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Abstract 
We describe calculations of a plane-wave pulse train of finite duration in a linear lossy 
dispersive dielectric half-space by means of Fourier integral transforms. The polarization 
response of Debye and Lorentz media to a finite number of sinewave pulses and the 
response of a Lorentz medium to a single Gaussian modulated sinewave pulse are given. 
These solutions are formulated for the case of normal incidence to the planar boundary of 
a dielectric half-space. Our results show that the Fourier transform accurately reproduces 
precursor phenomena previously observed for infinitely periodic pulse trains using the 
Fourier series method while extending the analysis to aperiodic waveforms. These results 
can be computed to arbitrary accuracy because the Fourier integral representation of the 
propagated pulse is exact, i.e. no analytical or physical approximations are used to arrive 
at the time-domain solution. We believe that this numerical tool will be useful in 
developing physical intuition about the dynamics of pulse propagation in bio-tissue which 
is now made possible by the availability of high-speed computer hardware. 

Introduction 
The propagation of wideband electromagnetic pulses in biological tissues has important 
health and safety ramifications. A theoretical understanding of the dynamics of transient 
pulse propagation in dispersive biological materials is essential to the development of 
exposure guidelines for non-ionizing electromagnetic radiation. Our goal is to develop a 
computational method for wideband pulse propagation. The method we use is based on 
the Fourier transform that allows us to investigate the dynamical evolution of 
electromagnetic pulses in linear, homogeneous, dispersive media by conducting 
numerical experiments. Previous investigators have used a Fourier series calculation to 
successfully predict the occurrence of so-called Brillouin precursors in a water half-space 
for incident pulses having sufficiently short rise times [1]. This report documents the 
computation of propagated waveforms in linear dispersive half-spaces characterized by 
Debye and Lorentz permittivity models. These models were chosen to demonstrate the 
Fourier transform method of calculating the transient response of bio-tissues to both 
microwave and optical pulsed signals. The essential difference between the Fourier series 
and the Fourier transform is that the spectrum of the latter is continuous and hence the 
synthesis of the aperiodic time-domain signal from its spectrum is accomplished by 
means of integration instead of summation. The specific aperiodic waveforms addressed 
in this report are square-wave modulatedsfhusoids of finite duration and the single 
Gaussian modulated sinewave pulse. Analytical and numerical aspects of the 
computations are discussed. 

Formulation 
When the frequency response of the medium is available from knowledge of its transfer 
function, then pulse propagation is straightforward using the Fourier transform method. 
We decompose the transmitted pulse into harmonic waves, because harmonic waves have 
the unique property of retaining their shape even while propagating through highly 
dispersive media. However, the amplitude of the harmonic wave may decrease due to 



absorption by the medium. It is only because harmonic waves do not change shape that 
the wave speed is precisely defined. For this reason, our discussion of waveforms 
propagating in dispersive media will be carried out by resolving the waveform into a 
superposition of harmonic waves. 

In a dispersive biological medium, each sinusoid of frequency co, moves at its own speed 
and has its own characteristic absorption constant. Therefore, our strategy for pulse 
propagation will be to resolve the incident pulse shape into a superposition of harmonic 
waves. Propagate each wave of frequency m for a fixed amount of time at its own phase 
velocity and then resynthesize the transmitted pulse by adding up all component harmonic 
waves by means of the inverse Fourier integral while accounting for the attenuation of 
each component sinusoid over the distance traveled. 

Frequency Spectrum 
We begin with a review of fundamental theory. Let the time-history of a pulse be 

designated/(U Its Fourier spectral density F{(0) is given by 

F(Q)) = ]f(t)e-imdt (1) 
—oo 

The Dirichlet conditions1 are sufficient to ensure the existence of this transform for all 
physically realizable waveforms,f(t). The Fourier spectrum F{co) is a complex number 
used to describe the amplitude and phase of a sinusoid at angular frequency CO. The 
complex amplitude of the Fourier component at angular frequency m is F(ca)d(fi; the area 
under the Fourier spectrum curve in the interval dm. This area has the same units as the 
time-history of the pulsed electric field, i.e. Volts/m. Therefore, the dimensional units of 
the Fourier transform are different from those of the signal waveform which is being 
transformed. Specifically, they are the units of the signal multiplied by time, i.e. 
(Volts/m)/Hz or Volts/m-sec. The quantity F{co)eimdco is the sinusoidal variation at 
angular frequency co. The time-history of the pulse waveform can be recovered by 
integrating its Fourier spectral density function or, in other words, evaluating the inverse 
Fourier transform 

f(t) = —fF(co)eimdco. (2) 
1% i^ 

Eqs. 1 & 2 define the direct and inverse Fourier transforms respectively. 

1. The waveform^; has a finite number of finite discontinuities, 
has a finite number of maxima and minima, and is absolutely integrable, i.e. 

£|/(* it <°°. 



Transfer Function 
The transfer function of a linear time-invariant system is defined as the Fourier transform 
of the impulse response of the linear system. The transfer function of a linear dispersive 
medium is the steady-state response per unit sinusoidal input as a function of angular 
frequency 0), and depth, z. Let Ex(z,co) represent a frequency domain x-polarized plane 
wave propagating in the z-direction. It is well-known that Ex(z,0)) must satisfy the 
harmonic equation (one-dimensional Helmholz equation): 

^+kAEx(z,O)) = 0. (3) 
ydz     ) 

In the air half-space (incident half-space), the general solution of this differential equation 
can be written as the sum of the incident and reflected traveling waves 

Ex{z,CO) = Ex(0,O))[e-ik<z + nz,ü))e+ik:Zl (4) 

where f is the reflection coefficient of medium. In the bio-tissue half-space (transmission 
half-space), the solution consists of only one traveling wave 

Ex(z,O}) = f(0,O))-Ex(0,O))e-iKz, (5) 

where f is the transmission coefficient. 

If we specify the electric field on the plane z=0 to be £,(0,0 and assume there are no 
reflected waves since we are propagating into an infinite bio-tissue half-space, then using 
the inverse Fourier transform, Eq. 2, the space-time solution is 

Ex(z,t) = —rf(0,(o)-Ex(0,co)ei(cat-k^d(O,   z>0. (6) 
lit J-~ 

In the following we will make use of the fact that the incident pulse £,(0,0 and the 
transmitted pulse Ex{z,t) can be considered as the input and output of a linear system 
with transfer function, H(z,eo). Thus, if the incident pulse £,(0,0, whose Fourier 

spectrum is Ex (0, co) at z=0 enters a linear medium then 

Ex(z,O)) = H(z,0))Ex(0,G)), (7) 

where JE^z.fi^is the Fourier spectrum of the transmitted pulse, and H{z,(0) is the steady- 
state transfer function of the medium. Eq. 7 describes the transmitted pulse spectrum 
with respect to depth z, the distance from the planar interface separating the two half- 



Spaces. Eq. 7 is applicable when the input and output are both zero at time, t=0, which 
will be assumed hereafter. 

Eqs. 1,2 & 7 provide a systematic method for finding the time-history of a transmitted 
pulse in a linear dispersive medium. Starting with the incident pulse £,(0,0 obtain its 

Fourier transform from Eq. 1 

Ex(0,G))=rEx(0,t)e-ia"dt. (8) 

Next, use Eq. 7 to determine Ex(z,(0) from which Ex(z,t) is obtained using the inverse 

Fourier transform given by Eq. 2 

E{zj) = ±]Ex(z,(0)eiw'd(0. (9) 
2K ^ 

Combining Eqs. 7-9 yields an expression for the transmitted pulse at depth z and time t 

E(z,t) = — r H(z,a»Ex{0,<o)e'md<o, (10) 
2KJ~° 

where: H(z,co) = f(0,a))e~ikz- (n) 

The Fresnel transmission coefficient, f (0, a), in Eq. 11 accounts for the effect on the 
amplitude and phase of the transmitted pulse Ex(z,t) due to the planar boundary at z =0 
separating the two half-spaces. It is usually expressed in terms of the indices of refraction 
of the two half-spaces. Assuming the incident half-space to be air with index of refraction 
nearly equal to unity, the Fresnel transmission coefficient at normal incidence is 

f (co) = and n (co) = Ve(co), (12) 
l + n(co) 

where n{a) is the complex (frequency dependent) index of refraction of the half-space 
containing the transmitted pulse and e((ö) is the complex (frequency dependent) relative 
permittivity of the medium. 

The complex exponential factor: exp{-i(kz - cot)} in Eq. 11 effects the propagation in 
time and space of the waveform Ex(z,t) by applying the proper phase shift and 
attenuation to each sinusoidal component of Ex{z,a>) to produce a traveling wave. In 
general, the wavenumber £(ct>) = CO / v(o)and phase velocity are both complex and 
frequency dependent. The real part of the wavenumber describes the phase shift per unit 
distance traveled by each sinusoidal component while the imaginary part of the 



wavenumber accounts for the exponential amplitude attenuation per unit distance traveled 
by each sinusoid. The frequency response of a dispersive medium is determined by the 
frequency dependence of the complex permittivity of the medium and its relationship to 
the wavenumber at frequency CO. For bio-tissue, with relative magnetic permeability of 
unity, we have 

k(ü)) = (a)/c)Ji(äjj, (13) 

where c is the free-space velocity of light. The wavenumber (or equivalently the relative 
permittivity) is, in turn, dependent on the medium in which the wave propagates. 

To simplify the pulse propagation calculations in this report we will make the following 
assumptions: 1.) all materials are nonmagnetic, 2.) the dielectric materials (bio-tissue) are 
isotropic and homogeneous, 3.) plane waves are normally incident on a planar interface 
separating air and bio-tissue, and 4.) the single planar interface separating the two half- 
spaces is infinite in extent so that diffraction may be ignored. For high frequency 
wideband pulses propagating in dispersive tissue, we believe these assumptions will still 
yield computational results accurate to first order and have heuristic value. 

Debye Medium 
Liquid water is a principle constituent of all living organisms. Protoplasm, the basic 
material of living cells, consists of a solution in water of fats, carbohydrates, proteins, 
salts. Water acts as a solvent, transporting, combining, and chemically breaking down 
these substances. Water plays a key role in the metabolic breakdown of proteins and 
carbohydrates. The human body is 65% water by weight; some tissues such as the brain 
and lung are nearly 80% water. It is well known that the dielectric properties of tissue are 
primarily determined by tissue water content with both permittivity and conductivity 
increasing with increases in the concentration of tissue water at RF and microwave 
frequencies. 

At the microscopic scale, the bonding of the hydrogen atoms to the highly electronegative 
oxygen atom makes water a polar molecule. The triangular geometry of the water 
molecule together with its electrical polarity produce strong intermolecular bonds that 
account for water's unique combination of physical properties: a high boiling point, a 
solid phase that is less dense than liquid phase (ice floats!), high specific heat, excellent 
solvent properties, and high dielectric permittivity. 

The triangular structure of the water molecule which gives rise to a permanent dipole 
moment is the source of the polarization response of water. This dipole moment causes 
the water molecules to resist the random orientation due to thermal agitation and align 
themselves with the direction of an impressed microwave field. (The applied electric 
field, in fact, biases the orientation of the molecules to only a small extent, in comparison 
to the thermal motion of the water molecules [7].) An a.c. microwave field will produce a 
sinusoidal torque that will cause individual water molecules or molecular groups to rotate 
with an angular velocity proportional to the torque. The angular momentum of the water 



molecules results in friction with neighboring molecules and converts thereby to linear 
momentum, which by definition is heat in liquids and gases. This response of the water 
molecules is called relaxation polarization and is dependent on the frequency of the 
electric field. P. Debye [6] was the first to successfully model the relaxation polarization 
response of water as due to the rotational motion of the water molecule in a damping 
frictional medium. See, for example, references [7,8] for detailed accounts of modern 
theories of the macroscopic dielectric response of water given in terms of molecular 
quantities. 

The Debye equation has been used to model the frequency-dependent polarization 
response of water and ice to an impressed microwave field over the frequency range 0.3 
to 300 GHz. The complex relative permittivity of water modeled by the Debye equation 

is 

1 + lCOT     CO£0 

where % is the dielectric relaxation time, and a is the angular frequency of the impressed 

time-varying field, and £0 = 10"9 /367T (F/ m)is the permittivity of free-space. The 

relaxation constant, r = 8.1 x 10"12 s, measures the decay time of the macroscopic 
polarization of water when the external field is removed. It corresponds to the water 
absorption peak located near 20 GHz from the relation arc=l. The constants 
e   = 55 and et = 78.2 are the limiting values of the effective dielectric constants of water 
afthe high and low frequencies, respectively. The ionic conductivity of pure water at 25 
°C is represented by the constant a = 10"4 Siemans / m. These numerical values are 
temperature dependent and were obtained by empirical curve fitting methods applied to 
dielectric measurements [2]. (Note: the departure of £„, from unity is due to the fact that 
only a limited amount of data spanning a finite range of frequencies were in used to 
estimate the parameters in the Debye equation.) These parameter values will be used in 
the following computations for water based tissue described as a single relaxation time- 
constant Debye medium. 

Lorentz Medium 

Another model for tissue absorption anddispersion in the range 3 x 10    to 3 x 10    Hz 
(i.e. in the optical range from the u.v. (0.1 u.m) to the near i.r. (1 ^m)) comes from the 
mechanical model of electron resonance developed by Lorentz and Drude. This model of 
electronic resonance is not exact, since it ignores the fact that the electron's motion 
follows the laws of quantum mechanics rather than newtonion mechanics. 
Notwithstanding the known limitations inherent in the mechanical analogy, this model 
gives good results [5]. This dielectric model describes the resonance polarization in a 
homogeneous, isotropic dielectric characterized by a single resonance frequency <a0 for 
which the complex relative permittivity is given by 



b2 

co -co0 +2iSo) 

Here, b2 is the square of the plasma frequency of the medium, S is a damping constant to 
account for the energy lost by the harmonically2 bound electron at the resonant frequency 
co . The damping that occurs is not due to the electron moving in a viscous fluid, but is 
due to the energy lost by the electron by radiation as the result of forced oscillations. 

The medium parameters: a>0 = 4 x 1016 / s, b2 = 20 x 1032 / s2 , and 5 = 0.28 x 1016 / s 
describe a strongly dispersive and absorptive medium with an absorption band in the 
ultraviolet region of the electromagnetic spectrum. These medium parameters were 
suggested in [3] and are the same numerical values used by Brillouin in [9,10]. They will 
be used in the following computations for the single resonance Lorentz medium. 

Pulse Types 
It remains to define the two types of transient waveforms to be discussed. The specific 
waveforms addressed in this report are (1) the finite train of pulsed sinewaves and (2) the 
single Gaussian modulated sinewave pulse. These two waveforms are prototypical, if 
somewhat idealized, of those generated by real pulsed radio frequency and laser emitters. 
Perhaps more importantly for this discussion, their Fourier spectra can be found 
analytically. 

Sinewave Pulse 
With the aid of the Heaviside unit step function, H(t), 

H(t-a) = \ , (16) 
[I,   t>a 

we can write a concise analytical expression for any finite pulse train. 

We consider first a single pulse of sinewave carrier <ac amplitude A, duration z at z=0 as 
illustrated in Figure 1. This can be written as 

f(t) = A-sm(0)ct) 
*y     t\    J     T> 

H t+~ - M'-iJl (17) 

Its Fourier transform is pure imaginary, is derived in Appendix-A, (see Eq. A-9) and can 
be written as follows: 

F(<o) = -—(sinc(a) - sinc(y0)), (18) 

where i=V-f;   sinc(*) = sin;t/*;   a = (coc-eo)T/2;   ß = (ü)c + ü))T/2. 

2 the restoring force is linearly proportional to displacement 



The spectrum of this sinewave pulse is similar to the spectrum of its rectangular envelope 
but translated in frequency by an amount equal to the carrier, mc. The width of the main 
frequency lobe increases as the length of the rectangular modulation waveform, t, 
decreases and is independent of the carrier frequency. The first sine term accounts for 
most of the energy located near the carrier frequency, while the second sine term becomes 
significant only at frequencies far removed from the carrier. It follows also, that the value 
of |F(flJ)| at o) = (üc is \F{co)\« Ax 12. In Figure 2 the magnitude of the spectral density 
function of a single sinewave pulse of duration x is plotted over the positive frequency 
axis. We see that the mainlobe peak is centered at the carrier frequency coc and has 
spectral width of AßJ = 2 / 7. It is interesting to note that when this pulse contains an 
integer number, N, of carrier cycles, i.e. % = 2nN 10)c, then the number of zero-crossings 
in the spectral amplitude function between zero and 0)c is also equal to N. This is true 

because smc(a) = smc[nN(l-a)/coc)] = 0; when col(Oc = \IN,2/N,...,(N-l)/N. 

We consider next & finite number, M, of sinewave pulses, where M>1. Without loss of 
generality, we take the number of pulses in the finite pulse train to be odd: (M=2N-1), 
where the middle pulse is centered at the origin, the pulse width is t, and the pulse 
period is t0. The finite pulse train consisting of an odd number of pulses can be written as 

follows 

N   ( 

/(*)=='A sin(fi>cf)X 

+Asin(ö)c0: 

+Asin(ö)tOX 

n=\ 

(      - 
H 

\    - 
N   ( 

H 
K    . 

T 
t+ — 

T 
0    2 

H 

-H t+nt0+- 

t — 

n=\ 

H 
V 

t—ntn-\— 0    2 

jy 

H t-nt0-- 
AJ 

(19) 

(Note: Eq. 19 is equivalent to Eq. A-l in Appendix-A). This finite duration wavetrain is 
generated by gating or "turning on" each pulse at a positive zero-crossing for an integral 
number (ni) of carrier cycles, followed by an integral number (n2) of "off-cycles, 
thereby creating ä coherent pulse train with pulse repetition period equal to (ni+n2) carrier 
cycles. A wideband pulse will be createdVhen only a few carrier cycles (nO occur during 
the pulse "on" time. The envelope of the pulse train is amplitude modulated using a 
rectangular gating function requiring maximum bandwidth in the Fourier spectrum. The 
Fourier transform of a unit amplitude pulse train is derived in Appendix-A and is shown 
tobe 



(20) 

2/ »yr sin[(ffl, -na0) Nn la Jsin[(<a +n(O0)T/ 2] 
~ 'o «=~ (<»c -/I0)0)(fl) + /lfl)0) 

2i"^rsm[((Oc+nco0)Nn/(Oc]sm[(co+n(O0)T/2] 

t0n~~ (coc+na0)((O+nco0) 

2i «y sin[(ft)c - yiQ)0)T / 2] sin[(fl> + fifl>0)77 2] 

~f0»=~ (ö)c-no)0)(ö) + /iO)0)     . 

2/" = *- sin[(ft)c.+n6)0)T/2]sin[(<ö+»fi?0)r/2] 

f0 „=~ (e>c+nfl>0)(ffl+/ifi>0) 

For a finite duration wavetrain consisting of M pulses, the spectrum will consist of a 
series of lobes of width 1 / Mt0 modulated by an envelope which corresponds to the 
spectrum of one pulse. The separation between lobes is \/t0 = PRF. 

Gaussian Pulse 
A bell-shaped pulse can be obtained by impressing a Gaussian amplitude modulation on a 
sinewave carrier. At t = 0 this waveform may be expressed as the real part of 

/(f) = Ae-'2/(2r)V'6¥, (21) 

where yflt = standard deviation. Here, A is the peak amplitude,«^ is the angular 
frequency of the sinewave carrier and % is the pulse width parameter. Since a time span 
of four standard deviations centered at / = 0 contains approximately 95% of the area 
under the Gaussian curve, a wideband pulse will therefore exist when only a few periods 
of the sinewave carrier occur during this time span. The Fourier transform of this pulse is 
derived in Appendix-B. 

Numerical Procedures 

Positive Frequencies Only 
To find the time-history of the propagated waveform for any time i > 0, it is necessary to 
evaluate Eq. 10 by numerical quadrature'sihce a general analytic solution is unavailable. 
However, we will show that it is only necessary to evaluate the inverse Fourier transform 
over positive frequencies by using a well-known property of real-valued signals. For real 
signals, the complex conjugate of Eq. 1 is given by 

F\(0)=\f{t)eiB"dt. (22) 

From Eq. 22 follows the Hermitian symmetry of the Fourier transform for real-valued 
signals so that 



F(-o)) = F\(ü). (23) 

This property of the Fourier transform of real-valued signals implies that 

F(-fl))| = |F*(<»)| = |F(fi>)|. (24) 

Whatever shape the modulus of the spectral density function has for positive frequencies, 
it is the same for negative frequencies, i.e. only one-half of the real signal spectrum is 
needed to uniquely specify the signal. We divide the integral in Eq. 2 into two parts as 

f(t) = — ] F(co)eia"dco+—] F(0})eiw'dco. (25) 

By use of Eq. 23 we can write 

f(t) = — ]\F((o)eim+F\co)e-im]dco. (26) 
27ro 

We note that the quantity in brackets is real. Therefore, we can rewrite Eq. 26 as 

2x-f(t) = ReTj2F{a>)eftt'da>\. (27) 

This shows that it is only necessary to perform the numerical quadrature over positive 
frequencies to recover the propagated real signal. 

Error Analysis 
In order to determine fit) in Eq. 2 or Ex(z,t) in Eq. 10, integration must be performed 
along the öJ-axis. To perform the integration we choose to uniformly sample the 
integrand at a finite resolution Aü) over a finite frequency range Q.. We consider the 
errors resulting from each of these finite approximations and consider the errors due to 
sampling first. "-. -, 

Aliasing Error 
Implementing the numerical quadrature of the inverse Fourier transform by means of the 
rectangular rule, with fixed step size, A(D, we can approximate Eq. 2 by writing it as an 
infinite sum over the positive integers which corresponds to folding the integral over 
positive frequencies as shown in Eq. 27 

fs{t)=^.fpinAo})e^. (28) 
*   «=0 

10 



We recognize Eq. 28 as a complex Fourier series representation of fs(t). To make this 

explicit, we invoke Eq. A-12 from Appendix-A and let 0)0 = Aft) and 

F{nAco) = cnt0 = cn2n I Act) to obtain 

fs(t) = 2^cne^'. (29) 
n=0 

By uniformly sampling the continuous Fourier spectral density in order to numerically 
approximate the Fourier integral, we arrive at a Fourier series representation of the 
function fs(t) with period t0 = 2n/Aco. 

We emphasize that the recovered time function fs(t)is periodic with repetition period 
given by tQ=2n/Aco. This can also be demonstrated by replacing t in Eq. 28 with 

t + m ■ 2n I Aco where m is any integer. We obtain 

fs{t+m- Ucl Aco) = — JT F(nAco)einAo«'+m-2*,Aeo) 

n
   n=0 

Ao)^F(nAco)einA(*+inm(2,r) (30) 
x *=o 

=^JTF(„Aö,y mAiar 

X n=o 

Thus we see that fs(t + m-2n/Aco)= fs(t), i.e. a function sampled in the frequency 
domain will be repetitive in the time domain with period, t0 = 2n/ Aca. We must choose 
Aco small enough so that /„ is larger than a time interval which contains most of the 
energy in the signal, otherwise an unacceptable amount of aliasing error will occur in the 
reconstructed time domain signal. 

Removing the Periodicity 
The disadvantage of the Fourier-series representation of Eq. 28 lies in the fact that fs(t) is 
a periodic function, so it cannot be used ^approximate the aperiodic time domain 
waveform directly. However, it is possible to retain only that part of fs(t) inside the 
interval 0 < / < t0 to recover an aperiodic waveform [11]. To accomplish this, we first 
multiply /,(*) by the unit step function to remove that part of /,(*) in the range t < 0. To 
eliminate the part of fs(t) for t > t0, we can use the double-impulse weighting function 

w(t) given by 

w(0 = 8(0-5(*-f0). (3D 
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Convolving Eq. 31 with /,(f) is equivalent to adding to /,(0 its own negative delayed by 
one period. So performing these two operations in the complex frequency domain, by 
means of the Laplace transform we have 

which leads to the desired aperiodic time-domain representation 

/««*■,,(0 = X^T^• «P^'J■ [H(t) -H(t-t0)-exV{-inAcotQ}],  (33) 
n=0 'o 

where//(0 is the unit step function defined by Eq. 16. We observe that the first infinite 
sum of Eq. 32 is the Laplace transform of the semi-infinite periodic function /,(*) starting 

at t = 0 and the second infinite sum of Eq. 32 is the Laplace transform of an identical 
semi-infinite periodic function, fs(t -10), starting at t = t0 that exactly cancels the first 
function from t = t0 to t = °°. 

Also, F(z,nAa) = Ex(z,a) = H(z,0))Ex(0,a) from Eq. 3, where H(z,a) is the 
medium's transfer function (not to be confused with H(t), the Heaviside step function) 
and Ex{z,of) is the Fourier transform of the propagating pulse at depth, z. If the time 
domain function Ex(0,t) has duration 7J and the "filter" impulse response H(z,t), has a 
duration T2, then the convolution result: 

Ex(x,t) = H(z,t)®Ex(0,t), (34) 

has a duration equal to 7} +T2. If the "filtering" is done by multiplication in the frequency 

domain, 
P(z,nAco) = Ex(z,(ü) = H(z,a)yEx(0,co), (35) 

and Atfj is chosen as In 110 with t0 < (7J + r2), then overlapping in the time domain will 
In 

occur and E (z,t) will be distorted. If Tx > T2, then Aco = — is a safe choice and the 

overlapping effect (aliasing) in the time domain cannot occur. 

Truncation Error 
Next, we consider the error resulting from the evaluation of the integral over a finite 
frequency range, Q.. By truncating the integrand in Eq. 2 we obtain a finite inverse 
Fourier transform 

1   n/2 

f(t) = — \F(co)eia"dco. (36) 
2n -an 
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Because the spectral densities of the pulsed waveforms under discussion have infinite 
tails, it is necessary to examine the relationship between the error in the computed inverse 
transform and the finite frequency interval Q. By knowing this relationship it is possible 
to select the proper limits on the inverse transform to achieve a desired accuracy. 

The finite inverse Fourier transform can be written as the infinite transform of a product 
of functions when one of those functions is the rectangular window function, 
B{a>) between Q. 12 and -Q./2; 

Hi) = — r F((D)B{co)ei,ad(D, (37) 

where 

_fl,   -Q/2<öJ<Q/2 

[0,   elsewhere 

The inverse of the rectangular window function, B(co), is obtained as follows 

n/2 i   Wi 1 

b(t) = J-   h. e«*d(0 = _J_ {^' -e-™<} W    2K Xn (2i)mX i 

1   . (Q.t\ 
= —sin — 

Kt     \ 2 ) 
(39) 

—sine 
2K 

£lt 

\ 

Multiplication in the frequency domain is equivalent to convolution in the time domain. 
Therefore, we have for a pulse centered at the origin with duration equal to tQ 

+T„/2 

/(0= jf(t-r)b(t)dr. (40) 
-To/2 

For example, if f{i) were a single sinewave pulse of unity amplitude and carrier ac, we 

would have 

Q 
T°/2 (Qt^ 

f(t) = —   \sm[cöc(t-T)]{H(t-i; + T0/2)-H(t-T-T0/2)]-smc —\dr 
lK -in K l J 

(41) 

Eq. 40 shows clearly how the finite inverse Fourier transform affects the computed time 
domain pulse. The distorted waveform is obtained by convolving the true value of the 
pulse waveform with the sine function for each time point. The difference, /(/) - f(t), is 
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the error due to the finite integration limits. The error obtained in this way is independent 
of the aliasing error due to sampling as discussed previously. Figures 16-18 show 
examples of this effect on a 1 radian/sec, four cycle, unit amplitude sinewave pulse. The 
distortion of the pulse caused by evaluating its inverse Fourier transform over 
progressively smaller bandwidths of Q at 10, 5 and 2.5 radians/sec is demonstrated. 

Results and Discussion 

Sinewave Pulse in a Debye Medium 
Our first set of results models the propagation of a single sinewave pulse with carrier 
frequency 1 GHz normally incident onto a water half-space (Debye medium). This 
incident pulse, shown in Figure 1, is a single burst of 10 carrier cycles. Figure 3 shows the 
transmitted pulse plotted against time at a depth of 0.75 meters in water. We note the 
attenuation with depth and the presence of the Brillouin precursors at the leading and 
trailing pulse edges. This result duplicates that obtained by previous investigators [1] who 
used a Fourier series calculation. The FORTRAN code listing for this case is included in 
Appendix-C. 

Figure 4 illustrates the propagation of 2 1/2 pulses of a 5 pulse wavetrain in a water half- 
space showing how rapidly the carrier is attenuated. At 1 meter depth all that remains of 
the pulse is the Brillouin precursor pair associated with the leading and trailing edges of 
the pulse. Figure 5 shows the amplitude spectrum plotted over the positive frequencies for 
a finite duration pulse train consisting of five such pulses. Compared to the amplitude 
spectrum of a single pulse shown in Figure 2, Figure 5 reveals a more complex lobe 
structure due to the infinite sum of sine functions needed to describe the spectrum of the 
five pulse train. Eq. A-19 and subsequent discussion in Appendix-A explain the origin of 
this more complex structure. 

Sinewave Pulse in a Lorentz Medium 
Our second set of results investigates the propagation of a finite sinewave pulse train (five 
pulses) normally incident onto a Lorentz half-space with a single resonance. As 
mentioned previously, the Lorentz model is appropriate for describing the absorption and 
transmission of infrared to optical signals in certain materials. Figure 6 shows two 
"snapshots" of a five-pulse burst taken at 60 and 100 femtoseconds after incidence. The 
carrier frequency of this pulse train lies near the upper end of the absorption band. The 
band-stop filtering action of the Lorentz medium blocks the pulse energy that falls within 
its absorption band. Only the energy outside the absorption band is transmitted. The 
spectral residue falling below the absorption band form a Brillouin precursor pair for each 
incident pulse. The spectral residue above the absorption band form a Sommerfeld 
precursor pair for each incident pulse. Since these two precursor types are separated in 
frequency by the width of the absorption band, one would expect them to move at 
different speeds in a linear dispersive medium such as this one. Comparing Figures 6 (a) 
& (b) indeed shows this to be true. We see the distance between the Sommerfeld and 
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Brillouin precursor pairs increasing with time which indicates a difference in propagation 
speeds. A series of plots similar to Figure 7 was generated to measure the difference in 
travel times for various distances up to 200 microns. A linear regression of displacement 
versus time for the Brillouin precursor pair in Figure 8 shows that this pair propagates at 
two-thirds the speed of light. Similarly, a linear regression was done for the Sommerfeld 
precursor pair of displacement versus time. Figure 9 indicates that the Sommerfeld 
precursor pair propagates at nearly vacuum light speed in this medium. Using the results 
for the Brillouin precursor speed and Snell's law yield a refraction angle for the Brillouin 
precursor of about 41° for light obliquely incident at 80° on a Lorentz half-space which 
agrees with the result reported in [4]. 

Gaussian Pulse in a Lorentz Medium 
Our third set of results addresses the propagation of a wideband Gaussian transient into 
the same single resonance Lorentz medium as discussed above. This pulse is assumed to 
be normally incident on the Lorentz half-space, with pulse width parameter, t, equal to 
.05 femtoseconds, and carrier frequency, <oc = 5.75E +16 rad / s. The goal was to match 
the results shown in Figure 8(a) of reference [3]. Our computation is based on the Fourier 
transform of a cosine carrier modulated with a Gaussian envelope as given in Appendix- 
B. 

Figure 10 shows the spectrum of this pulse. We show in Figure 11 the time-history of this 
pulse at a depth of one micron in the Lorentz half-space. We note the close resemblance 
to Figure 8(a) in reference [3]. This result validates our Fourier integral numerical scheme 
by favorable comparison to another independent computational method based on the 
numerical inversion of the Laplace transform. The FORTRAN code for this case is 
included in Appendix-D. 

Impulse Response of a Dielectric Medium 
By setting Ex(0,O)) equal to unity in Eq. 10, we obtain the impulse response of the linear 

medium 

h(z,t) = ^-V H(z,CO)eicotdco. (42) 

*-.     »V- 

The above integral can be computed by numerical quadrature using the same techniques 
previously discussed. 

The time-domain convolution integral, provides an alternative means of obtaining the 
propagated time-domain pulse at depth z of the incident waveform£x(0,0 when the 

impulse response of the medium is available as follows 

Ex(z, t) = \'o Ex(0, t)h(z, t - T)dT. (43) 
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In the evaluation of the above convolution integral by digital computer, it is necessary to 
replace the integral with a finite sum. We first replace the infinitesimal d% with a time 
interval of finite duration T, and let nT = i. Then we can rewrite Eq. 43 as the 
summation 

Ex(z,t) = TfjEx(0,nT)h(z,t-nT)   forKT<t<(K + l)T.       (44) 
n=0 

Figure 12 shows the impulse response of pure water (Grant's model) at a depth of 0.75 
meters where h(z,t) is the water response measured at depth z for an impulse incident on 
the z = 0 plane. In Figure 13 we computed the time-history of a 10 ns pulse of 1 GHz at 
this depth by means of Eq. 44. We note the similarity to Figure 3 which was computed 
using the Fourier transform. The FORTRAN code for this case is included in Appendix- 
E. 

Figure 14 shows the impulse response of the single absorption Lorentz medium at 1 
micron depth. Once again using Eq. 44, we compute the time-history of this pulse in the 
Lorentz medium and see close agreement with Figure 7(a). The FORTRAN code for this 
case is given in Appendix-F. 

Conclusion 
We have shown how to compute the waveform of a transmitted pulse in a linear 
dispersive half-space by use of the pulse's Fourier transform. The approach discussed in 
this paper is applicable only to waveforms whose Fourier transform can be found 
analytically.3 In particular, we have demonstrated this method for a finite train of 
sinewave pulses and a single Gaussian modulated sinewave transient. These two idealized 
waveforms reasonably approximate those often encountered in dosimetry computations 
involving "thick" homogenous layers (half-space) of bio-tissue and therefore should be 
useful in estimating electric field strengths in bio-dielectrics that can be accurately 
described by either the Debye or Lorentz models. 

An unavoidable side-effect of uniformlyjsampling the spectral density function in order to 
numerically compute the inverse Fourier transform is that the resulting time-domain 
waveform is periodic with period equal to the reciprocal of the frequency sampling 
interval. We have shown how to analytically remove this periodicity and thereby recover 
the transient waveform. 

3 The Fourier transform method itself is not limited to analytically describable waveforms. It is possible to 
start with an arbitrary time waveform sampled at discrete time points and compute its Fourier transform 
using the DFT; multiply by the discretized medium transfer function and invert the result via the IDFT to 
obtain the propagated time-domain wave in the medium. The accuracy of this method is limited by the 
sampling resolution of the initial waveform. The desire to avoid this limitation was the motivation for 
choosing only analytically describable signals in this report. 
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Recommendations 
Additional work might profitably be spent on refining these analytically convenient 
models of pulsed waveforms to make them more closely resemble real-world pulses. For 
example, the sinewave pulse should be modified to have a nonzero rise-time, as this is 
true for all band-limited pulses of physical origin. On the other hand, the Gaussian pulse 
should be modified to have truncated tails which is also true for all physical pulses of 
finite duration. 

To increase the utility of these numerical pulse propagation models, it would be desirable 
to speed-up the computations by harnessing the speed of the Fast Fourier Transform 
(FFT) algorithm to evaluate the inverse Fourier transform. That is, the summation 
inherent in the evaluation of the Fourier integral by means of numerical quadrature would 
be performed by the inverse FFT algorithm. 
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Appendix A   Pulse train spectrum 
All time domain pulsed signals can be described in terms of four time scales: wave 
period, pulsewidth, pulse repetition interval (PRI), and dwell time. Likewise, in the 
frequency-domain, pulsed signals can be described in terms of four corresponding 
frequency scales: carrier frequency, pulse bandwidth, pulse repetition frequency (PRF), 
and spectral line bandwidth [Al]. In Fourier analysis an inverse relationship exists 
between the time and frequency scales: the larger the wave period, the smaller the wave 
frequency. 

This derivation of the Fourier transform of a finite number of sinewave pulses will 
illustrate the four frequency scales mentioned above. 

For the finite regularly repeating signal shown in Fig. Al, fr(t) is the product of the 
infinite duration periodic function / (f), and the gate function g(t) 

where 

/,(0 =/(')■*(') (A-l) 

-ll2<t<%!2 

T/2<t<t0-T/2 

-t0 + T/2<t<-t/2 

t0-T/2<t<t0 + t/2 

-t0-T/2<t<-t0 + T/2 (A-2) 

tQ + T/2<t<2t0-r/2 

-2t0 + r/2<t<-t0-r/2 

etc., 
and 

1,   -TI2<t<TI2 
g{t) = \ , (A-3) 

0,   elsewhere 

Let an integer number, N, of carrier cycles occur during the pulse "on-time", t, such that 
x = 2nN l(ßc. 

We begin by deriving the Fourier transform F0(<u) of a single sinewave pulse, of finite 
duration, i, unit amplitude, and symmetric with respect to the origin, given by the first 
line of Eq. A-2, which we call /„(/). We use the Fourier transform pair definition 

M 1      °° 

F(a)=\f(t)e-,wdt     and   f{t) = — \F{(o)eito,d(o (A-4) 
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where i = v-T. 

Since f0(t) is a finite duration sinewave and the sinewave is an odd function we see that 

and 

©a 

F[f0(t)] = F0(a>) = -i j /o(0 sin((Ot)dt 
—oo 

T/2 

/r (ö)) = _/ jsin(coct) sin(cot)dt 

(A-5) 

(A-6) 

Note that since /0(r)is real and odd, F0(co) will be imaginary and odd. Making use of a 

trigonometric identity we get 

1/2 

FQ(co) = -i j 1 / 2{cos[(ä>c - 6>)?] - cos[(6>c + co)t]}dt (A-7) 
-r/2 

Performing the integration, we have 

s'm[(CDc-CD)t] 

2(0) -co) 

Til 

-r/2 

sin[(ü)c+ Q))t] 

2(coc + (0) 

r/2 

■r/2 

F0(<y) = -/ 
rsin[(^c -Q))f/2]   sm[(coc+co)T/2] 

(o)c-eo) (coc + co) 

(A-8) 

(A-9) 

F0(6>) = -/- 
rsin[(6;,: -o))N7tlcoc}   sm[(a)r + co)Nn/a)c]\ (A-10) 

(<üc-ß>) (6>6. + fi>) 

Now it can be shown [A2], that the complex coefficients, cn, of the Fourier series 
expansion of the periodic pulse train of sinusoidal pulses, f(t), with repetition period, /0, 
are equal to the values of the Fourier transform F0(co) of the single sinewave pulse,/,(0, 
evaluated ato = nm0 = n2n/t0 and multiplied by l/r0, where/, (0is defined by 

/,(') = 
70(f),   \t\<t0/2 

0, W>?o/2 
(A-ll) 

Therefore, the Fourier series coefficients of the infinite duration periodic pulsed sinewave 
train, / (t), defined by Eq. A-2, are given by 
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1 rw '    N       l fsin[(Q)c-yifl)0)JV^/fl)c]   sin[(ft)c+ttft)0)Afa/a)c]l _ 
c„ = -F0(n«>0) = --| ^^j <^^ )    (A-12) 

where 

/(0 = "Xc/^';       <y0 = 2;r/f0 (A-13) 
n=-oo 

It can also be shown [A2] that the Fourier transform of any infinite train of pulses is given 
by 

F(o)) = 27r^cnS(ü)-no)0) (A-14) 

where c„ are the complex coefficients of the Fourier series expansion, and 6 is the unit 

impulse function. 

That is, the Fourier transform of a periodic function consists of a sequence of equidistant 
impulses located at the harmonic frequencies of the function with amplitudes equal to the 
complex coefficients of its Fourier series expansion. To obtain the Fourier transform of 
the finite pulse train of duration T, we need the Fourier transform of the gating 
function, g(t), given by Eq. A-3. Its Fourier transform is the sine function 

F[g(t)] = G(co) = -sinj^—j = rsinc^—j (A-15) 

To obtain a finite train of sinewave pulses, we multiply the periodic pulse train by the 
gating function. Next, we invoke the frequency convolution theorem to obtain the Fourier 
transform of a finite train of sinewave pulses 

1 i   °° 
F[(fr(t)] = F[(f(t) ■ g(t)] = —F(aJ) ® G{a) = — f F(v)G(ü)- v)dv        (A-16) 

27T 27Ü J^ 

Convolving F(a) with the transform of the gate function, G(OJ), in the frequency domain 
yields 
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1 
F[fr(r)] =—F(co)®G(co)=\Y,cn^(^-n0)o)\®Gm 

n=+°° 

= Xc„£(<y-n6)0)®G(<y) 
n=-oo 

= ]£<:,, G(fi>-/ifi>0) (A-17) 

= %c_nG(co+ncoQ) 
n=-oo 

n=-H>° 

= ^cnG(ü) + n(ü0) 

Substituting Eq. A-15 into A-17, we finally obtain 

F[f(m = T\nfc^[(6}+n(°o)T,2]} (A-18) 

2/nysin[(6;c-n<ün)iV^/fflc3sin[(6J+nffl0)r/2] 
L/rWJ    t,il (fl>c-n<»0)(<»+'"»o) 

2i"^rsin[(fi?c+wfl?0)Jy^/fl?e]sin[(fl?+itfi?0)r/2] 
TTA (fi>c+/uö0)(fl>+/ifi>0) '0 n= 

(A-19) 

2i ny° sin[(a;c -na0)T/ 2]sm[(co+nO)0)T/ 2] 
~"zö~„£t (ä>c-/ifl>0)(fi> + /ifi>0) 

2iL
n^05in[(cor+nü)n)T/2]sm[(co+nO)0)T/2] 

V„tl (fi>c+nfi>0)(ä>+n6>0) 

The Fourier transform of the periodic sinewave pulse train of finite duration T (as are all 
physical signals) is the sum of terms given by Eq. A-19, where a0 is the repetition rate of 
the pulses in the train. Each term of this sum can be plotted as an individual amplitude 
distribution centered at a = nco0. As the duration T increases, the amplitude distributions 
become more compact in the frequency dimension. As T goes to infinity, the total 
amplitude distribution approaches a line spectrum. 

Thus, four frequency scales are required to completely describe a finite train of pulsed 
sinewaves: the bandwidth of the spectral lines (1 / 7); spacing of the spectral lines 
(PRF = 1 /10); bandwidth of the sine function envelope (1 /1); and the carrier frequency 

fe- 

ll 



References: 

[Al] Morris, G.V., Airborne Pulsed Doppler Radar, pp 35-40, Artech House, (1988) 

[A2] Papoulis, A., The Fourier Integral and Tts Applications, pp 43-45, McGraw-Hill, 

(1962) 

23 



Appendix B Gaussian spectrum 
In this appendix we derive the Fourier transform of an amplitude modulated cosine carrier 
where the modulation waveform is the Gaussian envelope. Let a Gaussian pulsed 

sinusoid of frequency Q)0, amplitude A and pulse width 4li be represented by the real 

part of 

f(t) = Ae-'2,^)2ei(üot (B-l) 

where V2? = standard deviation . Since this function is symmetric with respect to the 
origin (even), its spectral function F( a) is also even. We calculate its spectral density 
function as follows 

f(t) = A-Rt exp 
-V 

fir) 
2 +I0)0t UA^^±£ -ita„t 

(B-2) 

Taking the Fourier transform of Eq. B-2, we have 

A 

F(aj)= — Jexp -iax+iG)tf — 0    AT
2 

dt+— Jexp -iox-ico0t 5- 
4T 

n2 . 

dt (B-3) 

Completing the square by adding and subtracting [/T(© - <o0)]   inside the exponent of the 

first integral, and similarly adding and subtracting [JT(© + coQ)]   inside the exponent of the 

second integral, we obtain 

F(co) = — jexp 
—00 

+7"Jexp 

-|—+ir(fl>-<»0)j -T2(o)-cooy dt 

—+iT(a)+<o0)} -T
2
(CO+O)0)

2 

(B-4) 

dt 

Next, we make a change of variable in each integral. Designate the first squared term in 
the exponential as x, then dt = 2idx. After making this substitution the limits of 
integration remain infinite, and we have 

F(a) = Axe-^-^ )e~xldx + An^10*9 je^dx (B-5) 

From the integral tables we find that 
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4^=]e-xldx (B-6) 
—«o 

So Eq. B-5 simplifies to 

F{(0) = 4^Awrl(m-^ +V^Ar<f rW")2 (B-7) 

which is the sum of two Gaussian curves shifted up and down by the angular frequency of 
the carrier. If the original pulse, Eq. B-l, is narrowed by making T smaller, the spectral 
density curve, Eq. B-7, becomes broader with reduced amplitude exhibiting the inverse 
relationship between temporal width and spectral width in accordance with the scaling 
property of the Fourier transform: 

/(7/7)<==>|?|F(r0) (B-8) 

Finally, we note that the Fourier transform of the Gaussian modulated sinewave is real- 
valued. 
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Appendix C   FORTRAN codes sinewave-Debye case 

program SDT 
****************************************************************** 
* SDT: Propagates a finite train of sinewave pulses into a Debye 
* half-space using the Fourier transform and the Fresnel trans- 
* mission coefficient for normal incidence (air/water interface). 

*... Z FIXED, TIME VARIES... 
* 
* by J.Franzen 7-12-95 
****************************************************************** 

parameter( npts = 4000, mpts = 2000) 
complex*!6 j, FOUR(npts), ZERO, k, Et, eps, DENOM, ior, E 
implicit real*8 (a-h,o-z) 
logical ex 

pi = dacos(-1d0) 
twopi = 2d0*pi 
ZERO = dcmplx(0d0,0d0) 
j = dcmplx(0d0,1d0) 

inquire (file='SD_spect.dat',exist=ex) 
if (ex) then 
open(9,file='SD_spect.dat',status='OLD') 
rewind 9 

else 
open(9,file='SD_spect.dat',status='NEW') 

end if 

fc = 1d0 !1 GHz Carrier 
fmax = 1d1 ! (+/-) 10 GHz Integration Limit 
tau = 1 d1 ! 10 nsec On-time = 10 Cycles 
prf = 1d0/2d1 ! PRF = 1/PRI = 1/20 = 50% Duty Cycle 
dwell = 1d2 «FIVE Pulses 

dwell = 1d1 ! ONE Pulse 
df = fmax/dfloat(npts) 
print*,'Repetition period = ',1d0/df,' nanosec' 
dw = twopi*df 

Check if Fourier spectrum already exists: If-so, read into array FOUR(n). 
if (ex) then 
printVReading Fourier spectrum...' 
don=1,npts 
read (9,200) f, FOUR(n) 

end do 
print*,'Done!' 
goto 1 

end if 

print*,'Begin ',npts,' point Fourier transform now....' 

call fourier(npts, fmax, fc, tau, prf, dwell,   FOUR, dw) 
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printVEnd of Fourier transform computation!' 

do n=1 ,npts 
f = (n-1)*df 
write(9,200) f, dreal(FOUR(n)), dimag(FOUR(n)) 

200 f ormat(1 x,f 10.5,2x1 pE20.12,2x1 pE20.12) 
end do 

close (unit= 9) 

1       CONTINUE 

write(*,'(" Please enter z (m): ",$)') 
read*,z 
write(*,'(" Plz enter t-min (ns): ",$)') 
read*,tmin 
write(*,'(" Plz enter t-max (ns): ",$)') 
read*,tmax 

inquire (file='SDT.dat',exist=ex) 
if (ex) then 
open(10,file='SDT.dat',status='OLD') 
rewind 10 

else 
open(10,file='SDT.dat',status='NEW') 

end if 

c = .2997d0     ! light speed (m/ns) 
tau = 8.1 d-3    ! relaxation const, scaled to 19.648758 GHz loss peak 
eps_0 = 1 d7/(4d0*pi*c**2)   ! Permittivity of free space 
it = 0 
dt = (tmax-tmin)/dfloat(mpts) 
do t = tmin, tmax, dt 
Et = ZERO 
do n = 1 ,npts 
w = dfloat(n-1)*dw 
DENOM = dcmp!x(1d0, w*tau) 
eps = 5.5d0 + 72.7d0/DENOM 

if (w .ne. OdO) then 
eps = eps - j*(1d-5)/w/eps_0    !... subtract ionic conductivity 

end if 
ior = cdsqrt(eps) ». , 

* k = w/c*ior 
k _ w/c !... no dispersion, for check out 
E = FOUR(n)*cdexp(-j*(k*z - w*t))!... no dispersion, for check out 
E = FOUR(n)*2dO/(1 dO+ior)*cdexp(-j*(k*z - w*t)) 

Et = Et + E 

* Trapezoidal rule end-point correction: 
if(n.eq.1 .or. n.eq.npts) then 

Et = Et - .5dO*E 
end if 

end do 
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it = it + 1 
write(10,200) t,dreal(Et)/twopi*dw 

* write(* , * ) t,dreal(Et)/twopi*dw 
if(mod(it,100).eq.0)then 
write(*,*)' it = ',it 

end if 
end do 

close (unit=10) 
stop 
END 
subroutine fourier( npts, fmax, fc, tau, prf, dwell,  four, dw) 

*********************************************************************** 
* Computes the Fourier transform of a FINITE train of pulsed sine- 
* waves. 
* Modified to compute spectrum for positive frequencies only. 
* 

* Inputs: 
* npts - Number of points at which to compute the Fourier spectrum 
* fmax - Maximum frequency range of Fourier spectrum (Hz) 
* fc - Carrier frequency of pulse train (Hz) 
* tau - Pulse on-time (sec) 
* prf - Pulse repetition frequency (Hz) 
* dwell - Duration of pulse train (sec) 
* 

* Outputs: 
* four - Complex array of size npts containing Fourier spectrum 
* dw - Frequency resolution: fmax/npts*twopi (rad/sec) 
* 
* by J.Franzen 5-24-95 
*********************************************************************** 

IMPLICIT REAL*8 (a-h,o-z) 
COMPLEX*16 j, ZERO, FOUR(npts) 

sinc(q) = dsin(q)/q 
pi = dacos(-ldO) 
twopi = 2d0*pi 
j = dcmplx(0d0,1d0) 
ZERO = dcmplx(OdO.OdO) 
do n = 1, npts 
FOUR(n) = ZERO 

end do 

omegaj) = 2d0*pi*prf 
omega_c = 2d0*pi*fc 
t_0 = 1d0/prf 
T = dwell 

dw = twopi*f max / df loat(npts) 
don = 1, npts 

w = dfloat(n-1)*dw 

do L =-1000,1000,1 
sum = w + L*omega_0 
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sum = sum * T/2d0 
dif = omega_c - L*omega_0 
dif = dif * tau/2d0 
if (sum .eq. OdO) then 

ap = tau*T/4dO*sinc(dif) 
else if (dif .eq. OdO) then 

ap = tau*T/4dO*sinc(sum) 
else if (sum .eq. OdO .and. dif .eq. OdO) then 

ap = tau*T/4dO 
else 

ap = tau*T/4dO*sinc(dif)*sinc(sum) 
end if 

sum1 = omega_c + L*omega_0 
sum1 = sum1 * tau/2d0 
if (sum .eq. OdO) then 

an = tau*T/4dO*sinc(sum1) 
else if (sum1 .eq. OdO) then 

an = tau*T74dO*sinc(sum) 
else if (sum .eq. OdO .and. sum1 .eq. OdO) then 

an = tau*T/4dO 
else 

an = tau*T/4dO*sinc(sum1)*sinc(sum) 
end if 

FOUR(n) = FOUR(n) + ap - an 
end do 
FOUR(n) = 4dO*j/t_0*FOUR(n) 
if (mod(n,100).eq.O) then 

print*,'n = ',n 
end if 

end do 

RETURN 
END 
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program SDT2 
****************************************************************** 

* SDT2: Propagates a finite train of sinewave pulses into a Debye 
* half-space using the Fourier transform and the Fresnel trans- 
* mission coefficient for normal incidence (air/water interface). 
* 

* ... Z FIXED, TIME VARIES... 
* 
* ... MODIFIED to remove peroidicity 
* 
* by J.Franzen 2-05-96 
****************************************************************** 

parameter( npts = 4000, mpts = 2000) 
complex*16 j, FOUR(npts), ZERO, k, Et, eps, DENOM, ior, E 
implicit real*8 (a-h,o-z) 
logical ex 

pi = dacos(-1d0) 
twopi = 2d0*pi 
ZERO = dcmplx(0d0,0d0) 
j = dcmplx(0d0,1d0) 

inquire (file='SD_spect.dat',exist=ex) 
if (ex) then 
open(9,file='SD_spect.dat',status='OLD') 
rewind 9 

else 
open(9,file='SD_spect.dat',status='NEW) 

end if 

fc = 1d0 !1 GHz Carrier 
fmax = 1d1 ! (+/-) 10 GHz Integration Limit 
tau = 1 d1 ! 10 nsec On-time = 10 Cycles 
prf = 1 d0/2d1 ! PRF = 1/PRI = 1/20 = 50% Duty Cycle 
dwell = 1d2 ! FIVE Pulses 

*      dwell = 1d1 ! ONE Pulse 
df = fmax/df loat(npts) 

period = 1d0/df 
print*,'Repetition period = '.period,' nanosec' 
dw = twopi*df 

Check if Fourier spectrum already exists., If so, read into array FOUR(n). 
if (ex) then **   " 
print*,'Reading Fourier spectrum...' 
do n=1 ,npts 
read (9,200) f, FOUR(n) 

end do 
print*,'Done!' 
goto 1 

end if 

print*,'Begin ',npts,' point Fourier transform now....' 

call fourier(npts, fmax, fc, tau, prf, dwell,   FOUR, dw) 
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printYEnd of Fourier transform computation!' 

do n=1,npts 
f = (n-1)*df 
write(9,200) f, dreal(FOUR(n)), dimag(FOUR(n)) 

200 f ormat(1 x,f 10.5,2x1 pE20.12,2x1 pE20.12) 
end do 

close (unit= 9) 

1       CONTINUE 

write(7(" Please enter z (m): ",$)') 
read*,z 
write(*,'(" Plz enter t-min (ns): ",$)') 
read*,tmin 
write(*,'(" Plz enter t-max (ns): ",$)') 
read*,tmax 

inquire (file='SDT.dat',exist=ex) 
if (ex) then 
open(10,file='SDT.dat',status='OLD') 
rewind 10 

else 
open(10,file='SDT.dat',status='NEW') 

end if 

c = .2997d0     ! light speed (m/ns) 
tau = 8.1 d-3    ! relaxation const, scaled to 19.648758 GHz loss peak 
eps_0 = 1 d7/(4d0*pi*c**2)   ! Permittivity of free space 
it = 0 
dt = (tmax-tmin)/dfloat(mpts) 
do t = tmin, tmax, dt 
Et = ZERO 
don = 1,npts 
w = dfloat(n-1)*dw 
DENOM = dcmplx(1d0, w*tau) 
eps = 5.5d0 + 72.7dO/DENOM 

if (w .ne. OdO) then 
eps = eps - j*(1d-5)/w/eps_0    !... subtract ionic conductivity 

end if 
ior = cdsqrt(eps) 
k = w/c*ior 

* k = w/c !.» no dispersion, for check out 
E = FOUR(n)*cdexp(-j*(k*z - w*t))!... no dispersion, for check out 
E = FOUR(n)*2dO/(1 dO+ior)*cdexp(-j*(k*z ■ w*t)) 

E = U(t)*FOUR(n)*2dO/(1dO+ior)*cdexp(-j*(k*z - w*t)) - 
&U(t-period+dwell/2.)*FOUR(n)*2dO/(1dO+ior)* 
&cdexp(-j*(k*z-w*(t-period))) 

Et = Et + E 

* Trapezoidal rule end-point correction: 
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if(n.eq.1 .or. n.eq.npts) then 
Et = Et - .5dO*E 

end if 
end do 

it = it + 1 
write(10,200) t,dreal(Et)/twopi*dw 

* write(* , *) t,dreal(Et)/twopi*dw 
if(mod(it,100).eq.0) then 
write(V)' it = ',it 

end if 
end do 

close (unit=10) 
stop 
END 
subroutine fourier( npts, fmax, fc, tau, prf, dwell,  four, dw) 

*********************************************************************** 
* Computes the Fourier transform of a FINITE train of pulsed sine- 
* waves. 
* Modified to compute spectrum for positive frequencies only. 
* 

* Inputs: 
* npts - Number of points at which to compute the Fourier spectrum 
* fmax - Maximum frequency range of Fourier spectrum (Hz) 
* fc - Carrier frequency of pulse train (Hz) 
* tau - Pulse on-time (sec) 
* prf - Pulse repetition frequency (Hz) 
* dwell - Duration of pulse train (sec) 
* 

* Outputs: 
* four - Complex array of size npts containing Fourier spectrum 
* dw - Frequency resolution: fmax/npts*twopi (rad/sec) 
* 
* by J.Franzen 5-24-95 
*********************************************************************** 

IMPLICIT REAI_*8 (a-h,o-z) 
COMPLEX*16 j, ZERO, FOUR(npts) 

sinc(q) = dsin(q)/q 
pi = dacos(-1d0) 
twopi = 2d0*pi , 
j = dcmplx(0d0,1d0) 
ZERO = dcmplx(0d0,0d0) 
do n = 1, npts 
FOUR(n) = ZERO 

end do 

omegaj) = 2d0*pi*prf 
omega_c = 2d0*pi*fc 
t_0 = 1d0/prf 
T = dwell 

dw = twopi*fmax / dfloat(npts) 
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don = 1, npts 
w = dfloat(n-1)*dw 

do L =-1000,1000,1 
sum = w + L*omega_0 
sum = sum * T/2d0 
dif = omega_c ■ L*omega_0 
dif = dif * tau/2d0 
if (sum .eq. OdO) then 

ap = tau*T/4dO*sinc(dif) 
else if (dif .eq. OdO) then 

ap = tau*T/4dO*sinc(sum) 
else if (sum .eq. OdO .and. dif .eq. OdO) then 

ap = tau*T/4dO 
else 

ap = tau*T/4dO*sinc(dif)*sinc(sum) 
end if 

sum1 = omega_c + L*omega_0 
sum1 = sum1 * tau/2d0 
if (sum .eq. OdO) then 

an = tau*T/4dO*sinc(sum1) 
else if (sum1 .eq. OdO) then 

an = tau*T/4dO*sinc(sum) 
else if (sum .eq. OdO .and. sum1 .eq. OdO) then 

an = tau*T/4dO 
else 

an = tau*T/4dO*sinc(sum1)*sinc(sum) 
end if 

FOUR(n) = FOUR(n) + ap - an 
end do 
FOUR(n) = 4dO*j/t_0*FOUR(n) 
if (mod(n,100).eq.O) then 

print*,'n = ',n 
end if 

end do 

RETURN 
END 

real*8 function U(t) 
if (t.ge.OdO) then ». „ 

U = 1d0 
else 

U = 0d0 
end if 
return 
end 
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Appendix D   FORTRAN code Gaussian-Lorentz case. 

program GLT2 
********************************************************************* 
* GLT2: Propagates a single Gaussian pulse into a Lorentzian half- 
* space using the Fourier transform and the Fresnel transmission 
* coefficient for normal incidence. 
* 
********************************************************************* 
**** Modified to use Oughstun's nondimensional space-time parameter 
**** THETA 
********************************************************************* 
* 

* ... Z FIXED, TIME VARIES ... 
* 

by J.Franzen 9-29-95 
********************************************************************* 

parameter( npts = 2**13, mpts = 10 000) 
implicit real*8 (a-h,o-z) 
complex*16 j, FOUR(npts), ZERO, Et,E, eps, DENOM 
complex*16T12(npts),k(npts),ior(npts) 
logical ex 

pi = dacos(-ldO) 
twopi = 2d0*pi 
ZERO = dcmplx(0d0,0d0) 
j = dcmplx(0d0,1d0) 
c = 2.997d8 /1 d16        ! light speed (m/deci-femto-sec) 

* Set values for demonstration: 
fc = .915d0 ! Carrier Freq; X 10**16 Hz 
fmax = 1d1 ! Integration Limit; X 10**16 Hz 
tau = .25d0       ! On-time; X 10**(-16) sec 
df = fmax/dfloat(npts) 

printYRepetition period = ',1 d-1/df,' femtosec' 
dw = twopi*df 

Check if Fourier spectrum already exists. If so, read into array FOUR(n). 
inquire (file='GLT2_spect.dat',exist=ex) 
if (ex) then 
open(9,file='GLT2_spect.dat',status='OLD') 
rewind 9 ^ -v- 

else 
open(9,file='GLT2_spect.dat',status='NEW') 

end if 

if (ex) then 
printYReading Fourier spectrum...' 
do n=1 ,npts 
read (9,200) f, FOUR(n) 

end do 
print*,'Done!' 
gotol 

end if 
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printVBegin ',npts,' point Fourier transform now....' 

call gfour(npts, fmax, fc, tau,   FOUR, dw) 

print*,'End of Fourier transform computation!' 

do n=1 ,npts 
f= (n-1)*df 
write(9,200) f, FOUR(n) 

200       f ormat(1 x,f 10.5,2x1 pE20.12,2x1 pE20.12) 
end do 
close (unit= 9) 

1       CONTINUE 

Compute RefI., Trans, coefs & k-numbers for LORENTZ half-space, 
omegaj) = 4d0       ! Resonant Frequency; X 10**16 rad/s 
delta = .28d0 ! Damping Constant;   X 10**16 rad/s 
don=1,npts 

w = dfloat(n-1)*dw 
DENOM = w**2 - 2d0*j*w*delta - omega_0**2 
eps = 1d0 - (1.25dO*omega_0**2)/DENOM 
ior(n) = cdsqrt(eps) 
T12(n) = 2d0/( 1 dO + ior(n))     ! TE Polarization 
k(n) = w/c*ior(n) 

end do 

write(*,'(" Please enter z (m): ",$)') 
read*,z 
print*,'z (microns) = ',z*1d6 
write(*,'(" Plz enter t-min (fs): ",$)') 
read*,tmin 
print*,'t-min = ',tmin 
tmin = tmin*1d1 
write(*,'(" Plz enter t-max (fs): ",$)') 
read*,tmax 
print*,'t-max (fs) = ',tmax 
tmax = tmax*1d1 

inquire (file='GLT2.dat',exist=ex) 
if (ex) then >. . 

open(10,file='GLT2.dat',status='OLD') 
rewind 10 

else 
open(10,file='GLT2.dat',status='NEW) 

end if 

* For each value of z, compute the inverse Fourier integral by 
* numerical quadrature using the trapezoidal rule. 

it = 0 
dt = (tmax-tmin)/dfloat(mpts) 
do t = tmin, tmax, dt 
theta = c*t/z 
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it = it + 1 
Et = ZERO 
do n = 1 ,npts 

w = dfloat(n-1)*dw 
E = FOUR(n)*T12(n)*cdexp(-j*(k(n)*z - w*t)) 
E = FOUR(n)*T12(n)*cdexp(-j*z/c*w*(ior(n)-theta)) 
Et = Et + E ! Transmitted Field only 

* Trapezoidal rule end-point corrections: 
if(n.eq.1 .or. n.eq.npts) then 

Et = Et - .5dO*E 
end if 

end do      ! End of w-loop.... 

Et = Et/twopi*dw 

if(mod(it,100).eq.0)then 
write(*,*)' it = \it 

end if 
write(10,201) theta, -dreal(Et) 

201    f ormat(1 x,2x1 pE20.12,2x1 pE20.12) 

end do        ! End of t-loop.... 

close (unit=10) 
stop 
END 
subroutine gfour( npts, fmax, fc, tau,   four, dw) 

* Computes the Fourier transform of a Gaussian pulse. 
* 

* Inputs: 
* npts - Number of points at which to compute Fourier spectrum 
* fmax - Maximum frequency range of Fourier spectrum (Hz) 
* tau - sigma/sqrt(2) 
* 
* Outputs: 
* four - Complex array of size npts containing Fourier spectrum 
* dw - Frequency resolution: fmax/npts*twopi (rad/sec) 

IMPLICIT REAL*8 (a-h,o-z) 
COMPLEX*16 j, ZERO, FOUR(npts) 

pi = dacos(-ldO) 
twopi = 2d0*pi 
j = dcmplx(0d0,1d0) 
ZERO = dcmplx(0d0,0d0) 

omega_c = 2d0*pi*fc 
dw = twopi*fmax / df loat(npts) 
don = 1,npts 
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w = dfloat(n-1)*dw 
FOUR(n) = dexp(-(tau"2)*(w-omega_c)**2) 
FOUR(n) = j*dsqrt(2dO*twopi)*tau*FOUR(n) 
print*,'four(',n,') = ',four(n) 
if (mod(n,100).eq.0)then 

print*,'n = ',n 
end if 

end do 

RETURN 
END 
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Appendix E   FORTRAN code water impulse response 

IMP22: Performs time-domain convolution on sinewave pulse using 
the impulse response of water. 

by J.Franzen 2-01-96 
****************************************************************** 

parameter( npts = 4000, mpts = 8000) 
complex*16 j, ZERO, k, eps, DENOM, ior, E 
implicit real*8 (a-h,o-z) 
real*8 IMP(mpts),tau(mpts),X(npts),Y(npts+mpts-1) 
logical ex 

pi = dacos(-1d0) 
twopi = 2d0*pi 
ZERO = dcmplx(0d0,0d0) 
j = dcmplx(0d0,1d0) 

fmax = 2d9 ! (+/-) 20 GHz Integration Limit 
df = f max/dfIoat(npts) 
dw = twopi*df 

write(Y(" Please enter z (m): ",$)') 
read*,z 

Check if Impulse response already exists. If so, read into array IMP(m). 
inquire (file='IMP22.dat',exist=ex) 
if (ex) then 
open(10,file='IMP22.dat',status='OLD') 
rewind 10 

else 
open(10,file='IMP22.dat',status='NEW') 

end if 

if (ex) then 
print*,'Reading impulse response...'^ 
do m=1 ,mpts 

read (10,200) tau(m),IMP(m) 
end do 
print*,'Done!' 
goto 1 

end if 

Compute Impulse Response ... 
c = .2997d9       ! Light speed (m/s) 
taw = 8.1 d-12    ! Water relaxation const. 
eps_0 = 8.854d-12 ! Permittivity of free space 
it = 0 
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dT = 1dO/(2dO*fmax) 
do m = 1 ,mpts 
IMP(m) = OdO 
do n = 1 ,npts 
w = dfloat(n-1)*dw 
DENOM = dcmplx(1d0, w*taw) 
eps = 5.5d0 + 72.7dO/DENOM 

if (w .ne. OdO) then 
eps = eps - j*(1d-5)/w/eps_0    !... subtract ionic conductivity 

end if 
ior = cdsqrt(eps) 
k = w/c*ior 

* k = w/c ! — no dispersion, for check out 
E = cdexp(-j*(k*z - m*w*dT))      !... no dispersion, for check out 
E = 2d0/(1 dO+ior)*cdexp(-j*(k*z - m*w*dT)) 

IMP(m)=IMP(m)+dreal(E)*dcos(m*pi*dT)-dimag(E)*dsin(m*pi*dT) 

IMP(m) = IMP(m) + dreal(E) 
end do 

it = it + 1 
tau(m) = m*dT 
IMP(m) = 2dO*IMP(m)/twopi*dw 
write(10,200) tau(m),IMP(m) 

200    f ormat(1 x,1 pel 4.6,2x,1 pel 4.6) 
if(mod(it,100).eq.0)then 
write(Y)' it = ',it 

end if 
end do 
close (unit=10) 

1     CONTINUE 

Compute the Convolution Integral: 
inquire (file='PULSE22.dat',exist=ex) 
if (ex) then 
open(11 ,f ile='PULSE22.dat',status='OLD') 
rewind 11 

else 
open(11,file='PULSE22.dat',status='NEW') 

end if 

fc = 1d9 !!!    1 GHz Carrier »Frequency 
on_time = 1d-8!!!    10 ns on-time "(10 cycles) 
it = 0 

dT = 1dO/(2dO*fmax) 
do n=1 ,npts 

t = n*dT 
X(n) = pulse(t, fc,on_time) 

end do 

call CONVL (X, npts, IMP, mpts, Y, ly) 

don=1,ly 
write(11,200) n*dT, Y(n)*dT 
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end do 
close (unit=11) 

stop 
END 

real*8 function pulse (t, fc,on_time) 
implicit real*8 (a-h,o-z) 
pi = dacos(-1d0) 

if (t .It. on_time) then 
pulse = dsin(2d0*pi*fc*t) 

else 
pulse = OdO 

end if 

return 
END 

subroutine CONVL (X, n, H, m, Y, ly) 

Subroutine CONVL computes the convolution 
between the sequences X and H 
Parameters 

X      : array containing sequence X 
n      : length of sequence X 
H      : array containing sequence H 
m     : length of sequence H 
Y      : array containing the convolution of X and H 
ly      : length of the sequence Y 

real*8 X,H,Y 
dimension X(1),H(1),Y(1) 

ly = n + m -1 
do k = 1 , ly 

Y(k) = OdO 
end do 

do 1i = 1,n 
do 1j = 1 ,m 

k = i + i-1 v.., 
Y(k) = Y(k) + X(i) * H(j) 

return 
END 
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Appendix F   FORTRAN code Lorentz medium impulse response 

program IMP3 
********************************************************************* 
* IMP3: Performs time-domain convolution on sinewave pulse using the 
* impulse response of a single absorption band Lorentz modim. 
* 
* 1 Pulse @ 8d15 Hz carrier, 10 cycles-on 

by J.Franzen 10-23-95 
********************************************************************* 

parameter npts = 2**13, mpts = 2**14) 
implicit real*8 (a-h,o-z) 
complex*16 j, ZERO, E, eps, DENOM 
complex*16 T12(npts),k(npts),ior 
real*8IMP(mpts),tau(mpts),X(npts),Y(npts) 
logical ex 

pi = dacos(-ldO) 
twopi = 2d0*pi 
ZERO = dcmplx(0d0,0d0) 
j = dcmplx(0d0,1d0) 
c = 2.997d8 /1 d16        ! light speed (m/deci-femto-sec) 

* Set values for demonstration: 
fc = .8d0 ! Carrier Freq; X 10**16 Hz 
fmax = 2d1 ! Integration Limit; X 10**16 Hz 
taw = 12.5d0 ! On-time; X 10**(-16) sec 
df = fmax/dfloat(npts) 

print*,'Repetition period = \1d-1/df,' femtosec' 
dw = twopi*df 

Check if impulse response already exists. If so, read into array IMP(m). 
inquire (file='IMP3.dat',exist=ex) 
if (ex) then 
open(9,file='IMP3.dat',status='OLD') 
rewind 9 

else 
open(9,file='IMP3.dat',status='NEW') 

end if 

if (ex) then 
print*,'Reading impulse rsponse...' 
do n=1 ,mpts 
read (9,200) tau(m),IMP(m) 

end do 
print*,'Done!' 
gotol 

end if 
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Compute impulse response... 
omega_0 = 4d0       ! Resonant Frequency; X 10**16 rad/s 
delta = .28d0 ! Damping Constant;   X 10**16 rad/s 
don=1,npts 

w = dfloat(n-1)*dw 
DENOM = w**2 - 2d0*j*w*delta - omega_0**2 
eps = 1d0 - (1.25dO*omega_0**2)/DENOM 
ior = cdsqrt(eps) 
T12(n) = 2d0/(1d0 + ior) 
k(n) = w/c*ior 

end do 

write(*,'(" Please enter z (microns): ",$)') 
read*,z 
print*,'z (microns) = ',z 
z = z*1d-6 

it = 0 
dT = 1d0/(2d0*fmax) 
dom = 1,mpts 
it = it + 1 
IMP(m) = OdO 
tau(m) = m*dT 
do n = 1,npts 

w = dfloat(n-1)*dw 
E = T12(n)*cdexp(-j*(k(n)*z - w*m*dT)) 
IMP(m) = IMP(m) + dreal(E) 

end do 

IMP(m) = 2dO*IMP(m)/twopi*dw 
write(9,200) tau(m), IMP(m) 
if(mod(it,100).eq.0) then 

write(Y)' it = ',it 
end if 

200    format(1x,1pE14.6,2x1 pE14.6) 

end do 

close (unit=9) 

1     CONTINUE 

Compute the Convolution Integral: 
inquire (file='PULSE3.dat',exist=ex) 
if (ex) then 
open(11,file='PULSE3.dat,)status='OLD') 
rewind 11 

else 
open(11 ,f ile='PU LSE3.dat',status='NEW) 

end if 

it = 0 
dT = 1dO/(2dO*fmax) 
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do n=1 ,npts 
t = n*dT 
X(n) = pulse(t, fc,taw) 

end do 

call CONVL (X, npts, IMP, mpts, Y, ly) 

don=1,ly 
write(11,200) n*dT, Y(n)*dT 

end do 
close (unit=11) 

stop 
END 

real*8 function pulse (t, fc,on_time) 
implicit real*8 (a-h,o-z) 
pi = dacos(-1d0) 

if (t .It. on_time) then 
pulse = dsin(2d0*pi*fc*t) 

else 
pulse = OdO 

end if 

return 
END 

subroutine CONVL (X, n, H, m, Y, ly) 

Subroutine CONVL computes the convolution 
between the sequences X and H 
Parameters 

X      : array containing sequence X 
n      : length of sequence X 
H      : array containing sequence H 
m     : length of sequence H 
Y      : array containing the convolution of X and H 
ly      : length of the sequence Y 

real*8 X,H,Y 
dimension X(1),H(1),Y(1) 

ly = n + m -1 
do k = 1 , ly 

Y(k) = OdO 
end do 

do 1 i = 1 , n 
do 1 j = 1 , m 
k=i+j-1 
Y(k) = Y(k) + X(i)*H(j) 

return 
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END 
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