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AN INTRODUCTION TO ARRSTATS — A COMPUTER 
PROGRAM FOR SIMULATING THE EFFECTS OF ERRORS IN 
TIME- AND PHASE-STEERED PLANAR ARRAY ANTENNAS 

1. INTRODUCTION 

Phased array antennas are remarkable for their suitability to many applications, which is partly 
because they steer quickly, allow adaptive processing, conform to special shapes, and produce a variety of 
radiation patterns. As low-sidelobe radiation patterns were being developed, it became apparent that 
errors in the phase or amplitude of the element excitations would limit the lowest achievable sidelobe 
level. Such errors might be due to manufacturing tolerances on the physical structure, inaccurate phase 
shifters, or non-uniform feeds, and can affect the average and peak sidelobe levels, beam width, pointing 
accuracy, and directivity, for example. Although one cannot predict the performance of a given antenna 
without measurements of the phase and amplitude accuracy of each element, one can draw conclusions 
about the behavior of an ensemble of antennas that are statistically identical but have different realizations 
of phase and amplitude errors. The present work applies this approach to a generalized array antenna that 
blends phase- and time-steering to achieve greater bandwidth at a reasonable cost. " The purpose of this 
report is to introduce the reader to a computer program for simulating time- and phase-steered planar 
array antennas subject to deterministic and random excitation errors. It is intended as an overview to the 
features and capabilities of the program and a guide to understanding the program's input, processing, and 
output. 

The theoretical study of errors in array antennas has produced a large body of literature. 
Introductions to these works and key results and derivations may be found in several books. The 
literature on simulations is more sparse, but two programs have been described recently against which this 
work may be contrasted. First, Chrisman7 describes a program that simulates phase-steered planar arrays. 
It computes the directivity and cuts of the design and expected radiation patterns from the error statistics 
using theoretical formulas. One pattern cut intersects the main beam and boresight, and the other is 
normal to it through the main beam; from them the beam width is obtained in those directions. Second, 
Wright8 briefly discusses the features of a simulation of phase-steered arrays. Its parameters include phase 
and amplitude errors, number of quantization bits, and bandwidth, and it can output two-dimensional 
beam patterns, sidelobe statistics, and measures of specialized interest. The program discussed here, 
called ARRSTATS, differs from those in Refs. 7 and 8 primarily in that it can model arrays with a hybrid 
phase- and time-steered architecture,9 including strictly phased arrays and strictly time-steered arrays. 
Also, it computes individual realizations of the hemispherical radiation pattern and obtains most measures 
of the array performance directly from the full pattern rather than from formulas or from pattern cuts 
chosen a priori. (Ref. 8 does not specify how its performance measures are obtained.) For example, the 
beam width cuts are always along the major and minor axes of the beam width ellipse, regardless of its 
orientation. Another special feature is a method for locating the beam peak that is highly accurate for 
nearly flat phase fronts; it is the only measure not obtained directly from the radiation pattern. 

In more detail, the modeled array comprises a rectangular grid of phase-steered elements; these 
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C. S. West 

are grouped into time-steered subarrays, which in turn are grouped into time-steered subapertures. The 
phases and times may be quantized. A random phase error may be associated with the elements, and 
random time errors may be assigned to the subarrays and subapertures. Also, random amplitude errors 
may be associated with the elements, subarrays, and subapertures. The user specifies the design 
frequency, at which the error-free times and phases would correctly steer the antenna, and the operating 
frequency, at which the array's behavior is simulated. The antenna may be steered to any direction. 
ARRSTATS assesses the array's performance by computing and analyzing the far-field radiation pattern or 
an ensemble of statistically identical patterns. It ignores polarization and mutual coupling between 
elements and assumes that the elements radiate uniformly into the forward hemisphere. For each 
computed pattern, it determines the following: 

• the location and power density of the main beam peak 
• the error in the main beam's location .,,... 
• the main beam's angular limits, major and minor widths at half power, and orientation 
• the directivity 
• the ratios of powers in the main beam, sidelobes, and the radiation hemisphere 
• the powers and distances of the sidelobes that are strongest and nearest to the main beam 

Furthermore, it can track these measures as functions of a user-specified independent variable. ARRSTATS. 
provides textual output of the performance measures, plots of radiation patterns, and plots of performance. 
measures versus the independent variable. ;        :; b ;R ^fesdf "tr 

ARRSTATS is a script written for version 5.3 of MATLAB, a commercial software package for, 
technical computing." Some elements of the program structure and some of the graphics facilities take 
advantage of features in version 5.3, but much of the code is compatible with earlier versions of 
MATLAB. ARRSTATS consists of one text file and is executed by typing its filename at the MATLAB 
command prompt. The program does not have an input user interface; instead, the user hardcodes input 
into the script before execution. These input points are tagged with the word "INPUT" in the code's 
comments. 

The remainder of this report is structured as follows. Section 2 introduces the coordinate systems 
used for input and output, Section 3 explains the input parameters that describe the array, Section 4 
specifies the model for the excitations, and Section 5 outlines the calculation of the radiation pattern. 
Section 6 describes the pattern measures, Section 7 discusses looping over multiple realizations and 
parameter values, and Section 8 exhibits the program's output. Two appendices are provided: Appendix A 
relates the variables used in this report and in the program, and Appendix B is a listing of the program 
code. Most of the report aims to describe aspects of the program's operation but does not give the details 
of the implementation or algorithms. The interested reader is directed to the code listing, specifically the 
comments that introduce each section of the program. Throughout this report, code variables are printed 
in a monospaced face, and braces ({}) enclose references to code line numbers except where the 
context suggests set notation. 

2. COORDINATE SYSTEMS AND PROJECTIONS 

ARRSTATS internally uses a three-dimensional Cartesian coordinate system to describe space. The 
array lies in the x-y plane and radiates into the half-space z > 0, as in Figure 1. (Although we describe a 
transmitter array, the case for a receiver array is identical.) The far-field spatial distribution of this 
radiation — that is, the radiation pattern — is a function of direction in the half-space. Two variables 
suffice to specify direction, and several pairs of variables are useful for this purpose. First, direction 
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Figure 1 — Cartesian and spherical coordinates; 6, y, a, and e are shown positive 

cosines are the natural coordinates for calculating the array factor, as will be seen later. The direction 
cosines for a given direction are simply the Cartesian coordinates (£ tj, £) of the corresponding unit 
vector. Specifying a direction in the half-space z > 0 requires only £ and n; C, may be obtained from the 
unit vector constraint if needed. Second, spherical coordinates are convenient for constructing flat 
projections of the radiation pattern, as it may be regarded as a function of location on a (curved) 
hemisphere. As shown in Figure 1, the polar angle 6 for a given vector is the angle between the positive z 
axis and the vector, while the azimuth angle i// is the angle between the positive x axis and the projection 
of the vector onto the x-y plane. Third, traditional antenna coordinates connect these simulations to an 
established context. Given the projection of a vector onto the x-z plane, the azimuth angle a is the angle 
between the projection and the z axis, while the elevation angle e is the angle between the projection and 
the vector. These three sets of coordinates are related according to 

£ =sin0cosy/=-cos£sina 

rj =sin0sin^ =   sine 

C =cos0        =   cosecosa 
(1) 

cos# =   cosecosa =C 

tan^ = -tane/sina =?//£ 
(2) 

-tana =£/£" = tan#cosy/ 

sin e-t]     =s'm6s\ny/. 
(3) 

ARRSTATS also employs three projections of the hemisphere onto flat two-dimensional space: 
orthographic, Lambert azimuthal, and stereographic. The orthographic projection yields a view of the 
hemisphere from a particular vantage point without perspective distortion and is available for displaying 
the radiation pattern. The remaining projections both map the hemisphere to a disk such that boresight 
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corresponds to the center of the disk and grazing directions correspond to the perimeter of the disk. To 
describe these projections more specifically, we denote locations on the disk using polar coordinates 
(radius and angle). For both projections, the angular coordinate is set equal to the spherical azimuth angle 
y/; the mapping from the spherical polar angle 0 to the radius r distinguishes the two projections. 

The Lambert projection preserves relative area: the ratio of two areas on the hemisphere equals 
that of the corresponding areas on the projected disk.12 This property may be expressed by equating (to a 
proportionality constant) the spherical and planar surface areas: 

s'm0d0d\// = CrL drL dy, (4) 

where the subscript "L" distinguishes the radius in the Lambert projection from that in the stereographic 
projection below. Canceling dy and integrating both sides produces an integration constant, whose value 
and that of C are determined by the constraints that rL = 0 when 0 = 0 and rL = 1 when 0 = JC/2. One finds 

r, =V2sin-, (5) 
L 2 

which deviates only slightly from a linear relationship for 0 e [0,K/2). When the radiation pattern is 
plotted with the Lambert projection, the areas occupied by structures such as the main beam and sidelobes 
are in true proportion to each other and to the total area. 

While the stereographic projection does not preserve area, it is conformal.12 The local scale is 
uniform in any direction; shape is preserved locally. Great and small circles on the hemisphere are 
projected into circles or straight lines, and the angle between two great circles on the hemisphere equals 
the angle at the intersection of their projected images. To derive the governing relationship, equate the 
aspect ratios of orthogonal derivatives, as 

d0     _ drs (6) 
sm0dy/    rsdy/ 

where the subscript "S" denotes the stereographic projection. Canceling and integrating as before yields 

rs=tan-. (7) s 2 

ARRSTATS internally uses the stereographic projection when identifying the major and minor axes of the 
beamwidth ellipse (see Section 6.3) and makes it available for plotting the radiation pattern. 

3. ARRAY PARAMETERS 

Several parameters describe the antenna's geometry and associated frequencies {29-94}. As 
Figure 2 illustrates, the antenna elements occupy a regular rectangular grid in the x-y plane; the element 
spacings in each dimension, dx and dy, may differ. The elements are grouped hierarchically at three levels. 
The array is subdivided into Lx by Ly subapertures, each of which has an associated time delay for 
steering. Descending to the next level, each subaperture contains Mx by My subarrays, each of which 
likewise has a steering time delay. Finally, each subarray contains Nx by Ny elements, each of which is 
phase-steered. Regular element spacing is maintained across subarray and subaperture boundaries. To 
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array contains 
L^ by Ly time- 

steered subapertures 

subapertures contain 
Mx by My time- 

steered subarrays 

subarrays contain 
Nx by Ny phase- 
steered elements 

\     . . 
A . . 
. JA \ 

Figure 2 — Array structure and geometry 

y 
A. 

->x 

1 
.1 

Figure 3 — Element layout when diamond flag is nonzero 

simulate an array with one time-steered level and one phase-steered level, Lx and Ly should be set to 1; for 
a strictly phased array, also set Mx and My to 1. On the other hand, one may model a strictly time-steered 
array with one or two hierarchical levels by setting Nx and JVy to 1 and 8<p to 360° (this renders the phase 
shifters ineffective; see Section 4.1). 

Two additional program parameters specify special antenna geometries. If the flag diamond is 
nonzero, elements are effectively removed from even diagonals (the zeroth diagonal originates at the 
lower-left element), leaving a diamond pattern of active elements as in Figure 3. The parameter 
azmthOf f st rotates the antenna about the z axis (boresight); it is the angle of the positive x axis of the 
array above the azimuth reference. Within ARRSTATS, all calculations are performed in the antenna 
coordinate system; the steering vector provided by the user is transformed to the antenna coordinate 
system before processing, and output coordinates and plotted structures are transformed from the antenna 
coordinate system after processing. 
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Finally, two parameters supply frequency information. The reference or design frequency/, is that 
at which the time and phase delays would correctly steer the antenna in the absence of error and 
quantization. The operating frequency / is that at which the simulation is to be performed. Multiple 
frequencies may be considered sequentially as described in Section 7. 

4. EXCITATIONS 

4.1. Error-Free Excitations 

We now construct the element excitations in detail to show the structure of the array model, 
beginning with the error-free case {338-410}. Because only one frequency is considered at a time, time 
delays may be expressed as equivalent phase delays. We therefore decompose the excitations into 
magnitude and phase as 

«,,nj=l«vly|exp(-/Ö/V)y),   nwe{0,l,...,LwMwNw-l},   we{x,y}, (8) 

where the overbars indicate the error-free case and the nw label the elements across the face of the array, 
ignoring subaperture and subarray boundaries. The error-free magnitudes are made equal for all active 
elements and normalized to unit total power, so that 

IHW=1- (9) 
"x    "y 

The phases are derived from the condition that at the reference frequency the far-field radiation 
must interfere perfectly constructively in the direction of the steering vector. This implies that the phase 
must progress linearly across the face of the array as 

#„A = -*o(^x"x + dysyny) + const., (10) 

where k0=2xf0/c is the reference wave number and (sx,sy) are the direction cosines of the steering 
vector {96-166}. Considering the architecture of the array, the phases must be built up from the 
equivalent time delays at the subaperture and subarray levels and the phase delays at the element levels. 
Based on Eq. (10), the phase step in direction w between adjacent elements in a subarray must be 

^<Pw = -k0
d^w- (n> 

Likewise, since each subarray contains Nx by Ny elements, adjacent subarrays within a subaperture must 
have a phase difference ofNwA(pw, which is equivalent to a time step 

A/w=—NwA<pw 
a>o (12) 

=—Nwdwsw, 
c 

where G)0 = 27r/0 is the reference angular frequency, and the time step across subapertures follows 
similarly as 
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ATw = --NwMwd^w. (13) 
c 

In practical arrays, the time and phase delays are often quantized, leading to violations of Eq. (10) 
for general steering angles. We suppose that the beamformer is capable of mitigating the effects of 
subaperture and subarray quantization by adjusting the subarray and element delays. That is, the delay 
lost or gained in each subaperture due to quantization can be balanced by additional or reduced delay in 
the subarrays, assuming that the quantization interval of the subarrays is less than that of the subapertures. 
Likewise, the error due to subarray quantization can be balanced by adjusting the element phases, subject 
to a similar assumption. To exhibit this scheme mathematically, we introduce the subaperture, subarray, 
and element quantization intervals 3T, St, and 8q>, respectively. We also introduce subaperture labels /x and 
/ and subarray labels mx and my; as the nw ignore subaperture and subarray boundaries, so the mw ignore 
subarray boundaries. More specifically, we obtain the /„ and mw from the nw according to 

m.= 

«„ 

AL 

,    /„G{0,1,...ZW-1},   and 

mw&{0,\,...LwMw-\}, 

(14) 

where \x\ is the greatest integer not exceeding x. 

We define the subaperture time delays without quantization or error to be 

T,,,, =/xA7x+/yAry, (15) 
"x"y 

where the /„, are implicitly dependent upon the nw, and the quantized subaperture time delays are then 

fnny=ÖTxounA(Jth„JÖT), (16) 

where round (x) is the integer nearest x. The subarray time delays contain an additional term that 
compensates for the subaperture quantization: 

iv,=rn^tx+mytoy-fn^, ^ 

where the mw are implicitly dependent upon the nw, and the element phase delays contain two similar 
terms: 

9„^ = nM* + »yA(Py ~ v0 (tA + ',v,y)» 

&.,», =5<Pround (^y./^) 

In so defining the delays, we have implicitly chosen the constant in Eq. (10) to be zero. This choice 
implies that the lowest and leftmost components (those with /„ = 0, mw - 0, or nw = 0) have no associated 
delay regardless of the steering vector, whereas the highest and rightmost components (having /„, = 
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Lw-\, mwmodMw = Mw-\, or nwmodNw = Nw- 1) have delays that depend strongly on the steering 
vector. 

In the program, quantization may be avoided by setting the quantization steps to zero. The above 
equations are then equivalent to 

t       = f      =(mx modMx)Atx+(mv modM)At,   and (19) 

9„x„y = &.„, = («x modiVJA^ + (ny mod JVy)Apy. 

We note that /wwmodMM, is the index of subarray mw within its parent subaperture, and likewise 
nw mod Nw is the index of element nw within its parent subarray. 

For each element, the net (possibly quantized) phase at the operating frequency is the sum of 
equivalent phase contributions from the three hierarchical levels: 

<„y=^v,y+^y) + V,> (20> 

where co = 2vf is the operating angular frequency. This quantized phase assumes the place of O in Eq. 
(8). At the reference frequency (co = co0) and with no phase quantization, this construction of the phase 
yields the linear progression of Eq. (10). 

4.2. Erroneous Excitations 

We model the errors in a real antenna by applying amplitude and phase errors to each level of the 
antenna hierarchy {525-549}. Amplitude errors multiply the error-free amplitudes by factors of the form 
1 +p where p is a random number, distributed normally with zero mean. Each level contributes such 
errors, so that the erroneous amplitude for element («x, ny) is 

K,„yl = I V',l 0 + R'Jy W + V<> )(1 + 'M, } ' (21) 

where R, r, and p correspond to subapertures, subarrays, and elements, respectively. This model allows 
corresponding elements in different subarrays to contribute distinct errors, and likewise for corresponding 
subarrays within different subapertures. The user specifies the standard deviations aK, aT, and ap of the 
respective amplitude errors. 

Time and phase errors add to the error-free (but possibly quantized) time and phase delays. The 
subapertures and subarrays contribute random time errors T and /, respectively, and the elements 
contribute random phase errors y, all drawn from zero-mean normal distributions. The user specifies the 
corresponding standard deviations aT, av and ar Additionally, the user may specify a deterministic time 
error .T for each subaperture. The net equivalent phase error for element («x, ny) is 

*„„., =«Wj, +fi,iy + W+fc..f' 
(22) 

and the total erroneous phase is the sum of the quantized and error phases: 
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O       =6       +0      . (23) 
«x»y »x"y "x"y 

Finally, the erroneous complex excitations are 

Vv=KJexP(-''°«A>- (24) 

5. RADIATION PATTERN 

In standard array theory with mutual coupling ignored, the field pattern is the product of the array 
factor and the element factor. In ARRSTATS, the element factor is unity, corresponding to uniform 
hemispherical radiation, so the field pattern equals the array factor. (See the code {2595-2715} for notes 
on expanding ARRSTATS.) Given the complex excitations, the array factor (and field pattern) in the 
direction (<f, tf) is given by the two-dimensional Fourier transform {551-561} 

g(Z,l) = ZXexPH*(#xHx + ^y"y)K»y > (25) 

»x    »y 

where k = 2irf/c is the operating wave number. ARRSTATS uses a fast Fourier transform to obtain g in. 
discrete directions given by 

^Hjo"'   *xG{0,l,...,ox-l},   and 
mjJ*. (26) 

V-S- '"e{0',"-e>-11' 
where Qx and Q are the number of points in the transform in each dimension {168-173}. The (£,s,fyy) 
grid is extrapolated to all of visible space using {412-497, 558} 

^x+Qx'V^^'V   and (27) 

which are valid for all integers qx and qy. Because of the normalization condition of Eq. (9), 

\g{Lri)\<\ (28> 

for all ^ and rj, with the equality holding only where the excitations interfere perfectly constructively. 
Therefore, when the field pattern is expressed in decibels, 0 dB corresponds to perfectly constructive 
interference. 

6. PATTERN MEASURES 

The code at the heart of the program analyzes the radiation pattern to obtain several measures that 
quantify the characteristics and performance of the array. The following subsections describe these 
measures, generally focusing on the concepts behind them and on their interpretation rather than on the 
specific method of calculation. Details of the algorithms and further discussion may be found in the code. 
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6.1. Pointing Vector, Pointing Error, and Peak Power Density 

One of the most significant pattern measures is the direction of maximum radiation, here called 
the pointing vector. The program determines it directly from the field pattern and also indirectly from the 
excitations; the final pointing vector is a weighted average of the two, as discussed below. In identifying 
the pointing vector from the field pattern {563-787}, the program first locates the pattern's maximum 
magnitude over the grid of discrete direction cosines. For a well-formed beam, the neighboring samples 
should fall off parabolically, so they are fitted to the elliptic paraboloid13 

\g(Z,ri)\=\ue+WZr, + W+X{ + Yt, + Z (29) 

in a least-squares sense. If UV> W2, as should be the case for a normal beam, the conic is indeed elliptical 
(corresponding to its level curves), and its maximum occurs at (£17) = (plx,Ply), where plx and/?ly satisfy 

Ply) 
(30) 

The coordinate pair (plx,piy) is taken to be the pointing vector for the first method. The deviation of the 
pattern samples from conic form is used to construct a covariance ellipse for plx andply that expresses the 
uncertainty in their values. 

The second method determines the pointing vector from the complex excitations {789-961}. 
Because a well-behaved array will have a nearly flat phase front, the excitation phases #n„y are fit to the 
plane -knxdJ-knydyri-Q>Q, weighted according to the excitation magnitudes. The pointing vector 
coordinates (p2x,/?2y) are the direction cosines (£ tj) that give the best fit. As with the first method, a 
covariance ellipse forp2x andp2y is obtained from a measure of the deviation from the plane. 

Each method is useful but limited. The first, the fit of the transform, is robust even for poorly 
aimed and malformed beams, but it is limited by the resolution of the Fourier transform. The second, the 
fit of the excitations, is independent of transform resolution but accurate only for nearly planar phase 
fronts, approaching the exact solution as the phase and time errors and quantization intervals decrease. To 
obtain a single pointing vector (px,py), the program averages pointing vectors from the two methods, 
weighting each by the inverse of the area of its covariance ellipse {963-990}. An average covariance 
ellipse is also constructed in a consistent manner. 

With the final pointing vector in hand, the pointing error y is straightforwardly obtained {992- 
1046} from 

cosy = s-p 

= sKPx+sypy + szPz, 

where sz and pz follow from unit magnitude constraints on s and p. If one desires the uncertainty in y due 
to uncertainty in p, an alternate calculation based on 

siny^ sxp| (32) 

may be selected in the program. 
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The peak power density 

Pmm=\g(P*,Py)\2 03) 

is calculated directly from Eq. (25). 

6.2. Main Beam Region 

The main beam region is the set of field pattern samples that are judged to belong to the main 
beam. Although normally not of interest as a final measure, it is essential for obtaining subsequent 
measures. It may be constructed conceptually by imagining a contour at an adjustable level. Beginning at 
the pattern maximum, we decrease the level so that the contour expands in size, following the topology of 
the main beam. Eventually the contour will intersect a local minimum or a saddle point; the closed 
contour about the pattern maximum at that level delineates the main beam region inside from the sidelobe 
region outside. Equivalently, that contour is the lowest one containing the global maximum that encircles 
no other local maxima. The power level of the contour is called the beam depth. Generally, well-formed 
beams are deep (that is, the beam depth is much less than one), while malformed beams are shallow, but 
the user should keep in mind that the beam depth depends on the transform resolution. In the program 
{1048-1137}, the beam depth is stored in the variable beamDepthDB in decibels relative to Pmax and is 
output to the user. Information obtained while determining the main beam region is used in finding the 
main beam width and roll, below, and the region itself is used directly in calculating the powers radiated 
into the main beam and sidelobes. 

6.3. Main Beam Width and Roll 

The level contours of the main beam generated by a two-dimensional array are nominally 
ellipses;14'15 therefore they can be described by their center location, major and minor axes, and 
orientation. Having already obtained a measure of the beam's location in the form of the pointing vector, 
we use the major and minor axes and orientation of the elliptical contour at a given power level to 
describe the beam's shape {1139-1403}. The conventional power level is Pmax 12, or about 3 dB down. 
The angle subtended by the ellipse's longest diameter — its major axis — is taken as the beam's major 
width (that is, full width at half maximum power); that subtended by its shortest diameter, the beam's 
minor width. The ellipse orientation gives the roll angle, but we must choose an origin for the orientation 
angle. Construct three great circles as in Figure 4: A, along the azimuth reference; B, connecting boresight 
and the pointing vector; and C, along the beam's major width. The roll angle is defined as the sum of the 
angle between A and B and that between B and C. It happens that the roll angle so defined is merely the 
orientation of the major width relative to the azimuth reference when viewed in the stereographic 
projection, which preserves angles between great circles. Moreover, because the great circles along the 
beam's major and minor widths intersect orthogonally on the hemisphere, their stereographic projections 
do also. These facts motivate the program's use of stereographic coordinates for fitting an ellipse to the 
level contour and determining its major and minor axes and orientation. However, the roll angle and beam 
widths thereby obtained are approximate for two reasons. First, for beams off boresight, the great circles 
along the major and minor widths project as circles, whereas the major and minor axes of the projected 
ellipse are straight line segments. Second, the local scale in the projection increases away from boresight, 
artificially enlarging the portion of the beam farthest from boresight.12 The error may become significant 
for beams far from boresight. A more sophisticated method of determining the beam widths is suggested 
near the end of the program code. 
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Figure 4 — Beam width ellipse and roll angle. The great circles A, B, and C are described in the text, and the angles between 
them, indicated with thick arcs, are added to obtain the roll angle. The left projection is orthographic; the right, stereographies 
The spherical coordinates of the pointing vector are 0 = 40° and y = 20°, the beam's major and minor widths are 16° and 8°, and 
the roll angle is 90°. t' 

6.4. Directivity, Power Ratios, and Average Sidelobe Level 

The next measures obtained all depend on integrals of the power pattern over solid angle regions 
{1405-1527}. The integrals are calculated from the discrete samples of the pattern using the midpoint 
approximation, as detailed in the code. The solid angle regions of interest are visible space (the half-space 
z > 0); the main beam, as described by the main beam region, above; and the sidelobes, defined as all 
regions of visible space not in the main beam. The program determines the total powers radiated into 
these regions; call them II,, for visible space, 1^ for the main beam, and IIS for the side lobes. We have 

n =n„+EL (34) 

The directivity is the ratio of maximum to average power densities, assuming no back radiation into z < 0: 

P 
D 

n/4TT 
(35) 

The program also calculates the power ratios n,n /Uv, nm /ris, and IIv/ns, which generally decrease as 
the beam degrades. Finally, the average sidelobe level relative to the beam peak is 

n. 
avg Q. P s   max 

(36) 

where Q. is the solid angle occupied by the sidelobes. 
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6.5. Powers and Distances of Largest and Nearest Sidelobes 

The last analysis identifies the sidelobe with the largest power density and the sidelobe closest to 
the main beam, and for each it reports the power density and angular distance from the main beam 
{1529-1677}. The power levels and locations of the sidelobes are obtained by fitting to elliptic 
paraboloids (Eq. (29)), and the power levels are reported relative to the beam peak Pmax. 

7. MULTIPLE REALIZATIONS AND PARAMETER VALUES 

The analyses described above apply to the radiation pattern corresponding to a single set of array 
parameters and one realization of any random variables. ARRSTATS contains two outer loops with which it 
analyzes multiple radiation patterns; one is a loop over realizations of random variables, and the other 
loops over a user-selected independent variable. The loop over realizations {190-218, 521-523, 1679- 
1819, 1905} is motivated by the following: When simulating random errors, one is usually interested not 
in the performance obtained by one realization of the errors but rather in the performance statistics for an 
ensemble of statistically identical arrays. To that end, ARRSTATS can generate an arbitrary, user-specified 
number of realizations for which it will accumulate performance statistics. The program outputs the mean 
and standard deviation of each performance measure. The second loop {175-188, 326-336, 2578-2579}, 
over an independent variable, allows the user to examine the variation of performance measures as the 
variable changes. Possible independent variables include but are not limited to the operating and reference 
frequencies, steering angles, error parameters, quantization intervals, and even parameters of the array 
geometry. ARRSTATS produces a graph showing each measure as a function of the independent variable, 
as discussed below. 

8. PROGRAM OUTPUT 

ARRSTATS outputs its results in three ways: textual output of running statistics, a plot of the 
radiation pattern for the last realization in an ensemble, and a summary plot of the performance measures 
as functions of the independent variable. The textual output is a table like that in Fig. 5 printed to the 
MATLAB command window {1864-1903}. The values in the table are the means and standard deviations 
of the performance measures for all members of the statistical ensemble that have been realized thus far. 
The table may be interpreted according to the descriptions in Section 6, keeping in mind the following. 

Means and [std devs] for 16 of 16 realizations 
beam direction : (29.954, 60.007) deg, std dev 0.038 deg 
pointing error : 0.0528 [0.0279] deg 
peak power dens: -0.426 [0.034 ] dB 
beam depth    : -24.66 [1.49  ] dB re peak 
beam width    : ( 2.095 [0.005 ], 1.813 [0.004]) deg 
beam roll     : 59.56 [0.65  ] deg 
directivity   : 38.894 [0.034 ] dB 
power ratio m/v: -1.360 [0.030 ] dB 
power ratio m/s: 4.347 [0.113 ] dB 
power ratio v/s: 5.707 [0.083 ] dB 
avg sidelobe   : -41.61 [0.11  ] dB re peak 
nrst sidelobe  : -13.16 [0.69] dB re peak, 3.00 [0.01] deg off beam 
Igst sidelobe  : -12.30 [0.58] dB re peak, 3.11 [0.09] deg off beam 

Figure 5 Textual output of running statistics. The parameters of this example are in the code listing; for the values above, the 
standard deviation of the subarray time error is 10 ps (stdTimeMPS = 10). 
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The coordinates specifying the beam direction are the spherical coordinates (0 and y/) of the average 
pointing vector {1821-1862}. The standard deviation of the beam direction is an estimate of the rms 
angular deviation of the ensemble of pointing vectors from their mean {1821-1862}. Both the beam 
direction coordinates and roll angle include compensation for the azimuth offset azmthOf f st. The peak 
power density is relative to perfectly constructive interference, and the beam depth, average sidelobe 
level, and levels of the nearest and largest sidelobes are relative to the peak power density (suggested by 
the use of "dB re peak" in the table). 

To aid in visualizing an array's performance, ARRSTATS can graphically present the radiation 
pattern and several of the performance measures as in Fig. 6 {220-324, 2138-2574}. A significant 

Figure 6 — Lambert projection of the radiation pattern with a spherical coordinate grid superimposed. Boresight is at the center, 
and the steering vector is (0 = 30°, y = 60°). The white dot denotes the beam peak; *, the largest sidelobe; and +, the nearest 
sidelobe. The legend gives the power in dB relative to perfectly constructive interference. The pattern is one realization of the 
case stdTimeMPS = 10 for the parameters given in the code listing. 
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plotting option is the choice of projection from among those described in Section 2. Briefly, the Lambert 
projection preserves the relative areas of regions (for example, the size of the main beam relative to the 
hemisphere or to prominent sidelobes), the stereographic projection preserves local shape (and the 
orthogonality of the major and minor beam width cuts), and the orthographic projection gives a picture of 
the hemisphere. The pattern may be plotted linearly or logarithmically in power, and the logarithmic 
depth may be specified. The user may also specify the color map and shading method to use. The 
performance measures that can be graphically indicated on the radiation pattern include the pointing 
vector, the axes of the uncertainty ellipse of the pointing vector, the actual and fitted beam width contours, 
the main beam region, the locations of the nearest and largest sidelobes, and other measures of less 
frequent interest. If multiple realizations are generated, the radiation pattern will be plotted only for the 
last realization as a representative of the ensemble. 

If the outer loop over an independent variable is used, the summary figure plots the performance 
measures as functions of the independent variable, as in Fig. 7 {220-324, 1907-2136}. The figure groups 
fifteen measures (all except the beam direction) into eight subplots and utilizes distinct colors or line 
styles and both left and right axes for the ordinates. The title of each subplot gives the names of the 
measures; where multiple colors or linestyles appear, each measure name is followed by a color or style 
code in parenthesis, and where left and right axes are used, an axis code ("L" or "R") also appears. If 
more than one realization was generated for each value of the independent variable, error bars extend one 
standard deviation above and one standard deviation below each point. 

9. SUMMARY 

We have introduced a computer program for assessing the effects of errors in rectangular-grid 
planar array antennas. The most general array comprises phase-steered elements grouped into time- 
steered subapertures and subarrays; this includes strictly phase-steered arrays and time-steered arrays as 
particular cases. The time and phase delays may be quantized, and random errors may be assigned to the 
times, phases, and amplitudes. From simulated radiation patterns, the program obtains performance 
measures over statistical ensembles and as functions of a user-specified independent variable, producing 
textual and graphical output. 
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Figure 7 — Summary plots. This example shows the degradation of performance as the standard deviation of the subarray time 
error (stdTimeMPS, in picoseconds) increases. The parameters of the run may be found in the code listing. 



Appendix A 

LIST OF VARIABLES 

This list of significant variables mentioned in this report gives their symbol in this report, coded 
name, and description. It does not include all program variables. Ellipses (...) stand for prefixes, and 
asterisks (*) indicate that the variable holds the specified quantity temporarily. 

Text Code 

x,y,z 

t,*!,C dirCosX, ...Y, ...Z 

Sx'Sy sx, sy 

e ...Polar 

¥ ...Azmth 

a ..Az 

e ...El 

r 

dx,dy dx, dy 

Lx,Ly numLX, numLY 

Mx,My numMX, nuraMY 

Nx,Ny numNX, numNY 

ix, iy lx,ly 

mx,my mx, my 

"x>"y nx, ny 

diamond 

azmthOffst 

/o fRef 

/ fOpr 

k0 

k 

co0 

CO 

ffR stdAmplL 

ff< stdAmplM 

°P stdAmplN 

R 

r 

Description 

coordinates in real space 

direction cosines 

steering vector direction cosines 

spherical polar coordinate 

spherical azimuth coordinate 

traditional azimuth coordinate 

traditional elevation coordinate 

radial coordinate of projection 

element spacings 

numbers of subapertures 
numbers of subarrays per subaperture 

numbers of elements per subarray 

subaperture labels 

subarray labels 

element labels 

indicates diamond element pattern 

antenna rotation angle about boresight 

reference frequency 

operating frequency 

reference wave number 

operating wave number 

reference angular frequency 

operating angular frequency 

standard deviation of subaperture amplitude error 

standard deviation of subarray amplitude error 

standard deviation of element amplitude error 

random subaperture amplitude error 

random subarray amplitude error 

17 
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Text Code Description 

p 
ä excMagldl 

a excMag 

ST qntTimeL 

St qntTimeM 

S(p qntPhseN 

A?;, AT; 

A/x,A/y 

A^x, A<py 

T 
»x"y 

TimeL* 

»x»y 
TimeM* 

9ns, PhseN* 

T 
J>x»y 

>'x"y 

TimeL 

TimeM 

V»x»y 
PhseN 

0T stdTimeL 

°i stdTimeM 

% stdPhseN 

JT ofsTimeL 

T 

7 
V 
ö 
o excPhsIdl 

o excPhsErr 

o excPhs 

g g 

ßx^ßy tx, ty 

P»Py P*,py 

7 errPoint 

P max gSqrMax 

avg powerSideAvgDB 

nv powerVisb 

nm powerMain 

ns powerSide 

D directivityDB 

random element amplitude error 

error-free (ideal) excitation magnitude 

erroneous (actual) excitation magnitude 

subaperture time quantization interval 

subarray time quantization interval 

element phase quantization interval 

subaperture time steps 

subarray time steps 

element phase steps 

error-free subaperture time delays 

error-free subarray time delays 

error-free element phase delays 

quantized subaperture time delays 

quantized subarray time delays 

quantized element phase delays 

standard deviation of subaperture time error 

standard deviation of subarray time error 

standard deviation of element phase error 

deterministic subaperture time error 

random subaperture time error 

random subarray time error 

random element phase error 

error-free excitation phase 

quantized excitation phase 

excitation phase error 

erroneous (actual) excitation phase 

field pattern 

number of points in Fourier transform 

pointing vector direction cosines 

pointing error 

maximum power density 

average relative sidelobe level (powerSideAvgDB = 10 log10 iavg) 

power radiated into visible space 

power radiated into the main beam 

power radiated into the side lobes 

directivity (directivityDB = 10 log,0 D) 



Appendix B 

PROGRAM LISTING 

1 V. Calculate performance parameters of an array with excitation errors 

2 V, 
3 V. The excitation time and phase convention is exp (-i (omega t + phi)); 
4 V. positive {negative) phases phi correspond to a leading (lagging) 
5 V. excitation.  Distances are stored in meters; times, nanoseconds; 
6 * frequencies, gigahertz.  Angles (both geometric and phase) are always 
7 V. specified in radians.  Generally, the coordinate x increases with the 
8 '4 column index; y, with the row index. 
9 % 

10 '* Parameters that may be changed by the user are marked "INPUT" in 
11 * comments.  Frequently-used inputs appear near the top of the program, 
12 V, but some inputs are defined elsewhere, particularly in the plotting 

13 V. section. 
14 
15 V, Suggestions for improvements are provided at the end of the program. 

16 'A 
17 V. This program is coded for Matlab version 5.3 (Release 11), although 
18 % most of the code will run under version 4.2. 

19 * 
20 % Written by Stan West, 1998, 1999 
21 ¥. U.S. Government work not subject to copyright 
22 
23 'A Declare physical and conversion constants 

24 V. 
25 c -  0.299792458;       V.  speed of light  in m/ns 
26 rpd - pi   /  180; t   radians per degree 
27 twopi  -  2   *  pi; 
28 
29 ?. Set operating frequency relative to reference frequency 

30 
31 'A At the reference frequency, or fOpr - fRef, the time and phase delays 
32 'A will properly steer the antenna in the absence of error and 
33 'A quantization. 
34 
35 fRef -  3.0; % INPUT reference frequency in GHz 
36 fOpr - fRef + 1 * 0.5 / 2;  I INPUT operating frequency in GHz 
37 *A center frequency + {-1 ... 1} * bandwidth / 2 
38 
39 'A Describe array geometry and error statistics 
40 
41 A Elements lie on a regular planar grid and are grouped heirarchically. 
4 2 V. The array is subdivided into numLX subapertures in the x dimension and 
43 'A numLY subapertures in the y dimension.  Each subaperture is 
44 %   time-steered and has associated with it a user-set deterministic 
45 V. absolute time error, a random absolute time error, and a random 
46 V. relative amplitude error. The random errors are normally-distributed 
47 % with zero mean and user-set standard deviation. Each subaperture 
48 * contains numMX by numMY subarrays, each of which, like the 
49 * subapertures, is time-steered and has a random absolute time error and 
50 V. a random relative amplitude error.  Finally, each subarray contains 
51 'A numNX by numNY elements, each of which is phase-steered and has a 
52 V. random absolute phase error and a random relative amplitude error. 
53 *A All elements are spaced by dx in x and dy in y, even across subarrays 
54 "A and subapertures. 
55 
56 '!.  Set parameters of subapertures 
57 
58 numLX =  1; <■ INPUT number of subapertures in x 
59 numLY =  1; ".       and y dimensions 
60 qntTimeL = 0; V. INPUT quantization interval in ns; 0 for no quantization 
61 ofsTimeL = zeros (numLY, numLX);  "A INPUT deterministic absolute time error in each subaperture in ns 
62 stdTimeL - 0.000;       V. INPUT standard deviation of absolute time error in each subaperture in ns 
63 stdAmplL - 0.0; A INPUT standard deviation of relative amplitude error 

64 
65 '.". Set parameters of subarrays 
66 
67 numMX =  8; " INPUT number of subarrays in x 
68 numMY -  8; '■■       and y dimensions per subaperture 
69 qntTimeM - 0; V. INPUT quantization interval in ns; 0 for no quantization 
70 stdTimeM = 0.00;        V, INPUT standard deviation of absolute time error in each subarray in ns 
71 stdAmplM - 0.0; 'A INPUT standard deviation of relative amplitude error 

72 
73 'A Set parameters of elements 
74 
75 dx - 1.6 * 0.0254;      'i INPUT element spacing in x 

19 
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76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 

dy - 1.6 * 0.0254; 
numNX -  8; 
numHY ■=  8; 
qntPhseN = 0 * rpd; 
stdPhseN -  0 * rpd; 
stdAmplN - 0.0; 

". Set other parameters 

0 * rpd; 
diamond = 0; 
azmthoffst = 

and y dimensions in meters 
INPUT number of elements in x 
and y dimensions per subarray 

INPUT quantization interval in radians; 0 for no quantization 
INPUT standard deviation of absolute phase error in each element in radians 
INPUT standard deviation of relative amplitude error 

INPUT 0: full array; 1: eliminate excitations on even diagonals 
INPUT angle of the positive x axis of the array above the azimuth reference 

V. Alternatively, select an array 

switch 0  V. INPUT case number for arrays below or 0 to use values above 

case 1 
'-!.  Insert frequency, array, and error parameters here 

case 2 
end 

V. Specify steering angle 
■I. 
■J, Two coordinate systems, described below, are available for specifying 
V, the steering angle: traditional azimuth/elevation coordinates and 
'4 spherical coordinates. Azimuth/elevation coordinates are converted to 
V. spherical coordinates for internal program use, and output is given in 

1 spherical coordinates. 

* In the diagrams below, the antenna lies in the x'-y' plane with 
'.'. boresight along the positive z' axis.  The antenna's z axis coincides 
',', with z', and its x axis is at an angle azmthoffst above the x' axis, 
%  which is the azimuth reference. 

The equations relating the the Cartesian coordinates x', y", and z 
a unit vector, the spherical coordinates Polar and Azmth, and the 
traditional coordinates Az and El are 

x' *= sin Polar cos Azmth = -cos El sin Az 
y* - sin Polar sin Azmth - sin El 
z* - cos Polar - cos El cos Az 

of 

cos Polar « 
tan Azmth - 

cos El cos Az  = z' 
-tan El / sin Az - y' / 

-tan Az = tan Polar cos Azmth = 
sin El - sin Polar sin Azmth = 

?. Since (x* 
% cosines. 
4 
switch 2 
case 1 

y', z*) is a 

main 
beam 

¥. pro}. in 
'I  xz plane 

-  / 
■_/ 

/ 

unit vector, its components are direction 

Use azimuth/elevation 
coordinates.  Given the 
projection of the steering vector 
onto the x'-z' plane, the azimuth 
is the angle between it and the 
z' axis, while the elevation is 
the angle between it and the 
steering vector.  In the diagram, 
both angles are positive. 

Az 

steerAz » 30 * rpd; 
steerEl - 30 * rpd; 
steerPolar - acos  (cos (steerEl) ' 
steerAzmth - atan2 (tan (steerEl), 

V, INPUT azimuth angle 
V. INPUT elevation angle 
cos (steerAz)); 
-sin (steerAz)); 

proj. in 
xy plane   I 

\_~ I 
\  I 

main    /\ ! 
beam  —/_ \l 

I I —o 
I I  / 

Polar \ \/ 
\/ 
/ 

The 

\ Azmth 
\ 
I 

steerPolar 
SteerAzmth 60 

rpd; 
rpd; 

Use spherical coordinates 
polar angle is the angle 
between the z' axis and the 
steering vector.  The azimuth 
angle is the angle between the 
x* axis and the projection of 
the steering vector onto the 
x'-y' plane.  In the diagram, 
both angles are positive. 

INPUT polar angle 
INPUT azimuth angle 

otherwise 
error ('Invalid switch parameter.*); 

end 
steerAzmth - steerAzmth - azmthoffst;  V. now relative to antenna's x axis 
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168 
169 
no 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 

7.  Set  transform size 

•1   (See  comments  elsewhere  related  to  the discrete  Fourier  transform.) 

tx - 2-9; 
ty » 2-9; 

INPUT number of transform points in x 

and y 

Declare independent variable and its values 

The main loop iterates over values of the independent variable named 
below  The independent variable may be any parameter, including, for 
example, those describing geometry, frequency, error, quantization, 
and steering angle.  It may also be an otherwise unknown variable that 

. is transformed to a known program parameter by custom code m the main 
, loop.  To effectively disable the loop, set a dummy variable to a 

, scalar value. 

V. INPUT name of independent variable 
V. INPUT vector of values it will assume 
$ make it a column vector 

IndVarName - 'stdTimeMPS'; 
indVar - 0 : 2 : 20; 
indVar - indVar (:); 
indVarLen - length (indVar); 

■I  Initialize statistics variables 

* If the excitations are random, one is often interested in the mean and 
V. standard deviation of the performance measures. For each value of the 
■i  independent variable, the program will generate numRlz realizations of 
* the random excitations and accumulate the statistics of the 

'I  performance measures. 

numRlz ■=  16; 
numAcc 
pxS 
pyS 
pzS 
errPointS 
* errPointUncS 
beamPowerDBS 
beamDepthDBS 
hpbwMjrS 
hpbwMnrS 
rolls 
directivityDBS 
powerMainVisbDBS 
powerMainSideDBS 
powerVisbSideDBS 
powerSideAvgDBS 
slNrstDistS 
slNrstPowrDBS 
slLgstDistS 
slLgstPowrDBS 

nan * 
nan * 
nan * 
nan * 
nan * 
- nan 

' nan * 
' nan * 
> nan * 
■ nan * 
> nan * 
■ nan * 
■ nan * 
° nan * 
■ nan * 
■ nan * 
» nan * 
■ nan * 
■ nan * 
■ nan * 

ones 
ones 
ones 
ones 
ones 

(indVarLen, 1); 
(indVarLen, 2); 
(indVarLen, 2); 
(indVarLen, 2); 
(indVarLen, 2) 

INPUT number of realizations to generate 
, number of realizations accumulated 

les iiaavaiucii, '■it 
ones (indVarLen, 2) ;  '4 see later calculation of pointing error 

ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 
ones (indVarLen, 

» Initialize graphics 

cmap - jet; 
invertBkgd - 0; 

sumBW - 0; 
figPat - 1; 
figSum - 2; 
cbarVert - 0; 

INPUT color map 
INPUT 0: figure background is lowest value of the colormap; 

^. « highest 
INPUT 0: summary plot in color; 1: in black and white 
INPUT figure number for power pattern 

and summary 
, INPUT 0 for horizontal bar below pattern, 1 for vertical to right 

'* Set window positions 
t. 
cbarSize - 0.15; 
marginWid - 8; 
marginHgt - 44; 
screenSize - get 
screenWid 
screenHgt 

* colorbar size relative to pattern 
V. width margin in pixels 
V. height margin in pixels 
(0, 'screenSize'); 

screenSize (3); 
screenSize (4); o^ictimy v.        ■ t 

figPatWid - 0.45 * (screenSize (3) - 4  marginWid); 
figSumWid - screenSize (3) 
if cbarVert 

figPatHgt - figPatWid; 
figPatWid - figPatWid 

else 
figPatHgt - figPatWid 

end 
figure (figPat); 
figPat - gcf; 
set (figPat, 

'posi tion', 

4 * marginWid - figPatWid; 

cbarSize); 

width of pattern figure 
width of summary figure 

height of pattern figure 

cbarSize) 

create and position pattern figure 
update in case figPat couldn't be created 

(marginWid 
screenHgt-marginHgt-figPatHgt 
figPatWid 
figPatHgt), ... 

'paperUnits', 'inches') 
if cbarVert 

set (figPat, ... 
•PaperOrientation', 'landscape', ... 
•PaperPosition', (0.5 0.5 10 7.51); 

else 
set (figPat, ... 
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■l. take background  from high... 

?. or  low end of colormap 

tf set pattern colors 
'■I, override default background of whitebg 

•PaperOrientation',   'portrait*,    — 
•PaperPosition',    [0.5  0.5  7.5  10]); 

end 
elf; 
figure   (figSum); '•'■  create  and position  summary  figure 
figSum =  gef; '•'■  update  in  case   figSum couldn't be  created 
set   (figSum,   ... 

•position',    [screenwid-marginwid-figSumWid   ... 
marginHgt 
figSumWid 
screenHgt-2*marginHgt]); 

orient  tall; 
clf; 

V.  Set pattern  figure  colors 

if  invertBkgd 
bkgd = cmap   (size   (cmap,   1),    :); 

else 
bkgd - cmap   (1,    :) ; 

end 
whitebg   (figPat,   bkgd); 
set   (figPat,   'color',  bkgd); 
V. 
■* Set summary figure colors and linestyles 
4 
whitebg   (figSum,   'w'); *  set summary colors 
set   (figSum,   'color',   'w'),- » override default background of whitebg 
if sumBW 

discrim =   'lineStyle'; 
discrimValue - ('-'; •--•; •:');  * line styles 
discrimName - discrimValue;      ?. names for legends will be same as style codes 
set (figSum, ... !. black color forces cycling through line styles 

'DefaultAxesLineStyleOrder*, discrimValue,   
■DefaultAxesColorOrder", (0 0 0]); 

else 
discrim = 'colors- 
set (figSum, ... 

■defaultAxesColorOrder', 'default',   
•defaultAxesLineStyleOrder', 'default'); 

discrimValue - get (figSum, 'defaultAxesColorOrder') 
colorOrderHSV « rgb2hsv (discrimValue); 
discrimValue » num2cell (discrimValue, 2); 
colorNames - 1'RYGCBMKW]•; 
discrimName * colorNames (1 + ... 
mod (round (6 * colorOrderHSV (:, 1)), 6)); 

unsat - find (colorOrderHSV (:, 2) <- 0.25); 
if -isempty (unsat) 
discrimName (unsat) - colorNames (7 + ... 

(colorOrderHSV (unsat, 3) > 0.5)); 
end 
discrimName - cellstr (discrimName); 
clear colorOrderHSV colorNames unsat; 

end 

V. Set miscellaneous common properties 

set ((figPat figSum], ... 
'invertHardCopy', 'off, ... 
'defaultTextFontSize', 8, ... 
'defaultAxesFontSize', 8, — 
•toolbar', 'none'); 

drawnow; 
clear marginWid marginHgt screenSize screenWid screenHgt; 
clear figPatWid figSumWid figPatHgt bkgd; 

'!.  Loop over independent variable 

for indx = 1 : indVarLen 

V. Set value of independent variable 

eval ({indVarName ' = indVar (indx);']); 

V. reset (if previously b&w, for 
%  example) 

!?. put colors in array of RGB coordinates 
V. equivalent HSV coordinates 
V. put each row in a cell 
V. first six by hue, then black & white 
V. convert H to an integer 0..5 
$  then index into colorNames 
$ unsaturated (gray) colors 

* threshold V to 0 (K) or 1 (W) 
* then index into colorNames 

% put each letter in a cell 

set variable to value 

■:■.  Code may be inserted below to transform the independent variable to 
V. known program variables. 
stdTimeM - stdTimeMPS * le-3; 

V. Define labels for substructures 

V. Here we construct row and column vectors (corresponding to x and y, 
.. respectively) that tell to which subaperture, subarray, or element a 
•;. given position corresponds.  The sample vectors are for numLX = 
V. numLV = 2, numMX = numHY = 3, and numNX = numNY = 2. 

numLMX = numLX * numMX; 
numLMY = numLY * numMY; 
numLMNX - numLMX * numNX; 
numLMNY - numLMY * numNY; 
nx = 0 : numLMNX - 1; 
ny - (0 : numLMNY - 1)•; 
lux = floor (nx / numNX) ; 

'.'. total number of subarrays 

'-.'. total number of elements 

V.  e.g.,    (0  1  2  3  4   5  6  7  8  9  10   11] 
■i (0   1   2   3   4   5   6  7   8   9   10   11] • 

[001122334455] 
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VI [0   011223344 5 51 
numNX) ) ;     V. [0   000001111 1 1) 
numNY) ) ;     V. [0   000001111 1 1] 

numMX * Ix / c; 
numMY * ly / c; 
TimeLX  + TimeLY  * ones   (1,   numLMNX); 

'■k quantize? 
TimeL)   *  qntTimeL V.  yes 

352 my - floor (ny / numNY); 
353 lx - floor (nx / (numMX 
354 ly - floor (ny / (numMY 
355 
356 1.  Calculate ideal (error-free] excitation magnitudes 
357 
358 excMagldl - ones (numLMNY, numLMNX); V. uniform weighting 
359 if diamond '•'• zero every other element 
360 excMagldl - excMagldl ... 
361 .* rem (ones (numLMNY, 1) * nx + ny * ones (1, numLMNX), 2); 

362 end 
363 excMagldl - excMagldl / sum (excMagldl (:) .A2) .-  'i normalize to unit power 

364 
365 '.'. Calculate ideal (error-free) excitation phases 

366 5. 
367 V, The ideal excitation phases are those that produce perfectly 
368 V. constructive interference in the direction of the steering vector at 
369 V. the reference frequency.  This implies a linear phase progression 

370 * 
371 V,     excPhsIdl - -kO (dx sx nx + dy sy ny) + const., 

372 * 
373 v. where kO (- 2 pi fRef) is the reference wave vector.  Quantization 
374 v. prevents the array from achieving this flat phase front for all 
375 % steering angles.  However, the beamformer simulated here mitigates 
376 * effects due to subaperture quantization by adjusting the subarray 
377 ii delays, which is effective if the subarrays are quantized at a finer 
378 V. interval than the subapertures. Likewise, it compensates for 
379 V. subarray quantization with the element phasers. 

380 V. 
381 V, We choose the constant in the phase progression to be zero, which 
382 V. means that the lowest and leftmost components (those for which lx, 
383 V. ly, mx, my, nx, or ny is zero) are never delayed, while the highest 
384 V. and rightmost components have delays that depend strongly on the 
385 V. steering vector. 
386 ». 
387 sx - sin (steerPolar) ♦ cos (steerAzmth),-       ». direction cosines 
388 sy - sin (steerPolar) * sin (steerAzmth);       V.  for steering 
389 sz - cos (steerPolar); * used much later 
390 TimeLX - -dx * sx * numNX 
391 TimeLY - -dy * sy * numNY 
392 TimeL - ones (numLMNY, 1) 
393 if qntTimeL — 0 
394 TimeL - round (TimeL / qntTimeL) 
395 end; 
396 TimeMX - -dx * sx * numNX * mx / c; 
397 TimeMY - -dy * sy * numNY * my / c; 
398 TimeM - ones (numLMNY, 1) * TimeMX + TimeMY * ones (1, numLMNX) - TimeL; 
399 if qntTimeM — 0 
400 TimeM - round (TimeM / qntTimeM) * qntTimeM; 
401 end; 
402 TimeNX - -dx * sx * nx / c; 
403 TimeNY - -dy * sy * ny / c; 
404 PhseN - twopi * fRef * ... 
405 (ones (numLMNY, 1) * TimeNX + TimeNY * ones (1, numLMNX) - TimeL - TimeM) ; 
406 if qntPhseN — 0 
407 PhseN - round (PhseN / qntPhseN) * qntPhseN; 
408 end; 
409 excPhsIdl - twopi * fOpr * (TimeL 4 TimeM) + PhseN; 
410 clear TimeLX TimeLY TimeL TimeMX TimeMY TimeM TimeNX TimeNY TimeN PhseN; 

411 
412 * Prepare transform mapping 
413 V. 
414 't The far-field array factor is the Fourier transform of the complex 
415 % excitations.  Considering the x dimension only (the operation in the 
416 4 y dimension is analogous), the discrete Fourier transform (DFT) used 
417 4 later calculates the far-field array factor at the direction cosine 

418 V. ex as 
419 * 
420 v. tx-1 
421 V, g (ex ) • sum exp (-i k ex dx q) e , 
4 22 V. q-0 q 
423 
424 V. where the etq) are the complex excitations (zero-padded if tx 
425 V, exceeds the array size), k (- 2 pi / lambda) is the operating wave 
426 V. vector, and lambda (- c / fOpr) is the operating wavelength.  The 
427 V. argument of the exponential in the transform may be written -i 2 pi 
428 ■!■   (ex / lambda) * (dx q), where ex / lambda is the spatial frequency 
429 V. and dx q is the spatial coordinate.  The direction cosines for which 
4 30      V. g is calculated in the DFT are 

431 
432 '!■ lambda p 
433 ';.    ex  , p - 0, 1,   tx-i 
4 34      v.      p   dx tx 
4 35 
436      V. so that the argument of the exponential is -i 2 pi p q / tx.  We 

4 37      V. have 
4 38 
439 V. g   (ex )   -  g   (ex  )     for  any integer p. 
440 v. p+tx p 
4 41              v. 
442      V. Given g (cx[pl), the array factor may be obtained at any angle using 

443 
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tx-1       / p dx ex 
g   (ex)   =   sum     SI   —   -     

p=0 \  tx       lambda 

where  the  geometric progression 

tx   I   g   (ex   ) 
/ P 

■:, l    tx-1 
V. S   (x,   tx)   -  —  sum    exp   (i  2 pi  q x) 
■1. tx   q-0 

V. 1     exp   (i  2  pi  x  tx)   -  1 

V. tx       exp   (i  2 pi  x)   -   1 

V.   is  an  interpolating   function,   but  this   formula  is  not used below. 
V.   Incidentally,   note  that 

V. 1     I   sin   (tx pi x)   | 
IS   (x,   tx) | I       I   , 

V. tx   I     sin   (pi  x)        I 

V. an expression that often appears in array theory. 

% After the DFT is calculated, the program maps the results into the 
% region of cx-cy space where the direction cosines have magnitude 1 
<t or less, tiling as necessary to fill the region. The portion of 
If, that region for which cx*2 + cy"2 <- 1 corresponds to visible real 
% space (radiating waves). Later processing requires a border of at 
1, least one element outside the visible region. This section prepares 
V. the mapping. 

txLim - tx * dx * fOpr / c; 
tyLim - ty * dy * fOpr / c; 
txIndxLimMin - -floor (txLim     ) - 1; 
tylndxLimMin = -floor (tyLim     ) - 1; 
txIndxLimMax -  floor (txLim + 0.5) + 1; 
tylndxLimMax -  floor (tyLim + 0.5) + 1; 

values of p (not necessarily 
integer) for which ex and cy are 1 

largest integers p for which 
ex, cy > -1 

smallest integers p for which ex, 
cy > (1 + half element spacing) 

number of angle samples in x 
and y 

row vector of indices 
column vector 
corresponding direction cosines 

ex and cy 
shifted direction cosines for use 
with flat shading 

zero-based indices into columns 
(x) and rows (y) of DFT results 

Extra half element spacing is needed only for surface plots with 
'i flat shading; see graphics code below 

ax - txIndxLimMax - txIndxLimMin + 1; 'A 
ay " tylndxLimMax - tylndxLimMin + 1; '<£ 
txlndx - txIndxLimMin : txIndxLimMax ; * 
tylndx ■= (tylndxLimMin : tylndxLimMax)'; 'I 
dirCosX - txlndx / txLim; V. 
dirCosY = tylndx / tyLim; V. 
dirCosShiftX - (txlndx - 0.5) / txLim; 4 
dirCosShiftY - (tylndx - 0.5) / tyLim; ?, 
txlndx - txlndx - tx * floor (txlndx / tx); % 
tylndx - tylndx - ty * floor (tylndx / ty); * 

* The above lines accomplish the tiling function by folding the 
¥. indices into the interval [0, tx - 1] 

tlndx =■ tylndx * ones (1, ax) ... V, indices to elements (one-based, 
+ ones (ay, 1) * txlndx * ty + 1; »  column-ordered) 

clear txIndxLimMin tylndxLimMin txIndxLimMax tylndxLimMax txlndx tylndx; 

V. Prepare far-field angle mapping 

V. Physically, the array factor is a function of position on a 
V. hemisphere.  The direction cosines used in the Fourier transform are 
V. the x and y coordinates of points on the unit hemisphere.  Below we 
V. determine the region of the transform results that corresponds to 
V, visible space, namely cx"2 + cyA2 <- 1, and calculate the z 
V, coordinates of points in visible space according to 

cz - (1 
2    2 1/2 

cx-cy )   , Re cz >= 0. 

¥. For points outside visible space, cz is set to zero. 
?. 
dirCosXMtx - ones (ay, 1) * dirCosX; 
dirCosYMtx = dirCosY * ones (1, ax); 
radSqr = dirCosXMtx."2  + dirCosYMtx.A2; 
visBool = logical (radSqr < 1); 
dirCosZMtx = zeros (ay, ax); 
dirCosZMtx (visBool) = sqrt (1 - radSqr 
clear radSqr; 

[visBool)); 

'■!.  now a matrix 

■h  squared radius 
V. 1 in visible space, 0 elsewhere 
V. 0 outside visible space 
'.', positive in visible space 

". Loop over realizations 

for rlzNura = 1 : numRlz 

V. Calculate excitation magnitudes with error 

excMagErr = 1 + stdAmplN * randn (numLMNY, numLMNX); 
err      = 1 + stdAmplM * randn (numLMY , numLMX ); 
excMagErr = excMagErr . * err (my + 1, mx + 1); 
err      = 1 + stdAmplL * randn (numLY  , numLX  ); 
excMagErr = excMagErr .* err (ly +1, lx + 1); 
excMag   *= excMagErr .* excMagldl; 
clear err excMagErr; 

V. Calculate excitation phases with error 

". element-level error 
:,'. temporary matrix 
'I. subarray-level error 
i1. temporary 
I subaperture-level error 
'1. actual (with error) magnitude 
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536 s. 
537 excPhsErr - stdPhseN * randn (numLMNY, numLMNX);     V. element-level error 
538 err      - stdTimeM * randn (numLMY , numLMX ) ...   '.'. temporary matrix 
539 * twopi ' fOpr; *   (equivalent phase) 
540 excPhsErr - excPhsErr *  err (my t 1, mx + 1);        V. subarray-level error 
541 err       ■ (ofsTimeL t stdTimeL ' randn (numLY, numLX)) * twopi * fOpr; 
542 excPhsErr - excPhsErr + err (ly »1, lx * 1);        ■.'. subaperture-level error 
54 3 excPhs-   - excPhsErr ♦ excPhsIdl; '■'. actual (with error) phases 

544 clear err excPhsErr; 

545 
54 6 v. Assemble complex excitations 

547 
548 exc - excMag .* exp (-i ' excPhs); 
54 9 V. clear excMag excPhs; 

550 
551 v. Calculate the field pattern (array factor) 

552 
553 i Here the DFT is calculated and the result rearranged into the 
554 v. desired region of direction cosine space.  The element factor is 
555 v. unity.  Mutual coupling is ignored. 

556 
557 g -  fft2 (exc, ty, tx);      V. first element is zero frequency 
558 g - g (tlndx); ?• rearrange 
559 gSqr - real (conj (g) .* g);  V, squared magnitude 
560 gMag - sqrt (gSqr); * magnitude 

561 clear g; 
562 
563 * Determine actual beam direction by fitting the transform 

564 * .  . 
565 v. This first of two methods for calculating the beam pointing vector 
566 1.  uses the information in the Fourier transform of the excitations. 
567 v, First we locate the element of g with the largest value.  (If the 
568 V. maximum value of elements is obtained by more than one element, 
569 v. this code will use the one with the smallest column index and the 
570 V. smallest row index within that column.  Later processing will 
571 i  determine whether the multiple maxima are all within the main 
572 » beam.) To estimate the location of the maximum of the underlying 
573 'i continuous function, that element and its eight neighbors are 
574 v, fitted to the elliptic paraboloid II] 

575 V. 
576 v. 1        2 12 
577 v, - V x    +Wxy + -Vy    + X x + Y y + Z -   Ig   (x,   y) I 
578 ?. 2 2 
579 
580 V. (in the direction cosine coordinate system) in a least-squares 
581 'i sense.  We employ the technique of OR decomposition to find the 
582 V. least-squares solution.  Define the solution vector 

583 ?. 
584 v. T 
585 v.    a - [0 H V X Y Z] 

586 ?. 
587 ?, of length M - 6, the Ordinate (column) vector b with elements 

588 V. 
589 1.    b - Ig (x , y )l 
590 v.     i      i  i 
591 v. . 
592 ■■!,  of length N - 9 (number of fitted points), and the design matrix A 
593 V, having rows 
594 
595 V. 12 12 
596 '»', A     -t-x      xy      -y      x      y      1], 
597 V. i, : 2     i       i  i     2     i       i       i 
598 * 
599 v, where the (x(il, y[i]) are the coordinates of the points 
600 S neighboring and including the maximum element.  QR decomposition 

601 V. of A factorizes it as 
602 
603       v,    A - Q R , 
604 
605 V.  where 0 is  unitary   (Q'   Q - eye)   and R is  upper  triangular.      (We 
606 '.'.  use Matlab's  economy  size decomposition,   for which 0 is M-by-N  and 
607 V.  R  is N-by-N.)     The  least-squares  solution  of 
608 
609 A a  - b 
610 
611 V.   is  given by 
612 
613 -i 
614 V. a  -  R      Q'   b   . 
615 v. . 
616 ■.'.  The  error  in   the  solution  depends  on  the  degree  to which  the 
617 '..   values   of   Igl   depart   from parabolic   form,   which   is   indicated by 
618 '    the  reduced  chi-square 
619 
620 '.'. 2 12 
621 ■!■ chi       -  —  Chi   , 
622 '.'. nu       nu 
623 
624 V.  where nu - N - M is  the  number of  degrees  of   freedom and 

625 
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chl - (A a - b) • (A a - b) . 

The covariance matrix for the solution vector is normally given by 
the matrix inverse of the curvature matrix 

alpha = A' A , 

whose elements are the second partial derivatives of chi"2 with 
respect to the elements of the solution vector (2]: 

alpha 
2 d a(m] d a[n] 

To incorporate the degree of deviation from parabolic form, we 
scale the covariance matrix by the reduced chi-square, as 

2       -1 
C    - Chi   (A' A) 
poly     nu 

2       -1 
chi   <R' R)  . 

Vi This completes the least-squares procedure. 
■I, 

* Having obtained the coefficients of the best-fit polynomial, we 
» locate its maximum. The coordinates (plx, ply) of the maximum 

V. solve 
* 
?, / u w \ / plx \     /x\     /o\ 
v, I II 1 + 11 = 11; 
s \ w v / \ ply /     \ Y /      \ o / 

/ plx \      l /   v -w \ / x \ 
I I - - I II       I 
\ ply  /       D\-W     U/\Y/ 

is the discriminant of the polynomial (and the negative 
determinant of the matrix).  If the maximum so found lies outside 
the interpolation region, the region is expanded by one sample in 
each direction and the least-squares fit is repeated.  This loop 
continues until the interpolation region exceeds a certain size or 
a satisfactory maximum is found.  Assuming a maximum has been 
found, the covariance matrix for plx and ply is calculated next. 
We first form the derivative matrix or Jacobian 

d (plx, ply) 
j   

p     d (a) 

/ d plx d plx d plx d plx d plx d plx \ 

|dU dw dV dX dY dZI 

I d ply d ply d ply d ply d ply d ply I 

\dU dw dV dX dY dZ/ 

The plx derivatives are 

d plx      V X - w Y 
 ■ V 

d Ü DA2 

d plx       W-2  Y+UVY-2WVY 

d  W T>-2 

d plx       W X   -   U  Y 
 _ H 

d  V D~2 

d plx        V 

d  X D 

d   plx W 

d   Y D 

and the ply derivatives follow by exchanging U for V and X for Y 
everywhere.  The covariance matrix for plx and ply is simply 

T 
C  - J  C     J  . 
P  p poly P 
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If  no satisfactory maximum was   found by the  above procedure,   the 
location of  the maximum of   Igl   is used.     A covariance matrix  is 
fabricated  for which  the  area of  the 2  sigma  ellipse equals  the 
area  of   four grid  squares   to indicate  the  uncertainty in  the 
actual   location of  the maximum. 

[1J   D.   H.   von Seggern,   _CRC  Standard Curves  and Surfaces_ 
Raton,   FL:   CRC,   1993. 

Boca 

|2) P. R. Bevington and D. K. Robinson, _Data Reduction and Error 
Analysis for the Physical Sciences_, 2nd ed.  New York, NY: 
McGraw-Hill, 1992, pp. 121-125. 

= max {gSqr . * visBool); 
= max (gSqrMaxAct); 

[gSqrMaxAct, gSqrMaxRow] 
[gSqrMaxAct, gSqrMaxCol] 
gSqrMaxRow = gSqrMaxRow (gSqrMaxCol); 
intRad = 1; 
plOK - 0; 
while -plOK t  intRad < 4 

plNbrs - [-intRad : intRad]; 
plx - dirCosXMtx (gSqrMaxRow + plNbrs, gSqrMaxCol 
ply - dirCosYMtx (gSqrMaxRow + plNbrs, gSqrMaxCol 
plz - gMag      (gSqrMaxRow + plNbrs, gSqrMaxCol 
plx - plx (:); 
ply - ply (:); 
plz - plz (:); 
pDesMtx - [plx.*plx/2 plx.*ply ply.*ply/2 ... 

plx ply ones(size(plx))]; 
[Q, R] = qr (pDesMtx, 0); 
pPoly - R \ (Q' * plz); 
dof - length (plz) - length (pPoly); 
chiSqr ■= plz - pDesMtx * pPoly; 
chiSqr - chiSqr* * chiSqr; 
pPolyVar - inv (R' * R) * chiSqr / dof; 
pVec - -tpPoly(l) pPoly(2); pPoly(2) pPoly(3)] ... 

\ (pPoly(4); pPoly(S)],- 
plOK -... 

(pvec (1) > dirCosX (gSqrMaxCol - intRad)) ... 
& (pVec (1) < dirCosX (gSqrMaxCol + intRad)) ... 
& (pVec (2) > dirCosY (gSqrMaxRow - intRad)) — 
& (pVec (2) < dirCosY (gSqrMaxRow + intRad)); 

i£ -plOK 
intRad - intRad + 1; 

end 
end 
if plOK 
plx - pVec (1) ; 
ply - pVec (2); 
pDet - pPoly (2)A2 
plxDer 

V. maximum values and their rows 
V. overall maximum and column 
V, corresponding row 
V. interpolation radius 

plNbrs); 
plNbrs) ; 
plNbrs); 

% neighbors 

% design matrix 

* R; Q' 
pPoly = 

't, now pDesMtx - Q 
V. solves pDesMtx ' 
'1.  degrees of freedom in the fit 
* deviations only 
% now sum of squared deviations 
I pDesMtx' * pDesMtx - R' * R 
4 find critical point 

* is interpolated point 
I  inside neighborhood? 
4  (pathological cases can 
?.  place it outside) 

%  keep interpolated point 

Q - eye 
plz 

% determinant pPoly (1) * pPoly (3); 
l]*(pPoly([3 2])-*pPoly([4 5]))*pPoly(3)/pDet 

2)).*pPoly([2  3  31).*pPoly([5  5  4]))/pDet 
*pPoly|[4  5]))*pPoly(2)/pDet 

1(1 
11  1  -2]MpPoly<|2  1 
(1 -l]«(pPoly([2 11) 
pPoly(3) 
-pPoly(2) 
0  ] '   / pDet; 

plyDer -   ([1  -1]*(pPoly((2  3]) 
II   1  -2]*(pPoly([2   3 
[1  -UMpPolyUl  2]) 
-pPoly(2) 
pPoly(l) 
0 1'/ pDet; 

[plxDer;  plyDer]   * pPolyVar 

'-.'.  derivatives 
'pPoly([5  4]))*pPoly(2)/pDet 
2]).*pPoly((2   1  1]).*pPoly([4   4   5]))/pDet 
*pPoly([5 4)))*pPoly(l)/pDet 

[plxDer; plyDer]*;  * covariance matrix 
* interpolated point is outside 
% use location of 
%  actual maximum 
9. 2 sigma area » 4 grid squares 

plVar 
else 

plx - dirCosXMtx (gSqrMaxRow, gSqrMaxCol); 
ply - dirCosYMtx (gSqrMaxRow, gSqrMaxCol); 
plVar - diag (1 ./ (pi * [txLim tyLim].A2)); 

end 
clear intRad plOK plNbrs plz pDesMtx Q R pPoly; 
clear dof chiSqr pPolyVar pVec pDet plxDer plyDer; 

V. Determine actual beam direction by fitting the excitation phases 

v. The second method for calculating the pointing vector uses the 
'.'. excitation magnitudes and phases, not the transform.  For brevity, 
V, define 

Delta     (x,   y)   =kndxx+kmdyy+   theta       , 

where the theta[m,n] are the excitation phases, and let e[m,n] 
denote the excitation magnitudes,  when we express the power 
pattern as 

Ig (x, y)I  = sum sum sum sum e     e 
ml  nl  m2  n2  ml,nl  m2,n2 

* exp [i (Delta     - Delta    )] 
ml,nl       m2,n2 
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sum    e 
m,n      m,n 

2     sum       sum'   e e 
ml,nl  m2,n2    ml,nl    m2,n2 

*  cos   (Delta -  Delta )   , 
ml.nl m2,n2 

where  the primed sum is  over distinct pairs   (ml,   nl)   and   <m2,   n2), 
we  see  that  the maximum occurs where  the  cosine  contributions  are 
largest.     If  the  phase   front   is  nearly  flat,   the  arguments  of  the 
cosines   will   be   small   for   (x,   y)   near   the   direction  of  phase   front 
propagation.     To  fourth order  in  the  arguments. 

Ig (x, y)I (sum 
m, n 

2  sum   sum 
ml,nl m2,n2 ml,nl  m2,n2 

/   1 
| - - (Delta 
\  2       ml,nl 

Delta     ) 
m2,n2 

1 « \ 
+ — (Delta     - Delta     )  I . 

24      ml,nl      m2,n2  / 

Keeping terms to only second order, we are motivated to find the x 
and y (implicit in Deltalmn)) that minimize 

* 
V,        2 2 

% chi = sum  sum e     e     (Delta     - Delta    )  , 
5 2       ml,nl m2,n2    ml,nl    m2,n2 ml,nl m2,n2 
V. 
•t.  where the subscript 2 denotes the second-order truncation.  Taking 
V. derivatives with respect to x and y and rearranging yields the 

* normal equations 

I I  o  \ / nl-n2  \ 
V. 11=    sum       sum    eel I 
■i \  0  /      ml,nl m2,n2    ml,nl    m2,n2  \ ml-m2  / 

1 / ^ 
* | [nl-n2 ml-m2J Pi + theta     - theta     I , 

.,. \ ml.nl       m2,n2 / 

'>'. where Pi - k (dx*x dy*y] '.  Here the sums contain a total of 
?, (numLMNXA2 numLMNY"2) terms, which may be of the order of one 
?. million for a typical array.  To reduce this number, we transform 
* the least-squares problem to an equivalent but simpler problem. 
% First, the above normal equations may be rewritten with the column 
4 vector [nl-n2 ml-m2] • replaced by [nl ml]', which may be seen by 
V. separating the column vector into two sums and exchanging (ml,nl) 
?. with (m2,n2) in one of the sums.  Second, the row vector may be 
V. separated into two sums to obtain 

/ 0 \ 
|   I = ( sum e 
\ 0 /    m,n r 

/ 
> sum e    I 

n m, n m, n \ 

n \ 
I ( [n mj Pi + theta  ) 
/ mn 

/ / n \ \ 
•i - | sum el   II sum e   ( [n ml Pi + theta  ) 
•i \ m, n mn \ m / / m, n mn                 mn 

!, 
V. Based on the second term, we define 
4 
•„i sum e   ( (n m] Pi + theta  ) 
4 m, n mn                 mn 

sum e 
m.n  mn 

Finally, we may rewrite the normal equations as 

/ 0 \ / n \ 
J 0 I = sum e    I m I ( (n m 1) Gamma + theta  ) , 
\ 0 /  m, n m, n \ 1 / mn 

where Gamma - [k*dx*x k'dy'y Delta]' and the third row follows 
from the definition of Delta.  These normal equations contain only 
(numLMNX numLMNY) terms, nominally on the order of 1000.  They 
find the plane  kndxx+kmdyy+ Delta  that best fits 
-thetafm.n] in a weighted least-squares sense.  The solution is 
found using OR decomposition of the design matrix, which has rows 

(nil. 

The error in the solution is determined not by the deviations of 
the -thetalmn] from the best-fit plane nor by the deviations 
Delta[ml,nl] - Delta[m2,n2] appearing in chi"2 earlier, for the 
solution is exactly the power pattern maximum to second order in 
the cosine arguments.  However, the error does depend on the 
fourth and higher powers of the cosine arguments.  So motivated, 
we consider the fourth-order merit function 
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901 1. 2 2 
902 ','. Chi     »     sum       sum    e e (Delta -  Delta ) 
903 ■:. 4       ml.nl  m2,n2    ml.nl     m2,n2 ml.nl m2,n2 
904 
905 ■!. /I 2   \ 
906 V. • I 1 - -- (Delta     - Delta    )  I 
907 \     12       ml.nl        m2,n2   / 

908 
909 ';. and observe that chi4"2 -< chi2"2 everywhere.  We interpret the 
910 V. difference chi2A2 - chi4A2 as indicative of the error in the 
911 v. solution, and we scale the covariance matrix by that amount.  The 
912 I. covariance matrix used is the inverse of the curvature matrix for 
913 V. chi2A2; that curvature matrix is 
914 
915 V, 2 
916 V. alpha  =  k     sum       sum    e e 
917 ','. ml.nl  m2,n2    ml.nl    m2,n2 
918 ?. 
919 4 /   (nl-n2)dx  \ 
920 V, *   I II   (nl-n2)dx   (ml-m2)dy ]   . 
921 V. \   <ml-m2)dy / 
922 ■.'. 
923 V.  Because we construct  the design matrix  for  the simpler 
924 V.  least-squares problem,   we must construct  alpha explicitly. 
925 * However,  this can be accomplished by analytically expanding the 
926 V, differences and factoring the sums. 
927 * 
928 phsX - ones (numLMNY, 1) * nx * dx * (twopi ♦ fOpr / c); 
929 phsY - ny * ones (1, numLMNX) * dy * (twopi * fOpr / c); 
930 phsX - phsX (:); 
931 phsY - phsY (:),- 
932 excMagV - excMag (:); 
933 desMtx - (phsX phsY ones (numLMNX "numLMNY, 1) 1 ... 
934 .* (sqrt (excMagV) * ones (1, 3)); 
935 [Q, B) - qr (desMtx, 0); t now desMtx - Q ♦ R and Q' * Q -  eye [conj. transpose) 
936 excPhsWgt - -excPhs (:) .* sqrt (excMagV) ; 
937 p2Vec - R \ <Q' * excPhsWgt); \  desMtx * p2Vec - excPhsWgt 
938 p2x - p2Vec (1); 
939 p2y - p2Vec (2); 
940 DeltaPhs - [phsX phsY ones (numLMTOCmimLMNY, 1)) * p2Vec + excPhs (:); 
941 sumExcMagDeltal - excMagV .* DeltaPhs; 
942 sumExcMagDelta2 - sumExcMagDeltal .* DeltaPhs; 
943 sumExcMagDelta3 - sumExcMagDelta2 .* DeltaPhs; 
944 sumExcMagDelta4 - sumExcMagDelta3 .* DeltaPhs; 
945 sumExcMagDeltaO ■ sum (excMagV) ; 
94 6 sumExcMagDeltal - sum (sumExcMagDeltal); 
947 sumExcMagDelta2 - sum (sumExcMagDelta2); 
94 8 sumExcMagDelta3 - sum (sumExcMagDelta3); 
949 sumExcMagDelta4 - sum (sumExcMagDelta4); 
950 chiSqrRed - (  2 * sumExcMagDelta4 * SumExcMagDeltaO — 
951 - 8 * sumExcMagDelta3 * sumExcMagDeltal ... 
952 + 6 * sumExcMagDelta2 * sumExcMagDelta2 ) / 12; 
953 chiSqrRed - max (0, ChiSqrRed);  ?. in case of roundoff error 
954 excMagPhs - excMagV * [phsX phsY) ; 
955 crvMtx - 2 * sumExcMagDeltaO * [phsX phsY]' ... 
956 * ([phsX phsY] .* [excMagV excMagV]) ... 
957 -  2  '  excMagPhs' * excMagPhs; 
958 p2Var - chiSqrRed * inv (crvMtx); 
959 clear phsX phsY excMagV desMtx Q R excPhsWgt p2Vec DeltaPhs; 
960 clear SumExcMagDeltaO sumExcMagDeltal sumExcMagDelta2 sumExcMagDelta3 sumExcMagDelta4; 
961 clear chiSqrRed excMagPhs crvMtx; 
962 
963 V, Construct pointing vector 
964 * 
965 * Above we constructed two pointing vectors by different methods. 
966 '* The method of fitting the transform is robust even for large 
967 V. errors but limited by the transform resolution.  On the other 
968 V. hand, the method of fitting the excitation phases is independent 
969 V. of transform resolution but accurate only for small errors, 
970 '-.'. approaching the exact solution as the phase errors decrease.  We 
971 v. wish to obtain a single pointing vector for subsequent use, and 
972 V. for this purpose we form a weighted average.  Specifically, each 
973 v. vector is weighted by the inverse of the area of its covariance 
974 ■,', ellipse, which is pi times the determinant of the covariance 
975 ■■:.  matrix.  Similarly, a single covariance matrix is obtained by 
976 '•!.  weighing each covariance matrix by the square of the pointing 
977 ':■.  vector weights, normalized to avoid effectively halving the 
978 '■'. covariance matrix when the two incoming matrices are nearly equal. 
979 
980 areal - det (plVar); 
981 area2 - det (p2Var); 
982 areaTot = areal + area2; 
983 wghtl ■= area2 / areaTot; 
984 wght2 - areal / areaTot; 
985 px - wghtl * plx * wght2 * p2x; 
986 py - wghtl * ply + wght2 • p2y; 
987 pVar = (wghtl"2 * plVar + wght2A2 * p2Var) / (wght2"2 + wghtl"2); 
988 clear areal area2 areaTot wghtl wght2; 
989 clear plx ply plVar; 
990 clear p2x p2y p2Var; 
991 
992        V. Calculate peak power density and pointing error 
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V. To avoid inaccuracies due to interpolation, the peak power 
V. density is obtained by explicitly evaluating the Fourier 
V. transform at the pointing vector.  The pointing error is 
V. straightforwardly calculated from the dot product of the steering 
V. and pointing vectors.  However, an optional second method is 
V. coded that makes use of the pointing vector covariance matrix to 
V. calculate the uncertainty {standard deviation) of the pointing 
'.'. error due to uncertainty in the pointing vector.  If this 
'!. uncertainty is desired, also uncomment lines elsewhere that refer 
V. to errPointUnc and errPointUncS. 

complex field 

Phaser sum 
power 

IHPUT 0 to skip std dev, 
cross product 

% rows correspond to 
%  components of pCrs; 
%  columns, to pVec 
% covariance matrix 
<l. magnitude 

V. derivative exists 
pCrsMagDer'; 

'&  derivative doesn't exist 
V, average of principal variances 

pxy2 = pxA2 + py"2; 
peakVisb = (pxy2 <= 1); 
if peakvisb 

gSqrMax = exp (-i * twopi * (fOpr / c) ... 
* (  px * dx * ones (numLMNY, 1) * nx .. 

+ py * dy * ny * ones (1, numLMNX) )) 
gSqrMax = sum (gSqrMax (:) ) ; 
gSqrMax - real (conj (gSqrMax) * gSqrMax); 
pz - sqrt (1 - pxy2); 
if 0 

pCrs - t 0  -sz sy 
sz  0 -sx 

-sy sx 0 ] * |px py pz)'; 
pCrsDer - [ -sy*px/pz -sz-sy*py/pz 

sz+sx*px/pz    sx*py/pz 
-sy sx       ]; 

pCrsVar « pCrsDer * pVar * pCrsDer'; 
pCrsMag -  sqrt (pCrs' * pCrs); 
if pCrsMag > 0 
pCrsMagDer = pCrs' / pCrsMag; 
pCrsMagVar = pCrsMagDer * pCrsVar 

else 
pCrsMagVar = trace (pCrsVar) / 3; 

end 
errPoint ■= asin (pCrsMag) ; 
errPointUnc - abs (1 / sqrt (1 - pCrsMag*2)) • sqrt (pCrsMagVar); 
clear pCrs pCrsDer pCrsVar pCrsMag pCrsMagDer pCrsMagVar; 

else 
errPoint - acos (min (1, ... '>'. dot product for error; min 

sx * px + sy * py + sz * pz) ) ; V.  prevents roundoff problems 
errPointUnc - nan; 

end 
e2se V, maximum is invisible 

gSqrMax = gSqrMaxAct; 
px = nan; 
py = nan; 
pz - nan; 
errPoint - nan; 
errPointUnc = nan; 

end 
beamPowerDB - 10 * loglO (gSqrMax); 
clear pxy2; 

'},  Determine main beam region 

V, The angular domain of the main beam is constructed starting with 
V. the maximum element.  The largest neighboring element is added on, 
V. followed by the largest neighbor of either point, and so on.  This 
V. accretion continues until any neighbor of the largest element on 
'i.  the main beam border exceeds the element added previously. 
V, Effectively, elements are added with values descending from the 
%  peak until an opportunity to ascend is reached. All visible 
% elements outside of the main beam are declared to be in the 
?, sidelobes. 
* 
beamWidLvl - gSqrMax / 2; * power level where beam width is measured 
adjc - C-ay-1 -ay -ay+1 -1 1 ay-1 ay ay+lj;      * relative indices of neighbors 

V. Note: We must include the diagonal neighbors in order to 
'A correctly descend a structure such as [1 0.4; 0.5 0.9J. 

beamBool = logical (zeros (ay, ax)); 
brdrLen ■= 1 ; 
brdrlndx ■=   IgSqrMaxCol  -   1)   *   ay +  gSqrMaxRow; 
brdrVal  =  0; 
beamBool (brdrlndx) = 1; 
adjclndx = brdrlndx + adjc'; 
adjclndx = adjclndx (visBool (adjclndx)); 
adjcVal = gSqr (adjclndx); 
beamDepth = inf; 
beamVisb = 1; 
capVisb = (gSqrMaxAct > beamWidLvl); 
while max (adjcVal) <- beamDepth 

brdrLen = brdrLen - 1; 
brdrlndx = brdrlndx (1 : brdrLen); 
brdrVal  = brdrVal  (1 : brdrLen); 
beamBool (adjclndx) = ones (size (adjclndx)) 
for adjcPtr - 1 : length (adjclndx) 
pos - sum (brdrVal <- adjcVal (adjcPtr))- 

build main beam in Boolean variable 

start with maximum 
any value will do here 
main beam begins with maximum 

and neighbors 
that are visible 

get values 
get the loop started 

usually true unless resolution is too low 
are the new neighbors all downhill? 
yes; remove element from border 

add neighbors to main beam 
and to border 

ordered least to greatest 
brdrlndx- Ibrdrlndx(l:pos) adjclndx(adjcPtr) brdrlndx(pos+l:brdrLen)); 
brdrVal - (brdrVal(l:pos) adjcVal(adjcPtr) brdrVal(pos-H:brdrLen) ); 

brdrLen = brdrLen + 1; 
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end 
pick largest element from border 
neighbors of chosen element 
eliminate invisible points 
were some invisible? 
yes; clear flag 
are we below the threshold? 
no; the cap is partially invisible 

use only new elements 
and get their values 

beamWidLvl); closed contour a 
sidelobe region 

beamWidLvl? 

>\ duplicate maximum outside beam? 
* no; the beam is identified 

% strike earlier results 

beamDepth = brdrVal (brdrLen); 
adjclndx ■= brdrlndx (brdrLen) + adjc; 
adjclndx - adjclndx (visBool (adjclndx)); 
if length (adjclndx) < length (adjc) 
beamVisb = 0; 
if beamDepth >= beamWidLvl 
capVisb = 0; 

end 
end 
adjclndx = adjclndx (-beamBool (adjclndx)) 
adjcVal ■= gSqr (adjclndx); 

end 
capClosed - capVisb & (beamDepth 
sideBool = visBool fi -beamBool; 
beamlndx - find (beamBool); 
if max (max (gSqr (sideBool))) < gSqrMaxAct 
beamExist - 1; 
if -peakVisb 

disp ('Warning: The main beam peak is invisible; some calculations'); 
disp (' may return NaN.'); 

elseif -capVisb 
disp ('Warning: The beam width contour of the main beam is partially'); 
disp ('  invisible; some calculations may return NaN.'); 

elseif -capClosed 
disp ('Warning: The main beam is insufficiently deep for obtaining'); 
disp (*  Its width; some calculations may return NaN.'); 

elseif -beamVisb 
disp ('Warning: The main beam is partially invisible; some'); 
disp ('  calculations may return NaN.'); 

end 
else 
beamExist ö 0; * yes; the beam is ambiguous 
disp ('Warning: The main beam is not identifiable; some •); 
disp (* calculations will return NaN.'); 
px - nan; 
py - nan; 
pz « nan; 
errPoint - nan; 
beamVisb - 0; 
beamlndx - U; 
peakVisb - 0; 
capVisb - 0; 
capClosed - 0; 
beamDepth - nan; 
sideBool - visBool; 

end 
if beamDepth -- 0 
beamDepthDB - -inf; 

else 
beamDepthDB - 10 * loglO (beamDepth / gSqrMax); 

end 
clear adjc beamBool brdrLen brdrlndx brdrVal adjclndx adjcVal beamDepth adjcPtr pos 

V. Determine main beam width and roll 
■I 
'I.  The analysis of the beam's width and roll is conducted using a 
'i  stereographic projection, for which projections of great circles 
V. intersect at the same angles as the great circles on a sphere. 
V. (See the comments in the plotting section below for details.) 
'£  This property allows us to obtain, in the limit of a narrow beam, 
V, the correct roll angle and the beam widths along two orthogonal 
* great circles. 
». 
V. The actual calculations are based on fitting the half-power contour 
V. of the main beam to an ellipse.  First the contour is obtained in 
V, direction cosine space, then the coordinates are transformed to 
V. stereographic coordinates.  The contour is fitted to the conic 
V. section 

12 12 
V, -Ux    +Wxy+-Vy    +Xx + Yy+Z = 0 

2 2 

'-.'.  using  a  simple  algorithm that minimizes  the  algebraic distance  as 
7,   follows.     Define  the  design matrix  D to have  rows 

12 12 
■t D      -   I   (  - x    )   (x y )   ( - y    )     x      y      1)   , 
'J, i, : 2     i i   i 2     i i       i 

V. where the (x(i], y(i]) are the points along the contour, and let the 
■;. coefficient vector be 

a - [U W V X Y Z] . 

The algebraic distance between a point and a conic section is the 
left-hand side of the conic section equation, so that the distance 
between a point i along the contour and the ellipse described by the 
vector a is simply D[i,:]a.  We seek the minimum of the sum of 
squared algebraic distances, which is just I ID allA2, subject to the 

'* treat visible space as sidelobes 

% avoid warning message 
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1199 
1200 
1201 
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1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
124 6 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
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7.  constraint   l|all"2  -  1.     We  therefore  Introduce  the constrained 
';,  objective   function 

2 
E  -   I ID  all      -   lambda   (Hall   -   1) 

T  T T 
=  a  D D a  -  lambda   (a  a  -   1) 

'.'. «here lambda is a Lagrange multiplier.  The minimum is found 
v. analytically to occur when 

",       T 
'■;. D D a = lambda a , 

!. which is an eigenvalue equation.  The desired coefficient vector, a, 
V. corresponds to the minimum eigenvalue. 

V. Using the coefficients of the best-fit ellipse, we now calculate 
<!.  the beam characteristics.  First, a sign change is applied to the 
■i  coefficients if necessary to force U (and therefore V) to be 
V. negative.  For convenience, we rewrite the conic section as 

■I. IT       T 
V,     -pAp + Bp + Z-0, 

V,     2 

¥, where p = [x; yj, 

S, / U W \ 
■■:, A - l   I , 

\ W V / 

¥. and B - [X; Yl.  We first find the center of the ellipse in order 
■i  to draw it later. Replacing p with p + pi in the conic section 

* yields 

7, IT T T 
-  pi     A pi   +   <p     A + B   )   pi   +   Zl   -  0   , 

7. 2 

IT T 
Zl   »  - p     Ap  +   B     p+Z 

2 

is defined for later use.  When p coincides with the center, the 
linear term vanishes; therefore, p solves 

A p + b - 0 . 

We next find the roll angle, which is conceptually defined as 
follows, using spherical, not Stereographic, coordinates.  If the 
ellipse center is not at boresight, rotate it (and the antenna 
pattern) to boresight along the great circle connecting the two. 
The angle from the great circle with azimuth 0 to the great circle 
along the beam's major axis (direction of maximum width) is the 
roll angle. Alternatively, construct the great circle connecting 
the ellipse center and boresight.  The roll angle is the sum of 
two angles, the angle from the great circle with azimuth 0 to the 
constructed great circle and the angle from the constructed great 
circle to the great circle along the beam's major axis.  Now the 
roll angle so defined is merely the apparent orientation of the 
major axis when viewed in the Stereographic projection.  In a 
(Stereographic) coordinate system rotated by that angle, the 
off-diagonal element of A (the coefficient W) vanishes; therefore, 

, we seek the coordinate system that diagonalizes A.  Replacing p 
, with R p2 in the original conic section gives 

ITT T 
- p2  (R A R) p2 + (B  R) p2 + Z - 0 . 

2 

. The new quadratic coefficient RAT A R will be diagonal if the 

. columns of R are the eigenvectors of A.  The new diagonal elements 

. U2 and V2 become the eigenvalues, which are explicitly 

U /  2  / U - V \2 \l/2 
U2 + I W + I   I  I    and 

2     \     \   2   /  / 

U + V   /  2  /U-V\2 U/2 
V2 . I W + |   I  I 

2     \     \   2   /  / 

The eigenvalue with the smaller magnitude <U2 above, since U and V 
are negative) corresponds to the major axis.  Therefore, the 
corresponding eigenvector points along the direction of the major 
axis; the other eigenvector, along the minor axis.  The roll angle 
is obtained from the two components of the major axis; explicitly, 

it satisfies 



An Introduction to ARRSTATS 33 

1269 
1270 
1271 
1272 
1273 
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1281 
1282 
1283 
1284 
1285 
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1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 
1354 
1355 
1356 
1357 
1358 
1359 
1360 

tan   (2   roll)   - 
U  -  V 

"   We  also  use   the  eigenvectors   to draw  the  ellipse   later.     Last,   the 
'.'.  eigenvalues  yield  the major  and minor   full  widths  at half maximum 
'.'.   of   the  main  beam  as 

/ Zl   \l/2 / Zl   \l/2 
1-8   —   1 and      J   — S   —   | 
\ U2   / \ V2   / 

V. respectively.  As these were derived in the stereographic 
'.'. projection, a factor of (1 + cos polar) is applied to obtain the 
'■,'. approximate widths in real angles. 
V. 
if capClosed 

V. 
$  Construct the contour 

beamlndx (gSqr (beamlndx) >= beamWidLvl);  V, elements at or above level 
logical (zeros (ay, ax)); 

caplndx 
capBool 
capBool (caplndx) - ones (size (caplndx)); 
adjc - Cay ay+1 1 -ay+1 -ay -ay-1 -1 ay-1); 
dirlndx - 1; 
intlndx - caplndx (1); 
dirlndxSt » 0; 
intlndxSt - 0; 
capContX = [ ]; 
capContY - [J; 
while capBool (intlndx + adjc (dirlndx)) 

intlndx - intlndx + adjc (dirlndx); 
end 
while (intlndx — intlndxSt) I (dirlndx — dirlndxSt) 

adjclnc - abs (adjc (dirlndx)); 
if (adjclnc ™ 1) I (adjclnc «- ay) 

if adjclnc ™ ay 
capContYl - dirCosYMtx (intlndx); 
capContXl - dirCosXMtx (intlndx) + (beamWidLvl 

% clockwise in matrix row-column coordinates 
% initial index into adjc 
'A initial index of interpolation center 
* get loop started 

?. empty contour coordinates 

V. next element is inside cap? 
V. keep moving until edge is reached 

* back at starting point? 
% no; get magnitude 
% looking across row or column? 
'* across column? 
% yes; interpolate in x 
gSqr (intlndx)) ... 

(dirCosXMtx (intlndx + adjc (dirlndx)) 
/ (gSqr      (intlndx + adjc (dirlndx)) 

else 
capContXl - dirCosXMtx (intlndx); 
capContYl - dirCosYMtx (intlndx) 

dirCosXMtx (intlndx)) . 
gSqr      (intlndx)); 

V. across row 
4 interpolate in y 

(beamWidLvl - gSqr (intlndx)) ... 
(dirCosYMtx (intlndx + adjc (dirlndx)) - dirCosYMtx (intlndx)) — 

capContXl) 
capContYl) 

/ (gSqr      (intlndx + adjc (dirlndx)) - gSqr 
end 
if isempty (capContX) 

capContX « capContXl; 
capContY * capContYl; 
intlndxSt - intlndx; 
dirlndxSt * dirlndx; 

elseif (capContX (length (capContX)) 
& (capContY (length (capContY)) 

capContX - [capContX; capContXl); 
capContY = [capContY; capContYl); 

end 
end 
dirlndx - dirlndx + 1; 
if dirlndx > length (adjc) 
dirlndx - 1; 

end 
adjclnc - abs (adjc (dirlndx)); 
if capBool (intlndx + adjc (dirlndx)) 

intlndx - intlndx + adjc (dirlndx); 
dirlndx - dirlndx - length (adjc) / 2 + 1; 
if (adjclnc -- 1) I (adjclnc «- ay) 

dirlndx » dirlndx + 1; 
end 
if dirlndx < 1 
dirlndx = dirlndx + length (adjc); 

end 
end 

end  V. while 

V. Fit an ellipse in stereographic coordinates 

capContZ = sqrt (1 - capContX."2 - capContY."2); 
capContXS = capContX ./ (1 + capContZ); 
capContYS = capContY ./ (1 + capContZ); 
cDesMtx = (capContXS.*capContXS/2 capContXS.*capContYS 

capContYS.*capContYS/2 capContXS   
capContYS ones(size(capContXS))]; 

CDesMtx - cDesMtx' * cDesMtx; 
capContX - capContX ([1:length(capContX) 1]); 
capContY - capContY ([1:length(capContY) 1]); 
capContZ = capContZ ([1:length(capContZ) 1J); 
[cEigVec, cEigValJ - eig (cDesMtx); 
IcEigValMin, cEigValMinldxJ -min (diag (cEigVal)); 
cPoly * cEigVec (:, cEigValMinldx); 
cPoly - -cPoly * sign (cPoly (U); 

(intlndx)); 

* first point? 
%  yes; store it 

V. remember starting point 

... %  duplicate? (e.g., 
*  element equals level) 

'i.  no; append it 

'i.   (no diagonal interpolation) 
* next direction 
V. cycle 

% no; get magnitude of step 
ft next element is inside cap? 
V. yes; becomes new interpolation center 
V. reverse, then ahead one increment 
V. stepped in row or column? 
V. yes; ahead an extra increment 
V.   (useless to look back diagonally) 
V. cycle 

". contour complete 

V. to stereographic coords 

'.'. to form design matrix 
V.   for least-squares fit 

V. done 
'»'. close contour for plotting 

V. eigenvectors and -values 
'i. minimum eigenvalue 
V. and matching vector 

■!. to have negative eigenvalues below 
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1446 
1447 
1448 
1449 
1450 
1451 
1452 

',', Obtain beam characteristics from ellipse coefficients 

cHessMtx - (cPoly(l) cPoly(2) 
cPoly(2) cPoly<3)]; 

cDervMtx = [cPoly(4) 
cPoly(S)]; 

capCenter - -cHessMtx \ cDervMtx; 
capConst - cPoly (6) + cDervMtx' * capCenter / 2; 
(cEigVec, cEigVal] = eig (cHessMtx),- 
[cEigVal, cEigValOrd) = sort (diag (cEigVal)); 
cEigVec = cEigVec (:, cEigValOrd); 
if cEigVec (1, 2) — 0 

roll - pi / 2; 
else 

roll - atan (cEigVec (2, 2) / cEigVec (1, 2)); 

end 
roll - roll - pi/2 + azmthOffst; 
roll - roll - ceil (roll / pi) * pi + pi/2 - azmthOffst; 
hpbw = sqrt (-8 * capConst ./ cEigVal); 

'■!.  Hessian matrix; 
V.   second derivatives 
'■!.   first derivative matrix 

V, ellipse center 
'.', new constant coefficient 

V, ascending order 
'1.  corresponding order 
■>.  special case? 

V. angle to major axis 

V. make -pi/2 < 
V, roll + azmthOffst <- pi/2 
% two-vector 

?, Construct the fitted ellipse for plotting (in stereographic coordinates) 

% calculate some 
$  points along the 
4  fitted ellipse 
% squared radius in stereographic coords 
% z direction cosine 
a undo stereographic projection 

V. undo widths, too 

theta - (0 : 10 / 360 : 1) * twopi; 
cFit - capCenter * ones (size (theta)) . 

+ 0.5 * (cEigVec * diag (hpbw) ... 
* Isin(theta); cos(theta)]); 

cFitR2 - sum (cFit.A2); 
cFitZ - (1 - cFitR2) ./ (1 + cFitR2); 
cFitX - cFit (1, :) .* (1 + cFitZ); 
cFitY - cFit (2, :) .* (1 + cFitZ); 
hpbw - hpbw * (1 + pz); 
hpbwMjr - hpbw (2); 
hpbwMnr « hpbw (1); 

else 
roll - nan; 
hpbwMjr - nan; 
hpbwMnr - nan; 

end 
clear capBool adjc dirlndx intlndx dirlndxSt intlndxSt adjclnc capContXl capContYl 
clear capContXS capContYS cDesMtx cEigVec cEigVal cEigValMin cEigValMinldx cPoly; 
clear cHessMtx cDervMtx capCenter capConst cEigValOrd hpbw; 
clear theta cFit cFitR2; 

V. Calculate power in visible space, main beam, and sidelobes; main 
'* beam and sidelobe solid angles; and average sidelobe level 

■t 
% These calculations involve integrals over the hemisphere or portions 
% of it.  The integrals are carried out in direction cosine 
?, coordinates by multiplying the integrand by the appropriate 

* Jacobian. 

* The integrals are evaluated using the midpoint approximation, for 
?. which the starting point is the Taylor series expansion of g (x, y) 

V. to second order: 

g   (a  + u,   b +  v) 

-Ig + ug    +vg 
\ x y 

12 1     2 \ 
-ug       +uvg       +-vg       I 
2        xx xy      2        yy /a,b 

V. Then 

/  c/2  / d/2 
I   du     I   dv    g   (a + u,   b + v)   - 
/-c/2  /-d/2 

/ 1 2 2 \ 
-lcdg +  — cd   (eg    +dg     )l 

\ 24 xx yy     /a,b 

The midpoint approximation keeps the first term and neglects the 
quadratic terms.  The maximum amount neglected is 

cd/  21 
— I c  Ig  ( 
24  \    I xx 

I    2 I I \ 
b)I + d  lg  (a, b) I I 

I    I yy    I / 

t which we use as the error estimate for each interior point of the 
;. integration, approximating the second derivatives with scaled second 

:. differences. 

V. To the interior error is added an estimate of the error due to 
■!.   finite sampling at the integral limits; the estimate is half the 
'.'. value of the integrand at the outermost samples. 

V. (The error estimate calculations have been commented out for 

V. speed.) 

'.'. visbEdgelndx * visBool; 
V. visbEdgelndx (2 : ay - 1, 2 : ax - 1) = .. . 
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1453 1, 
1454 I 
1455 ',», 
1456 v. 
1457 '!. 
1458 ■1. 

1459 
1460 V. 
1461 '?. 
1462 
1463 
1464 V. 
1465 •I 
1466 
1467 V. 
1468 V, 
1469 
1470 
1471 
1472 
1473 
1474 
1475 ■I 
1476 t 
1477 t 
1478 * 
1479 '* 
1480 * 
1481 •■!. 

1482 ?, 
1483 
1484 V, 
1485 ',►, 

1486 V. 
1487 •i 
1488 ■I 
1489 'i, 
1490 
1491 * 
1492 
1493 
1494 !,', 
1495 ?. 
1496 
1497 ?. 
1498 
1499 * 
1500 ■1. 

1501 
1502 '■!. 

1503 * 
1504 
1505 1 
1506 V 
1507 
1508 V 
1509 
1510 V 

1511 
1512 V 
1513 
1514 
1515 ■1. 

1516 ? 
1517 
1518 •t 
1519 't 
1520 
1521 ', 
1522 ', 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532 
1533 
1534 
1535 
1536 
1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 

); 

7. areal factor for integrating: 
'i.       Jacobian [1 / cos polarj 
1       and grid spacing 
'i, edge points may exceed this 
V,  arbitrary limit; force those 
%  that do to comply 

V. error estimate based on second- 
's  order Taylor expansion 

V. assume errors at outer edge equal 
V.  those of nearest neighbors 
'I  to integrate gSqr 
f. error estimate for integrand 

V. assume errors at outer edge equal 
V,  those of nearest neighbors 

main beam solid angle 

{ visbEdgelndx (2 : ay - 1, 3 : ax   ) & visbEdgelndx (1 : ay - 2, 2 : ax - 1) 
& visbEdgelndx (2 : ay - 1, 1 : ax - 2) £ visbEdgelndx (3 : ay   , 2 : ax - 1) 

visbEdgelndx - find (visBool - visbEdgelndx); 
beamEdgelndx - zeros {ay, ax); 
beamEdgelndx (beamlndx) = ones (size (beamlndx)); 
sideEdgelndx = beamEdgelndx; 
beamEdgelndx (2 : ay - 1, 2 : ax - 1) = — 

{ beamEdgelndx (2 : ay - 1, 3 : ax   ) & beamEdgelndx {1 : ay - 2, 2 : ax - 1) 
& beamEdgelndx (2 : ay - 1, 1 : ax - 2) & beamEdgelndx {3 : ay   , 2 : ax - 1) 

beamEdgelndx (beamlndx) = 1 - beamEdgelndx (beamlndx); 
beamEdgelndx = find (beamEdgelndx); 
sideEdgelndx (2 : ay - 1, 2 : ax - 1) = — 

< sideEdgelndx (2 : ay - 1, 3 : ax   ) I sideEdgelndx (1 : ay - 2, 2 : ax - 1) .. 
I sideEdgelndx (2 : ay - 1, 1 : ax - 2) I sideEdgelndx (3 : ay   , 2 : ax - 1) ); 

sideEdgelndx (beamlndx) = zeros (size (beamlndx)); 
sideEdgelndx = find (sideEdgelndx); 
areaFact - zeros (ay, ax); 
areaFact (visBool) - ... 

1 ./ (txLim * tyLim * dirCosZMtx (visBool)); 
areaFactLim - 2 / sqrt (txLim * tyLim); 
tooBig - find (areaFact > areaFactLim); 
areaFact (tooBig) - ones (size (tooBig)) * areaFactLim; 
sldAng - sum (areaFact (:)); 
sldAngErrRel - abs (sldAng / (2 * pi) - 1); 
areaFactUnc - zeros (ay, ax); 
areaFactUnc (2 : ay - 1, 2 : ax - 1) - — 

(  abs (diff (areaFact (2 : ay - 1, :)\   2)') ... 
+ abs (diff (areaFact (:, 2 : ax - 1) , 2) > ) / 24; 

areaFactUnc ([1 ay], :) = areaFactUnc {[2 ay-1], :); 
areaFactUnc (:, (1 ax]) ~ areaFactUnc (:, [2 ax-1]); 
intgrnd = areaFact .* gSqr; 
intgrndUnc - zeros (ay, ax) ; 
intgrndUnc (2 : ay - 1, 2 : ax - 1) ■= ... 

(  abs (diff (intgrnd (2 : ay - 1, :)', 2)') ... 
+ abs (diff (intgrnd (:, 2 : ax - 1) , 2) ) ) / 24; 

intgrndUnc ([1 ay], :) - intgrndUnc ((2 ay-1], :); 
intgrndUnc (:, (1 ax]) - intgrndUnc (:, [2 ax-1]); 
powerVisb - sum (intgrnd (:)); 
powerVisbUnc - sum (intgrndUnc (:)); 
directivityDB - 10 * loglO (4 * pi * gSqrMax / powerVisb) 
if beamExist 

sldAngMain - sum (areaFact (beamlndx)); 
sldAngMainUnc - sum (areaFactUnc (beamlndx)) + sum (areaFact (beamEdgelndx)) / 2; 
powerHain - sum (intgrnd (beamlndx)); V. power in the main beam 
powerMainUnc - sum (intgrndUnc (beamlndx)) + sum (intgrnd (beamEdgelndx)) / 2; 
powerSide - sum (intgrnd (sideBool)); * power in the sidelobes 
powerSideUnc - sum (intgrndUnc (:)) - sum (intgrndUnc (beamlndx))... 

+ sum (intgrnd (sideEdgelndx)) / 2; 
sldAngSide - sum (areaFact (sideBool)); * sidelobe equivalent solid angle 
sldAngSideUnc - sum (areaFactUnc (sideBool)) - sum (areaFactUnc (beamlndx)) — 

+ sum (areaFact (sideEdgelndx)) / 2; 
else 

sldAngMain - nan; 
sldAngMainUnc - nan; 
powerMain « nan; 
powerMainUnc - nan; 
powerSide - nan; 
powerSideUnc - nan; 
sldAngSide = nan; 
sldAngSideUnc = nan; 

end 
powerMainVisbDB - 10 * loglO (powerMain / powerVisb); 
powerMainVisbUnc - powerMainUnc / powerVisb ... 

+ powerMain * powerVisbUnc / powerVisb"2; 
powerVisbSideDB - 10 * loglO (powerVisb / powerSide); 
powerVisbSideUnc - powerVisbUnc / powerSide ... 

+ powerVisb * powerSideUnc / powerSideÄ2; 
powerMainSideDB - 10 * loglO (powerMain / powerSide); 
powerMainSideUnc - powerMainUnc / powerSide ... 

+ powerMain * powerSideUnc / powerSideA2; 
powersideAvgDB - 10 * loglO (powerSide / (sldAngSide * gSqrMax)); 
powerSideAvgUnc = powerSideUnc / sldAngSide ... 

+ powerSide * sldAngSideUnc / sldAngSideA2; 
clear intgrnd areaFact areaFactLim tooBig; 
clear intgrndUnc areaFactUnc; 

V. Locate nearest and largest sidelobes 

■;. We wish to identify the sidelobe closest in angle to the main beam 
V. and the sidelobe with the largest peak power.  We first find the 
V. local maxima in the sidelobe region, then for each we determine 
V. the possible ranges for actual distance from the main beam and 
v. peak power.  (The uncertainties arise from the discrete sampling 
V. of the array factor.)  Using the ranges we select those peaks that 
V, could possibly be the closest or largest.  For each of these 
V. candidates a more precise location and peak power is computed by 
V. interpolating over neighboring data.  Finally, based on these 
V. results, the closest and nearest sidelobes are identified. 

if peakVisb 

V, Find local maxima (sidelobe peaks), using discrete differences 

I ratio of main beam to visible power 

V. ratio of visible to sidelobe power 

?. ratio of main beam to sidelobe power 

average sidelobe power 
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1545 
1546 
1547 
1548 
1549 
1550 
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 
1593 
1594 
1595 
1596 
1597 
1598 
1599 
1600 
1601 
1602 
1603 
1604 
1605 
1606 
1607 
1608 
1609 
1610 
1611 
1612 
1613 
1614 
1615 
1616 
1617 
1618 
1619 
1620 
1621 
1622 
1623 
1624 
1625 
1626 
1627 
1628 
1629 
1630 
1631 
1632 
1633 
1634 
1635 
1636 

to approximate  derivatives.     The differences  are   formed from the 
magnitude of  the  array  factor,   not  the  squared magnitude;   since 
the behavior  should already be parabolic near peaks,   squaring 
would produce  fourth-order behavior and make  second-order 
interpolation  less  accurate. 

Key  to  the  variables  below: 
X       first  differences  in x 
Y       first differences  in  y 
XX     second differences   in  x 
YY     second  differences   in   y 

first differences  in  x with double  step 
cross  differences   in x  and  y 
nonzero where  first difference   in  x  changes  sign 
nonzero where  first difference   in  y changes  sign 

X2 
XY 
XC 
YC 

gMagX  - gMag (:, 2:ax) - gMag (:, l:ax-l); 
gMagY - gMag (2:ay, :) - gMag (l:ay-l, :); 
gMagXX = (zeros(ay,l)  (gMagX (:, 
gMagYY - [zeros(l.ax) 
gMagX2 - [zeros(ay, 1) 
gMagXY - [zeros(l,ax) 
gMagXC - tzeros(ay,l) 
gMagYC - (zeros(1,ax) 
sllndx - find ( sideBool — 

S gMagXC     t gMagYC 
t   (gMagXX < 0) t   (gMagYY < 0) 

2:ax-l) 
(gMagY (2:ay-l, :) 
(gMag (:, 3:ax ) 
(gMagX2(3:ay , :) 
(gMagX (:, 2:ax-l) 
(gMagY (2:ay-l, :) 

6 (gMagXY."2 - gMagXX . 
if isempty (sllndx) 

sllndx - []; 
slNrstDist = nan; 
slNrstPowrDB ■= nan; 
slNrstVec = nan * ones 
slLgstDist » nan; 
slLgstPowrDB = nan; 
slLgstVec - nan * ones 

else 

gMagYY < 0) ) ; 

(1, 3) 

gMagX (:, l:ax-2))     zeros(ay,1)1 
gMagY (l:ay-2, :));    zerosd.ax)) 
gMag  (:, l:ax-2))/2   zeros(ay,D] 
gMagX2(l:ay-2, :))/2;   zeros(l,ax)l 
gMagX (:, l:ax-2) < 0)  zeros(ay,l>] 
gMagY (l:ay-2, :) < 0); zeros(1,ax)]; 

%  identify sidelobe points where 
'*  first derivatives change sign, 
'A  second derivatives are negative, and 
%       discriminant is negative 
* none found? 

found some peaks 

?. Compute possible ranges of distances and powers; identify 
?, candidates for closest and largest peaks 

dirCosXMtx (sllndx)) * 
dirCosYMtx (sllndx)); 

ay toward - sign (px 
+ sign (py 

slCosDistMax - ... 
px * dirCosXMtx (sllndx + toward) ... 

+ py * dirCosYMtx (sllndx + toward) ... 
+ pz * dirCosZMtx (sllndx + toward); 

slCosDistMin - ... 
px * dirCosXMtx (sllndx - toward) ... 

+ py * dirCosYMtx (sllndx - toward) ... 
+ pz * dirCosZMtx (sllndx - toward); 

slNrstBool - (SlCosDistMax >- max (slCosDistMin)); 
slPowr - (gMag (sllndx) ... 

+ ( -gMagXX (sllndx) ... 
+ 2 * abs (gMagXY (sllndx)) ... 
- gMagYY (sllndx) ) / 8)."2; 

slLgstBool - (slPowr >- max (gSqr (sllndx))); 
slCandlndx - sllndx (slNrstBool I slLgstBool); 
numCand = length (slCandlndx); 

'i   Interpolate powers and locations for candidates 

index increment to neighbor 
closer to pointing vector 

cosine of maximum possible 
angle between pointing 
vector and each peak; 
dot product 

likewise for minimum 
possible angle 

true if peak might be the closest 
estimate largest possible 

interpolated power by adding 
an error estimate based on the 
differences computed above 

true if peak might be the largest 
candidates for closest and largest 
number of candidates 

six - zeros (numCand, 1); 
sly - zeros (numCand, 1); 
slPowr - zeros (numCand, 1); 
for slPtr - 1 : numCand 

slCol - ceil (slCandlndx (slPtr) / ay); 
slRow - slCandlndx (slPtr) - (SlCol - 1) 
intRad - 1; 
slOK - 0; 
while -slOK £ intRad < 3 

slNbrs * [-intRad : intRad); 
slxFit - dirCosXMtx (slRow + slNbrs, 

■  dirCosYMtx (slRow + slNbrs, 
= gMag      (slRow + slNbrs, 

slxFit 

slyFit 
slzFit 
slxFit 
slyFit 
slzFit 

slCol 
slCol 
slCol 

4 allocate space for x and 
1       y direction cosines 
?.  and powers 
'i  loop through candidates 
V, separate index into column 
'/.  and row indices 
'-.* interpolation radius 
">', initialize 
V. no answer yet but too early to bail? 
'.l. offsets to neighbors 

slNbrs);  '.'■ x, y, and z coordinates of 
slNbrs);  V.  neighbors (using magnitude, 
slNbrs) ;  V.  not power, for z) 

slyFit ( 
slzFit ( 

slDesMtx - (slxFit.*slxFit/2 slxFit.-slyFit slyFit.*slyFit/2 . 
slxFit slyFit ones(size(slxFit))1; 

[0, R] = qr (slDesMtx, 0); 
slPoly - R \ (Q' * slzFit); 
sivec - -(slPoly(l) slPoly(2); slPoly(2) slPoly(3 

\ |slPoly(4); slPoly(5)l; 

design matrix 

now slDesMtx = Q * R; Q' * O - eye 
solves slDesMtx * slPoly = slzFit 

) ] ...  V. find critical point 

slOK = .. . 
(slVec (1) 

& (slVec (1) 
i (slVec (2) 
S.   (slVec (2) 

if -slOK 
intRad -  intRad 

end 

> dirCosX (slCol - intRad)) 
< dirCosX (slCol + intRad)) 
> dirCosY (slRow - intRad)) 
< dirCosY (slRow + intRad)); 

+ 1; 

is interpolated point 
inside neighborhood? 
(pathological cases can 
place it outside) 

outside neighborhood? 
yes; cast a wider net 
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1637 
1638 
1639 
1640 
1641 
1642 
1643 
1644 
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1660 
1661 
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 
1671 
1672 
1673 
1674 
1675 
1676 
1677 
1678 
1679 
1680 
1681 
1682 
1683 
1684 
1685 
1686 
1687 
1688 
1689 
1690 
1691 
1692 
1693 
1694 
1695 
1696 
1697 
1698 
1699 
1700 
1701 
1702 
1703 
1704 
1705 
1706 
1707 
1708 
1709 
1710 
1711 
1712 
1713 
1714 
1715 
1716 
1717 
1718 
1719 
1720 
1721 
1722 
1723 
1724 
1725 
1726 
1727 
1728 

'A end interpolation attempts 
'J, interpolation successful? 
?. yes; keep interpolated point 

end 
if slOK 

six (slPtr) - slVec (1); 
sly (SlPtr) - slVec (2); 
slPowr (slPtr) - ... '•'• interpolate power 

((slx(slPtr).*slx(slPtr)/2 six(slPtr).*sly(slPtr) ... 
sly(slPtr).*sly(slPtr>/2 slx(slPtr) sly(slPtr) 1] * slPoly).A2; 

else 
six (slPtr) - dirCosXMtx (slCandlndx (slPtr)); 
sly (slPtr) - dirCosYMtx (slCandlndx (slPtr)); 
slPowr (slPtr) - gSqr (slCandlndx (slPtr)); 

end 
end 

';. Select closest and largest peaks 

interpolation failed 
use grid location of 

sampled maximum 
use sampled power 

end of loop through candidates 

slz); 
slz - sqrt (1 - slx.A2 - sly."2); 
slDist - acos (px * six + py * sly * pz 
IslNrstDist, slNrstlndx] -min (slDist); 
slNrstPowrDB - 10 * loglO (slPowr (slNrstlndx) / gSqrMax); 
slNrstVec - (slx(slNrstlndx) sly(slNrstlndx) slz(slNrstlndx)); 
IslLgstPowrDB, slLgstlndx) - max (slPowr); 
slLgstPowrDB - 10 * loglO (slLgstPowrDB / gSqrMax); 
slLgstDist - slDist (slLgstlndx); 
slLgstVec - Islx(slLgstlndx) sly(slLgstlndx) slz(slLgstlndx)]; 

end 
else * peak is invisible 

sllndx - (); 
slNrstDist ■= nan; 
slNrstPowrDB = nan; 
slNrstVec - nan * ones (1/ 3); 
slLgstDist - nan; 
slLgstPowrDB - nan; 
SlLgstVec - nan * ones (1, 3); 

end 
clear gMagX gMagY gMagXX gMagYY gMagX2 gMagXY gMagXC gMagYC; 
clear toward slCosDistMax slCosDistMin; 
clear slNrstBool slLgstBool slCandlndx numCand; 
clear six sly slz slPowr slPtr slCol slRow intRad slOK; 
clear slNbrs slxFit slyFit slzFit slDesMtx Q R slPoly slVec; 
clear slDist slnrstindx slLgstlndx; 

'},  Record characteristics 

V. In order to calculate running means and standard deviations of n 
V. realizations, we accumulate the mean and variance 

M ■ - sum x  and 
n  n n"l m 

z direction cosines 
angular distances 

V. smallest distance 
V.  and corresponding power 
V. keep vector for plotting 
V. largest power 
V,  converted to dB 
V. and corresponding distance 
'* keep vector 

1   n 2 
V sum (x - M ) 
n  n - 1 m=l  m   n 

using the updating formulas 

2       1 2 
— V   + - (x - M  ) 
1 n-1  n  n   n-1 

','. The running mean is simply Mtn], and the standard deviation is 
5. sqrt (V(n)).  M is accumulated in the first column of a matrix; V 
V. in the second.  This method is more immune to roundoff error than 
V. accumulating the sums of values and squares {1] . 

'.'. If the beam is invisible, the excitations and array factor are 
V. saved to an automatically-named file. 

V. II) N. J. Higham, ^Accuracy and Stability of Numerical Algorithms_ 
'1.  Philadelphia, PA: SIAM, 1996, pp. 12-13. 

if beamVisb I (numRlz — 1) 
if isnan (numAcc (indx)) 

numAcc (indx) - 1; 
pxS 
pxS 
pys 
pyS 
pzS 
pzS 
errPointS 
errPointS 
errPointUncS 
errPointUncS 
beamPowerDBS 
beamPowerDBS 

(indx, 1) = px; 
(indx. 2) - 0; 
(indx, 1) - py; 
(indx. 2) - 0; 
(indx. I) - pz; 
(indx. 2) - 0; 
(indx. 1) = errPoint; 
(indx. 2) - 0; 
(indx. 1) - errPointUnc 
(indx. 2) - 0; 
(indx. 1) - beamPowerDB 
(indx. 2) - 0; 
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1729 
1730 
1731 
1732 
1733 
1734 
1735 
1736 
1737 
1738 
1739 
1740 
1741 
1742 
1743 
1744 
1745 
1746 
1747 
1748 
1749 
1750 
1751 
1752 
1753 
1754 
1755 
1756 
1757 
1758 
1759 
1760 
1761 
1762 
1763 
1764 
1765 
1766 
1767 
1768 
1769 
1770 
1771 
1772 
1773 
1774 
1775 
1776 
1777 
1778 
1779 
1780 
1781 
1782 
1783 
1784 
1785 
1786 
1787 
1788 
1789 
1790 
1791 
1792 
1793 
1794 
1795 
1796 
1797 
1798 
1799 
1800 
1801 
1802 
1803 
1804 
1805 
1806 
1807 
1808 
1809 
1810 
1811 
1812 
1813 
1814 
1815 
1816 
1817 
1818 
1819 
1820 

ndx, 1) 

{indx, 

ndx, 

(ihdx, 2) 

ndx, 1) 

ndx, 2) 

(indx, 1) 

ndx, 2) 

(indx, 1) = beamDepthDB; 

(indx, 2) ■= 0; 
(indx, 1) = hpbwMjr; 

(indx, 2) - 0; 
= hpbwMnr; 

= 0; 

- roll; 

- 0; 
= directivityDB; 
= 0; 
= powerMainVisbDB; 
- 0; 

ndx, 1) = powerMainSideDB; 
ndx, 2) ■= 0; 
ndx, 1) = powerVisbSideDB; 
ndx, 2) - 0; 

(indx, 1) = powerSideAvgDB; 
2) - 0; 
1) -  slNrstDist; 
2) - 0; 
1) - slNrstPowrDB; 
2) - 0; 

1) - slLgstDist; 
2) - 0; 

(indx, 1) - SlLgstPowrDB; 
(indx, 2) - 0; 

(indx, 
(indx, 
(indx, 
(indx, 
(indx, 
(indx, 
(indx. 

beamDepthDBS 
beamDepthDBS 
hpbwM j rS 
hpbwMjrS 
hpbwMnrS 
hpbwMnrS 
rolls 
rolls 
directivityDBS 
directivityDBS 
powe rMai nVi sbDBS 
powerMainVisbDBS 
powerMainSideDBS 
powerMainSideDBS 
powerVisbSideDBS 
powe rVi sbSideDBS 
powerSideAvgDBS 
powerSideAvgDBS 
slNrstDistS 
slNrstDistS 
slNrstPowrDBS 
slNrstPowrDBS 
slLgstDistS 
SlLgstDistS 
slLgstPowrDBS 
SlLgstPowrDBS 

else 
numAcc (indx) = numAcc (indx) + 1; 
factV - (numAcc (indx) - 2) / (numAcc (indx) 
dev = px - pxS (indx, 1); 
pxS (indx, 2) - pxS 
pxS (indx, 1) - pxS 
dev = py - pyS (indx, 1); 
pyS (indx, 2) - pyS 
pyS (indx, 1) - pyS 
dev « pz - pzS (indx, 1); 
pzS (indx, 2) - pzS 
pzS (indx, 1) = pzS 
dev - errPoint - errPointS (indx, 1); 
errPointS       (indx, 2) - errPointS 
errPointS       (indx, 1) - errPointS 

*A dev - errPointUnc - errPointUncS (indx, 1); 
?, errPointUncS    (indx, 2) - errPointUncS 
V. errPointUncS    (indx, 1) - errPointUncS 

dev * beamPowerDB - beamPowerDBS (indx, 1); 
beamPowerDBS     (indx, 2) - beamPowerDBS 
beamPowerDBS    (indx, 1) - beamPowerDBS 
dev = beamDepthDB - beamDepthDBS (indx, 1); 
beamDepthDBS    (indx, 2) - beamDepthDBS 
beamDepthDBS    (indx, 1) - beamDepthDBS 
dev - hpbwMjr - hpbwMjrS (indx, 1); 
hpbwMjrS        (indx, 2) - hpbwMjrS 
hpbwMjrS        (indx, 1) - hpbwMjrS 
dev - hpbwMnr - hpbwMnrS (indx, 1); 
hpbwMnrS        (indx, 2) - hpbwMnrS 
hpbwMnrS        (indx, 1) = hpbwMnrS 
dev - roll - rolls (indx, 1); 
rolls (indx, 2) - rolls 
rolls (indx, 1) - rolls 
dev = directivityDB - directivityDBS (indx, 
directivityDBS   (indx, 2) - directivityDBS 
directivityDBS   (indx, 1) - directivityDBS 
dev - powerMainVisbDB - powerMainVisbDBS (indx, 1); 
powerMainVisbDBS (indx, 2) - powerMainVisbDBS (indx, 
powerMainVisbDBS (indx, 1) « powerMainVisbDBS (indx, 
dev - powerMainSideDB - powerMainSideDBS (indx, 1) ,- 
powerMainSideDBS (indx, 2) - powerMainSideDBS (indx, 
powerMainSideDBS (indx, 1) - powerMainSideDBS (indx, 
dev = powerVisbSideDB - powerVisbSideDBS (indx, 1); 
powerVisbSideDBS (indx, 2) ■= powerVisbSideDBS (indx, 
powerVisbSideDBS (indx, 1) = powerVisbSideDBS (indx, 
dev = powerSideAvgDB - powerSideAvgDBS (indx, 1); 
powerSideAvgDBS  (indx, 2) - powerSideAvgDBS  (indx, 
powerSideAvgDBS  (indx, 1) = powerSideAvgDBS 
dev - slNrstDist - slNrstDistS (indx, 1); 
SlNrstDistS      (indx, 2) = SlNrstDistS 
SlNrstDistS     (indx, 1) ■= slNrstDistS 
dev - SlNrstPowrDB - slNrstPowrDBS (indx, 1) 
SlNrstPowrDBS    (indx, 2) = slNrstPowrDBS 
SlNrstPowrDBS    (indx, 1) - slNrstPowrDBS 
dev = slLgstDist - SlLgstDistS (indx, 1); 
SlLgstDistS     (indx, 2) = slLgstDistS 
slLgstDistS     (indx, 1) - slLgstDistS 
dev - SlLgstPowrDB - slLgstPowrDBS (indx, 1) 
SlLgstPowrDBS    (indx, 2) - SlLgstPowrDBS 
SlLgstPowrDBS    (indx, 1) - slLgstPowrDBS 

end 
else 

eval (('save case' sprintf(UO.Of",indx) '-' sprintfl 

end 
clear factV dev 

- 1); 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

l); 
(indx, 
(indx. 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx, 

(indx, 
(indx. 

dev* 2 
dev 

devA2 
dev 

devA2 
dev 

devA2 
dev 

dev-2 
dev 

dev-2 
dev 

2) * factV + 
1)        + 

2) * factv + 
1)       + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV + 

1)        + 

2) * factV + 
1)       + 

2) * factV + 
1)        + 

dev-2 
dev 

dev-2 
dev 

dev"2 
dev 

deV2 
dev 

devA2 
dev 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

(indx); 
(indx); 

(indx); 
(indx); 

2) * factV + 
1)        + 

2) * factV + 
1)        + 

2) * factV 4 

1)        + 

2) * factV + 
1)        + 

devA2 
dev 

devA2 
dev 

dev"2 
dev 

dev"2 
dev 

devA2 
dev 

dev~2 
dev 

dev"2 
dev 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

(indx); 
(indx); 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

(indx); 
(indx); 

(indx); 
(indx); 

/ numAcc 
/ numAcc 

lindx); 
[indx); 

2) * factv + 
1)        ♦ 

devA2 
dev 

/ numAcc 
/ numAcc 

/ numAcc 
/ numAcc 

(indx); 
(indx); 

(indx); 
(indx); 

ftO.Of',rlzNum) ' exc gSqr']); 
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1873 
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1878 
1879 
1880 
1881 
1882 
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1886 
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1889 
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1893 
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1895 
1896 
1897 
1898 
1899 
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1901 
1902 
1903 
1904 
1905 
1906 
1907 
1908 
1909 
1910 
1911 
1912 

'Ji  Calculate  spherical  coordinates of  average pointing vector 

V. Let  <px>,   <py>,   and  <pz> denote  the  average direction cosines  of 
V. the  pointing vectors,   and  let vx,   vy,   and vz  denote  the 
v. corresponding  variances.     We wish  to express  the direction of  the 
V. average  pointing  vector   (<px>  <py>  <pz>)   in  spherical  coordinates. 
';. First,   note  that   the  average  pointing  vector has  the norm 

2 2 2 
" p -   (<px>     +  <py>     +   <pz>   I   , 

',',  which  is  less  than one  if  not  all   realizations  are  colinear.     The 
V.   spherical   angles  are  then  given by 

1 2 2   1/2 
'!, sin pointPolar  -  -   (<px>     +  <py>  } and 
■I. p 

tan pointAzmth 
<py> 

<px> 

V. where we use sin pointPolar instead of the cosine for accuracy 
V, near boresight. 
* 
'•fc Also, we wish to estimate the rms angular deviation of a 
'i  realization of the pointing vector from the mean. Adopting an 
V. unsophisticated method, we add the variances vx and vy to obtain 
V. an equivalent area in the x-y direction cosine plane, then divide 
V. the area by cos PointPolar to yield a solid angle on the 
'■). hemisphere.  The square root of that area yields the rms angular 
V, deviation. 

radSqr - pxS (indx, 11*2 + pyS (indx, 1)"2; 
pointPolar - asin {sqrt {radSqr / 
pointAzmth - atan2 (pyS (indx, 1) 
if isnan (pointPolar) 
pointStdDev - nan; 

else 
pointStdDev - sqrt KpxS (indx, 

end 
clear radSqr 

(radSqr + pzS (indx, 
pxS (indx, 1)J; 

2) + pyS (indx, 2)) / cos (pointPolar)); 

rlzNum, numRlz); 

V. Print performance characteristics 
V, 
V, Generally, the following statements print the results of the 
V. analysis followed by the standard deviations of each result in 
V. curly brackets. 
I 
if 1 », INPUT 0 to suppress output, 1 to print 

fprintf (1, '\nMeans and [std devs) for V.O.Of of 40.Of realizations^', 
fprintf (1, 'beam direction : (?.0.3f, 10.3f) deg, std dev '40.3f deg\n', ... 
pointPolar / rpd, (pointAzmth + azmthoffst) / rpd, pointStdDev / rpd); 

fprintf (1, "pointing error : ?,8.4f I?.0.4f] deg\n', ... 
errPointS (indx, 1) / rpd, sqrt (errPointS (indx, 2)) / rpd) ; 

V, fprintf (1, 'pntng error unc: IB.it   p.0.4f] deg (2 sigma)\n', ... 
■J,   2 * errPointUncS (indx, 1) / rpd, 2 * sqrt (errPointUncS (indx, 2)) / rpd); 

fprintf (1, 'peak power dens: '.',7.3f  [v.0.3f 1 dB\n', ... 
beamPowerDBS (indx, 1), sqrt (beamPowerDBS (indx, 2))); 

fprintf (1, 'beam depth    : V.6.2f   l'i0.2f  ) dB repeak\n', ... 
beamDepthDBS (indx, 1), sqrt (beamDepthDBS (indx, 2))),- 

fprintf (1, 'beam width    : (?.6.3f  [?,0.3f ], 10.3f [V.0.3f]) deg\n', ... 
hpbwMjrS (indx, 1) / rpd, sqrt (hpbwMjrS (indx, 2)) / rpd, ... 
hpbwMnrS (indx, 1) / rpd, sqrt (hpbwMnrS (indx, 2)) / rpd); 

fprintf (1, 'beam roll     : ».6.2f  l?.0.2f ] deg\n', ... 
(rolls (indx, 1) + azmthOffst) / rpd, sqrt (rolls (indx, 2)) / rpd) ; 

fprintf (1, 'directivity   : 5.7.3f  (V,0.3f ] dB\n', ... 
directivityDBS (indx, 1), sqrt (directivityDBS (indx, 2))); 

fprintf (1, 'power ratio m/v: V.7.3f  (V.0.3f ] dB\n', ... 
powerMainVisbDBS (indx, 1), sqrt (powerMainVisbDBS (indx, 2))); 

fprintf (1, 'power ratio m/s: ?.7.3f  [S.0.3f ) dB\n', ... 
powerMainSideDBS (indx, 1), sqrt (powerMainSideDBS (indx, 2))); 

fprintf (1, 'power ratio v/s: ;'.! .3f     (V.0.3f ] dB\n', ... 
powerVisbSideDBS (indx, 1), sqrt (powerVisbSideDBS (indx, 2))); 

fprintf (1, "avg sidelobe   : 7.6.2f   (V.0.2f  ] dB re peak\n', ... 
powerSideAvgDBS (indx, 1), sqrt (powerSideAvgDBS (indx, 2))),- 

fprintf (1, 'nrst sidelobe  : '16.2f   [V.0.2f] dB re peak, ?.0.2f I'!,0.2f) deg off beamW 
slNrstPowrDBS (indx, 1), sqrt (slNrstPowrDBS (indx, 2)), ... 
slNrstDistS (indx, 1) / rpd, sqrt (slNrstDistS (indx, 2)) / rpd); 

fprintf (1, "Igst sidelobe  : \'.6.2f   l'J0.2f) dB re peak, V.0.2f [V.0.2f] deg off beam\n' 
slLgstPowrDBS (indx, 1), sqrt (slLgstPowrDBS (indx, 2)), ... 
slLgstDistS (indx, 1) / rpd, sqrt (slLgstDistS (indx, 2)) / rpd); 

end 

end 'A loop over realizations 

V. Plot performance characteristics as function of independent variable 
V. (summary plot) . 

V. If more than one realization has been accumulated for any value of 
V. the independent variable, the mean is plotted with uncertainty bars. 
v. The extension of the uncertainty bar above the mean equals one 
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standard deviation,   and likewise below the mean.     Otherwise,   only 
the values   (or  the one  realization are plotted. 

Plots  that  show more  than one measure  distinguish  them by color or 
line style  and may use both a  left  and  right  axis.     The  color  or 
style  and axis   for  each measure  is  given  in codes   in parentheses  in 
the  title  of  the plot.     The  first  code  abbreviates   the  color or  line 
style: 

R red solid 

G green dashed 

B blue :  dotted 

C cyan 

M magenta 

Y yellow 

K black 

W white 

V.  and  the  second letter  indicates  the axis,   L  for  left and R for 
V. right. 

if indVarLen > 1 
figure   (figSum); 
elf; 
axesSum - zeros   (12,   1);    * space for axes handles 

i Axes 1: pointing error 

subplot (4, 2, 1); 
axesSum (1) = gca; 
if  any   (numAcc >  1) 

hline - errorbar   (indVar,   errPointS   (:,   1 
set   {hline,   discrim,   discrimValue   {1}); 
set   (hline   (1),   'linestyle',   •-■); 

else 
plot   (indVar,   errPointS   (:,   1)   /  rpd) ; 

end 
ylabel   ('(degl'); 
title   ('pointing error'); 

'■!. Axes  2  and 3:   beam power and directivity 

/  rpd,   sqrt   (errPointS   (:,   2))   /  rpd); 
possibly override  errorbar's default  solid line  style 

but leave the error bars themselves  solid 

1),   sqrt   (beamPowerDES   (:,   2))); 

subplot (4, 2, 2); 
axesSum (2) - gca; 
if  any   (numAcc >  1) 

hline - errorbar   (indVar,   beamPowerDBS   (:, 
set   (hline,'discrim,   discrimValue   (1)); 
set   (hline   (1),   'linestyle',   '-'); 

else 
plot   (indVar,   beamPowerDBS   (:,   1)); 

end 
ylabel   C(dB re coherent)*); 
title  (strcat  {'peak power dens   (',  discrimName  (1),   — 

'   L),   directivity   (',   discrimName   (2),   '  R)*)); 
axesSum  (3)  - axes   ('position',  get  (gca,   'position')); 
if  any   (numAcc  >  1) 

hline - errorbar   (indVar,   directivityDBS   (:,   1),   sqrt   (directivityDBS   (: 
set   (hline,   discrim,   discrimValue   {2}); 
set   (hline   (1),   'linestyle',   '-'); 

else 
plot   (indVar,   directivityDBS   (:,   1),   discrim,   discrimValue   (2)); 

end 
set (gca, 'yAxisLocation', 'right', 'color', 'none'); 

?, 
i Axes 4 and 5: beam widths 

* 
subplot (4, 2, 3); 

axesSum (4) = gca; 

if any (numAcc > 1) 
hline - errorbar (indVar, hpbwMjrS (:, 

set (hline, discrim, discrimValue ID); 

set (hline (1), 'linestyle', '-'); 

else 
plot (indVar, hpbwMjrS (: 

end 
ylabel l'(deg)'); 

title (strcat ('hpbw major (', 

' L) & minor (', 

axesSum (5) = axes ('position' 

if any (numAcc > 1) 
hline - errorbar (indVar, hpbwMnrS (:, 1) 

set (hline, discrim, discrimValue 12)); 

set (hline (1), 'linestyle', '-'); 

else 
plot (indVar, hpbwMnrS (:, 1) / rpd, discrim, 

end 
set (gca, 'yAxisLocation', 'right', 'color', 'none'); 

yLimL = get (axesSum (4), 'ylim'); 

yLimR ■= get (axesSum (5), 'ylim'); 

if yLimL (1) < yLimR (2) 
set (axesSum (4), 'xlimmode', 'manual', 'ylim', tyLimR(l) yLimL(2)l); 

set (axesSum (5), 'xlimmode', 'manual', 'ylim', [yLimR(l) yLimL(2)]); 

1)  / rpd, sqrt (hpbwMjrS (:, 2)) / rpd) ; 

1) / rpd); 

discrimName (1), 

discrimName (2), 

, get (gca 

R)') ) ; 

position')) ; 

/ rpd, sqrt (hpbwMnrS (:, 2)) / rpd) ; 

discrimValue (2)); 
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V.  Setting xlimmode  to manual  prevents  rescaling of  the x axis when 
V.   the  y axis   is  changed, 

end 

V,  Axes   6:   beam  toll 

subplot (4, 2, 4); 
axesSum {6) = gca; 
if  any   (numAcc  >   1} 

hline  =  errorbar   (indVar,   rolls   (:,   1} 
set   (hline,   discrim,   discrimValue   11}); 
set   (hline   (1),   'linestyle',   *-'); 

else 
plot   (indVar,   rolls   (:,   II   /  rpd); 

end 
ylabel   (Mdeg)'); 
title   ('beam roll'); 
v, 

/ rpd, sqrt (rolls (:, 2)1 / rpd); 

1), sqrt (beamDepthDBS (:, 2))); 

7. Axes 7: beam depth 
V. 
subplot (4, 2, 5); 
axesSum (7) = gca; 
if any (numAcc > 1) 

hline - errorbar (indVar, beamDepthDBS (: 
set (hline, discrim, discrimValue (1>); 
set (hline (1), "linestyle", '-'); 

else 
plot (indVar, beamDepthDBS (:, 1)); 

end 
ylabel C(dB re peak)'); 
title ('beam depth'); 
■I. 

V. Axes 8 and 9: power ratios 
* 
subplot (4, 2, 6); 
axesSum (8) - gca; 
if any (numAcc > 1) 

hline - errorbar (indVar, powerMainVisbDBS(:, 1), sqrt (powerMainVisbDBS(:,2))); 
set (hline, discrim, discrimValue {1}); 
set (hline (1), 'linestyle', '-'); 

else 
plot (indVar, powerMainVisbDBS(:,1)); 

end 
ylabel ('(dB)'); 
title (strcat ('power m/v (', discrimName (1), ... 

* L), m/s (', discrimName (2), ... 
' R), v/s (', discrimName (3), ' R)')); 

axesSum (9) - axes ('position', get (gca, 'position')); 
if any (numAcc > 1) 
hline - errorbar (indVar, powerMainSideDBS(:,1),   

sqrt (powerMainSideDBS(:,2))); 
set (hline, discrim, discrimValue (2}); 
set (hline (1), 'linestyle', ■-■),- 
set (gca, 'nextplot', 'add'); 
hline - errorbar (indVar, powerVisbSideDBS(:,1), ... 

sqrt (powerVisbSideDBS(:,2))); 
set (hline, discrim, discrimValue (3J); 
set (hline (1), 'linestyle', '-*); 
set (gca, 'nextplot', 'replace'); 

else 
plot (indVar, powerMainSideDBS(:,1), discrim, discrimValue {2)1; 
set (gca, 'nextplot', 'add'); 
plot (indVar, powerVisbSideDBS(:,1), discrim, discrimValue (3)); 
set (gca, 'nextplot', 'replace'); 

end 
set (gca, 'yAxisLocation', 'right*, 'color', 'none'); 
•I. 
'* Axes 10 and 11: sidelobe powers 
'* 
subplot (4, 2, 7); 
axesSum (10) - gcä; 
if any (numAcc > 1) 
hline - errorbar (indVar, slLgstPowrDBS (:, 1), sqrt (slLgstPowrDBS (:, 2))),- 
set (hline, discrim, discrimValue (1)); 
set (hline (1), 'linestyle', '-'); 
set (gca, 'nextplot', 'add'); 
hline - errorbar (indVar, slNrstPowrDBS (:, 1), sqrt (slNrstPowrDBS (:, 2))); 
set (hline, discrim, discrimValue (21); 
set (hline (1), 'linestyle', '-'); 
set (gca, 'nextplot', 'replace'); 

else 
plot (indVar * ones (1, 2), ... 

[SlLgstPowrDBS!:,1) slNrstPowrDBS(:,1))); 
end 
ylabel ('(dB re peak)'); 
title (strcat ('sidelobe power: Igst (', discrimName (1), ... 

* L), nrst (', discrimName (2), ... 
' L), avg (',  discrimName (3), * R)')); 

axesSum (11) - axes ('position', get (gca, 'position')); 
if any (numAcc > 1) 

hline «= errorbar (indVar, powerSideAvgDBS (:, 1), sqrt (powerSideAvgDBS (:, 2))); 
set (hline, discrim, discrimValue (3)); 
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set (hllne (1), 'linestyle', '-'); 
else 
plot (indVar, powerSideAvgDBS (:, 1), discrim, discrimValue (3)1; 

end 
set (gca, 'yAxisLocation', "right", "color", 'none'); 

V. Axes 12: sidelobe distances 
V. 
subplot (4, 2, 8); 
axesSum (12) = gca; 
if any (numAcc > 1) 
hline - errorbar (indVar, slLgstDistS (:, 1) / rpd, sqrt IslLgstDistS (:, 2)) / rpd); 
set (hline, discrim, discrimValue (1)); 
set (hline (1), 'linestyle', '-■); 
set (gca, 'nextplot', 'add'); 
hline - errorbar (indVar, slNrstDistS (:, 1) / rpd, sqrt (slNrstDistS (:, 2)) / rpd); 

set (hline, discrim, discrimValue (2|); 
set (hline (1), "linestyle", '-'); 
set (gca, 'nextplot', "replace"); 

else 
plot (indVar * ones (1, 2), ... 

[slLgstDistS(:,1) slNrstDistS(:,1)] / rpd); 

end 
ylabel ("(deg)"); 
title (strcat ("sidelobe distance: Igst (', discrimName (1), ... 

'), nrst (', discrimName 12), ')')); 

% 
%  Touch up 
% 
set (findobj (gcf, 'type', 'axes"), "xlim", ... 

Imin(indVar) max(indVar)] ... 
+ 0.1 * (max (indVar) - min (indVar)) * [-1 l])i 

axesSumTitle - axes ("position", (0011), ... 
"color", "none", 'visible', "off", — 
■defaultTextFontSize', 10,   
•defaultTextHorizontalAlignment", "center"); 

text (0.5, 0.0S, indVarName, ... 
*horizontalAlignment', "center"); 

end 
clear hline 

X  make x-axis limits uniform 

%  create invisible axes 
'*  for titling 

'■k  display name of independent 
%  variable 

Plot last realization 

Three projections of the hemisphere are available: Lambert, 
Stereographic, and orthographic. 

Lambert projection: 

. The Lambert projection preserves the relative areas of pbrtions of 
, the hemisphere.  That is, the ratio of areas of two regions on the 
. projection is the same as on the hemisphere.  The azimuth coordinate 
i of a point in the projection is the same as its azimuth coordinate 
i on the hemisphere, while its radius r  from the center of the 
i projection is related to the polar angle.  This relationship may be 
, derived by setting the spherical surface area  sin polar d(polar) 
. d(azmth)  equal to a constant times the planar surface area r dr 
. d(azmth)  and integrating.  The radius is then given by 

, 1/2    polar 
. r = 2   sin . 

2 

I  For computer graphics the Cartesian coordinates are more convenient; 

'. they are 

t     u = r cos azmth = R ex 

k     v - r sin azmth = R cy 

-1/2    polar 
2    sec  

2 

-1/2 

V. For points outside visible space (that is, for cx'2 + cy"2 > 1), cz 
V. is zero so that R - 1 and no transformation is applied. 

V. Stereographic projection: 

V. The stereographic projection preserves angles on the hemisphere.  To 
V. derive the governing relationship for the projection, use the same 
". azimuthal angle for the projection as for the hemisphere, and let 
V. the radius be a function of the polar angle: r - f (polar).  Equate 
V. the aspect ratios of orthogonal derivatives, as 

V. d (polar) dr 
*  
'A     sin polar d(azmth)   r d(azmth) 
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f'(polar) d(polar) 

f (polar) d(azmth) 

(where f is the first derivative), rearrange, and integrate to 
obtain 

polar  1 - cos polar 
f (polar) = tan 

sin polar 

V. up to an arbitrary multiplicative constant.  The projected Cartesian 
V. coordinates of a point (ex, cy, cz) on the sphere are 

u = r cos azmth = R ex 

V,     v = r sin azmth = R cy 

f (polar)        1 1 

sin polar  1 + cos polar  1 + cz 

For points outside visible space (that is, for cxA2 + cyA2 > 1), cz 
is zero so that R - 1 and no transformation is applied. 

The center of projection is opposite boresight (ex - cy - 0, cz - 
-1), and with the above choice of multiplicative constant, the plane 
of projection is the cz - 0 plane. 

Orthographic projection: 

The orthographic projection gives a 3D view of the hemisphere. 

if 1 
proj 1; 

coordSys - 1; 

faceColor - •flat 
pointZoom - 0; 
V. The "show" input 
showBeamRegion - 
showWidthRegion ■ 
showWidthContAct - 
showWidthContFit - 
showPointGrid - 
showPoint » 
showPointUnc ■ 
showSidelobeGrid - 
showSidelobeNrst - 
showSidelobeLgst " 

% INPUT 1 to plot, 0 to skip 
* INPUT 1 for 2D equal-area Lambert 
%      2 for 2D Stereographic 
% 3 for orthographic (3D hemisphere) 
'■), INPUT 1 for grid of spherical coordinates 
% 2 for grid of traditional coordinates 
% INPUT 'flat' or 'interp' shading 
'i INPUT magnification factor or 0 for centered full view 

s below are coded only for 2D views. 
'I  INPUT 1 to show main beam region 
% region above width contour 
% actual width contour 
% fitted width contour (ellipse) 
% main beam peak on sampled grid 
% interpolated main beam peak (pointing vector) 
¥, axes of uncertainty ellipse of pointing vector 
% sidelobe peaks on sampled grid 
% nearest sidelobe 
'A largest sidelobe 

dirCosShiftX; 
ones (1, ax); 

use true grid 

use shifted grid to center 
patches on data points 

'I   Prepare for plotting 

if stremp (faceColor, 'interp') 
dirCosXMtxSurf ■= dirCosXMtx; 
dirCosYMtxSurf - dirCosYMtx; 
dirCosZMtxSurf - dirCosZMtx; 
visBoolSurf   - visBool  ; 

elseif stremp (faceColor, 'flat') 
dirCosXMtxSurf - ones (ay, 1) 
dirCosYMtxSurf - dirCosShiftY 
radSqr - dirCosXMtxSurf.-2  + dirCosYMtxSurf."2; 
visBoolSurf - (radSqr < 1); 
dirCosZMtxSurf - zeros (ay, ax); 
dirCosZMtxSurf (visBoolSurf) - sqrt (1 - radSqr (visBoolSurf)); 
clear radSqr; 

else 
error ('Illegal value of faceColor.'); 

end 
if stremp (faceColor, 'interp') V. identify visible points plus those immediately 
gBlnklndx = zeros (ay, ax); V.  or diagonally adjacent (Boolean for now) 
gBlnklndx (l:ay-l, l:ax-l) = visBool (2:ay, 2:ax); 

-  gBlnklndx (l:ay-l, 2:ax  ) I visBool (2:ay  , l:ax-l); 
gBlnklndx (2:ay  , l:ax-l) I visBool (l:ay-l, 2:ax  ); 

(2:ay  , 2:ax  ) 1 visBool (l:ay-l, l:ax-l); 
'1,   identify visible points plus those immediately 
V.  but not diagonally adjacent (Boolean for now) 

gBlnklndx (l:ay-l, l:ax  } I visBoolSurf (2:ay  , l:ax); 

gBlnklndx (l:ay-l 
gBlnklndx (2:ay 
gBlnklndx (2:ay 

else 
gBlnklndx = VisBoolSurf 
gBlnklndx (l:ay-l 
gBlnklndx (l:ay-l 

2: ax ) 
l:ax-l) 
2:ax  ) = gBlnklndx 

I 
•1) - gBlnklndx (l:ay-l, 

gBlnklndx (l:ay  , l:ax-l) = gBlnklndx (l:ay 
end 
gBlnklndx = -gBlnklndx; 
gZeroIndx « (gSqr == 0); 
gOKIndx - find (-(gBlnklndx I gZeroIndx)); 
gZeroIndx - find (gZeroIndx); 
gBlnklndx - find (gBlnklndx); 
if 1 

V. Decibel plot 

l:ax-l) I visBoolSurf (2:ay 
l:ax-l) I visBoolSurf (l:ay 

2: ax) 
2:ax) 

0 in visible region plus appropriate border 
1 where zero, 0 elsewhere (Boolean for now) 
1 for nontrivial values 
convert to indices 

INPUT 0 for linear, 1 for decibel plot 
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-  dim   (1) 

clim   (2) 

10 
ones 

V.  INPUT dB  range 
loglO   (gSqr   (gOKIndx))); 

size   (gZeroIndx));     ':■■  condition  log of 0 

gPlot -  zeros   {ay,   ax); 
clim -   [-50  0]; 
gPlot   (gOKIndx)   - max   (clim   (1) 
gPlot   (gZeroIndx) 

else 
7   Linear plot 
gPlot »  gSqr; 
clim -   (0  1); 

end 
if  invertBkgd 

gPlot   (gBlnklndx) 
else 

gPlot   (gBlnklndx) 
end 
clear visBoolSurf  gBlnklndx  gZeroIndx  gOKIndx; 
figure   (figPat); 
fore - get   (figPat,   'defaultLineColor'); «•  expect black or white 
if  invertBkgd    i  choose  fore-  and background colors  compatible with color map 

':.   set  appropriate  value   for  invisible points 
ones   (size   (gBlnklndx)); 

clim   (1)   *  ones   (size   (gBlnklndx) 

swap 

V. lines of constant polar angle 
azmthOffst; 

% lines of constant azimuth 

(u . „v .  ,  rpd - azmthOffst; 
gridlAzmth] - meshgrid (gridlPolar, gridlAzmth); 
grid2Polar] - meshgrid (grid2Azmth, grid2Polar) ,- 

(0 
(0 
(0 
(0 

10 
5 
5 

30 

90) 
360) 
90) 

360) 

rpd; 
rpd 
rpd; 

lines of constant azimuth 

lines of constant elevation 

gridlEl); 
grid2Az>; 

cos (gridlAz)); 
-sin (gridlAz)) - 

.* cos (grid2Az)); 
-sin (grid2Az)) - 

'); 

azmthOffst; 

azmthOffst; 

fore - 1 - fore; 
end 
back - 1 - fore; 
switch coordSys 
case 1 

gridlPolar - 
gridlAzmth - 
grid2Polar - 
grid2Azmth - 
[gridlPolar, 
[grid2Azmth, 

case 2 
gridlAz - (-90 : 10 : 90) * rpd; 
gridlEl - (-90 :  5 : 90) * rpd; 
grid2Az - (-90 : 10 : 90) * rpd; 
grid2El - (-90 : 10 : 90) * rpd; 
(gridlAz, gridlEl) - meshgrid (gridlAz 
[grid2El, grid2Az) - meshgrid (grid2El 
gridlPolar - acos  (cos (gridlEl) 
gridlAzmth - atan2 (tan (gridlEl) 
grid2Polar - acos  (cos (grid2El) 
grid2Azmth - atan2 (tan (grid2El) 

otherwise 
error (»Invalid value of coordSys 

end 

V. Plot array factor 
V. 
if proj == 1 

V, 
I Lambert projection 

?. 
radFactSurf - 1 ./ sqrt (1 + dirCosZMtxSurf) 
hSurf - surf (radFactSurf .* dirCosXMtxSurf, 

radFactSurf .* dirCosYMtxSurf, 
gridlRadFact - sqrt (2) * sin (gridlPolar / 
line (gridlRadFact .* cos (gridlAzmth), ... 

gridlRadFact . * sin (gridlAzmth), ... 
clim (2) * ones (size (gridlRadFact)), 

grid2RadFact - sqrt (2) * sin (grid2Polar / : 
line (grid2RadFact .* cos (grid2Azmth), ... 

grid2RadFact .* sin (grid2Azmth), ... 
clim (2) * ones (size (grid2RadFact)), 

set (gca, 'drawmode', 'fast'); 
xylim - [-1 1]; 
zlim = clim; 
viewAz ■= 0; 
viewEl - 90 * rpd; 

elseif proj -~ 2 
4 
'-fc Stereographic projection 
V, 
radFactSurf - 1 ./ (1 + dirCosZMtxSurf); 
hSurf - surf (radFactSurf .* dirCosXMtxSurf, 

radFactSurf .* dirCosYMtxSurf, 
gridlRadFact - tan (gridlPolar / 2); 
line (gridlRadFact .* cos (gridlAzmth), ... 

gridlRadFact .* sin (gridlAzmth), ... 
clim (2) * ones (size (gridlRadFact)), 

grid2RadFact - tan (grid2Polar / 2); 
line (grid2RadFact .* cos (grid2Azmth), ... 

grid2RadFact .* sin (grid2Azmth), ... 
clim (2) * ones (size (grid2RadFact)), 

set (gca, 'drawmode', 'fast'); 
xylim = [-1 11; 
zlim = clim; 
viewAz •= 0; 
viewEl - 90 * rpd; 

elseif proj == 3 

V. Orthographic projection (3D hemisphere) 

float - 1 02;  '.'. radius of annotations relative to unit hemisphere 
hSurf - surf (dirCosXMtxSurf, dirCosYMtxSurf, dirCosZMtxSurf, gPlot) 

; %  radius factor for surface plot 

gPlot); 
2); 

'color*, fore); 

•color', fore); 
?, no hidden objects to worry about 

* Matlab azimuth and 
V,  elevation (but in radians) 

V. radius factor for surface plot 

gPlot); 

'color', fore); 

'color', fore); 
v, no hidden objects to worry about 

V. Matlab azimuth and 
V.  elevation (but in radians) 
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gridlRadFact -  sin   (gridlPolar); 
line   (gridlRadFact   .*  cos   (gridlAzmth)   *   float, 

gridlRadFact   . *   sin   (gridlAzmth)   *   float, 
cos   (gridlPolar)   *   float,   'color",   fore); 

grid2RadFact -  sin   (grid2Polar); 
line   (grid2RadFact   .*   cos   (grid2Aztnth)   *   float, 

grid2RadFact   .'   sin   (grid2Azmth)   *   float, 
cos   (grid2Polar)   *   float,   'color',   fore); 

set   (gca,   'drawmode',   'normal'); V. 
xylim -   1-1   1]   *   float; 
zlim     -   (-1   1)   '   float; 
switch   1     !.'-  INPUT  1   to  look down main beam 

case   1 
':■.   Look  down main beam 
viewAz  = pi/2  +  steerAzmth  +  azmthOffst; 
viewEl   = pi/2  -   steerPolar; 

case  2 
V.  Look down boresight 
viewAz •=  0; 
viewEl = 90 * rpd; 
set   (gca,   'drawmode',   'fast'); 

otherwise 
\\  Look  somewhere 
viewAz - 60 * rpd;     V. INPUT custom view azimuth 

remove hidden  objects 

2,   down boresight;   3,   custom 

Matlab  azimuth and 
elevation   (but  in  radians) 

Matlab azimuth and 
elevation   (but  in  radians) 

no hidden surfaces 

viewEl - 30 
end 

end    *  plotting 

rpd; and elevation (Matlab coordinates) 

», Annotate plot (2D only) 

if (proj ~ 1) I (proj — 2) 
switch proj  V. set appropriate radius factor 
case 1 

radFact - 1 ./ sqrt (1 + dirCosZMtx); 
case 2 

radFact - 1 ./ (1 + dirCosZMtx); 
end 
if showBeamRegion & beamExist 

line (radFact (beamlndx) .* dirCosXMtx (beamlndx), ... 
radFact (beamlndx) .* dirCosYMtx (beamlndx), ... 
dim (2) * ones (size (beamlndx)), ... 
'linestyle', 'none', 'marker', '+', 'color', fore); 

end 
if showWidthRegion & capClosed 

line (radFact (caplndx) .* dirCosXMtx (caplndx), ... 
radFact (caplndx) .« dirCosYMtx (caplndx), ... 
clim (2) * ones (size (caplndx)), ... 
•linestyle', 'none', 'marker', 'x', 'color', fore); 

end 
if showWidthContAct s capClosed 

switch proj 
case 1 

radFactCapAct - 1 ./ sqrt (1 + capContZ); 
case 2 

radFactCapAct - 1 ./ (1 + capContZ); 
end 
line (radFactCapAct .* capContX, radFactCapAct .* capContY,   

clim (2) * ones (size (capContX)), 'linestyle', ':', 'color', back); 

clear radFactCapAct 
end 
if showWidthContFit t  capClosed 

switch proj 
case 1 

radFactCapFit - 1 ./ sqrt (1 + cFitZ); 
case 2 

radFactCapFit - 1 ./ (1 + cFitZ); 
end 
line (radFactCapFit .* cFitX, radFactCapFit .* cFitY, ... 

clim (2) * ones (size (cFitX)), "linestyle", "-', "color", back); 
clear radFactCapFit 

end 
if showPointGrid 

line (radFact (gSqrMaxRow, gSqrMaxCol) .* dirCosXMtx (gSqrMaxRow, gSqrMaxCol), 
radFact (gSqrMaxRow, gSqrMaxCol) .* dirCosYMtx (gSqrMaxRow, gSqrMaxCol), 
clim (2), 'linestyle', 'none', 'marker', '*', 'color', back); 

end 
if showPointUnc 

switch proj 
case 1 
pointRadFact - 1 / sqrt (1 + pz) ; 
Jacob - [l+pz+px-2/pz     px*py/pz » Jacobian of 

py'px/pz  l + pztpy-2/pz) / (2* (1+pz)" (3/2) > ;  V.  projection 

case 2 
pointRadFact - 1 / (1 ♦ pz); 
Jacob - (l+pztpx"2/pz     px'py/pz '* Jacobian of 

py'px/pz  l+pz+py"2/pz] / (l+pz)"2; '.'.   projection 

end 
pVarProj - Jacob * pVar * Jacob';  V. covariance matrix in this projection 
[pEigVec, pEigVall ... '.'• diagonalize: pVar 

- eig (pVarProj); '>'■  - pEigVec * pEigVal * pEigVec' 
pPrAx - 2 * pEigVec . . . V. scale principal axes (columns of 

* sqrt (pEigVal); '•■       pEigVec) to 2 standard deviations 
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line   (pointRadFact  *  px +   (-1   1]■   *  pPrAx   (1,   :),   ... 
pointBadFact  *  py +   [-1   11'   *  pPrAx   (2,   :),   ... 
dim   (2)   *   (1   11,   ... 
'linestyle',   '-',   'color',   back); 

clear pointRadFact Jacob pVarProj  pEigVec pEigVal  pPrAx 
elseif  showPoint 

switch proj 
case  1 

pointRadFact =   1  /  sqrt   (1  +  pz); 
case  2 

pointRadFact  =   1   /   (1   +  pz); 
end 
line   (pointRadFact  * px,   pointRadFact  *  py,   clim   (2),   ... 

'linestyle',   'none',   'marker',   '.*,   'color',   back) 
clear  pointRadFact 

end 
if  showSidelobeGrid 

line   (radFact   (sllndx)   .*  dirCosXMtx   (sllndx),   ... 
radFact   (sllndx)   .*  dirCosYMtx   (sllndx),   ... 
clim   (2)   *  ones   (size   (sllndx)),   — 
•linestyle*,   'none',   'marker',   's*,   'color',   back); 

end 
if showSidelobeNrst 

switch proj 
case 1 

radFactSlNrst - 1 / sqrt  (1 + slNrstVec   (3)>; 
case 2 

radFactSlNrst - 1 /   (1 + slNrstVec   (3)); 
end 
line   (radFactSlNrst  .* slNrstVec   (1),   ... 

radFactSlNrst   .*   slNrstVec   (2),   ... 
clim   (2),   'linestyle',   'none*,   'marker',   '+',   'color',   back); 

clear  radFactSlNrst 
end 
if  showSidelobeLgst 

switch proj 
case  1 

radFactSlLgst -  1  /  sqrt   (1 +  slLgstVec   (3)).- 
case 2 

radFactSlLgst -  1  /   (1  + slLgstVec   (3D; 
end 
line   (radFactSlLgst   .*  SlLgstVec   (1),     

radFactSlLgst   .*  slLgstVec   (2),   ... 
clim   (2),   *linestyle',   'none*,   'marker',   *x*,   'color',   back); 

clear  radFactSlLgst 
end 

end    %  annotations 
* 
t. Arrange graphics properties 
?. 
axesPat - gca; 
rotate   (get   (axesPat,   'children'), 

(0  0  1),   azmthOffst /  rpd); 
set   (hSurf,   'edgecolor',   'none'); 
set   (hSurf,   'facecolor*,   faceColor); 
colormap   (cmap); 
set   (axesPat,   'clim',   clim); 
if  cbarVert « position  the  colorbar 

axesCbar = colorbar   ('vert'); 
set   (axesCbar,   ... 

•units', 'normalized', ... 
■position", [(l+0.2*cbarSize)/(l+cbarSize) 0.05 0.4*cbarSize/(l+cbarSize) 0.9]); 

set (axesPat,   
•units', 'normalized', ... 
'position', [0 0 1/(1+cbarSize) 1]); 

else 
axesCbar = colorbar Choriz'); 
set (axesCbar, ... 

'units', 'normalized', ... 
•position', [0.05 0.3*cbarSize/(1+cbarSize) 0.9 0.5*cbarSize/(1+cbarSize)]); 

set (axesPat, ... 
•units', 'normalized', ... 
'position', (0 cbarSize/(1+cbarSize) 1 1/(1+cbarSize)]); 

end 
set (figPat, 'children*, ...  ','. put color bar in front of pattern but let 

[axesCbar axesPat]');      v.  axesPat remain the current axis 
set (axesPat, ... 

'xlim', xylim, ... 
'yliro', xylim, ... 
'zlim', zlim , ... 
'dataAspectRatio', diff ([xylim' xylim* zlim']), ... 
'visible', 'off, ... 
'view', [viewAz/rpd  viewEl/rpd]); 

if proj == 3 
cameraDist = norm ( ... 

get (axesPat, 'cameraPosition') ... 
- get (axesPat, 'cameraTarget'), 2); 

set (axesPat, 'cameraViewAngle*, ... 
2 * atan (float * diff (zlim) ... 

/ (cameraDist * diff (xylim))) / rpd) ; 

end 
if (pointZoom ~= 0) & peakvisb 

'i  rotate plotted objects to 
t       compensate for azmthOffst 

V. distance from camera 
V.  to the surface 

%  set view angle to 
i1,  exactly span the 
V,  unit sphere 
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px  -  sin   (azmthoffst) 
px  +  cos   (azmthoffst) 

py; 
py; 

pxRot 
pyRot 

pxRot 
pyRot 

[-1 
1-1 

[-1   1] 
[-1   1] 

pointZoom,    . 
pointZoom); 

pointZoom,    . 
pointZoom); 

pointZoom)) / rpd); 

pxRot - cos (azmthoffst) 
pyRot ■» sin (azmthoffst) 
if proj «= 1 
pointRadFact - 1 / sqrt (1 + pz) ; 
set (axesPat, 'xlim*, pointRadFact 

'ylim', pointRadFact 
elseif proj == 2 

pointRadFact - 1 / (1 + pz); 
set (axesPat, 'xlim', pointRadFact 

'ylim', pointRadFact 
elseif proj ■== 3 

set (axesPat, 'cameraViewAngle' 
2 * atan (float / (cameraDist 

end 
clear pxRot pyRot pointRadFact 

end V, zoom 
clear dirCosXMtxSurf dirCosYMtxSurf dirCosZMtxSurf,- 
clear fore back gridPolar gridAzmth gridAzmthSmth; 
clear radFactSurf gridFact viewAz viewEl float radFact; 

end 

drawnow; 

end % loop over independent variable 
clear indx 

% Print warnings, if any 
I 
if any (numAcc < numRlz) 
disp ('Warning: at least one realization could not be fully'); 
disp ('  analyzed; inspect the matfiles in the current directory.'); 

end 

clear cbarSize 
clear lx ly mx my nx ny; 
clear nummx numLMlf numLMNX numLMNY; 
clear tlndx rlzNum; 

t,  end of program 

V. Suggestions for improvements 

'* Implement non-uniform excitation magnitudes: 
* 
'i As needed, non-uniform illumination weights may be coded 
% straightforwardly. 

V. compensate for 
V.  azmthoffst 

Implement element factor and improve integration of radiated powers: 

Currently the element factor is implicitly coded as one everywhere, 
so that the elements radiate uniformly into the hemisphere. A more 
realistic element factor is cos polar [1], being one at broadside 
and zero at grazing.  Note, however, that in integrating the data 
over solid angles to calculate radiated powers, we divide the data 

V,  by cos polar.  Performing this multiplication and division in 
V.  succession could yield invalid data near grazing, where cos polar is 
'I       small. Obviously, this difficulty could be avoided by maintaining 
V.   the unsealed data for use in the integration while using the scaled 
I       data for all other processing.  The calculations of the pointing 
V,  vector from the excitation phases and of the peak power should also 

account for the element factor. 

More generally, one might wish to apply an arbitrary element factor. 
If it is small near grazing, the difficulty described above 
persists. One solution is to specify the element factor relative to 
cos polar; the user ensures that all values of that ratio are 

* reasonable.  The data used in the integration are scaled by the 
* ratio, while the data used elsewhere are scaled by both the ratio 
V, and cos polar. One could also allow element factors defined over 
V.  the entire sphere, including radiation into z < 0, perhaps by 
V.  storing the back radiation pattern in a second g matrix and 
* modifying the analysis routines.-, 

V.  Broadening our perspective, we note that these problems are 
V.  ultimately due to the integration algorithm, in that it blindly 
'.'.   applies a Jacobian that diverges at grazing.  One consequence is 
V,   that data cells whose centers are just inside the border of visible 

space contribute their entire value scaled by a large Jacobian, 
V.  whereas those whose centers are just outside contribute nothing. 
','.  More correctly, both should contribute about half of their value 
V.   scaled according to some average location of the contributing 

region.  Cells almost entirely outside of visible space should 
V.  contribute very little.  A better algorithm would reproduce this 

behavior. 

V. Allow pattern cuts: 

V. Often one is interested in a cut of the pattern along a path on the 
V. unit hemisphere, such as cuts through the main beam along azimuth 
V. and elevation curves or along the great circles of maximum and 
V. minimum beam width.  If only a graphical presentation is desired, 
'.'. the cut could be interpolated from the pattern.  If an analysis is 
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also desired, specialized routines would probably be required, as 
the current routines expect data over two directional coordinates. 

Consider alternate calculation of beam widths and roll: 

The beam widths and roll are derived from an ellipse fitted to a 
level contour of the main beam.  Currently the fit is performed in 
the boresight-centered Stereographic projection regardless of the 
pointing vector.  This projection preserves the orientation and 
orthogonality of the major and minor axes of the ellipse.  However, 
because scale in the Stereographic projection increases away from 
boresight, off-boresight contours are expanded toward the edge of 
the projection.  Although scale is uniform in all directions for an 
infinitesimal region, radial scale is exaggerated relative to 
azimuthal scale for a finite region.  For a broad beam off 
boresight, the distortion of beam width may be significant. 

An improvement might be achieved with two changes.  First, center 
the projection on the pointing vector, assuming that the contour 
will be found to lie centered on the pointing vector as well. 
Second, instead of the stereographic projection, use the azimuthal 
equidistant projection, for which distances measured on a line 
passing through the center of the projection are true. Regardless 
of beam width, the lengths of the major and minor axes of the 
projected ellipse will equal those of the ellipse on the hemisphere, 
provided that the center of the ellipse is also the center of the 
projection. 

In centering the projection on the pointing vector, one is free to 
choose the orientation of the projection relative to the spherical 
coordinate system, and a judicious choice of this angle facilitates 
calculation of the beam's roll angle. Construct at boresight on the 
hemisphere two tangent axes u and v; let positive u be directed 
toward spherical azimuth zero and positive v toward pi/2.  Next, 
construct the arc connecting boresight with the pointing vector. 
Translate the u-v origin and system along this arc without rotation 
in the plane locally tangent to the hemisphere, so that u, v, and 
the arc maintain the same local orientation.  If the ellipse is 
centered on the pointing vector, the roll angle will be the angle 
from the positive u axis to the major axis. 

% 
% 
% 
!L 
1 
% 
% 
% Allow linear arrays: 
■I. 

The current analysis routines cannot handle linear arrays because of 
several incompatibilities.  For example, the main beam of 
one-dimensional arrays with isotropic element patterns is a cone 
about the axis of the array, so the direction of radiation is 
specified by a single number — the angle between the axis and the 
cone.  However, the current analysis routines seek a two-parameter 
specification of the main beam direction and will generally fail. 

%  Likewise, the beam width is described by one number, but the current 
4  routines seek two parameters.  Furthermore, analyses that depend on 
%  these values (such as determining the proximity of sidelobes) will 
*  also fail.  If linear arrays are if interest, the analysis routines 
%      must be expanded.  One might also add graphics routines tailored to 
'I       one-dimensional arrays. 

V. Note that a non-isotropic element pattern will generally produce a 
% variation in the direction orthogonal to the main beam contour, 
5t allowing the analysis routines to proceed. Results thereby obtained 
% should be interpreted accordingly.  (Using a non-isotropic element 
i pattern will not benefit the routine that locates the pointing 
% vector from the excitation phases. One might ignore its results 
?. when the final pointing vector is calculated, using only the 
I pointing vector obtained from the Fourier transform.) 

V.   [1] R. Tang and R. W. Burns, "Phased Arrays," in _Antenna 
t.       Engineering Handbook^, 3rd ed., R. C. Johnson, Ed.  New York, NY: 

McGraw-Hill, 1993, Ch. 20, Sec. 3. 
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