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ACOUSTICS DEMONSTRATIONS 

Robert M. Keolian 

Penn State University Applied Research Laboratory 
and Graduate Program in Acoustics 

Some of the nonlinear properties of the harmonic oscillator, waves on the surface of water, 
and of high amplitude sound will be shown in a series of demonstrations: 

■ Bent tuning curves of a rubber band 
■ Parametrically driven pendulum 
■ Doubly bent tuning curves 
■ Parametric stabilization of an inverted pendulum 
■ Non-propagating hydrodynamic soliton 
■ Shock waves, N waves, and sound eating sound 

■ Acoustic Bernoulli effect 
■ Acoustic levitation 
■ Acoustic match blower 
■ Izzy Rudnick's lawn sprinkler 
■ Izzy Rudnick's tea party 
■ Acoustic log starter 

REFERENCES 

A.B. Pippard's book, The Physics of Vibration, (Cambridge University Press, Vol. 1, 1st 
edition, 1978 or the omnibus edition, 1989), chapters 9-12, is a good reference for nonlinear 
oscillators, parametric excitation, and other interesting effects. 

Landau and Lifshitz's "Mechanics" (Pergamon Press, 3rd ed., 1976) is also useful. 

The soliton is described in: J. Wu, R. Keolian, and I. Rudnick, "Observation of a 
Non-Propagating Hydrodynamic Soliton," Phys. Rev. Lett. 52, 1421-1424 (1984) and in J. Wu, 
I. Rudnick, "Amplitude-Dependent Properties of a Hydrodynamic Soliton," Phys. Rev. Lett. 55, 
204 (1985). 



1 
1 
I 
1 
I To identify most of the phenomena that may be encountered in gas-filled acoustic resonators 

operating in the linear regime (/>acoustic« Pambient). To motivate the choices made when designing fe 
measurement systems and when estimating the properties of gases. To exploit the analogies and I 
differences between sound waves and electromagnetic waves.    Not covered: detailed 
calculations, derivations. 

ACOUSTIC RESONATORS AND THE PROPERTIES OF GASES 

BY 

MICHAEL R. MOLDOVER 

Objectives 

Resonators [1] 

1. 

1. Thermodynamic speed of sound [3]; 
A. speed of sound measurements for technical applications 
B. know your impurities 

2. Connections between gas properties and intermolecular potentials [3,4] 
A. virial coefficients 
B. viscosity 
C. thermal conductivity 
D. bulk viscosity [5] 
E. helium: a standard for gas properties [6] 

3. Mixtures; why I wonit measure the speed of sound of air 
4. Acoustic measurements of transport properties: status report [7] 

1 
Ideal frequencies I 

2. Shape perturbations, degeneracies ™ 
3. Visco-thermal boundary layers ^ 
4. Bulk viscosity ■ 
5. Mechanical compliance, shell resonances, avoided crossings; why resonators are rarely 

used to measure the properties of liquids. A 
6. Inefficient transducers are useful; waveguides and diaphragms [2] M 
7. Mean free path effects: accommodation at the gas-solid boundary et al. 
8. Standards Measurements: The gas constant R and the thermodynamic temperature T [1] 

Properties of Gases 
I 
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Primary Reference P 

Moldover, M.R., Mehl, J.B. and Greenspan, M., Gas-filled spherical resonators - Theory and M 
experiment, J. Acoustical Soc. of America, Vol. 79, pp. 253-272 (1986) ■ 
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Chaos and Nonlinear Bubble Dynamics 

Werner Lauterborn 
Drittes Physikalisches Institut, Universität Göttingen, Bürgerstr. 42-44, 
D-37073 Göttingen, Germany, Tel: ++551-39-7713, Fax: ++551-39-7720, 

E-mail: lb@physik3.gwdg.de 

Chaos has become a learned word in science as the deterministic companion of a 
stochastic process. Nonlinearity lies at its basis and a certain degree of complexity 
To enter the realm of chaos a number of concepts have to be looked at for deeper 
insight: The state space, trajectories and attractors therein, attractor basins, bifurca- 
tions of different kinds, in particular the period-doubling bifurcation and its cascade 
bifurcation diagrams, the different routes to chaos, Poincare sections and Poincare' 
maps, the connection between maps and differential equations, phase or parameter 
space diagrams, embedding of data (time series) into higher dimensional spaces as 
the link between experiment and a theoretical description (Fig. 1), fractal dimensions 
for chaotic attractors (static description), Lyapunov exponents of attractors as quan- 
titative measures of the sensitive dependence of the dynamics on slight deviations 
(dynamic description), and even more involved concepts. 

measurement 

experiment time series trajectory in 
state space 

Fig. 1: The way from experiment to a trajectory in a state space by embedding. 

From chaos theory a new method for characterizing systems has evolved as put 
forward graphically in Fig.2. Starting with some system to be investigated or moni- 
tored a measurement yields a time series, i. e. a series of samples typically equally 
spaced in time. These may be analyzed by the usual linear means as given by Fouri- 
er analysis and correlations. These are not discussed here. The new way of nonline- 
ar analysis starts with the embedding as visualized in Fig.l yielding a reconstructed 
state space. The embedding may be preceded by preprocessing steps (linear filtering 
for instance) or by tests on determinism or nonlinearity by constructing surrogate 
data from the original data set. Also after embedding the somehow scrambled new 
set may be processed, for instance to achieve noise reduction by nonlinear opera- 
tions. However, the main aim of embedding is the characterization of the data in a 
way that surpasses the usual linear methods. This is done by determining the static 
and dynamic properties of the embedding set as they are given by fractal dimensions 
and Lyapunov exponents discussed in the lectures. A second way of characterization 



may proceed via modelling for describing the system and for prediction of its future 
states on the basis of the embedding. The gained insight may also be used for con- 
trolling purposes. The final aim, however, is a complete description of the system in 
a way of diagnosis of its state at the time of measurement. 

System 
I 

Measurement 
♦ JTinieiBerifeä^ 

Nonlinear 
Nöise&eduction 

Dimensions 
Lyapunoy Exponents 
Statistical Analysis, 

Modelling 
Prediction 
Controlling 

Diagnosis 

Fig. 2: Nonlinear time series analysis for system characterization via embedding. 

Nonlinear oscillators are ideal objects where chaos shows up and where the con- 
cepts mentioned above yield considerable new insight as compared to a purely linear 
description, i. e. a description working with linearization only and linear transforma- 
tions. In the context of acoustics the bubble in a sound field is a nonlinear oscillator 
indeed a strongly nonlinear one at higher sound pressure amplitudes. It is even so 
peculiar as to emit light upon collapse and to damage any material when coming clo- 
se to it. Bubble dynamics will be discussed both from the view of experiments and 
ol theoretical descriptions and, of course, the view of chaos theory. 

W. Lauterborn and U. Parlitz, Methods of chaos physics and their application to acou- 
stics, J. Acoust. Soc. Am. 84 (1988) 1975-1993. 
U. Parlitz, Englisch, V., Scheffczyk, C. and Lauterborn, W.: Bifurcation structure of 
bubble oscillators, J. Acoust. Soc. Am. 88 (1990) 1061-1077. 
W. Lauterborn and J. Holzfuss, Acoustic chaos, Int. J. Bifurcation and Chaos 1 (1991) 
13-26. 

W. Lauterborn, Nonlinear dynamics in acoustics, Acustica 82 (1996) S-46 - S-55. 
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ACOUSTIC CHAOS 
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The history of chaos pertaining to acoustics is briefly reviewed from the first oeriod^nnhlino 

5SÄZ2L1? 2nd*(vibrated ,iquid hyei) ■Bd Mcldc SÄSÄ investigations on chaos in thermoacoustics, musical instruments, the hearing process and ultrasoniL 
A closer analyse „ gaven of the sound produced in a liquid by standing woJS^S^Si. 

1.   Introduction 

Chaotic (i.e., irregular and unpredictable) motion 
seems to appear in any sufficiently complicated or 
complex dynamical system. Acoustics, that part of 
physics that -describes (and makes use of) the vibra- 
tions of usually larger ensembles of molecules in gases, 
liquids and solids makes no exception. As a main 
necessary ingredient of chaotic dynamics is nonlinear- 
ity, acoustic chaos can only be found in the realm of 
nonlinear acoustics. Thus, acoustic chaos is closely 
related to nonlinear vibrations of and in gases, liquids 
and solids. It is the science of never-repeating sound 
waves. This property it shares with noise, a term 
having its origin in acoustics and formerly attributed 
to every sound signal (and meanwhile other, e.g., 
electrical, signals) with a broadband Fourier spectrum.' 
But Fourier analysis is especially adapted to linear 
oscillatory systems. There it develops its full power. It 
is the standard interpretation of the lines in a Fourier 
spectrum that each line corresponds to a (linear) mode 
of vibration and a degree of freedom of the system. 
However, as examples from chaos physics show, a 
broadband spectrum can already be obtained with just 
three (nonlinear) degrees of freedom (i.e., three depen- 
dent variables). Chaos physics thus develops a totally 
new view of the noise problem. It is a deterministic 
view. But it is still an open question how far the new 
approach will reach in explaining still unsolved noise 
problems, e.g., the l//noise spectrum encountered so 
often. The detailed relationship between chaos and 

noise is still an area of active research. An example, 
where the properties of acoustic noise could be related 
to chaotic dynamics, is given below for the case of 
acoustic cavitation noise. 

2.   Historical notes 

Acoustic chaos and the closely related science of 
chaotic vibrations are young disciplines [Lauterborn, 
1989; Lauterborn & Parlitz, 1988; Parker & Chua,' 
1989; Thompson & Stewart, 1986; Moon, 1987]. Yet 
most experiments conducted today have ancient an- 
cestors. Two classes of oscillatory systems are most 
susceptible to chaotic motion. These are periodically 
driven (passive) nonlinear systems, which often re- 
spond to an excitation with subharmonics, in particu- 
lar in the form of period doubling, and self-excited 
systems, which develop sustained oscillations from 
seemingly constant exterior conditions. A special sub- 
class of the second class forms self-excited systems 
when driven. The simplest model of that class is the 
driven van der Pol oscillator (see, e.g., Parlitz & 
Lauterborn [1987]). From real physical systems, the 
weather can be put into this category. It is periodically 
driven by the solar radiation with the low period of 
24h. But already a constant heating leads to oscilla- 
tions (Rayleigh-Benard convection), i.e., it is a self- 
excited system. 

The first reported subharmonic oscillation of order 
one half (f/2, /- driving frequency) belongs to the 
first class and dates back to Faraday [1831]. Starting 
from the investigation of sound-emitting, vibrating 
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surfaces with the help of Chladni figures, Faraday also 
sprinkled water instead of sand onto his vibrating 
plates (vibrating at frequency f), and extended the 
work to complete layers of fluid to investigate the 
"beautifully crispated appearance" of the liquid layer. 
His aim was the "progress of acoustical philosophy". 
To be able to watch the motion of the fluid layer he 
enlarged his vibrating plates to lower the frequency of 
oscillation, and ultimately came up with a board 
eighteen feet long, upon which a liquid layer of three 
quarters of an inch in depth and twenty-eight inches by 
twenty inches in extent could be vibrated vertically. 
Then, by ordinary inspection, he could observe that 
the heaps of liquid making up the crispations where 
oscillating in a sloshing motion to and fro between 
neighboring heaps of liquid. He states: "Each heap 
(identified by its locality) recurs or is re-formed in two 
complete vibrations of the sustaining surface" and 
adds in a footnote "A vibration is here considered as 
the motion of the plate, from the time that it leaves its 
extreme position until it returns to it, and not the time 
of its return to the intermediate position". This result 
was confirmed by Rayleigh [1883a]. 

Today, the powerful methods of nonlinear dynamics 
and computerized experimental instrumentation are 
applied to this problem, and the nonlinear and chaotic 
oscillations are investigated in some detail [Keolian 
et al. 1981; Miles, 1984; Ciliberto & Gollub, 1985- 
Meron & Procaccia, 1986; Gu & Sethna, 1987]. Sub- 
harmonic oscillations as low as f/35 (/= driving fre- 
quency), quasiperiodic and chaotic oscillations have 
been observed in an essentially one-dimensional variant 
of the Faraday experiment [Keolian et al., 1981]. Period 
doubling, quasiperiodicity and chaos have been ob- 
served for the original two-dimensional case with a 
cylindrical fluid layer of 1 cm in depth and radius 
6.35 cm [Ciliberto & Gollub, 1985]. Mode competition 
is singled out as the mechanism underlying the complex 
dynamics. This experiment may naturally occur on the 
curved surface of bubbles set into motion in a sound 
field (see Sec. 3.4 below). 

A second topic, where subharmonics were observed 
early, is the Melde experiment [Rayleigh, 1883b, 1887] 
In this experiment, the tension of a string is modulated 
periodically by.fastening it to the prong of a tuning fork. 
Under suitable conditions, the string will vibrate at half 
the driving frequency. Rayleigh developed a theory for 
parametrically driven systems of this kind. String vibra- 
tions play an important role in musical instruments 
and the investigation of nonlinear string vibrations 
form a large, separate part in nonlinear dynamics (see 
Tufillaro [1989] to enter the field). 

Before going ahead with periodically driven systems, 
which, when nonlinear, almost always seem to develop 
chaos in some parameter region, we turn to the second 
class, that of self-sustained vibrations. Among these, 
we pick the thermoacoustic oscillations which come in 
two main varieties: Sondhauss oscillations [Sondhauss 
1850; Feldmann, 1968a] and Rijke oscillations [Rijke' 
1859; Feldmann, 1968b], The Sondhauss oscillation 
occurs when the closed end of a gas-filled pipe is 
heated (externally or internally), or, conversely, when 
the open end is cooled (then called Taconis osculations 
[Taconis et al., 1949]). The Rijke osculation occurs 
when an internal grid located in the lower half of a 
vertical pipe is heated. Both ends must be open to 
allow for a flow of gas (self-generated or enforced) 
through the pipe. Sound is also produced when the 
grid, this time being located in the upper half of the 
vertical pipe, is cooled [Riess, 1859]. 

Taconis oscillations with steep temperature gradients 
and large temperature difference show complex behav- 
ior [Yazaki et al., 1987]. The oscillation may period 
double, develop quasiperiodic oscillations through the 
appearance of a second incommensurate frequency and 
also chaotic oscillations. This behavior is attributed to 
mode competition similar to the Faraday experiment of 
Ciliberto and Gollub [1985]. When Taconis oscillations 
are confronted with periodic, externally imposed acous- 
tic osciUations, the whole set of nonlinear dynamical 
phenomena seems to occur [Yazaki et al., 1990], as 
encountered, when self-excited systems are additionally 
driven (see, e.g., the driven van der Pol oscillator [Par- 
litz & Lauterborn, 1987]). These acoustic oscillations 
are not just of scientific interest, but have a potential as 
"natural engines" [Wheatley & Cox, 1985]. 

Coming back to driven systems of the passive (i.e., 
not self-excited) type, period doubling has been ob- 
served in connection with loudspeakers. Conical loud- 
speakers, when strongly driven, start to period double 
[Pedersen, 1935]. Subharmonics have later been ob- 
served when a liquid is irradiated with a pure tone of 
high intensity [Esche, 1952]. This work, where fre- 
quencies f/2, f/4, and f/3 of the driving acoustic 
sound wave of frequency /were found in the output 
sound from the liquid (Fig. 1), stimulated the discus- 
sion as to the physical mechanism producing these 
subharmonic frequencies. This topic will be investi- 
gated in more detail below. 

Nonlinear dynamics also appears in musical instru- 
ments, where oscillations are produced to generate 
sound. These systems are therefore a priori apt to 
generate chaotic sound waves. But there are not 
many investigations in this area. A first account can be 
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found in a review on the oscillations of musical 
instruments [Mclntyre et al., 1983]. Several musical 

Acoustic Chaos 

instruments seem capable of producing chaotic sound 
when properly excited: clarinet-like systems [Maganza 
et al., 1986J, woodwind instruments (recorder) [Gibiat 
1988], and gongs [Legge & Fletcher, 1989]. 

The human hearing process is intrinsically nonlinear 
To account for the astonishing power of the ear, active 
filtering, i.e., amplifiers, are assumed to be at work 
(see, e.g., Bialek & Wit [1984]). Such systems may get 
unstable and start to oscillate. Indeed, it has been found 
that the car may also emit sound, either spontaneously 

objective tinnitus" [Kemp, 1979]) or (click) evoked 
( Kemp-echo" [Kemp, 1978]). These otoacoustic emis- 
sions had been predicted by Gold as early as in 1948 
[Gold, 1948] and have been an area of active research in 
the past ten years. The interaction of spontaneous emis- 
sions with external sounds has been studied [Rabinow- 
itz & Widin, 1984] and rather sophisticated models 
have been proposed to account for evoked (i.e., stimu- 
ated) emissions [Strube, 1989]. As the problem belongs 

to the type of driven self-oscillatory systems, chaotic 
dynamics can be expected to be present in the appro- 
priate parameter ranges. 

An interesting area is the area of opto- and photo- 
acoustics, i.e., the area of the interaction of light with 
matter, yielding acoustic waves. The area seems not yet 
influenced by the nonlinear dynamics virus (see the 
recent review on sound generation by optical radiation 
[Signst, 1986]), but it is easy to envisage what may 
happen when modulated laser light is used to drive 
acoustic resonant systems or flow systems with instabil- 
ities. 

The large field of noise in combustion processes is 
omitted here, as well as the area of plasma physics 
where, e.g., ion acoustic waves occur and there is a sheer 
endless list of instabilities. They need a special treat- 
ment. 

Surely, the list showing where acoustic chaos can be 
found is not complete, and we apologize for all topics 
and works which are omitted. But we are eager to learn 
of any new development in the area of acoustic chaos. 

3.   Acoustic Chaos in Ultrasonic Cavitation 
3.1.   Historical notes 

When a liquid is irradiated with sound of high inten- 
sity, a hissing noise is heard. This phenomenon was the 
starting point of Esche's work [Esche, 1952]. The noise 
emission presents an interesting physical problem, as a 
sound wave of a single frequency is transformed into a 
broadband sound spectrum. At the time of Esche, noth- 
ing was known of deterministic chaos, and no physical 
mechanism could be thought of to explain this fact 
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besides the statistical rupture of the liquid. Esche's work 
showed that the phenomenon of broadband noise- 
emission is preceded by strong subharraonic spectral 
lines at 1/2, 1/4 and also 1/3 the driving frequency and 
their harmonics. The explanation of these lines pre- 
sented even more difficulties, and was sought in the 
nonlinear dynamics of the bubbles known to be gener- 
ated in the process. For the subharmonic of order 1/2, it 
was suggested that bubbles driven at twice their reso- 
nance frequency should be responsible for the observed 
frequency halving [Güth, 1956]. This could be con- 
firmed by numerical calculations [Eller & Flynn, 1969; 
Lauterborn, 1969/70], and it was even speculated that 
there might be a connection between subharmonics and 
noise [Lauterborn, 1969/70]. However, serious diffi- 
culties arise with this explanation, because bubbles of 
the necessary size (double resonance size) are not stable 
in a standing acoustic field as they are driven away 
from the pressure antinodes. Later, it was found that 
bubbles driven at frequencies lower than their reso- 
nance frequency could also oscillate subharmonically 
in regions of ultraharmonic resonances, and also that 
there are regions in parameter space of driven bubbles 
where periodic solutions seem to be lacking [Lauter- 
bora, 1976]. 

Experiments-done to^mprove the material available 
from Esche's work led to the observation of a period- 
doubling  sequence  to  broadband   noise  when  the 

sound intensity of the driving sound field was raised 
[Lauterborn   &   Cramer,   1981],   as   well   as   other 
sequences hard to classify (see Lauterborn [1986]). 
In these experiments, water had been used as a 
liquid. But almost the same phenomena can also be 
observed in liquid helium [Smith el ai, 1982]. Period- 
doubling sequences (already to be detected in Lau- 
terbora [1976]) are also obtained numerically for 
(purely radially) oscillating bubbles [Lauterborn & 
Suchla,   1984;  Parlitz  et ai,   1990].  Experimental 
observation of the liquid by high-speed holographic 
cinematography   simultaneous   with   the   acoustic 
measurements  revealed  that  the  complete  bubble 
field is undergoing period doubling to chaos [Lau- 
terborn & Koch,  1987]. Specific methods of non- 
linear dynamics have been applied to the acoustic 
time series, which surprisingly gave evidence of a 
low-dimensional   strange   attractor   through   phase 
space analysis in conjunction with dimension estima- 
tion [Lauterborn & Holzfuss, 1986] and the determi- 
nation of Lyapunov exponents [Holzfuss & Lauter- 
born, 1989]. 

In the sequel, the paper reports on advances in 
ultrasonic acoustic chaos. Phase space representations 
of acoustic signals and a color spectral bifurcation 
diagram of measured data, which exemplifies the 
successive period doubling of the sound output from 
the liquid, are given. 

cylindrical 
iransducer hydrophone 

transient recorder 
— Illrtllllllll- - 

_  iiiiiiiimii — - 

driving 
signal 

power 
amplifier 

f. 

function 
generator 

data 

computer 

Fig. 2.   Experimental arrangement for acoustic measurement of driven liquids. 
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3.2.   Acoustic observations 

The experimental arrangement for investigating 
the sound emission from a sound-irradiated liquid 
is depicted in Fig. 2. The high acoustic intensity 
necessary to observe the nonlinear phenomena is 
obtained with a cylindrical transducer of piezoceramic 
material (PZT-4) of 76 mm length, 76 mm inner 
diameter, and 5 mm wall thickness. Depending on the 
container and the water height above the cylinder, the 
resonance frequency for half a wavelength across the 
diameter of the cylinder is slightly different, and was 
22.9 kHz in the present case. The liquid used was 
deionized, air-saturated water with added nuclei (Ves- 
tamid X2805, a polycrystalline substance of about the 
same density as that of water) of size smaller than 
40 fim at a concentration of about 15/xg/cm3. 

The experiment is fully computer-controlled, and 
consists of a function generator to produce the sinu- 
soidal frequency f0 of the driving sound field and a 
power amplifier to obtain the necessary amplitudes. 
The driving amplitude is used as control parameter, 
and usually made a linear ramp function. A broadband 
hydrophone records the sound output from the liquid. 
After suitable filtering, the pressure time data are 
digitized with 10 bits at rates of usually 500 kHz to 
1 MHz, and stored in a memory of 4K to 128K words. 

Figure 3 shows a spectral bifurcation diagram of a 
measurement,  where the sound pressure has been 
raised within 256 ms from 0 to its maximal value at 
60 V transducer voltage. Only the part from 30-60 V 
is shown. The spectral bifurcation diagram consists of 
successively plotted power spectra of 4K data windows 
shifted along the whole 128K dataset. The amplitudes 
are color encoded. At low amplitudes, the spectrum 
consists of only sharp lines at the driving frequency ^ 
and its harmonics 2f0,  3/0... At 41V,  the first 
subharmonic at f0/l, together with its harmonics, 
appears. Further increase of the driving amplitude 
leads to a further frequency halving to ^4 at 50-52 V 
and again at 54 V. From about 56 V on, more and 
more broader lines appear and the spectral intensity is 
distributed over a broad frequency range. The spec- 
trum is then a broadband noise spectrum. 

Phase space analysis has been applied to the data. 
Figure 4 shows trajectories constructed in a phase 
space that consists of time-shifted sound pressure 
values p(t). A trajectory in this phase space is given by 
the set of 3-tupels {p(t),p{t + T),p\t + 2T)). The time 
shift constant T is here approximately 1/10 of the 
driving period T0. It can be shown [Takens, 1981] that 
this set yields the same properties as the set of state 

points in the original phase space. A period-doubling 
route to chaos with increasing sound pressure is 
observed (Figs. 4a-4f). Figure 4a shows a period-1 
orbit that doubles into a period-2 orbit (b) and a 
period-4 orbit (c). In (d) the trajectories no longer seem 
to form a periodic orbit. In (e) this becomes more 
pronounced, and in (f) the aperiodic feature is clearly 
visible. The dimension of these objects in phase space 
can be determined. It is a measure of the active modes 
of the underlying physical process [Lauterbom & 
Holzfuss, 1986]. A very suitable method is the deter- 
mination of the average of pointwise dimensions 
[Holzfuss & Mayer-Kress, 1986]. A pointwise dimen- 
sion D at a point in phase space can be calculated by 
looking at the scaling behavior of the "mass" around 
this point, that is, the number of points within a 
certain distance r. The number of points in this ball 
should scale like 

tf(r). 0 

Their average dimension and standard deviation are 
characteristic of the attractor. In Fig. 5, it is seen that 
the dimension of periodic attractors is, as expected, 
equal to 1. However, in the broadband noise region, a 
fractal value of 2.6 is obtained. This surprisingly low 
value for the sound output of thousands of oscillating 
bubbles is an evidence for low-dimensional chaos. 

For a further justification of this finding, the spec- 
trum of Lyapunov exponents has been calculated from 
the noise data. Lyapunov exponents are the basic 
indicator for chaos [Eckmann & Ruelle, 1985]. They 
measure the average exponential expansion and con- 
traction rates of small volume elements around the 
attractor. A physical process, whose motions in phase 
space lie on an attractor with a positive Lyapunov 
exponent, has the property that, initially, almost 
similar states may lead to a totally different time 
evolution. 

To calculate Lyapunov exponents from experimental 
data, a method based on a least-squares approximation 
of the linearized flow maps has been proposed [Eck- 
mann & Ruelle, 1985; Sano & Sawada, 1985; Holzfuss 
& Lauterborn 1989]. Figure 6 shows exponents as a 
function of the embedding (matrix) dimension for 
noise data at 58 V transducer voltage. With increasing 
matrix dimension, the calculated values converge to 
X, - 1.9, X2 - 0, X3 = - 3 bits per period of the driving 
sound wave. The positive value of the first Lyapunov 
exponent is a further indication for low-dimensional 
chaos being the explanation for the observed broad- 
band noise. 
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Fig. 4.   Phase space reconstruction from the sound output of sound-irradiated water at f0 - 22.9 kHz. Projections of trajectories in a phase 
space, constructed with time-shifted coordinates. The transducer voltage is (a) 30.7 V (b) 52.8 V (c) 55 V (d) 56 V (e) 56.4 V (f) 58.8 V. 

3.3.   Holographic observations 

Thus far, only the acoustic signal has been consid- 
ered. An optic inspection of the liquid inside the 
piezoelectric cylinder reveals that a structured, 
branch-like cloud of bubbles is present at high driving 
(see, e.g., Lauterborn [1986]). It is a straightforward 
conjecture that it is these bubbles that produce the 
sound output from the driven liquid. The mechanism 
of subharmonic production, however, is not clear, e.g., 
whether the bubble field will period double as a whole 
or only through a few members of the field. To settle 

this question, a detailed, time-resolved visual study of 
the bubble dynamics is necessary. To this end, an 
arrangement for high-speed holographic cinematogra- 
phy has been developed [Hentschel & Lauterborn, 
1985; Lauterborn & Koch, 1987]. The arrangement is 
depicted in Fig. 7. A series of coherent light pulses 
from a cavity-dumped argon ion laser is periodically 
deflected by an acoustooptic deflector into three dis- 
tinct directions. Each of the beams is split into object 
and reference beams to produce a separate hologram 
on a rotating holographic plate. The sound output can 
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Fig. 6.   Lyapunov spectrum versus matrix dimension in the case of 
a chaotic attractor. 

be simultaneously monitored in the same way as given 
in Fig. 2. The arrangement is capable of taking a 
hologram every cycle at a fixed phase of the driving or 
even three holograms per cycle [Lauterborn & Koch, 
1987]. 

Experiments with holographic recording of the 
bubbles were conducted at a driving frequency of 
23.1 kHz, i.e., holograms were taken at a rate of 23 100 
holograms per second. Should the bubble field repeat its 
motion every cycle (period 1), then the same picture 
(three-dimensional) should reappear with each holo- 
gram. When the bubble field undergoes its first period 
doubling (to period 2), then every second picture (ho- 
logram) should look alike, and so on. When there is a 

chaotic motion, then the appearance of the bubble field 
will alter unpredictably from cycle to cycle. This strc- 
boscopic look at the dynamics is very reminiscent of 
Poincare sections. The result of this experiment came as 
a surprise. The whole bubble field seemed to oscillate 
unisono (as seen in the pictures with, unfortunately, 
coarse resolution because of the small hologram size of 
2x2 mm2 and therefore large speckle grains). Figure 8 
gives an example of the state just after the first period- 
doubling bifurcation. The row of frames shows recon- 
structed images from four successive holograms; the 
lower diagram is the corresponding power spectrum 
taken simultaneously. Figure 9 is taken from the area of 
second period doubling, and Fig. 10 gives a long series 
of seemingly chaotic oscillations. Figure 11 shows the 
corresponding power spectrum. Of course, as the exper- 
iments are difficult to conduct, time-consuming in pro- 
cessing (68 individual reconstructions had to be done 
just for the frames of Fig. 10), and only a few hundred 
or at most a few thousand holograms can be obtained in 
succession, it cannot be made absolutely sure that there 
are no long-lived transients, long periods or quasiperi- 
odic motions involved. Also, problems in keeping the 
bubble field stable for some time prohibit the high 
accuracy necessary to answer these questions better. But 
the occurrence of a period-doubling sequence gives 
good confidence that chaotic oscillations indeed occur. 

3.4.    Theoretical considerations 

A theory that can account for the dynamics of a 
bubble field (e.g., as given in Fig. 10) and its sound 
radiation has yet to be developed. Most advanced 
is the knowledge on the behavior of single spherical 
bubbles oscillating spherically in a sound field [Lau- 
terbom & Parlitz, 1988; Smereka et al., 1987; Parlitz 
et al., 1990]. Also, it was, until recently, thought that 
the pressure field obtained from the multipole part of 
an asymmetric bubble oscillation would decay much 
faster with radial distance from the bubble than the 
direct monopole contribution and thus add negligibly 
to the overall sound radiation. It seems that this 
view has to be abandoned. Two recent articles claim 
monopole-like emission of sound by asymmetric bub- 
ble oscillations [Longuet-Higgins, 1989a,b]. This then 
adds a new interesting idea to the sound emission 
problem that, however, has yet to be worked out for 
the present purpose. Also, a connection to the Faraday 
experiment, although on a curved surface, can be 
envisaged with interacting modes yielding quasiperi- 
odic or chaotic motion on the surface of the bubbles 
and giving rise to corresponding pressure waves in the 
liquid. In a next step, many of these bubbles would 

13 



Acoustic Chaos 

acoustooptic 
output coupler 

photodiode 

ground 
glass plate 

container 
with wafer 

PZT4 cylinder 

cavitation 

 -J] rotating 
"^3 holographic plate 

Fig. 7.   Experimental arrangement for high-speed holographic cinematography of the bubble motion in sound-irradiated water. 
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Fig. 8. Four reconstructed images of the bubble distribution in 
sound-irradiated water from a holographic series taken at 23 100 
holograms per second and the corresponding power spectrum of the 
sound emitted. First period doubling. (Courtesy of A. Koch). 
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holograms per second and the corresponding power spectrum of the 
sound emitted. Second period doubling. (Courtesy of A. Koch). 
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Fig. 10.   Sixty-seven reconstructed images of a bubble distribution in sound-irradiated water from a holographic series taken at 23 100 
holograms per second. (Courtesy of A. Koch). 
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have to be put together as a cloud. This is far from 
being feasible at present. But first attempts with bubble 
clouds along other lines are encouraging in giving the 
approximate behavior of a single bubble under suitable 
conditions [Smereka & Banerjee, 1988]. 

Thus, single-bubble behavior, being of interest on its 
own as a nonlinear oscillator, may have some bearing 
on the problem of sound emission from a bubble 
cloud. We have investigated several models, all of 
which show period doubling and chaos [Lauterborn, 
1976; Lauterborn & Suchte,   1984;  Lauterbom & 
Parlitz, 1988; Parlitz et al, 1990]. In a similar way, as 
the experimental data are plotted as a spectral bifur- 
cation diagram (Fig. 3), the theoretical data may also 
be transferred to spectra of the bubble wall motion and 
plotted, with the driving sound pressure amplitude as 
control parameter,  in the form of a color-coded 
spectral bifurcation diagram. This is done in Fig. 12, 
where the Gilmore model has been used [Gilmore, 
1952]. It is seen that areas of period doubling up to 1/8 
the driving frequency are easily discernible, as well as 
chaotic regions with periodic windows (a usual behav- 
ior with nonlinear driven oscillators). The mechanism 
at work in producing the sound output therefore seems 
to be the widespread period-doubling mechanism and 
saddle-node bifurcations characteristic of the dynam- 
ics of many nonlinear systems. 

4.   Discussion and Conclusions 

The new area of acoustic chaos physics has been 
reviewed with special emphasis on ultrasonic acous- 
tic chaos. The experiment of irradiating a liquid 
with sound of a single frequency yields (under favor- 
able circumstances) a period-doubling route to chaos 
(Fig. 3). The bubbles (or cavities) appearing in the liq- 
uid through a breakdown process (cavitation) are re- 
sponsible for this. They are passive nonlinear oscillators 
which are periodically driven by the sound field that has 
also produced them. 

The motions of the bubbles are very complex, 
ranging from pure radial oscillations at low amplitudes 
to motion with such strong collapses that shock waves 
are radiated (see Fig. 10). Also, strong deformations of 
the bubbles occur, leading to disintegration of a single 
bubble to many new ones [Hentschel & Lauterbom, 
1985] and often erratic dancing motion. Strong clus- 
tering of bubbles and, often, an arrangement in a 
branch-like structure called streamers is observed. In 
experiments in which just a few bubbles were oscillat- 
ing far away from each other, relatively stable opera- 
tion of an almost pure shape oscillation at half the 
driving frequency could be maintained. The corre- 
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Fig. 11.   Power spectrum of the sound output from a sound- 
irradiated liquid in the chaotic region. (Courtesy of A. Koch). 

sponding power spectrum of the sound output from 
the liquid showed a substantial subharmonic line at 
one half the driving frequency. This phenomenon 
exists, besides the period-doubled volume pulsations 
demonstrated in Fig. 8. Even second period doubling 
seems to be possible with just shape oscillations of the 
bubbles. Holograms of better resolution holograms are 
being prepared to visualize the observations more 
clearly. 

Bubbles are easily forced into surface oscillations 
(see, e.g., Kornfeld & Suvorov [1944], Strube [1971] 
and Hullin [1977]). The new finding that these sur- 
face oscillations emit strong sound [Longuet-Higgins, 
1989a, b], gives rise to new considerations. Surface 
oscillations driven by the radial mode [Strube, 1971] 
may then play a bigger role than previously thought, 
and a more complex view of the sound emission from 
a sound-irradiated liquid than the simple view of the 
dominance of radial-mode oscillations of bubbles may 
emerge. 
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Fig. 12.     Spectral bifurcation diagram of numerically calculated spherical bubble oscillations with the driving pressure amplitude as control 
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This article gives an introduction to the research area of chaos physics. The new language and 
the basic tools are presented and illustrated by examples from acoustics: a bubble in water 
driven by a sound field and other nonlinear oscillators. The notions of strange attractors and 
their basins, bifurcations and bifurcation diagrams, Poincare maps, phase diagrams, fractal 
dimensions, scaling spectra, reconstruction of attractors from time series, winding numbers as 
well as Lyapunov exponents, spectra, and diagrams are addressed. 
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INTRODUCTION 

The last 10 years have seen a remarkable development in 
physics that may be succinctly described as the upsurge of 
^chaos."'-16 This is, at first sight, really puzzling, as the no- 
tion of chaos implies irregularity and unpredictability, 
whereas physics is usually thought to be a science devoted to 
finding the laws of nature, i.e., its order and harmony. How, 
then, may chaos have become a subject of serious investiga- 
tion in physics—and not only physics? This is just the new 
insight—that law and chaos do not exclude each other, that 
even simple deterministic laws may describe chaotic, i.e., 
unpredictable and irregular, motion. Thus not only law and 
order, but also law and chaos, go together and, even more so, 
it seems that law and chaos are as important a combination 
as law and order. This statement may be derived from the 
fact that chaotic motion is intimately related to nonlinearity 
and the realm of nonlinearity by far exceeds that of linearity. 

This article is an attempt to acquaint the reader with the 
ideas and methods that lead to the above statements. The 
basic notions are given without resorting to too much math- 
ematics. It is hoped that this approach will also be honored 
by those readers to whom this is not the first exposure to the 
subject. 

I. ATTRACTORS 

Theoretical chaos physics starts with evolution equa- 
tions that describe the dynamic development of the state of a 
system (a model). These may be continuous models 

* = f„(x).   xeRm,   m>\, t\) 

or discrete ones 

continuous case, the temporal ( = dynamic) evolution then 
leads to a curve in this space called trajectory or also orbit 
(Fig. 1). In the discrete case, a sequence of points is ob- 
tained, usually called an orbit. The state space in nonlinear 
dynamics as introduced above is a generalization of the usual 
phase space of Hamiltonian dynamics. When p and q are the 
generalized coordinates and momenta of a Hamiltonian sys- 
tem, then x = (p, q)eR™ with m necessarily even. General 
nonlinear dynamical systems may have an odd-dimensional 
state space. 

An important question is how a set of initial conditions 
(a volume of the state space R") evolves as time proceeds. 
According to the theorem of LiouviHe, a volume stays con- 
stant in conservative systems whereas it shrinks in dissipa- 
tive ones. Here, only dissipative systems will be treated. In 
this case the question almost poses itself, as to how the vol- 
ume shrinks and how the limit set of points in state space 
looks, to which a given volume shrinks. This simple question 
cannot yet be answered in general as obviously an unknown 
number of different limit sets are possible. The limit sets have 
been given the name attractor as trajectories out of whole 
volumina of state space move towards these sets, i.e., seem 
attracted by them. The set of initial conditions (points in 
state space) moving upon evolution towards a given attrac- 
tor is called its basin: 

What is already known about attractors and their prop- 
erties? A certain classification can already be given. It often 
happens that all trajectories in state space move towards a 

x- + i = %(*.).   x„eRm,   m>l, « = 0,1  (2) 
The state of the system is given by the »»-dependent variables 
x(0 = [x,(/),x2(0....,xm</>] or x„ = {x^^,.,.^), 
respectively. The index ft indicates that the system depends 
on a parameter ft (often it will be several parameters). The 
dynamic laws (1) or (2) determine how a given state x(f) or 
x„ develops. This evolution can be viewed when the states of 
the system are displayed as points in a state space R™. In the FIG. I. A trajectory in state space. 
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single point, & fixed point [Fig. 2(a)]. This means that the 
system does not alter with time; it has come to rest. In the 
language of physicists, this is an equilibrium position. A 
standard example is a pendulum that has come to rest after 
some time of oscillation due to friction. 

A more complex possibility is that the limit set consists 
of a closed trajectory that is scanned again and again. An 
attractor of this kind is called a limit cycle [Fig. 2(b) ]. Limit 
cycles regularly occur with driven oscillators. The standard 
example is the attractor of the van der Pol oscillator. In phys- 
ics, any sine wave (or square wave, etc.) generator displays 
an example of a limit cycle. The next kind of attractor fills an 
area (a two-dimensional surface) in a, e.g., three-dimension- 
al, state space. This may happen if the system oscillates with 
two incommensurable frequencies. This attractor consti- 
tutes a torus [ Fig. 2 (c)]. A trajectory on the torus is a quasi- 
periodic motion. Systems with this property also exist experi- 
mentally (see, e.g., Ref. 12). These three types of attractors 
have been known for a long time. 

Quite new is a further kind of attractor, called strange or 
chaotic attractor [Fig. 2(d) ]. In the continuous case, an at 
least three-dimensional state space is necessary for a strange 
attractor to occur. The properties of strange attractors are 
not yet totally explored. An important property is the di- 
mension of the strange attractor, which usually turns out to 
be fractal, i.e., not an integer. In Sec. VIII, we discuss how 
the dimension of general sets can be defined and determined 
in practical situations. A further property is that strange 
attractors obviously possess self-similar structures; i.e., on 
magnifying the attractor, partial structures repeat again and 
again on a finer and finer scale. The notion of self-similarity 
seems to play an important part in chaos physics as does the 
notion of fractal dimension. In Sec. X, we discuss how it may 
be brought about by the dynamic law by stretching and fold- 

• 

fa) 

o 
(b) 
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ing a volume of state space. Such objects obviously belong to 
the deeper inner structure of nature.17 It may be interesting 
to note that the discovery of strange or chaotic attractors 
gradually came through theoretical arguing and that it is 
mainly through models with chaotic behavior that it has be- 
come possible to interpret measurements that were long 
known in the language of chaos physics. Acoustics has sup- 
plied a prominent, and one of the first, example in the form of 
acoustic cavitation noise""20 and related experiments.11 

A dynamical system may possess several attractors si- 
multaneously that are reached starting from different initial 
conditions in state space. The space of initial conditions is 
then divided into different areas, the basins of attraction, 
each of which belongs to its corresponding attractor. One 
speaks of coexisting attractors. Obviously, any type of attrac- 
tor so far known can coexist with any other type including 
the same type. Thus a system may have several fixed points 
or several chaotic attractors and any mixture. An example 
for coexisting limit cycles is the resonance curve of a driven 
nonlinear oscillator where the maximum of a position coor- 
dinate of the limit cycle is plotted versus the frequency of a 
driverv At higher driving, it attains the appearance of a 
breaking wave (Fig. 3). Different oscillatory states are ob- 
tained depending on the way the curve is tracked. This phe- 
nomenon is well known as hysteresis. Examples for coexist- 
ing chaotic attractors are, for instance, found in Ref. 22 
where the single-valley Duffing oscillator is explored. 

Several questions concerning coexisting attractors can 
immediately be posed, such as, e.g., how many attractors a 
given system may have. This question is usually not easily 
answered. It may happen that a system possesses infinitely 
many coexisting attractors. For driven nonlinear oscillators 
(e.g., the bubble oscillator), the number of coexisting attrac- 
tors grows rapidly when the damping is decreased. 

The basins of attraction usually do not have a simple 
appearance. Even in the case of just two coexisting attrac- 
tors, the boundaries of the two basins may be incredibly in- 
tertwined and even become a fractal set. An example of typi- 
cal basins of attraction is taken from the Duffing equation 
x + dx — x + xi =/cos at, which is a damped nonlinear 
oscillator with a two-valley potential driven by a harmonic 
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FIG. 2. Types of attractors: (a) fixed point, (b) limit cycle, (c) torus, (d) 
projection of a strange attractor. 
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FIG. 3. A resonance curve of a bubble in water driven by a sound field. For 
the model used, see Eq. (9). Radius of the bubble at rest R. = 1° /""• 
sound-pressure amplitude 20 kPa (0.2 bar). In the region between a>, and 
<a,, two coexisting attractors are present that are reached from different 
initial conditions. 
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force of amplitude/and frequency'«a. For a damping con- 
stant d = 0.2, a forcing amplitude/"= 1, and a forcing fre- 
quency a = 0.85, this oscillator has three stable attractors 
whose basins of attraction are shown in Fig. 4 in black, grey, 
and white. The coordinates in the plane are (x,v = i) and 
are the initial conditions with which the solution of the DufT- 
ing equation was started at / = 0. A set of 320 by 320 initial 
points has been used. Each point has been colored black or 
grey or left white according to the attractor to which the 
solution curve tends. The attractors are two period-2 station- 
ary solutions and one period-1 stationary solution. The black 
and white areas are the basins belonging to the period-2 at- 
tractors and the grey area belongs to the period-1 attractor. 
The five big dots represent the three attractors. These points 
are given by stroboscopically illuminating the solution curve 
[x(r),i)(0 ] at times /„ = n 2ir/m. This leads to one point for 
the period-1 attractor and two points each for the two peri- 
od-2 attractors. The black basin belongs to the period-2 at- 
tractor represented by the two white dots, the white basin to 
the period-2 attractor represented by the two black dots in 
the white area, and the grey basin to the period-1 attractor 
represented by the black dot in the grey area. The reader 
interested in the question of basin boundaries may consult 
Ref. 23 and from there explore the state of the art. 

II. BIFURCATIONS 

When doing experiments, it is found that the system 
investigated normally depends on several parameters. In a 
typical measurement, usually only one of the parameters 
(pressure, temperature, voltage, current, etc.) is altered to 
learn about the reaction of the system to the alteration. In 
theoretical language, one considers a one-parameter family 
of systems. The question then is how an attractor or coexist- 
ing attractors alter when a parameter is varied. In chaos 
physics, such a parameter is called a control parameter. Sys- 
tems with different values of the control parameter are dif- 
ferent systems and may have totally different attractors. 
Therefore, there must be parameter values at which the type 

40 

3.0- 

20 

1.0 

00 

-10 

-20 

-3.0 A 

d = 02  f= 1.0  u = 0.85 

-4.0 '—I—'—I— 
3.0 -2.0   -1.0 

I 
0.0 1.0 

—1— 
2.0 3.0 

FIG. 4. Dasins of attraction Tor the double-valley Duffing equation 
i + dx-x + x* =/cosat for d = 0.2, /= I, a = 0.85. There are three 
attractors with their three basins. (Courtesy of V. Englisch.) 
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or gross appearance of an attractor switches to another one 
or even just disappears, or is generated. This change, includ- 
ing birth and death, is called bifurcation. The set of param- 
eter values at which a bifurcation occurs is called bifurcation 
set. It is thus a subset of parameter space, which, in a general- 
ization of the above notions, may be high dimensional. 

There are three basic types of local bifurcation, the Hopf 
bifurcation, the saddle-node or tangent bifurcation, and the 
period-doubling or pitchfork bifurcation. These bifurcations 
are called local bifurcations, as the phenomena associated 
with them can be studied by linearizing the system about a 
fixed point or periodic orbit in the immediate vicinity of the 
bifurcation point (of a control parameter). Figure 5 shows 
an example for each of the types of bifurcation. The standard 
example for a Hopf bifurcation is the onset of a self-excited 
oscillation in the van der Pol oscillator X+//0C2— l)x 
+ otx = 0 at^ = 0 [Fig. 5(a) ]. In this case, a fixed point 

changes to a limit cycle. Via Hopf bifurcation, a limit cycle 
may also change to a (two-dimensional) torus. 

A saddle-node bifurcation occurs at the points of the 
resonance curves with the driving frequencies <u, and ea2 in 
Fig. 3. At these points, one of the two attractors loses its 
stability and "jumps," in reality very slowly moves, towards 
the other attractor. Figure 5(b) shows this change in (pro- 
jected) state space according to the jump at a2. A limit cycle 
of low amplitude changes to a limit cycle of larger amplitude. 
It is also possible that a limit cycle is replaced through a 
saddle-node bifurcation by a chaotic attractor. Also, via a 
saddle-node bifurcation, totally new oscillation frequencies 
may be introduced into a system (e.g., subharmonics). 
These "new" oscillation frequencies, e.g., of period 3, are 
due to coexistent attractors that take over at the bifurcation 
point. 

The last type of bifurcation, the period-doubling bifur- 
cation, only operates on periodic orbits. Its importance has 
become clear only in the last few years (see Refs. 3 and 4) 
and has stressed the importance of oscillatory systems for 
our understanding of nature. At a period-doubling bifurca- 
tion point, as the name states, a limit cycle of a given period T 
changes to a limit cycle of exactly double the period, IT. This 
appears peculiar, and even more peculiar is that this type of 
bifurcation preferentially occurs in the form of cascades; i.e., 
when a period doubling has occurred, it is very likely that, 
upon further altering the control parameter, a further peri- 
od-doubling bifurcation occurs yielding AT, and so on. In- 
deed, via an infinite cascade of period doublings, a chaotic 
attractor can be obtained. This leads us to the more sophisti 

FIG. 5. Examples for the three types oriocal bifurcations: (a) Hopf bifurca- 
tion (fixed point - limit cycle), (b) saddle-node bifurcation (limit cycle 
- limit cycle), (c) period-doubling bifurcation (limit cycle of period T 
— limit cycle of period 2D. 
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cated question of possible sequences of bifurcations when a 
parameter of a system is changed. In the context of chaos 
physics, such sequences are called routes to chaos and certain 
scenarios are observed. 

III. ROUTES TO CHAOS 

It has been found that each of the local bifurcations may 
give rise to a distinct route to chaos, and all three basic routes 
have already been observed.12 These routes are of impor- 
tance because it is often difficult to conclude from just irreg- 
ular measured data whether this is the outcome of intrinsic 
chaotic dynamics of the system or simply noise in the mea- 
suring system (outer disturbances). When, upon altering 
the control parameter, one of the three basic routes is ob- 
served, then this strongly supports the idea that the system is 
a chaotic one producing the irregular output through its very 
dynamics itself. In the context of measurements, an alterna- 
tive way to distinguish between intrinsic and extrinsic noise 
has been developed. This method is discussed in Sec. IX. 

The scenario based on a sequence of Hopf bifurcations is 
called quasiperiodic route to chaos, as a system with incom- 
mensurate frequencies undergoes quasiperiodic oscillations 
(Fig. 6). This route is connected with the names of Ruelle, 
Takens, and Newhouse.24-25 It is a somewhat surprising 
route because, starting from a fixed point, the three-dimen- 
sional torus generated after three Hopf bifurcations is not 
stable in the sense that there exists an arbitrarily small per- 
turbation of the system (alteration of parameters) for which 
the three-torus gives way to a chaotic attractor. This route to 
chaos has been found experimentally in the flow between 
rotating cylinders (Taylor-Couette flow) and in Rayleigh- 
Benard convection where a liquid layer is heated from be- 
low.3" 

The route to chaos mediated by saddle-node or tangent 
bifurcations comes in different types, but all with the appear- 
ance of a direct transition from regular to chaotic motion. 
The most prominent type is called the intermittency route to 
chaos. This route is connected with the names of Pomeau 
and Manneville.26" It only needs a single saddle-node bifur- 
cation and is not easily visualized in its properties in a single 
diagram (Fig. 7). It is in a sense really a route to chaos (and 
not just a jump), as in the immediate vicinity after the bifur- 
cation point//,, the trajectory contains long time intervals or 
(almost) regular oscillation (so-called laminar phases) with 
only short bursts into irregular motion. The period of the 
oscillations equals approximately that before chaos has set 
in. With increasing distance |/t -//f| from the bifurcation 
point //, into the chaotic region, these laminar phases be- 

o-® 
/''/■.tsrji^ tf§W, 

FIG. 6. Quasiperiodic route lo chaos via a sequence of Hopf bifurcations. 
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FIG. 7. Intermittency route to chaos via a saddle-node bifurcation. 

come shorter and shorter, and the intervals of visibly chaotic 
oscillations larger and larger, until the regular oscillation 
intervals disappear. Chaos is really developed only at// val- 
ues at some distance from fic. This route has, for instance, 
been observed in Rayleigh-Benard experiments. Besides the 
intermittency route, there is a different type of transition to 
chaos connected with saddle-node bifurcations. It consists of 
a direct transition from a regular attractor (fixed point, limit 
cycle) to a coexisting chaotic one without the phenomenon 
of intermittency described above. This type is usually en- 
countered in systems with many coexisting attractors, as in 
the case of bubbles in a liquid driven by a sound field. 

The route to chaos encountered with the period-dou- 
bling bifurcation is called (heperiod-doubling route to chaos 
(Fig. 8). This route is connected with many names, with 
Sharkovskii, Grossmann, Thomae, Couliet, Tresser, and 
Feigenbaum being the most prominent ones.""11 Aperiodi- 
city is introduced here in steps, as every period doubling 
transforms a limit cycle at first only into a limit cycle of 
doubled period. But when the sequence of successive period 
doublings consists of infinitely many doublings, the limit 
will be a period of infinity, i.e., an aperiodic motion. This, of 
course, can only happen at a finite value of the control pa- 
rameter^, when the intervals in // between successive dou- 
blings get smaller at a sufficiently rapid rate. This is indeed 
the case. Period doubling is governed by a universal law that 
holds in the vicinity of the bifurcation point to chaos //,.. 
Actually, there are several laws. One of these states that 
when the ratio <5„ of successive intervals of//, in each of 
which there is a constant period of oscillation, is taken, 

<5., = (//„-//„   ,)/(//„,, -//„), (3) 

where//, is the bifurcation point for the period from 2" T to 
2" + ' T, then in the limit n- co a universal constant is ob- 
tained,VUI which for usual physical systems has the value 

lim S„ = <5 = 4.6692-•• . (4) 

This number is called the Feigenbaum number 5, because 

M, M* 

M_=Ht 

FIG. 8. Period-doubling route to chaos via an infinite cascade of period- 
doubling bifurcations. 
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Feigenbaum discovered its universality. The number had 
been found previously in the inverse cascade consisting of 
bands of periodic chaos converging towards the accumula- 
tion point p„ from the opposite side.29 It is not known 
whether this number can be expressed by other numbers like 
rr or e, or is a totally new number of a similar kind. At pres- 
ent, it can only be determined numerically to some accuracy 
(like vand e). The period-doubling route to chaos has been 
found in many experiments by now, but among the first was 
a purely acoustical experiment,18-20 the acoustic cavitation 
noise, which will be discussed in greater detail in a forthcom- 
ing article. 

Period doubling has been found experimentally in sig- 
nificantly different systems1-11 and in areas as different as 
physics (hydrodynamics, acoustics, optics), electronics, 
chemistry, biology, and physiology. A large class of physical 
systems that is considered of special importance is the driven 
nonlinear oscillators9 (bubble oscillator,32-36 Duffing oscil- 
lator,22 van der Pol oscillator,37 Toda oscillator38). They all 
show period-doubling and saddle-node bifurcations to chaos 
(the van der Pol oscillator, also Hopf bifurcations) and dis- 
play common features connected with their resonance prop- 
erties. The bubble oscillator will be described in more detail 
in a separate article. 

IV. BIFURCATION DIAGRAMS 

Several methods are available to handle experimental 
data in the attempt to determine which route to chaos may 
apply. They are not all similarly well suited to each route so 
that usually one should try all of them. In the intermittency 
route to chaos, the directly measured time dependence of the 
variable considered is taken to observe the continuous 
shortening of the laminar phases with change of the control 
parameter. In the quasiperiodic route, the time dependence 
of a variable usually has no specific features that would easi- 
ly be detectable. In this case the Fourier spectrum should be 
calculated, which immediately detects the new frequencies 
appearing upon alteration of the control parameter. The pe- 
riod-doubling route to chaos, too, is best observed *in the 
spectrum of the data, as the successive appearance of lines at 
half the lowest line (and their harmonics) is very character- 
istic. But in this case also a plot of the time dependence often 

. yields good hints. 
The methods recommended so far stem from usual data 

analysis. They are not quite satisfactory for coping with the 
problem of chaotic motion. Therefore, chaos research has 
invented and introduced its own specific methods to display 
its results. 

Among these methods are the bifurcation diagrams that 
have become a powerful and standard tool in visualizing the 
properties of a system. In a bifurcation diagram, the attrac- 
tors of a system are plotted versus the control parameters. 
This is the idea that, however, usually cannot be fully real- 
ized due to the dimension of the attractors and also of the 
parameter space. As for visualization purposes, normally 
only the plane of the paper is available; just one coordinate of 
the attractor (a projection) is plotted versus a single control 
parameter. This works for discrete systems (2). In the case 
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of continuous systems, a discretization (see Sees. V and VI 
below) is necessary. 

The standard example of a bifurcation diagram is there- 
fore given by one-dimensional iterated maps xn 
=f,A (*«). x„e[a,b]; x,,a,DeR, depending on a single con- 

trol parameter ft, fieR, as, in this case, the attractors are at 
most one dimensional. This map shows up, for instance, in 
(strongly) damped oscillatory systems when Poincare sec- 
tions are taken (see Sec. V). Figure 9 shows a bifurcation 
diagram of the so-called logistic parabola in the form x„ 
= 4fix„ (1 - x,). For small//, the attractor is a fixed point. 

It splits into a periodic attractor of period 2, then period 4, 
etc., until at the accumulation point ft^ the period 2", i.e. 
aperiodicity, is obtained. Afterwards, these periods are pres- 
ent in the form of bands that combine, in a reverse way to 
period doubling, to a single chaotic band.29 In the chaotic 
region, parameter intervals with periodic attractors appear, 
e.g., of period 3. Most of the known properties of this system 
are collected in Refs. 11 and 39; see also Refs. 3 and 4. 

A variant of this kind of bifurcation diagram has been 
introduced by us in the context of acoustic chaos" and called 
spectral bifurcation diagram.33™ Of course, also in this case 
only a single coordinate of an attractor can be handled, 
whose power spectrum is plotted versus the control param- 
eter. Since a power spectrum itself needs two dimensions to 
be plotted, additional difficulties appear which may be over- 
come by using grey scales or, even better, color graphics (see 
Ref. 1, color plate VI or Ref. 20, plate I). Spectral bifurca- 
tion diagrams are especially well suited to experimental sys- 
tems, where external noise usually is hard to avoid. This 
noise is distributed over a wide spectral range, whereas the 
energy in the system is concentrated in a few lines when, e.g., 
period doubling adds new lines. These then stick out from 
the noise background and are easily detected. In acoustics, 
spectral bifurcation diagrams are well known as "visible 
speech" when time is considered as a "control parameter." 

V. POINCARE SECTIONS AND POINCARE MAPS 

When trying to display bifurcation diagrams, as men- 
tioned above, difficulties arise coming from the dimension of 
the space needed for this purpose. This problem had already 
been encountered by Poincare in the context of coping with 
the problem of the stability of the solar system. He invented 
what today is called a Poincare section, whereby one dimen- 

f(x) = 4ax(l-x) 

-<lWj^* 

FIG. 9. The bifurcation diagram of (he logistic parabola in the form 
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sion can be gained, and a continuous system of the kind in 
Eq. (1) is transferred to a discrete system of the kind in Eq. 
(2). When investigating high-dimensional systems, this is of 
little help, but when working with low-dimensional, espe- 
cially three-dimensional, systems, the limit of visualization 
of the properties of a system is shifted for quite a large class, 
among them the driven one-dimensional oscillators. When 
having a three-dimensional state space, a Poincare section is 
simply a plane S (a hyperplane in higher dimensional sys- 
tems) in the state space that is intersected by all trajectories 
transversally (Fig. 10). Usually such a plane may only exist 
locally, but global Poincar6 sections are also encountered in 
certain special systems, e.g., in our driven bubble oscillators. 
We therefore consider only global Poincare sections here. 
Section planes are well suited to investigate the stability of 
periodic orbits. In chaos research they are now frequently 
used to display strange attractors, whereby only the section 
points of the trajectory of the attractor in the plane S are 
plotted. In Fig. 11, a strange bubble attractor, i.e., an attrac- 
tor of a driven bubble in a liquid, as it appears in a Poincare 
section, is given. The section points arrange themselves on 
lines folded over and over again. They hop around on this 
structure in a hardly describable manner. To show its fractal 
nature and self-similarity, as pointed out in Sec. I, a blowup 
is given in Fig. 11(b) that reveals the occurrence of the same 
structure on a finer and finer scale. 

It is possible to consider the dynamics of a given contin- 
uous system in the section plane S only. When a point Qx eS 
is taken, it is imaged via the dynamics of the system to the 
point Q2 = />(Q, )eS. In this way, a continuous dynamical 
system is transferred to a discrete dynamical system, given 
by a map from 5" to 5". This map is called a Poincare map P or 
alsoßrst return map. It is immediately seen that a periodic 
orbit of the continuous system becomes a fixed point of a 
corresponding (iterated) Poincare map. One dimension has 
been saved in this way. A quasiperiodic orbit consisting of 
two incommensurate frequencies then looks like a limit cycle 
in the Poincare section (a cut transverse through a two-di- 
mensional torus). This "limit cycle," however, is made up of 
points hopping around, not by a smooth periodic trajectory 
in the section plane. 

(a)   Rn = ,0- ^m 

P, = 90. kPa   v = 190. kHz 
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FIG. 10. Poincare section plane S and the Poincare map P. The section 
point Q of a periodic orbit y is a fixed point of the Poincare map P. 

FIG. 11. A strange bubble attractor in a Poincare section plane, (a) Total 
view, (b) exploded view that indicates the self-simiUrity of the band struc- 
ture. 

With the help of the Poincare section method, the peri- 
od-doubling route to chaos can adequately be displayed 
without resorting to spectral representations. Upon the first 
period-doubling bifurcation, the fixed point splits into a peri- 
odic orbit consisting of two points that are imaged back and 
forth. At each successive period doubling, each of the pre- 
vious points splits into two new points until in the limit at 
y- — t1*, —t*c the point set of an aperiodic attractor is ob- 
tained. For a bifurcation diagram, usually the points of a 
Poincare section are used, whereby one again is forced to 
take only one coordinate of a point in the section for simple 
visualization. 

The Poincare map P defined on a surface 5" determines 
where the points of Sare imaged under P. Thus P considers a 
whole set of initial conditions simultaneously. In physics, 
usually only single trajectories can be followed (e.g., when 
measuring a pressure in dependence on time). The trajectory 
may then be described in discrete form through the series 
P(x0), P[P(x0)),..., x0 being the initial condition. This leads 
to iterated maps [compare Eq. (2) ]: 

x„ + 1 = P(x„),    « = 0,1,2,.... (5) 

The simplest map P with nontrivial dynamics that may be 
encountered will be a one-dimensional map with some func- 
tion/: 

*. + i =Ax„),   x„eR,    « = 0.1  (6) 

When a control parameter^ is introduced for comparison 
with experiments, one is led to a family of maps/ : 

*., + i =f„(xj,   x„€R,   ^eR,   «=0,l  (7) 

Thus the Poincare map connects continuous dynamical sys- 
tems (differential equations) with iterated maps. Iterated 
maps have long been investigated by pure mathematicians 
who collected a wealth of beautiful results that now find 
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applications in physics. With respect to the corresponding 
differential equations, iterated maps are much simpler and 
can be investigated much more easily both analytically and 
numerically. Yet the same richness in behavior can be ex- 
pected as in the original differential equation. How involved 
a behavior must be envisaged is strikingly demonstrated by 
the "simple" example of the quadratic map or logistic pa- 
rabola 

*„+. =4fucn(l-xJ,   x„e[0,l],   fXB[0,l),      (8) 

the bifurcation diagram of which, in a sense, can completely 
be given and is plotted in Fig. 9. 

One-dimensional maps like those of Eq. (7) can be con- 
structed from the Poincare map P only in those cases where 
the (strange) attractor in the section plane resembles almost 
a (thin) curve. Then either a projection in some suitable 
direction will do, or some coordinates along the curve must 
be introduced with respect to which a one-dimensional map 
may be formulated. Such maps are often called reduced 
(Poincare) maps or, as suggested by us, attractor maps." 
Figure 12(a) shows a Poincare section plane where a strange 
attractor can be seen for a bubble with radius at rest of R„ 
= lOfim, driven at a sound-pressure amplitude of 276 kPa 
and a frequency of 530 kHz. It is noticed that the section 
points make up eight short line segments, and thus a one- 
dimensional map may be constructed for each of them. This 
is indeed possible, as the dynamics on the attractor are both 
regular and chaotic. The regularity consists in the fact that, 
from one section of the chaotic trajectory to the next, the 
section points go around from one segment to the next in the 
manner indicated until all eight segments have been visited. 
Then the sequence starts again. The chaos in the dynamics 
comes from the fact that on a segment the points come back 

R„ = 10. /im 
P, = 276. IcPa   v = 530.0 kHz 

1.88- jr- "" (b) 

R£ 1.82- / 
\ 

Rn 1.78- \ 
1.74- 

1.70- 
\ 

1.70       1.75 1.80 I.8S 
Rp/Rjl 

FIG. 12. Period-8 chaotic «(tractor ofa bubble oscillator in a Poincare sec- 
tion plane (a) and a subharmonic attractor map of order eight (b). The 
encircled numbers in (a) indicate the succession of the section points. 

in an irregular way for which no long-term prediction can be 
made. For this type of behavior, known from the inverse 
cascades of the logistic parabola, the term periodic chaos has 
been coined.2' Figure 12(a) thus shows a period-8 chaotic 
attractor. In this case, strong lines in the Fourier spectrum of 
the motion at {the driving frequency and their harmonics 
appear (see Sec. VI). If only every eighth section point were 
plotted, only one line segment would show up. Such a plot is 
called a subharmonic Poincare section plot of order eight. 

From one line segment, which, to be sure, is only ap- 
proximately a line, a reduced Poincare map or attractor map 
may be constructed in the following way. Every eighth sec- 
tion point is taken and the points of this sequence are plotted 
versus the previous one. This means that x„ + , is plotted 
versus xK, xK being the original iteration points with n = 1, 
9>17 Wnen onc coordinate, in this case the radius of the 
bubble, is taken, a map like that shown in Fig. 12(b) is ob- 
tained for a certain segment. There will be eight different 
attractor maps of this kind, depending on the starting point, 
i.e., the segment chosen. The type ofmap given in Fig. 12(b) 
is called a subharmonic attractor map of order eight It 
strongly resembles the logistic parabola (8). When a param- 
eter in the original differential equation is altered, it may 
happen that the corresponding attractor in the Poincare sec- 
tion plane alters in such a way that the corresponding (sub- 
harmonic) attractor map alters like a logistic parabola when 
producing period doubling. Then period doubling in the 
continuous system may be said to occur as in the logistic 
parabola. This follows from the universality of the scaling 
laws governing period doubling.3 

Whenever the attractor is more complicated, two-di- 
mensional maps must be constructed and investigated. Since 
the time that the connection between iterated maps and con- 
tinuous dynamical systems (as used by physicists) has been 
clearly noticed, not only mathematicians but also physicists 
(and other scientists) work intensely on the properties of 
iterated maps, with much computer work going on. In any 
case, the occupation with iterated maps is strongly recom- 
mended for those who wish to get a deeper understanding of 
chaos. The newcomer may start with the article of May in 
Nature." 

VI. DEMONSTRATION OF SOME METHODS OF CHAOS 
PHYSICS CHOOSING A BUBBLE OSCILLATOR 

In this section, we pause to demonstrate some of the 
methods coherently on a bubble oscillator. The bubble oscil- 
lator used is a nonautonomous differential equation of sec- 
ond order of the form15 

with 

P(R,R,t) = P,IR) - la/R -4fx(R/R)- PM 

+ />„ - P, sin(2jrw) 
and 
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*/(*) = (A,., -P.+ l°/Rm)(Rn/R)\ 

where R = R {t) is the radius of the bubble at time /, /?„ is the 
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FIG. 13. Penod-doublmg route lo chaos demonstrated by the attractors for a bubble oscillator. Left column: radius-time solution curves- middle left column- 
trajectories in state space; middle right column: Poincare section plots; right column: power spectra. Radius of bubble at rest R = lOurn sound-pressure 
amplitude 90 kPa (0.9 bar), driving frequency 1st row: 207 kHz; 2nd row: 197 kHz, 3rd row: 193 kHz, 4th row: I92.S kHz, 5tli row 190 kHz. 
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radius of the bubble at rest, v is the frequency of the driving 
sound field, P, is the amplitude of the driving sound field, 
P„.t = 100 kPa is the static pressure, P, = 2.33 kPa is the 
vapor pressure, <r = 0.0725 N/m is the surface tension, 
p = 998 kg/mJ is the density of the liquid, /i = 0.001 Ns/ra' 
is the viscosity, c = 1500 m/s is the sound velocity, and 
K = 4/3 is the poly tropic exponent of the gas in the bubble. 
Here, R denotes differentiation of the radius with respect to 
time t. The model (9) describes a spherical gas bubble of 
radius R(t) in water, set into motion by a sound field of 
sinusoidal time dependence constant at any one time all over 
the bubble surface. For this article, it may suffice to just give 
the bubble model without discussing its derivation or rela- 
tion to other bubble models. A more thorough description 
will be given elsewhere, together with a detailed discussion 
of the chaotic properties of some of its solutions. 

When the sound-pressure amplitude (control param- 
eter) of the driving sound field is increased at constant fre- 
quency, or when the frequency (another control parameter) 
of the driving sound field is altered at constant sound-pres- 
sure amplitude, peculiar things may happen with the radial 
(!) oscillation of the bubble (Ref. 35; see, also, Refs. 32 and 
34). Despite periodic excitation, chaotic oscillations are en- 
countered for some parameter values. An example where 
this happens via a period-doubling route is given in Fig. 13, 
which displays 20 diagrams in four columns. A bubble of 
radius at rest R, = 10/im, driven at a sound-pressure ampli- 
tude of 90 kPa (0.9 bar), has been chosen. The frequency of 
the driving sound field is lowered from v = 207 kHz to 
v = 190 kHz. In five steps, the stationary solutions and their 
spectra (after transients have decayed) are plotted for 
v = 207, 197, 193, 192.5, and 190 kHz, the same for all dia- 
grams in a row. The dots in the diagrams of the radius-time 
curves (left column) correspond to a certain phase of the 
driving sound field. Their interval thus corresponds to the 
period 7* of the driving. The rows contain to the left the 
radius time curves, followed by phase space (velocity versus 
radius) curves (trajectories), Poincare section plots, and 
power spectra of the radius-time curves. In the first row, the 
bubble oscillates in a stationary state with the period of the 
driving. In the language of chaos theory, wc have a limit 
cycle as an attractor which has the period Tof the driving. In 
the radius-time plot, the thick dots therefore all lie at the 
same level R/R„. The limit cycle trajectory in the second 
column also is marked by just one dot, as it exactly repeats 
after one period. With periodically driven oscillators, a glo- 
bal Poincare plane of section can be defined by a fixed phase 
of the driving. The plane then is made up of the radius RF of 
the bubble (given here normalized with R„ as RF /R„) and 
its velocity UP, where the index P stands for Poincare to 
notify that it is a section plane, in contrast to the second 
column where the velocity all along the trajectory is plotted. 
Thus the first diagram in the third column simply contains a 
single point, the one section point of the limit cycle. The 
appearance of only one point in the section plane indicates 
that the limit cycle has the period Tof the driving, as is also 
learned from the other diagrams. The first picture in the last 
column gives the corresponding power spectrum. As expect- 
ed, the lowest frequency in the spectrum is v— 1/7*, but 

higher harmonics are present due to the nonlinear nature of 
the oscillation. In the second row, at v = 197 kHz, we see in 
the radius-time curve to the left that the two points now lie 
on two horizontal lines, indicating that the oscillation only 
repeats after two periods of the driving. The corresponding 
trajectory is again a limit cycle, but of more complex form. 
The two thick points indicate period 2 T for the limit cycle, as 
do just the two points in the Poincare section plane. The 
power spectrum of the radius-time curve to the right now 
has a lowest frequency of v = 1/(27*). Again, as the oscilla- 
tion is nonlinear, the harmonics of v =1/(27*) show up; i.e., 
lines at v= 3/(27*), 5/(27*),... are newly introduced into 
the spectrum with respect to the first row. Clearly, this sec- 
ond row indicates that period doubling has taken place. In 
the third and fourth rows, it is demonstrated how period 
doubling proceeds, leading to rapidly more complex trajec- 
tories making up the limit cycle. The spectrum is filled up 
with new lines exactly between two old lines of the spectrum 
at each period doubling. In this way, the irregular, chaotic 
state in the last row is reached. As the trajectory is aperiodic, 
the radius-time curve never repeats, and only gives a short 
segment of the actual possible oscillation sequence of larger 
and smaller oscillations. The trajectory now forms part of a 
strange attractor created out of a limit cycle. Only a few 
revolutions are plotted, as otherwise a whole area would 
have turned black, leaving no discernible structure. Also, the 
points indicating the elapse of one period of the driving have 
been omitted so as not to disturb the picture. The spectrum 
now contains some amount of noise which is intrinsic, i.e., 
coming from the deterministic dynamics itself. The Poincare 
section plot contains many more section points of the attrac- 
tor than correspond to the tums of the trajectory plotted in 
the last row (second column) and thus best displays the 
involved nature of the chaotic attractor. However, the way 
points are imaged from one part of the attractor to another 
cannot be given by this type of static picture. 

The reader will surely agree that by simply looking at a 
radius-time curve (a solution curve of a differential equa- 
tion) in the chaotic region, the statement that intrinsic aper- 
iodicity is present cannot be made. However, that no period- 
ic solutions should be present in certain parameter regions 
has been argued nevertheless from repeated and strong tri- 
als," since these regions cannot be overlooked. Even as early 
as 1969 it had been observed that these regions occur near 
regions where subharmonics are present, and a connection 
between subharmonics and noise has been conjectured.40 

The regions of chaos are best visualized in bifurcation 
diagrams, as then the route to chaos can automatically be 
discerned. Figure 14 just gives one example of a bifurcation 
diagram where the normalized radius of the bubble at a cer- 
tain phase of the driving sound field (when transients have 
decayed) is plotted versus the driving frequency as control 
parameter. The plot has been obtained in the following way. 
First, a maximum of 100 oscillations is calculated to let tran- 
sients die out. Then 100 points of the radius coordinate of the 
Poincare section plane (given by constant phase of the driv- 
ing) are plotted. When there is a limit cycle of period T, these 
100 points will neatly fall one upon the other and just one 
point will show up in the diagram. Then, starting from this 
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FIG. 14. Bifurcation diagram of a bubble oscillator. 

value as the initial condition, the next series of oscillations is 
calculated for a slightly increased (or decreased) frequency 
yielding the next attractor. If it is of period IT, two points 
will show up in the diagram. In the case of a chaotic attrac- 
tor, 100 points will be plotted, scattered along a vertical line 
at the given frequency. In this way, the properties of the 
system have been made visible for 1350 frequency points. 
Figure 14 shows an interesting typical picture with period 
doubling to and from chaos making up a complicated "bub- 
ble" structure. 

Again, the reader is pointed to a forthcoming article for 
more details. There, the growth of these bubbles and their 
distribution in parameter space along resonance horns yield- 
ing a superstructure22 of bifurcations will be discussed. This 
superstructure is conjectured to be universal in some sense 
and for a certain class of driven nonlinear oscillators. 

VII. PHASE DIAGRAMS (PARAMETER SPACE 
DIAGRAMS) 

When there is more than one control parameter in a 
system, its properties can only be given in a series of bifurca- 
tion diagrams, where one parameter is chosen as control pa- 
rameter, the other ones held fixed and only changed from 

■ one diagram to the next. Experience shows that it is not easy 
to grasp the gross properties of a system from such se- 
quences. A more condensed view combining such sequences 
would be desirable. This can be done with the help of phase 
diagrams or, equivalently, parameter space diagrams. The 
name "phase diagram" comes from thermodynamics, where 
in &pV diagram the areas are marked where, e.g., ä liquid or 
gaseous phase is present, and curves are plotted to denote 
their boundaries. At the points of the curves, a phase transi- 
tion takes place and also coexisting phases are known. In 
exactly the same sense, phase diagrams of (nonlinear) dy- 
namical systems are to be understood. Theoretically, they 
are the plot of the bifurcation set in parameter space together 
with the indication of the kind of attractor ("phase") in the 
areas created by the curves or planes of the bifurcation set. 
To calculate even a fairly complete phase diagram of a dy- 
namical system is a time consuming task and usually needs 
hours of computer time. An early example of a phase dia- 
gram for a bubble oscillator is shown in Fig. 15, taken from 
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Ref. 32. In the parameter plane spanned by the (normal- 
ized) driving frequency v/v0 and the sound-pressure ampli- 
tude PA, one curve belonging to the bifurcation set of the 
bubble oscillator (see Ref. 32 for the equation used) is 
drawn, separating regions of period-1, period-2, period-3 
and period-5 oscillation. Below the curve, period-1 oscilla- 
tions, i.e., oscillations with the same period as the driving 
(period-1 limit cycles), occur; above this curve, but only 
very near to it, period-2, -3, and -5 limit cycles are present 
The region above the curve will be further divided by a com- 
plicated infinite set of bifurcation lines, since period dou- 
bling sets in and further saddle-node bifurcations occur. One 
more phase diagram using the same bubble model as in Ref. 
32 is given in Ref. 34. Very detailed phase diagrams of the 
Duffing oscillator* + dx + x + x3 =/cos at and the Toda 
oscillator x + dx + e* - 1 =/cos at can be found in Refs. 
21 and 38, respectively. Phase diagrams can also be mea- 
sured. An example of a measured phase diagram of a simple 
electronic oscillator is given in Ref. 41. 

The determination of phase diagrams of dynamical sys- 
tems is one of the main tasks of chaos research as, in a sense, 
they give a complete qualitative and even partly quantitative 
overview of possible behavior of a nonlinear dynamical sys- 
tem. Special methods are presently being developed to locate 
and follow bifurcation curves in parameter space, to speed 
up the calculations. Due to increase in computer speed and 
availability of computer time, the near future will see a 
quickly growing set of phase diagrams for various systems. 

VIII. FRACTAL DIMENSIONS 

The notion of the dimension of an object (physical or 
mathematical) had long occupied physicists and mathema- 
ticians until a solution came into sight. Cantor and Poincare 
both put great effort into this question but failed. It was not 
until HausdorfFs article, "Dimension und äusseres Mass" 
( "Dimension and external measure"), that a satisfactory de- 
finition could be put forward."2 This definition of the dimen- 
sion of a set of points naturally leads to fractal dimensions, 
i.e., dimensions that are not just natural numbers. For a long 
time, sets with these properties (fractals) were thought to be 
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purely mathematical objects until their obviously abundant 
occurrence in nature was demonstrated by Mandelbrot." 
Chaos physics has strongly expanded the importance of frac- 
tals and their dimensions. Chaotic attractors are known for 
their usually peculiar shapes, which point to fractal dimen- 
sions. This raises the question of how to determine fractal 
dimensions, especially when they are encountered in experi- 
ments. Indeed, concepts have been developed whereby frac- 
tal dimensions can be determined both from numerically cal- 
culated strange attractors and from measured data/*-" 

An infinity of different definitions of a dimension has 
been introduced having their value in describing the in- 
homogeneity of the attractor. Only a simplified notion of the 
Hausdorff dimension, called capacity d0, and the most often 
used correlation dimension d2 will be discussed in more de- 
tail here. 

First, the definition of the dimension d0 of a set of points 
^CR™ is given: 

the correlation dimension d2, and the higher-order dimen- 
sions </3,</«,..., the correlation dimension d2 is the most at- 
tractive from the experimentalist's point of view.41*' For the 
sequence of dimensions, the relations 
••■dK>dn_l>--->d2>dl>d0 hold, and often the d are 
nearly all the same. Thus d2, which is very convenient to 
determine numerically, is a good estimate of "the" fractal 
dimension of a strange attractor. 

The correlation dimension is defined as 

d2 = Iim log C„ (r)/log r, (, 2} 

where r again is the edge length of an m-dimensional cube 
and Cm (r) is the so-called correlation sum 

Cm(r) = %Z N^£t
H(r~ l|Pi"" ~P'<m>l|)-     (I3) 

d0 = Iim log A/(r)/log (l/r), 
r-0 

(10) 

where r is the edge length of an m-dimensional cube and 
M(r) is the lowest number of m-dimensional cubes of edge 
length r to cover the given set A (a chaotic attractor). When 
this definition is applied to a point, a line, an area, and a 
volume, the dimensions d0 - 0, 1, 2, and 3 are obtained as 
they should be. But the definition is much more powerful. 
Also, Cantor sets now get a dimension, usually fractal as it 
turns out. Figure 16 gives the standard example of a Cantor 
set whereby, starting with the unit interval [0,1 ], the middle 
third without the end points is successively taken out of the 
remaining intervals. In the figure, to the left, the edge length 
r is given that is conveniently taken to cover the set, and to 
the right the number A/of cubes (intervals) that is needed to 
cover the set. According to the definition of d0, one then 
easily gets, by simply inserting the sequence as given in the 
figure into Eq. (10), 

rf0=limi2^ = J2H = 0.6309-, 
*--log3*      log 3 

a noninteger number. This is the fractal dimension of the 
Cantor set. 

It turns out that for systems with a high-dimensional 
state space the direct use of the definition of d0 (box count- 
ing) is not practical in numerical applications. From the 
next members of dimensions, the information dimension dx, 

(11) 

Canfor set 

-H      M - 1 
1 

R-i 
0   i    I   I 

9     9     3 
12«, 
3     9   9 

FIG. 16. Cantor set construction by successively taking out the middle third 
without its end points. 

**/ 

In this expression, N is the number of points in Rm of the 
(strange) attractor available from some calculations or mea- 
surements, H is the Heaviside step function [H(x) = 0 for 
x<0,H(x) = 1 for x>0 and, used here, H(0) =0],p4 are 
the points of the attractor, and || • || is a suitable norm, e.g, 
the Euclidean norm. The dimension does not depend on the 
norm; therefore, any norm may be chosen that is most con- 
venient for numerical computation. In our determination of 
cavitation noise attractors, we used d2  together with the 
maximum norm.47 Equation (12) immediately shows that 
d2 can be determined from the slope of the curve obtained 
when C„ (r) is plotted versus r, each on a logarithmic scale. 

An example for the determination of d2 is given in Fig. 
17 for the strange bubble attractor of Fig. 11. In Fig. 17(a), 
the log C(r) vs log r curve is plotted with 100 000 points of 
the attractor in the Poincare section plane. Figure 17(b) 
shows the local slope of the curve in Fig. 17(a) whereby 
"local" means a fit of the slope over a region of a quarter of a 
decade. It is seen that a plateau in the local slope only occurs 
for values of log r between -1.5 and - 0.5 giving a fractal 
dimension of d2 = 1.3 ± 0.1. For larger r"s the gross struc- 
ture of the attractor naturally leads to a decreasing local 
slope until at r*s above the size of the attractor the slope is 
zero, because all points of the attractor fit into the cube of 
edge length r. At low r*s the following happens. Because of 
the finite precision in the calculations, the exact location of 
the attractor points in the Poincare section plane is only 
known to a limited number of digits. Therefore, the attractor 
looks more and more noisy on smaller and smaller scales. 
For these reasons the local slope for small r"s tends to 2, 
which is the dimension of the Poincare section plane. Thus 
only a region between small and large values of r is available 
for the determination of the fractal dimension. The fractal 
dimension of d2 = 1.3 is valid for the attractor in the Poin- 
care section plane. To get the fractal dimension of the whole 
attractor, one dimension has to be added giving d2 = 2.3. 
Some remarks may be in order to warn the reader who wants 
to apply this formalism for fractal dimension determination. 
The method must be used very carefully, especially with ex- 
perimental data when used in conjunction with reconstruct- 
ed attractors (see Sec. IX). The errors are usually very large. 
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FIG. 17. Determination ofthe correlation dimension«/, forthestrangebub- 
bleatlractorgiven in Fig. 11. (a) Correlation sum C(r) versus thecubeedge 
length /-on a doubly logarithmic scale, (b) local slope I fit to the curve in (a) 
overarangeofaquarterofadecade] versus /-.The fit region isfrom - 1.7 
to -0.5. In this region the local slope has a plateau giving rfj = 1.3 ±0.1. 

The state of the art of the techniques available is discussed in 
Ref. 46. 

Thus far we have discussed two types of dimensions, d0 

and d1, out of the series d„, n = 0,1,2 The definition of 
dimension can even be extended to dq, where q is any real 
number.4" To an experimentalist, this generalization may 
seem rather sophisticated and beyond anything that can be 
measured. The opposite is true.4'"54 Only the full set {d , 
qeR), or equivalent^ the (smooth) scaling spectrum/(a) 
of (local) scaling indices a on the attractor,49 describes the 
global structure of the attractor satisfactorily and simulta- 
neously in a measurable way. The scaling spectrum/(a) has 
a quite simple meaning. Take a point of a (strange) set (at- 
tractor) and a small sphere around it. Then the number of 
points of the set inside the sphere will scale with some expo- 
nent (index) a when the radius of the sphere goes to zero. 
Different points of the set may have different indices a. The 
spectrum/(a) characterizes the strength of a scaling index a 
ormoreprecisely,/(a) is the global (Hausdorff) dimension 
of the subset of points of the set (attractor) with scaling 
index a. The relation /(a )<d0  holds, d0 being the global 
dimension of the total set. Thus the maximum /     of the 
spectrum yields the Hausdorff dimension. The spectrum of 
the Cantor set mentioned above is a line spectrum with just a 
single line at a = d0 = log 2/log 3. The dimension/(a) at 
a = dQ then must have the same value /(a = d0) = d , as 
every point of the Cantor set scales with the same a; thus 
A<*) = dg fö(a - d0) dx, where 6 is the Dirac 8 function. 
Sets of this kind showing uniform scaling behavior are called 
self-similar (in a strict sense) and are simple fractal sets. 
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Strange attractors usually have a more complicated 
scaling behavior. However, according to the scaling spec 
trum/ta), they can be thought of as a "superposition"^ 
simple fractal sets given by the subsets of uniform scaline 
behavior with index a. They are therefore called multifractal 
sets or, briefly, multifractals. For special cases, the scaline 
spectrum seems to be universal, i.e., the same for all systems! 
eg., at the accumulation point of period doubling.4'-50 The 
experiments so far confirm the theory,"-54 and it seems that 
the experimental determination of/fa)5'-54 may be a better 
way to characterize a strange attractor than a single dimen- 
sion as, for instance, d2. 

IX. RECONSTRUCTION OF ATTRACTORS 

In mathematical models of physical dynamical systems 
the dynamic evolution is visualized in the state space whose 
dimension is given by the number of dependent variables 
(see Sec. I and Fig. 1). In experiments, the state space is 
usually not known beforehand and often only one variable of 
the system can be measured, e.g., a velocity component at a 
point in the liquid in a Rayleigh-Benard experiment (a liq- 
uid layer heated from below). Thus only a projection of a 
trajectory of the system with a usually high-dimensional 
state space onto a single coordinate axis is given. One may 
ask whether, under these circumstances, experiments make 
sense at all, when only such minor information about a sys- 
tem is obtainable. Fortunately, it can be shown that one vari- 
able already contains most of the information about the total 
system and not just a minor part.55-56 It may at first sight 
seem really astonishing that one coordinate of a trajectory in 
a high-dimensional state space should contain almost all in- 
formation to determine the other coordinates of the trajec- 
tory. There is an intuitive way to understand why this may be 
possible. The single variable considered develops in time not 
due to its own isolated dynamical law but (usually) is cou- 
pled to all the other dependent variables of the system. Its 
dynamics, therefore, reflects the influence of all the other 
variables which in turn react to the influence of the variable 
considered. This mutual interaction lets a single variable 
contain the dynamics of all the other ones. An example may 
help the reader. Take a simple oscillator: a mass on a spring. 
The state space is the usual phase space given by the coordi- 
nates elongation x and velocity v = x. From our knowledge 
of the dynamics of the system, we know that with the knowl- 
edge  of x(t)   (one  coordinate   only!)   we  also   know 
v(t)=x(t). Thus, when only one coordinate is measured, 
say the elongation x, then from x(t) the velocity v(t) (the 
other coordinate) can be determined. 

The example also reveals the difficulties in an actual 
application. It may be possible in principle to reconstruct the 
dynamical evolution of the other variables from just one but 
where do we know the construction law from? In the above 
example the velocity v{t) is given from x{t) through the 
operation of differentiation. If we would have measured v(t) 
instead ofx(/), we should apply integration instead of differ- 
entiation to get xU) out of v(t). Thus the information may 
be there but hopelessly encrypted. At this state of affairs it 
came as a surprise, that a simple general solution could be 
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found to this problem,55"57 which may be formulated as the 
problem of reconstructing an attractor of a dynamical sys- 
tem from a time series of one (measured) variable only. The- 
ory states: For almost every state variable p(t) and for al- 
most every time interval T, a trajectory in an «-dimensional 
state space can be constructed from the (measured) values 
[p(kts ),k= \,2,...,N] by grouping n values to «-dimension- 
al vectors: 

p<"> = [p{kt,),p{kt, + T),...,p[kt, + (n - l)T)}, 
(14) 

where t, is the sampling interval at which samples of the 
variable/? are taken. It is advisable to choose the delay time T 
as a multiple of /„ T= lt„ feN, to avoid interpolation. The 
above construction yields a point set Al"y = (pi"', k = 1, 
2 N — n) in the embedding space R", which represents the 
attractor. The sampling time t, and the delay time Tmust be 
chosen appropriately according to the problem under inves- 
tigation (see Ref. 46 for details). When t, and also Tare too 
small, then from one sample to the next there is little vari- 
ation and the points p[n) all lie on a diagonal in the embed- 
ding space. On the other hand, when /, and Tare too large, 
then the point set/4(n) and the attractor obtained by connect- 
ing consecutive points pi"' get a fuzzy appearance. In both 
cases, the reconstruction and visualization of the attractor 
are not very helpful. Figure 18 shows an example of the influ- 
ence of the delay time Ton the reconstruction of a calculated 

chaotic bubble attractor. The same equation as that given in 
Sec. VI has been used. For the reconstruction, only the cal- 
culated radii of the bubble have been taken and embedded in 
a three-dimensional state space by using four different delay 
times Toi ^, *, j, and 1 in units of the period T0 of the driving 
sound field. The bubble had a radius at rest of 100//m and 
was driven by a sinusoidal sound wave of amplitude 310 kPa 
and frequency 22.9 kHz. The reconstruction is best at 
T=\T0. This is the same value as for a simple harmonic 
wave of period T0 where the elongation x and the velocity 
v = x are 90* out of phase, i.e., by \T0. 

The chosen dimension n is called the embedding dimen- 
sion. Which dimension n should be taken is not known be- 
forehand when the system is not known sufficiently (as usu- 
al in real experiments). Sometimes it happens that a three- 
dimensional state space is sufficient as embedding space. 
This, of course, is true for mathematical models with an a 
priori three-dimensional state space as, e.g., one-dimensional 
driven oscillators (Duffing, van der Pol, Toda, Morse, 
spherical bubble)! In the context of acoustics, a three-di- 
mensional embedding space was found sufficient in repre- 
senting an acoustic cavitation noise attractor/7,20 In this ex- 
periment, a liquid is irradiated with sound of high intensity 
and the sound output from the liquid is measured. The mea- 
surement yields pressure-time samplesp(kls) that may be 
used to construct an attractor. An example is given in Fig. 
19. The reconstructed attractor in a three-dimensional em- 
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FIG. 18. Four reconstructions of a numerically 
obtained bubble oscillator from radii data only 
with different delay times 7"of (a) J, T„, (b) 
J Tg, (c) J r,„ (d) 1 T,„ 7',, being the period orthe 
driving sound wave of frequency 22.9 kHz and 
amplitude 310 kPa. The bubble has a radius at 
rest of R, = 100/im. The sampling rate I, is I 
fts. For better visualization the transformed co- 
ordinates R ' = exp(2Ä /R.) have been used. 
(Courtesy of J. Holzfuss.) 

FIG. 19. Example of a reconstructed acoustic cavitation noise attractor 
from sampled pressure values in a three-dimensional embedding space. The 
attractor is shown from different directions for visualizing its spatial struc- 
ture. Sampling time is t, = I /is, and delay time is T = 5 /zs. 
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bedding space is viewed from different directions to show its 
three-dimensional structure and almost flat overall appear- 
ance. The very pronounced structure suggests that the mea- 
sured acoustic noise is of quite simple deterministic origin. A 
model with a three-dimensional state space should be suffi- 
cient. To deduct the structure of the equations from the at- 
tractor. however, is beyond the state of present knowledge. It 
is interesting to note that a very similar attractor has been 
found by Roesslcr" in a mathematically constructed model 
of hyperchaos (see Sec. X for a definition of hyperchaos). 

Once an attractor has been reconstructed, its properties 
can be investigated. Of special interest is the (fractal) di- 
mension of the attractor, which may be determined using the 
methods of Sec. VIII. Indeed, as the embedding dimension n 
is not known for a real experimental system under investiga- 
tion, n is successively increased, and the dimension of the 
point set Aw is determined. When the system is of determin- 
istic origin with a low-dimensional state space, then at some 
n the (fractal) dimension of.*"" will stabilize at some defi- 
nite value (smaller than n). The largest fractal dimension of 
A{n\ n = 1,2,..., obtained in this way then determines the 
relevant number of (nonlinear) degrees of freedom (number 
of dependent variables) of the dynamic system investigated. 
In this way, the dimension of an acoustic cavitation noise 
attractor has been determined to be about 2.5 (Ref. 47). 

X. LYAPUNOV EXPONENTS AND LYAPUNOV SPECTRA 

Chaotic systems exhibit sensitive dependence on initial 
conditions. This expression has been introduced to denote 
the property of a chaotic system, that small differences in the 
initial conditions, however small, are persistently magnified 
because of the dynamics of the system, so that in a finite time 
the system attains totally different states. It is not difficult to 
envisage this property with systems that are not bounded, 
like unstable linear systems. But physical systems are in gen- 
eral bounded, and it is not at all obvious how a persistent 
magnification of small differences is brought about. It seems 
that a sensitive dependence on initial conditions can only 
occur through a stretching and folding process of volumes of 
state space under the action of the dynamics. This process is 
depicted in Fig. 20. A persistent simple stretching would 
expand one direction more and more without bounds [Fig. 
20(a) ]. Neighboring points thus get more and more distant. 

This expansion in one direction can take place in a bounded 
volume of state space only when an additional folding pro- 
cess occurs [Fig. 20(b)]. The transition from V(t) to V(f) 
t'>t (see Fig. 20), may be viewed as a map, a so-called 
"horseshoe map." Maps with similar properties are the 
baker's transformation and Arnold's cat map." When iterat- 
ed they should give the simplest examples of a dynamical 
system with sensitive dependence on initial conditions in two 
dimensions. This is the reason why they are intensely stud- 
ied. 

The notion of sensitive dependence on initial conditions 
is made more precise through the introduction of Lyapunov 
exponents and Lyapunov spectra. Their definition can nicely 
be illustrated." Take a small sphere in state space encircling 
a point of a given trajectory (Fig. 21). The points of the 
sphere can be viewed as initial points of trajectories. This 
sphere is shifted in state space and deformed due to the dy- 
namics so that at a later time a deformed sphere is present. 
To properly make use of this idea, mathematically an infini- 
tesimal sphere and its deformation into an ellipsoid with 
principal axes rt{t) »= 1,2 m (m = dimension of the state 
space) are considered. The Lyapunov exponent A, may then, 
cum grano salts, be defined by 

r,{t) 
(15) 

1 A, = lim   lim  — log - 
•-- '/<o)-o t        r,(0) 

(a) —-     EZfZZZZZZZZ2£za 

The set {A.,, i = l,...,m}, whereby the A,- usually are ordered 
A, >A2> •■■>Am,is called the Lyapunov spectrum. It is to be 
recalled that the /-,.(/) should stay infinitesimally small. 
Then the linearized local dynamics applies that has to be 
taken along a nonlinear orbit. This is the meaning of /-. m. 
A strict mathematical definition resorts to linearized flow 
maps and may be found in Ref. 15. When At >0, a time- 
dependent "direction" exists, in which the system expands. 
The system is then said to be chaotic (when, additionally, it 
is bounded). All along a trajectory, neighboring trajectories 
will retreat. A Lyapunov exponent is a number which, due to 
the limit J- oo, is a property of the whole trajectory. To get 
an idea of how uniformly neighboring trajectories recede 
from a given trajectory, Lyapunov exponents can be defined 
for pieces of trajectories to identify the most chaotic parts. 

In dissipative systems, the final motion takes place on 
attractors. Besides the fractal dimensions (or the scaling 
spectrum), the Lyapunov spectrum may serve to character- 
ize these attractors. With the help of the Lyapunov expo- 
nents, the motion on a chaotic attractor can be made more 
precise, as the following relations and definitions hold (con- 
tinuous systems, At>A2>--->A„): 

r,(r) 

O) 

V(t) t < r 

\zzzzzzzz>\ 

tzzzzzzzZ* 
L- i— J 

V(f') 

FIG. 20. Stretching and folding of» volume of state space, (a) Stretching 
only, (b) stretching and folding. 
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r,(t) 

FIG. 21. Notions for the definition of Lyapunov exponents. A small sphere 
in state space is deformed to an ellipsoid indicating expansion or contrac- 
tion of neighboring trajectories. 
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At <0-» fixed point; 

At =0-»limit cycle (A2 <0); 

A, =/t2 = 0-»quasiperiodic attractor on a 

two-dimensional surface (/l3<0); 

At >0-'Chaotic attractor (A2 = 0); 

Al>A1>0->hyperchaotic attractor 

(A3 may be>, = ,or<0). 

The calculation of Lyapunov spectra is an area of active re- 
search. Lyapunov spectra can also be calculated from (mea- 
sured) time series via the reconstruction of attractors de- 
scribed in Sec. IX. The reader who wants to dig deeper into 
this subject may consult Refs. 59-62 and 15 and the refer- 
ences therein. 

XI. LYAPUNOV DIAGRAM 

When the Lyapunov spectrum is plotted in dependence 
on a control parameter, a Lyapunov diagram is obtained. 
The regions of chaotic dynamics are easily recognized by the 
largest Lyapunov exponent At being greater than zero. Fig- 
ure 22 shows an example of what a typical Lyapunov dia- 
gram looks like. Again the comparatively simple case of the 
logistic parabola has been taken where there is only one Lya- 
punov exponent A. In the case of one-dimensional maps, A is 
simply given by3' 

A{/z)= liml £ log|/; [/?-»>(*„)] |, (16) 

f'M means the derivative of/, with respect to*,/,',*' is the k th 
iteration of /,. For the logistic parabola, fM(x) 
= 4fix( 1 - x) and/; (x) = 4/*( 1 - 2x) hold. 

XII. WINDING NUMBERS 

Winding numbers (or rotation numbers) were original- 
ly introduced by Poincare to describe periodic and quasiperi- 
odic trajectories that are part of an invariant torus in phase 
space. An «-dimensional torus T is given as the Cartesian 
product of« unit circles Sl, T=Sl XS' X • • • XSl. Thus any 
trajectory on the torus may be projected onto these circles 
resulting in some motions on the circles that are parame- 
trized by « angles a, (i = 1,...,«). In Fig. 23, the construc- 
tion of a two-dimensional torus is shown. In the two-dimen- 

f(x) = 4ax(l-x) 

FIG. 23. A two-dimensional torus and its two angle variables a, and a2. A 
periodic trajectory with a winding number of 2 is plotted. 

sional case, the winding number w is denned as the limit 
(17) of the ratio of the angle variables a, for t - co: 

w=lima,(t)/ai{t). (17) 

1.00 

FIG. 22. Lyapunov diagram for the logistic parabola. Chaotic dynamics is 
indicated by a Lyapunov exponent greater than zero. 

In higher dimensions, more than one ratio exists and a whole 
set of winding numbers may be defined. Periodic orbits pos- 
sess rational winding numbers and are called resonant.6364 

The essential prerequisite of this definition of winding 
numbers is the existence of a so-called invariant torus in state 
space. A torus in state space is called invariant when any 
trajectory of the system that starts on the torus stays on it for 
all times. Such tori are usually created by Hopf bifurcations 
(see Sec. II) and occur, for example, in self-excited systems 
like the driven van der Pol oscillator.37 If a parameter is 
altered, usually a typical sequence of periodic and quasiperi- 
odic orbits on the torus occurs. As in the case of period dou- 
bling, this sequence is governed by universal scaling 
laws.65,66 The one-dimensional map that is referred to when 
dealing with such mode-locking sequences is the sine circle 
map (18): 

Ö.+ I =/t©.)modl,    « = 0,1,2  (18) 

with 

f{x) = * + fl + (K/2ir)sin 2vx,   xeR, (19) 

where fl and K are parameters. 
In this case, the state space itself is a one-dimensional 

torus T=Sl (unit circle), and the winding number is given 
as 

w= lim/"" (©„)/«, (20) 

where/'"' denotes the «-fold iterate of/and ©0 is some 
initial value. The winding number w counts the mean num- 
ber of revolutions per iteration. 

Figure 24(a) shows a bifurcation diagram of the circle 
map. Between the periodic windows quasiperiodic orbits oc- 
cur. The construction law of the self-similar pattern of peri- 
odic windows can best be seen in the winding number dia- 
gram in Fig. 24(b), which is an example of a so-called devil's 
staircase. Within a periodic window the winding number is 
constant, yielding one step of the staircase. Given two peri- 
odic windows with winding numbers, w,=n,/m, and 
Wj = «j/wij, another periodic window with winding number 
*»= («, + n2)/{mx + m2) can always be found between 
these windows. When continued, this construction leads to a 
so-called Farey tree of periodic windows. 
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1.00 

FIG. 24. A bifurcation diagram (a) and a winding number diagram (b) of 
the sine circle map. The winding number diagram is an example of a devirs 
staircase. The staircase is really devilish because between every two steps 
there are infinitely many other steps and climbing up or down the staircase 
from step to step actually is impossible. 

As mentioned above, winding numbers can only be de- 
fined hrtitose cases where the trajectory is part of an invari- 
ant torus. But there are many systems, like the periodically 
driven Duffing oscillator or the bubble oscillator, where the 
existence of such an invariant torus can be definitely ex- 
cluded. This means that the definition of the winding num- 
ber given above cannot be applied. We therefore introduced 
a similar quantity called generalized winding number67" to 
classify the resonances of this type of systems. As in the case 
of the Lyapunov exponents, we consider a trajectory Y that 
starts in the vicinity of a given orbit y. But now we are not 
interested in the divergence or convergence of these trajec- 
tories, but in the way they are twisted around each other. A 
frequency fl may be attached to the orbit y that gives the 
mean number of twists of/ about y per unit time. To com- 
pute this torsion frequency fl, the linearized dynamics along 
the whole orbit has to be considered (for details, see Ref. 
67). Ifwechooseas unit time the period T0 of the oscillation, 
the number of twists is called the torsion number n of the 
closed orbit. Torsion numbers may be used to classify reson- 
ances and bifurcation curves in the parameter space of non- 
linear oscillators.671* If the solution becomes aperiodic, the 
torsion number, cannot be defined anymore, but in this case 
the ratio w = ii/ta of the torsion frequency fl and the driving 
frequency <o of the oscillator still exists. We call this ratio w 
the (generalized) winding number, because it equals the 
winding number introduced above in those cases where the 
trajectory is part of an invariant two-dimensional torus. For 
period-doubling cascades, two recursion schemes exist for 
the winding numbers wl,w2,w1 at the period-doubling 
bifurcation points of the control parameter.37" The winding 

1991 J. Acoust. Soc. Am.. Vol. 84. No. 6. December 1988 

number of a chaotic solution describes some aspects of the 
folded geometry of the strange attractor. Details of the pro- 
cedure to compute winding numbers of nonlinear oscillators 
are given in Refs. 37 and 67. 

XIII. CONCLUDING REMARKS 

The main new methods of chaos physics have been pre- 
sented in a tutorial manner and illustrated with examples 
from acoustics, especially driven bubble oscillations and 
acoustic cavitation noise. The methods described have been 
invented to characterize irregular motion from deterministic 
systems more specifically than by, for instance, their Fourier 
spectra and correlations which are intrinsically linear con- 
cepts. In this context, chaos physics suggests that the notion 
of a degree of freedom must be revised. In conventional phys- 
ics, a degree of freedom is connected with a linear mode (a 
harmonic oscillator). A Fourier spectrum with many lines is 
interpreted as coming from a system with as many harmonic 
oscillators and thus as many degrees of freedom. One of the 
results of chaos physics is that there are nonlinear systems 
with just a three-dimensional state space, for instance the 
driven bubble oscillator, that will give rise to broadband 
Fourier spectra (a sign of their irregular behavior). Thus 
they obviously have just three "degrees of freedom" instead 
of infinitely many as suggested by the Fourier spectrum be- 
cause only three coordinates are needed to specify their state 
completely. 

Chaos physics also afTects the notion of randomness. 
Randomness is no longer a domain of high-dimensional sys- 
tems too large to be properly described by a set of determinis- 
tic equations and initial conditions. A random-looking mo- 
tion may well be the outcome of a deterministic system with 
a iow-dimensional state space. Deterministic equations are 
thus far more capable in describing nature than previously 
thought provided that they are nonlinear. Indeed, nonlinear- 
ity is the necessary basic ingredient for this capability. 

As nonlinear oscillators are the natural extension of the 
harmonic oscillator that plays a fundamental role in physics, 
chaos physics will find one of its main applications in the 
area of nonlinear oscillatory systems. The investigations 
there will center around the laws that are valid in the fully 
nonlinear case. A few universal laws have already been 
found, and many more are waiting for their discovery. On a 
local scale in parameter space, the most prominent universal 
phenomenon is period doubling. On a global scale, it is to be 
expected that the bifurcation superstructure"""" of 
resonances of nonlinear oscillators is of universal nature. 
Chaos physics is a rapidly growing field with applications all 
over the different areas of physics and even extending to 
chemistry, biology, medicine, ecology, and economy. The 
methods described in this article may help in the dissemina- 
tion of these ideas, and the authors would be proud if some 
readers would be attracted to the fascinating and rewarding 
field of chaotic dynamics. 
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The review gives and account of the historical development, the current state and possible future 
developments of experimental nonlinear physics, with emphasis on acoustics, hydrodynamics 
and optics. The concepts of nonlinear time-series analysis which are the basis of the analy- 
sis of experimental outcomes from nonlinear systems are explained and recent developments 
pertaining to such different fields as modeling, prediction, nonlinear noise reduction, detecting 
determinism, synchronization, and spatio-temporal time series are surveyed. An overview is 
given of experiments on acoustic cavitation, a field rich of nonlinear phenomena such as nonlin- 
ear oscillations, chaotic dynamics and structure formation, and one of the first physical systems 
to exhibit period-doubling and chaos in experiment. 

1.   Introduction 

In his essay "Tractatus logico-philosophicus", 
Ludwig Wittgenstein writes: 

"The world is all that is the case". 

A physicist will easily agree but may feel unhappy 
about the amount of information given. But are 
there better solutions? Yes, there are. For instance, 
when a physicist at the turn of the century (1900) 
would have been asked, in view of the unification 
of mechanics and thermodynamics, the answer may 
have been: 

"The world is statistical". 

Ten years later, around 1910, impressed by the 
results of Einstein, the same physicist may have 
answered: 

"The world is relative". 
Twenty years later, around 1930, when looking at 
the achievements of quantum mechanics, the still 
living physicist may have added: 

"The world is quantal". 

What to add today, near the turn of the next 
century? Is there something left in fundamental 
science to be discovered besides statistics, relativ- 
ity, and quantality?  If not, this would be strange 

and even disappointing. To be sure, physics has not 
yet come to an end, and we see the next fundamen- 
tal step in science prospering, that is nonlinearity. 
Nonlinearity is fundamental for all processes in na- 
ture, except perhaps quantum physics [Heisenberg, 
1967]. However, for a long time it has not been 
recognized as a fundamental fact. Why? It seems 
to have been the general opinion that no universal 
laws may be found for nonlinear phenomena, leav- 
ing them as a set of individual, independent prob- 
lems. Then nothing can be learned for a specific 
nonlinear problem from solving the other ones. This 
situation has changed drastically in the last decade. 
Nonlinearity now is recognized as being fundamen- 
tal in almost any area of physics, notably hydrody- 
namics, optics, acoustics, and extends to chemistry, 
biology, ecology. 

Thus, today, a physicist will add: 

"The world is nonlinear", 

and put this sentence on an equal footing with the 
three previous ones. 

The basic hypothesis of a physicist (not long 
ago called philosopher) is that the natural phenom- 
ena surrounding us are governed by laws and that 
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a language can be invented to pin down these laws. 
We call that basic research, and it worked well so 
far for the benefit of mankind, although it has been 
a long way from ancient times to arrive at this 
insight. For instance, Descartes worked hard to 
give hints on how to proceed in science to make 
progress. But why do we want to understand na- 
ture? One reason is our intellectual curiosity. The 
second reason is that we can make use of the laws 
for better mastering our life, for instance by build- 
ing houses, beating enemies with improved arms, 
moving faster than with our legs, transmitting in- 
formation, etc. This works because with every law 
detected we gain the ability to predict the behavior 
of the respective system. 

When we collect more and more laws of na- 
ture, will we, in the end, be able to predict the 
future? The answer is no, and the reason is non- 
linearity. Even simple deterministic laws may have 
such complicated dynamics that a prediction over 
longer periods of time is impossible. Thus deter- 
minism does not imply (practical) predictability. 
And what do we do facing this insight? We now 
do experiments to gain insight into our limitations 
set by nonlinearity. This review is an attempt to at 
least partially follow the ways experimentalists have 
gone and will go further to elucidate the nature of 
unpredictability. 

2.   Historical Notes 

The theory of nonlinear dynamics to a great ex- 
tent has been developed in the context of celestial 
mechanics and started with the notion of a differ- 
ential equation (see Diacu and Holmes [1996]). But 
celestial mechanics relies more on observation than 
actual experiments and therefore is not really suited 
for proving ideas and concepts of nonlinear physics 
in general. For instance, it does not comprise dissi- 
pative nonlinear systems with their attractors and 
self-organizing properties opening up a new and dif- 
ferent realm of physics. 

Looking at the history of physics over the past 
300 years, say, there are quite a few occasions where 
experimental findings have preceded theoretical de- 
velopment. This is particularly true for nonlinear 
experimental physics where in certain areas typi- 
cal nonlinear dynamical phenomena such as period- 
doubling, bifurcations or even chaos, structure for- 
mation, and self-organization have been observed 
early but could not be explained with the concep- 
tions then available.  Nowadays, this situation has 

changed remarkably. The numerical and analytical 
analysis of nonlinear models has evolved rapidly, 
not least due to the availability of ever more power- 
ful computers. Numerous theoretical concepts have 
been developed to describe and evaluate nonlinear 
dynamical systems, involving sophisticated numer- 
ical algorithms. In fact, computing power starts to 
compete with experiments. However, as Poincare 
— the father of nonlinear dynamics — puts it in his 
book Science and Hypothesis [1903]: "Experiment 
is the sole source of truth". Therefore the occupa- 
tion with experiment should not be neglected and 
should be balanced with the advancement of theory. 

Nonlinear effects in nature are most evident in 
the flow and oscillation phenomena of liquids and 
gases. In fact, the nonlinear properties of fluid flow 
leading to structure formation and turbulence are 
encountered in our daily life. The experimental ar- 
eas of physics in the last century being mainly me- 
chanics, electromagnetism and thermodynamics, it 
is understandable that mainly hydrodynamical and 
acoustic phenomena, accessible by the experimental 
means of that time, are among the first nonlinear 
effects to be discovered experimentally. 

2.1.    Acoustics 

It seems that the oldest experiments in nonlinear 
physics stem from acoustics, in particular musical 
acoustics [Beyer, 1975]. Indeed, as the production 
of sound involves oscillations that can be generated 
only through nonlinear processes, all musical in- 
struments (including the human voice) are devices 
of nonlinear dynamics, and devices on a scale for 
easily doing experiments with them. The first ex- 
periments and experiments at all are done to gener- 
ate an understanding that cannot be obtained just 
by reasoning and imagination. One of the oldest 
nonlinear devices where such an understanding was 
sought is a musical instrument called Aeolian harp 
described in 1650 by Athanasius Kircher. In the Ae- 
olian harp wind flowing past a string sets the string 
into vibrations as well as the air around it giving the 
sensation of a musical tone. Along the way of inves- 
tigations done to understand this phenomenon we 
find the von Karman vortex street and the Reynolds 
number, a number describing the transition from 
laminar to turbulent flow. The simple string sus- 
pended in a flow of wind leads us to the problem of 
turbulence, a problem still to be solved despite the 
efforts of our greatest minds. 
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A further basically nonlinear phenomenon was 
first discovered in musical acoustics as reported 
by Sorge in 1745 and Tartini in 1754 (see Beyer 
[1975]). They found that two musical tones of high 
intensity cause the sensation of a lower tone being 
the difference in frequency of the two original ones 
(Fig. 1). Long debates arose how to explain the phe- 
nomenon: Is it simply the beats, does it originate 
in the course of propagation, or is it produced in 
the ear? Beats were excluded by Helmholtz [1870] 
on account of the sum frequency also being present. 
Helmholtz attributed his "combination frequencies" 
to the nonlinearities within the ear as we believe 
with him today. Even more combination frequen- 
cies can be heard and are actively investigated, in 
particular the lower cubic difference tone (2/i — ji 
in Fig. 1). However, the propagation medium it- 
self can generate combination frequencies, no ear 
required [Thuras et al., 1935]. Today, this is stan- 
dard knowledge and is used in optics to frequency 
double light from einfrared to green, for instance, 
and even to produce white light from focused fem- 
tosecond pulses. 

Systems that are periodically driven develop 
peculiar responses when the system is nonlinear. 
Most remarkable is the appearance of exactly half 
the driving frequency in the response, now a com- 
mon observation announcing chaotic behavior. It 
was first noted in an acoustics experiment done 
by Faraday [1831]. Starting from the investigation 
of sound-emitting, vibrating surfaces by means of 
Chladni figures, Faraday also sprinkled water in- 
stead of sand onto his vibrating plates, and ex- 
tended the work to complete layers of fluid to inves- 
tigate the "beautifully crispated appearance" of the 
liquid layer. His aim was the "progress of acoustical 
philosophy". To be able to watch the motion of the 
fluid layer, he enlarged his vibrating plates to lower 
the frequency of oscillation, and ultimately came up 

with a board eighteen feet long, upon which a liq- 
uid layer of three quarters of an inch in depth and 
twenty-eight inches by twenty inches in extent could 
be vibrated vertically. Then, by ordinary inspec- 
tion, he could observe that the heaps of liquid mak- 
ing up the crispations were oscillating in a sloshing 
motion to and fro between neighboring heaps of liq- 
uid. He states: "Each heap (identified by its local- 
ity) recurs or is reformed in two complete vibrations 
of the sustaining surface" and adds in a footnote: 
"A vibration is here considered as the motion of 
the plate, from the time that it leaves its extreme 
position until it returns to it, and not the time of 
its return to the intermediate position". This re- 
sult was confirmed by Rayleigh [1883a]. Today, 
the powerful methods of nonlinear dynamics and 
computerized experimental instrumentation are ap- 
plied to this spatio-temporal system (see Bechhoefer 
et al. [1995] and references cited therein). 

A second instance, where subharmonics were 
observed early, is the Melde experiment [Melde, 
I860]. In this experiment, the tension of a string is 
modulated periodically by fastening it to the prong 
of a tuning fork. Under suitable conditions, the 
string will vibrate at half the driving frequency. 
Rayleigh [1883b, 1887] developed a theory for para- 
metrically driven systems of this kind. 

Acoustics has also supplied one of the first ex- 
periments at all showing chaotic dynamics. When 
sound of high intensity is passed through a liq- 
uid, the liquid may rupture, giving rise to the 
phenomenon of acoustic cavitation, whereby bub- 
bles appear and are set into complicated motions. 
The analysis of this phenomenon has revealed that 
acoustic cavitation is a chaotic system [Lauterborn 
& Cramer, 1981; Smith et al, 1982; Lauterborn 
& Holzfuss, 1986, 1991; Holzfuss & Lauterborn, 
1989].   Moreover, it is a complex, spatio-temporal 

sound 
pressure 
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Fig. 1.    Combination tones produced from two primary frequencies, /i and fo. 
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system showing moving three-dimensional fila- 
ments. Acoustic cavitation appears, for instance, 
in underwater acoustics, when sonar systems are 
driven too hard, in medical applications, where 
kidney stones are destroyed by extracorporeal 
shock wave lithotripsy [Coleman et al, 1987; 
Philipp et al, 1993; Carnell et al, 1995], and in ul- 
trasonic cleaning (see, e.g. [Young, 1989; Leighton, 
1994]). This type of nonlinear dynamics originating 
from acoustic waves will be discussed in Sec. 4. 

Sound may be generated by heat, a field cov- 
ered by thermoacoustics [Swift, 1988, 1995]. Ther- 
moacoustic oscillations come in two main varieties: 
Sondhauss oscillations [Sondhauss, 1850; Feldmann, 
1968a] and Rijke oscillations [Rijke, 1859; Feld- 
mann, 1968b]. The Sondhauss oscillation occurs 
when the closed end of a gas-filled pipe is heated 
(externally or internally), or, conversely, when the 
open end is cooled (then called Taconis oscillations 
[Taconis et al, 1949]). The Rijke oscillation occurs 
when an internal grid located in the lower half of a 
vertical pipe is heated. Both ends must be open to 
allow for a flow of gas (self-generated or enforced) 
through the pipe. Sound is also produced when the 
grid, this time being located in the upper half of the 
vertical pipe, is cooled [Riess, 1859]. 

Taconis oscillations with steep temperature 
gradients and large temperature difference show in- 
teresting dynamics [Yazaki et al., 1987]. The os- 
cillation may period double, develop quasiperiodic 
oscillations through the appearance of a second in- 
commensurate frequency and also chaotic oscilla- 
tions. This behavior is attributed to mode competi- 
tion similar to the Faraday experiment of Ciliberto 
and Gollub [1985]. When Taconis oscillations are 
confronted with periodic, externally imposed acous- 
tic oscillations, the whole set of nonlinear dynami- 
cal phenomena seems to occur [Yazaki et al, 1990; 
Yazaki, 1993], as encountered, when self-excited 
systems are subject to periodic driving (see, e.g. the 
driven van der Pol oscillator [Parlitz & Lauterborn, 
1987; Mettin et al, 1993]). These acoustic oscil- 
lations are not just of scientific interest, but have 
potential as "natural engines" [Wheatley Sz Cox, 
1985]. The thermoacoustic oscillator may also be 
used as a musical instrument [Müller & Lauterborn, 
1995]. 

In musical acoustics a variety of musical in- 
struments [Mclntyre et al, 1983] have the potential 
to be played with chaotic sound emission although 
this is usually avoided. Among them are string in- 
struments [Tuffilaro, 1989; Müller & Lauterborn, 

1 
1996], woodwind instruments [Maganza et al, 1986; 
Gibiat, 1988; Idogawa et al, 1993] and gongs [Legge 
&: Fletcher, 1989]. Also, nonlinear oscillators and 
their attractors may define new classes of sounds 
to compose with. Indeed, new musical instruments 
may be generated by systematically exploring non- 
linear dynamical systems. For instance, Chua's 
circuit [Madan, 1993] with its large class of differ- 
ent attractors displays interesting features for com- 
posers [Mayer-Kress et al, 1993]. 

Chaotic dynamics has also been found in con- 
nection with the speech production process. To pro- 
duce voice sounds the vocal folds are set into vibra- 
tion through the air flow between them. Models of 
vocal folds are presently investigated to learn about 
their bifurcation and chaos properties [Herzel, 1993; 
Steinecke & Herzel, 1995], and bifurcations and 
chaos have been found experimentally in the cries of 
newborn infants [Mende et al, 1990]. Also hearing 
presents interesting physical examples of nonlinear 
dynamics (see [Lauterborn, 1996] for some informa- 
tion on this topic). 

As an example for this acoustics section, the 
simple, bowed string is chosen. The string may 
exhibit a wealth of different motions when bowed 
at different speeds and pressure. Figure 2 shows 
time series of string velocities as measured with 
a laser vibrometer, corresponding embeddings and 
Poincare section plots for four different types of 
motion. It is seen that period doubling occurs as 
well as quasiperiodic motion. Even chaotic oscilla- 
tions may be observed [Müller & Lauterborn, 1996]. 
Those readers not yet familiar with the basic no- 
tions of chaos physics may consult some book or 
basic review ([Berge et al, 1984; Guckenheimer & 
Holmes, 1983; Moon, 1992; Ott, 1993; Thompson & 
Stewart, 1986; Schuster, 1988; Lauterborn & 
Parlitz, 1988], to name just a few). 

2.2.   Hydrodynamics 

At about the time of Faraday's investigation, an- 
other important branch of nonlinear physics was 
initiated in hydrodynamics: The first observation 
(and subsequent experimental investigation) of soli- 
tary waves by Scott Russell [1844, 1895]. He ob- 
served the undisturbed propagation over several 
miles of a single-humped elevation in a water chan- 
nel, launched by the stopping motion of a boat. 
This gave the first experimental evidence of nonlin- 
ear wave solutions with particle-like character that 
we now call soli tons. From this observation, and its 
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Fig. 2.    Motion of a bowed string.   Velocity versus time (left column), embedding into a three-dimensional space (center 
column), Poincare section plot (right column). See [Müller & Lauterborn, 1996] for more details. 

modeling by Korteweg and de Vries [1895] at the tons and solitary wave solutions was established 
end of the century, it took several decades until fi- [Remoissenet, 1996]. 
nally, initiated by the numerical work of Zabusky Hydrodynamics with its complex spatiotem- 
and Kruskal [1965],  an elaborate theory of soli- poral dynamics and its outstanding problem of 
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turbulence has ever been an active field of exper- 
imentation in nonlinear physics. It gained new- 
thrust with the emergence of nonlinear dynamics 
and the availability of new experimental tools. The 
pioneering works of Lorenz [1963] and of Ruelle and 
Takens [1971] shed new light on the problem of 
turbulence in confined geometries. New theoreti- 
cal concepts like bifurcations and strange attractors 
called for controlled experiments of hydrodynam- 
ical systems below or at the onset of turbulence. 
At the same time, new equipment such as Laser- 
Doppler anemometers enabled experimentalists to 
measure, e.g. the flow velocity at certain points or 
to control very exactly the critical parameters of an 
experiment. Thus, in the early 70's several exper- 
imentalists started to investigate hydrodynamical 
systems from the viewpoint of nonlinear dynam- 
ics. The most popular experiments were devoted 
to Rayleigh-Benard convection and Taylor-Couette 
flow. 

T+AT 

Fig. 3. Schematic of a Rayleigh-Benard convection cell. 
The fluid between the two parallel plates is heated from 
below. 

In a Rayleigh-Benard system a fluid con- 
tained between parallel plates is heated from be- 
low (Fig. 3). For small heat input diffusive heat 
transport takes place, and after some time a con- 
stant temperature difference between both plates 
can be observed. If, however, the temperature gra- 
dient is increased, an instability occurs. Due to 
the heating the density of the medium near the 

i. Description de  l'appareil thermigue ä  simple 
plateau. — Le premier appareil (j), destine" ä produire 

Fig. a. 

T' 
77Ä 

Schelle : {. 

les tourbillons dans une nappe mince d'un liquide non 
volatil ä ioo°, comporlait simplement {fig. 2). 

Fig. 4.    The apparatus used by Benard [1901] in his studies on convection. 
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warmer plate decreases and the fluid moves up- 
ward, while the colder parts of the fluid move 
downward. This motion organizes itself as convec- 
tion cells that provide a new heat transfer mech- 
anism which is more effective than heat conduc- 
tion. Such convection cells were observed experi- 
mentally for the first time by Henri Benard [1901]. 
The first theoretical description was once again 
given by Lord Rayleigh. Figure 4 from the orig- 
inal paper of Benard is reproduced here to give 
an appeal of the experimental techniques at the 
turn of the century. The Rayleigh-Benard system 
was used by many experimentalists to investigate 
theoretical predictions in nonlinear dynamics. 
Among the first were Libchaber and Maurer [1980, 
1982], who used liquid helium and who took the 
temperature gradient as a control parameter to ver- 
ify the period-doubling route to chaos. Ahlers and 
Behringer [1978] studied the onset of turbulence in a 
cylindrical layer of fluid, Gollub and Benson [1980] 
found quasiperiodicity, intermittency and other 
nonlinear phenomena using a rectangular layer of 
water, and Swinney and Gollub [1978] observed a 
quasiperiodic route to chaos, later investigated with 
sophisticated methods from nonlinear dynamics by 
Glazier and Libchaber [1988]. A review on the topic 
of Rayleigh-Benard convection has been given by 
Behringer [1985]. 

The second, well investigated type of fluid mo- 
tion,' Taylor-Couette flow, takes place between two 
concentric cylinders that rotate independently with 
angular velocities w, (inner cylinder) and u0 (outer 
cylinder). In most of the experiments one of the 
cylinders (in general the outer cylinder) is fixed 
and does not rotate (Fig. 5). When the rotation 
frequency of the inner cylinder a>j is increased, a 
hierarchy of instabilities is observed. First some 
toroidal rolls occur, that for larger values of Wj start 
to oscillate periodically, then quasiperiodically and 
finally chaotically. This quasiperiodic route to 
chaos was observed for the first time in a Taylor- 
Couette system by Gollub and Swinney [1975]. 

Hydrodynamics and acoustics meet in the 
phenomenon of cavitation, that constitutes an 
experimentally very appealing but also complex 
arena for different kinds of nonlinear phenomena, 
from nonlinear oscillations to shock wave propaga- 
tion, to structure formation, and to light generation 
on ultrashort time scales, called sonoluminescence 
(see, e.g. [Crum, 1994] for a readable introduction to 
the last subject). In particular, after the experimen- 
tal achievement of Gaitan [Gaitan &; Crum, 1990] 
to stably trap single, oscillating and light emitting 
bubbles in a liquid-filled resonator, the phenomenon 

inner cylinder (rotating) outer cylinder (fixed) 

Fig. 5. Schematic of the Taylor-Couette experiment (top 
view). A fluid is contained between two concentric cylinders, 
where the outer cylinder is fixed and the inner cylinder is 
rotating at the angular velocity w<. 

of single-bubble sonoluminescence has received 
much attention lately. Upon collapse the oscil- 
lating bubble generates very short light pulses 
of less than 100 ps duration which are spaced 
very regularly [Barber & Putterman, 1991; Barber 
et al, 1992]. Under certain conditions, however, 
the sequence of pulse separations has been shown to 
display chaotic behavior [Holt et al., 1994]. Many 
other experimental findings, for instance, the sensi- 
tive dependence of the light emission on parameters 
such as temperature or gas concentration of the liq- 
uid, add to the puzzle of this still poorly understood 
phenomenon. 

Other areas, where hydrodynamics, acoustics 
and also electromagnetic theory come into play are 
magnetohydrodynamics and plasma physics, where, 
e.g. ion acoustic waves occur and where instabili- 
ties and complex motion abound. Due to their rel- 
evance in technological applications such as laser 
physics and inertial or laser fusion a large number of 
experiments have been performed, but an account 
of these experiments is beyond the scope of this 
article. 

2.3.    Optics 

Besides in acoustics and hydrodynamics, nonlinear 
wave interactions underlie virtually all kinds of non- 
linear phenomena in optics. In optics, nonlinear- 
ity is brought about by the interaction of photons 
with matter at high light intensity. As the nonlinear 
susceptibilities usually are very small, experimental 
nonlinear optics flourished only after the invention 
of the laser which provided the necessary light 
intensities. 

Due to the smallness of their coefficients, non- 
linear (nonresonant) optical interactions typically 
require a macroscopic interaction length or feed- 
back by a resonator. If a nonlinear material is 
placed in a ring or Fabry-Perot type resonator, typi- 
cally bistability or multistability of the transmission 
function is observed [Bowden, 1981; Gibbs, 1986]. 
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Ei     k. 

Fig. 6. Ring cavity of Ikeda with mirrors Mi to M4 (Mi 
and M2 semi-transparent) and with nonlinear dielectric me- 
dium. Ei is the incident field amplitude, Et the transmitted 
amplitude. 

Ikeda [1979] was the first to realize that the interac- 
tion between the time-delayed feedback signal and 
the incoming light in a nonlinear material placed 
in a ring resonator (Fig. 6) may lead to oscilla- 
tions or to chaotic intensity fluctuations. Several 
experimental realizations followed his suggestion 
(e.g. [Gibbs et al, 1981]), confirming the theoretical 
predictions. 

Compared to passive feedback systems, the 
laser itself constitutes a highly nonlinear dynam- 
ical system. With its instabilities and nontrivial 
dynamics it has become an excellent laboratory 
for experimental nonlinear science. In its simplest 
form (single-mode, homogeneously broadened, class 
B) the laser can be modeled by a two-dimensional 
system of rate equations. To achieve a non-trivial 
dynamics in this case, additional degrees of free- 
dom have to be added such as periodic modula- 
tion of parameters (loss, pump), optical feedback, 
or excitation of several longitudinal or transversal 
modes. A derivation of the laser rate equations and 
examples of chaotic dynamics with periodic pump 
modulation can be found in [Lauterborn et al, 
1995]. 

During the last two decades, a variety of aspects 
of nonlinear laser dynamics were studied in detail 
(see [Weiss &: Vilaseca, 1991]). One of the first ex- 
periments to detect laser chaos was presented by 
Arecchi et al. [1982] who found period doubling and 
chaotic dynamics in a Q-modulated CO2 laser. At 
about the same time, Weiss and King [1982] and 
Weiss et al. [1983] reported period doubling in a 
cw He-Ne laser, and Gioggia and Abraham [1983] 
described routes to chaos in an inhomogeneously 
broadened, single-mode xenon laser. Weiss et al. 
[1985] investigated an FIR ammonia laser system 
(class A) that may be described by the Lorenz- 
Haken model (which was derived from the laser 
equations in the bad cavity limit by Haken [1975]). 
A multitude of experiments followed, where semi- 

conductor lasers gained increasing attention (e.g. 
[Mork et al., 1990]). They can easily be modulated 
and controlled, and arrays of semiconductor lasers 
integrated on a single chip open up new perspec- 
tives in the experimental investigation of coupled 
optical oscillators. 

Lasers are physical systems where basic re- 
search on nonlinear dynamics bears on technolog- 
ical applications. For instance, for high-bit-rate 
communication as well as ultraprecise measurement 
applications laser instabilities and dynamical chaos 
are detrimental and have to be avoided. Here, it has 
been demonstrated that techniques of chaos control 
may be used to improve laser characteristics in a 
desired way [Roy et al., 1992]. 

As in future experiments more complex sys- 
tems, e.g. those with a large number of degrees of 
freedom or spatially extended systems, will be ad- 
dressed, the laser will continue to be one of the main 
subjects of experimental nonlinear science. By ap- 
propriate laser design it is easy to excite several 
longitudinal or transversal modes, leading to mode 
competition and chaos, transverse pattern forma- 
tion, filamentation or optical turbulence [Abraham 
et al., 1987]. In all these issues of current interest 
the laser will be with us as an experimental testbed 
for some time to come. 

In optics not only bounded geometries as in 
the laser are encountered, but usually wave prop- 
agation in extended passive media has to be con- 
sidered. Then, nonlinear wave interaction effects, 
as are sum- and difference frequency generation 
and optical parametric amplification, take place and 
they were, in fact, investigated soon after the in- 
vention of the laser. With intense light, due to 
the interplay between dispersion and nonlinearity, 
new stable wave forms are possible, such as op- 
tical solitons in fibers. Predicted theoretically by 
Hasegawa and Tappert [1973] they were found ex- 
perimentally in 1980 [Mollenauer et al, 1980], im- 
plemented in a soliton laser in 1984 [Mollenauer & 
Gordon, 1984] and nowadays enter technological ap- 
plication in fiber soliton transmission systems. As 
light pulses are getting shorter and more intense, 
the dynamics of solitons in waveguides, also in the 
form of spatial solitons in waveguides or light bullets 
in bulk materials, is receiving continued attention 
due to their potential for future all-optical informa- 
tion processing systems. . 

Experimental nonlinear optics has gained new 
thrust by the development of table-top high power 
femtosecond laser systems. This will promote re- 
search in highly nonlinear light-matter interactions 
as well as ultrashort dynamical processes in the 
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state space 

Fig. 7.    The way from experiment to a trajectory in state space. 

foreseeable future. Here, a wealth of nonlinear 
physical phenomena is waiting for their prospec- 
tion; ranging from plasma-laser interaction at solid 
or liquid interfaces, to violent dielectric breakdown 
in liquids and gases, to the study of multiphoton- 
processes, i.e. of atoms in strong electromagnetic 
fields, and to table-top high energy particle acceler- 
ators, to name only a few. 

In these historical notes, only a few milestones 
in the development of experimental nonlinear phys- 
ics could be mentioned. There are more systems, 
for instance in mechanics, semiconductor and solid- 
state physics, microwaves, etc., that show irreg- 
ular dynamics. Moreover, many other nonlinear 
systems, not only those in physics, were investi- 
gated experimentally, for example,electronic oscilla- 
tors, chemical reactions, physiological or biological 
systems. A complete review of all experiments in 
nonlinear science is beyond the scope of this ar- 
ticle, and the reader is referred to the literature 
(e.g. [Gaponov-Grekhov & Rabinovich, 1992; Vohra 
et al, 1992; Ditto et al, 1994; Moon, 1992; Mullin, 
1993; Thompson & Stewart, 1986; Holden, 1986; 
Madan, 1993]). 

3.   Nonlinear Time Series Analysis 

In theory, i.e. in mathematical models of dynam- 
ical systems, the time evolution is described by a 
trajectory in state space whose integer dimension is 
given by the number of (dependent) variables of the 
model. In experiments, often just one quantity is 
measured as a function of time (a time series), and 
the state space usually is not known. How, then, to 
arrive at the attractor(s) that may characterize the 
system? 

The gap between the theoretical notions and 
observable quantities was filled when Packard, 
Crutchfield,   Farmer and Shaw  [1980]  published 

their paper "Geometry from a time series" and 
Takens [1981] gave a mathematical justification of 
this approach. Takens proved that it is possible to 
(re)construct, from a scalar time series only, a new 
attractor that is diffeomorphically equivalent to the 
(in general unknown) attractor in the original state 
space of the experimental system (Fig. 7). This 
idea was essential for making tools of nonlinear 
dynamical systems theory amenable to the inves- 
tigation of experimental data and thus marks the 
birth of deterministic nonlinear time series analysis 
[Grassberger et al, 1991; Abarbanel et al, 1993]. 

Essentially two methods for reconstructing the 
state space are available: Delay coordinates and 
derivative coordinates. Derivative coordinates were 
used by Packard et al. [1980] and consist of higher 
order derivatives of the measured time series. Since 
derivatives are susceptible to noise, derivative coor- 
dinates usually are not very useful for experimental 
data. Therefore we will discuss the method of delay 
coordinates only. 

3.1.    Embedding 

Let M be a smooth (C2) m-dimensional mani- 
fold that constitutes the (original) state space of 
the dynamical system under investigation and let 
<j>1 : M -* M be the corresponding flow (see 
[Guckenheimer & Holmes, 1983] for a definition). 
Suppose that we can measure some scalar quantity 
s(t) = h(x(t)) that is given by the measurement 
function h : M -> R, where x(t) = 0*(x(O)). Then 
one may construct a delay coordinates map 

M -+Rd 

xny= F(x) 

= (s(t),s{t-ti), 

s(t-2tl),...,s(t-(d-l)tl) 

(1) 
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that maps a state x from the original state space M 
to a point y in a reconstructed state space Rd, where 
d is the embedding dimension and ti gives the delay 
time (or lag) used; Takens [1981] proved that for 
d > 2m + 1 it is a generic property of F to be an 
embedding of M in Rd, i.e. F : M ->■ F(M) C Rd 

is a (C2-) diffeomorphism. Generic means that 
the subset of pairs (h, t{) which yield an embed- 
ding is an open and dense subset in the set of all 
pairs (h, t{). This theorem was generalized by Sauer 
et al. [1991] and Sauer and Yorke [1993] in two 
ways. Firstly, they replaced the condition d > 
2m + 1 by d > 2dQ(A) where d0(A) denotes the 
capacity (or box-counting) dimension of the attrac- 
tor Ac M. This is a great progress for experimen- 
tal systems that possess a low-dimensional attractor 
(e.g. d0(A) < 5) in a very high-dimensional 
space (e.g. m = 100). In this case, the theorem 
of Takens [1981] says that only for very large 
embedding dimensions d (e.g. d > 201) we can ex- 
pect a diffeomorphic equivalence for sure, whereas 
with the condition of Sauer et al. a much smal- 
ler d will suffice (e.g. d > 10). The second 
improvement of Takens' embedding theorem by 
Sauer et al. refers to the term "generic" that was 
replaced by "prevalent" which essentially means 
"almost all (h, ti)" will yield an embedding. This 
modification of the original theorem was necessary, 
because examples of open and dense (=generic) sets 
have been found that are rather "thin". Further- 
more, Sauer et al. showed that for dimension es- 
timation an embedding dimension d > do(A) suf- 
fices. In this case the delay coordinates map F is, 
in general, not one-to-one, but the points where tra- 
jectories intersect are negligible for dimension cal- 
culations. More details about the reconstruction of 
states, in particular in the presence of noise, may 
be found in [Casdagli et al., 1991; Gibson et al., 
1992]. The reconstruction from interspike intervals 
is discussed by Sauer [1994]. 

In the following we will assume that the scalar 
signal s(t) = h(x(t)) is sampled with a sampling 
time ts. The resulting time series {sn} with sn = 
s(nts) is used to reconstruct the states 

yn = (sn, sn~l, sn~21,..., a"-(d-i)')        (2) 

for n = 1,...,N. The symbol I denotes the de- 
lay time or lag in units of the sampling time (i.e. 
ti = lts). 

3.2.   Estimating suitable 
reconstruction parameters 

The reconstruction using delay coordinates is based 
on two parameters: The embedding dimension d 
and the delay time t[. When the dimension d is 
chosen too small the conditions given in the embed- 
ding theorems are not fulfilled. For d too large, on 
the other hand, practical problems occur due to the 
fixed amount of points, that constitute thinner and 
thinner sets in Rd when d is increased. Concerning 
the choice of the delay time £/ the theorems exclude 
only a few discrete (non-generic) values. Thus, dif- 
ferent ti lead to reconstructions of the attractor that 
are diffeomorphically equivalent. They are, how- 
ever, geometrically different. When the delay time 
ti is too small, the coordinates t/f = s"-^-1)' 0f 
each reconstructed state yn do not significantly dif- 
fer from one another and therefore the state points 
are scattered along the diagonal [Fig. 8(a)]. In this 
case, any investigation of a possible fractal struc- 
ture of the attractor (e.g. a dimension estimation) 
becomes difficult because one has to zoom into the 
cloud of points investigating scales that are (much) 
smaller than the diameter of the cloud perpendicu- 
lar to the diagonal. On very small scales, however, 
such investigation becomes almost impossible due 
to the limited number of data points and the un- 
avoidable presence of noise. The situation improves 
when ti is increased. Then the attractor unfolds 
and its inner structure becomes "visible" already on 
larger scales as can be seen in [Fig. 8(b)]. When the 
delay time ti is increased further, the reconstructed 
attractor is folded more and more [Fig. 8(c)]. The 
origin of this folding is the "stretch and fold" mech- 
anism that is typical for chaotic systems with sen- 
sitive dependence on initial conditions. Additional 
folds in the reconstruction are unwanted because 
they bring states close together in the reconstructed 
state space that are not close together in the orig- 
inal state space. In particular in the presence of 
noise, where state points are additionally shifted 
from the "right places", this may lead to cases 
where states are wrongly addressed. Even without 
noise, a too large value of ti may lead to a folding 
that yields intersections of the attractor where the 
reconstruction is not one-to-one anymore. In this 
case, one may increase the dimension d to "repair" 
the embedding, but of course it is more sensible 
to decrease fy. These examples show that a proper 
choice of ti is crucial for any further investigation of 
the data. 
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Fig. 8.    Three reconstructions with different delay times U for experimental data obtained from a chaotically oscillating, 
periodically driven pendulum. 

Several algorithms have been suggested to find 
"optimal" values for d and fy. Most of the meth- 
ods for determining d are based on continuity tests 
for the induced flow in the reconstruction space 
[Cenys & Pyragas, 1988; Buzug et al., 1990; Alecsic, 
1991; Buzug & Pfister, 1992; Gao & Zheng, 1993, 
1994; Huerta et al, 1995] or for the embedding itself 
[Liebert et al, 1991; Kennel et al, 1992]. The main 
idea is to check whether closely neighboring points 
are mapped to neighboring points. The methods 
differ with respect to their concrete implementa- 
tion. To find optimal values for ti one class of 
algorithms directly considers the geometry of the 
reconstructed attractor, in particular its unfold- 
ing from the diagonal [Kember & Fowler, 1993; 
Rosenstein et al, 1994]. The most popular ap- 
proach consists in a minimization of the redundancy 
of the coordinates of the reconstructed states us- 
ing (linear) autocorrelation functions or information 
theoretic concepts like mutual information [Frazer 
& Swinney, 1986; Frazer, 1989a, 1989b; Liebert 
& Schuster, 1989; Martinerie et al, 1992]. Since 
bad values for ij may destroy the embedding, the 
continuity tests for estimating d may also be used 
to determine fy [Buzug et al, 1990; Buzug & 
Pfister, 1992; Gao & Zheng, 1993, 1994; Liebert 
et al, 1991]. 

Until now, no method for determining optimal 
embedding parameters seems to be accepted as be- 
ing the most useful. The reason for this diversity 
is probably the fact that there exists no pair (d, t{) 
that is optimal for all possible subsequent inves- 
tigations and applications. Furthermore, many of 
the algorithms proposed need as much computation 
time as a direct computation of a quantity of inter- 
est, e.g. the dimension. In this case, one may repeat 
the computation for several values of d and ti and 
thus obtain not only "optimal" reconstruction pa- 
rameters but also a test for the robustness of the 

method used and a first (quantitative) information 
about the data. As a starting point one may use fy- 
values for which the autocorrelation function drops 
to zero or has a local minimum or, where neither of 
them exists, where it has dropped to 1/e. 

Finally, we want to mention the Broomhead- 
King-coordinates [Broomhead & King, 1986; Landa 
& Rosenblum, 1991] that result in a new coordi- 
nate system where the origin is shifted to the cen- 
ter of mass of the reconstructed states and the axes 
are given by the (dominant) principal components 
of the distribution of points. This new coordinate 
system is based on a Karhunen-Loeve transforma- 
tion that may be computed by a singular-value de- 
composition. A discussion of the advantages (e.g. 
noise reduction) and disadvantages of this "post- 
processing" of the reconstructed states may, for ex- 
ample, be found in Palus and Dvorak [1992]. 

3.3.    Modeling and prediction 

Once the states of the underlying dynamical system 
have been reconstructed it is possible to study their 
temporal evolution. Via the delay coordinates map 
F the flow 0* in the original state space induces 
a flow ip* = F"1 • ft • F in the reconstructed state 
space. To model this induced flow different methods 
have been devised. An important class are local ap- 
proximations where only states in a neighborhood 
of a given reference point are used to compute the 
parameters of a locally valid model. Possible models 
are, for example, polynomials (including locally lin- 
ear approximations) [Farmer & Sidorowich, 1987] or 
radial basis functions [Casdagli, 1989]. Of course, 
all methods for modeling the induced flow locally 
can in principle also be used for a global ansatz. In 
general, local methods are more flexible and often 
yield better results when used for prediction of the 
time series.   Global methods, on the other hand, 
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provide model equations in "closed form" that may 
yield a better understanding of the underlying dy- 
namics. When the time series originates from a 
continuous dynamical system and a global model 
is desired one should try to fit a vector field (dif- 
ferential equation) to the dynamics given by the 
reconstructed states. More details concerning dif- 
ferent modeling techniques, typical problems and 
an interesting method for "verifying" a derived 
model using synchronization may be found in 
[Brown et al., 1994]. The problem of parameter esti- 
mation from time series in the case that the model 
equations are formulated not in the reconstructed 
state space but in the "original state space", will 
be addressed in Sec. 3.8. In any case, a successful 
approximation of the induced flow may not only be 
used for prediction but also provides a strong evi- 
dence for the deterministic nature of the data. Fur- 
thermore, good (local) models are a prerequisite for 
many other methods of nonlinear time series anal- 
ysis and nonlinear dynamics. 

3.4.   Fractal dimensions 

The (fractal) dimension of an attractor character- 
izes its complexity and gives a lower bound for the 
number of equations or variables needed for model- 
ing the underlying dynamical process. Prom the in- 
finite family of (generalized) dimensions Dq the cor- 
relation dimension £>2 introduced by Grassberger 
and Procaccia [1983], Grassberger et al. [1991] is 
mostly used in nonlinear time series analysis. This 
dimension is given by the scaling 

Cd{r) oc rDi 
(3) 

of the correlation sum 

Cd(r) 
(N-c){N-c+l) 

xEE^-Hy'-yi)    (4) 

that counts the relative number of neighboring 
points closer than r (H is the Heaviside function 
with H(x) = 1 for x > 0 and zero elsewhere). 
The constant c is some correlation length and is 
used to omit points that are close neighbors in time 
[Theiler, 1986], and d is the embedding dimension. 
The correlation sum approach is a fixed size method, 
because for a given radius r the number of pairs 
with distance smaller than r is counted. As an alter- 
native one may also use a fixed mass method to esti- 
mate the dimension of the attractor as was pointed 

out by Badii and Politi [1984, 1985] and Grassberger 
[1985]. In this case the m nearest neighbors of each 
reference point yn and the radius rn = r(m) of this 
cloud of m points are determined. For the limit 
m/N —> 0 one obtains an approximation of the 

capacity dimension       DQ « — ■ 
log AT 

1   N 

(5) 

and an estimate of the 

information dimension Dx = - 
logN 

1   N 

N n=l 

(6) 

To investigate the scaling in the limit m/N -4 0 one 
can decrease the number of neighbors m or increase 
the number of data points N. 

Figure 10 gives an example of the fixed size 
method, where the correlation sum Cz(r) of (4) is 
calculated and plotted versus the radius r of the 
ball of neighboring points on a doubly logarithmic 
scale for the Duffing data of Fig. 9. The slope in 
a suitable intermediate range of r then gives the 
fractal dimension of the chaotic Duffing attractor 
(in the Poincare section plane). The dashed line 
in Fig. 10 is a fit to the slope (shown with an off- 
set) and gives the correlation dimension D% = 1.1 
in the Poincare plane, i.e. a fractal dimension of 2.1 
for the continuous system. To detect whether the 
data are distinct from noise, surrogate data have 
been derived from the original data set according to 
the method of random Fourier phases as discussed 

0.5- f\ wss^v 
0- u y^ ̂  1 

0.5- 'j* sä»»»« yj 
■       ■     _'!     ■       • 6    ' '  1 ' 

Fig. 9. A strange attractor of the double-well Duffing oscil- 
lator x + dx — x + x3 = a smut for d = 0.2, a = 0.3, and 
w = 1.24 in a Poincar6 section plane. 
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Fig. 10. Correlation sum Cz{r) versus the distance r of 
neighboring points for the Duffing data of Fig. 7. The dashed 
curve is a fit to the slope giving Z?2 = 1.1. The dotted curve 
is from surrogate data to detect determinism. 

below in Sec. 3.7. Their correlation sum Cz{r) is in- 
cluded in the figure as dotted curve. It is strongly 
distinct from the curve for the original data indi- 
cating a clear difference between the chaotic data 
and colored noise. The error bars correspond to ±5 
standard deviations. 

A very suitable method is the determination 
of the pointwise dimensions and their average 
[Holzfuss & Mayer-Kress, 1986; Mayer-Kress, 1986]. 
The pointwise dimension Data point of an attrac- 
tor can be calculated by exploring the scaling be- 
havior of the "mass" of the attractor in the vicin- 
ity of the point, i.e. the number of points within a 
certain distance r. The number N(r) of points in 
this ball of radius r should scale like N(r) oc rD 

for r —> 0. When this is done for all points of the 
attractor, a histogram of pointwise dimensions is 
obtained. The average dimension and the standard 
deviation then are numbers to characterize the at- 
tractor. Of course, the histogram itself is a charac- 
teristic of the attractor. 

When the attractor is sufficiently low- 
dimensional, its (fractal) dimension starting from 
low-dimensional embedding spaces (d = 1, 2, 3,...) 
will level off at some value of d and does not increase 
further. This value then is said to determine the 
relevant number of (nonlinear) degrees of freedom, 
i.e. the number of dependent variables, of the dy- 
namical system investigated. More details about di- 
mension estimation methods, their possible pitfalls, 
extensions, and many references are given in the re- 
view articles by Grassberger et al. [1991], Theiler 
[1990], and Broggi [1988]. 

3.5.    Lyapunov spectra 

The Lyapunov spectrum is a set of real numbers 
{Ai, A2,..-, Am}, the Lyapunov exponents.   Lya- 

punov exponents describe the mean exponential 
increase or decrease of small perturbations on an 
attractor and are invariant with respect to diffeo- 
morphic changes of the coordinate system. When 
the largest Lyapunov exponent is positive, the 
system is said to be chaotic and to show sensitive 
dependence on initial conditions. That way, the 
notion of chaos can be quantified. For an exact def- 
inition and computational details see, for example, 
[Oseledec, 1968; Benettin et al, 1980; Shimada & 
Nagashima, 1979; Eckmann & Ruelle, 1985; Geist 
et al, 1990; Wolf et al, 1985]. 

The different methods for computing Lyapunov 
exponents from time series that have been proposed 
so far can be divided into two classes: Jacobian- 
based methods and direct methods. In the Jacobian 
methods, a model is first fitted to the data and 
the Jacobian matrices of the model equations are 
then used to compute the Lyapunov exponents us- 
ing standard algorithms which have been developed 
for the case when the equations of the dynamical 
system are known [Benettin et al, 1980; Shimada & 
Nagashima, 1979; Eckmann & Ruelle, 1985; Geist 
et al, 1990]. Usually local linear approximations 
are used [Sano &; Sawada, 1985; Eckmann et al, 
1986; Stoop & Meier, 1988; Holzfuss & Lauterborn, 
1989; Stoop & Parisi, 1991; Zeng et al, 1992; 
Parlitz, 1993]. Modifications and improvements of 
the basic algorithm include: 

• using neighboring states from a shell (rmjn < r < 
rmax) instead of a ball (r < rmax) to reduce the 
influence of noise (see, e.g. [Eckmann et al, 1986; 
Zeng et al, 1991, 1992]) 

• using nonlinear approximations of the flow by 
polynomials [Briggs, 1990; Bryant et al, 1990; 
Brown et al, 1991; Abarbanel et al, 1991], ra- 
dial basis functions [Holzfuss & Parlitz, 1991; 
Parlitz, 1992; Kadtke et al, 1993] or neural net- 
works [Gencay & Dechert, 1992] 

• using projections onto linear subspaces based 
on local Broomhead-King coordinates [Stoop & 
Parisi, 1991] 

• using the embedding dimension d for select- 
ing the neighbors and a small local dimension di, 
for performing the fit and computing the result- 
ing di, Lyapunov exponents (see, e.g. [Eckmann 
et al, 1986; Bryant et al, 1990; Brown et al, 
1991]). 

The latter two methods have been devised to avoid 
so-called spurious Lyapunov exponents, that occur 
when the dimension d of the reconstructed state 
space is larger than the dimension m of the origi- 
nal state space.  Spurious Lyapunov exponents do 
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not depend on the dynamics but on the approxi- 
mation scheme, the noise contained in the data and 
in some cases on the local curvature of the attrac- 
tor. In principle they can take any values, (see 
[Cenys, 1993] for some nice examples). To identify 
spurious Lyapunov exponents one can estimate the 
local thickness of the attractor along the directions 
associated with the different Lyapunov exponents 
[Bryant et al, 1990; Brown et al, 1991] or, for high 
quality data, compare the exponents obtained 
with those computed for the time reversed series 
[Parlitz, 1992], because spurious exponents corre- 
spond to directions where the attractor is very thin 
and because they do not change their signs upon 
time reversal (in contrast to the true exponents). 
An investigation of the data requirements for 
Jacobian-based methods may be found in [Eckmann 
& Ruelle, 1992; Ellner et al., 1991]. 

Direct methods directly estimate the divergent 
motion of the reconstructed states without fitting 
a model to the data. The best known and widely 
used method was introduced by Wolf et al. [1985]. 
There, a reference orbit {yn} is considered and a 
neighboring orbit {zn} starting from the nearest 
neighbor z° of y°. After some transient the differ- 
ence vector ufc = zn+fc — yn+k points into the (time 
dependent) direction corresponding to the largest 
Lyapunov exponent Ai. Then ||ufc|| grows, on the 
average, exponentially with exp(Ai£sfc) until it ex- 
ceeds the range where a linear approximation of 
the flow at yn holds. Now the neighboring or- 
bit {zn} has to be replaced by another neighbor- 
ing orbit that is closer to the reference orbit and 
whose initial value lies on or near the line from 
the current reference state to the last point of the 
previous neighboring orbit in order to preserve the 
direction corresponding to the largest Lyapunov ex- 
ponent. Criteria for the replacement threshold and 
other details of the algorithm are given in [Wolf 
et al., 1985], including a FORTRAN program. In 
principle, it is possible to use this strategy also for 
computing the second largest Lyapunov exponent, 
but this turns out to be difficult. Thus it is quite 
fortunate that in many cases it suffices to estab- 
lish the existence of at least one positive Lyapunov 
exponent. Due to its robustness the Wolf algo- 
rithm is often used for the analysis of experimen- 
tal data (see, for example, [Fell et al., 1993; Fell & 
Beckmann, 1994]). 

Another direct method, which is even simpler 
because of fewer free parameters, was proposed by 
Sato et al.   [1987] and Kurths and Herzel [1987]. 

Very similar to the Wolf algorithm, the average ex- 
ponential growth of the distance of neighboring or- 
bits is studied on a logarithmic scale, this time via 
the prediction error 

p(k) = (7) 

where ynn is the nearest neighbor of yn. The de- 
pendence of the prediction error p(k) on the number 
of time steps k may be divided into three phases. 
Phase I is the transient where the neighboring 
orbit converges to the direction corresponding to 
the largest Lyapunov exponent. During phase II 
the distance growths exponentially with exp(Xitsk) 
until it exceeds the range of validity of the linear 
approximation of the flow around the reference or- 
bit {yn+fc}. Then phase III begins where the dis- 
tance increases slower than exponentially until it 
decreases again due to foldings in the state space. 
If phase II is sufficiently long, a linear segment with 
slope Ai appears in the p(k) versus k diagram. This 
not only allows an estimation of the largest Lya- 
punov exponent Ai but also provides a direct verifi- 
cation of exponential growth of distances to distin- 
guish deterministic chaos from stochastic processes 
where a non-exponential separation of trajectories 
occurs [Dämmig & Mitschke, 1993]. Figure 11 gives 
an example for the determination of the largest Lya- 
punov exponent Ai by this method. The dotted 
curve is from surrogate data to detect determinism. 
The error bars are for ±5 standard deviations. 

Several authors have investigated modifica- 
tions of this basic algorithm [Gao &; Zheng, 1994; 
Rosenstein et ai, 1993; Kantz, 1994]. In particu- 
lar, those states must be excluded from the search 
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Fig. 11. Prediction error p for experimental pendulum data 
in a Poincare section plane versus the time step number k. 
The slope of the solid line in the intermediate range of k gives 
the largest Lyapunov exponent Ai. 
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for the nearest neighbor that are close together in 
time. Such states belong to the same segment of 
the trajectory and thus cannot converge to the most 
expanding direction. A possible criterion for a suffi- 
ciently large separation in time is the first minimum 
or zero of the autocorrelation function of the data 
set. 

3.6. Noise reduction 

Experimental data usually are contaminated with 
noise. To improve noisy data two possibilities are 
available: Linear niters and special nonlinear noise 
reduction methods that make use of the determinis- 
tic origin of the data. The influence of linear filters 
on the reconstruction of states was investigated by 
Sauer et al. [1991], Sauer and Yorke [1993], and by 
Broomhead et al. [1992], Infinite impulse response 
(IIR) filters in general destroy the diffeomorphic 
equivalence between the original state space and 
the reconstructed state space. For finite impulse 
response (FIR) filters one can show that those fil- 
ters which destroy the embedding constitute linear 
subspaces in the space of all FIR-filters. There- 
fore, with probability one, FIR-filters preserve the 
embedding. Nevertheless, one may find examples 
where the application of a FIR-filter makes subse- 
quent estimations of Lyapunov exponents or dimen- 
sions more difficult as compared with the original 
"noisy" time series. Therefore, before filtering the 
data, one should always try to investigate the raw 
data. If it is known that the data originate from a 
deterministic system, methods for nonlinear noise 
reduction may be applied that have been developed 
only recently. The basic idea is to exploit the un- 
derlying determinism by correcting the states and 
the values of the time series using a (local or global) 
model that has previously been fitted to the (raw) 
data. More details about these applications of non- 
linear time series analysis for noise reduction can 
be found in [Grassberger et al, 1993; Kantz et al, 
1993; Kostelich & Schreiber, 1993]. 

3.7. Detecting determinism 

If the time series originates from a yet unknown 
process it is important to investigate the question of 
whether the data contain some nonlinear determin- 
istic dependencies or whether it is a purely stochas- 
tic signal, for instance, colored noise. Several 
methods have been devised to answer this question 
[Theiler et al, 1992a, 1992b; Provenzale et al, 
1992; Smith, 1992; Takens, 1993; Wayland et al, 
1993;  Palus et al,  1993;  Kaplan,  1994;  Salvino 

et al, 1994; Savit & Green, 1991]. Here, we want 
to focus on the method of surrogate data [Theiler 
et al, 1992a, 1992b] that provides a rather general 
and flexible framework for investigating unknown 
data. The basic idea is to make some hypothesis 
about the data and then to try to falsify this hy- 
pothesis. As an example we will use the widely used 
hypothesis: "The data are (just) colored noise". In 
the first step, the data are modified in such a way 
that all structure except for the assumed properties 
will be destroyed or "randomized". This may be 
done, for example, by Fourier transforming the data 
and substituting the phases of the complex Fourier 
transform by random numbers. The power spec- 
trum (or equivalently, the autocorrelation function) 
is not affected by this modification. After trans- 
forming back into the time domain we thus obtain 
a new time series with the same power spectrum. 
If the original data are just colored noise we have 
not destroyed any underlying structure, and subse- 
quent estimations of dimensions, Lyapunov expo- 
nents, prediction errors, etc. should give the same 
results for the original time series and the surro- 
gate data. If, however, the analysis yields signifi- 
cant differences, then our original time series was 
more than "just noise". To improve the statisti- 
cal robustness of this test, one usually generates 
several surrogate data sets and compares the mean 
values of the quantities obtained in the course of 
the subsequent data analysis with the correspond- 
ing value from the original time series. This has 
been done in the above examples, where the frac- 
tal dimension and the largest Lyapunov exponent 
were calculated for chaotic Duffing oscillator data 
and for experimental data from a driven pendu- 
lum, respectively. The surrogate data show strong 
deviations, indicating that the time series investi- 
gated come from a deterministic, chaotic system. 
Furthermore, it is necessary to take into account a 
possibly performed static nonlinear transformation 
of the data that would distort the Gaussian dis- 
tribution of the assumed colored noise (Algorithm 
II in [Theiler et al, 1992a], see also [Rapp et al, 
1994]). 

3.8.    Synchronization of 
chaotic dynamics 

Synchronization of periodic signals is a well-known 
phenomenon in physics, engineering and many 
other scientific disciplines. However, even chaotic 
systems may be linked in a way such that their 
chaotic oscillations are synchronized. In particular, 
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the case of one-directional coupling has been inves- 
tigated intensely during the last years [Pujisaka & 
Yamada, 1983; Afraimovich et al., 1986; Pecora 
& Carroll, 1990; Carroll & Pecora, 1993; Kocarev 
& Parlitz, 1995; Lai & Grebogi, 1994; Kocarev & 
Parlitz, 1996a] because of its potential application 
in communication systems [Cuomo Sz Oppenheim, 
1993; Kocarev et al., 1992; Parlitz et al, 1992; 
Wu & Chua, 1993; Halle et al., 1993; Schweizer & 
Kennedy, 1995]. There, an information signal con- 
taining a message is transmitted using a chaotic sig- 
nal as a broadband carrier, and the synchronization 
is necessary to recover the information at the re- 
ceiver. Different implementations of this basic idea 
have been suggested, and axe currently investigated 
for their practical usefulnes (see, for example, [Feld- 
mann et al., 1996] or [Parlitz et al, 1996a] and ref- 
erences cited therein). 

Another application of synchronization consists 
in parameter estimations from time series. Assume 
that a (chaotic) experimental time series has been 
measured and the structure but not the param- 
eter values of a model describing the underlying 
process are known. The goal is to find these 
unknown parameters and perhaps also the time evo- 
lution of the variables that have not been mea- 
sured. This problem can for example be tackled us- 
ing multiple shooting methods [Baake et al., 1992] 
or similar approaches [Breeden & Hübler, 1990]. 
However, with all these methods, not only the pa- 
rameters occur in the algorithm as unknown quan- 
tities, but also the initial values of the trajectory 
segments between the sampling times. One there- 
fore has to solve a high dimensional minimization 
or fixed-point problem. This can be simplified con- 
siderably if a synchronization mechanism is used 
that automatically yields the right state variables. 
Hence, using synchronization, the dimension of the 
approximation problem is given just by the number 
of unknown model parameters. 

The basic strategy consists in finding the right 
parameter values by minimizing the synchroniza- 
tion error of a numerical model driven by the given 
data [Brown et al., 1994]. As an example, we con- 
sider Chua's circuit, which can be described by the 
following three-dimensional dynamical system: 

Ci 
dVci _ Vc2 — Vci 

dt 

dVC2 

dt 

dlL 
' dt 

R-g{Vci) 
Vci — Vc2 

R + IL 

- VC2 - RQIL , 

(8) 

Fig. 12.    Circuit diagram of the Chua's circuit (8).   The 
nonlinear resistor (Chua's diode) is given by (9). 

where g is a piecewise-linear function defined by 

g(V) = m0V 

+ 2(mi m0)[\V + Bp\-\V-Bp\}.   (9) 

The circuit diagram is given in Fig. 12. Our goal is 
to estimate the parameter values of a hardware im- 
plementation of the circuit from a time series of the 
voltage Vci sampled with 40 kHz. This time series 
(length 10 000 samples) was used to drive a numeri- 
cally simulated model of Chua's circuit. The driving 
consisted in a repeated replacement of the variable 
Vci in the model by the times series values at times 
tn = nTs, where Ts = 0.025 ms is the sampling 
time. Note that the coupling is not applied contin- 
uously, but only at discrete times tn. Between this 
sporadic coupling the numerically simulated circuit 
oscillates freely and independently from the driv- 
ing. This type of time discrete coupling between 
continuous systems may lead to synchronization if 
the coupling time Ts is suitably chosen [Amritkar 
& Gupte, 1993; Stojanovski et al, 1996]. If the 
parameter values of the model coincide with those 
of the driving hardware circuit the synchronization 
error vanishes. In practice it possesses a clear min- 
imum larger than zero due to the unevitable pres- 
ence of noise. To locate this minimum in parameter 
space we used the routine POWELL from [Press 
et al., 1986]. For the search of the smallest syn- 
chronization error all eight parameters in (8) and 
(9) have been varied. Additionally a possible offset b 
upon measurement has also been taken into account 
in the minimization process. The unknown amplifi- 
cation factor a of the A/D-converter that we used is 
contained in the breakpoint voltage Bp. Since this 
parametrization is redundant, the following normal- 
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ized parameters have been estimated: 

R2C2 

V3 = 

9i 

RRQC2 

10 P2 16 

0.18    j>4 = m0R « -0.69      (io) 

P5 = miR w -1.28      p6 = u5a 

p7 = a5p pa = &, 

5800 

where p& and p7 give the time scaling and the 
amplitude scaling, respectively. The numerical val- 
ues given are roughly estimated from the compo- 
nents used and are known up to a certain tolerance 
only. Figure 13 shows the convergence of the nor- 
malized parameters during the minimization pro- 
cess. The resulting saturation values are given in 
the diagrams and nicely match the values given in 
(10). Delay reconstructions using the experimen- 
tal time series and the corresponding time series 
generated numerically with the estimated param- 
eter values yield two almost indistinguishable at- 
tractors. These diagrams and further details of the 
algorithm may be found in [Parlitz et al, 1996b]. 
There also numerically generated time series were 
used and yielded exact estimates of the parame- 
ters of the drive system. A possible application 
of this parameter estimation method are, for ex- 
ample, VLSI implementations of electronic systems 
like Chua's circuit where the determination of the 
actual values of the individual components is very 
difficult. In those cases where a continuous coupling 
between the experiment and a computer model is 
possible, similar methods may be applied [Parlitz, 
1996; Parlitz & Kocarev, 1996]. 

The synchronization of two systems in the 
sense that both state vectors converge to the same 
value is not the only possibility. If, for example, a 
well-defined phase variable can be identified in both 
systems, the phenomenon of phase synchronization 
may occur [Rosenblum et al., 1996; Parlitz et al., 
1996c]. In this case the difference between both 
phases is bounded and the average values of the 
resulting angular rotation frequencies are equal af- 
ter some synchronization transient, while the corre- 
sponding amplitudes of both systems remain uncor- 
related. This phenomenon may be used in technical 
or experimental applications where a coherent su- 
perposition of several output channels is desired. 

Another concept of synchronization is the 
notion of generalized synchronization where the ex- 
istence of a functional relationship between the 
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Fig. 13.    Convergence of the normalized parameters in (10) 
during the minimization of the synchronization error. 

states of the coupled systems is required (in the 
limit t —> oo) [Afraimovich et al, 1986; Rulkov 
et al, 1995; Kocarev & Parlitz, 1996b]. This type of 
synchronization occurs for uni-directionally coupled 
systems when the driven system is asymptotically 
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X1 

stable [Kocarev & Parlitz, 1996b] and is therefore 
very robust with respect to parameter mismatch. 

3.9.    Spatio-temporal data 

Methods for analyzing and predicting spatio- 
temporal time series (STTS) are currently one of 
the most important challenges in nonlinear time se- 
ries analysis. In general a STTS consists of a se- 
quence of (spatial) arrays xn G RM that are taken 
from a spatially extended dynamical system at dis- 
crete times tn = nAt (n = 1,..., N), where At is 
the sampling time and N is the length of the time 
series, i.e. the total number of patterns. Each frame 
xn consists of M spatial samples x^ or "pixels" and 
may thus (at a fixed time n) formally be considered 
as a vector in RM. 

The most successful approach developed until 
now to analyze a STTS {xn} is based on a linear 
decomposition of the dynamics into spatial modes 
bk. The goal of this approach is to find a few dom- 
inating modes b1,..., b^ (K < M) so that the 
patterns yn = a + J2k=i c£bfc provide a good ap- 
proximation of the sequence {xn}. The vectors a 
and bfc are constant and may be computed using 
the Karhunen-Loeve transformation (also known as 
Proper Orthogonal Decomposition, Empirical Or- 
thogonal Functions, or Singular Value Decompo- 
sition (see, for example, [Lumley, 1970; Sirovich, 
1987, 1989; Aubry et al, 1991]). The information 
about the temporal evolution is contained in the 
coefficients c£. If such a decomposition into a few 
dominating modes is possible this method turns out 
to be very efficient. Prom the temporal evolution of 
the (few) coefficients {c£} (k = 1,..., K), low di- 
mensional models can be derived and may be used 
for analyzing and predicting the STTS [Ciliberto & 
Nicolaenko, 1991; Rico-Martinez et al, 1992; 
Chauve & Le Gal, 1992; Berry et al., 1994]. 

However, even for low dimensional systems, the 
number of dominating modes of a Karhunen-Loeve 
transformation may be arbitrarily large. The dy- 
namics of a delta pulse, for example, moving peri- 
odically back and forth on a one-dimensional axis, 
can only be covered by as many basis vectors as 
different positions of the pulse occur. Its closed or- 
bit in state space is one-dimensional, but a large 
number of modes bfc is necessary to describe the 
STTS. This problem occurs in general when moving 
structures (e.g. solitons) appear in a spatially ex- 
tended system. Another reason why the Karhunen- 
Loeve transformation may not be the optimal choice 

for processing spatio-temporal data from a dynam- 
ical system, is its purely probabilistic character. A 
low energy mode that is discarded when using this 
transformation may on the other hand be very im- 
portant for the dynamical evolution. Therefore, al- 
ternatives are currently developed that try to avoid 
these problems [Kwasniok, 1996; Stone & Cutler, 
1996]. 

For STTS whose dynamics originates from 
a low-dimensional chaotic attractor, but cannot 
be decomposed into a small number of spatial 
modes, other methods have been suggested that are 
based on a time-dependent activation of spatial 
patterns (or modes) using a low-dimensional state 
space reconstruction from a suitably chosen global 
observable of the system [Parlitz &; Mayer-Kress, 
1994]. 

Another interesting question when dealing with 
spatio-temporal systems concerns the (decay of the) 
correlation of probes taken at different spatial lo- 
cations, where the word "correlation" may mean 
linear cross correlation or dynamical [Cenys et al, 
1991] or probabilistic measures [Buzug et al, 1994; 
Mayer-Kress & Kurz, 1987]. 

Most of the analysis tools for STTS are still in 
their infancy and will have to prove their general 
usefulness. The investigation of STTS thus pro- 
vides one of the main challenges of the near future, 
hopefully providing new tools that can be applied 
to large data sets with very complex dynamics. 

4.   Example From Acoustics 

As mentioned before, acoustics together with hydro- 
dynamics has been at the forefront of nonlinear 
dynamics and has also supplied one of the first 
experimental examples of nonlinear and chaotic 
dynamics via acoustic cavitation [Lauterborny & 
Cramer, 1981]. Moreover, it is a spatiotemporal, 
complex system far from being understood. The 
bubbles produced are highly nonlinear oscillators 
with their shock wave formation and light emission 
during oscillation, and their complicated interaction 
properties leading to three-dimensional filament 
formation. 

4.1.    Acoustic cavitation noise 

Acoustic cavitation is accompanied by strong sound 
emission called acoustic cavitation noise, and a 
cloud of bubbles appears in the liquid forming danc- 
ing filaments.   To investigate these phenomena an 
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hydrophone 

liquid filled 
container 

hollow cylinder of 
piezoelectric material 

Fig. 14. Basic elements of the acoustic cavitation experi- 
ment: A water filled container with a piezoelectric cylindrical 
transducer and a hydrophone. 

experimental arrangement has been set up as de- 
picted in Fig. 14. A cylindrical transducer of piezo- 
electric material is used to generate a sound field in 
water. A typical transducer was of 76 mm length, 
76 mm inner diameter, and 5 mm wall thickness 
submerged-in~a water filied glass container. Cylin- 
ders of different size were available driven at dif- 
ferent frequencies between 7 kHz and 23 kHz. A 
standing acoustic wave is set up inside the cylin- 
der having its maximum pressure amplitude along 
the axis of the transducer. A hydrophone monitors 
the sound output of the liquid. Some electronics 
and a computer surround the experiment to drive 
the cylinder and to store the sampled pressure data 
from the hydrophone. 

A spectral analysis of fully developed cavitation 
appearing at high driving levels reveals a broad- 
band noise spectrum with lines superimposed at 
the driving frequency and its harmonics, but also 
at the subharmonics, notably the first subharmonic 
at one half the driving frequency and its harmon- 
ics. To learn about the onset of this spectrum, 
experiments with increasing sound pressure ampli- 
tude of the driving sound field at, e.g. 23 kHz have 
been done. Conditions have been found, where a 
period-doubling cascade is observed leading to 
a low-dimensional strange attractor [Lauterborn 
& Cramer, 1981; Lauterborn & Holzfuss, 1991; 
Lauterborn et ed., 1993a]. Figure 15 shows an ex- 
ample of the spectrum of cavitation noise where two 
period doublings have taken place. The spectrum 
extends to high harmonics with almost equal ampli- 
tudes.  The chaotic attractor (actually there seem 

to be different types) has been visualized by em- 
bedding the pressure samples into reconstruction 
spaces [Lauterborn & Holzfuss, 1986; Lauterborn 
et al, 1993a] and quantified by determining the 

EXCITATION LEVEL (VI 

0    10   20   30   WO   50   60   70 

Tine (MSEC)  _o 

"»50 

300 
O 

- 5. 

- -10. 
en 
S-15 
" -20 

H "2S 

g-30 
tt -35 

-V0 ll ***r IU m 
50 100 

FREQUENCY (KHZ) 
150 

Fig. 15.    Power spectrum of acoustic cavitation noise after 
two period-doubling bifurcations. 
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0 
Fig. 16. Example of a chaotic sound attractor embedded in 
a three-dimensional space. Different projections illustrate its 
three-dimensional structure. 

57 



W. Lauterborn et al. 

fractal dimension [Lauterborn & Holzfuss, 1986] 
and the Lyapunov spectrum [Holzfuss & Lauter- 
born, 1989]. An astonishingly low-dimensional 
strange attractor (Fig. 16) is obtained, having a 
dimension between two and three and just one 
positive Lyapunov exponent. This fact is so as- 
tonishing, because the sound output is generated 
by hundreds of bubbles of different size each be- 
ing a nonlinear oscillator and each being capable 
of period doubling to chaotic oscillations [Lauter- 
born, 1976; Parlitz et al, 1990]. Therefore some 
cooperative effects must take place synchroniz- 
ing the bubble motions. A first approach to 
model bubble agglomeration in a sound field has 
been investigated [Parlitz et al, 1995; Akhatov 
et al, 1994]. We now turn to the measurement of 
the spatial dynamics. 

4.2.   Filamentary bubble pattern 

The acoustic cavitation noise is produced by a cloud 
of bubbles oscillating in the driving sound field. 
They arrange themselves into filaments resembling 
Lichtenberg figures [Lichtenberg, 1777]. Figure 17 
shows an example of the dendritic filament pattern 
seen along the axis of the transducer. Ten short ex- 
posure photographs (15 ns from a copper vapour 
laser) have been superimposed taken at 375 Hz 
from acoustic Lichtenberg figures produced from a 
15 kHz sound field. As this mode of photographing 
enhances the structure, the bubbles obviously move 
along the branches. To clarify the dynamics of the 
spatial patterns and of the bubbles forming them 
time-resolved investigations have been initiated as 
described below. 

AjiplpM 

Fig. 17. Example of the filamentary bubble pattern (acous- 
tic Lichtenberg figures) inside the cylinder in the projection 
along the axis of the transducer (Courtesy of A. Billo). 
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Fig. 18. Arrangement for high speed holographic cine- 
matography with a copper vapour laser pumped dye laser 
in an in-line geometry. 

4.2.1.    High speed holographic cinematography 

The observation and the visualization of the dy- 
namics of three-dimensional motion is a difficult 
problem. The visualization is approached by vir- 
tual reality with quickly improving results. The 
observation of three-dimensional physical systems 
by measurement is intrinsically difficult to perform 
in real time. Should the optical measurements be 
done with similar time resolution as the acoustic 
ones, for instance, at 1 MHz sampling rate, at least 
a few million GByte per second data rate would 
be needed, as a single three-dimensional image con- 
tains about 1 GByte of voxels (volume picture ele- 
ments). While this cannot yet be done in real time, 
high speed holographic cinematography comes close 

to it [Hentschel & Lauterborn, 1985]. By taking 
holograms at a rate of up to 69300 holograms per 
second it could be shown that the whole filamen- 
tary structure is undergoing period doubling simul- 
taneously with period doubling of the sound output 
[Lauterborn & Koch, 1987]. The acoustic source has 
thus been traced back to bubble oscillations. 

An arrangement for taking in-line holograms 
with a rotating holographic plate for spatial sep- 
aration of the individual holograms is depicted in 
Fig. 18. A copper vapor laser pumped dye laser 
for producing a series of high power coherent light 
pulses [Lauterborn et al, 1993b] is used. The de- 
vice is capable of taking holograms at rates up to 
20 000 holograms per second with an area per holo- 
gram of up to one centimeter square and a total 
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capacity of about 40 holograms or more depend- 
ing on the actual size chosen for a hologram. The 
copper vapor laser is capable of emitting a quasi 
infinite series of short light pulses with a dura- 
tion of about 15 ns and an energy of about 1 mJ 
each. The light consists of two spectral lines, green 
and yellow. The dichroic beam splitter selects the 
green line to pump the dye laser and dumps the 
yellow line into a beam stop. The electric shutter 
opens for the time of one revolution of the rotat- 
ing holographic plate on which the series of holo- 
grams is recorded. The dye laser serves as a co- 
herence transformer boosting the coherence length 
from the few millimeters of the copper vapor laser 
light pulses up to about 7 cm. Simultaneously 
the wavelength is changed from A = 510.6 nm to 
A = 571 nm (Rhodamine 6G dye). The spatial 
filter improves the beam quality by removing in- 
terference fringes collected by diffraction on dust 
particles on the mirrors. An in-line holographic ar- 
rangement is used. In this geometry the light pass- 
ing undisturbed through the liquid serves as the 
reference beam for the light scattered at the bub- 
bles. A series of 16 holographic images is shown 
in Fig. 19 taken photographically from a series of 
in-line holograms recorded at 5700 holograms per 
second. The driving sound field had a frequency 
of about 7 kHz in this case. The filaments to be 
seen are quite stable. They are mainly made up of 
bubbles with a typical size of 50 /an or less. 

The images of the holograms have been sub- 
jected to three-dimensional image processing as 
described next. 

4.2.2.    Digital holographic-image processing 

A series of holograms contains an enormous amount 
of information that cannot properly be analyzed 
manually. Therefore a digital image processing sys- 
tem for three-dimensional images from holograms 
has been developed to handle the large amount of 
data [Haussmann & Lauterborn, 1980]. The basic 
arrangement is depicted in Fig. 20. The hologram 
is illuminated with the phase conjugate reference 
beam for projecting the real image into space. An 
image dissector camera with 4096 x 4096 address- 
able pixels scans the three-dimensional image plane 
by plane, typically 50 to 100 planes depending on 
the depth of the investigated volume, and feeds the 
data into a computer system. It mainly consists 
of a transputer net of up to 45 transputers T800 
attached to a workstation with 128 MB RAM. The 
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Fig. 19. Reconstructed holographic images from a series of 
holograms taken at a rate of 5700 holograms per second of a 
filamentary bubble pattern. 

hologram 

laser beam 
expander! .^„„zerolh order beam 

Fig. 20. Arrangement for digital image processing from 
(off-axis) holograms using the phase conjugate image, a high 
resolution image dissector camera and parallel computing. 

transputers do the preprocessing of filtering and 
condensing the data leaving a data set per holo- 
gram of about 100 MB down from the about 1 GB 
of raw data read in. A large software package has 
been written for detecting and locating bubbles in 
the three-dimensional real image. 

It is notoriously difficult to visualize three- 
dimensional point distributions. The solution, that, 
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Fig. 21.    Color coded three-dimensional plot of a bubble distribution (Courtesy of H. Chodura). 

however, cannot be printed, is virtual reality where 
the observer can look around in the distribution. 
As a first step to implement a virtual reality sys- 
tem for this purpose we have stored a data base 
of three-dimensional images of bubble distributions 
obtained from a holographic series. One of the im- 
ages is given in Fig. 21 with color coded depth in- 
formation and bubbles plotted as spheres according 
to their size. They can be viewed on a computer 
monitor with stereo capabilities and shutter eye- 
wear. The holographic-image processing system is 
continuously improved for better performance with 
the ultimate goal to be able to study space-time 
chaotic systems. 

5.   Outlook 

During the last two decades, nonlinearity has be- 
come a new paradigm of science (and not only of 
physics), because nonlinear phenomena are present 
in virtually all areas of our physical existence. Not 
accidentally, the development of nonlinear dynam- 
ics took place in an interdisciplinary fashion. 

Nonlinearity manifests itself in the distribution 
of galaxies observed far out in the universe, in the 
distribution of matter in our milky way and the mo- 
tion of celestial bodies, in the turbulent flows within 
the atmosphere and the oceans, in the overwhelm- 
ing diversity of biological life on our planet, and, 
further down in size, to the motion of individual 
atoms. Nonlinear theoretical models of the physical 
world abound, and, in fact, fundamental theories of 
physics such as Einstein's theory of gravitation and 
other field theories are of nonlinear nature. 

In view of this complexity that we are embed- 
ded in, how could man proceed in the unveiling 
of physical truth? The key to success was empiri- 
cism and reductionism, as Descartes teached us: In 
performing physical experiments the essential phe- 
nomenon has to be isolated, other, distracting in- 
fluences have to be suppressed, all relevant quan- 
tities have to be controlled. In this sense, exper- 
iments are idealized — we reduce the complexity 
of a problem until we are able to identify relations 
that unravel the underlying physical laws. This 
line of attack has proved to be very successful, and 

60 



Experimental Nonlinear Physics 

many basic laws of nature have been found and 
formulated. 

To know the laws, however, does not mean that 
we may be able to predict how a given physical sys- 
tem will behave in the long run. This is the basic 
lesson that we have learned from nonlinear dynam- 
ics; the principle of limited predictability of nonlin- 
ear, classically deterministic, but chaotic systems. 
In this context, it imposes a limit on our ability to 
know that is comparable to the fundamental con- 
sequences of the uncertainty principle for quantum 
systems. 

In setting out to discuss the future of nonlin- 
ear experimental physics we must be aware that 
its evolution might also be "sensitively dependent" 
on unforeseeable events (it probably is). There 
are enough examples where predictions were tried 
and failed thoroughly. However, educated guesses 
and some speculations about the future directions 
of nonlinear experimental science are possible, and 
we should nevertheless make plans for the next few 
years, each individual to his or her best knowledge. 
In that, diversity and freedom of basic research 
are the guarantees for new fields of investigation to 
emerge and for the promotion of man's knowledge. 

The evolution of experimental physics depends 
mainly on two closely interacting developments: 
The progress in experimental techniques and instru- 
mentation, and the shift of focus on the investi- 
gated physical phenomena, which is related to the 
advancement of theory. That both areas are inti- 
mately connected has been shown by the progress of 
nonlinear dynamics during the last decade. The re- 
alization that deterministic systems with just a few 
degree of freedoms can generate erratic and complex 
behavior has launched experimental activity which 
was partly reviewed in Sec. 2. The understanding of 
such systems, on the other hand, has given exper- 
imenters new, computer-aided tools to better ana- 
lyze their experimental data. Thus, nonlinear time 
series analysis has become an indispensable tool for 
the analysis of chaotic dynamics and may be said to 
lie at the heart of experimental nonlinear physics. 
Up to now, and certainly for some time to come, 
time series of scalar or vector observables (with a 
few components only) will be the typically avail- 
able outcomes of experiments. Thus there exists a 
strong motivation to improve on the by now quite 
elaborate methods of nonlinear time series analysis. 

The science of nonlinear dynamics of low- 
dimensional systems has matured. Transition to 
chaos and the properties of low-dimensional at- 

tractors are quite well-understood now. The focus 
of attention will therefore shift to systems with a 
higher number of degrees of freedom, such as cou- 
pled oscillator systems and spatially extended sys- 
tems in hydrodynamics, optics or acoustics. This 
implies that data taking will increasingly become 
more-dimensional to capture the spatio-temporal 
evolution. First experiments that rely on the pro- 
cessing of picture sequences are now undertaken. 
Technology has reached a stage where two- 
dimensional picture streams (video data, but also 
pictures of higher resolution), i.e. three-dimensional 
data with two spatial and one time coordinate, can 
be handled or at least stored continuously for off- 
line processing. It can be imagined that even four- 
dimensional data streams can and will be taken 
(three space, one time coordinate) in the form of 
holographic series as reported above. As in the past, 
progress will strongly depend on available technol- 
ogy, in particular computational speed and large- 
data-handling capability. 

For such type of data (and the huge information 
streams associated with it) new methods of time se- 
ries analysis for multidimensional data have to be 
developed. The methods should be designed to ex- 
tract the most relevant information from the data 
in terms of some underlying theoretical model. It 
becomes quite clear that such modern experiments 
in nonlinear physics are only conceivable in connec- 
tion with powerful computers. Indeed, the border 
between the real experiment and its analysis by sim- 
ulation will become fuzzy. Computing power com- 
petes with experiment in sophisticated simulations, 
but it will also be necessary for analyzing experi- 
ments with complex systems. 

As computing technology advances, the on-line 
processing power of experimental equipment will al- 
low not only real-time evaluation of experimental 
outcomes but also the in-time reaction and manip- 
ulation of the system under investigation. Hope- 
fully, this will open up new ways for the controlling 
of complex dynamics, with many interesting con- 
sequences for applications. To speculate a bit, this 
would also make possible a totally new experimental 
approach to complex systems that might help to re- 
duce the (perhaps unnecessarily large) flood of data 
from high-dimensional systems: Automated inter- 
active experimentalization. The computer, con- 
trolling all relevant experimental parameters (and 
there could be many!), could be programmed as an 
adaptive system interacting with the experiment by 
"asking questions" that depend on the course of the 
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measurement. A simple and straightforward appli- 
cation of such an approach would be the analysis 
of the instabilities and of the bifurcation set of a 
hydrodynamic experiment, say. 

However, experiments are not made for the de- 
light of a computer (however smart it may be) but 
for the curious human being that turns on the knob. 
When the systems under investigation and their dy- 
namics are getting more complex, the experimental 
outcome has to be presented in the most intelligible 
way. To this end, virtual reality and 3-D visualiza- 
tion techniques have already been introduced into 
experiments and, in the future, will become more 
important. And in view of the above discussion, it 
is quite imaginable that the experimenter will take 
part in interactive experimentalization by acting in 
an artificial, knowledge- or model-based environ- 
ment, with the computer as the interface between 
an abstract, conceptual representation and the real 
physical situation. This would be, to the authors' 
opinion, the most desirable form of a virtual lab- 
oratory, where physical experiments have not been 
replaced by simulations but are supported by them. 

At this point it has to be remarked that, if these 
speculations become true, some well-established 
distinctions between scientific disciplines and their 
objects of study will have disappeared. For exam- 
ple, in a computer-based virtual lab, methods of ar- 
tificial intelligence or complex dynamics (e.g. adap- 
tive neural nets) might be employed to aid in the 
analysis. Regarding the object of study, a distinc- 
tion between natural objects and human-made and 
thus artificial objects, e.g. self-organizing comput- 
ing systems, might become irrelevant. 

This touches on one of the central themes of 
21st century physics: The problem of complexity. 
The word being often and widely used, a satisfac- 
tory definition of this notion is still lacking. Intu- 
itively, we relate complexity with structural features 
or dynamical behavior that "go beyond chaos", that 
are describable neither by a small set of character- 
istic numbers nor by simple algorithms. The traces 
of complexity, like those of chaos, are all around 
us in the natural world and human society where 
nonlinearity and interaction of many elements come 
into play. Indeed, to tackle complexity experimen- 
tally, quite complicated, interacting systems have 
to be studied. Whether such endeavour can be rec- 
onciled with the successful reductionistic approach 
is still an open question. 

Looking at the current state of experimental 
nonlinear physics, we recognize that classical non- 

linear dynamical systems are an important but not 
the only class of experimental systems. Nonlinear 
effects turn up, e.g. in a variety of transient phe- 
nomena that cannot be described by attractors in 
a given phase space. For example, the interaction 
of ultrashort light pulses with matter, the emission 
of shock waves and light in the process of cavita- 
tion, dielectric breakdown with plasma formation, 
the collapse of a supernova or laser fusion are intrin- 
sically nonlinear processes that are not considered 
in the context of dynamical systems. In such pro- 
cesses, many physical phenomena take place and in- 
teract, which makes numerical simulations difficult. 
Here, experiments are still ahead of the simulation 
capabilities. Also, new experimental techniques, in 
particular the development of high-power femtosec- 
ond lasers, have become available that will push the 
frontiers of experimentally achieved time resolution 
and power. And there is the thrill of experimental 
physics: Not to know which new phenomena and 
new laws might expect us; now within reach, but 
still to be discovered. 
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Subharmonic Route to Chaos Observed in Acoustics 
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A subharmonic route to chaos including period-doubling bifurcations up to//8 has been 
observed in experiments on acoustical turbulence (acoustic cavltation noise).  The system 
also shows signs of reverse bifurcation with increasing control parameter (acoustic driv- 
ing pressure amplitude). In view of the large variety of phenomena observed and yet to 
be expected the system investigated may well serve as a further experimental paradigm 
of nonlinear dynamical systems besides Rayleigh-Benard and circular couette flow. 

PACS numbers:   47.55.Bx, 47.25.Mr, 43.25.+ g 

There is increasing evidence that period-dou- 
bling bifurcations1 and strange attractors2 are 
common phenomena for a large class of non- 
linear dynamical systems.  Most of this evidence 
stems from relatively simple mathematical 
models like the three-variable differential sys- 
tems of Lorenz* and Rössler4 and one-dimension- 
al iterated maps on the unit interval5 which show 
links to dynamical systems via the Poincare* 
return map.  The discovery of universal proper- 
ties in period-doubling bifurcations of iterated 
maps by Feigenbaum1 could be confirmed for the 
Lorenz model6 and a five-variable model of the 
Navier-Stokes equation,7 and has stimulated the 
search for additional universal features of non- 
linear dynamical systems.8"11 

Compared with the large body of theoretical 
work, experiments are rather sparse.  Up to 
now there are only two physical systems where 
the onset of chaos is studied systematically and 
which show some analogy to the behavior of the 
above mathematical models.  These are the 
Rayleigh-Be"nard experiment on the flow in a flat 
convective layer of liquid heated from below12"14 

and experiments on circular couette flow (flow 
between two cylinders, the inner one rotating).15,IB 

Experiments in other fields are just emerging, 
such as in optics for optically bistable cavities17 

or proposed similar experiments with noisy 
Josephson junctions,18 charge-density waves in 
anisotropic solids and superionic conductors,19 

or pinned dislocation lines.20 

This paper presents experiments in acoustics 
which in view of the results to be reported and 
in analogy to the newly coined terms of "optical 
turbulence"17 and "solid-state turbulence"19'20 

may be called experiments on "acoustical turbu- 
lence." The experiment consists in irradiating 
a liquid (water) with sound of high intensity (con- 
trol parameter is the sound pressure amplitude) 
and looking for the sound output of the liquid, 

called acoustic cavltation noise.  The physical 
situation is a somehow fundamental one:  The 
transport of acoustical energy through a liquid 
is considered. It bears much resemblance with 
the Rayleigh-Be"nard problem where the trans- 
port of heat through a liquid is investigated. 

To irradiate the liquid a piezoelectric cylinder 
of 76-mm length, 76-mm inner diameter, and 5- 
mm wall thickness is used.  When driven at its 
main resonance at 21.56 kHz a high-intensity 
acoustic field is generated in the interior, and 
cavitation is easily achieved.  The noise is picked 
up by a broadband microphone21 and digitized at 
rates up to 2 MHz after suitable low-pass filter- 
ing (to avoid aliasing in the subsequent Fourier 
analysis) and strong filtering of the driving fre- 
quency (to be able to store the noise with just an 
8-bit storage).  Sound pressure power spectra 
are calculated via the fast-Fourier-transform 
algorithm from usually 4K samples out of the 
128K storage available.  More details of the ex- 
perimental setup are given elsewhere.2' 

Power spectra of acoustic cavitation noise 
usually consist of instrumentally sharp lines on 
a noise background. The lines are related to the 
driving frequency/0 and lie at (n/m)/0 (n, m = 1, 
2, 3,...).  Of special interest are the lines at 
m^2, n<m, i.e., in the subharmonic region / 
</0 of the spectrum. In early experiments the 
occurrence of lines at/,/2, /0/3, and/0/4 has 
already been found,23*24 but no convincing explana- 
tion could be given.  The explanation that bubbles 
in water driven at twice their natural resonance 
are responsible for the /0/2 line2S had to be aban- 
doned since bubbles of the necessary size could 
not be found and are unlikely to be present in the 
experimental situation.26 Instead, after an ex- 
tensive numerical investigation of bubble oscilla- 
tions, it has been argued that special ultrahar- 
monic resonances of bubbles smaller than reso- 
nant size (especially the \ resonance where two 
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oscillations of the driving sound field match 
three oscillations of the natural oscillation fre- 
quency of the bubble) are responsible for the sub- 
harmonic line at /0/2 in the power spectrum,26 

but a direct verification of this hypothesis has 
not yet been possible. 

The present experiments were undertaken to 
add to our understanding of the subharmonic line 
problem.  They differ, from previous experiments 
in that they are fully computer controlled to 
realize almost any desired control parameter 
history. 

Figure 1 gives just one example of a pressure 
power spectrum obtained at a driving voltage of 
15 V.  The history in this case was to linearly 
increase the driving voltage to 15 V and then to 
stay there for some time.   These precautions are 
necessary to arrive at the third period-doubling 
bifurcation with lines at K/0/8.   But even when 
staying at a constant voltage large fluctuations 
are observed, and usually only spectra with sub- 
harmonics as low as /0/4 can be observed.   Fig- 
ure 1 suggests that our nonlinear acoustical sys- 
tem may follow the period-doubling route to chaos 
and may belong to the universal class of Feigen- 
baum systems.   Unfortunately this could not yet 
be proved as the next bifurcation with lines at 
n/0/16 could not be reached.   There may be prin- 
cipal difficulties in achieving this aim because 
our system can be expected to be a noisy one 
and this has been shown to limit the bifurcation 
sequence.8 

As a result of the total computerization of the 
experiment we are able to do complex measure- 
ments on acoustical turbulence and to gather 

50 

FREQUENCY (kHz) 

FIG. 1.   Example of a pressure power spectrum of 
acoustic cavitation noise with subharmonic lines as low 
as/o/8 (/0 = 22.56 kHz),  i.e.,  three period-doubling 
bifurcations have taken place.  The driving frequency 
is strongly filtered. 

enormous amounts of data.  The question there- 
fore arises of how to present the results.  One 
way that we found very appealing is in the form 
of grey-scale pictures analogous to "visible 
speech" where the power spectrum is plotted 
versus time with the amplitude encoded as grey 
scale. We have adopted this kind of presentation 
for our studies of how the system reaches chaos 
and have plotted the pressure power spectrum as 
a function of the voltage at the driving transducer. 
Figure 2 gives an example for the case where the 
voltage is increased linearly from 0 to 60 V in 
about 250 ms.  During this time 128K samples 
of the pressure in the liquid are taken at a rate 
of 500 kHz.  The total experiment thus lasts just 
a quarter of a second.   From these data about 
1000 overlapping short-time spectra are calcu- 
lated with 4K data each and a shift of 128 sam- 
ples from one spectrum to the next.  In Fig. 2 
three successive spectra are combined to give a 
total of 370 spectra.  The grey level is encoded 
with the aid of a 3 x3 matrix so that a binary 
plotter can be used. 

FIG. 2.  Sequence of power spectra displayed as a 
grey-scale picture.  The voltage at the driving piezo- 
electric cylinder is increased linearly from 0 to 60 
V in 262 ms. 
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Many interesting features are immediately 
visible in Fig. 2: 

(1) The first period-doubling bifurcation sets in 
at about 12 V (see closed circle in Fig. 2). 

(2) Further subharmonic lines appear in a proc- 
ess that does not look like period doubling.  These 
lines seem to detach from the/0/2 (and 3/0/2) line 
with stops at 3/0/8 (5/0/8) and/0/3 (2/0/3) until 
suddenly and with large amplitude the /0/4 line 
and its odd harmonics set in (see 1/2, 3/8, 1/3, 
2/3, 1/4, 3/4, and cross in Fig. 2). 

(3) The/0/4 bifurcation occurs together with a 
marked increase in broadband noise and a broad- 
ening of the otherwise sharp line spectrum (from 
cross to open circle in Fig. 2; the white gap 
around/0 is due to the band reject filter needed 
to suppress the otherwise dominating driving fre- 
quency). 

(4) At about 43 V a further increase in the 
broadband noise level is observed with the line 
spectrum still detectable and additional lines at 
certain odd harmonics of/0/8 (see from open 
circle to open square and » in Fig. 2).   This 
state of the system ranges from 43 to 46 V only 
and is the most chaotic state encountered (chaos 
defined in terms of broadband noise at high level 
in the power spectrum). 

(5) In a process looking like reverse bifurca- 
tion,27 the system returns to a line spectrum 
with lines only at/0/2 and its harmonics and 
with much less broadband noise (open square 
in Fig. 2). 

(6) Satellite lines appear around /0/2 and 3/0/2 
(and also some other lines) which show some 
periodicity with the control parameter (open 
triangle in Fig. 2). 

A general observation from other experiments 
is that the state of total chaos seems to be un- 
stable since it cannot be sustained by the driving 
sound field for a longer period of time.  Instead, 
oscillations are observed between the background 
noise and the line strength.   Also single lines 
may visibly oscillate.   This is best seen in films 
produced from sequences of up to 2000 power 
spectra plotted on a graphic display (cathode-ray 
tube) and filmed with a 16-mm film camera. 

The picture of Fig. 2 is a rather condensed 
form of looking at the properties of a dynamical 
system.  It would be very interesting to see other 
dynamical systems like those of Lorenz3 and 
Rö'ssler4 as well as the experimental ones of 
Rayleigh-Be*nard and circular couette flow dis- 
played in this way. 

Some effort has been spent in modeling the ex- 

periments theoretically.  As a first step single 
spherical bubbles have been taken and subjected 
to a sinusoidal driving pressure of increasing 
amplitude.  The mathematical model is a highly 
nonlinear ordinary differential equation of second 
order for the radius of the bubble as a function of 
time and includes surface tension, viscosity, 
and compressibility of the liquid (water).28 Ra- 
dius-time curves have been calculated numerical- 
ly for different bubble sizes, sound pressure 
amplitudes, and frequencies to get response 
curves for this nonlinear system.28  To simulate 
the present experiments bubble wall oscillation 
power spectra have been calculated and plotted 
in the manner of Fig. 2 as a function of the driv- 
ing pressure.   Qualitatively similar behavior is 
observed but strongly depends on the bubble size. 
Of most importance seems to be the observation 
that bifurcations are obtained, mostly from/0 

to/0/2 to/0/3 (or also/0/4) to (quickly) /0/4 to 
chaos and then back to/0 or /0/2 (directly).   Thus 
both successive bifurcations as well as reverse 
bifurcations are observed in this simple mathe- 
matical model, like those encountered in the ex- 
periments. 

More sophisticated models must take into ac- 
count that many bubbles are present in the liquid 
which all couple via their sound radiation.   A 
fuller discussion of these questions as well as 
of the physical processes responsible for the ob- 
served phenomena is given in Ref. 22. 

We arrive at the conclusion that in our acoustic 
system there is a subharmonic route to turbu- 
lence, but one which does not solely proceed via 
successive period-doubling bifurcations although 
this route is strongly involved.  We therefore 
propose to make a distinction between a sub- 
harmonic and a period-doubling route to chaos. 
Moreover, our system shows signs of reverse 
bifurcations which may be worthwhile to study in 
greater detail. 

We are greatly indebted to W. Steinhoff for 
building the 128K-byte buffer storage out of IK, 
1-bit chips for our experiments, and G. Heinrich 
for building the microphone.  This work was sup- 
ported by the Fraunhofer-Gesellschaft, Munich. 
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A theory for stable bubble oscillations in high pressure sound fields is presented. It is based on the 
strong influence of the surface tension on the dynamics of small bubbles and takes into account rectified 
diffusion and the resonancelike response of small bubbles to very strong acoustic pressure amplitudes. 
This theory provides an explanation for the existence of small, stably oscillating bubbles that have been 
observed in experiments on sonoluminescence.   [S0031 -9007(96)02169-2] 

PACS numbers: 43.25.+y, 43.3S.+d, 47.55.Bx, 78.60.Mq 

Bubbles in a liquid that are subject to an external sound 
field not only oscillate strongly nonlinearly but may also 
emit light. This phenomenon is called sonoluminescence 
(SL) and was discovered by Marinesco and Trillat [I] in 
1933. Since then it has been investigated experimentally 
as well as theoretically by many authors [2-12]. The 
interest in SL was restimulated by the elaborate experi- 
ments of Gaitan et al. [6], who investigated SL of a single 
bubble in water trapped by a strong periodical acoustic 
field. This phenomenon is called single-bubble sonolu- 
minescence (SBSL) and was investigated in a number of 
papers [7-11]. 

One of the most striking results of SBSL experiments 
was the observation that bubbles can oscillate perma- 
nently for several days without dissolution and without 
changing their size. A detailed investigation of the un- 
derlying physical mechanism shows that there are many 
effects and phenomena that have to be taken into account. 
This list includes rectified diffusion, surface tension, dis- 
solved gas, thermoconductivity, acoustic radiation, viscos- 
ity, microstreaming around a bubble (maybe generated by 
surface waves on the bubble [13]), the nonlinear character 
of bubble oscillations, and the fragmentation and coales- 
cence of bubbles [14-17]. The analysis of experimental 
and theoretical results shows that the main effects that are 
important for the generation of stable cavitation bubbles 
are rectified diffusion, surface tension, and shape oscilla- 
tions. The mechanisms of how gas diffusion may lead 
to stability of the bubble size were discussed in [18] in 
order to analyze the possibility of multiple stable equilib- 
rium radii of the bubble. The stability of shape oscilla- 
tions was investigated in [19,20] where it was shown that 
large bubbles have a tendency to disintegrate due to un- 
stable surface oscillations. In this Letter we focus on the 
influence of rectified diffusion and surface tension on the 
stability of small bubbles in a sound field. 

Without external sound field, bubbles of any size 
are unstable because the pressure inside the bubble is 
larger than in the liquid, and therefore the bubble will 

dissolve slowly due to a continuous mass flux from the 
interior of the bubble into the liquid. In the presence 
of a periodic acoustic field the bubble starts to oscillate. 
During the expansion period gas diffuses from the liquid 
into the bubble, and during the contraction cycle the 
diffusion process takes place in the opposite direction. 
There is a net flow of gas into the bubble because the 
area of the bubble wall is greater during the expansion 
period and therefore more gas will enter during the 
expansion than will leave during the contraction cycle. 
This phenomenon is called rectified diffusion and leads 
to a growth of the bubble [21,22]. For small amplitudes 
it was shown [23,24] that the growth rate depends on 
the sound field amplitude Pa, the resonance radius Rr, 
and the equilibrium radius R0 of the bubble. This 
growth rate is closely correlated with the response curve 
that describes the dependence of the maximum bubble 
radius on the equilibrium radius. The theory for weakly 
nonlinear oscillations gives a good description of the 
growth and dissolution processes of sufficiently large 
bubbles and small pressure amplitudes. However, it 
provides no answer to the questions pertaining to (stable) 
sonoluminescence: Why are small gas bubbles in a liquid 
stable in the presence of a strong sound field? 

For single-bubble oscillations under medium and large 
pressure amplitudes a complicated scenario of bifurcations 
and coexisting (chaotic) attractors exists [25,26]. Our 
numerical simulations show, however, that for very small 
bubbles in very strong sound fields the dynamics becomes 
more regular and a new type of strong resonance with 
a thresholdlike increase in oscillation amplitude occurs 
[12,27]. The physical reason for this phenomenon is 
the fact that for very small bubbles the surface tension 
pressure Pa = 2a/R0 is very high and the bubbles 
behave like flexible solid particles even for large driving 
pressures. One cycle of a typical bubble oscillation for 
this case is shown in Fig. 1(b) for the normalized bubble 
radius R(t)/R0- Figure 1(a) shows the driving pressure 
of the external sound field pa(t) = -Pas,m{cot).  When 
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FIG. 1. The influence of surface tension on bubble oscilla- 
tions. Plotted is one period of oscillation (frequency v = 
(o/2ir — 20 kHz) of the normalized sound field pressure 
PaU)/po (a) and of the normalized bubble radius R(t)/RQ 
vs time t (b), (c) for a pressure amplitude of Pa = 1.5 bar. 
(b) A bubble with equilibrium radius R0 = I fim oscillates 
with small amplitude due to the relatively high surface tension 
pressure P„ = 2<r/R0. (c) For R0 = 1.5 /tm strongly nonlin- 
ear oscillations with high amplitude occur. 

we increase the size of the bubble RQ it starts to oscillate 
differently. During the expansion period the influence of 
the surface tension decreases rapidly, and therefore the 
amplitude of the expansion grows enormously leading to 
a strong collapse. The transition point may be called 
nonstatic Blake threshold [3,28]. The kind of oscillation 
present beyond this threshold is shown in Fig. 1(c). The 
results given in Fig. 1 and in all following figures have 
been computed using the Keller-Miksis model [26,29]: 

(-£)•« 4*0-£)-(-♦£) 
+ R 

pCi 

dP 

dt 

with 

2o~      Au, • 

~~R~   RR~ Pa{t)' 

for air bubbles in water at 20° C with K = 1.4, a = 
0.0725 N/m, p0 = 1 bar, C/ = 1500 m/s, and a driving 
frequency of (o = 2v • 20 kHz.   Qualitatively the same 
results have been obtained for the Gilmore model [30]. 

When the equilibrium radius of the bubble is increased 
further the influence of the surface tension pressure P„ 
becomes smaller and a nonmonotonous resonance curve 
for the normalized radius Rm/Ro occurs. These response 

3        4 
Rolum] 

FIG. 2. (a) Response curves showing the normalized maxi- 
mum bubble radius Rm/R0 vs the equilibrium radius R0 for 
different pressure amplitudes Pa = 1.1-1.5 bar. (b) Illustra- 
tion of the cavitation threshold showing the nonlinearly aver- 
aged concentration near the bubble wall (c)r vs the equilibrium 
radius R0 for different pressure amplitudes Pa = 1.1-1.5 bar. 
The horizontal dashed lines denote different levels of gas con- 
centrations c» in the liquid. The open circles denote the cavi- 
tation threshold value Rth of the radius and the filled circle the 
stable bubble radius Rs. 

curves are shown in Fig. 2(a) for different values of 
the pressure Pa. One can see that the nonmonotonous 
behavior starts for Pa > 1.2 bar. 

Now we investigate the rectified diffusion in the strong 
resonance region for small bubbles. The theoretical for- 
mulation for mass transport across the dynamic interface 
associated with a spherical bubble undergoing volume os- 
cillations was derived in Ref. [31]. The equations gov- 
erning the convection and diffusion of dissolved gas in 
the liquid outside a spherical bubble can been written in 
the following form: 

dc 
dt 

R2(t)R(t) dc dc       D   d ( , dc\ 

4~-<»+*)m*' * 

dm 

~dT = 4irR2(t)D 
dc 
dr r-R(t) 

(2) 

(3) 

Here Eq. (1) describes the convective diffusion, where 
R(t) is the bubble radius governed by some dynamical 
equation for bubble oscillations, c is the mass concentra- 
tion of gas dissolved in the liquid, and D is the diffusivity 
of the gas in the liquid.  Equation (2) gives the boundary 
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conditions at the bubble surface and far from it provided 
by Henry's law, which relates the concentration of gas in 
a liquid to the partial pressure of the gas above the liq- 
uid. The symbol H denotes Henry's constant and cx is 
the initial uniform gas concentration in the fluid where the 
bubble is assumed to be created. Equation (3) describes 
the rate of the gas transport across the bubble interface. 

This mass transport problem was solved approximately 
for large Peclet numbers [31] (Pe = RQ<O/D » 1). In 
this case Eqs. (l)-(3) can be simplified by a transforma- 
tion of the problem into normalized Lagrangian coordi- 
nates t] - [r3 - Ä3(r)]/3/?o to avoid difficulties because 
of the moving boundary conditions. Another analytical 
difficulty—oscillatory behavior of the concentration close 
to the bubble surface and slow diffusion behavior farther 
away from the bubble—was solved by splitting the prob- 
lem into two parts. Finally, it was shown that the time 
averaged rate of mass transport in the case of any non- 
linear periodic bubble oscillation may be approximated as 
follows: 

dm _ Coc - (c)T      „ f°° d-q 

Jo dr Trd 

c(R(0,t) 

1 rd ([377   +  Ä3(/)]4/3) ' 

(4) 

m 
m0 R0 rd CO 

Here c0 is the saturation concentration in the liquid 
separated from gas at pressure po by a plane boundary and 
mo is the mass of the gas soluted in the liquid displaced by 
the undisturbed bubble. The variable T = tD/R.1 is the 
slow diffusion time scale, and Trj is the dimensionless 
characteristic time of rectified diffusion mass growth rate 
of the bubble. 

In this approach two different averaging procedures are 
used. First, ordinary averaging over the period T of the 
acoustic field 

/  Jo 
f{t)dt- 

procedure  in  a and second, a "nonlinear averaging 
specific nonlinear time scale 

<W>r=  frJ,w   fTR\t)f(t)dt, 
f0R*(t)dt Jo 

where the radius evolution R(t) is used for computing the 
gas concentration near the bubble wall (c)T. This ap- 
proach was also used by Brenner et al. [18] to investi- 
gate the multiple stable equilibrium radii of the bubble for 
medium pressure amplitudes. Here we use it to consider 
the stability problem in the case of very small bubbles in 
a strong acoustic field. 

Figure 2(b) shows the averaged gas concentration (c)T 

near the bubble wall vs the equilibrium radius /?o of the 
bubble for different amplitudes Pa of the acoustic field. 
For small and medium values of Pa the concentration 
decreases monotonically as a function of the equilibrium 
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radius. For sufficiently large amplitudes Pa, however, 
the corresponding concentration curves possess a global 
minimum for small bubble radii. This nonmonotonous 
dependence of (c)r on Ä0 is a result of the strong 
resonance shown in Fig. 2(a). 

Since the characteristic time Trd in Eq. (4) is always 
positive the evolution of the mean bubble mass depends 
only on the difference between the concentration of gas in 
the liquid c«. and the nonlinearly averaged concentration 
near the bubble wall <c)T. As can be seen in Fig. 2(b) 
there are two possible scenarios. If ö* is large [upper 
dashed line in Fig. 2(b)] a single equilibrium point (c)T = 
c=o exists that is unstable. This case is denoted in Fig. 2(b) 
by the open circle at the point of intersection of the 
upper dashed line with the concentration curve for Pa = 
1.2 bar. The unstable equilibrium provides a threshold 
value Rlh for the bubble radius. Bubbles with radius 
/?o < /?th dissolve due to diffusion flux from the bubble 
into the liquid. On the other hand, bubbles with R0 > tf lh 

grow permanently due to rectified diffusion until they 
become very large (and may disintegrate). 

If c=c is small [lower dashed line in Fig. 2(b)] two 
equilibrium points (c)T = ö» exist. The left fixed point 
denoted by the open circle in Fig. 2(b) is unstable and 
closely related to the previous case. It defines the 
cavitation threshold radius /?,h. The equilibrium point 
plotted as a filled circle at the right hand side in Fig. 2(b) 
is stable and provides a stable radius Rs for single bubbles 
oscillating in the acoustic field. Bubbles with radius 
Rth < R < Rs grow until they reach the stable radius Rs. 
If the bubble radius is larger than Rs the bubble shrinks 
until RQ = Rs. A necessary condition for the existence 
of Rs is a nonmonotonous dependence of the nonlinearly 
averaged concentration <c)r on the equilibrium radius R0 

for small bubbles. Only in this case a range of c* values 
exists such that stable bubble oscillations are possible. 
For given small values of the concentration of gas in the 
liquid Coo there exists a lower threshold value Pc

a for the 
pressure amplitudes Pa that leads to stable bubbles as can 
be seen in Fig. 3 showing the dependence of the threshold 
value Rlh (dashed curve) and the stable bubble radius Rs 

(solid curve) on the pressure amplitude Pa. For small 
values of Pa bubbles of any size will dissolve. At some 
critical value Pc

a the stable bubble radius Rs occurs due 
to a saddle-node bifurcation. When the pressure Pa is 
increased further the value of Rs increases, the bubble 
becomes very large and will eventually be destroyed due 
to dynamical instabilities (e.g., surface oscillations). Such 
a finite pressure range for stable bubble oscillations has 
also been observed experimentally [6]. 

In this Letter a theory for stable bubble oscillations in 
high pressure sound fields has been presented that is based 
on the strong influence of the surface tension on the dy- 
namics of small bubbles. The approach presented takes 
into account the interaction of two effects: rectified diffu- 
sion and the resonancelike response of small bubbles on 
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FIG. 3. Cavitation threshold radius /?,h (dashed curve) and 
stable bubble radius Rs (solid curve) in dependence on the 
pressure amplitude Pa for fixed small value of the gas 
concentration c» corresponding to the lower dashed line in 
Fig. 2(b). The islands of growth (light shading) in the sea of 
dissolution (dark shading) is a necessary prerequisite for stable 
bubble oscillations and thus SBSL to occur. 

very strong acoustic pressure amplitudes due to the sur- 
face tension pressure. The results provide an explanation 
for the existence of small, stably oscillating bubbles that 
have been observed in experiments on sonoluminescence. * 

During the reviewing process a paper appeared where 
the occurrence of sonoluminescence in the parameter 
space (Ro,Pa) has been determined experimentally for 
just the case studied here, the small bubble, large acoustic 
pressure amplitude limit [32]. There one main finding is 
that sonoluminescence experimentally occurs along a line 
in the (RQ, Pa) parameter space, just as predicted by our 
Fig. 3 (solid line). We predict and with the measurement 
technique of Holt and Gaitan [32] it can be checked that 
this line starts at a bifurcation value where the stable 
and unstable branch of bubble oscillations equilibrium 
meet opening up an island of growth in the sea of 
dissolution. Both theory and experiment fall short in 
explaining the low gas content in the bubble. This is not 
at all astonishing as a wealth of other phenomena are not 
considered, for instance pertaining to the chemistry inside 
the bubble. 
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Bifurcation Superstructure in a Model of Acoustic Turbulence 
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A model of acoustic turbulence is investigated for its bifurcation structure by the calcula- 
tion of spectral as well as ordinary bifurcation diagrams and (subharmonic) attractor maps. 
A superstructure resulting from nonlinear resonances is found with period-doubling Feigen- 
baum direct cascades and Grossmann inverse cascades as fine structure. Connected with the 
superstructure is a new family of periodic chaos with a different type of chaos belonging to 
each basic subharmonic period of oscillation. 

PACS numbers: 47.55.Bx, 43.25.+y, 47.25.Mr 

When a liquid is irradiated with sound of high in- 
tensity it may rupture to form bubbles or cavities. 
The phenomenon is called acoustic cavitation1 and 
is accompanied by intense noise emission, the 
acoustic cavitation noise. The noise seems not to be 
due to a statistical rupture process in the liquid but 
to be of deterministic origin.2 The evidence stems 
from the subharmonic route to chaos (broadband 
acoustic noise) which is observed when the sound 
pressure amplitude (taken as the control parameter) 
is raised. Thus an example of acoustic turbulence 
had been found experimentally.2 

The question left is how to describe the experi- 
ment theoretically, in order to get a deeper under- 
standing of the nature of the phenomenon. This 
paper investigates a theoretical model which, 
although relatively simple, displays diverse routes 
to and through chaos and complicated bifurcation 
structures. As is made evident below these may be 
explained as resulting from a superstructure of non- 
linear hysteretic resonances with Feigenbaum3 

direct and Grossmann4 inverse cascades as fine 
structure.   In the chaotic regions the solutions of 

R -I d2R     3 
dt1      2 

1- U 
3C 

dR 
dt '♦£ H- 

the model can also be transformed via subharmonic 
Poincare maps into one-dimensional quadratic- 
looking maps. This connection is considered the 
main proof that the model belongs to the class of 
deterministically chaotic systems.5 

The model is obtained by a set of simplifying as- 
sumptions to make it tractable. In the experiment, 
once the rupture process has started, thousands of 
tiny bubbles are generated, oscillating and moving 
in a complicated manner.6 As a first approximation 
the mutual interaction of the bubbles is neglected. 
Then only the dynamics of a single bubble in a 
sound field needs to be considered. As a further 
approximation translational motions are neglected, 
and the bubble is taken as spherical. Even this sys- 
tem is far too complex to be written down easily as 
a result of heat and mass transfer across the boun- 
dary of the bubble. When these effects are neglect- 
ed a reasonable model for an oscillating spherical 
bubble in a cold liquid can be formulated.7 It is 
given by a highly nonlinear ordinary differential 
equation of second order for the radius R of the 
bubble as a function of time t: 

U U_ 
C 

RdR-°' 
dR 
dt 

U. (1) 

U is the bubble wall velocity, C is the sound velocity at the bubble wall, and H is the free enthalpy which for 
water is given by 

//■ 
n     A \ln 

n—\    p0 
lip (tD+BV'-W'-p^ + B)1"-"'>). (2) 

A, B, and n are constants (A - 3001 bars, B = 3000 
bars, and n-7), and p0 is the density at p0 

(po-0.998 g cm-3, p0-l bar). The pressure 
p (R) at the bubble wall is given by 

P(R)- . 2o- P0 + 1T 
l*r 

R 
2a 
R R   ' 

(3) 

where p0 is the static external pressure (1 bar), RH 

the equilibrium radius of the bubble, o- the surface 
tension (72.5 dyn cm-1), y the ratio of the specific 
heats of the gas in the bubble (1.33), and p. the 
viscosity of the liquid (0.01 P). The pressure at in- 
finity p„ is taken as pBa=p0-pasm(2irfat), with 
p„ the acoustic pressure amplitude of the applied 
sound field and fa its frequency. The sound veloci- 

© 1984 The American Physical Society 
78 



VOLUME 53, NUMBER 24 PHYSICAL REVIEW LETTERS 10 DECEMBER 1984 

ty in the liquid at the bubble wall is given by 

C = [C0
2 +(n - \)HYn, with C0= 1482 m/s. 

The above model has been investigated for its 
sound radiation and resonance behavior* in the spir- 
it of earlier work9 and the first results connecting it 
with the experiments2 have been given.10 To follow 
as closely as possible the experimental procedure 
the bubble, described by Eqs. (1) to (3), is subject 
to an increasing or decreasing sound pressure am- 
plitude pa. The numerically obtained radius-time 
curve is transformed into a series of short-time 
spectra as were the pressure-time data of the experi- 
ment2 and plotted in the same way as the "theoreti- 
cal visible noise." Only the bubble radius is con- 
sidered here and not the sound radiated, but this 
does not affect the subharmonic bifurcation struc- 
ture as the radiated sound is directly coupled to the 
radial motion. We suggest calling this kind of plot a 
spectral bifurcation diagram. It may be used with any 
chaotic system and not just noise2 or bubble radii. 

Figure 1 gives an example of a calculated spectral 
bifurcation diagram for the following parameters: 
bubble radius at rest R„ - 100 /xm; driving frequen- 
cy /„ = 23.56 kHz (a value used in experiments); 
and sound pressure amplitude pa raised from 0 to 
14.8 bars in 40 ms. Each single spectrum has been 
calculated from 2K data points comprising 0.68 ms. 
By shifting the window of 2K data by IK in the data 
base of calculated radii a new spectrum is obtained 
and plotted every 0.34 ms. The resolution in the 
frequency domain is ■£• of the driving frequency. 
The individual spectra are normalized to the strong- 

ly   5- 

1/1 

>- 
Z 
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1- 

£   OH 

SOUND PRESSURE AMPLITUDE (bar) 
0               3.7             7.4            11.1            14.8 
J 1 1 I i 

i 1 1 1 1 
0 10 20 30 40 

TIME (ms) 
FIG. 1. Spectral bifurcation diagram of bubble wall 

motion for a bubble with radius at rest of R„— 100 fim 
driven at a frequency of f„ - 23.56 kHz. The sound pres- 
sure amplitude pa is raised from 0 to 14.8 bars in 40 ms 
(photograph from a color graphics terminal). 

est line in the spectrum, in this case always the line 
at the normalized driving frequency 1. The gray 
scale unfortunately does not give a good representa- 
tion in print of the relative intensities of the spec- 
tral lines (compare Ref. 2). Thus we are now work- 
ing with color graphics. These, however, are not 
reproducible here. A quite complicated behavior is 
observed with a period-doubling bifurcation se- 
quence to chaos, a window in the chaotic region, 
and then, starting at about 20 ms (7.4 bars), a 
second period-doubling bifurcation sequence. The 
apparently chaotic bands near 1 and 7 ms are due to 
transients and are not of importance here. The 
second sequence we suggest calling a subharmonic 
period-doubling bifurcation sequence because it is 
not a window in the chaotic region connected with 
the first sequence but has its origin in a new attrac- 
tor of basic period 2Ta - 2/fa (called a subharmonic 
resonance in nonlinear oscillator theory9) which 
takes over stability from the chaos of basic period 
Ta and then undergoes itself period doubling to 
chaos of basic period 2Ta. Our nomenclature infers 
that the seemingly similar spectra at about 7.5 and 
25 ms are of different origin. This is indeed the 
case, as can be shown by recourse to the resonant 
properties of the system, i.e., by tracing back the 
oscillation in parameter space (fa,pa) to the corre- 
sponding resonance peak at lower driving pressure 
amplitudes pa. It then becomes evident that the 
second sequence starts from a different resonance 
than the first one. A full projection of the traced- 
back bifurcation diagram in (R,fa,pa) space cannot 
be given because of computer-time limitations. As 
the resonance to which the oscillation at about 25 
ms can be traced back is a subharmonic resonance 
of order y (see Ref. 9 for the definition) this oscil- 
lation happens to be of doubled period. Depending 
on the order of the resonance, period tripling, quad- 
rupling, and so on may and does occur (compare 
Fig. 2 below). 

Many spectral bifurcation diagrams have been 
calculated which lead to the following picture of the 
bifurcation properties of our model. In the (fa,pa) 
parameter space many period-doubling Feigenbaum 
direct cascades and Grossmann inverse cascades are 
encountered. They appear as distinct entities and 
are therefore called Feigenbaum-Grossmann objects. 
The question of what governs the distribution of 
these objects in parameter space can be answered by 
the observation that they adhere to the resonances 
of the system. The resonances thus impose an or- 
dering on the appearance of Feigenbaum-Gross- 
mann objects, i.e., a distinct bifurcation superstruc- 
ture. 
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FIG. 2. Bifurcation diagram of a bubble with a radius 
at rest of R, — 230 (im. Frequency of the driving sound 
field is fa = 23.56 kHz. The sound pressure amplitude is 
increased in steps of 0.1 bar. The scattered points that do 
not follow the obvious pattern are due to transients that 
have not yet died out (a result of computer-time limita- 
tions). 

The scenario put forward above is not considered 
to be a specialty of the above model but to be a gen- 
eral (in the chaos language, universal) feature of 
most driven nonlinear oscillatory systems. This con- 
jecture gets more support from experiments and 
calculations with a driven semiconductor oscillator11 

or Toda oscillator.12 The so-called self-replicating 
attractor of Brorson, Dewey, and Linsay11 is conjec- 
tured to belong to resonances of basic periods 1,2, 
3, 4, and 5, each with its own separate type of 
periodic chaos. The driven Toda oscillator12 

x + rx + (e*— U — cr cosoof (4) 

is an equation that we believe will become of funda- 
mental importance in the area of nonlinear oscilla- 
tions as a result of its simplicity. Recently Risken13 

encountered this equation in the context of quan- 
tum optics when simplifying a set of laser equa- 
tions. Equation (4) as well as the experiments12 

show different basic periods and their period dou- 
bling to separate types of chaos. One result then is 
that the bifurcation structure of a driven dissipative 
nonlinear oscillatory system is composed of many 
Feigenbaum-Grossmann objects, distributed in 
parameter space as a kind of elementary fine struc- 
ture according to the resonance properties of the 
system in question. 

To test our ideas, also ordinary bifurcation dia- 
grams have been calculated via the Poincare return 
map. In these diagrams the radii of the bubble in 
the Poincare plane of section are plotted versus the 

sound pressure amplitude. Figure 2 gives a bifurca- 
tion diagram for a bubble with a radius at rest of 
R„ = 230 /im in a sound field of frequency 
fa - 23.56 kHz. First a period-1 oscillation (in units 
of Ta = \/fa) is stable; then a jump occurs to a 
period-2 oscillation. The first subharmonic reso- 
nance has taken over before the period-1 oscillation 
has found its way to chaos and even to the first 
period-doubling bifurcation. The subharmonic os- 
cillation of basic period 2 then bifurcates by succes- 
sive period doubling to chaos. Near 5 bars the 
second subharmonic resonance of basic period 3 
takes over, which again bifurcates to chaos. This 
diagram strongly resembles those of Brorson, 
Dewey, and Linsay11 and Klinker, Meyer-Ilse, and 
Lauterborn,12 and fits into the resonance scenario 
developed above. 

Next, what we suggest calling attractor maps have 
been calculated as a check of the chaotic properties 
of the oscillation. As an attractor map we define 
the map which is given by the approximate curve 
that may be obtained when one coordinate (say x) 
of a point on an attractor in a Poincare plane of sec- 
tion is plotted versus the preceding one for a suffi- 
cient number of (usually consecutive) pairs, i.e., 
xk + i^TrxP{xk,yk), where P denotes the Poincare 
return map and n\ the projection on the first entry 
of P. The first known example of an attractor map 
is the well-known Lorenz map given by a hatlike 
function.14 

It is found that attractor maps may consist of 
several separate pieces. The number is connected 
with both the basic period of the attractor from 
which chaos originated and the inverse cascade of 
split chaotic regions of Grossmann.4 In the fully 
developed chaotic region which occurs after period 
doubling and inverse cascade the number of 
separate pieces of the attractor map is the number 
of the basic period from which chaos originated. 
Thus in the case of the R„ = 230-/tm bubble and a 
sound pressure amplitude of 7.4 bars (compare Fig. 
2) we get a three-piece attractor map, whereas an 
ÄB«=100-|im bubble at 11 bars yields a two-piece 
attractor map. By the definition of a subharmonic 
attractor map of order m through xk+m — irxP

m(.xk, 
yk), where Pm is the mth iterate of the Poincare 
map, and the plotting of xk+m vs xk, a one-piece 
map is obtained with a quadraticlike maximum. An 
example is given in Fig. 3, where rk+2 is plotted 
versus rk for a 100-fim bubble at 11 bars sound 
pressure amplitude. Here r is the radius normalized 
to the maximum radius encountered in the se- 
quence. We have several examples that show that 
when the inverse cascade is followed in the direc- 
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FIG. 3. Subharmonic attractor map of order 2 for the 
normalized radius r-R/Rmtx, Rmn-S46 pm. Ä.-100 
M"i, f» - 23.56 kHz, pa - 11 bars, Poincare plane of sec- 
tion at wf-155°. 

tion of the splitting of chaotic regions the attractor 
map also splits, which may be reconciled by using 
the (m x2")th iterate of the Poincare map where n 
is the number of splittings that already occurred in 
the inverse cascade. 

In this paper we have investigated a theoretical 
model of acoustic turbulence and found a connec- 
tion between nonlinear resonances and the struc- 
ture of bifurcation diagrams. This connection is 
conjectured to be a general (or universal) feature of 
driven dissipative passive nonlinear oscillatory sys- 
tems. The nonlinear resonances impose a super- 
structure on the bifurcation behavior of the system. 
Feigenbaum direct and Grossman inverse cascades 
occur as fine structure which may be (partially) 
suppressed by the gross hysteresis features from the 
superstructure. 
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The seeds of nonlinear acoustics were planted in the 18th and 19th centuries by 
the mathematicians and physicists who laid the theoretical foundations for fluid 
mechanics and wave motion. The principal contributions during this era are summarized 
in a benchmark article published by Lord Rayleigh at the beginning of the 20th century 
["Aerial plane waves of finite amplitude," Proc. Roy. Soc. A 84,247-284 (1910)]. 
However, not until the middle of the 20th century were reasonable approximations of 
these theories developed that provided access to relatively simple yet accurate 
quantitative descriptions of nonlinear effects in sound fields. 

In recent years, sessions on nonlinear acoustics at meetings of the Acoustical 
Society of America have focused on topics that include sonic booms generated by 
supersonic aircraft, extracorporeal lithotripsy (the disintegration of kidney stones with 
focused shock waves) and a host of other nonlinear effects in biomedical acoustics, 
nonlinearity in thermoacoustic engines and acoustic pumps, use of acoustic radiation 
pressure to levitate and position objects in the microgravity environment provided by 
spacecraft, and acoustical measurement of third-order elastic properties of rock and other 
elastic solids. Each of these processes is associated with nonlinear terms that are 
discarded in the small-signal approximation (often called the acoustic approximation) of 
the equations of motion and state. 

The purpose of this lecture is to provide an introduction to the basic theoretical 
models used in nonlinear acoustics, and to illustrate the principal nonlinear effects with 
results from a variety of experiments. Topics of discussion will include overviews of: 
distortion and shock formation in finite amplitude waves; harmonic generation and 
spectral interactions; effects of absorption and dispersion in thermoviscous fluids, 
relaxing media, and bubbly liquids; intense sound beams; parametric arrays; radiation 
pressure; acoustic streaming. While the emphasis is on finite amplitude sound in gases 
and liquids, similarities and differences with nonlinear properties of elastic waves in 
solids will be pointed out. 

A road map for this lecture is the accompanying overview article having the same 
title (M. F. Hamilton, "Fundamentals and Applications of Nonlinear Acoustics," ASME, 
1986). The second review article (D. T. Blackstock, "Nonlinear Acoustics— 
Theoretical," AIP, 1972) presents greater theoretical detail and is included primarily for 
future reference. It contains the main equations used to describe waveform distortion 
and shock formation in one-dimensional progressive sound waves. A recent textbook on 
nonlinear acoustics that may be consulted for additional topics and references is by M. F. 
Hamilton and D. T. Blackstock, eds., Nonlinear Acoustics (Academic Press, 1998). 
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Abstract 

In recent years, sessions on nonlinear acoustics at meetings of the Acoustical 
Society of America have focused on topics that include modeling of sonic boom rise 
times to predict noise due to supersonic aircraft, extracorporeal lithotripsy (the 
disintegration of kidney stones with focused shock waves), nonlinear losses in 
thermoacoustic engines, use of acoustic radiation pressure to levitate and position 
objects in the microgravity environment provided by spacecraft, and acoustical 
measurement of third-order elastic properties of rock. Each of these processes is 
associated with nonlinear terms that are discarded in the small-signal approximation 
(sometimes called, regrettably, the acoustic approximation) of the equations of motion 
and state. 

The purpose of this lecture is to provide an introduction to the basic theory of 
nonlinear acoustics, and to illustrate the principal nonlinear effects with results from a 
variety of experiments. Topics of discussion will include: distortion and shock 
formation in finite amplitude waves; harmonic generation and spectral interactions; 
effects of absorption and dispersion in thermoviscous fluids, relaxing media, and 
bubbly liquids; diffraction of intense sound beams; parametric arrays; radiation 
pressure; acoustic streaming. While the emphasis is on finite amplitude sound in 
gases and liquids, similarities and differences with nonlinear properties of elastic 
waves in solids will be noted. 

The road map for this lecture is the accompanying overview article having the 
same title (M. F. Hamilton, "Fundamentals and Applications of Nonlinear Acoustics," 
ASME, 1986). To prepare for the lecture, students may benefit from perusal of the 
following sections: Introduction (history); I. Basic Concepts (equations for distortion 
and shock formation in plane waves); II. Acoustic Saturation (the upper limit on how 
much sound power can be transmitted through a fluid); III. Suppression of Sound by 
Sound (use of one sound wave to pump energy out of another); VII. Parametric Arrays 
(a novel method of beamforming); VIII. Self-Demodulation (nonlinear distortion of a 
pulse). 

The second review article (D. T. Blackstock, "Nonlinear Acoustics—Theoretical," 
AIR 1972) is included primarily for future reference.  It contains the main equations 
used to describe waveform distortion and shock formation in one-dimensional 
progressive sound waves. 
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ABSTRACT 

The fundamental theory of nonlinear acoustic in fluids is reviewed in the context of practical 
apphcat.ons. Fu* the epical theory of nonlinear sound wave propagation i, present 
ample, of acoustic saturation and the snppre^ion of sound by sound are given. Spreading and 
hermoviscou. losses are then taken into account. A spectral analysis b presented that is usli 

for numerical computation of finite amplitude wave propagation. Classical models of param t- 
ric transmitting and receiving arrays are discussed, including the self-demodulation property 

Une'ltJTT* "TSr ^^^ a"enti°» » &** * ^ combined effects of non" 
hneanty absorption and diffraction in directive sound beams. The distinction between linear 
and nonhnear farfield regions is emphasised. Analytically simple Gaussian beam models are 
presented with transformations that permit their application to radiation from circular Lure" 

INTRODUCTION 

Only during the last few decades has nonlinear acoustics evolved into its own distinctive 
area of research. The development of high power sound sources and improved signal processing 
techniques has supported a growing number of practical applications that take advantageof finite 
amplitude sound. Nonhnear sonar, referred to as parametric arrays [l| have found widespread 
use in underwater apphcat,ons. An increasingly important parameter for charactering body 
tissue with medical ultrasonics is the acoustical nonlinearity of the specimen [2|. Nonlinear effect! 
are responsible for the improved resolution observed when acoustic microscopes are operated at 
high sound power levels [3]. The propagation of noise from underwater explosion, [4] and jet 
aircraft engines (5] is an inherently nonlinear phenomenon.   Just recently, the Space Shuttle 

TT? t Z " TTU8 f°r leViUting ind P°siti°™S objects with high intensity sound. 
The list of these and other applications is expanding as advances continue to be made in the 
science and technology of nonlinear acoustics. 

ce3^7-t^°bIT u n0nIInear aC0UStiCS taVC bCen P0ndered Since the «* «ntury, suc- 
hen   TTnT     tt8CrCC haVC beCn intermi"-1. «» early history of which h« been 
tl eov      "    \    T     l   • ^erhaP8 thC ** (alth0Ugh *li*™y !—0 -»K««- wave equa- 
ZanlefSU        I T ?"? ™ PUblished * EuUr M * 1759"   Shortly thereaL, 
tilsoeed1 L tT *lT?* *** in—0 «««1 -lution which yieldel a propaga! 
t.on speed that depend, on the local amplitude of the sound wave. Lagrange concluded that his 
solution was n error because he felt that a nonconstant propagation sp«d, Vh b^ mtchaLm 
in nonlinear distortion, violated the observed behavior of sound. Not unt 1 1808 did PoLTn [S 

u^UnTrh 8c° Ut,0n 'TT ,Pl-ne WaVeS ^ M iSOtHermal ™ *"«»* ^ £Z® 
snetTt K ,1  TrenC"      HU SOlUti°n-   TLe imPUcat™ o( the nonconstant propagation 

llrf Ü, . 7 agrang; and POi8SOn WM CXpIained by Stok" I10«' wh° » I«« published 
the first illustration of waveform steepening.   Stokes also produced the first analysis of shock 

ItTeThocTfLtTi^ "* heat «*««« « -ponsible for the ineXble LIs 
at the shock front. The beg.nn.ng era of research in nonlinear acoustics concluded with two 
important papers published around 1860. Riemann [H| obtained a solution for plane w^L that 
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travel in opposite direction» by what is now referred to as the method of characteristics, and 
Earnshaw [12] tackled the difficult problem of describing the sound radiated by the arbitrary 
finite displacement of a piston. A number of the early papers have been compiled recently by 
Beyer [13] in a collection of benchmark papers in nonlinear acoustics. 

Apart from the analyses of shock waves by Rankine, Hugoniot, Rayleigh, and Taylor, the 
next significant advance in the understanding of finite amplitude sound awaited the publication 
of three papers in the 1930's. Two Fourier series solutions were derived for plane waves that 
start out as pure tones and subsequently undergo harmonic distortion as they propagate. One 
by Pubini (H| applies to waves in * lossless fluid prior to shock formation, and the other by 
Fay [15] is an asymptotic solution for strong waves subjected to viscous losses. While these two 
papers provide the first explicit models of harmonic generation in sound waves, the third paper 
by Thuras, Jenkins, and O'Neil [16| gives an account of the first experimental investigation of 

this phenomenon. 
Wave equations derived around 1950 by Eckart [17|, Lighthill |18], and Mendousse (19) 

opened the modern era of nonlinear acoustics. The equations of Eckart and Lighthill permitted 
the study of nonplanar finite amplitude waves, while Mendousse demonstrated that the Burgers 
equation may be used to model plane waves in viscous fluids. A considerable number of papers 
then followed both in the United States and the Soviet Union. Generalizations of the Burgers 
equation were shown by Khokhlov and coworkers to model spherical (20] and cylindrical [21] 
waves, and detailed solutions of the plane wave Burgers equation were investigated in detail 
by Blackstock [22|. By far the most noteworthy contribution in terms of far reaching practical 
applications was the work by Westervelt on the scattering of sound by sound [23,24| which 
ultimately led to his theory for the parametric array [l] in  1960.    In the parametric array, 
the nonlinear interaction of two high frequency sound beams produces a narrow beam of low 
frequency sound having virtually no sidelobes.   The process permits the radiation of highly 
directive sound from a relatively small transducer, with the added benefit that wide frequency 
bands may be transmitted.   Experimental verification of the parametric array by Bellin and 
Beyer [25] was reported in the paper following that of Westervelt [1] at a meeting of the Acoustical 

Society of America. 
Unlike any other single application of nonlinear acoustics, the parametric array was responsi- 

ble for a renaissance of research activity, the history of which is discussed in a review by Muir [26]. 
Even though the parametric array was first conceived and tested in the United States, subsequent 
work on the device before 1968 appeared only in England and Norway. Berktay [27-29] worked 
out examples for a variety of possible applications afforded by the parametric array, although a 
few of his theoretical predictions were later found [30,31] to be somewhat overoptimistic. Never- 
theless, as Muir [26] points out, the lack of activity in the United States ended when it became 
evident from Berktay's work that the attractive features of the parametric array often outweigh 
the inherent inefficiency of the device. By the early 1970*s, parametric sonars were in use in 
both civilian and military applications, and papers on parametric arrays presented at acoustical 
society meetings and symposia numbered more that 100 per year. Recently an entire textbook 
devoted to parametric arrays was published by Novikov, Rudenko, and Timoshenko [32]. 

The next turning point for the practical application of nonlinear effects in sound beams 
resulted from the theoretical work performed in the Soviet Union around 1970 by Zabolotskaya 
and Khokhlov [33| and by Kuxnetsov [34]. The result was a parabolic nonlinear wave equation, 
referred to in the Soviet Union as the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation, which 
provides an excellent model for the combined effects of nonlinearity, diffraction, and dissipation 
in directive sound beams. Similar parabolic equations had previously been used to describe 
the propagation of laser beams, and consequently the model is sometimes referred to as the 
quasioptical approximation. Throughout the 1970's there appeared in the Soviet literature a 
large volumeof work based on the KZK equation, much of which was devoted to Gaussian beams. 
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A review of the numerical work was published recently in a book by Bakhvalov, Zhileikin, and 
Zabolotskaya [35]. However, the most definitive research on nonlinear effects in sound beams was 
published this decade in a series of papers by the Norwegian mathematicians Nate Tj*0tta, Tjtftta, 
and «workers [36-42|. Their, work is important in that it accounts for the intricate diffraction 
effects that exist in high intensity sound fields radiated from circular sources, a geometry which 
characterizes most ultrasonic transducers. 

The purpose of this review is to highlight the fundamental theory of nonlinear acoustics 
while aiming toward results that have found recent application. The review begins with the 
classical theory of nonlinear effects in plane wave propagation. Distortion leading up to shock 
formation is discussed, with the role of thermoviscous and spreading losses taken into account. 
Examples of acoustic saturation and the suppression of sound by sound are given. Various model 
equations of nonlinear acoustics are presented, and methods for obtaining both analytical and 
numerical solutions are pointed out. The classical model for the parametric array is discussed. 
Finally, the recently well understood role of nonlinear effects in directive sound beams is stressed 
because of its many practical applications. 

Any review of an area of research bevitably reflects the interests of the author, and in any 
event it cannot do justice to the wide variety of topics usually involved. For example, strong shock 
waves, radiation pressure, and acoustic streaming are not considered. Two books on nonlinear 
acoustics may be referred to for more complete discussions. One by Beyer [43] highlights the 
many achievements in the field, including much of the experimental work. The other by Rudenko 
and Soluyan [44] is more of a textbook, but whose treatment of recent developments is restricted 
to work done in the Soviet Union. 

I. BASIC CONCEPTS 

A particularly simple equation may be derived for a progressive plane wave that propagates in 
a perfect isentropic gas (see Ref. 45): 

du du     Ä 
3r + (<=o+^)- = 0, (1) 

where u(x,l) is the particle velocity of the gas, c0 = v^o/Po is the small signal sound speed, 
P0 and po are ambient values of the pressure and density, respectively, 7 is the specific heat 
ratio, and ß = (7 + l)/2 is the coefficient of nonlinearity. Equation (1) is exact, from which we 
obtain for the propagation speed of a finite amplitude acoustical disturbance 

dx 
li=c0+ßU. (2) 

Points (wavelets) of the waveform having different particle velocity amplitudes thus propagate 
at different speeds. There are two physical mechanisms responsible for this phenomenon. First, 
the passage of a sound wave is accompanied by pressure, density, and temperature fluctuations 
m the medium. As a fluid is compressed, its stiffness increases in such a way as to cause a 
corresponding increase in the sound speed. A compression phase of a wave therefore sees a 
slightly stiffer medium with a higher sound speed than that for an expansion phase. For a 
perfect isentropic gas the sound speed is 

c = Co + (lzi)Ui (3) 

where the small signal sound speed c0 is the limiting value for infinitesimal wave amplitudes. 
The second mechanism that contributes to the nonconstant propagation speed is convection. 
The motion of the fluid represented by the particle velocity actually constitutes a local flow field. 
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Fig. 1—Sketch of waveform 
distortion. 

To account for the convection of a wavelet by this flow, the local velocity u must be added to 
Eq. (3) in order to recover the propagation speed in Eq. (2). 

The nonconstant propagation speed causes peaks of a sound wave to travel faster than the 
troughs, a process which can eventually lead to shock formation.  Shown in Fig. 1 is the Erst 
illustration of waveform distortion from the paper by Stokes [10]. The upper curve represents 
the spatial profile of a waveform at some instant in time, with the letters o, b, and c marking 
the lero crossings of the wave.  According to Eq. (2), all lero crossings propagate at the same 
speed c0. In the lower portion of the figure is a second snapshot of the same wave but at a later 
time and at a distance cot farther away.   In other words, we are in a coordinate system that 
moves with the xero crossings. Note that the peaks have advanced and the troughs have receded 
in relation to the xero crossings.  Left unchecked by other physical mechanisms, the peaks will 
catch up with and eventually overtake the troughs, culminating in the physical impossibility of 
a multivalued waveform. Such an implication was of no small concern to the physicists of the 
19th century. In fact, it prompted one {48] to conclude that 'plane waves are... impossible" (see 
Ref. 6 for the ensuing debate), a remark that motivated the paper by Stokes. The key issue here 
is that thermal and viscous losses, not accounted for in Eq. (1), offset the tendency of a wave 
to form a discontinuity.   More will be said later about the relative effects of nonlinearity and 
dissipation on waveform distortion. 

Poisson (9] obtained a general solution of Eq. (1) (although for an isothermal rather than 
an isentropic gas) which may be written as either 

u = /(t ^—-)        or        u = ff(x-(c0 + /9u)t), 
V Co + DM.1 

M 

where / and g are arbitrary functions. The first solution is suitable for boundary value problems, 
the second for initial value problems. It is difficult to apply either in its present implicit form, 
but the first yields useful explicit results if we make an approximation. Suppose that u/c<> <£ 1. 
Values of u/co less than 0.1 are usually sufficient, which in air correspond to sound pressure levels 
up to 174 dB re 20 pPa and encompass levels that are generated by jet engines. The expansion 
(c0 + ßu)~x «a c„ 1 - ßu/cl may then be used to write the first of Eqs. (4) as 

ßux 
« = /(*- + *pr).      «/»o<l, (5) 

where r 
and let 

t—x/co is the retarded time. Now assume that the source excitation is time harmonic, 

u(x = 0) = tin sin wt. (6) 

It may then be shown that the range where shock formation occurs, i.e., where an infinite slope 
first appears on the waveform, is given by [47] 

ßck' 
(?) 

where k = w/co is the wavenumber and e = uo/co the peak acoustic Mach number at the source. 
Shock formation occurs ;loser to the source as either the amplitude or frequency of the wave is 
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increased.  As the frequency increases the wavelength decreases, and a peak need not travel as 
far to catch up with a trough. 

Since Eq. (1) does not account for any losses, shock formation is inevitable and the the- 
ory eventually breaks down: The dilemma is resolved by incorporating the weak shock theory 
outlined by Blackstock [45,48]. Prom the Rankine-Hugoniot relations it can be shown that the 
propagation speed of a weak shock is 

/dx 
\dl 
dx\ ß 

(8) 

where u„ and ub are the values of the particle velocity immediately ahead of behind the shock 
respectively. Theory based on Eq. (1) is valid for all continuous segments of the wave, and it 
may be used to evaluate u„ and u6 at the shock. The combined application of Eqs. (2) and (8) 
thus describes the behavior of all parts of the wave not only prior to but also following shock 
formation. The foregoing procedure constitutes the weak shock method, which has been used to 
model the propagation of N waves [45] and exponential pulses (4j from explosive sources. 

We now return to the problem of pure tone radiation. The solution of Eq. (5) subject to 
Eq. (6) may be written in the form of the Fourier series 

' ~ "o 5Z Bn " sin TWJT. 

n=l 

Prior to shock formation the Fourier coefficients are given by 

2J„(n<r) 
fl„ = 

TUT 
■*<l, 

(9) 

(10) 

where Jn is the Bessel function of order n, and the dimensionless parameter a = ßckx measures 
range m terms of the shock formation distance 5. Equation (10) is known as the Fubini [14] 
solution, one of the most well known explicit solutions in nonlinear acoustics. The general 
solution^for a > 1 is rather involved [48], but for a > 3 a very simple asymptotic form is 
obtained: 

BK = a > 3. WT^'     "'*• (11) 

Equations (9)-(ll) are valid for waves of sufficient strength that thermal and viscous losses do 
not prevent the formation of well defined shocks.   The case history of such a wave is shown 

Ul x««ct 
«MVtfOtUH 
tiO 

|k| WMOMtiON 
HCOM« 
NOKCAMI 

14 MAIIWM 
hoc« 
AMftJlUOC 

Ul H*l &JWIOOM       ((1 MCMMG      (.] 1HOCK «CC^^C 
***** n2 UwiootH        ro oivcisc 

Fig. 2—Case history of a high intensity 
sound wave. 

Fig. 3—Harmonic amplitudes of an orig- 
inally sinusoidal wave. 
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in Fig. 2 [49], with the first three harmonic amplitudes graphed in Fig. 3 [48]-   In Fig. 2o is 
shown one cycle of a sinusoidal source waveform. The subsequent distortion process leading up 
to shock formation (Fig. 2c) is accompanied by an upshift of energy from the spectral component 
at the fundamental source frequency to the higher harmonics (Fig. 3).  Note that in Fig. 2 the 
abscissa represents time whereas in Fig. 1 it represents range, which accounts for the two figures 
showing waves that steepen in opposite "directions." At a = 3 (Fig. 2e), where Eq. (11) is valid, 
the waveform has acquired a stable sawtooth shape.   Energy in the wave is now continuously 
dissipated at the shock, and the amplitude of the fundamental component is already down by 
50% (Fig. 3). For a while the wave maintains its sawtooth shape but, according to Eq. (11), it 
decays as (1 + a)-1 (Fig. 2/). Eventually the amplitude is sufficiently reduced that nonlinear 
effects can no longer maintain a shock in the presence of the inevitable thermal and viscous 
losses (Fig. 2g).   Thermoviscous losses effectively low-pass filter the wave, which ultimately 
yields a wave dominated by the fundamental source frequency component (Fig. 2h). However, 
the amplitude of the wave in this old age region is much lower than what would have existed in 

the absence of nonlinear effects. 

Some general comments on the nature of cumulative versus noncumulative, or heal non- 
linear effects are in order. It can be seen from Eq. (2) and Fig. 2 that distortion due to the 
nonconstant propagation speed produces effects that accumulate with distance. For example, in 
the case of pure tone radiation in an inviscid and thermally nonconducting fluid, a shock must 
eventually form no matter how small the source amplitude (see Eq. (7)). Now recall the source 
condition in Eq. (6). A real physical source would involve displacement of the radiating surface 
about the point x = 0. Taking into account the finite displacement of the source introduces new 
distortion components which grow less rapidly with range than those resulting from the noncon- 
stant propagation speed [47]. The new components represent local effects which are significant 
only on the order of one wavelength from the source, and they are usually ignored. Local effects 
also appear when the exact nonlinear impedance relation is used to express either the source 
condition or final solution in terms of the acoustic pressure p rather than the particle velocity ti. 
For example, beyond one wavelength from the source, the linear plane wave impedance relation 
P = Pocou mav De used to write Eq. (9) in terms of pressure, as is often done. 

Finally, the theory in this section is easily generalized to liquids. Recall that the nonconstant 
propagation speed is due in part to the finite amplitude sound speed given in Eq. (3). Consistent 
with the approximation u/c0 <. 1 used in Eq. (5) is the expression 

-*+(£)« (12) 
<2A 

for the speed of sound in an arbitrary liquid, where B/A is the ratio of coefficients in a Taylor 
series expansion of the isentropic equation of state [50] (see also Ref. 43). The generalized 
coefficient of nonlinearity thus becomes ß = 1 + B/2A, where for a perfect isentropic gas B/A is 
replaced by (7 - 1). Typical values are ß = 1.2 for air and ß = 3.5 for water. Since the "1" in ß 
represents convection, the dominant cause of waveform distortion in air is convection, whereas 
in water it is the nonlinearity in the equation of state. 

II. ACOUSTIC SATURATION 

The irreversible energy loss at shock fronts imposes an upper bound on how much sound power 
can be transmitted beyond a certain range. Suppose x is fixed at a location beyond x and either 
the source amplitude or frequency is increased. The shock formation distance x = (ßck)~l moves 
closer to the source, which allows more and more energy to be dissipated at the shocks before 
the wave arrives at the observation point. A limit is eventually reached, say by increasing the 
source amplitude, where a » 1 and Eqs. (9) and (11) reduce to 
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Note that the wave no longer depends on the source amplitude «o. All additional energy pumped 
into the wave by the source is lost at the shock fronts, and acoustic saturation is said to have 
occurred. 

In Fig. 4 [51] is an amplitude response curve showing the development of saturation. The 
distance between the source and receiver is held constant, and the received sound pressure level 
is monitored as the source level is varied. At sufficiently low source levels the response of the 
fluid to the passage of the sound wave is linear, and any change in the source level causes an 
identical change in the received level. As the source level is increased, saturation eventually sets 
in. The energy lost at the shocks is responsible for the extra attenuation noted in Fig. 4. The 
extra attenuation of the fundamental component in decibels, often referred to as EXDB, has 
been calculated by Blackstock (22] for plane waves in thermoviscous fluids (see also Eq. (18)). 

Acoustic saturation is not restricted to plane waves. The first correctly interpreted observa- 
tion of the phenomenon was made in 1950 by Allen (52| in an experimental investigation of high 
intensity spherical waves in air. Subsequent experimental work on saturation involved not only 
plane waves [51] but also directive sound beams [49,53]. In Fig. 5 [42] are shown data reported 
by Riley [53] for the s^uration of a 470 kHx sound beam radiated in water by a circular source 
of radius 3.8 cm. Measurements of the fundamental through fourth harmonic component were 
taken in the center of the beam at a distance of 11.2 m from the source. Along the abscissa is 
the normalised source amplitude in terms of the Rayleigh distance r0 (1.4 m) and the plane wave 
shock formation distance lD (the same as given by Eq. (7)). The dimensionless amplitude may 
therefore be rewritten r0/lD = ßekr0. It can be seen that each harmonic component saturates 
at approximately the same source level. Note that in the linear region (r0/lD < 0.2), the rate 
of growth of each harmonic component increases with n. Expansion of Eq. (10) reveals that at 
low amplitudes Bn oc <«, which is the same trend that is displayed in Fig. 5. The bottom line 
on acoustic saturation is that large amounts of power may be wasted by overdesigned sound 
sources. Muir [26] points out that the concept of saturation was not appreciated by sonar engi- 
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neers until the 1970's, when many existing systems could have operated with much less power 
and yet produced the same sound pressure level at the target. 

III. SUPPRESSION OF SOUND BY SOUND 

The suppression of sound by sound refers to the use of one wave to pump energy out of another 

wave. Consider the bifrequency source condition 

u(x = 0) = Up sin o)pt + u» sin o>„ t. (14) 

Fenlon [54] obtained for the preshock region an exact Fubini-type solution of Eq. (5) for the 
boundary condition in Eq. (14). Of interest here is the interaction of a strong, low frequency 
(pump) wave (wp) with a weak, high frequency wave (a>„). The weak wave has little effect on 
the propagation of the pump wave, and harmonic distortion of the latter is adequately described 
by Eq. (10). However, the pump wave will modulate the weak wave and generate sidebands 
at w„ ± rwjp. An approximation of Fenlon's bifrequency solution provides an expression for the 
wave formed by u>„ and its sidebands (55|. Here we are concerned only with the source frequency 

component u(u„) which is given by 

u((J„) = u„J0(ßepkwx)sin<jJu,T, up 2> u„,        op<w« (15) 

where ep = up/c0 and fc„ = w„/c0- The nonlinear effect of the pump wave on the weak wave, 
subject to the restrictions indicated in Eq. (15), does not depend on the amplitude of the weak 
wave or the frequency of the pump wave. Note that u(u>„) vanishes at zeros of the Bessel func- 
tion. Whenever u(w„) vanishes, all of its energy has been pumped into adjacent sidebands. 
Thus the energy in v.(ww) is not absorbed but merely redistributed at other frequencies. Ex- 
perimental studies of the suppression of sound by sound have been performed in both air [55] 
and water [56|. Suppression has also been observed when the two interacting waves propagate 

in different directions [57|. 

Shown in Fig. 6 [58] are results from a suppression experiment performed by Gong, Zhu, 
and Du [59] in an air filled plane wave tube. The frequencies used were 899 Hz for the pump 
wave (fl = u,) and 4023 Hz for the weak wave (o> = o„). As the amplitude of the pump wave 
(Uo/c0 = ep) was increased from 0 to 150 dB, a point was reached where 47 dB suppression of the 
high frequency weak wave was observed at a fixed location downstream from the source. Along 
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Fig. 6—Investigation of suppression 
in an air filled plane wave tube. 
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the abscissa in Fig. 6 is the argument of the Bessel function in Eq. (15). Although the first zero 
of the Bessel function occurs when its argument has the value 2.4, the maximum suppression 
shown in Fig. 6 occurs when ßcpk„x = 2.8. Such discrepancies have in the past been attributed 
to the effects of absorption [55,58]. 

So far, interest in the suppression of sound by sound has been primarily academic, since 
practical application of the phenomenon, in particular to noise control, is apparently thwarted 
by various inherent difficulties (58|. Energy pumped out of the weak wave ends up in sidebands 
which, by virtue of the restriction wp < w„, are located very close to the frequency where 
suppression is desired. A possible remedy would seem to result from choosing up >■ w„, for 
then the sidebands would cluster around the pump frequency rather than around the frequency 
of the weak wave. Unfortunately, however, high frequency pump waves are very ineffective in 
suppressing low frequency waves (60]. An alternative application was considered by Wester- 
velt (61], who developed a theory that predicts the amount of energy removed from a pure tone 
as it propagates through an isotropic noise field. Westervelt's theory, which was subsequently 
verified by experiment [62,63], may account for additional losses suffered by underwater sound 
that propagates long distances through ambient noise fields. 

IV. THERMOVISCOUS LOSSES 

The nonlinear propagation of plane waves in a viscous fluid was shown by Mendousse [19] to be 
governed by the Burgers equation. Subsequent generalizations by Lighthill [64] to thermoviscous 
gases and later by Tj0tta [65] to arbitrary thermoviscous fluids permit the Burgers equation to 
be written 

du b     d7u _ ß_   du 
dx      2p0c%dT* ~clU8r- (161 

Thermoviscous effects are accounted for by 6 = f + (4/3)t7 + K(1/C. - l/cp), where f is the bulk 
viscosity, IJ the shear viscosity, K the thermal conductivity, and c. and cp the specific heats at 
constant volume and pressure, respectively. As implied by the retarded time r, the Burgers 
equation applies only to progressive wave motion. The local nonlinear effects discussed in Sec. I 
are not accounted for in Eq. (16). 

Both exact and asymptotic solutions of Eq. (16) that satisfy the pure tone source condition 
in Eq. (6) have been investigated by Blackstock [22]. Exact solutions are obtained by employing 
the nonlinear Hopf-Cole transformation, which allows Eq. (16) to be written as a linear diffusion 
equation in terms of the new dependent variable. However, the exact analytical solutions are 
unwieldy and seldom used in practice. Here we shall consider only a farfield asymptotic solution 
for the pure tone source condition. The solution for strong plane waves that have propagated 
beyond the shock formation distance was derived by Fay [15]: 

Z v--* sin nur 

" = ^rgtsinhn(l + a)/r- " > 3' F > L <17) 

The quantity T = ßck/a is called the GoI'dberg [66| number (see Ref. 22), where a = bu2/2p04 
is the thermoviscous attenuation coefficient at the source frequency. The criterion T 2> 1 de- 
scribes a plane wave of sufficient strength, relative to thermoviscous effects, that a shock will 
form around a = 1. In the absence of thermoviscous effects (r = oo), Eq. (17) reduces to the 
sawtooth solution given by Eqs. (9) and (11). Now suppose that we move sufficiently far away 
from the source that the old age region shown in Fig. 2h is reached, where 

4c0a v—»  
u=-ÖT-,Le     "«nnwr, a » T » 1. (18) 

92 



Saturation has again occurred, but the amplitude here is different from that in Eq. (13) because 
of thermal and viscous losses. Now suppose that the nonlinear term on the right hand side of 
Eq. (16) is neglected, and linear solutions for time harmonic waves are derived. It would be found 
that the attenuation coefficient of a wave at frequency nw is nfa, where a is the coefficient at 
frequency w. The linear attenuation coefficient thus depends quadratically on frequency. In the 
old age region, however, where one might suppose the wave to be sufficiently weak as to propagate 
according to linear theory, the attenuation coefficient of the nth harmonic component is na and 
not n3a. The decay rates of the spectral components are therefore indicative of whether the 
signal has ever experienced strong nonlinear effects. Or to put it another way, a wave that was 
once finite amplitude is always finite amplitude. 

A simple approximate expression was derived by Merklinger [67] for the source frequency 
component of a plane wave in a thermoviscous fluid: 

«oe-"sinwr .       -        ^ 

Vi + tr/^i-e-2«)2" 

Equation (19) differs from the exact solution of Eq. (16) for the fundamental component by at 
most 1 dB. The numerator of Eq. (19) is the linear solution, and the denominator accounts for 
the nonlinear losses incurred when T is sufficiently large. A suitable criterion for which nonlinear 
effects may be ignored altogether is evidently T < 1. A comparison of Merklinger's model with 
other approximate solutions is made in Appendix C of Ref. 41. The perturbation methods that 
lead to Eq. (19) have also been applied to spherical waves [68]. 

V. SPREADING LOSSES 

Spreading rather than thermoviscous losses are taken into account by rewriting Eq. (16) (see 
Ref. 69) 

du      a ß    du ,„. 
— + -u = %u—, (20 
or      r        eg   or 

where a = 0,1/2,1 for plane, cylindrical, or spherical waves. A restriction on Eq. (20) for 
nonplanar waves (a ^ 0) is that kr 3> 1, where A; is a characteristic wavenumber and r is range. 
The restriction is relatively weak in practice, since it merely requires a wave to possess a radius 
of curvature that exceeds roughly one wavelength. For example, a sound source whose radius is 
smaller than one wavelength is very inefficient and therefore unlikely to radiate finite amplitude 
sound. 

An exact solution of Eq. (20) for plane waves (a = 0) is given by Eq. (5) (with x = r), 
and a simple transformation permits generalization of the solution to cylindrical and spherical 
waves [69]. By defining the new dependent variable w = {r/r0)

au, where r0 is a reference 
distance, we may eliminate the spreading loss term in Eq. (20). A new independent variable 
z may then be defined that reduces the equation for w[z, r) to one identical in form to that 
for u(r,r) when a = 0. The necessary transformation is given by: 

cylindrical waves (a = 1/2) : z = 2y/r^(y/r — y/rö); (21a) 

spherical waves (a = 1) : z = r0 In (r/r0). (211) 

AU results derived from Eq. (5) may now be used for cylindrical and spherical waves by replacing 
x everywhere with z and multiplying the final solution by (r0/r)a. The reference range r0 can be 
either the source radius or any other point in space where the waveform is known. For example, 
to obtain the shock formation distance for a spherical wave whose time dependence at ro is 
u0 sinuil, set z in Eq. (216) equal to [ßck)~l and solve for r = r to obtain 

r = 1 r0e1'fitkr" (22) 
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Note that the shock formation distance can be considerably farther from a spherical source than 
from a planar source that radiates at the same amplitude and frequency. Shock formation is 
nevertheless inevitable in the absence of thermoviscous losses, regardless of spreading losses. 

The above analysis was used by Lockwood, Muir, and Blackstock [70] to investigate the prop- 
agation of directive spherical waves. Sufficiently far from any directive sound source, diffractio^ 
effects are negligible and the radiated waves obey spherical propagation laws, [f the thermovis- 
cous attenuat.on is not too high, most of the nonlinear distortion occurs in the spherical farfield 

begLTandeiet        Ch°°Se ^ ^ referen" diSUnCe * ^ '"" "^ ^ SphericaI WaVe "*™ 
u(r = r0) = UQD(6) sinwt, /23i 

where D{9) h th farfield directivity function associated with linear radiation from the source 
at frequency „. In ^trng Eq. (23) it is assumed that nonlinear effect, due to propagation up 

the a!o?r eu Tay be
k
ign°red- Bey°nd r° thC rC3Ult8 f0r "Pherical ™- ~T ^ used, with 

A n^T ,C ^ach
x
nUmbCr at r° given * eDW- The 8oIut-» » A» found by replacing 9 with 

^(^r0ln(r/r0) in Eq. (10). Expansion of Eq. (10) for weak nonlinearity then yieL for the 
directivity function Dn{8) of the nth harmonic component 

Dn[6)=Dn{6). (24) 

The power law dependence on the directivity 
function of the fundamental component shows 
that beam patterns of the nonlinearly generated 
higher harmonics become increasingly narrower 
as n increases. For example, the first sidelobe of 
radiation from a circular source is around 18 dB 
below the main lobe. According to Eq. (24), the 
second harmonic radiation has not only a nar- 
rower main lobe, but its first sidelobe is down 
by almost 36 dB. Although the power law de- 
pendence is valid only at large distances from 
the source (see Sec. X), it provides a very conve- 
nient estimate of directive harmonic radiation. 

Shown in Fig. 7 are results from an experi- 
ment performed by Muir [71| that demonstrate 
how the properties governed by Eq. (24) may 
be used to enhance the resolution of acoustic 
imaging systems.  A sound source radiating at 
100 kHi was used underwater to image a barge 
located 100 m away.   In the first column are 
beam patterns for the fundamental component 
and the first few nonlinearly generated harmon- 
ics. Note both the narrowing of the beam pat- 
tern and improved sidelobe suppression with in- 
creasing harmonic number. The second column 
shows the images obtained by monitoring the 
associated frequencies.   Resolution improves as 
the harmonic number increases, with the higher 
harmonics clearly able to define pilings that are 
15 cm in diameter.   Although the higher fre- 
quencies can usually be generated directly by 

4th HARMONIC 
400 kHi 

»„, - 0.34* 

5* HARMONIC 
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»„ - 0.26" 

SEAM PATTERNS FLOATING BARGE 

Fig. 7—Use of nonlinearly generated 
harmonics for acoustic imaging. 
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the sound source, lowersidelobes and therefore less reverberation problems result from generating 
the higher frequencies nonlinearly. 

VI. NUMERICAL SOLUTION 

The combined effects of nonlinearity, thermoviscous dissipation, and spreading losses are taken 

into account by single equation 

Attempts have been made to rewrite Eq. (25) in a form for which exact analytical solutions are 
known. Khokhlov and coworkers [20,21] showed by using the transformations w = (r/r0)°u and 
Eqs. (21) that although the spreading loss term in Eq. (25) can be eliminated, the coefficient 
of the term that accounts for thermoviscous effects becomes a function of range for nonplanar 
waves. So far, no exact solutions of Eq. (25) have been found for nonplanar waves, and analytical 
approaches are usually abandoned in favor of numerical techniques. A number of the more 
popular numerical methods (e.g., see Refs. 72 and 73) are based on the spectral analysis of 
Fenlon [74]. The particle velocity is first expanded in terms of the complex Fourier series 

ir/w 

«(••.0=   ]C   u«(r)^'n"r. ^ere        MO = £   /    u(r,r)e-'
n""<fr. (26) 

Substitution of the first of Eqs. (26) in Eq. (25) yields the following coupled ordinary differential 
equations for the harmonic amplitudes un: 

£+(T*-'-)--^(£^-*'XH^<~). u     \m=l rri=n+l / 

(27) 

where a = bw2/2p0cl.   In writing the summations it was assumed that u is real; therefore 
u_„ = u*, where u* is the complex conjugate of u„. 

Korpel [75] noted that the spectral form of Eq. (27) permits generalization to fluids that 
possess arbitrary absorption and dispersion. The thermoviscous attenuation coefficient n2ct may 
be replaced by a coefficient an that depends in an arbitrary fashion on n. Dispersion is included 
by making an complex and writing the imaginary part as /OJ(C~1 -CQ1)» where c„ is the frequency 
dependent sound speed and c0 the reference sound speed. Equation (27) can also be modified for 
application to finite amplitude waves in horns (see Ref. 45). The cross sectional area A[x) of the 
horn, where x replaces the range variable r, must vary sufficiently slowly that the waves remain 
quasiplanar. Then the spreading loss coefficient a/r may be replaced by A'flA, where A' is the 
derivative of A. The nonlinear horn equation reduces to the equation for spherical waves with 
conical horns (A oc x2) and to the equation for cylindrical waves with parabolic horns (A a i). 

In numerical computations, the number of harmonics retained in Eq. (26) must be limited to 
some finite number N. Consequently, the upper limit on the second summation in Eq. (27) is also 
replaced by N. The coupled equations may then be solved by standard techniques (see Ref. 73). 
Calculations for the distortion of waves from monofrequency sources can be performed very 
rapidly and are conveniently done on personal computers. In fact, when there is no dispersion, 
for a monofrequency source only the imaginary parts of u„ need to be calculated, and the 
efficiency of the algorithm may be further increased. However, the algorithm is not particularly 
suitable for pulses or noise.   Prohibitive numbers of harmonics must be retained in order to 
account for the harmonics generated by the highest frequencies in the initial waveform. Time 
domain algorithms such as those described in Refs. 5 and 76 are preferable for multifrequency 
sources.    The amplitude dependent propagation speed is used to modify the waveform as it 
propagates step by step. Fourier transforms must be performed at each step in order to include 
the frequency dependent absorption. 
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VH. PARAMETRIC ARRAYS 

As pointed out in the Introduction, the parametric array is probably the most well known 
practical application of nonlinear acoustics. The concept was originated by Westervelt [l] in 

I960, and the last two decades have witnessed numerous scientific and technological advances 
made in a number of different countries. A large volume of papers has been written on the 
subject, many of which are discussed in reviews by leading researchers in the field [26,32,43 77- 
80]. Here we shall discuss only the fundamental properties of parametric arrays. 

A parametric array is formed when two collimated, finite amplitude sound beams of dif- 
ferent yet neighboring frequencies (Wl and w2, Wl « w2) are transmitted in the same direction 
The nonlinear interaction of the two primary waves gives rise to a component at the difference 
frequency («_ = Wl - w2). Additional components are also generated at other intermodulation 
and harmonic frequencies. Since the tendency of fluids is to low-pass filter sound waves the 
difference frequency component, the lowest in the spectrum, is eventually the lone survivor In 
Westervelt'. model of the parametric array, it is assumed that linear absorption mechanisms 
limit the region of nonlinear interaction to the near-fields of the two primary waves The am 
phtudes of the primary waves are attenuated as e—', where a.- is the attenuation coefficient 
at frequency «... To a first approximation, the two primary beams may be modeled as plane 
waves that propagate in an imaginary tube whose cross section is constant and equal to that 
of the sound source. Now suppose the source is circular with radius a, and on its surface the 
pressure is p01 smw1t+p02 sin^t. The quasilinear solution for the complex difference frequency 
pressure p_ in the farfield of the nonlinear interaction region is then [1,81] 

jßkla2p0lp02 e
-J'x-r 

P" 4c^g ~DwWD*M'        r>a?\fc_a2/2, (28) 

where 

Dw{6) = 1  n.ie\- 2-Mfc-asinfl) 
1 + i2(Jfe_/ar) sin2(*/2)' "X W ~      fc_asin*     " 

The phywcj pressure is given by Im(p_e*-«), with X- = k-- ja- the complex wavenumber 
*_ - a,_/c0 the real wavenumber, and a_ the attenuation coefficient at the difference frequency 
aT - ai + a2 - a is a combined attenuation coefficient. If r0 = ko^/2 is defined to be the 
collimation length (or Rayleigh distance) of the primary waves, where fco is the average primary 
wavenumber, then aTr0 > 1 is a suitable criterion for the validity of Eq. (28). An additional 
restriction on Eq. (28) is that the primary waves suffer only relatively small finite amplitude 
losses. 

The most remarkable property of the parametric array is its beam pattern. When fc_a < 1 
as ,, often the case, the aperture factor DA{fl) is approximately equal to unity and may be 
ignored [81] The angular distribution of difference frequency radiation is then governed by 
the Westervelt directivity function DW(6). Note that Dw{6) does not predict the appearance 
of any sidelobes. The reason for the absence of sidelobes is that p_ is not radiated from the 
physical source of radius a, but instead it is generated from the volume of fluid occupied by 
the primary waves. The volume where the nonlinear interaction occurs extends out from the 
circular source to a range given approximately by La = a'K The absorption length La, and 
not the source radius a, is the characteristic dimension of the parametric array. In addition, 
he parametnc array exhibits an exponential amplitude taper, and it is phased in such a way as 
o create an end-fire configuration. The difference frequency radiation from this exponentially 

tapered end-fire array forms a beam pattern devoid of a sidelobe structure. From the Westervelt 
directivity function, the half power angle of the radiation is found to be 6HP = JlaTTT 
Since the beamwidth is independent of the physical source dimension a, the parametric array 
is capable of generating narrow low frequency radiation fields from relatively small ultrasonic 
sources.   In fact, direct radiation at the difference frequency from a circular source is described 
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by the aperture factor DA(6), which typically predicts a much broader beam than does Dw(6). 
Finally, the parametric array possesses unusual bandwidth characteristics. Since wt as w2, a 
small percentage change in either of the primary frequencies causes a relatively large percentage 
change in the difference frequency. Although a narrowband transducer may generate the primary 
waves, a relatively wide frequency band exists at the downshifted difference frequency. 

The model conceived by Westervelt is often referred to as an absorption limited array, be- 
cause absorption is assumed to be the only loss mechanism responsible for terminating the non- 
linear interaction region. However, when the absorption length is large compared to the Rayleigh 
distance (apro <C 1), spherical spreading can be the principal mechanism that limits the length 
of the interaction region. The latter type of parametric interaction is said to be diffraction lim- 
ited. Taking into account nonlinear interaction in the spherical wave region leads to different 
conclusions regarding sum and difference frequency generation in an absorbing fluid [82]. Suffi- 
ciently far from the parametric array, the difference frequency wave is governed by linear theory 
and decays as r-1e" On the other hand, the sum frequency wave depends asymptotically 
on the product of the primary waves and decays as r-2e-la,+B,)r (see also Ref. 83). In effect, 
the sum frequency wave never truly escapes from the nonlinear interaction region. Difference 
frequency beamwidths measured independently by researchers working with different parameter 
ranges have been compiled and analyzed by Hobaek and Tj0tta [79] (see also Ref. 84). It was 
found that for diffraction limited arrays, the half power angle of the difference frequency wave 
is close to that of the primary waves. 

Results from a parametric array experiment performed in water by Muir and Willette [85] 
are shown in Figs. 8 and 9. Primary waves at 418 and 482 kHz were radiated by a single 3.8 cm 
radius circular transducer, and sound pressure levels at the sum (900 kHz), difference (64 kHz), 
and primary frequencies were measured as functions of range and angle. Shown in Fig. 8 are 
trie axial propagation curves.  The collimated nearfield of the primary waves ends just beyond 
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Fig. 8—Propagation curves for a 
parametric array. 
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Fig. 9—Beam patterns for the (a) 482 kHz 
primary, (b) 64 kHz difference frequency, 
and (c) 900 kHz sum frequency waves. 
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1 yd from the »our«, as seen by where the propagation curve begins to follow the spherical 
spreading law p oc r"». The primary waves eventually decay more rapidly than r~i on account 
of absorption. Note that the difference frequency wave does not experience spherical spreading 

r « ,!! f
a!raVekd S0"10° yd" Si*nificant »online» interaction therefore occurs well into the 

farfield of the primary waves. The sum frequency wave falb off much sooner because of the 
much higher absorption at that frequency. A, pointed out above, the difference frequency wave 
is eventually the lone survivor, despite the fact that it starts out more than 30 dB below the 
sum frequency wave. Shown in Fig. 9 are the corresponding farfield beam patterns. Between the 
-10 dB points, the beam pattern of the upper primary wave and that of the difference frequency 

V^TJ*? 8UnUar'deSpUe thcir fre<l*«»«es differing by a factor of 7.5. Note also the absence 
of sidelobes in the difference frequency beam pattern. 

By far the most widespread use of parametric arrays has been in underwater applications 
many of which are discussed by Novikov, Rudenko, and Timoshenko [321. The absence of side-' 
lobes makes the parametric array particularly useful in highly reverberant environments created 
by shallow water. For example, fish detection and location in shallow water b sometimes more 
easily performed with a parametric array then with conventional sonar. Parametric arrays have 
been used in tank experiment, where the propagation of single modes in water channels is inves- 
tigated. The narrow, low frequency beams have also proved useful in bottom and sub-bottom 
profiling of the ocean floor. Although only a small percentage of the energy in the primary waves 
is tr^ferred to the difference frequency component, signal processing advantages are gained by 
exploiting the wide bandwidth properties of the parametric array. Moreover, the beam pattern 
of the parametric array is relatively unaffected by changes in frequency. 

Vm. SELF-DEMODULATION 

When pulses rather than continuous signals are used to drive the. parametric array, the time 
signal received in the farfield is dramatically different from what is supplied to the source For 
the time waveform at the source let 

p(x = 0) = p0f(t) sin ut, (29) 

where /(«]| is an envelope function that is normalued to have a maximum value of unity It is 
assumed that the envelope varies slowly with time compared to sin«f. Berktay [27] showed that 
the farfield pressure on the axis of the parametric array is (see also Ref. 86) 

where « b the absorption coefficient of the carrier, S b the area of the source, and A is the 
characteristic wave ength of the farfield pressure p. The carrier wave b of much hi her frequency 
han the envelope function and b therefore more rapidly absorbed by the fluid. Eventually ail 

that is left on ax« „ a squared and differentiated version of the original envelope function The 
process is referred to as self-demodulation. 

Graphic experimental verification of the self-demodulation phenomenon appeared in a series 

performed with 10 MH. pube, ,„ carbon tetrachloride. Note the simultaneous absorption of the 

^"SoUITR        t enVe,T•    ThC eXPerimentd re8UU8 « * ««Uea^agreeiln; 
TarL t' •        [    '• Re"*rch

l
CUrrentIy UmWr » J*P- (89.901 b directed toward the use of 

parametric arrays in air for the transmbsion of audio signab in narrow sound beams   Problems 
associated with construction of such a parametric loudspeaker center around power rqulemen" 
and suitable electrical predbtortion networks. requirements 
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x = 4  5 cm 50 mV/di 

x  - 7 5cm.        10 m V/div 

= 10.5cm       I  7mV/di 

x = 19.0cm.     0.9mV/div 

x  =  24.0cm     0 4m V/div 

x   = 33.0cm     0 4 mV/div 

*   =14   5cm       09mV/div 4Ü 0cm     0 4mV/div 

Fig. 10—Self-demodulation of a pulsed 10 MHz 
carrier wave in carbon tetrachloride. 

IX. PARAMETRIC RECEIVERS 

Westervelt jl] pointed out that highly directional receivers as well as transmitters can be formed 
by the interaction of finite amplitude sound waves. A parametric receiver consists of only two 
transducers (see Fig. 11 (91 j). One is a source, referred to as the pump, capable of radiating a 
collimated, high intensity sound beam. The other is a hydrophone located along the acoustic axis 
of the pump. Because of its high intensity, the pump wave interacts nonlinearly with, and thus 
modulates, any acoustic signal that propagates through its path. The resulting intcrmodulation 
components detected by the hy- 
drophone provide information 
about the incoming signal. When 
the pump wave and incoming sig- 
nal are each a pure tone of dif- 
ferent frequency, the intermod- 
ulation components of interest 
are the sum and difference fre- 
quency signals. The amplitudes 
of the sum and difference fre- 
quency   signals   received   by   the 
hydrophone are maximized when \*s\    \ \    "         [?:„   ii     n      .•        i j- 1        ' -A   \   \                        g"  11 —Functional diagram 
the parametric receiver is aliened \    \                         „r '                                                   6 \                               ol a parametric receiver 
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with the propagation direction of the incoming signal. Departure from such a collinear orientation 
causes the amplitudes to vary according to the farfield directivity function of an end-fire array 
having the same length as the distance L between the pump and hydrophone. If the pump 
generates a collimated plane wave of frequency fp and the incoming signal is a plane wave of 
frequency /,, and if fp >• /,, k,a < 1, a"1 >• L, where a is the pump radios and ap is the 
attenuation coefficient of the pump wave, then the dependence of the received sum and difference 
frequency pressure amplitudes on the angle of the incoming wave is [92,93] 

sin [fc.Lsin* (0/2)1 
m ~     ifc.Lsin2(*/2)    ■ (31) 

The differential elements that form a continuous end-fire array are thus synthesized by the 
nonlinear response of the fluid to the pump wave. 

The first experiments with parametric, receivers, were reported around 1969 in England by 
Berktay and AI-Temini (92] and in the Soviet Union by Zverev and Kalachev [93]. Subsequent 
work improved on the basic theoretical model by allowing for spherically spreading [94] and 
diffracting [95] pump waves, but the directivity function was always found to closely resemble 
Eq. (31). Truchard [96,97] investigated both theoretically and experimentally the effect of pump 
geometry on parametric reception. The novel concept of an array of parametric receivers was 
considered by Berktay and Muir [98]. Use of more than one receiver not only allows more directive 
reception but in addition provides a means for beam steering. Goldsberry and coworkers [91,99] 
considered some of the engineering problems associated with parametric reception. 

The utility of the parametric receiver lies in the advantage of being able to construct large 
apertures for directional reception with only two relatively small transducers. Since the half 
power angle is 6ap = 0.9iy/X,/L, the beamwidth is determined primarily by the pump to 
hydrophone separation. An upper bound on the length of a parametric receiver is determined by 
the maximum range at which the intensity of the pump wave is capable of maintaining sufficiently 
strong nonlinear interaction with the noise signal. Maximum receiver lengths are typically on the 
order of hundreds of meters, although design parameters for receivers tens of kilometers in length 
have been discussed by McDonough [100]. A particularly useful application of the parametric 
receiver is the directional measurement of low frequency noise in the ocean. The construction of 
conventional low frequency receivers that are sufficiently large to provide high directivity can be 
impractical for either financial or logistical reasons. 

X. DIFFRACTION 

The combined effects of nonlinearity, dissipation, and diffraction of directive sound beams are 
accounted for consistently to lowest order by the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equa- 
tion [33,34] (see also Ref. 36) 

Ü-**». *_£!£ = _A_*V (32) 
dzdr       2     x*     2p0cg dr*      2p0cg dr* ' K    ' 

In the derivation of Eq. (32) it is assumed that the sound waves are sufficiently well collimated 
(ka » 1) that the wavefronts are quasiplanar. A coordinate system is used where the z axis 
coincides with the acoustic axis of the sound beam, and the retarded time associated with the 
propagating quasiplane waves is r = t - z/e0. The transverse laplacian operator V^ = d2/dx2 + 
d^/dt/2 accounts for the wavefront curvature that results from diffraction. Equation (32) may be 
written in terms of particle velocity by using the linear plane wave impedance relation p = pocou- 
The substitution is valid because (1) ka » 1 [36], and (2) the local effects discussed in Sec. I are 
not accounted for in Eq. (32). Without the diffraction term V^p, Eq. (32) thus reduces to the 
form of the Burgers equation in Eq. (16). 
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The first investigations based on the KZK equation were performed almost exclusively in the 
Soviet Union. Much of the Soviet work on nonlinear effects in sound beams is reviewed in books 
by a number of the leading researchers [32,35,44|. Early work on second harmonic generation [101] 
and parametric radiation [102] was often based on Gaussian beam theory because of the resulting 
analytical simplifications in quasilinear analyses (see Sec. XI). Numerical solutions presented in a 
series of papers by Bakhvalov and coworkers [103-109] and reviewed in Ref. [35] demonstrated the 
significance of diffraction in nonlinear waveform distortion. However, apart from the quasilinear 
analysis by Kunitsyn and Rudenko [110], the intricate diffraction effects in the practical case of 
finite amplitude radiation from a circular source were all but ignored. 

The most detailed analysis of the combined effects of nonlinearity, diffraction, and ab- 
sorption in directive sound beams appeared in a series of papers by Naie TjsStta, Tjtftta, and 
coworkers [36-42]. Their theoretical work is based on the KZK equation, and it is in excellent 
agreement with experimental results. Although their analysis applies to arbitrary sources, here 
we shall restrict attention to single frequency excitation of a uniform circular source of radius a. 
Specifically, let 

p(z = 0) = p0 sinwt,        r<a, (33) 

= 0, r>a, 

where r = y/x* + y2 is the radial coordinate in the plane that is perpendicular to the acoustic 
axis. Since the relation p = poCou is valid for Eq. (32), Eq. (33) is the correct boundary condition 
for a circular source that vibrates with uniform velocity. The basic analytical models for the 
radiated sound field are derived via the method of successive approximations. 

As a first approximation, it is assumed that the source amplitude is sufficiently low that 
linear theory provides an adequate description of the wave at frequency w. This approximation 
holds as long as nonlinear losses can be ignored. The right hand side of Eq. (32) is then set equal 
to sero, and the solution that satisfies Eq. (33) is obtained. The linear, or first-order solution Pl 

is found using integral transforms to be [37,111] 

1 - e~/",/* + 2e-'"'' I e-i"1f'oj1{2u)dU], (34) 

where z0 = fca2/2 is the Rayleigh distance, k = u/co, a = bo>2/2p04, and the physical pressure 
is Im(p1e*-"'). Equation (34) is written in a form that is particularly convenient for numerical 
computations. On axis (r = 0), the integral vanishes and the solution reduces to px = poe-<"(i_ 
e-j*o/«j ja tbe absence of absorption the axial amplitude is proportional to sin(zo/2z), which 
for z/a > O.S(fca)1/3 [37,110,111] is in good agreement with the exact axial solution given by 
King [112]. In other words, Eq. (34) breaks down on axis only within a few radii from the 
source. Off axis, Eq. (34) is valid within the paraxial region, away from the edges of the beam. 
For example, the farfield directivity function 

y ' katzLuß I35' 

obtained from Eq. (34) is the same as that which is derived in the Fresnel approximation. In 
summary, Eq. (34) provides an accurate description of those regions of the sound field where 
most of the energy is located. 

The second approximation consists of adding to the linear solution the quasilinear solution 
obtained from Eq. (32) when p = lm{ple'ur) is substituted in the nonlinear term on the right 
hand side. The resulting inhomogeneous wave equation has a forcing function at frequency 2w. 
According to Eq. (33) there is no second harmonic radiation by the source, so the quasilinear 
solution p2 must vanish at z = 0. The general solution for p2 involves a quadruple integral that 
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Zreetr^"1!?TT'fX V'  H°WW' ' "^^ »^ farfield "«* - obtained for 
the region beyond the Rayleigh dbtauce, but before the range where absorption b important 

P2        ~Wl r_rl^j-j'2~'TJZ?^ + 0(z"1)-        W2<*<l/2tt.     (36) 

The physical pressure is Lnfoe*"'), and 7 = 0.577... is the Euler number. 

Ana1^ of *■ (36) «veals that the farfield of the second harmonic component begins at 
a «gnificantly greater range than that of the fundamental component. The fa^eld bd filed 
a. the reg™ where the beam pattern no longer depends on ran'ge. Although *e L? tetiu 
Eq. (36J may be separated into independent function, of z and #, the second term repressed 

Eq. (36) dommates the second. When the first term is of the same order as the second th\T 
pattern is still a function of range.  The second term accounts for nonlin«S££S 

by the first term, wh.ch decays at the slower rate of ,-ih. because energy is eoS^St 
pumped mto the second harmonic wave from the fundamental component.   ^^2  ! 
are dominated by cumulative effects only when the slowly varying logarithm in 1 fi   ,, 
becomes large compared to unity. The „onWr farEeld is JZ^^^L^2 

zo by several orders of magnitude, in contrast to the usual «near farEeld criterioMZ L   Ont 

StTarlo^t (8eC ^ (24)) by ign°ring diffrlCti0n effCCtS- ^ reSUUS "* * * 
Numerical solutions of Eq. (32) for the full set of nonlinearly generated harmonics m„ h 

imüar to Eq. (27), except now the differential operators on the left hand side are of the diffusion 

^:ä^^ -differ 

«fixed at . = «*, for which the dimensionless cooZate along the ablis! Vu' =   " ^3 
The source amplitude b characterixed by ßckz. = 1 5 where e - „ /„ ,2    A    i       "«fcatanö. 
the same initial amplitude would form a shock! 0 67*. soIt    "   ii   °"      ?        "^ ^"S 
Th«. tJ,r     «■ u 0-67Z0, so the sound beam is strong y nonlinear 

m al   - 0 1       Ü7 Pa"ernS COrrMPO,ld t0 diferent am°QntS °f "»"P*»: (a) aZo   "To 
this case the absorption prevents any significant nonlinear losses at the fundamental f™ 
The beam pattern of the fundamental component („ = 1) in Fig. l2a^ZTbv2ZZ' 
Abs.rpuon Has also eliminated the nonlinear nearlield effects, and the db^ vity fLaio       f 

ment with the Ivent^f'fi Id S^^fT fr°m ^ • ^"^ ^ ^ " ^ 
of low absorption in Fig. 12c where «"0 0,   ? T "J^""1- ^ W* the case 

of the fundlental compo^o^^^ ^ P^ 

:::xru:Cer0ntrNr^ 
FJT   1?      M    i i miUn lobe U "»"«derably flatter in FiK   12c than in rig. 12a. Nonlinear losses are manifesto a« „n -~ •        r .t ... g" 
an increase in the relative kvel Q^ Z MZC     ^ J* T" '0be' ^^ CO-«P-ds to 

component i, down by J^^t^tF"™* V   ^ ^f^ °f "" *»*■»«* 
(see Ref. 49 for «Uti experimental worl)' Howev T "   T ^ "^ " dB » Fig" l2<= penmentai work). However, the most striking feature of Fig. 12c is the 
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Fig. 12—Beam patterns calculated at 

z = lOzo for n = 1 (—), n = 2 (—), 

n = 3 ( ), and n = 4 (•■ •), where 

u' = O.45fcatan0, and (a) az0 = 1.0, 

(b) az0 = 0.1, (c) QZ0 = 0.01. 

appearance of nearfield effects. In the second har- 
monic beam pattern there are twice as many side- 

lobes as in Fig. 12a, three times as many for the 

third harmonic, and so on. The additional sidelobes, 

referred to as fingers [40], are higher in amplitude 

than the sidelobes predicted by the power law for 

the directivity pattern. The fingers are the nearfield 

effects represented by 0(z~l) in Eq. (36). Not until 

the fingers disappear is the nonlinear farfield reached, 

which for low absorption may not occur for hundreds 

of Rayleigh distances. Figure 126 shows a case of 

medium absorption, where at z = 10zo the fingers 

still exist but do not dominate the field structure. 

Fingers have been observed in experimental in- 

vestigations (see Refs. 40 and 42), but in the past 

they have been attributed to direct radiation from 

the source at the various harmonic frequencies. Such 

a conclusion is not suprising, since the fingers ap- 

pear precisely where one would expect to find side- 

lobes if the source were radiating directly at that 

particular frequency.   Shown in Fig. 13 [42| are ex- 

perimental results obtained by Lockwood [114| (see 

also Ref. 70).   The fundamental, second, and third 

harmonic beam patterns were measured 10 m (z = 

7.1zo) away from a circular source of radius 3.8 cm 

driven at 450 kHz in water. The dimensionless source 

amplitude was ßekzo = 0.88, just over half that mod- 

eled  in Fig. 12,  and the dimensionless absorption 

was azo  = 0.01.    If the measurements were taken 

in the farfield, Eq. (24) would be valid, and sidelobes 

would appear only at 6 = 48.    However, not only 

are nearfield effects quite pronounced, but agreement 

between experiment and theory based on Eq. (32) is 

very good. 

The use of finite amplitude sound for acoustic 

imaging requires a basic understanding of the rela- 

tive effects of nonlineaxity, diffraction, and absorp- 

tion in directive radiation.   Nonlinear losses at the 

source frequency can result in wider beams and lower 

received levels than are predicted by linear theory. 

When an imaging system uses information from non- 

linearly generated waves, it is important to take into 

account the sensitive dependence  of diffraction ef- 

fects on the geometry and amplitude of the source 

and the absorption of the medium.   The theoretical 

model discussed in this section has played an impor- 

tant role in advancing the understanding of paramet- 

ric arrays [38], nonlinear focusing systems [115-117], 

and the transmission [118] and reflection [119| of fi- 

nite amplitude sound beams incident on an interface 

between different media. 
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XI. GAUSSIAN BEAMS 

Gaussian beams are often used to model directive radiation when the basic phenomena to be 
investigated do not require the complexity of the analysis outlined in Sec. X. The extensive 
research based on Gaussian beams in the Soviet Union is reviewed in Refs. 32, 35 and 44 
When appropriately scaled, the results from Gaussian beam theory often compare favorably with 
experiments that involve radiation from circular sources. For the Gaussian source condition let 

p(z = 0) = p(,e-(r/^•), aiaut, (37) 

where r is again the transverse radial coordinate, and r0 is the spot size of the source excitation 
As in Sec. X, the method of successive approximations is used to derive expressions for the 
fundamental and second harmonic components. Ignoring the nonlinear term in Eq. (32) we 
obtain for the fundamental component 

Pi =  Pa_ 
1 - JZ/ZQ 

exp ( -az ' '    '— ). (38) 

where zo - fcr0/2 is the collimation length of the source, and the physical pressure is Imfp.e»-') 
In the nearfield (* < „,) the factors of z/z0 may be ignored and Eq. (38) describes a plane wave, 
with Gaussian amplitude shading, that propagates in an absorbing fluid. None of the oscillatory 
nearfield structure that characterizes radiation from circular sources appears b Gaussian beams. 
Note that the transverse amplitude distribution is Gaussian at all ranges. In the farfield for 
example, the directivity function is D(0) = exp [-(±fcr0 tan 0)2j. 

The second harmonic component is calculated by solving Eq. (32) with the linear solution 
substituted in the nonlinear term [83]: 

P2 = 
jßpWt 

-exp (~Aaz ~ £j$;-32ß) (E*->y - *h*«(i -y./*)i). 
where E^z) = J~ t^e^di is the exponential integral, which is easily evaluated with various 
jenes -pansion. [120,121]. The physical pressure of the second harmonic component is given 
by lxn(P2e>      ).    First consider the limiting ca« of no absorption, for which a particularly 

viTld JT • ", TTt AS " * °' thC tW° «P°nentiaI ^^ » Eq.(39) combine to 
yield In(l -J2/2o). In the nearfield p2 ex z, which agrees with the result for plane waves in the 
quasihnear approximation. In the farfield, where , exceeds „ by several orders of magnitude, the 
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dependence becomes p2 « z~l lnz, the same as was found in Sec. X for radiation from a circular 
source. When absorption is taken into account, the farfield solution yields P2 oc z~2e~2at, and 
the directivity function (whether or not there is absorption) is £2(0) = D2(6). Since the farfield 
dependence of the linear solution is pi oc z~le~"*D(6), one obtains in the nonlinear farfield 
Vl <* pf • The farfield behavior of the second harmonic component in an absorbing fluid thus 
depends only on the local behavior of the fundamental component (82,83,122). 

Fenlon and coworkers (83,123,124) have employed a transformation that modifies Gaussian 
beam solutions for application to sound radiated from circular sources. A farfield matching 
technique is used that equates Eq. (38) near the acoustic axis to the linear solution that satisfies 
the source condition in Eq. (33). The matching procedure yields ps = 2po and r0 = a/y/2 for the 
Gaussian beam parameters. Use of the transformation in Eq. (39) yields a solution for the second 
harmonic component which for a = 0 matches Eq. (36) in the paraxial farfield (note that z0 is 
defined differently in the two equations). Modified Gaussian beam solutions have been compared 
with results for parametric arrays generated by circular sources [39,83,123]. The:solutions are 
shown to be accurate on axis beyond about one half Rayleigh distance from the source. In fact, 
modified Gaussian beam solutions for both the sum and difference frequency waves generated 
with a parametric array were shown to be virtually indistinguishable from the theory presented 
in Fig. 8 [83]. 

Equations (38) and (39) are also easily modified for the study of focused finite amplitude 
sound. A source with focal length d is modeled by multiplying the complex source condition by 
the phase term e,kr f2d. Equivalently, one could just replace the spot size r0 by the modified 
complex spot size f0 = r0(l - jzo/d)~lf2. Substitution of f0 for r0 in Eqs. (38) and (39) thus 
yields results for focused sound beams. For example, making the substitution in Eq. (38) yields 
for the linear solution 

V, ( l-J*o/<*      (T\2\ 
Pl - 1 - z/d - jz/zo CXP \CaZ ~l-z/d- jz/zo (To)  )■ 

(40) 

If the effects of absorption are ignored, the pressure amplitude at the focus is found to be 
(kr2

l/2d)pg. To model focused sound from a circular source we may again let pg = 2po and 
ro = a/y/2. The pressure amplitude at the focus is then found to be (ka2/2d)p0, which is in 
agreement with the exact linear solution of Eq. (32) for a focused circular source [125]. Focused 
finite amplitude sound from a circular source can thus be modeled fairly accurately in the paraxial 
focal region with Gaussian beam theory. 
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3n. Nonlinear Acoustics (Theoretical) 

DAVID  T.  BLACKSTOCK 

University of Texas 

Until the early 1950s most of what was known about sound waves of finite amplitude 
was confined to propagation, and to a lesser extent reflection, of plane waves in loss- 
less gases. Since that time a great deal has been learned about propagation in other 
media, about nonplanar propagation (still chiefly in one dimension), about the effect 
of losses, and about standing waves. Inroads have been made on problems of 
refraction.    Diffraction is still relatively untouched. 

In this section the exact equations of motion for thcrmoviscous fluids will first 
be stated. Various retreats from the full generality of these equations will then be 
discussed. No attempt will be made to cover streaming and radiation pressure. See 
Sees. 3c-7 and 3c-8 for a discussion of those topics. 

GENERAL EQUATIONS FOR FLUIDS 

The basic conservation equations will be stated briefly for viscous fluids with heat 
now.    Other compressible media, such as solids and relaxing fluids, are discussed 
later in the section. 

Sn-1. Conservation of Mass, Momentum, and Energy. In Eulerian (spatial) coor- 
dinates the continuity and momentum equations arc respectively 

' Tx + S;= s; Wd"s'i + 2,<i") <3n-2> 

I 
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An entropy equation is staled here in place of the usual energy equation: 

Z)S [   D3      y - 1 Dpi _ dQi 

Here p is the density, ut is the ith (cartesian) component of particle velocity, p is 
pressure, 5,-,- is the Kroneckcr delta, d„- == ^(du.'/dz,- + diij/dx,) is the ratc-of-defor- 
mation tensor, 1; and ij' are the shear and dilatational coefficients of viscosity, C. and 
C, arc the specific heats at constant volume and pressure, 3 is absolute temperature, 
5 is entropy per unit mass, y = CVIC-, is the ratio of specific heats, ß, = —p~l(dp/dZ)p 

is the coefficient of thermal expansion, \fc,) = 2ijd,>tfy,- + v'duda is the viscous energy 
dissipation function, and (?, is the ith component of the total heat flux. The material 
derivative Z)( )/Dt stands for d( )/dl+md( )/3z,. If the flow of heat is due 
to conduction, 

„ 33 
««--Si (3n-4) 

where K is the coefficient of thermal conduction. For heat radiation the relation 
between q and 3 is generally quite complicated; see, for example, Vincenti and Baldwin 
(ref. 1). The model used by Stokes (ref. 2) amounts to Newton's law of cooling and 
may be expressed by 

|5* = PC?(3 - 3o) (3n-5) 

where 30 is the ambient temperature, and q is the radiation coefficient. Although 
too simple to describe radiant heat transfer in a fluid adequately, this equation is 
worth considering becauseyOf (1) its analytical simplicity and (2) its application as 
a convenient model for relaxation processes. 

Sn-2. Equation of State. To the conservation equations must be added an 
equation of state. 

Perfect Gas.    The gas law for a perfect gas is 

P - ßp3 (3n-6) 

where R is the gas constant. An approximate form of this equation will now be 
derived. For a perfect gas the small-signal sound speed c0 is given by c0* = yR3a = 
TPo/po, where p0 and p0 are the ambient values of p and p. Let 3 = ß,0(l + 6), 
V = Po + PoCo'P, and p •= p0(l + a), where ß.a is the ambient value of ß, (for perfect 
gases /3,o30 = 1). Assume that 0, P, and a arc small quantities of first order. Expan- 
sion of Eq. (3n-6) to second order yields 

0 - yP -«+«*- yPt (3n-7) 

First-order relations are now defined to be those that hold in linear, lossless acoustic 
theory; examples are p« «= —puV -u and p — pa = cj(j> — p0). At this point we 
assert that any factor in a second-order term in Eq. (3n-7) may be replaced by its 
first-order equivalent. The justification is that any more precise substitution would 
result in the appearance of third- or higher-order terms, anil such terms have already 
been excluded from Eq. (3n-7). Thus in the last second-order term in Eq. (3n-7) 
P may be replaced by s to give 

6 = yP - i - (y - l)s* (3n-8) 

correct to second order.    This is a useful approximate form of the perfect gas law. 
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One of the most fruitful special cases to consider is the iscntropic perfect gas. 
When a perfect gas is inricod and there is no heat flow, Eq. (3n-3) can be used to 
reduce the gas law, Eq. (3n-6), to 

. v. - (£)r v*-v 
The square of the sound speed, which by definition is, 

becomes x" 

An expanded form of Eq. (3n-9) is as follows: 

P - « + i(y - 1)«« + . . . (3n-12) 

Other Fluids. For liquids and for gases that are not perfect, one can start with a 
general equation of state 3 - 3(p,p). Recognizing that (33/flp), = y(pc%)-\ one 
obtains the exact expression 

•.-£<!+.>-« [7 (?)•*-..] (3n-13) 

In order to obtain an approximation analogous to Eq. (3n-8), it is first necessary 
to set down a general iscntropic equation of state, 

P - P.-P*.'(.+£.•+£.« + -...)■ (3n-14) 

where the coefficients B/A, C/A, etc., are to be determined experimentally (see 
,-.0)-    Ulth the heIP of th« expression and some elementary thcrmodynamic 

relations, one invokes the approximation procedure described following Eq. (3n-7) 
and reduces Eq. (3n-13) to (ref. 3) 

0 = yp - a _ {h _ !),, (3Q.15) 

correct to second order, where 

* "  1 +|f + K7 " 1) (l - JL)   - (y - 1)^3)- (3n-16) 

If Eqs. (3n-14) and (3n-12) arc compared, it will be seen that B/A replaces the 
quantity y - 1 m describing second-order nonlinearity of the p - p relation. For 
if «"• «««Jore. replace B/A by T - l and ^ by 3,- in Eq. (3n-16). The 
quantity A then reduces to y, and Eq. (3n-7) is recovered. 

PROPAGATION IN LOSSLESS FLUIDS 

For isentropic flow (taken here to mean that the entropy of every particle is the 
same and remains so) Eqs. (3n-l) and (3n-2) reduce to 

Dp      p3ui 

ElLm? CqUatl°r °f 8tatC may bC exlwsscd 8»»P'y by p = p(p).    If the new thermo- aynamic quantity 

XE/^dp' (3Q
-
18

> 
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is introduced, Eqs. (3n-17) take the following symmetric form: 

D\   , cdii{ 
Dl+H;**0 (3Q-19a) 
Du( j. cd\      . 
UT + 557 = ° (3n-19fc) 

Very little has been done in the way of solving these general equations. 
3n-S. Plane Waves in Lossless Fluids. For one-dimensional flow in the x direction 

Eqs. (3n-19) become 

X, + «X, + cits - 0 (3n-20a) 
«i + uiti + cX, = 0 (3n-206) 

where subscripts x and t now denote partial differentiation, and u represents the 
particle velocity in the x direction. Hyperbolic equations of this form have been 
studied in great detail (ref. 4). Their solutions are of two general types: (1) those 
representing simple waves (waves propagating in one direction only), and (2) those 
representing compound waves (waves propagating in both directions). 

Simple Waves. Simple-wave flow is characterized by the existence of a unique 
relationship between the particle velocity and the local thermodynamic state of the 
fluid.    For simple waves traveling into a medium at rest, this relationship is (ref. 5) 

x - ±" (3n-21) 

where the (+) sign holds for outgoing waves (waves traveling in the direction of 
increasing a:), and the (-) sign for incoming waves (waves traveling in the direction 
of decreasing i). Hereinafter when multiple signs are used, the upper sign pertains 
to outgoing waves.    Equations (3n-20) now reduce to the single equation 

«« + (u ± c)ux = 0 (3n-22) 

which becomes autonomous once the equation of state is specified, since Eqs. (3n-18) 
and (3n-2l) imply a relationship c = c(u). Note that the linearized version of 
Eq.J3n-22), u, ± c0Ux = 0, possesses the familiar traveling-wave solution u = 
/(i + cat) of linear acoustics. 

The most important nonlinear effect in simple-wave flow can be readily identified 
directly from Eq. (3n-22). Combine that equation with the differential expression 
du = utdx -f u, dt to obtain 

(i)-~---S"-,,±e <3n-23) 

This relation states that the propagation speed of a given point on the waveform 
(the point being identified by the value of u there) is u ± c. In linear theory the 
propagation speed of all points is the same, namely, ±Co. The ramifications of the 
variable propagation speed arc discussed in Sec. 3n-4. 

Compound Waves. When waves traveling in both directions are present, there is 
no fixed relationship between u and X. A propagation speed can still be defined, 
however. New dependent variables r and «, called "llicmann invariants," may be 
defined by 

2r = X-r-u        2« = X—u (3n-24) 

If Eqs.  (3n-20) arc first added and then subtracted, the results arc respectively 

r, + (u + c)x, ■= 0 (3n-25a) 
«, + (u - c)6t •= 0 (3n-25b) 
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Thus, as first fouud by Itietnann (ref. G), 

  (3n-2Ca) 

%**%* lt,S,apPare,lt «^mpücity, this result is much more complicated to apply than 

3a-L Plane, Simple Waves in Lossless Gases. For perfect gases the iscntropic 
equation of state is given by Eq. (3n-9). For this case X = 2(c - c0)/(-y - 1), and 
the sunple-wave relation Eq.(3n-21) becomes 

(3n-27) e ** Co ± (/3 - l)u 

where ß - |(T + i).   Combination of this equation .with Eq. (3n-ll) leads to 

P - P. «= P. {[l ± 03 - 1) ^]n'(7"U - l} (3n-28) 

which can be used to obtain the characteristic impedance for finite-amplitude waves 
*or weak waves, i.e., u/c, « 1, this expression reduces to the traditional one, 

P - Po «=* ±PoCo« (3n-29) 

The nonlinear differential equation for simple waves, Eq. (3n-22), becomes 

"i + (ßu ± co)u« » 0 (3n-30) 

If we restrict ourselves momentarily to outgoing waves, the propagation speed is 

(I) ■ •«Hut 
ßU +Co (3n-31a) 

which shows quite clearly that the peaks of the wave travel fastest, the troughs 
Tn^i ,Lqu";af

Ieiltly. M ^e wave travels from one point to another, the peaks 
sutler the least delay, the troughs the most.   This latter view is illustrated in Fig 3n-l 

(0,x"° (WX»o (OX.X <d)X>7 
veSchJ'1; «°.Sr dis*rtion of * finite-amplitude wave.    Symbols are: u - particle 

which shows the time waveform of an outgoing disturbance at various distances from 
the source.    The progressive distortion is quite striking, leading eventually to the 

SSLTSX. " ^ 3n"ld-    ^ interprCtati0n °f Fi^ »-" wfll be 
in n^rPJriCal

?
,y I0'3 thff

C CXaCt Pr°P,leation speed differ from c0) the accepted value 
m linear theory?    Two effects are at work: one kinematic, the other thcrmodynamic. 
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The sound wave travels with speed c with respect to the fluid particles. But these 
particles arc themselves in motion, moving with velocity w. To a fixed observer 
therefore, the net speed is u + c. This is the kinematic effect and is frequently 
referred to as convection (the fluid particles convect the wave along as a result of their 
own motion). The thcrmodynamic effect is the deviation from constancy of the 
sound speed c. Where the acoustic pressure is positive, the gas is a little hotter 
Consequently c is greater. Conversely, in the wave troughs, where the gas is ex- 
panded and therefore colder, c is less. The variation of c from point to point along 
the wave can be traced to nonlinearity of the pressure-density relation. As Eq. 
(3n-10) shows, c would be constant if p were linearly related to p. This would be 
true, for example, for an isothermal gas. 

For an incoming wave the propagation speed is 

(£)™.t * ßU ~ * <3n"3l6> 
Similar arguments apply in this case. A difference is that the troughs of the particle 
velocity wave travel fastest (in a backward direction), the peaks slowest. Because 
pressure and particle velocity are out of phase in an incoming wave, however, it is 
still true that the peaks of the pressure wave proceed most rapidly and the trouglis 
least so. 

General Solutions.    Three forms of the general solution of Eq. (3n-30) are now given. 
First is what might be called the "Poisson solution" (ref. 7) 

« - fix ~ (ßu ± c,)t] (3n-32) 

which is implied by Eq. (3n-3l); / is an arbitrary function. This result is most easily 
interpreted as the solution of an initial-value problem for which the spatial dependence 
of the particle velocity is prescribed everywhere at t «= 0, i.e., u(x,0) = /(i). The 
problem is somewhat artificial, however, because the progressive wave motion must 
already exist at I = 0. Of more practical interest are boundary-value problems 
involving a'source; then simple waves arise quite naturally. If the time history of 
the particle velocity is known at a particular place, say u(fl,l) - g(i), the solution is 

0 0 ~ £TT7.) <3n'33> 
This equation has been used to construct the waveforms in Fig. 3n-I. To make such 
constructions, it is convenient to use the following "inverted" form of the solution; 

1 - ° ,(u) ~ c^±Tu79 <3n-34> 
where :' = I T x/c0 is the delay (for outgoing waves) or advance (for incoming 
waves) time appropriate for zeros of the waveform, and g~l(u) a the inverse function 
corresponding to g, i.e., g~x[g(u)\ = u. 

The solution of the classic piston problem, in which a piston at rest begins at time 
t «= 0 to move smoothly with a given displacement X(t) in a lossless tube, is more 
complicated because of the moving boundary condition 

w[A'(0,<) - X'(t)H(l) (3n-35) 

where //(<) is the unit step function. The solution of this problem may be given in 
parametric form as follows (refs. 5, 8): 

X («)// (Li*) (3n_36a) 

whcre *-t-^T7. <3-3<»> 
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The parameter * represents the time at which a given signal (i.e., given value of «) 
loft the piston. ' 

It is generally quite difficult to convert any of the three general solutions into an 
explicit analytical expression «<«,,). One can, however, always obtain a sketch of 
the waveform through use of the inversion procedure indicated by  Eq.  (3n-34) 

J^l/TTr^ I1™   far-rcachin*  ,imitati0».   both   mathematically  and 
rhjsirallj, is that these solutions contain the seeds of their own destruction Excent 
for a wave of pure expansion, the dependence of the propagation speed on u will 
cause steepening of the waveform. Steepening eventually leads to multivalued 
shapes like that shown in Fig. 3n-ld. But these must be rejected because pretufe 
disturbances in nature cannot be multivalued, either in time or in space. InTct 
once any section of the waveform attains a vertical tangent, as in Fig 3n-lc, resulte 

ZTZT     h: ,COntimf fUrther (ref- 9)-    Physica1*' what haPP-s i Sat a shock wave oegins to form.    For reasons discussed in detail in Sec. 3n-8, this formally 
marks the end of validity of lossless, simple-wave theory.    For mathematical anaTy £ 
of shock formation see, for example, refs. 4 and 8 

Fubini Solution. A problem of special interest in acoustics is the propagation of a 
finite-amplitude wave that ,s sinusoidal at its point of origin. Suppose that the 
wave is produced by sinusoidal vibration of a piston in a lossless tube. Let the piston 
d,sphacementbegivenbyZ(0 = („,/„,(, - cos .0 where u0 is the velocity ampEde 

Fo     Sat)"'   For ^    ^ ^^ ffeqUCnCy-    ^ ^^ » ^ * *Ä fcqs. (Jn-d6).    For the outgoing wave we have 

£= sin "**(<-f) (3n-37a) 
where 

«* - u - **-«(! -cos^) 
1 + ßt sin <*<(, (3n-376) 

^l:htmberhC ^ nUmber' "d * " "^ * ** ^^ ™^* «P™— 
An explicit solution is now sought by writing u as a Fourier series, 

— = ZAn cos n(ul - kx) + XBn sin n(U - kx) (3n.38) 

S thC CXaCt expressions for *" the coefficients An and ßn have not been 
obtained, an approximate computation is available. First expand Eq (3n-37&? 
writing , for flda, and V for t - x/c,, and rearrange as follows: h 

a* - o,l' «= <r sin «* + t(l _ coa „0 - ßa sin1 <£) + 0(t») 

If <r » « (i.e., 0*z » 1), and « « 1, this equation reduces to 

w* = <*1' + v 8in w* (3n-39) 

Under this approximation the Fourier coefficients A. vanish, and the B can h» 
evaluated m terms of Bessel functions.    The final result is (ref. 8) 

". "   2,  ^■/"(r^) 8m n^1 - **> (3n-40) 
n-l 

which is generally referred to as the Fubini solution (ref. 10) 

f JlmTT rrCS3Ure **"? '" f°Und by «"«»tituting the value of „ given bv Eq 
(3n-40)  in the linear impedance relation,  Eq.  (3n-29).    Use of a more accurate 
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expansion of Eq (3n-28) for this purpose would not be consistent with the approxi- 
mations that led to Eq. (3n-39). 

The shock formation distance for this problem can be deduced by inspection of 
Eqs. (3n-39) [or, alternatively, the exact expression Eqs. (3n-376)] and (3n-37a). 
The relationship of u to t' is one-to-one only if a < 1. For a > 1 the waveform curve 
u(0 is multivalued.    Hence a shock starts to form at c «= 1, i.e., at 

* - 0«*)"1 (3n-tl) 

where the overbar signifies shock formation. The physical interpretation of <r is 
therefore that it is a spatial variable scaled in terms of the shock formation distance. 
The Fubini solution is not valid beyond the point a — 1. 

Sn-6. An Approximate Theory of Lossless Simple Waves. The approximations 
leading to the Fubini solution can be used to obtain a general approximate theory of 
traveling waves of finite amplitude.   The mathematical restrictions required are 

9 » « (3n-42a) 
««1 (3n-426) 

where the definitions of a and < are generalized to 

ßtx ut 

°~~Tt        ' ~ * A1*-43) 
Here xc is a characteristic distance defined so that significant distortion (for example, 
shock formation) takes place over the range 0 < <r < 1, and u« is the maximum 
particle velocity that occurs in the flow. The physical implications of these restric- 
tions are as follows: 

1. The finite displacement of the source can be neglected. In other words, the 
exact boundary condition given by Eq. (3n-35) can be replaced by 

u(0,0 - X'(l)H(l) (3Q-44) 

Any error thus committed is made small by inequality (3n-42o). 
2. The linear impedance relation, Eq. (3n-29), can be used to obtain the acoustic 

pressure, once the particle velocity waveform is known. 
3. The nonlinear effect that must be taken into account is the nonconstancy of the 

propagation speed. But this effect is approximated by writing Eqs. (3n-31) as 
follows: 

(£\ ±c, 
\dl) -—-.      1 i fl»/r. (3n-45) «t      IT ßu/co 

Retention of nonconstancy of the propagation speed as the only important non- 
linear effect gives recognition to the fact that this effect is the only cumulative one. 
It is the cause of the progressive distortion that engulfs the wave. We neglect the 
other nonlinear effects because they are noncumulative, or local. The distortion 
they cause docs not grow with distance. 

The formal theory based on these ideas will now be developed. An approximate 
differential equation may be derived by applying the method used earlier to convert 
Eq. (3n-7) to (3n-8). For simple waves the appropriate first-order relation is u, = 
Tco-'u«.    When this is substituted in the nonlinear term in Eq. (3n-30), the result is 

Co«x ± v, - ßc9-
luu, = 0 (3n-46) 

This differential equation could also have been deduced from Eq. (3n-4r>). 
Next let x and t' = t T x/c0 be new independent variables. Equation (3n-46) 

reduces to 

Cohi, - ßuu,. = 0 (3n-47) 
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For the boundary condition 

wL-o""^)//W =^'> <3n-48) 
where it is assumed that g(t) = Q for I < 0, the solution is 

u " *(*> (3n-49a) 
* - I' + ßc^xg^) (3n-49o) 

Iactf!vtheitT
5ttti0n is

i
sinUSoidaI' Lc- *«> -«.«in*, the Fubini solution follows 

exactly. It u also worth noting that within the limits of the approximate theory the 
difference between Lagrangian and Eulerian coordinates is negligible. AaY^enJ 
rule, the approximate theory is useful when « < 0.1 (ref 8) 

whto^r6'- Simple WaVCS In UqUids aDd Solids' Li1uids- For Jobless fluids 
whose isentropjc equation of state is not given by.Eq. (3n-9), we may proceed by using 
H/q. (.in-I4).   The propagation speed is (ref; 8).: 

(£)—.. = " * Co(I + CtU + ^ + ' ' •> (3n-50) 
where U - «/* and c, = ß/24, c, = C/2A + B/4A - (ß/2.4)', etc. Thus in 
the exact soluüon of the piston problem [Eqs. (3n-36)]f the parameter « is given by 

4, «= t * ~ X(*)  
u ± Co(l + ClU + cjt/1 • • •) (3n-51) 

where U is to be interpreted as c<r»x,(<£). 

sondftith^l^r1.1,10""1'^1 f0nnaHsm for Plane> longitudinal elas'tic waves in 
(re s  11  13T C?.Sla °r lsotr°P'c. is ™? similar to that for liquids and gases 
^reis. u  Uj.    The wave equation is given in Lagrangian coordinates as 

S« - ctfttJU (3n.52) 

0(W - 1 + (g) * + (£) faa . . . (3Q.53) 

Here a represents the rest position of a particle; « is partical displacement; and Mt 

t\?J!" ffi"-arC q"u?UtlCS invoIving the second-, third-, fourth-, and higher-order 
elastic coefficients (ref. 12). The quantity c0'-G plays the same role that WPo)' does  or fluid   (   f  14).    By the Lagrangian t.on      contiQui _ £*». 
thus replace E<|. (3n-18) by **' 

x"  -c.fQ
Um.*)]*dU (3n.54) 

- -C.K. - im,t.« + (* - |m4)m,*f.« • . •] (3n.55) 

IhhlmV= ^*iV;,AUo* m< ~ l ~ ***/***"*. etc. Riemann invariants are denned 
«before by Eq  (3n-24).    Note that « - 6 i» Lagrangian coordinates. 

E, Krss. äare aKain specificd by Eq- (3n-2i)'w,,ich whcn c°mbincd with 

£« = T E/ + $m,tf« T $m,ro,«tf • • . • (3n.56) 

The propagation speed for simple waves is 

GO.—." ±C<<?§ (3n-57) 
s^temtLa'' WhiCh T" ■" ^ ^'^ " ^^ h°rC bcCaUSC thc coordinate system ,s Lagrangian.    Equation (3n-S7) expanded in series form is 

W „-«>.., ~  ±Co(1 ± *m>U + W<* ~ 2m.)tf« • • •] (3n.58) | 
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Therefore, the solution of the piston problem, given «(0,0 *= X,(l), is 

* " \ * l±W/+>,'U-2m«)l/'--- (3D"59) 

where U is to be interpreted, as in Eq. (3n-51), es c0
_l A'i(».    More complete versions 

of some of the series expansions given above can be found in ref. 12. 
Approximate Theory. The approximate theory of simple waves described in 

Sec. 3n-5 is very easily generalized to apply to liquids and solids. For liquids 7 — 1 
is replaced by B/A, as mentioned after Eq. (3n-16). For solids y + 1 is replaced 
by —Mi/Mi (see rcf. 12 for other useful associations).   Therefore, let 

ß « $(y + l)       for gases (3n-60a) 
_B 
2 A 

r, 
2Mt 

ß « 1 + ^ for liquids (3n-606) 

ß = ^^ for solids (3n-60c) 

and all results stated in Sec. 3n-5 become applicable for a very wide range of con- 
tinuous media. For many liquids and solids the first "nonlinearity coefficient" 
(B/A for liquids, Mt/Mt for solids) is known, but higher-order ones are not. In 
such cases it is difficult to justify using anything more precise than the approximate 
theory.    But see ref. 12 for a discussion related to this point. 

3n-7. Nonplanar Simple Waves. In this section one-dimensional nonplanar waves 
are considered, namely, spherical and cylindrical waves, and waves in horns. The 
general theory is not very highly developed. One fundamental difficulty is that 
simple waves of arbitrary waveform do not generally exist for nonplanar waves 
(ref. 15). Consider, for example, the wave motion generated by a pulsating sphere in 
an infinite medium. Most of the wave field consists of outgoing radiation, but there 
is also some backscatter (ref. 15). In the far field, however, simple waves do occur 
as an approximation. This is the case treated here. The results represent an 
extension of the approximate theory developed in Sees. 3n-5 and 3n-6. 

Spherical and Cylindrical Waves. For large values of the radial coordinate r 
(actually large kr, where k is an appropriate wave number of the disturbance), the 
following approximate equation for simple waves in a fluid can be obtained (ref. 16): 

09*10, — ßwwf = 0 (3n-61) 

where t' •= I T (r — r0)/co, ro is a reference distance, and ß is given by Eq. (3n-60a) 
or (3n-606). This equation may also apply to longitudinal waves in an isotropic 
solid, but so far no derivation has been given. The dependent variable w equals 
0"/ro)'u and (r/r0)u for cylindrical and spherical waves, respectively. The inde- 
pendent variable z is given for the two cases by 

Cylindrical: t = 2(Vr — Vrö) Vrü (3n-«52«) 

Spherical: « •■ r» In — (3n-ti26) 
r« 

Note that z > 0 for diverging waves (r > r0), but z < 0 for converging waves (r < r0). 
Equation (3n-61) is solved by recognizing that it has the same form as the plane- 

wave equation (3n-47). For the boundary condition take u(r„,0 =» g(t), which may 
represent cither the motion of a source at r0 or the measured time signal of a wave as 
it passes by the point r0.    Since z = 0 and /' = I when r = r«, the condition on vo is 

u>(0,O = Q(t') (3n-63) 
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Therefore, for the two kinds of waves the solution is 

Cylindrical: „ = ^ ff(„ (3a^4a) 

* - I' + 2ßc,-* VrliVr - V7M*) (3n-646) 

Spherical:                      « - ^(*) (3n-65a) 

* « <* + /3c,-«r, In - p($) (3u-656) 
U 

Some applications of these results are given in refs. 16 to 18. It has been shown 
(ref. 19) that Eq. (3n-65o) corresponds to a second-order approximation of results 
obtained using the Kirkwood-Bethe hypothesis (ref. 20). 

Many special solutions for spherical and cylindrical waves have also been found. 
Most are of the similarity type. The most famous is Taylor's solution for the com- 
pression wave generated by a sphere that expands at a constant rate (refs. 21, 22). 

Waves in Horns. For waves traveling in ducts whose crcss-scctional area A «= A (x) 
does not vary npidly, the waves may be assumed to be quasi-plane. It is assumed 
that the effect cf variations in the cross section can be accounted for simply by cor- 
recting the continuity equation as follows: 

D{Ap) 
Dl    + PAXL. = 0 (3n-66) 

The one-dimensional formalism is thereby retained. 
By the same methods used for spherical and cylindrical waves it is possible to 

derive an equation exactly like Eq. (3n-61).    However, w and z are now defined as 

«"-(j;)1« (3n-67a) 

,-<C(T),&' <3Q-67» 
where x, is a reference distance, A, - A(x,), and *' = I ± (x - x0)/Cfl. The sign 
of z identifies the wave as outgoing (x > x0) or incoming (x < x0). Note that a 
conical horn (A « *«) gives results identical with those for spherical waves, and a 
parabolic horn (A «c x) gives results identical with those for cylindrical waves. 
_   Ine general solution for a boundary condition of the form given by Eq. (3n-63) 

W " \TJ  " " g<A>) (3n-68a) 
4> - f + ßc,-*zgfa) (3n-68o) 

For reference the value of the stretched coordinate z for an exponential horn (A « 

z _ /-!(! _ e-»(.-«.)) (3n-G9a) 

and for a catenoidal horn (A « cosh* Ix) is 

r - 2/-« (tan~l c1* - tan~« «*«.) cosh lx0 (3n-696) 

All the results previously obtained for plane waves (approximate theory) may now 
be applied to nonplanar one-dimensioual waves simply by replacing u und x by w 
and z, as given by Eqs. (3u-ü7). For example, for sinusoidal excitation at x - x. 
Hie! shock formation distance is found by putting i = ±(M)"' and then making use 
of Kq. (Jn-G76). 
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Parametric Array. An application of particular interest is the so-called parametric 
end-fired array, conceived by Westcrvelt (ref. 53). A source such as a ballled piston 
emits radiation consisting of two high-frequency carrier waves into an open medium. 
The carriers, whose frequencies arc o>t and wi, interact nonlincnrly to produce a dif- 
ference-frequency wave (frequency wt = «, — «,). Also produced, of course, but not 
of interest here, arc the harmonics of the two carriers as well as the sum-frequency 
and other intcrmodulation components (ref. 54). In Wcstervclt's original treatment 
the two carrier waves were assumed to be collinear beams of collimatcd plane waves. 
More recently, Muir (ref. 55) lias taken the directivity and spherical spreading of the 
carriers into account. In any case, however, the interaction to produce the difTcrence- 
frequency wave amounts to setting into operation a line of virtual sources of frequency 
ut, all phased 60 as to constitute an end-fired array. The result is that the difference- 
frequency wave has a very high directivity. In other words, a low-frequency beam 
is produced that is much more highly directive than would have been the case had 
the source emitted the difference-frequency signal directly. Typically, too, there arc 
no minor lobes. Absorption by the medium may be relied upon to filter out the two 
carrier waves and the sum-frequency component, eventually leaving the difference- 
frequency wave as the most prominent signal. Experiments have confirmed the 
remarkable properties of the parametric array (refs. 55, 56), and many further studies 
of it have been done (ref. 57). 

WEAK-SHOCK THEORY 

3n-8. General Discussion. The appearance of shocks in a flow poses a serious 
challenge to the theory of simple waves as developed thus far. In the first place, 
the waveform gradient at a shock is so high that the dissipation terms in Eqs. (3n-2) 
and (3n-3), heretofore deemed negligible, are in fact very large. A 3econd problem 
is that since the shock is (at least approximately) a discontinuity in the medium, it 
can cause partial reflection of signals that catch up with it. The presence of reflected 
waves invalidates the simple-wave assumption. Strictly speaking, therefore, the 
flow cannot be simple wave, once shocks form (ref. 9). 

The situation is not quite so bad as it seems, however, provided we restrict our- 
selves to relatively weak waves, i.e., u0/c0 < 0.1, approximately. Under this con- 
dition the signals that are reflected from a shock in the waveform are so feeble as to 
be negligible. The simple-wave model may therefore be retained as a good approxi- 
mation. Next, triple-valued waveforms of the kind shown in Fig. 3n-l must be 
avoided. This requires that provision be made for dissipation. There are two 
approaches. First, one can take explicit account of the dissipation terms. This 
leads to Burgers' equation, or variations thereof; the method is described in Soc. 3n-l2. 
Alternatively, one can postulate mathematical discontinuities—shocks—at places 
where the waveform would otherwise be triple valued. The Rankinc-IIugoniot 
relations are invoked to relate conditions on cither side of each shock. In this way 
dissipation is accounted for indirectly. A tacit assumption, it will be noted, is that 
all the dissipation takes place at the shocks. 

The mathematical method is more fully appreciated if the physical aspects of the 
process arc first understood. The history of a typical waveform is depicted in Fig. 
3n-2 (taken from ref. 27). Figure 3n-2a shows the initial waveform. Numbered 
dots indicate initial phase points (values of <f>) on the wave. In the beginning, 
distortion takes place as described in Sec. 3n-4 (Fig. 3n-2fc and c). After the shock 
is born (Fig. 3n-2c), it travels supcrsonically. In consequence of Kq. (3n-72), how- 
ever, phase points just behind, such as number 5, travel faster. As they catch up 
with the shock, it grows because the top of the discontinuity is always determined by 
the amplitude of the phase point that just caught up with it. (Conversely, the 
bottom of the discontinuity always coincides with the phase point just overtaken by 
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the shock.) The top reaches a maximum when phase point 5 catches up. After 
that, the top decays (Fig. 3n-2c). In Fig. 3n-2/ the decay has progressed to the 
extent that all phase points of the original waveform between 4 and G have dis- 
appeared. Eventually all that remains (Fig. 3n-2?) is the shock and a linear section 
connecting it with the zero, phase point 7. This is the asymptotic shape toward 
which many waveforms or waveform sections tend (ref. 2G). 

3n-9. Mathematical Formulation of Weak-shock Theory. For the continuous 
sections of the waveform the most general solution from the approximate theory of 
simple waves is adopted, namely, Eqs. (.3n-08), where w and z arc given by Eqs. 
(Jn-67). Plane, cylindrical, and spherical waves, which are not really "quasi-plane " 
are nevertheless included formally within the framework of this solution by taking 
A «* 1, x, and x\ respectively. 

-f       1 

(a) X-0 
u 

4£^- 
l«> (0 (g)x»x 

FIG. 3n-2. Development and decay of a finite-amplitude wave.    Numbered points refer 
to initial phases (values of <f>) of the wave.    {From ref. 27.) 

Suppose now that a shock begins to form at time I and distance £.    It will arrive 
at a subsequent point x at time I. given by 

l. = l + f* v~l *P (3n-7l) 

where v us the shock's propagation speed. The Rankinc-Hugoniot relations can be 
combined to give v in terms of ua and ub, the particle velocities just ahead of and just 
behind the shock, respectively.    An approximation of the required relation is 

or, to the same order, 
v = ±e0 + £/3(u. -f-u*) 

v~l = ±c,-' - |p"c,-»(ua + Ui) 

Substitution of this value in Eq. (3n-71) leads to 

(. - I' ~ a-0c,-« I* (u. + u») d„ 

(3n-72) 

(3n-73) 

(3n-74) 

where oycrbars continue to indicate values at the instant of shock formation, and 
primes denote retarded (or advanced) time. In terms of the generalized dependent 
and independent variables w and z, Eq. (3n-74) becomes 

< « V - £/3c<T* f* (w. + m) du (3n-75) 
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—*  -   -$/SC0
_,(w.  + Wo) 

dz 
(3n-76) 

Once the particle velocity u has been determined, the linear impedance relation, 
Eq. (3n-29), is used to find the pressure signal (ref. 23). 

This completes the formal solution, except for some interpretation. The wave- 
form in the continuous sections between shocks is prescribed by Eqs. (3n-G8). For 
each shock the path and amplitude are determined by Eq. (3n-75) or Eq. (3n-7G) 
together with Eqs. (3n-68), which arc to be evaluated just ahead of the shock (u = u„ 
<t> ■= 4>„ I' = l[) and just behind it (u •= U6, 4> « <t>b, i' — 0- IQ principle, Eqs. 
(3n-G8) can be combined to eliminate the parameter <t> as follows: 

Hence just ahead of the shock 

and just behind 

I' w, p_1(tc) — ßec*zw 

{, «■ g~l(v*) — ßct~*zwt 

(3n-77) 

(3n-78a) 

(3n-786) 

Equations (3n-78a), (3n-786), and (3n-75) or (3n-76) are to be solved simultaneously 
for to«, Wb, and I,. 

h£ 
-To 

.-Ur 

^r 
z-0 «3/b 

Fio. 3n-3.    JV wave. 

3n-10. Applications of Weak-shock Theory. N Wave. Perhaps the most famous 
application is to the wave shaped like the letter iY. The sonic boom is a cylindrical 
N wave in the far field. For the present consider outgoing waves only. Refer to 
Fig. 3n-3 for notation. At ( = 0, u = -u<{/Tt for -T, < t < T«. Thus g(<t>) = 
—uo<t>/To, and Eq. (3n-686) yields 4> «= 1/(1 + bz), where b =•» 0u,/co

iro. The 
solution is given by Eq. (3n-68a) as 

XB " — t'     «. 
-T < t' < T 

T»\+bz 

To determine T, make use of Eq. (3n-76) for the head shock: that is. 

Tz       ^^"ITte 
Integration gives 

-< -= T - T.(l + bz)i 

The amplitude of the wave is therefore given by 

*      \A )   (1+ bz)\ 
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Next consider incoming waves. The major difference in the. results is that z ia 
replaced by -z. But z itself also changes sign (soc the discussion following Eqs. 
(3n-07)J.    The following formulas cover both incoming und outgoing waves: 

"-*ifmr.     -r<<'<r Cta-79) 
r - r.(l + 6|z|)i (3n-80) 

'^■(xy^Hrafi <
3Q

-
81

> 
The growth of a converging wave (A < Ao) and the diminution of a diverging wave 
(A > Ao) are not comparable because the factor (1 + b\z\)~l acts to diminish both 
types of waves. Both waves spread at the same rate, however. From Eq. (3n-81) 
one obtains the classical results that outgoing plane,_cylindrical, and spherical waves 
decay at great distances as z-*, r~l, and r-,(ln r)~i, respectively. 

Sawtooth Wave. Assume that the wave shown in Fig. 3n-3a is repetitive. The 
magnitude of the jump at the shock is now 2u0 to begin with. Because of the sym- 
metry, we have u. = -u*, which means that, by Eq. (3n-72), the shocks all travel 
at sonic speed. Unlike the N wave, therefore, the sawtooth does not stretch out as it 
travels. The decay is more rapid however. Proceeding as before, we find the wave 
amplitude to be given by 

w - TTSER (3a-82) 

where k is the fundamental wave number of the wave. See ref. 23 for a discussion 
of power loss and related topics for sawtooth waves in an exponential horn. 

Originally Sinusoidal Wave. It will be recalled that a sinusoidally vibrating piston 
gives rise to periodic waves whose mathematical description, for outgoing waves, 
is given by Eq. (3n^t0), the Fubini solution. Weak-shock theory makes it possible 
to obtain a solution of this problem for distances beyond the point of shock formation. 
It turns out that after forming at * = f = (ßik)~l, the shocks reach a maximum 
amplitude at x = ri/2 and thereafter decay. For distance greater than 32 the wave 
ia effectively a sawtooth of amplitude 

rtta 
«» - j-qp^ (3n-83) 

where (see Sec. 3n-l) <r = ßtkx = x/t. This problem is treated in full in ref. 27, as 
is the similar one of an isolated sine-wave cycle. To generalize Eq. (3n-83) to other 
one-dimensional outgoing waves it is merely necessary to replace u& by wt, and <r by 
ßtkz. 

Sn-11. Limitations of Weak-shock Theory. The primary advantage of weak-shock 
theory over the method based on Burgers' equation (see below) is that results are 
obtained quickly and easily. Details of the actual profile of the wave in the neighbor- 
hood of each shock are suppressed simply by approximating the shock as a mathe- 
matical discontinuity. The method's strength is also its weakness, however. At 
great distances the shocks may become so weak that they become dispersed and are 
no longer approximate discontinuities. 

As a test we may compare the shock rise time (ref. 29) r with a characteristic period 
or time duration T of the wave.    Thus consider the ratio 

r 12a 123     /A\t 
f - SEI? " Air Or.) (3Q

'
84) 

where 6 is proportional to the viscosity and heat conduction coefficients of the fluid 
(sec Eq. (3n-8G)].    For an N wave \wb\T is a constant (- u,r,) so that r/T is aimplr 
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proportional to (A/43)*. Therefore, if the N wave is plane, T/T is constant, which 
mcanf? Hint the validity of the weak-shock computation docs not change with distance. 
The wave simply spreads out as rapidly as the shock. For all other outgoing N waves 
however, the shock disperses more rapidly, and eventually T ~ T, hcyond which 
point weak-shock theory should not be trusted. Let fu», designate the distance at 
which r/T — 1.    For spherical N waves wc obtain, 

r«u«     ßuoCtTo 
— i2ä~ (3n-85a) 

The comparable result for cylindrical N waves is 

u  " V 
ßu,t0T0y 

For an outgoing sawtooth wave T/T is proportional to (1 + ßik\z\)(A/A0)l, which 
mean3 that weak-shock theory is always limited, even when the wave is plane. Even 
for converging waves T may approach T in certain instances (refs. 17, IS). Care 
must therefore be exercized in using asymptotic formulas based on Eq. (3n-82). 
Calculations of rmmT for sawtooth waves based qn taking T — T are in agreement with 
estimates obtained by other methods (ref. 27). 

The importance of the limitation on weak-shock theory varies a great deal in 
practice. For sonic booms the limitation is apparently not significant. Typically 
at ground level T is of the order of milliseconds, whereas T is measured in tenths of a 
second. For long-range propagation of pulses from underwater explosioas (ref. 30), 
however, the limitation can be crucial. 

In conclusion we remark that "weak-shock theory" is in some respects a misnomer. 
The theory is valid for weak shocks but not, in general, for very weak ones. 

BURGERS' EQUATION AND OTHER MODELS 

. We now consider explicitly the effects that viscosity, heat conduction, and relax- 
ation have on the propagation of finite-amplitude waves. The full-fledged equa- 
tions—(3n-l), (3n-2), (3n-3), and (3n-6) or other equation of state;—must be dealt 
with. Successful attacks on these equations have been mainly directed at specific 
problems, such as the profile of a steady shock wave (ref. 29). General exact results 
analogous to those for lossless waves are not known. The only general approach 
presently available, that based on Burgers' equation, is limited to relatively weak 
waves. For our purposes, however, this method is a fitting companion for weak-3hock 
theory and its predecessor, the approximate theory of lossless simple waves. 

8n-12. Thermoviscous Fluids. Burgers' Equation. Plane Wave*. By employing 
an approximation procedure similar to that used to change Eq. (3n-7) into (3n-8), 
Lighthill (ref. 29) reduced the equations of motion for outgoing plane waves in a 
thermoviscous perfect gas to Burgers' equation, 

Ut + ßuut. = «u,-,. (3n-86a) 

Here x' = i - cel, * = ?v[V + (y — 1)/Pr], v = 17/po is the kinematic viscosity, 
V = (1/ + 2»,)/i, is the viscosity number, and Pr = ,C„A is the Prandtl number. 
The equation applies as well to fluids of the arbitrary equation of state (refs. 31, 32); 
simply let ß be given by Eq. (3n-G0b). In certain cases it applies also to solids 
(ref. 33). 

Equation (3n-8Ca) is convenient for initial-value problems because the moving 
coordinate x' reduces to x' = x at t = 0. For boundary-value problems a more 
convenient, yet equally valid, form is (refs. 31, 3, 34) 

Co*ux — ßuut- «= ±*co"lu,.|' (3n-8C6) 
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where C = l + i/c,. [To make Eq. (3n-80a) apply to incoming us well as outgoing 
waves, redefine i'asiT cj.] 

Burgers' equation lias a known exact solution.    The introduction of the logarithmic 
potential {■ by 

"-±S;aar)l"±Ä5r- (3n"87) 

causes Eq. (3n-8G6) to be reduced to 

±Co*f* - *r,r - 0 (3n-88) 

which is a diffusion equation with the usual roles of space and "time" reversed. To 
avoid confusion we drop the multiple-sign notation at this point and focus attention 
on outgoing waves. It is clear that an incoming wave can be considered simply by 
replacing 6 with -S.   The solution of. Eq. (3n-88) [with the (+) sign] is 

* *  \f /_"„ fo(X) exp [-K(\ - 0«1 d\ (3n-89) 

where K = cj/ihx. The quantity MO - JW) represents the transformed bound- 
ary condition. If the original boundary condition is given by Eq. (3n-48), then, by 
Eq. (3n-S7), 

f.(0 - exp [|'M ^ gb) dß J (3n-90) 

Normally one takes g(t) = 0 for t < 0, in which case f0 = 1 for t' < 0, and the 
integral's lower limit is zero. The solution of Burgers' equation has been applied 
to a number of specific problems (refs. 29, 32). 

The only solution reviewed here is the one for which the piston motion is sinusoidal 
(refs. 31, 34, 35): «(0,0 = «„ sin utH(t). Equation (3n-90) gives To = exp [ir(l - 
cos «01 for t' > 0 fro - 1 otherwise), where 

r - "ST = S (3n-9D 
and oX = a/k is the dimensionless small-signal attenuation coefficient (<*X = w«/co'). 
Ihe dimcnsionless parameter r characterizes the importance of nonlinear effects 
relative to dissipation. The value r = 1 roughly marks the dividing line between the 
importance and unimportance of nohlincarity in a periodic wave (rcf. 36). When 
the value of ft is substituted in Eq. (3n-89), the potential r can be separated into 
transient and steady-state parts. The steady-state part, to which we restrict our- 
selves, may be expressed as an infinite series, 

m 

f - /o(|r) + 2  £   (-D-Z.^r)«--1« cos nut' 
n-l 

(3n-92) 

where In is the Bcssel function of imaginary argument. 
The most interesting case is that of strong waves, i.e., r » 1.    In this circumstance 

,,    o^       a     Cta function' and the logarithmic differentiation required by Eq. 
(dn-87) is easy to carry out.    The result is (rcf. 35) 

— «= - V sin nU' 
wo      r L, sinh n(l + <r)/r (3n-93) 

which is Fay's solution (rcf. 37) with Fay's constant «. taken to be T-.    If , i3 not 
large, the hyperbolic sine function may be approximated by its argument, giving 

2u„ 
" - T+-; 2n_l s,n ""I' (3n-94) 

128 



ACOUSTICS 

which represents a sawtooth wave of amplitude 

«» 1 +o 

This is exactly the same result found by means of weak-shock theory; sec Eq. (3n-83). 
For strong waves at great distances, i.e., <r » T » 1, the waveform is fouud, either 

by the Fay solution or directly by Eqs. (3n-92) and (3n-87), to be 

v S 4a7x<&-le-<" sin «f (3n-95) 

The simple exponential decay is expected because the wave has now become quite 
weak. What is remarkable is the absence of the original amplitude factor «0- The 
wave amplitude at great distances is independent of the source strength. In other 
words saturation is reached. This result is obviously of great importance. Satura- 
tion has been observed experimentally (refs. 15, 55, 58). Note from Eq. (3n-83) that 
the asymptotic amplitude given by weak-shock theory is (ref. 26) 

*»=iä <3n-9C> 
but this result is accurate only in the sawtooth region, which is defined roughly by 
Zt <x <a~l (ref. 35). 

Nonplanar Waves.    For other one-dimensional waves the analog of Eq. (3n-866) is 

Co* (u, ■+ uAx/2A) - ßcoUUf = hu,., (3n-97) 

(again, for incoming waves replace 6 by — S). It is necessary to make the far-field 
assumption in deriving this equation. The transformations that have proved so 
helpful in previous cases, namely, Eqs. (3n-67), lead to 

00*101 — ßcnvrwf ** S \~Ä~)  w,,t' (3n-98) 

which is similar to Burgers' equation, but has one variable coefficient. No exact 
solutions are known. 

For periodic spherical and cylindrical waves, solutions of Eq. (3n-98) have been 
obtained that are valid in the shock-free region (z < z) and in the sawtooth region 
(refs. 17, 18). These solutions correspond, respectively, to the Fubini solution for 
spherical and cylindrical waves and to the related weak-shock solutions (ref. 27). 
The latter are improved upon, however, because the detailed configuration of the 
waveform in the vicinity of the shocks is obtained. The behavior of the shock 
thickness is strongly dependent upon whether the wave is a diverging or a converging 
one. This can be seen from the form of Eq. (3n-98). A diverging wave (A > At) is 
equivalent to a plane wave in a medium in which the dissipation increases with 
distance. Conversely, for a converging wave (A < A.) the dissipation seems to 
decrease with distance (refs. 17, 18). 

3n-13. Equations for Other Forms of Dissipation. If dissipation is due to an agency 
other than the thcrmoviscous effects discussed in the last section, it may still be 
possible to derive an approximate unidirectionnl-wave equation similar to Burgers'. 

Relaxing Fluids. An elementary example of a relaxing fluid is one that radiates 
heat in accordance with Eq. (3n-5)(rcf. 38). For simplicity take the fluid to be a 
perfect gas, and let it be inviscid and thermally nonconducting. At very low fre- 
quencies infinitesimal waves travel at the isothermal speed of sound, given by 60' = 
Po/po-    At very high frequencies the speed is the adiabattc value, givcu by 6«,1 *= 
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yPv/pt (the notation 6. is used here in place of c0 to emphasize the role played by 
frequency).    The dispersion m, defined by 

* B bm'^t 
W (3n-99) 

is equal to y — 1 for the radiating gas. If the dispersion is very small, i.e., m « 1 
(which in this case implies y = 1), the following approximate equation for plane 
waves can be derived: 

V + *7u*""6r* v * + ß* ^n uu''" ± ^ u,v       (3n-10°) 
where j'-»T x/6». It is seen that the radiation coefficient q [see Eq. (3n-5)J is 
the reciprocal of a relaxation time. Subscripts a and i used with 0 indicate adiabatic 
and isothermal values, respectively; that is, 0« « (7 + l)/2 and 0< = (1 + l)/2 =* 1. 
The two values are essentially the same, 6ince it has been assumed that 7 = 1. At 
cither very low frequencies («g~» «l) or very high frequencies («?-> » 1) the left- 
hand side of the equation takes on the same form as Eq. (3n-47). If the equation 
is linearized, a dispersion relation can be found that gives the expected behavior for 
a relaxation process (the actual formulas for the attenuation and phase velocity agree 
with the exact ones for a radiating gas only for m « 1). 

Polyakova, Soluyan, and Khokhlov considered a relaxation process directly and 
obtained a pair of equations that can be merged to form a single equation exactly 
like Eq. (3n-100) except that 0, and 0„ are equal (ref.39). Some solutions (rcfs.39,40) 
have been found. One represents a steady shock wave. The shock profile is single- 
valued for very weak shocks. But when the shock is strong enough that its prop- 
agation speed [see Eq. (3n-72)J exceeds 6., the solution breaks down (a triple-valued 
waveform is predicted). This illustrates an important fact about the role of relax- 
ation in nonlinear propagation: Relaxation absorption can stand off weak nonlinear 
effects, but not strong ones. In frequency terms, relaxation offers high attenuation 
to a broad mid-range of frequencies. If the wave is quite weak, the distortion 
components are easily absorbed because their frequencies fall in the range of high 
attenuation. But if the wave is strong, many more very high frequency components 
are produced, and these are not attenuated efficiently by the relaxation process. To 
keep the waveform from becoming triple valued, it is necessary to include a viscosity 
term in the approximate wave equation. In ref. 40 the problem of an originally 
sinusoidal wave is treated. Quantitative approximate solutions are obtained for 
cases in which the source frequency is either very low or very high, and a qualitative 
discussion is given for source frequencies in between. - .    . 

Marsh, Mellon, and Konrad (ref. 30) postulated a "Burgers-like" equation for 
spherical waves. It is similar to Eq. (3n-100) but is corrected to take account of 
spherical divergence. A viscosity term is added, and 0. and 0a are the same. At 
either very low or very high frequencies the equation takes on the form of Eq. (3n-98) 
[for spherical waves (X/4,)l « r/rQ - ««"•], and some initial attempts at solving 
this equation were described. 

Boundary-layer Effects. Consider the propagation of a plane wave in a thermo- 
viscous fluid contained in a tube. The wave can never be truly plane because the 
phase fronts curve a great deal as they pass through the viscous and thermal boundary 
layers at the wall of the tube. If the boundary-layer thicknesses are small compared 
with the tube radius, however, the curvature of the phase fronts is restricted to very 
narrow regions, and the wave may be considered quasi-plane. The boundary layers 
still affect the wave, causing an attenuation that is proportional to y/Z and a com- 
parable dispersion.    If the frequency is low, the attenuation from this source is much 
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more important thnn that due to thennoviseous effects in the mainstream (central 
core of Hie fluid), and so it makes sense to find a Burgers-like equation for this case. 

A one-dimensional model of time-harmonic wave propagation in ducts with bound- 
ary-layer effects treated as a body force has been given by Lamb (rcf. 41). Chester 
(ref. 42) has generalized this model and applied it to compound flow in a dosed tube. 
His method can be used to obtain the following equation for simple-wave flow: 

„   _ Auu, = T 1+(T-D/VP? M» r «,(x/ - „) ±   (3n-101) 
'    c0*    ' coü/2 \*J Jo y/ti 

where D is the hydraulic diameter of the duct (four times the cross-sectional area 
divided by the circumference). No solutions are presently available. But the 
equation does have proper limiting forms. If the effect of the boundary layers 
(right-hand side) is neglected, the result is TSq. (3n-47). If the nonlinear term is 
dropped, the time-harmonic solution can be found, and this solution yields the correct 
attenuation and dispersion. Because of the relative weakness of boundary-layer 
attenuation (the dimcnsionless attenuation a\ varies as 1/y/Z), the higher spectral 
components generated as a manifestation of. steepening of the waveform are not 
efficiently absorbed. Thus discontinuous solutions, modified somewhat by the 
attenuation and dispersion, are to be expected. 

REFLECTION, STANDING WAVES, AND REFRACTION 

Sn-14. Reflection and Standing Waves. For plane interacting waves in lossless 
fluids we return to Eqs! (3n-24) to (3n-26). For perfect gases the Riemann invariants 
are given by 

(3n-102a) 

(3n-1026) 

Equations (3n-2G) tell us that the quantity r is forwarded unchanged with speed 
u+c = ^ (-y+ l)r—-J (3 — 7)«. Similarly, the speed for the invariant 6 is u — 
c = £(3 — y)x — £(7 + 1)«. The roles of independent and dependent variables 
can be reversed to give the following differential equation for the flow: 

*re + N(x + «)->(tr + lt) = 0 (3n-103) 

where N = -£(7 + l)/(7 — 1). For monatomic and diatomic gases Ar = 2 and 
N = 3, respectively. An exact solution of this equation in terms of arbitrary func- 
tions /(r) and g($) is known, but it is usually difficult to determine / and g from the 
initial conditions (ref. 4). 

Reflection. Certain valuable information about reflection can be obtained without 
solving for the entire flow field. Consider the problem of reflection from a rigid 
wall. For the moment we need not be specific about the equation of state. Let 
the incident wave be an outgoing simple wave. The Riemann invariant r for a 
particular signal in this wave is, by Eqs. (3n-21) and (3n-24), 

2r = X, + u, = 2X< 

But t can also be evaluated at the wall during the interaction of the incident and 
reflected waves: i.e., 

2r   «=   X«»|I  + U.»M   =   Xwali 

Elimination of t between these two expressions gives 

Xwiii = 2\i 
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This 13 an exact statement of the law of reflection for continuous finite-amplitude 
waves at a rigid wall: The quantity X doubles, not tlic acoustic pressure. 

To sec what happens to the pressure, we must specify an equation of «täte. Take 
the case of a perfect gas, for which X = 2(c — c0)/(T - l)(thus c - ct doubles at 
a rigid wall).    Using Eq. (3n-U), wc obtain 

where §t = 27/(7 — 1).    Now define a wall amplification factor a by 

Q er P**" ~ P« 
Pi — P» 

Substitution from Eq. (3n-105) gives 

\2(Vi/Va)1'" — 11" — 1 
a == MP'/Pn)    U i (3n-106) 

P.7Po — 1 

An analogous result in terms of the source that generated the incident simple wave ia 
given in rcf. 43; Eq. (3n-10G) was first obtained by Pfriem (rcf. 44). For weak waves 
(p.- — Po «po) a = 2, in agreement with linear theory. The limiting value for 
ver}' strong waves is C = 2" (= 27 for air), a quite startling result. It is only of 
passing interest, however, because a wave this strong would already have deformed 
into a shock by the time it reached the wall [for shocks the expression for G. is entirely 
different; the limiting value for strong shocks is a = 2 + (7 + l)/(7 - 1) = 8 for 
air (ref. 4)]. In fact, the deviation from pressure doubling is small even for fairly 
strong waves. For an originally sinusoidal wave of sound pressure level 174 dB, the 
maximum deviation is about 6 percent (ref. 43). 

For a pressure release surface the law of reflection for finite-amplitude waves is 
the same as for infinitesimal waves. To sec this, evaluate t as before, first in the 
incident wave (2r - X,- 4- «,- = 2u.) and then at the pressure-release surface (2r =» 
KattK* + Uturfw« = Unrftc«» since X = 0 when p = Po, p = po).   The result is 

Uwrf«. = 2u,- 

that is, the particle velocity doubles at the surface. The reflection has an interesting 
effect on the wave, however. Consider a finite wave train so that after interaction 
the reflected signal is a simple wave. To a good approximation, the acoustic pressure 
wave suffers phase inversion as a result of the reflection. A wave that distorts as it 
travels toward the surface therefore tends to "undistort" after reflection. This, 
effect has been observed experimentally (rcf. 45). 

Reflection from and transmission through other types of surfaces, such as gaseous 
interfaces, arc considered in ref. 43. 

Oblique reflection of continuous waves from a plane surface has not been solved in 
any general way; see ref. 40 for a perturbation treatment. 

Standing Waves. First consider finite-amplitude wave motion in a tube closed 
at one end and containing a vibrating piston in the other end. This problem is one 
of the few in which much experimental evidence is available (refs. 47,48, 50). At reso- 
nance, if the piston amplitude is sufficiently high, shocks occur traveling to and fro 
between the piston and the closed end. Slightly off resonance, again for high enough 
amplitude, the waveform exhibits cusps. Below resonance the cusps occur at the 
troughs of the waveform, above resonance at the peaks. It would seem that such rich 
phenomena would have stimulated intensive theoretical treatments of the problem. 

In fact, the theoretical problem has proved a difficult nut to crack. The llicmann 
solution [of Eq. (3n-l03)l w of no avail because of the presence of shocks. There is 
no well-developed weak-shock theory for compound waves as there is for simple 
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waves.    For weak waves perturbation treatments have been used (ref. 4S).    For 
strong waves one approach has been to assume the existence of shocks at the outset 
The Hankinc-Hugoniot relations arc used to provide boundary conditions (or the 
continuous-wave flow in between shocks (refs. 47, 49). 

A more fundamental approach has been taken by Chester (rcf. 42). His treatment 
is of general interest because of the way the effect of the boundary layer is assimilated 
in the one-dimensional model [sec Eq. (3n-10l) for an adaptation to simple waves]. 
An "inviscid solution" is first obtained; it contains discontinuities at and near reso- 
nance, and cusps at one point on either side of resonance. General agreement with 
experimental observation is thus good (ref. 50). Improved solutions are then con- 
sidered in which thermoviscous effects, first in the mainstream and then in the bound- 
ary layers, are taken into account. 

8n-16. Refraction. Treatments of oblique reflection and refraction at interfaces 
have mainly been confined to shock waves in which the flow behind the shock is 
basically steady. Slow, continuous refraction, such as that caused by gradual 
changes in the medium or by gradual variations along the phase fronts of the wave 
has been treated, however (refs. 26, 51, 52). The basis of the method is ordinary ray 
acoustics. The propagation speed along each ray tube and the cross-sectional area 
of the tube are modified to take account of nonlinear effects. The approach is 
similar to that given in Sec. 3n-7 except that the cross-sectional area of the horn 
varies in a manner that depends on the wave motion. 
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Wave Propagation in Periodic, Random, and Quasicrystalline Media 

J. D. Maynard 
The Pennsylvania State University, University Park, PA 16802 

Abstract 

One of the most interesting problems currently under study condensed matter physics in- 
volves the quantum wave nature of electrons in complex and novel situations. While the 
wave nature of electrons is certainly established, the behavior of electron waves in disor- 
dered samples, samples with inelastic scattering in boundary elements, disordered samples 
in magnetic fields, etc. has become understood only through recent discoveries. While 
interest in the behavior of waves propagating in complex scattering fields dates back to 
Lord Rayleigh, the discovery of Anderson localization, coherent backscatter, Furstenberg's 
rigorous theorem for one dimension, etc. are contemporary developments. A recent prob- 
lem involves normal electron "persistent currents" involving electrons which maintain their 
phase coherence around a normal metal ring; theory is being taxed to explain some exper- 
imental results. In order to gain insight into the behavior of waves in complex systems, 
we have been using classical acoustic wave systems to model various quantum wave sys- 
tems. Macroscopic acoustic systems can be fabricated which precisely duplicate some of 
the relevant features of the quantum system, and permit direct control of parameters and 
measurement of eigenvalues, eigenfunctions and other properties which are difficult if not 
impossible to measure in the electron systems. The effects which we have studied include 
the effects of inelastic scattering on Anderson localization (phonon assisted hopping), the 
effects of nonlinearity on Anderson localization (possibly a model for many-electron ef- 
fects) , the effects of a two-dimensional quasicrystalline (Penrose tile) symmetry, and the 
normal electron persistent current problem. 

An early goal in our research was to study Anderson localization in two dimensions. How- 
ever, before attempting this project it was felt that it would be advantageous to learn 
about Anderson localization initially in a one-dimensional experiment. In this experiment, 
the wave medium was a long (15 m) 0.178 mm diameter steel wire suspended vertically; a 
tension To in the wire was maintained with a weight attached at the lower end. The wave 
field ^/consisted of transverse waves in the wire generated with an electromechanical actu- 
ator at one end of the wire. The periodic or nearly periodic potential field V for the wire 
was provided by small lead masses spaced along the wire with an average lattice constant 
a = 15 cm; a total of 50 masses was used. The masses were sufficiently small so that the 
potential V could be approximated as a series of delta functions with strength mu2/To; 
the system was a precise analog of a Kronig-Penny potential field. A transducer measuring 
amplitude and phase of the transverse vibrations of the wire could be translated along the 
length of the wire; thus, complete eigenfunctions could be measured directly. For diagonal 
type disorder, the positions of the masses were varied. Several sets of measurements were 
made with the positions randomly varied within maximum displacements from lattice sites 
of 0.007a, 0.01a, 0.02a, and 0.05a. Results with static disorder configurations were in good 

135 



agreement with computer simulations. 

Before studying the localization effects, we first verified Bloch wave behavior, as devel- 
oped for electrons in solid state physics and realized in the band structure of crystals, by 
making measurements with the masses spaced periodically. The frequency response (band 
structure) of the system was measured by monitoring the transverse wave amplitude near 
one end of the series of masses while sweeping the frequency (analogous to electron Fermi 
energy) of the transverse actuator at the opposite end. The response shows distinct bands 
and gaps, with each band containing approximately 50 eigenfrequencies (corresponding to 
the eigenstates of the 50 site system), positioned as predicted by Bloch's theorem. By driv- 
ing the static periodic system at one of the eigenfrequencies and translating the transducer 
along the wire, a Bloch wave eigenstate could be recorded. Some clear observations of An- 
derson localization were obtained with 2% disorder, i.e. with the masses displaced from 
the periodic lattice sites with a flat random distribution between ±0.02a. The eigenvalue 
spectrum showed dramatic departure from Bloch response. Some eigenstates appeared in 
what were the gaps of the periodic system. 

While the one-dimensional system described above was built for pedagogical reasons, it 
became apparent that the system could be used for more serious research. That is, the 
system was used to study inelastic scattering and phonon assisted hopping. This was 
modeled in the "adiabatic approximation" with a time-dependent potential of the form 
V[x (1 + ecosQt)]. The time dependence is provided by a second electro-mechanical ac- 
tuator which modulates the strain e in the wire at a low frequency Q,. 

In addition to studying the effects of inelastic scattering, we have also studied the effects of 
nonlinearity. It has been suggested that the nonlinear Schrodinger equation is a model for 
many electron effects; however, because of exchange effects, etc., this is probably of limited 
utility. At any rate, the nonlinear wave equation is of interest in its own right. While the 
study of waves in disordered media and the study of nonlinear systems, including effects 
such as soliton propagation, have each received considerable attention, the combined field, 
nonlinear wave propagation in disordered media, is relatively new. A fundamental ques- 
tion is: Does nonlinearity weaken Anderson localization? There are about eight theoretical 
papers (or sequences of papers) addressing this question in the literature, and roughly half 
of these papers predict that nonlinearity will weaken Anderson localization, and the others 
predict that it will not. While this statement seems to imply a controversy, the theories 
are in fact not contradictory, because as is common in nonlinear problems, the question 
does not have a unique answer. Some of the theory papers consider the existence of expo- 
nentially localized solutions of a Hamiltonian with a nonlinear term, and the result is that 
under general conditions Anderson localized eigenstates are still present when there is non- 
linearity. An open question involved the possibility of resonant tunneling between localized 
states, and our experiment was particularly suited for addressing this question. A finite 
amplitude at one localization site changes the instantaneous arc length of the wire, which 
changes the tension in the wire. The change in tension may then parametrically excite a 
state which is localized at a different site, resulting in nonlinearly enhanced tunneling. 
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Our measurements of nonlinear effects in the mass-loaded wire system consisted of exam- 
ining the spectral response (amplitude at a fixed site as a function of frequency), measured 
at a distance of about four localization lengths from the drive actuator and normalized by 
dividing by the drive amplitude, for different drive amplitudes. If the system were strictly 
linear, then the normalized response would not change. If the Anderson localization is 
weakened by the nonlinearity, then as the drive amplitude is increased, the normalized re- 
sponse at the distant site should increase. We found that the normalized response actually 
decreased by an average of 30%, indicating an enhanced localization. One might imagine 
that the nonlinearity causes an Anderson localized state not to parametrically excite a 
distant site, but rather to "dig a deeper hole" for itself. 

A somewhat different behavior has been predicted for the propagation of a soliton through 
a disordered medium. We have studied this type of behavior using surface waves on a 
thin film of superfluid helium on a disordered substrate, and by driving the waves at finite 
amplitude, have found results consistent with the predictions. 

One of the original goals of the research with the acoustic simulations was to study two- 
dimensional Anderson localization. This research goal was diverted with the discovery 
of quasicrystals. Quasiperiodic (Penrose tile) patterns are a new symmetry, and it was 
felt that it would be important to understand how this new symmetry might effect the 
properties of materials. A fundamental question is: given a wave equation (for Schrodinger 
waves or sound waves) with a potential field having Penrose tile symmetry, what is the 
effect of the symmetry on the eigenvalues and eigenfunctions. Unlike the theorems for 
the quasiperiodic patterns in one dimension, "quasi-Bloch" theorems for two and three 
dimensions, if they exist, have not yet been discovered. 

In the spirit of the experiments with the mass-loaded wire, we used an acoustic model 
to study the effects of Penrose tile symmetry on eigenvalues and eigenfunctions in two 
dimensions. A convenient model to use as a guide for designing classical analogs is the 
tight-binding model. In this model lattice sites are occupied by local oscillators which, 
if isolated, would have one or more sharp eigenfrequencies (such as the quantized energy- 
levels of an isolated atom). These local oscillators are allowed to interact through some 
coupling mechanism to nearest- neighbor lattice sites; the local oscillator eigenfrequencies 
then broaden out into bands of eigenfrequencies. The symmetry of the coupling, i.e. the 
quasi-periodic Penrose pattern, should have some manifestation in the resulting eigenvalue 
spectrum and band structure. 

For studying wave mechanical (i.e. interference) effects in a complex system, the system 
should have little or no damping, i.e. the local oscillators and the coupling mechanism 
should have a high quality factor (Q). For the local oscillators in the Penrose tile simulation 
ordinary commercial tuning forks (440 Hz) were used. These have the advantage that they 
can be mounted by the stem and still maintain a high Q oscillation. The tuning forks are 
epoxied into a heavy aluminum plate at the centers of rhombuses in a Penrose pattern. For 
the nearest neighbor coupling, arcs of ~1 mm diameter steel wire are spot-welded from one 
tine of a tuning fork to that of a nearest neighbor. Using the four sides of each rhombus, 
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four nearest neighbors are identified, and each tine of a tuning fork is coupled to the two 
nearest tines of the adjacent tuning forks. 

In order to drive the oscillations of the coupled tuning fork system, an electromagnet is 
positioned near one tine of the array, and an AC current is passed through the electro- 
magnet. The response of the system is monitored with four electro dynamic transducers 
(electric guitar pick-ups) positioned next to random tines in the array. By sweeping the 
frequency of the drive electromagnet, the resonant response of the system is detected with 
the pick-up transducers; the resonant frequencies, in bands near 440 Hz, correspond to the 
eigenvalues of the quasiperiodic system. The eigenvalue spectrum, determined as a com- 
posite of the resonant spectra (containing ~300 resonances) from twenty different positions 
in the Penrose pattern, shows gaps and bands whose widths are in the ratio of the Golden 

Mean, (^5 + lj /2, a result not predicted by theory or computer simulations. By using 

small mirrors on the ends of each tine and a scanning laser system, the eigenfunctions 
could also be measured. Localized as well as extended eigenfunctions were found. 

One of our most recent acoustic analog experiments probes an aspect of the discrepancy 
between theory and the normal electron persistent current experiments. These experi- 
ments, such as that of R. Webb, et al, involve a normal metal ring surrounded by a drive 
loop and squid pickup loop. The pickup loop monitors the current in the ring, through its 
mutual inductance, as the magnetic flux $ in the system is changed with the drive loop. 
The current in the ring is found to oscillate with a period of $o = h/e, the normal electron 
flux quantum, as predicted by theory. However, the magnitude of the current oscillations 
exceed the theoretically predicted value by more than an order of magnitude. Our acoustic 
analog measurements suggest a solution to this discrepancy. 
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POROUS MEDIA 

James M. Sabatier 
National Center for Physical Acoustics 

University  of Mississippi 

Abstract 

The physics of the interaction of airborne sound with the surface of the earth1 will be 

presented. The ground is an example of a fluid filled porous material. When sound in the 

atmosphere is incident upon the ground surface vibrational energy is transferred to both the fluid 

and solid phases. This coupling has been referred to as acoustic-to-seismic coupling2,3 and will be 

discussed in the light of the Biot model4. The relevant pore parameters, air-porosity, permeability 

and pore tortuosoity can be determined from acoustic measurements. Experimental techniques 

used to study porous soils include buried microphones, geophones and laser Doppler vibrometers. 

Specific measurements of the acoustic-to-seismic coupling ratio and the physics that can be 

extracted will be presented. The principle components of the Biot model, including Type I and II 

phase velocity and attenuation and boundary conditions at various interfaces, will be described and 

compared to measured data. Since air-filled soils approximate the light-fluid limit of Biot theory, 

rigid-framed porous media models can also be used to describe the fluid phase physics and these 

models will be described. 
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Tutorial on Quantum Mechanics and Applications in Acoustics 

J. D. Maynard 
The Pennsylvania State University, University Park, PA 16802 

Abstract 

The purpose of this talk will be to discuss the fundamentals of quantum mechanics, to 
work some sample problems relevant to understanding real applications in acoustics, and 
to review such applications. A tentative outline of the tutorial is as follows: 

I. The historical development of quantum mechanics; there were many misinterpreta- 
tions, but the final result was correct. 

II. The correct formulation of quantum mechanics; the myths of wave-particle duality, 
paradoxes, and the uncertainity principle 

III. Examples of problems in quantum mechanics relevant for acoustics: 

A. The hydrogen atom 

B. Angular momentum 

C. The interaction of atoms with electromagnetic fields; selection rules; perturbation 
theory and the Golden Rule 

D. The simple harmonic oscillator 

IV. Applications of quantum mechanics in acoustics: 

A. Collisions of molecules (required for kinetic theory and dissipative processes in 
thermohydrodynamics and acoustics) 

B. Bloch's theorem and the band structure of solids 

C. Fermi and Bose-Einstein statistics (electrons in solids) 

D. Quantized sound waves:   phonons and their interactions in solids, ultrasonic 
attenuation 

E. Superconductivity and superfluidity 

1. Ultrasonic attenuation at the superconducting transition 

2. New sound modes in superfluids 
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RESONANT ULTRASOUND SPECTROSCOPY 
AND MATERIALS PHYSICS 

Albert Migliori 
Los Alamos National Laboratory 

Resonant Ultrasound Spectroscopy 

The use of mechanical resonances to extract material properties has become a mature 
technique. This lecture will describe the history, physics, and mathematics of Resonant 
Ultrasound Spectroscopy. In addition, detailed examples of its application to physics, 
metallurgy and non-destructive testing will be given. Instrumentation, electronics design 
and data analysis will be described, and a hands-on demonstration will be available. 

Reference: 

Resonant Ultrasound Spectroscopy, John Wiley and Sons, New York, Migliori and 
Sarrao. 

This will serve as the text for the course, and all transparencies will roughly come from it. 

142 



SCANNING ACOUSTIC MICROSCOPY: 
LENSES, TIPS AND SONOELECTRONICS 

C. F. QUATE 
Stanford University 

JOURNAL DE PHYSIQUE Colloque C6, supplement au #i° 11-12, Tome 33, Noeembre-Decembre 1972 

HIGH-RESOLUTION, HIGH-CONTRAST ACOUSTIC IMAGING (*) 

Jf. A. CUNNINGHAM and C. F. QUATE 

Stanford University, Stanford, California, U.S.A. 

Resume. — Nous presentoos, dans oet article, deux dispositifs qui donnent une imagerie acous- 
tique de haute resolution et de fort contraste. Dans le premier, l'objet est irardie par deux faisccaux 
acoustiques croises, les champs propages formant un Systeme d'ondes stationnaires modulees 
par les proprietes de transmissions de l'objet. Dans le second, un faisceau acoustique unique 
tombe normalcment sur l'objet qui, la encore, module les champs transmis. Dans les deux dispo- 
sitifs, une couche mince d'une emulsion de petites spheres de latex dans un liquide detecte non 
lineairement ces oodes transmises dans le champ, tout pres de l'objet, pour former une image. 
Le mecanisme primaire de la detection est la pression de radiation excrete sur les spheres. 

Nous presentons des resolutions superieures i 10 microns pour des densites de puissance modeste 
de 10-J a 10-' watt/cm1. Nous pouvons obtenir une image de specimens biologiques avec un 
assez bon contraste, ce qui donne une application pratique de ce dispositif d'imagerie. 

Abstract. — In this paper we present two systems capable of high-resolution, high-contrast 
acoustic imaging. In the first system, the object is illuminated by two intersecting acoustic beams, 
the transmitted fields forming a standing-wave pattern modulated by the object's transmission 
properties. In the second, a single acoustic beam is normally incident upon the object which 
again modifies the transmitted fields. In both systems a thin film emulsion of small (1 micron) 
latex spheres in liquid nonlinearly detects these transmitted waves in the very near field of the 
object to form an image. The primary detection mechanism is radiation pressure exerted on the 
spheres. 

We demonstrate system resolutions better than 10 microns at moderate power levels of 
I0-> watt/cm» to 10"» watt/cm». We are also able to image biological specimens with rather 
good contrast, one practical application of such an imaging system. 

I. Introduction. — We wish to discuss our work 
on high frequency acoustic imaging where the reso- 
lution is comparable with that obtained with an 
optical system. There are two primary advantages 
of an acoustic imaging system when it is compared 
to its optical counterpart. First, optically opaque 
objects can be probed rather easily with acoustic 
waves. Second, and perhaps more important, higher 
contrasts can be achieved for those objects which are 
nearly transparent to optical waves. This comes about 
since the change in elastic properties over the cross 
section of the object is much greater than the corres- 
ponding change in the index of refraction. The research 
that has been carried out on acoustic imaging and 
the realization of the above goals have been reviewed 
recently by Mueller [I]. 

The work has traditionally been divided between 
acoustic holography and direct acoustic imaging. 
In either system the method used to convert the acoustic 
patterns to a visible display is the central problem. 

We have previously demonstrated [2] a system for 
high-resolution acoustic holography which consists 
of a reference beam and a beam as scattered by 
the object. These two acoustic beams  intersect   at 

(•) This work was supported by a {rant from the John 
A. Hartford Foundation, Inc. 

a solid surface which contains the imaging film. The 
two intersecting beams are quite analogous to the 
optical system for holography [3], but the imaging 
film is quite different from photographic Rim. Our 
imaging film is an emulsion of small latex particles 
suspended in liquid. The forces exerted on these 
spheres, or particles, by the two acoustic beams 
condense the particles into a pattern that reproduces 
the acoustic hologram. The holograms as recorded 
in this way, are then reconstructed by conventional 
optical methods. We believe that this application of 
«acoustic radiation pressure» is most appropriate 
for a colloquium in honor of Paul Langevin, who 
himself made original contributions to this particular 
branch of physical acoustics [4]. 

In this report we want to present a continuation of 
our earlier work [2]. We use the same technique for 
imaging (as described below) but we replace the 
large crystals used in the holography experiment 
with a thin mylar film. The mylar film supports the 
emulsion of suspended particles and, since the imaging 
region is very near the object, it is reminiscent of 
the techniques used for « contact printing » in photo- 
graphy. In this new system we are not able to introduce 
a reference beam that is separate from the beam as 
scattered by the object and, as a result, we do not 
form holograms. However, the images are interesting 
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in themselves and the resolution is higher than that and 
reported previously. The determining factor for 
resolution is the wavelength of the sound waves in 
the liquid object cell and for a fixed frequency the 
wavelength in liquid is much smaller than that in a 
solid. 

In our research we have developed two rather 
simple systems with the required acoustic imaging 
capabilities of high resolution and high contrast. 
In the first system, the object is illuminated by two 
intersecting acoustic beams, the transmitted fields 
forming a standing-wäve pattern modulated by the 
object's transmission properties. In the second system 
a single acoustic beam is normally incident upon 
the object, the transmitted fields again being modified 
by the object's transmission properties. Both imaging 
systems rely on the nonlinear detection, in the near 
field, of these transmitted fields. The detector again 
is a thin liquid film in which small (1 micron) poly- 
styrene spheres are suspended. We believe the main 
detection mechanism to be the radiation pressure on or 
these spheres with a contributing effect of acoustic 
streaming created in the liquid. Utilizing these systems 
we demonstrate resolutions better than 10 microns 
at sensitivities on the order of 10"3 watt/cm2 to 
10~2  watt/cm2. 

2. Theoretical considerations. — The general theo- 
retical basis for both our imaging systems is illustrated 
in figure 1. In our system the particles respond to the 

s(x, y, 0) = j(jr, y, 0) exp[- j<p(x, y, 0)] .     (3) 

Since the two beams are coherent, we have for the 
total incident field, 

U,(x, z) = U,(JC, z) + U2(x, z) . (4) 

In our cases we have chosen kj = k2 = k and 
0, = 02 = 0. If we now make the reasonable assump- 
tion that Vx = U2 = U, then we have for the incident 
field 

U,(jr, z) = U{exp[jk(- sin 6x + cos 0z)] + 
+ exp[/fe(sin 8x + cos 0z)] } .   (5) 

Since we are going to detect in the very near field 
of the object, the transmitted acoustic field may be 
written to a good approximation as 

U,(x, y, Az) =* U,(x, Az).s(x, y, 0) (6) 

U^x.zl.k SUBJECT 
TRANSPARENCY 
s ( x,y,o) 

U,(x, y, Az) £ U { txp[jk cos Az] } x 
x { exp[jk sin 6x] + exp[- jk sin 6x]} s(x, y, 0)   (7) 

where s(x, y, 0) is defined in eq. (3). Hence, 

Ut(x, y, Az) s 2 U { exp[jk cos Az] } x 
x cos (k sin Ox) s(x, y, 0) exp[- j<p(x, y, 0)] .   (8) 

The acoustic intensity detected is then given by 

I(x,y,Az) = \Ut(x,y,Az)\is 
^2U2 cos2 (k sin Ox) s2(x, y, 0) (9) 

where the factor of | accounts for averaging over 
time. Using the identity cos2 a = i(l + cos 2 a) 
we finally obtain 

I(x, y, Az) s t/2[l + cos (2 k sin Ox)} s\x, y, 0) .   (10) 

The main feature of the intensity distribution of 
eq. (10) is the standing wave along the x-axis with a 
fringe spacing of 

U,(x,y,Az) Ax = R/2 k sin 0 = X/2 sin 0 . (11) 
U2(x,z),k2 

FIG. I. — General acoustic imaging geometry. 

acoustic intensity within the film. We will proceed 
with the calculation of this parameter for the situation 
of figure 1. In the two-beam system the object, charac- 
terized by its complex transmission function s(x, y, 0), 
is illuminated by a plane acoustic beam XJ^x, z) 
with wavevector ^ at an angle 0t and another beam 
U2(x, z) with wavevector k2 at an angle 02. Considering 
the time factor e~'°" to be understood for all field 
quantities we have 

U,(x, z) = £/, exp[/£,(- sin 0t x + cos 0, z)] ,    (1) 
U2(x, z) = U2 exp[y£2(sin 02 x + cos 02 x)] ,        (2) 

This, of course, is superimposed upon the image 
intensity distribution s2(x, y, 0). 

The forces on the immersed particles are related 
to this intensity. In a classical paper [5], King has 
calculated the force on a rigid sphere in a standing 
acoustic wave. For our case kxa = 0.583, where a 
is the radius of the spheres, kx = k sin 0, and k is 
the wavenumber in the solid. The appropriate radia- 
tion pressure equation is then 

P I 
— =2kxa-sm2kxxF{pllp0),        (12) 
na c 

where 

F(Pilpo) = Pjpo + ^jpo-m 
1 + 2 Pilpo 

(13) 
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and c is the speed of sound in the fluid, p, and p0 

being the respective densities of the spheres and liquid. 
King has shown that for F(pt/p0) > 0 the spheres 
will move toward a velocity loop of the standing 
wave and for F(pjp0) < 0 toward a velocity node. 
This theory has been extended to include the compres- 
sibility of the sphere, a = cjc0 = k0jku by Yosioka 
and Kawasima [6] to yield 

na 

where  now 

F 

— = 2 kxa- s\n2 kxxF[^-, cr) , (14) 

_|WPO + {2WPQ-1)/3} 1 1 (15) 

L 1 + 2 pjpo 3 a1 pjpoi 

The same conditions apply to F(pi/p0. a) as dld t0 

F(pjpo). For the polystyrene spheres in solution 
used in our experiments, both theories yield a particle 
distribution corresponding to that expected from 

eq. (10). 
The situation for single-beam imaging  is similar 

to that of figure 1, but now we have 

Uj(z) = Utxp[jkz]. (16) 

For the transmitted field this yields 

U,(x, y, Az) s 
S Ut expL/Vt Az] s(x, y, 0) exp[ - j<p(x, y, 0)] ,        (17) 

and hence an intensity distribution given by 

T(x,y,te)SLlU2s\x,y,0). (18) 

In this case we must consider the radiation pressure 
on a sphere due to a plane progressive wave, provided 
that we neglect the diffraction that takes place in the 
distance Az. At the frequency of 1.1 GHz used for 
single-beam imaging ka = 2.58. Fox [7] has extended 
King's theory for radiation pressure due to a plane 
progressive wave to include this range yielding 

P I 
— s 0.820 - 
na c 

(19) 

for pjp0 ^ 1. The above analysis will be considered 
again in a later section when we discuss system sen- 
sitivity. 

3. The  water   cell   and  image   detector.  — The 
water cell and acoustic detection film are shown in 
the inserts of figures 2 and 5. In both imaging systems 
the object to be viewed is immersed in the thin water 
cell. The acoustic beam or beams are passed into 
this cell by means of acoustic anti-reflection coatings. 
On top of this cell is stretched a 5 micron mylar 
film which is acoustically matched to the liquid 
surroundings. It has an optical anti-reflection coating 
to avoid direct viewing of the object. This film serves 

rl,.m POLYSTYRENE   BEADS 
\ IN   SOLUTION 

rLUCITE   DISK 

r 5,im   MYLAR 
FILM 

260 MHz 
INPUT 

WATER   CELL 

'-ACOUSTIC   ANTI-REFLECTION 
COATINGS 

FIG. 2. — Experimental arrangement for two-beam imaging. 

the purpose of separating the object space from the 
detector space. On top of this film a lucite disk uni- 
formly compresses an emulsion of 5 % by volume 
1 micron polystyrene spheres in a 90 %-10 % water- 
glycerine solution. The acoustic image is recorded 
as a redistribution of these spheres on a 1 : 1 basis. 
Magnification is then obtained optically by viewing 
this distribution with a microscope. 

4. Experimental results. — The experimental arran- 
gement  used  in  our two-beam imaging   system is 
shown in figure 2. Two plane acoustic  beams at 
260 MHz (A = 23 microns) are generated in the fused 
quartz prism by matched YfiS0 LiNb03 plate trans- 
ducers and intersect at the surface at an angle 0 = 45°. 
This determines a linear fringe spacing in the intensity 
pattern of 16.2 microns as predicted by  eq.  (11). 
The   complex   transmission   function,   s(x, y,0),   of 
the object determines the amplitude of the fringes. 

It should also be noted here that since the acoustic 
fields are passed into the detecting film by means of 
a mylar membrane, a standing wave pattern is also 
set up in this membrane. Acoustic streaming effects 
of the type noted by Jackson and Nyborg [8] could 
therefore be a contributing factor in  this imaging 
system.  A  resultant  limiting  flow  velocity   similar 
to that of their eq. (13) would assist in moving particles 
toward velocity loops of the standing wave pattern. 

One of the objects imaged   in  this  system   is  a 
nickel  mesh  with  rather ragged  circular  holes  as 
shown  optically  in  figure  3a.  The acoustic image 
is shown in figure 3b with the superimposed 16.2 urn 
fringe pattern. Here the object is totally transmissive. 
The raggedness of the holes is evident in the acoustic 
image. We also used a square 75 mesh (£ 3 line/mm) 
in this system, the optical image of which is shown 
in figure 4a and its acoustical counterpart in figure Ab. 
The image quality is good and the fringe pattern stands 
out clearly. This image demonstrates  a resolution 
of at least 60 microns. An attempt to image a 500 mesh 
(~  20 lines/mm) showed that ambiguities result in 
the image when the object has the same periodicity 
as the standing wave pattern. No attempt has been 
made  to  improve image quality  by   removing the 
fringes, but this can be easily accomplished by optical 
spatial filtering [9]. 
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* 

FIG. 3. — Circular nickel mesh (300 um holes on"420 urn cen- 
ters). 

a) Optical image: b) Acoustical image. c,„   ,.       c -,* ,,„„ 8 F,G   4- — Square 75 mesh (280 um holes and 60 urn bars). 
a) Optical image : 6) Acoustical image. 

Our single-beam experimental set-up is shown in 
figure 5. Here a thin film ZnO transducer excites a 
1.1 GHz plane acoustic beam into the buffer rod. 
This buffer rod can be almost any solid material, 
but we have chosen to use YAG because of its low 
acoustic attenuation and high isotropy factor. It 
should be noted that this system is capable of an 
extremely large field of view, being limited only by 
the size of the transducer. Again, as in the case of 
the two-beam system, the mylar film becomes a source 
of acoustic streaming as well as radiation pressure [10]. 
Due to velocity gradients created by the differential 
transmission properties of the object, streaming again 
has an effect on the acoustic imaging [I I]. 

As an estimate of the resolution capability of this 

system we have imaged a portion of the 1951 USAF 
Test Resolution Chart shown optically in figure 6a. 
As can be seen in the acoustic image of figure 66, 
Group + 5 subgroup (5) is clearly distinguished! 
This demonstrates a resolution of better than 
51 lines/mm or slightly less than 9 microns. The 
wavelength in the emulsion is 1.35 micron. The reso- 
lution is lower than we would expect for two reasons. 
First, due to the minuteness of the elements of the 
resolution chart they may not be filling with water and 
hence not passing acoustic energy. Second, the diffrac- 
tive spreading of the beam within the thickness of 
the mylar film imposes a lower limit on resolution. 
If we assume the mylar thickness to be Az (= 5 microns) 
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FIG. 5. — Experimental arrangement for single-beam imaging. 

(a) 

and two object points to be separated by a 
then  in  order to  be  resolved  we  must 

inequality 

d - 2 Az tan a > 0 , 

where 

FIG. 6. — 1951   USAF Resolution Tesl Chart ; Groups    i   4 
and   I   5. 

a) Group -[•■ 4 

(1) 16.00 Li/mm 
(2) 17.96 — 
(3) 20.32 — 
(4) 22.80 — 
(5) 25.56 — 
(6) 28.51      — 

b) Group + 5 

(1) 32.00 Li/mm 
(2) 35.92     — 
(3) 40.64     — 
(4) 45.60     - 
(5) 51.12     - 
(6) 57.02     -• 

sin a = A.myu,/d 

distance d, 
satisfy the 

(20) 

(21) 

100 um 

(a) 

100 fim 

(b) 

FIG. 7. — Microtomed section of human lung tissue. 

a) Optical image : 6) Acoustical image. 
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For the frequency at which we are operating this 
would place a lower limit on our resolution capability 
of approximately 4 microns. Hence, we are only 
a factor of two above the diffraction-limited resolution. 

One primary purpose of our research has been 
the high-resolution acoustic imaging of biological 
specimens with good contrast. Shown optically in 
figure la is a microtomed section of human lung 
tissue which is embedded in epoxy. As can be seen 
from the acoustic image in figure lb, the resolution 
achieved is as good as that obtained optically and 
the contrast is very high. There also seems to be struc- 
ture in the acoustical image which does not appear 
in the optical image. We see this ability to image 
biological specimens as one practical application of 
such an imaging system. 

5. Sensitivity. — The downward pressure on the 
spheres due to gravity counteracted by buoyancy is 
given by 

Po)  ~ag (22) 

and is on the order of 4 x 10~3 dyne/cm2 for our 
experimental conditions. In the two-beam imaging 
scheme the theories of King or Yosioka and Kawasima 
predict radiation pressures on the order of 
4 (dyne/cm2)/(watt/cm2). Since we must only push 
the spheres sideways and not lift them against gravity, 
we may safely assume a force of 0.1 PD/na2 needed 
to form our fringe pattern. This would predict a 
sensitivity of approximately 10"4 watt/cm2. Our 
experimentally determined sensitivity for this configu- 

ration, however, lies in the range of 10"3 watt/cm2. 
For the single-beam imaging system, which is operat- 
ing at a much higher frequency and thus higher 
losses, the theory of Fox predicts a sensitivity of 
approximately 10~3 watt/cm2. Again, our experi- 
mentally determined sensitivity is an order of magni- 
tude higher at approximately 5 x 10~2 watt/cm2. 
This order-of-magnitude discrepancy in both systems 
can be accounted for in terms of the increased attenua- 
tion in the detecting emulsion over that of pure water. 
This attenuation has been found to increase linearly 
with particle concentration for all conditions. At 
high frequencies or for large radius spheres, scattering 
becomes the dominant loss factor [12], [13]. 

6. Summary and conclusions. — In this paper 
we have presented two systems capable of high- 
resolution acoustic imaging by the nonlinear detection 
of acoustic fields in a thin emulsion film. We have 
demonstrated a resolution capability of 9 microns 
at a sensitivity on the order of 5 x 10"2 watt/cm2 

with our latter system. We have also been able to 
image biological specimens with rather good contrast, 
as expected. By using thinner mylar films and operat- 
ing at higher frequencies we should be able to increase 
our resolution capabilities without degrading contrast 
sensitivity. 
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DISCUSSION 

P. DAS. — 1) Could you tell us something about 
the transducers, like bawdwidth, insertion loss, etc.? 

2) How much power did you use for the pictures 
you showed in the slides ? 

C E. QUATE. — I) The transducers  are standard 

as   make   of ZnO   films  (sputtered).   The   insertion 
loss is 5 dB and the bandwith is 100 MHz. 

2) For the holograms which were shown at first 
we use approximately 10~3 watt/cm2. For the others 
we use about 10~2 watt/cm2. 

Imprimc en  France. ImD. JOUVE.  17.  rue du  Louvre.  75001  Paris 
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Acoustic microscope—scanning version 

R. A. Lemons and C. F. Quate 

Microwave Laboratory, Stanford University. Stanford, California 94305 
(Received 22 October 1973) 

This letter reports the development of a mechanically scanned acoustic microscope showing 10-um 
resolution. Using single-surface lenses an acoustic beam is focused with negligible spherical 
aberration in a water cell. The image is formed by mechanically scanning an object through this 
focused beam in a raster pattern. Transmitted power is detected with a piezoelectric transducer, and 
this signal modulates the synchronized raster of a CRT display. By employing piezoelectric 
detection, sensitivities of 10"' W/cm2 are obtained, yielding images of excellent clarity and contrast. 

22 2 3 

A microscope can be made with acoustic waves rather 
than optical waves. We have set out to explore the poten- 
tial of such an instrument and compare its performance 
with that of the optical version. The acoustic micro- 
scope would provide us with a new method for delineat- 
ing the detail of microscopic objects if it could be made 
with a resolution comparable to that of the optical in- 
strument. l In principle this can be done. With a fre- 
quency of 1 GHz the wavelength for sound in water is 
near 1. 5 Mm. The utility of such an instrument arises 
because the scattering of acoustic waves is dependent 
on the change in elastic properties, whereas it is the 
change in the index of refraction that determines the 
scattering of optical waves. This fundamental difference 
suggests that acoustic radiation, responding to struc- 
tures within the object, may allow one to resolve details 
which are different from those recorded with optical 
waves! Often, objects which are transparent to optical 
radiation show considerable acoustic contrast. This 
increase in contrast will allow us to view structural de- 
tails within an object without chemical staining. More- 
over, the optically opaque objects frequently allow 
acoustic transmission, enabling internal structure to be 
observed. This is the basis for our interest in an 
acoustic microscope. 

Such an instrument has not yet been fully exploited 
and we would like to report here on our progress toward 
a scanning version. This system may have some advan- 

k^^^y^^^v 
PIEZOELECTRIC 
TRANSDUCER 

TRANSMITTER 
ROD 

WATER  CELL 

OBJECT 

RECEIVER ROD 

PIEZOELECTRIC 
TRANSDUCER 

FIG. 1. Schematic showing the lens configuration. 
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tage over the two other systems which have been pre- 
viously reported.2-4 We have determined that it is pos- 
sible with a most simple lens to focus an acoustic beam 
with negligible spherical aberration. Thus the potential 
resolution is limited only by the acoustic wavelength. 
This is in contrast to the previous two systems wherein 
the recording process itself can influence and degrade 
the ultimate resolution. In addition, the detector in the 
scanning version is a piezoelectric, which is the most 
sensitive detector available for acoustic radiation. We 
can therefore work with average sound intensity levels 
of 10"8 W/cm2, monitoring either variations of acoustic 

(a) 200 fim 

(b) 
200 um 

FIG. 2. Comparison of the acoustic (a) and optical (b) images 
of a 200-^mesh copper electron microscope grid. 

Copyright © 1974 American Institute of Physics 
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(a) 300 Jim 

(b) 300 Jim 

FIG. 3. Comparison of the acoustic (a) and optical (b) images 
of onion cells. 

intensity or variations of acoustic phase. This level is 
well below the damage threshold for biological speci- 
mens. Finally, the scanning rate is sufficiently high 
that image formation time is reduced to less than 1 
sec. 

The heart of our system is a pair of single-surface 
acoustic lenses. Each is a polished concave spherical 
surface ground into the end of a crystal rod. These two 
lenses are positioned as mirror images with a water 
cell filling the space between them (see Fig. 1). The 
water serves the dual function of providing a slower 
refracting medium and of making acoustic contact be- 
tween the lens surfaces and the object to be imaged. On 
the end of each rod, opposite the lens surface, a piezo- 
electric transducer is applied. One of these transducers 
acts as the transmitter, generating a plane acoustic 
wave. This acoustic power is then focused by the lens 
into the water cell. The specimen itself is placed at the 
minimum waist of this beam. Since the two lenses are 
spaced so that their foci are coincident, the power 
transmitted by the specimen is recollimated by the 
second lens. Thus, all the transmitted power from a 
specimen point is detected with the second piezoelectric 

Appl. Phys. Lett., Vol. 24, No. 4,15 February 1974 

transducer. Accordingly, this transmission geometry 
has the dual advantage of eliminating spurious signals 
while fully utilizing the sensitivity of piezoelectric 
detection. 

To produce an image with this system the specimen 
is mechanically translated through the beam in a raster 
pattern. This motion is synchronized with a raster on 
a CRT display, and the output of the detector modulates 
the display beam current. In this way, modulation of 
the acoustic beam by the object is converted directly 
into a brightness pattern or image. 

The specimen is attached to a small piston which 
rides in a cylinder that constrains both lateral and 
vertical motions to less than 1 jim. The horizontal com- 
ponent of the mechanical motion is then achieved by 
affixing the free end of the piston to the cone of a dy- 
namic speaker. In practice this speaker is driven sinus- 
oidally and can provide up to 3-mm displacement with 
scan rates of 300 lines/sec. Since the voltage which 
drives the speaker also drives the X axis of the display, 
synchronization is simplified. The vertical motion is 
provided by mounting the speaker assembly on a motor- 
driven stage. This motor also drives a potentiometer, 
providing the y-axis deflection for the display. 

Clearly, the resolution of this system is determined 
by the diameter of the focused beam in the object plane. 
If an optical system of the same design were construct- 
ed, one would find that the spherical aberration inherent 
to a single spherical surface would severely limit the 
resolution. However, the precision with which the beam 
is focused depends crucially upon the ratio of the prop- 
agation velocities at the crystal-water interface. By 
maximizing this ratio, the spherical aberration can be 
greatly reduced. This can be understood in a qualitative 
way by a simple application of Snell's law (sin62= Cj 
Ci sin^). As the ratio of propagation velocities (Cz/C^ 
is reduced, the angle 8Z between the refracted ray and 
the intersecting radius is likewise reduced. In the limit 
C2/Ci~ 0 all rays would converge on the center of cur- 
vature, and the spherical aberration would be exactly 
zero. A more quantitative calculation based on first- 
order aberration theory shows that the spherical aber- 
ration is roughly proportional to (C2/Cj)2. Fortunately, 
in acoustics available materials allow much smaller 
values of CjC± than one is accustomed to in optics. For 
a sapphire-water system CjCx= 0.134. This means an 
//0.8 lens can be diffraction limited down to a resolu- 
tion of 1 jim. 

In our present system the lenses are ground with a 
1.59-mm radius of curvature and have an/number of 
0.92. The piezoelectric transducers are 35 y-cut 
LiNb03 platelets operated in their fifth harmonic at a 
frequency of 160 MHz. Accordingly, the acoustic wave- 
length in the water is 9.4 Jim, and the diffraction-limit- 
ed resolution of the lens is ~ 10 Jim. 

The image-forming capabilities of this system are 
illustrated in Figs. 2 and 3. In each case the acoustic 
image can be compared with the corresponding optical 
image. In Fig. 2 the acoustic image of a 200-mesh 
copper electron microscope grid is shown. The excel- 
lent contrast and definition seen in the acoustic image 
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is one of the chief advantages of this microscope. In 
Fig. 3 the acoustic image of a layer of onion cells is 
shown. The most prominent details here are the individ- 
ual cell walls. Both the marked contrast of their struc- 
ture and the appearance of internal cell detail suggests 
the potential usefulness of acoustic microscopy. In ad- 
dition, analysis of these and other images indicates 
that the resolution of our system is very near the 10- 
fim diffraction limit. , 

These results are sufficient to allow us to comment 
on the improved resolution that can be attained by mov- 
ing to higher frequencies. We will be limited by the 
acoustic attenuation in water which increases as the 
square of the frequency. We can partially compensate 
for this Increase by shortening the liquid path length and 
this in turn will require a lens with a smaller radius 
of curvature. We have successfully fabricated and tested 
a pair of lenses with a focal length of 0.46 mm, and we 
are confident that these can be operated at 400 MHz with 
a resulting resolution of 3 jim. At 1000 MHz the acous- 

tic attenuation in water is approximately 145 dB/mm 
(at 35°C)S and lenses with 0.1-mm radius of curvature 
would be needed. The resolution of an acoustic micro- 
scope at this frequency would be equal to 1.2 um. 

The authors would like to acknowledge their debt to 
Dr. W. L. Bond for his guidance in the design and fabri- 
cation of this instrument and to the John A. Hartford 
Foundation, Inc., for their generous financial support 
of this research. 

'This was pointed out to us by Professor R. Kompfher who 
was the first to realize the potential of acoustic microscopy. 

*L.W. Kessler, P.R. Palermo, and A. Korpel, Acoustic 
Holography, Vol. 4 (Plenum, New York, 1972), p. 51. 
'J.A. Cunningham and C. F. Quate, J. Phys. Colloq. C-6 
Suppl33, 42(1972). 

4J.A. Cunningham and C. F. Quate, Acoustical Holography, 
Vol. 5 (Plenum, New York, to be published). 

SJ.M.M. Pinkerton, Nature 160, 128(1947). 
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Acoustic Microscopy: 
Biomedical Applications 

Variations in elastic properties within a single cell 

can now be visualized with the acoustic microscope. 

Ross A. Lemons and Calvin F. Quate 

The microscope in its various forms is 
one of the most powerful and widely used 
scientific tools. In the .fields of biological 
and medical sciences advances of great sig- 
nificance have resulted from observations 
made with these instruments. The micro- 
scope enables us to explore the structural 
details beneath the limits of our direct vi- 
sual perception. The variety of phenomena 
in this miniature world is so large that it is 
imperative that we examine all forms of 
radiation that can be used for such explo- 
ration. Optical waves in the optical micro- 
scope and electron waves in the electron 
microscope are the most common forms. 
It is the wavelength of this radiation that 
determines the minimum size of the object 
that can be distinguished. With recent 
technological advances it is now a straight- 
forward matter to generate acoustic energy 
with a wavelength comparable to that of 
light. It follows that this could provide us 
with a new instrument for microscopy (/). 

A scanning acoustic microscope based 
on acoustic radiation with this short 
wavelength has now been developed to the 
point where it can be used to resolve detail 
in biological material at the subcellular 
level (2). This new form of radiation in the 
field of microscopy should permit us to in- 
crease our understanding of that material 
and to gain further insight into the pro- 
cesses that go on within cells and micro- 
organisms. This expectation is based upon 
the fundamental distinction between light 
and sound and upon the interaction of 
these different forms of radiation with the 
material of the specimen. In contrast to the 
dielectric properties of the object which de- 
termine the content of an optical micro- 
graph, it is the elastic properties that deter- 
mine the content of an acoustic micro- 
graph. Variations in the elastic constants 
can be revealed by changes in the ampli- 
tude and phase of an acoustic wave which 
passes through the specimen. In this article 
we will deal primarily with the changes in 

amplitude. This varying attenuation can be 
produced either directly by absorption or 
by the scattering arising from the acoustic 
impedance mismatch between a region of 
the specimen and the surrounding mate- 
rial. 

With the work to date we have learned 
that biological material—unstained—can 
exhibit high contrast when subjected to 
acoustic radiation. For example, hemoglo- 
bin (i) and connective tissue (4) show 
strong attenuation and these components 
can be easily identified in the acoustic mi- 
crographs. Furthermore, the instrument is 
sensitive to changes in viscosity and this 
should be of some advantage in Theological 
studies. 

In this article we demonstrate the poten- 
tial of the acoustic microscope and show 
that it represents an alternative technique 
for recording microscopic images that can 
complement and enhance the information 
that is provided by the light microscope. 
We hope that it will attract the interest of 
those who are professionally engaged in re- 
search with biological systems and stimu- 
late them to consider the most appropriate 
areas for exploiting this new technology. 

Instrument Design 

The acoustic microscope that we will 
discuss is based upon a scanning principle 
wherein the specimen is moved through a 
focused acoustic beam. This instrument 
has been operated with acoustic fre- 
quencies as high as 1000 megahertz. In liq- 
uid water the wavelength corresponding to 
this frequency is 1.5 micrometers and the 
resolution approaches I (im (.5). We are 
confident that further work will allow us to 
improve the resolution, but the present ver- 
sion is sufficient to reveal significant fea- 
tures in biological systems. 

The critical components of the acoustic 
system are shown schematically in Fig. 1. 

Incoming electromagnetic energy is con- 
verted to acoustic energy by a piezoelectric 
film at the surface of the sapphire crystal. 
The resulting acoustic wave propagates as 
a collimaled beam through the sapphire. 
At the opposite end of this crystal a con- 
cave spherical lens transmits the sound 
waves into a water cell. Since the velocity 
of sound in water is lower than its velocity 
in sapphire, the concave surface acts as a 
positive lens, focusing the beam in the wa- 
ter. 

At first glance a single surface lens 
might seem wholly inadequate to focus a 
collimated beam to a waist of micron di- 
ameter. In an optical system of this design 
the spherical aberration inherent to such 
single surface lenses would limit the waist 
of the beam to a diameter of several 
wavelengths, and the resolving power 
would be seriously degraded. Optical in- 
tuition, however, is not directly applicable 
to an acoustic lens. This is because of the 
large velocity difference between sound 
waves in sapphire and in water. The ratio 
of velocities for sound in these two materi- 
als is 7.45 whereas a typical ratio for opti- 
cal waves would be 1.5. A simple geomet- 
ric calculation shows that the spherical ab- 
erration is inversely proportional to the 
square of this ratio and, therefore, this lim- 
itation on resolution can be neglected in 
the acoustic system (6). 

The remaining limit on resolution is im- 
posed by the effects of diffraction and this 
can only be extended by using the highest 
frequency in order to reach the shortest 
possible wavelength. Unfortunately, the at- 
tenuation of sound increases drastically as 
the frequency is increased. To give some 
idea of the magnitude of this effect, the at- 
tenuation in water at an acoustic frequency 
of I gigahertz is approximately 200 deci- 
bels per millimeter. This means that the 
power in the wave is reduced by 20 orders 
of magnitude each millimeter it propa- 
gates. The decibel loss per unit length will 
increase as the square of the frequency 
and it is necessary, therefore, to fabricate 
lenses of very small radii of curvature. In 
the present system the lenses have a focal 
length of 0.15 mm. We are not limited by 
spherical aberrations and these small 
lenses can be made with an F number of 
0.65. This value is necessary if we are to 
maximize the resolution. It is the simplic- 
ity of single surface lens design that per- 
mits us to realize the combined require- 
ments of small size and large aperture. 

The sapphire crystal with its generating 
transducer on one face and a lens surface 
on the opposite face can be thought of as a 

Mr. Lemons is i research associate at the Micro- 
wave Laboratory, Stanford University, and Dr. Quate 
is professor of applied physics and electrical cnf'""r" 
ing, Stanford University. Stanford. California 943U5. 
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Fig. 1. Schematic diagram of the acoustic system showing the lens configuration. 
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transmitter which generates an acoustic 
probe of micrometer size. The remainder 
of the acoustic system consists of a receiv- 
ing crystal of exactly the same design. This 
second crystal has a lens surface which 
faces the transmitting lens. The two lenses 
are confocal and in this configuration the 
energy which diverges from the acoustic 
focus will be collected and collimated in 
the receiver crystal. At the output end of 
this crystal a piezoelectric film reconverts 
the oscillatory strain of the incident acous- 
tic wave into an electromagnetic signal. 

The symmetry of this confocal geometry 
gives us an additional advantage. When the 
receiver has its focus coincident with that 
of the transmitter, the effective resolution 
of the complete system is enhanced. The 
basis for this enhancement lies with the di- 
rectional sensitivity of the detecting trans- 
ducer. The piezoelectric film is sensitive 
both to the amplitude and to the phase dis- 
tribution of the wave incident on its sur- 
face. This produces a pattern of sensitivity 
at the focus which is of the same form as 
the energy distribution generated by the 
transmitter. The product of these two func- 
tions gives an effectively narrowed focal 
beam diameter. A detailed analysis shows 
that with a large signal-to-noise ratio a 
confocal system can resolve spatial fre- 
quencies twice as high as can a single lens 
alone (7). Another advantage of the con- 
focal geometry is that the signal-to-noise 
ratio of the system is improved. There is no 
background signal: the information that is 
detected is limited to that coming from the 
focus. 

The acoustic properties of a specimen 
are measured by first affixing the sample to 
a 2-jim-thick Mylar membrane. In turn 
this membrane is mechanically translated 
through the focal plane of the instrument. 
Within the limited working space between 
the lenses the Mylar membrane provides a 
thin, strong support for the sample. Mylar 

has an additional advantage in that it has 
an acoustic velocity only slightly greater 
than the water which surrounds it. This 
helps minimize the diffraction spreading 
and reduces the acoustic reflections-at the 
interface. 

To obtain the two-dimensional image of 
the object, the object itself is scanned 
through the beam waist in a raster pattern. 
The use of mechanical scanning has been 
nearly abandoned in the field of mac- 
roscopic acoustic imaging, but on a micro- 
scopic scale it proves to be a highly prac- 
tical technique. By definition, a micro- 
scopic object will be not only of small size 
but of small mass as well. Because of this, 
scanning can be done quite rapidly. A typi- 
cal image covers a square 0.25 mm on a 
side and contains S x 10* elements of in- 
formation. This area can be scanned in ap- 
proximately 1 second. 

The mechanism that provides the mej 
chanical scanning of the object is shown 
schematically in Fig. 2. For clarity, the two 
lenses have been drawn apart as they are 
when a new specimen is mounted. The My- 
lar membrane that supports the object is 
stretched across a thin metal ring. This 
ring is then connected to the movement of 
a loudspeaker cone by a rod running 
through a closely machined sleeve. The 
loudspeaker is driven sinusoidally in time 
and thus provides the fast, or jr-directed, 
scan. The y motion is brought about by 
displacing the whole assembly of loud- 
speaker and object holder in a vertical di- 
rection in a slow and uniform manner. This 
assembly is displaced by a hydraulic piston 
driven with a small pump. 

The acoustic image is formed by dis- 
playing the output signal from the receiver 
element on a cathode-ray display. There 
the electron beam of the display is moved 
in synchronism with the mechanical mo- 
tion of the object, and the signal arising 
from the transmitted acoustic beam is used 

to modulate its intensity. In this way the 
acoustic transmission of each point on the 
object will be mapped onto the display 
screen. An advantage of this display tech- 
nique is that any desired magnification can 
be realized by simply adjusting the volt- 
ages that deflect the electron beam on the 
display. Focusing of the acoustic image is 
accomplished by displacing the entire ob- 
ject assembly with a differential microme- 
ter in the axial or z direction. When the ob- 
ject plane coincides with the narrowest 
cross section of the acoustic beam the 
sharpest focus is achieved. 

When the lenses are brought together in 
the viewing position the liquid that sur- 
rounds the object is held in place purely by 
surface tension. This liquid serves to main- 
tain a continuous acoustic path as the ob- 
ject is scanned relative to the focused 
beam. The choice of water was made not 
only because it is compatible with biologi- 
cal systems. Water also has one of the low- 
est attenuations known to occur in those 
liquids with small acoustic velocities. 
Small acoustic velocity is, of course, desir- 
able because this improves the resolution 
that can be achieved for a given input fre- 
quency. The large absorption of liquids, al- 
though limiting the highest obtainable res- 
olution, does have one desirable feature. 
At the acoustic frequencies normally used 
in our instrument the attenuation in the 
water cell is high enough so that stray 
acoustic radiation caused by multiple re- 
flections does not cause degradation in the 
image, provided care is taken to shield the 
electrical input and output connections 
from each other. 

The remaining mechanical components 
of the acoustic microscope serve to align 
one lens with respect to the other. A coinci- 
dence of the lens foci is necessary and, for 
a beam of micrometer diameter, this re- 
quires highly precise alignment. To achieve 
this alignment our system employs an or- 
thogonal pair of elastic levers to position in 
the x-y plane. The separation in the z di- 
rection is adjusted with a differential mi- 
crometer mounted on a precision trans- 
lation stage. This translation stage also al- 
lows the lenses to be widely separated 
when the sample is changed. Adjustment 
of the relative lens position is made to give 
a maximum signal through the acoustic 
system. 

It is the basic simplicity of the construc- 
tion for this kind of scanning microscope 
that makes it possible to approach the the- 
oretical limit in resolution. Other more ele- 
gant but more complicated schemes have 
been tried but their performance is inferior 
to that permitted by diffraction. Mechani- 
cal scanning seems to be a small price to 
pay for such a large benefit. 
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Work with Mammalian Cells and 

Tissue Sections 

The acoustic microscope in the form as 
described above has been used to examine 
a variety of specimens. We have accumu- 
lated a number of acoustic images and arc 
beginning to catalog the response of vari- 
ous biological materials to acoustic waves. 
In this initial survey we have seen clear dis- 
tinctions between the corresponding acous- 
tic and optical micrographs. 

The samples that we have worked with 
can be conveniently divided into three 
groups. First we have results with simple 
cell systems containing isolated cells of 
only a few types. We next deal with living 
cells grown in culture. The last and largest 
group are tissue sections which contain a 
complex collection of cell types. We in- 
clude here a selection of acoustic micro- 
graphs from each of these categories. The 
majority of these images were obtained 
with an acoustic frequency of 600 Mhz 
(A = 2.5 um). The more recent images, 
however, were made at a frequency of 900 
Mhz (X = 1.7 (im) with a resulting resolu- 
tion which approaches 1 Mm. In presenting 
these images a convention was chosen such 
that points on the sample with greater 
acoustic transmission are lighter in the 
corresponding image. Thus, dark areas 
correspond to regions of large acoustic at- 
tenuation. 

Simple cell systems. As an illustration of 
this category we show in Fig. 3 a com- 
parison between the acoustic and optical 
images of a human bone marrow smear 
(8). This sample was prepared by smearing 
the fresh material onto the 2-^m-thick 
Mylar support membrane. The smear was 
then fixed in formalin. The most numerous 
components in this smear are the erythro- 
cytes and they show the largest acoustic at- 
tenuation. In addition, a number of gran- 
ulocytes can be seen. These cells arc the de- 
velopmental elements of the leukocyte 
family. In the acoustic micrograph they 
appear larger than the erylhrocytes and 
they have a markedly lower acoustic atten- 
uation. In some instances, details within 
the granulocytes can be seen. The 900-Mhz 
acoustic image corresponds closely with its 
optical counterpart. That the shapes and 
outlines of individual cells are so clear is 
impressive to us because the red corpuscles 
average 7.5 »im in diameter and this is less 
than 4.5 acoustic wavelengths. The most 
striking feature, however, is the superb 
contrast seen in the acoustic image. For 
the optical image, Wright's-Giemsa's stain 
was applied to enhance the contrast. Thus 
the nuclei stained blue, allowing them to be 
easily distinguished from the cytoplasm; 
without the stain the cellular detail in the 

Fig.  2.  Generalized diagram of the scanning 
acouslic microscope. 

light micrograph would be poorly defined. 
In the acoustic image, the contrast that 

highlights the red blood corpuscles is due 
primarily to the increased absorption of 
the hemoglobin within the cell. This ab- 
sorption has been the subject of previous 
studies with acouslic waves at low fre- 
quencies (i, 4). These studies show the ab- 
sorption to be related both to the viscosity 
and to the molecular structure of the mate- 
rial. The acoustic microscope is therefore 
sensitive to these parameters, and can map 
them on a microscopic scale. Accordingly, 

the acoustic microscope may be useful in 
studying cells which exhibit abnormalities 
in these two properties. 

Living normal human diploid cells. Cell 
cultures represent an important compo- 
nent in experimental work on living cells 
normal and abnormal. We have only be- 
gun to explore the application of the acous- 
tic microscope to this field of work, but the 
micrograph shown in Fig. 4 demonstrates 
the compatibility of the acoustic micro- 
scope with a culture of living human cells. 
To date we have demonstrated that cells 
can be cultured on the Mylar support mem- 
brane used in the acoustic microscope and 
that they stick to the membrane with suf- 
ficient tenacity to withstand the forces that 
are encountered in a mechanical scanning 
system of this type. In addition, a growth 
medium can be substituted for the water 
between the acoustic lenses in order to sus- 
tain the life of these cells. 

Even though the lung fibroblast cells 
shown in Fig. 4 are nearly confluent, the 
extented spindle shape of individual cells 
can be seen. The nuclear region of an indi- 
vidual cell is acoustically more attenuating 
than are the processes which extend from 
it. In some instances, small areas of re- 

Fig. 3. Comparison of the 900-Mhz acoustic image (left) with the optical image (right) of a human 
bone marrow smear. 

Fig. 4. Acoustic image (900 Mhz) of a living culture ofnormal human diploid lung fibroblasls 
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duccd transmission can be seen within the 
nuclear region;, these probably correspond 
to the nucleoli, which often occur in pairs. 
The acoustic contrast of these cells is not 
great. In an optical microscope, however, 
the cells would be so nearly transparent 
that phase contrast techniques would have 
to be used to visualize them. By using 
acoustic phase contrast techniques it might 
also be possible to enhance the contrast of 
cejls examined with the acoustic micro- 
scope. 

The prime advantage of the acoustic mi- 
croscope lies in the different sources of 
acoustic and optical contrast. For ex- 
ample, in liquids the acoustic absorption 
increases with the viscosity. Therefore, 
changes in viscosity should appear as 
changes in the absorption of the specimen. 
With the acoustic microscope it should be 
a direct and simple matter to observe those 

viscosity changes. Such a study might well 
give us new insight into the differences be- 
tween normal and abnormal cells. 

Normal tissue sections. In the next se- 
ries of micrographs we present the images 
of a number of tissue sections that illus- 
trate the power of the acoustic micro- 
scope in viewing complicated cell systems. 
Samples of tissue were originally fixed in 
formalin and were subsequently embedded 
in paraffin. Each of the specimens was then 
cut from the paraffin block with standard 
microtome techniques to a nominal 5-pm 
thickness. These sections were then 
mounted onto the Mylar supporting mem- 
brane and the paraffin was removed. All of 
the tissues were unstained and, therefore, 
the acoustic response is typical of what can 
be expected from the tissue as altered only 
by the procedures of fixation and embed- 
ding. 

Fig. 5. Acoustic image (600 Mhz) of an unstained section of human lung tissue. 

In Fig. 5 a number of the characteristic 
features of human lung tissue arc evident 
In the lower left corner is an alveolar duct 
with a number of adjacent alveoli. The in- 
dividual cells which comprise the walls of 
the alveolar sacs can be seen along with 
several capillaries. At the lower right is the 
folded epithelium of a bronchiole. A small 
vessel is also evident just above the center 
of the image. 

Figure 6A shows a section of the human 
fallopian tube with its characteristic deep 
branching folds of the mucous membrane. 
The most striking feature of the image is 
the sharp contrast between the internal 
matrix of connective tissue and the epithe- 
lial layer. As will be seen in the following 
figures, the large acoustic attenuation of 
connective tissues holds for a variety of 
specimens. In this instance the connective 
tissue is loose with numerous fibroblasts. 
The columnar structure of the epithelium 
is evident in some regions of the image, 
and some of the subtle detail within cells 
can also be seen. Of particular interest are 
the highly attenuating points at the outer 
boundary of certain epithelial cells. The 
epithelial layer is composed of both cil- 
iated columnar cells and nonciliated se- 
cretory cells. The points of high attenua- 
tion seen in the acoustic image probably 
indicate the ciliated components. 

The most prominent feature of the sec- 
tion of human spleen shown in Fig. 6B is 
the oblique view of a small artery. Inside 
the vessel a great number of red blood cells 
can be seen. Within the wall of the vessel 
the internal elastic membrane is the most 
distinctive structure. This membrane 
strongly attenuates the acoustic beam and 
thus appears as a folded black line around 
the inside of the artery. In contrast, optical 
micrographs show the elastic membrane as 
a translucent structure unless it has been 
specifically stained. The band of muscle 
tissue surrounding the artery is also clearly 
distinguished in the acoustic image. Out- 
side of the vessel the highly absorbing 
erythrocytes are contrasted with the much 
lower average attenuation of the spleen tis- 
sue. 

As a final illustration of the acoustic ap- 
pearance of normal human tissue, Fig. 6C 
shows a section of mammary gland. At the 
top of the figure a small group of secretory 
tubules can be seen surrounded by a highly 
attenuating mass of connective tissue. The 
attenuation of this intralobular connective 
tissue is on the average considerably larger 
than that of the interlobular connective tis- 
sue as seen at the lower right. Using this 
normal tissue as a point of reference we 
will now proceed to discuss the acoustic 
appearance of breast tissue afflicted with 
cancer. 
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Tissue Sections Showing Pathology 

Whenever u cell is modified by disease 
or other agents it is likely thai some of its 
elastic properties arc changed as well. This 
makes an investigation of the acoustic re- 
sponse of such material interesting and im- 
portant. Our preliminary work in this area 
indicates that there may be significant 
diagnostic applications of the acoustic mi- 
croscope. 

.This potential can be illustrated with 
some comparative acoustic and optical im- 
ages or a sample from a malignant tumor 
of the human breast. A panoramic acoustic 
view of a section of this material is 
presented in Fig. 7A. After the acoustic 
image of this specimen had been recorded, 
the section was stained with hemaloxytin- 
eosin (HE) so that a comparative optical 
micrograph could be made. Thus,'Fig. 7B 
shows an optical image of the same area.. 
This micrograph was made by means of a 
Zeiss Photo-Microscope II with a x 10. 
numerical aperture 0.32, planapo objec- 
tive., A close inspection of Fig. 7 will show 
that the basic structural features seen in 
Jhe acoustic micrograph correlate on a. 
one-to-one basis with the optical image. 
This carcinoma is of the infiltrating ductile 
variety,  as  evidenced   by  the  abnormal 

duct-like structure seen in the upper right 
corner of each image. In order to facilitate 
a comparison of the detail in the acoustic 
image with that seen optically, one area of 
interest has been selected for enlargement. 
The acoustic and optical images of this en- 
larged area are shown in Fig. 8. A and B, 

, respectively. Each individual cell can be 
compared in (hesc two images. 

The emphasis of particular details is, 
however, very different in the two images. 
In the optical image the HE stain provides 
a clear distinction between the cell nucleus 
and the cytoplasm, while distinctions be- 
tween cell types arc less marked. .In con- 
trast, differences in acoustic attenuation 
tend to discriminate between cell types. In 
some instances a difference between two 
areas can be quite.subtlc in.the optical im- 
age while being obvious in'thc acoustic mi-' 

. crograptc An example of this can be seen 
in Fig. 8 A. In the central area of this image 
several small localized regions show a very 
large acoustic attenuation compared to the 
surrounding material. The same regions in 

' the optical image, Fig.^jBB, appear little dif- 
ferent from the bulk'of the tissue. These 
distinctive areas^are most probably com- 
pact bundles of connective tissue with an 
increased cöllagen'content. For some soft 
tumors t*"" «scbenition of increases in col- 

Fig. 6. Acoustic 
images (600 Mhz) of 
(A) a section of hu- 
man oviduct: (B) hu- 
man spleen, showing 
a small artery: and 
(C) normal human 
breast tissue 

lagen content and connective tissue can b> 
an important diagnostic criterion. 

We arc aware thai connective tissue and 
collagen deposits can be accentuated in a 
light micrograph by applying a specialize, 
stain  such  as Masson's trichromc; how 
ever, many of these stains require as much 
as 12 hours to apply There arc important 
situations, such as biopsies on patients ii 
the operating room, where this time inter 
val is prohibitive. For those cases it has 
been necessary to work with frozen sec- 
tions that are stained with HE. A rapic 
evaluation of a  frozen  section  with th 
acoustic microscope should assist in mak- 
ing a more accurate diagnosis. 

As a second example of the acoustic ap 
pearance of diseased tissue. Fig. 9 shows 
section of lymph node afflicted with Hodg- 
kin's disease. Several reasonably normal- 
looking lymphatic nodules can be seen i 
this image as circular areas of high acou: 
tic transmission. The individual cells ol 
these nodules are not well defined. In con- 

. lrast, a highly attenuating matrix of male 
rial can be seen between the nodules. Ev 
dently these are strands of collagenous ma- 
terial which have formed in response lo the 
disease. Since these strands have a vastl 
greater attenuation than the normal tissu< 
the acoustic microscope can easily show 
minute amounts of this material  In some 
instances this might prove useful as a diaf 
nostic technique. 

In  the  final  illustration.   Fig    10.  we 
present a comparison between the acoustic 
images of cancer cells within a lymph noc1 

and  the lymph  node discussed  in  cor 
nection with Fig. 9. The neoplastic cells 
originated with a breast tumor which mc- 
tastasized and spread to the lymph nod 
This comparison is made to poml oul a 
interesting difference  in  the acoustic re- 
sponse of the two cell types. As mentioned 
before, the cells of the lymph nodule sho» 
in Fig. I0B are not well distinguished. Tt 
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cancerous cells seen in Fig. I0A can, how- 
ever, be readily distinguished by the clearly 
outlined nuclei. These nuclei are particu- 
larly conspicuous" because points of large 
attenuation can be seen. 

Future Developments and Applications 

The transmission mode as illustrated in 
this article is but one of several modes of 
operation. In an alternative'mode we can 
image those areas' which exhibit uniform 
transmission by recording the acoustic 
phase shift through' the specimen;' We do 
this by comparing :lW phase shift of the 
signal through the instrument with a refer- 

ence waveform of fixed phase as derived di- 
rectly from the signal generator. Further 
than this we have studied the reflection 
mode as a method for viewing the minute 
detail of integrated circuits (9). This can be 
readily adapted to biological specimens 
mounted on a glass microscope slide. The 
large discontinuity of acoustic impedance 
at the glass interface will provide the re- 
flected signal for this method of exam- 
ination. There arc still other possibilities 
based on the interference patterns of 
multiple beams—each displaced in : fre- 
quency—passing simultaneously through 
the instrument. 

The resolution can be further improved 
by going to higher' frequencies in liquid 

cells of smaller dimensions and by using 
fluids such as liquid nitrogen and argon. 
These cooled liquids have an attenuation 
per unit length that is lower than that of 
water and a sound velocity that is nearly 
half that of water. Therefore, we will in 
principle realize a wavelength that is one- 
third that of what we arc now using and the 
resolution should be improved by a corre- 
sponding factor. 

In another study (10) we havefound that 
certain biological specimens have a large 
nonlinear response to acoustic waves. This 
response is rather easily measured by tun- 
ing the output circuit to the second har- 
monic of the input signal and recording the 
scanned image al this double frequency. 
This' information is distinct from that 
which we obtain in the linear imaging 
process and it provides a method for fur- 
ther increasing the informational content 
of the images of a given specimen. 

Fig. 7. (A) Acoustic image (600 Mhz) of a malignant tumor of the human breast, shown under low 
magnification. (B) Comparative'optical micrograph (stain: hematoxylin^eosin).. 

Fig. 9. Acoustic micrograph of a section of hu- 
man lymph node afflicted with Hodgkin's dis- 
ease.' 

Fig. 8. (A) Xcouslic image of a small region of the lu 
same area. ' 

Fig. 10. Comparison of the acoustic im..uc- iy'«- 
Mhz) of'(AI a cancerous lymph midcimf «■ 

imor shown in Fig. 7. (B)Opiical image of the     lymph nodule of the sample slu"*n "> I >•-" 
Both .ire shown under high mapniiici!  

157 



Conclusions 

The technology of acoustic microscopy 
has now been advanced to the point where 
it can be used to record micrographs of 
cells and of cell complexes. The acoustic 
microscope responds lo the clastic proper- 
ties of the specimen and it therefore pro- 
vides information which is distinct from 
that of an optical microscope. We believe 
that this instrument can be used in the 
fields of biological and medical research to 
obtain new information or to obtain some 
information more rapidly than is possible 
with present techniques. 

The micrographs we have presented 
show that unstained biological material 
can be acoustically imaged with good con- 
trast. Certain materials such as collagen 
and connective tissue have a particularly 
marked attenuation. As a result, the acous- 
tic microscope can reveal information that 
is now only available through time-con- 
suming staining techniques. Recently it has 
been shown that the acoustic microscope is 
compatible with frozen sectioning tech- 
niques and, with proper development, this 
may provide improved diagnostic tech- 
niques. 

That the absorption of acoustic energy is 
proportional to the viscosity of the me- 
dium can be of particular importance in in- 

vestigating living systems (//). It might be 
possible to use the acoustic microscope for 
monitoring the viscosity within the cy- 
toplasm of cells undergoing mitosis. The 
acoustic microscope might also be useful 
for monitoring the various Theological 
stales of the contractile systems that arc 
responsible for movement in several cellu- 
lar systems. An increased understanding of 
the rheology of protoplasm or of cell divi- 
sion is a goal worthy of a large and ex- 
tended effort. 

With the work that has been done lo 
dale it is not possible to pinpoint the pos- 
sible areas of application with great accu- 
racy, but we do claim to have demon- 
strated that this is a new method for view- 
ing the microscopic world. With this in 
mind it is important to examine carefully 
the features and limitations of this new 
tool and to search for areas where it can be 
used to extend our knowledge. 
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Acoustic microscopy 
Electroacoustica! transducers and acoustic lenses work at megahertz 
frequencies as "miniature sonar systems," forming high-resolution images 
that show properties not seen in optical micrographs. 

Calvin F. Quate 
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The acoustic microscope is a new entry 
in the field of microscopic imaging. It 
comes after a delay of many years, but 
now appears to be well established. At 
last year's conference of the Royal 
Microscopical Society in London, for 
example, the booth traditionally re- 
served for new instruments was used to 
introduce commercial versions of 
acoustic instruments.' Visitors to the 
exhibit learned that one can focus 
acoustic waves in water to a diffraction- 
limited waist and use them as a probe 
for microscopic examination. They 
found in examining their own samples 
that they could observe new detail with 
a resolution comparable to that 
achieved by optical microscopes. (See 
figures 1 and 2.) 

It is not easy to explain the delay in 
the introduction of acoustics into mi- 
croscopy. Much of the technology has 
been around for some time. The idea 
surfaced in the Soviet Union as early as 
1949, when Sergei Y. Sokolov pointed 
out2 that the wavelength of 3-GHz 
sound in water is equal to the wave- 
length of green light. He suggested 
that an imaging system at that fre- 
quency might compete with optical 
instruments. There were some at- 
tempts3 in this direction in 1960, but 
the serious work on acoustic micros- 
copy did not start until the late 1960s. 
At the Zenith Laboratory in Chicago, 
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Acoustic micrographs. Right: Image of a 
bipolar transistor. The connecting lines are 
made of aluminum and are 2 microns wide. 
Opposite page: Acoustic image of a 
myxobacterium, which is a member of a 
social spore-forming class of bacteria. The 
diameter of the bacterium is 0.5 microns. 
(Bipolar transistor courtesy of TRW 
Inc.) Figure 1 

Larry Kessler and Adrian Korpel de- 
veloped an acoustic system in which a 
scanned laser beam reads the image 
from a plastic membrane deformed by 
the acoustic signal. At Stanford, Ber- 
tram Auld and his students demon- 
strated and analyzed several systems of 
microscopic acoustic imaging. These 
workers and others in that early period 
established many of the basic princi- 
ples of acoustic microscopy, and their 
work influenced all that followed. 

In this article I discuss the physics of 
acoustic microscopy and consider the 
technique's applications and potential 
for further development. While I draw 
many of my examples from our re- 
search program at Stanford, excellent 
work on acoustic microscopy is under 
way all over the world. At Tokohu 
University in Sendai, Japan, a group 
under the leadership of Noriyoshi Chu- 
bachi has shown how to get quantita- 
tive information from the character of 
acoustic pulses reflected from samples. 
At the Universite des Sciences et Tech- 
niques du Languedoc, in Montpellier, 
France, Jacques Attal has demonstrat- 
ed how one can get information from 
the interiors of solids. At University 
College London, Eric Ash's acoustic 
imaging group has made effective use 
of the phase information in acoustic 
reflections to obtain contrast and to do 
internal imaging.  And at the General 

Electric Company in Schenectady, New 
York, Robert Gilmore has pioneered 
the use of low frequencies for scanning 
in depth over large surfaces. Scientists 
elsewhere have built instruments to 
demonstrate other characteristics of 
acoustic imaging; a special issue4 of the 
IEEE Transactions on Sonics and Ul- 
trasonics gives a more complete de- 
scription of their work. 

The advent of acoustic microscopy is 
only part of the renaissance that is 
taking place in the field of imaging. 
Other new instruments are using ion 
beams,5 tunneling electrons6 and x 
rays to study the microscopic world 
(see the article in this issue on x-ray 
microscopy, page 22, and the article 
on x-ray optics, April 1984, page 44). 
The table on page 36 compares the 
resolving powers of the various instru- 
ments. The new probes challenge the 
dominant position of optical waves 
and electron beams, but it is unlikely 
that the conventional methods will be 
displaced, as each viewing instrument 
extracts different information from 
the specimen. The ion microscope is 
powerful because it can analyze the 
masses of atomic species that come 
from the specimen during sputtering. 
The tunneling microscope allows us to 
study surfaces on an atomic scale, and 
is bound to have a large impact in 
surface science.   The scanning x-ray 

microscope has the potential for far 
greater resolution, and this will be 
realized as aberrations in x-ray lenses 
are corrected. 

The acoustic system 
The acoustic microscope differs from 

optical instruments in several signifi- 
cant ways. The change from optical to 
acoustic energy allows us to use fre- 
quencies in the microwave region. We 
must use a different kind of lens for 
focusing. We can not use photographic 
film, but must rely on piezoelectric 
transducers and electronic detectors. 
In combination these differences give 
us a new instrument, an instrument 
that extends our capability for observa- 
tion beyond the limit set by optical 
systems. 

We can operate the acoustic instru- 
ment at 3 MHz in water, where the 
wavelength is 500 microns, and at 8 
GHz in helium, where the wavelength 
is 300 A. This wavelength range, 
exceeding four orders of magnitude, is 
equivalent to operating an optical sys- 
tem from the microwave region, 
through the infrared, through the visi- 
ble and beyond the vacuum ultraviolet. 

Calvin Ouate is professor in the departments 
of applied physics and electrical engineering 
at Stanford University. He is a senior research 
fellow at the Xerox Palo Alto Research Center 
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Furthermore, the piezoelectric detec- 
tors permit us to exploit coherent 
radiation, where information is avail- 
able from both the amplitude and 
phase of the reflected signals. The 
piezoelectric films, typically made from 
zinc oxide, are efficient. As generators 
these films can convert 50% of the 
electromagnetic energy into sound. As 
detectors they can convert 50% of the 
sound into electromagnetic energy. 

The lens is the heart of the acoustic 
microscope. It is deceptively simple, 
but it makes all the difference in the 
imaging work. The lens can have 
various forms, such as the one shown in 
figure 3a, which is a sketch of a lens 
that we have used at high frequencies 
at Stanford. The lens is a sapphire 
crystal with a spherical cavity; it is 
immersed in a fluid that makes contact 

with the specimen. When a plane wave 
of sound is launched into this crystal by 
a piezoelectric film, it is converted to a 
spherical wave at the solid-liquid inter- 
face. Focusing, limited only by diffrac- 
tion, is easily obtained with this single- 
surface lens. 

There are no aberrations because the 
velocity of sound in the fluid is small 
compared to the velocity of sound in the 
solid, and therefore there is.a large 
angle of refraction at the interface. 
The direction of a ray crossing the 
interface into the liquid lies close to the 
normal. In this situation the focal 
length is nearly equal to the radius of 
curvature of the surface and the spheri- 
cal aberrations are reduced to negligi- 
ble values. There is, of course, a 
penalty. The change in velocity is 
accompanied by a strong discontinuity 
in the acoustic impedance, a problem 
that must be overcome to transfer 
energy efficiently into the liquid. We 
have found that a layer of carbon 
makes an excellent antireflection coat- 
ing. 

An acoustic-microscope system re- 
sembles a miniature radar or sonar 
system. The acoustic beam, after re- 
flection from the sample, passes back 
through the lens and into the piezoelec- 
tric transducer that generated it. The 
transducer, now working as a receiver, 
detects the signal, whose amplitude 
and phase carry information about the 
sample. The acoustic lens moves in a 
raster pattern over the specimen, ex- 
amining each point sequentially. The 
system requires several seconds to cov- 
er a single frame containing 512x512 
pixels, each of which is typically 0.5 
microns in size. The returning pulses 
modulate the intensity of the beam in a 
cathode-ray-tube monitor. The display 
system is similar to that in a scanning 
electron microscope. 

The interface wave 
What is it that we "see" in acoustic 

images that we do not "see" in optical 
images? Here are a few representative 
examples: We can see fibers inside 
various composite materials; we can 
see features of biological cells that are 

Comparison of micrographs, a: Acoustic 
image of bipolar transistors on a silicon 
integrated circuit, b: High-magnification 
acoustic image of the base contact of a 
transistor, c: Optical micrograph of the 
same area as in b. d: Scanning electron 
micrograph of the same area. Scale bars 
represent a distance of 3 microns. (Images 
by Babur Hadimioglu, ref. 12.) Figure 2 

difficult to image in the optical micro- 
scope; and we can see contrast that tells 
us about the structure and the adhesive 
properties of metal films and other 
coatings. Abrupt changes in elastic 
properties show up in acoustic micro- 
graphs where there are no correspond- 
ing changes in the optical index of 
refraction. For example, with poly- 
crystalline samples of anisotropic met- 
als, the optical image of a polished 
surface is smooth and featureless. In 
the acoustic images, individual grains 
stand out, showing their random orien- 
tations. 

There is contrast between individual 
grains and their neighbors because 
there is a wave that travels along the 
interface between the sample and the 
overlying liquid, and this "interface 
wave" is sensitive to small variations in 
the elasticity of the exposed surface. 
The interface wave is responsible for 
highlighting the elastic properties, or 
rather the changes in these properties, 
in acoustic images. Surface waves of 
this type, common in acoustic systems, 
have no counterpart in electromagnet- 
ic systems. When we first encountered 
them in our work we were unprepared 
for the remarkable changes that they 
produce in images when the sample is 
moved away from the focal plane, 
toward the lens. 

The effect of this defocusing is most 
easily demonstrated by measuring the 
output voltage V from the transducers 
while varying the lens-to-sample spac- 
ing z. In this measurement, one sup- 
presses the lateral translation of trie 
sample so that the output is a single 
curve of voltage versus spacing. For a 
classical focusing system with coherent 

Scanning instruments 

Technique Resolution 
Optical microscopy 2000 A 
X-ray microscopy 500-700 A 
Ion microscopy 400 A 
Acoustic microscopy 200 A 
Tunneling microscopy 2 A 
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Lens configuration (a) and transducer 
output (b). The lens is a spherical cavity in 

sapphire. The plots show the measured 
transducer output power as a function of 

the distance between the lens and an 
aluminum specimen in water at 

about 40* C. The acoustic frequency is 1.8 
GHz. The angle 0 is the opening 

angle of the acoustic lens used to collect 
the data. Figure 3 

Electroacoustic transducer 

radiation and a phase-sensitive detec- 
tor, the voltage curve has the form 
sinz/z. In an acoustic system with a 
small-aperture lens, these surface 
waves are not excited and we do indeed 
measure such a curve. The experimen- 
tal curves in figure 3b, recorded at 
Stanford by Larry Lam, demonstrate 
this point. The sample was aluminum 
with a polished surface, and the work- 
ing fluid was water. For these materi- 
als, the critical angle for coupling to the 
interface wave is 33°. The opening 
angle for the lens used to collect the 
data represented by one of the curves is 
30', which is less than the critical angle. 
The interface wave is not excited and 
the classical sinz/z curve is the result. 
The other curve shows the response for 
a lens with an opening angle of 42°, 
which is large enough to encompass the 
critical angle. The form of this re- 
sponse curve is fundamentally differ- 
ent because the surface wave is now 
generated. The deep minima come 
from the interference between the ray 
at normal incidence and the ray at the 
critical angle. 

We can clarify this interference still 
further by reference to figure 4. The 
transducer depicted at the top of the 
figure is a piezoelectric film that gener- 
ates short pulses of acoustic energy. 
Each pulse is a plane wave of sound 
that propagates downward through the 
crystal into the liquid. As the wave 
passes through the surface of the lens, 
it is transformed into a spherical wave 
that converges toward a focal point. 
After reflecting from the sample, the 
acoustic pulse returns through the lens 
to the transducer, which converts it 
back to an electrical pulse that is the 
output signal. 

This system has a very small field of 
view. This means that the transducer 
responds only to those rays that appear 
to be reflected from a small region very 
near the focal point of the lens. When 
the surface of the reflecting sample is 
placed near the focal plane, the entire 
beam is reflected and the transducer 
output is maximized. When the sur- 
face of the reflecting sample is dis- 
placed  from  the  focal  plane,  it still 

reflects much of the beam, but in such a 
way that it appears to come from a 
region far from the focal point. The 
transducer does not respond to those 
rays because they do not meet it at 
normal incidence. The transducer can 
only respond to a narrow central cone, 
because that cone always meets it at 
normal incidence. That cone, marked 
A in figure 4a, appears to originate in 
the focal plane regardless of the posi- 
tion of the reflecting sample. There is, 
however, a second mechanism by which 
reflected rays can appear to come from 
the focal plane. This involves the 
surface wave produced by the incoming 
radiation that meets the interface at 
the critical angle. The surface wave 
travels along the interface and contin- 
ually reradiates energy back into the 
liquid at the same critical angle.  The 

4 2 0 

DISTANCE z (microns) 

ray marked B in figure 4a illustrates 
this. The direction of this ray makes it 
indistinguishable from a ray reflected 
from the focal plane. 

The two components represented by 
the ray paths marked A and B in figure 
4b contribute to the transducer output 
with an amplitude that is nearly inde- 
pendent of the position of the reflecting 
sample. There is a phase shift between 
the two components, and this sets up an 
interference pattern that changes 
when the lens-to-sample spacing is 
varied. The distance between minima 
in this interference pattern measures 
the velocity of the interface wave along 
the surface of the sample. This, in 
turn, tells us something about the 
elastic properties of the sample. The 
pattern of interference illustrates the 
variation in elastic constants over the 
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Ray paths and interference scheme, a: 
Sketch of the transducer-lens system 
emphasizing the central cone and the 
critical-angle cone, b: Ray diagram 
showing the paths of the two acoustic 
signals that interfere at the transducer and 
generate the V{z) curve. Figure 4 

surface of the sample and provides the 
contrast that we record in the display. 

History of the V(z) effect 
The interference between the central 

cone and the surface wave produces 
remarkable images. Robert Wilson at 
Hughes Research Laboratories, work- 
ing with Rolf Weglein, once sat on a 
high stool for hour upon hour and 
recorded acoustic images as he moved 
the sample toward the lens in discrete 
intervals.7 That series was pivotal; the 
striking regularities were difficult to 
explain with any model that anyone 
was using. In our own lab, Abdullah 
Atalar, who first introduced the reflec- 
tion instrument while he was a gradu- 
ate student, tried in vain to tell us that 
there might be new information in his 

out-of-focus images." We were inclined 
to attribute the changes to aberrations 
in the lens. It was only after he 
recorded images of the grains in an 
alloy of nickel that we were convinced. 

At that point we knew that the 
changes in contrast depend on the 
nature of the sample. We realized for 
the first time that we might use the 
V(z) effect to image the elastic proper- 
ties of materials, and we began work in 
earnest. We found that one can clearly 
delineate the grain structure of metals 
and ceramics, and that one can study 
subsurface structures if they are within 
reach of the interface wave, which 
extends about one wavelength into the 
solid. This distance is 8 microns in 
silicon at 1 GHz, and 2 microns at 4 
GHz. 

We set about the task of correcting 
our model. In the process, we uncov- 
ered the work9 of Mack Breazeale at 
the University of Tennessee, who had 
characterized steel samples by exploit- 
ing the fact that acoustic waves reflect- 
ed from a liquid-solid interface are 
displaced laterally, an effect known as 
the Schoch displacement. Kumar 
Wickramasinghe, now at IBM, calcu- 
lated10 the transducer output voltage V 
as a function of the lens-to-sample 
spacing z—the V(z) curve—-in a concise 
manner, providing additional insight 
into this important and distinctive 
source of contrast. Henry Bertoni of 
the Polytechnic Institute of New York 
published11 a ray theory that also 
increases our understanding of the 
interactions that take place in the out- 
of-focus geometry. 

The recorded images, which I will 
now consider, illustrate what can now 
be done with acoustic microscopy. 

The images 
The texture, or grain structure, of 

polycrystalline materials is the first 
and most dramatic difference that 
shows up in comparisons of acoustical 
and optical images. Inconel and titan- 
ium samples illustrate these differ- 
ences. We see in figures 5a and 5b 
contrast changes from grain to grain. 
We don't yet fully understand the 
source of the contrast that highlights 
the boundaries. That remains as a 
problem for the commercial instru- 
ments to unravel. Figure 6 shows 
state-of-the-art images from commer- 
cial instruments. The detail and con- 
trast in these images, of aluminum 
lines on silicon and of glass fibers 
embedded in epoxy, demonstrate the 
power of electronics in presenting im- 
ages. 

Integrated circuits, with their domi- 
nant role in today's technology, require 
better and better performance from 
imaging instruments. Acoustic imag- 
ing should play a role in selected areas 
such as the problem of achieving adhe- 
sion in the deposition of thin films. 
Photomasks for the fabrication of inte- 
grated circuits are commonly made of 
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Contrast enhancement, a: Three images ol a polished inconel surface, showing the grain structure with increasing 
contrast as the sample is moved from the focal plane (z = 0) toward the lens. The operating frequency is 1.8 GHz 
The rectangular area imaged is about 80 microns wide, b: Acoustic images of a polished surface of titanium   The area 
imaged is about 70 microns wide. Figure 5 

chrome on glass. The lack of adhesion 
of the chrome films is a serious defect 
that is difficult to identify with optical 
methods. 

Heat dissipation in integrated-circuit 
chips is another area where acoustics 
will be important. Chips must be 
securely bonded to their heat sinks, and 
manufacturers require some method 
for monitoring this bond. The solder 
used for bonding often contains voids 
and fissures that reduce the heat con- 
ductivity to unacceptable levels. 
Acoustic instruments that operate at 
moderate frequencies with reduced re- 
solution can now monitor problems of 
this kind. 

The remarkable penetrating power 
of acoustic radiation is demonstrated in 
the work of Butrus Khuri-Yakub at 
Stanford. In one experiment, he used a 
lens in the form of a spherical shell in 
an instrument operating at a frequency 
of 3 MHz—a wavelength of 500 mi- 
crons—to image a honeycomb struc- 
ture used as the skin of aircraft. The 
structure consists of two sheets of 
aluminum held apart by a honeycomb 
grid. He can either focus on the sur- 
face, which gives a bland, uninteresting 
image, or on  the  internal  structure. 

The internal image with the hexagonal 
grid illustrates the unique feature of 
acoustic imaging because the inside of 
the sample is inaccessible to optical 
radiation. 

Polymers such as those used to make 
photoresist patterns represent another 
area of opportunity for acoustic imag- 
ing. Photoresist material can be trou- 
blesome if for some reason it contains 
defects such as bubbles. Lack of con- 
trast in optical images hides these 
defects, but in acoustic images they 
appear as points of strong reflection. 

In polymer materials, both the veloc- 
ity of sound and the acoustic impedance 
have values quite close to those of 
water, which is the working fluid 
between the lens and the sample. We 
do not observe the V(z) effect in these 
materials because the critical angle is 
too large. However, the reflection at 
the interface is small, and this allows 
the acoustic beam to propagate into the 
interior. Inclusions and other defects 
are prominent features in the images 
The inclusions that appear deep inside 
the film have impedances that are 
much less than that of the surrounding 
polymer. It is easy to identify small 
pockets of gel. which are a common 
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defect in these films. 
Distributing high-strength fibers 

throughout polymers or other materi- 
als strengthens those materials and 
modifies some of their other physical 
properties. The distribution of fibers is 
difficult to monitor with optical radi- 
ation because the host material is often 
opaque. In an acoustic field, the fibers 
produce strong reflections because 
their acoustic impedance is higher than 
that of the host material. Figure 7 
shows an example of an image in which 
glass fibers are the only apparent 
feature. It is in some sense a "binary" 
image, with two values, black and 
white. 

Finally, we return to the high-magni- 
fication acoustic image shown in figure 
2. This image, taken with an acoustic 
microscope operating at 4.5 GHz, rivals 
optical images in quality and resolu- 
tion. It represents the high point for 
acoustic imaging in water. 

Biology. Biological cells represent a 
class of objects that are entirely differ- 
ent from the solid objects discussed 
above. Optical absorption is not large 
in these cells, so optical imaging re- 
quires special techniques such as differ- 
ential interference contrast.   Acoustic 



Highlighting in images produced by a 
commercial acoustic microscope. Top: 
Aluminum lines on silicon. The aluminum 
line at the right is about 6 microns wide. 
Bottom: Glass fibers embedded in epoxy. 
(Courtesy of E. Leitz Inc.) Figure 6 

micrographs serve to increase the con- 
trast in biological samples and to bring 
out new details. Sound waves travel 
through the entire cell with ease be- 
cause cellular material is largely wa- 
ter. Nevertheless, there are differ- 
ences in the acoustic properties of the 
cellular material, and these represent 
sources of contrast in the images. 

With cells grown on glass substrates, 
we encounter two reflections, one at 
the liquid-cell interface at the top of 
the cell, and the other at the cell- 
substrate interface beneath the cell. 
These reflections interfere construc- 
tively or destructively as the cell thick- 
ness varies. Contours of constant cell 
thickness appear as dark rings. 
Changes in the ring structure allow us 
to study the dynamic properties of the 
cell. Such features as adhesion to the 
substrate, movement of particles, and 
construction and deconstruction of fila- 
ments through polymerization and de- 
polymerization are easily observed.'3 

New information on cellular move- 
ment should be forthcoming from 
acoustic microscopy. 

The changes in elastic properties 
that take place in cells and tissues 
should also show up in acoustic micro- 
graphs, although the evidence to sup- 
port this hunch is not yet available.14 

Imaging such changes would be useful 
for studying pathological specimens. 

Resolving power 
Each instrument used for microscop- 

ic imaging has features that make it 
unique and interesting. However, it is 
an instrument's resolving power, as 
listed in the table on page 36, that 
determines where it will be used. The 
useful operating range for optics is 
limited by the large absorption in the 
ultraviolet region. As a rule of thumb, 
the resolution of the conventional opti- 
cal microscope is 0.4 microns in air, 0.3 
microns in water and 0.2 microns in oil. 
These numbers set the goals for com- 
peting instruments. 

In a similar way, it is acoustic absorp- 
tion in liquids that limits the upper 
operating frequencies of the acoustic 
microscope. Sound absorption per unit 
distance increases as the square of the 
frequency. If we use wavelengths 
shorter than those of microwave fre- 
quencies, we encounter severe res- 
traints. The electronics dictate that to 
preserve an acceptable signal-to-noise 
ratio we must maintain the total at- 
tenuation along the signal path at a 
constant level. If we double the fre- 
quency, for example, we must reduce 
the signal path to one-quarter ito pre- 

vious length. The lenses must be fabri- 
cated with smaller and smaller radii. 

We have been able to achieve a 
signal-to-noise ratio of 30 dB at 4.5 GHz 
with a lens 16 microns in radius. This 
gives a resolution near 0.2 microns (see 
figure 2), the limit of the optical micro- 
scope. 

If we seek to improve the resolution 
to observe objects below that size, we 
must use a liquid with an acoustic 
velocity less than that of water. There 
are such liquids at room temperature, 
but they are not useful because their 
attenuation is too large. Cryoliquids 
emerge as the most attractive candi- 
dates. 

Liquid nitrogen is a convenient and 
readily available cryofluid. The ab- 
sorption of sound in this liquid is 
similar to that in water, while the 
velocity of sound is one-half that in 
water. At a given frequency, we can 
improve the resolution by a factor of 
two by transferring the instrument 
from water to liquid nitrogen. 

While working with liquid nitrogen, 
Daniel Rugar, now at IBM San Jose, 
discovered15 a new phenomenon that is 
important for imaging. He found that 
one can improve the resolution by 
moving to the nonlinear regime, where 
the amplitude of the sound wave is high 
enough to generate harmonics. While 
the evidence is clear—images with 
improved resolution—the theoretical 
explanation is less clear. The improve- 
ment may come from second harmon- 
ics, because those components produce 
a sharper image than the fundamental 
frequency. However, there seems to be 
a dilemma. How can one observe the 
second harmonic content by- monitor- 
ing the output with a detector that 
operates at the fundamental frequen- 
cy? The theory that has been published 
shows that this is indeed reasonable 
and that the behavior of nonlinear 
waves in spherically focused beams is 
quite different from what we expected, 
but we don't yet have a simple descrip- 
tion that I can present here. 

Liquid helium. The ultimate resolu- 
tion with acoustics will come from an 
instrument immersed in liquid helium. 
In this liquid the sound velocity is one- 
sixth of that in water and the absorp- 
tion of sound decreases with the fourth 
power of the temperature when the 

165 



Glass-reinforced polymer, a: Optical- 
microscope image, b: Acoustic- 

microscope image produced with 0.9-GHz 
acoustic radiation. The width of the area 

imaged is 400 microns. (Courtesy of Mark 
Hoppe, E. Leitz Inc) Figure 7 
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liquid is cooled well below the lambda 
point. When we operate at 100 mK, for 
example, the absorption is reduced to 
the point where it is no longer a 
limitation on the operating frequen- 
cy.16 

The behavior of this liquid baffled us 
for a time because we could not find the 
signal reflected from the object. At 
first we thought it was either a problem 
of misalignment or a lack of input 
signal strength. Hence, that is what we 
worked on—new methods of align- 
ment, efficient transducers, antireflec- 
tion coatings. We injected higher and 
higher levels of sound power into the 
liquid helium in an effort to increase 
the strength of the reflected signal, but 
our efforts were in vain, for they never 
produced a signal. 

It took us a very long time to get all of 
this straight. We now know that the 
culprit is the nonlinear behavior of the 
medium. This behavior is emphasized 
when the intensity is increased by 
focusing the beam, but it is worse than 
that. We have learned that increasing 
the input level of a focused beam above 
a certain intensity can actually reduce 
the energy at the fundamental frequen- 
cy. The energy is effectively lost when 
it is transferred to the higher harmonic 
frequency because the piezoelectric de- 
tector is unable to respond to the 
shifted frequencies. 

The levels that we commonly use in 
present-day instruments are 30 dB 
below the levels that we used in the 
dark days when there were no signals. 
We have been forced to use every 
known strategy to capture and manipu- 
late the weak signals. We have learned 
from the radioastronomers how to 
build GaAs FET amplifiers cooled to 4 
K to achieve low effective noise tem- 
peratures. We have learned from the 
radar community how to employ 
chirped signals to lower the peak power 
levels of input without sacrificing the 
total energy. 

With all of these improvements, our 
system appears to be working rather 
well.17 We produce images at two 
frequencies^.2 GHz and 8.0 GHz. At 
4.2 GHz the wavelength is 570 A and 
the resolution is near 400 Ä. The 
image of the integrated circuit in figure 
1 is a typical example. The sample is a 
bipolar transistor with a line width of 2 

microns. The depth of focus for the 
acoustic beam is approximately 1500 A, 
less than the height of the aluminum 
lines. We are able to record several 
images—each focused on a different 
level. We then assign each image a 
different color and assemble them into 
a composite with a computer. Thus 
color in the figure represents height in 
the object. 

When we operate at 8 GHz, where 
the wavelength is 310 Ä, the resolution 
appears to be better than 200 A. The 
most interesting result is the image of a 
specimen of myxobacteria furnished to 
us by Stanford biochemist Dale Kaiser. 
The contrast in the composite image, 
shown in figure 1, is much greater than 
that found in a transmission-electron- 
microscope image. 

This result suggests that the helium 
acoustic microscope, with its narrow 
depth of focus that makes the surface 
topology show up with high contrast, 
will one day play a role in the study of 
microscopic objects. 

My work on acoustic microscopy is supported 
in part by the National Science Foundation 
and the Air Force Office of Scientific Re- 
search, and. in the past, by the Office of 
Naval Research. 
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INCONEL   ALLOY 

„*•        * 

(a)  OPTICAL,   POLISHED 

(c)  ACOUSTIC   Z=-0.5/x 
2.7 GHz 

.'£-< 
.••«•V: ;m: ."_'**• 

£■ ■rT: 

(b)  OPTICAL,  ETCHED 

(d) ACOUSTIC   Z = - I.O/j. 
2.7 GHz 

FIGURE 3-1 
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** 

(a)   OPTICAL   x620 

(b)   ACOUSTIC (2600 MHz) 

FIGURE 3-5 

POLYETHYLENE  TEREPHTHALATE 
WITH   IMBEDDED  GLASS  BEADS 
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FIG. 4.3 Comparison of the optical A and the acoustic B micrograph 
of a polished surface of polycrystalline silicon. 
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(b) 

FIG.   4.6—Optical   (a)   and   acoustic   (b)   comparison 
of   polished   brass   surface.    Field   of 
view   is   55 * 90 \im. 
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Acoustic Microscopy Analysis of 
Microelectronic interconnection and 
Packaging Technologies 

Gabriel M. Crean, Colm M. Flannery, and 
Sean Clan Ö Mathüna 

1.1. Introduction 

Several advanced packaging and interconnection technologies are currently under 
development to meet the requirements of complex, large and/or high-speed mi- 
croelectronic integrated circuits (IC) and systems. These include the design of 
multilayer interconnection substrates (see Fig. 1.1) for Multichip Module (MCM) 
applications'" and the development of multilayer ceramic pin grid array packages 
(see Fig. 1.2) for large-area die size, high pin count ICs.':' A development road 
map"31 for single-chip packaging technologies is presented in Fig. 1.3. 

However, the use of both novel materials and an increasing number of 
processing steps in such technologies has posed serious yield and reliability 
issues. The availability of characterization tools for on-line process monitoring 
and failure analysis of packaging technologies are therefore becoming increas- 

GABRIEL M. CREAN AND COLM M. FLANNERY • National Microelectronics Research Centre. Univer- 
sity College. Lee Mailings. Cork. Ireland. SEAN CIAN Ö MATHüNA • Power Electronics Ireland. 
National Microelectronics Research Centre. UCC. Ireland 

Advances in Acoustic Microscopy, Volume /. edited by Andrew Briggs. 
Plenum Press. New York. 1995. 
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ACOUSTK MICROSCOPY ANALYSIS OF MICROELECTRONIC TECHNOLOGIES 

Figure 7.23. Acoustic micrograph of the die-plastic interface of the 160-lead PQFP. The white 
region corresponds to delaminated areas. 

4 (im. The pattern of delamination on the chip surface was correlated with results 
from finite-element thermomechanical analysis of the package structure.'14' From 
this modeling, delamination at the material interfaces was found to increase 
significantly the level of thermomechanical stress. Once delamination com- 
menced, the line of stress concentration followed the adhesion edge on the chip 
surface, since this was the first point of constraint encountered by the moulding 
compound. Delaminations may thus propagate and spread throughout the whole 
package, resulting in the delamination pattern observed in Fig. 1.23. 
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Figure 1.31. A pseudo-three-dimensional X-ray micrograph of the metallic substrate sample detail- 
ing voiding in the silver epoxy die attach 

both scattering of the acoustic signal at void edges and (o voids not extending 
fully through the thickness of the die attach. 

Since the die was removed from the metal substrate with the die attach slill 
adhering, an optical micrograph of the die attach on the silicon die is presented 
in Fig. 1.33. In regions where no wetting occurred, the dark metal substrate is 
visible; these correspond to voids extending throughoui the thickness of the die 
attach, Adjacent lighter regions exist where wetting of the metal substrate occurred 
without adhering to the die. Shapes of the voids as shown in Figs. 1.31 and 1.32 
correlate very closely with voids visible in Fig. 1.33. At the edges of the large 
through-voids, thin layers of the die attach are observable, and the thinner stream 
like voids do not appear to extend fully through the thickness of the die attach. 
Enhanced optical microscopy revealed that the die attach at void edges and 
smaller voids is a thin, textured. 10-15 u.m thick layer attached to the back 
surface of the silicon die. Figure 1.32 shows that all the dark areas in the acoustic 
micrograph correspond to areas where there are thin, rough die-attach layers, 
that is. at edges of large voids and at the thinner nonthrough-voids. where the 
acoustic signal is scattered at the rough, nonplanar void edges. 

For several of the metal substrate samples, extensive delaminations were 
visible in acoustic micrographs at the die-attach-substrate interface, but they 
were not detected at the die-die-attach interface. This indicated poor adhesion 
of the metal substrates. Subsequently die shear tests removed the die and die 
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ACOUSTIC MICROSCOPY ANALYSIS OF MICROELECTRONIC TECHNOLOGIES 

Figure 1.32. An acoustic micrograph of the metallic substrate sample detailing voiding in the silver 
epoxy die attach as viewed through the die. 

attach from the metal substrates with little effort, indicating a wettabilily- 
processing issue. This is consistent with the absence of a gold layer to assist 
adhesion. 

It is evident from the preceding results that interpreting acoustic micrographs 
of die attach is complex. Both bright and dark areas can indicate the presence 
of voids in die attach depending on their size, thickness, and shape. In addition 
the sides of large voids may have sloping edges of die attach that scatter the 
acoustic signal, resulting in an underestimation of the actual void area. The 
dominant physical mechanism resulting in dark areas in the SAM images appears 
•o be scattering from nonplanar features. 

This study has investigated only one particular type of die attach on a 
number of substrates. For a thorough inspection of die-attach quality, reflection 
acoustic imaging from both sides and acoustic transmission imaging are desirable; 
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Figure 133. An optical micrograph of the die attach on the silicon die after removing the substrate. 

however they may not be possible for some packages, such as those containing 
a cavity where only reflection imaging from one side is practicable. Further 
work on the influence of different die-attach materials, curing processes, and the 
influence of lead frames should be performed. However for the silver epoxy die- 
attach material investigated, it is possible to elaborate a methodology to determine 
the presence of voids and to identify adhesion integrity issues using acoustic 
microscopy. 

1.5. Multilayer Interconnect 

The requirement to interconnect complex and high-speed ICs has resulted 
in the design of several multilayer interconnection technologies and the develop- 
ment of multichip modules, such as those in Fig. 1.1."-,| The most innovative 
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Figure 1.21. A 160-lcad PQFP for surface-mount application. 

figure 122. Acoustic micrograph of a 160-lcad PQFP imaged through the lop or the package and 
detailing the lead frame, tic bar. IC. and die pad. 
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(a) 

(b) 

FIGURE 3.6--(a) Acoustic and (b) optical images of a 
0.5 ym gate FET.    Acoustic microscope 
is at 3.7 GHz. 
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I 
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if« 

FIGURE 3.8—(a) Acoustic (H.H GHz) and (b) SEM images of 
the sample in Fig.  3.7. 
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OPTICAL   INTERFERENCE  CONTRAST   by Koch (XII20) 

ACOUSTIC    f = IIOO MHz 

SOS Chip A    -    STDL-4 

Rockwell CMOS 

FIG. 6.9—Optical and acoustic images of H-MOS transistors on a SOS chip. 
Acoustic image is recorded at Z = -4.5 microns. 
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(A) ACOUSTIC 

(B) DIC OPTICAL (X300) 

FIG. 6.15—Acoustic and optical images of an exposed but undeveloped 
photoresist layer on a silicon wafer. 
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FIG. 3-23. Optical (left) and acoustic (right) images of a silicon-on- 

sapphire integrated circuit. The acoustic images were taken at 630 MHz 

in helium at 1.95K. 
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(a)  ACOUSTIC   IMAGE  IN   4He 
T = 1.95 K       f0 =840 MHz 

PHOTO  RESIST 
IOOOÄ   THICK 

% 

-—1000 •J 

-Al   700A  THICK 

/ 
j2^ 

2500 A 

(b)   CROSS  SECTION 

FIG. 3-25. Acoustic image of grating with 2500 Ä period 
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Cryogenic acoustic microscopy 
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Resolution in the scanning acoustic microscope is determined by wavelength which is in turn limited by 
attenuation in the acoustic medium. In order to make use of the low attenuation found in cryogenic 
liquids we have developed an acoustic microscope suited for use at low temperatures. In this paper we 
present images taken in liquid argon held at 85*K and in superfluid helium at 1.95TC. In liquid argon, 
wavelengths as short as 0.43 fim were achieved while in preliminary work with superfluid helium a 
wavelength of 0.36 pm was used. In order to operate in liquid helium, it was necessary to improve the 
power transfer from the acoustic lens to liquid helium by using double quarter-wave matching layers. 
Techniques of fabricating and testing these layers are described. Finally, prospects for operating at still 
shorter wavelengths in superfluid helium held at temperatures below 0.5TC are discussed. 

PACS numbers: 43.35.Lq, 43.35.Ns, 43.35.Yb, 43.35.Sx 

INTRODUCTION 

Since the introduction of the scanning acoustic micro- 
scope by Lemons and Quate in 1974,' the resolution has 
been increased to the point where wavelengths com- 
parable to those of visible light are employed.2   Pro- 
gress to shorter wavelengths is hampered by losses in 
the coupling fluid which limit the maximum frequency of 
operation and hence the wavelength.   Through the use of 
c ryogenic liquids we have extended the limit on minimum 
wavelengthbeyond what is presently possible at room tem- 
perature.  We expect as we develop this technique 
further, wavelengths much shorter than those of visible 
light and hence resolution substantially better than the 
optical microscope will be within reach. 

Full descriptions of transmission and reflection mode 
scanning acoustic microscopes are given elsewhere.3 

Here we will simply summarize the operations of the 
reflection mode as shown in Fig. 1.   A collimated beam 
of acoustic pulses is generated by a zinc oxide thin film 
transducer deposited on a sapphire rod.   At the front 
end of the rod a small spherical depression in contact 
with the coupling liquid (usually water in the room tem- 
perature instrument) serves as a lens.   Because of the 
large velocity difference between sapphire and water 
(a factor of 7.4) acoustic power incident on the inter- 
face is focused to a spot in the liquid.   The object to 
be examined is placed at or near the focus.   Sound re- 
flected by the object is collected,  recollimated by the 
lens and detected by the transducer which is sensitive 
to both the phase and the amplitude of the returning 
acoustic wave.   The detected signal is used to modulate 
the brightness of an oscilloscope display or is stored in 
an analog scan converter.   The object is then scanned in 
a raster pattern and the motion is synchronized with the 
x and y axes of the display.   The image obtained in this 
way can be recorded on photographic film. 

The key to the acoustic microscope lies in the spheri- 
cal interface between the sapphire and the liquid.  There, 
the velocity ratio is large and the spherical aberra- 
tions—proportional to the square of this ratio5—are 
negligible.   The acoustic beam is focused to a spot 
whose diameter is limited only by diffraction.   It is 
not possible to construct an analogous aberration-free 
single surface optical lens since optical index of re- 

fraction ratios are limited to about two. 

Although large velocity differences are beneficial, 
large acoustic impedance differences limit the power 
transfer to the coupling liquid and are undesirable. 
Power transfer efficiency is improved by using one or 
more quarter wave matching layers.   In the sapphire- 
water case a single glass quarter-wave matching layer 
is used. 

Resolution in the scanning acoustic microscope im- 
proves as wavelength in the coupling liquid is reduced. 
In most liquids at high frequencies attenuation increas- 
es as frequency squared and this factor limits the 
maximum operating frequency.   This limitation can be 
offset by reducing the liquid path by making lenses of 
smaller radius.   Current versions of the acoustic 
microscope use a lens with a radius of about 30 um. 

For maximum operating frequency one must choose a 
coupling liquid with low attenuation and low acoustic 
velocity.   In order to assess the usefulness of various 
fluids as a working medium for the acoustic micro- 
scope, a coefficient of merit has been defined which 
compares each fluid to water.4   This coefficient is de- 
fined as follows: 

M=\J\. (1) 

Here \„ is the minimum achievable wavelength in water 

 o TO OUTPUT 
OUTPUT        ELECTRONICS 

AND DISPLAY 
CIRCULATOR 

/-TRANSDUCER 

 ^. .   . .rjar    ^m^^^^.   , LENS 

A/7/'M/7P^/jf^^^^r «ASN
c
6

Ts0N 

^- REFLECTIN6 OBJECT 
MECHANICALLY SCANNED 

FIG. 1.   Schematic of a reflection mode scanning acoustic mi- 
croscope. 
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TABLE I.  Properties of various cryogenic liquids compared to water. 

Temp a//2 x 10«' P Cxio-s ZxlO-5 

Liquid "K dBsVcm g/cms cm/s g/cm2 s M Refs. 

H20 25 °C 191 1.0 1.5 1.5 1.0 6 
60 *C 95 1.0 1.5 1.5 1.4 6 o2 90 86 1.14 0.90 1.0 2.5 6-8 

•N, 77 120 0.80 0.85 0.68 2.2 6-9 
H2 20 49 0.07 1.19 0.08 2.3 6 
Xe . 166 191 2.9 0.63 1.8 2.4 6 
Ar 87 132 1.4 0.84 1.2 2.2 10 
Ne 27 201 1.2 0.60 0.72 2.4 6 
He 4.2 1966 0.147 0.183 0.027 2.5 6,11 

1.95 610 0.146 .0.227 0.033 3.7 11.12 
0.4 15* 0.145 0.238 ,    0.035 23 13,14 

*As described in the text, at this temperature a scales as/.  This value is from the data of Ref. 14 
extrapolated to 1 GHz. 

and \ is the achievable wavelength in the given liquid. 
We can express M in terms of the absorption coeffi- 
cient (a//2) and the velocity of sound C.  We will make 
our comparison with water at 25°C, where ajf\ equals 
191 x 10-" dB sVcm and Cw = 1.5 xlO5 cm/s.   We "take 
aL, the total attenuation through the liquid cell, and 
L, the acoustic path length in the liquid, to be con- 
stant  We can then write 

In place of Eq. (1) we can now write 

M=- la.  If- \,/2 
.     r/ if I 
VaW)    • 

(2) 

(3) 

For those liquids where the attenuation scales as fre- 
quency squared we let/„,=/.   For other liquids we must 
specify the frequency used in the comparison.   Since 
we want liquids with large values of M we look for those 
liquids with a low value for both the velocity C and the 
attenuation a.   Several fluids of potential interest are 
listed in Table I.   There we find that values for M bet- 
ween 2 and 4 can be realized for a number of cryogenic 
fluids.   For the special case of helium very large values 
maybe possible. 

A number of factors can contribute to contrast in the 
scanning acoustic microscope.   Specular and diffuse 
scattering occur at the liquid-object interface.   Some 
power is converted to longitudinal and shear waves in 
the sample which can be scattered by boundaries or 
internal imperfections or absorbed.   Some power may 
be converted to surface waves at the liquid-sample 
interface.   This "leaks" back into the liquid with its 
phase shifted and may be detected by the transducer. 
This last mechanism is very sensitive to the lens to 
object spacing and leads to great sensitivity to height 
changes and material differences.5 

I. CRYOGENIC APPARATUS 

The mechanical apparatus used in the room tempera- 
ture acoustic microscope is not well suited to use with 
cryogenic fluids.   It is necessary to use a design in 
which the complete microscope assembly is immersed 
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directly in a cryogenic bath.   It is desirable, however, 
to adjust the alignment with water at room temperature 
before cooling down to cryogenic temperatures.   Thus 
strict thermal compensation is needed to ensure that 
the lens to object spacing does not change between room 
temperature and the cryogenic temperatures, i.e., 
during a change of up to 300 °K. 

A diagram of the assembly used is shown in Fig. 2. 
Coarse adjustment of the focal distance is made-with 
ä pushrod that is controlled by a differential micro- 
meter head at the top of the assembly.   The pushrod is 
spring loaded by two diaphragms in the cryogenic liquid 
and thus has negligible backlash. Fine focus is achieved 
by a piezoelectric positioning element (Burleigh 
Instruments PZT aligner-translator) located in the 

DIFFERENTIAL MICROMETER 

VACUUM   FEEDTHROUGH 

SUPPORT  ROD 

COARSE   FOCUS 
PUSHROD 

PZT   ALIGNER/ 
TRANSLATOR 

LENS 

SAMPLE  SUPPORT 
PEDESTAL 

COIL SUPPORT 

DIAPHRAGM 
SPRINGS 

MAGNET 

FIG. 2. Schematic of the assembly used in cryogenic liquids. 

Heiserman et a/.: Cryogenic acoustic microscopy 

206 



ACOUSTIC  LENS. 
OBJECT 

FIG. 3.  Block diagram of 
typical electronic compo- 
nents used in the cryogenic 
scanning acoustic micro- 
scope. 

PULSER 

OELAY 

cryogen and acting in series with the coarse adjust 
The fine adjust allows 1 pm total movement (at 2 °K) 
and about 100 A position resolution.   Electrical con- 
nections are made to feedthroughs in the top plate to 
allow for thermometry and control and monitoring sig- 
nals for the PZT positioner and scanning stage.   The 
rf drive and signal pulses are carried through the top 
plate on a stainless steel semirigid coax. Details of 
typical rf and control electronics are shown in Fig. 3. 

Ah important part of the scanning acoustic micro- 
scope is the mechanism that mechanically translates 
the object through the acoustic beam in a raster pattern. 
A cross section of the mechanism used at cryogenic 
temperatures is shown schematically in Fig. 4.   The 
sample is mounted horizontally in a sample holder on 
top of a flexible pillar made of a 9-cm length of small 
diameter aluminum tubing.   Mounted below the sample 
holder are four small coils of wire spaced at right 
angles in a plane normal to the pillar; only two of the 
four coils are shown in Fig. 4.   Situated about each coil 
is a set of stationary cobalt-samarium magnets.   Two 
of the coils, an orthogonal pair, are used to drive the 
top of the flexible pillar and sample holder in the two 
free dimensions.  The other two coils are used to detect 
the velocity of the sample holder.   The velocity signals 
are used in a servo loop to improve the mechanical 
response of the system and to reduce the effect of any 
external vibrations coupled into the scanner.  Velocity 
signals are also integrated to give the position of the 
sample.   External vibrations might couple into the 
mechanical system of the scanner, but with this system 
the true position of the sample is always accurately 

known.   This position information is used to control the 
electron beam of the CRT display (or scan converter) 
so that the position of the beam is synchronized with the 
position of the sample.   The fast axis of the raster 
scan is usually driven at a 30-Hz rate.  The time re- 
quired to scan one frame varies from 10 to 30 s. 

The top of the flexible pillar travels in an arc rather 
than a plane and as a result the lens to sample spacing 
changes äs the sample is scanned.  The effect is small, 
however, because the pillar is relatively long and the 
scanned field is generally less than 250 ptm on a side. 
The piezoelectric positioning element is sometimes 

HOLDER 

MAGNETIC FIELD 
RETURN PIECE 

(IRON) 

DRIVE 
COIL 

COBALT 
SAMARIUM 
MAGNETS 
(STATIONARY) 

MAGNET 
SUPPORT 
FRAME 

FLEXIBLE  PILLAR 
(ALUMINUM TUBING) 

FIG. 4.  Schematic of the mechanical scanning stage. 
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used to control the focal position of the lens to com- 
pensate for nonplanar motion of the sample. 

Tests in liquid argon indicate that for our present 
levels of external vibration the scanner can execute a 
raster scan to within 0.2 um of an ideal raster pattern. 
Furthermore, when the scan deviates from the ideal 
pattern, the position of the sample is at all times known 
with an uncertainty of less than 0.1 fxm.   In liquid 
helium vibrations from the vacuum pump used to main- 
tain the helium bath at 1.95 °K degrade the scanner per- 
formance and image quality to some extent   We expect 
to be able to correct this in the future by further isola- 
tion of pump vibrations, increasing the stiffness of the 
flexible pillar, and improving the scanner electronics. 

II. OPERATION IN LIQUID ARGON AND NITROGEN 

A benchmark in our efforts to operate the acoustic 
microscope at cryogenic temperatures was established 
with liquid argon held at about 85 °K.   This liquid was 
chosen based on its inertness, high figure of merit, and 
relatively large acoustic impedance.   This last feature 
allowed us to use the same sapphire lenses as we have 
used in water.   A single quarter-wave matching layer of 
glass provided a good power match.   In liquid argon the 
cryogenic microscope was operated at 2 GHz where the 
wavelength was 0.43 (im, equal to wavelengths in the 
violet part of the optical spectrum.   The high resolution 
of the argon microscope is demonstrated in Fig. 5. 

Here a comparison is made between acoustic, scan- 
ning electron, and optical micrographs of a photoresist 
grating.15  The grating was made by exposing a 0.15- 
/im layer of photoresist on a silicon wafer using two 
interfering optical beams.   The photoresist lines are 
0.2 fim wide and the center-to-center spacing between 
lines is 0.4 urn.   The acoustic microscope clearly re- 
solves the lines with a considerable amount of detail on 
the line edges.   The contrast is excellent   After viewing 
acoustically the sample was coated for viewing in the 
scanning electron microscope [SEM, Fig. 5(b)].   The 
resolution is far better in the SEM image, but neverthe- 
less the acoustic image shows a surprising amount of 
surface detail when compared to the SEM image.   Figure 
5(c) shows the same object viewed with an optical 
microscope fitted with a high power, dry objective. 
The change in the index of refraction between air and 
photoresist is small and it was also necessary to en- 
hance the optical contrast by coating the sample with 
a metallic film. 

We have examined several other objects in the argon 
microscope chosen from materials, integrated circuits, 
and biology.   We were able to produce excellent images 
of a spread of human metaphase chromosomes which 
are natural objects with submicron structures.18  Con- 
trast in these objects was high and resolution was at 
least as good as high quality oil immersion optical 
micrographs.   Figure 6 was chosen to illustrate the 
imaging performance with integrated circuits.   The 
object here is a microwave dual gate field effect 
transistor (FET)17 and the two linear features are 
the gate electrodes which are 1 um wide.   Figures 
6(a) and 6(b) are acoustic micrographs taken at two 

(a) 

(b) 

(c) 

FIG. 5. Images of a photoresist grating: (a) acoustic micro- 
graph in liquid argon, (b) scanning electron micrograph, and 
(c) optical micrograph using high power, dry objective. Line 
period is 0.4 fan.  Images show different areas of the sample. 

different focuses.   Figure 6(c) is an optical image of 
the same device using a high power oil immersion ob- 
jective. 

We have also operated the microscope in liquid nitro- 
gen at 77 °K using a drive frequency of 1.9 GHz.   Re- 
duction of frequency compared to argon was necessary 
due to the lower acoustic impedance of liquid nitrogen. 
As predicted in Table I, results were very similar to 
argon at a comparable frequency.   Since liquid nitrogen 
is less expensive and more readily available than 
liquid argon, we will continue our investigations with 
this liquid. 

J. Acoust. Soc. Am., Vol. 67, No. 5, May 1980 Heiserman et al.: Cryogenic acoustic microscopy 

208 



(a) to V 

10" 

10" 

x 
o 

|.02 

u 

m   . 
•o 

a 
10 

0.1 

r^j W 

T7 

0.1 I 

T(°K) 

10 

FIG. 7. Attenuation of sound in superfluid helium at 1 GHz as 
a function of temperature. High temperature (solid line) data 
from Ref. 11, low temperature (dashed line) data extrapolated 
from the data of Ref. 14 at 208 MHz. 

FIG. 6. Images of a high frequency field effect transistor. 
Parallel, horizontal lines are gate electrodes and are 1 fm 
wide: (a) and (b) acoustic micrographs at two different focuses, 
(c) oil immersion optical micrograph. 

nisms; viscosity and thermal conductivity contribute 
to this loss.   Attenuation in this regime scales as fre- 
quency squared.   The sharp peak at 7\ where helium 
becomes a superfluid is due to the presence of a second- 
order (lambda) phase transition at this temperature. 
The broad peak at 1.4 °K followed by a rapid falloff in 
attenuation at lower T is somewhat surprising.  To 
understand these effects, we recall the behavior of 
the mean free path of thermal phonons in the liquid at 
these temperatures. 

At temperatures near the peak, the phonon mean free 
path is determined mainly by scattering between pho- 
nons and rötons, the high momentum thermal excita- 
tion found in superfluid helium.   Figure 8 shows the 
temperature dependence of the phonon mean free path 
characterizing viscosity from a calculation by Landau 

III.  LIQUID HELIUM 

Liquid helium is the most promising cryogen for use 
in acoustic microscopy and so we have designed our 
apparatus to be suitable for use in helium at tempera- 
tures down to about 1.1 °K. 

The velocity of sound in liquid helium is nearly con- 
stant from absolute zero to temperatures near the 
lambda temperature, TX = 2.17'1C, but the attenuation 
varies considerably in this range.   The attenuation a is 
plotted against T in Fig. 7.  The data is from measure- 
ments by Imai and Rudnick11 at 1 GHz and Abraham 
et al.,1* extrapolated from 208 MHz.   Above 2.5 °K the 
variation is understood in terms of classical mecha- 
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2 0.01 
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FIG. 8.  The viscous mean free path of phonons in superfluid 
helium as a function of temperature.  From data of Ref. 18. 
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and Khalatnikov.18  From this it is evident that at the 
peak in attenuation the viscosity mean free path is ap- 
proximately equal to the acoustic wavelength.   At 1 
GHz this is about 0.2 (im.   The peak itself results from 
a relaxation process between the equilibrium popula- 
tions of rotons and phonons.19 Well above this tempera- 
ture (the thermodynamic regime) we can assign values 
of pressure and temperature to regions small compared 
to an acoustic wavelength and thermodynamic argu- 
ments apply.   However at very low temperatures (below 
0.6 °K) the mean free path is large compared to an 
acoustic wavelength and the thermal phonons are not 
able to establish equilibrium during one acoustic period. 
We can no longer resort to an equilibrium thermody- 
namic description of the system.   In this limit, known 
äs the collisionless regime, we must consider the 
statistics of scattering of acoustical phonons by the gas 
of thermal phonons.   From consideration of a three- 
phonon process a new dependence for the absorption at 
low temperatures can be obtained where (for hf« kT) 
a is found to increase linearly in frequency and ac- 
cording to the fourth power in temperature."  Data at 
208 MHz supports this interpretation.  No data exists 
at 1 GHz for these low temperatures. 

Figure 7 suggests that for the purposes of acoustic 
microscopy temperatures below 0.5 °K will be very 
attractive.   However, devising an acoustic microscope 
for use at these very low temperatures is a formidable 
problem and so as a preliminary step we have operated 
our present apparatus in liquid helium at 1.95 °K.   At 
this temperature a local minimum in attenuation exists 
and we have been able to form acoustic images using 
wavelengths in helium of 0.36 fim, the shortest wave- 
length used for acoustic microscopy to date. The major 
problem encountered in operating in helium is the very 
low acoustic impedance of the liquid, ZH,~0.03 xlO5 

g/cm2 s. 

At the interface between a solid and a liquid, the 
reflection coefficient for acoustic waves is usually 
large.  There is a large difference in acoustic impe- 
dance between the two materials.   For example, at the 
interface between sapphire and water, 13% of the power 
normally incident in a plane wave is transmitted.   At 
the boundary between a solid and liquid helium, the 
problem is much more severe.   At a sapphire-helium 
boundary only 0.3% of the power is transmitted.   Ex- 
pressed in decibel notation, the transmission coeffi- 
cient is -25 dB. 

In general the power transmission coefficient (T) for 
transmission of normally incident plane waves from a 
solid of impedance Z3 to liquid helium can be written20 

TABLE n.  Properties of various quarter wave matching 
schemes. 

7 = 4(ZH/Z,). (4) 

A standard approach for solving a mismatch problem 
with coherent waves is to place one or more quarter- 
wave matching layers between the solid and the liquid. 
Our problem is complicated in two ways.   First, we 
operate at frequencies far above normal acoustic 
operating frequencies and our matching layers must be 
thin (~1 /im).   These films are formed by vacuum de- 
position.   This creates the second problem for there is 

1 Solid        1          2 He{ 

| X/4 |   X/4 

Lens material Layer 1 Layer 2 -T (dB) 

Sapphire (AljOj) ... 25 
Sapphire (Al2Oj) Glass ... 14 
Sapphire (Al2Oj) Carbon ... 6 
Sapphire (Al^) Polyethylene ... 2 
Sapphire (AljOj) Au Al 14 
Sapphire (Al2Oj) Au Glass 11 
Sapphire (AljOj) Aü Carbon 3» 
Sapphire (A1203) W Glass 7 
Sapphire (Al2p3) W Carbon l1 

Fused quartz ... ... 20 
Fused quartz Glass ... 19 
Fused quartz Carbon ... 11 
Fused quartz Polyethylene ... 4 
Fused quartz Au Al 9 
Fused quartz Au Glass 5 
Fused quartz Au Carbon 2» 

* Based on a value of impedance of 6 x 105 g/cm2s as found ex- 
perimentally in low frequency measurements in a bulk sample 
of pyrolytic carbon. 

only a limited class of materials that can be deposited 
with vacuum techniques.  We must choose from these 
materials. 

The ideal matching layer would have an acoustic im- 

(a) 
-20 

•/«„ 
(b) 

FIG. 9.  Reflection coefficient of quarter-wave layers between 
sapphire and water.   Points are experimental, curves are 
from Eq. (6).   (a) A single glass layer.   For the fit Zlla, 
= 11.83 x 10s g/cm2 s.   (b) Gold-glass, with the glass deposited 
at the same time as the layer measured for (a).  Here ZKlA 

= 57.55 x 105 g/cm2 s and Zgii33 is taken from the fit of (a). 
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-20 

FIG. 10. Calculated transmission coefficient from sapphire 
to liquid helium using the gold glass quarter-wave matching 
layers of Fig. 9. 

pedance equal to the geometric mean of the values for 
the solid and the liquid helium.   For fused quartz this 
ideal value is 0.7 x 10s g/cm2 s.  For sapphire it is 
1.2 x io5 g/cm2 s.   Unfortunately few solids possess such 
a low value of acoustic impedance. 

It is possible, however, to add a second quarter-wave 
matching layer and improve the match at the expense 

of bandwidth.  The first layer is chosen to have a very 
high acoustic impedance.   This effectively increases the 
impedance of the lens material and makes it possible to 
choose as a second layer a material of relatively high 
impedance and still produce a reasonable match into 
liquid helium.  We can compare the different combina- 
tions with the following expression for the transmission 
coefficient   It is written In terms of the impedances of 
the lens material (■£,), the first and second layers (Zx 

and Z2) and the helium (ZHt) (see Ref. 20): 

\{Z\ZM/Z\:zJ )■ 
(5) 

This expression is valid for lossless isotropic media 
at the quarter-wave resonant frequency of the layers. 
For a single layer Z2 = ZBt.  In Table II we list a variety 
of possible matching schemes and compare their 
transmission efficiencies. We have experimented with 
several of these schemes and for our initial efforts 
have chosen a double layer composed of gold and glass 
on sapphire. 

The properties of quarter-wave matching layers for 
use in helium were initially evaluated using water at 

(a) 

(b) 

FIG. 11. Optical (left) and acoustic in 
superfluid helium (right) images of a 
silicon on sapphire integrated circuit. 
Acoustic wavelength is 0.36 /an.  Lens 
to object distance increases from (a) to 
(c).  Horizontal bars are poly silicon, 
10 /an wide and 0.5 pm thick.  Vertical 
bar is aluminum, 15 urn wide and 1.0 
fan thick. 

^   (c) 

h-lO/i-H 
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room temperature.   Test "flats" were prepared by 
depositing ZnO transducers on one end of a short 
(1 mm) sapphire rod with the c axis aligned along the 
rod axis.   The ends of the rod were accurately parallel 
and carefully polished.   The films to be evaluated were 
deposited on the opposite end. Acoustic pulses centered 
at frequency / were generated in the rod and the 
echo train produced by the multiple reflections ob- 
served on an oscilloscope.   The amplitude of a parti- 
cular echo (normally the first) was measured with the 
rod in contact with air (total reflection) and with a drop 
of water applied to the matching layer end.   The ratio 
of these amplitudes squared (or the difference in deci- 
bels) is the reflection coefficient of the test piece- 
water interface at the frequency/.   Measurements at 
several frequencies near the quarter-wave resonant 
frequency of the layers gives the frequency dependence 
of the reflection coefficient.   For the case of a single 
layer the center frequency together with the measured 
thickness of the layer yields a value for the longitudinal 
velocity of sound in the layer (C) while the magnitude 
of the reflection coefficient gives the acoustic impe- 
dance.   For two layers of thicknesses dx and d2 the ex- 
pected frequency dependence of the reflection coefficient 
R(f) can be written in the same approximation as Eq. 
(5) as20 

*(/) = 
z-z 
z + z (6) 

where 

Z2> 
z   ZsZi - ZSZ2 tanft, tanj>2 - i{Z\ tan^ + ZSZV tanft,) 

ZXZ2 - Z\ tantf), tantf>2 - i(ZsZ2 tan<£, + ZsZt tan02)   ^2 

4>1=(2nf/C1)d1, 

<t>2=(2nf/C2)d2. 

For two layers the impedance and velocity of the low 
impedance, outer layer are separately evaluated.   Then 
Eq. (6) with Z2 = Z, can be inverted to obtain Zr   From 
these measurements the expected transmission coeffi- 
cient into liquid helium T(f) can be calculated using 
Eq. (6) with Z, = ZHt and recalling that T(f) = l -R{f). 

Figure 9 shows data taken on a gold glass matching 
device evaluated using water.   Figure 10 shows the pre- 
dicted frequency dependences of the matching section in 
liquid helium.   At the center frequency, the transmis- 
sion coefficient to helium is about 6%.  This can be 
improved upon using different materials as indicated in 
Table II, but the gold-glass matching section was ade- 
quate for initial work at 630 MHz with the temperature 
held at 1.95 °K.   At this temperature and frequency the 
wavelength in liquid helium is 0.36 (im. 

For our first object in liquid helium we choose a 
silicon on sapphire integrated circuit   Optical and 
acoustic micrographs are shown in Fig. 11.   The verti- 
cal bar is aluminum and is 1.0 fim thick.   Successive 
acoustic micrographs were taken at slightly different 
focal positions.   Figure 11(c) is the greatest lens to 
object spacing and represents focus on the top of the 
aluminum stripe.  The image of Fig. 11(b) is slightly 
closer focus and that of Fig. 11(a) is closest.   Depth of 
field and phase effects are evident in (c) where only 

the thicker aluminum is visible.   Due to the imperfect 
match (even with the layers most of the acoustic power 
is reflected at the sapphire-helium interface and re- 
mains in the crystal) the information pulse interfered 
with pulses in the sapphire rod resulting in the fringes 
and contrast variations evident in the images.   Such de- 
fects will be eliminated by improving the match.   Even 
so features with sizes in the micron range are evident, 
especially edge roughness apparent in Fig. 11(a). 

IV. CONCLUSION 

We have obtained preliminary results from an acous- 
tic microscope operated in cryogenic liquids.   Refine- 
ment of these techniques will allow wavelengths well 
beyond those of visible light to be employed for acous- 
tic microscopy. The improved resolution thus obtained 
will extend the range of sizes accessible to acoustic 
microscopy to about 0.1 um.   We now have a plan for 
constructing a microscope for use in superfluid helium 
below 0.5 °K.   There the operating frequency can be 
increased and we expect a corresponding increase in the 
resolving power. 

Apart from the increase in resolution acoustic 
microscopy at cryogenic temperatures will make 
possible some novel observations.    Potentially im- 
portant applications lie in the study of solids at low 
temperatures.  We are particularly interested in the 
study of the intermediate and mixed states of super- 
conducting materials.   Because the difference in acous- 
tic attenuation between the normal and superconducting 
states is typically large at high frequencies and tem- 
peratures well below the transition temperature, it 
should be possible to obtain sufficent contrast to di- 
rectly image the lamellar structure of type I samples 
and the vortex array found in type II materials.  With 
such observations we hope to study the time and mag- 
netic field dependent behavior of these effects in detail. 
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Ultrasound-Stimulated Vibro-Acoustic 
Spectrography 

Mostafa Fatemi and James F. Greenleaf 

An ultrasound method based on radiation force is presented for imaging the acoustic 
response of a matenal to mechanical excitation. Acoustic energy was emitted from solids 
and tissues in response to an oscillatory radiation force produced by interfering focused 
beams of ultrasound. Frequency spectra of ultrasound-stimulated acoustic emission 
exhibited object resonances. Raster-scanning the radiation force over the object and 
recording the amplitude and phase of the emitted sound resulted in data from which 
images related to the elastic compositions of the acoustically emitting objects could be 
computed. Acoustic emission signals distinguished tuning-fork resonances, submilli- 
meter glass spheres, and calcification in excised arteries and detected object motions 
on the order of nanometers. 

1 he mechanical response of objects to ex- 
ternal forces is of considerable interest in 
medical diagnosis, nondestructive inspec- 
tion of materials, and materials science. An 
applied force is often used to produce dis- 
pliiccment from which elastic constants, 
like spring constants, can be determined. In 
resonant ultrasound spectroscopy, an ultra- 
sound source and a detector are used to 
measure the resonance frequencies of a sam- 
ple with known size and mass. The reso- 
nances are related to mechanical parame- 
ters, including the elastic constants of the 
material (I). Recently, a magnetic reso- 
nance elastography method for quantita- 
tively measuring thetfcspfacement of tissues 
in response to externally applied cyclic forc- 
es was reported by Muthupillai et cd. (2). 
The method resulted in high-resolution im- 
ages of the shear modulus of normal and 
pathologic tissues. Others have used ultra- 
sound to measure tissue displacement asso- 
ciated with externally applied compressive 
and cyclic forces (3). 

We describe an imaging technique that 
uses acoustic emission to map the mechanical 
response of an object to local cyclic radiation 
forces produced by interfering ultrasound 
beams. Radiation force is generated by 
changes in the energy density of an acoustic 
field (4). For instance, a collimated ultra- 
sound beam impinging normally on the sur- 
face of an object of arbitrary shape and 
boundary impedance will produce a radiation 
force. The radiation force arising from this 
interaction has a component F = d,s(E> (5) 
in the beam direction. This component is 
proportional to the time-average energy den- 
sity of the incident wave (E), the projected 
area of the object s, andtf, (6), the scattering 
and alworbing properties of the object. 

We probe the object by arranging the 
intersection of two focused continuous- 

Ultrasound Research. Department of Physiology and 
Biophysics. Mayo Clinic and Mayo Foundation. Roches- 
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wave (CW) ultrasound beams of different 
frequencies at a selected point on the ob- 
ject. Interference in the intersection region 
of the two beams produces sinusoidal mod- 
ulation of the ultrasound energy density. 
Modulation of the energy density creates an 
oscillatory force, effectively vibrating the 
object at the selected region. The resulting 
vibration of the object produces an acoustic 
field [acoustic emission (7)] that can be 
measured some distance away. 

Ultrasound beams can be constructed in 
a variety of ways for this purpose (8). We 
used two coaxial, confocal transducer ele- 
ments of a spherically focused annular array 
(consisting of a central disc and an outer 
annulus) driven by two CW signals at 
slightly different frequencies u, and «o2 
(Fig. 1). The energy density at a point in 
this ultrasound field, say at the focus, is 
proportional to the square of the sum of the 
ultrasound fields from the two elements. 
Squaring the sum of two sines gives rise to 
sum and difference frequency terms. Thus, 

high-frequency and low-frequency varfl 
tions in energy density result at the int™ 
section of the two beams produced by the 
two elements. Ultrasound-stimulated acoiB 
tic emission results from the energy teil 
that produces a low-frequency vibratio* 
The low-frequency force on a target at the 
focal point can be computed by 

F,(c) 
■*// 

(E(oc*\(t,x,y))Tdxdy 

= CrJ, cos(Awt) 

I 
I 

(1) 

I where C is a constant, Aw = | w, - u> 
is the area over which EfocaI(t,x,y), the tOv. 
energy density in the focal plane, has sig 
nificant value, and 0T represents a shorw 
term time average (9). For focused beamH 
the intersection region can be small enougP 
that F{(t) can be considered to be an oscil- 
lating point force applied to the object ate 
the focal intersection of the beams. ■ 

To produce an ultrasound-stimulated vP" 
bro-acoustic spectrogram, we vibrate a small 
region of the object with an oscillatinMj 
radiation force of varying frequency. Thl 
complex amplitude of the resulting acoustic* 
emission field is 

#(Aco) = C<frH(Aü))Q(A<o)        (2 I 
ise, 
:eJ| 

where Q(Aw) is a complex function repre- 
senting the mechanical frequency response, 
or admittance, of the object at the select 
point, and H(Aco) represents the combin 
frequency response, or transfer function, _. 
the propagation medium and receiver and is 
assumed to be fixed and known (10). Refl 
cording <J>(Aw) allows us to obtain Q(Aci>fl| 
for each point within a constant multiplier 
(U). We raster-scan the radiation fore 
over the object to produce data, which ca 

Confocal transducer« 
Hydrophon« 

Fig. 1. Experimental 
system for ultrasound- 
stimulated vibro-acous- 
tic spectrography: a two- 
element confocal ultra- 
sound annular array 
transducer, consisting of 
a center disc and an out- 
er ring. The elements are 
driven by two CW sourc- 
es, at frequencies equal 
to <>>, and <o2 = <o, + A<D, 

where these frequencies "' 
are very close to the central frequency of the elements, and Aw is much smaller than (<1%) the center« 
frequency of the uttrasound transducer. The bearns interact c>nry in a srnaH region arourxl the joint local ■ 
point, where the amplitude of the field oscillates at the difference frequency Au The region of interest is ■ 
placed at the joint focal point and is probed point-by-point by raster scanning. The sound field resulting 
from object vibrations at each position is received by a hydrophone and recorded The recorded signal m 
at one or more difference frequencies is used to form an image of the object The experiments were ■ 
conducted in a water tank. The transducer center frequency was 3 MHz; its outer diameter was 45 mm; I 
and it was focused at 70 mm. The difference frequencies used in each experiment are mentioned in the 
corresponding legends. 
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i mapped into a pictorial format. The 
>atial resolution of the resulting image is 
jtermined by the region in which signifi- 
int interference between the ultrasound 
cams occurs and is of the order of a few 
avelengths at the ultrasound frequency. 

Experiments were conducted in a water 
ink, which provided good ultrasonic and 
rustic coupling to the object and freedom 
f movement for the prototype scanner 
lechanism (Fig. 1). The two-element con- 
>cal ultrasound transducer array was posi- 
oned such that the beams interfered "at the 
:lected region of the object. Sound pro- 
uced by vibrations of the object is approx- 
imately omnidirectional because of the small 
ze of the vibrating portion of the object 
xnpared with the wavelength. This sound 
■as detected by a submerged hydrophone 
laced near the object within the water tank. 

To test the hypothesis that ultrasound- 
imulated acoustic emission is sensitive to 
bject mechanical properties and to show 
ow such properties can be quantitatively 
raluated by this method, we produced an 
Itrasound-stimulated  vibro-acoustic  spec- 
xjgram of a tuning fork immersed in isopro- 
yl alcohol at two different temperatures. 
7e aimed the focal point of the confocal 
■ansducer at a fixed position on one of the 
nes. The shear viscosity of alcohol changes 
•ith temperature, causing a slight, but de- 
ictable, shift in thet-pectrogram (Fig. 2). 
he shear viscosity TJ of a liquid is deter- 
lined by measuring the resonant frequency 
: and the bandwidth 8/R of a tuning fork 
nmersed in this liquid (12) 

T\ = — \T~T~\ (3) 
P \/R      JRO/ 

here fR0 and 8/R0 are the resonant fre- 

lg. 2. Vibro-acoustic spectrograms of a tuning 
irk immersed in isopropyl alcohol at two different 
imperatures. A point on a tine of the fork was 
brated with the use of the system shown in Fig. 
• The difference frequency was swept from 1600 
12000 Hz. A change of temperature from 15° to 
6°C decreases the shear viscosity of the alcohol, 
«eh. in turn, changes the resonance frequency 
id bandwidth of the tuning fork. 

quency and bandwidth measured in vacu- 
um, respectively, and p is the liquid density. 
The constant K is determined experimen- 
tally. The measured values for /R and 8/R 

were 1769 and 5.76 Hz at 15°C and 1765.7 
and 4.53 Hz at 30°C. The viscosity of iso- 
propyl alcohol is reported to be 2.89 cP (1 
centipoise = 1 mPa*s) at 15°C (13). From 
this value, the constant K was calculated. 
The shear viscosity at 30°C was found using 
Eq. 3 to be T| = 1.77 cP, which is the same 
as the published data (13)- 

We tested the ability of ultrasonically 
stimulated vibro-acoustic spectrography to 
image the frequency response of different 
objects with identical d, by scanning three 
tuning forks with different resonant frequen- 
cies. A color acoustic spectrogram was ob- 
tained by sweeping the frequency of the ra- 
diation force, Aw, in a range covering the 
resonant frequencies of all forks at each 
beam position. The acoustic emission signal 
was filtered by three bandpass filters cen- 
tered at different frequencies. The outputs of 
these filters were used to form a three-color 
composite image (Fig. 3). The forks appear 

with three distinct colors because each fork 
responds primarily at its own resonant fre- 
quency. Because the forks were made from 
identical materials, other ultrasound imaging 
methods would not be capable of distin- 
guishing these objects. 

We tested the hypothesis that the ampli- 
tude of acoustic emission at a single frequen- 
cy can be used to detect small, highly reflec- 
tive isolated objects. We scanned a 380-u.m- 
diameter glass bead placed on a thin latex 
sheet and recorded the amplitude of acoustic 
emission (Fig. 4). The latex sheet produces 
only a small change in the incident energy 
because it is almost transparent to the ultra- 
sound beam. This experiment demonstrated 
the ability of the method to detect isolated 
regions of hardness with respect to a soft 
background. 

To test the feasibility of using the tech- 
nique to image mechanical properties of 
tissues, we measured the phase and ampli- 
tude of acoustic emission from calcified and 
noncalcified excised human iliac arteries. 
The arteries were scanned in a plane per- 
pendicular to the ultrasound beam axis. 

500 

Frequency seals (Hz) 
——■      " 1 

1000 1500 

Fig. 3. Vibro-acoustic 
spectrogram of tuning 
forks. (A) Three tuning 
forks made from identical 
material with identical the 
cross sections (lengths 
are different). Resonance 
frequencies in water are 
407 Hz (right), 809 Hz 
(middle), and 1709 Hz 
(left). The forks were 
scanned in a water tank 
with the use of the sys- 
tem shown in Rg.1. The 
scanning plane covers 
the front tines at the bottom part of the forks. At each position, the difference frequency was swept from 
250 to 2250 Hz. The ultrasound-stimulated acoustic emission was detected with the hydrophone and 
filtered by three overlapping bandpass filters with frequencies centered at 500, 1000, and 1500 kHz, 
respectively. (B) Color acoustic spectrogram of the forks. Tre outputs of the bandpass fitters were used to 
produce the red, green, and blue image components. This image displays two characteristics of the 
object: shape and frequency response. The color associated with each fork indicates its resonance 
frequency, which can be deduced from the frequency scale. 

Fig. 4. Image of ultrasonically stimulated acoustic 
emission amplitude from a 380-nm-diameter 
glass bead placed on a thin latex sheet. The latex 
surface was scanned at 0.2-mm increments in 
each direction. The difference frequency was fixed 
at 7.3 kHz. The amplitude of the acoustic emission 
of the bead fin relative units) is shown in gray 
scale. The latex sheet is almost transparent to the 
imaging system. The glass bead, however, pre- 
sents a large acoustic impedance dfecontinuity, 
resulting in significant oscllatory radiation force. 
The magnitude of the radiation force gives rise to 
large-amplitude acoustic emission, thus yielding a 
high-contrast image of the bead. The image re- 
veals a system resolution of about 700 (im. The 

20 mm 

confocal beam geometry leads to a negative-amplitude ring around the bright, positive central spot. This 
effect produces edge enhancement, as seen on artery walls in Fig. 5. 

www.sciencemag.org • SCIENCE • VOL. 280 • 3 APRIL 1998 

/ 215 



Calcifications within the arteries produced 
distinctive amplitude and phase values 
when compared to the normal arterial walls 
(Fig. 5). The phase of the oscillation of 
driven mechanical systems relative to the 
driving force depends on the ratio of mass 
to stiffness (14). Calcified regions of the 
diseased artery, identified by an x-ray of the 
sample, produced phase shifts in acoustic 
emission completely different from that of 
the noncalcified, and thus softer or less 
dense, regions. The amplitude images are 
highly detailed and exhibit variations in 
acoustic emission from both calcified and 
uncalcified regions of the diseased artery. 
These differences are caused by variations 
in the product of the reflection properties d, 
and the effective mechanical vibration ad- 
mittance properties Q(Ao>) of the tissue. 
Thus, vibro-acoustic spectrography is simi- 
lar to conventional pulse-echo ultrasound 
imaging, which is sensitive to the ultrasonic 
parameters of the object, but has the advan- 
tage of also being sensitive to the mechan- 
ical admittance Q(Aco) at low frequencies. 

Motion induced by ultrasound and mea- 
sured with ultrasound pulse echo has been 
used previously to study "hardness" (15). 
However, the sensitivity of ultrasound pulse 

X-ray     Identification pin 

A    M \M?M      Calcified 

Normal 

Acoustic spectrogram (amplitude) 

B 

Acoustic spectrogram (phase) 
WrS"" 

Phase (rad) 
VET 

Fig. 5. Vibro-acoustic spectrography of excised 
human iliac arteries. (A) X-ray image of normal (left) 
and calcified (right) excised human iliac arteries 
obtained from a 35-year-old woman and a 67- 
year-okJ man, respectively. Bright areas indicate 
calcifications. (B) Vibro-acoustic spectrogram 
ampfitude 'mage at a fixed difference frequency of 
6 kHz. Calcification details appear bright, whereas 
the arterial walls are dim. (C) Phase image. Calci- 
fied regions produce acoustic emission of differ- 
ent phase with respect to regions of the tissue 
having little calcification, as indicated by the x-ray. 

echo to motion at common ultrasound fre- 
quencies is limited to several micrometers. 
The advantage of ultrasound-stimulated vi- 
bro-acoustic emission is its high displace- 
ment sensitivity. Cyclic displacement of 
100 nm at 10 kHz produces an acoustic 
intensity of about 3.0 X 10-3 W/cm2. Hy- 
drophones similar to the one used in these 
experiments are sensitive to as little as 
10"'5 W/cm2 and, therefore, can detect 
very small cyclic displacements. For exam- 
ple, the hydrophone detected an acoustic 
pressure of about 15 X 10~3 Pa at a distance 
of 5 cm from the glass bead shown in Fig. 4. 
Under the assumption of isotropic vibra- 
tion, this pressure would be produced by a 
similarly sized sphere vibrating with a dis- 
placement amplitude of about 6 nm. The 
method will be more sensitive for higher 
frequency sound because acoustic power is 
proportional to the square of frequency for 
constant displacement amplitude. The 
practical upper limits for the difference fre- 
quency produced with modern ultrasound 
transducers is about equal to their band- 
width. For modern transducers, this value is 
80% or more of the central frequency of the 
transducer. For experiments like those we 
conducted, emission frequency well in ex- 
cess of 1 MHz could be produced. The lower 
limit on the frequency of radiation pressure 
is zero, that is, static pressure. 

Ultrasound-stimulated vibro-acoustic 
spectrography has potential applications in 
at least two general areas. The first is non- 
destructive evaluation of materials, where 
material characteristics and structural flaws 
can be identified by measuring changes in 
the mechanical response to vibration at a 
point. The object under test could be re- 
motely vibrated, for instance, by beams 
propagating and interfering in either water 
or air, or beams propagating within the 
object could be used to produce acoustic 
emission from flaws. For medical imaging 
and detection, the technique appears par- 
ticularly suitable for noninvasive detection 
of hard tissue inclusions, such as the imag- 
ing of arteries with calcification, detection 
of breast microcalcifications, visualization 
of hard tumors, and detection of foreign 
objects. The stiffness of soft tissues is re- 
lated to their composition (for example, 
relative values of fibrotic content), and its 
change is often related to pathology or 
therapy. In conventional palpation, phy- 
sicians estimate tissue stiffness by feeling 
with the fingers. Because changes of stiff- 
ness alter the vibration frequency response 
or damping of tissue, the present method 
can potentially provide a noninvasive, re- 
mote, high-resolution "palpation" tech- 
nique that can reach small abnormalities 
that are otherwise untouchable by con- 
ventional methods. 
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Flower-Associated Brachycera Flies as Fossil 
Evidence for Jurassic Angiosperm Origins 

Dong Ren 

Pollinating insects played a decisive role in the origin and early evolution of the angio- 
sperms. Pollinating orthorrhaphous Brachycera fossils (short-horned flies) collected from 
Late Jurassic rocks in Liaoning Province of northeast China provide evidence for a 
pre-Cretaceous origin of angiosperms. Functional morphology and comparison with 
modem confamilial taxa show that the orthorrhaphous Brachycera were some of the 
most ancient pollinators. These data thus imply that angiosperms originated during the 
Late Jurassic and were represented by at least two floral types. 

The ancestors and time of appearance of 
angiosperms remain obscure (1-5). The ear- 
liest fossil evidence of nectar secretory tis- 
sue is provided by the Santonian-Campani- 
an flowers from Sweden (6). The oldest 
angiosperm pollen grains have been found 
in Israel, in strata of Early Cretaceous time 
(Late Valanginian to Early Hauterivian) 
(7). The earliest recognized angiosperm in- 
florescences have been recovered from 
rocks of Late Hauterivian Age at Jixi, Chi- 
na (8). 

The origin and early evolution of flow- 
ering plants are probably related to the 
coevolution of insect pollinators (9-/1). 
Cretaceous and Tertiary flower-visiting in- 
sects were diverse and include an impressive 
variety of Coleoptera (beetles), Diptera 
(true flies), Lepidoptera (moths), Hyme- 
noptera (wasps and bees), and other less 
diverse taxa, such as Thysanoptera (thrips). 
Some highly faithful pollinators such as 
butterflies and cyclorraphan flies appeared 
in the middle Tertiary (12). Few pre-Cre- 
taceous pollinating insects are known. 
Small insects, especially flies and parasitoid 
wasps, may have been important then and 
thus in the origin and evolution of angio- 
sperm pollination (13). Here I describe 
Late Jurassic pollinating orthorrhaphous 
Brachycera with well-preserved nectaring 
mouthparts. 

Early pollinating insects have long tubu- 
lar mouthparts designed for feeding on or 
extracting nectar from long tubular flowers 
(9-/J). Other examples of Jurassic insects 
having   this   type   of  mouthpart   include 

National Geological  Museum of China.  Xisi.  Beijing 
100034. China 

nemonychid weevils, which probably fed on 
bennettitaleans or cycads (14), and a 
monotrysian Lepidopteran with a siphonate 
proboscis (15, 16). 

I collected the fossil Brachycera at a 
locality near Beipiao City, Liaoning Prov- 
ince, China, from nonmarine sedimentary 
rocks of the Yixian Formation (17). These 
rocks contain abdundant remains of insects 
(18, 19), fishes, conchostracans, reptiles, 
birds, and mammals of Late Jurassic (ap- 
proximately Tithonian) age (20). 

Extant Brachycera comprise a wide vari- 
ety of flower visitors (9, 10). Most orthor- 
rhaphous Brachycera feed on flowers as 
adults. The new fossil orthorrhaphous 
Brachycera (J9) include deer flies (Pango- 
niinae of Tabanidae), flower-loving flies 
(Apioceridae), and tangleveined flies 
(Nemestrinidae). 

Most extant pangoniines are exclusively 
flower feeders (21). They often hover over 
flowers on the borders of dense vegetation 
(9, 10). Both males and females subsist on 
nectar and on the juice of flowers. The 
female proboscis of some species is flexible 
and suitable only for imbibation of nectar 
(22, 23), and is three or four times the 
length of the body. One of the Jurassic 
fossils, described as Palaepangonius euptems 
Ren, 1998, includes a complete body and an 
associated well-developed long proboscis 
(Fig. I) (19). These fossils provide direct 
evidence for the mid-Mesozoic diversifica- 
tion within Tabanidae of subclades with 
nectaring mouthparts. Palaepangonius not 
only provides evidence for the extraction of 
nectar from flowers or flowerlike structures 
but also demostrates that the Pangoniinae 
have existed since the Late Jurassic. Anoth- 

Fig. 1. Palaepangonius euptems Ren. 1998. (A) 
Camera lucida drawing of specimen LB97017. 
(B) Photograph of body. LB97017. (C) Photo- 
graph of proboscis, LB97017. Abbreviations: e. 
compound eye; Pr, proboscis. 

er brachyceran clade, the Nemestrinidae, 
are important pollinators of flowers (9, 10). 
Modern members are often collected when 
feeding on blossoms or hovering over them 
while imbibing nectar (24). Many Late Ju- 
riassic examples were collected and were 
described as Protonemescrius jurassicus Ren, 
1998. These had a proboscis about 5.2 mm 
long, which would have been especially 
suitable for visiting long tubular flowers 
(Fig. 2). Fiorinemestrius pukhemmus was 
also an important flower visitor. Its long 
stout proboscis seems to have been suited to 
extracting nectar from open or short tubular 
flowers (Fig. 3). Similar proboscides have 
been reported from the Late Jurassic of 
Karatau, Kazakhstan (25). 

A representative of the stem group of the 
Apioceridae has also been found (Fig. 4) 
and called Protapiocera megista Ren, 1998. 
Its body bears dense hairs, a feature used in 
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Photoacoustics on a microscopic scale 
H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo 

Edward L Ginzton Laboratory. Stanford University, Stanford, California 94305 
(Received 10 August 1978; accepted for publication 11 September 1978) 

We have modified a transmission acoustic microscope by replacing the input lens with an optical 
counterpart. The input to this system comes from a mode-locked and Q -switched Nd:YAG laser at 1.06 
p.m. Acoustic signals arising from thermoelastic coupling are generated in metallic films at frequencies 
determined by the modulation envelope of the optical beam. The output acoustic lens and transducer 
responsive to sound waves at 840 MHz detect the acoustic energy which comes from the heated volume 
(~2-fim diameter) near the focal region. The sample is mechanically scanned through the focal point in a 
raster pattern to record the photoacoustic images. We suggest this as a method for collecting new 
information on microscopic structures. 

PACS numbers: 43.35.Sx, 43.35.Yb, 68.25.+j 

Materials with optical-absorption bands can be used 
to transfer energy from an optical beam to acoustic 
radiation—the photoacoustic effect. The change in 
temperature and the thermal expansion which accom- 
panies the absorption of optical energy generates acous- 
tic waves at frequencies corresponding to the amplitude 
modulation of the optical beam. A definitive experiment 
that has strongly influenced our thinking was carried 
out in 1971 by Kreuzer and Patel.1 They used the 
acoustic energy generated by the photoacoustic effect to 
monitor trace impurities in gases. Since 1973, 
Rosencwaig2 has carried out extensive photoacoustic 
work with solids, liquids, and biological materials. 
Several others3 since that time have used photoacoustic 
spectroscopy (PAS) to study a variety of problems, and 
the results of all this has been summarized in two re- 
views by Maugh4 and Farrow.5 

The results to be reported here, where we discuss the 
feasibility of a photoacoustic microscope, follow more 
directly from a report by Brienza and De Maria.6 In 
1967 they demonstrated that mode-locked lasers with 
Q -switching could be used to generate intense sound 
beams through surface heating of metal films deposited 
on piezoelectric crystals. With picosecond pulse trains 
they were able to generate sound in solids at frequencies 
above 2 GHz. This was preceded by the early work of 
White,7 who demonstrated in a classic paper that elec- 

tromagnetic energy of various forms could be used to 
heat materials and generate acoustic waves. He pre- 
dicted that this could be used as a tool for "... study 
of the high-frequency thermal properties of materials". 
Ghizoni et al.8 have used periodic current flow to heat 
silicon and generate useful thermoelastic signals. Von 
Gutfeld and Melcher9 considered this problem in 1977 
and found that the strength of the acoustic signal could 
be increased by a large factor if the impedance of the 
material on either side of the absorbing layer was 
carefully controlled. They suggested that photoacoustic 
signals generated in this manner could be used in a sys- 
tem for imaging material defects. Wong10 has used 
photoacoustic signals in a gas cell to image defects in 
ceramics of silicon nitride. 

The imaging proposal of Von Gutfeld combined with 
photoacoustic spectroscopy provides the basis for a 
photoacoustic microscope. The first experimental 
results as reported here give us confidence in the 
feasibility of the system. Our previous experience with 
acoustics11 indicates that the resolving power of this 
new instrument will be at least as good as that of the 
optical microscope. It will require microwave frequen- 
cies in the acoustic path, but we anticipate no difficulty 
on this point. In the analysis of thermoelastic sig- 
nals, 7>12 one finds that in some cases—namely, in metal 
films where the thermal skin depth is greater than the 

OBJECT- 

OPTICAL LENS 

OPTICAL PULSE 
TRAIN AT INPUT 

TRANSDUCER 

FIG.  1. Schematic of photoacoustic ap- 
paratus. The optical pulse train on the 
left at 1.06 fim has a peak power of 1 
kW. The mode-locked pulses of width 
7-, = 200 psec repeat at 210 MHz (1/T2). 
The Q-switched pulses have a width of 
200 nsec with a repetition frequency of 
2. 7 kHz. The acoustic lens has a radius 
of 200 Mm and the transducer is tuned 
to 840 MHz. 
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(a)   OPTICAL  IN   REFLECTION       FIG. 2. A comparison of the 
optical and photoacoustic image 
for aluminum foil 25 um thick. 

(b)    PHOTOACOUSTIC 

skin depth of optical absorption and less than the sound 
wavelength—the conversion efficiency is directly pro- 
portional to the acoustic frequency. Cachier's 
experimental results at 800 MHz confirm this. 

In this report we will present our initial results on this 
form of imaging. We have modified a conventional 
acoustic microscope11 used in the transmission mode. 
The input acoustic lens has been replaced with an op- 
tical objective lens (NA = 0. 25), and in this way the 
optical input beam is focused to a diameter of 2 (im, 
It is this focused optical beam, properly modulated, 
that is the source of our photoacoustic signal. The output 
lens and the transducer from the original acoustic 
microscope were used to detect the acoustic energy as 
radiated from the heated specimen. The schematic for 
the overall system is shown in Fig. 1. 

In that diagram we see the incoming optical beam on the 
left. It emanates from a Nd: YAG laser mode locked 
and Q switched. The optical signal consists of packets 
200 nsec in duration with a repetition frequency of 2.7 
kHz. Within each packet we find the mode-locked pulse 
train. The pulses are 0. 2 nsec in width (TJ and repeat 
at 210 MHz (1/T2). The thermal response of the sample 
is fast enough to permit the generation of sound at fre- 
quencies corresponding to the nth harmonic of 210 MHz. 
Our experiments were performed at 840 MHz, although 
signals were observed at 1050 MHz. The acoustic lens 
used for receiving had a radius of 200 Mm. It was 
coated with a quarter-wave layer of glass to minimize 
the acoustic reflection at the lens surface. The trans- 
ducer was made of sputtered ZnO with a response 
centered near 800 MHz and a bandwidth of 100—200 MHz. 

The first image from the photoacoustic arrangement is 
shown in Fig. 2. The object was a sheet of aluminum foil 
(25 (xm thick), as shown in the optical image of Fig. 
2(a). The lines that appear come from the rolling pro- 
cess used in producing the foil. The photoacoustic image 
is shown in Fig. 2(b). Although somewhat imperfect by 
optical standards, we do see the gross features attri- 

butable to the rolling marks. For this image the peak 
power in the optical beam was limited to 1 kW in order 
to avoid sample damage. The signal-to-noise ratio at 
the output for the acoustic signal was 20 dB. The acous- 
tic loss in the water path was estimated to be 32 dB. 

In the second image of Fig. 3 we used a chromium 
pattern on a glass cover slip. The chrome was 200 nm 
thick and it was overcoated by 150 nm of aluminum. The 
chrome pattern was the hexagonal finder grid shown in 
the optical images of Figs. 3 (a) and 3 (b). Thus, the 
object alternates between a layer of aluminum directly 
on the glass and a layer of chrome overlaid with the 
aluminum. The contrast in the photoacoustic image of 
Fig. 3(c) comes from two factors: (1) the photoelastic 
constant for the aluminum-glass interface is different 
from that for the chrome-glass interface and (2) the 
acoustic impedance of the chrome-aluminum double 
layer is different from that of the single layer of alumi- 
num; as a result, the amount of generated sound trans- 
mitted into the water differs for the two regions. 

The ragged appearance in these first photoacoustic 
images of Figs. 2(b) and 3(c) results from improper 
synchronization between the motion of the electron beam 
on the monitor scope and the motion of the sample. We 
were using photodiodes for sensing the motion of the ob- 
ject—a carryover from the scanning acoustic micro- 
scope—and the laser interfered with the smooth opera- 
tion of these sensors. 

The theory for the configuration of Fig. 1 has not been 
worked out, but we do know something about the para- 
meters that will come from this theory. The coupling 
coefficient relating the generated acoustic power to the 
square of the absorbed optical power is given by White.7 

We know that the photoelastic coupling constants are 
large in those materials with a small heat capacity, a 

(a)  OPTICAL (TRANSMISSION) (b)  OPTICAL  (REFLECTION) 

PHOTOACOUSTIC 

FIG. 3. A comparison of the optical and photoacoustic image 
of a metallized pattern deposited on a glass cover slip. The 
hexagonal grid pattern is formed with a 200-nm layer of 
chrome. The cover slip is then overlaid with a 150-nm film 
of aluminum. The bar width of the hexagonal grid is 25 ßm. 
The quality of the photoacoustic image is degraded through im- 
proper synchronization of the CRT and the sample motion. 
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large expansion coefficient, and a high value for the 
thermal conductivity. Furthermore, we know that the 
thermoelastic effect in many metals i3 the major source 
of acoustic attenuation. Because of this similarity we 
expect high values for the photoäcoustic coupling in 
those materials such as gold or silver, where the ac- 
oustic attenuation is large, and small photoäcoustic 
coupling constants in materials such as nickel or alumi- 
num, where the attenuation is small, but this is not the 
full story since we want to maximize the ratio of the 
acoustic power in the liquid cell to the incident optical 
power. In gold the optical reflectivity is high, so that 
very little of the incident energy (5%) is absorbed, and 
the acoustic impedance is high, so that very little of the 
generated acoustic power (10%) is transmitted into the 
liquid. A material such as aluminum with a lower value 
for both the reflectivity and acoustic impedance is a 
better choice, even though the photoelastic coupling is 
inferior to that for gold. 

Although it is not demonstrated here, we plan in later 
work to scan the optical frequency and record the ab- 
sorption spectra over the area of the sample. A suitable 
format for the output could be multiple images in 
pseudocolor. If all of this can be properly implemented, 
it would lead to a system for identifying the constituents 
of the specimen point by point across the imaging field.13 

In summary, we claim to have demonstrated that a 
new form of microscopic examination is possible, and 
this is attained by combining modulated laser light with 
acoustic emission at high frequencies. The present 
numbers are interesting. They can be improved in sev- 
eral ways. The modulation of the laser beam in the form 
of picosecond pulses distributes the acoustic energy over 
a much wider bandwidth than that covered by the trans- 
ducers. Sinusoidal modulation of the amplitude of the 
laser beam at 800 MHz would concentrate the optical 
energy into the acoustic band and improve the conver- 
sion efficiency by almost two orders of magnitude. 
Furthermore, we note that the sample did not have an 

antireflection coating, and much light was reflected 
rather than being absorbed. Finally, we note that the 
large mismatch between the metallic layers and the 
liquid reduced the available acoustic power. A proper 
coating for matching the acoustic energy into the liquid 
would correct this. We estimate the conversion effi- 
ciency from light to sound to be near 10"". This is con- 
sistent with the calculations of Cachier12 if we consider 
the metal-glass interface to be clamped in the manner 
described by Von Gutfeld.9 

We want to acknowledge the support of A. E. Siegman 
in this experiment, for he made his laboratory available 
to us throughout the project. The work was funded by the 
Air Force Office of Scientific Research. 
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Acoustic microscopy at optical wavelengths 
V. Jipson and C. F. Quate 

Edward L. Cinzton Laboratory. Stanford University. Stanford, California 94305 
(Received 27 February 1978; accepted for publication 4 April 1978) 

Recent advances in the field of acoustic microscopy have allowed the instrument to be operated at 
wavelengths that correspond to the center of the optical band. Experimental results in the form of acoustic 
micrographs are presented and compared to their optical counterparts. It is apparent that the resolving 
power of the instrument is similar to that of the optical microscope. Also it is seen that the acoustic 
micrographs yield information on the subsurface region. This information is not available in the optical 
images. 

PACS numbers: 43.35.Sx, 43.35.Yb, 68.25.+j, 43.20.Hq 
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In the scanning acoustic microscope that was first 
introduced by Lemons and Quate,1 the resolving power 
is determined by the beam diameter at the focal point. 
Heretofore it has been inferior to the resolution of the 
optical microscope. 

We believe that this limitation has been overcome 
and we want to report on our recent work with an 
instrument operating at higher frequencies where the 
acoustic wavelength is equal to the wavelength of visible 
light. 

The resolving power of the microscope is determined 
by the wavelength of the acoustic radiation in the liquid 
cell which fills the region between the lens and the 
specimen under study. In water heated to 60t the 
velocity of sound is 1.55 km/sec. Recently, we have 
been able to record acoustic micrographs near 3 GHz 
where the corresponding acoustic wavelength is 520 nm. 
This is a factor of 3 improvement over previously 
reported results and it is less than the optical wave- 
length of 550 nm which corresponds to the center of the 
optical band (i.e., green light). The resolving power 
should be comparable to an optical microscope since 
the lens that we are using is nearly free of aberrations. 

The basic components of the instrument can be seen 
in Fig. 1. In this scanning version the object is trans- 
lated point-by-point and line-by-line in a raster pattern 
past a focused diffraction-limited acoustic beam. The 
beam is brought into focus by a single surface spherical 
lens ground into a sapphire disk. The back surface of 
the sapphire contains a piezoelectric transducer which 
is centered on the axis of the lens. The front surface 
of the lens is coated with a glass layer—one-quarter 
wavelength in thickness. This serves as an antireflec- 
tion coating between the mechanically stiff sapphire 
and the water. 

The instrument used here is operated in the reflec- 

tion mode with rf pulses 20 nsec in duration. The re- 
turning pulse from the object under study which con- 
tains all of the information is separated from the input 
pulse (and other spurious reflections) with the combined 
use of a circulator and time-gating circuits. 

A single surface lens of this type can be used as the 
imaging element in the microscope since there is a 
large velocity change between the acoustic wave that 
propagates in the sapphire (V=ll. 1 km/sec and the 
wave that propagates in the water (K=1.55 km/sec). 
Beam distortion due to spherical aberration is inverse- 
ly proportional to the square of this velocity ratio and 
for the acoustic case* it can be ignored. The large 
velocity ratio produces a correspondingly large angle 
of refraction at the lens-liquid interface. Because of 
this factor the acoustic energy leaves the lens close to 
the normal and converges to a focal point that is only 
13% greater than the radius of the lens (/=1.13r). 
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OUTPUT        ELECTRON« 

""■ ANO MSPLAT 
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MECHANICALLY SCANNED 

r0- RADIUS OF LENS  . 40 ftfTI 
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R" RADIUS OF LENS APERTURE • O.TIj, 

FIG. 1. The configuration of the scanning acoustic microscope 
as used in the reflection mode. 
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FIG. 2. Comparison of the optical (a) and acoustic (b) Images 
of an integrated circuit. The aluminum line width is 7 urn. 

image as recorded on a Zeiss instrument we see the 
surface features and contours with great clarity. In the 
acoustic image the aluminum lines have a very different 
appearance. The reflectivity of these lines is a strong 
function of the layering structure beneath the aluminum. 
The details of how this contrast comes about are con- 
tained in a previous publication.* If the subsurface 
layering is disturbed, there is a change in the acoustic 
reflectivity and this results in a change of the contrast. 
Thus the dark spots that appear on the aluminum lines 
at various points in Fig. 2(b) are attributed to subsur- 
face structure. In some instances these spots corre- 
spond to regions where the oxide has been removed and 
emitter contacts have been formed. 

Similar features can be seen in Fig. 3(b). This is 
another region of the silicon chip that is imaged with a 
higher magnification. Here again we can see mottled 
regions on the aluminum lines which are not evident in 
the optical image. These regions are also not discern- 
ible acoustically when the image is formed with the 
object at the focal point of the lens. The micrograph 
shown in Fig. 3(b) was taken at a slightly out of focus 
position to enhance this structure. This procedure, of 
course, results in a loss of resolution. We conclude 
from this comparison that these features are not on the 
surface. It is quite likely that they represent changes in 
depth profile of elastic materials beneath the surface. 

The fundamental limit on the operating frequency, and 
therefore the resolving power of the instrument, is the 
acoustic absorption in the liquid cell over a path length d 
(d= 2. 26r). The acoustic absorption for water is known 
to exhibit a square-law dependence over frequencies 
extending from a few kilohertz to well over 6 GHz. 
Because of this it is common to use the ratio o//J to 
characterize the acoustic absorption in liquids. Here 
a is the attenuation coefficient (cm"1) and/is the fre- 
quency (sec"1). The value of a//2 for water heated to 
60°C is reduced by a factor of 2 over the room-temper- 
ature value. It is approximately 10"16 sec'/cm and for a 
frequency of 3 GHz the associated acoustic loss is 7.8 
xiO3 dB/cm. The magnitude of this value is the basic 
reason that we use the small lens radius as depicted 
in Fig. 1. 

The possibility of using liquids other than water as 
the acoustic coupling media has been examined by Attal 
and Quate.3 They pointed out that carbon disulfide, 
heavy metals and cryogenic liquids provide a substantial 
improvement over heated water but each of these liquids 
present some problems of specimen compatibility. 
Liquid media have not been extensively studied at 
microwave frequencies and it is still possible that 
improved liquids will be found with properties that will 
allow us to further reduce the wavelength. 

The results of this work are shown in the micrographs 
of Figs. 2—4. In Fig. 2 we present the comparison be- 
tween the acoustic and optical images for an IC circuit 
fabricated on silicon. The aluminum lines connecting 
to the transistors are 7 urn in width. In the optical 

FIG. 3. Comparison of the optical (a) and acoustic (b) images 
of a different region of the same wafer as Fig. 2. Of interest 
are the dark blotches which appear on the aluminum lines in the 
acoustic micrograph but are not visible on the optical Image. 
The acoustic micrograph was taken at a slightly out of focus 
position to enhance the subsurface detail. 
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FIG. 4. Comparison of the optical (a) and acoustic (b) Images 
of a dual-gate GaAs FET. The gate lines are 1 Jim wide with a 
1-pm spacing. 

The final micrograph of Fig. 4 shows the comparison 
for an FET device as fabricated on gallium arsenide 
with a dual gate. This configuration is interesting to us 
since the two lines forming the gate are spaced by 1 Jim 
and they are each 1 jim in width. It is included to 
demonstrate the resolving power of this Instrument. 

We believe that the evidence as presented in the com- 
parison micrographs indicates that the acoustic micro- 
scope operating near 3 GHz can be used to resolve de- 
tail that is comparable in size to the features that 
appear in optical micrographs. In addition, we find that 
some regions which are inaccessible to optical radiation 
such as those beneath thin layers of metallization can be 

imaged with the acoustic instrument. Many of the de- 
fects in solid-state devices occur in underlying layers 
and it is our hope that the acoustic instrument can be 
used to characterize some of these defects without re- 
quiring that the surface be removed. 

In summary the resolution of the acoustic micro- 
scope has been improved by approximately a factor of 3 
over previous versions. This has been accomplished 
by (a) accurately centering the acoustic transducer 
behind the lens to ensure proper lens illumination, 
(b) utilizing quarter-wave matching layers to reduce 
interface losses, (c) heating the water path to further 
reduce the acoustic losses, and (d) reducing the lens 
size and, therefore, the acoustic attenuation in the 
liquid cell. 
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tus. Also we wish to acknowledge helpful discussions 
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Figure 4-1. The experimental arrangement for photoacoustic imaging of thin 
films on optically transparent substrates using an acoustic lens to 
collect the sound generated by the modulated optical power. 
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Chapter 5 Transmission Mode Near-Field Scanning Acoustic Microscope Operation 

///////] 

sample 

\> > > > > > > 

receiving 
transducer 

>>>>>>> 

rf detection 
circuits 

Figure 5.1 In transmission mode NSAM, acoustic waves are generated by 
the tip transducer/coupled to the sample through the tip and detected by a 
second transducer oh the back of the sample. 

From the tip transducer up to the point in the tip where the cross-section is approximately 

equal to A/2, the loss is proportional to the ratio of the tip cross-section at x = A/2 and the 

area of the transducer. Since the acoustic impedance mismatch of the silicon up to air is 

19.7 x 106 to 0 kg/ra^, virtually nothing is transmitted from the silicon into the air. In this 

region, the power density is constant along the longitudinal axis of the tip. 
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(a) 10 ftm 

(b) 10 fim 

Figure 5-8. (a) Photothermal image of boron implanted silicon. The darker 
area is the implanted region, the lighter region is not implanted, 
(b) Photothermal image of implanted silicon with 300 A of titanium 
deposited on the silicon in the lelft half of the image. 
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Chapter 4 Near-Field Scanning Acoustic Microscopy and Instrumentation 

rf pulse circulator 

transducer 

77777 
sample 

Figure 4.1 The far-field scanning acoustic microscope utilizes a 
hemispherical acoustic lens to focus acoustic waves in a liquid to a 
diffraction limited spot (After Quate et al. [2].) 

Since it is a far-field instrument, the resolution of the scanning acoustic microscope 

is limited by the spot size. In order to reduce the spot size the instrument can be operated at 

higher frequencies to reduce the acoustic wavelength; however, the frequency can not be 

increased without bound since the attenuation of sound in most liquids is proportional to 

the square of the frequency. Hence, if the frequency is increased, the acoustic path length 

must be reduced by a corresponding factor in order to maintain acoustic signal power 
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Chapter 4 Near-Field Scanning Acoustic Microscopy and Instrumentation 

4.2.1 Resonance   NSAM 

There are two major types of NSAM instruments. The first type, exemplified by 

acoustic microscope of GQthner and coworkers, utilizes some form of an acoustic resonator 

(Figure 4.2) [11]. In this case, one arm of a quartz tuning fork acts as a probe. The tuning 

fork is driven at its resonance frequency of 32.7 KHz and the interaction of the tuning fork 

with the sample is monitored by measuring changes in the resonance frequency or vibration 

amplitude of the tuning fork. This configuration has yielded images of insulators with 

lateral resolution on the order of 1 Jim. 

tuning fork 

ju*~d_r 

sample 

Figure 4.2 Giithner and coworkers use one leg of a quartz oscillator as a 

tip to probe a sample acoustically: The image is obtained by monitoring the 

amplitude of the oscillator's vibration. 

Among several benefits of the resonator-type instrument is that when forces 

between the sample and the tip are sufficiently large, the vibration of the resonator stops. 
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Chapter 4 Near-Field Scanning Acoustic Microscopy and Instrumentation 

piezo tube 

tungsten tip 

V////////&///////A 

S 
receiving transducer 

Figure 43 Transmission mode NSAM has been demonstrated by several 
researchers using modified STMs. Takata and coworkers modulate the z 
piezo of a standard tube scanner to excite acoustic waves into the sample. 

Advantages of two-port NSAM instruments include the fact that since the tip need 

not be an integral part of an acoustically resonator, common tungsten or platinum/indium 

tips similar to those used in STMs can be used. If the tip is damaged during use, it can be 

replaced easily and quickly. Damage to the tip is of particular concern for non-resonator- 

type instruments since there is no inherent sign, in the absence of a tunneling current 

signal, when the tip and sample come into contact 

In the resonator-type instruments, when the tip and sample come into contact, the 

resonator stops resonating. In transmission instruments however, if the tip were to make 

232 



Chapter 4 Near-Field Scanning Acoustic Microscopy and Instrumentation 

were not designed specifically for this project and therefore the dps and transducers were 

not aligned to each other across the entire wafer. For expediency, the substrates were each 

diced and individual tip dice were bonded to individual transducer dice. 

Pyrex 7740 glass 

silicon 

Figure 4.11 In the hybrid process, the tip is fabricated on a silicon wafer 
while the acoustic transducer is fabricated on a 7740 Pyrex glass substrate. 
To form the probe, the tip and transducer substrates are anodically bonded 
together. 

The bonding of the tip and transducer substrates was accomplished using a low 

temperature anodic bonding process [18]. To begin the process, the die with the tip is 

placed in a special jig that holds the die with the tip facing downward into a cavity. The 

Pyrex die with the transducer is placed on top of the tip die and aligned under a direct view 

optical aligner which has coaxial optical objectives to view both sides of the sample. The 

alignment is accomplished by hand using tweezers to adjust the position of the dice. 

Approximately 25 um accuracy in alignment is achievable using this technique. When the 
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Chapter 6 Transmission Mode NSAM Imaging 

Figure 6.5 The scan direction was rotated to yield this 3-dimensional 

transmission NSAM image of a 6.5 um period silicon grating with 940 A 

step height. The image was taken using a tetrahedral tip and an acoustic 

frequency of 135 MHz. 

The scan angle was rotated to produce the three-dimensionally rendered image ot 

the same grating shown in Figure 6.5 These images were taken using 135 MHz acoustic 
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Acoustic microscopy by atomic force microscopy 
U. Rabe and W. Arnold 
Fraunhofer Institute for Nondestructive Testing, Bldg. 37, University, D-66123 Saarbrücken, Germany 

(Received 11 August 1993; accepted for publication 21 December 1993) 

We have constructed an atomic force microscope enabling one to image the topography of a sample, 
and to monitor simultaneously ultrasonic surface vibrations in the MHz range. For detection of the 
distribution of the ultrasonic vibration amplitude, a part of the position-sensing light beam reflected 
from the cantilever is directed to an external knife-edge detector. Acoustic images taken on the 
surface of a wafer show a lateral resolution of about 100 nm at an ultrasonic frequency of 20 MHz. 

High-resolution acoustic imaging is a powerful tool for 
materials investigation.1,2 By using such techniques, elastic 
properties and defects in materials can be determined with a 
resolution given by the wavelength. Various optical schemes 
have been developed in order to detect the displacements of 
surface, longitudinal, and shear acoustic waves,3 either for 
local analysis or combined with a scanning technique such as 
scanning laser acoustic microscopy.4 But due to Abbe's prin- 
ciple a lateral resolution not better than about a wavelength 
is obtained in techniques where focused beams are used. This 
limit can only be surmounted by using near-field techniques. 
Recently, it has been successfully demonstrated that the high 
lateral resolution of near-field techniques can be exploited 
for the detection of acoustic waves by using a scanning tun- 
neling microscope (STM),5"9 and even images have been 
obtained,9,10 but up to now detection of ultrasound by atomic 
force microscopy (AFM) has not been reported. Vibrating 
the sample at frequencies below the resonance frequency of 
the cantilever is used for elasticity mapping with AFM," and 
is   a   standard   technique   in   noncontact   scanning   force 
microscopy.12 With the technique used in our experiment, 
however, vibrations at ultrasonic frequencies (5-20 MHz) 
are detected by an AFM well above the cantilever resonance 
frequency of several kHz. 

A sample to be examined is attached by a coupling me- 
dium onto a delay line of an ultrasonic transducer (20 MHz) 
which is fixed on top of the AFM scanner (Fig. 1). Longitu- 
dinal ultrasonic waves are generated which are reflected at 
the sample surface causing vertical displacements. The AFM 
(Nanoscope III, manufactured by Digital Instruments, Santa 
Barbara, CA) works in contact mode with a beam deflection 
position sensor. The cantilever is a standard Si3N4 microfab- 
ricated triangular cantilever with pyramidal tip of approxi- 
mately a 50-nm radius. We modified the instrument; by an 
optical beam splitter, half of the intensity of the light beam 
reflected from the cantilever is coupled to an external knife- 
edge detector using a fast photodetector (Si-pi« diode, rise 
time 1 ns), while the undeviated part is used for topography 
imaging. Knife-edge detection is well known for optical de- 
tection of surface acoustic waves.13 Other types of sensors 
which allow an absolute calibration of the cantilever vibra- 
tion amplitude, like interferometers or capacitive detectors 
could also be used. 

The A scan after 60-dB amplification (Fig. 2) shows first 
a small signal (1) due to direct electrical pick-up of the ex- 
citing spike (400 V, 15-ns rise time). The first ultrasonic 

signal (2) follows after a delay given by the delay line, the 
sample, and the tip of the cantilever. It is followed by a series 
of echoes caused by multiple reflections and mode conver- 
sion. Signal-to-noise ratio is 22 dB in a detection bandwidth 
of 27 MHz. To evaluate the amplitude of the first ultrasonic 
signal, it is fed into a boxcar integrator (Fig. 3) yielding a 
voltage proportional to the amplitude of the selected pulse. A 
gate from a pulse generator was used and was delayed such 
that it coincides in time and duration with this first ultrasonic 
signal [(2), Fig. 2]. The integrated signal is stored in the 
second input channel of the microscope electronics. It would 
also be possible to digitize the ultrasonic signal and display 
the peak value or any other suitable signal. 

The experimental procedure is as follows: in absence of 
tip-sample interaction, the laser diode beam is centered onto 
the cantilever. The position sensor and the knife-edge detec- 
tor are adjusted to their most sensitive working point. The 
sample is approached to the tip and the feedback loop is 
activated. Then an image is taken. The feedback loop main- 
tains a constant low interaction force during the scan, also 
keeping the working point of the external knife-edge detector 
constant. A special vibration isolation is not necessary be- 
cause mechanical vibrations are well below the 3-dB band- 
width of the knife-edge detector (1-28 MHz). 

Figure 4(a) shows an unfiltered image of the ultrasonic 

Segmented 
Photodiode 

Knife-edge 
Lens 

PD 

/ 
Photodiode Mirror 

Delay tine 

Transducer 

tips       -   '--ir^ 
^t«|Scanner^S 

FIG. 1. Modified AFM for detection of ultrasonic vibrations. By the beam 
splitter half of the intensity of the light beam reflected from the cantilever is 
directed via a mirror to an external knife-edge detector with a photodiode 
(PD) which is used for detection of the ultrasonic signal. 
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Time of flight   [us] 

FIG. 2. Signal obtained by the cantilever knife-edge detector. After a delay 
time an ultrasonic signal and various echoes are received. Signal-to-noise 
ratio is 22 dB. The first signal, received (2) was used for image buildup 
(indicated by the thin solid lines. Electrical pick-up signals from the trans- 
mitter are also present. (1). 

amplitude distribution obtained on a Si wafer. An offset of 9 
V calculated from the mean value of the raw data was sub- 
tracted. The gray scale is from 0 V (black, smallest ultrasonic 
amplitudes) to 0.3 V (white). The scan size is 100X100 fim\ 
the scan rate was 1 Hz and 512 points per line were sampled. 
The repetition frequency was adjusted to be at least 1/Ar, 
where At is the time interval between two image points, the 
horizontal lines are typical artefacts of AFM scans probably 
due to material transfer between tip and sample. All other 
features are reproducible. The corresponding topography im- 
age is shown in Fig. 4(b). The gray scale covers 1 fim of 
corrugation. As can be seem from an image taken with a 
smaller scan size (3X3 fim1, in Fig. 5) the smallest features 
which can be resolved are about 100 nm large, which is 
comparable to the tip diameter. We also took a 10X10-Aim2 

image on a freshly cleaved mica surface and the mean ultra- 
sonic amplitude was comparable to the one on the wafer. As 
the surface was absolutely flat and homogeneous, we ob- 
served no change in amplitude except noise and artifacts. 

High-frequency ultrasonic vibrations can be transmitted 

(b) 

FIG. 4. Images taken of a Si wafer. Signals used for imaging are (a) inte- 
grated ultrasonic amplitude, the gray scale covers 0.3 V, color of the largest 
amplitudes is white, (b) topography, gray scale covers 1 pun from dark (low) 
to light (high). 

into the soft cantilever because of tip-sample interaction 
forces. When the tip is in contact with the sample surface it 
is attracted by adhesion forces, and the repulsive forces also 

1 

Spik e Trigger ^VV^WY 
To 
transducer 

generator n 
|Trigg 

» 
cr f Oscilloscope 

Pulse 
generator 

i 
Box-car 

integrator 

To Nanoscope III 
analog input 
-»- display 

Lighi from Amplifi IT 

:::::::::.:::::d PD > . 

FIG. 3. Block diagram of the electronics. The signal from the photodiode is 
amplified by 60 dB and fed into a boxcar integrator. Its output signal is used 
for image buildup. The gale provided by a pulse generator is delayed such 
that it coincides with the first ultrasonic signal. 
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FIG. 5. Details of the wafer surface showing a lateral resolution of approxi- 
mately 100 nm obtained, the gray scale covers 0.2 V. 
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present result from the deformation of the tip and the sample 
surface. The tip with the cantilever can be regarded as a point 
mass m suspended between two fixed surfaces by a soft 
spring with the spring constant k of the cantilever, and a 
spring with spring constant k * given by the derivative of the 

. tip-sample interaction forces.12 In the AFM contact mode the 
tip-sample interaction force is slightly repulsive. The force 
derivative k* is negative and under ambient conditions larger 
than k (*=»0.1 N/m). Therefore, the resonance frequency WQ 

of the cantilever with the tip in contact with the surface is 
larger than the resonance frequency t^ of the free cantilever: 
bi2={k-k*)/m>cj2=k/m. The forces increase the effec- 
tive resonance frequency of the cantilever. 

Apart from the wafer and mica samples mentioned 
above, we also carried out measurements on thin glass 
samples. As all samples had a thickness of less than 1 mm, 
the ultrasonic attenuation can be neglected and, hence, the 
amplitude was approximately the same for all materials. 
Measurements of the absolute amplitude of the detected sig- 
nal would only be possible after a calibration of the knife- 
edge detector. However, in a separate experiment, the ampli- 
tude of the surface vibration was measured by interferometry 
and was approximately 5 hm on the wafer. As the scanned 
surface area was smaller than the ultrasonic wavelength 
(0.15-0.3 mm at 20 MHz), all parts of the surface region can 
be thought to move uniformly with the same phase and am- 
plitude. Therefore, the changes in the detected amplitude are 
caused by a change of the coupling between the surface and 
the tip of the AFM. These differences in coupling can be due 
to the geometry of the surface—all edges show a decrease of 
the ultrasonic amplitude—a change in elastic or chemical 
surface properties, or even layers of adsorbate which are not 
well bound to the surface, as well as differences in thickness 
of the adsorbed water layer. A rough estimation shows that 
the kinetic energy which the tip and the cantilever gain dur- 
ing the ultrasonic vibration, might be large enough so that 
the tip can jump out of the water layer. 

Common adhesion potentials14 indicate that a linear ap- 
proximation of the interaction force should not be sufficient 
for a vibration amplitude of several nm. Such large ampli- 
tudes should lead to nonlinearity in the signal. However, we 
could not detect such a behavior so far. This might be due to 
the additional adhesion caused by the adsorbed water film 
always present in usual laboratory air conditions, or by the 
large ultrasonic amplitudes employed in our measurement. 
Further investigations will be necessary in order to fully un- 

derstand the transmission of the ultrasonic signal to the can- 
tilever via the tip, and the image contrast obtained. It is of 
particular interest to clarify wether the features obtained in 
our images stem from local variations of elasticity, as it was 
observed in scanning microdeformation microscopy.15 

In summary, we should like to stress that the monitoring 
of the transmission of ultrasound is an attractive method for 
probing of tip-sample interaction forces because of the large 
signal/noise ratio obtained and in order to construct acoustic 
microscopes yielding a resolution beyond the diffraction 
limit.1617 

Note added in proof: Recently, we became aware of re- 
search work carried out by two groups discussing the ex- 
pected nonlinear transmission of ultrasound in an AFM.18" 

We should like to thank the Ministry of Science and 
Technology of the State of Saar, Saarbrücken, Germany, for 
support of this work by a grant. 
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ABSTRACT 

Various techniques for converting acoustic or vibration signals to electronic or optical signals 
(and vice versa) are treated in detail in many papers and books. Frequently, a superficial 
understanding of the conversion processes is all that is required; however, there is a depth to the 
physics of transduction that can only be appreciated by closer examination. While the physics of 
electromechanical signal conversion is rich enough, there are two roads less traveled but equally 
rewarding: sensor noise analysis and sensor calibration. 

Because the subject of sensor self-noise integrates concepts in mechanics, solid-state physics, 
quantum mechanics, and thermodynamics, the study of self-noise would be fascinating even if there 
were no direct application of the principles. For high-performance sensors, however, the 
achievable noise floor is a critical parameter and so an understanding of sensor self-noise is 
essential for design, construction, and application of such sensors. 

Equilibrium thermal noise is an inevitable consequence of the Second Law of Thermodynamics 
and, as such, is perhaps the most fundamental source of noise in any system. Equilibrium thermal 
noise is the noise produced by the normal thermal motion of the molecules that make up the sensor 
structure or the surrounding liquid or gas. It has a long history of both theoretical and experimental 
study and so it is remarkable that this mechanism is frequently ignored in the design and analysis of 
new sensor types. Presumably the reason for this omission is that there are many conventional 
sensors for which the limiting noise is some other mechanism and the familiarity with this other 
mechanism has led to the assumption that it is the only important mechanism. This belief does not 
cause problems until a significant technology shift is introduced and the relative importance of 
different noise mechanisms changes. 

A critical aspect of equilibrium thermal noise is that every resistance-like term contributes a 
fluctuating force in accordance with Nyquist's Theorem. This includes fluid damping, structural 
damping, acoustic radiation resistance, an acoustic or mechanical load having a real component in 
the impedance, or thermal radiation. Any path that permits energy transfer from the sensor to the 
environment, whether it involves ordered motion (e.g., radiation) or disordered motion (e.g., 
viscous damping), introduces a fluctuating force. 
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Sometimes this noise component is called Brownian noise; this can lead to the impression that its 
sole source is the collision of gas or liquid molecules with the moving element. Even if the element 
were operated in a vacuum, though, there would still be an equilibrium thermal noise associated 
with damping in the structure. Frequently, "thermal noise" is cited as a component of the ambient 
noise (particularly in descriptions of underwater ambient noise). This component is completely 
accounted by associating the proper fluctuation force with the radiation resistance of the transducer. 
Also, this component should not be assumed to contain all "thermal noise" fluctuations; it only 
accounts for those fluctuations associated with the radiation path. 

Equilibrium-thermal noise is not only observed in miniature sensors. It can be important in any 
system designed for ultimate detection performance. At one extreme is the Laser Interferometric 
Gravitational-Wave Observatory (LIGO), with masses expected to be 10 000 kilograms on 
suspensions with Q's from 10 to 10 . Because of the extremely small signals anticipated, 
molecular agitation of those large masses is still a significant source of noise. At the other extreme, 
the 50 picogram "proof mass" in the geotactic protozoan Loxodes is just large enough to permit 
distinguishing of up from down in the background of equilibrium noise. 

Because equilibrium thermal noise is a consequence of classical thermodynamics, its calculation 
does not depend on any particular model of the physical process. The noise that results from 
molecular bombardment of a suspended mass in thermal equilibrium with a fluid can be described 
with complete accuracy by continuum models from fluid dynamics (in terms of the mechanical 
damping resulting from viscosity in the fluid, or in terms of the continuum radiation resistance into 
the surrounding fluid, for example). There is no need to accurately describe the microscopic 
behavior of the fluid. In contrast, shot noise is critically dependent on two specific aspects of a 
particular physical model. First, the carriers (molecules, electrons, photons) must be discrete 
objects and, second, these discrete objects must act independently: the action of any one carrier 
must not depend on the presence or absence of any other carrier. Low levels of electron emission 
from the cathode of a vacuum tube, low levels of current flow across a reverse-biased semiconduc- 
tor junction, current flows in nondegenerate semiconductors, photoelectric excitation of 
photodiodes, and tunneling of electrons represent instances in which the carriers can be considered 
to be acting independently. Molecular impacts at normal gas pressures (because of the very small 
mean free path) and electron flow in metals (because of the interdependence forced by the 
exclusion principle) are situations in which there is a very high degree of dependence between 
carriers; applying simple shot-noise analyses to these phenomena leads to substantial 
overestimation of the noise. 

Shot noise can be an equilibrium phenomenon or a nonequilibrium phenomenon. In equilibrium 
shot noise, the calculated noise will be identical to that obtained by an equilibrium thermal noise 
analysis. For example, a piece of semiconductor with no applied voltage (hence, no measurable 
average current) exhibits a noise voltage that can be calculated in two ways: (1) by considering the 
Johnson noise associated with the semiconductor's resistance, or (2) by considering two equal (on 
average) but oppositely directed random currents related to the independent (thermally excited) 
motion of the carriers and then calculating the root-mean-square value of the voltage produced by 
these two noise currents. Often, there is no observable average current that can be associated with 
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equilibrium shot noise. (An important exception to this is the case of pressure fluctuations in the 
free-molecular regime; here, the noise is directly related to the observable pressure.) In the 
equilibrium case, the equilibrium-thermal analysis is fundamental; equilibrium shot noise is a 
special case and must, in any event, lead to the same answer, not to an additional component. 

For current in a semiconductor, application of an external voltage forces the system away from 
equilibrium, and the forward current (applied plus random) dominates over the reverse current 
(random). The current noise expression rapidly approaches the standard shot-noise expression in 
terms of the measurable current for applied voltages greater than kBT/q (about 25 mV at room 
temperature). This is a classic example of nonequilibrium shot noise. 

Since the voltage (25 mV) beyond which shot noise would dominate over Johnson noise is 
relatively small, serious errors can be introduced by ascribing a shot-noise component to a material 
with an inherently high degree of dependence in the carrier flows. Devices such as inductors, 
capacitors, resistors (carbon, carbon-film, metal-film, wirewound), and degenerate (very highly 
doped) semiconductors have well-populated conduction bands. Since no two electrons can occupy 
the same spin-state (the exclusion principle) and most electrons in a well-populated band will be 
surrounded by occupied states, only those few electrons near the band edge are capable of moving 
to vacant states. Therefore, only a very small fraction of the conduction electrons exhibit 
fluctuations. The resultant noise can be much lower than that predicted by the usual shot-noise 
expression. 

Currents associated with potential jumps (currents through PN junctions, gate leakage currents in 
FETs, tunneling currents) or currents composed of carriers that are thermally excited out of their 
"rest" bands into sparsely populated conduction bands (currents in intrinsic or normally doped 
semiconductors) will exhibit full shot noise. In these cases, there are plenty of unoccupied states 
near the occupied ones and the carriers can act independently even if they are electrons obeying the 
exclusion principle. 

If a system is in thermal equilibrium, then its noise is completely and accurately described by 
equilibrium thermal noise (mechanical, electrical, or otherwise). Once a system is forced away 
from equilibrium, the noise frequently increases over the equilibrium value. In addition to non- 
equilibrium shot noise, another common form of this excess noise is 1/f noise, so called because its 
power spectrum goes roughly as f' (where f is frequency). There is no satisfactory unifying theory 
for 1/f noise as there is for equilibrium thermal noise or shot noise. Besides the spectral 
dependence, one frequently observed characteristic of 1/f noise is that the power spectrum ofthat 
noise is proportional to the applied power. While processes are observed in which a 1/f behavior is 
observed to extremely low frequency, if the noise power spectrum were 1/f all the way to zero 
frequency, the total noise power would be infinite. Consequently, a universal model for 1/f noise 
must not only account for the 1/f spectral shape, it must also predict a very-low-frequency rolloff. 
Unfortunately, since the power is concentrated at the low frequencies, small errors in the location 
and nature of the rolloff can lead to large errors in the predicted magnitude of the noise. In 
addition, the rolloff itself is poorly understood because of the difficulty of making measurements at 
extremely low frequencies. 
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As interesting as it is, noise is not the whole story: in general, the sensor's response to signal must 
be determined as well. Most transducer calibrations are done by comparison with a reference 
transducer having a known response but it is particularly useful to understand some more direct 
methods of calibration. (For example, how are the reference transducers calibrated?) Crude 
calibrations can sometimes be performed by using the equilibrium thermal noise of a sensor (since 
that is related absolutely to temperature) but rarely to better than 10 percent accuracy and then only 
when the relevant part of the noise spectrum is dominated by equilibrium thermal noise. 

Reciprocity is an especially powerful technique for determining the response of a transducer. 
While often considered to be arcane, reciprocity is actually a relatively straightforward method by 
which difficult-to-measure quantities such as forces or velocities can be translated into easier-to- 
measure quantities such as masses or voltage ratios. Another way of considering reciprocity 
calibration is to view the transducer as a two-port device, one port of which is an electrical input or 
output, the other port of which is a mechanical input or output. Reciprocity provides the framework 
for sets of measurements using several transducers in such a way that only quantities at the 
electrical ports of the transducers need be made. 

Although many arrangements of transducers can be contrived for reciprocity calibration, the 
classic arrangement consists of three transducers: a source, a receiver, and a transducer that is 
reciprocal (and is used as both source and receiver). Three sets of measurements of drive current 
and received voltage are made: source to receiver, source to reciprocal transducer, and reciprocal 
transducer to receiver. This gives the necessary data to set up three equations in the four unknowns 
(the receiving responses of the receiver and the reciprocal transducer, and the transmitting 
responses of the source and the reciprocal transducer). The fourth equation is obtained by applying 
reciprocity to find a relationship between the transmitting and receiving responses of the reciprocal 
transducer (normally in terms of the transfer impedance of the medium to which the transducers are 
attached or in which the transducers are immersed). 

KEY TO THE INCLUDED REFERENCES 

Usher, Buckner, and Burch, "A miniature wideband horizontal-component feedback seismometer," 
J. Phys. E: Sei. Instrum. 10,1253,1977. The Introduction is the important section from the 
point of view of fundamentals. But, if you have the time, read the entire paper. This is an 
excellent example of a well-designed sensor; several of the highest performance miniature 
accelerometers available today are based closely on this design. 

Rudnick, "Unconventional reciprocity calibration of transducers," J. Acoust. Soc. Am. 63, 1923, 
1978. Don't be misled by the title. This is an excellent introduction to the application of 
reciprocity to the calibration of transducers. 

Uhlenbeck and Goudsmit, "A problem in Brownian motion," Phys. Rev. 34, 145, 1929. Don't get 
bogged down in the math. Read the text and find the thought processes and the 
conclusions. Footnote number 5 is very important. Take note of the importance of 
independence in applying the methods they use. 
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Abstract   A miniature, wideband, horizontal-component 
fe 'dback seismometer has been developed and compared 
w!.h conventional seismometers. The instrument employs 
an inverted pendulum of mass 004 kg supported with a 
natural period of 0-6 s and a Q factor of about 20. 
Displacements of the mass are sensed by a differential 
capacitive transducer and feedback is applied via an 
electromagnetic system to maintain the mass stationary 
with respect to its supports. The instrument has a response 
defined by feedback from DC to 100 Hz and has a Brownian 
noise level of 5 x 10"10 m s~2. Overall dimensions, including 
ar> evacuated jacket, are 15 cm x 10 cm diameter making it 
s. table for borehole applications. The instrument has been 
operated for several weeks with conventional long-period 
seismometers and has been found to compare satisfactorily. 

1   Introduction 
The spectrum of earth motion of interest in seismology covers 
the range from about 001 to 10 Hz. A large peak known as 
microseismic noise occurs at about 0-15 Hz. It is due to effects 
c". the earth's surface and seismometers have conventionally 
been designed to avoid it, short-period instruments operating 
over the range I—10 Hz and long-period instruments from 
01 to 001 Hz. 

Seismometers measure the relative displacement xr between 
a suitably supported mass and the instrument frame (assumed 
to follow the required ground motion). The equation of motion 
of the mass M when excited by a sinusoidal ground accelera- 
tion Jci is 

.*r = iri (1) 
R  . 

where R represents the viscous damping resistance and C is the 
compliance of the supporting spring. The natural angular 
frequency is woi=ll\fC. It can be seen that for excitation 
frequencies w < a»o the device behaves as an accelerometer with 
*>=xiloio-, whereas for high excitation frequencies it becomes 
a displacement meter with xr=Jfi. Conventional seismometers 

have employed suspensions with natural periods of the order 
of 1-3 s for short-period instruments, and of the order of 10- 
30 s for long-period instruments in order to obtain the 
maximum response from the mechanical system. Various 
types of 'standard responses' have been adopted, often based 
on existing instruments, obtained by feeding the output to a 
suitable filter or by adjusting the period and damping of the 
instrument. 

The fundamental limit to the detection of ground motion by 
a seismometer is set by the Brownian motion of the mass. It 
can be shown (Usher 1973) that the noise-equivalent accelera- 
tion (Jci)ne for a bandwidth A/ is given by 

(*), 2 _ ARkTkf  4kTw0 

M2 M  Q (2) 

where kT is the equipartition energy and Q the quality factor 
of the suspension. A small mass may be used provided that the 
damping is low, though seismometers have conventionally 
employed large masses of several kilograms, usually nearly 
critically damped. A mass of 0-01 kg with a natural period of 
1 s and a Q of 100 has (Jri)ne£ 3 x 10"10 m s~2 in a bandwidth 
of 1 Hz at room temperature, which is of the order required in 
practice (see later). 

The application of negative force-feedback to a seismo- 
meter produces a number of advantages and is in fact neces- 
sary when a small mass is suspended with a high Q. in order 
to achieve a satisfactory transient response. Feedback may 
affect any of the three terms of the left-hand side of equation 
(1). The most useful form is negative displacement feedback, 
which tends to keep the mass fixed in position with respect to 
its supports and affects only the term in .vr, making the sus- 
pension appear more stiff and increasing the natural frequency. 
A general block diagram of such a seismometer system is 

Transducer 
.                                  -              .                   amplifier Acceleration                Seismometer               ani^ ps0 

M* A    "'   , 1 A 

y s '2lükS'uij *    \) 
r 

Feedback network 

Figure 1   A force-feedback seismometer. 

shown in figure 1, in which the transfer function of the seismo- 
meter itself is represented as 

.Vr 1 
s2 + 2£wos + w<r 

where S=JOJ is the Laplace operator and f is the damping 
ratio. The closed-loop transfer function is 

»o 

*!   si + 2$wos+(woz+Aß) 

where vo is the output voltage, A is the gain in the forward 
path and ß is the transfer function of the feedback path, and 
becomes equal to 1//S when Aß is the dominant term. 

If it is assumed that Aß is independent of frequency, the DC 
loop gain L is (l/<uo:Mj3 and the natural frequency is increased 
by a factor Ll/i, the damping being reduced by the same 
factor. The response is essentially flat (to acceleration) from 
DC to the new natural frequency and the transient response 
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can be controlled by a compensation network in the feedback 
path. 

A small mass of, say, 001 kg, suspended with a Q of 100 
and employed in a feedback system of suitable loop gain (say 
100), can thus provide a fiat response and adequate detectivity 
over the whole range of interest in seismology. In addition, 
advantages over conventional open-loop instruments are 
obtained in linearity, dynamic range and calibration. 

Mechanical design requirements are eased and the desired 
wideband response is simply determined by the feedback 
parameters. The signal-to-noise ratio is unaffected by feed- 
back. The response is controlled by applying forces to the 
mass; this does not affect its Brownian motion, whereas adding 
damping to control the response in an open-loop system 
increases the dissipation and therefore increases the Brownian 
motion. 

2   Review of developments in seismometry 
The earliest seismometers employed very large masses, some- * 
times of several tonnes, in order to achieve a sufficient momen- 
tum of the mass to drive the recording equipment. Conven- 
tional seismometers typically have masses of 10 kg with 
periods of 10-30 s (Geotech S12 long-period seismometer) or 
1 kg with periods of 1-3 s (Willmore Mk HI short-period 
seismometer), and employ an electrodynamic transducer for 
sensing the position of the mass with near-critical damping. 

A few miniature instruments have been developed, notably 
by Block and Moore (1970), Block and Dratler (1972) and by 
Jones (1967). Jones* instrument was a pendulum tiltmeter 
employing a mass of about 002 kg and a differential capaci- 
tance displacement transducer. It was operated open-loop 
with a natural period of about 0-3 s and had relatively high 
damping; while successful for recording very long-period 
(e.g. tidal) motions it was not designed for the range of interest 
in seismology and had a theoretical Brownian noise of about 
5x10-" m s_:. The instruments developed by Block et al were 
miniature wideband seismometers in which a mass of 001- 
0-02 kg was supported by a quartz fibre in torsion with a 
natural period of about 1 s. A differential capacitance dis- 
placement transducer was used to sense the mass displacement. 
Although an electrostatic feedback system was proposed the 
instrument was operated open-loop with a fairly high Q (about 
20) so that the transient response was not satisfactory and the 
instrument was not suitable for measurements at short periods 
without special filtering. The temperature coefficient for 
torsion of the quartz suspension resulted in a very high 
temperature stability requirement and the instrument was 
enclosed in two evacuated containers, its overall size being 
similar to that of conventional instruments. 

A number of seismometers employing feedback have been 
described in the literature. Tucker (1958) applied force- 
feedback to a pendulum seismometer, whose natural period 
was about 1 s, by means of an inductive displacement trans- 
ducer and electromagnetic force transducer. The loop gain 
used was only about 3 so that the response was not completely 
determined by feedback; the instrument was intended for the 
study of microseisms. Instruments described by de Bremaeker 
et a/(1962) and by Sutton and Latham (1964) employed feed- 
back at very long periods, but not in the seismic range. Block 
and Moore (1966) applied feedback to a conventional La 
Coste-Romberg instrument via a capacitive displacement 
transducer and electrostatic force transducer, but the forces 
available with this transducer are very small and the response 
in the range of interest was not controlled by feedback. As 
mentioned above, Dratler (1971) describes an electrostatic 
feedback system for a miniature seismometer, but the system 
was apparently not used in practice. Systems have been 

described by Willmore (1959), Russell et fl/(1968) and Kolez- 
nokov et al (1975, private communication) in which short- 
period Willmore seismometers have been modified by force- 
feedback, using the existing electrodynamic transducer for 
sensing the mass motion. In these instruments feedback 
modifies the response and produces advantages in linearity 
and calibration, but the detectivity is the same as for an open- 
loop, short-period instrument. Melton (1976) has discussed 
force-feedback seismometers but the instruments descriiii 
employ relatively large masses (about 0-4 kg). 

It can thus be seen that a miniature wideband feedback 
instrument has not previously been developed. The miniature 
open-loop instruments described above either are long-period 
devices with inadequate detectivity in the seismic range or have 
large overall size. The feedback instruments described in the 
literature mostly have low loop gain in the range of interest 
or are not miniature devices. We have been unable to find a 
reference reporting the use of substantial feedback over the 
seismic range accurately defining the instrument response ?-/. 
controlling the transient behaviour, with its attenc-u 
advantages of linearity, dynamic range and calibration. 

3 Design philosophy of miniature wideband seismometers 
The signal levels required to be detected can be deduced from 
the spectrum of background seismic noise. This has been 
investigated by many workers, notably Brune and Oliver 
(1959), Fix (1972) and Savino et al (1972). Figure 2 is based on 
the work of Fix, and shows acceleration power densities at a 
very quiet site (Queen Creek). The minimum observfd 
acceleration power occurs at a period of 30-50 s and hi; a 
value of IO-^OTIS-^HZ-

1
. 

To detect a signal of this magnitude, the instrumental noise, 
determined by Brownian motion of the mass and transducer/ 
amplifier noise, must be sufficiently small. The Brownian 
motion of the mass sets the fundamental limit to detection of 
signals, and the required mass/damping can be deduced from 
equation (2). A mass of 0-04 kg with a Q factor of 50 has a 
Brownian noise-equivalent acceleration very close to this 
value, and is shown as a horizontal line in figure 2 together 
with the Brownian noise levels for other combinations of rr.iss 
and damping. 

The transducer/amplifier noise should be designed to be less 
than the Brownian noise, in order not to degrade the detection 
limit. A suitable transducer is the differential capacitive type, 
which is essentially noiseless. The electronic noise is largely 
determined by the following amplifier and can be represented 
by a series noise-equivalent generator /?nv. The noise-equiva- 
lent acceleration can be shown to be 

(.Y|)ne = 
(s2 + 2£wos+u>cr) (4 ÄnvATA/)1'2 (3) 

(4 ÄnvA-rA/)1« for w< cuo 

where r is the responsivity of the transducer. The natural 
period 7"o ( = 2n7too) and responsivity r must be chosen such 
that (JrO^^lO-'Sfms-^Hz-1 with the practical value of 
An». 

After the required minimum signal level has been chosen and 
the Brownian noise has been made of the same order as, and 
the electronic noise made less than this level, it is only neces- 
sary to make the noise from other sources (such as the phase- 
sensitive defector (PSD), filters, etc) negligible. This can be 
done by ensuring that there is sufficient gain prior to each 
element. 

Finally, to achieve the desired wideband response of defined 
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Fifjre 2   Spectrum of earth noise (after Fix). Acceleration 
power densities for Queen Creek (USA) and Wolverton 
(UK) are compared with the noise-equivalent accelerations 
of a standard seismometer (curves A and B) and with the 
Brownian and electronic noise levels of a miniature 

100 1000 

instrument (curves C and D). A, 10 kg mass with standard 
amplifier; B, 10 kg mass with special amplifier; C, Brownian 
noise of feedback seismometer; D, electronic noise of 
feedback seismometer. 

magnitude and controlled damping, negative force-feedback is 
applied to maintain the mass position fixed with respect to the 
instrument frame. 

4   Description of the instrument 
4.1 Mechanical system 
The-basic-requirements of the suspension system of the instru- 
ment are that the pendulum be constrained to move with a 
single degree of freedom and with a suitable fundamental 
period and Q factor. All other modes must be far removed 
from the frequencies of interest, and above the feedback loop 
cut-off frequency, and the long-term stability must be satis- 
factory. 

I: can be seen from equation (3) that the natural period 7"o 
must be large enough to make the amplifier noise negligible. 
A natural period of about 1 s was achieved by using an inverted 
pendulum supported by simple spring strips. These produce a 
smaller restoring torque than cross-spring pivots and can 
easily be made from a material of low temperature coefficient 
such as Ni-span D. Our earlier investigations of period- 
lengthening devices showed that these become very critical 
when used with small masses, and the arrangement used is 
much more compact and robust. 

The transducer must have high responsivity and low noise, 
combined with adequate long-term stability. A differentia1! 
capacitance transducer is excellent in these respects (Jones and 
Richards 1973), providing a higher responsivity than other 
available transducers such as linear variable differential trans- 
formers (LVDTs), and a high detectivity. The AC operation of 
such a transducer avoids the 1// noise region, which is a 
major problem in the design of (DC) amplifiers for con- 
ventional seismometers. 

The basic instrument is shown in figures 3 and 4, with the 
heater cylinder and outer jacket removed. The pendulum has 
a mass of about 004 kg and is supported by two spring strips 
(of Ni-span D) clamped at both ends. The main frame is 
machined from a single piece of brass and supports the outer 
plates of the differential capacitor, insulated from it by quartz 
spacers. The pendulum itself is the central plate of the differ- 
ential capacitor, insulated by quartz spacers, the signal to the 

Attachment points 
tor outer capacitor 
plates 

Feedback  magnet assembly 

Frame ( brassl 

Ni-span pivot 

Fused-quartz^^ 
spacers \ 

Spring  clamps 

Ni-span pivot 

>Fused -quartz 
spacers 

Oven base (brass) 

Figure 3   Diagram of seismometer with heater and cover 
removed. 

preamplifier being taken via the tag shown. The components 
in the main frame assembly are kinematically mounted, per- 
mitting easy dismantling and assembly and improving stability. 
A high-stability magnet is attached to the centre of the 
pendulum bob, the coils of the force-feedback transducer 
being attached to the outer plates of the capacitor; this 
arrangement was found to be necessary to avoid, a high- 
frequency instability in the closed-loop response when the 
feedback force did not coincide with the centre of mass. The 
thermal enclosure fits over the main-frame unit, with heater 
windings on the outside, and supports two electronic boxes 
containing the preamplifier/excitation and thermal control 
electronics, as shown in figure 5. The outer jacket fits over an 
O-ring seal and can be evacuated via a tap. It is attached to an 
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Figure 4   Photograph of seismometer with heater and 
cover removed. 

Figure 6    Photograph of complete instrument and 
electronics. 

Figure 5   Photograph of seismometer showing heater and 
internal electronics. 

Invar base plate which contains a precision differential 
levelling arrangement and the socket for the electronics cable. 
The complete instrument and the associated electronics are 
shown in figure 6. 

4.2 Electronic system 
The essential requirement of the servo-system is that tne 
response of the instrument be independent of the suspen- 
sion and be defined only by the passive feedback elements over 
the whole range of operation from DC to 10 Hz. The loop gain 
shouid be about 100 over this range, and the response should 
preferably be flat to input acceleration or velocity and the 
damping near critical. 

A block diagram of the complete system is shown in figure 
7. The input ground acceleration j!fi produces a relative dis- 
placement AY (between the mass and the frame) which is 
convened to a voltage i> at the excitation frequency by :ne 
transducer and preamplifier and further amplified by the 
channel amplifier. This signal is demodulated by the PSD, and 
the feedback network drives the feedback coils to return the 
mass towards its original position. 

The method outlined above (§1) can be implemented 
directly, but it is advantageous to introduce an integration into 
the loop to provide high gain at low frequencies. Mass dis- 
placements due to large tidal forces or thermal drift are thus 
reduced and the linearity of the transducer is improved. In 
addition, the design requirements of the PSD are eased, the 
necessary dynamic range is reduced and a greater 1//" noise 
level can be tolerated. If the time constant of the integration 
is made fairly large (e.g. 1 s) the behaviour of the system can 
be very similar to that of the simple proportional system, with 
a closed-loop resonance frequency of, say, 10 Hz. However, 
some difficulties were encountered with system stability in 
such an arrangement, due to poor recovery from overload and 
to stray mechanical resonances at high frequencies, and a 
modified arrangement was used in practice. The integration 
time constant was made 0-15 s producing a break in the res- 
ponse at 0-35 Hz; the response was then flat to acceleration 
at frequencies below 0-35 Hz and flat to velocity above this 
frequency. It is still defined by feedback, of course, and has the 
additional advantages that high-frequency ground motion 
does not produce an excessive output and that filtering to 
obtain the velocity response normally required is easier in 
some cases. 
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Figure 7   Block diagram of complete system. The input 
acceleration produces a relative displacement between 
sensing mass and instrument frame, which is detected by a 

displacement transducer, amplified and rectified, and fed 
back to maintain the mass stationary with respect to the 
frame. 

42.1 Capacit'we transducer and preamplifier The responsivity 
of a linear electrical displacement transducer is always of the 
form excitation voltage/range, and it is because the range can 
be made small that a high value of responsivity can be 
obtained. A responsivity of 104Vm-1 was obtained by 
applying 3 V RMS to the outer plates with a plate separation of 
0-3 mm. A smaller separation leads to difficulty in levelling 
anc. increases the electrostatic forces on the mass, which must 
be kept small and constant. With the values used the electro- 
static force has a value of 2 x 10-8 N when the centre plate is 
displaced by 10 |xm (which just overloads the PSD on open 
loop). 

The transformer arms and differential capacitor form a 
Blumlein bridge, of which the equivalent circuit is shown in 
figure 8. The series capacitance   Cx 20 pF and the stray 

I—WW—ov, 

Qiujuq); 

Figure 8   The Blumlein bridge and its equivalent circuit. 

capacitance Cix 10 pF. It can be seen that stray capacitances 
do not affect the balance point of the bridge. The resistor Ri 
is mainly determined by the biasing resistors in the pre- 
amplifier, and has a value of about 10 Mfl. 

The charge amplifier configuration has the advantages that 
the signal level is not affected by changes in stray capacitance 
and that the output is independent of frequency over a wide 
fange. The effective series noise-equivalent resistance referred 

to the signal source can be shown to be 

An —Anv [*+ (    C   j + u>CRi \ + o,*C2 \Änl
+Äij 

where Anv and Rai are the noise-equivalent resistances of the 
input device, which was a low-noise FET. Using the values 
given above and assuming that RmxS0OCl, RmXlOMCl, 
we find that the optimum noise performance occurs at a 
frequency of 100 kHz. The noise referred to the input is 5 nV 
RMS in a bandwidth of 1 Hz, corresponding to Än=l-5 kQ. 
This low value was possible because of the low value of C\, 
due to the quartz spacers, and the high values of Ri and Rni. 
The value was confirmed experimentally. The voltage gain was 
70. 

The preamplifier was mounted close to the transducer to 
reduce cable capacitance. The channel amplifier A2 is of 
conventional design, and was placed in the main electronics 
block, remote from the seismometer, together with the PSD 

feedback electronics, excitation oscillator and thermal control 
power amplifier. 

4.2.2 Drive oscillators The stability of the excitation oscil- 
lator is important because of the very small displacements and 
forces involved. The least detectable acceleration of 3 x 10-10 

ms-2 is equivalent to a force on the mass of about 10-uN,and 
a high amplitude stability is therefore required to maintain the 
electrostatic forces sensibly constant. A Wien bridge oscillator 
was employed, in which the amplitude was controlled by a 
light-dependent resistor in the loop, the light level being 
derived by comparing the rectified output with a high-stability 
voltage reference. The amplitude stability was about 10 /iV 
RMS over periods of up to 1 min and was found to be satis- 
factory. 

4.2.3 Phase-sensitive detector The large dynamic range and 
low frequency of seismic signals make considerable demands 
on the properties of the PSD in terms of linearity, rejection of 
unwanted signals and noise level. The design employed was a 
complementary current-switching type similar to those 
developed by Faulkner and Grimbleby (1967), Danby (1968) 
and Grimbleby and Harding (1971). In order to achieve the 
necessary dynamic range and a good temperature coefficient 
the circuit employs a current mirror to produce a single-ended 
output (Buckner 1975). The output temperature coefficient 
was 0001 % (equivalent to 1 ppm'C"1) and the noise about 
10/tV RMS in a frequency band from 001 to 1 Hz. 
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4.2.4 Proportional plus integral control unit (PI) The PI unit 
comprises a high-quality operational amplifier providing an 
integration at frequencies up to 0-35 Hz and with a high- 
frequency gain of unity. Its noise and drift characteristics are 
important, since the wideband output voltage is taken directly 
from it, but are eased by the prior gain. 

4.2.5 Feedback compensator and feedback coils The compen- 
sator is a passive, phase-lead circuit providing velocity- 
dependent feedback to stabilise the response. At medium 
frequencies the response is determined by a series resistor Rt 
in parallel with a capacitor Ct. 

The feedback actuator comprises a high-stability magnet 
attached to the mass and small coils wound on formers at- 
tached to the centre of the outer capacitor plates. The 
acceleration coefficient was determined by applying a known 
tilt via a calibrated tilt table and measuring the current 
needed to reduce the output to zero (on open loop). The value 
of 1-41 m s~2 A-1 was constant over the full ± 10 V range of 
the output and no departure from linearity could be measured. 
Since mass movement on closed loop is negligible, linearity is 
required only between force and current. The maximum 
acceleration produced before overload at 10 V with Rt= 
15 kQ is approximately 10~3 m s-2. 

The stability of the magnet was very satisfactory, and no 
significant drift attributable to this was detected in six months' 
continuous operation of the instrument. The evacuated jacket 
used for environmental control was of mild steel and provided 
very effective magnetic shielding. 

4.2.6 Environmental control The basic pendulum is enclosed 
in a temperature-controlled oven, which also encloses the 
preamplifier, transducer excitation transformer and tempera- 
ture-sensing circuit; the whole assembly is enclosed in an 
evacuated case at a pressure of about 10 Pa. Evacuation was 
necessary to eliminate atmospheric and other similar effects, 
and to achieve a suitably high Q factor for the suspension. 

Although the instrument was designed to be mechanically 
as symmetrical as possible to reduce the effects of thermal 
gradients, its measured temperature coefficient was 10~6g°C~l. 
A stability of 10~4 °C would be required to achieve a DC 
resolution of 10"10 g (the requirement in Block and Dratler's 
instrument (1972) was a stability of 10"6 *Q. The thermal 
control system employs a type YSI 4001 thermistor in an AC 
bridge operated at 1 kHz, and a PSD similar to that described 
above feeds a modulator and AC power amplifier. The heater 
coil consists of bifilar-wound copper wire on a groove in the 
outside of the brass heater cylinder; AC power was necessary 
to avoid magnetic effects. The parameters of the control system 
were adjusted experimentally to give a satisfactory response 
to a step rise in temperature. 

4.2.7 Output filters The wideband output from the instrument 
is proportional to ground acceleration from DC to 0-35 Hz and 
proportional to ground velocity from 0-35 to 100 Hz. Outputs 
from seismometers are usually required in the form of various 
agreed 'standard responses' and the wideband output was 
therefore fed to a filter unit outside the loop to achieve what- 
ever overall response was required. The system design ensured 
that noise and drift due to the filters were negligible. 

5   System response, calibration and noise level 
With reference to figure 7, the acceleration xT produced by the 
feedback coil on open loop in response to an input accelera- 
tion xt is given by 

K(l+sTh(.l+sTt) XT 

M   sV+sTi+striiW+sTsHl+sTt) 
where 

K= 
wtrTsRt 7i =—. 

u>o 
r2

2=—; 

r, Ai, Ai and As are the gains of the transducer, preamplifier, 
channel amplifier and PSD respectively, wo2 is the natural 
angular frequency on open loop, ß is the feedback force 
constant and Rt the series feedback resistor. 7i and Tz are 
time constants associated with the suspension, 7s is the 
integration time constant, 7~6 and 74 refer to the phase-lead 
circuit and 7b refers to the PSD. Time constants associated with 
the transducer, amplifier and feedback coil are less than 1 ms 
and are omitted, ß is independent of frequency over the 
seismic range. 

The open-loop and closed-loop responses are shown in 
figure 9, with /4i = 70, A2 = S, A3=5, r=104 Vr1, 0=l-4m 
s-2A-', to0=10rads-1, Är=15kü, Ct=30^F, 7"i=0025s, 
7"2=0-l s, r3 = 0001 s, 74 = 0-001 s, 7"5=0-15s, 7"6=0-45s. 

The open-loop gain has a value of over 40 dB over most of 
the range of interest (DC to 10 Hz) so that the response is 
accurately defined by feedback. The closed-loop response is 
flat to acceleration (of value J?r//?= 104V(ms-2)-1) from DC to 
0-35 Hz, and is flat to velocity (of value l/j3C6 = 2-4x JO5 

V(m s"1)-1) from 0-35 Hz to the unity open-loop-gain frecu:r:y 
of 100 Hz. 

The dynamic response of the instrument was measured by 
applying square or sinusoidal waveforms to one of the feed- 
back coils, equivalent to an input acceleration, and the curve 
obtained agreed very closely with that of figure 9. The step 
response had a rise time of 0-1 s and an overshoot of about 
20%, corresponding to f=0-7. The DC responsivity was 
measured using a calibrated tilt-table and agreed with the 
value above. 

The theoretical noise-equivalent acceleration can be dec'"j::d 
from equations (2) and (3). For a mass of 004 kg and a Q 
factor of 50, equation (2) gives (xi)atx3 x 10"10 ms"2 Hz'1 

dB 
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40' 

20! 

Oi 

-20; 
0 01 

Closed-loop acceleration   respcrsivity (reference lVlms"!l" I 

0-1 1 
Frequency   (h;! 

■■o 100 

Figure 9   Open- and closed-loop responses of the 
feedback seismometer. The open-loop gain is greater 
than 40 dB over most of the seismic range (001 to 
10 Hz). The closed-loop response is flat to acceleration 
from DC to 0-35 Hz (responsivity ICH V (m s"2)-1) and 
flat to velocity from 0-35 to 100 Hz (responsivity 
2-4xl05V(ms-1)-1). 
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for the Brownian contribution. The transducer/amplifier con- 
tribution with An = 1-5 kÜ and a natural period of 0-6 s gives 
(Ä)n« = 5xlO-I1nis-2Hz-1 for <u<cu0, which can be 
ignored. The other electronic sources of noise (PSD, filters, etc) 
have sufficient prior gain to make their contributions neglig- 
ible. The theoretical noise-equivalent acceleration of the 
instrument is plotted in figure 2 (lines C and D). 

The dynamic range of a wideband seismometer is particu- 
larly important, since seismic signals have a very large dynamic 
n.nge. According to figure 2, the peak microseismic noise 
occurs at a period of about 8 s and has an acceleration ampli- 
tude of about 3 x 10-" m s~*. This is an average value (Wolver- 
ton in summer) and short-term values may be an order of 
magnitude greater. The 12 h tidal component has a similar 
value. The minimum earth noise (and the designed detection 
limit of the instrument) has an acceleration amplitude of 
3 x 10"10 m s"2. A range of about 80 dB is therefore required, 
excluding any additional range to accommodate excessive 
microseismic activity or seismic events. The maximum feed- 
back acceleration is 10"3 ms~2, and the effective dynamic 
range of the instrument is therefore about 130 dB, allowing 
about 50 dB for events. In practice, however, the recording 
systems employed have a range of only 60-80 dB. so that 
several systems of different gain, bandwidth, etc, would be 
required to record the output of the instrument satisfactorily. 

6   Testing and operation 
The instrument has been operated over a period of several 
months in the AWRE vault at Wolverton, and compared with 
a Geotech S12 horizontal-component long-period seismo- 
rr.-ter. This instrument has a mass of 10 kg suspended with 
near-critical damping with a natural period of about 20 s; it 
employs an electrodynamic transducer and low-noise ampli- 
fier (type 610) and has overall dimensions of 70 cm x 30 cm x 
30 cm. 

The temperature variations in the vault are about 3 :C per 
day but it was found unnecessary to use the thermal control 
system. This was switched off while investigating the source 
of a lack of coherence at long periods, and was not used 
a-iin although the source was located elsewhere. The feedback 
ir.. irument did not show an appreciable long-term drift and 
the results suggest that a period of six months without adjust- 
ment is feasible. The drifts observed were, however, about an 
order of magnitude greater than the earth tides, which we did 
not attempt to observe. The Q factor of the instrument was 
about 50 immediately after evacuation, and slowly fell to a 
value of about 15 after about four weeks. 

The comparisons were carried out using various standard 
responses, obtained by filtering the wideband output of the 
feedback instrument. The responses used were a short-period 
r: .ponse derived from a long-period instrument (LPSP), a * 
broadband response (BB), and a long-period narrowband 
response (LPNB). The outputs were telemetered to Blacknest 
and recorded together on standard 'helicorders' at suitable 
magnifications. 

Good coherence was obtained with the LPSP and BB res- 
ponses, as expected because of the relatively high seismic noise 
in these bands. There was some excess high-frequency noise 
in the feedback instrument, probably due to its wider band- 
width. The outputs from the two instruments initially showed 
rr.ther low coherence when using the LPNB response even 
though their responses had been closely matched. This was 
thought to be due to thermal fluctuations in the base plate of 
the feedback instrument. The improved Invar base plate 
described above was constructed and led to better coherence. 
Figure 10 shows an event recorded at low magnification and 
figure 11 shows typical long-period noise at high magnifica- 

I! 11 ■ 11 ■ 11111 U 41LI II111111 ■ M 111 

Figure 10   Comparison of seismometers (small event). A 
small event is shown at a magnification of 8200 at period 
20 s using a long-period narrow-band (LPNB) response. 
LPNBE/EXP is from the feedback seismometer in the east- 
west orientation and LPNBE/G from the standard Geotech 
instrument. Two broadband records are also shown. (Event 
recorded at 03.30.00, 1 October 1975; scale, 8 s/division.) 

WV\AA^ 

2255 2300 

Figure 11   Comparison of seismometers (long-period noise). 
Long-period noise is shown at a magnification of 200 000 
at 20 s using the LPNB response, LPNBZ/O is from a vertical- 
component Geotech instrument, and LPNBE/G and LPNBE/EXP 

are from the horizontal-component Geotech and feedback 
instruments. (Recorded at 22.55.00, 30 September 1975; 
scale, 4 s/division.) 
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tion. In the latter figure both recorded traces correspond to 
about 10 nm RMS at a period of 20 s (acceleration lO-'ms-2) 
in the LPNB bandwidth of about 0-04 Hz. The theoretical 
Brownian noise of the feedback instrument (with 0=15) in 
this bandwidth is 10-10 m s~2 and the theoretical electronic 
noise in the Geotech instrument has a similar value. Unfortu- 
nately it was not possible to compare two feedback instru- 
ments with one another (since only one was constructed) and 
two similar Geotech instruments were not available at the 
time. 

The difference between the Geotech and feedback seismo- 
meter traces is mostly small with an RMS value of about 2 nm, 
correspond ing to an RMS acceleration of 2 x 10_1 ° m s-2 at 20 s, 
which is close to the value expected theoretically from the 
Brownian noise value. However, occasional long-period 
fluctuations occur, with a magnitude of about 10 nm, prob- 
ably due to mass movements caused by thermal effects or 
pressure changes. It is difficult to decide from the records 
whether the effect, which is very common in long-period 
instruments, occurs only in the feedback seismometer or the 
conventional seismometer or both, but it is more likely to be 
mainly due to the former. 

The main practical problems in miniature instruments arise 
from long-term creep, thermal and pressure effects in the 
mechanical system, and air movements. As explained above, 
long-term creep did not prove to be a serious problem, and 
although thermal variations were observed their period was 
outside the seismic range of interest. (To observe longer- 
period seismic signals the thermal control system would have 
been required.) Pressure effects can be very serious, since the 
mass movements to be detected in a miniature instrument are 
smaller than in a conventional instrument in the ratio of the 
squares of the periods ((0-6)::(20)2). Similarly, unwanted 
forces due to air currents are equivalent to accelerations in the 
ratio of the masses (004 kg: 10 kg). An evacuated pressure 
chamber is thus essential, though evacuation is required in any 
case to obtain a high Q factor. It is likely that the long-period 
fluctuations observed were due to thermal effects in the base 
plate of the instrument (the effect was much reduced by using 
the Invar base plate) and to pressure fluctuations leading to 
distortions of the base plate or instrument frame. In Block and 
Dratlers instrument the temperature was controlled to 10~6 °C 
and the pendulum was enclosed in a highly evacuated container 
and by an evacuated outer cover. However, it appears that the 
symmetrical design of the present instrument and the use of a 
rigid evacuated jacket and special base plate have enabled 
the above problems to be reduced to tolerable levels. 

The comparison has successfully demonstrated that a 
miniature wideband feedback instrument can compare closely 
with a conventional open-loop instrument of much greater 
size. The increased electronic complexity is more than com- 
pensated by the reduced mechanical complexity, size and 
weight, and by the ease of operation and calibration. The cost, 
on a production basis, would be considerably less. 

7   Conclusions 
It has been demonstrated that it is feasible to build a truly 
miniature wideband seismometer with an output linearly 
proportional to ground motion and well defined by substantial 
negative feedback over the whole of the seismic range, and 
with a noise level comparable with much larger conventional 
instruments. The development depends strongly for its success 
on the use of a capacitive displacement transducer of high 
responsivity and low noise, and on the application of negative 
feedback to maintain the mass fixed with respect to its supports 
giving the attendant advantages of controlled wideband 
response, linearity and dynamic range. 
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A difficulty in designing a miniature seismometer is that 
since a long natural period cannot easily be used, the dis! 
placements to be detected are very small and may become 
comparable with unwanted movements due to creep ai 
currents, etc. These problems were overcome by a carefullv 
designed suspension system in which effects of temperature 
gradients were minimised. Although an evacuated cover a--i a 

thermal control system were used, the requirements of these 
systems were not stringent and the overall size is adequate for 
borehole applications. 

It is, of course, easier to design a horizontal-component 
instrument than a vertical-component instrument, since the 
steady acceleration of gravity must be cancelled in the latter 
However, the same principles can still be applied and an 
apparently satisfactory vertical-component instrument of 
similar overall dimensions is at present being tested. 
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Unconventional reciprocity calibration of transducers 
Isadore Rudnick 
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The procedure for the reciprocity calibration of transducers in unconventional acoustic geometries is 
described. 

PACS numbers: 43.88.Ar, 43.30.Yj 

INTRODUCTION 

It is customary when thinking about the reciprocity 
calibration of transducers to have in mind the acoustic 
geometry of either the free field or a pressure cham- 
ber.   The theory and technique of obtaining calibra- 
tions for such cases have received close attention and 
are very well developed.   However, there are situations 
in the experimental laboratory where the acoustic ge- 
ometry is radically different and where the constraints 
of the experiments require that the transducers be cali- 
brated in situ. 

Perhaps a few examples drawn from our own experi- 
ence will make the problem clear.   We have a program 
of investigating the superfluid state of helium in which 
acoustic techniques are heavily used.   Our usual trans- 
ducer is electrostatic and consists of an insulated button 
electrode which may be part of the wall of a wave guide 
or resonantor, and a plastic diaphragm, metallized on 
one side, which sits on the high points of the button 
surface.   Liquid helium fills the space (perhaps 1-10 
»im in thickness) between the diaphragm and electrode 
where they do not touch.   They are used both as speakers 
and microphones and have a high mechanical impedance 
because of the thinness of the liquid helium layer.   Cali- 
brations must be repeated each time the apparatus is 
cooled to liquid helium temperatures since there is no 
assurance that the transducer sensitivities remain un- 
changed in a thermal cycle. 

Figure 1 shows a rigid rectangular waveguide with a 
nonreflecting termination.   Three identically made 
transducers are shown.   The waveguide is many wave- 
lengths long and is operated in its plane-wave mode. 
There is negligible change in amplitude of the progres- 
sive plane wave as it propagates toward the termination. 
Our problem is to calibrate all three transducers. 

In Fig. 2 the nonreflecting termination has been re- 
placed by a rigid reflector.   In the most common ver- 
sion of this geometry the rigid terminations are two end 
transducers themselves. 

In another example shown in Fig. 3 two identical 
volumes are connected by a neck resulting in a double 
cavity Heimholte Resonator.   Three transducers like 
those in Figs. 1 and 2 are shown. 

Since, in our examples, all three transducers are 
reversible each of them can be calibrated as a micro- 
phone and a speaker.   However, the procedure requires 
only one reversible transducer (T), a microphone (M), 
a speaker (S), and results in a calibration of all three. 

I.   RATIONALE OF RECIPROCITY CALIBRATION OF 
TRANSDUCERS 

A very brief outline of the basis for the calibration 
procedure is in order.   Consider the linear passive 
four-pole electrical system shown in Fig. 4.   We write 

Vz = ci1+dit. 

(1) 

One or both of the terminal pairs can be replaced by 
mechanical or acoustic connections in which case (volt- 
age, current) is replaced by (force, velocity) or (pres- 
sure, volume velocity).   The system, whether it is elec- 
trical, mechanical, acoustic, electromechanical, or 
electroacoustic is said to obey the Reciprocity Theorem 
if 1.1 

b=±c. (2) 

Consider two electrical transducers 1 and 2 in Fig. 5 
connected by an acoustic link (this may be the wave- 
guide or one of the resonators of Figs. 1-3), then 
choosing the positive sign in Eq. (2) we can write 

V.=ai,+bi,. 

(3) Vt = bil+cit. 

Following MacLean3 we let 

M0 = microphone sensitivity in open circuit volts 
divided by the pressure at the microphone, 

A/j = microphone sensitivity in short circuit amps 
divided by the pressure at the microphone, 

S0 = speaker output in pressure produced at the 
microphone divided by amps into the speaker, 
and 

Sa = speaker output in pressure produced at the mi- 
crophone divided by volts across the speaker. 

m  
FIG. 1.   Rigid wall rectangular wave guide with nonreflecting 
termination W at one end and a rigid termination at the other. 
(T), (S), and (M) are identically made electrostatic trans- 
ducers whose sensitivities are not Identical.   The cross-sec- 
tional dimensions of the waveguide and transducer dimensions 
are very much less than X (the acoustic wavelength), and the 
waveguide is long compared to X.   Transducers (T) and (S) are 
right at the rigid termination. 
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£ 
SSI 

FIG. 2.   Same as Fig. 1 except that the nonreflecting termina- 
tion is replaced by a rigid termination.   All transducers are 
right at the rigid terminations. 

Now if we drive transducer 1 as a speaker and get the 
response of transducer 2 in both open circuit volts and 
short circuit amps and then make the same measure- 
ments but reverse the roles of the transducers we find3 

that 

S„i     Sot      Sji      S,g 

•w.i= «* ' Ki ' M,i 
-z. (4) 

We have yet to determine Z which clearly is related 
to the acoustic geometry.   But before doing this we point 
out that, when 2 is known, the reciprocity calibration 
of identical transducers immediately follows since, if 
transducers 1 and 2 are identical, then 

US.M.BV, 

and 

(5) ,;/„ = (V*V01/zxio-7/2, 

S0={ViZ/h)uzxlO-uz . 

(The factor of 10"1/2 is necessary if electrical quan- 
tities are in volts and amps and mechanical quantities 
are in cgs.) 

We now determine Z.   We choose as our reversible 
transducer an "ideal microphone"—it is small com- 
pared to the wavelength of sound and is so noncompliant 
that its introduction at a point in the sound field never 
alters the sound pressure at that point.   By the same 
token, when used as a speaker, its volume velocity is 
independent of the acoustic load.   In Fig. 5 both trans- 
ducers are identical and of this type.   Thus when trans- 
ducer 1 is used as a speaker driven by a voltage \\ and 
a current ilf a volume velocity Ui is produced at the 
speaker and 

0=bil+cUl. (6) 

Zero appears at the left of the second equation in (6) 
because there is no impressed pressure and the trans- 
ducer does not feel the pressure it, itself, generates. 

E 
i. n 3 

FIG. 3.   A double cavity Helmholtz Resonator with three trans- 
ducers, (T), (Mj, and (S).   The volume of each cavity is V. 
The length of the neck is I and its cross-sectional area is A. 
Its angular resonant frequency w is given by u>- C(2A/ZV)l':, 
where C is the sound velocity. 
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FIG. 4.   A linear passive four pole network. 

For the transducer (2) being used as a short circuited 
microphone we can write 

0=ait + bUt, 

pt=bii + cUt, (7) 

where pt is the pressure and Uz is the volume velocity 
at the microphone. Now St =p JVU M, =iz/p2 and pjiz 
= Vi/Ul=b-ac/b. 

Thus 

(8) 

We see that Z is just the transfer impedance relating the 
acoustic pressure at the microphone to the volume veloc- 
ity at the speaker.4 

II.   THE CALIBRATION 

We now describe the procedure for calibrating trans- 
ducer T(and subsequently S and M) in the configurations 
of Figs. 1-3. We send a current iT through T and mea- 
sure the open circuit voltage VUi at M. 

If M and T were identical transducers, A/„ of T would 
be given by (VUl/iT\/Z)xl2lQT'"i.   But they're not identi- 
cal and we need to know what voltage T would have read 
if it were at the position of M.   We get this by arranging 
to have a sound field generated by S which produces 
identical pressures at M and T.5  Then if we drive S 
with an arbitrary current is open circuit voltages V„z 

and Vr will be read at M and T and the microphone and 
speaker sensitivity of T is given, respectively, by 

•"-(FFFT* ">-'"■ V^    *r   Vuz/ (10) 

where M, for transducer M is the product of VUi/VT and 
the value of M0 above, and S,, for transducer S is the 
product of »VA's and the value of S0 above.   Using M as a 
speaker and S as a microphone will yield their sensitiv- 
ities in these roles and the calibrations are complete. 

In Fig. 1 the acoustic pressures at M and T are 
necessarily the same when S is driven at an arbitrary 
frequency.   In Fig. 2 the pressures will be equal when 
the resonator is driven by S at any of its resonant fre- 

0
V- 1                   2 v2 

FIG. 5.   Transducers 1 and 2 are coupled by an acoustic 
field. 



quencies if the Q's are very high.   In Fig. 3 the pres- 
sures will be equal when the resonator is driven by A 
at its resonant frequency if the Q is very high. 

The transfer impedances to be used in Eq. (10) for 
the three cases are 

Fig. 1:   Z=pC/A, (U) 

Fig. 2:  Z =2pCQ„/Ann, (12) 

where Q„ is the quality factor of the wth resonant har- 
monic: 

Fig. 3:  Z=pC*Q/2Vu>, (13) 

where w=C(2A/lV)in is the resonant frequency of the 
resonator and Q the quality factor of the mode. 

The speaker S is only needed to generate a sound 
field by which the relative microphone sensitivity of M 
and T is determined.   In the experimental arrangement 
of Figs. 2 and 3 the speaker S can be dispensed with in 
the following way.   T is used as a source to establish 
a natural resonance of the system and then it is switched 

to its microphone mode.   A comparison of its output 
with that of M, as the resonance decays, provides the 
relative sensitivity of the two. 
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would be easier to understand if the transducer which is an 
"ideal microphone," namely, the small, noncompliant trans- 
ducer, is explicitly introduced.   This seems to be essential 
to obtain the second equation of (6) and the result, Eq. (8). 
A minor mystery is why the fact that the ratio in Eq. (4) is 
the transfer impedance, relating the pressure at a micro- 
phone to the volume velocity at a speaker, is not emphasized. 

5It is unnecessary that the pressures be identical.   It is only 
necessary that their ratio is known. 
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ABSTRACT 

Gerlach investigated the rotatorial Brownian motion of a small mirror sus- 
pended on a fine wire. It follows from the theorem of equipartition that the average 
square deviation of the mirror will depend on the temperature alone of the surrounding 
gas. Gerlach verified this for a large range of pressures (1 to 10"« atm). The analogy 
which we found that exists between this problem and the well-known treatment of the 
shot effect by Schottky enables us to give a more detailed theory of this phenomenon. 
If the displacement, registered during a time, long compared with the characteristic 
period of the mirror, is developed into a Fourier series, we find the square of the ampli- 
tude of each Fourier component to be a function of the pressure and molecular weight 
of the surrounding gas as well as of its temperature, (formula 18). The sum of the 
squares, however, is a function of the temperature alone (proved in section 4). This 
explains why the curves registered by Gerlach at different pressures, though all 
giving the same mean square deviation, are quite different in appearance. To get 
the fluctuating torque on the mirror, the expression: 

_   16   1       1 
V-  n  cA/Ao 

is obtained for the fluctuation in time of the pressure of a gas on the wall (section 5). 
In this n represents the number of molecules per cc, c is the mean velocity and Ao is 
the surface of the wall. 

I. INTRODUCTION 

INTERESTING experiments on Brownian motion around a position of 
equilibrium have been performed by Zeeman and Houdyk1 in Amsterdam 

and by Gerlach2 in Tübingen. The former registered the motion of the loose 
end of a suspended wire, the latter photographed by means of reflected light 
the rotational Brownian movement of a little mirror fixed on a very fine 
wire. The first experiment is theoretically more complicated, because one 
has to consider the many natural frequencies of the observed body. In the 
experiment of Gerlach on the other hand the observed system has only one 
characteristic frequency. We will restrict ourselves therefore in the following 
treatment to the latter case. 

In both cases one can immediately predict by means of the equipartition 
-theorem what the average square of the deflection will be. This will depend 
on the properties of the observed system and on the temperature only of the 
surrounding gas, not for instance on its pressure or molecular weight. The 
experiments however give more than merely the average square deviation; 
the registered curves show to some extend at least the time-dependence of 

1 P. Zeeman and A. Houdyk, Proc. Acad. Amsterdam, 28, 52 (1925). 
1 W. Gerlach, Naturwiss. 15, 15 (1927). 
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the irregular Brownian motion. As Professor Gerlach kindly communicated 
to us, the general appearance of these curves is quite different at different 
pressures of the surrounding gas, though the average square deviation re- 
mains the same for any given temperature. The problem is therefore to 
give a more detailed theory of these curves. 

It has occurred to us that this problem may be treated in a manner quite 
analogous to the method employed by Schottky,3 to describe the well-known 
shot-effect. In the experiments of Hull and Williams,« the fluctuating vol- 
tage in the shot-circuit is coupled inductively with the amplification-circuit, 
which possesses only one characteristic frequency. In the experiments of 
Gerlach the fluctuating moment of momentum around the mirror-axis of 
the gas-molecules, is coupled, by means of collisions, with the "amplifying" 
mirror, which has also only one characteristic frequency. 

The analogy is complete only when the surrounding gas is much rarefied, 
because only then are the moments of momentum given by the gas-mole- 
cules to the mirror in successive time-elements independent of each other.5 

By applying the method of Schottky, we will show in Sections II and III 
that for this case the amplitudes of the Fourier components of the motion de- 
pend on the pressure and the molecular weight of the surrounding gas. This 
will explain the different forms of the observed curves under various cir- 
cumstances. 

II. THE FOURIER-ANALYSIS OF THE BROWNIAN MOTION 

The equation of motion of the mirror is given by: 

li+f<j>+D<t> = M(t), (1) 

where: I is the moment of inertia around the mirror-axis; <£ is the angle 
of deflection;/the friction-coefficient; D the directional force; and M(t) the 
fluctuating torque, caused by the collisions of the gas molecules. When we 
introduce the frequency in 2-x sec: 

W = (Z?//)1'2 (2) 
and the angular acceleration: 

T(t) = M(t)/I (3) 
and put: , ,.* 

r=f/I (4) 
Eq. (1) becomes: 

'<}>+r'<t>+o}2<t>=T(i). (5) 

For our further purposes it is essential to give now a more detailed discussion 
of the meaning of M(t) or T(t). 

* W. Schottky, Ann. der Phys. 57, 541 (1918); 68, 157 (1922). Comp. also: J. Tinbergen, 
Physica, 5, 361 (1925). 

< A. W. Hull and N. H. Williams, Phys. Rev. 25,147 (1925). Comp. also N. H. Williams 
and H. B. Vincent, Phys. Rev. 28, 1250 (1926). 

8 For higher pressures, the problem becomes analogous to the problem of the shot effect 
for high current densities. Because of the space charge the numbers of electrons hitting the 
anode in successive time elements are then not more independent of each other, and the 
fluctuations decrease. Comp. N. H. Williams and H. B. Vincent, ref.« p. 1262 and N. H. 
Williams and W. S. Huxford, Phys. Rev. 33, 773 (1929). 
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The actual microscopic M*U) consists of a large number of sharp peaks, 
each corresponding to the impulse moment transferred to the mirror by 
the collision of one (or a few) molecules. We introduce now a "physically 
infinitely small" time-element At,6 very small compared with the character- 
istic period 2ir/w of the mirror but within which many collisions occur.7 

Our function M(t) consists of the averages of all M*(t) values included in 
each time-element At. The actual value of Mfa) for the time-element A/,- is 
of course unknown a priori, but we can tell some of its properties: 

(a) M(tt) will have equal chance of being positive or negative, so that 
the average over all the time-elements is zero. 

(b) In our case, when the surrounding gas is rarefied, the M(t{) in the 
time-element A/< will be independent of the value M{tj) in the time-element 
A//. 

(c) In Section V we will show that the mean of M*(ti) over all the time- 
elements is given by: 

M%)=±mcpI/pAt (6) 

where: m is the mass of the gas molecules; c their mean velocity; p the 
pressure of the surrounding gas, and p the mass of the mirror per square cm. 

Let T be the time of observation, which must be long compared with the 
period of the mirror, so that: 

A/<<2X/'U<<T.  . (7) 

Develop T(t) within the interval (0,r) in a Fourier series: 
so 

T(t) =T,U* cos utt+Bk sin «*0 (8) 

where: 

2   rT 

Ak=— I    T(t) cos cokt-dt 
T   Jo 

1      pr 
=-    no 

r Jo 
Bk = — I    TU) sin wkt-dt 

(9) 

We can now replace these integrals by the following sums : 

2     * 
A k=—   Z T(ti) cos ukti • AU 

* T    l (10) 
2     * 

Bk = —   Y,ntd sinukti-Ati 
T 1 

where A*»- are  the successive, equal  time-elements, and   T(tt)t cos «*/,-, 
sin oikti are evaluated at a time /,• included within the i*k element A/,-.   Z 

* We suppose them all equal. 
7 The introduction of such an "physically infinitely small" time element is characteristic 

in the kinetic theory of gases. Comp. e.g., P. and T. Ehrenfest, Enc. der Math. Wiss. Vol. IV, 
Art. 32, p. 39. 
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is the total number of time-elements. The motion of the mirror is then ex- 
pressed by: 

4>(t)= 2>*(0- £ 71 ±-—-[{Ak(o,>-a>k*)-Bkro,k} cos»*f 
k  (^W (11) 

+ {^krwjt+5i(a)2-a>r)J sin w**J 

which is the solution of (5) under the conditions <£=<£ = 0 for / = 0. These 
conditions mean that we start our observations only when all external dis- 
turbances have been damped out, and the remaming motion is due only to 
collisions with the gas molecules, or in other words, we observe the Brownian 
motion around the position of equilibrium and not around an already ex- 
isting vibration. 

From this, we find for the time-average of <£<t2: 

?7-l      A'W      ■ (U) 
2   (w

2-w*2)2-r-rW2 

In the case of very low pressure it is now possible to predict from the three 
properties (c), (b) and (c) of M(t) (or T{t)) the value of Afc

2 and B*2. From 
(10) we have 

4       Z 2 
AJ = —   X)     J2T(li)T(ti) cos wkti cos WktrAUM,: (13) 

T2      i_i ,_1 

Consider first in this double sum the terms with zVj. As a consequence of 
property (b), in the case of low pressure T(t{) and T{t,) are completely in- 
dependent; hence these terms will have equal chances of being positive or 
negative and for large Z their sum will vanish. Consider next the terms with 
i=j, which are all positive. Due to our choice of Alt, for all frequencies a* 
of the order of magnitude of a> (and only those give according to (12) an ap- 
preciable ^7,) 27r/cot will be very large with respect to Alt, so that cos W 
changes very little over many time-elements A/,-. We may therefore replace 
7^(/,) by its average value and obtain: 

A t2 = -7l J2 cos2 ü>,/,-(A<i)2. (14) 
T- i_l 

Finally, replacing the sum once more by an integral, we have: 

Ak- = 2/rT2(t) ■ At (15) 

Obviously the value of Bk
2 is the same. 

III. DISCUSSION OF THE FINAL FORMULA 

Formula (6), which will be developed in §5, together with equation (3) gives: 

mfi^lmcp/IpAt. (16) 

In §6 we will prove, that for the case of low pressure, the friction-coefficient 
is given by: 

f=2mcpPI/kT. (17) 
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Substituting (15), (16), (17) in (12), we get the final formula: 

     Trl'2mll2(SkTyi'i-p 1 
<£t* = - (18) 

pI-T TckT(oj*-uk*y+32pyak
2 

in which the well-known relation is used that: 

c=(8kT/rm)1'2. 

From the analysis in Section 11 it is clear that this formula may be interpreted 
in the two following ways: 

1. If we resolve into Fourier series a great number of curves, each observed 
over a relatively short time r (which however must still fulfill the fundamental 
inequality (7)), the mean square of the amplitudes of the kth components 
will be given by (18). 

2. If we analyse one curve, observed over a very long time r, then the square 
of the amplitudes of the kth component will also be given by (18). 

The formula (18) shows the noteworthy result, that^2 depends not only 
on the temperature, but also explicitly on the pressure and the molecular 
weight of the surrounding gas. As a test we must of course show, as we will 
do in §4, that by summing over all values of k, we obtain for the mean potential 
energy hDfö the equipartition value \kT which is independent of the pressure 
and the molecular weight of the surrounding gas. 

The dependence on the pressure is rather complicated. For frequencies 
o)k very near to u, the <f>k- becomes inversely proportional to p, and for wk 

very large compared with co, the <f)k
2 becomes almost directly proportional 

to p. These latter terms of course contribute very little to the total motion, 
the denominator being so large. When we plot therefore <£4

2 against k, the 
resulting curve has a maximum in the neighborhood of u, which rapidly 
becomes very sharp as the pressure decreases. The motion of the mirror than 
becomes more and more "monochromatic." 

APPENDIX 

IV. PROOF OF THE EQUIPARTITION THEOREM. 

The average potential energy of the vibrating mirror is equal to: 

Jß^-lflL«*5 (19) 
i-0 

because the different Fourier components are independent of each other. Though we re- 
stricted ourselves to values of uk_small with respect to 2r/At, it is permissible to extend the 
summation to infinity, because the components with u* large compared to u contribute very 
little to the sum. 

Equation (IS) shows, that Ai? and Bk- are independent of k; hence from (12) and (15): 

**= YÄT*=-THÄ- M £ .— *      t   , • (20) 

The last sum we now replace by an integral, substituting: 

Xi=uk/u=2x£/r&j 
which gives: 

y 1 _ r   r" dx 
£i («I-ü.t5)r1+s

ut»=2rw5J o     (l-x'^+tr2/«1)*1 
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with very good approximation. The value of the integral is jroi/2r,» so that we obtain: 

£*=r»ÖJ-A//2«V. (21) 

Introducing the relations (16) and (17), and substituting from (2) and (4) the values of u1 

and r, we obtain immediately: 

JD5M*r. (22) 

V. PROOF OF THE FLUCTUATION FORMULA (6) OR (16). 
This relation follows from a consideration of the fluctuations in time of the pressure exerted 

upon a wall by a rarefied gas. Using Maxwell's distribution lajf one easily derives an expression 
for the probability that a molecule of a gas within a volume V at the temperature T gives to 
a portion Ao of the wall a momentum normal to the wall lying between G and G+AG during the 
time At. It is:* 

r 1 kT 
WAlA0AG=r(2vmkT)3ll----Gc-G>/^AlAoAG. (23) 

Let H,v be the number of molecules, which in the time-element Al{ give a momentum lying 
between G,- and Gj+AGj to the portion Ao of the wall. Then the total momentum given to 
Ao during Ali becomes: 

G(ti)= EG
J">/- 

j'-o 

Using the bar to denote the average over all time-elements, we find easily: 

GHÜ)-GU?) = (Z<G;>u,r—(5GWiY- = ^C W- C«.-;)5) (24) 

because the cross-terms cancel, and the average over the time-elements AU extends only over the 
«,-,-.   In general the fluctuation formula holds: 

n~Ir—{nijY=7uj (25) 

and iüj follows immediately from (23), after multiplying by the total number of molecules 
N. Substituting then (25) in (24), and replacing the sum by an integral, we obtain: 

GHt?j-C(?ö5=— AoAl- f G*exp[-G"/*mkT]dG=2m'cpAoAl (26) 
2   (2-mkT)3,i J o 

for: 
p = NkT/V. 

« See W. Schottky, Ann. der Phys. 68, 157 (1922). 
• Integrating over G from 0 to », we get for the probability that a molecule hits in the 

time At the surface element Ao: 

wAlAo=cAtAo/4:V 

corresponding to the well-known result for the mean number « striking 1 cm2 of the wall per 
second: 

n=N7/4V. 

In the same way we find for the mean momentum given to the wall taken over all the mole- 
cules striking it: 

C"=(2x«ir)1/I 

and for the mean square: 
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This, divided by A**, expresses the fluctuation in time of the pressure on the portion So of the 
wall.10 From this it follows obviously that for a disc of surface o inside the gas, the mean of 
the square of the force K(t{) taken over all the time-elements A/,- is given by: 

£J(£)=4mc>o/A/ (27) 

as for such a disc X(£I=0, and the fluctuations on the right and left side are independent of 
each other. 

For a case like the experiment of Gerlach we must consider the moment of momentum 
around the mirror axis instead of the momentum. The analogous formula for the torque is then: 

    Anicp C C    ,.    ir™Pl 

where x denotes the distance from the axis. This is equation (6). 

VI. PROOF OF FORMULA (17) FOR THE FRICTION COEFFICIENT.
11 

Consider a portion So of the mirror, which moves, say to the right in the direction of the 
x-axis with the velocity u.  The number of molecules per second, which strike this from the 
left, and which lie within a certain velocity-range d£dtid{ is: 

vJ/l N. 
\2irRT/        V 

(28) 

where we have used Maxwell's distribution law, because in our case of very low pressure, the 
mean free path is large with respect to the dimensions of the mirror, so that the motion of the 
mirror does not disturb the velocity distribution of the molecules. If x is the distance from So 
to the axis of the mirror, then the moment of momentum imparted per second by these mole- 
cules is: 

dMl = (_!L_Y'.= ^f. (S_„)*. x. t^*i*r±od&ndt. (29) 

Neglecting the term with u- and integrating over TJ and s" from - » to -f », and over £ from 0 
to +*,we get: 

Mi = pxAo—m~cXtix&oV-1. (30) 

In the same way, we find for the moment of momentum given to So per second by mole- 
cules striking from the right: 

M.= —px&o—tncNuxSoV-1 (31) 

so that the total moment of momentum given to So per second is: 

Mi+Mi=-2mcpuxAo/kT. (32) 

Now u=x<t>, so that we find for the friction coefficient: 

Imcpl 

'-H?// xHo = - 
PkT 

which is formula (17). 

10 This can be written in the form: 

(p)*        *     r   n  1st So 

when n is the number of molecules per cc. It has then the same form as the expression for the 
fluctuation in pressure of a gas inside a volume element Sv (see R. Furth, Die Schwankungser- 
scheinungen in der Physik, Vieweg, Braunschweig, 1920, p. 58): 

_   CP  1     1 
V=pr  C,  n   Sv 

but it cannot be derived from it. 
11 Comp. H. A. Lorentz, Les theories statistiques en thermodynamique, Leipzig, 1916, 

p. S3. 
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Abstract 

A single gas bubble, acoustically levitated in a standing wave field and oscillating under 

the action of that field, can emit a single pulse of blue-white light.   This emission, called 

sonoluminescence (SL), has a number of remarkable features.   It is easily visible to the unaided 

eye.   The optical spectrum is broadband and increases in intensity in the ultraviolet.   The 

duration of the SL pulse is between approximately 50 and 350 ps, depending upon the 

experimental parameters, but independent of optical wavelength. The emission can be extremely 

stable and repetitive, lasting for hours, or it can be chaotic.   Slight cooling of the host liquid 

significantly increases the intensity. The intensity of the luminescence is sensitive to changes in 

the composition of gases within the bubble of less than 1%. Single SL pulses are substantially 

isotropic and unpolarized. Water is the most sonoluminescence-friendly host liquid, although SL 

has been observed in other liquids. SL has been observed from hemispherical bubbles attached 

to solid surfaces. Several mechanisms, ranging from classical to quantum mechanical, have been 

proposed to account for this phenomenon. Yet, there is no completely satisfactory explanation. 

The purpose of this lecture is to provide a review of this field. 

Because single bubble sonoluminescence is intimately tied to the response of a bubble 

driven by an acoustic field, the lecture begins with a discussion of bubble dynamics. Topics 

include acoustic levitation and the Rayleigh-Plesset (R-P) equation. The R-P equation is a 

simple differential equation that describes the motion of the bubble wall under ordinary 

circumstances. Results of calculations of the pressures and temperatures within the bubble using 

the R-P equation are used as an oversimplified lead-in to a review of the astonishing properties 

of SL that have been determined experimentally. Comparisons to a related phenomenon, 

multiple-bubble sonoluminescence, will be made.   Next attention is turned to theoretical 
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explanations of this phenomena. Limitations of the R-P equation are discussed and why more 

sophisticated methods of prediction the dynamics of the bubble are needed. Other topics include 

evolution of shock waves inside the bubble, and radiation mechanisms. 

The following references are suggested.   Additional material may be found in the 

references provided in these articles. 

1. B. P. Barber, R. Hiller, R Loefstedt, and S. J. Putterman, "Defining the unknowns of 
sonoluminescence," Physics Reports, Vol. 281,65-143,1997. 

2. S. J. Putterman, "Sonoluminescence: Sound into Light," Scientific American, 46-51, 
February 1995. 

3. L. A. Cram, "Sonoluminescence," Physics Today, 22-29, September 1994. 

4. R. G. Holt and D. F. Gaitan, "Observation of stability boundaries in the parameter space of 
single bubble sonoluminescence," Physical Review Letters, Vol. 77, 3791-3794, 1996. 

5. B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, "Resolving 
sonoluminescence pulse width with time-correlated single photon counting," Physical 
Review Letters, Vol. 79, 1405-1408, 1997. 
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THERMOACOUSTIC ENGINES 
AND REFRIGERATORS 

We ordinarily think of a 
sound wave in a gas as 

consisting of coupled pres- 
sure and displacement oscil- 
lations. However, tempera- 
ture oscillations always 
accompany the pressure 
changes. The combination of 
all these oscillations, and 
their interaction with solid 
boundaries, produces a. rich 
variety of "thermoacoustic" 
effects. Although these ef- 
fects as they occur in every- 
day life are too small to be noticed, one can harness 
extremely loud sound waves in acoustically sealed cham- 
bers to produce powerful heat engines, heat pumps and 
refrigerators. Whereas typical engines and refrigerators 
have crankshaft-coupled pistons or rotating turbines, ther- 
moacoustic engines and refrigerators have at most a single 
flexing moving part (as in a loudspeaker) with no sliding 
seals. Thermoacoustic devices may be of practical use 
where simplicity, reliability or low cost is more important 
than the highest efficiency (although one cannot say much 
more about their cost-competitiveness at this early stage). 

The basics: Thermoacoustic engines 
A thermoacoustic engine converts some heat from a high- 
temperature heat source into acoustic power, rejecting 
waste heat to a low-temperature heat sink. The heat- 
driven electrical generator shown in figure 1 illustrates 
the basic principle of operation. The overall view, shown 
at the top of figure la, is reminiscent of the appearance 
of a heat engine in many introductory thermodynamics 
texts: The apparatus absorbs heat per unit time Qh from 
a heat source at high temperature Th, rejects heat per 
unit time Qc to a heat sink at low temperature Tc and 
produces acoustic power IV. The first law of thermody- 
namics tells us that W+Qc = Qh; the second law shows 
that the efficiency W/Qh is bounded above by the Carnot 
efficiency (Th - Tc)/Tb. (I will use Q and W for heat power 
and acoustic power, and q and w for the corresponding 
energies.) 

One of the most important scales in a thermoacoustic 
device is the length of its resonator, which (together with 
the gas sound speed) determines the operating frequency, 
just as the length of an organ pipe determines its pitch. 
This length typically falls between 10 cm and 10 m. In 
figure la, with both ends of the resonator closed, the 
lowest resonant mode is that which fits a half-wavelength 

On the heels of basic research, commercial  ^^e wave in the resona- 
developers are harnessing acoustic 
processes in gases to make reliable, 

inexpensive engines and cooling devices 
with no moving parts and a significant 

fraction of Carnot's efficiency. 

Gregory W. Swift 

tor, with displacement nodes 
and pressure antinodes at the 
ends, as shown in the lower 
portion of figure 1. The heat- 
exchange elements—a hot 
heat exchanger, a cold heat 
exchanger and a "stack" be- 
tween them—are located 
where both oscillating pres- 
sure and osculating gas dis- 
placement are nonzero. Each 
of the two heat exchangers is 
typically a set of copper fins, 

as open to gas flow as possible (like a car radiator), and 
is thermally anchored to its reservoir by metallic heat 
conduction or circulating fluids. The stack is simply a 
well-spaced stack of solid plates with high heat capacity, 
also quite open to gas flow, supporting the smooth tem- 
perature profile between the two heat exchangers as 
shown at the bottom of figure la. Most of the "parallel 
plate" stacks constructed so far have in fact been spirally 
wound, a low-cost configuration. 

To understand in some detail the conversion of heat 
to acoustic power by this simple structure, consider the 
magnified view of part of the stack in figure lb, which 
shows a typical parcel of gas at four instants of time 
during one cycle of the acoustic wave. The standing wave 
carries the parcel left and right, compressing and expand- 
ing it, with phasing such that it is at its most compressed 
state when at its farthest left position, and its most 
expanded state at its farthest right position. In typical 
thermoacoustic engines and refrigerators the amplitude of 
the pressure oscillation is 3-10% of the mean pressure, 
and the displacement amplitude is a similar percentage 
of the length of a plate in the stack. 

The presence of an externally imposed temperature 
gradient in the stack adds a new feature to what would 
otherwise be a simple acoustic oscillation: oscillatory heat 
transfer between the parcel of gas and the stack. (To 
simplify this discussion, I will neglect the adiabatic tem- 
perature oscillations that accompany the pressure oscilla- 
tions.) When the parcel is at its leftmost position, heat 
flows from the relatively hot stack plate to the parcel, 
expanding it; when the parcel is at its rightmost position, 
heat flows from it to the relatively cool stack plate, 
contracting the parcel. The parcel does net work on its 
surroundings, because the expansion takes place at the 
high-pressure phase of the cycle and the contraction at 
the low-pressure phase, as shown in figure lc. 

(Readers with Internet access are encouraged to view 
our computer animations of this process and of thermoacous- 
tic refrigeration as described below. The thermoacoustics 
home page is at http://rott.esa.lanl.gov/; select "educational 
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SIMPLE THERMOACOUSTIC ENGINE, a: Heat exchangers and a stack in a half-wavelength acoustic resonator convert some of 
the heat power Q, from a thermal reservoir at temperature Th into acoustic power W, rejecting waste heat power Qc to another 
reservoir at Tc. The acoustic power is delivered to an electroacoustic transducer, which converts it to electricity. Plots below 
show gas pressure, gas displacement in the horizontal direction and average temperature as functions of location in the resonator. 
Pressure and displacement are each shown when the gas is at the leftmost extreme of its displacement (red), with density and 
pressure highest at the left end of the resonator and lowest at the right end, and 180° later in the cycle (blue), b: Magnified view 
of part of the stack shows a typical parcel of gas (greatly exaggerated in size) as it oscillates in position, pressure and temperature, 
exchanging heat dq with the nearby plates of the stack. Plates are separated by about four thermal penetration depths SK. 
c: Pressure-volume (p-V) diagram for the parcel of gas shows how it does net work 8w = $p Won its surroundings. FIGURE 1 

demonstrations." For DOS-based computers, the executable 
file FANCY.EXE and text file FANCY.TXT can be downloaded.) 

The net work that the parcel does on its surroundings 
is delivered in each cycle of the acoustic oscillation. The 
parcel and all others like it within the stack deliver 
acoustic power W to the standing wave; the standing wave 
delivers it in turn to the electroacoustic transducer. Each 
parcel absorbs a little heat from one location in the stack 
and deposits a little heat farther to the right, at a cooler 
location in the stack. With respect to heat, all the parcels 
act like members of a bucket brigade, with the overall 
effect being absorption of Qh at the hot heat exchanger 
and rejection of Qc at the cold heat exchanger. 

A second important scale in a thermoacoustic engine 
is the separation between plates in the stack, which 
determines the nature of thermal contact between the 
plate and the typical parcel of gas. Imperfect thermal 
contact is needed to accomplish the cycle shown in figure 
1, because it is desirable to have good thermal contact 
when the parcel is stationary or nearly so, but poor 
thermal contact while it is moving. Detailed analysis 
shows that a spacing between plates of about four thermal 
penetration depths SK = V/</7r/pcp is best, where K is the 
thermal conductivity of the gas, p is its density, cp its 
isobaric specific heat per unit mass and f the frequency 
of the acoustic oscillation; SK is roughly the distance heat 
can diffuse through the gas during a time 1/irf. In today's 

thermoacoustic systems, 8K is typically a fraction of a 
millimeter. 

Heat-driven acoustic oscillators such as that shown in 
figure 1 have been known for over a century. The earliest 
and simplest, known as the Sondhauss tube, was discovered 
accidentally by European glassblowers; a later example, the 
Taconis oscillator, is well known today to users of liquid 
helium. In each of these early thermoacoustic engines, the 
resonator itself was only several SK in diameter, and its walls 
also served the functions of stack and heat exchangers. The 
use of an explicit stack (with multiple parallel passages) and 
heat exchangers in larger-diameter resonators to increase 
overall power began with Robert L. Carter in the 1960s.1 

Although progress toward a theoretical understanding 
of these phenomena began with Lord Rayleigh 120 years 
ago, a quantitatively accurate theory of thermoacoustics 
was not developed until the 1970s, through the efforts of 
Nicholas Rott and coworkers.2 This theory is based on a 
low-amplitude linearization of the Navier-Stokes, conti- 
nuity and energy equations with sinusoidal oscillations of 
all variables. It is remarkable that such qualitatively 
simple classical phenomena went without a quantitatively 
accurate explanation until late in this century. 

The basics: Thermoacoustic refrigerators 
Another chapter in the development of thermoacoustics 
began at Los Alamos National Laboratory in the early 
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SIMPLE THERMO ACOUSTIC REFRIGERATOR, a: Electroacoustic transducer at the left end delivers acoustic power IP'to the 
resonator, producing refrigeration Qc at low temperature 7*c and rejecting waste heat power Qh to a heat sink at 7h. As in figure 
1, this is a half-wavelength device with a pressure node at the midpoint of the resonator. The temperature gradient in the 
refrigerator's stack is much less steep than that in the stack for the engine shown in figure 1. b: Magnified view of part of the 
stack shows a typical parcel of gas as it moves heat Aq up the temperature gradient. Here §p dV< 0, so the pressure-volume cycle 
analogous to figure lc goes counterclockwise, and the parcel absorbs work from its surroundings.  FIGURE 2 

1980s with the invention of thermoacoustic refrigeration.3 

The basic principle of operation, illustrated in figure 2, is 
very similar to that of .thermoacoustic engines, but here 
the temperature gradient in the stack is much lower. As 
the gas oscillates along the stack, it experiences changes 
in temperature. Much of the gas's temperature change 
comes from adiabatic compression and expansion of the 
gas by the acoustic pressure, and the rest is a consequence 
of heat transfer with the stack. At the leftmost position 
of the parcel of gas shown in figure 2b, it rejects heat to 
the stack, because its temperature was raised above the 
local stack temperature by adiabatic compression caused 
by the standing wave. Similarly, at its rightmost position, 
the parcel absorbs heat from the stack, because adiabatic 
expansion has brought its temperature below the local 
stack temperature. Thus the parcel of gas moves a little 
heat from right to left along the stack, up the temperature 
gradient, during each cycle of the acoustic wave. 

All the other parcels in the stack behave similarly, 
so that the overall effect, again as in a bucket brigade, is 
the net transport of heat from the cold heat exchanger to 
the hot heat exchanger, with Qc absorbed at Tc and Qh 
rejected at Th. The parcel absorbs acoustic work from the 
standing wave, because the thermal expansion of the 
parcel of gas occurs during the low-pressure phase of the 
acoustic wave and the thermal contraction during the 
high-pressure phase. The resulting acoustic power W 
absorbed by all the parcels in the stack can be supplied 
by a loudspeaker, a thermoacoustic engine or other means. 
The first law of thermodynamics once again determines 
that W+ Qc = Qh; the second law shows that the relevant 
efficiency, known as the coefficient of performance, is 
bounded above by the Carnot coefficient TJ(Th-Tc). 

The steepness of the temperature gradient in the 
stack determines whether a thermoacoustic device is a 
refrigerator (which has work done on it) or an engine 
(which does work). In an engine, with a steep temperature 
gradient as shown in figure 1, the gas parcel finds itself 
cooler than the local stack temperature after its adiabatic 
compression during displacement to the left, so it absorbs 
heat from the stack at high pressure and expands. In 
contrast, in a refrigerator, with a shallow gradient, the 
gas parcel finds itself warmer than the local stack tem- 
perature after its adiabatic compression during displace- 
ment to the left, so it rejects heat to the higher-tempera- 
ture part of the stack and contracts. 

Figure 3a shows schematically the first efficient ther- 
moacoustic refrigerator,4 designed, built and studied by 
Tom Hofler. It illustrates several features of many of 
todays thermoacoustic devices. The resonator had a 
slightly complicated geometry, which maintained the de- 
sired frequency, pressure amplitude and displacement 
amplitude at the stack while reducing the total length to 
much less than half the wavelength. This geometry also 
reduced viscous and thermal losses on the resonator walls 
and suppressed the harmonic content so that the sound 
wave remained purely sinusoidal in time. The pressure 
antinode is at the driver piston, and the pressure node is 
at the widening neck near the sphere, so this is essentially 
a quarter-wavelength apparatus, even though the spatial 
dependence of the pressure is not exactly a cosine. High- 
pressure helium gas was used: High pressure increases 
the power per unit volume of apparatus, and helium, 
having the highest sound speed and thermal conductivity 
of the inert gases, further increases the power density and 
allows spacings within the stack and heat exchangers to 
be as large as possible, for ease of fabrication. The 
loudspeaker-like driver was located at a pressure antinode 
of the standing wave, so that the acoustic power was 
delivered with high force and small displacement, easing 
engineering difficulties associated with the flexing portion 
of the driver. This location also placed it next to the hot 
heat exchanger, where heat generated in the driver could 
be removed most efficiently. 

Figure 3b shows some of the data obtained with this 
refrigerator, which reached a Tc of -70 °C and had a 
cooling power of several watts with acoustic pressure 
amplitudes of 3% of the mean pressure. The curves in 
the figure were calculated using publicly available soft- 
ware5 based on the theory developed by Rott and are in 
reasonable agreement with the data. The calculations 
have no adjustable parameters; they simply use the ge- 
ometry of the apparatus and the properties of helium gas. 

Commercial developments 
Attempts to develop practical devices based on thermo- 
acoustics began just a few years ago, throughout the US 
and on four other continents. This surge of interest was 
due to the interaction of several factors: the new "tech 
transfer" emphasis at government laboratories; the engi- 
neering development of some thermoacoustic refrigerators 
at the Naval Postgraduate School in Monterey, California, 
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under the enthusiastic leadership of Steve Garrett; the 
crisis in the refrigeration industry caused by the destruc- 
tion of stratospheric ozone by chlorofluorocarbons; and the 
marriage of thermoacoustic engines with orifice pulse-tube 
refrigerators (discussed below). To illustrate the breadth 
of applications under way, I have chosen four examples 
from among the corporate-sponsored thermoacoustics pro- 
jects that I know of. 

The thermoacoustic refrigerator shown in figure 4a is 
a prototype for a food refrigerator. Built at CSIR (formerly 
called the Council for Scientific and Industrial Research) 
in the Republic of South Africa with corporate support, it 
is a direct descendant of a thermoacoustic refrigerator6 

that was originally intended for preserving blood and urine 
samples on the space shuttle. It is a symmetrical, essen- 
tially half-wavelength device driven by modified loud- 
speakers on both ends, with two stacks, each with two 
heat exchangers. The pressure node is at the center of 
the bottom section. Use of two stacks maximizes cooling 
power for a given resonator size, all other things being 
equal. For compactness, the fiberglass resonator is formed 
in a "U" shape, with little effect on the acoustics. Cooling 
power (typically 100 W) and temperatures are appropriate 
for residential food refrigeration in most of the world. 
(American refrigerators are larger than most and hence 
require about twice as much cooling power.) 

Scientists at Ford Motor Company built the thermo- 
acoustic refrigerator depicted on the cover of this issue. 
The driver is at the displacement maximum of the quar- 
ter-wavelength standing wave (instead of at the pressure 
maximum as in the refrigerators of figures 3a and 4a). 
Thus in this refrigerator acoustic power is delivered with 
small pressure and large volumetric displacement, accom- 

plished by using a large area in the driver. The driver's 
losses flow to the cold heat exchanger, but this is a minor 
problem if the driver is efficient and Tc is not too far below 
Th. Water inlet and outlet tubes (gray in the diagram), 
essentially serving as the hot and cold thermal reservoirs, 
are clearly visible at the heat exchangers. This device 
operates at 10 bars with either helium driven at 430 Hz or 
a mixture of 80% helium—20% argon driven at 260 Hz. 

At Tektronix Corporation in Beaverton, Oregon, re- 
searchers are developing a system for cooling electronics 
to cryogenic temperatures. A thermoacoustic engine 
drives an orifice pulse-tube refrigerator,7 which is related 
to both Stirling and thermoacoustic refrigerators. The 
system thus constitutes a heat-driven cryogenic refrigera- 
tor having no moving parts; it has cooled to 150 K It 
has a half-wavelength resonator with resistively heated 
thermoacoustic engines near both ends. In a sidebranch, 
500 W of acoustic power from these engines is delivered to 
the pulse-tube refrigerator. 

The largest thermoacoustic engine to date, under 
construction at Cryenco Inc in Denver, Colorado, will also 
drive a pulse-tube refrigerator. The heat source for the 
engine will be natural gas combustion. Intended for 
industrial and commercial liquefaction of natural gas it 
will measure 12 meters long, and will use two 1/2-nieter- 
diameter spiral stacks (figure 4b) to produce 40 kW of 
acoustic power at 40 Hz in 30-bar helium gas. The device 
should be completed this year. 

Power and efficiency 
The power of thermoacoustic devices is roughly propor- 
tional to pavgAa(p0SC/pavg)2, where pavg is the average pres- 
sure, A the cross-sectional area of the stack, a the sound 
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speed of the gas and posc the amplitude of the oscillatory 
pressure. Helium (with high sound speed) is often used, 
typically at a pressure above 10 bars. In the examples 
cited in the previous section, p0S<;/Pavg values range from 
0.03 to 0.10, chosen as design compromises between the 
high power density achieved at high amplitude and the 
high confidence in the quantitative accuracy of Rott-based 
calculations at low amplitude. 

The efficiency of thermoacoustic devices falls below 
Carnot's efficiency because of five major sources of irre- 
versibility—"inherent," viscous, conduction, auxiliary and 
transduction losses: 

TWO COMMERCIALLY 
INTERESTING thermoacoustic 
systems, a: Half-wavelength 
refrigerator with two stacks 
driven by two loudspeakers was 
built at CSIR in South Africa. 
It operates at 120 Hz with 
15-bar neon. The heat 
exchangers are located where the 
water lines connect to the green 
resonator body.  (Courtesy of 
Peter Bland, Quadrant.) b: One 
of the two spiral stacks for the 
largest thermoacoustic engine to 
date, being built by Cryenco 
Inc.  (Courtesy of John Wollan, 
Cryenco.) FIGL.RE4 

> Inherent loss arises from the heat transfer to and from 
each parcel of gas in the stack as shown in figures 1 and 
2: Whenever heat dq is transferred across a nonzero 
temperature difference 8T, the entropy of the universe 
increases8 by dq ST/T2. This irreversibility is unavoidable 
in the thermoacoustic process, relying as it does on im- 
perfect thermal contact for the correct phasing between 
pressure oscillations and thermal expansion-contraction. 
> Viscous loss in the stack occurs because work must be 
done to overcome viscous shear forces as the gas oscillates 
between the plates. The viscous penetration depth 
8 = ^fi/irfp (where ß is viscosity) is comparable to the 
thermal penetration depth, so most of the space between 
the plates experiences significant viscous shear (and the 
parcels in figures 1 and 2 actually experience significant 
shape distortions). 
t> Simple heat conduction from the hot heat exchanger to 
the cold one through the stack material and the gas is a 
further loss. 
> These first three losses also occur in auxiliary parts of 
a thermoacoustic system: Viscous and inherent losses in 
the heat exchangers and conduction loss in the portion of 
the resonator case surrounding the stack are usually the 
most important auxiliary losses in large systems, while 
viscous and inherent losses on other surfaces in the 
resonator are important in small systems. 
t> Electroacoustic power transducers introduce additional 
loss. For the refrigerators shown on the cover and in 
figures 3a and 4a, the dominant transducer loss is Joule 
heating in the copper wires of the loudspeakers. 

For many high-power-density designs, the first four 
sources of irreversibility contribute roughly equally to the 
inefficiency of thermoacoustic devices. About 40% of Car- 
not's efficiency is typical of the best current designs, using 
computer modeling based on Rott theory, for both engines 
and refrigerators; higher efficiencies are possible if power 
density is sacrificed, and lower efficiencies are the reality 
when electroacoustic transduction losses, losses in auxil- 
iary equipment and deviations from Rott theory at high 
amplitudes are included. The most efficient engine built 
to date delivered acoustic power to its load at 23% of 
Carnot's efficiency (based on total heater power); the most 
efficient refrigerator9 provided gross cooling power at 20% 
of Carnot (based on acoustic power delivered to the reso- 
nator). These efficiencies are impressive for devices with 
no moving parts, and they are comparable to the efficien- 
cies of small, inexpensive commercial equipment.   They 
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RECENT MEASUREMENTS AND CALCULATIONS for a 
thermoacoustic engine similar to that shown in figure 1, but 
with no transducer. The heater power Qh, hot temperature 7h 
and oscillating pressure amplitude p?sc are all normalized, but 
note the different vertical scales.  Circles are measurements 
from ref. 16; lines are calculations done using ref. 5. Red is for 
helium at 0.96 megapascals; green, neon at 0.70 MPa; blue, 
argon at 0.359 MPa. These pressures were chosen to make the 
thermal penetration depth 8K equal to 0.22 mm at the cold end 
(TJ in all cases. FIGURE 5 

fall far short of the efficiencies of well-engineered, expen- 
sive steam turbines or large-scale vapor-compression re- 
frigeration equipment, for which over 80% of Carnot's 
efficiency has been achieved. 

If future inventions and improvements to basic un- 
derstanding can improve the efficiency or raise the power 
density of thermoacoustic engines and refrigerators with- 
out sacrificing their simplicity, they will find more wide- 
spread use. One way to increase efficiency, first demon- 
strated by Hofler,4 is to use a mixture of helium and a 
heavier inert gas as the working substance. The Prandtl 
number a = (JLCP/K = 8% IS2 is a dimensionless measure of 
the ratio of viscous to thermal effects in fluids; lower 
Prandtl numbers give higher efficiencies in thermoacous- 
tics. Kinetic theory predicts a - % for hard-sphere mona- 
tomic gases, and indeed real monatomic gases have values 
very close to this. (For instance, helium at room tempera- 
ture has <r = 0.68.) Fortunately mixtures of a heavy and 
a light monatomic gas have Prandtl numbers significantly 
lower than %. The thermoacoustic refrigerator intended 
for the space shuttle that was mentioned above6 used 89% 
helium and 11% xenon, with a = 0.27, to achieve its 20% 
efficiency, compared with 17% efficiency for the similar 
apparatus shown in figure 3 when optimized for pure 
helium gas. However, with a sound speed less than half 
that of pure helium, the gas mixture reduced the power 
density. 

Beyond the basics 
In the US our understanding of thermoacoustics is ad- 
vancing beyond the foundations established by Rott, 
thanks to physicists at many universities and national 
laboratories. 

Rott and his collaborators considered two geometries 
for thermoacoustic processes: parallel-plate channels (most 
commonly used, as we have discussed above) and circular 
channels. Wondering if some geometries might be better 
than others, W. Patrick Arnott, Henry Bass and Richard 
Raspet10 at the University of Mississippi added rectangu- 
lar and triangular channels, established a common for- 
malism for all channel geometries and concluded that 
parallel-plate channels are the most efficient. The reason 
is subtle: Viscous losses occur mostly at and near channel 
walls, within a characteristic distance equal to the viscous 
penetration depth 8^, while the desirable thermoacoustic 
effects portrayed in figures 1 and 2 occur mostly away 
from walls, at a characteristic distance equal to the ther- 
mal penetration depth 8K from them. Thus for the usual 
case of 8ß ~ 8K, extremely concave channels (imagine tri- 
angles) squeeze the desirable effects into a small fraction 
of the channel cross-sectional area in the center, leaving 
a relatively large area near the perimeter causing viscous 
loss. Capitalizing on this analysis, Ulrich Müller has 
proposed that the "channels" formed by the space in a 
two-dimensional array of parallel wires11 (aligned along 
the direction of acoustic oscillation and spaced by a few 8K) 
would give even higher efficiency than parallel plates. 
Tapered channels12 and modifications of the phase be- 
tween pressure and velocity13 are also being studied for 
improving efficiency. 

The most promising route to higher power densities 
is increasing (posc/pavg)2, but doing so will take us further 
from the range of small oscillations on which Rott theory 
and its current extensions are fundamentally based. 
Rott's assumptions include the following: 
> a gas displacement amplitude much smaller than the 
length of the stack and other components 
> a Reynolds number of the oscillations small enough to 
avoid turbulence 
>Pose «Pave- 
Extensions beyond each of these limitations have begun. 

At the Naval Postgraduate School, Anthony Atchley 
and his colleagues14 have undertaken high-amplitude ex- 
periments on the simplest possible thermoacoustic device, 
a short stack with no heat exchangers in a loudspeaker- 
driven resonator. Their data extend into the large-gas- 
displacement regime, with amplitudes approaching the 
length of the stack. 

A growing body of literature is establishing the charac- 
teristics of several regimes of turbulent oscillatory flow15 at 
high Reynolds numbers, although as yet there are no fun- 
damental studies of heat transfer under these conditions. 

A similitude study has shown16 how to organize and 
correlate experimental data in the high-amplitude range, 
allowing meaningful experimental studies of scale models 
of thermoacoustic devices reminiscent of wind-tunnel stud- 
ies of model aircraft. 

Researchers at several institutions, including Johns 
Hopkins University and Los Alamos and Livermore Na- 
tional Laboratories, are beginning numerical and analyti- 
cal studies that seek to illuminate other features of high- 
amplitude thermoacoustics. 
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Figure 5 illustrates the amplitude dependence of the 
accuracy of our current understanding of thermoacoustic 
phenomena. The data shown as points were taken from 
a no-load thermoacoustic engine.16 The plots can be in- 
terpreted as displaying the required heater power Qh and 
temperature Th at the hot heat exchanger for maintaining 
steady oscillations at a given pressure amplitude posc. 
Three monatomic gases were used, with average pressures 
selected to make SK the same for all three cases, ensuring 
similarity; the data for all three gases do indeed fall along 
the same curves. The lines are the results of calculations 
based on Rott's theory, the dimensions of the apparatus 
and the properties of the gases. The calculations agree 
well with the measurements in the limit of small posc, as 
expected from the assumptions in the theory. However, 
as Posc/Pavg approaches 0.1, the measurements deviate 
significantly from calculations. The deviations are not 
surprising, in that they are of the same order as p0M/pavg, 
but they are disturbing from a practical point of view 
because both Qh and Th deviate in directions that decrease 
the efficiency. 

The fundamentals of thermoacoustics at low ampli- 
tudes are reasonably well understood, and a few practical 
uses of thermoacoustics have been tentatively identified. 
Much study, engineering and especially invention remains 
to be done before these simple, elegant devices reach their 
full potential. 

Most of the fundamental research on thermoacoustics in the US is 
supported by the Department of Energy and the Office of Naval 
Research. Most of the applied developments are supported pri- 
vately but with important contributions from ARPA, DOE and the 
Navy. I am particularly grateful to DOE's Office of Basic Energy 
Sciences for its steady support of thermoacoustics research at Los 
Alamos. This article benefited from constructive criticism by Hank 
Bass, Steve Garrett and Tom Hofler. 
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