurrent simulation 
approach. In the case of concurrent estimation, the scheme observes a real DES under some 
parameter value B and estimates the system's performance under a set of hypothetical pa- 
rameter values 0i 6U. These estimates can be used together with optimization schemes 
requiring such information (e.g., Yan and Mukai, 1992; Gong et al., 1992; Cassandras and 
Julka, 1994, Panayiotou and Cassandras, 1996); also, see (Panayiotou and Cassandras, 
1997) for an application of the scheme in a dynamic resource allocation problem). In the 
case of concurrent simulation, the algorithm developed is incorporated into a simulation 
environment in order to generate performance estimates under a range of parameters faster 
than repeatedly simulating the system under each parameter (what is commonly referred to 
as "brute-force simulation"). 

The paper is organized as follows. In section 2 we formally define the general sample 
path constructability problem. In section 3 we describe the process through which the 
problem is solved by coupling an observed sample path to multiple concurrently generated 
sample paths under different parameter settings, and a detailed procedure, the Time Warping 
Algorithm is presented. An evaluation of the proposed algorithm is presented in section 4. 
Some extensions of the algorithm are discussed in section 5 and several simulation results 
are included in section 6. Finally we close with conclusions from this work in section 7. 

2.   Problem Definition 

We consider a DES and adopt the modeling framework of a stochastic timed state automaton 
{EXT f,xQ) (Cassandras, 1993). Here, E is a countable event set, A" is a countable state 
space, and T{x) is a set of feasible (or enabled) events, defined for all x e X such that 
T{x) C £. The state transition function f(x, e) is defined for all x € X, e e T{x), and 
specifies the next state resulting when e occurs at state x. Finally, x0 is a given initial state. 
In addition, for simplicity we assume that the DES satisfies the non-interruption condition, 
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V, ={i>,(l),v,(2).."} 

V« = {Ml).vw(2),-} 

DES 
<*o) ««.) 

DES 
«*i> 

DES {(»«) 

Figure 1. The sample path constructability problem for DES. 

i.e., once an event is enabled it cannot be disabled; this is not essential to the derivation of 
our results however. 

Remark. The definition is easily modified to (£,X,T,p,Po) in order to include probabilistic 
state transition mechanisms. In this case, the state transition probability p(x'\ x, e') is 
defined for all x, x' e X,e' e £, and is such that p(x'; x, e') = 0 for all e' £ T{x). In 
addition, p0(x) is the pmf P[x0 = x], x e X, of the initial state x0. 

Assuming the cardinality of the event set £ is N, the input to the system is a set of event 
lifetime sequences {V, \N], one for each event, where V, = {u,(l), t>,(2),...} is 
characterized by some arbitrary distribution. Under some system parameter 0O, the output 
is a sequence £(0O) = [(ek, tk), k = 1,2,...} where ek e £ is the ifcth event and tk is 
its corresponding occurrence time (see Figure 1). Based on any observed £(0O), we can 
evaluate L[§(0O)], a sample performance metric for the system. For a large family of 
performance metrics of the form J(60) = E[L[S(0o)]], £[£(0O)] is therefore an estimate 
of J{6Q). Defining a set of parameter values of interest [60, G\,.... 0M), the sample path 
constructability problem is: 

For a DES under 9o, construct all sample paths $ (Ox) %(9M) given a realization 
of lifetime sequences Vi \N and the sample path £(0O). 

For simplicity, in the rest of this paper we assume that the DES under investigation satisfies 
the following three assumptions. Extensions allowing the relaxation of these assumptions 
are possible and are briefly described in section 5. 

• (Al) Feasibility Assumption: Let x„ be the state of the DES after the occurrence of the 
nth event. Then, for any n, there exists at least oner > n such that e €T(xr) for any 
e&£. 
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•    (A2) Invariability Assumption: Let £ be the event set under the nominal parameter 60 

and let £m be the event set under 6m # 60. Then, £m = £. 

.    (A3) Similarity Assumption: Let G, (ft).* e £ be the event lifetime distribution for the 
event i under 0O and let G,(*«). i € £ be the corresponding event lifetime distribution 

under 6m. Then, G,(0o) = GiW») for all i e £. 

Assumption A7 guarantees that in the evolution of any sample path all events in £ will 
always become feasible at some point in the future. If for some DES assumption Al is 
not satisfied, i.e. there exists an event o that never gets activated after some point in tune, 
then as we will see, it is possible that the construction of some sample path will remain 
suspended forever waiting for a to happen. Note that a DES with an irreducible state space 
immediately satisfies this condition. 

Assumption A2 states that changing a parameter from 60 to some 9m ? &o does not alter 
the event set £. More importantly, A2 guarantees that changing to 9m does not introduce 
any new events so that all event lifetimes for all events can be observed from the nominal 

sample path. a 
Finally assumption A3 guarantees that changing a parameter from 0O to some Vm ? «o 

does not affect the distribution of one or more event lifetime sequences. This allows us to 
use exactly the same lifetimes that we observe in the nominal sample path to construct the 
perturbed sample path. In other words, our analysis focuses on structural system parameters 
rather that distributional parameters. As we will see, however, it is straightforward to handle 
the latter at the expense of some computational cost. 

3.   Coupled Sample Path Construction 

Before presenting the coupling approach we use to solve the constructability problem and 
the explicit procedure we will refer to as the Time Warping Algorithm, let us consider the 
following motivating example in order to illustrate the main aspects of this procedure. 

In a G/ G/ l/K queueing system, the event set is £ = [a, d) (a for arrival, d for departure), 
and the state x is a non-negative integer with x < K representing the number of customers 
currently in the system. Let the observed sample path be one with queue capacity K = 2, 
and let us try to construct a sample path under K = 3 in the framework of Figure 1. Let 
r{x[K]) be the feasible event set at state x for the system under K and assume that both 
systems are initially empty. Unlike earlier sample path constructability techniques, i.e., 
the SC and ASA methods, we can no longer maintain between the two sample paths (the 
observed one and the one to be constructed) a coupling which preserves full synchronization 
of events- this is because of the absence of Markovian event processes which allow us to 
exploit the memoryless property. Thus, we must maintain each feasible event set, r(x[2]) 
and r(x[3]), separately for each observed state x[2] and constructed state *[3]. Whenever 
an event is observed, its lifetime is assumed to become available (i.e., the time when this 
event was activated is known). Each such lifetime is subsequently used in the construction 

of the sample path under K = 3. 
To see precisely how this can be done, we start out with a state x [3] = 0 for the constructed 

sample path, so that r(x[3]) = {a}. Since no event lifetimes are initially available, we 
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consider the sample path of this system as "suspended". The initial state of the observed 
sample path is x[2] = 0 so that r(*[2]) = {a}. Therefore, the first observed event is a. At 
this point, the constructed sample path may be "resumed", since all lifetimes of the events in 
r(x[3]) are now available, namely the lifetime of a. The constructed sample path advances 
time, and updates its state to x[3] = 1. Now T(x[3]) = {a, d] but neither event has been 
observed yet, so the constructed sample path is suspended again until at least one a and one 
d events occur at the observed sample path. This start/stop (or suspend/resume) process 
goes on until a sample path under K = 3 is constructed up to a desired number of events 
or some specified time. Note that the coupling between the two sample paths requires a 
process through which, at every observed event, one must determine whether it is possible 
to resume construction of the suspended path. It may take several observed events before 
this is possible. However, it is also possible that such an event triggers a series of events 
on the constructed sample path, and hence a sequence of state transitions and time updates 
(e.g., if T(x[3]) = {a, d], a sequence of events [a, a, a, d) will cause three state transitions 
in a row as soon as d is observed). The fact that in this process we move backward in time 
to revisit a suspended sample path and then forward by one or more event occurrences lends 
itself to the term "time warping". 

Despite the simplicity of the main concept, the formal description of the coupling scheme 
and the process through which the start/stop condition is determined are somewhat tedious 
largely due to the notation necessary. In what follows, we introduce some basic definitions 
and notation before deriving the coupling process dynamics and describing the exact sample 
path construction procedure. 

3.1.   Notation and Definitions 

First, let £ (n, 0) = {e,: j = 1,..., n}, with e, € £, be the sequence of events that constitute 
the observed sample path up to n total events. Although £(n, 9) is clearly a function of the 
parameter 8, we will write £(n) to refer to the observed sample path and adopt the notation 
%(k) = {ey. j = 1 k} for any constructed sample path under a different value of the 
parameter up to k events in that path. It is important to realize that k is actually a function 
of n, since the constructed sample path is coupled to the observed sample path through 
the observed event lifetimes; however, again for the sake of notational simplicity, we will 
refrain from continuously indicating this dependence. 

Next we define the score of an event i € £ in a sequence £(n), denoted by s? = [f (n)],, to 
be the non-negative integer that counts the number of instances of event i in this sequence. 
The corresponding score of i in a constructed sample path is denoted by j* = [£(&)],. In 
what follows, all quantities with the symbol"". " refer to a typical constructed sample path. 

Associated with every event type i e £ in f («) is a sequence of s" event lifetimes 

V.-Oi) = {«,-(1) ««(*,")}   for all ie£ 

The corresponding set of sequences in the constructed sample path is: 

V,(*) = {v,(l) v,(Sf))   for all ie £ 
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which is a subsequence of V, (n) with k < n. In addition, we define the following sequence 

of lifetimes: 

V,(n, k) = [Viißl + 1) Vi(sf))   for all i e £ 

which consists of all event lifetimes that are in V, (n) but not in V, (*). Associated with any 
one of these sequences are the following operations. Given some W, = [wiU) wi(r)}. 

Suffix Addition: W, + {iu,(r + 1)} = {vo,(J) wt(r), wt(r-+ 1)} and. 

Prefix Subtraction: W, - [wi(j)) = [wtij + ■ 1),. • ■. ui,-(r)}. 

Note that the addition and subtraction operations are defined so that a new element is always 
added as the last element (the suffix) of a sequence, whereas subtraction always removes 
the/tor element (tot prefix) of the sequence. 

Next, define the set 

A(n,k) = {i: ie £.*?>**} (1) 

which is associated with V, (n, k) and consists of all events i whose corresponding sequence 
V,(n, *) contains at least one element. Thus, every i € A(n, k) is an event that has been 
observed in f (n) and has at least one lifetime that has yet to be used in the coupled sample 
path |(Jfc). Hence, A(n, k) should be thought of as the set of available events to be used in 
the construction of the coupled path. 

Finally, we define the following set, which is crucial in our approach: 

M(n,k) = r(xk)-{r(xk.i)-{ek}) (2) 

where, clearly, M(n, k) c £. Note that ek is the triggering event at the (* - l)th state 
visited in the constructed sample path. Thus, M(n, k) contains all the events that are in 
the feasible event set T(xk) but not in Tfo-i); in addition, ek also belongs to M(n, k) if 
it happens that ek e T(xk). Intuitively, M(n, k) consists of all missing events from the 
perspective of the constructed sample path when it enters a new state xk: those events 
already in T (**_,) which were not the triggering event remain available to be used in the 
sample path construction as long as they are still feasible; all other events in the set are 
"missing" as far as residual lifetime information is concerned. 

The concurrent sample path construction process we are interested in consists of two 
coupled processes, each generated by a timed state automaton. This implies that there are 
two similar sets of equations that describe the dynamics of each process. In addition, we 
need a set of equations that captures the coupling between them. 

3.2.    Timed State Automaton Dynamics 

We briefly review here the standard timed state automaton dynamics, also known as a 
Generalized Semi-Markov Scheme (GSMS) (see Cassandras, 1993; Glasserman, 1991; Ho 
and Cao, 1991). We introduce two additional variables, t„ to be the time when the nth event 
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occurs, and y,(n), j € T(x„), to be the residual lifetime of event i after the occurrence of 
the nth event (i.e., it is the time left until event i occurs). On a particular sample path, 
just after the nth event occurs the following information is known: the state x„ from which 
we can determine T(xn), the time f„, the residual lifetimes yj(n) for all i e r(xn), and all 
event scores s", i e £. The following equations describe the dynamics of the timed state 
automaton. 

Step 1: Determine the smallest residual lifetime among all feasible events at state xn, 
denoted by y*: 

>; = .min {>,(»)} (3). 
lerco 

Step 2: Determine the triggering event: 

e„+l =arg min {y,(n)} (4) 
i'eru.) 

Step 3: Determine the next state: 

xn+\ = f(x„,en+\) (5) 

Step 4: Determine the next event time: 

ti+i = t„ + y* (6) 

Step 5: Determine the new residual lifetimes for all new feasible events J e r(*n+i): 

y,(*+l) = Ä?-lS   V*e'*iad'ifrri0?   forallier(,fl+1)    (7) Vi(s? + 1)   if i = en+i or i $ r(xn) 
n+" 

Step 6: Update the event scores: 

.«+i_(*" + l   ifi=e«+i R 
| sf otherwise K } 

Equations (3M8) describe the sample path evolution of a timed state automaton. These 
equations apply to both the observed and the constructed sample paths. Next, we need 
to specify the mechanism through which these two sample paths are coupled in a way 
that enables event lifetimes from the observed £(/i) to be used to construct a sample path 
|(&). First, observe that the process described by (3H8), applied to |(£), hinges on the 
availability of residual lifetimes y-, (k) for all i e r(Jc*). Thus, the constructed sample path 
can only be "active" at state ** if every i e T(^) is such that either i € (r(.£*_i) - {et}) 
(in which case y; (k) is a residual lifetime of an event available from the previous state 
transition) or i 6 A(n, k) (in which case a full lifetime of i is available from the observed 
sample path). This motivates the following: 
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Definition 1.    A constructed sample path is active at state xk after the occurrence of an 
observed event e„ if, for every i € r(xk), i e (rfo-i) - {ek}) U Mn> k). 

Thus, the start/stop conditions for the construction of a sample path are determined by 
whether it is active at the current state or not. 

3.3.   Coupling Dynamics 

Upon occurrence of the (n + l)th observed event, en+u the first step is to update the event 
lifetime sequences V,(n, ft) as follows: 

Vf« + lft) -  I *-,(-n'k) + ViiS')   ifi=en+l (9) v, m + l, K) - | Vj(n,Jk) otherwise 

The addition of a new event lifetime implies that the "available event set" A(n,k) defined 
in (1) may be affected. Therefore, it is updated as follows: 

Mn + l,k) = A(n,k)U{en+i} (10> 

Finally, note that the "missing event set" M(n,k) defined in (2) remains unaffected by the 
occurrence of observed events: 

M(n + l,k) = M(n,k) OU 

At this point, we are able to decide whether all lifetime information to proceed with a state 
transition in the constructed sample path is available or not. In particular, the condition 

M(n + \,k)QA(n + l,k) (12) 

may be used to determine whether the constructed sample path is active at the current state 
jc* (in the sense of Definition 1). The following is a formal statement of this fact. 

LEMMA 1 A constructed sample path is active at state xk after an observed event en+l if 
and only ifMin + 1, k) c A{n + 1, ft). 

Proof: Let Bk = T(xk-\) - {h}- Suppose M(n + 1, ft) c A(n + 1. ft) and let i € I"(**). 
Then, consider the following two cases: (i) If i e Bk, then, by definition, the sample 
path is active at xk. (ii) If i $ Bk, by the definition of M(n, ft) in (2), it follows that 
/ e M(n,ft) = M(n + l,ft)andsinceM(n + l,ft) C A(n + l,ft), we have/ e A(n + \,k) 
which implies again that the sample path is active at state xk. 

Conversely, suppose that the sample path is active at state xk. Let /' € M(n + 1, ft). 
Then, from (2), /' e T(xk), but i # Bk. However, since the sample path is active, we 
must have / e A{n + l.ft) by Definition 1. Therefore, M(n + l,ft) c A(n + l.ft). 

■ 

Assuming (12) is satisfied, equations (3H8) may be used to update the state xk of the 
constructed sample path. In so doing, lifetimes v((sf + 1) for all i e M(n + 1, ft) are used 
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from the corresponding sequences V,(« + 1, k). Thus, upon completion of the six state 
update steps, all three variables associated with the coupling process, i.e., V, (n, k), A(n, k), 
and M{n,k) need to be updated. In particular, 

^(n + Lit+D-f Jt + !,S"^ + 1)   fcfan/.ei,#0, + ,'*) (13) I V,(n + \,k) otherwise 

This operation immediately affects the set A(n + 1, k) which is updated as follows: 

A(n + l,k + I) = A(n + l,k) - {i: ieM(n + l,k), if+1=j;+l} (14) 

Finally, applying (2) to the new state x*+i, 

M(n + 1, k + 1) = r(jc*+l) - (r(it) - {ek+l}) (15) 

Therefore, we are again in a position to check condition (12) for the new sets M (n +1, k +1) 
and A(n + 1, it + 1). If it is satisfied, then we can proceed with one more state update on 
the constructed sample path; otherwise, we wait for the next event on the observed sample 
path until (12) is again satisfied. Similar to Lemma 1, we have: 

LEMMA 2 A constructed sample path is active at state xk+i after event ek+i if and only if 
M(n + l,Jt + l)C A(n + l,k+l). 

Proof: This is similar to the proof of Lemma 1. Let Bk+i = T(xk) - {ek+\}. Suppose 
M(n + 1, k + 1) c A(n + 1, k + 1) and let i e rfo+i). Then, consider the following 
two cases: (i) If i € Bk+\, then, by definition, the sample path is active at state xk+i. (ii) If 
i # Bk+i, by (15), it follows that i G M(n + 1,k + 1) and since M(n + 1, k + 1) c 
A(n + l,k+ l),we have ieA(n + l,Hl) which implies again that the sample path is 
active at state xk+\. 

Conversely, suppose that xk+\ is active. Let i e M(n + \,k + 1). Then, from (15), 
/' e r(jc*+i), but / £ Bk+\. However, since the sample path is active, we must have 
/ e A{n + 1, k + 1) by Definition 1. Therefore, M(n + 1, k + 1) C A(n + 1, k + 1). 

The analysis above is summarized below in the form of the following Time Warping 
Algorithm (TWA). 

Time Warping Algorithm (TWA): 

1. INITIALIZE 
n := 0, k := 0, t„ := 0, ik := 0, x„ := x0, xk = x0, 
yt(n) = u,-(l) for all i e TUJ, sf = 0,sf = 0 for all i e £, 
M(0,0) := r(jc0), A(0,0) := 0 

2. WHEN EVENT e„ IS OBSERVED: 

2.1     Use(3H8)todetermineen+i,A:n+i,fn+i,y,(n + l)foralli' € run+i),5,'l+l for 
all i € S. 
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1 

2.2 Add the en+] event lifetime to V,(n + 1, k): 

xrf   J.1 « -  f Vi(n.t) + Wi(*/")   if«'=««+i 
V.-ln + l.*) -  | vi(n,Jk) otherwise 

2.3 Update the available event set A(n, k): A(n + 1, k) = A(n, fc) U {e„+]} 

2.4 Update the missing event set M(n, k): M(n + l,k) — M(n,k) 

2.5 TFM(n + l,k) c A(n + l.Jfc) then Goto 3. ELSE set n <-n + 1 and Goto 2.1. 

3.     TIME WARPING OPERATION: 

3.1      Obtain all missing event lifetimes to resume sample path construction at state 

**: 

wj(sf + l)   foTi€M(n + l,k) «m-ll"('* + 1)   for'6M( 
^1 >.(*-!)    otherwise 

3.2 Use(3H8)todetermineeA+i,it+i,rjt+i,)',(/:+l)foralli e r(**+i)n(r(xt)- 
{e*+1}),sf+1 for allied 

3.3 Discard all used event lifetimes: 

V,(n + 1, k + 1) = V,-(« + 1, k) - w,(*f + 1) for all i eM(n + \,k) 

3.4 Update the available event set A{n + 1, k): 

A(n + 1, k + 1) = A(n + 1, Jfc) - [i: i e M(n + 1, *), sf+1 = s?+l} 

3.5 Update the missing event set M(n + 1, k): 

M(n + 1, k + 1) = r(xt+i) - (r(x4) - {ek+\}) 

3.6 IF M(n + 1, it + 1) C A(n + 1, * + 1) then k <- * + 1 and Goto 3.1. ELSE 
fc«_jfc + l,/!<-n + land Goto 2.1. 

Remark. If TWA is used on line, step 2.1 is taken care of automatically by the actual system. 
The additional operations involved are steps 2.2-2.4 and checking the condition in step 
2.5. If the latter is satisfied then the time warping operation in step 3 is responsible for 
constructing a segment of the desired sample path for as many events as possible, depending 

on step 3.6. 

Clearly, the computational requirements of TWA are minimal (adding and subtracting 
elements to sequences, simple arithmetic, and checking condition (12)). Rather, it is the 
storage of additional information that constitutes the major cost of the algorithm. Next we 
analyze the algorithm in terms of its computational efficiency and applicability. Further- 
more, in section 5 we describe extensions to TWA allowing us to relax the assumptions 
presented in section 2. 
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4.   Algorithm Evaluation 

The evaluation of the TWA, in terms of its computational efficiency as an estimation tech- 
nique, depends on whether it is used on line or off line. In the former case, data from a 
DES are directly observed and processed to concurrently construct sample paths over a set 
of different parameter settings. Aside from the storage requirement for event lifetimes, the 
computational cost of the algorithm is minimal. Thus, while for DES with exponential event 
lifetime distributions the ASA and SC methodologies discussed in section 1 are clearly more 
efficient, the ability to handle non-Markovian DES on line comes with minimal additional 
cost. 

In the off-line case, the data processed by the TWA are obtained from a simulation model of 
a DES. Once again, if the model is characterized by exponential event lifetime distributions, 
then the ASA and SC methodologies are much more efficient (see section 6.3). Let us 
therefore concentrate on a comparison of the TWA with repetitive simulation for each 
parameter value (i.e., "brute-force" simulation), which is the obvious alternative for non- 
Markovian systems. In this case, a basic first question is whether the TWA is indeed more 
efficient than brute-force simulation. Thus, if we let TBF be the total simulation time 
(in CPU time units) required to generate the sample paths £(0|),.... f (9M) through M 
individual simulations (brute force simulation) and Tcs be the time required to generate the 
same sample paths through concurrent simulation, then the natural requirement is that 

Tcs < TBF (16) 

Observe that the operations in step 3.2 of TWA are the same as those in step 2.1; these are 
required to update the state of the DES as described through (3H8) and must be also carried 
out when brute-force simulation is used. Therefore, this part is common to both brute-force 
simulation and TWA. The advantage of TWA as far as execution time is concerned is that 
no random variate generation is involved in any of the concurrently constructed sample 
paths. On the other hand, TWA introduces some overhead when writing to and reading 
from memory and when checking the subset condition in step 2.5. As long as this overhead 
is less than the time taken to generate the random variates of the constructed sample path, 
(16) holds. In the next section, we proceed with a quantitative comparison between the 
TWA and brute-force simulation and define a convenient measure in order to accomplish 
this task. 

4.1.    The Speedup Factor 

To define the speedup factor associated with concurrent simulation, suppose that the sam- 
ple path constructed through our coupling approach were instead generated by a separate 
simulation whose length is defined by N total events. Let TN be the time it takes (in CPU 
time units) to complete such a simulation run. Further, suppose that when the nominal 
simulation is executed with TWA as part of it, the total time is given by T% + xK, where 
7"^ is the simulation time without the TWA and z* is the additional time involved in the 
concurrent construction of a sample path with K < N events. We then define the speedup 
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factor due to TWA as 

s _ TN/N (17) 

TK/K 

Thus, if a separate simulation (in addition to the one for the observed sample path) were 
to be used to generate a sample path under a new value of the parameter of interest, the 
computation time per event is TN/N. If, instead, we use the coupling approach (i.e., TWA) 
in conjunction with the observed path, no such separate simulation is necessary, but the 
additional time per event imposed by the approach is rK/K, where K < N in general. 
Clearly, S > 1 is required to satisfy the basic requirement expressed in (16). 

4.2.   An Upper Bound for Speedup 

To determine an upper bound for the speedup factor S, first, note that the actual CPU time for 
a simulation consists of two components: (a) The time used to generate random variates for 
all distributions involved, and (b) The time used in all other simulation execution operations 
(updating the state, clock, and event list). Therefore we can write: 

TN = aTN + (1 - a)TN 
(18) 

where TN is the total CPU time to simulate N events in the nominal sample path, and a is 
the fraction of time used for generating random numbers and variates (0 < a < 1). We 
assume a to be independent of N at steady state, which is true for sufficiently large values 

ofN. 
Now suppose that using the information obtained from the nominal sample path we 

construct a new sample path (under a different parameter setting) with K < N events using 
the TWA. From the TWA it is clear that the CPU time to update the state, clock and event list 
in the nominal and perturbed sample paths are the same since steps 2.1 and 3.2 are identical. 
When simulating K events, this time is (1 - 0)7*. Furthermore, the overhead involved 
in implementing TWA consists of two parts: (a) The time taken to write to and read from 
memory, denoted by rK, which depends on the number of random variates observed in the 
nominal sample path and used in the constructed sample path, and (b) The time taken to 
check the subset condition in step 2.5, denoted by qK. Note that the latter check takes place 
with every observed or constructed event. It follows that qK is independent of a. The actual 
value of qK depends on the cardinality of the set M (n, k), denoted by \M(n, k)\. Therefore, 
since the TWA does not involve any random number generation, the total CPU time, T*, 

required to construct a sample path with K events is obtained by combining the second part 
of (18) with the read/write overhead component above: 

TK = (l-a)TK+rK+qK 
(19) 

Another way of viewing the total time r* is based on the following observation. When the 
TWA is executed along the nominal sample path, certain functions are performed whenever 
an event is observed (i.e., saving the event lifetime and checking (12)); therefore the total 
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time involved in such functions is independent of K and will be denoted by a. The remaining 
functions are performed whenever a constructed event is processed and the corresponding 
time is denoted by b. We can therefore write 

xK = a + bK (20) 

and it follows that XK/K = b + a/K is a decreasing function of K. Moreover, an upper 
bound for K is N, since the constructed sample path depends on the lifetimes observed in 
the nominal sample path; hence, x^/N < Xg/K. We are now in a position to obtain an 
upper bound for the speedup factor as follows: 

s=TJilN<TJL = Tj, < Tj,  (21) 

xK/K      zN      (1 -a)TN+rN+qN      (l-a)TN+rN 

As far as the last inequality is concerned, we have chosen to ignore qs since, as will be 
shown in section 4.3, qn is small when \M(n, k)\ is small. Finally, define 

ß = ?• (22) 
TN 

and substitute in (21) to get 

S < ^ = !  (23) 
~ (\-ct)TN+ßTN      l+ß-a 

This implies that the bound on the maximum achievable speedup is a function of the 
structural properties of the actual DES we simulate and the simulator used, manifested 
through a, and the specific processing environment used which determines ß. Note also 
that the speedup as described in (21) is proportional to the ratio K/N, but for the calculation 
of the bound we assumed that this ratio takes its maximum value, i.e. K/N = 1. This implies 
that the larger the value of the ratio, the tighter the bound. On the other hand, note that it is 
possible that for certain systems this is not the case which implies that the observed speedup 
may be considerably less than the upper bound. In the worse case scenario, K = 0, which 
means that the speedup will also be zero. 

Figure 2 shows some typical plots of the speedup upper bound as a function of a for 
various values of ß. One can see that concurrent simulation is most beneficial when used to 
construct sample paths for DES that require a large number of random variates of complex 
distributions. More specifically, concurrent simulation is desirable when ß < a where it 
is feasible to expect speedup factors greater than 1, i.e., concurrent simulation reduces the 
total simulation time. Note however, that ß < a does not guarantee a speedup greater 
than 1 since the actual speedup includes qa which has been ignored in the derivation of 
the bound (see (21)). Thus, the smaller qK is, the tighter the bound. This motivates the 
discussion on regular DES presented next. 

4.3.   Regular Discrete Event Systems 

As discussed in the previous section, systems with a small cardinality \M(n, k)\ for the set 
M(n, k) attain higher speedup factors. Intuitively, systems with a large \M(n, £)| imply 
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Figure 2. Speedup as a function of a. 

that the simulator will spend a longer time updating the event list, which in turn implies that 
a is reduced, hence the speedup is also reduced as suggested by Figure 2. Thus, the role of 
\M{n, k)\ is important in our approach. The following result shows that \M(n, k)\ can be 
bounded by a quantity a which depends entirely on the structural properties of a DES. 

LEMMA 3 Let m(n, k) = \M(n, k)\ be the cardinality of the set M(n, k). Then, 

m(n,k) <CT + 1 

where a is a non-negative integer such that: 

a = max{cr*} 
k 

Ik = 1,2,... 

(24) 

(25) 

and ok = \r(xk)-r(xk-i)\ 
(26) 

Proof: If h $ r(Jct), then, by the definition of M(n, k) in (2), it is clear that M{n, k) = 
r(xk) - rCJ*_i), therefore \M(«, Jfc)| = ak. If, on the other hand, ek e r(xk), then h is 
an additional element that belongs to M{n, k), i.e., M(n, k) = (H**) - T(xk-i)) U [ek}> 
hence \M{n,k)\ = ok + \. Therefore, the result follows. ■ 

In simple terms, ak is the cardinality of a set that contains all events that are feasible at 
state xk but which were not feasible in the previous state xk-\- It is important to observe 
that a indeed depends entirely on the structural properties of a DES and is therefore not 

difficult to evaluate. 
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Clearly, the minimal value of a is a = 0. In this case, whenever an event occurs at any 
state, no new events are ever triggered. It is easy to see that this corresponds to a DES 
with T(x) = £ for all states x, i.e., a system where all events are always feasible. Such 
DES are often of interest; however, they then trivially satisfy the constructability condition 
(CO), therefore the SC or ASA techniques are preferable (see also Cassandras and Pan, 
1995). 

The next most desirable class of DES (in the sense of maximizing the speedup factor) is 
that characterized by a = 1. This motivates the following 

Definition. A DES is said to be regular if 

a =max{\r(x')-r(x)\:x' = f(x,e),eer(x)} < 1 (27) 

We refer to this as the Regularity Condition or condition (R). 

It turns out that regularity is not a particularly restrictive condition. For example, we 
show next that a large and particularly useful class of DES are regular. 

PROPOSITION 1 All DES represented through open or closed Jackson-like queueing net- 
works satisfy the regularity condition. 

Proof:   Consider a Jackson-like queueing network with n nodes and let x = (x\ x„) 
be a typical state, where *,- is the number of customers in the ith node. Let TU) be the 
feasible event set at that state. Every event in T(x) is either an external arrival at some 
node k, denoted by a* (if the system is open) Or a departure from some node /, denoted by 
dj. If there are multiple customer classes, each such event is further characterized by its 
corresponding class; however, as will be clear, the argument that follows is independent of 
the number of customer classes present. Denote the current state by x and the next state by 
x' = f(x,e) such that e is either some arrival ak or some departure dk. 

If Ok is the next event that occurs at state x then the following two cases are possible: 

(i) if xk = 0, then r(x') = T(x) U {dk) and therefore in*') - r(*)| = 1 

(ii) if** > 1 then r(*') = T(x) and therefore \r(x') - r(*)| = 0. 

If, on the other hand, the next event is some d,, then again two cases are possible: 
First, if the departing customer leaves the system (if it is an open system), then, r(*') = 

r(x) - [di] if*? = 0 and T(x') = T(x) if*; > 0. Thus, |r(*') - r(*)| = 0. 
Second, if the departing customer is routed to a node j, then, there are the following 

subcases: 

(i) x\ = 0, x'j = 1. Then, IV) = (r(*) - {</,}) U {dj), and |r(*') - T(x)\ = 1. 

(ii) x'j = 0, x'j > 1. Then, T(x') = T(x) - {</,■}, and |IV) - T(*)| = 0. 
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(Hi) x\ > 0, x'j = 1. Then, T(x') = r(x) U {dj), and \r(x') - T(x)| = 1. 

(iv) x\ > 0, x'j > 1. Then, IV) = r&c). and |r(x') - r(x)| = 0. 

It follows that in all cases |r(*') - r(x)| < 1 and the proof is complete. ■ 

It is actually possible to incorporate features such as non-FIFO scheduling disciplines 
and preserve the regularity property of such DES. On the other hand, allowing for finite- 
capacity queues and "manufacturing blocking" generally increases the value of a and 
violates regularity. 

Example. Consider a G/G/l/tf system, withxk e {0,1,..., £} and event set £ = {a,d}. 
lfxk = landx*_i = 0 (i.e., the Jkth event was an arrival), then ak = \[a,d}-{a)\ = |{d}| = 
1. For any other state transition, xk = x, xk-i =x -I (arrival), or xk = x - 1, xk-\ = x 
(departure), such that* > 1, ak = |r(*4) - r(**_i)| = 0. Therefore, a = maxk{ak) = 1. 
Note that if K = oo, we still have a = 1. 

Example. In a serial network of two G/G/l/K queues, let *i, x2 denote the number of 
customers in queue or server 1 and in queue or server 2 respectively. Assume that queue 
1 has infinite capacity whereas queue 2 can only accommodate K - 1 customers. Then, 
xi e {0, 1,...}, xi € (0,1,..., £}, and the event set is £ = [a, di,d2}. 

1. Under "communication blocking" (i.e., customers finding queue 2 full are lost): 
If (xi.X2)*-i = (0.0) and Cxi,x2)* = (1.0),<r* = i{a,^i} - Ml = H<*i}| = 1- 
If (xi,x2)k-i = (l,0)and(x,,x2)* = (0, \),ak = \{a,d2] - {a,dx}\ = \{d2}\ = 1. 
If (Jti,*2)*-i = (0. l)and(xi,x2)* = U. D.°i = \{a,dud2}-{a,d2)\ = \[di)\ = 1. 
For all other state transitions ak = 0. Therefore, a = 1. 

2. Under "manufacturing blocking" (i.e., customers finding queue 2 full must wait in 
server 1 for an empty queueing slot), we introduce a third state variable b e {0, 1} such 
that b = 1 if a customer at server 1 is blocked and b = 0 otherwise. 
If(*i,*2.*)*-i = (0,0,0)and(*i.*2.«* = (1,0,0), a* = \{a,d\\-{a\\ = \{dx)\ = 
1. 
If (xi,x2,b)k-i = (1,0,0) and (xi,x2,b)k = (0, 1,0), ak = \{a,d2) - [a,dx}\ = 
\{d2)\ = 1. 
U(xi,x2,b)k-i = (0, l,0)and(xi,x2,b)k = (1,1,0),or* = \{a,dud2}- [a,d2}\ = 

IWI}| = 1. 
If (Jti.*2.*)*-i = (xi,ür,l)and(JC|,*2.tt* = (*i " L^-0)-ff* = \[a,dud2}- 
[a,d2)\ = \idi)\ = l. 
For all other state transitions ak = 0. Again, therefore, a = 1. It is easy to check, 
however, that if a third server were introduced in this serial network, then we would 
havec > 1. 
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5. Extensions of the TWA 

In section 2 we stated a few assumptions that were made to simplify the development of 
our approach and keep the TWA notationally simple. It turns out that we can extend the 
application of TWA to DES by relaxing these assumptions at the expense of some extra 
work. 

In A2 we assumed that changing a parameter from 0<) to some 8m # 0o does not alter the 
event set £. Clearly, if the new event set, £m is such that £m C £, the development and 
analysis of TWA is not affected. If, on the other hand, £ C £m, this implies that events 
required to cause state transitions under 6m are unavailable in the observed sample path, 
which make the application of our algorithm impossible. In this case, one can introduce 
phantom event sources which generate all the unavailable events as described, for example, 
in Cassandras and Shi (1996), provided that the lifetime distributions of these events are 
known. The idea of phantom sources can also be applied to DES that do not satisfy Al. 
In this case, if a sample path remains suspended for a long period of time, then a phantom 
source can provide the required event(s) so that the sample path construction can resume. 

In A3 we assumed that changing a parameter from 0o to some 6m ^ 6Q does not affect the 
distribution of one or more event lifetime sequences. This assumption is used in (9) where 
the observed lifetime u,-(s") is directly suffix-added to the sequence V, (n +1, k). Note that 
this problem can be overcome by transforming observed lifetimes V, = {v,(l), i>,(2),...) 
with an underlying distribution G, (#o) into samples of a similar sequence corresponding 
to the new distribution G,(0m) and then suffix-add them in V,(n + l,k). This is indeed 
possible, if G, (#o)> G, (0m) are known, at the expense of some additional computational cost 
for this transformation (for example, see Cassandras, 1993). One interesting special case 
arises when the parameter of interest is a scale parameter of some event lifetime distribution 
(e.g., it is the mean of a distribution in the Erlang family). Then, simple rescaling suffices 
to transform an observed lifetime v,- under 0o into a new lifetime C, under 9m: 

VI = (Om/e0)Vi 

Finally note that in a simulation environment it is possible to eliminate the overhead qx 
which is due to checking the subset condition in step 2.5. In order to achieve this we need 
to eliminate the coupling between the observed and constructed sample paths. Towards 
this goal, we can simulate the nominal sample but rather than disposing the event lifetimes 
we save them all in memory. Once the simulation is done, we simulate one by one all the 
perturbed sample paths exactly as we do with the brute force simulation scheme but rather 
than generating the required random variates we read them directly from the computer 
memory. In this way we trade off computer memory for higher speedup. A quantification 
of this tradeoff is the subject of ongoing research. 

6. Simulation Results 

Simulation can be used to readily verify that the Time Warping Algorithm generates sample 
paths identical to those generated by a separate simulation run with the same input. In what 
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Table 1. Speedup factors for Systems 1-2. 

System  Speedup factor comments 

1                 2.44 utilization 0.2S 
2.20 utilization 0.S 
2.44 utilization 0.5 + rare events 
2.18 utilization 0.75 

2                 3.64 Erlang order 2 
7.73 Erlang order 5 

16.48 Erlang order 10 
27.00 Erlang order 20 

follows, we shall focus on studying the speedup factors, as defined in (17), obtained for a 
variety of DES. 

6.1.   Speedup Factor for Several Systems 

We briefly describe below each specific DES considered with the speedup factors obtained 
in a particular computer environment (486 PC) used in this study. 

System 1: M/M/l/K with Multiple Classes of Customers 

This is a single-server queueing system serving various classes of customers on a First-In- 
First-Out (FIFO) basis. Systems with 2 to 11 classes were implemented and each class has 
exponential service and interarrival times. A performance analysis problem which is often 
of interest in such systems is estimating the blocking probability of each customer class as 
a function of the buffer size K. Several values of arrival and service rates were used so as to 
achieve different server utilizations, as shown in Table 1. In addition, experiments included 
a system where one of the classes had a very low arrival rate (100 times slower) in order to 
investigate the behavior of TWA when a constructed sample path may be suspended for a 
long time before it gets a lifetime that is missing. 

System 2: G/G/l/K with Multiple Classes of Customers 

This is the same as System 1 with two classes of customers, but the service and interarrival 
times are now obtained from an Erlang distribution of the same order so that the server 
utilization is 0.67. As seen in Table 1, the speedup factor increases with the order of 
the Erlang distribution; this is expected, since Erlang random variate generation is more 
complex than the exponential one, which in turn implies that a is increased. 
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Table 2. Speedup factors for System 3. 

A.I Mil M21 *2 Ml2 M22 Speedup factor 

1.0 4.0 4.0 1.0 4.0 4.0 2.63 
1.0 3.0 3.0 1.0 3.0 4.0 2.58 
1.0 4.0 4.0 1.0 4.0 3.0 2.63 
1.0 3.0 3.0 1.0 3.0 3.0 2.25 

Table 3. Speedup factors for System 4. 

System M Mil M21 M31 A.2 Ml2 M22 M32 Speedup factor 

manufacturing 1.0 5.0 7.0 12.0 1.0 5.0 7.0 12.0 2.70 
blocking 1.0 3.0 3.0 3.0 1.0 5.0 7.0 9.0 2.67 

1.0 2.0 6.0 3.0 2.0 5.0 4.0 3.0 2.62 
3.0 20.0 4.0 4.0 3.0 20.0 4.0 4.0 2.41 

communication 1.0 5.0 10.0 15.0 1.0 5.0 10.0 15.0 2.66 
blocking 1.0 3.0 3.0 3.0 1.0 5.0 7.0 9.0 2.49 

1.0 2.0 5.0 3.0 3.0 5.0 7.0 5.0 2.52 
2.0 3.0 10.0 4.0 5.0 7.0 10.0 9.0 2.50 

System 3: Two Queues in Series 

This is a serial network of two M/M/l/K queues with two classes of customers, that 
operates under "manufacturing blocking" i.e., customers finding queue 2 full wait in server 
1 for the next available queueing slot. Both servers operate under a FIFO scheduling policy. 
The arrival process is Poisson and the two servers are exponential. The performance measure 
of this system is the throughput as a function of the buffer allocation, i.e. (K\, K2) subject 
to K\ + K2 = K where K\, K2 are the number of buffers allocated to each server. Table 2 
shows some typical speedup results obtained for different parameter settings. The arrival 
rate of class i is A.,- and its service rate at the ;'th server is fly (i, j = 1, 2). 

System 4: Three Queues in Series 

This is the same as System 3 except we extend it to three queues. Two cases are considered: 
"manufacturing" blocking (in which case we have a = 2 in (27) and the system is not 
regular) and "communication" blocking, (in which case a = 1 and the system is regular). 
Typical results are shown in Table 3. One observation is that the lack of regularity had 
minimal effect on the speedup factor in this case. Another is that, comparing Tables 2 and 
3, the increase in size of the system from two queues to three had minimal effect on the 
speedup factors observed. 
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Table 4. Speedup factors for System 5. 

A.1 Pi A-2 M2 SW,-2 SW2-.1 Speedup factor 

1.0 2.0 1.0 3.0 0.2 0.4 2.51 
1.0 2.5 1.0 5.0 1.0 0.5 1.91 
1.0 2.0 1.0 2.0 0.5 0.0 1.74 

1.0 2.0 1.0 2.0 0.0 0.0 2.11 

System 5: Two Queues in Parallel with a Single Bulk-Service Server 

A single server is servicing two classes of customers using a Round Robin scheduling 
policy. Both customer arrival processes are Poisson and each class is serviced in batches 
with exponential service times. Furthermore, there is a deterministic time delay every 
time the server switches from one class to the other, denoted by SW\^.2 and SJV2-1. The 
performance measure is the average system delay as a function of the batch size of each 
class of customers. Some representative results are shown in Table 4. 

As already mentioned, the main cost involved in using TWA is the storage requirement for 
event lifetimes in V, (n, k) for all 1 € £. In fact, it is not possible to bound these sequences 
in our approach. In practice, this implies that some stored event lifetimes may eventually 
have to be discarded to avoid memory overflows. 

The performance of TWA clearly depends on the DES considered. The results in Table 
1 that correspond to system 2 show the correlation of the complexity of the random vari- 
ate generation processes involved with the performance of TWA. Erlang random variates 
are complex and require CPU intensive operations to obtain, thus the percentage of time 
spent in generating random variates (i.e., a as defined in section 4.2) increases, which in 
turn increases the speedup obtained and therefore makes TWA a more attractive approach. 
Conversely, this approach is not recommended for systems with completely deterministic 
event processes. 

Lastly, it is our observation that for the systems studied performance was quite sensitive 
to specific implementations and processing architectures. This dependence is captured by 
the ratio ß defined in section 4.2 and it is shown in Figure 2 for a > 0.5. Thus, the speedup 
factors presented in the tables above may be largely dependent on the computer environment 
and specific implementation of TWA one adopts. 

6.2.   Statistical Significance of Estimates obtained through TWA 

As indicated earlier, the constructed sample path may remain suspended for extended periods 
of time while waiting for one or more of the missing events. This in turn, implies that while 
the length of the observed sample path (/V) is long enough to guarantee that the observed 
measures are statistically significant, the length of the constructed sample path (K) may not 
become long enough to provide such accuracy. Figure 3 shows the ratio (K/N) for System 
1 in section 6.1 when there are four classes of customers and the observed sample path has 
five buffer slots. First note that when all events occur with similar frequency, the K/N ratio 
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Figure 3. K/N ratio for system 1. 

converges quickly (M/M/l/1 curve), whereas, when there is a rare event (class 4 arrival) 
often the constructed sample path is forced to wait for long intervals until the rare event is 
observed which causes the K/N ratio to become small. Once the missing event is observed, 
a large number of events may be immediately processed allowing K/N to increase again. 
This results in the initial large oscillations observed in Figure 3 which eventually diminish 
as N grows larger. 

In addition, note that the parameter settings also affect the K/N ratio. In the case of a 
single buffer slot (M/M/l/l), the blocking probability is much larger than in the observed 
sample path, therefore, several observed departure events are not constructed because the 
corresponding customer was lost. For this reason, K/N converges to a value less than one 
(in this case 0.85). On the other hand, when the constructed sample path has nine slots, the 
observed and constructed sample paths have comparable blocking probabilities therefore 
most of the observed events are also constructed, so the K/N ratio is closer to one. 

6.3.    Speedup Comparisons 

As mentioned earlier, ASA and SC are two methods that have been developed for constructing 
multiple sample paths at different parameter settings. In a simulation environment, both 
techniques can achieve higher speedup than the proposed TWA, as indicated in Figure 4 for 
an M/M/l/K system studied overa range of values for K. ASA can achieve a speedup of up 
to 30, considerably higher than both SC and TWA, however, it is only applicable to systems 
with exponential event lifetime distributions (with the possibility of one non-Markovian 
event process, as noted in section 1). SC can achieve a speedup of up to 8, however it is 
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Figure 4. Speedup of ASA, SC and TWA, for an M/M/l/K system. 

also limited to exponential event lifetime distributions (unless approximations are used for 
systems with general distributions, as in Chen and Ho, 1995). In Figure 4, the speedup for 
the TWA turns out to be in the vicinity of 2. 

Finally, note that from the definition of speedup (17), one would expect that it is not a 
function of the number of concurrently constructed sample paths. Intuitively, suppose that 
one is interested in concurrently constructing M sample paths. Therefore, using brute force 
it would take M TN time units to generate MN events, while using any other constructabihty 
technique it would require MxK time units to construct MK events. Hence, the speedup 
factor should be independent of M. However, as described previously, the number of 
constructed events depends on the parameter settings as well. For this reason, the number 
of constructed events is given by MK - KQ (not MK). Therefore, 

S = 
MTn/MN 

xK \N     NM) MxK/{MK - K0) 

which implies that it approaches a constant as M becomes larger. 

7.   Conclusions and Future Work 

The sample path coupling approach we have presented is intended to solve the constmctabil- 
ity problem described in section 2 without imposing any restrictions on the event processes 
in the DES as in earlier work. The approach leads to the specific "time warping" algorithm 
detailed in section 3.3, which was analyzed in terms of computational cost. 

As pointed out in the Introduction, we emphasize once again that the proposed approach 
to the problem of constructability is suited to on-line sample path construction as a concur- 
rent estimation scheme. In addition, it may be used as an off-line concurrent simulation 
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approach. In the former case, computational cost is not an issue, as the procedure we use 
involves only simple operations; rather, the storage requirement for observed event lifetimes 
becomes the limiting factor. 

There remain a number of issues that require investigation in order to better assess the 
value of the concurrent sample path construction method we have presented. First, a detailed 
analysis of the extensions allowing us to relax Assumptions (A1)-{A3) as briefly outlined 
in section 5 is the subject of ongoing work. Second, the proposed sample path coupling 
approach is not limited to any specific performance measure of interest. However, one can 
expect that, depending on the nature of a performance measure to be estimated it should be 
possible to utilize only part of a constructed sample path, hence increasing the efficiency 
of the TWA in terms of speedup. 

Finally, note that the proposed estimation technique, when used together with any op- 
timization algorithm based on comparisons of the system's performance under different 
parameters, immediately improves the convergence rate of the algorithm because concur- 
rent estimation/simulation inherently uses the common random numbers (CRN) scheme 
which has been observed experimentally and was proved theoretically in some cases to be 
effective in variance reduction (Dai and Chen, 1997). 
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Abstract 

We consider stochastic discrete optimization problems 
where the decision variables are non-negative integers. 
We propose and analyze an on-line control scheme 
which transforms the problem into a "surrogate" con- 
tinuous optimization problem and proceeds to solve the 
latter using standard gradient-based approaches while 
simultaneously updating both actual and surrogate sys- 
tem states. Convergence of the proposed algorithm 
is established and it is shown that the discrete state 
neighborhood of the optimal surrogate state contains 
the optimal solution of the original problem. Numer- 
ical results are included in the paper illustrating the 
fast convergence properties of this approach. 

1    Introduction 

We consider stochastic discrete optimization problems 
where the decision variables are non-negative integers. 
In the context of resource allocation, for example, clas- 
sic problems of this type include buffer allocation in 
queueing models of manufacturing systems or commu- 
nication networks and transmission scheduling in radio 
networks. In the context of Discrete Event Systems 
(DES), integer-valued control variables have proven to 
be very common (e.g., as threshold parameters in many 
control policies), making the issue of optimizing over 
such variables of particular interest. 

Let r £ Z£ be the decision vector or "state". In 
general, there is a set of feasible states denoted by 
Ad such that r 6 Ad represents a constraint. For 
example, in a typical resource allocation problem, ri 
denotes the number of resources that user i is as- 
signed subject to a capacity constraint of the form 

*This work was supported in part by the National Science 
Foundation under Grants EEC-95-27422 and ACI-98-73339, by 
AFOSR under contract F49620-98-1-0387 and by the Air Force 
Research Laboratory under contract F30602-97-C-0125. 

Ad = {r : £»=ir» — K). In a stochastic setting, 
let Ld(r,u) be the cost incurred over a specific sample 
path (denoted by u) and Jd(r) be the expected cost of a 
system operating under r. Then, the discrete optimiza- 
tion problem we are interested in is the determination 
of r* € Ad such that 

Jd(r*) =min Jd(r) = min Eu[Ld(r,u>)]        (1) 
T&Ad r€Aj 

In general, this is a notoriously hard stochastic integer 
programming problem. Even in a deterministic set- 
ting, where we may set Jd(r) = Ld(r,u), this class 
of problems is NP-hard (see [14] [12] and references 
therein). In some cases, depending upon the form of 
the objective function Jd(r) (e.g., separability, convex- 
ity), efficient algorithms based on finite-stage dynamic 
programming or generalized Lagrange relaxation meth- 
ods are known. Alternatively, if no a priori information 
is known about the structure of the problem, then some 
form of a search algorithm is employed (e.g., Simulated 
Annealing [1], Genetic Algorithms [11]). When the sys- 
tem operates in a stochastic environment (e.g., in a 
resource allocation setting users request resources at 
random time instants or hold a particular resource for 
a random period of time) and no closed-form expres- 
sion for Eu[Ld(r,w)} is available, the problem is fur- 
ther complicated by the need to estimate Eu[Ld(r,u)]. 
This generally requires Monte Carlo simulation or di- 
rect measurements made on the actual system. 

While the area of stochastic optimization over con- 
tinuous decision spaces is rich and usually involves 
gradient-based techniques as in several well-known 
stochastic approximation algorithms [13],[15], the lit- 
erature in the area of discrete stochastic optimization 
is relatively limited. Most known approaches are based 
on some form of random search (e.g., [16],[8]) or, more 
recently, the use of the ordinal optimization approach 
presented in [9]. For a class of resource allocation prob- 
lems of the form (1), an approach of this type was used 
in [3]. Even though the approach in [3] yields a fast re- 
source allocation algorithm, it is still constrained to it- 
erate so that every step involves the transfer of no more 
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than a single resource from one user to some other user. 
One can expect, however, that much faster improve- 
ments can be realized in a scheme allowed to reallocate 
multiple resources from users whose cost-sensitivities 
are small to users whose sensitivities are much larger. 
With this motivation in mind, it is reasonable to pose 
the following question: Is it possible to transform a dis- 
crete optimization problem as in (1) into a "surrogate" 
continuous optimization problem, proceed to solve the 
latter using standard gradient-based approaches, and 
finally transform its solution into a solution of the orig- 
inal problem? Moreover, is it possible to design this 
process for on-line operation? That is, at every it- 
eration step in the solution of the surrogate continu- 
ous optimization problem, is it possible to immediately 
transform the surrogate continuous state into a feasible 
discrete state r? This is crucial, since whatever infor- 
mation is used to drive the process (e.g., sensitivity 
estimates) can only be obtained from a sample path of 
the actual system operating under r. 

In this paper, we transform the original discrete set Ad 
into a continuous set over which a "surrogate" opti- 
mization problem is defined and subsequently solved. 
As in earlier work in [3], [4] and unlike algorithms pre- 
sented in [12], an important feature of our approach is 
that every state r in the optimization process remains 
feasible, so that our scheme can be used on line to ad- 
just the decision vector as operating conditions (e.g., 
system parameters) change over time. Thus, at every 
step of the continuous optimization process, the con- 
tinuous state obtained is mapped back into a feasible 
discrete state; based on a realization under this feasible 
state, new sensitivity estimates are obtained that drive 
the surrogate problem to yield the next continuous 
state. The proposed scheme, therefore, involves an in- 
terplay of sensitivity-driven iterations and continuous- 
to-discrete state transformations. The key issue then is 
to show that when (and if) an optimal allocation is ob- 
tained in the continuous state space, the transformed 
discrete state is in fact r* in (1). 

2    Basic approach 

In the sequel, we shall adopt the following notational 
conventions. We shall use subscripts to indicate com- 
ponents of a vector (e.g., u is the ith component of 
r). We shall use superscripts to index vectors belong- 
ing to a particular set (e.g., r' is the jth vector of the 
same form as r within a subset of Ad that contains such 
vectors). Finally, we reserve the index n as a subscript 
that denotes iteration steps and not vector components 
(e.g., rn is the value of r at the nth step of an iterative 
scheme, not the nth component of r). 

One common method for the solution of this problem is 
to relax the integer constraint on all n so that they can 
be regarded as continuous (real-valued) variables and 
then apply standard optimization techniques such as 
gradient-based algorithms. The resulting "surrogate" 
problem then is to find p* € Ac so that 

Jc(p*) = min Jc(p) = min Eu[Lc{p,u)}        (2) 

where p G K+ is a real-valued state, Ac is the con- 
vex hull of the original constraint set Ad, and Lc(p,u) 
is the cost function over a specific sample path (de- 
noted again by u>) when the state is p.  Assuming an 
optimal solution p* can be determined, this state must 
then be mapped back into a discrete vector by some 
means (usually, some form of truncation). Even if the 
final outcome of this process can recover the actual 
r* in (1), this approach is strictly limited to off-line 
analysis:  When an iterative scheme is used to solve 
the problem in (2) (as is usually the case except for 
very simple problems of limited interest), a sequence 
of points {pn} is generated; these points are generally 
continuous states in Ac, hence they may be infeasible 
in the original discrete optimization problem.   More- 
over, if one has to estimate Eu[Lc(p,uj)] or aMMp'")l 
through simulation, then a simulated model of the sur- 
rogate problem must be created, which is also not gen- 
erally feasible.   If, on the other hand, the only cost 
information available is through direct observation of 
sample paths of an actual system, then there is no obvi- 
ous way to estimate Eu[Lc(p,u)) or 8jMM^)l, sinCe 
this applies to the real-valued p, not the actual cost 
observable under integer-valued r. 

In this paper we propose a different approach intended 
to operate on line. In particular, we still invoke a re- 
laxation such as the one above, i.e., we formulate a 
surrogate continuous optimization problem with some 
state space Ac C R£ and Ad C Ac. However, at ev- 
ery step n of the iteration scheme involved in solving 
the problem, the discrete state is updated through a 
mapping of the form r„ = fn{pn) as pn is updated 
using a stochastic approximation algorithm. This has 
two advantages: First, the cost of the original system 
is continuously adjusted (in contrast to an adjustment 
that would only be possible at the end of the surro- 
gate minimization process); and second, it allows us to 
make use of information typically used to obtain cost 
sensitivities from the actual operating system at every 
step of the process. It is important to note that {rn} 
corresponds to feasible realizable states based on which 
one can evaluate sensitivity estimates from observable 
data, i.e., a sample path of the actual system under rn 

(not the surrogate state pn). We can therefore see that 
this scheme is intended to combine the advantages of 
a stochastic approximation type of algorithm with the 
ability to obtain sensitivity estimates with respect to 
discrete decision variables.   In particular, sensitivity 
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estimation methods for discrete parameters based on 
Perturbation Analysis (PA) and Concurrent Estima- 
tion [10],[2] are ideally suited to meet this objective. 

of components of p with strictly integer values. Then, 

Continuous-to-discrete 
transformations 

state 

In the sequel we will assume that Ac D ZN = Ad where 
Ac is the convex hull of Ad] that is, all the discrete 
allocations contained in Ac are feasible. Given a vector 
p G K+ , we begin by specifying a set Fp of mappings 
/(/?). To do so, first define 

ip = {i\Piez+} (3) 

to be the set of components of p (i.e., user indices) that 
are strictly integer. Next, define 

{^)./r(P)} = {{rft%J} o^ie    w 

where, for any x G E, \x] and [x\ denote the ceiling 
(smallest integer > x) and floor (largest integer < x) 
of x respectively. Then, let 

Fp = {/1 / : Ac -+ Ad,Wi f{(p) G {f?(p), f-(p)}} 

f € Fp transforms continuous state vector p £ Ac into 
a "neighboring" discrete state vector r G Ad obtained 
by seeking \p{] or [pj for each component. Note that 
for all / G Fp and r G Ad, f{r) = r. 

Definition 1 The set of all feasible discrete neighbor- 
ing states of p G Ac is: 

Af(p) = {r\r = f{p) for some f G Fp]        (5) 

Although much of the ensuing analysis applies to any 
constraint set Ac, we shall limit ourselves to the com- 
mon case of a total resource capacity constraint: 

TV 

Ac = £* = *; (6) 
t=i 

In this case, a more explicit and convenient charac- 
terization of the set N(p) is possible by defining the 
residual vector p G [0,1)N of the continuous state p, 
given by p = p — [p\ where [p\ is the vector whose 
components are [p\i = [pj. Then, set 

N N N 

m. = 5> = D* - W) = K- £ LPiJ   (7) 
»=i i=l t=l 

and note that mp G Z+ is an integer with the fol- 
lowing convenient interpretation: If all users are as- 
signed LPiJ resources, then mp is the total residual re- 
source capacity to be allocated. Recalling the defini- 
tion of the set Ip in (3), let q = \IP\ be the number 

m. e{0,...,N-q-l}. 

Fp may be interpreted as a set of mappings that allo- 
cate mp residual resources over all i $ Ip in addition to 
a fixed integer [pj already assigned to i. Let us then 
define r3(p) G {0,1}^ to be the jth residual discrete 
vector corresponding to some given p which satisfies 
J2i=i H = mP an<i ^i = 0 for z G Ip. Thus, f3\p) is 
an AT-dimensional vector with components 0 or 1 sum- 
ming up to mp. It is easy to see that the number of 
such distinct vectors, and hence the cardinality of the 
set A/"(p), is (NT^

9). It follows that we can write, for all 

P€ F > 
fj(p) = [p\+fj(p) (8) 

The following theorem establishes the fact that any p G 
Ac can be expressed as a convex combination of points 
r G M{p). All proofs are omitted but may be found in 
[7]- 

Theorem 3.1 Any p G Ac is a convex combination of 
its discrete feasible neighboring states, i.e., there exists 
a vector a such that 

M M 

p = "Y^ctjr3, with £ct,- = 1> aJ > 0 Vj = 1, ..,M 
3=1 j=l 

where M = \Af(p)\ and r3 G N(p), j = 1,..., M. 

This result asserts that every p G Ac belongs to 
conv(N{p)), the convex hull of the feasible neighboring 
state set N(p) defined in (5). We can further limit the 
set of states over which such a convex combination can 
be formed as follows. 

Corollary 3.1 Any p G Ac is a convex combination of 
at most N — q discrete feasible neighboring states, i.e., 
there exists a vector a such that for all j = 1,.., N 

N-q N-q 

P = £ cxjrj    with   ^T ctj = 1,   a, > 0 (9) 
3=1 3=1 

where r3 G M{p), j = 1,..., \N{p)\, q = \Ip\. 

Definition 2 J^N-q(p) is a subset of M{p) that con- 
tains N — q (with q = \IP\) linearly independent discrete 
neighboring states whose convex hull includes p. 

The existence of this set is guaranteed by the previ- 
ous corollary and it plays a crucial role in our ap- 
proach, because the mapping fn{pn) wm be an element 
of MN-q{pn)- Therefore, it is important to be able to 
identify N-q elements of Af(p) that satisfy (9), and 
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hence determine A/N-, (/>„)• The Simplex Method of 
Linear Programming (LP) is suitable for this task. 

Given this "reduced" set of discrete feasible neigh- 
bors of p, Nn-qip), we restrict our original set of 
continuous-to-discrete transformations Fp to 

*", = {/: HP) e tfN-q(j>)} (10) 

Note that when the continuous state is />„, the 
continuous-to-discrete mapping fn will be an element 
of^. 

4    Construction of surrogate cost 
functions and their gradients 

In the sequel, V will be dropped from Ld(r,u) and 
from the "surrogate" cost function Lc(p,u>) in (2). 
Moreover, unless otherwise noted, all costs will be over 
the same sample path. Since our approach is based on 
iterating over the continuous state p € Ac, yet drive the 
iteration process with information involving Ld(r) ob- 
tained from a sample path under r, we must establish 
a relationship between Ld(r) and Lc(p). The choice of 
Lc(p) is rather flexible and may depend on information 
pertaining to a specific model and the nature of the 
given cost Ld{r). 

As seen in the previous section, it is possible that some 
components of p are integers, in which case the set Ip 

is non-empty and we have q = \IP\ > 0. In order to 
avoid the technical complications due to such integer 
components, let us agree that whenever this is the case 
we will perturb these components to obtain a new state 
p such that Ip = 0. In what follows, we will assume 
that all states p either have Ip — 0 or have already 
been perturbed and relabeled p. Since q is going to be 
zero, we will rename A/jv-?(/>) as MN{P)- 

We shall select a surrogate cost function Lc(p) to satisfy 
the following two conditions: 

(Cl): Consistency: Lc{r) = Ld(r) for all r € Ad. 

(C2): Piecewise Linearity: Lc(p) is a linear function 
of p over conv (A/jy (/>))• 

Consistency is an obvious requirement for Lc(p). Piece- 
wise linearity is chosen for convenience, since manip- 
ulating linear functions over conu(A/}v(p)) simplifies 
analysis, as will become clear in the sequel. Given 
some state p e Ac and cost functions Ld(r3) for all 
rj G NN(P), it follows from (C2) and (9) in Corollary 
3.1 that we can write 

N 

Lc(p) = Y/aJLc(ri) (11) 

with £fci a, = 1, aj > 0 for all j = 1,.., N. Moreover, 
by (Cl), we have 

TV 

3=1 

(12) 

that is, Lc(p) is a convex combination of the costs of 
N discrete feasible neighbors. Next, in order to use a 
stochastic approximation algorithm, we need sensitiv- 
ity information provided through the sample gradient 
VLc(p) expressed in terms of directly observable sam- 
ple path data. 

Since Lc(p) is a linear function on the convex hull de- 
fined by the N discrete neighbors in (12), one can write 

AT 

Lc(p) = J^ßiPi + ß0 (13) 
i=l 

for some ß{ £ K, i = 0,...,N.  Moreover, due to the 
linearity of Lc(p) in com^A/jv (/>)), we have 

*=S?i=i N (14) 

For any discrete feasible neighboring state r3 € Mv(p), 
one can use (13) and (Cl) to write 

N 

Ld{r>) = YJßA+ßo> i = !.■••.N        (15) 
t=i 

Letting VLc{p)' = [ßi,...,ßN] be the gradient of 
Lc(p), our objective is to obtain an expression for 
ßlt...,ßN (not ß0) in terms of Ld{r3). Note that 
Ld{r3) are costs that can be evaluated at feasible states 
r1 € MN{P)- These may be obtained by direct simula- 
tion; however, they are not available if a system is op- 
erating on line under one of these states, say r1. This 
is where techniques such as Concurrent Estimation and 
Perturbation Analysis mentioned earlier can be used to 
facilitate this task. 

To obtain expressions for ßx,..., ßN in terms of Ld(rj), 
let r1 be the current state of the system (without loss 
of generality), and define 

83'1 = A - r) = 
-1 ifrj>r^ 

1 if r\ < r\ 
0     otherwise 

(16) 

and 
ALj,! = Ld(r>) - Ldir1) (17) 

for all i = 1,..., N and j = 2,..., N. Using (15), the 
last equation can be rewritten as 

ALj,1 = jrßM-rl) = jrßiö-iA        (18) 
105 i=1 i=1 



If all Ld(ri) in (17) are observable, then (18) provides 
N — 1 linearly independent equations for the N vari- 
ables /?!,... ,ßN. An additional equation is obtained 
as follows: In the stochastic approximation algorithm 

Pn+i = 7rn+i[p„ - *?„VLc(pn)] (19) 

let pn+i — pn —r)nVLc{pn) be an "intermediate" state 
prior to applying the projection 7r„+i. In order to force 
Pn+i to satisfy the total capacity constraint (6), i.e., 

EWrEWri^^1 
i=l i=l 

we require that 

N 

t=i 

dLc(pn) 

Pi 

i=l 

N 

Pi 

= Eßi = ° 

K   (20) 

(21) 
i=i 

The combination of (18) and (21) provides N equa- 
tions used to determine unique ß1,...,ßN. Specifi- 
cally, define the (N — l)-dimensional vector AL' = 
[AZ,2,I, ..., ALN j] whose components were defined 
in (17), and the (N - 1) x N matrix AR = 
52'1,... ,6N,1Y whose  rows  are  the  vectors  8-*'1    = 

^I'
1
'" ".^    as defined in (16).  We then get from 

(18) and (21) 
-l 

VLc(p)= 
AR AL 

0 
(22) 

Therefore, VLc(p), the sample gradient to be used as 
an estimate of VJc(p) in (2), is obtained through the 
N costs Ldir1),... ,Ld{rN). The sample path at our 
disposal corresponds to one of the state vectors, which 
we have taken to be r1 € A/}v(/>), SO that Ld{rl) is ob- 
servable; the remaining N — 1 costs therefore need to 
be obtained by some other means. One possibility is to 
perform N — 1 simulations, one for each of these states. 
This, however, is not attractive for an on-line method- 
ology. Fortunately, there exist several techniques based 
on Perturbation Analysis (PA) [10],[2] or Concurrent 
Estimation [5], which are ideally suited for this pur- 
pose; that is, based on observations of a sample path 
under r1, one can evaluate Ld{r^) for states rJ ^ r* 
with limited extra effort. The efficiency of these tech- 
niques depends on the nature of the system and cost 
function. Systems with separable cost functions, i.e. 

N 

Ld(r) = J^LdAn) (23) 
i=l 

is one area where PA techniques prove to be particu- 
larly efficient. In such systems, one can write 

N 

Lc(p) = Ldir1) + J2 AL^r1) \Pi - r}\        (24) 
i=l 

where AL^.i^1) is the change in cost by adding or re- 
moving (depending on the sign of pt — r\) a resource 
from the zth user (see [7]). 

106 

5    Optimization Algorithm 

Summarizing the results of the previous sections and 
combining them with the stochastic approximation al- 
gorithm, we obtain the following optimization algo- 
rithm for the solution of the basic problem in (1). After 
initializing p0 = TQ, for each iteration n = 0,1,..., 

1. Perturb pn so that IPn — 0. 

2. Determine A/"(p„) [using (4)-(5)]. 

3. Determine MN[P„) [using the Simplex Method]. 

4. Select /„  6   TPn   such that rn   =   fn{pn)   = 
axgminre^(pj||r-pj|. 

5. Collect Ld(rl) for all r* G Afpf(pn) [using Concur- 
rent Estimation or Perturbation Analysis]. 

6. Evaluate VLc(/?n) [using (22)]. 

7. Update state: pn+1 = 7rn+1[p„ - 7j„VLc(pn)]. 

8. If some stopping condition is not satisfied, repeat 
steps for n + 1. Else, set p* = pn+1. 

We finally obtain r* as one of the neighboring feasible 
states in the set NN{P*). It is shown in [7] using tech- 
niques similar to [6] that under certain conditions {pn}, 
with p0 e Ac (initial condition) arbitrary, converges to 
p* with probability 1. The following result establishes 
that we can then determine r* € Ad that solves the 
optimization problem (1). 

Theorem 5.1 Let p* minimize Lc(p) over Ac. Then, 
there exists a discrete feasible neighboring state r* € 
NN(P*) which minimizes Ld(r) over Ad and satisfies 
Ld(r*) = Lc(p*) 

6    Numerical Example 

We illustrate our approach by means of a stochastic op- 
timization application for a classic problem in manufac- 
turing systems. Consider a kanban-based manufactur- 
ing system where 15 kanban (resources) are allocated 
to 3 servers (users) in series. The objective is to find 
the optimal allocation r* that minimizes the Average 
Cycle Time (ACT), defined as the time between two 
job completions at the last server (this is equivalent to 
a throughput maximization problem). The arrival pro- 
cess is Poisson with rate A = 1.6. The service times 
of the servers are exponentially distributed with rates 
fj,x = 2.0, fi2 = 1-6. P-3 — 3.0. In this case, we chose 
the step size to be constant at rj = 100, while the ob- 
servation intervals are increased in length. The system 



started with an initial allocation r0 = [3,5,7]' and the 
algorithm performed as follows: 

# jobs ft r' ACT 

0 2.80,4.90,7.30 3,5,7 0.830316 

100 7.44,2.69,4.87 7,3,5 0.743377 

300 6.79,4.02,4.19 7,4,4 0.737032 

600 7.81,3.60,3.59 8,4,3 0.738288 

2100 7.57,4.64,2.79 7,5,3 0.720974 

25300 6.97,5.64,2.39 7,6,2 0.724723 

32500 6.75,5.56,2.69 7,5,3 0.720611 

74100 6.32,5.37,3.31 6,6,3 0.712891 

316000 6.61,5.52,2.87 7,5,3 0.722122 

Due to noise, r oscillates between three allocations, 
namely [7,5,3]', [6,6,3]' and [7,6,2]'. Using brute-force 
simulation, it was determined that these are the best 
three allocations with corresponding performance val- 
ues which are very close to each other. 

7    Conclusions and Future Work 

A key contribution of the proposed surrogate problem 
methodology is its on-line control nature, based on ac- 
tual data from the underlying system. One can there- 
fore see that this approach is intended to combine the 
advantages of a stochastic approximation type of algo- 
rithm with the ability to obtain sensitivity estimates 
with respect to discrete decision variables. This com- 
bination leads to very fast convergence to the optimal 
point, as illustrated in Section 6. It appears, therefore, 
feasible to apply this approach to problems with local 
extremal points by developing a procedure that allows 
the algorithm to operate from multiple initial states in 
an effort to determine a global optimum. 

Two issues that are the subject of ongoing research are 
(a) application of this approach to systems with dif- 
ferent types of constraint sets, other than the capacity 
constraint in (6), and (b) the effect of using the Simplex 
method to determine the set M"N-q{p) on the gradient 
estimation. 
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ABSTRACT 

Simulation of large complex systems for the purpose of evaluating performance and exploring alternatives is a computationally slow 
process, currently still out of the domain of real-time applications. To overcome this limitation, one approach is to obtain a 
"metamodel" of the system, i.e., a "surrogate" model which is computationally much faster than the simulator and yet is just as 
accurate. We describe the use of Neural Networks (NN) as metamodeling devices which may be trained to mimic the input-output 
behavior of a simulation model. In the case of Discrete Event System (DES) models, the process of collecting the simulation data 
needed to obtain a metamodel can also be significantly enhanced through Concurrent Estimation techniques which enable the extraction 
of information from a single simulation that would otherwise require multiple repeated simulations. We will present applications of 
two benchmark problems in the C3I domain: A tactical electronic reconnaissance model describing the flight of a reconnaissance 
aircraft carrying a bearing angle measuring sensor over a radar field in order to detect ground-based radar sites; and an aircraft refueling 
and maintenance system as a component of a typical Air Tasking Order (ATO). A comparative analysis with alternative metamodeling 
approaches indicates that a NN captures significant nonlinearities in the behavior of complex systems that may otherwise not be 
accurately modeled. 

Keywords: Metamodeling, neural networks, concurrent estimation, discrete event systems, decision making 

1. INTRODUCTION 
Simulation is widely recognized as one of the most versatile and general-purpose tools available today for modeling complex processes 
and solving problems in design, performance evaluation, decision making, and planning. This includes C3I environments, where most 
problems confronted by designers and decision makers are of such complexity that their analysis and solution far surpass the scope of 
available analytical and numerical methods; this leaves simulation as the only alternative of "universal" applicability. The ultimate 
purpose of simulation is often system performance evaluation and optimization. Typically, this involves the use of simulation to 
explore a multitude of "what if scenaria. However, simulation is notoriously computer time-consuming when it comes to parametric 
studies of system performance. Unless substantial speedup of the performance evaluation process can be achieved, systematic 
performance studies of most real-world problems are beyond reach, even with supercomputers. 

One way to achieve a speedup is through metamodeling. The main idea of metamodeling is to extract as much information from 
simulation as possible and use it to build a surrogate model of the system of interest which is much simpler (yet accurate) to work 
with. This is essentially analogous to constructing a function F(xv...jcN) from observations of the simulation output under a few 
selected combinations of simulation inputs JC,,...^. The problem, of course, is that the actual function we are trying to approximate 
with FU,,...^) is unknown. The most common approach is to try and build a polynomial expression. This is often inadequate 
because if the actual curve includes sudden jumps and asymptotic behavior (which is often the case in practice), then polynomial fits to 
such curves are known to be poor. Thus, obtaining a metamodeling device of "universal" applicability, i.e., one capable of generating 
functions of virtually arbitrary complexity, is needed. This paper explores neural networks as offering this capability and is intended to 
investigate the advantages and limitations of this approach. 

Training neural networks for function approximation tasks typically requires a large number of training pairs, each under a different 
scenario. The obvious way to collect N training pairs is to perform N separate simulations: one for each scenario. If a typical 
simulation run takes T time units, this procedure requires a total of NT time units. For Discrete Event System (DES) simulation 
models, concurrent estimation can be used. In concurrent estimation, the objective of collecting N training pairs is met by performing 

"' Authors may be contacted via e-mail at: cgc@enga.bu.edu or (gong, cliu, panayiot, pepyne)@ecs.umass.edu. 
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a s.ngle baseline simulation, but endowing it with the capability to generate AM additional simulates concurrently. This is 
accomplished by exploiting "intelligent data sharing" which results in a total simulation time of (T+c) « NT. where c represents the 
overhead corresponding to this data sharing. Using concurrent estimation, therefore, reduces the simulation t.me needed to collect the 

data needed to train a neural network metamodel. 

The remainder of this paper is organized as follows. Since our purpose is to compare polynomial metamodels to neural network 
metamodels, Section 2 describes the basics of polynomial and neural network curve fitting. Section 2 a so briefly «views concurrent 
estimation as a way to speed the process of collecting the simulation data needed to construct metamodels. Secüon 3 describes the two 
simulators that will be used to compare the two metamodeling approaches. Section 4 presents numerical companson results. The 
paper ends in Section 5 with a conclusion and a discussion of open issues and ongoing work. 

2. NEURAL NETWORKS FOR METAMODELING 
For applications involving simulation, the time required to run the simulation may be very long or it may be necessary to perform 
many simulation runs. Metamodeling addresses these issues: If one can develop a metamodel that captures the funct.onal input/output 
relationships embodied by the simulator, then it is possible to obtain the simulation data quickly and efficiently. 

2.1.   Polynomial Metamodels 
Traditionally, polynomials have been used as metamodels. The functional mapping represented by a polynomial »s determined by ,ts 
order and the values of its coefficients. As an example, consider the 2-input, 1-output. second order Polynom>a 
i-b +bx +bx +bxx + b.x] + b,xl and suppose it is to be used to approximate some unknown function y = f(x, ,x2). 1 he leas: 
sauarls approach gives'a way to determine the coefficients which will minimize the mean squared error between the output of the 
polynomial and the output of the function being approximated. In the above example, there are 6 coefficients to determine. Thus, a 
Lr 6 experiments must be conducted. Suppose data has been collected for N * 6 such experiments. Index each «penmen as « = 
0   JV and designate the inputs for the n-th experiment as x,(n) and *2(/i). the output of the polynomial as y(n), and the target output 
of'the  function  being approximated as y(n).  Next define   HKW) 9W]    as   the   vector   of   polynomial   outpu s, 
Y = [ v(0 v(2) y(N)Y as the vector of target outputs, E = Y - Y as the error between the target output and the polynomial output, 
and E= i>b b 1 as the vector of polynomial coefficients to be determined. The objective of the least squares approach then is to 
determine the'val'ues! of the coefficients which will minimize the mean squared error, i.e., m\n[ETE]K The solution to this problem 

is given by  B' = (XTX)'[ XTY where X is the regressor matrix defined by, 

1    ,,(2)    xt{2)     x,(2)x:(2)     x]{2)    x\{2) 
A — 

1 xt(N) xt{N) xAN)x7{N) xUN) x\{N)\ 

Note, the determination of the coefficients B requires inverting the matrix {XTX). The size of this matrix is determined by the 
number of coefficients which is given by the number of inputs and the order of the polynomial. Since it can be difficult to invert large 
matrices the least squares approach does not scale well to problems with many inputs and high order polynomials. In addition, the A 
inputs points cannot be chosen haphazardly lest the matrix be poorly conditioned or , even worse, singular. 

As with all function approximation methods, the quality of the approximator depends on the particular set of N input points used to 
obtain the coefficients. Since, it is assumed that little is known about the function being approximated, selecting the best set of input 
points can be difficult. Strategies for choosing input points fall under the general heading of experimental design. For first and second 
order polynomials there are well established experimental designs for choosing the input points. For first order polynomials, the most 
popular are the orthogonal designs, so called because they result in a diagonal [X X) 2. These designs are useful because they 
minimize the variance of the coefficients when the function being approximated is stochastic. For second order polynomials, the most 
common design is the central composite design (CCD)2. For higher order polynomials, design methods are not as well established, 

but one common approach is to use layered CCD's. 

2.2. Neural Network Metamodels 
It is well known that multilayer feedforward neural networks are universal function approximators3. As such, they are often used for 
non-parametric modeling, and are well suited to the task of metamodeling. Fig. 2.1 depicts the architecture of a typical multilayer 
feedforward neural network.   In this particular figure there are four layers, including one input layer, one output layer, and two 
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intermediate layers called the "hidden layers." Each layer consists of many nonlinear devices called "neurons." The output of each 
neuron, V,, is called its "activation", and is a nonlinear function of a weighted sum of the inputs to the neuron minus a threshold, 0„ 

activation = g[ V       weights x inputs - threshold] 

The form of the function g() above is very important to the operation of a neural network. It is usually chosen to have the form of 
g{x) - tanh(ßx) and is called a "sigmoid function." As seen in the figure, the neurons are connected through links with different 
coefficients associated with each link. These coefficients are the "weights" in the above equation. It can be shown that if there are 
enough neurons in the hidden layers then there exists a set of weights that can approximate any function with a finite number of 
discontinuities to any desired degree of accuracy3. 

Input 
Layer 

I Hidden Layer(s) 
Output 
Layer 

Neurons H lActivationjl 

Figure 2.1. Architecture of a typical multilayer feedforward neural network. 

Typically, the weights are adjusted using a "training" algorithm. The usual training objective is to adjust the weights to minimize the 
mean squared error between a desired target output and the network output for a specific set of inputs. To do this, a special algorithm 
known as the "backpropagation algorithm" is often used. The backpropagation algorithm, although quite ingenious, is really nothing 
more than an application of the chain rule of calculus to effect a gradient descent in the weight space. For a representative description 

of the algorithm see4. 

INPUT 

rv SIMULATOR 

OUTPUT 

F» 

NEURAL 
NETWORK 

\~weighl adjustment     "\ 

Figure 2.2. Neural network training through simulation to create a surrogate model. 

The process of constructing a metamodel using a neural network is illustrated in Fig. 2.2. First, a large-scale simulation is executed. 
While the simulator is running, the neural network observes the simulator inputs and generates its own prediction of what the 
simulator output will be. It compares its output to the simulator output and uses the error to adjust its weights. In this way the 
neural network "learns" the input-output behavior of the simulator. One can visualize the neural network as an "entity" which is 
highly "intelligent" but has no knowledge of anything initially to apply its intelligence to. As it observes the simulation unfold, 
however, it learns from the basic cause-effect (i.e., input-output) relationships it observes. In fact, all the neural network does is adjust 
its weights so as to emulate the behavior it observes as closely as possible. When the training is done, the simulator can be taken 
away. The neural network is now a surrogate model: we give it some inputs (as if we were giving them to the simulator) and it 
immediately gives an output (as the simulator would). 
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One difficulty when using neural networks is choosing the number of neurons to use in the hidden layers. Since neural networks 
approximate functions by combining sigmoids (i.e., hidden layer neurons), the number of hidden layer neurons determines the ultimate 
complexity of the functions the network will be able to approximate. Too few and the network will underfit the training data, too 
manv and'it will overfit the data. In either case, the resulting performance will be less than satisfactory. To address this issue, we use 
the Cascade Correlation Neural Network (CCNN). which is a type of multilayer feedforward neural network that adds hidden layer 
neurons as it learns5 The CCNN starts with a single hidden layer neuron and adds more as needed during training which usually leads, 
not only to faster learning, but improved generalization performance. A detailed description of the CCNN training algorithm used for 

these metamodeling studies can be found in Cassandras and Gong6. 

The main advantages of neural networks over other approaches for function approximation (e.g., polynomials or rational functions) 
include- (i) Generality Neural networks are capable of approximating virtually any function. Polynomials and rational functions, in 
contrast, have known limitations in terms of their approximation capabilities, (ii) Scalability Neural networks scale easily as the 
problem size and complexity increases. When the system dimension is in the hundreds or thousands, mathematical formulae simply 
become too complicated to use. In fact, determining the coefficients for a polynomial or rational function can be completely infeasible 
when the dimension is large, (iii) Inherent Parallelism: Although the number of weights increases with the number of inputs and 
with the number of hidden neurons, the increased computational burden required to train the network can be met by exploiting the 
inherent parallelism of neural networks (i.e., each neuron can be implemented on a different processor). They are, therefore, ideal for 
modeling large-scale systems, (iv) Well-suited for model sensitivity analysis: It is always possible to do model sensitivity analysis 
with a trained neural network, as long as the related factors have been chosen as the inputs to the neural network. Thus, there is an 
excellent opportunity here to combine this metamodeling approach with concurrent/parallel techniques to perform model sensitivity 

analysis on the neural network surrogate model. 

2.3. Concurrent Estimation 
Constructing a neural network metamodel will usually require a large number of training points to achieve adequate performance. For 
Discrete Event System (DES) simulations, a technique called Concurrent Estimation can reduce the simulation time required to collect 
the necessary training data. The goal of concurrent estimation is the following: From a single simulation, obtain performance 
results for several different values of the inputs. The main idea behind the approach is to observe the evolution of a single (nominal) 
sample path of a DES as it operates under some parameter. As the nominal sample path evolves, observed data (e.g., event 
occurrences and their corresponding occurrence times) are processed to concurrently construct the set of sample paths that would have 
resulted if the system had operated under a set of different (hypothetical) parameters. Using these "concurrently constructed" sample 
paths, it is possible to "concurrently estimate" the corresponding performance measures. Thus, from a single simulation run training 
data can be collected which would otherwise require multiple runs to collect, therefore speeding up the process of data collection. 
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(ej 

«?■ i) 

K".?} 

.L<92) 

>L<BJ 

Figure 2.3. Concurrent Estimation. 

To explain the essentials of concurrent estimation, consider a DES and a finite discrete parameter set 0 = (0, 8m), where each 
parameter 6 e &, j = \,.../n is in general vector-valued.   Suppose the sample path generated by the DES is a function of the 
parameter 8, and designate the sample path generated under parameter 8. by the sequence of pairs \e'k, t{}, where k = 1,2,... is an 
event-counting index, e is the fc-th event, and tk is the occurrence time of the *-th event. Now, assume that the DES is operating 
under 9 and that all events and event times e\,t[ for k = 1,2  are directly observable.   The problem, then, is to use the 
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: sample path {^.fj} to construct the sample paths \SJ
k,t

J
k\, k = 1,2,..., for any £?, j = 2,.../n.   This proble 

ructine multiple sample paths is referred to as the sample path constructability problem1.    Note, any sa 
observations of the sample path {e'k,t'k\ to construct the sample paths \e'k,t'k\,k= 1,2,..., for any £?, j = 2,.../n. This problem of 
concurrently constructing multiple sample paths is referred to as the sample path constructability problem1. Note, any sample 
performance metric L(6) is obtained as a function of the corresponding sample path \s'k,t'k\, k = 1,2,... as shown in Fig. 2.3. Here 
we are careful to distinguish between L(6), the performance obtained over a specific sample path of the system and E\L{6)], the 
expectation over all possible sample paths. The solution to the sample path constructability problem, if it exists, therefore enables us 
to learn about the behavior of a DES under all possible parameter values in ©from a single "trial", i.e., a single sample path obtained 
under one parameter value. For DES in which all event processes are Markovian (memoryless), the Standard Clock scheme8, and 
Augmented System Analysis (ASA)9'10 provide two very efficient ways to obtain concurrent estimates. The Time Warping 
Algorithm (TWA)1 ', while not as efficient as the other two, is a general-purpose scheme for DES with arbitrary event lifetime 
distributions. 

A measure of the effectiveness of a concurrent estimation scheme is the "speedup factor" measuring how much faster one can obtain 
performance information for N concurrently constructed sample paths compared to N individual "brute force" simulation experiments. 
Typical numerical results for ASA give speedup factors of the order of 100, while for TWA factors of 2-20 or more are common7 ■'' 
(the more complex the event lifetime probability distributions in a model, the greater the speedup). It is worth pointing out that if a 
parallel processing environment is used, the speedup factor becomes much greater by several orders of magnitude. 

3. TWO BENCHMARK SIMULATION MODELS 
To evaluate the efficacy of using the CCNN for metamodeling we performed numerical experiments using two different models, a 
Tactical Electronic Reconnaissance Simulation (TERSM) describing the flight of a reconnaissance aircraft carrying a bearing angle 
measuring sensor over a radar field in an effort to locate ground-based radar sites, and an Aircraft Refueling and Maintenance System 
(ARMS) which models a component of a typical Air Tasking Order (ATO). 

3.1. Tactical Electronic Reconnaissance Simulator (TERSM) 
TERSM. developed by the RAND corporation for the United States Air Force12, is a very complex simulator that models the flight of 
a reconnaissance aircraft carrying a bearing angle measuring sensor over a radar field. As shown in Fig. 3.1, the aircraft flies with a 
fixed heading at a constant altitude and a constant velocity over a battlefield which contains many ground-based radar sites (emitters) 
As the aircraft flies, the sensor records bearing angle measurements of the emitters it detects and builds a list containing the circular 
error probable (CEP) for each one. The CEP is a disk of such size that the probability that the emitter is inside the disk is 50%. The 
simulator was originally used to compare competing sensors when making purchase decisions. Recently, TERSM has been used to 
develop and evaluate polynomial metamodels'3-1'*,15 TERSM, therefore, provides an excellent testbed for comparing competing 
metamodeling approaches. 

Location CEP 

Figure 3.1. TERSM, start of mission (left), end of mission (right). 

The operation of TERSM is similar in some respects to the familiar police scanner that one can buy in an electronics store. Like a 
police scanner, the sensor scans a set of frequency channels in some preprogrammed sequence. It dwells on a channel for a short period 
of time waiting for an emitter to transmit on that channel. If an emitter is transmitting, a series of sophisticated tests are performed to 
check if the sensor can detect it. The emitter must be within the line of sight of the sensor and not blocked by terrain or the curvature 
of the earth. The emitter must be within the field of view of the sensor's antenna pattern. The signal received by the sensor must be 
strong enough to detect, but not so strong that it exceeds the sensor's dynamic range.   If all these tests pass, the sensor records the 
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detection data After a short dwell time, the sensor switches to another channel. During the brief time period required to sw.tch from 
one channel to the next, the sensor processes all the detections made on the previous channel to «wet bearing angle ™asurernen^ 
The number of detections that can be processed dunng the channel switching time is determined by the channel capacity^ TERSMhas 
many inputs and is capable of generating many outputs. The inputs concern the aircraft flight data the sensor data>; -^au fo^e 
emitter. The primary outputs are the number of emitters detected and the CEP for each one. Complete details describing TERSM can 

be found in' -. 

3.2. Aircraft Refueling and Maintenance System 
Alihouoh TERSM provides an excellent testbed to study the feasibility of the CCNN metamodeling approach^ lacks some of the 
LurJ that constitute real challenges to metamodeling. For one, TERSM lacks significant randomness. That is, although the 
number of emitters detected does change as a function of the initial random number seed, the change is not s.gn.f.cant F another 
TERSM does not exhibit asymptotic relationships which are very common in practice. Exposing such asy7toUc^a„v'0rS

on°™ 
requires very long simulation runs. Avoiding long simulation runs is one of the real benefits of metamodeling. TERSN1 or the 
other hand, has a running time of just under a minute on a modern workstation. For such a s.mulanon, the benefits of""».odd ng 
are no. so compelling. Additionally, asymptotic behavior can be very difficult for polynomials to capture, and provides one of the 
primary motivations for the use of more powerful metamodeling methods like the CCNN. 

We have therefore concentrated on identifying a good benchmark problem with the above features, based on the literature of military 
models16-'7 In '7 for example, a model is considered for the process of moving and reasoning strategic airlift pilots with the 
objective of managing and ultimately minimizing moving costs while maintaining mission capability. Motivated by this problem 
we have concentrated on an A^r^Äe^K««^M««nre«i««5y5ttm (ARMS). The basic ARMS model is shown in Fig. 3.2. A 
illustrated, ARMS is a multiclass queueing system. Jobs from each class n = 1.....N arrive with average rates An to separate arrival 
queues with capacities C„ (possibly infinite). The system has 6 tokens. At block 1, the jobs compete for a token on a priority basis 
w,th the class 1 jobs having the highest priority. The job waiting in the highest priority arrival queue wil be the first to get a token 
when one becomes available. After getting a token, the jobs enter a service queue with capacity C,. At block 2 the jobs are selected 
from the service queue according to some service discipline (e.g., first in first out (FIFO)) and routed to one of * = 1 ,....* servers. The 
time to service a job is a random variable tfn.lt) which can vary as a function of the job class n and the particular server *. Upon 
completing service, the jobs proceed to block 3, where the token is returned to a token pool, and the job leaves the system. 

h- 

hr-+ 

Figure 3.2. The basic ARMS model. 

The basic ARMS model is very general and can be used to represent a large variety of Air Force CM operations. For example, such a 
model can be used to represent computer networks, communications systems, or logistics problems. The specific problem we will 
consider is the aircraft refueling and maintenance system (ARMS). The ARMS problem has aircraft requesting to land at a particular 
sue (airport or aircraft carrier) for refueling and/or maintenance purposes. Depending on aircraft type, a priority is assigned to each 
aircraft so that high-priority ones are served first. Since landing capacity and associated maintenance resources are limited, a specific 
number of "permits" (i.e., tokens) are available. An aircraft is, therefore, forced to wait until it receives a permit. Upon receiving a 
permit the aircraft is guided to a refueling/maintenance area. If the resources required to complete the refueling/maintenance process 
are noi immediately available (e.g., personnel, tools, spare parts, fuel), the aircraft is further delayed. When the aircraft completes 
service the permit is returned to the permit pool, and the aircraft proceeds to take off and return to action. In studying this system, 
one is interested in minimizing the expected "down time" of an aircraft, with more emphasis given to certain types of aircraft (the ones 
given higher priority).   At the same time, one is interested in keeping service costs within acceptable levels.   From a modeling 
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standpoint, one must therefore determine functional relationships such as the expected down time of a priority 1 aircraft with respect to 
factors such as the number of permits; or the number of maintenance resources allocated to the refueling/maintenance process. 

3H3H_I 
Figure 3.3. System used for metamodeling. 

Our metamodeling studies in this paper focus on the 3-class, single server ARMS model shown in Fig. 3.3. In this model, the class 1 
jobs have the highest priority, and the class 3 jobs the lowest. Job arrivals are Poisson with rates A/, where i is the customer class. 
In order for a job to be served, it must have one of 9 tokens. Jobs with tokens queue up to be served by a single server. At the 
completion of service, the jobs leave the system, and the tokens are returned to the token pool for reuse. When different classes of 
jobs are competing for tokens, the class with the highest priority gets one first. Jobs in the same class compete for tokens on a first 
come, first served (FCFS) basis. The arrival queues have infinite capacity, and the server queue has capacity C, = 6. Jobs in the server 
queue are served FIFO (with no distinction made between jobs from different classes). Service is nonpreemptive (once a job begins 
service, service cannot be interrupted, and will continue until completion), and the service time is an exponential random variable with 
parameter/^, = 1, / = 1,2,3. 

4. NUMERICAL EXPERIMENTS 
This section gives numerical results to compare polynomial metamodels to CCNN metamodels for TERSM and ARMS. For the 
results that follow, the performance measure used is the Mean SquaredError (MSE) between the output of the simulator (TERSM or 
ARMS) and the corresponding output of the metamodel (polynomial or CCNN ). For each input/output pair i = 1 ,.../i in the data set, 
the mean squared error is given by, 

MSE = -f e) 

where e. is the error or difference between the output simulator and the output of the metamodel. 

4.1. Baseline TERSM problem. 
The baseline TERSM problem focused on the relationship between the number of emitters detected which have a CEP less than 5 
nautical miles in radius and the following four inputs: the altitude of the aircraft (it flies at a constant altitude for the duration of its 
mission), the velocity of the aircraft (it flies at a constant velocity for the duration of the mission), the azimuth of the sensor (the 
angle of the sensor boresight relative to the aircraft heading), and the channel capacity of the sensor (the number of bearing angle 
measurements that can be processed during the channel switching time). This four input single output example (see Fig. 4.1) has been 
used in the literature to develop polynomial metamodels13.14,15 sjnce jt \s weu understood, this TERSM problem provided an 
excellent baseline for our feasibility studies. 

Altitude 

TERSM 
Velocity Emitters 

with CE 

AzimuxL 
Channel Cap 

Table 4.1. Range of interest for each input variable. 
Input Variable Lower Limit Upper Limit 
Altitude (feet) 5000 40,000 

Velocity (knots) 186 1150 
Azimuth (degrees) 60 150 
Channel Capacity 4 30 

Figure 4.1.  Baseline TERSM problem. 

Using a layered central composite design, Caughlin13, compiled a table of 49 input/output pairs from which he obtained the following 
reduced 4;/i order polynomial metamodel, 
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^ = 22.4331 - 0.0148*. - 2.7822*2 + 0.1432*, + 3.1432*4 + 0.3653*,*, +1 -2439*,*4 + 0.1483*2*, + 0.4430*2*4 

40.2698*,*. + 0.4369*,*2*, + 0.3286*,*2*4 + 0.0960*,*,*4 -0.2791*2*,*4 -0.8326*? 40.7642*' -1.8413*; 

+O7577*,3 + 4.9038*2
34l.0924*,3-1.1907*^-4.8443*2

4 

K       ,h» i„n,.t r   i« the altitude *, is the velocity, *3 is the azimuth angle, and *4 is the channel capacity.   All 

;ra?"^ 
software, we were able to duplicate Caughlin's results. This served to validate our version of the TERSM simulation software. 

To obtain a CCNN metamode., we randomly generated 238 input/output pairs using TERSM, and ^.^»^^^ we 

summarizes the results. 

Table 4 2. MSE comparison between the polynomial and CCNN for baseline TERSM 
 1 7Z     ~~.   ~ iio „«;„i MM cet 165 Doint t 238 point NN set 

575.86 
353.25 

165 point test set 
795.20 
417.50 

,„ Table 4.2, the 49 point set is the set of input/output pairs that were used "^^^^SSST Z " 
se, for tne polynomial. The 238 point set is the set of ^^^^T^^^^^ either of them) and 
„, for the CCNN. The 165 point sens «*^^j£ ™ ^, L metamodels generalize to data which they 
represents an independent testing set. The purpose of the testing set is to se ^ 

on the testing set is the most important performance criterion. 

emitter field for a shorter period of time. The azimuth was found to have httl»effectand mcreasmj m P     y   ^    ^ ^ 

give such good performance with only 19 neurons in its hidden layer. 

T«. prompt u» .odevelop , "..«gher TERSM problen,wi.h a Wjf - «^^STX^ ESA 
TERfM Cl 4 P J^l£E™ÄÄ SÄÄ- »Höh L.e .CEP ,e„ ,h.» 
i"Id« . F1 .4 2 he feu, inpu? are: I inilial aircra« eocrdi.a.es X» and U. Ü« initial a.reraA «»pass hcad,„g E «he 
aiSSeTainmn. heading), and »a aircraft velocity V «he aircaf. flies a. a «**m vel.c,,,).   

Emitters 
with CEP < 5 

Table 4.3. Range of interest for each input variable 
. .     •   i , _ T ~...A- T ;m;, T Innpr I imil Input Variable 
Xo 
Yo 

Heading (degrees) 
Velocity (knots) 

Lower Limit 

186 

Upper Limit 
400 
300 
359 
1150 

Figure 4.2.  "Tougher" TERSM problem. 
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To get some insight as to why this TERSM problem is "tougher" consider the following. The TERSM experiments were conducted 
using an emitter set which has 2359 emitters all located in a rectangular region on the surface of a sphere. Imagine now a set of 
experiments where the initial location of the aircraft is always to the north of this rectangular region, and suppose that for each 
experiment we only change the aircraft heading (the aircraft flies a constant heading for the duration of its mission). For a zero 
heading angle (due north) we are flying away from the emitter field and no emitters are detected. As the angle increases towards 180 
degrees (due south) more and more emitters are detected as we fly over an increasingly larger portion of the emitter field. Then as the 
angle increases beyond 180 degrees, the number of emitters detected decreases. Thus, the tougher TERSM problem has a response 
surface consisting of a collection of isolated "humps" where many emitters are detected, surrounded by large flat regions where no 
emitters are detected. Such a response surface should be quite difficult for a low order polynomial to capture. The CCNN, however, 
due to its universal function approximation capabilities, should be able to approximate the response surface. Nevertheless, such a 
response surface still poses difficulties for the CCNN in terms of data collection. If the enough points are not chosen, it is possible to 
miss some the humps entirely. 

As before, we performed simulation experiments to construct three data sets: a training set for the polynomial, a randomly chosen 
training set for the CCNN, and a randomly chosen testing set with which to compare the two. The polynomial training set was 
obtained using a layered CCD design consisting of the 49 input/output pairs. The CCNN training set consisted of 14,641 
input/output pairs, and the independent testing set consisted of 500 input/output pairs. 

Using the 49 point set we obtained the following 4th order polynomial metamodel. As for the baseline TERSM problem, a square 
root nonlinearity on the output gives the best results: 

%/y = 20.3885 - 4.8499*, + 7.7436*2 - 2.6979*3 - 2.9343*, -1.295 1*,*2 + 3.6486*,*, + 1.2144*,*4 + 1.9655*2*3 - 2.3306*,*, 

+0.0265*,*, - 1.0556*,*2*, -1.0158*,*2*4 +1.4222*,*3*4 +0.2683*2*3*4 -1.0927*,*2*3*4 -13.5657*,2 -12.1073*2 

+0.6690*,2 + 3.1144*4
2 + 6.4287*? - 9.1515*2

3 + 3.3922*3
3 +5.2131*4

3 + 4.7740*1* + 4.6920** - 0.6565*3
4 - 2.9759*4

4 

In the equation above, *, is the initial aircraft *-location, x2 is the initial aircraft y-location, *3 is the aircraft heading (0 degrees is due 
north), and *4 is the aircraft velocity. All inputs are centered and scaled, and the output y is the number of emitters located with a CEP 
less than 5 nautical miles. 

Comparative results are shown in Table 4.4. The ruggedness of the response surface resulted in the polynomial giving very poor 
performance. Even on the 49 point set, the one used to obtain the polynomial coefficients, the MSE was 37,278. That is, on the 
average, the output of the polynomial and the output of TERSM differed by 193 emitters, a huge difference when one considers that 
the number of emitters detected with a CEP < 5 nautical miles averaged only 243 and never exceeded 849. The CCNN gives much 
better performance following a rigorous training process consisting of many more training points. 

Table 4.4. MSE comparison between the polynomial and CCNN for "tougher" TERSM. 
1          49 point set 14,641 point NN set 500_point test set 

polynomial           1 37,278 66,035 61,638 
CCNN               1 5,243 4,379 4,671 

4.3.  Baseline ARMS problem. 
Next we present metamodeling results using the ARMS model from Fig. 4.3 for the range of inputs in Table 4.5. The inputs A, are 
the arrival rates for the three customer classes, 8 is the number of tokens, and the output, J = j,, is the service time of the class 1 
(highest priority) customers. The service time is the time from the customer arrival at the system to the time the customer finishes 
service and departs the system. In the context of aircraft refueling and maintenance, this is the "downtime" or amount of time that an 
aircraft is not available for service. 

From the preliminary analysis in Cassandras and Gong6 we already have some intuition about how we can expect ARMS to behave. 
When the number of tokens 6 is small, the system will appear to the class 1 customers as if they are the only ones using the system. 
This is because, regardless of the arrival rates of the lower priority customers, if there are customers waiting in the class 1 arrival 
queue, then those customers will get the tokens as they become available. When there are not many tokens, the queue at the server 
will be short, and the customer will pass quickly through the system. As the arrival rate of the class 1 customers, A], increases 
towards the service capability of the server, l//i, arriving class 1 customers will tend to find long queues in the arrival queue, their 
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waiting time in the arrival queue will be long, and thus their service times will increase. It is only when the arrival rate of the c ass 
•umer™s relatively low the number of tokens is large, and the arrival rate of the other classes of customers is high that the class 1 
,-ustomers will feel the effects of the lower priority customers. This is because when the arrival rate of the class 1 customers is low, 

. e cbss arrival queue will often be empty, and lower class customers will be able to get tokens more often. As a resu twhen 
d ss 1 customer lives and gets a token, it will find many other customers ahead of it ,n the server queue. Thus, although the 
waning time ,n the «rival queue will be low, the waiting time in the server queue will be longer because there « no pnonty there. 
Thus we get a response surface that increases asymptotically with A, and monotomcally with ft 

J = S 
Tahle 4.5. Ranee of interest for each input variable. 

Input Variable Lower Limit Upper Limit 
A, (customers/sec) 0.1 1.0 

A2 0.1 1.0 

A3 
0.1 1.0 

e 1 20 
Fig. 4.3.  Baseline ARMS problem. 

Following our usual approach, we used a layered CCD design to collect 49 training points for a polynomial memmode!, 500 randomly 

selected points to train a CCNN metamodel, and 500 randomly selected points for comparing the l»° ^^l^ZZ bes 
following A,h order polynomial metamodel. As with all previous problems, a square root transformation on the output gives the best 

MSE performance: „„„„,, ^-,-,,.,; 
vy = 3.6325 -0.1023*, - 0.1238x2 - 0.0383*, +1.3530*, - 0.0129*,*2 - 0.1893*,*3 + 0.1437*,*, - 0.5784*2*3 + 0.2346*2*4 

lo.2536*3*4 -0A399Xlx1x,-0.\262xlx2xi-0.0960xlxsi-QM92x2x,x4-0.0mxMxi-0A\ 17^+0.1263^ 

-0.4416x1 ~ 0.0308x2 +1.7967x3 + 0.5235*3 + 0.2576*3 + 0.0052*' +1.9208*; - 0.2488*4 + 0.1862*3
4 - 0.4665*4 

Table 4.6 summarizes our comparative results for the baseline ARMS problem. 

Table 4.6. ComDarison between the polynomial and CCNN for baseline ARMS. 
|           49 point set 500 point NN set 500 point test set 

polynomial           1 1.87 22.76 17.74 (34.3%) 

CCNN I 85.81 3.44 13.01 (22.9%) 

CCNN II             1 86.69 6.89 10.57 (16.3%) • 

In Table 4 6 CCNN I was trained to learn a scaled version of the output, 0.1./, and CCNN II was trained to learn the natural log of the 
output, logt/). Because of the asymptotic behavior of ARMS, it was felt that the log would "flatten" the output curve making the 
learning task easier. Interestingly, the performance of the two networks is almost identical as was the final number of hidden aye 
neurons in each- 25 for CCNN I and 23 for CCNN II. In comparing the CCNN to the polynomial metamodel, performance on the 
500 po.nt test set is really the most important since it provides a measure of the generaliza Jon «^abi!^ ove;» "P™se^C ^f'! 
of the input space (unlike the 49 point set which covers the extreme cases). In terms of the MSE criterion, both, th«: CCNN and th 

polynomial appear to generalize well. When the range of the output is small, as ,t is in this case however, MSE results can be 
misleading. A better performance measure to use in such cases is the Mean Squared Relative Error (MSRE), g.ven by, 

MSRE =-fl^) xlOO 

where *,- is the error between the target and network output and y, is the target output.  This criterion (shown in parenthesis in Table 

4.6) clearly demonstrates the superiority of the CCNN with the log transformation. 

4 4   Concurrent simulation to speed data collection in the ARMS model 
For DES like the ARMS model, concurrent estimation can be used to speed the process of collecting the input/output pairs needed to 
obtain a metamodel. One of the parameters that affects the system time of the class 1 customers in the ARMS model is the number o 
tokens ft   As described previously, changing the number of tokens changes their resulting system times, w.th a smaller number of 

tokens favoring the higher priority customers (see Fig. 4.4). 
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Since analytical performance measures for this system are hard to derive, in order to determine the function in Fig. 4.4 it is necessary 
to resort to simulation with at least one simulation for each different value of Ö,. As described in Section 2.3, concurrent estimation 
techniques allow one the obtain performance estimates under any number of tokens 6^...9N by observing only a single sample path 
under some fy tokens. Generally, the amount of time to collect these N+] performance estimates will be much less than the time 
required to run /V+l individual "brute force" simulation experiments. 

Tokens 

Figure 4.4. Effect of changing the number of tokens (0)on the system time. 

To illustrate just how significant this speedup can be, consider the ARMS model from Fig. 3.3. Assume that all arrival queues have 
infinite capacity, all arrival processes  are Poisson, and all customer classes have identical (exponentially distributed) service lime 
requirements. Under these conditions, Fig. 4.5 shows the speedup that can be achieved using some recent extensions       to the TWA 
scheme mentioned in Section 2.3. In the figure, speedup_l corresponds to the average speedup achieved over   all concurrently 
constructed sample paths. Speedup_2 corresponds to the marginal speedup when going from n to n+1 parallel sample paths. 

18 . K 
16 . P\ 
14 . r^—^z ^"S s^- --—-^ 

B.I2 . 

1 10. 
">   8 . K-— 6. y 

2. 
—Speedup.2 

0. 
I      2      3      4      3      6      7      8      9      10    II     12     13     14     IS     16 

Nuiri>crorParallelSampleP»ths 

Figure 4.5. Speedup factor for concurrent estimation. 

5.  CONCLUSIONS 
Simulation is replacing actual experiment for reasons of cost, safety, and practicality. One application area where simulation is seeing 
an increased use is in design and decision making for C3I systems. Such issues typically require simulation to answer a multitude of 
"what if questions. The difficulty is that complex simulations can be very time consuming even on modern supercomputers. What 
is needed, therefore, is a way to speed the processes of evaluating the outcome of competing "what if scenarios. This is the 
motivation behind the idea of metamodeling—building a simpler higher-level model of a simulation model. This is a function 
approximation task, i.e., replacing the simulation with some function which has the same input/output behavior as the simulator. 
The benefit of such an approach is that evaluating the function is orders of magnitude faster than running the simulation, allowing for 
real-time decision making. Traditionally, polynomials have been used for metamodeling. In this paper, we proposed neural networks 
as an alternative metamodeling device in order to exploit their "universal function" approximation capability and their superior 
scalability to complex function approximation problems which have a large number of inputs and outputs. Polynomials, on the other 
hand, have known limitations in terms of their function approximation power, and they do not scale well as the problem size and 
complexity increases. In comparing polynomials to neural networks, we saw that constructing polynomial metamodels requires a 
great deal of technical sophistication on the part of the metamodeling practitioner. First, one has construct an experimental design to 
decide what points to collect for obtaining the coefficients of the polynomial. Second, one must examine the residual errors to decide 
when certain terms are not significant, in which case their coefficients are set to zero. Third, for many polynomial curve fitting 
problems, it is advantageous to use a nonlinear transformation, such as the square root, on the output.    In contrast, constructing 
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metamodels using neural networks is easier as it simply involves randomly selecting a set of training points and presenting them to a 
neural network training algorithm. Our numerical performance results demonstrate the superiority of the CCNN over polynomials in 
lerms of generalization capability on several nontrivial metamodeling examples. 

Neural networks, however, are not a panacea as they also involve some challenging issues. The first issue involves the determination 
of the network size (i.e., the number of neurons to use in the hidden layer). Too few and the neural network will underfit, too many 
and the neural network will overfit. To deal with this issue we chose the Cascade Correlation Neural Network (CCNN) architecture 
because it automatically decides how many hidden neurons are necessary during learning. Second, neural network training algorithms 
can be very slow to converge. The CCNN also addresses this difficulty, and uses a training algorithm that is generally faster than 
methods such as the usual error backproprogation algorithm. A third difficulty is the number of input/output pairs needed to train the 
neural network. For DES simulations we demonstrated concurrent estimation as a way to collect several input/output pairs from a 
single simulation run in much less time than it would take to collect these same points via individual simulation experiments In 
addition to concurrent estimation, what is needed is some "adaptive" data collection strategy which can use the history of the points 
already sampled to decide where to sample next. The objective of such a strategy is to locate the "bumps" in the output function so as 
to take few samples where the function is "flat" and more samples from the "bumps." One idea here is to use perturbation analysis 
techniques for DES'8 •'9 to extract derivative information from each simulation run. One can then use these derivative estimates as 
local "roughness" measures to decide where to sample next. This sort of "adaptive intelligent experimental design" remains an open 
issue and a subject of our ongoing research. 
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