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SPACE-FREQUENCY CORRELATIONS IN MULTISTATIC ACOUSTIC 
REVERBERATION DUE TO A WIND-DRIVEN SEA SURFACE: 

THEORETICAL RESULTS AT LOW FREQUENCY 

1. INTRODUCTION 

1.1 Overview 

For decades, the U.S. Navy's operational needs were well served by the pursuit of acoustic 
antisubmarine warfare (ASW) as a largely passive enterprise. In recent years, however, the emphasis 
has shifted strongly toward active operations, and this change has lent newfound importance to 
some hitherto secondary topics. Prominent among these is the irregular and dynamic nature of 
the sea surface. Previously of interest only in connection with ambient noise and propagation loss, 
the surface has taken on new importance as a source of reverberation in active systems. Features 
of particular interest in the reverberant field are (a) Doppler shifts, which can mimic or mask the 
echoes from moving targets, and (b) two-point spatial correlations, whose nature may ultimately 
help systems distinguish target returns from surface reverberation. 

This report treats the second-order space-frequency statistics of reverberation from time- 
dependent sea surfaces. The focus is on low frequencies and wind speeds, where interface scat- 
tering dominates bubble effects [1]. Theoretical techniques are used to express the reverberation's 
Doppler characteristics and spatial correlations in terms of accepted empirical parameterizations 
for the surface-wave statistics. The overall goal is a comprehensive expression for the second- 
order spatial and temporal correlation features that relate to acoustic systems operating in the 
low-frequency (LF) band. Naturally, some judicious physical approximations must be made. The 
source is treated as a motionless point that emits a narrowband signal. The environment is allowed 
to have depth dependence (including a layered bottom), but every part of it is range-independent, 
deterministic, and static—with one exception. That exception is the sea surface, which is composed 
of waves traveling in all directions with various (and ultimately random) amplitudes and phases. A 
comprehensive new formulation is derived for the cross-spectral density (CSD) of the reverberation 
in terms of (a) the second-order statistics of the sea surface and (b) the Green's function for the 
same environment without surface waves. This is expected to provide a basis for future work in 
complex environments; however, for the remainder of this report, the subsurface medium is repre- 
sented as a homogeneous half-space. This simplification allows analytic methods to reduce a crucial 
fivefold spatial integration to a single azimuth integral. The result is a novel analytic expression 
from which model computations are easily done. Sample computations are carried out to display 
the dependence of the amplitudes and phases of the CSD sidebands on the multistatic horizontal 
and vertical placement of the receiver pair, the wind speed, and the directionality of the surface 
waves. 

Section 2 deals on a deterministic level with the two fundamental elements of the problem— 
the sea surface and the acoustic field scattered from it. First, the makeup of a deterministic 
time-dependent surface is discussed and then the small-waveheight approximation (SWHA) is in- 
voked to characterize the narrowband signal that results from scattering by such a surface.   In 
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Section 3, the surface elevation is treated as a random process that is stationary both in time and 
in horizontal coordinates. A SWHA series is obtained for the resulting reverberation CSD through- 
out the water and sediment, and the terms are grouped into baseband contributions (zeroth order 
and second order) and Bragg-Doppler sidebands (second order only). The sideband expression, 
Eq. (30), is recognized as an active-scattering extension of the van Cittert-Zernike theorem from 
the classical theory of partially coherent fields. With the sea surface described in terms of its power 
spectrum and directional spectrum, each CSD term is reduced to an azimuthal integration involving 
a fundamental integral over surface wavenumber. Section 3.4 summarizes the results. In Section 
4, the fundamental integrals for the baseband and sidebands are evaluated by two-dimensional 
(2-D) stationary phase estimation for a uniform ocean. This uses a source/receiver geometry that 
yields analytic results: the source and receivers are deployed at depths much less than the ranges 
involved. Section 5 presents a set of computer simulations for the sidebands. These are done using 
the Pierson-Moskowitz power spectrum and Longuet-Higgins directional spectrum to illustrate the 
sensitivity of the sidebands to receiver placement, frequency, and sea-surface parameters. Section 
6 presents a summary and conclusions. 

1.2 Background 

Perturbative treatment of sea-surface scattering is certainly not a new idea. Indeed, various 
perturbative approaches are to be found throughout the acoustics and radar literatures. Some of 
these deserve particular mention here in relation to the present work. 

In the 1970s, Harper and Labianca published a series of articles [2-6] that applied analytic 
techniques to the theory of bistatic sea-surface scattering. Their main result was a formalism for 
describing the Doppler sidebands in the power spectral density (PSD). The present report has cer- 
tain basic features in common with that work. Both use perturbation theory along with Rayleigh's 
approximation for the surface boundary condition, and both ultimately treat the source signal and 
sea surface as stochastic inputs that generate a stochastic output—the scattered field—whose sec- 
ond moment is the basic goal of the analysis. In other respects, however, the two approaches differ. 
Harper and Labianca began by modeling the input stochastic processes themselves. They then 
used analytic wave-propagation techniques to determine the resulting output process and, finally, 
ensemble-averaged a quadratic expression in the output to produce the desired second moment. 
This required devoting considerable effort to devising an ensemble of faithful realizations of the 
sea surface and to obtaining the consequent realizations for the perturbative contributions to the 
scattered field, including those that ultimately contribute nothing to the ensemble average. 

In contrast, this report (a) addresses multistatic sea-surface scattering and (b) approaches the 
subject directly on the level of second-order statistics [7, Chapter 5]. It follows the basic agenda of 
the classical theory of partially coherent wave fields [8-11], exploiting an input/output relation for 
the field's second moment rather than for the field itself. That relation arises as follows. The field's 
general space-time second moment T(fi, t\, r^-, t-i) obeys two wave equations—in r\, t\ and in r%, ti- 
For a field that is statistically stationary in time, this moment reduces to the Mutual Coherence 
Function (MCF), C(fi,f2,r), which depends on the time difference T = t2 — t\. Its transform in 
the frequency domain is the CSD, C(fi,r2,f), which obeys a pair of Helmholtz equations—in r\ 
and in r*2—within any source-free region r\,?2 G V. Green's theorem then provides the desired 
input/output relation—an expression for the CSD inside V in the form of an integral over the 
boundary T\,rz G dV involving the appropriate Green's function and boundary values. 

In this form, that relation would be prohibitively difficult to use, since its input involves in- 
tegration over the actual sea surface. Fortunately, in the small-waveheight regime, one can use a 



Space-Frequency Correlations in Multistatic Surface Reverberation 

classic Rayleigh technique to replace the exact expression by a perturbative series approximation, 
each term of which involves integration over the mean sea-surface—a simple horizontal plane. In 
this perturbative representation, the nth-order contribution to the output is generated by the nth 
angle and frequency moments of the surface-wave distribution. Harper and Labianca followed ba- 
sically the same procedure in producing a perturbative series for the field amplitude. However, the 
desired result—the nth perturbative contribution to the output moment—is more readily obtained 
when the procedure is applied to the moments rather than to the stochastic process itself. In that 
context, it is immediately clear, for example, that the first-order contribution to the CSD vanishes 
identically. Working on the level of moments also seems to have an advantage in terms of reliability. 
Their work with the stochastic field amplitude led Harper and Labianca to assert that reciprocity 
failed beyond the second perturbative order [6, p. 1,149]. This claim appears to be an artifact of 
the complexity of their approach and is not borne out here. 

In 1993, Goalwin published an article [12] that modeled the multistatic reverberation CSD 
for a pair of receivers. His work, like the present effort, approached the problem on the level 
of second moments and obtained a multiple-integral expression for the second-order perturbative 
contribution. To facilitate the analysis, however, he placed the receivers at a common depth and 
was, thus, unable to examine the vertical aspects of spatial correlation. More significantly, he 
dealt with the sea surface as a "frozen" (motionless) interface, thereby precluding any treatment 
of surface Doppler. In addition, like Harper and Labianca, Goalwin applied the stationary-phase 
method only numerically, obtaining no analytic results comparable to those produced here. 

1.3 Conventions and Notation 

Vectors in 3-D are indicated by arrows, and 2-D vectors and matrices are denoted by underlining 
(e.g., 3-D vector r = (r, z) and 2-D matrix |n_). Directions in the horizontal plane are often specified 
in terms of the a unit vector n{6) that points along an azimuth 0 relative to the dominant wind 
direction. The frequency / or its angular counterpart u = 2nf (or both) may appear in any given 
expression; the choice is entirely a matter of convenience. The same is true for the horizontal 
wavevector k = 2~KS. 

The standard Fourier transformation connects the time and frequency domains: a(f) = 
J-tt dtE(+ft)a(t) with the kernel E(q) = exp(i27rg). The same basic symbol is used in both 
domains—a(t), a(f)—with only the argument identifying which one is meant. The relation is often 

denoted a(t) —> a(/), with the arrow indicating the forward direction. The variables above the 
arrow are sometimes omitted when they should be clear from context. The spatial Fourier trans- 
form in two dimensions follows the same pattern except that, because of the traveling-wave form 
E(s-r — ft), its kernel uses the opposite sign: a(s) = J d2zE(—s-r)a(r). Again, the transformation 

is denoted a(r) =—3 a(s), with the arrow indicating the forward direction (this time, the one with 
the minus in its kernel). 

When a(t) is effectively constant, it will be written as a(jt) to emphasize that it is virtually 
a dc signal. To the same approximation, its spectrum is singular: a(f) fa a(/~0)<5(/), where 
a(/~0) = /0_ df a(f) denotes the integrated strength of the singularity. Numerically, of course, 
a(/~0) = aC0- Likewise, when o(r) is effectively independent of r, it is denoted a{f) and its 
wavenumber spectrum is a(s) fa a(s~0)5(s), where a(s~0) = a(f). These are understood in 
the same spirit as expressions like "a <C ß" (i.e., as a physical notation rather than a purely 
mathematical one). 

A field a(z,t) is a function of both spatial position and time.   Double Fourier transforma- 
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tion, a(r,t) —4 =-4 a(s,f), allows it to be viewed as a function of wavenumber and frequency 
a(s, /). Although any physical field can be represented as a real-valued function in the space/time 
domain—a(r, t) = a*(r, t), with the corresponding symmetry a(s_, /) = a*(-s, -/) in the wavenum- 
ber/frequency domain—it will usually be more convenient to use representations involving complex- 
valued fields a(r,t). This practice (the equivalent of representing cosq by the real part of e%q) is 
perfectly harmless provided due care is used with nonlinear functions of the field, particularly the 
quadratic form a*(r.i,2i)oj(zi2>^2)- 

We will need to deal with the second-order statistical moments of fields (i.e., ensemble averages 
of such quadratic forms). Of course, we may equally well deal with moments of a(r, /), a(s,t), or 
a(s,f), instead. Our interest, then, will be focused on the two-point correlations in one of these 
forms: 

ra(r1,<i,r2)*2) = <a*(21i,<l)a(r2,*2)> 

ra(ii, /i,r2, /2) = (a*(zii, /i)a(r2, /2)> 

ra(s!, /i, s2, /2) = {a*(su fi)a(s2, /2)> . 

Here too, the same main symbol is used universally, and only the arguments distinguish the 
space/wavenumber and time/frequency domains. Naturally, since Fourier transformations con- 
nect these domains, all three forms are equivalent. In dealing with statistically stationary fields, 
it is often convenient to use "mean and difference" coordinates (i.e., to re-express the dependence 
on a coordinate pair ((,,Cj) m terms of a dependence on their mean (,j = \{(j + (;) and difference 
Qj = £• — £,-). In this representation, the three moments above are 

ra(z42,ii2,Ei2,*i2) = (a*(zii,*l)a(l2,*2)) 

ra(El2./l2,£l2»/l2) = <a*(El,/l)ö(£2./2)> 

ra(li2,/l2,ll2>/l2) = (a*(s1,fi)a(s2,f2)) ■ 

Temporal stationarity is so common that special notation and terminology are used. 

Ca(r.i,r_2,tl2)  = ra(r12,ti2,Li2,Ä2) =C,afc2>Zli,-<12) 

is called the MCF, and its  12-—>2 transform, 

Ca{T±,raJu) d= ra(r12>/i2,£i2>/i2~0) = C*(i2,ii,/i2), 

is known as the CSD or Mutual Spectral Density Function (MSDF). 

2. AMPLITUDES 

We begin by formulating the problem in the context of a time-dependent linear system with one 
input, e(i), the signal emitted by the source; one internal time dependence, h(r,t), the sea-surface 
elevation; and one output, A(r,t), the modulation of the field scattered by the surface. Initially 
these are all treated as deterministic quantities. A stochastic treatment follows in Section 3. 

2.1 Surface Elevation 

Even if the surface elevation were completely arbitrary, it could still be Fourier analyzed via 

h(L,t) —4=-4 h(s,f) (i.e., synthesized from unrestricted sinusoids E(s-ri — ft)) according to 

Is? 

f r+oo 
h(r,t)=        d2s dfE(s-L-ft)h(s,f), (1) 

JB? J-oo 



Space-Frequency Correlations in Multistatic Surface Reverberation 

with only the requirement that h(s, /) = h*(—s,—f) to guarantee that h(r,t) is real. But of 
course the surface elevation is not that arbitrary. Its components are traveling waves1 that obey 
the appropriate dispersion relation for waves on the sea surface—a constraint in the form of a 
mapping |/| = F(s), where s = \s\ (or, equivalently, s = S(\f\) in terms of the inverse map 
S = i*1-1). The functional form of F(s) depends on the nature of the restoring forces acting on 
surface displacements at the fundamental length scale of the problem. For the present, we only 
note that F(s) must be an increasing differentiable function on s > 0 and vanish at the origin 
(F'(s) > 0, F(0) — 0). This is general enough to span the spectrum from capillary to gravity waves 
in deep or shallow water [14, Eq. (6.3.12)]. Incorporating a surface dispersion relation imposes the 
restriction s = £(1/1)11(0) on the 3-D integration region {s G i?2, |/| < oo} in Eq. (1), shrinking it 
to the 2-D manifold {s G B2, |/| = F(s)}. 

Alternatively, one may use a synthesis like 

h(r, t) = jd9 J°° df a(9, f) cos {<f>{9, /) + 2ir[S{f)n{9)-r_ - ft]} (2) 

in which § dO is a 360° azimuth integration, and the traveling-wave component for each {9, /} has 
an amplitude a and a phase (f>, both real. This arguably has more down-to-earth physical realism 
on its side because (a) it incorporates the dispersion relation in a natural way, (b) it is manifestly 
real-valued, and (c) it avoids double-counting (since / > 0, the component with {9, |/|} is included, 
but its physical twin with {9 + 7r, —1/|} is not). 

Used consistently, the two approaches are, naturally, equivalent. The a and <j> in Eq. (2) are 
specified only for positive frequencies, but their definitions can be extended to the negative spectrum 
via a(9, —/) = +a(9 + 7r, /) and (f>(0, —/) = — </>(# + 7r,/). In terms of the complex amplitude, 
u(9, f) = \a{9, f)ei(&6'ft whose symmetry is u{9, f) = u*(9 + TT, -/), Eq. (2) is simply 

/+oo f 
df j d9u(9, f)E(S(f)n(9)-r - ft) . (3) 

Any physically realizable sea surface can be synthesized in this way by integrations over azimuth 
and frequency. The symmetry of u guarantees h(s, /) = h*(—s,—f), so that h(r,t) remains real. 
A comparison of Eqs. (1) and (3) shows that 

hUJ)=s±^iDlu{ejh (4) 
s 

which illustrates how the dispersion relation restricts the surface elevation in the wavenum- 
ber/frequency domain. 

2.2 Scattered Field 

Initially we regard the sea surface, z = h(r,t), as a deterministic boundary and present an 
expression for the acoustic field that scatters from it. The subsurface acoustic environment is 
prescribed by the sound speed c and density p, which are considered to be continuous functions of 
depth except for simple discontinuities wherever the material properties change abruptly (e.g., at 
the sea floor and at sediment interfaces). 

1 We are representing these surface components as perfect sinusoids. Their shape is actually slightly distorted by the 
orbital motion of the near-surface water, but the effect is negligible for small waveheights [13]. 
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2.2.1 Differential Problem 

This corresponds to a linear differential boundary value problem of the familiar form 

WP(r,t) = Q(f,t)   ■■■   z> h{r,t) (5a) 

P(f,t) = 0  •••  z = h(r,t) (5b) 

P(r,t)->0   ■■■   \r\ -> oo (5c) 

featuring a wave operator [15], W = -{p{r)d/dr}-{p-1{r)d/dr} + C-
2{r)d2/dt2, determined by the 

medium's sound speed and density. In signal engineering terms, the environment, in conducting 
the signal from source to receiver, acts as a linear filter. Two things drive the system: the source 
function Q(r,t) and the sea-surface elevation h(r,t). It is the latter that makes the problem 
challenging by causing the ocean to act as a time-varying filter. Other conceivable contributors, 
such as time-dependence or randomness in c and p, are disallowed in the present formulation. 

Although this problem is well posed in a mathematical sense [16], it is appropriate to make at 
least passing mention of some of its physical shortcomings. First, it is implicit that c and p must 
actually be uniform near the surface if there is to be no time-dependence within the medium. This 
means excluding all effects associated with near-surface hydrodynamics, such as the advection of 
air bubbles by the subsurface water [17]. In fact, scattering by near-surface bubbles [18], whether 
advecting or not, is omitted altogether. Furthermore, a more realistic surface boundary condition 
might even be applied. An air/water impedance condition, for instance, would allow transmission 
into the air and that may actually be a significant loss mechanism in shallow water [19]. 

2.2.2 Narrowband Emission from a Point Source 

We suppose that the source is fixed in position and that its time-dependence is uniform 
throughout. This time-dependence we take to be a modulation applied to a carrier frequency 
/o. Thus the source term is Q(r,t) = q(r)e(t) exp(-iuot). The resulting acoustic field has the form 
P{r,t) = A(f,t) exp(-iw0i), in which A(f,t), like e(t), is a slow complex modulation.2 We further 
idealize the source as a spatial point (i.e., take q(r) = 6(f - f0)). To zeroth order (i.e., neglecting 
dA/d(u>ot) and d2A/d(üJot)2 relative to A), we obtain 

WA(r,t) = e(t)6(f-r0)   ■■■■   z > h(r,t) (6a) 

A(f,t) = 0  •••  z = h(r_,t) (6b) 

A(r,t)^0  ■■■   |f|-»oo, (6c) 

in which W = -{{p{f)d/'9f}-{p_1(r)dj'dr} + k^(r)) is a general Helmholtz operator with a spatially 
varying wavenumber ko(r) = uo/c(r). The time variation in A is caused by e and h. 

When h is frozen, the function A(r,t)/e(t) loses all dependence on time and is, in fact, simply 
the space-frequency Green's function for that fixed boundary at the frequency /o (i.e., the frequency 
response function of the now time-invariant environment at the carrier frequency). However, we 
want to deal with situations in which h is time dependent. Our first step in doing that is to recast 
Eq. (6) in integral form. 

2.2.3 Integral Formulation 

For any volume V, provided its boundary dV remains fixed and the density is uniform along 
the normal direction at the boundary, WU(r) = 8(f - ?o) is, by Green's theorem, equivalent to 

2 A also depends parametrically on f0 and /o, of course, but this will be left implicit. 
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!? U(r*)=G(r,r0)- f    d2fbGb(r,rb)U(rb)   ■ ■ ■  f,r0 £V , (7) 
i JdV 

where G(ra,fb) is the Green's function3 for pressure-release conditions on dV, and the subscript 
notation used in the integrand means 

Gb(f, n)t> ft(rby Jim (^ß)  ■ ■ ■ f e v , fb e dv , (8) 
u-*rb \       OU       / 

with the limit taken from within V. It is simply a shorthand for the outward normal derivative 
with respect to the subscripted argument (i.e., the "boundary Green's function" [20]). Reciprocity 
is embodied in the expression G(fa,rb)p(fb) = G(rb,ra)p(ra). 

Equation (7) can be applied to U = A/e by identifying V with the half-space z > 0 and dV 
with the z = 0 plane, S. The result is that throughout the water and sediment, 

A(r, t) = e(t)G(r, r0)-f d2ra Ga(f, ra)A{ra, t) . (9) 

G is the "sea state zero" Green's function for pressure-release conditions on S, so that 

\    oza    JZa=0 

is just its upward derivative at the surface point ra = (r^O). Equation (9) relates A to its values 
on the fixed plane S, but it is not a solution because Eq. (6) needs boundary values specified on 
the actual moving sea surface. 

2.2.4 Small-Waveheight Approximation 

To get such a solution, one must infer the values of A(r, t) at z = 0 from the vanishing 
boundary values imposed at z = h(r,t). This can be done by the SWHA [21]. Since this is such a 
well-known procedure, we omit the details and simply note that the modulation emerges as a series 
A = A^ + -A^1) + A^ -\ whose initial terms are 

A^(r,t) = e(t)G(r,r0) (10a) 

A^(r, t) = -e(t) [ d2
U Ga(r, ra)h{U, t)Ga(fa, f0) (10b) 

Js 

4< V, *) = <*) JJ d2u d2U Ga(r, fa)h(r^,t)Gab(ra, rb)h{U, t)Gb{rb, r0) . (10c) 

Again, the subscript notation of Eq. (8) is used for the surface normal derivatives. All of these 
.4(n) terms have an implicit parametric dependence on TQ and /o, and they all derive their time 
dependence from both e and h (except A^°\ which is independent of h). Furthermore, each A^ 
inherits the Green's function's reciprocity property. It has been suggested [6] that this order-by- 
order reciprocity might not extend beyond second order; however reciprocity has been explicitly 
demonstrated for all orders in the cw (continuous wave) case with a frozen surface [22], and it 
seems clear enough from the above that it does, in fact, persist in general. This is the SWHA 
for the complex modulation that results when a given narrowband signal scatters from a given 
time-dependent wave surface. It appears here not as a novel result (indeed, Eq. (10) is a minor 
variation on Eqs. (30) and (31) of Ref. 6) but rather as a natural starting point for the following 
section's systematic treatment of the source signal and the sea surface as stochastic processes. 

The space/frequency Green's function's dependence on f0 is left implicit. 
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3. MOMENTS 

For most real-world applications, one must abandon the depiction of e(t), h(r,t) and A(r,t) 
as deterministic quantities and instead treat them as random processes. We do that here, taking 
all of them to be statistically stationary so that their mean values (e), (h), (A) can be assumed to 
vanish and attention can be focused on their second moments. 

3.1 Source Modulation 

The narrowband modulation e(t) can be characterized by its PSD, Ce(f). This can be written 
in the form Ce(/) = PeRe(f) with the normalization /+~ dfRe(f) = 1 so that the emitted power 
is Pe = /+~ dfCe(f). The Gaussian case with bandwidth A/, for example, would have Re(f) = 

eXp[_I(y/A/)2]/(\/27rA/). But whatever the statistics, when the bandwidth vanishes, Re(f) 
reduces to its dc limit, 6(f). We will often use such an ideal reference source—a cw source with 
unit power output (i.e., Re(f) = 6(f) and Pe = 1). 

3.2 Surface Elevation 

Because the sea surface is, by assumption, temporally and spatially stationary, its component 
waves turn out to form what is sometimes called a "free wave field" (i.e., a collection of 2-D 
plane waves that have no frequency or angle correlation with each other [23]). Such a surface is 
customarily described in terms of its frequency spectrum and its directional spectrum. 

3.2.1 Free-Wave Sea Surface 

In a stochastic description, the complex amplitude u(6, f) becomes a random process. Since 
(u) vanishes, the relevant statistic is the second moment 

r„(0l,/l,02,/2) = <U*(01,/lM02,/2)> ■ (ii) 

From the traveling-wave surface representation, Eq. (3), we have 
/p p-\-oo /*+oo 

Mi j>d62 /       dfx /       df2{u*(0i,fi)u(62,f2)) 
J J—oo J—oo 

xE(-S(f1)n(91)-r1 + fih + S(f2)n(02)-r2 - f2t2) 

= Jd\ld\2 dfi df2 E(...)
6

 
{S1 ~5i

5(/l)) 6 (S2 -f2
{h))Tu(euh, e2, f2),    (12) 

with Sj = Sjn(6j) and (• • •) = (I12H12 + *i2'fl2) ~ (/i2*l2 + Zl2*i2) in the second form. We are 
supposing that h(r,t) is statistically stationary in t, as is commonly held to a good approximation. 
Consequently, r/,(r12,<i2,f.i2>*i2) needs to be independent of £12, and, thus, the E(-fi2ti2) factor 
in the integrand cannot actually introduce any i\2 dependence, no matter what value /12 may take. 
In other words, there must be a 6(f 12) factor lurking in the moments. We are also supposing that 
h(r,t) is stationary in r. By similar reasoning, the moments must also contain the factor <S(s12) = 
6(0i - 02)6(si - s2)/si. But since we already know that a factor 6(si - S(fi))6(s2 - S(f2))6(fi - f2) 
is present, the only news provided by this spatial stationarity is that the moments must contain 
an angular singularity 6(0\ - 92) as well. In other words, the traveling-wave components of the 
surface-wave field are uncorrelated in both frequency and azimuth (i.e., they are a free wave field). 
For such a field, it is not difficult to show, via the polar form s12 = si2n(6~i2), that 

c,(i12,s12~o,/12) = 6{°12ZSifl2))cu(ei2,0i2~o,fi2). (is) 
«12 

The form and content of Eq. (13) are a direct inheritance from Eq. (4). 
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3.2.2 Surface Frequency Spectrum and Directionality 

It is "customary" [24] to represent the above angle-frequency moment in the factored form4 

a„fe,o12~o,/12) = *(öl2){^>+Ä)  ;:;£>![, a« 
in terms of the frequency spectrum $ and directional spectrum H, both of which are real and 
positive. We use this representation throughout the theoretical development without specifying any 
functional forms for $ or H. 

3.3 Scattered Field 

We turn now to the statistics of the reverberant field. For simplicity, we hereafter drop the 
subscript UA" and write T(- ■ •), C(- • •) rather than TA(- • •)> CA(- • ')■ The modulation A(f,t), like 
the surface h(r_, t) that scatters it, is a stochastic field—a random function of space and time, albeit 
a complex-valued one. Our objective is to find the second moments of A(f, t) for various f, t. We 
write the general two-point space/time moment as 

{A*(rx,tx)A(r2,t2)) = rfo,^,^Jl25 Eo,«o,«l,«2) , (15) 

consigning the source position (T^, ZQ) to the list of parameters along with the receiver depths. The 
brackets (  ) denote averaging over ensembles of both source signals and sea surfaces. 

The SWHA series for A immediately yields a similar series for the second moment. With the 
arguments omitted for clarity, this is 

r = r(°) + r(1) + r(2) + ---. (i6a) 

The Nth term is T^ = EN>D>O
T{N

'
D
\ 

where T(N,D)
 = TJm + Tmi with N = j + m and 

D = \j — m\, in terms of the elementary (j + m)th-order moments, 

Tjm = (A(J)*A(m))  . (16b) 

The terms through second order are 1^°) = r(°>°), iS1) = T^1'1), and T^ = iS2-0) + T^2-2). Thus, 

r(0) = r00 (17a) 

r(D = roi + rio (17b) 

r(2) = pll + (r02 + r20} (17c) 

Equation (17) clearly holds in the space/frequency and wavenumber/frequency domains as well. 
The space/frequency version is obtained through the double transformation 

r(r1,t12,r2,i12; • • •) ^U12    flU12 T(Ll, f12,r2, fl2; ■ ■ ■) , (18) 

which, in the time-stationary case, reduces to 

Cfe,^,^; •••)/lL^12C(r1,r2,/12; •■•) . (19) 

The SWHA contributions to this CSD are investigated below for orders N = 0,1, 2. As should be 
expected from the symmetry of the problem, these depend on only the relative receiver locations, 

4The positive-frequency part is Eq. (3.22) in Ref. 24, where the left-hand side would be written ^(^12,012). 
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ZJÖi, LQ2 rather than on r^, r1, and r2, separately. Anticipating that, we hereafter write this CSD as 
C(r01,r02, /12; • • •)■ In a similar spirit, we often write the Green's function G(fi, fj) as G(r_ji; z%, Zj) 
to emphasize its dependence on the relative horizontal separation r_ji- The main focus is on the 
second-order CSD, which consists of two kinds of terms: (A^*A^) and (A^*A^). It turns out 
that the first type merely supplies a small baseband correction, while the second provides something 
quite different—Doppler sidebands. 

3.3.1 Order 0     ,' 

From Eq. (10a), we have 

r<°>(ri,ti,E2,-*2; TJ),zo,zhz2) = (^°)*(rl,*i)A(0)(f2,t2)> = Tefo^G'ifuWftSo) ■     (20) 

The stationarity of e(t) converts this to 

C(0)(£oi>Eo2>/; z0,zuz2) = Ce(f)G*(rül; zi,zo)G(rJ)2; *2,^o) , (21) 

which is plainly a baseband term (one whose frequency-dependence reduces to 6(f) if the source 
bandwidth vanishes) consisting of the source modulation PSD modified by a pair of cw propagation 
factors at the carrier frequency. As anticipated, its horizontal dependence is on r0i,r02- 

3.3.2 Order 1 

Because the source signal and sea surface are statistically independent, their joint moments 
factor (h e) = (h)(e). Since (h) = 0, T^ vanishes identically. 

3.3.3 Order 2, Baseband Terms 

The two terms comprising I^2'2) are 

r02(rl,t1,r2,t2;rJhz0,z1,z2) = (^°>(n,t1)A(2)(f2,t2)) (22a) 

^Wi.I^E,,,«),*!,^) = <^(2)>l,*lM(0)(*2,*2)> • (22b) 

We obtain the first one in detail and then get the second by inspection. From Eq. (10), 

r02(rn,<i,r2,*2; ro,*o,2i,;82) = (e*(h)e(t2)) G\ruf0) 

xjj dPr^n Ga(r2, ra)Gab(ra, rb)Gb(rb, r0) (h^tjhfa, <2)> , (23) 

where the two ensemble averages refer separately to the source and the sea surface. We rewrite all 
three moments in mean-and-difference coordinates and then invoke stationarity in time, space, or 
both (indicated by ~>) to simplify them. 

• For the source modulation, 

(e*(<i)e(<2)> = Te(tut2) = Te(t12,t12) <~ re(<i2,Ä2) = Ce(t12) ^ Ce(f) . 

• For the surface elevation, 

(h(La^a)h(tb^b)) = r/l(rö,ia,r^,,4) = ThiLcbitafotabJab) ~» ^hdUb^ab^^Jab) 
/oo       _/■_'_ _ _ _ _ 

dfab f d6abE (S(fab)n(eab)-Lab - fabtab) Cu(6ab, <U~0, fab) . 
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• For the reverberation field, 

r02(rn,ti,zi2,<2; •••) = r02(r1,ti2,ri2,<i2; •■■)^T02(r1,ti2,rs,]ll2; • • •) 

= C02(r01,r02,i12; •■•) *12-/ C^Wz^,/; • • 0 • 
These three expressions convert Eq. (23) into 

C02 (101,102, /; *o, «l, 22) = Ce(f)G*(fi, r0) 

x  / / ^2Z^rf2riGa(f2,fa)Ga6(ra,f6)Gfc(r:6,fo) 

^d/'y d^(5(/')nW-ra6)Cu(0,öa6~O,/O. (24) 

As anticipated, this is another baseband term like Eq. (21), though smaller and with a more 
complicated spatial dependence. With a little rearrangement, it can be written as 

C02(Eoi,Z4)2, /;20,zuz2) = Ce(/)G*(n,rb) j™ df j> d6Cu(6,6ab~0, f) 

X [L(s,rO2;z0,z2)]1=S{flMe) , (25) 

in terms of the mean-sea-surface fundamental integral, 

£(1,102; 20,22) = J d2rbGb(Tjob;zb,z0)J{s,u2\z2) , (26) 

in which J is the convolution 

J(s,r;z) = Gab(s;za,zb) * {E(-s-r)Ga(s;z,za)} . (27) 

C20(loi,Io2>/i2o>2l>22) comes from Eq. (22b) by the same process. Details are omitted. Instead, 
both terms are summarized in Section 3.4. 

3.3.4 Order 2, Sideband Terms 

The only term contributing to I^2'0) is T11. Thus, 

T(-2'0)(r1,tur2,t2; Lo,z0,z1,z2) = Te(tut2) Ij d2r^d2uG*a{ral\zi,za)Gl{rX)a-,za,zo) 

xGb(ri2;z2,Zb)Gb{rQb\zb,zo)Th(ra,ti,rh,t2) . (28) 

In mean-and-difference time coordinates this can be written as 

r(2'0)(ri,ii2,r2>*i2; ■■■) = Te(tn,iuL)C?h{r„,tvi,nM) , 

in which C represents the integral operator and the ellipsis stands for the parameters rJQ,ZQ,zi,z2. 
The stationarity of the source implies Te(ti2,ii2) = Ce(£i2), the stationarity of the sea surface im- 
plies ThiLa, t\2, rj,, ii2) = Ch(r_ai Ii> ^12), and together they imply that A^ (r, t) is stationary in time 
and that r(2'0)(r1,ti2,r2,ii2; • ■ •) = C(2'°\rm,rJ)2,ti2; ■ ■ ■). In the frequency domain, therefore, 

C(2'0)(£oi,I02, /; z0, zuz2) = Ce(f) I Cr
(
e

2
f'0)(roi, ro2, /; *„, zuz2) (29) 

in which the source PSD is convolved with the reference CSD (Section 3.1), 

Cr
(
e

2
f'0) (TQ! , £02, /; ZQ, zx, z2) = 

J J d^d^GKr^^zi^a) \Gl(L0a\za,zo)Ch(r^b,tabJ)Gb(rJOb;zb,zo)>Gb(rj)2;z2,zb) . (30) 



12 ; R-F- Gragg 

Equation (29) is not a baseband term: its frequency-dependence does not reduce to 6(f) in the 
limit of a cw source. 

For a passive ASW problem with the sea surface acting as the primary acoustic source, the 
curly brackets in the integrand above would contain nothing but the boundary source CSD [11, 
Eq. (3.19)]. Thus Eq. (30) would reduce to a form of the van Cittert-Zernike theorem from partial 
coherence theory [9, Section 10.4.2], which gives the CSD within a volume in terms of its values 
on the bounding surface. This is often a convenient starting point for passive problems (e.g., the 
Kuperman and Ingenito treatment of the ambient noise field generated by the sea surface itself [25, 
Eq. (7)]). In the active problem, the sea surface is a secondary source—a scatterer. Rather than 
that simple boundary value, the curly brackets contain (a) two Green's functions that propagate 
the signal from the primary source to a pair of surface points and (b) a wave-height CSD that 
embodies the sea-surface correlation. In that sense, Eq. (30) is a perturbative generalization of the 
van Cittert-Zernike theorem to active scattering from a time-dependent surface. 

Further reduction of Eq.  (30) is possible when Ch in the integrand is examined in the 

wavenumber domain. Generally, Ch(Lab,tabJ) Lah-^h ^M"6 Ch^, sab, f); however, when 
h is spatially stationary (i.e., when Ch(s^b, s^, f) « Ch(sab,süb^0,f)6(süb)) this reduces to 
Ch(uh^f) = /rf2la6^(lafEa6)Cfc(la6,äa6~ü,/). Then Eq. (30) becomes 

c£f)(rßl,rJ02,f;zo,zuz2) = J d%b M^M^h^^^O, f) 

in terms of the surface integral Me = J d^E^-r^G^^z^z^Gcfa^z^zo). It is a simple 
matter to express the latter as Mt = E^s^-r^Ni in which Nt is a spatial convolution which 
becomes a simple product in the wavenumber domain: 

Ne = -B(lafeTo^)Gc(r0£; zc, z0) ~* Gc(rol; Z£, zc) -°L^?e GC(§QI - I«&; zc, zo)Gc(sJOi; ze, zc) . 

Thus, for any real /, whether positive or negative, Eq. (30) becomes 

<?r
(ef'0)(Eoi,ro2, /;zo>Z^Z*) = Jd2~^bChilab, ««fe~Q,/)!*(&,&,Eoi; ZQ,zi)I(sab,rX)2; z0,z2) 

in which 

I(s,r\z0,z) = / d2aE(a-r)Gcl(a-s;za,zo)Ga(g:;z,za) . (31) 

Using Eq. (13), the Ch factor can be expressed as an angle/frequency moment and, when that 
moment has the factored form of Eq. (14), the result is 

Cä0)(roi,2ta,±l/I;*0,*l.*2) = ®(\u\)j>d9H(6) [/*(«,roi;«0,«l)J(&Eo2;«0,22)U±5(|/|)n(fl) >  (32) 

an expression with explicit upshifted and downshifted Doppler sidebands. 

Equations (31) and (32) should prove computationally useful whenever the Green's function 
is simple enough for the / terms to be evaluated analytically since that would leave only a single 
angular integration to be done numerically. This plan is pursued in Section 4, with the ocean 
modeled as a uniform half-space. But first, the results are gathered and summarized in Section 3.4, 
using the familiar "fc-w" notation. 
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3.4 Summary of the Reverberation CSD 

We have found that the reverberation CSD assumes the form 

/ 
C(r01,r02,f;zo,zi,Z2) = Ce(f) * Cref(r01,r02, /; z0, zuz2) (33) 

because the sea surface and the source are temporally stationary. We focus on Cref since the PSD for 
any narrowband source can always be included later by convolution. From the angular singularity 
in Ch (a consequence of the spatial stationarity of h), the angle-frequency factorization ansatz for 
Cu (Eq. (14)), and the horizontal invariance of the subsurface medium, we have seen that Cref has 
the structure outlined below through second order in the SWHA. 

3.4-1 Baseband 

There is a zeroth-order baseband component, 

Cr
(
e°f

)(r0i,Io2>/;^o,^i,22) = 6(f)G*(ra1;z1,z0)G(rü2;z2,zo) . (34) 

There is also a pair of second-order baseband contributions: 

C%(rJ01,rJ02,f;z0,z1,z2) = 8(f)G*(n,f0) J^df j> d6Cu(6,eab~0, /') 

x [^(IC,Eo2;«0,«2)]£=ir(u')aW (35a) 

0*1,W;*o,*i,*2) = s(f)G(f2,f0) jT d/' j> decu(0,eab~o,f) 
x [L*(K,7j)i;zo,zi)}K=K(u),M6+T) , (35b) 

in which 

and 

L(K,rJae;z0,ze) = Jd2rbGb(jjab;zb,z0)J(K,rj)f,zi) (36) 

J(K, r; z) = —^ / d2k e+i&-KyrGabik ^ Zb)Ga(K - k; z, za) . (37) 

3.4.2 Sidebands 

Nonbaseband contributions emerge at second order as a pair of Doppler sidebands, 

C£2
f'0)(£oi,zio2,±1/1;z0,zuz2)=  $(M) j>d6H(6) 

x [jZnKJ*i*(K, roi; z0,*I)I(JL, Io2; ZO,Z2)]K=±KR{9) 

•••   \u\ = ü(K), K>0 (38) 

in which 

I(K,r;z0,z) = j^jd2ke^r-Ga(k-K/2-za,z0)Ga(k + K/2-,z,za) . (39) 

Since the wavevector in Eq. (38) is restricted to K_ = +Kn(9) and K_ = —Kn(6), each surface 
wavenumber K > 0 contributes explicitly to both the upper (+|w|) and lower (—|w|) sidebands. 
For each K, Eq. (38) is evaluated by integrating over azimuth and then assigning the result to the 
proper Doppler-shifted frequency, ±|/|. 
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In Eqs. (34-39) we have concise expressions, valid through second order in the SWHA, for the 
baseband and sideband parts of the reverberation CSD. The zeroth-order baseband term does not 
relate to the sea state at all. The second-order baseband and sideband terms do involve the sea 
surface, but in different ways. The baseband term only depends on the average surface roughness, 
which is constant in time, whereas the sideband term involves the full surface dispersion relation. 
(In photographic terms, a snapshot could determine the baseband, but the sideband would require 
a movie.) The remaining task is to determine the K_ dependence of the fundamental integrals L for 
the baseband and / for the sidebands. The following section does this for an ocean modeled as a 
uniform half-space. 

4. SHALLOW DEPLOYMENT IN A UNIFORM OCEAN 

The CSD expressions obtained above will now be evaluated assuming a uniform ocean 
and a geometry in which all the depths are much smaller than the source-receiver ranges 
{ZQ, z\, Z2<.TQ\, ro2)—a case that retains considerable operational relevance while remaining analyti- 
cally tractable. The Mi receiver's horizontal displacement from the source is written r^ = r0tn(6e), 
and its azimuth 0£ serves as a convenient reference for surface waves, $i = 9 - $i (e.g., in 

n(e)-n{0£) = cos tie)- 

4.1 Green's Function 

For an ocean modelled as a uniform half-space beneath a pressure-release plane, the Green's 
function is a sum of source and image-source terms: 

eik0^r2+(z'-z)2 eik0ijr
2+(z'+z)2 

G(r, z, z') = -    . v>: - ,,>,,,,    w • (40) 
47rv/r2 + {%' - z)2     47ryV2 + (z' + z)2 

In the horizontal wavenumber domain, this becomes 

e%K,(ko,k)\z'—z\        eiK,(k0,k)\z'+z\ 

G(k-z,z')=   2i/6(jfe0)jfe) 2iK(k0,k)    ' (41) 

whose terms correspond to propagation with 3-D wavevectors k = k + Kez and k = k — Kez. These 
wavevectors' magnitudes and those of their horizontal and vertical components are, respectively, 

k0 = \k\ = wo/co, k = \k\, and n(ko,k) = Jk2, - k2. The surface normal derivatives are simply 

Ga(k]zb,za) = e«(*o.fc)*6j Gb(t,zb,za) = e«(fco,fcK; and Gab(k;zb,za) = m{ko,k). 

4.2 Baseband, Order 0 

For shallow deployment (z£, ZQ-^roe), the Green's function becomes 

eik0roe / z   \ 

Girjnf, Z£, ZQ) Pä -—:—sin(A;o2o—       ■•••^ = 1,2, (42) 

and this reduces the zeroth-order baseband component Eq.(34) to 

e'fc°(r°2~ro1)       /        z\\       (        z%\ 
<4/(ioi,W;*o>*i>*2) ~ W 4^2roiro2 

sinpzV;sin V0*0™) ' (43) 

As should be expected, this depends on the magnitudes of r01,r02, but not on their directions. 
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4.3 Baseband, Order 2 

4-3.1 Fundamental Integral 

In this environment, Eq. (37) reduces to 

J(K,r;z) = _i_/"d2Ä«(ifc0,jfc)e«-{(*-iO-r+«(*o,|fc-£l)*} 

so that, through Eq. (36) with the integration variable shifted from r^ to r^, L becomes 

HK^zo^e) = ^/^A«(Äo,Ä)ei^^-^^|^G6(rM-r^;«6,«o)e-^-0^ •   (44) 

The spatial integral in this is e!(-~—)-<«e'K(fco'l-_—l)z°, so the fundamental integral is just 

HK^zo^t) = j^J<PkK(k0,k)ei*&Z>k°->*>'>'<>>*A , (45) 

a 2-D wavenumber integral whose integrand has amplitude K(&O, k) and phase 

V(k,K,ko;Loe,zo,ze) = {k- K)-rJM + n(k0,\k-K\)(z0 + ze) . 

4-3.2 Stationary-Phase Evaluation 

The shallow-deployment conditions, essentially 

def -   i       ~ ^ e = zoe/roe < 1 , 

facilitate applying the stationary-phase method to estimate L. First, the result with K_ = Kn{9) 
and i = 2 (for Eq. (35a)) is found explicitly. The result with K = Kn(6 + ir) and I = 1 (for Eq. 
(35b)) is obtained by inspection. To simplify the process, we introduce the dimensionless variables 

H=k/ko      v = K/2k0      il> = */k0rot (46) 

and the function 7(0:) = yj\ — x2.   With these, L can be expressed (with the dependence on 
everything but (j,, v left implicit) as 

L(v) = ih (^)2/rf2/£7(l£l)eifcorM,/,(^-) (47) 

where 

ip(ji,v) = {ß- 2v)-n(6e) + 7(|M - 2i/|)2e . (48) 

Under the innocuous assumption that many wavelengths separate the source from the receiver (i.e., 
that kor(,£ ^> 1) the stationary-phase estimate is 

L{u) « ik0 (-^-] Y7(|o;|) det M(a,v) ~1/2
e

ik°r^^'^ (49) 
\<±irr0iJ ^ — 

in which the a are the stationary-phase points (i.e., points where t/> is real and dip/dfi vanishes), 
and MX^u) = —d2ip(iJ.,iy)/dfJ,diJ. is the phase curvature tensor.   To evaluate L for a particular 
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v, one must first find each a, then evaluate the amplitude factors 7(|a|) and detMfev) and the 
phase i/>(a,v). It is a straightforward, though tedious, calculation to do this exactly. We omit the 
details and note these approximations for e <C 1: 

a = 2n(0) + (1 - 2e2)n(6e) + 0(e4)       7(|a|) = 2^1 + cos^ + 0(e2) 
— 1/2 

det M(a,i/) =2e + 0(e3) k0rOi4>(a,E) = k0roi + 0(e2) 

so that the stationary-phase estimate is 

No summation is needed because there is only one stationary point for each y_. 

The above result gets used as-is with I - 2 in Eq. (35a) and with I = 1 and 6 -> 0 + 7r in 
Eq. (35b). The factors needed are, respectively, 

[L(K,r^2;z0,z2)]K=Kiojl)m      *-l^y/TT^ e«*™ (50a) 

[r^zio!;^,^)]^^)«^) * -SrVi-costf! e-*"* • (50b) — '-v 7rr01 

Although evaluation with \K\ = ^(^') is called for, it is actually unnecessary; the outcome depends 
on K_'s direction but not its magnitude. 

4.3.3 CSD Estimate 

With Eq. (50) for the L factors, with Eq. (42) for the remaining Green's functions, and with 
Eqs. (14) and (104) to simplify the angle and frequency integrals, Eq. (35) reduces to 

cSai, W;„„„ - -*/)^^ - £* (*<) ™       <-> 
O^W^l^) = +S^~^^ ^— X ^Sm {^J W{6l) ' (51b) 

in terms of the azimuth integral 

W{ßi) = ld6H{6) x I f^/l + cos(0 - fc) + Jl - cos(0 - 9t)\  . (52) 

4.4 Baseband Summary 

The full baseband result through second order is Cr°e°f + C2
e°f + Cr

02
f, which can be written as 

Cref(r01,ri2,/;«0,«l,«2) = *(/)Q(EOI,«0,«I)Q*(EO2» 
Z
0,^2) (53) 

in which5 

Qtox,«,«) = £^[ - (VcA) -M ^ 8. fe) V(*<) ] . (54) 

5The relative sizes indicated below the factors in Eq. (54) have been exploited in rewriting the expression according 
to the pattern (sis2 - ie2X2S! + iei A"is2) = («i + tei JCi)(s2 + ie2X2)* + 0(e2) for s£, Xe ~ 1, e* < 1. Figure 8 shows 
both #(0) and the geometric factor multiplying it in the integrand of Eq. (52). That figure confirms that W(6e) ~ 1. 
It is easily verified that 87r(/irms/A0)

2 ~ 1 for f0 < 300Hz, U < 20m/s. 
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O ■   point s 

receiver I 

Fig. 1 — Bragg scattering at surface point p by a surface wave component with wavevector K_ = ±Kn{0). The parallel 
dashed lines representing the wave crests are spaced A = 2x/K apart. The symmetric surface point s is shown. 

4.5 Sidebands, Fundamental Integral 

With the Green's function of Eq. (41), the fundamental sideband integral Eq. (39) becomes 

I(K,r^e]zo,ze) = j^^jd2kexp{i^(k,K,ko-,rXii,ZQ,ze)}   ■■■  1=1,2, 

whose integrand has unit amplitude and phase 

tf(£,2£, % !(«> 20,2*) = fc-E^ + K(k0, |fc - ^K\)zo + K(k0,\k + \K\)ZJ, 

(55) 

(56) 

for any surface wavevector K_. To estimate I(K_, • • •) for a given geometry, we will need to determine 
the range of K_ in which stationary-phase fc's arise and what their values are. 

Before embarking on that,  it seems advisable to review the physical significance of the 
stationary-phase condition. Stationarity (i.e., d^(k, ■ ■ -)/dk = 0) amounts to 

Lae = ^o 
k-jK 

+ Z£ 
k+\K 

K(k0,\k-±K\)        K(k0,\k+±K\) ' 
(57) 

Any fc that solves this for the prevailing I£ can be used to define a point p on the sea surface via 
Tot = Up + Tpt (see Fig. 1) with 

To v - t-lK 
and 

k+\K 
(58) 

ZQ       K(h,\k-\K\)        """        zt      /c(fc0, |fc + \K\) 

In plane-wave terms, these correspond to propagation to and fromp with the 3-D wavevectors 

ho = {k-\E)-K(k(),\k-\K\)ez    and    fcfrom = (& + 3JO + «(fco, \k + \K\)ez . (59) 

Upon redirection at p, the wavevector changes by 

Afc =f fcftom - fcto = K + {/c(fc0, |fc + \K\) + Ac(fc0, |fc - \K\)}ez . (60) 

Because of energy conservation, we have 
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\ho\ = |&from| = h ■ (61a) 

Furthermore, for K_ = ±Kn(9), one finds from Eq. (60) that 

Ak-n(0 ± ±TT) = 0,        \Ak-n(6)\ = K. (61b) 

Equation (61) is precisely the condition for the signal to travel from the source to receiver t by 
first-order Bragg scattering from the surface wave with wavevector K_ at point p on the sea surface. 
If the values of TQP and r_p£ are swapped, the same surface wave scatters the signal from a point 
s located at r$s = r_pi and r^ = r^p. These points p, s lie on the port and starboard sides of the 
"heading" r^. In Fig. 1, they are the vertices of the parallelogram that lie on opposite sides of the 
diagonal r^- 

Stationary-phase estimates ofI(K_, ■ ■ ■) for the wavevectors K_ = ±Kn(6) provide the up/down- 
Doppler sidebands ±|/| in Eq. (38) that stem from first-order Bragg surface scattering. Equation 
(55) is evaluated next, and the result is used to determine the CSD contribution. 

4.6 Sidebands, Stationary-Phase Evaluation 

This section develops the stationary-phase estimate for the fundamental sideband integral 
I{K.,'LQ(.'-I

Z
QI

Z
() 

in Eq- (55). The procedure is like the one in the baseband case but necessarily 
more complicated. Two separate depth/range parameters are involved, 

6e= —   ,    U = —       with    vi = max(e^, 6t) , (62) 
roe r0i 

and we are still concerned with shallow deployment, U£ <C 1. 

In terms of the dimensionless fi,v and ip from Eq. (46), the integral at issue has the form 

I(v)=(h-\    fd2^0"0^^, (63) 

with the dependence on everything but fj, and y_ left implicit again. For koroe. 3* 1, the stationary- 
phase estimate is 

J(ii)«f-^-)y)|detM(2:,i0r1/2e,'fcorM^(^. (64) 
\A-wroiJ   ^ 

As in the baseband case, a is a stationary point, ip the (scaled) phase, and M. the phase curvature. 

For the sideband case, this phase and its stationarity condition are 

^(fJL,E)=n(ei)-fx + 6a(\tJL-v\) + ea(\n + E\) (65) 
fj.'— V fJ- + hL 

mfli) = 6e-TT=  + et    - . (66) 
l{\ß-R\) l\\n+v\) 

Estimates are needed for both sidebands in Eq. (38). With v > 0, this means evaluating Eq. (63) 
at v = +vn(9) and at v = —vn(6). In this report, we deal explicitly with the upper sideband (the 
plus sign), and obtain the lower-sideband result by inspection. For any given v, we first need to 
find the stationary point by solving Eq. (66) for /£ within the region where ip is real-valued. To do 
that, we adopt a pair of cartesian axis vectors 

(e1,e2) = (n(Ö-i7r),n(ö))  , (67) 
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Fig. 2 — //-plane shown for the upper sideband case. The two disks are the regions |/i — u\ < 1 and \fx + u\ < 1. Any- 
stationary phase points must lie in their overlap, where ip(fi,v) is real- 

where the first one points along the crests of the surface waves and the second along their propa- 
gation direction (see Fig. 1). The problem can now be understood in terms of the vectors y_ = ue2, 
X ~ 7£l and the two disks shown in Fig. 2. These disks have unit radii, their centers lie at the • 
points where /z — ±z/, and their edges intersect at the "vertices" o, where \i = ±7. Any stationary 
points must lie within their overlap, the |/i±z^| < 1 region bounded by , so that both 7(|/x+£|) 
and j(\f£ — v\) will remain real. The need for such an overlap restricts v to values below unity. 
Since 6g and Q are both much smaller than unity, Eq. (66) can only be satisfied when one of the 
denominators on its right-hand side is similarly small. This means that the stationary points must 
lie near the boundary of the overlap region. In scaled variables, Eq. (58) for scattering point p 
becomes 

Top ß — U. 

l{\p-v\) 
and 

H + v 

Z£       7(l/£ + d) 
(68) 

If 7(|/i — E\) is small compared to unity, fj, must be close to the lower edge, and TQP is, therefore, 
large. On the other hand, if 7(|/£ + v_\) is small, /x lies near the upper edge and rvi is large.6 

The simplest analytical approach to finding the stationary points is to adopt bipolar coordinates 
(£,7/) since they conform to the shape of the overlap (see Appendix A). (In adapting bipolar 
coordinates to the present problem, the function 7(2) = \J\ — x2 has to be evaluated so often at 
x = v that 7(1^) is abbreviated as 7 wherever it occurs.) The top and bottom edges of the overlap 

6There are solutions for which both -y(\i£ — u\) and y(\fi + y\) are small, and fx, therefore, lies near one of the vertices. 
These are neglected here because geometric spreading with both r0p and rpg large makes a far smaller contribution 
to the reverberation (smaller by at least 30 dB for all the simulations to appear in this report). 
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Fig. 3 — Upper edge of the overlap region—right half 

are the coordinate lines 77 = 770 and 77 = 2ir — 770, where 

7/0 = arccos(-zz) = § + C (69) 

( = arctan(z//7) . (70) 

£ is the acute angle in Fig. 2. The angle 770 lies in the second quadrant (^-K,ir), while 2ir — 770 
is in the third quadrant (w, §7r). The interior of the overlap corresponds to -00 < £ < +00, 
770 < 77 < 27T — 770- The edges are reached by the limits 77 J, 770 and 77 | 27r — 770 along constant-^ 
lines. We use w = e~^ and write R(6) to indicate a counterclockwise plane rotation through 9. 

4-6.1 Stationary Points 

First, we examine the case with large r^/zg, and look for stationary points near the upper 
edge of the overlap. This edge is the coordinate line 77 = 770 on which /x is a function of w only: 
H = p (w). At each point on it, the lower disk's unit radius vector pQ(w) + u is tangent to the w 
coordinate line through that point (because £,77 are orthogonal coordinates). 

We begin by focusing on the right (£ > 0) half-plane (see Fig. 3). Starting at the upper edge, 
we apply a small positive shift £77 to move downward along the w line to a point p = p^ + 6p inside 
the overlap. To first order, the inward shift 6p is antiparallel to p^ + v. Throughout the right 

half-plane, Eq. (A5b) provides an exact result, p(w,r]) = [1 + wE(ri)]\l - WBJJI)}'
1
^ from which 

the first-order inward shift is 

dp 
X6V= (1 

2wdEkn)/dr} 
7677 (71) 

■no 

The derivative of the rotation is simply dE(ri)/dr) = M.TT/2 + 77), and the inverse of 1 - wR(r]) is 

given by Eq. (A6). Since (cos770, sin770) = (-^,7), one has 

p   = {aex + 2j2we2)/d ,       /x, + v = {aex + ce2)/d ,       /£  - v = (ae.i + be2)/d (72) O) 

2jw6r] . . 
6p = -2— (aex + ce2) (73) 



Space-Frequency Correlations in Multistatic Surface Reverberation 21 

in terms of the temporary variables 

a = 7(1 - w2) > 0 c = v + 2w + vw2 > 0 ,    . 
b = -v + 2(1 - 2v2)w - vw2   d = l + 2uw + w2 >0 . ^    ^ 

Variables a through d have absolute values less than 4 throughout 0 < v, w < 1, and they are 
interrelated through a2 + <? = d2 and c — b = 2ud. Since 1/^. + v| = 1 and |<5/z| <C 1, Eq. (68) 
becomes 

£*- ^^ (1 + 0(|%|))    and    ^ = ^£.(1 + 0(1^1)), (75) 
*t      v/-2(/x0 + ^)-^ " ^o      2^F 

which, with Eqs. (72) and (73), is equivalent to 

rr Tc\ 1 
■-(ae.i + ce2)    and    —- « — (aej + 6e2) . (76) 

z^       2^/jwd6rj ZQ       2^/2-y2uwd 

The stationarity relation Eq. (66) then reduces to 

n(^) =       l 

2y/jwd 
■■{ae_i + 6e2) -\—-={ae.i + ce2) 

y/2jv y/6rj 
(77) 

In cases of practical importance, the solutions for w that emerge from this equation are not ar- 
bitrarily small. This can be seen in the following way. Begin with the definition v = K/2ko, 
invoke the gravity-wave dispersion relation K = OJ

2
 /g and take üJ to be the Pierson-Moskowitz 

dominant frequency Wd, Eq. (103). Then v has the value vj = io2
dj2gk^ = y/ß/2Q x gco/^foU2). 

For 5m/s < U < 20m/s, 50Hz < /0 < 200Hz, and v = ud, the factor l/^ß^ in Eq. (77) is roughly 
4 (±3). This precludes w ~ v2 because values that small would leave the Ö£ term of order unity 
and the e£ term much greater than unity, making it impossible for n(0i) to have unit length. There 
may be solutions with w ~ U£, but there are certainly none with w ~ v2. 

If we neglect the terms in Eq. (77) containing 6g/y/2jv relative to the much larger terms 
containing e^/y/örj, and form the components in the e2 and e_i directions, the outcome is 

y/Aywdcostie « —=c    and    \TAywdsin??£ « —==a . (78) 
yor] yjor] 

Since a and c are non-negative, a solution for w and 8rj exists only when the angle •&£ lies in the 
first quadrant (0, ^7r). With 6rj eliminated, Eq. (78) reduces to acos^ — csin$£ = 0, a quadratic 
equation in w whose physical solution is readily found to be 

7 — sin ■dc ,    . 
w = ~a -r-T- , 79 7 cos V£ + v sin V£ 

provided the angle is confined to 0 < ^ < 571" — (. The angular restriction ensures that cos^ > v 
and, ultimately, that w lies in the physical range 0 < w < 1. That entire range appears accessible 
only because the unattainably small values w ~ e2 have not yet been excluded. 

Squaring and adding the two components of Eq. (78) produces 8rj = (e2/4y) X (d/w) which, 
with w from Eq. (79), becomes 

s, = _r|Z?_. (80) 
COS V£ — V 
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Fig. 4 — Admitted-angle sector for the upper edge, for ve = 0.1. Curve (A) is tie = arccosj/. The area above is the 
nonphysical w < 0 region. Curves (B,C) are the exact and approximate forms of tie = Ht(y) from Eqs. (81) and (85). 
The maximum wavenumber v = 1 — vi is indicated by the •. The dashed line shows the range of admitted tie values 
at v = 0.2 (i.e., 0 < tie < 1.25 w 70°). 

Because the azimuth has been restricted so that cos^ - v > 0 (i.e., -&n < arccos(zz) — -^K — (), 
we know that Srj is positive. Further restriction is needed to guarantee that it is small. Suppose 
we want to ensure that Srj < (ej/ue) x j/2; we will need to require cos^ - v > i/£, which means 
reducing the maximum allowable •&£ from \is — ( to 

Hi{v) = arccos(z/ + vi) . (81) 

This raises the minimum value of w obtainable via Eq. (79) from zero to z^/272—tne w ~ vl 
minimum that was anticipated—and lowers the maximum v from 1 to 1 - U£. For a given geometry, 
stationary-phase points of the present type occur only for surface waves in the sector 0£ < 0 < 
0£ + Et{v). Their bipolar coordinates are given by Eqs. (79) and (80). 

The rest of the upper-edge stationary points—those in the left half-plane—are found in the 
same way, and the lower-edge points follow suit with only minor differences. We omit the details 
and just present the results. 

In summary, we find the following for the sideband stationary points. All of them have 

7- |sin^| 
w = 

7I costal + rv| sin*?^| 

The upper-edge stationary points have rj = TJQ + 6rj with 

__y£|/2_ 
I cos^l — V 

8r) 

(82) 

(83) 
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Fig. 5 — v-d polar plots of the forward admitted sectors, for v < 1, with 6\ = 10°, 62 — 50°, V\ = 0.10, and 
1/2 = 0.15. Left: F\{y) and i^^). Fi{y) is centered on 0^ and vanishes for v > 1 — i/£. Right: The intersection 
F(^) = F\(y) PI jP2(f), which vanishes at v = umax (dashed arc). 

and correspond to near-source scattering from surface waves with 9 in the azimuth sector 

Fe(u) =f [0e - Ht(u), Bt + Htiy)] (84) 

(left side of Fig. 5), which is centered on the forward direction 9 = 0£ and has a half-width of 

Htiy) « \K - (C + vtli) . (85) 

(Equation (85) is an order-z/^ approximation to Eq. (81). See Fig. 4.) The coordinate bounds are 
ve/2y2 < w and Srj < (e|/z^) x 7/2, and the wavenumber range is 0 < v < 1 — z^. The lower-edge 
points have rj = 2TT — (TJQ + 6rj) with 

Srj 
__rg/2 

cosi 

and correspond to scattering near the receivers and to the surface-wave azimuth sector 

9 € At{v) =f [ir + ee- He(v),n + 9£ + Ht(v)\ , 

(86) 

(87) 

which has the same half-width He(u) but is centered on the aft direction 9 — IT + 9^. In this case, 
Si] < (fa/ve) x T/2, but the w bound and v range are unaltered. 

4-6.2 Phase Factors 

The phase of the fundamental sideband integral is given by Eq. (65). To lowest order, the small 
e£ and bi terms may be neglected, so that ip(a,v) « 1 — v\ cos(9 — 9g)\ for surface waves in either 
of the admitted sectors. Since cos(0 — 9i) is positive/negative in the forward/aft sectors, 

V>(M,^) 
_ f l-vcos(9-9e)   ■■■  9eFe(u) 
~\  l + vcos(9-9e)   •••   0€Ae(i/) 

(88) 
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4-6.3 Amplitude Factors 

Straightforward differentiation produces the general result 

m^ = W=W) \l+    72(k-d)    / + TT^) ii+    72(k + d)    )  • (89) 

For upper-edge stationary points, we retain the term containing l/j(\fi + u\) >■ 1 and drop the one 
containing l/j(\p — v\) ^> 1. For lower-edge points, we do the opposite. This leads to 

upper edge ,gQ. 

lower edge 

4-6.4 Synthesis 

With the amplitude and phase factors obtained above, the stationary-phase value of the fun- 

damental sideband integral I(u) in Eq. (64) is 

kn       -, f   v.p-ikovtot'ILW        ...   ft a FodA 
H+TIWAI),** *. «) = -^rf"« x { *+*wa«,>    ... , % ;/<„', • (»D 

4-6.5 Bragg-Only Constraint 

For v < 1 — U£, H((u) is positive. Thus the source signal can be Bragg-scattered into the fth 
receiver by surface waves with 6 in either Fe(v) or Ag{v). Requiring v < 1 - v\ and v < 1 - vi 
would allow both receivers to be ensonified in this way, but that is not enough. The surface 
wave components doing the scattering are delta-correlated in azimuth (p. 8), which means that to 
produce a nonvanishing result, the same component must scatter to both receivers. Since Ht{v) 
decreases with v, we will need to reduce the maximum v to ensure this. We consider the forward 

sector explicitly. 

For upper-edge stationary points, we must admit only surface waves that have 9 in the common 

forward sector F(v) = F\(v) D i^C")- Since Ht(v) vanishes at v = 1 - ug, we must require v < 
1—max(z/i, vi) to prevent the individual sectors F\{v), F2{v) from disappearing. To ensure that they 
overlap, we need |0i2| < H\{v) + H2{v). At v = l-max(z^i, vi)-, we have7 H\(y) + Ei{y) « \/2|^i2|, 
with the following consequences (see Fig. 6). For |0i2| < V2I"12| (e-g-> lower •), no separate 
condition is needed. For |0i2| > \J1\v\i\ (e.g., upper •), v must be smaller than the solution of 
|#12| = arccos(z/ + v{) + arccos(z/ + wi)- That solution is8 

^0 = VQ + vvi, - vvi, , ' (92) 

where q = (1 + 2z/if2 cos \9\2\ ~ cos2 |#i2| — v\- z/f)/2(l - cos |#i2|) > 0. Thus, the maximum v is 

1 - max(z/i, i/2)      • ■ ■   |0i2| < A/2|Z/I2 
Vm.n.x — 

V0 ■■■    |*12| > V2Wl2\ 
(93) 

7i/i2 and i/i2 are the mean and difference of v\ and V2■ 
8Though it fails for |0i2| ~ ir, this solution is valid for |0i2| < ir/2, the range shown in Fig. 6, which easily covers all 
cases of practical interest. 
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Fig. 6 — The Bragg-only constraint for the upper edge, with v\ = 0.1 and v2 = 0.15. Curve (A) is the larger 
of Hi(u) and H2(v), curve(B) is the smaller, and curve (C) is their sum, H\{y) + H2{v). The Ü and A indicate 
v — 1—max(t/i, i/2) and v = 1—min(i/i, i/2), respectively. The ordinate of the point o is -^/21 f 121 « 0.316, corresponding 
to IÖ12I & 18°. The • points are discussed in the text. 

For 0 < v < umax, we have the nonvanishing forward-sector intersection, 

F(u) = [-ivr + C + max(0i + z/1/7, 62 + 1^/7), fa ~ C + min(0i - 1/1/7, #2 - ^2/7)] (94) 

(see the right side of Fig. 5). For the lower-edge stationary points, the same sort of analysis applies 
def 

and the surface wave azimuth 6 is restricted to the aft sector A(u) = A\(v) D A2{v) given by 

A{v) = [ITT + C + max(0i + 1/1/7, #2 + ^2/7), fa ~ C + min(0i - 1/1/7, #2 - ^2/7)] , (95) 

which is simply F(u) rotated by 7r. 

4.7 Sidebands, CSD Estimate 

The final upper-sideband CSD result comes from Eq. (38). It is 

c£f\rJOl,Lo2,+\u>\;zo,z1,z2) = $(|u,|) j d6 H{e)eik^m 

x r(+2koun(e),rol;z0,z1) x 7(+2Ä;oz/n(Ö),r02; 20,^2) , (96) 

with the stationary-phase estimates for the fundamental integral / taken from Eq. (91). This is 
evaluated over the appropriate range of v for the geometry, with the integration including the 
admitted azimuths for each v. We have seen that this reduces to 

c£f\rJ01,Lo2,+\Lj\;zQ,z1,z2) = Aeik°^~r^ {B f     +D f     ei2kol/r-^W I H{6)d6 ,      (97) 
[     JF(u) JA(y) J 

A = 
*(H)/fco 
^01^02 ©•- ZjZ2 

^01^02 
and D = fQ_ 

»"01 ^02 
(98) 
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This applies within the range 0 < v < umax, where the source is able to ensonify both receivers by 
Bragg scattering from the same surface-wave component. The admitted sectors F(u), A(v) contain 
the azimuths 0 of all such components traveling in the forward and aft directions, respectively. 
With the relative receiver displacement expressed as r12 = gn(<p), the phase term in the above 
CSD integral is simply 2k0vr_irn(0) = 2k0ugcos(6 - (p). A change of variables reduces Eq. (97) to 

C^f\rJ31,rJ02,+H^,zi,z2) = Aeik°^-r^x 

/   de{BH(e) + De-i2koSl/co<e-'p)H(e + 7r)} , (99) 
JF{v)     L J 

where &o and K are wavenumbers for the acoustic signal and surface waves and v = K/2ko- The sea 
surface is described by its dispersion relation \w\ = Q{K), power spectrum $(M), and directional 
spectrum H(9). The lower sideband at -\w\ is exactly the same except that H{9) and H(9 + TT) 

are interchanged. 

4.8 Sidebands, Colocated Receivers: the PSD 

When the receivers are merged at a common location f*, the CSD reduces to the PSD, 

cä0)(lo*,±M;20,«*) = C<£f\rX)2,rJ01,±\u\;zo,zi,Z2) 
£oi =£o2 =ro» ;zi =2r2=z* 

with 

A = $(|w|)(fco/4vrr0*)2,     B = Oz*/r0*)2,     D = (z0/r0*)2 . 

The upper-sideband PSD is then 

cl2
ef\rJ0*,+\u>\;z0,z*) = A f     d6{BH{0) + DE{9 + TT)}   • • •  0 < u < vmax , (100) 

JF{y) 

and the lower-sideband result Cr^
0)(ro^, -|w|; z0, z*) is produced from it via H{6) =F± H{6 + 7r). 

4.9 Sidebands, Symmetries 

In general, the upper and lower CSD sideband contributions are unequal. However, as Harper 
and Labianca originally noted for the PSD in the bistatic limit [3-5], identical sidebands do result 
in one special geometry—when the receivers lie in the crosswind direction from the source (i.e., in 
the x = 0 plane9). It is not difficult to show that, for receivers anywhere in that vertical plane, the 
interchange H{6) ^ H(6 + -K) leaves the F and A integrals in Eq. (97) unaltered.10 Thus, in that 
one particular configuration,11 the sidebands are identical in both amplitude and phase. 

A different kind of symmetry arises from the transformation 

01,02—»T-0i,TT-02, (101) 

which reflects r1 and r2 across the x (i.e., crosswind) axis. With the CSD expressions obtained 
here, only trivial manipulation is needed to reveal that the effect of Eq. (101) is simply to swap the 
sidebands.10 

"References 3 and 5 cite the x = 0 plane; Ref. 4 cites the y = 0 plane, but this is presumably just a typo. 
10This also requires the fairly innocuous assumption of crosswind symmetry, H{6) = H(—6). 
11 Of course, this also occurs trivially in any configuration with a completely isotropic sea surface // = 0. 
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The PSD sidebands are also unequal except in certain special source/receiver configurations. 
Obviously, one such configuration is the bistatic limit (g —*■ 0) of any configuration with equal CSD 
sidebands (e.g., any receiver located in the x = 0 vertical plane). The PSD also has symmetric 
sidebands whenever the source and receiver are at the same depth (since zo = z* implies B = D), 
a fact recognized early on by Harper and Labianca [2-6]. 

5. SIDEBAND SIMULATIONS 

This section presents several CSD sideband computations for an ocean of uniform sound speed, 
Co = 1500m/s. The sea surface is characterized by expressions for the power and directional spectra 
$(UJ) and H{9) that have found theoretical or experimental support. The power spectrum is the 
archetypical one for fully developed wind-driven seas—the Pierson-Moskowitz distribution [26], 

$H = ^exP(-f(Wd/a,)4)    •••   a;>0 (102) 

(see Fig. 7), which modifies Phillips's w-5 behavior [27] by introducing a dominant frequency 

«d = (iß)1/4g/u. (103) 

(U is the wind speed at 19.5 m, g is the gravity constant, a = 0.0081 is the Phillips constant, and 
ß = 0.74 is a second empirical constant.) The associated mean-square waveheight is 

C = jf **(«) = g=-^. (104) 
The directional spectrum is an empirical "cosine-power" form inferred from at-sea data by Longuet- 
Higgins and coworkers [28,29] (see Fig. 8), 

H{6) oc |COS(0/2)|
2M
 . (105) 

The normalization is §d9H{6) = 1, and the directionality index fj, has a non-negative frequency- 
dependent value, typically about 4 but sometimes less than 1. Unlike such forms as H(9) oc cos2(0) 
[12], this is not upwind/downwind symmetric (except in the isotropic fj, = 0 case). 

The simulations explore the influence of source/receiver geometry for various U, /o, and /x. In 
each case, values are chosen for these three parameters and results are then generated simultaneously 
for an entire series of receiver geometries. (The computation is vectorized over geometry.) For 
each geometry, the upper and lower sidebands are evaluated at 80 frequency points each, and the 
numerical azimuth integration is done by the trapezoid method with 2° step size. Simulations are 
identified by figure number (e.g., the CSD from simulation 12 is in Fig. 12). These figures all use 
a common format. The upper half is a plot of the top12 30 dB of the magnitude of the CSD, with 
decibel values indicated in a color scale on the right. Overall levels are low because source-to-surface 
and surface-to-receiver propagation losses have not been removed, as is done in computing surface 
scattering strengths. However, all the computations are done at the same average source-receiver 
range (5 km), so the results can be directly compared with each other. The lower half of each 
figure shows the CSD phase in degrees, using a 360°-periodic color scale. The ordinate of each 
plot simply enumerates the geometries used. The abscissa is the Doppler frequency shift. Its axis 

extends in both directions to a maximum value fmax = £l(2ko)/2ir = y/gfo/nco, corresponding to 

Values more than 30 dB below the maximum are not rendered. They appear as patches of white space. 
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e 

Fig. 7 — The Pierson-Moskowitz power spectral density $ (u;), Eq. (102), with the parametric dependence on wind 
speed U shown. Contours are at 10-dB intervals. The dominant frequency ud, Eq. (103), is also shown running along 
the ridge. For this plot, the largest w corresponds to 0.5 Hz and the smallest U used is 3 m/s. 
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Wind speeds and frequencies used in simulations, 

as described in the text 

250 

the v = 1 cutoff of Bragg scattering. Although there is no minimum Doppler shift in the theory, a 
de facto fmin occurs where the 30 dB window used in rendering these figures cuts off the exponential 
low-frequency rolloff of the surface power spectrum. These figures are all blank in the baseband 
|/| < fmin- It should be remembered that this is not because the zero-Doppler contributions are 
absent, but because only the sideband contributions are being plotted. 

The wind speeds and frequencies used are represented by the five circles in Fig. 9. With one 
exception, these are chosen to lie between the solid and dashed lines in that figure. The dashed 
line is taken from Ogden and Erskine [1, Fig. 21] and represents their estimate for the onset of 
significant whitecap formation. We stay below it so that surface reverberation can reasonably be 
attributed to interface scattering. The solid line represents V& = 1. Since v& varies inversely with 
/o and U, one has v^<\ only above the line. Bragg scattering from a surface component requires 
v < 1, so the region below the solid line should yield much lower reverberation levels because the 
dominant surface waves cannot contribute there. 

The impact of /J, is foreshadowed in Fig. 10. This figure presents a plan view of the surface 
points (*) where dominant waves scatter the signal to a typical receiver. Those on the left side 
lie relatively close to the source and seem to form one branch of a hyperbola. The ones on the 
right are grouped around the receiver and appear to coincide with the other branch. The line 
segments indicate directions of travel for the pair of counterpropagating waves that participate in 
the scattering at each *. Their lengths are H (9) and H(6 + 7r), where 6 and 9 + TT are the headings 
of the two surface waves. Different colors indicate contributions to the upper and lower sidebands 
(USB, LSB). 

5.1 Horizontal Geometries 

In each of the first ten simulations, a horizontal reference point r_c = (rc 0c) is chosen and 
the receivers are laid out at a common depth in the following way. The first placement (with 
geometry index 1) has rj and r2 closely bracketing r^. As the geometry index increases, r_i and r2 
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Fig. 10 — Plan view of the surface scattering points for the v = Vd components of a Pierson-Moskowitz surface 
spectrum. The azimuth is sampled in 2° steps. f0 = 100 Hz, U = 5 m/s, 9t = 30°, z0 = 110 m, zt = 90 m, and 
roe = 5 km. 
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separate uniformly along a straight line, keeping r^ between them. The result is a series of receiver 
geometries with a common value of ip and with steadily increasing g, as in Fig. 11. Parameter values 
are always chosen so that the geometry index is numerically equal to the receiver separation g in 
meters. The depths are not varied. For all cases, rc — 5 km, 6C = 30°, g = (1 m, 2 m,..., 200 m), 
z\ = Z2 = 100 m, and ZQ = 90 m. Table 1 gives the values of the remaining variables. 

4250 4400 4300 4350 
x(m) 

Fig. 11 — Geometries for a horizontal simulation. In this example, geometry index = 1,..., 200 

Table 1 — Input Parameters for 
the Horizontal Simulations 

Fig. /o (Hz) U (m/s) M <P(°) 
12 100 15 4 75 
13 100 15 4 50 
14 100 15 4 0 

15 100 5 4 75 
16 100 5 4 50 
17 100 5 4 0 

18 200 3 4 50 
19 100 3 4 50 
20 50 3 4 50 

21 100 5 0 75 
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Simulations 12-14 correspond to the upper o in Fig. 9. The wind speed is the maximum from 
that figure and the frequency is the highest value consistent with pure interface scattering at that 
wind speed. The amplitudes for these simulations have certain main features in common: 

1. sideband peaks at fd = 0.09 Hz, due to scattering by the dominant surface waves, 

2. amplitudes that drop off by 30 dB before reaching fmax = 0.45 Hz, and 

3. a de facto minimum /TO,„ = 0.05 Hz, which is produced by the 30 dB cutoff. 

There is, however, considerable detail that varies from one simulation to another. 

In simulation 12, the amplitude is largest where g is one meter (at geometry index 1). At that 
point, the two sidebands are symmetric about zero Doppler. With increasing separation, the USB 
remains virtually unchanged, but the entire LSB structure narrows considerably as g approaches 

200 m. This contraction is accompanied by the emergence of a set of secondary peaks—the ridges 
on the downshift side. These appear to grow at the expense of the main peak, which falls by 5 dB 
while the adjacent secondary peak rises to within 10 dB of it. The corresponding phase is shown 
in the bottom half of the figure. The USB has very little structure. Each g produces the same 
phase for all Doppler shifts, and this value simply loops through about 9V4 regular 360° cycles as g 
traverses its 200 m range. This is easily understood in terms of the horizontal source/receiver layout 
for this simulation, which is shown Fig. 11. The receivers lie at a horizontal angle \6C — <p\ = 45°, 
with the radial to the source. Given the signal's 15 m wavelength, direct line-of-sight propagation 
would yield arccos(9.25 * 15/200) = 46.07°, which agrees quite well considering that it neglects the 
deviation due to grazing the surface. The LSB phase is virtually the same if one looks only under 
the main peak. The secondary peaks, however, are an altogether different matter. At any given g, 
the phase under these structures is not even approximately independent of Doppler shift. 

For simulation 13, <p is reduced to 50°. The effect on the CSD amplitude is to lessen the 
large-£ narrowing of the LSB and to fill in the troughs between its secondary peaks, leaving only a 
slightly wavy shoulder on the downshifted side. The phase shows a corresponding smoothing of the 
secondary-peak artifacts in its LSB. The USB now executes approximately 12V2 full phase cycles, 

corresponding to arccos(12.5 * 15/200) = 20.36° « \6C - <p\ = 20°. 

Simulation 14 uses <p = 0° (i.e., one receiver directly downwind of the other). The phase 
executes about ll1/2 full cycles, which yields the now familiar angular agreement: arccos(11.5 * 
15/200) = 30.40° vs \6C - ip\ = 30°. Beyond that, there is no more than a slight quantitative shift 
to distinguish this from the preceding simulation. The sidebands' amplitudes are quite similar, but 

the LSB's phase is still Doppler dependent. 

These simulations were all rerun, with 9C, 4> —► 7r- 0C, 7r- <£. That transformation is equivalent 
to Eq. (101) and, thus, should simply swap the sidebands in each simulation. This is exactly what 
happened. The results are not included since they are merely Figs. 12-14 held up to a mirror. 

Simulations 15-17 repeat the previous three simulations with U reduced to 5 m/s. This wind 
speed corresponds to the lower o in Fig. 9, and since that symbol lies above the solid line, dominant- 
wave scattering should still be a principal feature. Relative to simulations 12-14: 

1. the levels are down by about 25 dB, of which 15-20 dB can be attributed to the reduction in 
3>(u>d) as the wind speed drops from 15 m/s to 5 m/s (see Fig. 7); 

2. fmax, being independent of wind speed, is unchanged; 

3. fd oc U"1, so the main Doppler peaks are upshifted a factor of 3 to about 0.27 Hz; and 

4. fmin rises by roughly the same factor to about 0.16 Hz. 
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The USB remains as featureless as ever, but there is more detailed structure in the LSBs and 
greater variation among the simulations. 

In simulation 15, the LSB amplitude falls off faster with increasing g than it did in simulation 
12, where the wind speed was higher. Indeed, by the time g has reached 20 m, the main peak 
is already down by roughly 5 dB. It is hard to be exact about this figure, however, because the 
secondary peaks cut across the main peak, blending with it to form a heavily corrugated structure. 
The LSB phase reflects this structure but otherwise differs little from simulation 12. 

Simulations 16 and 17 continue the trend noted in simulations 13 and 14. As ip is reduced, there 
is a substantial fading of the irregularities in the LSB's amplitude. For g less than a few meters, 
the LSB is always identical to the USB in both amplitude and phase. As g increases further, the 
main LSB Doppler peak drops rapidly by about 10 dB and then begins to taper off more slowly, 
while the USB undergoes no material change. Ultimately, as <p reaches 0° in simulation 17, the LSB 
amplitude resembles a version of the USB with the top 5 dB of the Doppler peak removed. The 
phases, however, remain markedly different. At any given receiver separation (i.e., any geometry 
index), the USB frequency components are all in phase but the LSB components are not. 

Simulations 18-20 correspond to the three • symbols in Fig. 9. The frequencies fd,fmax, and 
the decibel level of the CSD amplitude are examined and compared to extrapolations from simu- 
lation 16 based on the relations fd oc U"1, fmax oc \/fo, A oc /Q and the U dependence of $(w^) 
from Fig. 7. In all three simulations, fmin remains approximately 0.27 Hz, and the number of phase 
cycles in the USB remains accurately proportional to /o- 

Simulation 18, with v& = 0.50, lies well within the v& < 1 region. 

1. The level is —5.5 dB relative to simulation 16. To a good approximation, this is the sum of the 
— 11 dB change in $(wrf) as U decreases from 5 m/s to 3 m/s and the +6 dB change in A due 
to the doubling of /o. 

2. The maximum Doppler is now 0.45 Hz * \/2 = 0.64 Hz. 

3. The main Doppler peak is shifted to 0.27 Hz * 5/3 = 0.45 Hz. 

The extrapolations from simulation 16 are all accurate. 

Simulation 19 is the borderline case, v& = 1.00. 

1. The dB level change is —14, whereas the dominant-wave prediction is —11. 

2. fmax = 0.45 Hz, as in simulation 16. 

3- fd = 0-45 Hz, but the main Doppler peak is actually at 0.40 Hz. 

The aid < LJ part of the surface spectrum is unable to Bragg scatter. This reduces the dB level and 
even skews the main Doppler peak to a lower value. 

Simulation 20 has v& = 2.00. 

1. The dB level change is —33.5, but the dominant-wave prediction is —11 — 6 = —17. 

2. fmax = 0.45 Hz * \/ÖI = 0.32 Hz. 

3. There is no actual Doppler peak, since fmax < fd = 0.45 Hz. 

This simulation is so far below the dominant-wave cutoff vd = 1 that all extrapolations based on 
the dominant wave picture of Bragg scattering are invalid. 

Simulation 21 repeats simulation 15 with an isotropic sea surface. The sidebands are perforce 
symmetric. The amplitude still exhibits 5 dB corrugations, but the phase has only mild ripple 
features with none of the wild behavior previously seen in the LSB. 
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Fig. 16 — CSD simulation 16 
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5.2 Vertical Geometries 

Here the receivers are located at a common horizontal position (r^. = r01 = r^2) but at different- 
depths. Thus Q vanishes, ip is irrelevant, and we have 

cQ0)(rc,+\u\;zQ,z1,z2) = A f      d9{BH{9) + DH(e + Tr)}   ■ ■ ■   0 < v < vmax 
JF{v) 

(106) 

A = $(|w|) (fco/4vrrc B = (zc/rc)
2  ,   D = (z0/rcf (107) 

where zc = ^z\z<i is the geometric mean of the receiver depths. 

For simulations 23-25, z\ and z2 vary from 20 m to 120 m in 10 m steps, with z\ > z%. The 
resulting 66 geometries are numbered in order of increasing zc (see Fig. 22). In all three simulations 

/o = 100 Hz, U = 5 m/s, and // = 4. (p = 0 m, and 9? is undefined.) In simulations 23, 24, and 
25, z0 is 20 m, 70 m, and 120 m, respectively. Since Eq. (106) produces real-valued CSDs, the 
amplitudes are plotted but not the corresponding phases. 
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8 16 23 28 34 39 

80 ■  10 19 26 33 38 43 47 
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100 ■  14 24 32 40 45 49 53 57 60 

17 27 35 42 48 52 56 59 62 64 

120 -  18 29 37 44 50 55 58 61 63 65  66 
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Z2    (m) 
Fig. 22 — Geometry index values for the receiver depths used in simulations 23-25. Geometries are enumerated 

so that zc = Jz\Zn. increases monotonically with the geometry index. 

Since the receivers are situated under a highly directional field of surface waves almost straight 
downwind from the source, it is a good approximation to neglect H(6 + ir) in favor of H(6). Then 
the upper and lower sidebands are given approximately by 

Cä'^-M^o,*!,^) nUf     d6H(9)) x D . 

(108a) 

(108b) 

This explains why the upper sideband is independent of ZQ but increases with the geometry in- 
dex (i.e., with zc) in exactly the same way in all three simulations, while the lower sideband is 
independent of geometry index but increases with ZQ. 
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6. SUMMARY AND CONCLUSIONS 

The problem of multistatic reverberation from a sea surface has been posed with a narrowband 
source and a pair of receivers deployed beneath the surface of a fully developed wind-driven sea. The 
small-waveheight approximation was used to express the cross-spectral density of the reverberation 
as a sum of baseband and sideband integrals over the mean sea surface. Statistical stationarity and 
the customary angle/frequency factorization ansatz for surface-wave moments were used to reduce 
these expressions to manageable form—notably Eqs. (29) and (30) for the sidebands. The further 
assumption of a homogeneous ocean and shallow source and receiver placement allowed these ex- 
pressions to be simplified into analytic forms containing only a single (azimuth) integration. The 
sideband result, Eqs. (98) and (99), was embodied in a Matlab script with (a) the gravity-wave 
dispersion relation for deep water, (b) the Pierson-Moskowitz power spectrum, and (c) an empir- 
ical directionality from Longuet-Higgins. This computer tool was used to explore the parametric 
dependence of the sideband structure on the depth and orientation of the source and receivers, the 
frequency and wind speed, and the directionality of the surface waves. 

The aim of the work has been to provide a rapid, reliable means of calculating the reverberation 
CSD, particularly the Doppler components, for essentially any pair of receivers. This capability 
is essential in designing and evaluating beamformers for active operation against moving targets. 
The output of an array (whether horizontal, vertical, or volumetric) and, thus, the input for its 
associated beamformer (whether conventional or nonlinear) is the complex cross-spectral density 
matrix—the matrix of cross-spectral densities for the hydrophones taken in pairs. 

One should really not expect to make many sweeping predictions about the operational per- 
formance of beamformers by simply pondering the structure of the reverberation CSD. It is too 
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complicated. The amplitudes and phases of its sidebands are nontrivial functions of frequency, wind 
speed, and surface directionality in addition to source and receiver position. Furthermore, the pro- 
cess of creating an effective beamformer is an art unto itself, and the CSD is only the raw material, 
not the finished product. Nevertheless, some rudimentary design ideas do seem to emerge from the 
CSD analysis undertaken here. For instance, it is clear from the vertical geometry simulations that, 
if the receivers lie downwind (upwind) under a fairly directional sea surface, then operating with 
the source at a shallow depth should improve the LSB (USB), though this would not work on the 
USB (LSB). However, the most straightforward approach might be to look for robust ways to re- 
move the sidebands. They are produced by Bragg scattering from a set of points on the sea surface 
near each receiver and at another set near the source (the *s in Fig. 10). One obvious approach 
for eliminating the sidebands is to use directional sources and receivers. The simple expedient of 
using a receiver beampattern with a vertical null of about 45° half-width should help significantly. 
The source might be a horizontal linear array laid out along the receiver direction. Conical beams 
could be steered in the usual way, skipping the beam whose intersection with the surface coincides 
with the hyperbola formed by the near-source surface scattering points. 

There are several directions in which extensions to this work might be pursued. One of these 
is to allow the source to have nonvanishing bandwidth. This has been anticipated and would 
only require an additional frequency convolution. Another possibility is to modify the surface 
description. Different functional forms could certainly be used for the directionality and power 
spectrum. It would be quite easy, for example, to replace the Pierson-Moskowitz spectrum with the 
Toba spectrum [30]. A further option is to extend the treatment beyond the uniform ocean model— 
to ducted propagation in shallow water, for example. This would enhance the operational relevance 
of the effort, though at the cost of a potentially very great increase in analytical complexity. 
Finally, one might improve the treatment of the surface boundary condition (e.g., replace the 
small-waveheight approximation with a small-slope condition [30]). This would mean a complete 
reformulation of much of the analytic approach, and the level of effort required is unclear. 
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Appendix 

BIPOLAR COORDINATES 

For any positive 7, bipolar coordinates (£,17) are defined as follows. The £ coordinate lines are 
parameterized by 

(x-ycothtf + y2 = (7/sinhO2   ••■    -oo<£<+oo, (Al) 

which defines a circle with radius 7/|sinh£| and center (x,y) = (7coth£, 0). Circles with £ > 0 lie 
in the right half-plane, and those with ( < 0 are their mirror images in the left half-plane. Both 
approach the y axis as £ vanishes and, in the £ —> ±00 limits, they shrink down to the "vertices" 
(x,y) = (±7,0). The rj coordinate lines are parameterized by 

x2 + (y-7cot?7)2 = (7/sin?7)2   •••   0 < 77 < 2TT , (A2) 

which corresponds to a circle with radius 7/sinrj and center (x,y) = (0,7coth?7). The circles of 
this second family have their centers on the y axis, and all of them pass through both vertices. 
Each circle is split by the x axis into two arcs. The arc in the upper half-plane corresponds to an rj 
value in the interval [0,7r], and the arc that completes the circle in the lower half-plane corresponds 
to that same rj plus IT. 

The transformations to Cartesian coordinates (x, y) and polar coordinates (r, 9) are 

7 7 x = —— sinh£ y=—— smrj . (A3) 
cosh £ — cos rj cosh £ — cos 77 

9      cosh $ + cos 97 „      sin rj ,.   . 
r   =—Ü1  tanö = —-L . A4 cosh £ — cos 77 smn £ 

These allow the plane vector r = xex + ye2 = r^{6)e_i to be expressed directly in terms of bipolar- 
coordinate operations:13 

l + wR(-r,) 
L = -= ^7—c7ei   •••  £<0 (A5a) 

I — wR(—rj) 

1 + wR(+rj) 
£=+I^ä47£I -f>0' (A6b) 

using the logarithmic measure w = e~^. The inverse operators are easily found to be 

(l-wE(±rj)Y   = (l-2w cos rj + w2y   (1-WR(TV))  ■ (A6) 

The vertices are the w —> 0 limits, r = ±7^. Equations (A5) and (A6) are used directly in the 
stationary-phase analysis in the body of the report. 

Ordering (i.e., the distinction between AB_ 1 and B_  *A) is irrelevant here.   Since these operators are all 2-D 
rotations, they all commute with each other. 
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T1=0J7C 

5=-'/ 

Fig. Al — Bipolar coordinates for 7 = 0.7 Coordinate lines are shown for: £ = 1, 2, 3 (circles in x > 0 half-plane); 
£ = -1, -2, -3 (circles in x < 0 half-plane); »7 = 0.3;r, 0.47T, 0.57T, O.671-, 0.7x (arcs in y > 0 half-plane); and 
7? = 1.37T, 1.47T, 1.57T, 1.6ir, 1.77T (arcs in y < 0 half-plane). The vertices are the two points on the x axis where 
circles with different 77 values intersect. 


