
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5653--99-8419

An Introduction to ARRSTATS —
A Computer Program for Simulating
the Effects of Errors in Time- and Phase-
Steered Planar Array Antennas
C. STAN WEST

Photonics Technology Branch
Optical Sciences Division

November 22, 1999

Approved for public release; distribution unlimited. 20000104 049
XKSS9 QUUUXVfMMBOBED £

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave Blank) 2. REPORT DATE

November 22, 1999

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

An Introduction to ARRSTATS — A Computer Program for Simulating the Effects of

Errors in Time- and Phase-Steered Planar Array Antennas

5. FUNDING NUMBERS

ONR —63217N

6. AUTHOR(S)

C. Stan West

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory

Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5653-99-8419

9. SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES)

Bobby Junker
Office of Naval Research

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

A computer program is described that simulates time- and phase-steered array antennas subject to deterministic and random
errors. The modeled array comprises a planar, rectangular grid of phase-steered elements grouped hierarchically into time-steered
subarrays and time-steered subapertures. Random phase, time, and amplitude errors may be assigned, and the phases and times may
be quantized. The simulation frequency may differ from the design frequency. The program assesses the antenna's performance by
computing and analyzing the far-field radiation pattern or an ensemble of statistically identical patterns. It determines the location
and power density of the main beam peak, the pointing error, the major and minor beam widths, the directivity, the ratio of main beam
and sidelobe powers, and other measures. The program can tabulate measures as functions of a user-specified independent variable
such as the operating frequency, a steering angle, an error parameter, a quantization specification, or a parameter of the array geom-
etry. Results may be displayed as textual output of the performance measures, plots of radiation patterns, and plots of performance

measures versus the independent variable.

14. SUBJECT TERMS 15. NUMBER OF PAGES

54

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS

1. INTRODUCTION l

2. COORDINATE SYSTEMS AND PROJECTIONS 2

3. ARRAY PARAMETERS 4

4. EXCITATIONS 6

4.1. Error-Free Excitations "
4.2. Erroneous Excitations °

5. RADIATION PATTERN 9

6. PATTERN MEASURES 9

6.1. Pointing Vector, Pointing Error, and Peak Power Density 10
6.2. Main Beam Region H
6.3. Main Beam Width and Roll n

6.4. Directivity, Power Ratios, and Average Sidelobe Level 12
6.5. Powers and Distances of Largest and Nearest Sidelobes 13

7. MULTIPLE REALIZATIONS AND PARAMETER VALUES 13

8. PROGRAM OUTPUT 13

9. SUMMARY 15

APPENDIX A — LIST OF VARIABLES n

APPENDIX B — PROGRAM LISTING I9

REFERENCES 49

111

AN INTRODUCTION TO ARRSTATS — A COMPUTER
PROGRAM FOR SIMULATING THE EFFECTS OF ERRORS IN
TIME- AND PHASE-STEERED PLANAR ARRAY ANTENNAS

1. INTRODUCTION

Phased array antennas are remarkable for their suitability to many applications, which is partly
because they steer quickly, allow adaptive processing, conform to special shapes, and produce a variety of
radiation patterns. As low-sidelobe radiation patterns were being developed, it became apparent that
errors in the phase or amplitude of the element excitations would limit the lowest achievable sidelobe
level. Such errors might be due to manufacturing tolerances on the physical structure, inaccurate phase
shifters, or non-uniform feeds, and can affect the average and peak sidelobe levels, beam width, pointing
accuracy, and directivity, for example. Although one cannot predict the performance of a given antenna
without measurements of the phase and amplitude accuracy of each element, one can draw conclusions
about the behavior of an ensemble of antennas that are statistically identical but have different realizations
of phase and amplitude errors. The present work applies this approach to a generalized array antenna that
blends phase- and time-steering to achieve greater bandwidth at a reasonable cost. " The purpose of this
report is to introduce the reader to a computer program for simulating time- and phase-steered planar
array antennas subject to deterministic and random excitation errors. It is intended as an overview to the
features and capabilities of the program and a guide to understanding the program's input, processing, and
output.

The theoretical study of errors in array antennas has produced a large body of literature.
Introductions to these works and key results and derivations may be found in several books. The
literature on simulations is more sparse, but two programs have been described recently against which this
work may be contrasted. First, Chrisman7 describes a program that simulates phase-steered planar arrays.
It computes the directivity and cuts of the design and expected radiation patterns from the error statistics
using theoretical formulas. One pattern cut intersects the main beam and boresight, and the other is
normal to it through the main beam; from them the beam width is obtained in those directions. Second,
Wright8 briefly discusses the features of a simulation of phase-steered arrays. Its parameters include phase
and amplitude errors, number of quantization bits, and bandwidth, and it can output two-dimensional
beam patterns, sidelobe statistics, and measures of specialized interest. The program discussed here,
called ARRSTATS, differs from those in Refs. 7 and 8 primarily in that it can model arrays with a hybrid
phase- and time-steered architecture,9 including strictly phased arrays and strictly time-steered arrays.
Also, it computes individual realizations of the hemispherical radiation pattern and obtains most measures
of the array performance directly from the full pattern rather than from formulas or from pattern cuts
chosen a priori. (Ref. 8 does not specify how its performance measures are obtained.) For example, the
beam width cuts are always along the major and minor axes of the beam width ellipse, regardless of its
orientation. Another special feature is a method for locating the beam peak that is highly accurate for
nearly flat phase fronts; it is the only measure not obtained directly from the radiation pattern.

In more detail, the modeled array comprises a rectangular grid of phase-steered elements; these

Manuscript approved

C. S. West

are grouped into time-steered subarrays, which in turn are grouped into time-steered subapertures. The
phases and times may be quantized. A random phase error may be associated with the elements, and
random time errors may be assigned to the subarrays and subapertures. Also, random amplitude errors
may be associated with the elements, subarrays, and subapertures. The user specifies the design
frequency, at which the error-free times and phases would correctly steer the antenna, and the operating
frequency, at which the array's behavior is simulated. The antenna may be steered to any direction.
ARRSTATS assesses the array's performance by computing and analyzing the far-field radiation pattern or
an ensemble of statistically identical patterns. It ignores polarization and mutual coupling between
elements and assumes that the elements radiate uniformly into the forward hemisphere. For each
computed pattern, it determines the following:

• the location and power density of the main beam peak
• the error in the main beam's location .,,...
• the main beam's angular limits, major and minor widths at half power, and orientation
• the directivity
• the ratios of powers in the main beam, sidelobes, and the radiation hemisphere
• the powers and distances of the sidelobes that are strongest and nearest to the main beam

Furthermore, it can track these measures as functions of a user-specified independent variable. ARRSTATS.
provides textual output of the performance measures, plots of radiation patterns, and plots of performance.
measures versus the independent variable. ; :; b ;R ^fesdf "tr

ARRSTATS is a script written for version 5.3 of MATLAB, a commercial software package for,
technical computing." Some elements of the program structure and some of the graphics facilities take
advantage of features in version 5.3, but much of the code is compatible with earlier versions of
MATLAB. ARRSTATS consists of one text file and is executed by typing its filename at the MATLAB
command prompt. The program does not have an input user interface; instead, the user hardcodes input
into the script before execution. These input points are tagged with the word "INPUT" in the code's
comments.

The remainder of this report is structured as follows. Section 2 introduces the coordinate systems
used for input and output, Section 3 explains the input parameters that describe the array, Section 4
specifies the model for the excitations, and Section 5 outlines the calculation of the radiation pattern.
Section 6 describes the pattern measures, Section 7 discusses looping over multiple realizations and
parameter values, and Section 8 exhibits the program's output. Two appendices are provided: Appendix A
relates the variables used in this report and in the program, and Appendix B is a listing of the program
code. Most of the report aims to describe aspects of the program's operation but does not give the details
of the implementation or algorithms. The interested reader is directed to the code listing, specifically the
comments that introduce each section of the program. Throughout this report, code variables are printed
in a monospaced face, and braces ({}) enclose references to code line numbers except where the
context suggests set notation.

2. COORDINATE SYSTEMS AND PROJECTIONS

ARRSTATS internally uses a three-dimensional Cartesian coordinate system to describe space. The
array lies in the x-y plane and radiates into the half-space z > 0, as in Figure 1. (Although we describe a
transmitter array, the case for a receiver array is identical.) The far-field spatial distribution of this
radiation — that is, the radiation pattern — is a function of direction in the half-space. Two variables
suffice to specify direction, and several pairs of variables are useful for this purpose. First, direction

An Introduction to ARRSTATS

Figure 1 — Cartesian and spherical coordinates; 6, y, a, and e are shown positive

cosines are the natural coordinates for calculating the array factor, as will be seen later. The direction
cosines for a given direction are simply the Cartesian coordinates (£ tj, £) of the corresponding unit
vector. Specifying a direction in the half-space z > 0 requires only £ and n; C, may be obtained from the
unit vector constraint if needed. Second, spherical coordinates are convenient for constructing flat
projections of the radiation pattern, as it may be regarded as a function of location on a (curved)
hemisphere. As shown in Figure 1, the polar angle 6 for a given vector is the angle between the positive z
axis and the vector, while the azimuth angle i// is the angle between the positive x axis and the projection
of the vector onto the x-y plane. Third, traditional antenna coordinates connect these simulations to an
established context. Given the projection of a vector onto the x-z plane, the azimuth angle a is the angle
between the projection and the z axis, while the elevation angle e is the angle between the projection and
the vector. These three sets of coordinates are related according to

£ =sin0cosy/=-cos£sina

rj =sin0sin^ = sine

C =cos0 = cosecosa
(1)

cos# = cosecosa =C

tan^ = -tane/sina =?//£
(2)

-tana =£/£" = tan#cosy/

sin e-t] =s'm6s\ny/.
(3)

ARRSTATS also employs three projections of the hemisphere onto flat two-dimensional space:
orthographic, Lambert azimuthal, and stereographic. The orthographic projection yields a view of the
hemisphere from a particular vantage point without perspective distortion and is available for displaying
the radiation pattern. The remaining projections both map the hemisphere to a disk such that boresight

C. S. West

corresponds to the center of the disk and grazing directions correspond to the perimeter of the disk. To
describe these projections more specifically, we denote locations on the disk using polar coordinates
(radius and angle). For both projections, the angular coordinate is set equal to the spherical azimuth angle
y/; the mapping from the spherical polar angle 0 to the radius r distinguishes the two projections.

The Lambert projection preserves relative area: the ratio of two areas on the hemisphere equals
that of the corresponding areas on the projected disk.12 This property may be expressed by equating (to a
proportionality constant) the spherical and planar surface areas:

s'm0d0d\// = CrL drL dy, (4)

where the subscript "L" distinguishes the radius in the Lambert projection from that in the stereographic
projection below. Canceling dy and integrating both sides produces an integration constant, whose value
and that of C are determined by the constraints that rL = 0 when 0 = 0 and rL = 1 when 0 = JC/2. One finds

r, =V2sin-, (5)
L 2

which deviates only slightly from a linear relationship for 0 e [0,K/2). When the radiation pattern is
plotted with the Lambert projection, the areas occupied by structures such as the main beam and sidelobes
are in true proportion to each other and to the total area.

While the stereographic projection does not preserve area, it is conformal.12 The local scale is
uniform in any direction; shape is preserved locally. Great and small circles on the hemisphere are
projected into circles or straight lines, and the angle between two great circles on the hemisphere equals
the angle at the intersection of their projected images. To derive the governing relationship, equate the
aspect ratios of orthogonal derivatives, as

d0 _ drs (6)
sm0dy/ rsdy/

where the subscript "S" denotes the stereographic projection. Canceling and integrating as before yields

rs=tan-. (7) s 2

ARRSTATS internally uses the stereographic projection when identifying the major and minor axes of the
beamwidth ellipse (see Section 6.3) and makes it available for plotting the radiation pattern.

3. ARRAY PARAMETERS

Several parameters describe the antenna's geometry and associated frequencies {29-94}. As
Figure 2 illustrates, the antenna elements occupy a regular rectangular grid in the x-y plane; the element
spacings in each dimension, dx and dy, may differ. The elements are grouped hierarchically at three levels.
The array is subdivided into Lx by Ly subapertures, each of which has an associated time delay for
steering. Descending to the next level, each subaperture contains Mx by My subarrays, each of which
likewise has a steering time delay. Finally, each subarray contains Nx by Ny elements, each of which is
phase-steered. Regular element spacing is maintained across subarray and subaperture boundaries. To

An Introduction to ARRSTATS

array contains
L^ by Ly time-

steered subapertures

subapertures contain
Mx by My time-

steered subarrays

subarrays contain
Nx by Ny phase-
steered elements

\ . .
A . .
. JA \

Figure 2 — Array structure and geometry

y
A.

->x

1
.1

Figure 3 — Element layout when diamond flag is nonzero

simulate an array with one time-steered level and one phase-steered level, Lx and Ly should be set to 1; for
a strictly phased array, also set Mx and My to 1. On the other hand, one may model a strictly time-steered
array with one or two hierarchical levels by setting Nx and JVy to 1 and 8<p to 360° (this renders the phase
shifters ineffective; see Section 4.1).

Two additional program parameters specify special antenna geometries. If the flag diamond is
nonzero, elements are effectively removed from even diagonals (the zeroth diagonal originates at the
lower-left element), leaving a diamond pattern of active elements as in Figure 3. The parameter
azmthOf f st rotates the antenna about the z axis (boresight); it is the angle of the positive x axis of the
array above the azimuth reference. Within ARRSTATS, all calculations are performed in the antenna
coordinate system; the steering vector provided by the user is transformed to the antenna coordinate
system before processing, and output coordinates and plotted structures are transformed from the antenna
coordinate system after processing.

C. S. West

Finally, two parameters supply frequency information. The reference or design frequency/, is that
at which the time and phase delays would correctly steer the antenna in the absence of error and
quantization. The operating frequency / is that at which the simulation is to be performed. Multiple
frequencies may be considered sequentially as described in Section 7.

4. EXCITATIONS

4.1. Error-Free Excitations

We now construct the element excitations in detail to show the structure of the array model,
beginning with the error-free case {338-410}. Because only one frequency is considered at a time, time
delays may be expressed as equivalent phase delays. We therefore decompose the excitations into
magnitude and phase as

«,,nj=l«vly|exp(-/Ö/V)y), nwe{0,l,...,LwMwNw-l}, we{x,y}, (8)

where the overbars indicate the error-free case and the nw label the elements across the face of the array,
ignoring subaperture and subarray boundaries. The error-free magnitudes are made equal for all active
elements and normalized to unit total power, so that

IHW=1- (9)
"x "y

The phases are derived from the condition that at the reference frequency the far-field radiation
must interfere perfectly constructively in the direction of the steering vector. This implies that the phase
must progress linearly across the face of the array as

#„A = -*o(^x"x + dysyny) + const., (10)

where k0=2xf0/c is the reference wave number and (sx,sy) are the direction cosines of the steering
vector {96-166}. Considering the architecture of the array, the phases must be built up from the
equivalent time delays at the subaperture and subarray levels and the phase delays at the element levels.
Based on Eq. (10), the phase step in direction w between adjacent elements in a subarray must be

^<Pw = -k0
d^w- (n>

Likewise, since each subarray contains Nx by Ny elements, adjacent subarrays within a subaperture must
have a phase difference ofNwA(pw, which is equivalent to a time step

A/w=—NwA<pw
a>o (12)

=—Nwdwsw,
c

where G)0 = 27r/0 is the reference angular frequency, and the time step across subapertures follows
similarly as

An Introduction to ARRSTATS

ATw = --NwMwd^w. (13)
c

In practical arrays, the time and phase delays are often quantized, leading to violations of Eq. (10)
for general steering angles. We suppose that the beamformer is capable of mitigating the effects of
subaperture and subarray quantization by adjusting the subarray and element delays. That is, the delay
lost or gained in each subaperture due to quantization can be balanced by additional or reduced delay in
the subarrays, assuming that the quantization interval of the subarrays is less than that of the subapertures.
Likewise, the error due to subarray quantization can be balanced by adjusting the element phases, subject
to a similar assumption. To exhibit this scheme mathematically, we introduce the subaperture, subarray,
and element quantization intervals 3T, St, and 8q>, respectively. We also introduce subaperture labels /x and
/ and subarray labels mx and my; as the nw ignore subaperture and subarray boundaries, so the mw ignore
subarray boundaries. More specifically, we obtain the /„ and mw from the nw according to

m.=

«„

AL

, /„G{0,1,...ZW-1}, and

mw&{0,\,...LwMw-\},

(14)

where \x\ is the greatest integer not exceeding x.

We define the subaperture time delays without quantization or error to be

T,,,, =/xA7x+/yAry, (15)
"x"y

where the /„, are implicitly dependent upon the nw, and the quantized subaperture time delays are then

fnny=ÖTxounA(Jth„JÖT), (16)

where round (x) is the integer nearest x. The subarray time delays contain an additional term that
compensates for the subaperture quantization:

iv,=rn^tx+mytoy-fn^, ^

where the mw are implicitly dependent upon the nw, and the element phase delays contain two similar
terms:

9„^ = nM* + »yA(Py ~ v0 (tA + ',v,y)»

&.,», =5<Pround (^y./^)

In so defining the delays, we have implicitly chosen the constant in Eq. (10) to be zero. This choice
implies that the lowest and leftmost components (those with /„ = 0, mw - 0, or nw = 0) have no associated
delay regardless of the steering vector, whereas the highest and rightmost components (having /„, =

8 C.S. West

Lw-\, mwmodMw = Mw-\, or nwmodNw = Nw- 1) have delays that depend strongly on the steering
vector.

In the program, quantization may be avoided by setting the quantization steps to zero. The above
equations are then equivalent to

t = f =(mx modMx)Atx+(mv modM)At, and (19)

9„x„y = &.„, = («x modiVJA^ + (ny mod JVy)Apy.

We note that /wwmodMM, is the index of subarray mw within its parent subaperture, and likewise
nw mod Nw is the index of element nw within its parent subarray.

For each element, the net (possibly quantized) phase at the operating frequency is the sum of
equivalent phase contributions from the three hierarchical levels:

<„y=^v,y+^y) + V,> (20>

where co = 2vf is the operating angular frequency. This quantized phase assumes the place of O in Eq.
(8). At the reference frequency (co = co0) and with no phase quantization, this construction of the phase
yields the linear progression of Eq. (10).

4.2. Erroneous Excitations

We model the errors in a real antenna by applying amplitude and phase errors to each level of the
antenna hierarchy {525-549}. Amplitude errors multiply the error-free amplitudes by factors of the form
1 +p where p is a random number, distributed normally with zero mean. Each level contributes such
errors, so that the erroneous amplitude for element («x, ny) is

K,„yl = I V',l 0 + R'Jy W + V<>)(1 + 'M, } ' (21)

where R, r, and p correspond to subapertures, subarrays, and elements, respectively. This model allows
corresponding elements in different subarrays to contribute distinct errors, and likewise for corresponding
subarrays within different subapertures. The user specifies the standard deviations aK, aT, and ap of the
respective amplitude errors.

Time and phase errors add to the error-free (but possibly quantized) time and phase delays. The
subapertures and subarrays contribute random time errors T and /, respectively, and the elements
contribute random phase errors y, all drawn from zero-mean normal distributions. The user specifies the
corresponding standard deviations aT, av and ar Additionally, the user may specify a deterministic time
error .T for each subaperture. The net equivalent phase error for element («x, ny) is

*„„., =«Wj, +fi,iy + W+fc..f'
(22)

and the total erroneous phase is the sum of the quantized and error phases:

An Introduction toARRSTATS

O =6 +0 . (23)
«x»y »x"y "x"y

Finally, the erroneous complex excitations are

Vv=KJexP(-''°«A>- (24)

5. RADIATION PATTERN

In standard array theory with mutual coupling ignored, the field pattern is the product of the array
factor and the element factor. In ARRSTATS, the element factor is unity, corresponding to uniform
hemispherical radiation, so the field pattern equals the array factor. (See the code {2595-2715} for notes
on expanding ARRSTATS.) Given the complex excitations, the array factor (and field pattern) in the
direction (<f, tf) is given by the two-dimensional Fourier transform {551-561}

g(Z,l) = ZXexPH*(#xHx + ^y"y)K»y > (25)

»x »y

where k = 2irf/c is the operating wave number. ARRSTATS uses a fast Fourier transform to obtain g in.
discrete directions given by

^Hjo"' *xG{0,l,...,ox-l}, and
mjJ*. (26)

V-S- '"e{0',"-e>-11'
where Qx and Q are the number of points in the transform in each dimension {168-173}. The (£,s,fyy)
grid is extrapolated to all of visible space using {412-497, 558}

^x+Qx'V^^'V and (27)

which are valid for all integers qx and qy. Because of the normalization condition of Eq. (9),

\g{Lri)\<\ (28>

for all ^ and rj, with the equality holding only where the excitations interfere perfectly constructively.
Therefore, when the field pattern is expressed in decibels, 0 dB corresponds to perfectly constructive
interference.

6. PATTERN MEASURES

The code at the heart of the program analyzes the radiation pattern to obtain several measures that
quantify the characteristics and performance of the array. The following subsections describe these
measures, generally focusing on the concepts behind them and on their interpretation rather than on the
specific method of calculation. Details of the algorithms and further discussion may be found in the code.

10 C.S. West

6.1. Pointing Vector, Pointing Error, and Peak Power Density

One of the most significant pattern measures is the direction of maximum radiation, here called
the pointing vector. The program determines it directly from the field pattern and also indirectly from the
excitations; the final pointing vector is a weighted average of the two, as discussed below. In identifying
the pointing vector from the field pattern {563-787}, the program first locates the pattern's maximum
magnitude over the grid of discrete direction cosines. For a well-formed beam, the neighboring samples
should fall off parabolically, so they are fitted to the elliptic paraboloid13

\g(Z,ri)\=\ue+WZr, + W+X{ + Yt, + Z (29)

in a least-squares sense. If UV> W2, as should be the case for a normal beam, the conic is indeed elliptical
(corresponding to its level curves), and its maximum occurs at (£17) = (plx,Ply), where plx and/?ly satisfy

Ply)
(30)

The coordinate pair (plx,piy) is taken to be the pointing vector for the first method. The deviation of the
pattern samples from conic form is used to construct a covariance ellipse for plx andply that expresses the
uncertainty in their values.

The second method determines the pointing vector from the complex excitations {789-961}.
Because a well-behaved array will have a nearly flat phase front, the excitation phases #n„y are fit to the
plane -knxdJ-knydyri-Q>Q, weighted according to the excitation magnitudes. The pointing vector
coordinates (p2x,/?2y) are the direction cosines (£ tj) that give the best fit. As with the first method, a
covariance ellipse forp2x andp2y is obtained from a measure of the deviation from the plane.

Each method is useful but limited. The first, the fit of the transform, is robust even for poorly
aimed and malformed beams, but it is limited by the resolution of the Fourier transform. The second, the
fit of the excitations, is independent of transform resolution but accurate only for nearly planar phase
fronts, approaching the exact solution as the phase and time errors and quantization intervals decrease. To
obtain a single pointing vector (px,py), the program averages pointing vectors from the two methods,
weighting each by the inverse of the area of its covariance ellipse {963-990}. An average covariance
ellipse is also constructed in a consistent manner.

With the final pointing vector in hand, the pointing error y is straightforwardly obtained {992-
1046} from

cosy = s-p

= sKPx+sypy + szPz,

where sz and pz follow from unit magnitude constraints on s and p. If one desires the uncertainty in y due
to uncertainty in p, an alternate calculation based on

siny^ sxp| (32)

may be selected in the program.

An Introduction to ARRSTATS 1|_

The peak power density

Pmm=\g(P*,Py)\2 03)

is calculated directly from Eq. (25).

6.2. Main Beam Region

The main beam region is the set of field pattern samples that are judged to belong to the main
beam. Although normally not of interest as a final measure, it is essential for obtaining subsequent
measures. It may be constructed conceptually by imagining a contour at an adjustable level. Beginning at
the pattern maximum, we decrease the level so that the contour expands in size, following the topology of
the main beam. Eventually the contour will intersect a local minimum or a saddle point; the closed
contour about the pattern maximum at that level delineates the main beam region inside from the sidelobe
region outside. Equivalently, that contour is the lowest one containing the global maximum that encircles
no other local maxima. The power level of the contour is called the beam depth. Generally, well-formed
beams are deep (that is, the beam depth is much less than one), while malformed beams are shallow, but
the user should keep in mind that the beam depth depends on the transform resolution. In the program
{1048-1137}, the beam depth is stored in the variable beamDepthDB in decibels relative to Pmax and is
output to the user. Information obtained while determining the main beam region is used in finding the
main beam width and roll, below, and the region itself is used directly in calculating the powers radiated
into the main beam and sidelobes.

6.3. Main Beam Width and Roll

The level contours of the main beam generated by a two-dimensional array are nominally
ellipses;14'15 therefore they can be described by their center location, major and minor axes, and
orientation. Having already obtained a measure of the beam's location in the form of the pointing vector,
we use the major and minor axes and orientation of the elliptical contour at a given power level to
describe the beam's shape {1139-1403}. The conventional power level is Pmax 12, or about 3 dB down.
The angle subtended by the ellipse's longest diameter — its major axis — is taken as the beam's major
width (that is, full width at half maximum power); that subtended by its shortest diameter, the beam's
minor width. The ellipse orientation gives the roll angle, but we must choose an origin for the orientation
angle. Construct three great circles as in Figure 4: A, along the azimuth reference; B, connecting boresight
and the pointing vector; and C, along the beam's major width. The roll angle is defined as the sum of the
angle between A and B and that between B and C. It happens that the roll angle so defined is merely the
orientation of the major width relative to the azimuth reference when viewed in the stereographic
projection, which preserves angles between great circles. Moreover, because the great circles along the
beam's major and minor widths intersect orthogonally on the hemisphere, their stereographic projections
do also. These facts motivate the program's use of stereographic coordinates for fitting an ellipse to the
level contour and determining its major and minor axes and orientation. However, the roll angle and beam
widths thereby obtained are approximate for two reasons. First, for beams off boresight, the great circles
along the major and minor widths project as circles, whereas the major and minor axes of the projected
ellipse are straight line segments. Second, the local scale in the projection increases away from boresight,
artificially enlarging the portion of the beam farthest from boresight.12 The error may become significant
for beams far from boresight. A more sophisticated method of determining the beam widths is suggested
near the end of the program code.

12 C. S. West

Figure 4 — Beam width ellipse and roll angle. The great circles A, B, and C are described in the text, and the angles between
them, indicated with thick arcs, are added to obtain the roll angle. The left projection is orthographic; the right, stereographies
The spherical coordinates of the pointing vector are 0 = 40° and y = 20°, the beam's major and minor widths are 16° and 8°, and
the roll angle is 90°. t'

6.4. Directivity, Power Ratios, and Average Sidelobe Level

The next measures obtained all depend on integrals of the power pattern over solid angle regions
{1405-1527}. The integrals are calculated from the discrete samples of the pattern using the midpoint
approximation, as detailed in the code. The solid angle regions of interest are visible space (the half-space
z > 0); the main beam, as described by the main beam region, above; and the sidelobes, defined as all
regions of visible space not in the main beam. The program determines the total powers radiated into
these regions; call them II,, for visible space, 1^ for the main beam, and IIS for the side lobes. We have

n =n„+EL (34)

The directivity is the ratio of maximum to average power densities, assuming no back radiation into z < 0:

P
D

n/4TT
(35)

The program also calculates the power ratios n,n /Uv, nm /ris, and IIv/ns, which generally decrease as
the beam degrades. Finally, the average sidelobe level relative to the beam peak is

n.
avg Q. P s max

(36)

where Q. is the solid angle occupied by the sidelobes.

An Introduction to ARRSTATS]]_

6.5. Powers and Distances of Largest and Nearest Sidelobes

The last analysis identifies the sidelobe with the largest power density and the sidelobe closest to
the main beam, and for each it reports the power density and angular distance from the main beam
{1529-1677}. The power levels and locations of the sidelobes are obtained by fitting to elliptic
paraboloids (Eq. (29)), and the power levels are reported relative to the beam peak Pmax.

7. MULTIPLE REALIZATIONS AND PARAMETER VALUES

The analyses described above apply to the radiation pattern corresponding to a single set of array
parameters and one realization of any random variables. ARRSTATS contains two outer loops with which it
analyzes multiple radiation patterns; one is a loop over realizations of random variables, and the other
loops over a user-selected independent variable. The loop over realizations {190-218, 521-523, 1679-
1819, 1905} is motivated by the following: When simulating random errors, one is usually interested not
in the performance obtained by one realization of the errors but rather in the performance statistics for an
ensemble of statistically identical arrays. To that end, ARRSTATS can generate an arbitrary, user-specified
number of realizations for which it will accumulate performance statistics. The program outputs the mean
and standard deviation of each performance measure. The second loop {175-188, 326-336, 2578-2579},
over an independent variable, allows the user to examine the variation of performance measures as the
variable changes. Possible independent variables include but are not limited to the operating and reference
frequencies, steering angles, error parameters, quantization intervals, and even parameters of the array
geometry. ARRSTATS produces a graph showing each measure as a function of the independent variable,
as discussed below.

8. PROGRAM OUTPUT

ARRSTATS outputs its results in three ways: textual output of running statistics, a plot of the
radiation pattern for the last realization in an ensemble, and a summary plot of the performance measures
as functions of the independent variable. The textual output is a table like that in Fig. 5 printed to the
MATLAB command window {1864-1903}. The values in the table are the means and standard deviations
of the performance measures for all members of the statistical ensemble that have been realized thus far.
The table may be interpreted according to the descriptions in Section 6, keeping in mind the following.

Means and [std devs] for 16 of 16 realizations
beam direction : (29.954, 60.007) deg, std dev 0.038 deg
pointing error : 0.0528 [0.0279] deg
peak power dens: -0.426 [0.034] dB
beam depth : -24.66 [1.49] dB re peak
beam width : (2.095 [0.005], 1.813 [0.004]) deg
beam roll : 59.56 [0.65] deg
directivity : 38.894 [0.034] dB
power ratio m/v: -1.360 [0.030] dB
power ratio m/s: 4.347 [0.113] dB
power ratio v/s: 5.707 [0.083] dB
avg sidelobe : -41.61 [0.11] dB re peak
nrst sidelobe : -13.16 [0.69] dB re peak, 3.00 [0.01] deg off beam
Igst sidelobe : -12.30 [0.58] dB re peak, 3.11 [0.09] deg off beam

Figure 5 Textual output of running statistics. The parameters of this example are in the code listing; for the values above, the
standard deviation of the subarray time error is 10 ps (stdTimeMPS = 10).

14 C. S. West

The coordinates specifying the beam direction are the spherical coordinates (0 and y/) of the average
pointing vector {1821-1862}. The standard deviation of the beam direction is an estimate of the rms
angular deviation of the ensemble of pointing vectors from their mean {1821-1862}. Both the beam
direction coordinates and roll angle include compensation for the azimuth offset azmthOf f st. The peak
power density is relative to perfectly constructive interference, and the beam depth, average sidelobe
level, and levels of the nearest and largest sidelobes are relative to the peak power density (suggested by
the use of "dB re peak" in the table).

To aid in visualizing an array's performance, ARRSTATS can graphically present the radiation
pattern and several of the performance measures as in Fig. 6 {220-324, 2138-2574}. A significant

Figure 6 — Lambert projection of the radiation pattern with a spherical coordinate grid superimposed. Boresight is at the center,
and the steering vector is (0 = 30°, y = 60°). The white dot denotes the beam peak; *, the largest sidelobe; and +, the nearest
sidelobe. The legend gives the power in dB relative to perfectly constructive interference. The pattern is one realization of the
case stdTimeMPS = 10 for the parameters given in the code listing.

An Introduction to ARRSTA TS 15

plotting option is the choice of projection from among those described in Section 2. Briefly, the Lambert
projection preserves the relative areas of regions (for example, the size of the main beam relative to the
hemisphere or to prominent sidelobes), the stereographic projection preserves local shape (and the
orthogonality of the major and minor beam width cuts), and the orthographic projection gives a picture of
the hemisphere. The pattern may be plotted linearly or logarithmically in power, and the logarithmic
depth may be specified. The user may also specify the color map and shading method to use. The
performance measures that can be graphically indicated on the radiation pattern include the pointing
vector, the axes of the uncertainty ellipse of the pointing vector, the actual and fitted beam width contours,
the main beam region, the locations of the nearest and largest sidelobes, and other measures of less
frequent interest. If multiple realizations are generated, the radiation pattern will be plotted only for the
last realization as a representative of the ensemble.

If the outer loop over an independent variable is used, the summary figure plots the performance
measures as functions of the independent variable, as in Fig. 7 {220-324, 1907-2136}. The figure groups
fifteen measures (all except the beam direction) into eight subplots and utilizes distinct colors or line
styles and both left and right axes for the ordinates. The title of each subplot gives the names of the
measures; where multiple colors or linestyles appear, each measure name is followed by a color or style
code in parenthesis, and where left and right axes are used, an axis code ("L" or "R") also appears. If
more than one realization was generated for each value of the independent variable, error bars extend one
standard deviation above and one standard deviation below each point.

9. SUMMARY

We have introduced a computer program for assessing the effects of errors in rectangular-grid
planar array antennas. The most general array comprises phase-steered elements grouped into time-
steered subapertures and subarrays; this includes strictly phase-steered arrays and time-steered arrays as
particular cases. The time and phase delays may be quantized, and random errors may be assigned to the
times, phases, and amplitudes. From simulated radiation patterns, the program obtains performance
measures over statistical ensembles and as functions of a user-specified independent variable, producing
textual and graphical output.

16 C. S. West

pointing error peak power dens (- L), directivity (— R)

hpbw major (- L) & minor (— R)

beam depth
"

-20

-21

«T -22 V
CL

£ -23 ■

ID
5. -24 ■

-25 .

-26 .
1 . J

10

sidelobe power: Igst (- L), nrst (— L), avg (: R)
-38 3.35

3.3
-39

3.25

-40

-41

3.2

f 3.15

3.1

-42
3.05

3

-43 2.95

beam roll

5 10 15 20

power m/v (- L), m/s (— R), v/s (: R)

5 10 15 20

sidelobe distance: Igst (-), nrst (—)

■--*-■*--!--*• -J i i "'~
20

StdTimeMPS

Figure 7 — Summary plots. This example shows the degradation of performance as the standard deviation of the subarray time
error (stdTimeMPS, in picoseconds) increases. The parameters of the run may be found in the code listing.

Appendix A

LIST OF VARIABLES

This list of significant variables mentioned in this report gives their symbol in this report, coded
name, and description. It does not include all program variables. Ellipses (...) stand for prefixes, and
asterisks (*) indicate that the variable holds the specified quantity temporarily.

Text Code

x,y,z

t,*!,C dirCosX, ...Y, ...Z

Sx'Sy sx, sy

e ...Polar

¥ ...Azmth

a ..Az

e ...El

r

dx,dy dx, dy

Lx,Ly numLX, numLY

Mx,My numMX, nuraMY

Nx,Ny numNX, numNY

ix, iy lx,ly

mx,my mx, my

"x>"y nx, ny

diamond

azmthOffst

/o fRef

/ fOpr

k0

k

co0

CO

ffR stdAmplL

ff< stdAmplM

°P stdAmplN

R

r

Description

coordinates in real space

direction cosines

steering vector direction cosines

spherical polar coordinate

spherical azimuth coordinate

traditional azimuth coordinate

traditional elevation coordinate

radial coordinate of projection

element spacings

numbers of subapertures
numbers of subarrays per subaperture

numbers of elements per subarray

subaperture labels

subarray labels

element labels

indicates diamond element pattern

antenna rotation angle about boresight

reference frequency

operating frequency

reference wave number

operating wave number

reference angular frequency

operating angular frequency

standard deviation of subaperture amplitude error

standard deviation of subarray amplitude error

standard deviation of element amplitude error

random subaperture amplitude error

random subarray amplitude error

17

18 C. S. West

Text Code Description

p
ä excMagldl

a excMag

ST qntTimeL

St qntTimeM

S(p qntPhseN

A?;, AT;

A/x,A/y

A^x, A<py

T
»x"y

TimeL*

»x»y
TimeM*

9ns, PhseN*

T
J>x»y

>'x"y

TimeL

TimeM

V»x»y
PhseN

0T stdTimeL

°i stdTimeM

% stdPhseN

JT ofsTimeL

T

7
V
ö
o excPhsIdl

o excPhsErr

o excPhs

g g

ßx^ßy tx, ty

P»Py P*,py

7 errPoint

P max gSqrMax

avg powerSideAvgDB

nv powerVisb

nm powerMain

ns powerSide

D directivityDB

random element amplitude error

error-free (ideal) excitation magnitude

erroneous (actual) excitation magnitude

subaperture time quantization interval

subarray time quantization interval

element phase quantization interval

subaperture time steps

subarray time steps

element phase steps

error-free subaperture time delays

error-free subarray time delays

error-free element phase delays

quantized subaperture time delays

quantized subarray time delays

quantized element phase delays

standard deviation of subaperture time error

standard deviation of subarray time error

standard deviation of element phase error

deterministic subaperture time error

random subaperture time error

random subarray time error

random element phase error

error-free excitation phase

quantized excitation phase

excitation phase error

erroneous (actual) excitation phase

field pattern

number of points in Fourier transform

pointing vector direction cosines

pointing error

maximum power density

average relative sidelobe level (powerSideAvgDB = 10 log10 iavg)

power radiated into visible space

power radiated into the main beam

power radiated into the side lobes

directivity (directivityDB = 10 log,0 D)

Appendix B

PROGRAM LISTING

1 V. Calculate performance parameters of an array with excitation errors

2 V,
3 V. The excitation time and phase convention is exp (-i (omega t + phi));
4 V. positive {negative) phases phi correspond to a leading (lagging)
5 V. excitation. Distances are stored in meters; times, nanoseconds;
6 * frequencies, gigahertz. Angles (both geometric and phase) are always
7 V. specified in radians. Generally, the coordinate x increases with the
8 '4 column index; y, with the row index.
9 %

10 '* Parameters that may be changed by the user are marked "INPUT" in
11 * comments. Frequently-used inputs appear near the top of the program,
12 V, but some inputs are defined elsewhere, particularly in the plotting

13 V. section.
14
15 V, Suggestions for improvements are provided at the end of the program.

16 'A
17 V. This program is coded for Matlab version 5.3 (Release 11), although
18 % most of the code will run under version 4.2.

19 *
20 % Written by Stan West, 1998, 1999
21 ¥. U.S. Government work not subject to copyright
22
23 'A Declare physical and conversion constants

24 V.
25 c - 0.299792458; V. speed of light in m/ns
26 rpd - pi / 180; t radians per degree
27 twopi - 2 * pi;
28
29 ?. Set operating frequency relative to reference frequency

30
31 'A At the reference frequency, or fOpr - fRef, the time and phase delays
32 'A will properly steer the antenna in the absence of error and
33 'A quantization.
34
35 fRef - 3.0; % INPUT reference frequency in GHz
36 fOpr - fRef + 1 * 0.5 / 2; I INPUT operating frequency in GHz
37 *A center frequency + {-1 ... 1} * bandwidth / 2
38
39 'A Describe array geometry and error statistics
40
41 A Elements lie on a regular planar grid and are grouped heirarchically.
4 2 V. The array is subdivided into numLX subapertures in the x dimension and
43 'A numLY subapertures in the y dimension. Each subaperture is
44 % time-steered and has associated with it a user-set deterministic
45 V. absolute time error, a random absolute time error, and a random
46 V. relative amplitude error. The random errors are normally-distributed
47 % with zero mean and user-set standard deviation. Each subaperture
48 * contains numMX by numMY subarrays, each of which, like the
49 * subapertures, is time-steered and has a random absolute time error and
50 V. a random relative amplitude error. Finally, each subarray contains
51 'A numNX by numNY elements, each of which is phase-steered and has a
52 V. random absolute phase error and a random relative amplitude error.
53 *A All elements are spaced by dx in x and dy in y, even across subarrays
54 "A and subapertures.
55
56 '!. Set parameters of subapertures
57
58 numLX = 1; <■ INPUT number of subapertures in x
59 numLY = 1; ". and y dimensions
60 qntTimeL = 0; V. INPUT quantization interval in ns; 0 for no quantization
61 ofsTimeL = zeros (numLY, numLX); "A INPUT deterministic absolute time error in each subaperture in ns
62 stdTimeL - 0.000; V. INPUT standard deviation of absolute time error in each subaperture in ns
63 stdAmplL - 0.0; A INPUT standard deviation of relative amplitude error

64
65 '.". Set parameters of subarrays
66
67 numMX = 8; " INPUT number of subarrays in x
68 numMY - 8; '■■ and y dimensions per subaperture
69 qntTimeM - 0; V. INPUT quantization interval in ns; 0 for no quantization
70 stdTimeM = 0.00; V, INPUT standard deviation of absolute time error in each subarray in ns
71 stdAmplM - 0.0; 'A INPUT standard deviation of relative amplitude error

72
73 'A Set parameters of elements
74
75 dx - 1.6 * 0.0254; 'i INPUT element spacing in x

19

20 C. S. West

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

dy - 1.6 * 0.0254;
numNX - 8;
numHY ■= 8;
qntPhseN = 0 * rpd;
stdPhseN - 0 * rpd;
stdAmplN - 0.0;

". Set other parameters

0 * rpd;
diamond = 0;
azmthoffst =

and y dimensions in meters
INPUT number of elements in x
and y dimensions per subarray

INPUT quantization interval in radians; 0 for no quantization
INPUT standard deviation of absolute phase error in each element in radians
INPUT standard deviation of relative amplitude error

INPUT 0: full array; 1: eliminate excitations on even diagonals
INPUT angle of the positive x axis of the array above the azimuth reference

V. Alternatively, select an array

switch 0 V. INPUT case number for arrays below or 0 to use values above

case 1
'-!. Insert frequency, array, and error parameters here

case 2
end

V. Specify steering angle
■I.
■J, Two coordinate systems, described below, are available for specifying
V, the steering angle: traditional azimuth/elevation coordinates and
'4 spherical coordinates. Azimuth/elevation coordinates are converted to
V. spherical coordinates for internal program use, and output is given in

1 spherical coordinates.

* In the diagrams below, the antenna lies in the x'-y' plane with
'.'. boresight along the positive z' axis. The antenna's z axis coincides
',', with z', and its x axis is at an angle azmthoffst above the x' axis,
% which is the azimuth reference.

The equations relating the the Cartesian coordinates x', y", and z
a unit vector, the spherical coordinates Polar and Azmth, and the
traditional coordinates Az and El are

x' *= sin Polar cos Azmth = -cos El sin Az
y* - sin Polar sin Azmth - sin El
z* - cos Polar - cos El cos Az

of

cos Polar «
tan Azmth -

cos El cos Az = z'
-tan El / sin Az - y' /

-tan Az = tan Polar cos Azmth =
sin El - sin Polar sin Azmth =

?. Since (x*
% cosines.
4
switch 2
case 1

y', z*) is a

main
beam

¥. pro}. in
'I xz plane

- /
■_/

/

unit vector, its components are direction

Use azimuth/elevation
coordinates. Given the
projection of the steering vector
onto the x'-z' plane, the azimuth
is the angle between it and the
z' axis, while the elevation is
the angle between it and the
steering vector. In the diagram,
both angles are positive.

Az

steerAz » 30 * rpd;
steerEl - 30 * rpd;
steerPolar - acos (cos (steerEl) '
steerAzmth - atan2 (tan (steerEl),

V, INPUT azimuth angle
V. INPUT elevation angle
cos (steerAz));
-sin (steerAz));

proj. in
xy plane I

_~ I
\ I

main /\ !
beam —/_ \l

I I —o
I I /

Polar \ \/
\/
/

The

\ Azmth
\
I

steerPolar
SteerAzmth 60

rpd;
rpd;

Use spherical coordinates
polar angle is the angle
between the z' axis and the
steering vector. The azimuth
angle is the angle between the
x* axis and the projection of
the steering vector onto the
x'-y' plane. In the diagram,
both angles are positive.

INPUT polar angle
INPUT azimuth angle

otherwise
error ('Invalid switch parameter.*);

end
steerAzmth - steerAzmth - azmthoffst; V. now relative to antenna's x axis

An Introduction to ARRSTATS
21

168
169
no
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

7. Set transform size

•1 (See comments elsewhere related to the discrete Fourier transform.)

tx - 2-9;
ty » 2-9;

INPUT number of transform points in x

and y

Declare independent variable and its values

The main loop iterates over values of the independent variable named
below The independent variable may be any parameter, including, for
example, those describing geometry, frequency, error, quantization,
and steering angle. It may also be an otherwise unknown variable that

. is transformed to a known program parameter by custom code m the main
, loop. To effectively disable the loop, set a dummy variable to a

, scalar value.

V. INPUT name of independent variable
V. INPUT vector of values it will assume
$ make it a column vector

IndVarName - 'stdTimeMPS';
indVar - 0 : 2 : 20;
indVar - indVar (:);
indVarLen - length (indVar);

■I Initialize statistics variables

* If the excitations are random, one is often interested in the mean and
V. standard deviation of the performance measures. For each value of the
■i independent variable, the program will generate numRlz realizations of
* the random excitations and accumulate the statistics of the

'I performance measures.

numRlz ■= 16;
numAcc
pxS
pyS
pzS
errPointS
* errPointUncS
beamPowerDBS
beamDepthDBS
hpbwMjrS
hpbwMnrS
rolls
directivityDBS
powerMainVisbDBS
powerMainSideDBS
powerVisbSideDBS
powerSideAvgDBS
slNrstDistS
slNrstPowrDBS
slLgstDistS
slLgstPowrDBS

nan *
nan *
nan *
nan *
nan *
- nan

' nan *
' nan *
> nan *
■ nan *
> nan *
■ nan *
■ nan *
° nan *
■ nan *
■ nan *
» nan *
■ nan *
■ nan *
■ nan *

ones
ones
ones
ones
ones

(indVarLen, 1);
(indVarLen, 2);
(indVarLen, 2);
(indVarLen, 2);
(indVarLen, 2)

INPUT number of realizations to generate
, number of realizations accumulated

les iiaavaiucii, '■it
ones (indVarLen, 2) ; '4 see later calculation of pointing error

ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,
ones (indVarLen,

» Initialize graphics

cmap - jet;
invertBkgd - 0;

sumBW - 0;
figPat - 1;
figSum - 2;
cbarVert - 0;

INPUT color map
INPUT 0: figure background is lowest value of the colormap;

^. « highest
INPUT 0: summary plot in color; 1: in black and white
INPUT figure number for power pattern

and summary
, INPUT 0 for horizontal bar below pattern, 1 for vertical to right

'* Set window positions
t.
cbarSize - 0.15;
marginWid - 8;
marginHgt - 44;
screenSize - get
screenWid
screenHgt

* colorbar size relative to pattern
V. width margin in pixels
V. height margin in pixels
(0, 'screenSize');

screenSize (3);
screenSize (4); o^ictimy v. ■ t

figPatWid - 0.45 * (screenSize (3) - 4 marginWid);
figSumWid - screenSize (3)
if cbarVert

figPatHgt - figPatWid;
figPatWid - figPatWid

else
figPatHgt - figPatWid

end
figure (figPat);
figPat - gcf;
set (figPat,

'posi tion',

4 * marginWid - figPatWid;

cbarSize);

width of pattern figure
width of summary figure

height of pattern figure

cbarSize)

create and position pattern figure
update in case figPat couldn't be created

(marginWid
screenHgt-marginHgt-figPatHgt
figPatWid
figPatHgt), ...

'paperUnits', 'inches')
if cbarVert

set (figPat, ...
•PaperOrientation', 'landscape', ...
•PaperPosition', (0.5 0.5 10 7.51);

else
set (figPat, ...

22 C. S. West

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

■l. take background from high...

?. or low end of colormap

tf set pattern colors
'■I, override default background of whitebg

•PaperOrientation', 'portrait*, —
•PaperPosition', [0.5 0.5 7.5 10]);

end
elf;
figure (figSum); '•'■ create and position summary figure
figSum = gef; '•'■ update in case figSum couldn't be created
set (figSum, ...

•position', [screenwid-marginwid-figSumWid ...
marginHgt
figSumWid
screenHgt-2*marginHgt]);

orient tall;
clf;

V. Set pattern figure colors

if invertBkgd
bkgd = cmap (size (cmap, 1), :);

else
bkgd - cmap (1, :) ;

end
whitebg (figPat, bkgd);
set (figPat, 'color', bkgd);
V.
■* Set summary figure colors and linestyles
4
whitebg (figSum, 'w'); * set summary colors
set (figSum, 'color', 'w'),- » override default background of whitebg
if sumBW

discrim = 'lineStyle';
discrimValue - ('-'; •--•; •:'); * line styles
discrimName - discrimValue; ?. names for legends will be same as style codes
set (figSum, ... !. black color forces cycling through line styles

'DefaultAxesLineStyleOrder*, discrimValue,
■DefaultAxesColorOrder", (0 0 0]);

else
discrim = 'colors-
set (figSum, ...

■defaultAxesColorOrder', 'default',
•defaultAxesLineStyleOrder', 'default');

discrimValue - get (figSum, 'defaultAxesColorOrder')
colorOrderHSV « rgb2hsv (discrimValue);
discrimValue » num2cell (discrimValue, 2);
colorNames - 1'RYGCBMKW]•;
discrimName * colorNames (1 + ...
mod (round (6 * colorOrderHSV (:, 1)), 6));

unsat - find (colorOrderHSV (:, 2) <- 0.25);
if -isempty (unsat)
discrimName (unsat) - colorNames (7 + ...

(colorOrderHSV (unsat, 3) > 0.5));
end
discrimName - cellstr (discrimName);
clear colorOrderHSV colorNames unsat;

end

V. Set miscellaneous common properties

set ((figPat figSum], ...
'invertHardCopy', 'off, ...
'defaultTextFontSize', 8, ...
'defaultAxesFontSize', 8, —
•toolbar', 'none');

drawnow;
clear marginWid marginHgt screenSize screenWid screenHgt;
clear figPatWid figSumWid figPatHgt bkgd;

'!. Loop over independent variable

for indx = 1 : indVarLen

V. Set value of independent variable

eval ({indVarName ' = indVar (indx);']);

V. reset (if previously b&w, for
% example)

!?. put colors in array of RGB coordinates
V. equivalent HSV coordinates
V. put each row in a cell
V. first six by hue, then black & white
V. convert H to an integer 0..5
$ then index into colorNames
$ unsaturated (gray) colors

* threshold V to 0 (K) or 1 (W)
* then index into colorNames

% put each letter in a cell

set variable to value

■:■. Code may be inserted below to transform the independent variable to
V. known program variables.
stdTimeM - stdTimeMPS * le-3;

V. Define labels for substructures

V. Here we construct row and column vectors (corresponding to x and y,
.. respectively) that tell to which subaperture, subarray, or element a
•;. given position corresponds. The sample vectors are for numLX =
V. numLV = 2, numMX = numHY = 3, and numNX = numNY = 2.

numLMX = numLX * numMX;
numLMY = numLY * numMY;
numLMNX - numLMX * numNX;
numLMNY - numLMY * numNY;
nx = 0 : numLMNX - 1;
ny - (0 : numLMNY - 1)•;
lux = floor (nx / numNX) ;

'.'. total number of subarrays

'-.'. total number of elements

V. e.g., (0 1 2 3 4 5 6 7 8 9 10 11]
■i (0 1 2 3 4 5 6 7 8 9 10 11] •

[001122334455]

An Introduction to ARRSTATS 23

VI [0 011223344 5 51
numNX)) ; V. [0 000001111 1 1)
numNY)) ; V. [0 000001111 1 1]

numMX * Ix / c;
numMY * ly / c;
TimeLX + TimeLY * ones (1, numLMNX);

'■k quantize?
TimeL) * qntTimeL V. yes

352 my - floor (ny / numNY);
353 lx - floor (nx / (numMX
354 ly - floor (ny / (numMY
355
356 1. Calculate ideal (error-free] excitation magnitudes
357
358 excMagldl - ones (numLMNY, numLMNX); V. uniform weighting
359 if diamond '•'• zero every other element
360 excMagldl - excMagldl ...
361 .* rem (ones (numLMNY, 1) * nx + ny * ones (1, numLMNX), 2);

362 end
363 excMagldl - excMagldl / sum (excMagldl (:) .A2) .- 'i normalize to unit power

364
365 '.'. Calculate ideal (error-free) excitation phases

366 5.
367 V, The ideal excitation phases are those that produce perfectly
368 V. constructive interference in the direction of the steering vector at
369 V. the reference frequency. This implies a linear phase progression

370 *
371 V, excPhsIdl - -kO (dx sx nx + dy sy ny) + const.,

372 *
373 v. where kO (- 2 pi fRef) is the reference wave vector. Quantization
374 v. prevents the array from achieving this flat phase front for all
375 % steering angles. However, the beamformer simulated here mitigates
376 * effects due to subaperture quantization by adjusting the subarray
377 ii delays, which is effective if the subarrays are quantized at a finer
378 V. interval than the subapertures. Likewise, it compensates for
379 V. subarray quantization with the element phasers.

380 V.
381 V, We choose the constant in the phase progression to be zero, which
382 V. means that the lowest and leftmost components (those for which lx,
383 V. ly, mx, my, nx, or ny is zero) are never delayed, while the highest
384 V. and rightmost components have delays that depend strongly on the
385 V. steering vector.
386 ».
387 sx - sin (steerPolar) ♦ cos (steerAzmth),- ». direction cosines
388 sy - sin (steerPolar) * sin (steerAzmth); V. for steering
389 sz - cos (steerPolar); * used much later
390 TimeLX - -dx * sx * numNX
391 TimeLY - -dy * sy * numNY
392 TimeL - ones (numLMNY, 1)
393 if qntTimeL — 0
394 TimeL - round (TimeL / qntTimeL)
395 end;
396 TimeMX - -dx * sx * numNX * mx / c;
397 TimeMY - -dy * sy * numNY * my / c;
398 TimeM - ones (numLMNY, 1) * TimeMX + TimeMY * ones (1, numLMNX) - TimeL;
399 if qntTimeM — 0
400 TimeM - round (TimeM / qntTimeM) * qntTimeM;
401 end;
402 TimeNX - -dx * sx * nx / c;
403 TimeNY - -dy * sy * ny / c;
404 PhseN - twopi * fRef * ...
405 (ones (numLMNY, 1) * TimeNX + TimeNY * ones (1, numLMNX) - TimeL - TimeM) ;
406 if qntPhseN — 0
407 PhseN - round (PhseN / qntPhseN) * qntPhseN;
408 end;
409 excPhsIdl - twopi * fOpr * (TimeL 4 TimeM) + PhseN;
410 clear TimeLX TimeLY TimeL TimeMX TimeMY TimeM TimeNX TimeNY TimeN PhseN;

411
412 * Prepare transform mapping
413 V.
414 't The far-field array factor is the Fourier transform of the complex
415 % excitations. Considering the x dimension only (the operation in the
416 4 y dimension is analogous), the discrete Fourier transform (DFT) used
417 4 later calculates the far-field array factor at the direction cosine

418 V. ex as
419 *
420 v. tx-1
421 V, g (ex) • sum exp (-i k ex dx q) e ,
4 22 V. q-0 q
423
424 V. where the etq) are the complex excitations (zero-padded if tx
425 V, exceeds the array size), k (- 2 pi / lambda) is the operating wave
426 V. vector, and lambda (- c / fOpr) is the operating wavelength. The
427 V. argument of the exponential in the transform may be written -i 2 pi
428 ■!■ (ex / lambda) * (dx q), where ex / lambda is the spatial frequency
429 V. and dx q is the spatial coordinate. The direction cosines for which
4 30 V. g is calculated in the DFT are

431
432 '!■ lambda p
433 ';. ex , p - 0, 1, tx-i
4 34 v. p dx tx
4 35
436 V. so that the argument of the exponential is -i 2 pi p q / tx. We

4 37 V. have
4 38
439 V. g (ex) - g (ex) for any integer p.
440 v. p+tx p
4 41 v.
442 V. Given g (cx[pl), the array factor may be obtained at any angle using

443

24 C. S. West

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
4 62
4 63
464
465
466
4 67
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
4 95
496
4 97
4 98
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

tx-1 / p dx ex
g (ex) = sum SI — -

p=0 \ tx lambda

where the geometric progression

tx I g (ex)
/ P

■:, l tx-1
V. S (x, tx) - — sum exp (i 2 pi q x)
■1. tx q-0

V. 1 exp (i 2 pi x tx) - 1

V. tx exp (i 2 pi x) - 1

V. is an interpolating function, but this formula is not used below.
V. Incidentally, note that

V. 1 I sin (tx pi x) |
IS (x, tx) | I I ,

V. tx I sin (pi x) I

V. an expression that often appears in array theory.

% After the DFT is calculated, the program maps the results into the
% region of cx-cy space where the direction cosines have magnitude 1
<t or less, tiling as necessary to fill the region. The portion of
If, that region for which cx*2 + cy"2 <- 1 corresponds to visible real
% space (radiating waves). Later processing requires a border of at
1, least one element outside the visible region. This section prepares
V. the mapping.

txLim - tx * dx * fOpr / c;
tyLim - ty * dy * fOpr / c;
txIndxLimMin - -floor (txLim) - 1;
tylndxLimMin = -floor (tyLim) - 1;
txIndxLimMax - floor (txLim + 0.5) + 1;
tylndxLimMax - floor (tyLim + 0.5) + 1;

values of p (not necessarily
integer) for which ex and cy are 1

largest integers p for which
ex, cy > -1

smallest integers p for which ex,
cy > (1 + half element spacing)

number of angle samples in x
and y

row vector of indices
column vector
corresponding direction cosines

ex and cy
shifted direction cosines for use
with flat shading

zero-based indices into columns
(x) and rows (y) of DFT results

Extra half element spacing is needed only for surface plots with
'i flat shading; see graphics code below

ax - txIndxLimMax - txIndxLimMin + 1; 'A
ay " tylndxLimMax - tylndxLimMin + 1; '<£
txlndx - txIndxLimMin : txIndxLimMax ; *
tylndx ■= (tylndxLimMin : tylndxLimMax)'; 'I
dirCosX - txlndx / txLim; V.
dirCosY = tylndx / tyLim; V.
dirCosShiftX - (txlndx - 0.5) / txLim; 4
dirCosShiftY - (tylndx - 0.5) / tyLim; ?,
txlndx - txlndx - tx * floor (txlndx / tx); %
tylndx - tylndx - ty * floor (tylndx / ty); *

* The above lines accomplish the tiling function by folding the
¥. indices into the interval [0, tx - 1]

tlndx =■ tylndx * ones (1, ax) ... V, indices to elements (one-based,
+ ones (ay, 1) * txlndx * ty + 1; » column-ordered)

clear txIndxLimMin tylndxLimMin txIndxLimMax tylndxLimMax txlndx tylndx;

V. Prepare far-field angle mapping

V. Physically, the array factor is a function of position on a
V. hemisphere. The direction cosines used in the Fourier transform are
V. the x and y coordinates of points on the unit hemisphere. Below we
V. determine the region of the transform results that corresponds to
V, visible space, namely cx"2 + cyA2 <- 1, and calculate the z
V, coordinates of points in visible space according to

cz - (1
2 2 1/2

cx-cy) , Re cz >= 0.

¥. For points outside visible space, cz is set to zero.
?.
dirCosXMtx - ones (ay, 1) * dirCosX;
dirCosYMtx = dirCosY * ones (1, ax);
radSqr = dirCosXMtx."2 + dirCosYMtx.A2;
visBool = logical (radSqr < 1);
dirCosZMtx = zeros (ay, ax);
dirCosZMtx (visBool) = sqrt (1 - radSqr
clear radSqr;

[visBool));

'■!. now a matrix

■h squared radius
V. 1 in visible space, 0 elsewhere
V. 0 outside visible space
'.', positive in visible space

". Loop over realizations

for rlzNura = 1 : numRlz

V. Calculate excitation magnitudes with error

excMagErr = 1 + stdAmplN * randn (numLMNY, numLMNX);
err = 1 + stdAmplM * randn (numLMY , numLMX);
excMagErr = excMagErr . * err (my + 1, mx + 1);
err = 1 + stdAmplL * randn (numLY , numLX);
excMagErr = excMagErr .* err (ly +1, lx + 1);
excMag *= excMagErr .* excMagldl;
clear err excMagErr;

V. Calculate excitation phases with error

". element-level error
:,'. temporary matrix
'I. subarray-level error
i1. temporary
I subaperture-level error
'1. actual (with error) magnitude

An Introduction to ARRSTATS ^L

536 s.
537 excPhsErr - stdPhseN * randn (numLMNY, numLMNX); V. element-level error
538 err - stdTimeM * randn (numLMY , numLMX) ... '.'. temporary matrix
539 * twopi ' fOpr; * (equivalent phase)
540 excPhsErr - excPhsErr * err (my t 1, mx + 1); V. subarray-level error
541 err ■ (ofsTimeL t stdTimeL ' randn (numLY, numLX)) * twopi * fOpr;
542 excPhsErr - excPhsErr + err (ly »1, lx * 1); ■.'. subaperture-level error
54 3 excPhs- - excPhsErr ♦ excPhsIdl; '■'. actual (with error) phases

544 clear err excPhsErr;

545
54 6 v. Assemble complex excitations

547
548 exc - excMag .* exp (-i ' excPhs);
54 9 V. clear excMag excPhs;

550
551 v. Calculate the field pattern (array factor)

552
553 i Here the DFT is calculated and the result rearranged into the
554 v. desired region of direction cosine space. The element factor is
555 v. unity. Mutual coupling is ignored.

556
557 g - fft2 (exc, ty, tx); V. first element is zero frequency
558 g - g (tlndx); ?• rearrange
559 gSqr - real (conj (g) .* g); V, squared magnitude
560 gMag - sqrt (gSqr); * magnitude

561 clear g;
562
563 * Determine actual beam direction by fitting the transform

564 * . .
565 v. This first of two methods for calculating the beam pointing vector
566 1. uses the information in the Fourier transform of the excitations.
567 v, First we locate the element of g with the largest value. (If the
568 V. maximum value of elements is obtained by more than one element,
569 v. this code will use the one with the smallest column index and the
570 V. smallest row index within that column. Later processing will
571 i determine whether the multiple maxima are all within the main
572 » beam.) To estimate the location of the maximum of the underlying
573 'i continuous function, that element and its eight neighbors are
574 v, fitted to the elliptic paraboloid II]

575 V.
576 v. 1 2 12
577 v, - V x +Wxy + -Vy + X x + Y y + Z - Ig (x, y) I
578 ?. 2 2
579
580 V. (in the direction cosine coordinate system) in a least-squares
581 'i sense. We employ the technique of OR decomposition to find the
582 V. least-squares solution. Define the solution vector

583 ?.
584 v. T
585 v. a - [0 H V X Y Z]

586 ?.
587 ?, of length M - 6, the Ordinate (column) vector b with elements

588 V.
589 1. b - Ig (x , y)l
590 v. i i i
591 v. .
592 ■■!, of length N - 9 (number of fitted points), and the design matrix A
593 V, having rows
594
595 V. 12 12
596 '»', A -t-x xy -y x y 1],
597 V. i, : 2 i i i 2 i i i
598 *
599 v, where the (x(il, y[i]) are the coordinates of the points
600 S neighboring and including the maximum element. QR decomposition

601 V. of A factorizes it as
602
603 v, A - Q R ,
604
605 V. where 0 is unitary (Q' Q - eye) and R is upper triangular. (We
606 '.'. use Matlab's economy size decomposition, for which 0 is M-by-N and
607 V. R is N-by-N.) The least-squares solution of
608
609 A a - b
610
611 V. is given by
612
613 -i
614 V. a - R Q' b .
615 v. .
616 ■.'. The error in the solution depends on the degree to which the
617 '.. values of Igl depart from parabolic form, which is indicated by
618 ' the reduced chi-square
619
620 '.'. 2 12
621 ■!■ chi - — Chi ,
622 '.'. nu nu
623
624 V. where nu - N - M is the number of degrees of freedom and

625

26 C. S. West

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
64 9
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

chl - (A a - b) • (A a - b) .

The covariance matrix for the solution vector is normally given by
the matrix inverse of the curvature matrix

alpha = A' A ,

whose elements are the second partial derivatives of chi"2 with
respect to the elements of the solution vector (2]:

alpha
2 d a(m] d a[n]

To incorporate the degree of deviation from parabolic form, we
scale the covariance matrix by the reduced chi-square, as

2 -1
C - Chi (A' A)
poly nu

2 -1
chi <R' R) .

Vi This completes the least-squares procedure.
■I,

* Having obtained the coefficients of the best-fit polynomial, we
» locate its maximum. The coordinates (plx, ply) of the maximum

V. solve
*
?, / u w \ / plx \ /x\ /o\
v, I II 1 + 11 = 11;
s \ w v / \ ply / \ Y / \ o /

/ plx \ l / v -w \ / x \
I I - - I II I
\ ply / D\-W U/\Y/

is the discriminant of the polynomial (and the negative
determinant of the matrix). If the maximum so found lies outside
the interpolation region, the region is expanded by one sample in
each direction and the least-squares fit is repeated. This loop
continues until the interpolation region exceeds a certain size or
a satisfactory maximum is found. Assuming a maximum has been
found, the covariance matrix for plx and ply is calculated next.
We first form the derivative matrix or Jacobian

d (plx, ply)
j

p d (a)

/ d plx d plx d plx d plx d plx d plx \

|dU dw dV dX dY dZI

I d ply d ply d ply d ply d ply d ply I

\dU dw dV dX dY dZ/

The plx derivatives are

d plx V X - w Y
 ■ V

d Ü DA2

d plx W-2 Y+UVY-2WVY

d W T>-2

d plx W X - U Y
 _ H

d V D~2

d plx V

d X D

d plx W

d Y D

and the ply derivatives follow by exchanging U for V and X for Y
everywhere. The covariance matrix for plx and ply is simply

T
C - J C J .
P p poly P

An Introduction to ARRSTATS 27

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
7 62
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
7 90
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

If no satisfactory maximum was found by the above procedure, the
location of the maximum of Igl is used. A covariance matrix is
fabricated for which the area of the 2 sigma ellipse equals the
area of four grid squares to indicate the uncertainty in the
actual location of the maximum.

[1J D. H. von Seggern, _CRC Standard Curves and Surfaces_
Raton, FL: CRC, 1993.

Boca

|2) P. R. Bevington and D. K. Robinson, _Data Reduction and Error
Analysis for the Physical Sciences_, 2nd ed. New York, NY:
McGraw-Hill, 1992, pp. 121-125.

= max {gSqr . * visBool);
= max (gSqrMaxAct);

[gSqrMaxAct, gSqrMaxRow]
[gSqrMaxAct, gSqrMaxCol]
gSqrMaxRow = gSqrMaxRow (gSqrMaxCol);
intRad = 1;
plOK - 0;
while -plOK t intRad < 4

plNbrs - [-intRad : intRad];
plx - dirCosXMtx (gSqrMaxRow + plNbrs, gSqrMaxCol
ply - dirCosYMtx (gSqrMaxRow + plNbrs, gSqrMaxCol
plz - gMag (gSqrMaxRow + plNbrs, gSqrMaxCol
plx - plx (:);
ply - ply (:);
plz - plz (:);
pDesMtx - [plx.*plx/2 plx.*ply ply.*ply/2 ...

plx ply ones(size(plx))];
[Q, R] = qr (pDesMtx, 0);
pPoly - R \ (Q' * plz);
dof - length (plz) - length (pPoly);
chiSqr ■= plz - pDesMtx * pPoly;
chiSqr - chiSqr* * chiSqr;
pPolyVar - inv (R' * R) * chiSqr / dof;
pVec - -tpPoly(l) pPoly(2); pPoly(2) pPoly(3)] ...

\ (pPoly(4); pPoly(S)],-
plOK -...

(pvec (1) > dirCosX (gSqrMaxCol - intRad)) ...
& (pVec (1) < dirCosX (gSqrMaxCol + intRad)) ...
& (pVec (2) > dirCosY (gSqrMaxRow - intRad)) —
& (pVec (2) < dirCosY (gSqrMaxRow + intRad));

i£ -plOK
intRad - intRad + 1;

end
end
if plOK
plx - pVec (1) ;
ply - pVec (2);
pDet - pPoly (2)A2
plxDer

V. maximum values and their rows
V. overall maximum and column
V, corresponding row
V. interpolation radius

plNbrs);
plNbrs) ;
plNbrs);

% neighbors

% design matrix

* R; Q'
pPoly =

't, now pDesMtx - Q
V. solves pDesMtx '
'1. degrees of freedom in the fit
* deviations only
% now sum of squared deviations
I pDesMtx' * pDesMtx - R' * R
4 find critical point

* is interpolated point
I inside neighborhood?
4 (pathological cases can
?. place it outside)

% keep interpolated point

Q - eye
plz

% determinant pPoly (1) * pPoly (3);
l]*(pPoly([3 2])-*pPoly([4 5]))*pPoly(3)/pDet

2)).*pPoly([2 3 31).*pPoly([5 5 4]))/pDet
*pPoly|[4 5]))*pPoly(2)/pDet

1(1
11 1 -2]MpPoly<|2 1
(1 -l]«(pPoly([2 11)
pPoly(3)
-pPoly(2)
0] ' / pDet;

plyDer - ([1 -1]*(pPoly((2 3])
II 1 -2]*(pPoly([2 3
[1 -UMpPolyUl 2])
-pPoly(2)
pPoly(l)
0 1'/ pDet;

[plxDer; plyDer] * pPolyVar

'-.'. derivatives
'pPoly([5 4]))*pPoly(2)/pDet
2]).*pPoly((2 1 1]).*pPoly([4 4 5]))/pDet
*pPoly([5 4)))*pPoly(l)/pDet

[plxDer; plyDer]*; * covariance matrix
* interpolated point is outside
% use location of
% actual maximum
9. 2 sigma area » 4 grid squares

plVar
else

plx - dirCosXMtx (gSqrMaxRow, gSqrMaxCol);
ply - dirCosYMtx (gSqrMaxRow, gSqrMaxCol);
plVar - diag (1 ./ (pi * [txLim tyLim].A2));

end
clear intRad plOK plNbrs plz pDesMtx Q R pPoly;
clear dof chiSqr pPolyVar pVec pDet plxDer plyDer;

V. Determine actual beam direction by fitting the excitation phases

v. The second method for calculating the pointing vector uses the
'.'. excitation magnitudes and phases, not the transform. For brevity,
V, define

Delta (x, y) =kndxx+kmdyy+ theta ,

where the theta[m,n] are the excitation phases, and let e[m,n]
denote the excitation magnitudes, when we express the power
pattern as

Ig (x, y)I = sum sum sum sum e e
ml nl m2 n2 ml,nl m2,n2

* exp [i (Delta - Delta)]
ml,nl m2,n2

28 C. S. West

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

sum e
m,n m,n

2 sum sum' e e
ml,nl m2,n2 ml,nl m2,n2

* cos (Delta - Delta) ,
ml.nl m2,n2

where the primed sum is over distinct pairs (ml, nl) and <m2, n2),
we see that the maximum occurs where the cosine contributions are
largest. If the phase front is nearly flat, the arguments of the
cosines will be small for (x, y) near the direction of phase front
propagation. To fourth order in the arguments.

Ig (x, y)I (sum
m, n

2 sum sum
ml,nl m2,n2 ml,nl m2,n2

/ 1
| - - (Delta
\ 2 ml,nl

Delta)
m2,n2

1 « \
+ — (Delta - Delta) I .

24 ml,nl m2,n2 /

Keeping terms to only second order, we are motivated to find the x
and y (implicit in Deltalmn)) that minimize

*
V, 2 2

% chi = sum sum e e (Delta - Delta) ,
5 2 ml,nl m2,n2 ml,nl m2,n2 ml,nl m2,n2
V.
•t. where the subscript 2 denotes the second-order truncation. Taking
V. derivatives with respect to x and y and rearranging yields the

* normal equations

I I o \ / nl-n2 \
V. 11= sum sum eel I
■i \ 0 / ml,nl m2,n2 ml,nl m2,n2 \ ml-m2 /

1 / ^
* | [nl-n2 ml-m2J Pi + theta - theta I ,

.,. \ ml.nl m2,n2 /

'>'. where Pi - k (dx*x dy*y] '. Here the sums contain a total of
?, (numLMNXA2 numLMNY"2) terms, which may be of the order of one
?. million for a typical array. To reduce this number, we transform
* the least-squares problem to an equivalent but simpler problem.
% First, the above normal equations may be rewritten with the column
4 vector [nl-n2 ml-m2] • replaced by [nl ml]', which may be seen by
V. separating the column vector into two sums and exchanging (ml,nl)
?. with (m2,n2) in one of the sums. Second, the row vector may be
V. separated into two sums to obtain

/ 0 \
| I = (sum e
\ 0 / m,n r

/
> sum e I

n m, n m, n \

n \
I ([n mj Pi + theta)
/ mn

/ / n \ \
•i - | sum el II sum e ([n ml Pi + theta)
•i \ m, n mn \ m / / m, n mn mn

!,
V. Based on the second term, we define
4
•„i sum e ((n m] Pi + theta)
4 m, n mn mn

sum e
m.n mn

Finally, we may rewrite the normal equations as

/ 0 \ / n \
J 0 I = sum e I m I ((n m 1) Gamma + theta) ,
\ 0 / m, n m, n \ 1 / mn

where Gamma - [k*dx*x k'dy'y Delta]' and the third row follows
from the definition of Delta. These normal equations contain only
(numLMNX numLMNY) terms, nominally on the order of 1000. They
find the plane kndxx+kmdyy+ Delta that best fits
-thetafm.n] in a weighted least-squares sense. The solution is
found using OR decomposition of the design matrix, which has rows

(nil.

The error in the solution is determined not by the deviations of
the -thetalmn] from the best-fit plane nor by the deviations
Delta[ml,nl] - Delta[m2,n2] appearing in chi"2 earlier, for the
solution is exactly the power pattern maximum to second order in
the cosine arguments. However, the error does depend on the
fourth and higher powers of the cosine arguments. So motivated,
we consider the fourth-order merit function

A n Introduction to ARRSTA TS 29

901 1. 2 2
902 ','. Chi » sum sum e e (Delta - Delta)
903 ■:. 4 ml.nl m2,n2 ml.nl m2,n2 ml.nl m2,n2
904
905 ■!. /I 2 \
906 V. • I 1 - -- (Delta - Delta) I
907 \ 12 ml.nl m2,n2 /

908
909 ';. and observe that chi4"2 -< chi2"2 everywhere. We interpret the
910 V. difference chi2A2 - chi4A2 as indicative of the error in the
911 v. solution, and we scale the covariance matrix by that amount. The
912 I. covariance matrix used is the inverse of the curvature matrix for
913 V. chi2A2; that curvature matrix is
914
915 V, 2
916 V. alpha = k sum sum e e
917 ','. ml.nl m2,n2 ml.nl m2,n2
918 ?.
919 4 / (nl-n2)dx \
920 V, * I II (nl-n2)dx (ml-m2)dy] .
921 V. \ <ml-m2)dy /
922 ■.'.
923 V. Because we construct the design matrix for the simpler
924 V. least-squares problem, we must construct alpha explicitly.
925 * However, this can be accomplished by analytically expanding the
926 V, differences and factoring the sums.
927 *
928 phsX - ones (numLMNY, 1) * nx * dx * (twopi ♦ fOpr / c);
929 phsY - ny * ones (1, numLMNX) * dy * (twopi * fOpr / c);
930 phsX - phsX (:);
931 phsY - phsY (:),-
932 excMagV - excMag (:);
933 desMtx - (phsX phsY ones (numLMNX "numLMNY, 1) 1 ...
934 .* (sqrt (excMagV) * ones (1, 3));
935 [Q, B) - qr (desMtx, 0); t now desMtx - Q ♦ R and Q' * Q - eye [conj. transpose)
936 excPhsWgt - -excPhs (:) .* sqrt (excMagV) ;
937 p2Vec - R \ <Q' * excPhsWgt); \ desMtx * p2Vec - excPhsWgt
938 p2x - p2Vec (1);
939 p2y - p2Vec (2);
940 DeltaPhs - [phsX phsY ones (numLMTOCmimLMNY, 1)) * p2Vec + excPhs (:);
941 sumExcMagDeltal - excMagV .* DeltaPhs;
942 sumExcMagDelta2 - sumExcMagDeltal .* DeltaPhs;
943 sumExcMagDelta3 - sumExcMagDelta2 .* DeltaPhs;
944 sumExcMagDelta4 - sumExcMagDelta3 .* DeltaPhs;
945 sumExcMagDeltaO ■ sum (excMagV) ;
94 6 sumExcMagDeltal - sum (sumExcMagDeltal);
947 sumExcMagDelta2 - sum (sumExcMagDelta2);
94 8 sumExcMagDelta3 - sum (sumExcMagDelta3);
949 sumExcMagDelta4 - sum (sumExcMagDelta4);
950 chiSqrRed - (2 * sumExcMagDelta4 * SumExcMagDeltaO —
951 - 8 * sumExcMagDelta3 * sumExcMagDeltal ...
952 + 6 * sumExcMagDelta2 * sumExcMagDelta2) / 12;
953 chiSqrRed - max (0, ChiSqrRed); ?. in case of roundoff error
954 excMagPhs - excMagV * [phsX phsY) ;
955 crvMtx - 2 * sumExcMagDeltaO * [phsX phsY]' ...
956 * ([phsX phsY] .* [excMagV excMagV]) ...
957 - 2 ' excMagPhs' * excMagPhs;
958 p2Var - chiSqrRed * inv (crvMtx);
959 clear phsX phsY excMagV desMtx Q R excPhsWgt p2Vec DeltaPhs;
960 clear SumExcMagDeltaO sumExcMagDeltal sumExcMagDelta2 sumExcMagDelta3 sumExcMagDelta4;
961 clear chiSqrRed excMagPhs crvMtx;
962
963 V, Construct pointing vector
964 *
965 * Above we constructed two pointing vectors by different methods.
966 '* The method of fitting the transform is robust even for large
967 V. errors but limited by the transform resolution. On the other
968 V. hand, the method of fitting the excitation phases is independent
969 V. of transform resolution but accurate only for small errors,
970 '-.'. approaching the exact solution as the phase errors decrease. We
971 v. wish to obtain a single pointing vector for subsequent use, and
972 V. for this purpose we form a weighted average. Specifically, each
973 v. vector is weighted by the inverse of the area of its covariance
974 ■,', ellipse, which is pi times the determinant of the covariance
975 ■■:. matrix. Similarly, a single covariance matrix is obtained by
976 '•!. weighing each covariance matrix by the square of the pointing
977 ':■. vector weights, normalized to avoid effectively halving the
978 '■'. covariance matrix when the two incoming matrices are nearly equal.
979
980 areal - det (plVar);
981 area2 - det (p2Var);
982 areaTot = areal + area2;
983 wghtl ■= area2 / areaTot;
984 wght2 - areal / areaTot;
985 px - wghtl * plx * wght2 * p2x;
986 py - wghtl * ply + wght2 • p2y;
987 pVar = (wghtl"2 * plVar + wght2A2 * p2Var) / (wght2"2 + wghtl"2);
988 clear areal area2 areaTot wghtl wght2;
989 clear plx ply plVar;
990 clear p2x p2y p2Var;
991
992 V. Calculate peak power density and pointing error

30 C. S. West

993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
T.039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

V. To avoid inaccuracies due to interpolation, the peak power
V. density is obtained by explicitly evaluating the Fourier
V. transform at the pointing vector. The pointing error is
V. straightforwardly calculated from the dot product of the steering
V. and pointing vectors. However, an optional second method is
V. coded that makes use of the pointing vector covariance matrix to
V. calculate the uncertainty {standard deviation) of the pointing
'.'. error due to uncertainty in the pointing vector. If this
'!. uncertainty is desired, also uncomment lines elsewhere that refer
V. to errPointUnc and errPointUncS.

complex field

Phaser sum
power

IHPUT 0 to skip std dev,
cross product

% rows correspond to
% components of pCrs;
% columns, to pVec
% covariance matrix
<l. magnitude

V. derivative exists
pCrsMagDer';

'& derivative doesn't exist
V, average of principal variances

pxy2 = pxA2 + py"2;
peakVisb = (pxy2 <= 1);
if peakvisb

gSqrMax = exp (-i * twopi * (fOpr / c) ...
* (px * dx * ones (numLMNY, 1) * nx ..

+ py * dy * ny * ones (1, numLMNX)))
gSqrMax = sum (gSqrMax (:)) ;
gSqrMax - real (conj (gSqrMax) * gSqrMax);
pz - sqrt (1 - pxy2);
if 0

pCrs - t 0 -sz sy
sz 0 -sx

-sy sx 0] * |px py pz)';
pCrsDer - [-sy*px/pz -sz-sy*py/pz

sz+sx*px/pz sx*py/pz
-sy sx];

pCrsVar « pCrsDer * pVar * pCrsDer';
pCrsMag - sqrt (pCrs' * pCrs);
if pCrsMag > 0
pCrsMagDer = pCrs' / pCrsMag;
pCrsMagVar = pCrsMagDer * pCrsVar

else
pCrsMagVar = trace (pCrsVar) / 3;

end
errPoint ■= asin (pCrsMag) ;
errPointUnc - abs (1 / sqrt (1 - pCrsMag*2)) • sqrt (pCrsMagVar);
clear pCrs pCrsDer pCrsVar pCrsMag pCrsMagDer pCrsMagVar;

else
errPoint - acos (min (1, ... '>'. dot product for error; min

sx * px + sy * py + sz * pz)) ; V. prevents roundoff problems
errPointUnc - nan;

end
e2se V, maximum is invisible

gSqrMax = gSqrMaxAct;
px = nan;
py = nan;
pz - nan;
errPoint - nan;
errPointUnc = nan;

end
beamPowerDB - 10 * loglO (gSqrMax);
clear pxy2;

'}, Determine main beam region

V, The angular domain of the main beam is constructed starting with
V. the maximum element. The largest neighboring element is added on,
V. followed by the largest neighbor of either point, and so on. This
V. accretion continues until any neighbor of the largest element on
'i. the main beam border exceeds the element added previously.
V, Effectively, elements are added with values descending from the
% peak until an opportunity to ascend is reached. All visible
% elements outside of the main beam are declared to be in the
?, sidelobes.
*
beamWidLvl - gSqrMax / 2; * power level where beam width is measured
adjc - C-ay-1 -ay -ay+1 -1 1 ay-1 ay ay+lj; * relative indices of neighbors

V. Note: We must include the diagonal neighbors in order to
'A correctly descend a structure such as [1 0.4; 0.5 0.9J.

beamBool = logical (zeros (ay, ax));
brdrLen ■= 1 ;
brdrlndx ■= IgSqrMaxCol - 1) * ay + gSqrMaxRow;
brdrVal = 0;
beamBool (brdrlndx) = 1;
adjclndx = brdrlndx + adjc';
adjclndx = adjclndx (visBool (adjclndx));
adjcVal = gSqr (adjclndx);
beamDepth = inf;
beamVisb = 1;
capVisb = (gSqrMaxAct > beamWidLvl);
while max (adjcVal) <- beamDepth

brdrLen = brdrLen - 1;
brdrlndx = brdrlndx (1 : brdrLen);
brdrVal = brdrVal (1 : brdrLen);
beamBool (adjclndx) = ones (size (adjclndx))
for adjcPtr - 1 : length (adjclndx)
pos - sum (brdrVal <- adjcVal (adjcPtr))-

build main beam in Boolean variable

start with maximum
any value will do here
main beam begins with maximum

and neighbors
that are visible

get values
get the loop started

usually true unless resolution is too low
are the new neighbors all downhill?
yes; remove element from border

add neighbors to main beam
and to border

ordered least to greatest
brdrlndx- Ibrdrlndx(l:pos) adjclndx(adjcPtr) brdrlndx(pos+l:brdrLen));
brdrVal - (brdrVal(l:pos) adjcVal(adjcPtr) brdrVal(pos-H:brdrLen));

brdrLen = brdrLen + 1;

An Introduction to ARRSTATS 31

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

end
pick largest element from border
neighbors of chosen element
eliminate invisible points
were some invisible?
yes; clear flag
are we below the threshold?
no; the cap is partially invisible

use only new elements
and get their values

beamWidLvl); closed contour a
sidelobe region

beamWidLvl?

>\ duplicate maximum outside beam?
* no; the beam is identified

% strike earlier results

beamDepth = brdrVal (brdrLen);
adjclndx ■= brdrlndx (brdrLen) + adjc;
adjclndx - adjclndx (visBool (adjclndx));
if length (adjclndx) < length (adjc)
beamVisb = 0;
if beamDepth >= beamWidLvl
capVisb = 0;

end
end
adjclndx = adjclndx (-beamBool (adjclndx))
adjcVal ■= gSqr (adjclndx);

end
capClosed - capVisb & (beamDepth
sideBool = visBool fi -beamBool;
beamlndx - find (beamBool);
if max (max (gSqr (sideBool))) < gSqrMaxAct
beamExist - 1;
if -peakVisb

disp ('Warning: The main beam peak is invisible; some calculations');
disp (' may return NaN.');

elseif -capVisb
disp ('Warning: The beam width contour of the main beam is partially');
disp (' invisible; some calculations may return NaN.');

elseif -capClosed
disp ('Warning: The main beam is insufficiently deep for obtaining');
disp (* Its width; some calculations may return NaN.');

elseif -beamVisb
disp ('Warning: The main beam is partially invisible; some');
disp (' calculations may return NaN.');

end
else
beamExist ö 0; * yes; the beam is ambiguous
disp ('Warning: The main beam is not identifiable; some •);
disp (* calculations will return NaN.');
px - nan;
py - nan;
pz « nan;
errPoint - nan;
beamVisb - 0;
beamlndx - U;
peakVisb - 0;
capVisb - 0;
capClosed - 0;
beamDepth - nan;
sideBool - visBool;

end
if beamDepth -- 0
beamDepthDB - -inf;

else
beamDepthDB - 10 * loglO (beamDepth / gSqrMax);

end
clear adjc beamBool brdrLen brdrlndx brdrVal adjclndx adjcVal beamDepth adjcPtr pos

V. Determine main beam width and roll
■I
'I. The analysis of the beam's width and roll is conducted using a
'i stereographic projection, for which projections of great circles
V. intersect at the same angles as the great circles on a sphere.
V. (See the comments in the plotting section below for details.)
'£ This property allows us to obtain, in the limit of a narrow beam,
V, the correct roll angle and the beam widths along two orthogonal
* great circles.
».
V. The actual calculations are based on fitting the half-power contour
V. of the main beam to an ellipse. First the contour is obtained in
V, direction cosine space, then the coordinates are transformed to
V. stereographic coordinates. The contour is fitted to the conic
V. section

12 12
V, -Ux +Wxy+-Vy +Xx + Yy+Z = 0

2 2

'-.'. using a simple algorithm that minimizes the algebraic distance as
7, follows. Define the design matrix D to have rows

12 12
■t D - I (- x) (x y) (- y) x y 1) ,
'J, i, : 2 i i i 2 i i i

V. where the (x(i], y(i]) are the points along the contour, and let the
■;. coefficient vector be

a - [U W V X Y Z] .

The algebraic distance between a point and a conic section is the
left-hand side of the conic section equation, so that the distance
between a point i along the contour and the ellipse described by the
vector a is simply D[i,:]a. We seek the minimum of the sum of
squared algebraic distances, which is just I ID allA2, subject to the

'* treat visible space as sidelobes

% avoid warning message

32 C. S. West

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
124 6
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

7. constraint l|all"2 - 1. We therefore Introduce the constrained
';, objective function

2
E - I ID all - lambda (Hall - 1)

T T T
= a D D a - lambda (a a - 1)

'.'. «here lambda is a Lagrange multiplier. The minimum is found
v. analytically to occur when

", T
'■;. D D a = lambda a ,

!. which is an eigenvalue equation. The desired coefficient vector, a,
V. corresponds to the minimum eigenvalue.

V. Using the coefficients of the best-fit ellipse, we now calculate
<!. the beam characteristics. First, a sign change is applied to the
■i coefficients if necessary to force U (and therefore V) to be
V. negative. For convenience, we rewrite the conic section as

■I. IT T
V, -pAp + Bp + Z-0,

V, 2

¥, where p = [x; yj,

S, / U W \
■■:, A - l I ,

\ W V /

¥. and B - [X; Yl. We first find the center of the ellipse in order
■i to draw it later. Replacing p with p + pi in the conic section

* yields

7, IT T T
- pi A pi + <p A + B) pi + Zl - 0 ,

7. 2

IT T
Zl » - p Ap + B p+Z

2

is defined for later use. When p coincides with the center, the
linear term vanishes; therefore, p solves

A p + b - 0 .

We next find the roll angle, which is conceptually defined as
follows, using spherical, not Stereographic, coordinates. If the
ellipse center is not at boresight, rotate it (and the antenna
pattern) to boresight along the great circle connecting the two.
The angle from the great circle with azimuth 0 to the great circle
along the beam's major axis (direction of maximum width) is the
roll angle. Alternatively, construct the great circle connecting
the ellipse center and boresight. The roll angle is the sum of
two angles, the angle from the great circle with azimuth 0 to the
constructed great circle and the angle from the constructed great
circle to the great circle along the beam's major axis. Now the
roll angle so defined is merely the apparent orientation of the
major axis when viewed in the Stereographic projection. In a
(Stereographic) coordinate system rotated by that angle, the
off-diagonal element of A (the coefficient W) vanishes; therefore,

, we seek the coordinate system that diagonalizes A. Replacing p
, with R p2 in the original conic section gives

ITT T
- p2 (R A R) p2 + (B R) p2 + Z - 0 .

2

. The new quadratic coefficient RAT A R will be diagonal if the

. columns of R are the eigenvectors of A. The new diagonal elements

. U2 and V2 become the eigenvalues, which are explicitly

U / 2 / U - V \2 \l/2
U2 + I W + I I I and

2 \ \ 2 / /

U + V / 2 /U-V\2 U/2
V2 . I W + | I I

2 \ \ 2 / /

The eigenvalue with the smaller magnitude <U2 above, since U and V
are negative) corresponds to the major axis. Therefore, the
corresponding eigenvector points along the direction of the major
axis; the other eigenvector, along the minor axis. The roll angle
is obtained from the two components of the major axis; explicitly,

it satisfies

An Introduction to ARRSTATS 33

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

tan (2 roll) -
U - V

" We also use the eigenvectors to draw the ellipse later. Last, the
'.'. eigenvalues yield the major and minor full widths at half maximum
'.'. of the main beam as

/ Zl \l/2 / Zl \l/2
1-8 — 1 and J — S — |
\ U2 / \ V2 /

V. respectively. As these were derived in the stereographic
'.'. projection, a factor of (1 + cos polar) is applied to obtain the
'■,'. approximate widths in real angles.
V.
if capClosed

V.
$ Construct the contour

beamlndx (gSqr (beamlndx) >= beamWidLvl); V, elements at or above level
logical (zeros (ay, ax));

caplndx
capBool
capBool (caplndx) - ones (size (caplndx));
adjc - Cay ay+1 1 -ay+1 -ay -ay-1 -1 ay-1);
dirlndx - 1;
intlndx - caplndx (1);
dirlndxSt » 0;
intlndxSt - 0;
capContX = [];
capContY - [J;
while capBool (intlndx + adjc (dirlndx))

intlndx - intlndx + adjc (dirlndx);
end
while (intlndx — intlndxSt) I (dirlndx — dirlndxSt)

adjclnc - abs (adjc (dirlndx));
if (adjclnc ™ 1) I (adjclnc «- ay)

if adjclnc ™ ay
capContYl - dirCosYMtx (intlndx);
capContXl - dirCosXMtx (intlndx) + (beamWidLvl

% clockwise in matrix row-column coordinates
% initial index into adjc
'A initial index of interpolation center
* get loop started

?. empty contour coordinates

V. next element is inside cap?
V. keep moving until edge is reached

* back at starting point?
% no; get magnitude
% looking across row or column?
'* across column?
% yes; interpolate in x
gSqr (intlndx)) ...

(dirCosXMtx (intlndx + adjc (dirlndx))
/ (gSqr (intlndx + adjc (dirlndx))

else
capContXl - dirCosXMtx (intlndx);
capContYl - dirCosYMtx (intlndx)

dirCosXMtx (intlndx)) .
gSqr (intlndx));

V. across row
4 interpolate in y

(beamWidLvl - gSqr (intlndx)) ...
(dirCosYMtx (intlndx + adjc (dirlndx)) - dirCosYMtx (intlndx)) —

capContXl)
capContYl)

/ (gSqr (intlndx + adjc (dirlndx)) - gSqr
end
if isempty (capContX)

capContX « capContXl;
capContY * capContYl;
intlndxSt - intlndx;
dirlndxSt * dirlndx;

elseif (capContX (length (capContX))
& (capContY (length (capContY))

capContX - [capContX; capContXl);
capContY = [capContY; capContYl);

end
end
dirlndx - dirlndx + 1;
if dirlndx > length (adjc)
dirlndx - 1;

end
adjclnc - abs (adjc (dirlndx));
if capBool (intlndx + adjc (dirlndx))

intlndx - intlndx + adjc (dirlndx);
dirlndx - dirlndx - length (adjc) / 2 + 1;
if (adjclnc -- 1) I (adjclnc «- ay)

dirlndx » dirlndx + 1;
end
if dirlndx < 1
dirlndx = dirlndx + length (adjc);

end
end

end V. while

V. Fit an ellipse in stereographic coordinates

capContZ = sqrt (1 - capContX."2 - capContY."2);
capContXS = capContX ./ (1 + capContZ);
capContYS = capContY ./ (1 + capContZ);
cDesMtx = (capContXS.*capContXS/2 capContXS.*capContYS

capContYS.*capContYS/2 capContXS
capContYS ones(size(capContXS))];

CDesMtx - cDesMtx' * cDesMtx;
capContX - capContX ([1:length(capContX) 1]);
capContY - capContY ([1:length(capContY) 1]);
capContZ = capContZ ([1:length(capContZ) 1J);
[cEigVec, cEigValJ - eig (cDesMtx);
IcEigValMin, cEigValMinldxJ -min (diag (cEigVal));
cPoly * cEigVec (:, cEigValMinldx);
cPoly - -cPoly * sign (cPoly (U);

(intlndx));

* first point?
% yes; store it

V. remember starting point

... % duplicate? (e.g.,
* element equals level)

'i. no; append it

'i. (no diagonal interpolation)
* next direction
V. cycle

% no; get magnitude of step
ft next element is inside cap?
V. yes; becomes new interpolation center
V. reverse, then ahead one increment
V. stepped in row or column?
V. yes; ahead an extra increment
V. (useless to look back diagonally)
V. cycle

". contour complete

V. to stereographic coords

'.'. to form design matrix
V. for least-squares fit

V. done
'»'. close contour for plotting

V. eigenvectors and -values
'i. minimum eigenvalue
V. and matching vector

■!. to have negative eigenvalues below

34 C. S. West

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

',', Obtain beam characteristics from ellipse coefficients

cHessMtx - (cPoly(l) cPoly(2)
cPoly(2) cPoly<3)];

cDervMtx = [cPoly(4)
cPoly(S)];

capCenter - -cHessMtx \ cDervMtx;
capConst - cPoly (6) + cDervMtx' * capCenter / 2;
(cEigVec, cEigVal] = eig (cHessMtx),-
[cEigVal, cEigValOrd) = sort (diag (cEigVal));
cEigVec = cEigVec (:, cEigValOrd);
if cEigVec (1, 2) — 0

roll - pi / 2;
else

roll - atan (cEigVec (2, 2) / cEigVec (1, 2));

end
roll - roll - pi/2 + azmthOffst;
roll - roll - ceil (roll / pi) * pi + pi/2 - azmthOffst;
hpbw = sqrt (-8 * capConst ./ cEigVal);

'■!. Hessian matrix;
V. second derivatives
'■!. first derivative matrix

V, ellipse center
'.', new constant coefficient

V, ascending order
'1. corresponding order
■>. special case?

V. angle to major axis

V. make -pi/2 <
V, roll + azmthOffst <- pi/2
% two-vector

?, Construct the fitted ellipse for plotting (in stereographic coordinates)

% calculate some
$ points along the
4 fitted ellipse
% squared radius in stereographic coords
% z direction cosine
a undo stereographic projection

V. undo widths, too

theta - (0 : 10 / 360 : 1) * twopi;
cFit - capCenter * ones (size (theta)) .

+ 0.5 * (cEigVec * diag (hpbw) ...
* Isin(theta); cos(theta)]);

cFitR2 - sum (cFit.A2);
cFitZ - (1 - cFitR2) ./ (1 + cFitR2);
cFitX - cFit (1, :) .* (1 + cFitZ);
cFitY - cFit (2, :) .* (1 + cFitZ);
hpbw - hpbw * (1 + pz);
hpbwMjr - hpbw (2);
hpbwMnr « hpbw (1);

else
roll - nan;
hpbwMjr - nan;
hpbwMnr - nan;

end
clear capBool adjc dirlndx intlndx dirlndxSt intlndxSt adjclnc capContXl capContYl
clear capContXS capContYS cDesMtx cEigVec cEigVal cEigValMin cEigValMinldx cPoly;
clear cHessMtx cDervMtx capCenter capConst cEigValOrd hpbw;
clear theta cFit cFitR2;

V. Calculate power in visible space, main beam, and sidelobes; main
'* beam and sidelobe solid angles; and average sidelobe level

■t
% These calculations involve integrals over the hemisphere or portions
% of it. The integrals are carried out in direction cosine
?, coordinates by multiplying the integrand by the appropriate

* Jacobian.

* The integrals are evaluated using the midpoint approximation, for
?. which the starting point is the Taylor series expansion of g (x, y)

V. to second order:

g (a + u, b + v)

-Ig + ug +vg
\ x y

12 1 2 \
-ug +uvg +-vg I
2 xx xy 2 yy /a,b

V. Then

/ c/2 / d/2
I du I dv g (a + u, b + v) -
/-c/2 /-d/2

/ 1 2 2 \
-lcdg + — cd (eg +dg)l

\ 24 xx yy /a,b

The midpoint approximation keeps the first term and neglects the
quadratic terms. The maximum amount neglected is

cd/ 21
— I c Ig (
24 \ I xx

I 2 I I \
b)I + d lg (a, b) I I

I I yy I /

t which we use as the error estimate for each interior point of the
;. integration, approximating the second derivatives with scaled second

:. differences.

V. To the interior error is added an estimate of the error due to
■!. finite sampling at the integral limits; the estimate is half the
'.'. value of the integrand at the outermost samples.

V. (The error estimate calculations have been commented out for

V. speed.)

'.'. visbEdgelndx * visBool;
V. visbEdgelndx (2 : ay - 1, 2 : ax - 1) = .. .

An Introduction to ARRSTäTS 35

1453 1,
1454 I
1455 ',»,
1456 v.
1457 '!.
1458 ■1.

1459
1460 V.
1461 '?.
1462
1463
1464 V.
1465 •I
1466
1467 V.
1468 V,
1469
1470
1471
1472
1473
1474
1475 ■I
1476 t
1477 t
1478 *
1479 '*
1480 *
1481 •■!.

1482 ?,
1483
1484 V,
1485 ',►,

1486 V.
1487 •i
1488 ■I
1489 'i,
1490
1491 *
1492
1493
1494 !,',
1495 ?.
1496
1497 ?.
1498
1499 *
1500 ■1.

1501
1502 '■!.

1503 *
1504
1505 1
1506 V
1507
1508 V
1509
1510 V

1511
1512 V
1513
1514
1515 ■1.

1516 ?
1517
1518 •t
1519 't
1520
1521 ',
1522 ',
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

);

7. areal factor for integrating:
'i. Jacobian [1 / cos polarj
1 and grid spacing
'i, edge points may exceed this
V, arbitrary limit; force those
% that do to comply

V. error estimate based on second-
's order Taylor expansion

V. assume errors at outer edge equal
V. those of nearest neighbors
'I to integrate gSqr
f. error estimate for integrand

V. assume errors at outer edge equal
V, those of nearest neighbors

main beam solid angle

{ visbEdgelndx (2 : ay - 1, 3 : ax) & visbEdgelndx (1 : ay - 2, 2 : ax - 1)
& visbEdgelndx (2 : ay - 1, 1 : ax - 2) £ visbEdgelndx (3 : ay , 2 : ax - 1)

visbEdgelndx - find (visBool - visbEdgelndx);
beamEdgelndx - zeros {ay, ax);
beamEdgelndx (beamlndx) = ones (size (beamlndx));
sideEdgelndx = beamEdgelndx;
beamEdgelndx (2 : ay - 1, 2 : ax - 1) = —

{ beamEdgelndx (2 : ay - 1, 3 : ax) & beamEdgelndx {1 : ay - 2, 2 : ax - 1)
& beamEdgelndx (2 : ay - 1, 1 : ax - 2) & beamEdgelndx {3 : ay , 2 : ax - 1)

beamEdgelndx (beamlndx) = 1 - beamEdgelndx (beamlndx);
beamEdgelndx = find (beamEdgelndx);
sideEdgelndx (2 : ay - 1, 2 : ax - 1) = —

< sideEdgelndx (2 : ay - 1, 3 : ax) I sideEdgelndx (1 : ay - 2, 2 : ax - 1) ..
I sideEdgelndx (2 : ay - 1, 1 : ax - 2) I sideEdgelndx (3 : ay , 2 : ax - 1));

sideEdgelndx (beamlndx) = zeros (size (beamlndx));
sideEdgelndx = find (sideEdgelndx);
areaFact - zeros (ay, ax);
areaFact (visBool) - ...

1 ./ (txLim * tyLim * dirCosZMtx (visBool));
areaFactLim - 2 / sqrt (txLim * tyLim);
tooBig - find (areaFact > areaFactLim);
areaFact (tooBig) - ones (size (tooBig)) * areaFactLim;
sldAng - sum (areaFact (:));
sldAngErrRel - abs (sldAng / (2 * pi) - 1);
areaFactUnc - zeros (ay, ax);
areaFactUnc (2 : ay - 1, 2 : ax - 1) - —

(abs (diff (areaFact (2 : ay - 1, :)\ 2)') ...
+ abs (diff (areaFact (:, 2 : ax - 1) , 2) >) / 24;

areaFactUnc ([1 ay], :) = areaFactUnc {[2 ay-1], :);
areaFactUnc (:, (1 ax]) ~ areaFactUnc (:, [2 ax-1]);
intgrnd = areaFact .* gSqr;
intgrndUnc - zeros (ay, ax) ;
intgrndUnc (2 : ay - 1, 2 : ax - 1) ■= ...

(abs (diff (intgrnd (2 : ay - 1, :)', 2)') ...
+ abs (diff (intgrnd (:, 2 : ax - 1) , 2))) / 24;

intgrndUnc ([1 ay], :) - intgrndUnc ((2 ay-1], :);
intgrndUnc (:, (1 ax]) - intgrndUnc (:, [2 ax-1]);
powerVisb - sum (intgrnd (:));
powerVisbUnc - sum (intgrndUnc (:));
directivityDB - 10 * loglO (4 * pi * gSqrMax / powerVisb)
if beamExist

sldAngMain - sum (areaFact (beamlndx));
sldAngMainUnc - sum (areaFactUnc (beamlndx)) + sum (areaFact (beamEdgelndx)) / 2;
powerHain - sum (intgrnd (beamlndx)); V. power in the main beam
powerMainUnc - sum (intgrndUnc (beamlndx)) + sum (intgrnd (beamEdgelndx)) / 2;
powerSide - sum (intgrnd (sideBool)); * power in the sidelobes
powerSideUnc - sum (intgrndUnc (:)) - sum (intgrndUnc (beamlndx))...

+ sum (intgrnd (sideEdgelndx)) / 2;
sldAngSide - sum (areaFact (sideBool)); * sidelobe equivalent solid angle
sldAngSideUnc - sum (areaFactUnc (sideBool)) - sum (areaFactUnc (beamlndx)) —

+ sum (areaFact (sideEdgelndx)) / 2;
else

sldAngMain - nan;
sldAngMainUnc - nan;
powerMain « nan;
powerMainUnc - nan;
powerSide - nan;
powerSideUnc - nan;
sldAngSide = nan;
sldAngSideUnc = nan;

end
powerMainVisbDB - 10 * loglO (powerMain / powerVisb);
powerMainVisbUnc - powerMainUnc / powerVisb ...

+ powerMain * powerVisbUnc / powerVisb"2;
powerVisbSideDB - 10 * loglO (powerVisb / powerSide);
powerVisbSideUnc - powerVisbUnc / powerSide ...

+ powerVisb * powerSideUnc / powerSideÄ2;
powerMainSideDB - 10 * loglO (powerMain / powerSide);
powerMainSideUnc - powerMainUnc / powerSide ...

+ powerMain * powerSideUnc / powerSideA2;
powersideAvgDB - 10 * loglO (powerSide / (sldAngSide * gSqrMax));
powerSideAvgUnc = powerSideUnc / sldAngSide ...

+ powerSide * sldAngSideUnc / sldAngSideA2;
clear intgrnd areaFact areaFactLim tooBig;
clear intgrndUnc areaFactUnc;

V. Locate nearest and largest sidelobes

■;. We wish to identify the sidelobe closest in angle to the main beam
V. and the sidelobe with the largest peak power. We first find the
V. local maxima in the sidelobe region, then for each we determine
V. the possible ranges for actual distance from the main beam and
v. peak power. (The uncertainties arise from the discrete sampling
V. of the array factor.) Using the ranges we select those peaks that
V, could possibly be the closest or largest. For each of these
V. candidates a more precise location and peak power is computed by
V. interpolating over neighboring data. Finally, based on these
V. results, the closest and nearest sidelobes are identified.

if peakVisb

V, Find local maxima (sidelobe peaks), using discrete differences

I ratio of main beam to visible power

V. ratio of visible to sidelobe power

?. ratio of main beam to sidelobe power

average sidelobe power

36 C. S. West

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

to approximate derivatives. The differences are formed from the
magnitude of the array factor, not the squared magnitude; since
the behavior should already be parabolic near peaks, squaring
would produce fourth-order behavior and make second-order
interpolation less accurate.

Key to the variables below:
X first differences in x
Y first differences in y
XX second differences in x
YY second differences in y

first differences in x with double step
cross differences in x and y
nonzero where first difference in x changes sign
nonzero where first difference in y changes sign

X2
XY
XC
YC

gMagX - gMag (:, 2:ax) - gMag (:, l:ax-l);
gMagY - gMag (2:ay, :) - gMag (l:ay-l, :);
gMagXX = (zeros(ay,l) (gMagX (:,
gMagYY - [zeros(l.ax)
gMagX2 - [zeros(ay, 1)
gMagXY - [zeros(l,ax)
gMagXC - tzeros(ay,l)
gMagYC - (zeros(1,ax)
sllndx - find (sideBool —

S gMagXC t gMagYC
t (gMagXX < 0) t (gMagYY < 0)

2:ax-l)
(gMagY (2:ay-l, :)
(gMag (:, 3:ax)
(gMagX2(3:ay , :)
(gMagX (:, 2:ax-l)
(gMagY (2:ay-l, :)

6 (gMagXY."2 - gMagXX .
if isempty (sllndx)

sllndx - [];
slNrstDist = nan;
slNrstPowrDB ■= nan;
slNrstVec = nan * ones
slLgstDist » nan;
slLgstPowrDB = nan;
slLgstVec - nan * ones

else

gMagYY < 0)) ;

(1, 3)

gMagX (:, l:ax-2)) zeros(ay,1)1
gMagY (l:ay-2, :)); zerosd.ax))
gMag (:, l:ax-2))/2 zeros(ay,D]
gMagX2(l:ay-2, :))/2; zeros(l,ax)l
gMagX (:, l:ax-2) < 0) zeros(ay,l>]
gMagY (l:ay-2, :) < 0); zeros(1,ax)];

% identify sidelobe points where
'* first derivatives change sign,
'A second derivatives are negative, and
% discriminant is negative
* none found?

found some peaks

?. Compute possible ranges of distances and powers; identify
?, candidates for closest and largest peaks

dirCosXMtx (sllndx)) *
dirCosYMtx (sllndx));

ay toward - sign (px
+ sign (py

slCosDistMax - ...
px * dirCosXMtx (sllndx + toward) ...

+ py * dirCosYMtx (sllndx + toward) ...
+ pz * dirCosZMtx (sllndx + toward);

slCosDistMin - ...
px * dirCosXMtx (sllndx - toward) ...

+ py * dirCosYMtx (sllndx - toward) ...
+ pz * dirCosZMtx (sllndx - toward);

slNrstBool - (SlCosDistMax >- max (slCosDistMin));
slPowr - (gMag (sllndx) ...

+ (-gMagXX (sllndx) ...
+ 2 * abs (gMagXY (sllndx)) ...
- gMagYY (sllndx)) / 8)."2;

slLgstBool - (slPowr >- max (gSqr (sllndx)));
slCandlndx - sllndx (slNrstBool I slLgstBool);
numCand = length (slCandlndx);

'i Interpolate powers and locations for candidates

index increment to neighbor
closer to pointing vector

cosine of maximum possible
angle between pointing
vector and each peak;
dot product

likewise for minimum
possible angle

true if peak might be the closest
estimate largest possible

interpolated power by adding
an error estimate based on the
differences computed above

true if peak might be the largest
candidates for closest and largest
number of candidates

six - zeros (numCand, 1);
sly - zeros (numCand, 1);
slPowr - zeros (numCand, 1);
for slPtr - 1 : numCand

slCol - ceil (slCandlndx (slPtr) / ay);
slRow - slCandlndx (slPtr) - (SlCol - 1)
intRad - 1;
slOK - 0;
while -slOK £ intRad < 3

slNbrs * [-intRad : intRad);
slxFit - dirCosXMtx (slRow + slNbrs,

■ dirCosYMtx (slRow + slNbrs,
= gMag (slRow + slNbrs,

slxFit

slyFit
slzFit
slxFit
slyFit
slzFit

slCol
slCol
slCol

4 allocate space for x and
1 y direction cosines
?. and powers
'i loop through candidates
V, separate index into column
'/. and row indices
'-.* interpolation radius
">', initialize
V. no answer yet but too early to bail?
'.l. offsets to neighbors

slNbrs); '.'■ x, y, and z coordinates of
slNbrs); V. neighbors (using magnitude,
slNbrs) ; V. not power, for z)

slyFit (
slzFit (

slDesMtx - (slxFit.*slxFit/2 slxFit.-slyFit slyFit.*slyFit/2 .
slxFit slyFit ones(size(slxFit))1;

[0, R] = qr (slDesMtx, 0);
slPoly - R \ (Q' * slzFit);
sivec - -(slPoly(l) slPoly(2); slPoly(2) slPoly(3

\ |slPoly(4); slPoly(5)l;

design matrix

now slDesMtx = Q * R; Q' * O - eye
solves slDesMtx * slPoly = slzFit

)] ... V. find critical point

slOK = .. .
(slVec (1)

& (slVec (1)
i (slVec (2)
S. (slVec (2)

if -slOK
intRad - intRad

end

> dirCosX (slCol - intRad))
< dirCosX (slCol + intRad))
> dirCosY (slRow - intRad))
< dirCosY (slRow + intRad));

+ 1;

is interpolated point
inside neighborhood?
(pathological cases can
place it outside)

outside neighborhood?
yes; cast a wider net

An Introduction to ARRSTATS 37

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728

'A end interpolation attempts
'J, interpolation successful?
?. yes; keep interpolated point

end
if slOK

six (slPtr) - slVec (1);
sly (SlPtr) - slVec (2);
slPowr (slPtr) - ... '•'• interpolate power

((slx(slPtr).*slx(slPtr)/2 six(slPtr).*sly(slPtr) ...
sly(slPtr).*sly(slPtr>/2 slx(slPtr) sly(slPtr) 1] * slPoly).A2;

else
six (slPtr) - dirCosXMtx (slCandlndx (slPtr));
sly (slPtr) - dirCosYMtx (slCandlndx (slPtr));
slPowr (slPtr) - gSqr (slCandlndx (slPtr));

end
end

';. Select closest and largest peaks

interpolation failed
use grid location of

sampled maximum
use sampled power

end of loop through candidates

slz);
slz - sqrt (1 - slx.A2 - sly."2);
slDist - acos (px * six + py * sly * pz
IslNrstDist, slNrstlndx] -min (slDist);
slNrstPowrDB - 10 * loglO (slPowr (slNrstlndx) / gSqrMax);
slNrstVec - (slx(slNrstlndx) sly(slNrstlndx) slz(slNrstlndx));
IslLgstPowrDB, slLgstlndx) - max (slPowr);
slLgstPowrDB - 10 * loglO (slLgstPowrDB / gSqrMax);
slLgstDist - slDist (slLgstlndx);
slLgstVec - Islx(slLgstlndx) sly(slLgstlndx) slz(slLgstlndx)];

end
else * peak is invisible

sllndx - ();
slNrstDist ■= nan;
slNrstPowrDB = nan;
slNrstVec - nan * ones (1/ 3);
slLgstDist - nan;
slLgstPowrDB - nan;
SlLgstVec - nan * ones (1, 3);

end
clear gMagX gMagY gMagXX gMagYY gMagX2 gMagXY gMagXC gMagYC;
clear toward slCosDistMax slCosDistMin;
clear slNrstBool slLgstBool slCandlndx numCand;
clear six sly slz slPowr slPtr slCol slRow intRad slOK;
clear slNbrs slxFit slyFit slzFit slDesMtx Q R slPoly slVec;
clear slDist slnrstindx slLgstlndx;

'}, Record characteristics

V. In order to calculate running means and standard deviations of n
V. realizations, we accumulate the mean and variance

M ■ - sum x and
n n n"l m

z direction cosines
angular distances

V. smallest distance
V. and corresponding power
V. keep vector for plotting
V. largest power
V, converted to dB
V. and corresponding distance
'* keep vector

1 n 2
V sum (x - M)
n n - 1 m=l m n

using the updating formulas

2 1 2
— V + - (x - M)
1 n-1 n n n-1

','. The running mean is simply Mtn], and the standard deviation is
5. sqrt (V(n)). M is accumulated in the first column of a matrix; V
V. in the second. This method is more immune to roundoff error than
V. accumulating the sums of values and squares {1] .

'.'. If the beam is invisible, the excitations and array factor are
V. saved to an automatically-named file.

V. II) N. J. Higham, ^Accuracy and Stability of Numerical Algorithms_
'1. Philadelphia, PA: SIAM, 1996, pp. 12-13.

if beamVisb I (numRlz — 1)
if isnan (numAcc (indx))

numAcc (indx) - 1;
pxS
pxS
pys
pyS
pzS
pzS
errPointS
errPointS
errPointUncS
errPointUncS
beamPowerDBS
beamPowerDBS

(indx, 1) = px;
(indx. 2) - 0;
(indx, 1) - py;
(indx. 2) - 0;
(indx. I) - pz;
(indx. 2) - 0;
(indx. 1) = errPoint;
(indx. 2) - 0;
(indx. 1) - errPointUnc
(indx. 2) - 0;
(indx. 1) - beamPowerDB
(indx. 2) - 0;

38 C. S. West

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

ndx, 1)

{indx,

ndx,

(ihdx, 2)

ndx, 1)

ndx, 2)

(indx, 1)

ndx, 2)

(indx, 1) = beamDepthDB;

(indx, 2) ■= 0;
(indx, 1) = hpbwMjr;

(indx, 2) - 0;
= hpbwMnr;

= 0;

- roll;

- 0;
= directivityDB;
= 0;
= powerMainVisbDB;
- 0;

ndx, 1) = powerMainSideDB;
ndx, 2) ■= 0;
ndx, 1) = powerVisbSideDB;
ndx, 2) - 0;

(indx, 1) = powerSideAvgDB;
2) - 0;
1) - slNrstDist;
2) - 0;
1) - slNrstPowrDB;
2) - 0;

1) - slLgstDist;
2) - 0;

(indx, 1) - SlLgstPowrDB;
(indx, 2) - 0;

(indx,
(indx,
(indx,
(indx,
(indx,
(indx,
(indx.

beamDepthDBS
beamDepthDBS
hpbwM j rS
hpbwMjrS
hpbwMnrS
hpbwMnrS
rolls
rolls
directivityDBS
directivityDBS
powe rMai nVi sbDBS
powerMainVisbDBS
powerMainSideDBS
powerMainSideDBS
powerVisbSideDBS
powe rVi sbSideDBS
powerSideAvgDBS
powerSideAvgDBS
slNrstDistS
slNrstDistS
slNrstPowrDBS
slNrstPowrDBS
slLgstDistS
SlLgstDistS
slLgstPowrDBS
SlLgstPowrDBS

else
numAcc (indx) = numAcc (indx) + 1;
factV - (numAcc (indx) - 2) / (numAcc (indx)
dev = px - pxS (indx, 1);
pxS (indx, 2) - pxS
pxS (indx, 1) - pxS
dev = py - pyS (indx, 1);
pyS (indx, 2) - pyS
pyS (indx, 1) - pyS
dev « pz - pzS (indx, 1);
pzS (indx, 2) - pzS
pzS (indx, 1) = pzS
dev - errPoint - errPointS (indx, 1);
errPointS (indx, 2) - errPointS
errPointS (indx, 1) - errPointS

*A dev - errPointUnc - errPointUncS (indx, 1);
?, errPointUncS (indx, 2) - errPointUncS
V. errPointUncS (indx, 1) - errPointUncS

dev * beamPowerDB - beamPowerDBS (indx, 1);
beamPowerDBS (indx, 2) - beamPowerDBS
beamPowerDBS (indx, 1) - beamPowerDBS
dev = beamDepthDB - beamDepthDBS (indx, 1);
beamDepthDBS (indx, 2) - beamDepthDBS
beamDepthDBS (indx, 1) - beamDepthDBS
dev - hpbwMjr - hpbwMjrS (indx, 1);
hpbwMjrS (indx, 2) - hpbwMjrS
hpbwMjrS (indx, 1) - hpbwMjrS
dev - hpbwMnr - hpbwMnrS (indx, 1);
hpbwMnrS (indx, 2) - hpbwMnrS
hpbwMnrS (indx, 1) = hpbwMnrS
dev - roll - rolls (indx, 1);
rolls (indx, 2) - rolls
rolls (indx, 1) - rolls
dev = directivityDB - directivityDBS (indx,
directivityDBS (indx, 2) - directivityDBS
directivityDBS (indx, 1) - directivityDBS
dev - powerMainVisbDB - powerMainVisbDBS (indx, 1);
powerMainVisbDBS (indx, 2) - powerMainVisbDBS (indx,
powerMainVisbDBS (indx, 1) « powerMainVisbDBS (indx,
dev - powerMainSideDB - powerMainSideDBS (indx, 1) ,-
powerMainSideDBS (indx, 2) - powerMainSideDBS (indx,
powerMainSideDBS (indx, 1) - powerMainSideDBS (indx,
dev = powerVisbSideDB - powerVisbSideDBS (indx, 1);
powerVisbSideDBS (indx, 2) ■= powerVisbSideDBS (indx,
powerVisbSideDBS (indx, 1) = powerVisbSideDBS (indx,
dev = powerSideAvgDB - powerSideAvgDBS (indx, 1);
powerSideAvgDBS (indx, 2) - powerSideAvgDBS (indx,
powerSideAvgDBS (indx, 1) = powerSideAvgDBS
dev - slNrstDist - slNrstDistS (indx, 1);
SlNrstDistS (indx, 2) = SlNrstDistS
SlNrstDistS (indx, 1) ■= slNrstDistS
dev - SlNrstPowrDB - slNrstPowrDBS (indx, 1)
SlNrstPowrDBS (indx, 2) = slNrstPowrDBS
SlNrstPowrDBS (indx, 1) - slNrstPowrDBS
dev = slLgstDist - SlLgstDistS (indx, 1);
SlLgstDistS (indx, 2) = slLgstDistS
slLgstDistS (indx, 1) - slLgstDistS
dev - SlLgstPowrDB - slLgstPowrDBS (indx, 1)
SlLgstPowrDBS (indx, 2) - SlLgstPowrDBS
SlLgstPowrDBS (indx, 1) - slLgstPowrDBS

end
else

eval (('save case' sprintf(UO.Of",indx) '-' sprintfl

end
clear factV dev

- 1);

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

l);
(indx,
(indx.

2) * factV +
1) +

2) * factV +
1) +

2) * factV +
1) +

2) * factV +
1) +

2) * factV +
1) +

2) * factV +
1) +

(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx,

(indx,
(indx.

dev* 2
dev

devA2
dev

devA2
dev

devA2
dev

dev-2
dev

dev-2
dev

2) * factV +
1) +

2) * factv +
1) +

2) * factV +
1) +

2) * factV +
1) +

2) * factV +
1) +

2) * factV +

1) +

2) * factV +
1) +

2) * factV +
1) +

dev-2
dev

dev-2
dev

dev"2
dev

deV2
dev

devA2
dev

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

(indx);
(indx);

(indx);
(indx);

2) * factV +
1) +

2) * factV +
1) +

2) * factV 4

1) +

2) * factV +
1) +

devA2
dev

devA2
dev

dev"2
dev

dev"2
dev

devA2
dev

dev~2
dev

dev"2
dev

/ numAcc
/ numAcc

/ numAcc
/ numAcc

/ numAcc
/ numAcc

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

(indx);
(indx);

/ numAcc
/ numAcc

/ numAcc
/ numAcc

(indx);
(indx);

(indx);
(indx);

/ numAcc
/ numAcc

lindx);
[indx);

2) * factv +
1) ♦

devA2
dev

/ numAcc
/ numAcc

/ numAcc
/ numAcc

(indx);
(indx);

(indx);
(indx);

ftO.Of',rlzNum) ' exc gSqr']);

An Introduction to ARRSTATS 39

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912

'Ji Calculate spherical coordinates of average pointing vector

V. Let <px>, <py>, and <pz> denote the average direction cosines of
V. the pointing vectors, and let vx, vy, and vz denote the
v. corresponding variances. We wish to express the direction of the
V. average pointing vector (<px> <py> <pz>) in spherical coordinates.
';. First, note that the average pointing vector has the norm

2 2 2
" p - (<px> + <py> + <pz> I ,

',', which is less than one if not all realizations are colinear. The
V. spherical angles are then given by

1 2 2 1/2
'!, sin pointPolar - - (<px> + <py> } and
■I. p

tan pointAzmth
<py>

<px>

V. where we use sin pointPolar instead of the cosine for accuracy
V, near boresight.
*
'•fc Also, we wish to estimate the rms angular deviation of a
'i realization of the pointing vector from the mean. Adopting an
V. unsophisticated method, we add the variances vx and vy to obtain
V. an equivalent area in the x-y direction cosine plane, then divide
V. the area by cos PointPolar to yield a solid angle on the
'■). hemisphere. The square root of that area yields the rms angular
V, deviation.

radSqr - pxS (indx, 11*2 + pyS (indx, 1)"2;
pointPolar - asin {sqrt {radSqr /
pointAzmth - atan2 (pyS (indx, 1)
if isnan (pointPolar)
pointStdDev - nan;

else
pointStdDev - sqrt KpxS (indx,

end
clear radSqr

(radSqr + pzS (indx,
pxS (indx, 1)J;

2) + pyS (indx, 2)) / cos (pointPolar));

rlzNum, numRlz);

V. Print performance characteristics
V,
V, Generally, the following statements print the results of the
V. analysis followed by the standard deviations of each result in
V. curly brackets.
I
if 1 », INPUT 0 to suppress output, 1 to print

fprintf (1, '\nMeans and [std devs) for V.O.Of of 40.Of realizations^',
fprintf (1, 'beam direction : (?.0.3f, 10.3f) deg, std dev '40.3f deg\n', ...
pointPolar / rpd, (pointAzmth + azmthoffst) / rpd, pointStdDev / rpd);

fprintf (1, "pointing error : ?,8.4f I?.0.4f] deg\n', ...
errPointS (indx, 1) / rpd, sqrt (errPointS (indx, 2)) / rpd) ;

V, fprintf (1, 'pntng error unc: IB.it p.0.4f] deg (2 sigma)\n', ...
■J, 2 * errPointUncS (indx, 1) / rpd, 2 * sqrt (errPointUncS (indx, 2)) / rpd);

fprintf (1, 'peak power dens: '.',7.3f [v.0.3f 1 dB\n', ...
beamPowerDBS (indx, 1), sqrt (beamPowerDBS (indx, 2)));

fprintf (1, 'beam depth : V.6.2f l'i0.2f) dB repeak\n', ...
beamDepthDBS (indx, 1), sqrt (beamDepthDBS (indx, 2))),-

fprintf (1, 'beam width : (?.6.3f [?,0.3f], 10.3f [V.0.3f]) deg\n', ...
hpbwMjrS (indx, 1) / rpd, sqrt (hpbwMjrS (indx, 2)) / rpd, ...
hpbwMnrS (indx, 1) / rpd, sqrt (hpbwMnrS (indx, 2)) / rpd);

fprintf (1, 'beam roll : ».6.2f l?.0.2f] deg\n', ...
(rolls (indx, 1) + azmthOffst) / rpd, sqrt (rolls (indx, 2)) / rpd) ;

fprintf (1, 'directivity : 5.7.3f (V,0.3f] dB\n', ...
directivityDBS (indx, 1), sqrt (directivityDBS (indx, 2)));

fprintf (1, 'power ratio m/v: V.7.3f (V.0.3f] dB\n', ...
powerMainVisbDBS (indx, 1), sqrt (powerMainVisbDBS (indx, 2)));

fprintf (1, 'power ratio m/s: ?.7.3f [S.0.3f) dB\n', ...
powerMainSideDBS (indx, 1), sqrt (powerMainSideDBS (indx, 2)));

fprintf (1, 'power ratio v/s: ;'.! .3f (V.0.3f] dB\n', ...
powerVisbSideDBS (indx, 1), sqrt (powerVisbSideDBS (indx, 2)));

fprintf (1, "avg sidelobe : 7.6.2f (V.0.2f] dB re peak\n', ...
powerSideAvgDBS (indx, 1), sqrt (powerSideAvgDBS (indx, 2))),-

fprintf (1, 'nrst sidelobe : '16.2f [V.0.2f] dB re peak, ?.0.2f I'!,0.2f) deg off beamW
slNrstPowrDBS (indx, 1), sqrt (slNrstPowrDBS (indx, 2)), ...
slNrstDistS (indx, 1) / rpd, sqrt (slNrstDistS (indx, 2)) / rpd);

fprintf (1, "Igst sidelobe : \'.6.2f l'J0.2f) dB re peak, V.0.2f [V.0.2f] deg off beam\n'
slLgstPowrDBS (indx, 1), sqrt (slLgstPowrDBS (indx, 2)), ...
slLgstDistS (indx, 1) / rpd, sqrt (slLgstDistS (indx, 2)) / rpd);

end

end 'A loop over realizations

V. Plot performance characteristics as function of independent variable
V. (summary plot) .

V. If more than one realization has been accumulated for any value of
V. the independent variable, the mean is plotted with uncertainty bars.
v. The extension of the uncertainty bar above the mean equals one

40 C. 5. West

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

standard deviation, and likewise below the mean. Otherwise, only
the values (or the one realization are plotted.

Plots that show more than one measure distinguish them by color or
line style and may use both a left and right axis. The color or
style and axis for each measure is given in codes in parentheses in
the title of the plot. The first code abbreviates the color or line
style:

R red solid

G green dashed

B blue : dotted

C cyan

M magenta

Y yellow

K black

W white

V. and the second letter indicates the axis, L for left and R for
V. right.

if indVarLen > 1
figure (figSum);
elf;
axesSum - zeros (12, 1); * space for axes handles

i Axes 1: pointing error

subplot (4, 2, 1);
axesSum (1) = gca;
if any (numAcc > 1)

hline - errorbar (indVar, errPointS (:, 1
set {hline, discrim, discrimValue {1});
set (hline (1), 'linestyle', •-■);

else
plot (indVar, errPointS (:, 1) / rpd) ;

end
ylabel ('(degl');
title ('pointing error');

'■!. Axes 2 and 3: beam power and directivity

/ rpd, sqrt (errPointS (:, 2)) / rpd);
possibly override errorbar's default solid line style

but leave the error bars themselves solid

1), sqrt (beamPowerDES (:, 2)));

subplot (4, 2, 2);
axesSum (2) - gca;
if any (numAcc > 1)

hline - errorbar (indVar, beamPowerDBS (:,
set (hline,'discrim, discrimValue (1));
set (hline (1), 'linestyle', '-');

else
plot (indVar, beamPowerDBS (:, 1));

end
ylabel C(dB re coherent)*);
title (strcat {'peak power dens (', discrimName (1), —

' L), directivity (', discrimName (2), ' R)*));
axesSum (3) - axes ('position', get (gca, 'position'));
if any (numAcc > 1)

hline - errorbar (indVar, directivityDBS (:, 1), sqrt (directivityDBS (:
set (hline, discrim, discrimValue {2});
set (hline (1), 'linestyle', '-');

else
plot (indVar, directivityDBS (:, 1), discrim, discrimValue (2));

end
set (gca, 'yAxisLocation', 'right', 'color', 'none');

?,
i Axes 4 and 5: beam widths

*
subplot (4, 2, 3);

axesSum (4) = gca;

if any (numAcc > 1)
hline - errorbar (indVar, hpbwMjrS (:,

set (hline, discrim, discrimValue ID);

set (hline (1), 'linestyle', '-');

else
plot (indVar, hpbwMjrS (:

end
ylabel l'(deg)');

title (strcat ('hpbw major (',

' L) & minor (',

axesSum (5) = axes ('position'

if any (numAcc > 1)
hline - errorbar (indVar, hpbwMnrS (:, 1)

set (hline, discrim, discrimValue 12));

set (hline (1), 'linestyle', '-');

else
plot (indVar, hpbwMnrS (:, 1) / rpd, discrim,

end
set (gca, 'yAxisLocation', 'right', 'color', 'none');

yLimL = get (axesSum (4), 'ylim');

yLimR ■= get (axesSum (5), 'ylim');

if yLimL (1) < yLimR (2)
set (axesSum (4), 'xlimmode', 'manual', 'ylim', tyLimR(l) yLimL(2)l);

set (axesSum (5), 'xlimmode', 'manual', 'ylim', [yLimR(l) yLimL(2)]);

1) / rpd, sqrt (hpbwMjrS (:, 2)) / rpd) ;

1) / rpd);

discrimName (1),

discrimName (2),

, get (gca

R)')) ;

position')) ;

/ rpd, sqrt (hpbwMnrS (:, 2)) / rpd) ;

discrimValue (2));

An Introduction to AMSTATS 41

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

V. Setting xlimmode to manual prevents rescaling of the x axis when
V. the y axis is changed,

end

V, Axes 6: beam toll

subplot (4, 2, 4);
axesSum {6) = gca;
if any (numAcc > 1}

hline = errorbar (indVar, rolls (:, 1}
set (hline, discrim, discrimValue 11});
set (hline (1), 'linestyle', *-');

else
plot (indVar, rolls (:, II / rpd);

end
ylabel (Mdeg)');
title ('beam roll');
v,

/ rpd, sqrt (rolls (:, 2)1 / rpd);

1), sqrt (beamDepthDBS (:, 2)));

7. Axes 7: beam depth
V.
subplot (4, 2, 5);
axesSum (7) = gca;
if any (numAcc > 1)

hline - errorbar (indVar, beamDepthDBS (:
set (hline, discrim, discrimValue (1>);
set (hline (1), "linestyle", '-');

else
plot (indVar, beamDepthDBS (:, 1));

end
ylabel C(dB re peak)');
title ('beam depth');
■I.

V. Axes 8 and 9: power ratios
*
subplot (4, 2, 6);
axesSum (8) - gca;
if any (numAcc > 1)

hline - errorbar (indVar, powerMainVisbDBS(:, 1), sqrt (powerMainVisbDBS(:,2)));
set (hline, discrim, discrimValue {1});
set (hline (1), 'linestyle', '-');

else
plot (indVar, powerMainVisbDBS(:,1));

end
ylabel ('(dB)');
title (strcat ('power m/v (', discrimName (1), ...

* L), m/s (', discrimName (2), ...
' R), v/s (', discrimName (3), ' R)'));

axesSum (9) - axes ('position', get (gca, 'position'));
if any (numAcc > 1)
hline - errorbar (indVar, powerMainSideDBS(:,1),

sqrt (powerMainSideDBS(:,2)));
set (hline, discrim, discrimValue (2});
set (hline (1), 'linestyle', ■-■),-
set (gca, 'nextplot', 'add');
hline - errorbar (indVar, powerVisbSideDBS(:,1), ...

sqrt (powerVisbSideDBS(:,2)));
set (hline, discrim, discrimValue (3J);
set (hline (1), 'linestyle', '-*);
set (gca, 'nextplot', 'replace');

else
plot (indVar, powerMainSideDBS(:,1), discrim, discrimValue {2)1;
set (gca, 'nextplot', 'add');
plot (indVar, powerVisbSideDBS(:,1), discrim, discrimValue (3));
set (gca, 'nextplot', 'replace');

end
set (gca, 'yAxisLocation', 'right*, 'color', 'none');
•I.
'* Axes 10 and 11: sidelobe powers
'*
subplot (4, 2, 7);
axesSum (10) - gcä;
if any (numAcc > 1)
hline - errorbar (indVar, slLgstPowrDBS (:, 1), sqrt (slLgstPowrDBS (:, 2))),-
set (hline, discrim, discrimValue (1));
set (hline (1), 'linestyle', '-');
set (gca, 'nextplot', 'add');
hline - errorbar (indVar, slNrstPowrDBS (:, 1), sqrt (slNrstPowrDBS (:, 2)));
set (hline, discrim, discrimValue (21);
set (hline (1), 'linestyle', '-');
set (gca, 'nextplot', 'replace');

else
plot (indVar * ones (1, 2), ...

[SlLgstPowrDBS!:,1) slNrstPowrDBS(:,1)));
end
ylabel ('(dB re peak)');
title (strcat ('sidelobe power: Igst (', discrimName (1), ...

* L), nrst (', discrimName (2), ...
' L), avg (', discrimName (3), * R)'));

axesSum (11) - axes ('position', get (gca, 'position'));
if any (numAcc > 1)

hline «= errorbar (indVar, powerSideAvgDBS (:, 1), sqrt (powerSideAvgDBS (:, 2)));
set (hline, discrim, discrimValue (3));

42 C. S. West

2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

set (hllne (1), 'linestyle', '-');
else
plot (indVar, powerSideAvgDBS (:, 1), discrim, discrimValue (3)1;

end
set (gca, 'yAxisLocation', "right", "color", 'none');

V. Axes 12: sidelobe distances
V.
subplot (4, 2, 8);
axesSum (12) = gca;
if any (numAcc > 1)
hline - errorbar (indVar, slLgstDistS (:, 1) / rpd, sqrt IslLgstDistS (:, 2)) / rpd);
set (hline, discrim, discrimValue (1));
set (hline (1), 'linestyle', '-■);
set (gca, 'nextplot', 'add');
hline - errorbar (indVar, slNrstDistS (:, 1) / rpd, sqrt (slNrstDistS (:, 2)) / rpd);

set (hline, discrim, discrimValue (2|);
set (hline (1), "linestyle", '-');
set (gca, 'nextplot', "replace");

else
plot (indVar * ones (1, 2), ...

[slLgstDistS(:,1) slNrstDistS(:,1)] / rpd);

end
ylabel ("(deg)");
title (strcat ("sidelobe distance: Igst (', discrimName (1), ...

'), nrst (', discrimName 12), ')'));

%
% Touch up
%
set (findobj (gcf, 'type', 'axes"), "xlim", ...

Imin(indVar) max(indVar)] ...
+ 0.1 * (max (indVar) - min (indVar)) * [-1 l])i

axesSumTitle - axes ("position", (0011), ...
"color", "none", 'visible', "off", —
■defaultTextFontSize', 10,
•defaultTextHorizontalAlignment", "center");

text (0.5, 0.0S, indVarName, ...
*horizontalAlignment', "center");

end
clear hline

X make x-axis limits uniform

% create invisible axes
'* for titling

'■k display name of independent
% variable

Plot last realization

Three projections of the hemisphere are available: Lambert,
Stereographic, and orthographic.

Lambert projection:

. The Lambert projection preserves the relative areas of pbrtions of
, the hemisphere. That is, the ratio of areas of two regions on the
. projection is the same as on the hemisphere. The azimuth coordinate
i of a point in the projection is the same as its azimuth coordinate
i on the hemisphere, while its radius r from the center of the
i projection is related to the polar angle. This relationship may be
, derived by setting the spherical surface area sin polar d(polar)
. d(azmth) equal to a constant times the planar surface area r dr
. d(azmth) and integrating. The radius is then given by

, 1/2 polar
. r = 2 sin .

2

I For computer graphics the Cartesian coordinates are more convenient;

'. they are

t u = r cos azmth = R ex

k v - r sin azmth = R cy

-1/2 polar
2 sec

2

-1/2

V. For points outside visible space (that is, for cx'2 + cy"2 > 1), cz
V. is zero so that R - 1 and no transformation is applied.

V. Stereographic projection:

V. The stereographic projection preserves angles on the hemisphere. To
V. derive the governing relationship for the projection, use the same
". azimuthal angle for the projection as for the hemisphere, and let
V. the radius be a function of the polar angle: r - f (polar). Equate
V. the aspect ratios of orthogonal derivatives, as

V. d (polar) dr
*
'A sin polar d(azmth) r d(azmth)

An Introduction to ARRSTATS 43

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278

f'(polar) d(polar)

f (polar) d(azmth)

(where f is the first derivative), rearrange, and integrate to
obtain

polar 1 - cos polar
f (polar) = tan

sin polar

V. up to an arbitrary multiplicative constant. The projected Cartesian
V. coordinates of a point (ex, cy, cz) on the sphere are

u = r cos azmth = R ex

V, v = r sin azmth = R cy

f (polar) 1 1

sin polar 1 + cos polar 1 + cz

For points outside visible space (that is, for cxA2 + cyA2 > 1), cz
is zero so that R - 1 and no transformation is applied.

The center of projection is opposite boresight (ex - cy - 0, cz -
-1), and with the above choice of multiplicative constant, the plane
of projection is the cz - 0 plane.

Orthographic projection:

The orthographic projection gives a 3D view of the hemisphere.

if 1
proj 1;

coordSys - 1;

faceColor - •flat
pointZoom - 0;
V. The "show" input
showBeamRegion -
showWidthRegion ■
showWidthContAct -
showWidthContFit -
showPointGrid -
showPoint »
showPointUnc ■
showSidelobeGrid -
showSidelobeNrst -
showSidelobeLgst "

% INPUT 1 to plot, 0 to skip
* INPUT 1 for 2D equal-area Lambert
% 2 for 2D Stereographic
% 3 for orthographic (3D hemisphere)
'■), INPUT 1 for grid of spherical coordinates
% 2 for grid of traditional coordinates
% INPUT 'flat' or 'interp' shading
'i INPUT magnification factor or 0 for centered full view

s below are coded only for 2D views.
'I INPUT 1 to show main beam region
% region above width contour
% actual width contour
% fitted width contour (ellipse)
% main beam peak on sampled grid
% interpolated main beam peak (pointing vector)
¥, axes of uncertainty ellipse of pointing vector
% sidelobe peaks on sampled grid
% nearest sidelobe
'A largest sidelobe

dirCosShiftX;
ones (1, ax);

use true grid

use shifted grid to center
patches on data points

'I Prepare for plotting

if stremp (faceColor, 'interp')
dirCosXMtxSurf ■= dirCosXMtx;
dirCosYMtxSurf - dirCosYMtx;
dirCosZMtxSurf - dirCosZMtx;
visBoolSurf - visBool ;

elseif stremp (faceColor, 'flat')
dirCosXMtxSurf - ones (ay, 1)
dirCosYMtxSurf - dirCosShiftY
radSqr - dirCosXMtxSurf.-2 + dirCosYMtxSurf."2;
visBoolSurf - (radSqr < 1);
dirCosZMtxSurf - zeros (ay, ax);
dirCosZMtxSurf (visBoolSurf) - sqrt (1 - radSqr (visBoolSurf));
clear radSqr;

else
error ('Illegal value of faceColor.');

end
if stremp (faceColor, 'interp') V. identify visible points plus those immediately
gBlnklndx = zeros (ay, ax); V. or diagonally adjacent (Boolean for now)
gBlnklndx (l:ay-l, l:ax-l) = visBool (2:ay, 2:ax);

- gBlnklndx (l:ay-l, 2:ax) I visBool (2:ay , l:ax-l);
gBlnklndx (2:ay , l:ax-l) I visBool (l:ay-l, 2:ax);

(2:ay , 2:ax) 1 visBool (l:ay-l, l:ax-l);
'1, identify visible points plus those immediately
V. but not diagonally adjacent (Boolean for now)

gBlnklndx (l:ay-l, l:ax } I visBoolSurf (2:ay , l:ax);

gBlnklndx (l:ay-l
gBlnklndx (2:ay
gBlnklndx (2:ay

else
gBlnklndx = VisBoolSurf
gBlnklndx (l:ay-l
gBlnklndx (l:ay-l

2: ax)
l:ax-l)
2:ax) = gBlnklndx

I
•1) - gBlnklndx (l:ay-l,

gBlnklndx (l:ay , l:ax-l) = gBlnklndx (l:ay
end
gBlnklndx = -gBlnklndx;
gZeroIndx « (gSqr == 0);
gOKIndx - find (-(gBlnklndx I gZeroIndx));
gZeroIndx - find (gZeroIndx);
gBlnklndx - find (gBlnklndx);
if 1

V. Decibel plot

l:ax-l) I visBoolSurf (2:ay
l:ax-l) I visBoolSurf (l:ay

2: ax)
2:ax)

0 in visible region plus appropriate border
1 where zero, 0 elsewhere (Boolean for now)
1 for nontrivial values
convert to indices

INPUT 0 for linear, 1 for decibel plot

44
C. S. West

2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
234 9
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

- dim (1)

clim (2)

10
ones

V. INPUT dB range
loglO (gSqr (gOKIndx)));

size (gZeroIndx)); ':■■ condition log of 0

gPlot - zeros {ay, ax);
clim - [-50 0];
gPlot (gOKIndx) - max (clim (1)
gPlot (gZeroIndx)

else
7 Linear plot
gPlot » gSqr;
clim - (0 1);

end
if invertBkgd

gPlot (gBlnklndx)
else

gPlot (gBlnklndx)
end
clear visBoolSurf gBlnklndx gZeroIndx gOKIndx;
figure (figPat);
fore - get (figPat, 'defaultLineColor'); «• expect black or white
if invertBkgd i choose fore- and background colors compatible with color map

':. set appropriate value for invisible points
ones (size (gBlnklndx));

clim (1) * ones (size (gBlnklndx)

swap

V. lines of constant polar angle
azmthOffst;

% lines of constant azimuth

(u . „v . , rpd - azmthOffst;
gridlAzmth] - meshgrid (gridlPolar, gridlAzmth);
grid2Polar] - meshgrid (grid2Azmth, grid2Polar) ,-

(0
(0
(0
(0

10
5
5

30

90)
360)
90)

360)

rpd;
rpd
rpd;

lines of constant azimuth

lines of constant elevation

gridlEl);
grid2Az>;

cos (gridlAz));
-sin (gridlAz)) -

.* cos (grid2Az));
-sin (grid2Az)) -

');

azmthOffst;

azmthOffst;

fore - 1 - fore;
end
back - 1 - fore;
switch coordSys
case 1

gridlPolar -
gridlAzmth -
grid2Polar -
grid2Azmth -
[gridlPolar,
[grid2Azmth,

case 2
gridlAz - (-90 : 10 : 90) * rpd;
gridlEl - (-90 : 5 : 90) * rpd;
grid2Az - (-90 : 10 : 90) * rpd;
grid2El - (-90 : 10 : 90) * rpd;
(gridlAz, gridlEl) - meshgrid (gridlAz
[grid2El, grid2Az) - meshgrid (grid2El
gridlPolar - acos (cos (gridlEl)
gridlAzmth - atan2 (tan (gridlEl)
grid2Polar - acos (cos (grid2El)
grid2Azmth - atan2 (tan (grid2El)

otherwise
error (»Invalid value of coordSys

end

V. Plot array factor
V.
if proj == 1

V,
I Lambert projection

?.
radFactSurf - 1 ./ sqrt (1 + dirCosZMtxSurf)
hSurf - surf (radFactSurf .* dirCosXMtxSurf,

radFactSurf .* dirCosYMtxSurf,
gridlRadFact - sqrt (2) * sin (gridlPolar /
line (gridlRadFact .* cos (gridlAzmth), ...

gridlRadFact . * sin (gridlAzmth), ...
clim (2) * ones (size (gridlRadFact)),

grid2RadFact - sqrt (2) * sin (grid2Polar / :
line (grid2RadFact .* cos (grid2Azmth), ...

grid2RadFact .* sin (grid2Azmth), ...
clim (2) * ones (size (grid2RadFact)),

set (gca, 'drawmode', 'fast');
xylim - [-1 1];
zlim = clim;
viewAz ■= 0;
viewEl - 90 * rpd;

elseif proj -~ 2
4
'-fc Stereographic projection
V,
radFactSurf - 1 ./ (1 + dirCosZMtxSurf);
hSurf - surf (radFactSurf .* dirCosXMtxSurf,

radFactSurf .* dirCosYMtxSurf,
gridlRadFact - tan (gridlPolar / 2);
line (gridlRadFact .* cos (gridlAzmth), ...

gridlRadFact .* sin (gridlAzmth), ...
clim (2) * ones (size (gridlRadFact)),

grid2RadFact - tan (grid2Polar / 2);
line (grid2RadFact .* cos (grid2Azmth), ...

grid2RadFact .* sin (grid2Azmth), ...
clim (2) * ones (size (grid2RadFact)),

set (gca, 'drawmode', 'fast');
xylim = [-1 11;
zlim = clim;
viewAz •= 0;
viewEl - 90 * rpd;

elseif proj == 3

V. Orthographic projection (3D hemisphere)

float - 1 02; '.'. radius of annotations relative to unit hemisphere
hSurf - surf (dirCosXMtxSurf, dirCosYMtxSurf, dirCosZMtxSurf, gPlot)

; % radius factor for surface plot

gPlot);
2);

'color*, fore);

•color', fore);
?, no hidden objects to worry about

* Matlab azimuth and
V, elevation (but in radians)

V. radius factor for surface plot

gPlot);

'color', fore);

'color', fore);
v, no hidden objects to worry about

V. Matlab azimuth and
V. elevation (but in radians)

An Introduction to ARRSTATS 45

2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
24 60
2461
2462

gridlRadFact - sin (gridlPolar);
line (gridlRadFact .* cos (gridlAzmth) * float,

gridlRadFact . * sin (gridlAzmth) * float,
cos (gridlPolar) * float, 'color", fore);

grid2RadFact - sin (grid2Polar);
line (grid2RadFact .* cos (grid2Aztnth) * float,

grid2RadFact .' sin (grid2Azmth) * float,
cos (grid2Polar) * float, 'color', fore);

set (gca, 'drawmode', 'normal'); V.
xylim - 1-1 1] * float;
zlim - (-1 1) ' float;
switch 1 !.'- INPUT 1 to look down main beam

case 1
':■. Look down main beam
viewAz = pi/2 + steerAzmth + azmthOffst;
viewEl = pi/2 - steerPolar;

case 2
V. Look down boresight
viewAz •= 0;
viewEl = 90 * rpd;
set (gca, 'drawmode', 'fast');

otherwise
\\ Look somewhere
viewAz - 60 * rpd; V. INPUT custom view azimuth

remove hidden objects

2, down boresight; 3, custom

Matlab azimuth and
elevation (but in radians)

Matlab azimuth and
elevation (but in radians)

no hidden surfaces

viewEl - 30
end

end * plotting

rpd; and elevation (Matlab coordinates)

», Annotate plot (2D only)

if (proj ~ 1) I (proj — 2)
switch proj V. set appropriate radius factor
case 1

radFact - 1 ./ sqrt (1 + dirCosZMtx);
case 2

radFact - 1 ./ (1 + dirCosZMtx);
end
if showBeamRegion & beamExist

line (radFact (beamlndx) .* dirCosXMtx (beamlndx), ...
radFact (beamlndx) .* dirCosYMtx (beamlndx), ...
dim (2) * ones (size (beamlndx)), ...
'linestyle', 'none', 'marker', '+', 'color', fore);

end
if showWidthRegion & capClosed

line (radFact (caplndx) .* dirCosXMtx (caplndx), ...
radFact (caplndx) .« dirCosYMtx (caplndx), ...
clim (2) * ones (size (caplndx)), ...
•linestyle', 'none', 'marker', 'x', 'color', fore);

end
if showWidthContAct s capClosed

switch proj
case 1

radFactCapAct - 1 ./ sqrt (1 + capContZ);
case 2

radFactCapAct - 1 ./ (1 + capContZ);
end
line (radFactCapAct .* capContX, radFactCapAct .* capContY,

clim (2) * ones (size (capContX)), 'linestyle', ':', 'color', back);

clear radFactCapAct
end
if showWidthContFit t capClosed

switch proj
case 1

radFactCapFit - 1 ./ sqrt (1 + cFitZ);
case 2

radFactCapFit - 1 ./ (1 + cFitZ);
end
line (radFactCapFit .* cFitX, radFactCapFit .* cFitY, ...

clim (2) * ones (size (cFitX)), "linestyle", "-', "color", back);
clear radFactCapFit

end
if showPointGrid

line (radFact (gSqrMaxRow, gSqrMaxCol) .* dirCosXMtx (gSqrMaxRow, gSqrMaxCol),
radFact (gSqrMaxRow, gSqrMaxCol) .* dirCosYMtx (gSqrMaxRow, gSqrMaxCol),
clim (2), 'linestyle', 'none', 'marker', '*', 'color', back);

end
if showPointUnc

switch proj
case 1
pointRadFact - 1 / sqrt (1 + pz) ;
Jacob - [l+pz+px-2/pz px*py/pz » Jacobian of

py'px/pz l + pztpy-2/pz) / (2* (1+pz)" (3/2) > ; V. projection

case 2
pointRadFact - 1 / (1 ♦ pz);
Jacob - (l+pztpx"2/pz px'py/pz '* Jacobian of

py'px/pz l+pz+py"2/pz] / (l+pz)"2; '.'. projection

end
pVarProj - Jacob * pVar * Jacob'; V. covariance matrix in this projection
[pEigVec, pEigVall ... '.'• diagonalize: pVar

- eig (pVarProj); '>'■ - pEigVec * pEigVal * pEigVec'
pPrAx - 2 * pEigVec . . . V. scale principal axes (columns of

* sqrt (pEigVal); '•■ pEigVec) to 2 standard deviations

46 C. S. West

24 63
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
24 98
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554

line (pointRadFact * px + (-1 1]■ * pPrAx (1, :), ...
pointBadFact * py + [-1 11' * pPrAx (2, :), ...
dim (2) * (1 11, ...
'linestyle', '-', 'color', back);

clear pointRadFact Jacob pVarProj pEigVec pEigVal pPrAx
elseif showPoint

switch proj
case 1

pointRadFact = 1 / sqrt (1 + pz);
case 2

pointRadFact = 1 / (1 + pz);
end
line (pointRadFact * px, pointRadFact * py, clim (2), ...

'linestyle', 'none', 'marker', '.*, 'color', back)
clear pointRadFact

end
if showSidelobeGrid

line (radFact (sllndx) .* dirCosXMtx (sllndx), ...
radFact (sllndx) .* dirCosYMtx (sllndx), ...
clim (2) * ones (size (sllndx)), —
•linestyle*, 'none', 'marker', 's*, 'color', back);

end
if showSidelobeNrst

switch proj
case 1

radFactSlNrst - 1 / sqrt (1 + slNrstVec (3)>;
case 2

radFactSlNrst - 1 / (1 + slNrstVec (3));
end
line (radFactSlNrst .* slNrstVec (1), ...

radFactSlNrst .* slNrstVec (2), ...
clim (2), 'linestyle', 'none*, 'marker', '+', 'color', back);

clear radFactSlNrst
end
if showSidelobeLgst

switch proj
case 1

radFactSlLgst - 1 / sqrt (1 + slLgstVec (3)).-
case 2

radFactSlLgst - 1 / (1 + slLgstVec (3D;
end
line (radFactSlLgst .* SlLgstVec (1),

radFactSlLgst .* slLgstVec (2), ...
clim (2), *linestyle', 'none*, 'marker', *x*, 'color', back);

clear radFactSlLgst
end

end % annotations
*
t. Arrange graphics properties
?.
axesPat - gca;
rotate (get (axesPat, 'children'),

(0 0 1), azmthOffst / rpd);
set (hSurf, 'edgecolor', 'none');
set (hSurf, 'facecolor*, faceColor);
colormap (cmap);
set (axesPat, 'clim', clim);
if cbarVert « position the colorbar

axesCbar = colorbar ('vert');
set (axesCbar, ...

•units', 'normalized', ...
■position", [(l+0.2*cbarSize)/(l+cbarSize) 0.05 0.4*cbarSize/(l+cbarSize) 0.9]);

set (axesPat,
•units', 'normalized', ...
'position', [0 0 1/(1+cbarSize) 1]);

else
axesCbar = colorbar Choriz');
set (axesCbar, ...

'units', 'normalized', ...
•position', [0.05 0.3*cbarSize/(1+cbarSize) 0.9 0.5*cbarSize/(1+cbarSize)]);

set (axesPat, ...
•units', 'normalized', ...
'position', (0 cbarSize/(1+cbarSize) 1 1/(1+cbarSize)]);

end
set (figPat, 'children*, ... ','. put color bar in front of pattern but let

[axesCbar axesPat]'); v. axesPat remain the current axis
set (axesPat, ...

'xlim', xylim, ...
'yliro', xylim, ...
'zlim', zlim , ...
'dataAspectRatio', diff ([xylim' xylim* zlim']), ...
'visible', 'off, ...
'view', [viewAz/rpd viewEl/rpd]);

if proj == 3
cameraDist = norm (...

get (axesPat, 'cameraPosition') ...
- get (axesPat, 'cameraTarget'), 2);

set (axesPat, 'cameraViewAngle*, ...
2 * atan (float * diff (zlim) ...

/ (cameraDist * diff (xylim))) / rpd) ;

end
if (pointZoom ~= 0) & peakvisb

'i rotate plotted objects to
t compensate for azmthOffst

V. distance from camera
V. to the surface

% set view angle to
i1, exactly span the
V, unit sphere

An Introduction to ARRSTäTS 47

2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

px - sin (azmthoffst)
px + cos (azmthoffst)

py;
py;

pxRot
pyRot

pxRot
pyRot

[-1
1-1

[-1 1]
[-1 1]

pointZoom, .
pointZoom);

pointZoom, .
pointZoom);

pointZoom)) / rpd);

pxRot - cos (azmthoffst)
pyRot ■» sin (azmthoffst)
if proj «= 1
pointRadFact - 1 / sqrt (1 + pz) ;
set (axesPat, 'xlim*, pointRadFact

'ylim', pointRadFact
elseif proj == 2

pointRadFact - 1 / (1 + pz);
set (axesPat, 'xlim', pointRadFact

'ylim', pointRadFact
elseif proj ■== 3

set (axesPat, 'cameraViewAngle'
2 * atan (float / (cameraDist

end
clear pxRot pyRot pointRadFact

end V, zoom
clear dirCosXMtxSurf dirCosYMtxSurf dirCosZMtxSurf,-
clear fore back gridPolar gridAzmth gridAzmthSmth;
clear radFactSurf gridFact viewAz viewEl float radFact;

end

drawnow;

end % loop over independent variable
clear indx

% Print warnings, if any
I
if any (numAcc < numRlz)
disp ('Warning: at least one realization could not be fully');
disp (' analyzed; inspect the matfiles in the current directory.');

end

clear cbarSize
clear lx ly mx my nx ny;
clear nummx numLMlf numLMNX numLMNY;
clear tlndx rlzNum;

t, end of program

V. Suggestions for improvements

'* Implement non-uniform excitation magnitudes:
*
'i As needed, non-uniform illumination weights may be coded
% straightforwardly.

V. compensate for
V. azmthoffst

Implement element factor and improve integration of radiated powers:

Currently the element factor is implicitly coded as one everywhere,
so that the elements radiate uniformly into the hemisphere. A more
realistic element factor is cos polar [1], being one at broadside
and zero at grazing. Note, however, that in integrating the data
over solid angles to calculate radiated powers, we divide the data

V, by cos polar. Performing this multiplication and division in
V. succession could yield invalid data near grazing, where cos polar is
'I small. Obviously, this difficulty could be avoided by maintaining
V. the unsealed data for use in the integration while using the scaled
I data for all other processing. The calculations of the pointing
V, vector from the excitation phases and of the peak power should also

account for the element factor.

More generally, one might wish to apply an arbitrary element factor.
If it is small near grazing, the difficulty described above
persists. One solution is to specify the element factor relative to
cos polar; the user ensures that all values of that ratio are

* reasonable. The data used in the integration are scaled by the
* ratio, while the data used elsewhere are scaled by both the ratio
V, and cos polar. One could also allow element factors defined over
V. the entire sphere, including radiation into z < 0, perhaps by
V. storing the back radiation pattern in a second g matrix and
* modifying the analysis routines.-,

V. Broadening our perspective, we note that these problems are
V. ultimately due to the integration algorithm, in that it blindly
'.'. applies a Jacobian that diverges at grazing. One consequence is
V, that data cells whose centers are just inside the border of visible

space contribute their entire value scaled by a large Jacobian,
V. whereas those whose centers are just outside contribute nothing.
','. More correctly, both should contribute about half of their value
V. scaled according to some average location of the contributing

region. Cells almost entirely outside of visible space should
V. contribute very little. A better algorithm would reproduce this

behavior.

V. Allow pattern cuts:

V. Often one is interested in a cut of the pattern along a path on the
V. unit hemisphere, such as cuts through the main beam along azimuth
V. and elevation curves or along the great circles of maximum and
V. minimum beam width. If only a graphical presentation is desired,
'.'. the cut could be interpolated from the pattern. If an analysis is

48 C. S. West

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715

also desired, specialized routines would probably be required, as
the current routines expect data over two directional coordinates.

Consider alternate calculation of beam widths and roll:

The beam widths and roll are derived from an ellipse fitted to a
level contour of the main beam. Currently the fit is performed in
the boresight-centered Stereographic projection regardless of the
pointing vector. This projection preserves the orientation and
orthogonality of the major and minor axes of the ellipse. However,
because scale in the Stereographic projection increases away from
boresight, off-boresight contours are expanded toward the edge of
the projection. Although scale is uniform in all directions for an
infinitesimal region, radial scale is exaggerated relative to
azimuthal scale for a finite region. For a broad beam off
boresight, the distortion of beam width may be significant.

An improvement might be achieved with two changes. First, center
the projection on the pointing vector, assuming that the contour
will be found to lie centered on the pointing vector as well.
Second, instead of the stereographic projection, use the azimuthal
equidistant projection, for which distances measured on a line
passing through the center of the projection are true. Regardless
of beam width, the lengths of the major and minor axes of the
projected ellipse will equal those of the ellipse on the hemisphere,
provided that the center of the ellipse is also the center of the
projection.

In centering the projection on the pointing vector, one is free to
choose the orientation of the projection relative to the spherical
coordinate system, and a judicious choice of this angle facilitates
calculation of the beam's roll angle. Construct at boresight on the
hemisphere two tangent axes u and v; let positive u be directed
toward spherical azimuth zero and positive v toward pi/2. Next,
construct the arc connecting boresight with the pointing vector.
Translate the u-v origin and system along this arc without rotation
in the plane locally tangent to the hemisphere, so that u, v, and
the arc maintain the same local orientation. If the ellipse is
centered on the pointing vector, the roll angle will be the angle
from the positive u axis to the major axis.

%
%
%
!L
1
%
%
% Allow linear arrays:
■I.

The current analysis routines cannot handle linear arrays because of
several incompatibilities. For example, the main beam of
one-dimensional arrays with isotropic element patterns is a cone
about the axis of the array, so the direction of radiation is
specified by a single number — the angle between the axis and the
cone. However, the current analysis routines seek a two-parameter
specification of the main beam direction and will generally fail.

% Likewise, the beam width is described by one number, but the current
4 routines seek two parameters. Furthermore, analyses that depend on
% these values (such as determining the proximity of sidelobes) will
* also fail. If linear arrays are if interest, the analysis routines
% must be expanded. One might also add graphics routines tailored to
'I one-dimensional arrays.

V. Note that a non-isotropic element pattern will generally produce a
% variation in the direction orthogonal to the main beam contour,
5t allowing the analysis routines to proceed. Results thereby obtained
% should be interpreted accordingly. (Using a non-isotropic element
i pattern will not benefit the routine that locates the pointing
% vector from the excitation phases. One might ignore its results
?. when the final pointing vector is calculated, using only the
I pointing vector obtained from the Fourier transform.)

V. [1] R. Tang and R. W. Burns, "Phased Arrays," in _Antenna
t. Engineering Handbook^, 3rd ed., R. C. Johnson, Ed. New York, NY:

McGraw-Hill, 1993, Ch. 20, Sec. 3.

REFERENCES

1. R. J. Mailloux, "Array grating lobes due to periodic phase, amplitude, and time delay quantization,"
IEEE Trans. Antennas and Propagation, vol. 32, pp. 1364-1368, Dec. 1984.

2. A. P. Goutzoulis and D. K. Davies, "Switched fiber optic delay architectures," in Photonic Aspects of
Modern Radar, H. Zmuda and E. N. Toughlian, Eds. Boston, MA: Artech House, 1994, pp. 351-380.

3. A. K. Agrawal and E. L. Holzman, "Beamformer architectures for active phased-array radar
antennas," IEEE Trans. Antennas and Propagation, vol. 47, pp. 432-442, Mar. 1999.

4. R. J. Mailloux, Phased Array Antenna Handbook, ch. 7. Norwood, MA: Artech House, 1994.
5. R. C. Hansen, Phased Array Antennas, Sec. 12.4. New York: John Wiley & Sons, 1998.
6. B. D. Steinberg, Principles of Aperture and Array System Design, ch. 13. New York: John Wiley &

Sons, 1976.
7. B. R Chrisman, "Planar array antenna design analysis," in Proc. Tactical Communications Conf,

1990, vol. 1, pp. 705-731.
8. P. J. Wright, "Simulation of phased array antennas," in Tenth International Conf. on Antennas and

Propagation, 1997, vol. 1, pp. 498-501.
9. A. K. Agrawal, E. L. Williamson, and J. G. Ferrante, "Design criteria for wideband active phased

array antennas," in IEEE Antennas and Propagation Society International Symposium 1997 Digest,
vol. 2, pp. 714-717.

10. J. J. Lee et al., "Photonic wideband array antennas," IEEE Trans. Antennas and Propagation, vol. 43,
pp. 966-982, Sept. 1995.

11. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098.
12. J. P. Snyder, Map Projections: A Working Manual, US Geological Survey Professional Paper 1395.

Washington, DC: United States Government Printing Office, 1987.
13. D. H. von Seggern, CRC Standard Curves and Surfaces. Boca Raton, FL: CRC, 1993.
14. R. S. Elliott, "Beamwidth and directivity of large scanning arrays," Microwave J., vol. 7, pp. 74-82,

Jan. 1964.
15. R. S. Elliott, "The Theory of Antenna Arrays," in Microwave Scanning Antennas, vol. 2, R. C.

Hansen, Ed. New York: Academic, 1966, pp. 1-69.

49

