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ACOUSTICS DEMONSTRATIONS

Robert M. Keolian

Penn State University Applied Research Laboratory
and Graduate Program in Acoustics

Some of the nonlinear properties of the harmonic oscillator, waves on the surface of water,
and of high amplitude sound will be shown in a series of demonstrations:

= Bent tuning curves of a rubber band

= Parametrically driven pendulum

= Doubly bent tuning curves

= Parametric stabilization of an inverted pendulum
= Non-propagating hydrodynamic soliton

= Shock waves, N waves, and sound eating sound

* Acoustic Bernoulli effect

= Acoustic levitation

= Acoustic match blower

= Jzzy Rudnick's lawn sprinkler
® Jzzy Rudnick's tea party

= Acoustic log starter

REFERENCES

A.B. Pippard's book, The Physics of Vibration, (Cambridge University Press, Vol. 1, 1st
edition, 1978 or the omnibus edition, 1989), chapters 9-12, is a good reference for nonlinear
oscillators, parametric excitation, and other interesting effects.

Landau and Lifshitz's "Mechanics" (Pergamon Press, 3rd ed., 1976) is also useful.

The soliton is described in: J. Wu, R. Keolian, and I. Rudnick, “Observation of a
Non-Propagating Hydrodynamic Soliton,” Phys. Rev. Lett. 52, 1421-1424 (1984) and in J. Wu,
I. Rudnick, “Amplitude-Dependent Properties of a Hydrodynamic Soliton,” Phys. Rev. Lett. 55,
204 (1985).




ACOUSTIC RESONATORS AND THE PROPERTIES OF GASES
BY

MICHAEL R. MOLDOVER

Objectives

To identify most of the phenomena that may be encountered in gas-filled acoustic resonators
operating in the linear regime (P, gugic << Pymgienr). TO motivate the choices made when designing
measurement systems and when estimating the properties of gases. To exploit the analogies and
differences between sound waves and electromagnetic waves. Not covered: detailed
calculations, derivations.

Resonators [1]

Ideal frequencies

Shape perturbations, degeneracies

Visco-thermal boundary layers

Bulk viscosity '

Mechanical compliance, shell resonances, avoided crossings; why resonators are rarely
used to measure the properties of liquids.

Inefficient transducers are useful; waveguides and diaphragms [2]

Mean free path effects: accommodation at the gas-solid boundary et al.

Standards Measurements: The gas constant R and the thermodynamic temperature T [1]

“NhwLbd =

PN

Properties of Gases

1. Thermodynamic speed of sound [3];
A. speed of sound measurements for technical applications
B. know your impurities
2. Connections between gas properties and intermolecular potentials [3,4]
A. virial coefficients
B. viscosity
C. thermal conductivity
D. bulk viscosity [5]
E. helium: a standard for gas properties [6]
3. Mixtures; why I wonit measure the speed of sound of air
4. Acoustic measurements of transport properties: status report [7]

Primary Reference

Moldover, M.R., Mehl, J.B. and Greenspan, M., Gas-filled spherical resonators - Theory and
experiment, J. Acoustical Soc. of America, Vol. 79, pp. 253-272 (1986)
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Chaos and Nonlinear Bubble Dynamics

Werner Lauterborn
Drittes Physikalisches Institut, Universitit Gottingen, Burgerstr. 42-44,
D-37073 Gottingen, Germany, Tel: ++551-39-771 3, Fax: ++551-39-7720,
E-mail: Ib@physik3.gwdg.de

Chaos has become a learned word in science as the deterministic companion of a
stochastic process. Nonlinearity lies at its basis and a certain degree of complexity.
To enter the realm of chaos a number of concepts have to be looked at for deeper
insight: The state space, trajectories and attractors therein, attractor basins, bifurca-
tions of different kinds, in particular the period-doubling bifurcation and its cascade,
bifurcation diagrams, the different routes to chaos, Poincaré sections and Poincaré
maps, the connection between maps and differential equations, phase or parameter
space diagrams, embedding of data (time series) into higher dimensional spaces as
the link between experiment and a theoretical description (Fig. 1), fractal dimensions
for chaotic attractors (static description), Lyapunov exponents of attractors as quan-
titative measures of the sensitive dependence of the dynamics on slight deviations
(dynamic description), and even more involved concepts.

¢

measurement

=>

experiment time series trajectory in ]
state space

Fig. 1: The way from experiment to a trajectory in a state space by embedding.

From chaos theory a new method for characterizing systems has evolved as put
forward graphically in Fig.2. Starting with some system to be investigated or moni-
tored a measurement yields a time series, i. e. a series of samples typically equally
spaced in time. These may be analyzed by the usual linear means as given by Fouri-
er analysis and correlations. These are not discussed here. The new way of nonline-
ar analysis starts with the embedding as visualized in Fig.1 yielding a reconstructed
state space. The embedding may be preceded by preprocessing steps (linear filtering
for instance) or by tests on determinism or nonlinearity by constructing surrogate
data from the original data set. Also after embedding the somehow scrambled new
set may be processed, for instance to achieve noise reduction by nonlinear opera-
tions. However, the main aim of embedding is the characterization of the data in a
way that surpasses the usual linear methods. This is done by determining the static
and dynamic properties of the embedding set as they are given by fractal dimensions
and Lyapunov exponents discussed in the lectures. A second way of characterization



may proceed via modelling for describing the system and for prediction of its future
states on the basis of the embedding. The gained insight may also be used for con-
trolling purposes. The final aim, however, is a complete description of the system in
a way of diagnosis of its state at the time of measurement.

Fig. 2: Nonlinear time series analysis for system characterization via embedding.

Nonlinear oscillators are ideal objects where chaos shows up and where the con-
cepts mentioned above yield considerable new insight as compared to a purely linear
description, i. e. a description working with linearization only and linear transforma-
tions. In the context of acoustics the bubble in a sound field is a nonlinear oscillator,
indeed a strongly nonlinear one at higher sound pressure amplitudes. It is even so
peculiar as to emit light upon collapse and to damage any material when coming clo-
se to it. Bubble dynamics will be discussed both from the view of experiments and
of theoretical descriptions and, of course, the view of chaos theory.

W. Lauterborn and U. Parlitz, Methods of chaos physics and their application to acou-
stics, J. Acoust. Soc. Am. 84 (1988) 1975-1993.

U. Parlitz, Englisch, V., Scheffczyk, C. and Lauterborn, W.: Bifurcation structure of
bubble oscillators, J. Acoust. Soc. Am. 88 (1990) 1061-1077.

W. Lauterborn and J. Holzfuss, Acoustic chaos, Int. J. Bifurc_ation and Chaos 1 (1991)
13-26.

W. Lauterborn, Nonlinear dynamics in acoustics, Acustica 82 (1996) S-46 - S-55.
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ACOUSTIC CHAOS

WERNER LAUTERBORN and JOACHIM HOLZFUSS
Institut far Angewandte Physik, Technische Hochschule Darmstadt
Schlofgartenstr. 7, D-6100 Darmstadt, F R Germany

Received August 7, 1990

The history of chaos pertaining to acoustics is bricfly reviewed from the first period-doubling
experiments reported by Faraday (vibrated liquid layer) and Melde (string oscillations) to today’s
investigations on chaos in thermoacoustics, musical instruments, the hearing process, and ultrasonics.
A closer analysis is given of the sound produced in a liquid by standing acoustic waves of high intensity.

1. Introduction

Chaotic (i.e., irregular and unpredictable) motion
seems to appear in any sufficiently complicated or
complex dynamical system. Acoustics, that part of
physics that describes (and makes use of ) the vibra-
tions of usually larger ensembles of molecules in gases,
liquids and solids makes no exception. As a main
necessary ingredient of chaotic dynamics is nonlinear-
ity, acoustic chaos can only be found in the realm of
nonlinear acoustics. Thus, acoustic chaos is closely
related to nonlinear vibrations of and in gases, liquids
and solids. It is the science of never-repeating sound
waves. This property it shares with noise, a term
having its origin in acoustics and formerly attributed
to every sound signal (and meanwhile other, e.g.,
electrical, signals) with a broadband Fourjer spectrum.
But Fourier analysis is especially adapted to linear
oscillatory systems. There it develops its full power. It
is the standard interpretation of the lines in a Fourier
spectrum that each line corresponds to a (linear) mode
of vibration and a degree of freedom of the system.
However, as examples from chaos physics show, a
broadband spectrum can already be obtained with just
three (nonlinear) degrees of freedom (i.e., three depen-
dent variables). Chaos physics thus develops a totally
new view of the noise problem. It is a deterministic
view. But it is still an open question how far the new
approach will reach in explaining still unsolved noise
problems, e.g., the 1 /ﬁnoisc spectrum encountered so
often. The detailed relationship between chaos and

noise is still an area of active research. An example,
where the properties of acoustic noise could be related
to chaotic dynamics, is given below for the case of
acoustic cavitation noise.

2. Historical notes

Acoustic chaos and the closely related science of
chaotic vibrations are young disciplines [Lauterborn,
1989; Lauterborn & Parlitz, 1988; Parker & Chua,
1989; Thompson & Stewart, 1986; Moon, 1987]. Yet
most experiments conducted today have ancient an-
cestors. Two classes of oscillatory systems are most
susceptible to chaotic motion. These are periodically
driven (passive) nonlinear systems, which often re-
spond to an excitation with subharmonics, in particu-
lar in the form of period doubling, and self-excited
systems, which develop sustained oscillations from
seemingly constant exterior conditions. A special sub-
class of the second class forms selfexcited systems
when driven. The simplest model of that class is the
driven van der Pol oscillator (see, e.g., Parlitz &
Lauterborn [1987]). From real physical systems, the
weather can be put into this category. It is periodically
driven by the solar radiation with the low period of
24h. But already a constant heating leads to oscilla-
tions (Rayleigh-Benard convection), i.e., it is a self-
excited system.

The first reported subharmonic oscillation of order
one half (f/2, f=driving frequency) belongs to the
first class and dates back to Faraday [1831]. Starting
from the investigation of sound-emitting, vibrating
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surfaces with the help of Chladni figures, Faraday also
sprinkled water instead of sand onto his vibrating
plates (vibrating at frequency f), and extended the
work to complete layers of fluid to investigate the
“beautifully crispated appearance” of the liquid layer.
His aim was the “progress of acoustical philosophy”.
To be able to watch the motion of the fluid layer, he
enlarged his vibrating plates to lower the frequency of
oscillation, and ultimately came up with a board
eighteen feet long, upon which a liquid layer of three
quarters of an inch in depth and twenty-eight inches by
twenty inches in extent could be vibrated vertically.
Then, by ordinary inspection, he could observe that
the heaps of liquid making up the crispations where
oscillating in a sloshing motion to and fro between
neighboring heaps of liquid. He states: “Each heap
(identified by its locality) recurs or is re-formed in two
complete vibrations of the sustaining surface” and
adds in a footnote “A vibration is here considered as
the motion of the plate, from the time that it leaves its
extreme position until it returns to it, and not the time
of its return to the intermediate position”. This result
was confirmed by Rayleigh [1883a].

Today, the powerful methods of nonlinear dynamics
and computerized experimental instrumentation are
applied to this problem, and the nonlinear and chaotic
oscillations are investigated in some detail [Keolian
et al. 1981; Miles, 1984; Ciliberto & Gollub, 1985;
Meron & Procaccia, 1986; Gu & Sethna, 1987). Sub-
harmonic oscillations as low as f/ 35 (f=driving fre-
quency), quasiperiodic and chaotic oscillations have
been observed in an essentially one-dimensional variant
of the Faraday experiment [Keolian et al., 1981]. Period
doubling, quasiperiodicity and chaos have been ob-
served for the original two-dimensional case with a
cylindrical fluid layer of 1c¢m in depth and radius
6.35 cm [Ciliberto & Gollub, 1985]. Mode competition
is singled out as the mechanism underlying the complex
dynamics. This experiment may naturally occur on the
curved surface of bubbles set into motion in a sound
field (see Sec. 3.4 below).

A second topic, where subharmonics were observed
early, is the Melde experiment [Rayleigh, 1883b, 1887].
In this experiment, the tension of a string is modulated
periodically by fastening it to the prong of a tuning fork.
Under suitable conditions, the string will vibrate at half
the driving frequency. Rayleigh developed a theory for
parametrically driven systems of this kind. String vibra-
tions play an important role in musical instruments,
and the investigation of nonlinear string vibrations
form a large, separate part in nonlinear dynamics (see
Tufillaro [1989] to enter the field).

Before going ahead with periodically driven systems,
which, when nonlinear, almost always seem to develop
chaos in some parameter region, we turn to the second
class, that of self-sustained vibrations, Among these,
we pick the thermoacoustic oscillations which come in
two main varieties: Sondhauss oscillations [Sondhauss,
1850; Feldmann, 1968a] and Rijke oscillations [Rijke,
1859; Feldmann, 1968b]. The Sondhauss oscillation
occurs when the closed end of a gas-filled pipe is
heated (externally or internally), or, conversely, when
the open end is cooled (then called Taconis oscillations
[Taconis et al., 1949]). The Rijke oscillation occurs
when an internal grid located in the lower half of a
vertical pipe is heated. Both ends must be open to
allow for a flow of gas (self-generated or enforced)
through the pipe. Sound is also produced when the
grid, this time being located in the upper half of the
vertical pipe, is cooled [Riess, 1859].

Taconis oscillations with steep temperature gradients
and large temperature difference show complex behav-
ior [Yazaki et al., 1987]. The oscillation may period
double, develop quasiperiodic oscillations through the
appearance of a second incommensurate frequency and
also chaotic oscillations. This behavior is attributed to
mode competition similar to the Faraday experiment of
Ciliberto and Gollub [1985]. When Taconis oscillations
are confronted with periodic, externally imposed acous-
tic oscillations, the whole set of nonlinear dynamical
phenomena seems to occur [Yazaki et al., 1990), as
encountered, when self-excited systems are additionally
driven (see, e.g., the driven van der Pol oscillator [Par-
litz & Lauterborn, 1987)). These acoustic oscillations
are not just of scientific interest, but have a potential as
“natural engines” [Wheatley & Cox, 1985).

Coming back to driven systems of the passive (i.e.,
not self-excited) type, period doubling has been ob-
served in connection with loudspeakers. Conical loud-
speakers, when strongly driven, start to period double
[Pedersen, 1935]. Subharmonics have later been ob-
served when a liquid is irradiated with a pure tone of
high intensity [Esche, 1952]. This work, where fre-
quencies f/2, f/4, and f /3 of the driving acoustic
sound wave of frequency f were found in the output
sound from the liquid (Fig. 1), stimulated the discus-
sion as to the physical mechanism producing these
subharmonic frequencies. This topic will be investi-
gated in more detail below.

Nonlinear dynamics also appears in musical instru-
ments, where oscillations are produced to generate
sound. These systems are therefore a priori apt to
generate chaotic sound waves. But there are not
many investigations in this area. A first account can be
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Fig. 1. The historical spectra of acoustic cavitation noise reported
by Esche in 1952.

found in a review on the oscillations of musical
instruments [Mclntyre et al., 1983). Several musical

Acoustic Chaos

instruments seem capable of producing chaotic sound
when properly excited: clarinet-like systems [Maganza
et al., 1986), woodwind instruments (recorder) [Gibiat,
1988, and gongs [Legge & Fletcher, 1989].

The human hearing process is intrinsically nonlinear,
To account for the astonishing power of the ear, active
filtering, i.e., amplifiers, are assumed to be at work
(see, e.g., Bialek & Wit [1984]). Such systems may get
unstable and start to oscillate, Indeed, it has been found
that the ear may also emit sound, either spontaneously
(“objective tinnitus” [Kemp, 1979)) or (click) evoked
(“Kemp-echo” [Kemp, 1978]). These otoacoustic emis-
sions had been predicted by Gold as early as in 1948
[Gold, 1948) and have been an area of active research in
the past ten years. The interaction of spontaneous emis-
sions with external sounds has been studied [Rabinow-
itz & Widin, 1984] and rather sophisticated models
have been proposed to account for evoked (i.e., stimu-
lated) emissions [Strube, 1989]. As the problem belongs
to the type of driven self-oscillatory systems, chaotic
dynamics can be expected to be present in the appro-
priate parameter ranges.

An interesting area is the area of opto- and photo-
acoustics, i.e., the area of the interaction of light with
matter, yielding acoustic waves. The area seems not yet
influenced by the nonlinear dynamics virus (see the
recent review on sound generation by optical radiation
[Sigrist, 1986]), but it is easy to envisage what may
happen when modulated laser light is used to drive
acoustic resonant systems or flow systems with instabil-
ities.

The large field of noise in combustion processes is
omitted here, as well as the area of plasma physics,
where, e.g., ion acoustic waves occur and there is a sheer
endless list of instabilities. They need a special treat-
ment.

Surely, the list showing where acoustic chaos can be
found is not complete, and we apologize for all topics
and works which are omitted. But we are eager to learn
of any new development in the area of acoustic chaos.

3. Acoustic Chaos in Ultrasonic Cavitation
3.1.

When a liquid is irradiated with sound of high inten-
sity, a hissing noise is heard. This phenomenon was the
starting point of Esche’s work [Esche, 1952). The noise
emission presents an interesting physical problem, as a
sound wave of a single frequency is transformed into a
broadband sound spectrum. At the time of Esche, noth-
ing was known of deterministic chaos, and no physical
mechanism could be thought of to explain this fact

Historical notes



besides the statistical rupture of the liquid. Esche’s work
showed that the phenomenon of broadband noise-
emission is preceded by strong subharmonic spectral
lines at 1/2, 1/4 and also 1/3 the driving frequency and
their harmonics. The explanation of these lines pre-
sented even more difficulties, and was sought in the
nonlinear dynamics of the bubbles known to be gener-
ated in the process. For the subharmonic of order 172, it
was suggested that bubbles driven at twice their reso-
nance frequency should be responsible for the observed
frequency halving [Guth, 1956). This could be con-
firmed by numerical calculations [Eller & Flynn, 1969;
Lauterborn, 1969/70], and it was even speculated that
there might be a connection between subharmonics and
noise [Lauterborn, 1969/70]. However, serious diffi-
culties arise with this explanation, because bubbles of
the necessary size (double resonance size) are not stable
in a standing acoustic field as they are driven away
from the pressure antinodes. Later, it was found that
bubbles driven at frequencies lower than their reso-
nance frequency could also oscillate subharmonically
in regions of ultraharmonic resonances, and also that
there are regions in parameter space of driven bubbles
where periodic solutions seem to be lacking [Lauter-
born, 1976].

Experiments-done to-improve the material available
from Esche’s work led to the observation of a period-
doubling sequence to broadband noise when the

! W. Lauterborn & J. Holzfuss ‘

sound intensity of the driving sound field was raised
[Lauterborn & Cramer, 1981], as well as other
sequences hard to classify (see Lauterborn [1986]).
In these experiments, water had been used as a
liquid. But almost the same phenomena can also be
observed in liquid helium [Smith ef al., 1982). Period-
doubling sequences (already to be detected in Lau-
terborn [1976]) are also obtained numerically for
(purely radially) oscillating bubbles [Lauterborn &
Suchla, 1984; Parlitz et al, 1990]. Experimental
observation of the liquid by high-speed holographic
cinematography simultaneous with the acoustic
measurements revealed that the complete bubble
field is undergoing period doubling to chaos [Lau-
terborn & Koch, 1987]. Specific methods of non-
linear dynamics have been applied to the acoustic
time series, which surprisingly gave evidence of a
low-dimensional strange attractor through phase
space analysis in conjunction with dimension estima-
tion [Lauterborn & Holzfuss, 1986] and the determi-
nation of Lyapunov exponents [Holzfuss & Lauter-
born, 1989].

In the sequel, the paper reports on advances in
ultrasonic acoustic chaos. Phase space representations
of acoustic signals and a color spectral bifurcation
diagram of measured data, which exemplifies the
successive period doubling of the sound output from
the liquid, are given.

cylindrical
fransducer hydrophone
T water transient recorder
]
| fitter A memory
bank D
~_cavitation
driving
signal
power data
amplifier
|
fo 1
function - computer
generator

Fig. 2. Experimental arrangement for acoustic measurement of driven liquids.




1qnop-powsad jo uoiday zHY 6z = Y e 101eM PMRIpRLI-pUNOS woly IndIno punos Y1 jo wrierp uonednjiq [endods ¢ 3y

*323udnbas Sut

»
18

<25~ H

SRR

», ":;:5-4!—‘:9 ;r,' L“\Vﬁg

10

TETI

S s

i N . \ P - ) i . l, i

\'




- .

-‘ ! . 4 - A . . v
— - pe > _ - - - — — \-
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3.2. Acoustic observations

The experimental arrangement for investigating
the sound emission from-a sound-irradiated liquid
is depicted in Fig.2. The high acoustic intensity
necessary to observe the nonlinear phenomena is
obtained with a cylindrical transducer of piezoceramic
material (PZT-4) of 76 mm length, 76 mm inner
diameter, and 5 mm wall thickness. Depending on the
container and the water height above the cylinder, the
resonance frequency for half a wavelength across the
diameter of the cylinder is slightly different, and was
22.9kHz in the present case. The liquid used was
deionized, air-saturated water with added nuclei (Ves-
tamid X2805, a polycrystalline substance of about the
same density as that of water) of size smaller than
40 um at a concentration of about 15 yg/cm>.

The experiment is fully computer-controlled, and
consists of a function generator to produce the sinu-
soidal frequency f; of the driving sound field and a
power amplifier to obtain the necessary amplitudes.
The driving amplitude is used as control parameter,
and usually made a linear ramp function. A broadband
hydrophone records the sound output from the liquid.
After suitable filtering, the pressure time data are
digitized with 10 bits at rates of usually 500 kHz to
1 MHz, and stored in a memory of 4K to 128K words.

Figure 3 shows a spectral bifurcation diagram of a
measurement, where the sound pressure has been
raised within 256 ms from 0 to its maximal value at
60 V transducer voltage. Only the part from 30-60 V
is shown. The spectral bifurcation diagram consists of
successively plotted power spectra of 4K data windows
shifted along the whole 128K dataset. The amplitudes
are color encoded. At low amplitudes, the spectrum
consists of only sharp lines at the driving frequency S
and its harmonics 2f, 3f;... At 41V, the first

~ subharmonic at fo/2, together with its harmonics,

appears. Further increase of the driving amplitude
leads to a further frequency halving to j6/4 at 50-52V
and again at 54 V. From about 56 V on, more and
more broader lines appear and the spectral intensity is
distributed over a broad frequency range. The spec-
trum is then a broadband noise spectrum.

Phase space analysis has been applied to the data.
Figure 4 shows trajectories constructed in a phase
space that consists of time-shifted sound pressure
values p(f). A trajectory in this phase space is given by
the set of 3-tupels {p(¢), p(t + T), p(t + 2T)). The time
shift constant T is here approximately 1/10 of the
driving period Ty. It can be shown [Takens, 198 1] that
this set yields the same properties as the set of state

points in the original phase space. A period-doubling
route to chaos with increasing sound pressure is
observed (Figs. 4a-4f). Figure4a shows a period-1
orbit that doubles into a period-2 orbit (b) and a
period-4 orbit (c). In (d) the trajectories no longer seem
to form a periodic orbit. In (e) this becomes more
pronounced, and in (f) the aperiodic feature is clearly
visible. The dimension of these objects in phase space
can be determined. It is a measure of the active modes
of the underlying physical process [Lauterborn &
Holzfuss, 1986]. A very suitable method is the deter-
mination of the average of pointwise dimensions
[Holzfuss & Mayer-Kress, 1986]. A pointwise dimen-
sion D at a point in phase space can be calculated by
looking at the scaling behavior of the “mass” around
this point, that is, the number of points within a
certain distance r. The number of points in this ball
should scale like

NBH~rP, r—0.

Their average dimension and standard deviation are
characteristic of the attractor. In Fig. 5, it is seen that
the dimension of periodic attractors is, as expected,
equal to 1. However, in the broadband noise region, a
fractal value of 2.6 is obtained. This surprisingly low
value for the sound output of thousands of oscillating
bubbles is an evidence for low-dimensional chaos.

For a further justification of this finding, the spec-
trum of Lyapunov exponents has been calculated from
the noise data. Lyapunov exponents are the basic
indicator for chaos [Eckmann & Ruelle, 1985]. They
measure the average exponential expansion and con-
traction rates of small volume elements around the
attractor. A physical process, whose motions in phase
space lie pn'an attractor with a positive Lyapunov
exponent, has the property that, initially, almost
similar states may lead to a totally different time
evolution.

To calculate Lyapunov exponents from experimental
data, a method based on a least-squares approximation
of the linearized flow maps has been proposed [Eck-
mann & Ruelle, 1985; Sano & Sawada, 1985; Holzfuss
& Lauterborn 1989]. Figure 6 shows exponents as a
function of the embedding (matrix) dimension for
noise data at 58 V transducer voltage. With increasing
matrix dimension, the calculated values converge to
A, =19,4,=0, 2;= - 3 bits per period of the driving
sound wave. The positive value of the first Lyapunov
exponent is a further indication for low-dimensional
chaos being the explanation for the observed broad-
band noise.

11




|

Acoustic Chaos

Fig. 4. Phase space reconstruction from the sound output of sound-irradiated water at Jo= 22.9 kHz. Projections of trajectories in a phase
space, constructéd with time-shifted coordinates. The transducer voltage is (a) 30.7 V (b) 52.8 V (c) 55V (d) 56 V (¢) 56.4 V (f)s8.8V.

3.3. Holographic observations

Thus far, only the acoustic signal has been consid-
ered. An optic inspection of the liquid inside the
piezoelectric cylinder reveals that a structured,
branch-like cloud of bubbles is present at high driving
(see, e.g., Lauterborn [1986]). It is a straightforward
conjecture that it is these bubbles that produce the
sound output from the driven liquid. The mechanism
of subharmonic production, however, is not clear, e.g.,
whether the bubble field will period double as a whole
or only through a few members of the field. To settle

this question, a detailed, time-resolved visual study of
the bubble dynamics is necessary. To this end, an
arrangement for high-speed holographic cinematogra-
phy has been developed [Hentschel & Lauterborn,
1985; Lauterborn & Koch, 1987]. The arrangement is
depicted in Fig. 7. A series of coherent light pulses
from a cavity-dumped argon ion laser is periodically
deflected by an acoustooptic deflector into three dis-
tinct directions. Each of the beams is split into object
and reference beams to produce a separate hologram
on a rotating holographic plate. The sound output can
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- be simultaneously monitored in the same way as given

in Fig. 2. The arrangement is capable of taking a
hologram every cycle at a fixed phase of the driving or
even three holograms per cycle [Lauterborn & Koch,
1987].

Experiments with holographic recording of the
bubbles were conducted at a driving frequency of
23.1 kHz, i.e., holograms were taken at a rate of 23 100
holograms per second. Should the bubble field repeat its
motion every cycle (period 1), then the same picture
(three-dimensional) should reappear with each holo-
gram. When the bubble field undergoes its first period
doubling (to period 2), then every second picture (ho-
logram) should look alike, and so on. When there is a

chaotic motion, then the appearance of the bubble field
will alter unpredictably from cycle to cycle. This stro-
boscopic look at the dynamics is very reminiscent of
Poincaré sections. The result of this experiment came as
a surprise. The whole bubble field seemed to oscillate
unisono (as seen in the pictures with, unfortunately,
coarse resolution because of the small hologram size of
2 x 2 mm? and therefore large speckle grains). Figure 8
gives an example of the state just after the first period-

doubling bifurcation. The row of frames shows recon-
structed images from four successive holograms; the
lower diagram is the corresponding power spectrum
taken simultaneously. Figure 9 is taken from the area of
second period doubling, and Fig. 10 gives a long series
of seemingly chaotic oscillations. Figure 11 shows the
corresponding power spectrum. Of course, as the exper-
iments are difficult to conduct, time-consuming in pro-
cessing (68 individual reconstructions had to be done
just for the frames of Fig. 10), and only a few hundred
or at most a few thousand holograms can be obtained in
succession, it cannot be made absolutely sure that there
are no long-lived transients, long periods or quasiperi-
odic motions involved. Also, problems in keeping the
bubble field stable for some time prohibit the high
accuracy necessary to answer these questions better. But
the occurrence of a period-doubling sequence gives
good confidence that chaotic oscillations indeed occur.

3.4. Theoretical considerations

A theory that can account for the dynamics of a
bubble field (e.g., as given in Fig. 10) and its sound
radiation has yet to be developed. Most advanced
is the knowledge on the behavior of single spherical
bubbles oscillating spherically in a sound field [Lau-
terborn & Parlitz, 1988; Smereka et al., 1987; Parlitz
et al., 1990]. Also, it was, until recently, thought that
the pressure field obtained from the multipole part of
an asymmetric bubble oscillation would decay much
faster with radial distance from the bubble than the
direct monopole contribution and thus add negligibly
to the overall sound radiation. It seems that this
view has to be abandoned. Two recent articles claim
monopole-like emission of sound by asymmetric bub-
ble oscillations [Longuet-Higgins, 1989a,b]. This then
adds a new interesting idea to the sound emission
problem that, however, has yet to be worked out for
the present purpose. Also, a connection to the Faraday
experiment, although on a curved surface, can be
envisaged with interacting modes yielding quasiperi-
odic or chaotic motion on the surface of the bubbles
and giving rise to corresponding pressure waves in the
liquid. In a next step, many of these bubbles would
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Fig. 10. Sixty-seven reconstructed images of a bubble distribution in sound-irradiated water from a holographic series taken at 23 100
holograms per sccond. (Courtesy of A. Koch).
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have to be put together as a cloud. This is far from
being feasible at present. But first attempts with bubble
clouds along other lines are encouraging in giving the
approximate behavior of a single bubble under suitable
conditions [Smereka & Banerjee, 1988]).

Thus, single-bubble behavior, being of interest on its
own as a nonlinear oscillator, may have some bearing
on the problem of sound emission from a bubble
cloud. We have investigated several models, all of
which show period doubling and chaos [Lauterborn,
1976; Lauterborn & Suchla, 1984; Lauterborn &
Parlitz, 1988; Parlitz et al., 1990]. In a similar way, as
the experimental data are plotted as a spectral bifur-
cation diagram (Fig. 3), the theoretical data may also
be transferred to spectra of the bubble wall motion and
plotted, with the driving sound pressure amplitude as
control parameter, in the form of a color-coded
spectral bifurcation diagram. This is done in Fig. 12,
where the Gilmore model has been used [Gilmore,
1952]). It is seen that areas of period doubling up to 1/8
the driving frequency are easily discernible, as well as
chaotic regions with periodic windows (a usual behav-
ior with nonlinear driven oscillators). The méchanism
at work in producing the sound output therefore seems
to be the widespread period-doubling mechanism and
saddle-node bifurcations characteristic of the dynam-
ics of many nonlinear systems.

4. Discussion and Conclusions

The new area of acoustic chaos physics has been
reviewed with special emphasis on ultrasonic acous-
tic chaos. The experiment of irradiating a liquid
with sound of a single frequency yields (under favor-
able circumstances) a period-doubling route to chaos
(Fig. 3). The bubbles (or cavities) appearing in the lig-
uid through a breakdown process (cavitation) are re-
sponsible for this. They are passive nonlinear oscillators
which are periodically driven by the sound field that has
“also produced them.

The motions of the bubbles are very complex,
ranging from pure radial oscillations at low amplitudes
to motion with such strong collapses that shock waves
are radiated (see Fig. 10). Also, strong deformations of
the bubbles occur, leading to disintegration of a single
bubble to many new ones [Hentschel & Lauterborn,
1985] and often erratic dancing motion. Strong clus-
tering of bubbles and, often, an arrangement in a
branch-like structure called streamers is observed. In
experiments in which just a few bubbles were oscillat-
ing far away from each other, relatively stable opera-
tion of an almost pure shape oscillation at half the
driving frequency could be maintained. The corre-
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Fig. 11. Power spectrum of the sound output from a sound-
irradiated liquid in the chaotic region, (Courtesy of A. Koch).

sponding power spectrum of the sound output from
the liquid showed a substantial subharmonic line at
one half the driving frequency. This phenomenon
exists, besides the period-doubled volume pulsations
demonstrated in Fig. 8. Even second period doubling
seems to be possible with just shape oscillations of the
bubbles. Holograms of better resolution holograms are
being prepared to visualize the observations more
clearly.

Bubbles are easily forced into surface oscillations
(see, e.g., Kornfeld & Suvorov [1944], Strube [1971)]
and Hullin [1977]). The new finding that these sur-
face oscillations emit strong sound [Longuet-Higgins,
1989a, b], gives rise to new considerations. Surface
oscillations driven by the radial mode [Strube, 1971)
may then play a bigger role than previously thought,
and a more complex view of the sound emission from
a sound-irradiated liquid than the simple view of the
dominance of radial-mode oscillations of bubbles may
emerge.
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This article gives an introduction to the research area of chaos physics. The new language and
the basic tools are presented and illustrated by examples from acoustics: a bubble in water
driven by a sound field and other nonlinear oscillators. The notions of strange attractors and

their basins, bifiircations and bifurcation diagrams,

Poincaré maps, phase diagrams, fractal

dimensions, scaling spectra, reconstruction of attractors from time series, winding numbers, as
well as Lyapunov exponents, spectra, and diagrams are addressed.
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INTRODUCTION

The last 10 years have seen a remarkable developmentin
physics that may be succinctly described as the upsurge of
“chaos.”'" This is, at first sight, really puzzling, as the no-
tion of ‘chaos implies irregularity and unpredictability,
whereas physics is usually thought to be a science devoted to
finding the laws of nature, i.e., its order and harmony. How,
then, may chaos have become a subject of serious investiga-
tion in physics—and not only physics? This is just the new
insight—that law and chaos do not exclude each other, that
even simple deterministic laws may describe chaotic, i.e.,
unpredictable and irregular, motion. Thus not only law and
order, but also law and chaos, go together and, even more S0,
it seems that law and chaos are as important a combination
as law and order. This statement may be derived from the
fact that chaotic motion is intimately related to nonlinearity
and the realm of nonlinearity by far exceeds that of linearity.

This article is an attempt to acquaint the reader with the
ideas and methods that lead to the above statements. The
basic notions are given without resorting to too much math-
ematics. It is hoped that this approach will also be honored
by those readers to whom this is not the first exposure to the
subject. '

I. ATTRACTORS

Theoretical chaos physics starts with evolution equa-
tions that describe the dynamic development of the state of a
system (a model). These may be continuous models

x=f,(x), xeR™, m3l, (1)
or discrete ones

X,y =8u(x,), x,€R™, m>1, n=0,1,.... (2)
The state of the system is given by the m-dependent variables
x() = [x((6)x3(0),... %, (D] OF X, = (x{" x4, x™),

m

respectively. The index 4 indicates that the system depends
‘on a parameter u (often it will be several parameters). The
dynamiclaws (1) or (2) determinehowa givenstatex(?) or
x,, develops. This evolution can be viewed when the states of
the system are displayed as points in a state space R™. In the
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continuous case, the temporal ( = dynamic) evolution then
leads to a curve in this space called trajectory or also orbit
(Fig. 1). In the discrete case, a sequence of points is ob-
tained, usually called an orbir. The state space in nonlinear
dynamics as introduced above is a generalization of the usual
phase space of Hamiltonian dynamics. When pand q are the
generalized coordinates and momenta of a Hamiltonian sys-
tem, then x = (p, q)eR™ with m necessarily even. General
nonlinear dynamical systems may have an odd -dimensional
state space.

An important question is how a set of initial conditions
(a volume of the state space R™) evolves as time proceeds.
According to the theorem of Liouville, a volume stays con-
stant in conservative systems whereas it shrinks in dissipa-
tive ones. Here, only dissipative systems will be treated. In
this case the question almost poses itself, as to how the vol-
ume shrinks and how the limit set of points in state space
looks, to which a given volume shrinks. This simple question
cannot yet be answered in general as obviously an unknown
number of different limit sets are possible. The limit sets have
been given the name attractor as trajectories out of whole
volumina of state Space move towards these sets, i.e., seem
attracted by them. The set of initial conditions (points in
state space) moving upon evolution towards a given attrac-
tor is called its basin:

What is already known about attractors and their prop-
erties? A certain classification can already be given. It often
happens that all trajectories in state space move towards a

x, xz

Xy

FIG. 1. A trajectory in state space.
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single point, a fixed point [Fig. 2(a)]. This means that the
system does not alter with time; it has come to rest. In the
language of physicists, this is an equilibrium position. A
standard example is a pendulum that has come to rest after
some time of oscillation due to friction.

A more complex possibility is that the limit set consists
of a closed trajectory that is scanned again and again. An
attractor of this kind is called a limit cpcle [Fig. 2(b) ]. Limit
cycles regularly occur with driven oscillators. The standard
example is the attractor of the van der Pol oscillator. In phys-
ics, any sine wave (or square wave, etc.) generator displays
an example of a limit cycle. The next kind of attractor fills an
arca (a two-dimensional surface) in a, e.g., three-dimension-
al, state space. This may happen if the system oscillates with
two incommensurable frequencies. This attractor consti-
tutes a forus [ Fig. 2(c) ). A trajectory on the torus is a quasi-
periodic motion. Systems with this property also exist experi-
mentally (see, e.g., Ref. 12). These three types of attractors
have been known for a long time.

Quite new is a further kind of attractor, called strange or
chaotic attractor [Fig. 2(d)]. In the continuous case, an at
least three-dimensional state space is necessary for a strange
attractor to occur. The properties of strange attractors are
not yet totally explored. An important property is the di-
mension of the strange attractor, which usually turns out to
be fractal, i.c., not an integer. In Sec. VIII, we discuss how
the dimension of general sets can be defined and determined
in practical situations. A further property is that strange
attractors obviously possess self-similar structures; i.c., on
magnifying the attractor, partial structures repeat again and
again on a finer and finer scale. The notion of self-similarity
seems to play an important part in chaos physics as does the
notion of fractal dimension. In Sec. X, we discuss how it may
be brought about by the dynamic law by stretching and fold-

’

(a) {®)

()

FIG. 2. Types of attractors: (a) fixed point, (b) limit cycle, (c) torus, (d)
projection of a strange attractor.
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ing a volume of state space. Such objects obviously belong to
the deeper inner structure of nature."” It may be interesting
to note that the discovery of strange or chaotic attractors
gradually came through theoretical arguing and that it is
mainly through models with chaotic behavior that it has be-
come possible to interpret measurements that were long
known in the language of chaos physics. Acoustics has sup-
plied a2 prominent, and one of the first, example in the form of
acoustic cavitation noise'*?® and related experiments.?!

A dynamical system may possess several attractors si-
multaneously that are reached starting from different initial
conditions in state space. The space of initial conditions is
then divided into different areas, the basins of attraction,
cach of which belongs to its corresponding attractor. One
speaks of coexisting attractors. Obviously, any type of attrac-
tor so far known can coexist with any other type including
the same type. Thus a system may have several fixed points
or several chaotic attractors and any mixture. An example
for coexisting limit cycles is the resonance curve of a driven
nonlinear oscillator where the maximum of a position coor-
dinate of the limit cycle is plotted versus the frequency of a
driver. At higher driving, it attains the appearance of a
breaking wave (Fig. 3). Different oscillatory states are ob-
tained depending on the way the curve is tracked. This phe-
nomenon is well known as hysteresis. Examples for coexist-
ing chaotic attractors are, for instance, found in Ref. 22
where the single-valley Duffing oscillator is explored.

Several questions concerning coexisting attractors can
immediately be posed, such as, ¢.g., how many attractors a
given system may have. This question is usually not easily
answered. It may happen that a system possesses infinitely
many coexisting attractors. For driven nonlinear oscillators
(e.g., the bubble oscillator), the number of coexisting attrac-
tors grows rapidly when the damping is decreased.

The basins of attraction usually do not have a simple
appearance. Even in the case of just two coexisting attrac-
tors, the boundaries of the two basins may be incredibly in-
tertwined and even become a fractal set. An example of typi-
cal basins of attraction is taken from the Duffing equation
X +dx — x + x> = fcos wt, which is a damped nonlinear
oscillator with a two-valley potential driven by a harmonic

Ps = 20. kPa R, = 10. um
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FIG. 3. A resonance curve of a bubble in water driven by a sound field. For
the model used, see Eq. (9). Radius of the bubble at rest R, = 10 um,

sound-pressure amplitude 20 kPa (0.2 bar). In the region betwcen &, and
@y, two coexisling attractors are present that are reached from different
initial conditions.
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force of amplitude f and frequency‘w. For a damping con-
stant d = 0.2, a forcing amplitude /= 1, and a forcing fre-
quency o = 0.85, this oscillator has three stable attractors
whose basins of attraction are shown in Fig. 4 in black, grey,
and white. The coordinates in the plane are (x,v = %) and
are the initial conditions with which the solution of the Duff-
ing equation was started at £ =-0. A set of 320 by 320 initial
points has been used. Each point has been colored black or
grey or left white according to the attractor to which the
solution curve tends. The attractors are two period-2 station-
ary solutions and one period- | stationary solution. The black
and white areas are the basins belonging to the period-2 at-
tractors and the grey area belongs to the period-1 attractor.
The five big dots represent the three attractors. These points
are given by stroboscopically illuminating the solution curve
[x(£),v(¢)) attimest, = n 2n/w. This leads to one point for
the period-1 attractor and two points each for the two peri-
od-2 attractors. The black basin belongs to the period-2 at-
tractor represented by the two white dots, the white basin to
the period-2 attractor represented by the two black dots in
the white area, and the grey basin to the period-1 attractor
represented by the black dot in the grey area. The reader
interested in the question of basin boundaries may consult
Ref. 23 and from there explore the state of the art.

Il. BIFURCATIONS

When doing experiments, it is found that the system
investigated normally depends on several parameters. In a
typical measurement, usually only one of the parameters
(pressure, temperature, voltage, current, etc.) is altered to
learn about the reaction of the system to the alteration. In
theoretical language, one considers a one-parameter family
of systems. The question then is how an attractor or coexist-
ing attractors alter when a parameter is varied. In chaos
physics, such a parameter is called a control parameter. Sys-
tems with different values of the control parameter are dif-
ferent systems and may have totally different attractors.
Therefore, there must be parameter values at which the type
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FIG. 4. Basins of attraction for the double-valley Duffing equation
itdi—x+x=fcoswt ford=0.2, f=1, @ = 0.85. There are three
attractors with their three basins. (Courtesy of V. Englisch.)
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or gross appearance of an attractor switches to another one,
or even just disappears, or is generated. This change, includ-
ing birth and death, is called bifurcation. The set of param-
eter values at which a bifurcation occurs is called bifurcation
set. It is thus a subset of parameter space, which, in a general-
ization of the above notions, may be high dimensional.

There are three basic types of local bifurcation, the Hopf
bifurcation, the saddle-node or tangent bifurcation, and the
period-doubling or pitchfork bifurcation. These bifurcations
are called local bifurcations, as the phenomena associated
with them can be studied by linearizing the system about a
fixed point or periodic orbit in the immediate vicinity of the
bifurcation point (of a control parameter). Figure 5 shows
an example for each of the types of bifurcation. The standard
example for a Hopf bifurcation is the onset of a self-excited
oscillation in the van der Pol oscillator % -+ p(x* — 1)

+@’x =0at u =0 [Fig. 5(a)]. In this case, a fixed point
changes to a limit cycle. Via Hopf bifurcation, a limit cycle
may also change to a (two-dimensional) torus.

A saddle-node bifurcation occurs at the points of the
resonance curves with the driving frequencies , and , in
Fig. 3. At these points, one of the two attractors loses its
stability and “jumps,” in reality very slowly moves, towards
the other attractor. Figure 5(b) shows this change in (pro-
Jected) state space according to the jump atw, . A limit cycle
oflow amplitude changes to a limit cycle of larger amplitude.
It is also possible that a limit cycle is repl