
Virtual Environments for Training
Final Report

18,0 «W» Bann»,,
20000106 099

Virtual Environments for Training

Final Report

Bound Final Report
LMMS Doc. Control #P499363
Virtual Environments for
Training Final Report

TECH POC: Randy Stiles
650.354.5256 Randy.StilesG
LMC0.COM

Prepared for
Office of Naval Research

Contract N00014-95-C-0179
(CDRL A002 Final Report)

April 1999

Submitted by
Randy Stiles

Advanced Technology Center
Lockheed Martin Missiles & Space

0/L922 B/255, 3251 Hanover St.
Palo Alto, CA 94304-1191

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Office of Naval Research or any other
part of the U.S. Government.

DISTRIBUTION STATEMENT AUTHORIZATION RECORD

Title: ///>///4/ £AV/P6nme*fs fcr Tratfl'Ag

Authorizing Official: f{&/e,/l & /OJ'e.\j

Agency: off*. ■*■ No. (W/U<t6*0¥<i7

| [Internet Document: URL:
(DTIC-OCA Use Only)

Distribution Statement: (Authorized by the source above.)

B_] A: Approved for public release, distribution unlimited.

I-] B: U. S. Government agencies only. (Fill in reason and date applied). Other
requests shall be referred to (Insert controlling office).

["I C: U. S. Government agencies and their contractors. (Fill in reason and date
applied). Other requests shall be referred to (Insert controlling office).

G D: DoD and DoD contractors only. (Fill in reason and date applied). Other
requests shall be referred to (Insert controlling office).

□ E: DoD components only. (Fill in reason and date applied). Other requests

shall be referred to (Insert controlling office).

n F: Further dissemination only as directed by (Insert controlling DoD office

and date), or higher authority.

(__ X- U. S. Government agencies and private individuals or enterprises eligible
to obtain export-controlled technical data in accordance with DoD Directive

5230.25.

NOTES:

//re, ifciU t fat £°<*
DTIc/'oint of Contact Date 3#
DTICfoi

Virtual Environments for Trainin Final Report

LOCKHEED MAR ™fr
Lockheed Martin Missiles & Space
Advanced Technology Center
3251 Hanover Street, Palo Alto, California 94304-1191

Monday, April 26,1999
Program Officer
Code 342, Helen Gigley, Ph.D.
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660
Ref:N00014-94-C-0179
(703) 696-0407

Subject: Virtual Environments for Training Final Report

Dear Dr.Gigley;

This document constitutes the Virtual Environments for Training (VET) Final Report. This report describes
reusable results, identifies problems common to similar efforts, notes useful ideas, and provides
suggestions for further related activities. This report also serves as a record of tasks accomplished to
satisfy the proposed VET work.

The final report sections were created using input from Lewis Johnson, Ph.D., and Jeff Rickel, Ph.D. at
USC Information Sciences Institute, Marina Del Rey, CA, and Allen Munro Ph.D., and Quentin Pizzini,
Ph.D. at USC Behavioral Technology Labs, Redondo Beach, CA. The research and development
described in this final report is the collective effort of these people: Rich Angros, Craig Hall, Ph.D., Carol
Horwitz, Lewis Johnson, Ph.D., Mark Johnson, Laurie McCarthy, Mihir Mehta, Allen Munro, Ph.D.,
Quentin Pizzini, Ph.D., Jeff Rickel, Ph.D., Erin Shaw, Ph.D., Randy Stiles, Sandeep Tewari, Marcus
Thiebaux, and Josh Walker.

We really appreciated the opportunity to work for the Office of Naval Research on the Virtual
Environments for Training contract. I feel that our team has accomplished the objective that we proposed
for the VET Focused Research Initiative: "to develop an instructional system that integrates the design,
development, delivery and evaluation of training curricula within a comprehensive virtual environment'.

Respectfully,

^r<w

Randy Stiles
Program Manager, Virtual Environments for Training
0/L922 B/255

Randy.Stiles® LMCO.COM
http://vet. pari. com/- vet/
(415)354-5256, fax: (415)354-5235

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final ReDort

Table of Contents

A EXECUTIVE SUMMARY A-l

B INTRODUCTION B-4

B.l PROGRAM FINAL REPORT B-4
B.2 PROGRAM TEAM B-4
B.3 PROGRAM OBJECTIVES B-4

C METHODS & APPROACH C-6

C.l COMPONENT SYSTEMS C-6
C.2 MULTI-MODAL INTERACTION C-6
C.3 AUTHORABLE SYSTEMS C-6
C.4 TASK-BASED INSTRUCTION C-7
C.5 TEAMTRAINING C-7
C.6 OPERATIONAL VIEW C-7

C.6.1 Instructional Development C-7
C.6.2 Instructional Delivery C-10

D RESULTS D-12

D.l SYSTEM VIEW D-12
D.2 TECHNICAL VIEW D-15

D.2.I Virtual Environment Interaction D-15
D.2.1.1 External Modification & Control D-16
D.2.1.2 VRML Capability D-17
D.2.1.3 Immersed VRML Manipulation D-18
D.2.1.4 Concurrent Interaction D-23
D.2.1.5 Authoring with Commercial Tools D-24

D.2.2 Simulation-based Training D-25
D.2.2.1 Authoring 2D/3D Equipment Simulations with VTVIDS.... D-25
D.2.2.2 VE Patterned Exercises and Custom Lessons D-27
D.2.2.3 Opportunistic Instruction D-28
D.2.2.4 Accessing Authored Knowledge D-28
D.2.2.5 Team Training Features D-29

D.2.3 Pedagogical Agents D-29
D.2.3.1 Motivation D-29
D.2.3.2 Steve's Architecture D-30
D.2.3.3 Steve's Cognitive Capabilities D-31
D.2.3.4 Steve's Motor Control D-33
D.2.3.5 TeamTraining D-34
D.2.3.6 Authoring by Demonstration D-34
D.2.3.7 Related Work D-35

E SUMMARY E-36

E.l SIGNIHCANT RESULTS E-36
E.2 SUGGESTED COURSE OF ACTION E-36
E.3 FUTURE PLANS E-37

FBB3LIOGRAPHY F-38

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Report

Table of Figures

TABLE 1. TRAINING STUDIO INSTRUCTIONAL DELIVERY THUMBNAIL DESCRIPTION (SEE SECTION C.6.2) A-2
TABLE 2. TRAINING STUDIO INSTRUCTIONAL DEVELOPMENT THUMBNAIL DESCRIPTION (SEE SECTION C.6.1) A-3
TABLE 3. STANDARDS AND COTS TOOLS USED FOR TRAINING STUDIO COMPONENTS D-15

FIGURE 1. THE TRAINING STUDIO SOFTWARE IS A PROGENITOR FOR A "HOLODECK" WHERE PEOPLE ENGAGE IN

IMMERSED INTERACTION WITH SIMULATIONS OF OTHER PEOPLE AND SCENES A-L
FIGURE 2. TRAINING STUDIO DELIVERY USAGE MODEL EMPHASIZES INTERNET (WWW) DISTRIBUTION C-7
FIGURE 3. TRAINING STUDIO DEVELOPMENT USAGE MODEL ALLOWS CONCURRENT DEVELOPMENT C-8
FIGURE 4. TRAINING STUDIO USAGE MODEL FOR 3D MODEL DEVELOPMENT EMPHASIZES REAL-TIME IMMERSED

INTERACTION WITH VRML 97 SCENES C-9
FIGURE 5. IMMERSED INSTRUCTIONAL DELIVERY ENABLES TRAINING FOR DIFFERENT TEAM ROLES, AND LOCATIONSC-

10
FIGURE 6. VET TRAINING STUDIO ARCHITECTURE USES BROADCAST MESSAGES TO MAINTAIN WORLD STATE

BETWEEN COMPONENTS D-12
FIGURE 7. CONVENTIONAL VRML 97 SENSORS CAN BE DIRECTLY MANIPULATED WHILE IMMERSED D-19
FIGURE 8. TRANSFORMSENSOR AND SNAPSENSOR ALLOW ASSEMBLY OF VRML OBJECTS USING FULL FREE-FORM

MOTION (6DOF) D-21
FIGURE 9. IMMERSED TWO-HANDED MANIPULATION OF PUMP ASSEMBLY, SMALL GREEN ARROWS REPRESENT HANDS

 D-22
FIGURE 10. TWO-HANDED MANIPULATION, NON-DOMINANT HAND TRANSLATES, DOMINANT HAND ORIENTS D-22
FIGURE 11. VRML SCENE GRAPHS ARE UPDATED ACROSS NETWORK BY BROADCASTING SENSOR CHANGES ALONG

ROUTES, AND NO MODIFICATION OF VRML FILE IS NEEDED D-24
FIGURE 12 SIMULATION OBJECTS FROM VIVIDS LIBRARY ALLOW RE-USE OF MANY COMMON INSTRUCTIONAL ITEMS

 D-26
FIGURE 13. INDEPENDENTLY DEVELOPED 3D MODEL AND BEHAVIORAL SIMULATION ARE PART OF CONCURRENT

AUTHORING APPROACH D-27

FIGURE 14. BUILDING A PROCEDURE EXERCISE WITH A PATTERNED EXERCISE EDITOR D-27
FIGURE 15. VIVIDS SUPPORTS CUSTOM LESSON DEVELOPMENT D-28
FIGURE 16. VIVIDS KNOWLEDGE EDITOR IS USED TO CREATE SPOKEN INSTRUCTION D-29
FIGURE 17. IMMERSED STUDENTS CAN ACCESS AUTHORED KNOWLEDGE AS AN AID TO INSTRUCTION D-29
FIGURE 18. STEVE'S ARCHITECTURE CONSISTS OF WORLD STATE PERCEPTION, MOTOR CONTROL, AND COGNITION

BLOCKS D-31

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

A Executive Summary
This document is the Virtual Environments for
Training (VET) final report. VET, funded by the
Office of Naval Research (ONR), began in
October 1995 and completed in February 1999.
VET focused on immersed instruction,
culminating with the successful development of
the Training Studio prototype (see Figure 1), an
authorable system for team instruction in a virtual
environment. Several key advances have
resulted from the VET program:

♦ Pedagogical agents that can act as student
mentors or team members during training

♦ Component-based instructional systems
♦ Authorable virtual environment interaction

applicable across domains

In the executive summary of our 1994 VET
proposal, we proposed to:

"develop an instructional system that
integrates the design, development, delivery,
and evaluation of training curricula with a
comprehensive virtual environment."

Using our Training Studio system, authors can
design and develop intelligent instruction for
delivery to students, and evaluation of their
performance, in an immersed virtual environment.
Thus, the VET Training Studio is an example of
an integrated, working VE system for
constructing, managing, and interacting within
virtual environments, satisfying these challenges:

♦ The most immediate challenge at hand is one
of integrating the existing technology into a
working system, along with other elements of
VE construction software, in 1995 National
Research Council study on virtual
environment technology (Durlach, 1995)

♦ There is a need for software infrastructure
and tools for constructing, managing, and
interacting within virtual environments.
Barfield and Furness, discussing Virtual
Environment Interfaces (Barfield, 1995)

The Training Studio includes a broad range of
capabilities applicable to many types of training in
virtual environments. First, it includes extensive
support for authoring. This includes the ability to
import CAD models for rapid construction of the
3D graphical models of the virtual environment,
create the simulation behaviors of the
environment, define the instructional objectives,

Figure 1. The Training Studio software is a
progenitor for a "HoloDeck" where people engage
in immersed interaction with simulations of other
people and scenes

and construct a wide variety of training exercises.
The authoring approach is designed to ensure the
development and maintenance of high quality
instruction at significantly lower cost than could be
achieved using conventional one-time
development methods. Second, it supports
delivery of instruction in virtual environments,
including both individual and team training.
Training exercises can range from simple drill-
and-practice familiarization lessons to more
complicated training scenarios involving simulated
shipboard casualties. Moreover, the training can
include intelligent agents that appear in the virtual
world as virtual humans and serve as instructors
or teammates when human instructors and
teammates are unavailable; such agents provide
exciting new possibilities for automated instruction
and interaction with the student that are not
possible with more traditional computer-based
instruction.

To describe the VET Training Studio in this final
report, we discuss the operational, system and
technical views for the VET Training Studio.
During the VET effort, we developed and
implemented an operational view of how a VE
training system should be used, a system view of
how the components work together, and a
technical view of the standards and conventions
necessary for our training authoring focus. In the
system and technical view sections, we relate the
significance of our work on virtual environment
interaction, simulation-based training, and
pedagogical agents.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

Table 1. Training Studio Instructional Delivery Thumbnail Description (See section C.6.2)

1. Two students, Jack and Jill,
learn their roles for casualty
control procedure on board a

4. The 3D CAD setting and
equipment simulations are
used by the students and the
agents together.

Press the CCS button
initiate the transfer 3

7. The tutor agent can monitor
the student's view and actions
in the world, and the effects
are promulgated in the
simulation.

10. Jill is instructed in another
part of the ship, the engine
room.

uuoe

2. Each student wears a head-
mount display that immerses
them in the 3D CAD models
for the ship

3. Steve pedagogical agents
serve as their team-mates or
tutors. Jack's tutor is the blue
PACC operator circled above.

5. Students talk to the tutor to
try doing part of the task.
Speech acts are part of the
instruction.

Thrust control
is at CCS.

I
8. Tasks can be resumed by
the tutor.

£'"■

** p
iVK\J|

f""~

i
M

. :\ ■
11. Tutors lead students
through equipment spaces,
this is an aspect of spatial
instruction.

6. Students ask about the task
using speech recognition.
Jill's tutor is in the engine
room (inset), awaiting tasks.

9. Other team members
(agents) communicate and act
out their team roles.

Next check relief
valve pressure.
This is the problem.

12. Jill's tutor agent uses the
equipment to show her the
procedure to reset relief
valves.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Reoort

Table 2. Training Studio Instructional Development Thumbnail Description (see section C.6.1)

f

1. First authoring task is
understanding the domain, in
this case mentors oversee
team members.

2. Next authoring task is
understanding course
structure, and realizing this in
VIVIDS.

3. The equipment simulations
are authored in VIVIDS in 2D,
for eventual use in 3D.

4. 3D equipment is imported
from CAD to VRML, and
VRML COTS authoring tools
are used to define interaction.

v, .„•. vViH

i . III •. 1111L . • 11 ?.g*V-^-y?-.;s^
WV¥ ■': IS1' i Vmf- ■- ■ «i

mm&»-iiltimti*£*!&m

5. Interaction immersed, and
in shared settings is tested in
Vista, and 3D models are
modified to support interactive
rates, and behaviors.

,. -Mi
& r - UJt: V>

6. The 2D equipment
simulations in VIVIDS are
linked to the 3D behaviors in
Vista using TScript message
updates.

1 ,'5"- H Thrust control is
at CCS.

7. The Steve agent is defined
based on the task procedures,
and equipment simulations in
VIVIDS.

8. Steve agents use waypoint
information to move around
the spatial setting to different
equipment.

9. Team roles are refined, and
speech acts are modeled
between team members.
Task instruction is tested for
robustness.

Lockheed Martin Advanced Technoloav Center Contract N000U-95-C-0179

Virtual Environments for Trainint Final Report

B Introduction
This document is the final report for the Virtual
Environments for Training (VET) program, funded
by the Office of Naval Research (ONR). The VET
program's period of performance started in
October 1995, and completed in February 1999,
culminating in the successful development of the
Training Studio prototype, an authorable,
component-based system for team instruction in a
virtual environment.

Virtual environments are three-dimensional (3D)
scenes where participants perceive themselves
as being inside a 3D scene. Virtual environment
software typically draws 3D scenes many times a
second so that motion in the scene in relation to
head movements is perceived as fluid, and
stereoscopy and parallax give the perception of
solid objects. Additionally, participants can
manipulate objects in the scene, providing the
perception that the participant can affect change
in the scene.

The Training Studio includes a broad range of
capabilities applicable to many types of training in
virtual environments. First, it includes extensive
support for authoring. This includes the ability to
import CAD models for rapid construction of the
3D graphical models of the virtual environment,
create the simulation behaviors of the
environment, define the instructional objectives,
and construct a wide variety of training exercises.
The authoring approach is designed to ensure the
development and maintenance of high quality
instruction at significantly lower cost than could be
achieved using conventional development
methods. Second, it supports delivery of
instruction in virtual environments, including both
individual and team training. Training exercises
can range from simple drill-and-practice
familiarization lessons to more complicated
training scenarios involving simulated shipboard
casualties. Moreover, the training can include
intelligent agents that appear in the virtual world
as virtual humans and serve as instructors or
teammates when human instructors and
teammates are unavailable; such agents provide
exciting new possibilities for automated instruction
that are not possible with more traditional
computer-based instruction.

Many obstacles exist for team training in a virtual
environment. Students must perceive the scene
and the actions of other team members in
common. Often, instruction of teams can be

hindered by slower members of the team, and
because of conflicting schedules, it can be difficult
to assemble team members and resources (such
as dedicated simulators or actual equipment) for
instruction. The Training Studio addresses these
obstacles.

To describe the VET Training Studio in this final
report, we discuss the operational, system, and
technical views for VET. During the VET effort,
we developed and implemented an operational
view of how a VE training system should be used,
a system view of how the components work
together, and a technical view of the standards
and conventions necessary for our training
authoring focus. In the system and technical view
sections, we relate the significance of our work on
virtual environment interaction, simulation-based
training, and pedagogical agents.

B.1 Program Final Report

This final report has describes reusable results,
identifies problems common to similar efforts,
notes useful ideas, and provides suggestions on
further related activities. This final report also
serves as a record of tasks accomplished to
satisfy the proposed work.

B.2 Program Team

The Virtual Environments for Training team
consists of Lockheed Martin Advanced
Technology Center for virtual environment
interaction, USC Behavioral Technology
Laboratories for instructional simulation, USC
Information Sciences Institute for pedagogical
agents, and Air Force Research Lab at Brooks,
AFB for outside formative evaluation.

B.3 Program Objectives

In the executive summary of our VET proposal,
we proposed to develop an instructional system
that integrates the design, development, delivery,
and evaluation of training curricula with a
comprehensive virtual environment. The
emphasis was on an integrating architecture to
realize effective virtual environment training.

We have realized our proposed objectives for
training in a Virtual Environment. The primary
statement of work items in our original proposal

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainini Final Report

emphasized authorable virtual environments in
which team training could be realized:

♦ Conduct innovative research into team
training and modeling in a virtual environment
including efficient distribution mechanisms
and representations, and advanced models
of team interaction in a virtual environment.

♦ Develop an instructional design approach
appropriate to authoring courses for intelligent
tutoring systems integrated with a virtual
environment.

♦ Develop and refine the human-computer
interface approach for development and
delivery of instructional content in a virtual
environment.

Our research into team training and modeling in a
virtual environment has been successful. Using
the Steve pedagogical agent as team members
and student mentors, we can model team
interactions and instruct students on their role in a
team.

As a basis for all our efforts, we developed an
instructional design approach for collaborative
authoring of intelligent tutoring in a virtual
environment that consists of equipment
simulations, spatial representations, and team
procedures and roles.

Our human-computer interface approach
encompasses interaction with the virtual
environment scenes, a set of spatial services
necessary for understanding the student's
actions, and detailed spatial feedback to the
student for effective instruction.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final ReDort

C Methods & Approach

This section outlines the methods and
approaches that evolved from our proposal, and
during the VET effort.

C.1 Component Systems

Ours was a problem of integrating capability at
the right level. In our systems view, we decided
to reduce technical risk by using a component
architecture, where the major components were
virtual environment interaction (Vista),
instructional simulation (VIVIDS), and
pedagogical agents (Steve). This reduced risk
significantly because the components were
mature and debugged, and source code did not
have to be merged. Development was carried
out in parallel and components were integrated as
part of a spiral development process. Our team
tested component changes and improvements at
system level test and integration meetings. At the
start of the VET effort, this component-based
approach was novel to the intelligent tutoring
systems research community.

C.2 Multi-modal Interaction

A key aspect of our approach from the beginning
of VET has been to deliver training in a fully
immersed setting. Immersed by our definition did
not mean a 3D image on a screen. Full
immersion meant that the person perceived
themselves to be inside the spatial scenes we
presented.

Using virtual environments for training poses a
number of challenges and opportunities for
human-computer interaction. Opportunity exists
in the area of multi-modal interaction, where
multiple modes, such as speech and spatial
display, are used concurrently to provide
information to the student, and to get information
from the student. Beyond the promise of
transferring training in a virtual 3D setting to the
real setting, there are advantages to instruction
that combines modes of interaction. When
modes for 3D display, 3D manipulation, 3D head
motion, and dialog systems (speech generation
from text, and speech recognition) are combined
with object simulation, a property known as
spatial dialog emerges. The context of speech
acts is provided by what the participant is looking
at, near to, or touching. It becomes possible to

ask questions previously ambiguous, and to carry
out actions in the spatial setting easier.

C.3 Authorable Systems
From the outset of the VET effort, we emphasized
that systems should be built with authoring in
mind to ensure their widespread use and
effectiveness.

Authoring the spatial setting for instruction in a
virtual environment involves the geometry of
objects, the physical dynamics of objects, and the
behavior of objects. Based on our technical view
of the Training Studio, we decided spatial settings
would be authored in VRML, where commercial
software could be used to import geometry,
modify object geometry, and specify object
interactions in an effective manner. Since we had
an effective means of authoring complex object
behavior for objects using VIVIDS, we arrived at a
systems view where object behavior is authored
using VIVIDS, and the geometry and motion
constraints are authored in commercial VRML
authoring packages. In Vista, we focused on the
capability to load VRML object geometry, realize
VRML object interaction while immersed, and
update object state using VIVIDs behaviors.

Although Steve is a complex intelligent system, it
is designed to support authoring by people with
limited programming experience by using artificial
intelligence methods. Although the decision
making component of Steve is implemented in
Soar (Laird et al 1987), Steve does not require
the courseware developer to know how to
program in Soar. Instead, Steve's task
knowledge is specified using a high level plan
language, in which plans are built from a library of
primitive operations. An authoring interface has
been developed for integrating such plan
descriptions with VIVIDS simulation models; once
Steve is provided with a suitable task plan and is
linked to the VIVIDS model, Steve is capable of
interacting with the VIVIDS model to perform
asks, monitor students performing tasks, etc. An
extension to Steve called Diligent was created for
creating task plans. It employs a programming-
by-demonstration approach, where the instructor
demonstrates how to perform the task and then
Diligent attempts to generalize the demonstration
to produce a complete task plan. Diligent also
provides a graphical editing interface for
modifying task plans.

Lockheed Martin Advanced Technology Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

C.4 Task-based Instruction

As Hill and Johnson (1995) argued, simulation-
based instruction without guidance can be
inefficient and error prone. Students working with
a simulation may discover that they do not know
what to do, or fail to recognize when they have
made a mistake. The VET project has postulated
that animated agents are a natural means for
providing such guidance. An animated human
figure can guide the students through the virtual
space, show students what to do, and direct their
attention to important elements of the virtual
environment. They can interact with the students
via natural face-to-face dialog.

C.5 Team Training

The VET project has postulated that team
interaction can be more effectively captured and
modeled using an immersive virtual environment.
Team member locations, speech acts, physical
gestures, equipment manipulations, and
viewpoints provide additional means of
communication beyond conventional computer
displays, and we have used these with some
success.

Conventional team training is a very labor-
intensive activity. A typical team training exercise
at the Navy's Great Lakes Training Center, for
example, requires that a team of trainees be
assembled, together with a team of instructors
who guide the trainees through the exercise.
Synthetic agents can significantly reduce the
labor requirements for team training exercises. In
VET team training exercises, each participating
student can have a Steve virtual instructor guide
them through the exercise and answer routine
questions, freeing human instructors to focus their
attention on critical problems. Steve agents can
also play the roles of missing team members,
allowing individual students and small groups to
practice their skills without assembling large
teams.

C.6 Operational View

In this section, we provide an operational view of
the VET Training Studio. An operational
architecture view is a description of the tasks and
activities, operational elements, and information
flows required to accomplish or support an

operation. This section provides an operational
view of the Training Studio as it is used for
instructing engine room casualty control
procedures, from both an instructional
development and an instructional delivery
perspective.

Visual descriptions of Training Studio Instructional
Development and Instructional Delivery, meant to
accompany the following text descriptions, are
available in section A (see Table 1, Table 2).

C.6.1 Instructional Development

The usage model for the completed Training
Studio system is important as a guide to the
process of authoring shipboard training using the
Training Studio system. Note that while the
system has not yet been deployed in this manner,
the usage model provides a way of understanding
why Training Studio capabilities were developed,
and their intended use together.

For delivery of training material developed with
the Training Studio we started with an idea of how
training material could be delivered and used as
part of Navy operations - exchanged over the
Internet or a similar closed network system. The

Cent. Trrig
Authority.

Figure 2. Training Studio Delivery Usage Model
emphasizes internet (WWW) distribution

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin sn

delivery approach can be adapted to other
services or organizations which are dispersed.

In the delivery usage model (see Figure 2), a
demand for training in a particular topic comes
from a central training authority which is tasked
with prioritizing and funding training efforts. This
request is handled at a Training Center which has
the appropriate hardware, software, and
personnel to develop the training material. A
course using the Training Studio is developed,
and fielded to inland reserve areas and out to
ships at sea using the World Wide Web protocols
on the Internet or a similar but secure network
system. The ships and inland reserve sites
involved have equipment sufficient to run the
Training Studio software, and one or more people
who are responsible for updating/maintaining the
software and hardware.

After delivery of the Training Studio simulations,
students use the system to train, and people at
the site with experience in the subject domain
evaluate the initial courses and simulation for
effectiveness (these may be actual instructors or
specialists). The results associated with each
student in the course are relayed to the central
training authority over the same network, and the
results of instructor evaluations are returned to
the Training Center for use in refining the
system (the student's evaluations of the
training material could be used there too).
Unlike centers using traditional curricula, the
training center described here could act on
the requested changes and update remote
sites using the curricula fairly quickly.

We have taken steps in the system
development to support distributing the
training simulations using the World Wide
Web, allowing distribution of 3D models and
VIVIDS simulation courses. Given the large
amount of data associated 3D models and
simulations, network transfer is somewhat
of a technical challenge, but we have taken
measures such as caching to address
transfer of 3D data. The Training Studio
does not at this point have support for
relaying instructor evaluations of the system
or the student scores in training back out of
the system. This feedback could be
developed fairly easily using current WWW
resources.

Figure
allows

given domain starts at a Training Center by
defining the Course Structure based on approved
procedures in reference works, subject matter
expert (SME) input, etc. (see Figure 3). Here the
instructional developers get an idea of what
material needs to be covered, what simulations
may be helpful, what the tasks in the domain may
be, and which 3D models will be needed. This
gives the developers a shopping list and an initial
course of action.

Initial training simulations are developed in 2D
using VIVIDS and at the same time members of
the development group assess existing 3D model
resources and obtain these. Soon after initial
simulations are developed, they are modified to
update the 3D scenes in Vista using TScript
messages. At each stage, the simulation is
evaluated by the development group to see if it
matches real system behavior in the areas
significant to training transfer.

When the simulation is detailed enough to support
a given task in a 3D setting, the instructional
developers use Vista and the rest of the Training
Studio software to provide task examples.
Simpler examples of tasks can be modeled using
VIVIDS, and more complex task examples where
the tutoring system may need to provide spatial,

3. Training Studio Development Usage Model
concurrent development

The actual development of a course for a

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Final Report

visual explanation of task steps to the student will
be captured by the Steve software.

Finally, experts in the domain evaluate the course
immersed in the virtual environment, to see that
necessary aspects of the tasks are captured
faithfully. If improvement is needed, this feeds
back into the course structure, and then again into
3D models, simulation models, and task structure
for the lessons.

Several types of simulation models must be built
during domain development. In our usage model,
a good portion of support for capturing the
simulation models themselves is present in VIVID,

TesselateÄ
Decimate

in during the export of original models. Often the
models can be re-tessellated to a much lower
polygon count using the CAD data and the
original modeler.

However, most often we are not that lucky.
Polygons in complex engineering models can be
reduced using decimation, whereby parameters
are set such as length of the polygons or area
relative to their importance during decimation, and
vertices for less important polygons are removed
to create fewer polygons. One of the easier-to-
use commercial packages for polygon reduction is
available from Silicon Graphics in their
CosmoWorld software, a tool for editing and

** Define w/
Modeler

Define in
VIVIDS

Use in Vista

Figure 4. Training Studio Usage Model for 3D Model Development emphasizes real-time
immersed interaction with VRML 97 scenes

and we have built support in the Steve software
for capturing task models using a programming-
by-example approach. The 3D model data used
in the virtual environment is one area that can be
labor intensive, and where existing data may be
available to re-use. So in our usage model we
have further elaborated on how we see 3D model
data entering into system usage (see Figure 4).

The usage model for using 3D models recognizes
three forms of models: engineering (CAD) models
and already existing visual simulation models
which can be purchased, the set of necessary 3D
models not already existing, and those 3D models
which, because of the nature of the domain or its
explanation, must be dynamic (mutable while
using the virtual environment).

For existing engineering models, it is often the
case that the polygon count is too large for real-
time interaction in a virtual environment. This is
because engineers often export the model
tessellated polygons without tessellating the
models for lower polygon counts. The ideal place
to reduce polygon counts is when exporting
models using the CAD modeler originally involved

optimizing VRML scenes. This is what we use in
our domain development. Research in other
advanced methods for decimation has been
funded by the Office of Naval Research, and
could fill this place in the process (Renze and
Oliver 1996).

At times a project will have to resort to generating
their own special 3D models. Any necessary 3D
models that can't be reused must be built using a
modeling system. We have found MultiGen Flight
and the SGI Inventor tool set to be useful in this
regard. There are many commercial modeling
systems available, and for our purposes, if their
output can be translated to VRML, they can be
used. We recently finished a utility that allows
models loaded into Vista to be saved in the
Inventor 3D model format. The 3D models can
easily be taken from there to VRML. This was
done in support of the "translate to VRML" step in
the usage model. Some notable 3D file formats
that Vista loads and can now be saved as
Inventor (or VRML with the pf2wrl utility) include:
the S1000k DoD terrain format, AutoCad DXF
and 3D Studio, Wavefront, Lightscape, Multigen
Flight, Coryphaeus Designer Workbench.

Lockheed Martin Advanced Techno oav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Report

C.6.2
Delivery

Instructional

To illustrate the operation
capabilities ot the Training
Studio for instructional
delivery, consider a
training scenario in which
two students, Jack and
Jill, are learning their roles
in handling a loss of fuel
oil pressure in one of the
gas turbine engines
aboard a ship (see Table

Jack is serving as the
Propulsion and Auxiliary
Control Console (PACC)
operator, and Jill is in the
engine room. Each
student is wearing a head-
mounted display that
provides a three-
dimensional view of their
shipboard surroundings.
As they move or turn their
head, their view changes
accordingly. Each student

Figure 5. Immersed Instructional Delivery enables
roles, and locations

The third category of 3D models, dynamic
models, are those whose geometry must change
live during the simulation usage. This occurs
often during explanation, where for example a
polygon representing the arc of an angle must
change to represent a changing angle value, or a
visual line showing a link between two objects
must change when the objects move, etc. These
models are best defined using the graphical
primitives in Vista, from the simulation where their
values are calculated (such as VIVIDS). Vista
provides a large set of graphical primitives such
as cubes, etc. for dynamic update of their
appearance independent of modeler software,
and we support modifying VRML geometry on the
fly by using external Tscript messages, or VRML
interpolators.

. . is assigned a Steve agent
training for different team as thejr tutor |n additjoni

three other Steve agents
serve as their teammates:

one serves as the Engineering Officer of the
Watch (EOOW), one serves as the Electric Plant
Control Console (EPCC) operator, and one
serves as the Shaft Control Unit (SCU) operator.
Each person's head-mounted display is equipped
with a microphone (for speaking to agents) and
earphones (through which the person can hear
agents speak, as well as sound effects from the
virtual environment).

Jack's tutor looks at him and introduces the
scenario: "Let me show you how to handle a loss
of fuel oil pressure. First, when you detect it,
inform the EOOW." Looking over at the EOOW,
the tutor continues, "We have a loss of fuel oil
pressure in engine room one." The EOOW nods
in acknowledgment and passes the message on
to the engine room. Jack's tutor leads him over to
the normal stop button, points at it, and says,
"First, press the normal stop button to stop the
turbine." The tutor presses the button, and Jack

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Final ReDort

watches its indicator light up and the engine's
power lever angle go to idle. "I will now transfer
thrust control to the central control station," the
tutor informs Jack. Jack, believing that he
remembers the procedure, says, "Let me finish."
"Okay, you finish," replies the tutor, who shifts to
monitoring Jack's performance of the task.

Jack steps forward to the console and presses
the wrong button. "No," the tutor comments while
shaking his head. Jack, suddenly less sure of
himself, asks, "What should I do?" The tutor
replies, "I suggest that you press the CCS button
to initiate the transfer." Jack presses the button
and his tutor nods approvingly. As a result of
Jack's action, the CCS button blinks on both the
PACC and the SCU. The SCU operator, in the
engine room, presses the blinking CCS button on
his console to complete the transfer, and the
button stops blinking and remains illuminated on
both consoles.

with Steve agents that serve as their tutors and
teammates. They can navigate around the
environment to learn the location of relevant
equipment, often under the guidance of their
agent tutor. Agents and students can manipulate
objects in the virtual world and see their visual
and auditory effects. Finally, they can collaborate
with each other, as well as their agent tutor and
teammates, to practice realistic training scenarios.

Jack looks over at the EOOW and says, "Thrust
control is now at CCS." The EOOW nods in
acknowledgment and instructs the EPCC operator
to switch to generator one. Jack watches as the
operator pushes a series of buttons and informs
the EOOW when the switch is complete. Now the
EOOW commands the engine room to investigate
the cause of the casualty.

Upon receiving the command, Jill's agent says,
"Let me show you how to check for the cause of
the loss of fuel oil pressure. First, check that all
suction valves are wide open. A partially closed
valve in the suction line can increase the suction
lift above the pump's capabilities." The agent
guides Jill around the engine room and shows her
the location of the valves. They check each one,
but all are already wide open.

Next, the agent leads Jill over to the relief valve.
As she gets close, she can hear the sound of the
oil passing through the valve. "Next, check the
relief valve set pressure. As you can hear from
the sound of the oil passing through the valve, the
set pressure is too low, causing the loss of fuel oil
pressure." The agent shows Jill how to reset the
relief valve lifting pressure, then reports back to
the EOOW, "The cause of the casualty has been
determined and corrected."

Although this scenario does not illustrate all of the
capabilities of the Training Studio, it highlights
some of the most important. Jack and Jill cohabit
a virtual mockup of their work environment, along

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179\

Virtual Environments for Trainin Final Report

D Results

This section describes significant and reusable
results from the VET effort, encompassing the
system view and technical view.

D.1 System View

The systems architecture view is a description,
including graphics, of systems and
interconnections providing for, or supporting,
system operation. We describe the Training
Studio operational view by discussing the system
component interactions across the
communications bus.

There are three main functional components in
the Training Studio; the Vista virtual environment
display, the VIVIDS instructional simulation, and

the Steve Pedagogical agents. The VIVIDS
component runs the simulation that controls the
virtual world. Steve (one for each participant)
monitors the state of the virtual world through
messages it receives from VIVIDS. The Vista
Viewer components (one for each participant)
provide an interface between the virtual world and
the human participants; they produce a 3D
graphical rendering of the virtual world, and they
detect interactions between participants and
virtual objects.

Steve monitors the actions and field of view of the
human participants through messages it receives
from Vista, and Steve controls its own visual
appearance by sending messages to the Vista.

Steve generates speech by sending messages to
TrishTalk components. Each participant has his
or her own TrishTalk, and each TrishTalk is an
extended version of Entropic's TrueTalk text-to-

Figure 6. VET Training Studio architecture uses broadcast messages to maintain world state between
components

Per Student
f Steve Agent

S§p

Mentor for
Team Role 1

Vista Viewer

Student 1

Team Role 1

3

Per Student
•Steve Agent

Mentor for
Team Role 2

A
Vista Viewer

Student 2

Team Role 2

I

Steve Agent
Team Member

Team Role 3,...

1- *'

Communications Bus (Tscript Messages)

I
»VIVIDS

Equipment
Simulation

3tl Profiler
(Session Control)

tTrisnTalk RecAppf SoundServer

* Audjo_Effectsj8t Spatial DialogJSupport

Lockheed Martin Advanced Technoloqy Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final ReDort

speech program.

The Steve component uses another component,
called RecAppI, to do speech recognition.
RecAppI is a Java application that uses Entropic's
speech recognition API to recognize student
requests and speech acts for team members.

Another component, called the SoundServer,
provides audio effects for objects. It acts as a
service, responding to requests for audio effects.
The SoundServer has been prototyped as a Java
application.

All of the message passing among these
components is accomplished via a
communications bus using a message protocol
called TScript. The overall system architecture,
illustrated in Figure 6, is similar in some ways to
other virtual environment architectures such as
SIMNET (Calvin et al 1993) and Spline (Barrus et
al 1996), in that it provides a common interface so
that multiple applications can share access to a
virtual environment over a network. One major
difference is that multiple threads of interaction
can take place at the same time, each using a
different set of messages. For example, one set
of messages is used to control the TrishTalk
speech synthesis system, another set of
messages is used to communicate changes to
object locations in the virtual world, and yet
another set of messages is used to communicate
changes in the simulation state.

The communications bus allows an arbitrary
collection of components to communicate. It is
currently implemented on top of Sun's ToolTalk
software. Components connect to the
communications bus by sending a message, and
they subsequently send messages announcing
the types of messages they wish to receive.
Components do not send messages directly to
other components. Rather, all messages are sent
to the communications bus, and the
communications bus broadcasts each message
only to those components that registered interest
in it. This provides an important filtering
mechanism; components only receive message
traffic they can use. The approach also provides
a more extensible architecture than direct
component-to-component communication.

The VIVIDS component, which controls the
behavior of objects in the virtual world, is a 3D
extension of the RIDES 2D simulation authoring
system (Munro et al 1993). In VIVIDS, as in

RIDES, each object in the virtual world is
assigned a set of attributes. Some attributes
control the visual appearance of the object, while
others control its behavior. The behavior of the
objects is programmed by rules and constraints
that propagate changes in one object to other
objects. This object-oriented representation
makes it easy for other programs, such as Steve,
to monitor the state of the simulation.
A Vista Viewer component provides the interface
between a human participant and the virtual
world. Vista displays the objects in the virtual
world in real time, and students can view the
display either immersed, using position sensors
and a head-mounted display, or in a flat-screen
window. Multiple students, each with their own
Vista Viewer, can connect to the same
communications bus, and each will experience
the same changes in the environment (albeit from
their own viewpoint).

Vista acts much like an X server in X Windows.
As each application starts in X Windows, it asks
the server to create a window, as well as objects
inside that window, and it expects the server to
notify it of user events for those objects and
windows. The server provides services for the
display screen, and implicitly for the user. Vista
acts more explicitly as a display server for the
participant, but the idea is the same.
Components such as VIVIDS and Steve ask that
objects be created in the scene. Vista can build
objects from graphical primitives, and it can also
load them from various file formats, most
prominently VRML 97. When the participant
interacts with these objects, Vista sends event
messages to the communications bus, and these
messages are broadcast to other components
that are interested. Participants can interact with
objects using a variety of devices (e.g., Flock of
Birds™ position sensors and the Virtex
Cyberglove™), but the details of these devices
are abstracted out by Vista in order to provide a
generic set of interaction messages (e.g.,
selection of an object). Steve can send these
same messages, and hence can interact with
objects in all the ways that human participants
can. Components such as Steve can also
register interest in particular objects, in which
case Vista will send messages when these
objects come into or go out of a participant's field
of view. Thus, Vista serves a dual role: it makes
the virtual world real for students, and it informs
the other components of the students' actions and
field of view. The information provided by Vista is

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin WL

crucial for allowing agents such as Steve to
monitor the behavior of students.

TScript, which stands for Training Script, is the
collection of messages that the components use
to communicate. Object creation, modification,
and deletion are controlled by TScript messages.
Participant control for the purpose of instruction,
such as changing a particular student's view or
moving them along a path, are controlled by
Tscript messages. Vista Viewers send
notification of participant actions, their selection of
objects, their movements in the world, and events
they cause to happen indirectly all as Tscript
messages. Each TScript message consists of a
message name and arguments. The TScript
protocol is extensible; the communications bus is
not restricted to a fixed set of message types.
Each component on the communications bus is
free to define the set of TScript messages it can
provide, and other components are free to
register interest in the messages they need.

During a training session, much of the message
traffic comes from VIVIDS. Since VIVIDS controls
the behavior of objects in the virtual world, it must
inform the other components when attributes of
these objects change. Vista Viewers register
interest in visual attributes, such as the location
and color of objects. Steve agents register
interest in the attributes they wish to monitor,
primarily those that describe the state, rather than
the appearance, of objects. For example, in the
case of the High Pressure Air Compressor, this
includes information such as the pressure in
cylinders, and whether lights are on or off. Each
component receives only those messages that
are relevant to it. Moreover, VIVIDS only
broadcasts changes in those attributes in which
some component has registered interest. Such
efficiency in message traffic is crucial for handling
complex, dynamic worlds.

To illustrate how the components have been
integrated using the communications bus, we
close this section with a brief description of
starting the system for one student, in the High
Pressure Air Compressor domain, and give
examples of how the components interact with
TScript messages. Initially, a student starts up a
Vista Viewer, which shows an empty 3D scene to
the student. Then VIVIDS is started, and the
HPAC course is selected. The 2D control panel
for VIVIDS appears, as does a small window with
an "Initialize" button. The student presses that
button, and VIVIDS creates all the simulation

objects and sends TScript messages to create
corresponding 3D representations in Vista, either
from graphic primitives or from pre-existing 3D
model files. Then Steve is started, and its
interface appears. Steve uses the
communications bus to register interest in
particular attributes of relevant objects, and it
sends messages requesting the initial state of
these attributes. VIVIDS responds with Tscript
messages describing the state of those attributes.

Now the student is through with setup and starts
the course using VIVIDS. They put on the virtual
environment gear and select Start from the
palette in their (virtual) left hand, immersed using
Vista. VIVIDS progresses through the course,
sending voice commands over the
communications bus to the student's TrishTalk,
which generates speech for the student. The
student carries out requested actions, such as
pressing buttons and opening valves. At each
student action, Vista informs VIVIDS and Steve,
and VIVIDS then can use the action to determine
if the simulation state has changed. If it has
changed, and Steve registered interest in the
changes, they are broadcast to Steve.

At some point in the lesson, VIVIDS may send a
message to request that Steve monitor the
student performing a task. When the student
needs assistance, he can touch a button on
Steve's interface palette to ask a question, which
causes Vista to send a message to Steve. Steve
can answer the question by sending text to the
student's TrishTalk, causing speech to be
generated.

At other points in the lesson, VIVIDS may send a
message requesting that Steve demonstrate a
task, or the student may request a demonstration
directly by touching a button on Steve's interface
palette. Steve then carries out the task by
sending messages to manipulate objects (these
messages are handled by VIVIDS) and messages
to move its own visual representation (i.e., body
or hands) in the virtual world (these messages are
handled by Vista). VIVIDS responds to Steve's
actions by changing the state of the world and
sending messages describing the changes.

All these interactions between components are
carried out using TScript messages on the
communications bus. There may be more than
one student, each with their own Vista Viewer and
TrishTalk, there may be more than one VIVIDS,
each controlling the behavior of a different set of

Lockheed Martin Advanced Technoloav Center Contract N000U-95-C-0179

Virtual Environments for Trainin Final Report

objects, and there may be more than one Steve
agent, each monitoring different students or
demonstrating different tasks, but all the
components maintain a consistent view of the
virtual world via messages on the
communications bus.

D.2 Technical View

In this section we relate the Training Studio
technical view by describing the three main
functional components, Vista (virtual environment
interaction), VIVIDS (intelligent tutoring systems),
and Steve (pedagogical agents). A technical
architecture view describes a profile of a minimal
set of time-phased standards and rules governing
the implementation, arrangement, interaction and
interdependence of system elements.

We have categorized the implementation areas
addressed during the VET effort as operating
system, software engineering services, user
interface, data interchange, graphics, and
networked update. We provide a brief itemization
(see Table 3) before discussing the components.

For the operating system, we selected SGI's Irix
operating system, since it drives the high-end
graphics systems we needed to test our virtual
environment concepts.

For software engineering services, we selected
C++ as the high-speed graphics language of
choice, and Java and Tcl/Tk as our 2D windows
prototyping tools. The Profiler and RecAppI
speech recognition components are built using
Java, while the Steve interface was built using
Tcl/Tk.

The 3D user interface standard we selected was
VRML 97, which is an ISO standard. The sensors
nodes in VRML describe constrained ranges of
motion for 3D objects that are most often
encountered. We worked to extend VRML for full
6DOF manipulation.

For data interchange, we developed the Tscript
message protocol, that allows scene graph
manipulations and queries between the Training
Studio components. For interchange of 3D
models, we used the Geometry nodes for VRML
97, and for interchanging behavior in a file-based
manner, we used VRML 97 interpolators, route
mechanisms, and script nodes which

encapsulated a version of JavaScript. Detailed
instructional behavior was interchanged using
VIVIDs proprietary format.

For high-speed 3D rendering, we based our Vista
component on SGI Performer, a COTS
development tool, with select libraries in Inventor
also being used.

For networked update of state across the Training
Studio components, we used Tscript, and for
update of 3D VMRL models, we used HTTP.

Service Service Standard/
Area Application
Operating Execution SGI Irix 5.3+
System Environment
Software Prototyping ; Tcl/Tk, Java
Engineering Support
Services

Optimized C++
Rendering

User File-based 3D VRML 97
Interface Interaction Sensors
Data Component TScript
Interchange Communication

3D Models VRML 97
Geometry

Behavior VRML 97
JavaScript
VIVIDS

Speech Recognition Java; Entropie i
HAPI

Generation Tcl/Tk,
Entropie
TrueTalk

Audio Sound Effects Java
Graphics 3D Rendering SGI

Performer
2.0.2
Inventor 2.2

2D Rendering VlVlDs using
X11

Networked HTTP Apache Client
Update code for http

services in
Vista

TScript ToolTalkRPC

Table 3. Standards and COTS tools used for
Training Studio components.

D.2.1 Virtual Environment Interaction
This section provides a technical view of the Vista
component of the Training Studio, which is where

Lockheed Martin Advanced Techno oav Center Contract N00014-95-C-0179

Virtual Environments for Trainini Final Report

Virtual environment interaction, between the
student and the virtual environment, occurs.
Virtual environment interaction consists of visual
scene display to the participant, and a means for
the participant to manipulate the visual scene.

Vista provides the visual context for the training
process, and is the primary interface for the
student.

Vista1 provides stereo display and real-time
interaction for 3D scenes where a student is
immersed inside the 3D data - when Vista
displays the engine room of a ship, they feel as
though they are inside that engine room, and
when they change where they are looking, the
scene changes correspondingly. Vista, which
was developed using the Silicon Graphics
Performer toolkit (Rohlf 1994), also functions as
a flat-screen display, where 3D scenes are shown
through-the-window, for purposes of authoring
and display on all SGI machines.

While immersed, the student can select items,
such as selector switches, buttons, and valves
and use them in part of a training simulation.
The student can also move objects if this is
required as part of their training task.

The capabilities of stereo immersive display and
interaction with the scene objects are normally
present in most virtual environment systems.
Vista starts from this required base capability and
extends it to support shared 3D scenes,
monitoring the student's interaction, modification
of the 3D scene, and modification of the student's
view and interaction by external software.

D.2.1.1 External Modification & Control

Modification and control of the Vista 3D scene
externally is accomplished by supporting the
abstraction of named graphical objects. Vista
understands networked commands for the
creation of many types of 3D primitives, such as
sphere, cubes, 3D text etc., and their placement
in the scene graph. Vista supports loading CAD-
derived models as graphic objects, and preserves
named references associated with the geometry
in the models. For instance, a bicycle could be

1 The Vista system initial development was sponsored
by the United States Air Force Contract No. F41624-
93-C-5000.

loaded with references for the matrices controlling
rotation of the pedals, wheels, and steering
wheel. A named graphic object, such as bikel
could be loaded, and a second bike2. When the
simulation controlling the bike wished to move the
bike in a turning fashion, it would send TScript
messages to any Vista displays in a session to
rotate the handlebars, rotate the wheels, and
rotate the pedals. All networked Vistas would
show this resulting motion, and the second bike
could be controlled independently at the same
time, even though its model also has references
with the same names.

In this manner, CAD models for ship items such
as turbine shafts, doors, pistons, wheels, and
valves can be tessellated and output as models
suitable for loading in the polygon-based Vista
display. After tessellation, the named references
for articulation can be added. Instructional
authors can use external tools to articulate and
control these parts, knowing that the parts will be
updated consistently in all Vista displays involved
in a networked session. These named references
also serve as identifiers during the student's
interaction with parts. If the student select a given
valve, all external training software interested in
this selection action is immediately made aware
of it. If a given simulation owns that valve, it
simulates changes in the valve rotation
accordingly. If a given tutoring software process
finds that was not the correct valve for the task, it
can react accordingly.

Most tutoring systems need to know what the
student is doing as a first step in helping them if
they do it wrong, or crediting them if they do it
right. Vista supports monitoring student actions
by external training software. General selection
of objects is broadcast, as is the movement of
objects by students, and the movement of their
view and their hands. External components can
register events with Vista to get more detailed
information, such as which objects are currently
visible to the student, which objects have entered
a given space, and which segments have
intersected with object geometry.

Since Vista moderates a student participant's
interaction in a virtual environment during the
course of training, at startup it provides for
configuration of the student's parameters; which
VE devices they are using, the distance between
their eyes which is used for stereo vision, their
height, student name, etc. Vista also provides
other Training Studio components with references

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final ReDort

to the student's view and hands, so that interfaces
or explanatory objects can be attached to their
view or hands. The Training Studio component
Steve uses this capability to attach an interface
palette to a given student's left hand. After that
point, the Steve software does not have to devote
effort to maintaining that palette, Vista does.

The Training Studio provides the instructor with a
variety of tools to control student movement and
attention as required. Instructors can designate
that students follow a specific path or be moved
instantaneously to a particular location. Student
viewpoint can be explicitly directed or left
uncontrolled while traveling a path or remaining at
one location. Other tools for directing attention
include object highlighting and color cues. Also, a
bounding area can be designated around the
object so that student intersection with this area,
triggers an instructional sequence. This ensures
that the instruction plays when a student is in
position to observe it.

All the components of the Training Studio interact
to provide the instructional lessons and
environment. Because the participant is free to
move within the environment, it is difficult to
predict the exact location and orientation during
run time. The simulation (VIVIDS) and agent
(Steve) components can query the state of
particular objects or participants by sending a
TScript message via the communication bus. The
Vista environment replies to the query with the
appropriate data.

D.2.1.2 VRML Capability

Vista supports networked training applications,
both in terms of TScript messages sent over the
local communications bus, and in terms of VRML
on the Internet. Vista is capable of using the http
Internet protocol to fetch files, and exercises
caching of retrieved files to increase apparent
efficiency. The primary Internet file format
supported by Vista is the ISO standard Virtual
Reality Modeling Language (VRML 97)
specification.

The Virtual Reality Modeling Language (VRML) is
a language for describing 3D scenes and the
behavior of objects in those scenes which are
delivered via the Internet. It is a platform
independent file format and is quickly becoming
the standard for 3D graphics interchange on the
Internet. VRML, which is derived from Silicon

Graphic's Open Inventor file format, is designed
to work well over low-bandwidth connections.
Translators exist which convert most popular 3D
file formats to VRML, and many modeling
programs have built support for directly editing
and outputting VRML model files. This has made
VRML popular and many models developed on
various platforms are available for re-use.

The VRML 1.0 specification evolved on the
WWW-VRML mailing list. We have been active
participants on this mailing list and have made
contributions towards the VRML 1.0 and VRML
97 specifications since April, 1994. VRML 97 is
concerned with dynamic virtual worlds, in contrast
to VRML 1.0 which supports static 3D scenes with
WWW links embedded. VRML 97 is a further step
towards the goal of describing moving, multi-
participant interactive virtual worlds linked via the
Internet.

The VRML format consists of various nodes
arranged into a tree graph, and connections
between those nodes to achieve simulation.
There are many types of VRML nodes, but we
discuss those most relevant to training here, as
well as how VMRL nodes communicate in Vista.
VRML 97 supports 3D geometry display
(Geometry Nodes) event generation (via sensor
nodes) and event-passing between nodes in the
scene, and interpolated object changes
(Interpolator nodes). VRML 97 nodes can have
behavior attached to them via scripting languages
(e.g. Java, JavaScript, in Scripting Nodes), and
VRML 97 provides a set of powerful tools for
exchanging and using virtual worlds.

The Anchor and Inline nodes in VRML are the
primary way in which VRML uses the Internet.
Whenever an Anchor is selected in Vista, a new
3D scene is downloaded from a site on the
Internet, to replace the current scene. Inline
nodes are more complex, but they allow an
instructional developer to assemble a composite
scene from many component scenes, which may
distributed at many sites over the Internet.

To optimize VRML downloads for large models,
in-lined VRML files are only transferred when the
user is near them, and when the user is further
away, less complex geometry is displayed. This
is accomplished using Level of Detail (LOD)
nodes with Inlines as children. This LOD node
delay loading of inlined VRML files until
necessary. This is very useful when the inlined
files are large (e.g., the model of a ship may be

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Tramin Final Report

made up of several inlined files for decks, pipes,
and machinery which are loaded only if the user is
close to that part of the ship. In this way waiting
for VRML models to arrive over the network is
minimized).

Sensor nodes in VRML 97 support user
interaction. Events generated by sensors can be
routed to other nodes via routes. The VRML 97
sensor nodes (Proximity sensor, Touch sensor,
Cylinder sensor, Plane sensor, Sphere sensor,
and Visibility sensor) generate events based on
user actions such as a mouse clicks or navigating
close to a particular object. Time sensor nodes
generate events at regular intervals. Sensors
provide a very useful tool for developing training
scenarios, e.g., a cylinder sensor attached to a
gauge on the HPAC would cause the gauge to
respond to user action. Similarly, a time sensor
could be used to start an animation in a training
scenario at a particular time and the proximity
sensor could be used to initiate action when the
user enters a particular region in the training
scenario.

Interpolators are used to update values for
animation and illustration independent of network
delays. Given an input value an interpolator
evaluates a linear function to arrive at a value
from a set of values. There are different type of
interpolator nodes in VRML 97 depending on the
type of value being interpolated. Vista supports
the Color Interpolator, Orientation Interpolator,
Position Interpolator and Scalar Interpolator.
Interpolators provide a useful tool for creating
training scenarios; e.g., a time sensor attached to
a Position Interpolator could be used to move an
engine cylinder over time.

A ROUTE in VRML 97 is a connection between a
node generating an event and the node receiving
the event. A ROUTE class has been developed
to handle routes between VRML 97 nodes in the
Vista viewer. The significance of routes lies in the
fact they propagate user generated events in a
scene graph thereby making it dynamic. Routes
allow events generated by nodes to be connected
together, forming a path.

In order to handle events between VRML 97
nodes in Vista an Events class was developed.
Instances of this class are contained in VRML 97
nodes. This class is used for event-passing and
creating routes between VRML 97 nodes in Vista.
Events generated by one node can be wired to
other nodes via routes thereby making the VRML

scene dynamic. The event-processing model of
VRML 97 provides a very effective tool for
carrying out efficient simulation as required for
training.

The primary emphasis for Vista has been
connectivity to other software systems, and
flexibility in configuring virtual environment
scenes. Using TScript messages, or VRML 97, or
both, many forms of virtual environment display
and interaction are possible, including live
information display onboard ship. Live
information display, where equipment sensors
output is processed by a software program, and
then sent to Vista, is possible. Sensor readings
could be displayed as colored bars near the 3D
models of the equipment they collect readings for.
Critical pieces of equipment located across
several decks or multiple platforms could be
displayed with this sensor data to view systems
readouts in a way not normally possible while
onboard ship. Such sensor readings and
associated Vista display could then be used in
training students, in this case from live recorded
data.

D.2.1.3 Immersed VRML Manipulation

This section describes Vista's capability for
immersed manipulation of conventional VRML 97
sensors, as well as extensions to VRML for full
six-degree of freedom manipulations (6DOF).
Also described is the capability to manipulate all
sensors with two hands immersed.

VRML 97 provides mechanisms for interacting
with moving, dynamic scenes. For VRML 97,
human-computer interaction for the mouse has
been fairly well defined and tested. However, a
person carefully reading through the standard will
note the mention of 3D pointing devices, such as
a wand, in sections describing Sensors. Here we
discuss an immersed interaction approach for
VRML 97 scenes, and an implementation. We
also provide refinements or cautions for those
VRML 97 node types that can be interpreted
differently in an immersed setting.

The Vista capability for immersed manipulation of
VRML sensors can be used in an ego-centric
manner, or an exo-centric manner. The
egocentric manner is direct manipulation by
intersecting (touching) sensors, and the exo-
centric manner is projected manipulation, where
the user pinches their fingers visually over the

Lockheed Martin Advanced Technology Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Report

Figure 7. conventional VRML 97 sensors can be directly manipulated while immersed

TouchSensor CylinderSensor

PlaneSensor SphereSensor

y Geometry \ i^ZIZZZZi/

/xi,yi Jh^ V,.^V ^x3^
z. CVj> ^Sr^

object, at distance, which is similar to a mouse.
A useful taxonomy of usability characteristics for
virtual environments is (Gabbard 1997). For
VRML interaction, we follow a number of the
recommendations in this report, notably a uniform
object selection approach, and a two-handed
manipulation approach that recognizes the
dominance difference between hands (see Figure
7, Figure 8, Figure 10).

Before discussing the interaction differences
between VRML 97 immersed and flat-screen, it is
useful to explicitly indicate the similarities. For the
most part, nodes included in the VRML 97
categories of Leaf Nodes, Geometry,
Appearance, or Geometric Properties are no
different immersed from flat-screen. All the Group
nodes have a direct interpretation immersed,
including the Billboard Node. Finally, the
Interpolators do have the same interpretation flat-

screen or immersed. The primary difference is in
the use of Sensors and view modifying nodes.

When using a head-mount display to view a
scene, the user can very quickly rotate his head
in different directions to view different parts of the
scene, while independently moving his hands for
interaction. Generally, the user has greater
flexibility when interacting with 3D objects
immersed than using a flat screen and mouse.
This flexibility comes with some problems that
don't occur in flat-screen mode; the user can
select objects not in their view, events may be
uselessly generated as they quickly change view,
programmed view transitions must be handled
carefully, and an absence of force feedback may
result in unnatural interactions.

To deal with out-of-sight selection problems
immersed, our VRML 97 implementation does not

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

virtual Environments for Trainin Final Report

generate any events if the intersection point with
VRML geometry is outside the field of view.

To interact with VRML 97 scenes the user must
be able to use interaction devices to touch objects
and trigger sensors. In flat-screen browsers, the
user interacts with objects in the scene using the
mouse only if an object is visible. In an immersive
environment, depending on the interaction
approach, the user may need to navigate close to
the object even if it is already visible. So for
immersed users, there may be additional steps
involved in interacting with objects. In the case of
direct interaction using a glove, the user would
have to get very close. The advantage for direct
interaction is the possibility of directly
manipulating objects, rather than having the user
make a cognitive mapping from a moving mouse
to the actual motions of a 3D object.

Another interaction difference occurs when
viewing behavior is triggered as a result of user
action. In flat-screen mode, interacting with parts
of the scene often doesn't have to need to
reposition to see the behavior generated by this
action. This is because the user is often at a
distance from the scene when interacting with it.
In an immersive environment the user may need
to be close to the object he in order to interact
with it. After interacting with the object the user
might have to pull back in order to observe the
resulting behavior. This required when the size of
the object is large because when the user is close
the object occupies a large area of his field of
view. We observed this to be a problem when we
used the glove to interact with a robot in a VRML
97 scene.

An immersed user can directly rotate and move
objects in all six degrees of freedom. Because the
user has more freedom of motion in an immersive
environment than in flat-screen mode, it is harder
to restrict the user's interaction with sensors to a
plane, cylinder or sphere. The immersive VRML
97 implementation should use alternate strategies
to deal with any disadvantages of this freedom in
a 3D setting.

Without force feedback, it is too easy to put your
hand or other manipulation device through an
object, since there is no force to limit the hand to
the surface of an object. Therefore directly
placing your hand and applying pressure to rotate
or move an object doesn't work well. However,
an interaction approach that allows the user to
manipulate objects, as near to touching the object

as one would in reality, is stiil desirable. We
have arrived at an approach that allows nearly
direct manipulation, but stili adheres to the VRML
97 interaction principles for a mouse that can
make interaction at a distance easier.

Viewpoint nodes are used to provide different
views of the scene. A ProximitySensor can be
used to trigger a Viewpoint node and so if a user
is in a particular region then his view is attached
to a Viewpoint node. If this viewpoint moves then
the user's view also moves with it. In flat-screen
mode a sudden change in viewpoint is okay
because the user is not immersed. In an
immersive environment a sudden change in
immersed viewpoint can adversely affect the
user; they can become disoriented. We propose
that a change in immersed viewpoint should be
gradual, similar to the effect achieved through
orientation and position interpolators.

ProximitySensors can be very useful for reducing
the complexity of the scene when immersed. In
VRML 97, in addition to the geometry being
drawn, events are processed in response to user
action. Sensors and script nodes which add
behavior to the scene can be culled (switched
off) depending on where the user is in the scene.
Events for behaviors not in the user's proximity
should not be processed. This is true for flat-
screen browsers as well, but is more critical
immersed.

In an immersive environment the user has more
freedom to look around, and expects to be able to
look around. The VisibilitySensor is very useful
for finding out where the user is looking. This can
be of great help in training scenarios where the
trainee(s) might not be looking where they are
supposed to, since VisibilitySensors can be used
to determine if the user is looking at the desired
object. The other use of a VisibilitySensor is to
determine if some behavior must be started.
Since in an immersed environment the user has
greater flexibility, the user could potentially initiate
behavior unintentionally as they sweep their view
to look in another direction. For most cases,
events should be passed and behavior of objects
displayed only if the objects are visible. Also, the
behavior should start only if the user looks at the
object for a minimum time, such as a default of
five seconds. This could help prevent the display
frame rate from dropping because of
unnecessary event generation.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Report

Figure 8. TransformSensor and SnapSensor allow assembly of VRML objects using full free-form motion
(6DOF)

TransformSensor

H, ^V-^ W
>■--.:«

L-L *♦

SnapSensor

We have extended the VRML standard to allow
free-form manipulation of objects while immersed.
Our driving goal was immersed training for
equipment operations and maintenance, and to
this end we developed a sensor that allows 6DOF
manipulation, a cooperating sensor that allows
snapping objects into place as part of an
assembly, and a two-handed manipulation
approach for these sensors.

We discuss our implementation of
TransformSensors and SnapSensors, for both
single and two-handed manipulation of objects.
Free-form manipulation of objects is a necessary
prerequisite to our work in applying virtual

environments to training. We are supporting
operations and maintenance training on CAD-
derived shipboard equipment, where it is a
common task to pull objects out, assemble them,
and snap or plug them into assemblies.

A TransformSensor (see Figure 8) is used to
designate an object as being moveable in all six
degrees of freedom; i.e., by changing translation
and rotation concurrently, such as is possible with
a 6DOF position sensor (Ascension, Logitech,
Polhemus, etc.). The changed rotation and
translation can be routed to a Transform node,
Script node, etc.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Reoort

The SnapSensor (see Figure 8) is used to
designate certain locations in the scene graph as
snap locations. By using a SnapSensor, the
content author can specify that a given type of
object will fit into that location. The SnapSensor
holds the position and orientation of the object
when it snaps. This is useful for designating a
location where a nut will fit into a bolt, a shaft will
fit into a casing, etc. Most importantly, snapping
allows the author to overcome imprecision in
movements that is common in immersed systems
that have no physical feedback for hard surfaces.
Our technique for snapping is based on range
checks.

To support equipment maintenance and
operations training, it is necessary to let people
tear apart objects and put them back together, to
replace parts or open them to inspect them. For
realistic training and effective evaluation of skills,
a level of freedom during performance is often
required; i.e., a single "correct" path cannot be
pre-defined or, therefore, pre-authored. Multiple
solution paths can exist for reasons relating to
both procedures and the object itself. Procedural
differences are common to real world behavior
and can be due to a trainee's reordering of sub-
tasks that are independent, and not strictly
hierarchical. Issues involving free manipulation
also arise when authoring the behaviors of
models used for equipment maintenance and
operations training. Often assembly of equipment
involves several objects that may or may not be
functionally interchangeable, but are physically
similar.

The primary techniques we selected as critical to
support real-world manipulation during training
include 6DOF manipulation, two-handed
manipulations, and snap locations for object
placement. Allowing for 6DOF manipulation is
particularly important when providing realistic
interactions within the environment. More
restrictive manipulations would probably suffice
for operations at consoles or panels, but
maintenance often requires more complex
interactions. Support for combined translation and
rotation of objects is essential for tasks such as
part replacement or component assembly.

Provision for two-handed manipulations is
important if the experience is to extend to real
world interactions. For example, to remove a
large panel or other piece of equipment, the
object must sometimes be pulled straight out or at
an angle, which requires two hands on a single

object. For this type of manipulation, each hand
plays a role in positioning and orienting the object.

Figure 9. Immersed two-handed manipulation of
pump assembly, small green arrows represent
hands

Two-handed manipulation is also needed for
simultaneous manipulation of multiple objects. In
the example of disassembling an oil pump (See
Figure 9), three rings are removed from a shaft
previously removed from the pump. The shaft
must be held with one hand while the other
removes the rings. Manipulation techniques must
be available for both hands, each controlling a
different object.

Two-handed, immersed manipulation of VRML
TransformSensors is accomplished in the Vista
Training Studio component using the non-
dominant hand for gross translation of the object,
and the dominant hand for fine orientation of the
object, similar to the two-handed approach by
(Cutler 97) and (Guiard 94) (see Figure 10). The
steps below describe the two-handed approach:

Figure 10. Two-handed manipulation, non-
dominant hand translates, dominant hand orients

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final ReDort

2.

3.

5.

The first hand that does the pick operation
determines the object to be manipulated (Roll
from the first hand is ignored).
Translation is determined by the first hand to
select the object.
The second hand intersects the same object
and the segment between first and second
intersection points on the object defines a
vector, V0. Its direction is from the first
intersection point to the second.
Either one or both hands are moved and the
segment between the two endpoints of the
two hands determines Vector VV No further
intersections with the object are required.
The object is rotated so that initial vector is
aligned to the new vector as the two hands
change locations.

Another issue involves connecting objects within
the immersed environment. This is essential for
equipment operations since the assembly of
components requires joining objects, for example,
screwing in a bolt, joining two pipes, or inserting
alignment screws. These are tasks that require
precise object alignment, which is difficult in the
immersed environment. Requiring such precision
in an environment that lacks tactile feedback
might affect the training process since the focus
shifts from the training content to the training
environment. Instead, we simplify matters so that
if the trainee places the appropriate type of object
in a location that is authored to accept the object,
then the object will automatically snap into place.

D.2.1.4 Concurrent Interaction

Immersed virtual environments provide greater
freedom of movement and views than more
traditional forms of computer-based learning.
This works well for allowing students to
experiment and familiarize themselves with their
surroundings, however, there are times that an
instructor must ensure that interaction with an
object is perceived by the student or team, and
must perceive with fluid situations created by a
team.

Vista provides a number of services that are used
by the Steve and VIVIDS simulations to support
human/scene interactions. There are services to
determine world coordinates and bounding areas
of scene objects, and modify scene objects (color,
transforms, visibility, etc.). There are services to

allow students to interact with objects (Stiles
1997, 1998), and for the changed object state to
be updated for all the team. Services also exist to
determine if an object is visible to a student, and
to control the student's view for instruction.

Events can occur in a virtual environment which
are not perceived by student's with a free-ranging
view of the 3D scene. This problem is
compounded when multiple participants must
observe an event since multiple views and
locations must somehow be transitioned to the
desired view.

The Vista Viewer provides the instructor with a
variety of tools to control student movement and
view. The instructor can transition the student on
a set path or can instantaneously move the
student to a new location. The latter works well
for situations in which the participant is fully aware
of the shift, for example, has pressed a location
on a map. However, merely snapping all
participants to a desired viewpoint to view a
demonstration, for example, could be
disconcerting and disorienting. Vista implements
viewpoint transitions by moving the user from the
initial destination to the desired orientation by
moving slowly initially, then speeding up towards
the end. The movement begins slowly to allow
the participant to become better oriented and
establish a spatial relationship between the two
views. Steve can wait until all students are in
position to view the event before actually
triggering the event. This is done by the use of
proximity sensors located on the object that will
be viewed. The proximity sensors communicate,
by identity, when a user enters or exits the
defined area.

During normal operation each participant has one
Vista Viewer assigned to him. The introduction of
multiple viewers requires coordination of each
viewer to ensure scene consistency between
participants. VRML sensors, for example, allow
the environment to respond spontaneously and
naturally to an individual's action. Respective
sensors in the other displays, however, must be
triggered to ensure that all participants share the
same view. Likewise, it is not enough to provide
a representation of other team members for
individual displays; the actions of team members
(and results from those actions) must also be
broadcast and displayed. Views of participants
must be tracked and coordinated to ensure that
specific events are viewable by all required
participants.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin- Final Report

We currently update most of our
training simulation state visually by
means of TScript messages sent
from the training simulation to all
Vista Viewers. We also
automatically route VRML sensor
values generated by a student
participant in one Vista to other
Vista displays (see Figure 11).
The VRML routing of a sensor
event goes across the network,
and the event is routed as though it
had occurred internally to the
receiving Vista Viewer. This is a
necessary capability to share
visual state as actions occur.
Currently the underlying training
simulation is always in synch with
the Vista Viewer making changes
to the state, but the simulation
does not update all other Vista
Viewers to reflect the change. We
could keep Vista displays
synchronized in this manner, but it
involves an additional message for
every event and wouldn't scale
simulations well.

Figure 11. VRML scene graphs are updated across network by
broadcasting sensor changes along routes, and no modification of
VRML file is needed

VRML Scene Graphs
Vistal Vista2

up to larger

To support individual remediation and instruction,
our approach also allows for private (per-
participant, temporary) changes to the
simulation/scene to an individual display for ad
hoc lessons. Once the remediation is complete,
the individual's scene must update to allow
him/her to rejoin the scene.

D.2.1.5 Authoring with Commercial Tools

The full spectrum of 3D modeling is quite
complex, and often authors building 3D scenes
need many different tools to get the effect they
desire, or to work with the data they are given.
Early in the VET program, we embraced the use
of ISO standards for 3D geometry commercial-off-
the-shelf (COTS) authoring technology for 3D
scenes. The result was that we built Vista
capabilities to load and interact with VRML files in
support of a commercial authoring capability.

Many commercial tools are available to edit 3D
models and export as VRML scenes that can be
used immersed in the Vista Training Studio
component. Commercial VRML authoring tools

include CosmoWorlds, VRCreator, Sony
Community Place Conductor, Caligari TrueSpace,
and Studio3D. Commercial CAD vendors such as
Intergraph, Parametric Technologies ProEngineer
and SDRC Ideas provide VRML export capability.

The typical authoring process begins by obtaining
3D models for the training domain, and converting
these to VRML. Once the conversion to VRML is
done, the scene graph structure of the VRML
scene should be modified to support later
manipulation and interaction. For instance, if an
engine assembly object has both the engine and
valves as one complex set of geometry, and the
valves must be manipulated for instruction, the
valve geometry must be separated from the
complex engine geometry, so that VRML sensor
manipulations can turn the valves without turning
the entire engine.

Then the VRML models detail is reduced to
acceptable polygon counts, colors, materials, and
textures are changed to more closely approximate
the real equipment, and equipment items that will
be manipulated are named for reference in Vista
by the other Training Studio components, such as
VIVIDs.

Then interaction with the VRML objects is
authored, using VRML sensor nodes. Doors,
dials, thrust controls, valves, etc. all can be

Lockheed Martin Advanced Technology Center Contract N00014-95-C-0179

Virtual Environments for Trainim Final Report

manipulated by CylinderSensor nodes. Loose
items of equipment, and those that are
assembled, are modeled using TransformSensors
and SnapSensors. Sliders and plane-constrained
objects are authored with PlaneSensors, and
free-rotating joints are authored with
SphereSensors.

Once constrained manipulations have been
specified with VRML sensors, the referenced
nodes in the VRML scene graph geometry are
made available to VIVIDS authors using the
Profiler Training Studio component. The VIVIDS
author loads the VRML scene into VISTA in one
window, uses the mouse to select objects in the
VRML scene, and sees their reference name in
the Profiler. Using this reference name, rules and
object behavior can be edited in VIVIDS, and the
effect can be tested out in Vista, all in the same
session.

D.2.2 Simulation-based Training

This section describes the VIVIDS component of
the Training Studio. VIVIDS is used to author and
deliver Training Studio equipment simulations and
related instruction.

D.2.2.1 Authoring 2D/3D Equipment
Simulations with VIVIDS

Intelligent tutoring systems (ITSs) often include
interactive graphical simulations. For many types
of tutoring, the use of an interactive graphical
simulation helps to assure that what students
learn is relevant to actual tasks that they must
learn to perform, in a way that a primarily textual
or static graphic approach to learning interactions
cannot. Interactive simulations can help to ensure
that performance skills—as opposed to mere test-
taking skills—are acquired as a result of tutoring.
To date, most research projects on intelligent
tutoring systems that have incorporated
simulations have relied on low level tools (i.e.,
programming languages) to develop both the
ITSs and the simulations. Reliance on such low-
level development techniques naturally can make
simulation-centered tutoring extremely expensive.
It can also make it very difficult to determine what
features of a particular tutor are responsible for its
efficacy. The of low-level development using
programming languages can overwhelm the
effects of general principles that are followed in a
particular tutor. An authoring system, by providing
easily edited and modifiable tutorials, can make it
possible for developers to experiment with

different high-level approaches to tutoring in a
given domain.

VIVIDS is a descendant of the RIDES application
for interactively authoring graphical simulations
and simulation-centered tutorials. VIVIDS (and a
version of VIVIDS that lacks authoring features,
called sVivids—for Student VIVIDS) delivers
simulation-centered tutoring to students. Because
the simulation authoring system is designed to
support tutorials, many types of instruction can be
very rapidly authored, and many high quality
instructional interactions are generated
automatically. VIVIDS, unlike RIDES, can be used
to develop and present simulations and tutorials
in the context of the Vista Virtual Environment and
in collaboration with the Steve pedagogical agent.

D.2.2.1.1 History

The field of simulation in intelligent tutoring
systems (ITS) research is a large and rapidly
growing one. The field of simulation-based tutor
authoring systems, however, is a very much
smaller one. In this section, we briefly discuss
several authoring systems for the development of
simulations for learning.

STEAMER (Williams, Hollan, and Stevens, 1981;
Hollan, Hutchins, and Weitzman, 1984) provided
a direct manipulation simulation for students
learning about a steam propulsion plant. The
STEAMER project is an important spiritual
ancestor of VIVIDS. It offered a discovery world
for students and a demonstration platform for
instructors, but it did not provide authoring tools
for the development and delivery of instruction to
the learner. Simulations had to be written as
conventional computer programs.

Forbus (1984) developed an extension of
STEAMER called the feedback minilab, which
could be used to produce interactive graphical
simulations without first writing separate
simulation programs. This early authoring system
provided a set of predefined components (such as
valves and switches). Composing a device of
these components determined the behavior of the
simulated system as a whole.

IMTS (Towne and Munro, 1988, 1992) provided
tools for authoring interactive graphical
simulations of electrical and hydraulic systems. A
library of graphic behaving objects could be
composed, but the external effects of these

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Final ReDort

objects had to be of either electrical, mechanical,
or hydraulic type. IMTS supported troubleshooting
assistance by a generic expert called Profile
(Towne, 1984), but it could not be used to
develop or deliver other kinds of instruction.

An early approach to direct manipulation
instructional authoring was Dominie (Spensley
and Elsom-Cook, 1989). That system, however,
did not support the independent specification of
object behaviors; the specification of simulation
effects was confounded with the specification of
instruction.

RAPIDS (Towne and Munro, 1991) and RAPIDS
II (Coller, Pizzini, Wogulis, Munro, and Towne,
1991) were descendants of IMTS that supported
direct manipulation authoring of instructional
content in the context of graphical simulations.
These systems provided a more constrained
simulation authoring system than is found in
VIVIDS, and they did not offer authors low level
control over instructional presentations.

RIDES and VIVIDS provide much more robust
simulation authoring tools and instructional editing
facilities than were to be found in RAPIDS and
RAPIDS II. The VIVIDS system has some
features in common with the SMISLE system (de
Jong, van Joolingen, Scott, deHoog, Lapied, and
Valent, 1994; Van Joolingen and De Jong, 1996)
developed by a consortium of European
academic and industrial research groups, but is
less restrictive about how simulations can be
structured. SMISLE authors must separately
specify an inner, 'real' level of behavior and one
or more surface depictions of the behaving
system. Similar effects can be achieved using
VIVIDS, but they are not required. The SMISLE
system also contains facilities for supporting
student hypothesis formation, but lacks the
unconstrained simulation authoring and
instruction authoring capabilities of VIVIDS.

D.2.2.1.2 VIVIDS Adaptations
Collaboration with Vista

for

VIVIDS was modified in the course of this project
to respond to user actions in Vista and to request
that Vista make appearance changes based on
computed simulation effects. Actions taken by
students in the Vista VE are reported to VIVIDS.
The VIVIDS simulation associates these actions
with corresponding actions in a 2D simulation and
uses the 2D simulation to compute the effects of

such actions (as well as any effects due to the
passage of time, etc.). Whenever one of the
authored 2D simulation objects undergoes a
change in an appearance attribute, it broadcasts
to Vista a directive to make a corresponding
graphical change.

Several VIVIDS simulation objects have been
built that can collaborate with corresponding VE
model objects. Figure 12 shows the VIVIDS
library interface being used to access a behaving
rotary knob object. An instance of a graphical
model object under the control of such a
simulation object appears in the Vista scene
shown behind the VIVIDS library dialog.

^**fei

Open Library fro*:

../libs/wetUbs/

wcone.hb
urcy hndet*. lib
vrdiek.hb
vr9*J9e.Ub
vrlisht.hb
vrpsn_bi.n,lib
vrifcMd. I lb
VTOCt.llb

VT3Bl_SB.lib
vrsphere.llb
vrtext3«.hb
vrtgl.sw.hb
wlri.lib
vmecjge.llb

Flit: ../Llbs/*tLlbt/vrrot_f«l.llb
IM: l or l
Mamktfo

Ml trvhica It«* Graphic«

Twe: Shape
MsmK rotiry_Ml.9Wltch

Restrictions

Show director!««

MIES info:
1) The velue of the DtsplatStane :
?> Reed the oociMentatlon for th :
futher inforweMon.

VR Info:

library nies only

Figure 12 Simulation objects from VIVIDS library
allow re-use of many common instructional items

D.2.2.1.3 Simulation Development in Parallel

Both 3D graphical model development and
simulation behavior authoring can be time-
consuming tasks, especially when they are
carried out for a large and complex training
simulation such as the Gas Turbine Engine (GTE)
control systems. We have found it productive to
engage in these two aspects of simulation
development in parallel. While the Lockheed team
developed GTE VRML graphical models using
CosmoWorlds, a VIVIDS simulation behavior
model was developed at Behavioral Technology

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final ReDort

Labs. The major coordination that was required
was that there be agreement about the names of
the model objects that would exhibit behaviors by
permitting student manipulation. The simulation
author was able to quickly sketch 2D versions of
simulation objects and focus on writing the rules
for controlling their interactive behavior. The
name of the 3D model graphic was entered into a
VIVIDS simulation object data field so that the
object could know where to address its graphical
change directives.

In this way, entire simulations can be developed
and their behavior largely debugged by a person
or team at one site, while at the same time
another is building the graphical models. It is also
possible to build knowledge units (described
below) and even preliminary structured lessons
before the 3D graphical model has been
integrated with the behavioral simulation.

n Hi" i—«»-

*wm W» «4-)MP*i«-—rgrtl

«•VIUEPCM

•iQ

?FO

Figure 13. Independently Developed 3D Model
and Behavioral Simulation are part of concurrent
authoring approach

The 2D simulation that was roughed out
independently of the 3D model included 31
simulation scenes-separate windows that
graphically represent portions of the GTE control

systems. One such scene is shown in the lower
part of Figure 13. The author has selected a
simulation object that represents a throttle control
(note the black selection rectangles around the
object) and has opened an object data view,
which is used to enter the behavioral rules that
determine how this object responds to student
manipulations, and how it is affected by other
objects in the simulation. The object data view is
also used to enter the name of the 3D model
node that corresponds to this behaving 2D object,
along with other data about how the object can
control the corresponding 3D graphics. In the 3D
model shown above in the figure, this throttle
object is more realistically rendered at the right
side of the view.

D.2.2.2 VE Patterned Exercises and Custom
Lessons

The VIVIDS system supports the rapid authoring
of structured lessons for delivery in both 2D and
3D viewing environments. The lessons are
authored in the context of the 2D simulation,
which lets the author focus on pedagogical
presentations and what student actions to require
without having to deal with 3D navigation issues.

Two types of techniques for building structured
lessons are provided. Patterned Exercises are
lessons that are based on fifteen lesson
templates that are built into VIVIDS.

STBD THROTTLE {1A18)

— do* DrillAuthoring m
l Vtow EM CoapwMfltt OfmjOon^ Otaf«K*t^

; Transfer.Th»c«e_Co'n'ht)LlroriJsCC

tCortgunaow denned

j SCC..in_CofRio1

' Vüiboard Vuuft central conlroi »Cation button
\ «UiQDam ovuil central cotifroi station Button

; local liqm
1 llirujt I0C4I Dutton
; sraiooaro iocs! »grt
; starooaro mm» locai euwr

40 —

50 —

CO —

Figure 14. Building a Procedure Exercise with a
Patterned Exercise Editor

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

In Figure 14 above, a type of lesson on how to
carry out a procedure so as to achieve a goal is
being authored. The instructor simply carries out
a sequence of steps that will bring about the goal.
As each action is taken, the name of the
manipulated object is added to the list of actions
shown in the editor. Once the instructor has
achieved the goal, he or she indicates that no
more actions are required and then points to
those objects that indicate that the goal of the
procedure has been attained.

During training, a student is asked to carry out the
required procedure. VIVIDS evaluates the
student's progress in terms of the indicators that
the author pointed out. If the student is unable to
do so, VIVIDS guides the student to carry out the
sequence of actions that the instructor authored
using the patterned exercise editor.

Figure 15. VIVIDS supports custom lesson
development

It is also possible to build novel types of lessons
that are not based on instructional templates. This
is done using a custom lesson editor, shown in
Figure 15. In this editor, an instructor can create
new presentations, can specify questions to ask
the student, and can author sequences of
required student actions by carrying them out in
the simulation. The custom lesson editor can also
be used to edit lessons that were originally built
using the patterned exercise editor. The lesson
shown in Figure 15 is the one that was generated
by the goal/procedure authoring process
described for Figure 14, above.

No matter which approach is used to develop a
structured lesson, the elementary steps of the

lesson automatically handles a good deal of
student interaction without requiring explicit
author decisions. For example, objects that
students are to select or to manipulate can be
automatically highlighted by the VIVIDS lesson to
make them visually salient as part of the
instructional remediation process.

Structured lessons can be presented to students
based on an authored course structure in
collaboration with individual student models. The
objectives of a course are associated with lessons
that are designed to achieve those objectives.
Some objectives require others as prerequisites.
As students attain objectives, they become
eligible for lessons designed to realize more
advanced learning objectives.

D.2.2.3 Opportunistic Instruction
In addition to presenting a sequence of lessons to
achieve the objectives of a course, authors
sometimes find it useful to specify that certain
lessons should be presented on specific
occasions. For example, if a safety principle is
violated by a student carrying out a simulated
procedure, the author may want VIVIDS to
interrupt with a brief lesson that drills the student
on the violated safety requirements. This type of
instruction is called opportunistic. Authors develop
brief lessons using one of the standard authoring
techniques. Then a trigger condition is authored
that specifies when the lesson should be
presented. It is possible to opportunistically
present only a part of an authored lesson. When
the opportunistic instruction is finished, the
interrupted lesson resumes.

D.2.2.4 Accessing Authored Knowledge

VIVIDS provides an authoring mechanism called
the knowledge unit editor for entering textual
discussions about topics that can be associated
with simulation objects. Authors can define both
topic names and the content of the discussions
for each topic. It is also possible to associate one
or more structured lessons with a knowledge unit,
and to enter key word indices that can be used to
search among knowledge units. Figure 16 shows
a knowledge unit editor being employed to enter a
discussion about the Function of a simulated
control switch in the simulation of the gas turbine
engine control system.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainim Final Report

Figure 16. VIVIDS Knowledge Editor is used to
create spoken instruction

Figure 17 shows the VE interface for knowledge
exploration. A student can bring up an
instructional user interface that consists of a
menu of commands. Here, a student has entered
the Show information mode by selecting that item
on the command menu. The student then clicked
on the frequency control knob at the lower right
corner of the large vertical panel. This caused an
information submenu to appear that presents the
name of the object, its current state, and a list of
the available discussion topics (Function and
Operation, in this case). If the student selects the
Function topic, VIVIDS sends the text on that
topic (which was entered in the Knowledge Editor,
shown in Figure 16) to TrishTalk so that it can be
read aloud.

wmm %\ WwMMMM* SSGTC t frajuency cowl!
[Repeat Text position-neutral ft
{Change Viewpoiiu j-uo-.-n.ir jfi Ö

Figure 17. Immersed students can access
authored knowledge as an aid to instruction

D.2.2.5 Team Training Features
Features have been added to VIVIDS to make it
possible to direct certain elements of instruction to
particular students in a team training task. In a
VIVIDS lesson, actual interactions with students
are controlled by elementary lesson steps. There
are 24 types of these, including highlighting
simulation objects, requiring an action, triggering
a simulation event, presenting text, asking a
question with a menu of answers, and so on.
Authors can specify to whom most of these
lesson steps should be directed. An example of a
type of lesson step that cannot be presented to a
particular student is a Set Configuration, which
restores the entire simulation to some previously
authored state. For those lesson steps that can
be directed to particular students, the default is to
direct the step to all the students.

For those types of lesson steps that require the
manipulation of a simulation object, such as a
switch, knob, or lever, if a participant is specified,
then only that participant will actually be able to
carry out the action. Attempts by other students to
perform the required action will be blocked. This
system gives authors a good deal of flexibility in
determining how a team training lesson will be
presented

D.2.3 Pedagogical Agents

This section provides a technical view of the
Steve component of the Training Studio.

The VET project developed the Soar Training
Expert for Virtual Environments (Steve)
architecture for pedagogical agents. Steve has
been used to create animated pedagogical agents
that can monitor students performing tasks,
demonstrate tasks, and answer questions. These
agents appear in the virtual environment as virtual
human figures, allowing them to participate as
team members and engage in face-to-face
dialogs with students. Such animated
pedagogical agents are a natural means for
delivering instruction in virtual environments.

D.2.3.1 Motivation

Virtual reality creates an opportunity for a new
breed of computer tutor: the tutor can appear as
an autonomous, animated agent that cohabits the
virtual world with students and other agents.
Such a pedagogical agent provides two key

Lockheed Martin Advanced Techno oav Center Contract N00014-95-C-0179

Final ReDOrt

advantages. First, the agent and student can
carry on a face-to-face tutorial dialog, situated in
the virtual world. Unlike previous disembodied
computer tutors, the agent can demonstrate
actions, use locomotion, gaze, and deictic
gestures to guide the student's attention, and use
many of the nonverbal cues that people use to
regulate their conversations. Second, such
agents can support team training; in addition to
serving as tutors for students playing roles in a
team, they can also play the roles of missing team
members, allowing students to practice team
tasks even when their human teammates are
unavailable. To explore this new breed of
computer tutor, we developed a pedagogical
agent named Steve (Soar Training Expert for
Virtual Environments).

Steve integrates methods from three primary
research areas: intelligent tutoring systems,
computer graphics, and agent architectures. This
novel combination results in a unique set of
capabilities. Steve has many pedagogical
capabilities one would expect of an intelligent
tutoring system. For example, he can inform
students when they make mistakes, and he can
answer questions such as 'What should I do
next?" and "Why?" However, unlike previous
intelligent tutoring systems, Steve appears as an
animated human character in the virtual world,
supporting a rich interaction with students.
Moreover, Steve's agent architecture allows him
to robustly handle a dynamic virtual world,
potentially populated with people and other
agents; he continuously monitors the state of the
virtual world, always maintaining a plan for
completing the current task, and revising the plan
to handle unexpected events.

The following sections summarize Steve's
architecture and capabilities. More technical
details are available in our publications (Rickel
and Johnson 1997, Johnson et. al. 1998).

D.2.3.2 Steve's Architecture

Like many other autonomous agents that deal
with a real or simulated world, Steve consists of
separate modules for perception, decision
making, and motor control (see Figure 18). The
perception module monitors messages from the
communication bus and identifies events that are
relevant to Steve, such as actions taken in the
virtual world by people and agents and changes
in the state of the virtual world. The cognition

module, which is built on top of Soar (Laird et al.
1987; Newell 1990), interprets the input it
receives from the perception module, chooses
appropriate goals, constructs and executes plans
to achieve those goals, and sends out motor
commands to interact with the world. The motor
control module decomposes the motor commands
into a sequence of lower level commands that are
sent out to the other VET components (e.g., Vista,
VIVIDs, and TrishTalk) via the communication
bus.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

Figure 18. Steve's architecture consists of world state perception, motor control, and cognition blocks

%>'$&' Agent Cognition
(Soar)

Domain Knowledge

Wi's ,v,;^„,rf«W^^, y... ^^V,>;-;:-^(..vV^-..;.: _:, ■,.,_,. -.„■„.-...,<.v,.„,'..

Pedagogical Functions

...i -<,■:■ ■ ■>■ - '' -'■■■:

Motor Control

Translate into Figure
 Motions

Tscript Broadcast to
Training Studio

I

Perception

Filter, Assemble

Monitor Tscript
Environment Events

I
Communications Bus (Tscript Messages)

The other components of the VET system provide
a rich perceptual environment for Steve.
Currently, his perception includes the state of the
virtual world (objects and their attributes, updated
by VIVIDs), actions taken by students and other
agents, the location of students and agents, the
set of objects within the student's field of view
(updated by that student's Vista), human and
agent speech (including messages when
someone's speech begins and ends, along with
the content of the utterance), and time. The
perception module uses the messages from other
VET components to maintain a coherent snapshot
of the state of the virtual world, which it passes to
the cognition module about 10 times per second.

D.2.3.3 Steve's Cognitive Capabilities
Steve's cognition module is organized into three
layers. At the lowest layer lies Soar. Soar was
designed as a general model of human cognition,

so it provides a number of features that support
the construction of intelligent agents, such as a
frame-based representation of working memory, a
production rule representation of long term
memory, a decision cycle that includes input and
output with an external world, a truth maintenance
system, and automatic sub-goaling and chunking.
However, Soar does not provide built-in
mechanisms for particular cognitive skills, such as
demonstration, explanation, and question
answering. Therefore, one of our main tasks in
building Steve was to design a layer of domain-
independent pedagogical capabilities such as
these on top of the Soar architecture. These
capabilities are implemented as Soar production
rules that can be applied to any domain. The final
layer in Steve's cognition module is his
knowledge of a particular domain, such as
shipboard procedures. Given appropriate task
knowledge for a particular domain, Steve uses his
general pedagogical capabilities to teach that
knowledge to students. Thus, our layered

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

virtual Environments for Trainin Final Report

approach to Steve's cognition module allows him
to be used in a variety of domains; each new
domain requires only new task knowledge without
any modification of Steve's abilities as a teacher.

Steve's main objective is to teach students how to
perform physical, procedural tasks, such as
operating and repairing equipment. Thus, Steve
needs a representation of the appropriate
procedural knowledge for any domain that he
must teach. Intelligent tutoring systems typically
represent procedural knowledge in one of two
ways. Some, notably those of Anderson and his
colleagues (Anderson et al. 1995), use detailed
cognitive models built from production rules.
Other systems (Rickel 1988) use a declarative
representation, usually some variant of a
procedural network representation (Sacerdoti
1977) specifying the steps in the procedure and
their ordering. Production rule models provide a
more flexible ontology at a price: they are
laborious to build and difficult to maintain. In
contrast, procedural network representations are
more practical for domains like operation and
maintenance of equipment; procedures may
change frequently in such domains, so it must be
easy for domain experts or course authors to
represent procedures, examine them, and change
them when necessary. For these reasons, Steve
uses a procedural network (plan) representation
for domain tasks.

Steve's representation is not uncommon in the Al
planning community (Russell and Norvig 1995),
although, as we will discuss, it differs in important
ways from representations in other tutoring
systems. First, each plan consists of a set of
steps, each of which is either a primitive action
(e.g., press a button) or a composite action (i.e., a
sub-plan). Composite actions give plans a
hierarchical structure. Second, there may be
ordering constraints among the steps. Finally, the
rationales for the steps in the plan are
represented as a set of causal links (McAllester
and Rosenblitt 1991); each causal link specifies
that one step in the plan achieves a goal that is a
precondition for another step (or for termination of
the task). For example, pulling out a dipstick
achieves the goal of exposing the level indicator,
which is a precondition for checking the oil level.

To teach a student how to perform domain tasks,
Steve and the student practice the tasks together.
All of Steve's instruction and assistance is
situated in the performance of domain tasks;
other types of instruction, like familiarization

lessons, are handled by VIVIDS. Ideally, students
should learn to apply standard procedures to a
variety of situations, and they should learn the
rationale behind steps in the procedure. Our goal
is to support the apprenticeship model of learning
(Collins et al. 1989). This requires two
capabilities: Steve must be able to demonstrate
and explain tasks, and he must be able to monitor
students performing tasks, providing assistance
when it is needed.

Whether Steve is demonstrating a task or
monitoring the student, he must maintain a plan
for completing the task. The plan allows Steve to
choose the next appropriate action and, if asked,
to explain the role of that action in completing the
task. Steve's plans should follow standard
domain procedures as much as possible.
However, in order to handle dynamic
environments, possibly containing other people
and agents, Steve must be able to adapt those
procedures to handle unexpected events (e.g.,
equipment failures, student errors, and teammate
errors). Moreover, he must do so quickly, since
he and the student are collaborating on the task in
real time.

To satisfy these criteria, Steve uses a novel
combination of task decomposition planning
(Sacerdoti 1977) and partial-order planning (Weld
1994). Task decomposition planning is used to
create a general model of the task (represented
as a hierarchical plan). Partial order planning is
used to decide which steps in the task model are
required, in the current situation, to complete the
task; this plan is updated whenever the state of
the virtual world changes. This approach is
efficient, and it forces Steve to follow standard
procedures as much as possible, yet it still allows
him to adapt the plan to unexpected events:
Steve naturally re-executes parts of the plan that
get unexpectedly undone, and he skips over parts
of the plan that are unnecessary because their
goals were serendipitously achieved. Thus,
unlike videos or scripted demonstrations, Steve
can adapt domain procedures to the state of the
virtual world.

The causal links in Steve's representation of
procedural knowledge are an important source of
power, yet they have not been used in other
tutoring systems. Causal links allow Steve to
construct and revise plans, because they
represent how each step contributes to achieving
the end goals of a task. Previous tutoring
systems based on procedural net representations,

Lockheed Martin Advanced Technolo Contract N00014-9S-C-0179

virtual Environments for Trainin Final Report

on the other hand, only represent steps and
ordering constraints. Without causal links, these
systems are incapable of adapting procedures to
unexpected situations. Causal links also allow
Steve to explain to students the rationale for his
actions and recommendations. Other procedural
net tutors cannot automatically generate situation-
specific explanations this way. Neither can tutors
based on production rules; in those tutors, the
relationships among actions are implicit in the
rules.

Steve's collaboration with a student on a task is
not rigid; he carries on a mixed-initiative dialog
with the student, and can gracefully shift between
demonstrating the task and monitoring the
student performing the task. To ensure
coherence when demonstrating a task, Steve
maintains a dialog focus stack and dynamically
selects cue phrases (e.g., "first" and "next") to
indicate the relationship between a new step and
the previous one. When demonstrating a step,
Steve typically moves to the appropriate location,
describes the step while pointing to the relevant
object, performs the step, and describes any
relevant results. The student can always interrupt
a demonstration and ask to finish the task himself.
When monitoring the student, Steve nods in
acknowledgment of correct actions and indicates
when the student has made an error. The student
can ask Steve what to do next and why, and can
also ask Steve to show him how to do it.
Throughout this dialog, Steve makes appropriate
use of gaze to regulate the conversation. To
support after-action review, Steve uses Johnson's
Debrief system (Johnson 1994) to maintain an
episodic memory of his actions; after the task, if
the student asks Steve why he did something,
Steve recalls the situation and explains his
rationale.

D.2.3.4 Steve's Motor Control

Steve's motor control module receives motor
commands from the cognition module and
decomposes them into lower-level commands
that are sent to other VET components via the
communication bus. The motor control module
accepts a variety of commands: speak to
someone, move to an object, look at something,
nod or shake the head, point at an object,
manipulate an object (in various ways), and
change facial expression. The motor control
module determines how these commands are
realized in the virtual world; Steve's entire body

can be replaced with a new one by simply re-
implementing the motor control module.

We have experimented with several bodies for
Steve. The current version represents a full
upper body of a human figure. We created the
graphical models and animation control from
scratch (although the head was derived from a
public domain version of the Jack human figure
developed at the University of Pennsylvania).
Although software for controlling human figures is
available from several universities, none was
suitable for our purposes. For example, the Jack
software (Badler et al. 1993) could not be used
outside its own browser (i.e. could not be run
inside Vista), and its API for control by external
programs (such as Steve) was not sufficiently
developed (Jack was initially designed for control
by humans via menus). The animation control
code we developed has proven to be efficient,
robust, and natural looking, and it has given us
the opportunity to experiment with different
functionality to support our research.

Control over Steve's body is split into two pieces.
Steve's motor control module controls gross
movement, while fine-level control (e.g., moving
Steve's arm to an object or having Steve's gaze
track a moving object) is handled by code running
as a shared library within each Vista Viewer. The
shared library, which was developed at ISI, has its
own API, providing another layer of modularity.

Although the shared library was developed for
control by Steve, it proved useful for VIVIDS as
well. An optional feature of the structured lessons
offered by VIVIDS is the use of a directable
version of Steve's body under the control of the
VIVIDS lesson step routines. This makes it
possible for an author to quickly build a structured
lesson that uses Steve to remediate certain
student errors or to carry out demonstrations. If
the author chooses not to use Steve,
remediations and demonstrations are carried out
by graphically highlighting objects and then
requiring the student to select them. After the
student touches the object, the lesson continues.
In the case of an action demonstration, the
simulation effects of the required action are
displayed once the student has selected the
relevant control. Use of Steve for such
demonstrations provides additional information
that is not available in a conventional VIVIDS
demonstration.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Final Report

D.2.3.5 Team Training

Agents like Steve are especially useful for team
training, where they can serve not only as tutors
for individual students in the team but also as
missing team members. Steve's ability to perform
actions in the virtual world allows his teammates
to follow his actions. His ability to use speech
synthesis and speech recognition allows him to
communicate with his teammates. His ability to
adapt to unexpected situations allows him to
robustly operate in a virtual world with other
people and agents. Thus, although Steve was
originally designed for one-on-one tutoring, we
were able to extend him to support team training
with relatively few extensions.

To support team training, we generalized Steve's
task model representation. In addition to
specifying steps, ordering constraints, and causal
links, each team task model also has a set of
roles (e.g., electrical operator and propulsion
operator). The task model specifies which role is
responsible for each step in the task. Once
students and agents are assigned to the roles in a
task, the information in the task models allows the
agents to determine the actions for which each
team member is responsible. This approach
would not work for tasks that require teammates
to dynamically negotiate role assignments;
fortunately, many real-world tasks, particularly in
the military, have fixed role assignments.

Natural language communication is often critical
to team coordination. To support this, we model
speech acts as explicit actions in the task model.
For example, one team member may
communicate to another that a subtask is
complete. When an agent's teammate (human
or agent) says something, the agent interprets the
utterance by comparing it to speech acts in the
task model that are appropriate in the current
situation. When a student says something
inappropriate, the agent serving as the student's
tutor is responsible for providing feedback. This
approach works well when the possible
utterances among teammates can be specified
ahead of time. Again, although this rules out
many ill-structured tasks, it is sufficient for many
team tasks, particularly in the military, which have
a prescribed set of utterances for which Steve
agents can listen.

D.2.3.6 Authoring by Demonstration

One of our main objectives in designing Steve
was that it should be easy to provide the
knowledge he needs to teach a new domain. To
meet this objective, we separated Steve's domain
knowledge from his general pedagogical
capabilities, and we ensured that he only relies on
types of domain knowledge that a course author
could easily provide and maintain. To further
simplify the course author's job, we have
developed tools that use machine learning to help
automate the acquisition of domain task
knowledge.

To teach Steve about a new task, the course
author demonstrates the steps of the task in the
virtual world. For each action in the
demonstration, Steve notes the state of the virtual
world before and after the action; this provides
one example of the effects of the action on the
virtual world. Steve also requires the author to
describe the action via a text string; these text
strings will form the basis for Steve's later
instruction to students. At the end of the
demonstration, Steve shows the author a list of
changes in the state of the virtual world that
resulted from the demonstration; the author
distinguishes those that are the end goals of the
task from those that are incidental side effects.
Now, given this demonstration and understanding
of the new task's goals, Steve must learn two
things: he must learn the causal links (i.e., the
causal dependencies among the actions, as
described earlier), and he must learn the ordering
constraints among steps (in case some steps can
be done in any order).

To identify the causal links and ordering
constraints, Steve experiments with variants of
the author's demonstration. By systematically
dropping different steps from the procedure and
performing the resulting variant in the virtual
world, Steve learns the preconditions and effects
of each step, from which he can reconstruct the
causal links and ordering constraints for the task.
Steve's learning procedure is a novel variant of
Mitchell's Version Space algorithm for inductive
learning (Mitchell 1982).

After Steve has finished experimenting with the
task, he presents his understanding of the task to
the course author. At this point, the author can
make any corrections to the task model in cases
where Steve was unable to generate enough

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final ReDort

examples to eliminate some possible
dependencies among steps. Thus, through a
combination of programming by example (Cypher
1993), learning by observation (Wang 1995), and
learning by experimentation (Gil 1993), the
author's task is reduced from providing the entire
task description to simply providing a
demonstration and making any necessary
changes in Steve's resulting understanding.

For a more detailed description of this work, see
(Angros et al. 1997) and (Johnson et al. 1998).

D.2.3.7 Related Work

Although Steve draws on a long line of research
in intelligent tutoring systems, agent architectures,
planning, and machine learning, no previous
systems integrate his unique range of capabilities.
The most closely related pedagogical agent for
virtual reality was developed by Billinghurst and
his colleagues (Billinghurst and Savage 1996;
Billinghurst et al. 1996). Their agent inhabits a
3D, simulated nasal cavity, providing assistance
in sinus surgery to medical students. However,
their agent does not have an animated form, and
it cannot adapt procedures to unexpected events.
Lester and his colleagues are developing two
animated pedagogical agents (Stone and Lester
1996; Lester et al. 1998), but their agents do not
inhabit 3D virtual worlds; they appear as 2D
characters floating on top of a 2D image of a
virtual world. Also, they do not interact with a
simulator, nor do they have any ability to
construct or execute domain plans. The PPP
Persona (Andre, Rist, and Mueller 1998) is a 2D
animated agent that can combine speech and
gestures to describe procedures for operating
physical devices, but it cannot interact with a
simulator, and it has no pedagogical capabilities
except the ability to describe a procedure. None
of these other agents supports team training.

Lockheed Martin Advanced Techno oav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final Report

E Summary

This section summarizes the Virtual Environments
for Training effort, covering significant results,
suggested courses of action, and future plans.

E. 1 Significant Results

The VET project focused on immersed instruction,
culminating with the successful development of
the Training Studio prototype, an authorable
system for team instruction in a virtual
environment. Several key advances have
resulted from the VET program:

♦ Pedagogical agents that can act as student
mentors or team members during training

♦ Component-based instructional systems
♦ Authorable virtual environment interaction

applicable across domains

In the executive summary of our 1994 VET
proposal, we proposed to develop an instructional
system that integrates the design, development,
delivery, and evaluation of training curricula with a
comprehensive virtual environment. Using our
Training Studio system, authors can design and
develop instruction for delivery to students, and
evaluation of their performance, in an immersed
virtual environment. Thus, the VET Training
Studio is an example of an integrated, working VE
system for constructing, managing, and
interacting within virtual environments.

VET has advanced the state of the art in the use
of intelligent agent technology for training in
virtual environments. Steve is able interact with
students in un-scripted training scenarios. He can
act either as instructor or team member. By
integrating intelligent agents (pedagogical agents)
into virtual environments, we have significantly
enhanced the value of such environments as
vehicles for training.

VET has shown the feasibility for component
based instructional authoring and delivery tools.
Our separation of presentation and interaction
(Vista), equipment model (VIVIDS), and human
models (Steve) has shown that its possible to
attain advanced instructional capabilities using a
component-based approach.

VET has shown that immersed virtual
environment interaction can be authored using

standards for 3D geometry, constraints, and
behavior, in a manner that is not specific to the
VE software, and in a manner that can be used
with advanced instructional components to
achieve new types of interaction with the Student
for instruction, such as those shown with Steve,
and the general concept of Spatial Dialog.

E.2 Suggested Course of Action

The VET work has demonstrated the potential of
virtual environments to provide effective team
training at reduce cost. ONR should encourage
further evaluation of the technology on fleet
problems, in order to encourage the transition into
Navy training practice.

Meanwhile, further research and development
needs to be conducted on ways of integrating this
technology into work environments via
augmented reality techniques, combining
pedagogical agent technology with state-of-the-art
human figure technology such as Jack, and
exploiting the tracking data in the virtual
environment in order to perform quantitative
assessments of student performance.

One novel research area uncovered during this
effort is spatial dialog, where the spatial context of
the user is used to conduct a meaningful spoken
dialog with a computer. Spatial context includes
direction of the person's gaze, the objects in their
view, the objects they are touching, the objects
they can touch, the objects they are near, the
routes they can navigate, and their current spatial
task. By using spatial context as part of
understanding a user's speech, more natural
language understanding capabilities can be
achieved. Similarly, by using visual cues in the
spatial context, the speech produced by the
computer can be enhanced. Steve's actions to
point out equipment, and to lead the way through
the ship during instruction are examples of this.
Prior to virtual environments, much of the spatial
context was not available for speech dialog
systems, and many projects continue to ignore
spatial context in a world where we largely
engage in spatial dialog with each other. An
example of this is a an instructor pointing at a
wrench, and telling the student to "Pick it up",
another example is a waitress bringing a cart of
deserts to a table and asking the people seated
there "Which of these would you like?" There are
many more complex examples that we handle in
everyday life.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final ReDOrt

E.3 Future Plans

Within Lockheed Martin, the Advanced
Technology Center will continue development of
Vista. We plan to expand Vista's capabilities in
three areas: mediated reality, where 3D scenes
are over-layed on the real surrounding scene,
enterprise integration, where CAD models are
used for prototyping training and usage, and
spatial dialog, where visual context is used to
dramatically improve human-computer spoken
dialog.

USC / Behavioral Technology Laboratories
continues to build on the VIVIDS technologies
under two funded research projects. The lessons
learned in the VET project are driving the
development of a newVivids architecture for
simulation-centered tutors. The goal here is to
develop an architecture and certain realized
components of that architecture for the
development and delivery of simulation-centered
tutors in a very wide range of contexts. One
application of the architecture will be a facility for
authoring 2D simulation tutors for delivery on
Java platforms, using a lightweight universal
simulation player. A data-driven tutorial player is
also under development. This tutor delivery
system is designed to work in a wide variety of
both 2D and VE-based simulation environments.

the demonstration examples. In the coming year
Mr. Angros will perform usability evaluations of
Diligent and write up and publish his work. Ben
Moore, an undergraduate, has developed an
interface for authoring the interface between
Steve and the virtual environment, e.g., defining
Steve's primitive manipulations of virtual objects.
Our research in natural interaction with students
has investigated the use of auditory feedback to
facilitate student interaction with the virtual
environment. In our continuing work, Steve will
maintain a model of the ongoing dialog with
students, in order to facilitate natural interaction
between students and Steve agents.

The pedagogical agent technology developed as
part of the VET project has broad applicability
potential both in immersive virtual environments
and in more conventional desktop environments.
USC / ISI has teamed with Intelligent Systems
Technology, Inc. on an Air Force SBIR Phase II
grant to productize the technology. Meanwhile,
Steve provided the basis for USC / ISI's Adele
pedagogical agent, designed for instructional use
in the health sciences. USC plans to incorporate
pedagogical agent technology into health science
courses in the spring of 1999.

USC / Information Sciences Institute's AASERT
grant is a three-year effort focusing on two areas:
natural interaction with students, and natural
action with instructors. Richard Angros, a Ph.D.
student, developed an authoring interface called
Diligent that allows instructors to author Steve's
task knowledge by demonstration (Angros et al
1997). Using Diligent, a course author can
demonstrate tasks to Steve. Diligent then directs
Steve through a process of trying variations on
the demonstrated task, in order to generalize from

Lockheed Martin Advanced Technoloav Center LMMS P499362 Contract N00014-9S-C-0179

Virtual Environments for Trainin Final Report

F Bibliography

This bibliography is a list of cited articles, as well
as a list of related works not specifically cited
here, but of relevance to the VET work.

The Virtual Environments for Training web site
has references to other sites in this subject area.

http://vet.parl.com/~vet/

The VET report web page has copies of some of
the papers listed here, as well as links to USC/ISI
and USC/BTL.

http://vet. pari .com/- vet/reports/

Angros, R., Johnson, W.L, & Rickel, J., Agents
that Learn to Instruct, AAAI 1997 Fall
Symposium Series: Intelligent Tutoring
Systems Authoring Tools, Technical Report
FS-97-01, November 1997, AAAI Press.

Ambros-lngerson, J.A., and Steel, S., 1988.
Integrating planning, execution and
monitoring. In Proceedings of the Seventh
National Conference on Artificial Intelligence
(AAAI-88), pp. 83-88, San Mateo, CA,
Morgan Kaufmann.

Anderson, J.R., Boyle, C.F., Corbett, AT., and
Lewis, M.W., 1990. Cognitive modeling and
intelligent tutoring. Artificial Intelligence (42),
pp. 7-49.

Badler, N., Phillips, C, and Webber, B., 1993.
Simulated Agents and Virtual Humans,
Oxford University Press.

Barfield, W., Furness, T. A., Virtual Environments
and Advanced Interface Design, Oxford
University Press, 1995. P. 11.

Barrus, J.W., Waters, R.C., and Anderson, D.B.,
1996. Locales and beacons: Efficient and
precise support for large multi-user virtual
environments. Proceedings of the IEEE
Virtual Reality Annual International
Symposium, pp. 204-213. IEEE Computer
Society Press.

Billinghurst, M., and Savage, J., 1996. Adding
intelligence to the interface. Proceedings of
the IEEE Virtual Reality Annual International

Symposium, pp. 168-175.
Society Press.

IEEE Computer

Blumberg, B.M. and Galyean, T.A., 1995. Multi-
level direction of autonomous creatures for
real-time virtual environments. SIGGRAPH
95 Conference Proceedings, pp. 47-54.

Brooks, R.A., 1986. A robust layered control
system for a mobile robot. IEEE Journal of
Robotics and Automation 2(1): 14-23.

Calvin, J. et al, 1993. The SIMNET virtual world
architecture. Proceedings of the IEEE Virtual
Reality Annual International Symposium, pp.
450-455. . IEEE Computer Society Press.

Coller, L. D., Pizzini, Q. A., Wogulis, J., Munro, A.
& Towne, D. M. , 1991. Direct manipulation
authoring of instruction in a model-based
graphical environment. In L. Birnbaum (Ed.),
The international conference on the learning
sciences: Proceedings of the 1991
conference, Evanston, Illinois: Association for
the Advancement of Computing in Education.

Collins , A, 1989. Cognitive apprenticeship:
teaching the crafts of reading, writing, and
mathematics. In Resnick, L.B., ed., Knowing,
Learning, and Instruction: Essays in Honor of
Robert Glaser, pp. 453-494, Lawrence
Erlbaum Associates.

Cutler, L. D., Fröhlich, B., Hanrahan, P., Two-
Handed Direct Manipulation On The
Responsive Workbench, Symposium on
Interactive 3D Graphics, 1997.

Cypher, A., ed., 1993. Watch What I Do:
Programming by Demonstration. MIT Press,
Cambridge, MA.

Dewey, J., 1939. Fundamentals of educational
process. Intelligence in the Modern World:
John Dewey's Philosophy. Edited by Joseph
Ratner. New York: Random House, Inc.

de Jong, T., van Joolingen, W., Scott, D.,
deHoog, R., Lapied, L, Valent, R., SMILSLE:
system for multimedia integrated simulation
learning environments. In T. de Jong and L.
Sarti (Eds.) Design and production of
multimedia and simulation based learning
material, Dordrecht: Kluwer Academic
Publishers, 1994.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179

Virtual Environments for Trainin Final ReDort

Durlach, N.I., and Mavor, A.S., eds., 1995. Virtual
Reality: Scientific and Technological
Challenges. National Academy Press,
Washington D.C.

Firby, R.J., 1994. Task networks for controlling
continuous processes. In Proceedings of the
Second International Conference on Al
Planning Systems.

Fogg., B.J., and Moon, Y., 1994. Computer as
teammate: effects on user attitude and
behavior. Proceedings of Lifelike Computer
Characters '94, p. 54, Microsoft Research,
Snowbird, UT.

Grant, F., McCarthy, L, Pontecorvo, M. & Stiles,
R. Training in Virtual Environments.
Conference on Intelligent Computer-Aided
Training. Houston, TX: NASA Johnson
Space Center, November 1991.

Gabbard, J. L. Hix, D., A Taxonomy of Usability
Characteristics in Virtual Environments,
Virginia Polytechnic Inst. & State Univ.
Technical Report, Nov 1997. See
http://csarad.cs.vt.edu/~jgabbard/ve/taxonom
y/

Guiard, Yves. Symmetric Division Of Labor In
Human Skilled bimanual action: the kinematic
chain as a model, The Journal of Motor
Behaviour, 19(4):486-517, 1987.

Hall, C, Stiles, R., Horwitz, C, Virtual Reality for
Training: Evaluating Knowledge Retention.
Accepted for 1998 IEEE Virtual Reality
Annual International Symposium (VRAIS '98),
March 1998, Atlanta GA.

Hayes-Roth, B. and van Gent., R., 1997. Story
Making with Improvisational Puppets,
Proceedings of the First International
Conference on Autonomous Agents, 1997.

Hill, R.W. and Johnson, W.L, 1995. Situated
Plan Attribution, Journal of Artificial
Intelligence in Education 6(1), pp. 35-67.

Hollan, J. D., Hutchins, E. L, and Weitzman, L,
1984. STEAMER: and interactive inspectable
simulation-based training system, Al
Magazine 5(2), pp. 15-27.

Horwitz, C. D., Fleming, J., Regian, W., Stiles, R,
Software tools for embedding principled

instruction in virtual environment simulations,
Proc. IMAGE 96 Conf, Scottsdale, AZ, June
1996.

Gil, Y., 1993. Efficient Domain-Independent
Experimentation. USC / ISI technical report
ISI/RR-93-337. Also appears in the
Proceedings of the Tenth International
Conference on Machine Learning.

Johnson, W.L., 1986. Intention-Based Diagnosis
of Novice Programming Errors, Morgan
Kaufmann, Menlo Park, CA.

Johnson, W.L., 1994. Agents that learn to explain
themselves. Proceedings of the Twelfth
National Conference on Artificial Intelligence,
pp. 1257-1263. AAAI Press, Menlo Park, CA.

Johnson, W.L. and J. Rickel, "Intelligent Tutoring
in Virtual Environment Simulations," ITS '96
Workshop on Simulation-Based Training
Technology, June 1996.

Johnson, W. L, Rickel, J., Stiles, R., and Munro,
A., Integrating Pedagogical Agents into
Virtual Environments. Presence Journal 7(6)
Dec 1998., MIT Press.

Kotani, A. and Maes, P., 1994. Guide agents for
virtual environment. Proceedings of Lifelike
Computer Characters '94, Microsoft
Research, Snowbird, UT, p. 59.

Laird, J.E., Newell, A, and Rosenbloom, P.S.,
1987. Soar: An architecture for general
intelligence. Artificial Intelligence 33(1), pp. 1-
64.

Loftin, R.B., and Kenney, P., 1995. Training the
Hubble space telescope flight team. IEEE
Computer Graphics and Applications 15(5):
31-37.

McCarthy, L., Stiles, R., Pontecorvo, M. & Grant,
F. Spatial Considerations for Instructional
Development in a Virtual Environment. 1993
Conference on Intelligent Computer-Aided
Training and Virtual Environment Technology.
Houston, TX: NASA Johnson Space Center,
May 1993.

McCarthy, L, Stiles, R., Rickel, J. Johnson, L.,
Human-Systems Interaction for Immersed
Training, In Press, Virtual Reality Journal,
Springer Verlag.

Lockheed Martin Advanced Technology Center Contract N00014-9S-C-0179

Virtual Environments for Trainin Final ReDort

McCarthy, L, Stiles, R., Rickel, J. Johnson, L,
Enabling Team Training in Virtual
Environments, Proc. Collaborative Virtual
Environments, Manchester, U.K., June 1998.

Mine, Mark R., Brooks, Frederick P., Sequin,
Carlo H. Moving Objects In Space: Exploiting
Proprioception In Virtual Environment
Interaction, Proceedings of SIGGRAPH '97,
Los Angeles, CA, Aug. 1997.

Mitchell, T.M., 1982. Generalization as search.
Artificial Intelligence 18: 203-266.

Munro, A., Johnson, M.C., Surmon, D.S., and
Wogulis, J.L, 1993. Attribute-centered
simulation authoring for instruction,
Proceedings of the AI-ED 93 World
Conference of Artificial Intelligence in
Education, pp. 82-89, Edinburgh, Scotland.

Munro, A. Authoring interactive graphical models.
In T. de Jong, D. M. Towne, and H. Spada
(Eds.), The Use of Computer Models for
Explication, Analysis and Experiential
Learning. Springer Verlag, 1994.

Munro, A. RIDES QuickStart, Los Angeles:
Behavioral Technology Laboratories,
University of Southern California, 1995.

Munro, A. and Pizzini, Q. A. RIDES Reference
Manual, Los Angeles: Behavioral Technology
Laboratories, University of Southern
California, 1995.

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon,
D.S., and Wogulis, J.L, A Tool for Building
Simulation-Based Learning Environments, in
Simulation-Based Learning Technology
Workshop Proceedings, ITS'96, Montreal,
Quebec, Canada, June 1996.

Newell, Allen, Unified Theories of Cognition.,
Harvard University Press, Cambridge, MA,
1990.

Pizzini, Q.A., Munro, A., Wogulis, J.L., and
Towne, D.M., The cost-effective authoring of
procedural training, in Architectures and
Methods for Designing Cost-Effective and
Reusable ITSs Workshop Proceedings,
ITS'96, Montreal, Quebec, Canada, June
1996.

Regian, J.W, Shebilske, W., and Monk, J., 1992.
A preliminary empirical evaluation of virtual
reality as an instructional medium for visual-
spatial tasks. Journal of Communication
42(4): 136-149.

Rich, C, 1995. Diamond Park demonstration.
IJCAI Workshop on Al and Entertainment,
Montreal, Que.

Rickel, J., 1988. An intelligent tutoring framework
for task-oriented domains. In Proceedings of
the International Conference on Intelligent
Tutoring Systems, Montreal, Canada.

Rickel, J. and W. Lewis Johnson, Integrating
pedagogical capabilities in a virtual
environment agent, in Proceedings of the
First International Conference on
Autonomous Agents, February 1997.

Renze, K.J. and J. H. Oliver, Generalized Surface
and Volume Decimation for Unstructured
Tessellated Domains, Proceedings of the
IEEE 96 VRAIS, March 1996, Santa Clara,
CA, pp. 111-121.

Rohlf, J. & J. Helman. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-
time 3D Graphics, Proceedings of
SIGGRAPH '94, Orlando FL, Aug. 1994.

Russell, Stuart and Peter Norvig, Artificial
Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs, NJ, 1995.

Sacerdoti, E., 1977. A Structure for Plans and
Behavior. Elsevier North-Holland, New York.

Self, J. 1995. The ebb and flow of student
modeling, Proceedings of the International
Conference on Computers in Education
(ICCE '95): 40-40h.

Spensley, F. and Elsom-Cook, M. Generating
domain representations for ITS. In D.
Bierman, J. Breuker, and J. Sandberg (Eds.),
the proceedings of the fourth international
conference on artificial intelligence and
education. Amsterdam: lOS, 1989, 276-280.

Stansfield, S.A., 1994. A distributed virtual reality
simulation system for situational training.
Presence 3(4): 360-366.

Lockheed Martin Advanced Technoloav Center Contract N00014-9S-C-0179

Final Report

Stansfield, S.A., Miner, N., Shawver, D., and
Rogers, D., 1995. An application of shared
virtual reality to situational training. In
Proceedings of the IEEE Virtual Reality
Annual International Symposium, pp. 156-
161.

Sterling, B., 1993.
pp. 46-51.

War is virtual hell. Wired 1(1),

Stiles, R., L. McCarthy, and M. Pontecorvo,
'Training studio: a virtual environment for
training," 1995 Workshop on Simulation and
Interaction in Virtual Environments (SIVE95)
Iowa City, IW: ACM Press, July 1995. See
http://vet.parl.com/~vet/studio/tstudio sive95
ToC.html

Stiles, R., Human-Systems Interaction for
Immersed Training NASA Workshop on
Advanced Training Technologies and
Learning Environments, NASA Langley,
Hampton, VA, March 1999.

Stiles, R., Tewari, S., and Mehta, M., McCarthy,
L, Adapting VRML for Immersed Free-form
Manipulation Accepted for VRML 98, Third
Symposium on the Virtual Reality Modeling
language, Monterey, CA February 1998.

Stiles, R., Tewari, S., and Mehta, M., Adapting
VRML 2.0 for Immersive Use. In Proc. VRML
97 Second Symposium on the Virtual Reality
Modeling language, Monterey, CA February
1997.

Stiles., R. et al. Virtual Environments for
Shipboard Training. In Proc, Intelligent Ships
Symposium II, The American Society of Naval
Engineers, Philadelphia, PA, November 1996.

Stiles, R. & Pontecorvo, M. Lingua Graphica: A
Visual Language for Virtual Environments.
Proceedings of the IEEE International
Workshop on Visual Languages. Seattle,
WA: IEEE Press, September 1992.

Tambe, M., Johnson. W.L., and Shen, W.-M.,
1997. Adaptive agent tracking - A preliminary
report. International Journal of Human-
Computer Systems, accepted for publication.

Tambe, M., Johnson, W.L, Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloom, P.S., and Schwamb,
K., 1995. Intelligent agents for interactive

simulation environments, Al Magazine (6)1,
pp. 15-39.

Täte, D.L., L. Sibert, F.W. Williams, T. King, and
D.W. Hewitt, Virtual environment
firefighting/ship familiarization feasibility tests
aboard the ex-USS Shadwell, NRL Ltr Rpt
6180/0672A.1,Oct1995.

Towne, D. M. A generalized model of fault-
isolation performance. In Proceedings,
Artificial Intelligence in Maintenance: Joint
Services Workshop, 1984.

Towne, D. M. & Munro, A. The intelligent
maintenance training system. In J. Psotka, L.
D. Massey, and S. A. Mutter (Eds.), Intelligent
tutoring systems: Lessons learned (479-530).
Hillsdale, NJ: Erlbaum, 1988.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon,
D. S., Coller, L D., & Wogulis, J. L. Model-
building tools for simulation-based training.
Interactive Learning Environments, 1991, 1,
33-50.

Towne, D. M. & Munro, A. Simulation-based
instruction of technical skills. Human Factors,
1991,33,325-341.

Wang, X., 1995. Learning by observation and
practice: An incremental approach for
planning operator acquisition. Proceedings of
the 12?h International Conference on Machine
Learning.

Webber, B. and Badler, N., 1993. Virtual
interactive collaborators for simulation and
training. Proceedings of the Third
Conference on Computer Generated Forces
and Behavioral Representation, pp. 199-205,
Institute for Simulation and Training, Orlando,
FL.

Weld , D.S., 1994. An introduction to least
commitment planning. Al Magazine,
15(4):27-61.

Wenger, E., 1987. Intelligent Tutoring Systems.
Morgan Kaufmann, Menlo Park, CA.

Williams, M. D., Hollan, J. D., and Stevens, A. L
An overview of STEAMER: an advanced
computer-assisted instruction system for
propulsion engineering. Behavior Research

Lockheed Martin Advanced Technoloav Center Contract N000U-9S-C-0179

Virtual Environments for Trainin Final Report

methods and Instrumentation, 1981, 13, 85-
90.

Lockheed Martin Advanced Technoloav Center Contract N00014-95-C-0179I

