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A Executive Summary 
This document is the Virtual Environments for 
Training (VET) final report. VET, funded by the 
Office of Naval Research (ONR), began in 
October 1995 and completed in February 1999. 
VET focused on immersed instruction, 
culminating with the successful development of 
the Training Studio prototype (see Figure 1), an 
authorable system for team instruction in a virtual 
environment. Several key advances have 
resulted from the VET program: 

♦ Pedagogical agents that can act as student 
mentors or team members during training 

♦ Component-based instructional systems 
♦ Authorable virtual environment interaction 

applicable across domains 

In the executive summary of our 1994 VET 
proposal, we proposed to: 

"develop an instructional system that 
integrates the design, development, delivery, 
and evaluation of training curricula with a 
comprehensive virtual environment." 

Using our Training Studio system, authors can 
design and develop intelligent instruction for 
delivery to students, and evaluation of their 
performance, in an immersed virtual environment. 
Thus, the VET Training Studio is an example of 
an integrated, working VE system for 
constructing, managing, and interacting within 
virtual environments, satisfying these challenges: 

♦ The most immediate challenge at hand is one 
of integrating the existing technology into a 
working system, along with other elements of 
VE construction software, in 1995 National 
Research Council study on virtual 
environment technology (Durlach, 1995) 

♦ There is a need for software infrastructure 
and tools for constructing, managing, and 
interacting within virtual environments. 
Barfield and Furness, discussing Virtual 
Environment Interfaces (Barfield, 1995) 

The Training Studio includes a broad range of 
capabilities applicable to many types of training in 
virtual environments. First, it includes extensive 
support for authoring. This includes the ability to 
import CAD models for rapid construction of the 
3D graphical models of the virtual environment, 
create the simulation behaviors of the 
environment, define the instructional objectives, 

Figure 1. The Training Studio software is a 
progenitor for a "HoloDeck" where people engage 
in immersed interaction with simulations of other 
people and scenes 

and construct a wide variety of training exercises. 
The authoring approach is designed to ensure the 
development and maintenance of high quality 
instruction at significantly lower cost than could be 
achieved using conventional one-time 
development methods. Second, it supports 
delivery of instruction in virtual environments, 
including both individual and team training. 
Training exercises can range from simple drill- 
and-practice familiarization lessons to more 
complicated training scenarios involving simulated 
shipboard casualties. Moreover, the training can 
include intelligent agents that appear in the virtual 
world as virtual humans and serve as instructors 
or teammates when human instructors and 
teammates are unavailable; such agents provide 
exciting new possibilities for automated instruction 
and interaction with the student that are not 
possible with more traditional computer-based 
instruction. 

To describe the VET Training Studio in this final 
report, we discuss the operational, system and 
technical views for the VET Training Studio. 
During the VET effort, we developed and 
implemented an operational view of how a VE 
training system should be used, a system view of 
how the components work together, and a 
technical view of the standards and conventions 
necessary for our training authoring focus. In the 
system and technical view sections, we relate the 
significance of our work on virtual environment 
interaction, simulation-based training, and 
pedagogical agents. 

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179 
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Table 1. Training Studio Instructional Delivery Thumbnail Description (See section C.6.2) 

1. Two students, Jack and Jill, 
learn their roles for casualty 
control procedure on board a 

4. The 3D CAD setting and 
equipment simulations are 
used by the students and the 
agents together. 

Press the CCS button 
initiate the transfer 3 

7. The tutor agent can monitor 
the student's view and actions 
in the world, and the effects 
are promulgated in the 
simulation. 

10. Jill is instructed in another 
part of the ship, the engine 
room. 

uuoe 

2. Each student wears a head- 
mount display that immerses 
them in the 3D CAD models 
for the ship 

3. Steve pedagogical agents 
serve as their team-mates or 
tutors. Jack's tutor is the blue 
PACC operator circled above. 

5. Students talk to the tutor to 
try doing part of the task. 
Speech acts are part of the 
instruction. 

Thrust     control 
is at CCS. 

I 
8. Tasks can be resumed by 
the tutor. 

£'"■ 

** p 
iVK\J| 

f""~ 

i 
M 

.    :\    ■ 
11. Tutors lead students 
through equipment spaces, 
this is an aspect of spatial 
instruction. 

6. Students ask about the task 
using speech recognition. 
Jill's tutor is in the engine 
room (inset), awaiting tasks. 

9. Other team members 
(agents) communicate and act 
out their team roles. 

Next check relief 
valve pressure. 
This is the problem. 

12. Jill's tutor agent uses the 
equipment to show her the 
procedure to reset relief 
valves. 
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Table 2. Training Studio Instructional Development Thumbnail Description (see section C.6.1) 

f 

1. First authoring task is 
understanding the domain, in 
this case mentors oversee 
team members. 

2.   Next   authoring   task   is 
understanding course 
structure, and realizing this in 
VIVIDS. 

3. The equipment simulations 
are authored in VIVIDS in 2D, 
for eventual use in 3D. 

4. 3D equipment is imported 
from CAD to VRML, and 
VRML COTS authoring tools 
are used to define interaction. 

v, .„•. vViH 

i . III •. 1111L . • 11   ?.g*V-^-y?-.;s^ 
WV¥ ■': IS1' i     Vmf- ■-       ■ «i 

mm&»-iiltimti*£*!&m 

5. Interaction immersed, and 
in shared settings is tested in 
Vista, and 3D models are 
modified to support interactive 
rates, and behaviors. 

,. -Mi 
&     r - UJt: V> 

6. The 2D equipment 
simulations in VIVIDS are 
linked to the 3D behaviors in 
Vista using TScript message 
updates. 

1    ,'5"-     H    Thrust   control   is 
at CCS. 

7. The Steve agent is defined 
based on the task procedures, 
and equipment simulations in 
VIVIDS. 

8. Steve agents use waypoint 
information to move around 
the spatial setting to different 
equipment. 

9. Team roles are refined, and 
speech acts are modeled 
between team members. 
Task instruction is tested for 
robustness. 
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B Introduction 
This document is the final report for the Virtual 
Environments for Training (VET) program, funded 
by the Office of Naval Research (ONR). The VET 
program's period of performance started in 
October 1995, and completed in February 1999, 
culminating in the successful development of the 
Training Studio prototype, an authorable, 
component-based system for team instruction in a 
virtual environment. 

Virtual environments are three-dimensional (3D) 
scenes where participants perceive themselves 
as being inside a 3D scene. Virtual environment 
software typically draws 3D scenes many times a 
second so that motion in the scene in relation to 
head movements is perceived as fluid, and 
stereoscopy and parallax give the perception of 
solid objects. Additionally, participants can 
manipulate objects in the scene, providing the 
perception that the participant can affect change 
in the scene. 

The Training Studio includes a broad range of 
capabilities applicable to many types of training in 
virtual environments. First, it includes extensive 
support for authoring. This includes the ability to 
import CAD models for rapid construction of the 
3D graphical models of the virtual environment, 
create the simulation behaviors of the 
environment, define the instructional objectives, 
and construct a wide variety of training exercises. 
The authoring approach is designed to ensure the 
development and maintenance of high quality 
instruction at significantly lower cost than could be 
achieved using conventional development 
methods. Second, it supports delivery of 
instruction in virtual environments, including both 
individual and team training. Training exercises 
can range from simple drill-and-practice 
familiarization lessons to more complicated 
training scenarios involving simulated shipboard 
casualties. Moreover, the training can include 
intelligent agents that appear in the virtual world 
as virtual humans and serve as instructors or 
teammates when human instructors and 
teammates are unavailable; such agents provide 
exciting new possibilities for automated instruction 
that are not possible with more traditional 
computer-based instruction. 

Many obstacles exist for team training in a virtual 
environment. Students must perceive the scene 
and the actions of other team members in 
common.    Often, instruction of teams can be 

hindered by slower members of the team, and 
because of conflicting schedules, it can be difficult 
to assemble team members and resources (such 
as dedicated simulators or actual equipment) for 
instruction. The Training Studio addresses these 
obstacles. 

To describe the VET Training Studio in this final 
report, we discuss the operational, system, and 
technical views for VET. During the VET effort, 
we developed and implemented an operational 
view of how a VE training system should be used, 
a system view of how the components work 
together, and a technical view of the standards 
and conventions necessary for our training 
authoring focus. In the system and technical view 
sections, we relate the significance of our work on 
virtual environment interaction, simulation-based 
training, and pedagogical agents. 

B.1   Program Final Report 

This final report has describes reusable results, 
identifies problems common to similar efforts, 
notes useful ideas, and provides suggestions on 
further related activities. This final report also 
serves as a record of tasks accomplished to 
satisfy the proposed work. 

B.2  Program Team 

The Virtual Environments for Training team 
consists of Lockheed Martin Advanced 
Technology Center for virtual environment 
interaction, USC Behavioral Technology 
Laboratories for instructional simulation, USC 
Information Sciences Institute for pedagogical 
agents, and Air Force Research Lab at Brooks, 
AFB for outside formative evaluation. 

B.3   Program Objectives 

In the executive summary of our VET proposal, 
we proposed to develop an instructional system 
that integrates the design, development, delivery, 
and evaluation of training curricula with a 
comprehensive    virtual    environment. The 
emphasis was on an integrating architecture to 
realize effective virtual environment training. 

We have realized our proposed objectives for 
training in a Virtual Environment. The primary 
statement of work items in our original proposal 
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emphasized authorable virtual environments in 
which team training could be realized: 

♦ Conduct innovative research into team 
training and modeling in a virtual environment 
including efficient distribution mechanisms 
and representations, and advanced models 
of team interaction in a virtual environment. 

♦ Develop an instructional design approach 
appropriate to authoring courses for intelligent 
tutoring systems integrated with a virtual 
environment. 

♦ Develop and refine the human-computer 
interface approach for development and 
delivery of instructional content in a virtual 
environment. 

Our research into team training and modeling in a 
virtual environment has been successful. Using 
the Steve pedagogical agent as team members 
and student mentors, we can model team 
interactions and instruct students on their role in a 
team. 

As a basis for all our efforts, we developed an 
instructional design approach for collaborative 
authoring of intelligent tutoring in a virtual 
environment that consists of equipment 
simulations, spatial representations, and team 
procedures and roles. 

Our human-computer interface approach 
encompasses interaction with the virtual 
environment scenes, a set of spatial services 
necessary for understanding the student's 
actions, and detailed spatial feedback to the 
student for effective instruction. 

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179 
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C Methods & Approach 

This section outlines the methods and 
approaches that evolved from our proposal, and 
during the VET effort. 

C.1  Component Systems 

Ours was a problem of integrating capability at 
the right level. In our systems view, we decided 
to reduce technical risk by using a component 
architecture, where the major components were 
virtual environment interaction (Vista), 
instructional simulation (VIVIDS), and 
pedagogical agents (Steve). This reduced risk 
significantly because the components were 
mature and debugged, and source code did not 
have to be merged. Development was carried 
out in parallel and components were integrated as 
part of a spiral development process. Our team 
tested component changes and improvements at 
system level test and integration meetings. At the 
start of the VET effort, this component-based 
approach was novel to the intelligent tutoring 
systems research community. 

C.2  Multi-modal Interaction 

A key aspect of our approach from the beginning 
of VET has been to deliver training in a fully 
immersed setting. Immersed by our definition did 
not mean a 3D image on a screen. Full 
immersion meant that the person perceived 
themselves to be inside the spatial scenes we 
presented. 

Using virtual environments for training poses a 
number of challenges and opportunities for 
human-computer interaction. Opportunity exists 
in the area of multi-modal interaction, where 
multiple modes, such as speech and spatial 
display, are used concurrently to provide 
information to the student, and to get information 
from the student. Beyond the promise of 
transferring training in a virtual 3D setting to the 
real setting, there are advantages to instruction 
that combines modes of interaction. When 
modes for 3D display, 3D manipulation, 3D head 
motion, and dialog systems (speech generation 
from text, and speech recognition) are combined 
with object simulation, a property known as 
spatial dialog emerges. The context of speech 
acts is provided by what the participant is looking 
at, near to, or touching.   It becomes possible to 

ask questions previously ambiguous, and to carry 
out actions in the spatial setting easier. 

C.3 Authorable Systems 
From the outset of the VET effort, we emphasized 
that systems should be built with authoring in 
mind to ensure their widespread use and 
effectiveness. 

Authoring the spatial setting for instruction in a 
virtual environment involves the geometry of 
objects, the physical dynamics of objects, and the 
behavior of objects. Based on our technical view 
of the Training Studio, we decided spatial settings 
would be authored in VRML, where commercial 
software could be used to import geometry, 
modify object geometry, and specify object 
interactions in an effective manner. Since we had 
an effective means of authoring complex object 
behavior for objects using VIVIDS, we arrived at a 
systems view where object behavior is authored 
using VIVIDS, and the geometry and motion 
constraints are authored in commercial VRML 
authoring packages. In Vista, we focused on the 
capability to load VRML object geometry, realize 
VRML object interaction while immersed, and 
update object state using VIVIDs behaviors. 

Although Steve is a complex intelligent system, it 
is designed to support authoring by people with 
limited programming experience by using artificial 
intelligence methods. Although the decision 
making component of Steve is implemented in 
Soar (Laird et al 1987), Steve does not require 
the courseware developer to know how to 
program in Soar. Instead, Steve's task 
knowledge is specified using a high level plan 
language, in which plans are built from a library of 
primitive operations. An authoring interface has 
been developed for integrating such plan 
descriptions with VIVIDS simulation models; once 
Steve is provided with a suitable task plan and is 
linked to the VIVIDS model, Steve is capable of 
interacting with the VIVIDS model to perform 
asks, monitor students performing tasks, etc. An 
extension to Steve called Diligent was created for 
creating task plans. It employs a programming- 
by-demonstration approach, where the instructor 
demonstrates how to perform the task and then 
Diligent attempts to generalize the demonstration 
to produce a complete task plan. Diligent also 
provides a graphical editing interface for 
modifying task plans. 
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C.4   Task-based Instruction 

As Hill and Johnson (1995) argued, simulation- 
based instruction without guidance can be 
inefficient and error prone. Students working with 
a simulation may discover that they do not know 
what to do, or fail to recognize when they have 
made a mistake. The VET project has postulated 
that animated agents are a natural means for 
providing such guidance. An animated human 
figure can guide the students through the virtual 
space, show students what to do, and direct their 
attention to important elements of the virtual 
environment. They can interact with the students 
via natural face-to-face dialog. 

C.5  Team Training 

The VET project has postulated that team 
interaction can be more effectively captured and 
modeled using an immersive virtual environment. 
Team member locations, speech acts, physical 
gestures, equipment manipulations, and 
viewpoints provide additional means of 
communication beyond conventional computer 
displays, and we have used these with some 
success. 

Conventional team training is a very labor- 
intensive activity. A typical team training exercise 
at the Navy's Great Lakes Training Center, for 
example, requires that a team of trainees be 
assembled, together with a team of instructors 
who guide the trainees through the exercise. 
Synthetic agents can significantly reduce the 
labor requirements for team training exercises. In 
VET team training exercises, each participating 
student can have a Steve virtual instructor guide 
them through the exercise and answer routine 
questions, freeing human instructors to focus their 
attention on critical problems. Steve agents can 
also play the roles of missing team members, 
allowing individual students and small groups to 
practice their skills without assembling large 
teams. 

C.6  Operational View 

In this section, we provide an operational view of 
the VET Training Studio. An operational 
architecture view is a description of the tasks and 
activities, operational elements, and information 
flows  required  to  accomplish  or  support  an 

operation. This section provides an operational 
view of the Training Studio as it is used for 
instructing engine room casualty control 
procedures, from both an instructional 
development and an instructional delivery 
perspective. 

Visual descriptions of Training Studio Instructional 
Development and Instructional Delivery, meant to 
accompany the following text descriptions, are 
available in section A (see Table 1, Table 2). 

C.6.1 Instructional Development 

The usage model for the completed Training 
Studio system is important as a guide to the 
process of authoring shipboard training using the 
Training Studio system. Note that while the 
system has not yet been deployed in this manner, 
the usage model provides a way of understanding 
why Training Studio capabilities were developed, 
and their intended use together. 

For delivery of training material developed with 
the Training Studio we started with an idea of how 
training material could be delivered and used as 
part of Navy operations - exchanged over the 
Internet or a similar closed network system.  The 

Cent. Trrig 
Authority. 

Figure 2.   Training Studio Delivery Usage Model 
emphasizes internet (WWW) distribution 
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delivery approach can be adapted to other 
services or organizations which are dispersed. 

In the delivery usage model (see Figure 2), a 
demand for training in a particular topic comes 
from a central training authority which is tasked 
with prioritizing and funding training efforts. This 
request is handled at a Training Center which has 
the appropriate hardware, software, and 
personnel to develop the training material. A 
course using the Training Studio is developed, 
and fielded to inland reserve areas and out to 
ships at sea using the World Wide Web protocols 
on the Internet or a similar but secure network 
system. The ships and inland reserve sites 
involved have equipment sufficient to run the 
Training Studio software, and one or more people 
who are responsible for updating/maintaining the 
software and hardware. 

After delivery of the Training Studio simulations, 
students use the system to train, and people at 
the site with experience in the subject domain 
evaluate the initial courses and simulation for 
effectiveness (these may be actual instructors or 
specialists). The results associated with each 
student in the course are relayed to the central 
training authority over the same network, and the 
results of instructor evaluations are returned to 
the Training Center for use in refining the 
system (the student's evaluations of the 
training material could be used there too). 
Unlike centers using traditional curricula, the 
training center described here could act on 
the requested changes and update remote 
sites using the curricula fairly quickly. 

We have taken steps in the system 
development to support distributing the 
training simulations using the World Wide 
Web, allowing distribution of 3D models and 
VIVIDS simulation courses. Given the large 
amount of data associated 3D models and 
simulations, network transfer is somewhat 
of a technical challenge, but we have taken 
measures such as caching to address 
transfer of 3D data. The Training Studio 
does not at this point have support for 
relaying instructor evaluations of the system 
or the student scores in training back out of 
the system. This feedback could be 
developed fairly easily using current WWW 
resources. 

Figure 
allows 

given domain starts at a Training Center by 
defining the Course Structure based on approved 
procedures in reference works, subject matter 
expert (SME) input, etc. (see Figure 3). Here the 
instructional developers get an idea of what 
material needs to be covered, what simulations 
may be helpful, what the tasks in the domain may 
be, and which 3D models will be needed. This 
gives the developers a shopping list and an initial 
course of action. 

Initial training simulations are developed in 2D 
using VIVIDS and at the same time members of 
the development group assess existing 3D model 
resources and obtain these. Soon after initial 
simulations are developed, they are modified to 
update the 3D scenes in Vista using TScript 
messages. At each stage, the simulation is 
evaluated by the development group to see if it 
matches real system behavior in the areas 
significant to training transfer. 

When the simulation is detailed enough to support 
a given task in a 3D setting, the instructional 
developers use Vista and the rest of the Training 
Studio software to provide task examples. 
Simpler examples of tasks can be modeled using 
VIVIDS, and more complex task examples where 
the tutoring system may need to provide spatial, 

3.  Training Studio Development Usage Model 
concurrent development 

The actual development of a course for a 
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visual explanation of task steps to the student will 
be captured by the Steve software. 

Finally, experts in the domain evaluate the course 
immersed in the virtual environment, to see that 
necessary aspects of the tasks are captured 
faithfully. If improvement is needed, this feeds 
back into the course structure, and then again into 
3D models, simulation models, and task structure 
for the lessons. 

Several types of simulation models must be built 
during domain development. In our usage model, 
a good portion of support for capturing the 
simulation models themselves is present in VIVID, 

TesselateÄ 
Decimate 

in during the export of original models. Often the 
models can be re-tessellated to a much lower 
polygon count using the CAD data and the 
original modeler. 

However, most often we are not that lucky. 
Polygons in complex engineering models can be 
reduced using decimation, whereby parameters 
are set such as length of the polygons or area 
relative to their importance during decimation, and 
vertices for less important polygons are removed 
to create fewer polygons. One of the easier-to- 
use commercial packages for polygon reduction is 
available from Silicon Graphics in their 
CosmoWorld software,  a tool for editing and 

** Define w/ 
Modeler 

Define in 
VIVIDS 

Use in Vista 

Figure 4. Training Studio Usage Model for 3D Model Development emphasizes real-time 
immersed interaction with VRML 97 scenes 

and we have built support in the Steve software 
for capturing task models using a programming- 
by-example approach. The 3D model data used 
in the virtual environment is one area that can be 
labor intensive, and where existing data may be 
available to re-use. So in our usage model we 
have further elaborated on how we see 3D model 
data entering into system usage (see Figure 4). 

The usage model for using 3D models recognizes 
three forms of models: engineering (CAD) models 
and already existing visual simulation models 
which can be purchased, the set of necessary 3D 
models not already existing, and those 3D models 
which, because of the nature of the domain or its 
explanation, must be dynamic (mutable while 
using the virtual environment). 

For existing engineering models, it is often the 
case that the polygon count is too large for real- 
time interaction in a virtual environment. This is 
because engineers often export the model 
tessellated polygons without tessellating the 
models for lower polygon counts. The ideal place 
to reduce polygon counts is when exporting 
models using the CAD modeler originally involved 

optimizing VRML scenes. This is what we use in 
our domain development. Research in other 
advanced methods for decimation has been 
funded by the Office of Naval Research, and 
could fill this place in the process (Renze and 
Oliver 1996). 

At times a project will have to resort to generating 
their own special 3D models. Any necessary 3D 
models that can't be reused must be built using a 
modeling system. We have found MultiGen Flight 
and the SGI Inventor tool set to be useful in this 
regard. There are many commercial modeling 
systems available, and for our purposes, if their 
output can be translated to VRML, they can be 
used. We recently finished a utility that allows 
models loaded into Vista to be saved in the 
Inventor 3D model format. The 3D models can 
easily be taken from there to VRML. This was 
done in support of the "translate to VRML" step in 
the usage model. Some notable 3D file formats 
that Vista loads and can now be saved as 
Inventor (or VRML with the pf2wrl utility) include: 
the S1000k DoD terrain format, AutoCad DXF 
and 3D Studio, Wavefront, Lightscape, Multigen 
Flight, Coryphaeus Designer Workbench. 
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C.6.2 
Delivery 

Instructional 

To illustrate the operation 
capabilities ot the Training 
Studio for instructional 
delivery, consider a 
training scenario in which 
two students, Jack and 
Jill, are learning their roles 
in handling a loss of fuel 
oil pressure in one of the 
gas turbine engines 
aboard a ship (see Table 

Jack is serving as the 
Propulsion and Auxiliary 
Control Console (PACC) 
operator, and Jill is in the 
engine    room. Each 
student is wearing a head- 
mounted display that 
provides a three- 
dimensional view of their 
shipboard surroundings. 
As they move or turn their 
head, their view changes 
accordingly. Each student 

Figure 5. Immersed Instructional Delivery enables 
roles, and locations 

The third category of 3D models, dynamic 
models, are those whose geometry must change 
live during the simulation usage. This occurs 
often during explanation, where for example a 
polygon representing the arc of an angle must 
change to represent a changing angle value, or a 
visual line showing a link between two objects 
must change when the objects move, etc. These 
models are best defined using the graphical 
primitives in Vista, from the simulation where their 
values are calculated (such as VIVIDS). Vista 
provides a large set of graphical primitives such 
as cubes, etc. for dynamic update of their 
appearance independent of modeler software, 
and we support modifying VRML geometry on the 
fly by using external Tscript messages, or VRML 
interpolators. 

. . is assigned a Steve agent 
training for different team  as thejr tutor   |n additjoni 

three other Steve agents 
serve as their teammates: 

one serves as the Engineering Officer of the 
Watch (EOOW), one serves as the Electric Plant 
Control Console (EPCC) operator, and one 
serves as the Shaft Control Unit (SCU) operator. 
Each person's head-mounted display is equipped 
with a microphone (for speaking to agents) and 
earphones (through which the person can hear 
agents speak, as well as sound effects from the 
virtual environment). 

Jack's tutor looks at him and introduces the 
scenario: "Let me show you how to handle a loss 
of fuel oil pressure. First, when you detect it, 
inform the EOOW." Looking over at the EOOW, 
the tutor continues, "We have a loss of fuel oil 
pressure in engine room one." The EOOW nods 
in acknowledgment and passes the message on 
to the engine room. Jack's tutor leads him over to 
the normal stop button, points at it, and says, 
"First, press the normal stop button to stop the 
turbine." The tutor presses the button, and Jack 
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watches its indicator light up and the engine's 
power lever angle go to idle. "I will now transfer 
thrust control to the central control station," the 
tutor informs Jack. Jack, believing that he 
remembers the procedure, says, "Let me finish." 
"Okay, you finish," replies the tutor, who shifts to 
monitoring Jack's performance of the task. 

Jack steps forward to the console and presses 
the wrong button. "No," the tutor comments while 
shaking his head. Jack, suddenly less sure of 
himself, asks, "What should I do?" The tutor 
replies, "I suggest that you press the CCS button 
to initiate the transfer." Jack presses the button 
and his tutor nods approvingly. As a result of 
Jack's action, the CCS button blinks on both the 
PACC and the SCU. The SCU operator, in the 
engine room, presses the blinking CCS button on 
his console to complete the transfer, and the 
button stops blinking and remains illuminated on 
both consoles. 

with Steve agents that serve as their tutors and 
teammates. They can navigate around the 
environment to learn the location of relevant 
equipment, often under the guidance of their 
agent tutor. Agents and students can manipulate 
objects in the virtual world and see their visual 
and auditory effects. Finally, they can collaborate 
with each other, as well as their agent tutor and 
teammates, to practice realistic training scenarios. 

Jack looks over at the EOOW and says, "Thrust 
control is now at CCS." The EOOW nods in 
acknowledgment and instructs the EPCC operator 
to switch to generator one. Jack watches as the 
operator pushes a series of buttons and informs 
the EOOW when the switch is complete. Now the 
EOOW commands the engine room to investigate 
the cause of the casualty. 

Upon receiving the command, Jill's agent says, 
"Let me show you how to check for the cause of 
the loss of fuel oil pressure. First, check that all 
suction valves are wide open. A partially closed 
valve in the suction line can increase the suction 
lift above the pump's capabilities." The agent 
guides Jill around the engine room and shows her 
the location of the valves. They check each one, 
but all are already wide open. 

Next, the agent leads Jill over to the relief valve. 
As she gets close, she can hear the sound of the 
oil passing through the valve. "Next, check the 
relief valve set pressure. As you can hear from 
the sound of the oil passing through the valve, the 
set pressure is too low, causing the loss of fuel oil 
pressure." The agent shows Jill how to reset the 
relief valve lifting pressure, then reports back to 
the EOOW, "The cause of the casualty has been 
determined and corrected." 

Although this scenario does not illustrate all of the 
capabilities of the Training Studio, it highlights 
some of the most important. Jack and Jill cohabit 
a virtual mockup of their work environment, along 
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D Results 

This section describes significant and reusable 
results from the VET effort, encompassing the 
system view and technical view. 

D.1   System View 

The systems architecture view is a description, 
including graphics, of systems and 
interconnections providing for, or supporting, 
system operation. We describe the Training 
Studio operational view by discussing the system 
component interactions across the 
communications bus. 

There are three main functional components in 
the Training Studio; the Vista virtual environment 
display, the VIVIDS instructional simulation, and 

the Steve Pedagogical agents. The VIVIDS 
component runs the simulation that controls the 
virtual world. Steve (one for each participant) 
monitors the state of the virtual world through 
messages it receives from VIVIDS. The Vista 
Viewer components (one for each participant) 
provide an interface between the virtual world and 
the human participants; they produce a 3D 
graphical rendering of the virtual world, and they 
detect interactions between participants and 
virtual objects. 

Steve monitors the actions and field of view of the 
human participants through messages it receives 
from Vista, and Steve controls its own visual 
appearance by sending messages to the Vista. 

Steve generates speech by sending messages to 
TrishTalk components. Each participant has his 
or her own TrishTalk, and each TrishTalk is an 
extended version of Entropic's TrueTalk text-to- 

Figure 6.  VET Training Studio architecture uses broadcast messages to maintain world state between 
components 
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speech program. 

The Steve component uses another component, 
called RecAppI, to do speech recognition. 
RecAppI is a Java application that uses Entropic's 
speech recognition API to recognize student 
requests and speech acts for team members. 

Another component, called the SoundServer, 
provides audio effects for objects. It acts as a 
service, responding to requests for audio effects. 
The SoundServer has been prototyped as a Java 
application. 

All of the message passing among these 
components is accomplished via a 
communications bus using a message protocol 
called TScript. The overall system architecture, 
illustrated in Figure 6, is similar in some ways to 
other virtual environment architectures such as 
SIMNET (Calvin et al 1993) and Spline (Barrus et 
al 1996), in that it provides a common interface so 
that multiple applications can share access to a 
virtual environment over a network. One major 
difference is that multiple threads of interaction 
can take place at the same time, each using a 
different set of messages. For example, one set 
of messages is used to control the TrishTalk 
speech synthesis system, another set of 
messages is used to communicate changes to 
object locations in the virtual world, and yet 
another set of messages is used to communicate 
changes in the simulation state. 

The communications bus allows an arbitrary 
collection of components to communicate. It is 
currently implemented on top of Sun's ToolTalk 
software. Components    connect    to    the 
communications bus by sending a message, and 
they subsequently send messages announcing 
the types of messages they wish to receive. 
Components do not send messages directly to 
other components. Rather, all messages are sent 
to the communications bus, and the 
communications bus broadcasts each message 
only to those components that registered interest 
in it. This provides an important filtering 
mechanism; components only receive message 
traffic they can use. The approach also provides 
a more extensible architecture than direct 
component-to-component communication. 

The VIVIDS component, which controls the 
behavior of objects in the virtual world, is a 3D 
extension of the RIDES 2D simulation authoring 
system (Munro et al 1993).    In VIVIDS, as in 

RIDES, each object in the virtual world is 
assigned a set of attributes. Some attributes 
control the visual appearance of the object, while 
others control its behavior. The behavior of the 
objects is programmed by rules and constraints 
that propagate changes in one object to other 
objects. This object-oriented representation 
makes it easy for other programs, such as Steve, 
to monitor the state of the simulation. 
A Vista Viewer component provides the interface 
between a human participant and the virtual 
world. Vista displays the objects in the virtual 
world in real time, and students can view the 
display either immersed, using position sensors 
and a head-mounted display, or in a flat-screen 
window. Multiple students, each with their own 
Vista Viewer, can connect to the same 
communications bus, and each will experience 
the same changes in the environment (albeit from 
their own viewpoint). 

Vista acts much like an X server in X Windows. 
As each application starts in X Windows, it asks 
the server to create a window, as well as objects 
inside that window, and it expects the server to 
notify it of user events for those objects and 
windows. The server provides services for the 
display screen, and implicitly for the user. Vista 
acts more explicitly as a display server for the 
participant, but the idea is the same. 
Components such as VIVIDS and Steve ask that 
objects be created in the scene. Vista can build 
objects from graphical primitives, and it can also 
load them from various file formats, most 
prominently VRML 97. When the participant 
interacts with these objects, Vista sends event 
messages to the communications bus, and these 
messages are broadcast to other components 
that are interested. Participants can interact with 
objects using a variety of devices (e.g., Flock of 
Birds™ position sensors and the Virtex 
Cyberglove™), but the details of these devices 
are abstracted out by Vista in order to provide a 
generic set of interaction messages (e.g., 
selection of an object). Steve can send these 
same messages, and hence can interact with 
objects in all the ways that human participants 
can. Components such as Steve can also 
register interest in particular objects, in which 
case Vista will send messages when these 
objects come into or go out of a participant's field 
of view. Thus, Vista serves a dual role: it makes 
the virtual world real for students, and it informs 
the other components of the students' actions and 
field of view. The information provided by Vista is 
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crucial for allowing agents such as Steve to 
monitor the behavior of students. 

TScript, which stands for Training Script, is the 
collection of messages that the components use 
to communicate. Object creation, modification, 
and deletion are controlled by TScript messages. 
Participant control for the purpose of instruction, 
such as changing a particular student's view or 
moving them along a path, are controlled by 
Tscript messages. Vista Viewers send 
notification of participant actions, their selection of 
objects, their movements in the world, and events 
they cause to happen indirectly all as Tscript 
messages. Each TScript message consists of a 
message name and arguments. The TScript 
protocol is extensible; the communications bus is 
not restricted to a fixed set of message types. 
Each component on the communications bus is 
free to define the set of TScript messages it can 
provide, and other components are free to 
register interest in the messages they need. 

During a training session, much of the message 
traffic comes from VIVIDS. Since VIVIDS controls 
the behavior of objects in the virtual world, it must 
inform the other components when attributes of 
these objects change. Vista Viewers register 
interest in visual attributes, such as the location 
and color of objects. Steve agents register 
interest in the attributes they wish to monitor, 
primarily those that describe the state, rather than 
the appearance, of objects. For example, in the 
case of the High Pressure Air Compressor, this 
includes information such as the pressure in 
cylinders, and whether lights are on or off. Each 
component receives only those messages that 
are relevant to it. Moreover, VIVIDS only 
broadcasts changes in those attributes in which 
some component has registered interest. Such 
efficiency in message traffic is crucial for handling 
complex, dynamic worlds. 

To illustrate how the components have been 
integrated using the communications bus, we 
close this section with a brief description of 
starting the system for one student, in the High 
Pressure Air Compressor domain, and give 
examples of how the components interact with 
TScript messages. Initially, a student starts up a 
Vista Viewer, which shows an empty 3D scene to 
the student. Then VIVIDS is started, and the 
HPAC course is selected. The 2D control panel 
for VIVIDS appears, as does a small window with 
an "Initialize" button. The student presses that 
button, and VIVIDS creates all the simulation 

objects and sends TScript messages to create 
corresponding 3D representations in Vista, either 
from graphic primitives or from pre-existing 3D 
model files. Then Steve is started, and its 
interface    appears. Steve    uses    the 
communications bus to register interest in 
particular attributes of relevant objects, and it 
sends messages requesting the initial state of 
these attributes. VIVIDS responds with Tscript 
messages describing the state of those attributes. 

Now the student is through with setup and starts 
the course using VIVIDS. They put on the virtual 
environment gear and select Start from the 
palette in their (virtual) left hand, immersed using 
Vista. VIVIDS progresses through the course, 
sending voice commands over the 
communications bus to the student's TrishTalk, 
which generates speech for the student. The 
student carries out requested actions, such as 
pressing buttons and opening valves. At each 
student action, Vista informs VIVIDS and Steve, 
and VIVIDS then can use the action to determine 
if the simulation state has changed. If it has 
changed, and Steve registered interest in the 
changes, they are broadcast to Steve. 

At some point in the lesson, VIVIDS may send a 
message to request that Steve monitor the 
student performing a task. When the student 
needs assistance, he can touch a button on 
Steve's interface palette to ask a question, which 
causes Vista to send a message to Steve. Steve 
can answer the question by sending text to the 
student's TrishTalk, causing speech to be 
generated. 

At other points in the lesson, VIVIDS may send a 
message requesting that Steve demonstrate a 
task, or the student may request a demonstration 
directly by touching a button on Steve's interface 
palette. Steve then carries out the task by 
sending messages to manipulate objects (these 
messages are handled by VIVIDS) and messages 
to move its own visual representation (i.e., body 
or hands) in the virtual world (these messages are 
handled by Vista). VIVIDS responds to Steve's 
actions by changing the state of the world and 
sending messages describing the changes. 

All these interactions between components are 
carried out using TScript messages on the 
communications bus. There may be more than 
one student, each with their own Vista Viewer and 
TrishTalk, there may be more than one VIVIDS, 
each controlling the behavior of a different set of 
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objects, and there may be more than one Steve 
agent, each monitoring different students or 
demonstrating different tasks, but all the 
components maintain a consistent view of the 
virtual world via messages on the 
communications bus. 

D.2  Technical View 

In this section we relate the Training Studio 
technical view by describing the three main 
functional components, Vista (virtual environment 
interaction), VIVIDS (intelligent tutoring systems), 
and Steve (pedagogical agents). A technical 
architecture view describes a profile of a minimal 
set of time-phased standards and rules governing 
the implementation, arrangement, interaction and 
interdependence of system elements. 

We have categorized the implementation areas 
addressed during the VET effort as operating 
system, software engineering services, user 
interface, data interchange, graphics, and 
networked update. We provide a brief itemization 
(see Table 3) before discussing the components. 

For the operating system, we selected SGI's Irix 
operating system, since it drives the high-end 
graphics systems we needed to test our virtual 
environment concepts. 

For software engineering services, we selected 
C++ as the high-speed graphics language of 
choice, and Java and Tcl/Tk as our 2D windows 
prototyping tools. The Profiler and RecAppI 
speech recognition components are built using 
Java, while the Steve interface was built using 
Tcl/Tk. 

The 3D user interface standard we selected was 
VRML 97, which is an ISO standard. The sensors 
nodes in VRML describe constrained ranges of 
motion for 3D objects that are most often 
encountered. We worked to extend VRML for full 
6DOF manipulation. 

For data interchange, we developed the Tscript 
message protocol, that allows scene graph 
manipulations and queries between the Training 
Studio components. For interchange of 3D 
models, we used the Geometry nodes for VRML 
97, and for interchanging behavior in a file-based 
manner, we used VRML 97 interpolators, route 
mechanisms,      and      script      nodes     which 

encapsulated a version of JavaScript. Detailed 
instructional behavior was interchanged using 
VIVIDs proprietary format. 

For high-speed 3D rendering, we based our Vista 
component on SGI Performer, a COTS 
development tool, with select libraries in Inventor 
also being used. 

For networked update of state across the Training 
Studio components, we used Tscript, and for 
update of 3D VMRL models, we used HTTP. 

Service Service Standard/ 
Area Application 
Operating Execution SGI Irix 5.3+ 
System Environment 
Software Prototyping    ; Tcl/Tk, Java 
Engineering Support 
Services 

Optimized C++ 
Rendering 

User File-based      3D VRML        97 
Interface Interaction Sensors 
Data Component TScript 
Interchange Communication 

3D Models VRML        97 
Geometry 

Behavior VRML        97 
JavaScript 
VIVIDS 

Speech Recognition Java; Entropie i 
HAPI 

Generation Tcl/Tk, 
Entropie 
TrueTalk 

Audio Sound Effects Java 
Graphics 3D Rendering SGI 

Performer 
2.0.2 
Inventor 2.2 

2D Rendering VlVlDs  using 
X11 

Networked HTTP Apache Client 
Update code for http 

services      in 
Vista 

TScript ToolTalkRPC 

Table 3.    Standards and COTS tools used for 
Training Studio components. 

D.2.1  Virtual Environment Interaction 
This section provides a technical view of the Vista 
component of the Training Studio, which is where 
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Virtual environment interaction, between the 
student and the virtual environment, occurs. 
Virtual environment interaction consists of visual 
scene display to the participant, and a means for 
the participant to manipulate the visual scene. 

Vista provides the visual context for the training 
process, and is the primary interface for the 
student. 

Vista1 provides stereo display and real-time 
interaction for 3D scenes where a student is 
immersed inside the 3D data - when Vista 
displays the engine room of a ship, they feel as 
though they are inside that engine room, and 
when they change where they are looking, the 
scene changes correspondingly. Vista, which 
was developed using the Silicon Graphics 
Performer toolkit (Rohlf 1994), also functions as 
a flat-screen display, where 3D scenes are shown 
through-the-window, for purposes of authoring 
and display on all SGI machines. 

While immersed, the student can select items, 
such as selector switches, buttons, and valves 
and use them in part of a training simulation. 
The student can also move objects if this is 
required as part of their training task. 

The capabilities of stereo immersive display and 
interaction with the scene objects are normally 
present in most virtual environment systems. 
Vista starts from this required base capability and 
extends it to support shared 3D scenes, 
monitoring the student's interaction, modification 
of the 3D scene, and modification of the student's 
view and interaction by external software. 

D.2.1.1   External Modification & Control 

Modification and control of the Vista 3D scene 
externally is accomplished by supporting the 
abstraction of named graphical objects. Vista 
understands networked commands for the 
creation of many types of 3D primitives, such as 
sphere, cubes, 3D text etc., and their placement 
in the scene graph. Vista supports loading CAD- 
derived models as graphic objects, and preserves 
named references associated with the geometry 
in the models.   For instance, a bicycle could be 

1 The Vista system initial development was sponsored 
by the United States Air Force Contract No. F41624- 
93-C-5000. 

loaded with references for the matrices controlling 
rotation of the pedals, wheels, and steering 
wheel. A named graphic object, such as bikel 
could be loaded, and a second bike2. When the 
simulation controlling the bike wished to move the 
bike in a turning fashion, it would send TScript 
messages to any Vista displays in a session to 
rotate the handlebars, rotate the wheels, and 
rotate the pedals. All networked Vistas would 
show this resulting motion, and the second bike 
could be controlled independently at the same 
time, even though its model also has references 
with the same names. 

In this manner, CAD models for ship items such 
as turbine shafts, doors, pistons, wheels, and 
valves can be tessellated and output as models 
suitable for loading in the polygon-based Vista 
display. After tessellation, the named references 
for articulation can be added. Instructional 
authors can use external tools to articulate and 
control these parts, knowing that the parts will be 
updated consistently in all Vista displays involved 
in a networked session. These named references 
also serve as identifiers during the student's 
interaction with parts. If the student select a given 
valve, all external training software interested in 
this selection action is immediately made aware 
of it. If a given simulation owns that valve, it 
simulates changes in the valve rotation 
accordingly. If a given tutoring software process 
finds that was not the correct valve for the task, it 
can react accordingly. 

Most tutoring systems need to know what the 
student is doing as a first step in helping them if 
they do it wrong, or crediting them if they do it 
right. Vista supports monitoring student actions 
by external training software. General selection 
of objects is broadcast, as is the movement of 
objects by students, and the movement of their 
view and their hands. External components can 
register events with Vista to get more detailed 
information, such as which objects are currently 
visible to the student, which objects have entered 
a given space, and which segments have 
intersected with object geometry. 

Since Vista moderates a student participant's 
interaction in a virtual environment during the 
course of training, at startup it provides for 
configuration of the student's parameters; which 
VE devices they are using, the distance between 
their eyes which is used for stereo vision, their 
height, student name, etc. Vista also provides 
other Training Studio components with references 
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to the student's view and hands, so that interfaces 
or explanatory objects can be attached to their 
view or hands. The Training Studio component 
Steve uses this capability to attach an interface 
palette to a given student's left hand. After that 
point, the Steve software does not have to devote 
effort to maintaining that palette, Vista does. 

The Training Studio provides the instructor with a 
variety of tools to control student movement and 
attention as required. Instructors can designate 
that students follow a specific path or be moved 
instantaneously to a particular location. Student 
viewpoint can be explicitly directed or left 
uncontrolled while traveling a path or remaining at 
one location. Other tools for directing attention 
include object highlighting and color cues. Also, a 
bounding area can be designated around the 
object so that student intersection with this area, 
triggers an instructional sequence. This ensures 
that the instruction plays when a student is in 
position to observe it. 

All the components of the Training Studio interact 
to provide the instructional lessons and 
environment. Because the participant is free to 
move within the environment, it is difficult to 
predict the exact location and orientation during 
run time. The simulation (VIVIDS) and agent 
(Steve) components can query the state of 
particular objects or participants by sending a 
TScript message via the communication bus. The 
Vista environment replies to the query with the 
appropriate data. 

D.2.1.2 VRML Capability 

Vista supports networked training applications, 
both in terms of TScript messages sent over the 
local communications bus, and in terms of VRML 
on the Internet. Vista is capable of using the http 
Internet protocol to fetch files, and exercises 
caching of retrieved files to increase apparent 
efficiency. The primary Internet file format 
supported by Vista is the ISO standard Virtual 
Reality Modeling Language (VRML 97) 
specification. 

The Virtual Reality Modeling Language (VRML) is 
a language for describing 3D scenes and the 
behavior of objects in those scenes which are 
delivered via the Internet. It is a platform 
independent file format and is quickly becoming 
the standard for 3D graphics interchange on the 
Internet. VRML, which is derived from Silicon 

Graphic's Open Inventor file format, is designed 
to work well over low-bandwidth connections. 
Translators exist which convert most popular 3D 
file formats to VRML, and many modeling 
programs have built support for directly editing 
and outputting VRML model files. This has made 
VRML popular and many models developed on 
various platforms are available for re-use. 

The VRML 1.0 specification evolved on the 
WWW-VRML mailing list. We have been active 
participants on this mailing list and have made 
contributions towards the VRML 1.0 and VRML 
97 specifications since April, 1994. VRML 97 is 
concerned with dynamic virtual worlds, in contrast 
to VRML 1.0 which supports static 3D scenes with 
WWW links embedded. VRML 97 is a further step 
towards the goal of describing moving, multi- 
participant interactive virtual worlds linked via the 
Internet. 

The VRML format consists of various nodes 
arranged into a tree graph, and connections 
between those nodes to achieve simulation. 
There are many types of VRML nodes, but we 
discuss those most relevant to training here, as 
well as how VMRL nodes communicate in Vista. 
VRML 97 supports 3D geometry display 
(Geometry Nodes) event generation (via sensor 
nodes) and event-passing between nodes in the 
scene, and interpolated object changes 
(Interpolator nodes). VRML 97 nodes can have 
behavior attached to them via scripting languages 
(e.g. Java, JavaScript, in Scripting Nodes), and 
VRML 97 provides a set of powerful tools for 
exchanging and using virtual worlds. 

The Anchor and Inline nodes in VRML are the 
primary way in which VRML uses the Internet. 
Whenever an Anchor is selected in Vista, a new 
3D scene is downloaded from a site on the 
Internet, to replace the current scene. Inline 
nodes are more complex, but they allow an 
instructional developer to assemble a composite 
scene from many component scenes, which may 
distributed at many sites over the Internet. 

To optimize VRML downloads for large models, 
in-lined VRML files are only transferred when the 
user is near them, and when the user is further 
away, less complex geometry is displayed. This 
is accomplished using Level of Detail (LOD) 
nodes with Inlines as children. This LOD node 
delay loading of inlined VRML files until 
necessary. This is very useful when the inlined 
files are large (e.g., the model of a ship may be 
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made up of several inlined files for decks, pipes, 
and machinery which are loaded only if the user is 
close to that part of the ship. In this way waiting 
for VRML models to arrive over the network is 
minimized). 

Sensor nodes in VRML 97 support user 
interaction. Events generated by sensors can be 
routed to other nodes via routes. The VRML 97 
sensor nodes (Proximity sensor, Touch sensor, 
Cylinder sensor, Plane sensor, Sphere sensor, 
and Visibility sensor) generate events based on 
user actions such as a mouse clicks or navigating 
close to a particular object. Time sensor nodes 
generate events at regular intervals. Sensors 
provide a very useful tool for developing training 
scenarios, e.g., a cylinder sensor attached to a 
gauge on the HPAC would cause the gauge to 
respond to user action. Similarly, a time sensor 
could be used to start an animation in a training 
scenario at a particular time and the proximity 
sensor could be used to initiate action when the 
user enters a particular region in the training 
scenario. 

Interpolators are used to update values for 
animation and illustration independent of network 
delays. Given an input value an interpolator 
evaluates a linear function to arrive at a value 
from a set of values. There are different type of 
interpolator nodes in VRML 97 depending on the 
type of value being interpolated. Vista supports 
the Color Interpolator, Orientation Interpolator, 
Position Interpolator and Scalar Interpolator. 
Interpolators provide a useful tool for creating 
training scenarios; e.g., a time sensor attached to 
a Position Interpolator could be used to move an 
engine cylinder over time. 

A ROUTE in VRML 97 is a connection between a 
node generating an event and the node receiving 
the event. A ROUTE class has been developed 
to handle routes between VRML 97 nodes in the 
Vista viewer. The significance of routes lies in the 
fact they propagate user generated events in a 
scene graph thereby making it dynamic. Routes 
allow events generated by nodes to be connected 
together, forming a path. 

In order to handle events between VRML 97 
nodes in Vista an Events class was developed. 
Instances of this class are contained in VRML 97 
nodes. This class is used for event-passing and 
creating routes between VRML 97 nodes in Vista. 
Events generated by one node can be wired to 
other nodes via routes thereby making the VRML 

scene dynamic. The event-processing model of 
VRML 97 provides a very effective tool for 
carrying out efficient simulation as required for 
training. 

The primary emphasis for Vista has been 
connectivity to other software systems, and 
flexibility in configuring virtual environment 
scenes. Using TScript messages, or VRML 97, or 
both, many forms of virtual environment display 
and interaction are possible, including live 
information    display    onboard    ship. Live 
information display, where equipment sensors 
output is processed by a software program, and 
then sent to Vista, is possible. Sensor readings 
could be displayed as colored bars near the 3D 
models of the equipment they collect readings for. 
Critical pieces of equipment located across 
several decks or multiple platforms could be 
displayed with this sensor data to view systems 
readouts in a way not normally possible while 
onboard ship. Such sensor readings and 
associated Vista display could then be used in 
training students, in this case from live recorded 
data. 

D.2.1.3 Immersed VRML Manipulation 

This section describes Vista's capability for 
immersed manipulation of conventional VRML 97 
sensors, as well as extensions to VRML for full 
six-degree of freedom manipulations (6DOF). 
Also described is the capability to manipulate all 
sensors with two hands immersed. 

VRML 97 provides mechanisms for interacting 
with moving, dynamic scenes. For VRML 97, 
human-computer interaction for the mouse has 
been fairly well defined and tested. However, a 
person carefully reading through the standard will 
note the mention of 3D pointing devices, such as 
a wand, in sections describing Sensors. Here we 
discuss an immersed interaction approach for 
VRML 97 scenes, and an implementation. We 
also provide refinements or cautions for those 
VRML 97 node types that can be interpreted 
differently in an immersed setting. 

The Vista capability for immersed manipulation of 
VRML sensors can be used in an ego-centric 
manner, or an exo-centric manner. The 
egocentric manner is direct manipulation by 
intersecting (touching) sensors, and the exo- 
centric manner is projected manipulation, where 
the user pinches their fingers visually over the 
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Figure 7. conventional VRML 97 sensors can be directly manipulated while immersed 
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object, at distance, which is similar to a mouse. 
A useful taxonomy of usability characteristics for 
virtual environments is (Gabbard 1997). For 
VRML interaction, we follow a number of the 
recommendations in this report, notably a uniform 
object selection approach, and a two-handed 
manipulation approach that recognizes the 
dominance difference between hands (see Figure 
7, Figure 8, Figure 10). 

Before discussing the interaction differences 
between VRML 97 immersed and flat-screen, it is 
useful to explicitly indicate the similarities. For the 
most part, nodes included in the VRML 97 
categories of Leaf Nodes, Geometry, 
Appearance, or Geometric Properties are no 
different immersed from flat-screen. All the Group 
nodes have a direct interpretation immersed, 
including the Billboard  Node. Finally, the 
Interpolators do have the same interpretation flat- 

screen or immersed. The primary difference is in 
the use of Sensors and view modifying nodes. 

When using a head-mount display to view a 
scene, the user can very quickly rotate his head 
in different directions to view different parts of the 
scene, while independently moving his hands for 
interaction. Generally, the user has greater 
flexibility when interacting with 3D objects 
immersed than using a flat screen and mouse. 
This flexibility comes with some problems that 
don't occur in flat-screen mode; the user can 
select objects not in their view, events may be 
uselessly generated as they quickly change view, 
programmed view transitions must be handled 
carefully, and an absence of force feedback may 
result in unnatural interactions. 

To deal with out-of-sight selection problems 
immersed, our VRML 97 implementation does not 
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generate any events if the intersection point with 
VRML geometry is outside the field of view. 

To interact with VRML 97 scenes the user must 
be able to use interaction devices to touch objects 
and trigger sensors. In flat-screen browsers, the 
user interacts with objects in the scene using the 
mouse only if an object is visible. In an immersive 
environment, depending on the interaction 
approach, the user may need to navigate close to 
the object even if it is already visible. So for 
immersed users, there may be additional steps 
involved in interacting with objects. In the case of 
direct interaction using a glove, the user would 
have to get very close. The advantage for direct 
interaction is the possibility of directly 
manipulating objects, rather than having the user 
make a cognitive mapping from a moving mouse 
to the actual motions of a 3D object. 

Another interaction difference occurs when 
viewing behavior is triggered as a result of user 
action. In flat-screen mode, interacting with parts 
of the scene often doesn't have to need to 
reposition to see the behavior generated by this 
action. This is because the user is often at a 
distance from the scene when interacting with it. 
In an immersive environment the user may need 
to be close to the object he in order to interact 
with it. After interacting with the object the user 
might have to pull back in order to observe the 
resulting behavior. This required when the size of 
the object is large because when the user is close 
the object occupies a large area of his field of 
view. We observed this to be a problem when we 
used the glove to interact with a robot in a VRML 
97 scene. 

An immersed user can directly rotate and move 
objects in all six degrees of freedom. Because the 
user has more freedom of motion in an immersive 
environment than in flat-screen mode, it is harder 
to restrict the user's interaction with sensors to a 
plane, cylinder or sphere. The immersive VRML 
97 implementation should use alternate strategies 
to deal with any disadvantages of this freedom in 
a 3D setting. 

Without force feedback, it is too easy to put your 
hand or other manipulation device through an 
object, since there is no force to limit the hand to 
the surface of an object. Therefore directly 
placing your hand and applying pressure to rotate 
or move an object doesn't work well. However, 
an interaction approach that allows the user to 
manipulate objects, as near to touching the object 

as one would in reality, is stiil desirable. We 
have arrived at an approach that allows nearly 
direct manipulation, but stili adheres to the VRML 
97 interaction principles for a mouse that can 
make interaction at a distance easier. 

Viewpoint nodes are used to provide different 
views of the scene. A ProximitySensor can be 
used to trigger a Viewpoint node and so if a user 
is in a particular region then his view is attached 
to a Viewpoint node. If this viewpoint moves then 
the user's view also moves with it. In flat-screen 
mode a sudden change in viewpoint is okay 
because the user is not immersed. In an 
immersive environment a sudden change in 
immersed viewpoint can adversely affect the 
user; they can become disoriented. We propose 
that a change in immersed viewpoint should be 
gradual, similar to the effect achieved through 
orientation and position interpolators. 

ProximitySensors can be very useful for reducing 
the complexity of the scene when immersed. In 
VRML 97, in addition to the geometry being 
drawn, events are processed in response to user 
action. Sensors and script nodes which add 
behavior to the scene can be culled (switched 
off) depending on where the user is in the scene. 
Events for behaviors not in the user's proximity 
should not be processed. This is true for flat- 
screen browsers as well, but is more critical 
immersed. 

In an immersive environment the user has more 
freedom to look around, and expects to be able to 
look around. The VisibilitySensor is very useful 
for finding out where the user is looking. This can 
be of great help in training scenarios where the 
trainee(s) might not be looking where they are 
supposed to, since VisibilitySensors can be used 
to determine if the user is looking at the desired 
object. The other use of a VisibilitySensor is to 
determine if some behavior must be started. 
Since in an immersed environment the user has 
greater flexibility, the user could potentially initiate 
behavior unintentionally as they sweep their view 
to look in another direction. For most cases, 
events should be passed and behavior of objects 
displayed only if the objects are visible. Also, the 
behavior should start only if the user looks at the 
object for a minimum time, such as a default of 
five seconds. This could help prevent the display 
frame rate from dropping because of 
unnecessary event generation. 
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Figure 8. TransformSensor and SnapSensor allow assembly of VRML objects using full free-form motion 
(6DOF) 
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We have extended the VRML standard to allow 
free-form manipulation of objects while immersed. 
Our driving goal was immersed training for 
equipment operations and maintenance, and to 
this end we developed a sensor that allows 6DOF 
manipulation, a cooperating sensor that allows 
snapping objects into place as part of an 
assembly, and a two-handed manipulation 
approach for these sensors. 

We discuss our implementation of 
TransformSensors and SnapSensors, for both 
single and two-handed manipulation of objects. 
Free-form manipulation of objects is a necessary 
prerequisite   to   our   work   in   applying   virtual 

environments to training. We are supporting 
operations and maintenance training on CAD- 
derived shipboard equipment, where it is a 
common task to pull objects out, assemble them, 
and snap or plug them into assemblies. 

A TransformSensor (see Figure 8) is used to 
designate an object as being moveable in all six 
degrees of freedom; i.e., by changing translation 
and rotation concurrently, such as is possible with 
a 6DOF position sensor (Ascension, Logitech, 
Polhemus, etc.). The changed rotation and 
translation can be routed to a Transform node, 
Script node, etc. 
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The SnapSensor (see Figure 8) is used to 
designate certain locations in the scene graph as 
snap locations. By using a SnapSensor, the 
content author can specify that a given type of 
object will fit into that location. The SnapSensor 
holds the position and orientation of the object 
when it snaps. This is useful for designating a 
location where a nut will fit into a bolt, a shaft will 
fit into a casing, etc. Most importantly, snapping 
allows the author to overcome imprecision in 
movements that is common in immersed systems 
that have no physical feedback for hard surfaces. 
Our technique for snapping is based on range 
checks. 

To support equipment maintenance and 
operations training, it is necessary to let people 
tear apart objects and put them back together, to 
replace parts or open them to inspect them. For 
realistic training and effective evaluation of skills, 
a level of freedom during performance is often 
required; i.e., a single "correct" path cannot be 
pre-defined or, therefore, pre-authored. Multiple 
solution paths can exist for reasons relating to 
both procedures and the object itself. Procedural 
differences are common to real world behavior 
and can be due to a trainee's reordering of sub- 
tasks that are independent, and not strictly 
hierarchical. Issues involving free manipulation 
also arise when authoring the behaviors of 
models used for equipment maintenance and 
operations training. Often assembly of equipment 
involves several objects that may or may not be 
functionally interchangeable, but are physically 
similar. 

The primary techniques we selected as critical to 
support real-world manipulation during training 
include 6DOF manipulation, two-handed 
manipulations, and snap locations for object 
placement. Allowing for 6DOF manipulation is 
particularly important when providing realistic 
interactions within the environment. More 
restrictive manipulations would probably suffice 
for operations at consoles or panels, but 
maintenance often requires more complex 
interactions. Support for combined translation and 
rotation of objects is essential for tasks such as 
part replacement or component assembly. 

Provision for two-handed manipulations is 
important if the experience is to extend to real 
world interactions. For example, to remove a 
large panel or other piece of equipment, the 
object must sometimes be pulled straight out or at 
an angle, which requires two hands on a single 

object. For this type of manipulation, each hand 
plays a role in positioning and orienting the object. 

Figure 9. Immersed two-handed manipulation of 
pump assembly, small green arrows represent 
hands 

Two-handed manipulation is also needed for 
simultaneous manipulation of multiple objects. In 
the example of disassembling an oil pump (See 
Figure 9), three rings are removed from a shaft 
previously removed from the pump. The shaft 
must be held with one hand while the other 
removes the rings. Manipulation techniques must 
be available for both hands, each controlling a 
different object. 

Two-handed, immersed manipulation of VRML 
TransformSensors is accomplished in the Vista 
Training Studio component using the non- 
dominant hand for gross translation of the object, 
and the dominant hand for fine orientation of the 
object, similar to the two-handed approach by 
(Cutler 97) and (Guiard 94) (see Figure 10). The 
steps below describe the two-handed approach: 

Figure    10.    Two-handed   manipulation,    non- 
dominant hand translates, dominant hand orients 
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2. 

3. 

5. 

The first hand that does the pick operation 
determines the object to be manipulated (Roll 
from the first hand is ignored). 
Translation is determined by the first hand to 
select the object. 
The second hand intersects the same object 
and the segment between first and second 
intersection points on the object defines a 
vector, V0. Its direction is from the first 
intersection point to the second. 
Either one or both hands are moved and the 
segment between the two endpoints of the 
two hands determines Vector VV No further 
intersections with the object are required. 
The object is rotated so that initial vector is 
aligned to the new vector as the two hands 
change locations. 

Another issue involves connecting objects within 
the immersed environment. This is essential for 
equipment operations since the assembly of 
components requires joining objects, for example, 
screwing in a bolt, joining two pipes, or inserting 
alignment screws. These are tasks that require 
precise object alignment, which is difficult in the 
immersed environment. Requiring such precision 
in an environment that lacks tactile feedback 
might affect the training process since the focus 
shifts from the training content to the training 
environment. Instead, we simplify matters so that 
if the trainee places the appropriate type of object 
in a location that is authored to accept the object, 
then the object will automatically snap into place. 

D.2.1.4 Concurrent Interaction 

Immersed virtual environments provide greater 
freedom of movement and views than more 
traditional forms of computer-based learning. 
This works well for allowing students to 
experiment and familiarize themselves with their 
surroundings, however, there are times that an 
instructor must ensure that interaction with an 
object is perceived by the student or team, and 
must perceive with fluid situations created by a 
team. 

Vista provides a number of services that are used 
by the Steve and VIVIDS simulations to support 
human/scene interactions. There are services to 
determine world coordinates and bounding areas 
of scene objects, and modify scene objects (color, 
transforms, visibility, etc.).  There are services to 

allow students to interact with objects (Stiles 
1997, 1998), and for the changed object state to 
be updated for all the team. Services also exist to 
determine if an object is visible to a student, and 
to control the student's view for instruction. 

Events can occur in a virtual environment which 
are not perceived by student's with a free-ranging 
view of the 3D scene. This problem is 
compounded when multiple participants must 
observe an event since multiple views and 
locations must somehow be transitioned to the 
desired view. 

The Vista Viewer provides the instructor with a 
variety of tools to control student movement and 
view. The instructor can transition the student on 
a set path or can instantaneously move the 
student to a new location. The latter works well 
for situations in which the participant is fully aware 
of the shift, for example, has pressed a location 
on a map. However, merely snapping all 
participants to a desired viewpoint to view a 
demonstration, for example, could be 
disconcerting and disorienting. Vista implements 
viewpoint transitions by moving the user from the 
initial destination to the desired orientation by 
moving slowly initially, then speeding up towards 
the end. The movement begins slowly to allow 
the participant to become better oriented and 
establish a spatial relationship between the two 
views. Steve can wait until all students are in 
position to view the event before actually 
triggering the event. This is done by the use of 
proximity sensors located on the object that will 
be viewed. The proximity sensors communicate, 
by identity, when a user enters or exits the 
defined area. 

During normal operation each participant has one 
Vista Viewer assigned to him. The introduction of 
multiple viewers requires coordination of each 
viewer to ensure scene consistency between 
participants. VRML sensors, for example, allow 
the environment to respond spontaneously and 
naturally to an individual's action. Respective 
sensors in the other displays, however, must be 
triggered to ensure that all participants share the 
same view. Likewise, it is not enough to provide 
a representation of other team members for 
individual displays; the actions of team members 
(and results from those actions) must also be 
broadcast and displayed. Views of participants 
must be tracked and coordinated to ensure that 
specific events are viewable by all required 
participants. 
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We currently update most of our 
training simulation state visually by 
means of TScript messages sent 
from the training simulation to all 
Vista     Viewers. We     also 
automatically route VRML sensor 
values generated by a student 
participant in one Vista to other 
Vista displays (see Figure 11). 
The VRML routing of a sensor 
event goes across the network, 
and the event is routed as though it 
had occurred internally to the 
receiving Vista Viewer. This is a 
necessary capability to share 
visual state as actions occur. 
Currently the underlying training 
simulation is always in synch with 
the Vista Viewer making changes 
to the state, but the simulation 
does not update all other Vista 
Viewers to reflect the change. We 
could keep Vista displays 
synchronized in this manner, but it 
involves an additional message for 
every event and wouldn't scale 
simulations well. 

Figure 11. VRML scene graphs are updated across network by 
broadcasting sensor changes along routes, and no modification of 
VRML file is needed 

VRML Scene Graphs 
Vistal Vista2 

up to larger 

To support individual remediation and instruction, 
our approach also allows for private (per- 
participant, temporary) changes to the 
simulation/scene to an individual display for ad 
hoc lessons. Once the remediation is complete, 
the individual's scene must update to allow 
him/her to rejoin the scene. 

D.2.1.5 Authoring with Commercial Tools 

The full spectrum of 3D modeling is quite 
complex, and often authors building 3D scenes 
need many different tools to get the effect they 
desire, or to work with the data they are given. 
Early in the VET program, we embraced the use 
of ISO standards for 3D geometry commercial-off- 
the-shelf (COTS) authoring technology for 3D 
scenes. The result was that we built Vista 
capabilities to load and interact with VRML files in 
support of a commercial authoring capability. 

Many commercial tools are available to edit 3D 
models and export as VRML scenes that can be 
used immersed in the Vista Training Studio 
component.   Commercial VRML authoring tools 

include CosmoWorlds, VRCreator, Sony 
Community Place Conductor, Caligari TrueSpace, 
and Studio3D. Commercial CAD vendors such as 
Intergraph, Parametric Technologies ProEngineer 
and SDRC Ideas provide VRML export capability. 

The typical authoring process begins by obtaining 
3D models for the training domain, and converting 
these to VRML. Once the conversion to VRML is 
done, the scene graph structure of the VRML 
scene should be modified to support later 
manipulation and interaction. For instance, if an 
engine assembly object has both the engine and 
valves as one complex set of geometry, and the 
valves must be manipulated for instruction, the 
valve geometry must be separated from the 
complex engine geometry, so that VRML sensor 
manipulations can turn the valves without turning 
the entire engine. 

Then the VRML models detail is reduced to 
acceptable polygon counts, colors, materials, and 
textures are changed to more closely approximate 
the real equipment, and equipment items that will 
be manipulated are named for reference in Vista 
by the other Training Studio components, such as 
VIVIDs. 

Then interaction with the VRML objects is 
authored, using VRML sensor nodes. Doors, 
dials, thrust controls,  valves,  etc.  all  can  be 
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manipulated by CylinderSensor nodes. Loose 
items of equipment, and those that are 
assembled, are modeled using TransformSensors 
and SnapSensors. Sliders and plane-constrained 
objects are authored with PlaneSensors, and 
free-rotating joints are authored with 
SphereSensors. 

Once constrained manipulations have been 
specified with VRML sensors, the referenced 
nodes in the VRML scene graph geometry are 
made available to VIVIDS authors using the 
Profiler Training Studio component. The VIVIDS 
author loads the VRML scene into VISTA in one 
window, uses the mouse to select objects in the 
VRML scene, and sees their reference name in 
the Profiler. Using this reference name, rules and 
object behavior can be edited in VIVIDS, and the 
effect can be tested out in Vista, all in the same 
session. 

D.2.2 Simulation-based Training 

This section describes the VIVIDS component of 
the Training Studio. VIVIDS is used to author and 
deliver Training Studio equipment simulations and 
related instruction. 

D.2.2.1  Authoring 2D/3D Equipment 
Simulations with VIVIDS 

Intelligent tutoring systems (ITSs) often include 
interactive graphical simulations. For many types 
of tutoring, the use of an interactive graphical 
simulation helps to assure that what students 
learn is relevant to actual tasks that they must 
learn to perform, in a way that a primarily textual 
or static graphic approach to learning interactions 
cannot. Interactive simulations can help to ensure 
that performance skills—as opposed to mere test- 
taking skills—are acquired as a result of tutoring. 
To date, most research projects on intelligent 
tutoring systems that have incorporated 
simulations have relied on low level tools (i.e., 
programming languages) to develop both the 
ITSs and the simulations. Reliance on such low- 
level development techniques naturally can make 
simulation-centered tutoring extremely expensive. 
It can also make it very difficult to determine what 
features of a particular tutor are responsible for its 
efficacy. The of low-level development using 
programming languages can overwhelm the 
effects of general principles that are followed in a 
particular tutor. An authoring system, by providing 
easily edited and modifiable tutorials, can make it 
possible   for   developers   to   experiment   with 

different high-level approaches to tutoring in a 
given domain. 

VIVIDS is a descendant of the RIDES application 
for interactively authoring graphical simulations 
and simulation-centered tutorials. VIVIDS (and a 
version of VIVIDS that lacks authoring features, 
called sVivids—for Student VIVIDS) delivers 
simulation-centered tutoring to students. Because 
the simulation authoring system is designed to 
support tutorials, many types of instruction can be 
very rapidly authored, and many high quality 
instructional interactions are generated 
automatically. VIVIDS, unlike RIDES, can be used 
to develop and present simulations and tutorials 
in the context of the Vista Virtual Environment and 
in collaboration with the Steve pedagogical agent. 

D.2.2.1.1 History 

The field of simulation in intelligent tutoring 
systems (ITS) research is a large and rapidly 
growing one. The field of simulation-based tutor 
authoring systems, however, is a very much 
smaller one. In this section, we briefly discuss 
several authoring systems for the development of 
simulations for learning. 

STEAMER (Williams, Hollan, and Stevens, 1981; 
Hollan, Hutchins, and Weitzman, 1984) provided 
a direct manipulation simulation for students 
learning about a steam propulsion plant. The 
STEAMER project is an important spiritual 
ancestor of VIVIDS. It offered a discovery world 
for students and a demonstration platform for 
instructors, but it did not provide authoring tools 
for the development and delivery of instruction to 
the learner. Simulations had to be written as 
conventional computer programs. 

Forbus (1984) developed an extension of 
STEAMER called the feedback minilab, which 
could be used to produce interactive graphical 
simulations without first writing separate 
simulation programs. This early authoring system 
provided a set of predefined components (such as 
valves and switches). Composing a device of 
these components determined the behavior of the 
simulated system as a whole. 

IMTS (Towne and Munro, 1988, 1992) provided 
tools for authoring interactive graphical 
simulations of electrical and hydraulic systems. A 
library of graphic behaving objects could be 
composed,  but the  external  effects of these 
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objects had to be of either electrical, mechanical, 
or hydraulic type. IMTS supported troubleshooting 
assistance by a generic expert called Profile 
(Towne, 1984), but it could not be used to 
develop or deliver other kinds of instruction. 

An early approach to direct manipulation 
instructional authoring was Dominie (Spensley 
and Elsom-Cook, 1989). That system, however, 
did not support the independent specification of 
object behaviors; the specification of simulation 
effects was confounded with the specification of 
instruction. 

RAPIDS (Towne and Munro, 1991) and RAPIDS 
II (Coller, Pizzini, Wogulis, Munro, and Towne, 
1991) were descendants of IMTS that supported 
direct manipulation authoring of instructional 
content in the context of graphical simulations. 
These systems provided a more constrained 
simulation authoring system than is found in 
VIVIDS, and they did not offer authors low level 
control over instructional presentations. 

RIDES and VIVIDS provide much more robust 
simulation authoring tools and instructional editing 
facilities than were to be found in RAPIDS and 
RAPIDS II. The VIVIDS system has some 
features in common with the SMISLE system (de 
Jong, van Joolingen, Scott, deHoog, Lapied, and 
Valent, 1994; Van Joolingen and De Jong, 1996) 
developed by a consortium of European 
academic and industrial research groups, but is 
less restrictive about how simulations can be 
structured. SMISLE authors must separately 
specify an inner, 'real' level of behavior and one 
or more surface depictions of the behaving 
system. Similar effects can be achieved using 
VIVIDS, but they are not required. The SMISLE 
system also contains facilities for supporting 
student hypothesis formation, but lacks the 
unconstrained simulation authoring and 
instruction authoring capabilities of VIVIDS. 

D.2.2.1.2 VIVIDS Adaptations 
Collaboration with Vista 

for 

VIVIDS was modified in the course of this project 
to respond to user actions in Vista and to request 
that Vista make appearance changes based on 
computed simulation effects. Actions taken by 
students in the Vista VE are reported to VIVIDS. 
The VIVIDS simulation associates these actions 
with corresponding actions in a 2D simulation and 
uses the 2D simulation to compute the effects of 

such actions (as well as any effects due to the 
passage of time, etc.). Whenever one of the 
authored 2D simulation objects undergoes a 
change in an appearance attribute, it broadcasts 
to Vista a directive to make a corresponding 
graphical change. 

Several VIVIDS simulation objects have been 
built that can collaborate with corresponding VE 
model objects. Figure 12 shows the VIVIDS 
library interface being used to access a behaving 
rotary knob object. An instance of a graphical 
model object under the control of such a 
simulation object appears in the Vista scene 
shown behind the VIVIDS library dialog. 
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Figure 12 Simulation objects from VIVIDS library 
allow re-use of many common instructional items 

D.2.2.1.3 Simulation Development in Parallel 

Both 3D graphical model development and 
simulation behavior authoring can be time- 
consuming tasks, especially when they are 
carried out for a large and complex training 
simulation such as the Gas Turbine Engine (GTE) 
control systems. We have found it productive to 
engage in these two aspects of simulation 
development in parallel. While the Lockheed team 
developed GTE VRML graphical models using 
CosmoWorlds, a VIVIDS simulation behavior 
model was developed at Behavioral Technology 
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Labs. The major coordination that was required 
was that there be agreement about the names of 
the model objects that would exhibit behaviors by 
permitting student manipulation. The simulation 
author was able to quickly sketch 2D versions of 
simulation objects and focus on writing the rules 
for controlling their interactive behavior. The 
name of the 3D model graphic was entered into a 
VIVIDS simulation object data field so that the 
object could know where to address its graphical 
change directives. 

In this way, entire simulations can be developed 
and their behavior largely debugged by a person 
or team at one site, while at the same time 
another is building the graphical models. It is also 
possible to build knowledge units (described 
below) and even preliminary structured lessons 
before the 3D graphical model has been 
integrated with the behavioral simulation. 

n Hi" i—«»-          

*wm W» «4-)MP*i«-—rgrtl 

«•VIUEPCM 

•iQ 

?FO 

Figure 13. Independently Developed 3D Model 
and Behavioral Simulation are part of concurrent 
authoring approach 

The 2D simulation that was roughed out 
independently of the 3D model included 31 
simulation scenes-separate windows that 
graphically represent portions of the GTE control 

systems. One such scene is shown in the lower 
part of Figure 13. The author has selected a 
simulation object that represents a throttle control 
(note the black selection rectangles around the 
object) and has opened an object data view, 
which is used to enter the behavioral rules that 
determine how this object responds to student 
manipulations, and how it is affected by other 
objects in the simulation. The object data view is 
also used to enter the name of the 3D model 
node that corresponds to this behaving 2D object, 
along with other data about how the object can 
control the corresponding 3D graphics. In the 3D 
model shown above in the figure, this throttle 
object is more realistically rendered at the right 
side of the view. 

D.2.2.2 VE Patterned Exercises and Custom 
Lessons 

The VIVIDS system supports the rapid authoring 
of structured lessons for delivery in both 2D and 
3D viewing environments. The lessons are 
authored in the context of the 2D simulation, 
which lets the author focus on pedagogical 
presentations and what student actions to require 
without having to deal with 3D navigation issues. 

Two types of techniques for building structured 
lessons are provided. Patterned Exercises are 
lessons that are based on fifteen lesson 
templates that are built into VIVIDS. 
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Figure 14. Building a Procedure Exercise with a 
Patterned Exercise Editor 
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In Figure 14 above, a type of lesson on how to 
carry out a procedure so as to achieve a goal is 
being authored. The instructor simply carries out 
a sequence of steps that will bring about the goal. 
As each action is taken, the name of the 
manipulated object is added to the list of actions 
shown in the editor. Once the instructor has 
achieved the goal, he or she indicates that no 
more actions are required and then points to 
those objects that indicate that the goal of the 
procedure has been attained. 

During training, a student is asked to carry out the 
required procedure. VIVIDS evaluates the 
student's progress in terms of the indicators that 
the author pointed out. If the student is unable to 
do so, VIVIDS guides the student to carry out the 
sequence of actions that the instructor authored 
using the patterned exercise editor. 

Figure 15. VIVIDS supports custom lesson 
development 

It is also possible to build novel types of lessons 
that are not based on instructional templates. This 
is done using a custom lesson editor, shown in 
Figure 15. In this editor, an instructor can create 
new presentations, can specify questions to ask 
the student, and can author sequences of 
required student actions by carrying them out in 
the simulation. The custom lesson editor can also 
be used to edit lessons that were originally built 
using the patterned exercise editor. The lesson 
shown in Figure 15 is the one that was generated 
by the goal/procedure authoring process 
described for Figure 14, above. 

No matter which approach is used to develop a 
structured lesson, the elementary steps of the 

lesson automatically handles a good deal of 
student interaction without requiring explicit 
author decisions. For example, objects that 
students are to select or to manipulate can be 
automatically highlighted by the VIVIDS lesson to 
make them visually salient as part of the 
instructional remediation process. 

Structured lessons can be presented to students 
based on an authored course structure in 
collaboration with individual student models. The 
objectives of a course are associated with lessons 
that are designed to achieve those objectives. 
Some objectives require others as prerequisites. 
As students attain objectives, they become 
eligible for lessons designed to realize more 
advanced learning objectives. 

D.2.2.3 Opportunistic Instruction 
In addition to presenting a sequence of lessons to 
achieve the objectives of a course, authors 
sometimes find it useful to specify that certain 
lessons should be presented on specific 
occasions. For example, if a safety principle is 
violated by a student carrying out a simulated 
procedure, the author may want VIVIDS to 
interrupt with a brief lesson that drills the student 
on the violated safety requirements. This type of 
instruction is called opportunistic. Authors develop 
brief lessons using one of the standard authoring 
techniques. Then a trigger condition is authored 
that specifies when the lesson should be 
presented. It is possible to opportunistically 
present only a part of an authored lesson. When 
the opportunistic instruction is finished, the 
interrupted lesson resumes. 

D.2.2.4 Accessing Authored Knowledge 

VIVIDS provides an authoring mechanism called 
the knowledge unit editor for entering textual 
discussions about topics that can be associated 
with simulation objects. Authors can define both 
topic names and the content of the discussions 
for each topic. It is also possible to associate one 
or more structured lessons with a knowledge unit, 
and to enter key word indices that can be used to 
search among knowledge units. Figure 16 shows 
a knowledge unit editor being employed to enter a 
discussion about the Function of a simulated 
control switch in the simulation of the gas turbine 
engine control system. 
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Figure 16. VIVIDS Knowledge Editor is used to 
create spoken instruction 

Figure 17 shows the VE interface for knowledge 
exploration. A student can bring up an 
instructional user interface that consists of a 
menu of commands. Here, a student has entered 
the Show information mode by selecting that item 
on the command menu. The student then clicked 
on the frequency control knob at the lower right 
corner of the large vertical panel. This caused an 
information submenu to appear that presents the 
name of the object, its current state, and a list of 
the available discussion topics (Function and 
Operation, in this case). If the student selects the 
Function topic, VIVIDS sends the text on that 
topic (which was entered in the Knowledge Editor, 
shown in Figure 16) to TrishTalk so that it can be 
read aloud. 
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Figure   17.   Immersed   students   can   access 
authored knowledge as an aid to instruction 

D.2.2.5 Team Training Features 
Features have been added to VIVIDS to make it 
possible to direct certain elements of instruction to 
particular students in a team training task. In a 
VIVIDS lesson, actual interactions with students 
are controlled by elementary lesson steps. There 
are 24 types of these, including highlighting 
simulation objects, requiring an action, triggering 
a simulation event, presenting text, asking a 
question with a menu of answers, and so on. 
Authors can specify to whom most of these 
lesson steps should be directed. An example of a 
type of lesson step that cannot be presented to a 
particular student is a Set Configuration, which 
restores the entire simulation to some previously 
authored state. For those lesson steps that can 
be directed to particular students, the default is to 
direct the step to all the students. 

For those types of lesson steps that require the 
manipulation of a simulation object, such as a 
switch, knob, or lever, if a participant is specified, 
then only that participant will actually be able to 
carry out the action. Attempts by other students to 
perform the required action will be blocked. This 
system gives authors a good deal of flexibility in 
determining how a team training lesson will be 
presented 

D.2.3 Pedagogical Agents 

This section provides a technical view of the 
Steve component of the Training Studio. 

The VET project developed the Soar Training 
Expert for Virtual Environments (Steve) 
architecture for pedagogical agents. Steve has 
been used to create animated pedagogical agents 
that can monitor students performing tasks, 
demonstrate tasks, and answer questions. These 
agents appear in the virtual environment as virtual 
human figures, allowing them to participate as 
team members and engage in face-to-face 
dialogs    with    students. Such    animated 
pedagogical agents are a natural means for 
delivering instruction in virtual environments. 

D.2.3.1   Motivation 

Virtual reality creates an opportunity for a new 
breed of computer tutor: the tutor can appear as 
an autonomous, animated agent that cohabits the 
virtual world with students and other agents. 
Such a pedagogical agent provides two  key 
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advantages. First, the agent and student can 
carry on a face-to-face tutorial dialog, situated in 
the virtual world. Unlike previous disembodied 
computer tutors, the agent can demonstrate 
actions, use locomotion, gaze, and deictic 
gestures to guide the student's attention, and use 
many of the nonverbal cues that people use to 
regulate their conversations. Second, such 
agents can support team training; in addition to 
serving as tutors for students playing roles in a 
team, they can also play the roles of missing team 
members, allowing students to practice team 
tasks even when their human teammates are 
unavailable. To explore this new breed of 
computer tutor, we developed a pedagogical 
agent named Steve (Soar Training Expert for 
Virtual Environments). 

Steve integrates methods from three primary 
research areas: intelligent tutoring systems, 
computer graphics, and agent architectures. This 
novel combination results in a unique set of 
capabilities. Steve has many pedagogical 
capabilities one would expect of an intelligent 
tutoring system. For example, he can inform 
students when they make mistakes, and he can 
answer questions such as 'What should I do 
next?" and "Why?" However, unlike previous 
intelligent tutoring systems, Steve appears as an 
animated human character in the virtual world, 
supporting a rich interaction with students. 
Moreover, Steve's agent architecture allows him 
to robustly handle a dynamic virtual world, 
potentially populated with people and other 
agents; he continuously monitors the state of the 
virtual world, always maintaining a plan for 
completing the current task, and revising the plan 
to handle unexpected events. 

The following sections summarize Steve's 
architecture and capabilities. More technical 
details are available in our publications (Rickel 
and Johnson 1997, Johnson et. al. 1998). 

D.2.3.2 Steve's Architecture 

Like many other autonomous agents that deal 
with a real or simulated world, Steve consists of 
separate modules for perception, decision 
making, and motor control (see Figure 18). The 
perception module monitors messages from the 
communication bus and identifies events that are 
relevant to Steve, such as actions taken in the 
virtual world by people and agents and changes 
in the state of the virtual world.   The cognition 

module, which is built on top of Soar (Laird et al. 
1987; Newell 1990), interprets the input it 
receives from the perception module, chooses 
appropriate goals, constructs and executes plans 
to achieve those goals, and sends out motor 
commands to interact with the world. The motor 
control module decomposes the motor commands 
into a sequence of lower level commands that are 
sent out to the other VET components (e.g., Vista, 
VIVIDs, and TrishTalk) via the communication 
bus. 
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Figure 18. Steve's architecture consists of world state perception, motor control, and cognition blocks 
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The other components of the VET system provide 
a rich perceptual environment for Steve. 
Currently, his perception includes the state of the 
virtual world (objects and their attributes, updated 
by VIVIDs), actions taken by students and other 
agents, the location of students and agents, the 
set of objects within the student's field of view 
(updated by that student's Vista), human and 
agent speech (including messages when 
someone's speech begins and ends, along with 
the content of the utterance), and time. The 
perception module uses the messages from other 
VET components to maintain a coherent snapshot 
of the state of the virtual world, which it passes to 
the cognition module about 10 times per second. 

D.2.3.3 Steve's Cognitive Capabilities 
Steve's cognition module is organized into three 
layers. At the lowest layer lies Soar. Soar was 
designed as a general model of human cognition, 

so it provides a number of features that support 
the construction of intelligent agents, such as a 
frame-based representation of working memory, a 
production rule representation of long term 
memory, a decision cycle that includes input and 
output with an external world, a truth maintenance 
system, and automatic sub-goaling and chunking. 
However, Soar does not provide built-in 
mechanisms for particular cognitive skills, such as 
demonstration, explanation, and question 
answering. Therefore, one of our main tasks in 
building Steve was to design a layer of domain- 
independent pedagogical capabilities such as 
these on top of the Soar architecture. These 
capabilities are implemented as Soar production 
rules that can be applied to any domain. The final 
layer in Steve's cognition module is his 
knowledge of a particular domain, such as 
shipboard procedures. Given appropriate task 
knowledge for a particular domain, Steve uses his 
general pedagogical capabilities to teach that 
knowledge  to   students.      Thus,   our   layered 
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approach to Steve's cognition module allows him 
to be used in a variety of domains; each new 
domain requires only new task knowledge without 
any modification of Steve's abilities as a teacher. 

Steve's main objective is to teach students how to 
perform physical, procedural tasks, such as 
operating and repairing equipment. Thus, Steve 
needs a representation of the appropriate 
procedural knowledge for any domain that he 
must teach. Intelligent tutoring systems typically 
represent procedural knowledge in one of two 
ways. Some, notably those of Anderson and his 
colleagues (Anderson et al. 1995), use detailed 
cognitive models built from production rules. 
Other systems (Rickel 1988) use a declarative 
representation, usually some variant of a 
procedural network representation (Sacerdoti 
1977) specifying the steps in the procedure and 
their ordering. Production rule models provide a 
more flexible ontology at a price: they are 
laborious to build and difficult to maintain. In 
contrast, procedural network representations are 
more practical for domains like operation and 
maintenance of equipment; procedures may 
change frequently in such domains, so it must be 
easy for domain experts or course authors to 
represent procedures, examine them, and change 
them when necessary. For these reasons, Steve 
uses a procedural network (plan) representation 
for domain tasks. 

Steve's representation is not uncommon in the Al 
planning community (Russell and Norvig 1995), 
although, as we will discuss, it differs in important 
ways from representations in other tutoring 
systems. First, each plan consists of a set of 
steps, each of which is either a primitive action 
(e.g., press a button) or a composite action (i.e., a 
sub-plan). Composite actions give plans a 
hierarchical structure. Second, there may be 
ordering constraints among the steps. Finally, the 
rationales for the steps in the plan are 
represented as a set of causal links (McAllester 
and Rosenblitt 1991); each causal link specifies 
that one step in the plan achieves a goal that is a 
precondition for another step (or for termination of 
the task). For example, pulling out a dipstick 
achieves the goal of exposing the level indicator, 
which is a precondition for checking the oil level. 

To teach a student how to perform domain tasks, 
Steve and the student practice the tasks together. 
All of Steve's instruction and assistance is 
situated in the performance of domain tasks; 
other types  of   instruction,   like  familiarization 

lessons, are handled by VIVIDS. Ideally, students 
should learn to apply standard procedures to a 
variety of situations, and they should learn the 
rationale behind steps in the procedure. Our goal 
is to support the apprenticeship model of learning 
(Collins et al. 1989). This requires two 
capabilities: Steve must be able to demonstrate 
and explain tasks, and he must be able to monitor 
students performing tasks, providing assistance 
when it is needed. 

Whether Steve is demonstrating a task or 
monitoring the student, he must maintain a plan 
for completing the task. The plan allows Steve to 
choose the next appropriate action and, if asked, 
to explain the role of that action in completing the 
task. Steve's plans should follow standard 
domain procedures as much as possible. 
However, in order to handle dynamic 
environments, possibly containing other people 
and agents, Steve must be able to adapt those 
procedures to handle unexpected events (e.g., 
equipment failures, student errors, and teammate 
errors). Moreover, he must do so quickly, since 
he and the student are collaborating on the task in 
real time. 

To satisfy these criteria, Steve uses a novel 
combination of task decomposition planning 
(Sacerdoti 1977) and partial-order planning (Weld 
1994). Task decomposition planning is used to 
create a general model of the task (represented 
as a hierarchical plan). Partial order planning is 
used to decide which steps in the task model are 
required, in the current situation, to complete the 
task; this plan is updated whenever the state of 
the virtual world changes. This approach is 
efficient, and it forces Steve to follow standard 
procedures as much as possible, yet it still allows 
him to adapt the plan to unexpected events: 
Steve naturally re-executes parts of the plan that 
get unexpectedly undone, and he skips over parts 
of the plan that are unnecessary because their 
goals were serendipitously achieved. Thus, 
unlike videos or scripted demonstrations, Steve 
can adapt domain procedures to the state of the 
virtual world. 

The causal links in Steve's representation of 
procedural knowledge are an important source of 
power, yet they have not been used in other 
tutoring systems. Causal links allow Steve to 
construct and revise plans, because they 
represent how each step contributes to achieving 
the end goals of a task. Previous tutoring 
systems based on procedural net representations, 
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on the other hand, only represent steps and 
ordering constraints. Without causal links, these 
systems are incapable of adapting procedures to 
unexpected situations. Causal links also allow 
Steve to explain to students the rationale for his 
actions and recommendations. Other procedural 
net tutors cannot automatically generate situation- 
specific explanations this way. Neither can tutors 
based on production rules; in those tutors, the 
relationships among actions are implicit in the 
rules. 

Steve's collaboration with a student on a task is 
not rigid; he carries on a mixed-initiative dialog 
with the student, and can gracefully shift between 
demonstrating the task and monitoring the 
student performing the task. To ensure 
coherence when demonstrating a task, Steve 
maintains a dialog focus stack and dynamically 
selects cue phrases (e.g., "first" and "next") to 
indicate the relationship between a new step and 
the previous one. When demonstrating a step, 
Steve typically moves to the appropriate location, 
describes the step while pointing to the relevant 
object, performs the step, and describes any 
relevant results. The student can always interrupt 
a demonstration and ask to finish the task himself. 
When monitoring the student, Steve nods in 
acknowledgment of correct actions and indicates 
when the student has made an error. The student 
can ask Steve what to do next and why, and can 
also ask Steve to show him how to do it. 
Throughout this dialog, Steve makes appropriate 
use of gaze to regulate the conversation. To 
support after-action review, Steve uses Johnson's 
Debrief system (Johnson 1994) to maintain an 
episodic memory of his actions; after the task, if 
the student asks Steve why he did something, 
Steve recalls the situation and explains his 
rationale. 

D.2.3.4 Steve's Motor Control 

Steve's motor control module receives motor 
commands from the cognition module and 
decomposes them into lower-level commands 
that are sent to other VET components via the 
communication bus. The motor control module 
accepts a variety of commands: speak to 
someone, move to an object, look at something, 
nod or shake the head, point at an object, 
manipulate an object (in various ways), and 
change facial expression. The motor control 
module determines how these commands are 
realized in the virtual world; Steve's entire body 

can be replaced with a new one by simply re- 
implementing the motor control module. 

We have experimented with several bodies for 
Steve. The current version represents a full 
upper body of a human figure. We created the 
graphical models and animation control from 
scratch (although the head was derived from a 
public domain version of the Jack human figure 
developed at the University of Pennsylvania). 
Although software for controlling human figures is 
available from several universities, none was 
suitable for our purposes. For example, the Jack 
software (Badler et al. 1993) could not be used 
outside its own browser (i.e. could not be run 
inside Vista), and its API for control by external 
programs (such as Steve) was not sufficiently 
developed (Jack was initially designed for control 
by humans via menus). The animation control 
code we developed has proven to be efficient, 
robust, and natural looking, and it has given us 
the opportunity to experiment with different 
functionality to support our research. 

Control over Steve's body is split into two pieces. 
Steve's motor control module controls gross 
movement, while fine-level control (e.g., moving 
Steve's arm to an object or having Steve's gaze 
track a moving object) is handled by code running 
as a shared library within each Vista Viewer. The 
shared library, which was developed at ISI, has its 
own API, providing another layer of modularity. 

Although the shared library was developed for 
control by Steve, it proved useful for VIVIDS as 
well. An optional feature of the structured lessons 
offered by VIVIDS is the use of a directable 
version of Steve's body under the control of the 
VIVIDS lesson step routines. This makes it 
possible for an author to quickly build a structured 
lesson that uses Steve to remediate certain 
student errors or to carry out demonstrations. If 
the author chooses not to use Steve, 
remediations and demonstrations are carried out 
by graphically highlighting objects and then 
requiring the student to select them. After the 
student touches the object, the lesson continues. 
In the case of an action demonstration, the 
simulation effects of the required action are 
displayed once the student has selected the 
relevant control. Use of Steve for such 
demonstrations provides additional information 
that is not available in a conventional VIVIDS 
demonstration. 
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D.2.3.5 Team Training 

Agents like Steve are especially useful for team 
training, where they can serve not only as tutors 
for individual students in the team but also as 
missing team members. Steve's ability to perform 
actions in the virtual world allows his teammates 
to follow his actions. His ability to use speech 
synthesis and speech recognition allows him to 
communicate with his teammates. His ability to 
adapt to unexpected situations allows him to 
robustly operate in a virtual world with other 
people and agents. Thus, although Steve was 
originally designed for one-on-one tutoring, we 
were able to extend him to support team training 
with relatively few extensions. 

To support team training, we generalized Steve's 
task model representation. In addition to 
specifying steps, ordering constraints, and causal 
links, each team task model also has a set of 
roles (e.g., electrical operator and propulsion 
operator). The task model specifies which role is 
responsible for each step in the task. Once 
students and agents are assigned to the roles in a 
task, the information in the task models allows the 
agents to determine the actions for which each 
team member is responsible. This approach 
would not work for tasks that require teammates 
to dynamically negotiate role assignments; 
fortunately, many real-world tasks, particularly in 
the military, have fixed role assignments. 

Natural language communication is often critical 
to team coordination. To support this, we model 
speech acts as explicit actions in the task model. 
For example, one team member may 
communicate to another that a subtask is 
complete. When an agent's teammate (human 
or agent) says something, the agent interprets the 
utterance by comparing it to speech acts in the 
task model that are appropriate in the current 
situation. When a student says something 
inappropriate, the agent serving as the student's 
tutor is responsible for providing feedback. This 
approach works well when the possible 
utterances among teammates can be specified 
ahead of time. Again, although this rules out 
many ill-structured tasks, it is sufficient for many 
team tasks, particularly in the military, which have 
a prescribed set of utterances for which Steve 
agents can listen. 

D.2.3.6 Authoring by Demonstration 

One of our main objectives in designing Steve 
was that it should be easy to provide the 
knowledge he needs to teach a new domain. To 
meet this objective, we separated Steve's domain 
knowledge from his general pedagogical 
capabilities, and we ensured that he only relies on 
types of domain knowledge that a course author 
could easily provide and maintain. To further 
simplify the course author's job, we have 
developed tools that use machine learning to help 
automate the acquisition of domain task 
knowledge. 

To teach Steve about a new task, the course 
author demonstrates the steps of the task in the 
virtual world. For each action in the 
demonstration, Steve notes the state of the virtual 
world before and after the action; this provides 
one example of the effects of the action on the 
virtual world. Steve also requires the author to 
describe the action via a text string; these text 
strings will form the basis for Steve's later 
instruction to students. At the end of the 
demonstration, Steve shows the author a list of 
changes in the state of the virtual world that 
resulted from the demonstration; the author 
distinguishes those that are the end goals of the 
task from those that are incidental side effects. 
Now, given this demonstration and understanding 
of the new task's goals, Steve must learn two 
things: he must learn the causal links (i.e., the 
causal dependencies among the actions, as 
described earlier), and he must learn the ordering 
constraints among steps (in case some steps can 
be done in any order). 

To identify the causal links and ordering 
constraints, Steve experiments with variants of 
the author's demonstration. By systematically 
dropping different steps from the procedure and 
performing the resulting variant in the virtual 
world, Steve learns the preconditions and effects 
of each step, from which he can reconstruct the 
causal links and ordering constraints for the task. 
Steve's learning procedure is a novel variant of 
Mitchell's Version Space algorithm for inductive 
learning (Mitchell 1982). 

After Steve has finished experimenting with the 
task, he presents his understanding of the task to 
the course author. At this point, the author can 
make any corrections to the task model in cases 
where Steve was unable to generate enough 
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examples to eliminate some possible 
dependencies among steps. Thus, through a 
combination of programming by example (Cypher 
1993), learning by observation (Wang 1995), and 
learning by experimentation (Gil 1993), the 
author's task is reduced from providing the entire 
task description to simply providing a 
demonstration and making any necessary 
changes in Steve's resulting understanding. 

For a more detailed description of this work, see 
(Angros et al. 1997) and (Johnson et al. 1998). 

D.2.3.7 Related Work 

Although Steve draws on a long line of research 
in intelligent tutoring systems, agent architectures, 
planning, and machine learning, no previous 
systems integrate his unique range of capabilities. 
The most closely related pedagogical agent for 
virtual reality was developed by Billinghurst and 
his colleagues (Billinghurst and Savage 1996; 
Billinghurst et al. 1996). Their agent inhabits a 
3D, simulated nasal cavity, providing assistance 
in sinus surgery to medical students. However, 
their agent does not have an animated form, and 
it cannot adapt procedures to unexpected events. 
Lester and his colleagues are developing two 
animated pedagogical agents (Stone and Lester 
1996; Lester et al. 1998), but their agents do not 
inhabit 3D virtual worlds; they appear as 2D 
characters floating on top of a 2D image of a 
virtual world. Also, they do not interact with a 
simulator, nor do they have any ability to 
construct or execute domain plans. The PPP 
Persona (Andre, Rist, and Mueller 1998) is a 2D 
animated agent that can combine speech and 
gestures to describe procedures for operating 
physical devices, but it cannot interact with a 
simulator, and it has no pedagogical capabilities 
except the ability to describe a procedure. None 
of these other agents supports team training. 
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E Summary 

This section summarizes the Virtual Environments 
for Training effort, covering significant results, 
suggested courses of action, and future plans. 

E. 1   Significant Results 

The VET project focused on immersed instruction, 
culminating with the successful development of 
the Training Studio prototype, an authorable 
system for team instruction in a virtual 
environment. Several key advances have 
resulted from the VET program: 

♦ Pedagogical agents that can act as student 
mentors or team members during training 

♦ Component-based instructional systems 
♦ Authorable   virtual   environment   interaction 

applicable across domains 

In the executive summary of our 1994 VET 
proposal, we proposed to develop an instructional 
system that integrates the design, development, 
delivery, and evaluation of training curricula with a 
comprehensive virtual environment. Using our 
Training Studio system, authors can design and 
develop instruction for delivery to students, and 
evaluation of their performance, in an immersed 
virtual environment. Thus, the VET Training 
Studio is an example of an integrated, working VE 
system for constructing, managing, and 
interacting within virtual environments. 

VET has advanced the state of the art in the use 
of intelligent agent technology for training in 
virtual environments. Steve is able interact with 
students in un-scripted training scenarios. He can 
act either as instructor or team member. By 
integrating intelligent agents (pedagogical agents) 
into virtual environments, we have significantly 
enhanced the value of such environments as 
vehicles for training. 

VET has shown the feasibility for component 
based instructional authoring and delivery tools. 
Our separation of presentation and interaction 
(Vista), equipment model (VIVIDS), and human 
models (Steve) has shown that its possible to 
attain advanced instructional capabilities using a 
component-based approach. 

VET has shown that immersed virtual 
environment interaction can be authored using 

standards for 3D geometry, constraints, and 
behavior, in a manner that is not specific to the 
VE software, and in a manner that can be used 
with advanced instructional components to 
achieve new types of interaction with the Student 
for instruction, such as those shown with Steve, 
and the general concept of Spatial Dialog. 

E.2   Suggested Course of Action 

The VET work has demonstrated the potential of 
virtual environments to provide effective team 
training at reduce cost. ONR should encourage 
further evaluation of the technology on fleet 
problems, in order to encourage the transition into 
Navy training practice. 

Meanwhile, further research and development 
needs to be conducted on ways of integrating this 
technology into work environments via 
augmented reality techniques, combining 
pedagogical agent technology with state-of-the-art 
human figure technology such as Jack, and 
exploiting the tracking data in the virtual 
environment in order to perform quantitative 
assessments of student performance. 

One novel research area uncovered during this 
effort is spatial dialog, where the spatial context of 
the user is used to conduct a meaningful spoken 
dialog with a computer. Spatial context includes 
direction of the person's gaze, the objects in their 
view, the objects they are touching, the objects 
they can touch, the objects they are near, the 
routes they can navigate, and their current spatial 
task. By using spatial context as part of 
understanding a user's speech, more natural 
language understanding capabilities can be 
achieved. Similarly, by using visual cues in the 
spatial context, the speech produced by the 
computer can be enhanced. Steve's actions to 
point out equipment, and to lead the way through 
the ship during instruction are examples of this. 
Prior to virtual environments, much of the spatial 
context was not available for speech dialog 
systems, and many projects continue to ignore 
spatial context in a world where we largely 
engage in spatial dialog with each other. An 
example of this is a an instructor pointing at a 
wrench, and telling the student to "Pick it up", 
another example is a waitress bringing a cart of 
deserts to a table and asking the people seated 
there "Which of these would you like?" There are 
many more complex examples that we handle in 
everyday life. 
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E.3   Future Plans 

Within Lockheed Martin, the Advanced 
Technology Center will continue development of 
Vista. We plan to expand Vista's capabilities in 
three areas: mediated reality, where 3D scenes 
are over-layed on the real surrounding scene, 
enterprise integration, where CAD models are 
used for prototyping training and usage, and 
spatial dialog, where visual context is used to 
dramatically improve human-computer spoken 
dialog. 

USC / Behavioral Technology Laboratories 
continues to build on the VIVIDS technologies 
under two funded research projects. The lessons 
learned in the VET project are driving the 
development of a newVivids architecture for 
simulation-centered tutors. The goal here is to 
develop an architecture and certain realized 
components of that architecture for the 
development and delivery of simulation-centered 
tutors in a very wide range of contexts. One 
application of the architecture will be a facility for 
authoring 2D simulation tutors for delivery on 
Java platforms, using a lightweight universal 
simulation player. A data-driven tutorial player is 
also under development. This tutor delivery 
system is designed to work in a wide variety of 
both 2D and VE-based simulation environments. 

the demonstration examples. In the coming year 
Mr. Angros will perform usability evaluations of 
Diligent and write up and publish his work. Ben 
Moore, an undergraduate, has developed an 
interface for authoring the interface between 
Steve and the virtual environment, e.g., defining 
Steve's primitive manipulations of virtual objects. 
Our research in natural interaction with students 
has investigated the use of auditory feedback to 
facilitate student interaction with the virtual 
environment. In our continuing work, Steve will 
maintain a model of the ongoing dialog with 
students, in order to facilitate natural interaction 
between students and Steve agents. 

The pedagogical agent technology developed as 
part of the VET project has broad applicability 
potential both in immersive virtual environments 
and in more conventional desktop environments. 
USC / ISI has teamed with Intelligent Systems 
Technology, Inc. on an Air Force SBIR Phase II 
grant to productize the technology. Meanwhile, 
Steve provided the basis for USC / ISI's Adele 
pedagogical agent, designed for instructional use 
in the health sciences. USC plans to incorporate 
pedagogical agent technology into health science 
courses in the spring of 1999. 

USC / Information Sciences Institute's AASERT 
grant is a three-year effort focusing on two areas: 
natural interaction with students, and natural 
action with instructors. Richard Angros, a Ph.D. 
student, developed an authoring interface called 
Diligent that allows instructors to author Steve's 
task knowledge by demonstration (Angros et al 
1997). Using Diligent, a course author can 
demonstrate tasks to Steve. Diligent then directs 
Steve through a process of trying variations on 
the demonstrated task, in order to generalize from 
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