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ABSTRACT 

This report serves to document progress made to date on National Science Foundation 
Project #97-13481, Earthquake Hazard Mitigation Program. The focus of this phase of the 
project is the development of an improved solution algorithm for fast transient analysis of large, 
locally nonlinear structures using time domain structural synthesis. Time domain structural 
synthesis is a general and exact formulation for transient problems in structural modification, 
substructure coupling, and base excitation. The formulation is characterized by the governing 
equation of the synthesis, which is a nonlinear Volterra integral equation. The governing 
equation makes use of impulse response functions calculated for those coordinates of the 

(sub)structures subjected to forces of synthesis (e.g. modification forces, coupling forces). This 

physical coordinate formulation provides for a largely unrestricted and exact model reduction, in 

that only those coordinates of interest need be retained in the synthesis. 

The report documents the development of several algorithms intended to improve upon 
the original algorithm developed by the first author. The last algorithm developed is presented 
first in this report, as this algorithm meets the stated goals of the project. This algorithm is a 
newly developed recursive, block-by-block convolution solution to the governing nonlinear 
integral equation. As is demonstrated with a simple but realistically large nonlinear base 
excitation problem (51,500 DOF finite element model), the new algorithm provides a 78% 
reduction in time required for the nonlinear transient base excitation solution, as compared with 
traditional direct integration calculated using a widely-used commercial finite element program. 
This very large savings in computer time is obtained for a single analysis, i.e. assuming no prior 

calculations have been made for the impulse response functions of the (sub)structures. The new 
algorithm provides an even greater reduction in computer time for all subsequent analyses. As 
shown in the example problem, once all required impulse response functions have been 
calculated, the nonlinear base isolation solutions calculated using the new recursive, block-by- 

' block convolution algorithm take approximately 7 seconds, as compared with the direct 
integration solution which takes approximately 30 minutes. This rapid reanalysis capability will 
facilitate the development of numerical optimization for the design of nonlinear isolation. The 
theory of transient synthesis is documented, along with a new proof of the exponential 
convergence properties of an iterative solution to the governing nonlinear integral equation. 
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1.        INTRODUCTION 

The transient analysis of large and complex structural systems is a computationally 

demanding task exacerbated by the presence of structural and mechanical nonlinearities. The 

computational demand of these problems prohibits the repeated analyses required in a design 

effort, such as in structural optimization where various responses are required for the calculation 

of the objective function, constraints, sensitivities, and for the generation of approximations to be 

used within the optimizer. 

A class of nonlinear structural dynamics problems with numerous applications is 

characterized by the presence of localized nonlinearities. For the purposes of this work, this class 

of problems is defined as follows: 

Definition of a Locally Nonlinear Model: A model where the nonlinear load paths 

do not contain any internal degrees-of-freedom (DOF), i.e. each nonlinear load path 

(nonlinear element) is associated solely with DOF shared by linear load paths (elements). 

This class of problems can be further informally restricted by recognizing that the formulations 

to be developed in what follows provide a greater reduction in computing time (as compared 

with direct integration) for models where there are relatively few nonlinear load paths, or in other 

words, where the number of DOF associated with nonlinear load paths is small relative to the 

total number of DOF in the model. The problem of nonlinear earthquake isolation of a linear 

structure falls into this category, wherein the isolator provides a nonlinear load path between the 

building model DOF and "ground." 

A locally nonlinear model allows for algorithmic approaches which exploit this 

characteristic to achieve reduced computer time requirements. The most common strategy for 

this exploitation is where the localized nature of the nonlinearities facilitates their treatment as 



terms on the right hand side, i.e. applied loads of differential equations, albeit loads which are 

functions of system responses, and possibly with time, see for example [1]. 

The approach taken in this work is to treat the problem as a physical coordinate (non- 

modal) structural modification problem, wherein the nonlinear elements are "installed" into the 

linear model as structural modifications. The structural modification formulation belongs to the 

broader category of physical coordinate structural synthesis [2-6], which includes substructure 

coupling and constraint imposition as well. Such an approach not only provides a substantial 

reduction in solution times, but provides for a generality in the definition of the problem and a 

flexibility in its application which is unique. We will describe structural synthesis here. 

In a sense, structural synthesis treats the nonlinear element responses as applied loads as 

well. However, what distinguishes structural synthesis from other numerical approaches are the 

following characteristics: 

• The governing equations for structural synthesis are exact. 

• An implicit exact model reduction is available, in that, as a minimum only those DOF 
directly associated with nonlinear elements and applied loading need be retained. Any 
additional physical DOF of interest to the analyst can be retained as well. In other words, 
the transient synthesis solution time is independent of model size. 

• Very general nonlinearities can be treated. 

• The linear portion(s) of the model is solved once. 

• Very fast solution times are obtained, an intrinsic property of the formulation. 

1.1     Summary of Results Reported lor Year One 

The goal of the Year One phase of this project is stated here: 

The development of a highly efficient and general formulation for nonlinear transient 
structural synthesis which will provide fast linear or nonlinear transient re-analysis with 
arbitrary loading for large linear structural FE models which can have localized, but 



generally nonlinear components of arbitrary magnitude. The nonlinear formulation will be an 
extension of prior research of the PI [3]. 

This goal is met by the algorithm developed in Section 3 of this report. 

1.2     Notes on Algorithms Developed - Organization of Report 

The work reported herein results in the development of a fast numerical solution 

algorithm for the governing equation of locally nonlinear transient structural synthesis. This is 

the primary goal of the Year One effort. In pursuit of this goal, three general recursive algorithms 

were developed, and these algorithms are numbered in the order in which they were developed. 

However, the third algorithm developed resulted in the recursive block-by-block convolution 

algorithm (Recursive Algorithm 3) which meets the stated goals (Section 1.1) for this phase of 

the project. This algorithm will be the focus of continued work, and this algorithm will be 

presented first (Section 3). 

We will detail all of the algorithms developed, including those either deemed ineffective 

for the task at hand (nonlinear isolation simulation) or surpassed by algorithms subsequently 

developed (and described herein) for the purpose of documenting "lessons learned," and to 

document novel results obtained, of potential value in other areas. We summarize briefly the 

algorithms here. 

The governing equation for transient structural synthesis is a nonlinear Volterra integral 

equation, involving a convolution-type kernel [3]. The convolution-type kernel suggests the 

recursive transition-matrix approach to the solution of first-order ordinary differential equations 

as a potential improvement over the (non-recursive) iteration solution presented by Gordis and 

Radwick [3], which itself demonstrated an order-of-magnitude reduction in computing time 

required, relative to direct nonlinear transient integration. A recursive transition-matrix approach 

is taken in the work of Inaudi and De La Llera [7], and this work provided additional motivation 

10 



in this direction. However, in [7], the recursion was based on the transition matrix for the system 

model, and hence requires the calculation of a large matrix exponential, with no provision for 

model reduction. We must therefore consider such an approach to be of limited value for large 

structural models. Our goal was to explore the development of a recursive transition-matrix 

algorithm appropriate for large models, i.e. having an implicit model reduction. The 

developments and results of this phase of the work are detailed in Section 4, and include 

Recursive Algorithms 1 and 2, which are summarized here. 

The first two of the above-mentioned algorithms are based on this transition-matrix 

approach. These algorithms are as follows: 

1.2.1 Recursive Algorithm 1 (RA1) 

RA1 is included as a necessary precursor to the algorithm RA2 which follows, rather than 

due to any particular novelty or computational value. The algorithm RA1 is based on transition 

matrices constructed from the modal transient response in first-order (state-space) form. As will 

be shown, this algorithm is inherently unstable, and can only be made stable by the inclusion of 

unrealistic levels of system damping. It is included, however, as a precursor for the following 

algorithm, and as a baseline for comparison purposes. 

1.2.2 Recursive Algorithm 2 (RA2) 

This algorithm develops a new recursive transition matrix solution for transient structural 

dynamics. The algorithm defines a complex modal state vector, and an associated transition 

matrix which is based on second-order modal differential equations. The motivation for the 

development of this algorithm was to avoid the formulation of the problem in terms of first-order 

differential equations, i.e. such as in RA1, in order to maintain consistency of the formulation 

with common tools for structural dynamics analysis, e.g. commercial finite element programs. 

Furthermore, as will be shown, RA2 achieves a significant computational advantage relative to 

11 



RA1, as RA2 is more "diagönalized." Unfortunately, RA2 is also inherently unstable, again, only 

stabilized by the inclusion of substantial system damping. 

1.2.3 Recursive Predictor-Corrector Algorithms 1 and 2 (RA1PC and RA2PC) 

The inherent instability of algorithms RA1 and RA2 motivated their reformulation as predictor- 

corrector algorithms, similar to the approach in [7]. We will refer to these implicit versions as 

RAlPCandRA2PC. 

Algorithms RA1 and RA2 are reformulated as predictor-corrector algorithms, with a 

single corrector step. The stability calculations for RA1PC and RA2PC indicate that it is possible 

to stabilize these algorithms by going to implicit versions. However, the results indicate that 

further development of these algorithms would be necessary in order to improve on the 

performance already obtained by Gordis and Radwick [3]. Hence, Recursive Algorithm 3 is 

developed. 

1.2.4 Recursive Algorithm 3:   Block-by-Block Convolution 

This algorithm is markedly different from RA1 and RA2 in that no transition matrix is 

employed. This algorithm preserves the physical coordinate formulation originally developed by 

Gordis [2] and Gordis and Radwick [3], and hence preserves the implicit and unrestricted exact 

model reduction, concomitant with the formulation. The algorithm will be shown to be 

exponentially convergent, for a general class of nonlinearities. The current version of the 

software makes use of an FIR filter to calculate the convolution sum, as implemented in the 

MATLAB® built-in convolution function ("CONV"). It should be noted that the FIR 

implementation in MATLAB® is not optimally efficient as one can develop a filter which 

computers only those elements required. However, this characteristic of MATLAB's convolution 

12 



algorithm will yield conservative computer time comparisons. Recursive Algorithm 3 (RA3) is 

the first algorithm discussed, in Section 3 of this report. 

13 



2.        INTEGRAL EQUATION FORMULATION FOR 
TRANSIENT STRUCTURAL SYNTHESIS 

As the Year One task focuses on the development of an improved solution algorithm for 

the governing equation for locally nonlinear transient structural synthesis, we provide the 

background in the relevant theory. The reader is referred to Gordis [2] and Gordis and Radwick 

[3] for the complete development. The following section is abstracted from [3]. 

The theory defines a transient analysis that is independent of model size, in that the 

theory is cast in physical coordinates (i.e. non-modal), and the transient analysis is done using 

only those structural DOF of interest. These DOF must include, as a minimum, those associated 

with the nonlinear elements, which are treated independently of the (linear) model. Additionally, 

other DOF for which synthesized response information is desired can be included as needed. 

Therefore, it is possible to synthesize the transient response for an arbitrarily large model using a 

minimal number of DOF, the minimum number defined only by the number of nonlinear 

elements in the model. This unique feature of the theory has been demonstrated for the linear 

transient formulation [2], the nonlinear transient formulation [3], and in the frequency domain in 

[4-6]. Functioning as a re-analysis procedure, the formulation directly calculates the new 

transient response for a system resulting from structural changes and/or coupling with other 

structures, without a reassembly or full reanalysis. These features will be more fully described in 

what follows. 

Structural synthesis also provides for substructure coupling. This feature allows nonlinear 

elements to be isolated by division of the system into substructures, which provides additional 

computational advantages in that the synthesis can exploit inherent physical boundaries in a 

problem. One immediate benefit resulting is that linear substructures are solved once, which 

constitutes a significant savings in that the eigensolution is typically the most expensive part of a 

14 



dynamic analysis [8]. The synthesis is used to connect the substructures through the nonlinear 

elements, and to calculate the combined system nonlinear transient response. 

Each substructure is described by impulse response functions calculated at the DOF 

where nonlinear elements are to be installed, where loads are applied, and at other DOF for 

which synthesized nonlinear transient response is required. For each linear substructure, the IRF 

are most efficiently calculated using modal superposition. However, the use of modal 

superposition for IRF calculation does not render structural synthesis a "modal method," for the 

following reason. The IRF are calculated using a sufficient number of modes to ensure 

convergence. Once these converged IRF are calculated, they are indistinguishable (to a given 

level of precision) from the "exact" IRF, which are indeed physical quantities. We can contrast 

this approach with modal methods of structural synthesis, where the convergence relative to the 

number of retained modes is determined from the solution of the synthesized system. Typically, 

a modal synthesis procedure generates, from substructure solutions, a coupled system model for 

which an additional solution is required. Furthermore, modal synthesis methods are inherently 

approximate. The governing equations of structural synthesis to be developed here are exact. The 

only errors incurred are those avoidable errors resulting from retaining an insufficient number of 

modes, and those errors common to all numerical integration schemes, which are discretization 

errors, and truncation errors where numerical derivatives are used. 

2.1     Notation Used 

In what follows, all vector quantities are denoted by boldface type, e.g. x. A scalar 

element of a vector quantity will be denoted by a subscripted plainface type, e.g. xi5 which 

denotes the i* element of the vector x. We will define various coordinate sets, which often are 

defined as subsets of a vector of coordinates. For example, if the coordinate vector x is 

comprised of two subsets of coordinates, say the a set and the ß set, we will denote these 
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coordinate subsets as xa and xß. The coordinate set contained in the vector x is the union of 

subsets a and ß. The vector x can be written as x = xj Xß . A particular vector is denoted 

by a subscripted boldface symbol, such as the i* eigenvector, denoted tyr 

We will also need to distinguish quantities associated with various mathematical domains 

such as physical, modal, state-space, and the vector quantities comprised thereof. Quantities 

comprised of, or associated with physical (nodal) coordinates will have no embellishment. 

Quantities comprised of, or associated with modal coordinates will be denoted with the tilde 

embellishment (•). Quantities comprised of, or associated with state-space coordinates will be 

denoted with the caret embellishment (•). Quantities comprised of, or associated with the 

complex modal coordinates (to be defined) will be denoted with the bar embellishment (•). In 

general, these will also be evident from context. 

The various algorithms presented involve discrete time histories, e.g. x(kAt) or x(kT) 

where the sample length is At =T in seconds. We will abbreviate this notation with the following 

superscript notation, x(kAt) = x(kT) = xw. 

2.2     Theory 

In the context of the physical coordinate synthesis formulation to be developed, a 

structural system is defined to consist of one or more uncoupled substructures. A single 

governing equation for nonlinear transient synthesis will be derived and this equation will 

address each of the following three general analysis categories: 

(1) Structural modification - the addition and/or removal of linear and/or nonlinear structural 
elements 

(2) Prescribed base motion - application of base motion to structure through linear and/or 
nonlinear elements 

16 



(3) Substructure coupling - the joining of substructures (a linear analysis) 

Each of the above analysis categories defines a set of DOF. Referring to Figure 1, a structural 

system is shown, comprised of two substructures, each of an arbitrary number of DOF. 

"NL" arbitrary nonlinear 
structural element: 

Set Definitions 
m-set: Modification 
b-set: Base excitation 
c-set: Coupling 
i-set: Additional DOF 

y(t) =Prescribed 
base motion 

Figure 1. General structural system for synthesis comprised of two substructures 

The subset of DOF associated with structural modifications is denoted the "m-set" and 

may include DOF from all substructures. The subset of DOF associated with prescribed base 

motion excitation is denoted the "b-set" and again, may include DOF from all substructures. The 

subset of DOF associated with substructure coupling is denoted the "c-set" and may include 

DOF from all substructures. Given that all nonlinear elements are installed in the synthesis, the 

substructures are linear, and hence coupling is a linear synthesis [2]. The subset of DOF denoted 

the "i-set" refers to those system DOF about which synthesized response information is required, 

but are not directly involved with the synthesis, either modification, base excitation, or coupling. 

The DOF sets are: 

m-set: Modification 
b-set:  Base excitation 
c-set:   Coupling 
i-set:   Additional DOF 

17 



While much of the attention in this work will focus on single substructure systems, we 

will often refer to "substructures" as opposed to "structures" in keeping with the formulation of 

the problem as one of structural synthesis. 

2.3     Basic Definitions for a Substructure Model 

A finite element (FE) discretization produces the following linear (sub)structure model: 

Mx + Cx + Kx = fe(t) (2.1) 

where the mass matrix M is (N x N) symmetric positive definite, the damping matrix C is (N x 

N) symmetric positive-semidefinite, and the stiffness matrix K is (N x N) symmetric positive- 

semidefinite. The inertial nodal displacement vector x(t) is (N x 1), as are the nodal velocity and 

acceleration, denoted x(t) and x(t) respectively. The loading vector fe(t) contains time- 

dependent loads acting at the nodal degrees-of-freedom (DOF). The FE model possesses N DOF. 

In the case of base excitation (e.g. ground motions), the loading vector can be written as, 

fe(t) = Kgy(t) + Cgy(t) (2.2) 

where Kg and Cg are the stiffness and damping matrices associated with (multiple) base 

displacement and velocity excitation. Note that applied forces and moments, and base excitation 

may co-exist. 

The mass and stiffness matrix possess the eigenpairs, (Oj,^, i=l,2,..,N. The eigenvalue 

oohas the units sec"1. The structure may possess up to 6 rigid-body modes, distinguished by co—0, 

i = 1,2,..,r < 6 where r is the number of rigid body modes possessed by the FE model. The 
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T following orthogonality relations are assumed to hold for all linear (sub)structures: <E> M€> = I 

and O K<I> = diaglco j, i.e. the modal matrix $is the mass-normalized. Also, for lightly 

damped   structures,   C    is   commonly   defined   to   be   proportional,   and   hence, 

C = MO diag(2gco)0 M where ^ is the dimensionless damping ratio for the i* mode. This 

expression is valid for 0 < C, < 1 (underdamped). For an underdamped structure, the i* damped 

natural frequency is (0di = (0;^/l - q^ 

2.4     Inertia! and Relative Coordinate Subsets 

Given the importance of base excitation to this work, the use of relative coordinates 

instead of inertial coordinates will allow the direct application of prescribed acceleration to the 

model, eliminating the need to differentiate a base displacement or velocity time history. Of 

course, if inertial displacements or velocities are to be recovered, the acceleration time history 

must be integrated. 

We can define a set of prescribed ground displacement and velocity time histories, y^t), 

yj(t), i=l,2,...,g. We also define g subsets xi of the inertial coordinates x, where each member of 

each subset is to be replaced with a coordinate relative to a specific ground motion, y;(t). These 

coordinate subsets are denoted Zj(t), j = l,2,...,g, where each relative coordinate set, zi has nj 

coordinates. This set definition allows any subset of inertial coordinates to be redefined as 

relative to any of multiple ground motions being applied to the model, and allows the retention 

g 
of m inertial coordinates, x„„ if required. Therefore, the length of the z vector is N = m + £ n;. 

j=l 

The coordinate and ground motion vectors can be constructed as follows, 
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m 

zl 
z = i y = 

yi(t) 

yg(t) 

and the coordinate transformation between the exclusively inertial coordinate vector and the 

mixed inertial/relative vector is, 

x = z + Gy. (2.3) 

Transforming Eq. (2.1) provides, 

Mz + Cz + Kz = fe(t) - MGy - CGy - KGy. (2.4) 

Since CG=C, and KG=Kg (see Eq. (2.2)), we have, 

Mz + Cz + Kz = f<r)(t) - MGy = t^\t)- Mgy (2.5) 

where the superscript (r) is used here to denote that elements of the loading vector containing 

base excitation terms have been "zero-ed," consistent with the transformation to relative 

coordinates. We have kept the base acceleration terms separate from f^ for clarity, although we 

can redefine fe = f^ - M„y, recognizing that 

Mz + Cz + Kz = fe (2.6) 

is essentially the same equation as Eq. (2.1), but where the use of the symbol z emphasizes that 

relative coordinates are included. 

20 



2.5     Derivation of Governing Equation of Nonlinear Transient Synthesis 

The total solution for (linear) transient response can be written in terms of the 

convolution integral, 

x(t) = xh(t) + jH(t-x)f(T)dT, 
0 

(2.7) 

where x is the total forced response, xh is the homogeneous solution, f is the excitation vector, 

and these vectors are partitioned according to the previously defined sets of DOF, e.g. 

x(t) = 

*i(t)1 [fi(t)l 
*c(t) 

xm(t) 
f(t)=- fc(t) 

fm(t) 

xb(t). k'b(0 

(2.8) 

This partitioning is implicit in all matrix equations which follow, unless otherwise indicated. The 

matrix H is the impulse response function (IRF) matrix, any element of which can be written as, 

^P/SP 

Hij(t)= X 4>Fnt+  2 
» M-vopt; 

p=l p=r+l ^dp 
sin(codpt), (2.9) 

where fyf is the i* element of the p* eigenvector of the substructure prior to synthesis, cop and (Ddp 

are the p"1 undamped and damped natural frequencies, respectively, £p is the p* modal damping 

ratio, r is the number of rigid body modes, and n<N is the number of modes required for 

convergence. The number of elastic modes is n-r. Note that the IRF matrix H contains elements 

from all substructures involved in the synthesis, and is partitioned as described above. 

We can decompose each excitation component into an externally applied portion and a 

component due to synthesis, as follows. The i-set DOF are by definition subject only to 

externally applied excitations, so 

fi(t) = ff(t) .   (2.10) 
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where the superscript "e" indicates an externally applied excitation. The c-set DOF are subject to 

externally applied excitations as well as coupling reactions hence, 

fc(t) = fc
e(t)-Rfc*(t) (2.11) 

where the ~ overstrike indicates the coupling reaction, R is a Boolean matrix reflecting the 

equilibrium which exists between the coupled DOF [4], and the * superscript indicates a 

synthesized (unknown) quantity. The m-set DOF are subject to externally applied excitations as 

well as reactions due to the modifications hence 

fm(t)=f^(t)-fm(x;(t),x;(t))=4(t)-f;(t) (2.i2) 

where the reactions due to the modifications are an arbitrary nonlinear function fm(t) of the 

synthesized displacements and velocities (accelerations and time). The b-set DOF are subject to 

externally applied excitations as well as excitations due to prescribed base motion y acting 

through an arbitrarily nonlinear structural element, typically involving displacement- and 

velocity-dependent forces only, i.e. 

fb(t) = fb
e(t) - fb(x;<t) - y(t),xb(t) - y(t)) = fb

e(t) - fb*(t) (2.13) 

Therefore, the governing equation for synthesis is, 

x * (t) = x(t) - j H(t - x)f * (t,x,x * (x),x * (x))dx (2.14) 
0 

where x(t) contains both the initial displacement and response due to externally applied 

excitations, 

x(t) = x0 + /H(t-TXe(T)dT (2.15) 
0 

and f*(t) are the synthesized reactions acting on all DOF sets, 
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0 

f*(t)= f£(;; (2.16) 

.to. 

Equation (2.14) is a nonlinear Volterra integral equation of the second kind, and is the central 

equation of this work. Direct solution is possible for linear problems; for nonlinear problems 

iterative solutions are required, and these exploit the contractive nature of the integral operators 

in achieving excellent convergence properties, as will be demonstrated. 

2.6     Solution of Governing Equation for Synthesis: 
Uniqueness and Convergence 

In order to investigate issues of solution uniqueness and convergence of Eq. (2.14), the 

method of Picard Iteration will be used [9]. A few preliminary concepts and definitions from 

analysis are included, without proof, for completeness. Proofs may be found in [10, Ch. 1]. 

We define the following metric on the space of continuous vector functions C(n)[0,t'] as: 

d(x(t),y(t)) = maxIKO-y^lL^lx-yll (2.17) 
t€[0,t'] 

where x(t), y(t) e C(n)[0,t'], hence defining a metric space C = (C(n),d). A (scalar) sequence (xn) in 

the metric space (C(n),d) is convergent if there is an xe C(n) such that  lim d(xn,x) = 0. Then, x 
n—»oo 

is the limit of (xn) and  lim xn = x, or xn —> x. A sequence (xj in the metric space (C(n),d) is 
n—>°° 

CöMcfcy-convergent if for every 8 > 0 there is an N=N(e) such that d(xm,xn) < s for every m,n > 

N. The metric space C(n) is complete if every Cauchy sequence in C(n) converges, i.e. has a limit 

which is an element of C(n). This distinct and important characteristic of completeness is needed 

as there exist spaces in which Cauchy sequences do not converge. Such spaces are said to be 

incomplete. It can be noted here that every convergent sequence in C(n) is a Cauchy sequence. 
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A fixed point of a mapping T: C(n) ->C(n) of a set C(n) into itself is an x 6 G(n) which is 

mapped onto itself, Tx = x. Let C = (C(n),d) be a metric space. A mapping T: C(n) —»C(n) is a 

contraction on C00 if there is a positive real number a < 1 such that for all x,y e C(n), 

d(Tx,Ty)<ccd(x,y) (2.18) 

Central to the effort of demonstrating the uniqueness of a solution to Eq. (2.14) is the 

Banach Fixed Point Theorem. Consider again the non-empty and complete metric space C = 

(C(n),d) and let T: C(n) -> C(n) be a contraction on C(n), Then T has precisely one fixed point [10, 

Sec. 5.1]. 

We now examine the nonlinear Volterra integral equation, 

X*(t) = x(t)-JH(t-x)f(t,X,X*(x))dX (2.19) 
o 

where x(t) is bounded, n^ < ||x(t)||.< m2, and continuous on [0,f] as it is the solution of a linear 

structural dynamics problem, and f(t,x,x (x)l is assumed to be continuous (for now), and hence 

<M for bounded bounded on the rectangle t e [0,f], x e [0,t']. We also assume that F(t,x,x*(x)j 

x*(x), i.e. x1<||x*(t)||< xu. We note that X*(T) can be reasonably assumed bounded as it is the 

(unknown) solution to a locally nonlinear structural dynamics problem where the boundedness of 

the response is a goal of design. Note also that f(t,x,x (x)j represents the action of some 

passive, semi-active, or active structural/mechanical element, and hence its boundedness is 

expected due to physical limitations. 

Following [10], consider the mapping defined by the successive approximation (Picard 

Iteration) of Eq. (2.19), 

t 

<+l(t) = x(t)-}H(t-x)f(t,x,x;(x),x;(x))dx = T(x*n(x))X;(x)) (2.20) 
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defined on the space of continuous functions, C(n)[0,t']. We examine the following elements from 

a(bounded)sequence 

•••Xn-l(t),x*(t),x*+1(t)... 

along with the metric, Eq. (2.17). Our first goal is to show that the mapping of Eq. (2.20) is a 

contraction, and to this end, the metric is used to measure the "distance" between inputs xn_i(t) 

and xn(t), and the respective outputs. This distance is, 

d(d(t).*!(t)) = dfTfx^t^x^t^Tfx^^tXx;.^!)))^.. 

X(t) - JH(t - T)f (t,T,X*n(T),X*n(T))dT - X(t) - JH(t - T)f (t.T.X^'fT), in-l(*))dT (2.21) 

or, 

d(x;+i(t),X;(t)) = JH(t " T){f (t.*C.<(t).<(T)) " f(t,T,X;U(T),x;U(T))}dT (2.22) 

or, letting 

fnM = f^^Xn^XnWJ-f^T^n.^xXx*.!^)), 

yields the following form of Eq. (2.21) 

*n+l(t) ~ xn(t)|| = d(x*+1(t),x* (t)) = jH(t-x)fn*(t,T)dt 

(2.23) 

(2.24) 

In order to be able to relate this metric of the outputs to the corresponding metric of the inputs 

(and   demonstrate   the   contractive   property   of   the   mapping   Eq.   (2.20)),   the 

quantity XIJ(T)-XI1_1(T) must be isolated, which is not possible in the form of Eq. (2.24), as 
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this quantity is operated on by the function f. To this end, we impose that f satisfy the Lipschitz 

condition, 

* / ■ v * 

fn(t,x) ^Lxn(T)-Xn_!(T) (2.25) 

for lt,x,xn(x),xn(x)j and ft,x,xn_1(T),xn_1(x)j in the domain of f, and where L is a positive 

constant. Note that the contraction, Eq. (2.18) is a Lipschitz condition with L = a < 1 [11]. 

Imposing the Lipschitz condition on the integral of Eq. (2.24), 

<+l(t)" <(t)\\ 1L j ||H(t - x)|| • ||x*n(T) -CiCO dx (2.26) 

We can evaluate Eq. for two members of the sequence, Xj (t) and X2(t), 

|x;(t)-x;(t)||<L}|H(t-x)||-m(x)-xt(x) dx. (2.27) 

Making use of the bounds on the members of the sequence (see paragraph following Eq. (2.14)), 

we find, 

^(O-x^tl^Ltlxu-x^HH^I. ' (2.28) 

Continuing in sequence, 

|x:(t)-x;(t)|<L}||H(t-x)||.|x;(x)-x^x)| dx 

which becomes, 

and, 

xj(t) - X;<t) < l(Lt||H(t)||)2|xu - Xl| 

x;(t)-x;(t)|<L}i|H(t-x)i|.|x:(x)-x;(x) dx 

(2.29) 

(2.30) 

(2.31) 
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which becomes, 

xSW-xJCt^L^lHCtf^-xJ 

and by induction the following can be established, 

K+i(t)-x;(t)|<l^0l(Lt||H(t 

which establishes the uniform convergence of the series, 

(2.32) 

n-1 
(2.33) 

2 xn+1(t)-xn(t) 
n=l 

(2.34) 

with no restriction on L, t, or ||H(t)||. To show the convergence of the sequence xn(t) of Eq. 

(2.20) to the solution x (t) of Eq. (4.5), we write xn(t) using a telescoping series, 

n-1, 
4(t) = xl(t)+z(x*+i(t)-x*(t)). (2.35) 

Given the convergence of Eq. (2.34), taking the limit of Eq. (2.35) as n->«> reveals that 

lim xn(t) exists for all 16 [0,f ]. This sequence is identical to the sequence generated by Eq. 
n—>°° 

—>°° (2.20). We assumed that fft,T,xn(t),xn(t)]is continuous, and hence taking the limit as n 

on both sides of Eq. (2.20) leads to the conclusion that  lim xn(t) = x * (t), the solution to Eq. 
n-»°° 

(2.14). 

Although we have shown that the convergence of the successive approximation is not 

dependent on ||H(t)||, it is worthwhile to evaluate ||H(t)|| at this point. Defining the p* modal 

residue matrix, 

R(P) = ^P)(<J)(P))
T 

we have R = 2 R     = M   . The p* modal impulse response function is, 
P=l 
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-s<V 

hp(t) = 
e       sin((Odpt) 

«dp 
(2.36) 

and hence any element of H, Eq. (2.9), can be written as, 

Hy(t)= ZRJj t + - Z   RR'hp(t) 
p=l p=r+l 

(2.37) 

where r is the number of rigid body modes and n is the total number of modes. An upper bound 

for the p* modal residue is 

RH y <max(M 1),p=l,2,..,n 

and for the modal impulse response, 

max 
0<t<t' 

h^st' 
and hence the norm of any element Hy can be written as 

max 
0<t<f 

Hy(t)|< rf+  i   o^1 

p=r+l 
RP 

y 
(2.38) 

Given this result, we find that 

/ 
max||H(t)||<J 

0<t<t' 
rf+  S   «d1 

.p=r+l     p 
Rp. 

y' 
(2.39) 

where J is the number of columns in H. 
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3.       RECURSIVE ALGORITHM 3: 
RECURSIVE BLOCK-BY-BLOCK CONVOLUTION 

The algorithms RA1 and RA2 (Section 4) are similar in that they are all modal-based. In 

these algorithms, the recursion is obtained from the use of a modal transition matrix. 

Furthermore, it is shown that these algorithms, which are inherently unstable in their explicit 

forms, can be stabilized by reformulation of the algorithms in implicit forms, specifically as 

predictor-corrector forms. The stability achieved through the use of a single corrector step is only 

marginally effective, and hence we develop a different recursive approach for the solution of the 

governing nonlinear integral equation, Eq. (2.14). The solution method to be developed will 

exploit the exponential convergence result of Section 2.6 as the solution method is iterative. The 

algorithm will improve greatly upon the performance of the basic iterative algorithm reported in 

[3], by the development of a recursive, block-by-block convolution solution. In fact, the block- 

by-block convolution is ideally suited for the calculation of structural response for long time 

records, as will be demonstrated. 

3.1     Numerical Quadrature for Nonlinear Volterra Integral Equations 

The numerical solution of Eq. (2.14) typically starts with a discretization of the equation using 

some quadrature rule. For the response at some time t = iAt ^, (t = 0 = OAt), Eq. (2.14) becomes, 

x*(iAt) = x(iAt) - (At)aX WjH((i - j)At)f (jAt) (3.1) 
j=o 

where we have abbreviated the general nonlinear force as f, a and ß are real scalar constants 

depending on the quadrature rule chosen, and the Wj are the quadrature weights. For example, if 

29 



we consider the simplest of quadrature rules, the rectangular rule (for a purpose to be made clear 

below), a = 1, ß = 1, and Wj=l. For i = 0,1,2, Eq. (3.1) becomes , 

x*(0At) = x(0At) (3.2) 

X*(lAt) = x(lAt)-At[H(lAt)f(OAt) + H(OAt)f*(lAt)] (3.3) 

x*(2At) = x(2At) - At[H(2At)f *(0At) + H(lAt)f *(lAt) + H(0At)f* (2At)] (3.4) 

and we note that H(t=0) = 0, yielding the correct series for the rectangular rule. These equations 

can be rewritten using a simplified indexing scheme, i.e. x(iAt) = x(i+l), which corresponds to 

the indexing required for computer programming, e.g. x(OAt) = x(l). Using this indexing, 

Eqs.(3.2), (3.3), and (3.4) become, for i = 1,2,3, 

x*(l) = x(l) (3.5) 

x*(2) = x(2)-At[H(2)f*(l) + H(l)f*(2)] (3.6) 

x*(3) = x(3)-At[H(3)f*(l) + H(2)f*(2) + H(l)f*(3)] (3.7) 

where again, H(l) = 0. As will be seen below, the bracketed terms in Eqs.(3.5), (3.6), and (3.7) 

are available from the discrete convolution. 

The trapezoid rule and Simpson's rule are more commonly used quadratures for this 

application [9,12]. The performance of the trapezoid rule in the solution of the linear synthesis 

problem was reported by Gordis [2]. 
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3.2     Discrete Convolution and Filter Matrices 

We define the basic convolution in order to establish a notation for the development of 

the block-by-block convolution which follows. The convolution of two vectors x and y is 

denoted as x*y. The discrete convolution of x and y is given by 

If x and y are each (n x 1), e.g. 

x*y=2x(n_k)y(k) 
k t 

x = (x,   x2       xn.,   xn)
T 

y = (yi y2   yB.i yn)
T 

then the convolution x*y can be written as the following matrix-vector product, where the 

matrix is Toeplitz, constant diagonal, and is referred to as a filter matrix h(x) [13]: 

(3-8) 

z = x*y = h(x)-y = 

0 

x, 

Xn-1      Xn-2 

0 

0 

Xn-1       Xn 

... 

0" C               *\ 

y2 

• . < 

xl 0 yn-i 

X, xi. .yn. 

(3.9) 

For example, if x and y are both 3 * 1, we have 

x*y = 
*1 0 0 yi 

x2 xi 0 y2 
x3 x2 xi. y3. 

= h(x)-y = *2yi+xiy2 

x3yI+x2y2+x1y3 

(3.10) 

where the filter matrix of the vector x is 

h(x) = 

xl 0 0 
X2 xi 0 
x3 X, xi. 

(3-11) 
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and the elements of x are referred to as filter weights [13]. Note that here we refer to h as an 

arbitrary filter matrix, which should not cause confusion with the use of the symbol H to refer to 

the impulse response function (IRF) matrix, as the IRF matrix is a filter matrix as well. 

From a comparison of Eqs. (3.5), (3.6), (3.7) with Eq. (3.10), it is clear that the discrete 

convolution is equivalent to the use of the rectangular rule for numerically integrating a 

convolution integral. 

We now define a delay matrix D [13] with the following structure: 

D = 

•   0   0 0 0   • 

•   1   0 0 0   • 

•   0   1 0 0   • 

•   0   0 1 0   • 

(3.12) 

where the dimension of D is consistent with the length of the vector on which it operates. The 

matrix D produces a delay in time by one sample. For example, consider the 3 by 1 vector x, 

D x = 
"0   0   0" V 0 

1   0   0 X, . = . 
*1 

0   1   0_ X3. X2. 

(3.13) 

where the product Dx is equivalent to the vector x shifted forward in time (delayed) by one 

sample. We can introduce delays of an arbitrary number of samples as D\ The product D1^ 

produces a vector equivalent to the vector x but delayed by k samples. 

The filter matrix h is equal to the summation of powers of the delay matrix multiplied by 

the filter weights, x;. Alternatively, the columns of the filter matrix h are each products of powers 

of the delay matrix D and the vector x, i.e. the k* column of h is given by D1^. The filter matrix 

of a vector x of length n is therefore, 
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n-1 

h(x) = Exk-D
k=[D°x   D'x   •••   Dn_2x   Dn_1x] (3.14) 

k-0 

3.3     Block-by-Block Convolution 

We now develop the block-by-block (BBB) convolution of two vectors, x and y, i.e. x*y. 

We subdivide the entire time record of duration T seconds, consisting of N sample points (At = 

T/N) into a number of equally sized blocks, or subintervals, i.e. each subinterval contains the 

same number of sample points. We will subdivide the entire record into "K" blocks, where each 

block consists of J = N/K samples, and the duration of each block is JAt seconds. 

It is important to emphasize that there is a delay of J samples between blocks. For the 

purpose of developing the BBB algorithm, we will need to extract those rows of a vector 

corresponding to a particular block. To this end, we define the following row extraction matrix r: 

r = 

0   •••   0   1   0   ••• 

; oio 
0    10 

i 0    10 
0   ••• • ••   0   1 

(3.15) 

The product of the matrix r with a vector x is the subvector of x consisting of the rows (samples) 

of the K* (i.e. last) block, i.e. r • x = xK where 

XK = [XJ(K-1)+1      ■"      Xn-1      XnJ 

Using the delay matrix D, we can define a matrix which extracts the rows of the k* block, where 

k=l,2,...,K. 

"0   •'••   0    1   0   ••• •••   0" 

rk=rDk = 

0 

0   10 
0    1    0 

0    1   0 

-•010 

(3.16) 
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The matrix equation, Eq. (3.9), can be written in a block-partitioned form as follows. We can 

write the k* subvector of z, i.e. zk, as, 

zk=i>k.h(x)rm
T-ym (3.17) 

m=l 

where    ym = rm • y. It is important to note that the block filter matrix rk • h(x) • r^ need never be 

formed, as the following relations hold: 

T_fx(l:J) ifk = m 
rk • h(x)• rm = |x^(k _m + l)] _(2J_2)j.(k_ m + 1}Jj   .fk > m (3.18) 

where x(p:q) indicates the subvector of x consisting of elements p through q. 

3.4     Performance Comparison - Standard and Block-by-Block Convolution 

A traditional (single-block) convolution, for sufficiently long records of length n, is most 

efficiently computed using the FFT, yielding a total number of floating point operations 

(FLOPS) proportional to n*log2(n). The computing language, MATLAB provides a built-in 

function for convolution which uses FIR filters for the calculation, and yields total FLOPS 

proportional to n2. As we are here interested in comparing the performance of the BBB algorithm 

with the traditional single-block convolution, the use of the MATLAB function will provide 

much convenience with no loss in the ability to compare algorithms. Of course, if one were to 

optimize a convolution algorithm for large n, the FFT approach would be best. 

Assuming one iteration for each diagonal block, the number of FLOPS for the BBB 

algorithm is given by: 

FLOPS = K(2J
2
-J) + -(K

2
-K)(4J

2
-4J + 1) (3.19) 

which yields an optimum number of blocks, 

Kopt=| + 2N (3.20) 
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which yields a solution which is clearly not realizable. The optimal number of blocks calculated 

is greater than the total number of samples N, and is a non-integer number of blocks. What is 

useful about this solution is that is indicates that the FLOPS required by a BBB convolution 

decreases monotonically with increasing block number. This is shown in Figure 2, which 

compares the FLOPS required by a standard convolution to the BBB convolution for varying 

total number of samples, N, and for different numbers of blocks. 

x10ö 

12 

10 * 

FLOPS 6 

0 

Conv. 
1 Block 
4 Blocks 
8 Blocks 
16 Blocks 
32 Blocks 

JÜtEL 
4096 1024 2048 4096 8192 16384 

Figure 2. FLOPS required versus convolution vector for varying number of blocks 

However, if we compare actual compute time (using MATLAB), we see that there is a point at 

which increasing the number of blocks results in increased compute times, as the computing 

"overhead" associated with increased block numbers outweighs the decrease in computing time 

due to the reduction in FLOPS required. This is shown in Figure 3. 
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Figure 3.Computer time (sec) required versus convolution size for varying number of blocks 

3.5     Recursive Block-by-Block Iteration Solution 

Before discussing the recursive block-by-block iteration, we outline the basic iteration 

algorithm for the solution of Eq. (2.14). In the algorithm which follows, it is implied that the 

vector x is partitioned consistently with Eq. (2.16), with the alteration that the partition 

associated with the "i" coordinates has been deleted. Only those coordinates x* directly involved 

in the synthesis, i.e. those coordinates subjected to forces of synthesis, are included in the 

iteration. The "i" set coordinate responses are calculated by a direct convolution of the associated 

IRF with the (converged) forces of synthesis, which result from the iteration. The coordinate set 

involved in the synthesis is the defined by the set union 

s = mucub (3.21) 

where s denotes the synthesis set. The IRF matrix is therefore more fully denoted as H^t). 
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For clarity of presentation, the time dependence and asterisk (•)* indicating a synthesized 

quantity will be dropped. 

Basic Iteration: 

•   Initialize: 

• While xj+1*x| 

•    x|+1<=xs-Hss*f(xJ,x|,y) 

• Converged forces of synthesis: 

C<=f(xl.*i.y) 

• Solution for i-set responses: 
x-=Xi-His*f; 

We will now expand this algorithm to incorporate the recursive, block-by-block 

approach. The algorithm is recursive in that the iteration performed for block "k" makes use 

of the already converged forces of synthesis f* for prior-time blocks k-1, k-2, etc, where for 

the sake of clarity, the "s" subscipt has been dropped. As will be described, only those forces 

of synthesis at the current block are included in the iteration, as prior block synthesis forces 

are converged. We will denote the responses and forces for the k* block, and at the jth 

iteration, as xJ
kand f^. The IRF filter matrix relating the k* response block and the m* input 

block is denoted as H^, and is given by 

Hta=rk.HT: (3.22) 

There are K blocks, k = 1,2,. ..,K, and each block is of length J (samples). We will make 

use of Eq. (3.22) to symbolically denote the IRF matrix blocks, while keeping in mind that in 

practice these matrices need never be formed. What is formed in practice are the partitioned 
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vectors from which these IRF blocks are constructed, as given by Eq. (2.1). The iteration for 

the k* block is given by, 

k-l 

^x.-StH^-O-H^ (3.23) 
m=l 

We can now construct the algorithm. 

Recursive Block-by-BIock Convolution Algorithm 

• Initialize: 

fj «= 1 (over all blocks) 

• Dok=l:K 

•   While x[+1*xJ
k 

m=l 

■■•   j<=j + l 

• End While 

• Converged forces of synthesis: 

• End Do 

• Solution for i-set responses: 
Xj = X; — xiis * ts 
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3.6     Example of Block-by-Block Synthesis 

The following example is taken from [3], in order to demonstrate the improvement in 

performance of the current block-by-block algorithm relative to the basic iteration algorithm 

reported in [3]. 

This example demonstrates the use of the nonlinear synthesis procedure in a nonlinear 

base isolation problem subjected to a prescribed transient base displacement excitation. An 

idealized "deck" model is isolated by four nonlinear springs/dampers located at the four corner 

nodes, as shown in Figure 4. A piece of equipment is mounted elastically on the deck, modeled 

using a single lumped mass and linear spring. The deck is modeled using four-noded 

quadrilateral elements. The deck is a square steel plate, 10 inch on a side, and the plate thickness 

is 0.125 inch. The lumped mass is taken as 5.5% of the total plate mass. The linear spring 

stiffness is 1000 lbf/in. 

Indicates arbitrary nonlinear INL 
MDOFstiuctura! element V^   J^     y(t)= Prescribed Base Motion 

4 
Figure 4. Isolated deck with equipment (lumped mass) mounted with linear spring 

The excitation used is a prescribed "blast" base motion, shown in Figure 5. 
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Time (sec) 

Figure 5. Transient base motion 

We now present the results obtained from the current recursive block-by-block algorithm. 

In this example, all modes up to 12KHz were calculated (99 modes). The synthesis was 

performed using all modes up to 4KHz. The isolators used in this example are described by the 

following equation: 

f(x-y,x-y) = k(x-y) + k3(x-y)3+c2(x-y)2 (3.24) 

where k is the linear stiffness coefficient, k3 is the cubic stiffness coefficient, and c, is the 

quadratic damping coefficient. In the example problem, the isolator parameters have the 

following values: 

k=1001bf/in k3 = 201bf/in3 C2 = 0.001 lbf-sec/in2 

The synthesis was performed using the following parameters: 

Sample length: 5.0e-5 sec Modes Retained: 38 
Number of Subintervals: 8 Max mode frequency: 3,702.9 Hz 
Samples/subinterval: 101 Modal Damping: 0.0 
End time: 0.04 sec 
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The Direct FE solution used the same sample length and end time as the synthesis. 

In Figure 6, the vertical displacement response of a corner node of the plate model is 

shown, along with the corresponding response quantity as calculated using the commercial 

Direct FE solution. Keeping in mind the relative times required, 7 min 54 sec for the synthesis 

(including the solution for 99 modes up to 12KHz), versus 30 min 15 sec for the Direct FE 

solution, its clear that the synthesis provides a very accurate solution. 

The corresponding comparison of the velocity for the same node is shown in Figure 7. While 

there is some disparity in the two solutions for velocity at early times, these differences do not 

compromise the solution after the early times. This is due to the fact that the convergence of the 

numerical method is relatively insensitive to errors in the starting values; the effect of the starting 

errors on convergence is attenuated by the factor At [9]. 

In Figure 8, the vertical displacement response of the lumped mass is compared. It should 

be noted that the synthesis solution for the response of the lumped mass is a straight convolution 

using the nonlinear forces which are the direct result of the synthesis. The isolated mass is a 

model DOF not subjected to forces of synthesis (i.e. nonlinear isolator forces), and hence this 

DOF is a member of the coordinate set "i" rather than the "c" coordinate set. 
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Displacement    : > 
(inch) 
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Time (sec) 

Figure 6. Deck corner vertical displacement response 

Velocity 
(inch/sec) 

0      0.005     0.01     0.015    0.02     0.025    0.03     0.035     0.04    0.045 
Time (sec) 

Figure 7. Deck corner vertical velocity response 
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Figure 8. Isolated lumped mass vertical displacement response 

3.6.1  Comparison of Computing Times Required: Synthesis vs. Direct FE 

In the tables which follow, a comparison is made of the computing times required for a 
complete transient analysis as performed using the synthesis and using commercial nonlinear 
direct transient analysis. The direct transient analysis does not use the modes, and hence the total 
time for the direct FE solution does not include a modal solution. The synthesis does, however, 
require a modes database for each substructure, and this solution is performed using the 
commercial FE program. The time required for a single complete transient analysis using 
synthesis therefore includes the time for the modes solution and for the synthesis itself. As is 
seen from the tables, all subsequent analyses require only the synthesis itself, and hence an 
enormous savings in time is realized, as compared with the direct FE solution, which must be 
repeated in its entirety for each analysis. All of the calculation times reported in each table were 
generated using a common computer which ran both the commercial FE program and the 
previously reported synthesis algorithm, written in MATLAB. 
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Table 1. Summary of Solution Times Required: Recursive Block-by-Block Algorithm 

- Computing Time Required 

Calculation Performed Using Synthesis Using Direct FE 

Normal Modes: 
(All modes to 12KHz) 

7 min 47 sec not required 

Transient Response: 0 min 7 sec 30 min 15 sec 

Total Time Required - 
Single Analysis 

7 min 54 sec 30 min 15 sec 

Total Time Required - 
Subsequent Analyses 

0 min 7 sec 30 min 15 sec 

The following table, Table 2, taken from Reference [3], shows the comparison of the 

previously reported algorithm described in [3] with a commercial direct nonlinear transient FE 

solution. This table is included here to demonstrate the improved performance of the new 

recursive block-by-block algorithm as compared with the algorithm of Reference [3]. As can be 

seen from the times reported in Table 2, for a single analysis, the original algorithm required 

approximately 60% less computer time as compared with the commercial nonlinear direct 

transient analysis. The new algorithm requires approximately 74% less computer time than the 

commercial nonlinear direct transient analysis. However, the improvement in computing time for 

the synthesis alone is dramatic; the new algorithm requires approximately 7 seconds to perform 

each subsequent nonlinear transient analysis. This fast reanalysis capability will facilitate the use 

of numerical optimization techniques for nonlinear isolation design. 
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Table 2. Summary of Solution Times Required: Previously Reported Algorithm Ref. [3] 

Computing Time Required 

Calculation Performed Using Synthesis Using Direct FE 

Normal Modes: 
(All modes to 12KHz) 

13 min 24 sec not required 

Transient Response: 4 min 15 sec 43 min 41 sec 

Total Time Required -Single 
Analysis 

17 min 39 sec 

< 

43 min 41 sec 

Total Time Required - 
Subsequent Analyses 

4 min 15 sec 43 min 41 sec 

3.7     Summary of Recursive Algorithm 3: Block-by-Block Convolution 

The block-by-block convolution algorithm provides a dramatic decrease in computer time 

required for convolutions. As it was shown that the discrete convolution is identical to a 

numerical integration using the rectangular rule, the block-by-block algorithm provides the same 

decrease in computer time required for the solution of the governing nonlinear integral equation. 

While the time savings for a single analysis, relative to a direct nonlinear transient analysis is 

large (approximately 74% for the example presented), the time savings for each subsequent 

analysis is extremely large, as is summarized in Table 1. This extremely fast reanalysis will 

facilitate the use of numerical optimization for locally nonlinear structures. 

Currently, each block is integrated using the convolution (i.e. rectangular rule). However, 

it is a straightforward matter to implement the Trapezoid rule, which will provide an increase in 

accuracy. The algorithm lends itself to parallel computation, and to variable step size/block size 

as well. In its simplest form, the step size for each block can be established independently of the 

other blocks. For example, a short initial block with a small step size can be used to minimize 

starting errors. 
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4.        RECURSIVE TRANSITION MA TRIX ALGORITHMS 

The algorithms developed in this section, Recursive Algorithms 1 and 2 (RA1 and RA2), 

were developed prior to Recursive Algorithm 3 (RA3), which is presented in Section 3 of this 

report. Algorithms RA1 and RA2 are based on modal transition matrices, and hence are 

fundamentally different form RA3. As was discussed in Section 1.2, these algorithms did not 

meet the goal stated in Section 1.1, but are documented for completeness, and for the potential 

benefit of the developments in other applications, specifically with regard to RA2. We begin 

with some background. 

Many approaches to the transient analysis of locally nonlinear problems are direct, in that 

they are based on the physical-coordinate (not modally transformed) second-order differential 

equations [14, Sec. 2.C.1], 

Mx + fnl(x,x) = fe (4.1) 

where x is a vector of "N" nodal DOF, and the ( '),(') indicate the first and second time 

derivatives. M is an N by N symmetric positive-definite mass matrix, feis a vector of externally 

applied loads, and ^represents the loading which is a nonlinear function of the displacement and 

velocity vectors. In the case where the damping and elastic forces have linear portions separable 

from the nonlinear portions, Eq. (4.1) can be written as 

Mx + Cx + Kx = fe+fnl(x,x) (4.2) 

where C is a symmetric positive-semidefinite damping matrix, and K is a symmetric positive- 

semidefinite stiffness matrix. These three matrices, along with M, represent the linear portion of 

the model. In Eq. (4.2), the vector fnj(x,x) represents the forces imposed on the linear portion of 

the model by nonlinear elements in the model. It should again be noted that we are limiting our 

attention to localized nonlinear components which have no internal DOF. Such a component 

could not be represented by Eq. (4.2), but rather by the following system of equations, 
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Mx + Cx + Kx = fe + fnl(x,x,z,z) (4.3) 

z = gnl(x,x,z,z) (4.4) 

where z is an n*l vector of DOF internal to the nonlinear components, and g„,is the nonlinear 

vector function representing the nonlinear components. Note that we have excluded nonlinear 

inertia terms for reasons of clarity, not necessity. As discussed in [14, Sec. 2.C.1], Eqs. (4.1) 

through (4.4) can describe spatially-discrete models with nonlinear elastic and/or visco-elastic 

elements, as well as geometrically nonlinear elements. However, phenomena such as plasticity 

and visco-plasticity are not addressed by these equations due to the history-dependence of the 

associated internal forces of these phenomena. A large variety of algorithms exist for the solution 

of Eqs. (4.1) through (4.4) and are well-documented. See Hughes [15] for a detailed summary of 

many current methods. A commonly used algorithm in structural dynamics is the average- 

acceleration, unconditionally stable Newmark method [16]. 

It is also possible to address these problems in first-order form, i.e. , 

y = Ay + Bfnl(y,t) (4.5) 

where y is a (2N x 1) vector contain both displacements and velocities, A is the (2N x 2N) non- 

symmetric, positive semi-definite system matrix, B is the (2N x b) input matrix (for "b" inputs), 

and f„,(y,t) is the (b x 1) vector of nonlinear loads associated with this equation. More will be said 

later about the first-order form for locally-nonlinear transient structural dynamics. 

A disadvantage of direct methods is the requirement to retain all DOF of the model, 

regardless of whether the response of these DOF are of interest. In contrast to the direct methods, 

the use of modal methods in the solution of the differential equations (4.2) and (4.5) can 

eliminate the need to retain all model DOF, but a disadvantage with such a modal approach is 

that, strictly speaking, the number of retained modes required can be assessed only after (two) 

solutions have been performed, thereby demonstrating modal convergence. 
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The direction of this work is the development of a solution method of Eq. (4.12) which is 

designed to have an implicit and exact model reduction, in that only those model DOF directly 

. associated with externally applied and nonlinear forces need be retained in the analysis, and to be 

numerically robust with excellent convergence properties. This integral equation formulation for 

transient structural synthesis [2,3], has been shown to provide significant reductions in computer 

time as compared with direct integration using a well-known commercial finite element program 

[3], due to this implicit reduction. 

We will describe two transition matrix algorithms developed. We discuss the motivation 

for these approaches, why these algorithms are not suitable for the purpose at hand, and what 

insights and results of value were gained by the development. 

4.1     Recursive Solutions of First-Order Differential Equations 

We begin with a brief review of recursive convolution solutions to first-order differential 

equations, due to the development of algorithms RA1, RA1PC, RA2, and RA2PC. The following 

brief review can be found in many texts in more detail; see for example, Meirovitch [17]. 

A recursive solution is attractive due to its reduced storage requirements, which are non- 

trivial when processing large FE models, and due to the reduction in compute time which can be 

obtained, depending both on the algorithm, and the structure representation employed. 

The total solution of the linear first-order equation, 

y = Ay + Bf(t) (4.6) 

is given by, 

x(t) = eAtx(0) + jeA(t-T)Bf(x)dT (4.7) 
0 

Evaluating the solution, Eq. (4.7), at sample points k and k+1, gives respectively 
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kT 
x(kT) = eAkTx(0)+ JeA(kT-^Bf(x)dT (4.8) 

0 

kT+T 
x(kT + T) = eA(kT+T)x(0)+   J   eA(kT+T-T)Bf(x)dT (4.9) 

0 

A fundamental assumption required to produce an explicit recursive (discrete) form of Eq. (4.7) 

is that the force f is constant over the sample interval, i.e. f(T)=fkT) for kT < x < (k+l)T. With this 

AT 
assumption, and making the change of variable, or = kT + T-x, and defining 3> = e      and 

T 

J« 
0 

r = f eAodo*B = A 1(eAT - I)B, the following discrete recursive form of Eq. (4.7) is found: 

= <S>x(k)+rf(k) (4.10) 

The advantage in the use of Eq. (4.10), as opposed to Eq. (4.7), is as follows. Considering a 

single-input, single-output response calculation over K sample points, the convolution integral in 

Eq. (4.7) requires on the order of k2 flops, and at each sample point k, all prior values of f and $ 

are required, k-1, k-2, k-3, etc. The recursive form, i.e. Eq. (4.10) requires only the data at 

sample point k-1 to calculate the response at sample point k. This constitutes a large saving in 

both compute time and data storage required. While these advantages are significant, the 

calculation of the matrix exponential $ is required. As the system matrix A is 2n by 2n, the 

explicit computation of 4> is not practical for large models. Modal calculations of <& are possible, 

but require the calculation of the left eigenvectors of A. This is not an attractive option either, 

given that most commercial finite element programs do not provide for this calculation, although 

it is possible in NASTRAN using the DMAP language. Our motivation is therefore to develop a 

recursive, transition-matrix solution algorithm solution which has an inherent implicit exact 

model reduction, and the above described advantages of a recursive procedure. We also stipulate 

that any such method not require the calculation of exp(AT), the matrix exponential of the 2N x 

49 



2N system matrix. Our intermediate goal here is the development of a recursive, transition matrix 

approach based on the second-order differential equation model, i.e. Eq. (2.1). 

A recursive predictor-corrector algorithm for locally nonlinear earthquake isolation was 

developed by Inaudi and De La Llera, and implemented in the IN ADEL program [7]. This 

algorithm represents the structure with a state-space model, i.e. Eq. (4.5). The algorithm 

developed in [7] is rendered implicit by the use of non-constant approximations for the force f, 

which is defined quite generally. While this work contributes to the motivation for exploring a 

recursive transition matrix approach, as stated above, a goal of the current work is to avoid the 

calculation of the transition matrix (exponential of the system matrix), due to the attendant 

computational demand. 

4.2     Recursive Algorithm 1: First-Order Modal Transition Matrix 

The modal transformation, x=^>q, of Eq. (2.1), for proportional damping, produces a set 

of uncoupled modal differential equations of the form, 

q + diag(2<;icoi)q + diag(cD?)q = f (4.11) 

where the modal force is f(t) = 4> f(t), <b containing mass-normalized mode shapes, and where 

(~) indicates a modal quantity. In the developments which follow, the force f(t) may be 

interpreted to be, 

f(t) = f(t,x*(t),x*(t)) 

The set of (at most) N equations, Eq. (4.11), is comprised of two basic forms. The rigid body 

modes (a>i= 0) are described by 

qi =fi i=l,2,..,r (4.12) 
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1   

where r is the number of rigid body modes (RBM) possessed by the structure, and excluding 

mechanisms, r < 6. The solution to Eq. (4.12) is given by, 

tx                                        t 
qi(t) = JJfi(a)dadx + qi  +qi t = J(t-T)fi(T)dT + qi  +qi t (4.13) 

00                                           0 

The elastic modes ((0, > 0) are described by: 

qi+2giCOiqi+(orqi=fi                 (r+l)<i<N (4.14) 

where the number of elastic modes retained is typically much less than N, the total number of 

nodal DOF. 

We may also write the solution to Eqs. (4.12) as a convolution integral, 

qi(t) = |hi(t-T)fi(T)dT + qio+qiot, 
0 

(4.15) 

where qi() and qio are the modal initial conditions, and where hj(t) is the modal impulse 

response function (IRF). As seen from Eq. (4.13), the IRF for an RBM is, 

hi(t) = t,                              i=l,2,..,r, (4.16) 

and for an elastic mode, the modal IRF is given by, 

hi(t) = e~q[(0it sin((odit),            (r+1) < i < N. (4.17) 

We will construct the modal transition matrices for the rigid body and elastic modes, and 

the associated recursive algorithm, based on the physical (nodal) and modal state vectors defined 

as follows: 

H:i      '■(:) (4-18) 
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Based on Eqs. (4.15), (4.16), and (4.18), the solution to the rigid body mode equation, Eq. (4.12), 

can be written as 

t 
qi(t) = Trb(t)qio +jTrb(t-T)Bfi(x)dT 

0 
(4.19) 

where B = (0,1 )T and where the matrix ^(t) is defined as, 

^rb(t) = 
1    t 

0   1 
(4.20) 

In order for a matrix ¥ to be a transition matrix, it must satisfy the following property: 

Y(t + At) = T(t)T(At) = Y(At)Y(t) (4.21) 

It is easily shown that Trb satisfies this property, and hence ^Frb is the RBM transition matrix, as 

will be shown here. We can write Eq. (4.19) for a time one sample later, i.e. at t+At, 

t+At 
qi(t + At) = TA(t + At)qi(1+   J   Yrb(t + At-T^^dx, (4.22) 

0 

and as was done to obtain Eq. (4.10), in conjunction with the fact that Wrb satisfies Eq. (4.21), we 

find the recursive form of Eq. (4.19), 

qi(t + At) = ^(^^(0 + ^(^(1) (4.23) 

where 
At ri    .5At' 

B. (4.24) rrb(At)=/Yrb(a)daB = At 
0 

1   .5At 

0      1 

If we define the k* time step tk = kAt, denote a quantity evaluated at the k* step as »(k), and 

recognize that W^ and T^ are constants for a given sample length At, Eq. (4.23) can be written as, 

qi((k + l)T) = Trb(At)qi(kT) + rrb(At)fi(kT) i=l,2,...,r (4.25) 
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Focusing on an elastic mode, the state-space equation of motion for an elastic mode is, 

4i=Aiqi+Bfi (4.26) 

and the recursive form of the solution to Eq. (4.26) is, 

q[k+1) = Yi<i[k) + rjfj (r+1) < i < N. 

and where % = eAiAt, r{ = Af^Yj -l)B, B=[0 1]T, and the mode system matrix is, 

(4.27) 

Ai = 
0 1 

-(of   -Iq^ 
(4.28) 

The explicit form of RA1, based on Eq. (4.25) is given here. The number of modes retained is 
indicated by "p" where typically, p«N. 

Recursive Algorithm #1 - Explicit Form 

Evaluate Modal Transition Matrices *F and Input Matrices T 

k := 0 
for i = 1: p 

f/k>:=fcTffkT,x<k>\x^ 

if i < r then 

else 
^k+l)=Tiqjk)+r.?(k) 

end 
end 
x<k+1) = 0»q(k+1) 

k:=k+l 
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4.3     Recursive Algorithm 2:2nd-Order Complex Modal Transition Matrix 

This algorithm is based on a newly developed transition matrix constructed from the 

solution to the second-order elastic mode differential equation. The key to the development of 

such a transition matrix is to write the solution of the second-order equations with a leading 

matrix which satisfies the property of Eq. (4.21), i.e. a leading matrix whose matrix factors 

commute. For the rigid-body modes, we will use the transition matrix already developed in RA1. 

We begin by denoting the complex (j = V-l) eigenvalues of the i* mode as 

A.|=-<;i(oi+jcodi 

A.7 = -qi(Di-jö)di 

and the homogeneous solution to Eq. (4.14) written in complex form is 

qj(t) = Cje*** + Cf eXTt. (4.29) 

where 0* and Cf are constants of integration for the ith mode. The initial condition vector 

consistent with the modal state-vector of Eq. (51) is, 

q,(t=o) = q? = - 
fq?' 
q? 

and hence the solution, in a form consistent with the modal state vector of Eq. (4.18), becomes, 

*W-2S di 

eXTt(jq? +q?K + fe^))- je^(q? +q?(jcodi - + q^)) 

^(jq? + q?(codi + jSia>i))- jAje^q? +q?(ja)di +Sia)i))J 

It can be shown that the modal impulse response Hj is available from the homogeneous 

solution given in Eq. (4.30) using the following initial conditions: 

qi(t) = Hi(t) if q? = {i} 
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qi(t) = Hi(t) if q? = 
1 

Due to its importance in what follows, we define the following modal state initial condition: 

fol 
qh = 

We now define the following matrices: 

Pdi=' 

1-j^i 

1+jÄ 
o>di 

1 
Jü)di 

.  1 

®di 

Aj = diag^t^j J Pvi - AjPdi (4.31) 

Given these definitions, it can be shown that the modal displacement and velocity are, 

qi(t) = vTeA'tPdiq? (4.32) 

qi(t) = vTeAitPviq? (4.33) 

where vT = [1 1]. In addition to the relation of Eqs. (4.31), the matrices PA and Pv have the 

additional relation, 

* vi _ *di^i 

revealing that A; = A[ -l 

(4.34) 

Using these definitions, we can write the total modal transient response as: 

qi(t) = vV^q? 4-} v^^-^qhftWdt 
0 

qi(t) = vV^Pviq? + f vV^-^q^f^dx 
0 

(4.35) 

(4.36) 
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It is of interest to note that qh = B, where B was defined in RA1 above. However, it should be 

emphasized that qh is an initial condition vector which produces the impulse response function 

from the homogeneous solution to the damped modal oscillator. 

We now define a complex modal state vector as follows: 

q(t) = 
qf(t) 

qf(t) 

Using this state vector, Eqs. (4.32) and (4.33) can be written 

qi=vTqi 

qi=vTqi 

(4.37) 

(4.38) 

(4.39) 

where we have dropped the time-dependence notation for simplicity. 

We now construct the recursion using the above relations. The total modal response, Eqs. 

(4.35) and (4.36) can be written in terms of the complex modal state vector, 

qi(t) = e^Pdjqf + f e^^q^f^dx 
0 

4(t) = e^Ptfq? + f eA^)pviqh<fcTf(T)dT 
0 

Equations (4.40) and (4.41) can be written at a time one sample At later, 

(4.40) 

(4.41) 

t+At 
qi(t + At) = eA'(t+At)pdiq?+   f   eAi(t+At-)pdiqh<fcTf(x)dx 

0 

t+At 
q-i(t + At) = eA

i(
t+At)pviq?+   J   eAi(t+A^)pviqh<hTf(x)dx 

0 

.A=t 

(4-42) 

(4.43) 

Using the fact that e ' satisfies the property of Eq. (4.21), Eqs. (4.42) and (4.43) become, 
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% (t + At) = eA>4 e^Pditf + { eA* ^q^f (t)dx 
V 0 

t+At 

+ ... 

...+   f eAi(t+At-)pdiqh^f(x)dx (4.44) 

f 
%(t + At) = eAiAt e^Pviqf + Je^-^q^f^dx 

v o 
+ ... 

t+At 
...+   }   eA

i(
t+At-)pviqh^f(T)dx (4.45) 

t 
If we again assume that the sampling period is sufficiently small such that f does not vary 

appreciably over At, and with the change of variable a = t + At-x, Eqs. (4.44) and (4.45) 

become 

( 
qj(t + At) = eA'At e^Paq? + }eAi^)pdiqh<ftTf(x)dx 

v o 

...+ jeA^Wdiqh<fcTf(t) 
0 

q-(t + At) = M e^q? + f e^Mp^f (x)du 

^ 
+ .. 

(4.46) 

+ . 

At 
..+ JeA^Wviqh<fcTf(t) 

0 
(4.47). 

Recognizing the states at time t in Eqs. (4.46) and (4.47) allows the following simplification, 

At 
q-(t + At) = e^q^t) + } eA^Wdiqh<fcTf(t) 

0 
At 

%(t + At) = t^%(t) + | eA^Wviqh<fcTf(t) 
0 

and the integral in Eqs. (4.48) and (4.49) can be evaluated as, 

At   » / x ( *%&    i ^7 At    ^ 
Si(At)=JeA>(oW = diagl_zi,l_Z1 

0 1       Aj Aj 

(4.48) 

(4.49) 
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which yields the final recursions for the complex modal displacement and velocities 

qi(t + At) = Yiqi(t) + rdifi(t) 

ii(t + At) = T14(t) + rvifi(t) 

where fj = <fc f and in which the following quantities are defined: 

Ti=eA'At 

rdi = SiPdiqh 

rvi = SjPviqh 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

The explicit form of RA2, based on Eqs. (4.25), (4.50), and (4.51) is given here. For clarity, we 

again indicate the various quantities at time kT using a superscript notation, e.g. q(kT) = qk. The 

number of modes retained is indicated by "p" where typically, p«N. 

Recursive Algorithm #2 - Explicit Form 

Evaluate Modal Transition Matrices W and Input Matrices rd, Tv 

Initialize k := 0 
f or i = 1: p 

f^:=^TffkT,x^,XW 

if i < r then 

qSk+1)=Ylbq[k> + ribf: f(k) 
i 

else 

end 

^+»-'irtf»+rvifp> 

end 

i=l 

x<k+1> = £ ^TvT^k+1) 
i=l 

k := k + 1 
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4.4     Stability Analysis - Recursive Algorithm 1 - Explicit Form 

The stability analysis for the explicit form of RA1 is given. The result of this analysis 

reveals a fundamental limitation of a modal transition matrix recursive solution to Eq. (2.19), in 

that the spectral radius of the integration matrix operator has a limiting value of 1.0, approached 

from above, as the sample length is made smaller. 

For the stability analysis, the structural modifications (e.g. isolators) are assumed to be 

linear elastic and hence represented by 

f(k)=-K*x*«. {455) 

The linear matrix operator representing RA1 is therefore, 

q(^) = [T_ r^TK*OTb]q(k) = Tlq« (4.56) 

where the matrices *F and T, defined for RAl, are of size 2p by 2p, and 2p by p respectively, and 

contain contributions from all "p" retained modes, and Tb (2p by 2p) is a Boolean matrix which 

rearranges the elements of q(k) (2p by 1) to be consistent with form of Eq. (4.55). The stability 

of the algorithm is measured by the spectral radius of T„ i.e. stability requires that 

P(T,)£1. 

We will postpone the example calculations until the stability analysis of RA2 is 

presented. We should also note that this condition on the spectral radius is theoretical; the degree 

to which p must be less than unity is dependent on numerical considerations. 

4.5     Stability Analysis - Recursive Algorithm 2 - Explicit Form 

We define a combined complex modal state vector, of dimensions 4x1, as 

Q!«.g) ' (4,7) 
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and along with Eq. (4.55), allows the elastic mode recursion of RA2 to be written as the 

following linear matrix operator, 

Q(k+1) = JY _ r^TK*OVT]Q(k) = T2Q
(k) (4.58) 

where the matrices *F and I\ defined for RA2, are 4p by 4p, and 4p by p, respectively, and VT is 

p by 4p. Each of these matrices is block quasi-diagonal where each block is associated with a 

retained mode, and the definition of which can be found in the above section outlining the 

development of RA2. The stability of the algorithm is measured by the spectral radius of T2, i.e. 

stability requires that p(T2) < 1. 

4.6     Example Calculations - Stability of Explicit Recursive Algorithms 

We will make use of a simple 4 DOF spring-mass model to calculate algorithm stability. 

The system is shown in Figure 9. In this example, the synthesis will install the stiffness 

modification k*, and calculate the transient response of mass #1, m^ The example system has the 

following parameter values, 

M = diag(1.7513   2.1016   0.3503    1.7513) kg, 

k*=700N/m k, = k2 = k3= 175.13 N/m, 

and has natural frequencies in Hertz, f, = 0.6261, f2= 1.5421, f, = 2.5750 f4= 5.2678 (Hz), 

k* 

A   + 
^-^\AHmiR/VHm2hJ^^ 1114 

k2 k3 k4 

Figure 9. A Lumped 4-DOF System with a stiffness modification 

As the purpose of this example is to determine stability of the algorithms RA1 and RA2, we limit 

the example to a linear elastic modification. 
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Stability of RA1: We first calculate the spectral radius of the explicit operator for RA1 (Eq. 

(4.56)), as a function of sample length, At, for a fixed value of k* = 700 N/m, with £ = 0.0, 

C = 0.05, C, = 0.2, and £ = 0.3. This is shown in Figure 10. The range of sample lengths is from 

0.0001 s to 0.01 s, which is consistent with the range of natural periods for the model which is 

0.19 s to 1.6 s, with respect to the requirements on a sufficiently small time step. 

A Spectral Radius (sec"z) vs AT 
fc>l* | ' ' "■-*■» -.^ . . j. . . ^ j.  

0.002 0.004 0.006 0.008 
Sample Length AT (sec) k*=700 N/m 

0.01 

Figure 10. Spectral radius of Tj versus sample length At for various C, 

From this plot, it is clear that the simple modal-based recursion is ineffective for the solution of 

Eq. (2.14). The algorithm achieves marginal stability, as the step size is made small, for large 

values of modal damping. This result is attributed to the use of the modal transition matrix, eAAt, 

which clearly has a limiting spectral radius of 1, for At -> 0. By increasing the modal damping, 

the region of neutral stability is extended to longer sample lengths, but this does not offer any 

practical value. 

We can also examine the dependence of the stability on the stiffness value k*, for fixed 

sample length of At = 0.01s, and for various values of £, shown in Figure 11. Again, 

unrealistically high values of modal damping are required to stabilize the algorithm. 
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1.015 Spectral Radius (sec   ) vs k* 

0 200 400 600 800 
Stiffness k* (N/m) with At = 0.01 sec 

Figure 11. Spectral radius of Tt versus stiffness k* for various C, 

Stability of RA2: We calculate the spectral radius of the operator T\ (Eq. (4.58)) for 

explicit-RA2, as a function of sample length, At, for k* = 700 N/m, and for various values of £. 

The results of this calculation are shown in Figure 12. These results are in fact identical to the 

corresponding results for RA1, indicating that the use of the modal transition matrix based on the 

second-order equations does not have any effect on the stability, as might be expected, as the 

difference between the algorithms is essentially a change of coordinates, and both algorithms are 

explicit. It is seen that RA2 cannot be stabilized by increasing the modal damping. 

The dependence of stability of RA2 with varying k* is shown in Figure 13, and again the 

results of Figure 13 are identical to those calculated using RA1, while varying k*. 
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1.015 Spectral Radius (sec"2) vs AT 
T 

0.002 0.004 0.006 0.008 
Sample Length AT (sec) k*=700 N/m 

0.01 

Figure 12. Spectral radius of T2 versus sample length At for various C, 

1.015 Spectral Radius (sec "2) vs k* 

101 

*            '>  
; 

1005 
\                     j C=o.o-"" 

! 

1 C=0.05-~^ 
; 

;                              ; 
; 

0.995 : .                            \ 

r-b,2 
] 

0.99 
'■                           '■ 

  £=0.3  
; 

0.985 : 

0 200                400 600 800 
Stiffness k* (N/m) with At = 0.01 sec 

Figure 13. Spectral radius of T, versus stiffness k* for various C, 

The algorithms RA1 and RA2 are attractive in that they satisfy some of the requirements 

set forth above regarding the development of a solution method for Eq. (2.14), specifically in that 

these algorithms achieve a model reduction using modal superposition. The results shown 

immediately above indicate that these algorithms are not viable methods, in their explicit forms. 

We will now develop implicit, predictor-corrector versions of these algorithms, to be referred to 

as RA1PC, and RA2PC, to see if the instability of the explicit forms can be overcome. 
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4.7     Recursive Algorithm 1: Predictor-Corrector Form 

We begin with a recursive form of the solution to Eq. (4.14) 

q|k+1) = eA*AtqSk) + "f W^-^dc, 
t 

and letting a = t + At - x, then da = -dx and Eq. (4.59) becomes, 

qJk+D =e
AiAtq[k) + A/eA'CTBfi(t + At-x)da. 

0 

We employ the following interpolation for the modal force, 

fi=afi(t) +(1-005(1 +At) 

where 0 < a < 1. Using a = a/At, we have, 

q[k+1) = e
A«*qjk> + f eA'ffB[^[of^ + (At - a)ff+1>]}da, 

or, 

q|k+1) = eA*Atq[k) +^f TeAiGadalB(f/k) -f*k+1>) + 

The integrals in Eq. (4.63) can now be evaluated, 

fAt 
A;CT 

> 
J eA'ada Bf; 

(k+1) 

At 

J 
0 

At 

f 
0 

At 

J 
0 

JeAiada = Ar1(eA'At-l), 
o \ /   ■■ 

7eA^ada = AtAr!eAiAt - Af2(eA'At -1). 
o v ; 

Letting ¥ = eAiAt and T = J eA'ada = Af1(eAiAt - l)ß, then, 

q[k+D = *£& +r^k+1) + Af^Bff > -^+l))_±Arlr.^k) _^(k+l)) 

or finally, 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 
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qSk+1) = *,q|k) + Af'faß - ^Ifff > ~ ff+1)) + r#k+1> (4.65) 

The predictor-corrector algorithm, RA1PC is now outlined. 

Recursive Algorithm #1 - Predictor-Corrector 

k:=0 

Predictor: 

Corrector: 

for i = 1 : p 

end 

x(k+1)P = ^q(k+1)P 

x(k+1)P = <&q(k+1)P 

f or i = 1: p 

^k+l)P=f^x(k+l)P)i(k+l)f 

end 

f or i = 1 : p 

q[k+D=Y.qJk)+Arl ^B-^r^-f^j+rif^ 

end 

x(k+l) 

x(k+l) 

= <E»q(k+l) 

= #q(k+l) 

fori = l:p 

f<k+1>=f(* :(k+1), X(k+D 

end 
k := k + 1 
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4.8 Stability Analysis - Recursive Algorithm 1 Predictor-Corrector Form 

For the linear stability analysis, we will again assume that 

f(k)=-K*x*(k). (4.66) 

Combining the equations above yields the following, 

q(k+1)=[(I-rZ)Y+(rZ)2+eZ(Y-rZ-I)]q(k) (4.67) 

T where Z = 4> K * <Wq, and Tq is a Boolean matrix which extracts displacement entries in the q 

vector. Equation (4.67) can be abbreviated as 

^k+l)=Tpc.(k)5 (4<68) 

and the condition for stability is that the spectral radius of T^0 does not exceed unity, i.e. 

p(TPc)<l. 

4.9 Recursive Algorithm 2: Predictor-Corrector Form 

We begin with the following equations for the complex modal state responses, 

t+At 
q.(k+l)=eAiAt-(k)+   |   eA^t+At-^^ (469) 

t 

t+At 
-(k+l)=eAiAt^k)+   |  eA

i(
t+At-^Pviqhfi(x)dT (4.70) 

t 

Making use of Eq. (4.61), and following the same procedure as used in RA1PC, we arrive at the 

following recursions for the i* complex modal state responses, 

q{k+1) = ^qfk) + ed^f/^ - f/^»") + (4.71) 

4i(k+l)=Y.$i(k)+ev.(-fi(k).-fi(k+l)^+ryi-fi(k+l)^ (472) 

where the following quantities are defined: 

Tj=eAiAt (4.73) 
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r^Aj^-lJPdiqh 
rvi^^fF.-lJPviqh 

l_1^Ri;äu- — 
At 

edi = Ar ^pdiqh-f-rdi 

l-l 1 Gv^Ari^P^qh-^r. VI 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

The predictor-corrector algorithm, RA2PC is now outlined. In this algorithm, the relevant 

matrices have been expanded to include all retained modes; that is, we eliminate the "for-end" 

loops over the modes in favor of a matrix notation, where the various matrices are block- 

diagonal. 

Recursive Algorithm #2 - Predictor-Corrector 

k := 0 
Predictor: 

Q(k+i)p
=TQ«+rdf(k+i) 

^i)p
=^(k)+rdif(

k+1) 

x(k+1)P=*vd
TQ<k+1)P 

x(k+1)P=OVv
TQ(k+1)P 

for i = 1: p 
^+l)P=f^x(k+l)P)i(k+l)PJ 

end 
Corrector: 

Q(k+i) = TQ(k)+0d(>) -f(k+Dp)+rdf(k+1>p 

$(k+i) = T$00+ev(V
k> -P+1)p) + rvf(k+1>p 

x(k+1)p=ovd
TQ(k+1)P 

x(k+1)P=^Vv
TQ(k+1)P 

for i = 1 : p 
-f^+i)=f|x(k+i)5i(k+i)J 

end 

k:=k+l 
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4.10 Stability Analysis - Recursive Algorithm 2 Predictor-Corrector Form 

For the linear stability analysis, we will assume that 

f(k)=-K*x*(k) (4.78) 

Combining the equations above yields the following, 

Q(k+1) = J(j _ Yzyy + ^2 + ez^ _rz_ ^JQ(k) (4 79) 

T T where Z = <I> K * $V , and V is a Boolean matrix which effects the addition of the elements of 

the complex modal responses. Equation (4.79) can be written as 

Q(1C+1) = TpCQ(k) (4>80) 

The theoretical condition for stability is that the spectral radius of T$c does not exceed unity, i.e 

P(T2
pc)<l. 

4.11 Example Calculations - Stability of Predictor-Corrector Algorithms 

The calculations will make use of the system of Figure 9, with identical parameters for this 

example. 

Stability of RA1PC: We first calculate the spectral radius of the RA1PC operator, (Eq. (4.68)), 

as a function of sample length, At, for a fixed value of k* = 700 N/m, with C, = 0.0, £ = 0.05, C, = 

0.2, and £ = 0.3. This is shown in Figure 14. The range of sample lengths is from 0.0001 s to 

0.01 sec. The range of natural periods for the model is 0.19 s to 1.6 s. 
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1.002 Spectral Radius (sec"2) vs AT 

0.002 0.004 0.006 0.008 
S ample Length AT (sec) k*=700 N/m 

0.01 

Figure 14. Spectral radius of T-f0 versus sample length At for various C, 

From Figure 14, it is seen that, as compared with the explicit algorithm RA1 (Figure 10), the 

reformulation of the basic algorithm as an implicit predictor-corrector, using a single corrector 

step, has provided a substantial improvement in the fundamental stability of the algorithm. The 

spectral radius decreases with increasing step size, for non-zero system modal damping. The 

dependence of stability of RA1PC with varying k* is shown in Figure 15, for At = 0.01s. 

1 Spectral Radius (sec ) vs k* 

0 998 
:                    :                    \       ^=°0     : 

0 996 

:                 ~*! £=0.05       ■ 

0 994 : 

0.992 : 

0 99 
 (=0.2 — 

0.988  I 

0 986 : 
—4—M=-<iö-  

'—* * *—'.— -. 
-2.QP      . ^ „..400 

tlfflK sec 
800 

Stiffness k* (N/m) with At = O.OIse 

Figure 15. Spectral radius of T^ versus sample length K* for various £ 
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Stability of RA2PC: We calculate the spectral radius of the operator for RA2PC as a function of 

sample length, At, for a fixed value of k* = 700 N/m, with £ = 0.0, £ = 0.05, £ = 0.2, and £ = 0.3. 

This is shown in Figure 16. The range of sample lengths is from 0.0001 s to 0.01 sec. The range 

of natural periods for the model is 0.19 s to 1.6 s. The reformulation of RA2 as an implicit 

algorithm has again provided a substantial improvement in the stability. As seen from Figure 16, 

the calculation produces results identical to those from RA1PC, again revealing the fundamental 

similarity of the algorithms, the difference being the use of the complex modal state vector in 

RA2 versus the traditional modal state vector in RA1. The dependence of stability of RA2PC 

with varying k* is shown in Figure 17, for At = 0.01s, which is again, identical to the analogous 

calculation for RA1PC. 

1.002 
Spectral Radius (sec   ) vs AT 

0.002 0.004        0.006 0.008 
Sample Length AT (sec) k*=700 N/m 

0.01 

Figure 16. Spectral radius of T^c versus sample length At for various C, 
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1 Spectral Radius (sec"2) vs k* 
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C=0.2 • 

C=0.3'— 

200 400 600 
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Figure 17. Spectral radius of T|c versus sample length k* for various 

4.12   Transient Synthesis Example - Linear Elastic Modification 

The algorithms RA1PC and RA2PC will be used to synthesize the transient response of 

the system shown in Figure 18. The synthesis will be used to simultaneously replace spring kt 

with k* and calculate the response of mass m, to the ground displacement input y(t). The ground 

motion y(t) is taken as a unit step input, 

k* 

h *2 k3 k4 

->y(t)=l(t>0) 

Figure 18. System for synthesis to transient base displacement response with spring replacement 

The purpose of this example is two-fold. The first purpose is to demonstrate that a single 

corrector step taken in algorithms RA1PC and RA2PC, while providing a spectral radius less 

than unity, does not provide a sufficiently small spectral radius to stabilize the algorithms for a 

range of stiffness modification magnitudes. The recursive algorithm solutions will be compared 

with a direct integration (variable time step Runge-Kutte) of the system equations for the 
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modified system, i.e. k, = k*. In these calculations, the synthesis is first performed using a value 

of k* = k, = k3= k4 = 175.13 N/m, with £ = 0.0. The results from RA1PC are shown in Figure 19, 

and from RA2PC in Figure 20, where both algorithms provide accurate (and identical) results. 

The next calculations use k* = 1.5k2 = 262.70 N/m, and the instability is evident in the results 

from both algorithms, shown in Figures 21 and 22. These calculations with k* = 1.5k2are then 

repeated using £ = 0.05, and the system modal damping stabilizes the algorithm, as shown in 

Figures 23 and 24. 

The second purpose of this example is to demonstrate the substantial decrease in 

computer time required by the algorithms based on the complex modal state vector 

(RA2/RA2PC). Here, algorithms RAl and RA2 will be compared to a standard modal approach 

to the solution of this system with k* already installed, as well as to a direct integration of the 

equations of motion. In other words, we will be comparing the computer time required for a 

structural modification calculation with that required for a standard analysis, where the structural 

modification has already been installed during the model assembly phase, i.e. kj = k*. As the 

intended use of these algorithms is for the solution of nonlinear structural synthesis problems, the 

comparison includes the direct integration solution time. The modal solution is included as a 

reference time for a standard linear solution. The analysis corresponds to that analysis whose 

results are shown in Figure 24, but using the explicit form, RAl and RA2. From the timing 

results from Table 3, it is seen that the time required for the synthesis algorithm RA2 is of the 

same order of magnitude as the standard linear modal transient analysis. The algorithm RAl 

requires a time comparable to the direct integration. Of course, as the model size increases, the 

direct integration time increases, while the times for RAl and RA2 are independent of model 

size, once a modal database has been calculated. 

Table 3. Comparison of Times Required for Algorithms 

Algorithm: 

Time (sec) 

Direct Integ. 

1.130 

Modal 

0.103 

RAl 

1.019 

RA2 

0.175 
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Stability Comparison: Transient Base Displacement Response At = 0.01 sec 

0.05 
Direct Integration    — Synthesis       — 

Time (sec) Time (sec) 

Figure 19. RA1PC: k* = 175.13 N/m, £ = 0.0      Figure 20. RA2PC: k* = 175.13 N/m, £ = 0.0 

#t:..u,yy..u 

Time (sec) Time (sec) 

Figure 21. RA1PC: k* = 262.70 N/m, C = 0.0      Figure 22. RA2PC: k* = 262.70 N/m, £ = 0.0 

0.05 0.05 

Time (sec) Time (sec) 

Figure 23. RA1PC: k* = 262.70 N/m, £ = 0.05     Figure 24. RA2PC: k* = 262.70 N/m, £ = 0.05 
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4.13   Summary of Results for Transition Matrix-Based Recursive Algorithms: 
Explicit and Predictor-Corrector 

The goal of this work is the development of an efficient and robust algorithm for the 

solution of the governing integral equation for locally nonlinear transient structural synthesis. 

The new algorithm must preserve the existing features of the existing formulation. The features 

include, 

• a solution time which is independent of model size; an exact model reduction which is 
essentially unrestricted in the dimension of the reduction is implicit in the formulation, 

• the ability to perform local structural modifications of general nonlinear characteristics 

• accurate and fast solutions facilitating optimal design 

Two general algorithms have developed and analyzed for stability. Both algorithms are 

based on modal transition matrices, facilitating the recursive forms of these algorithms. The first 

algorithm, referred to as Recursive Algorithm #1 (RA1), is based on the standard modal state 

vector and the associated transition matrix, e^1. The second algorithm is based on a newly 

defined complex modal state vector, and also defines a new transition matrix formulation based 

exclusively on the second-order modal differential equations. This algorithm is referred to as 

Recursive Algorithm #2 (RA2). It was shown that while the formulations of these algorithms are 

different, RA1 being a real-arithmetic algorithm and RA2 being complex, the algorithms produce 

identical numerical results. However, RA2 allows a greater level of "diagonalization" relative to 

RA1, and hence yields computing times of an order of magnitude less than that required by RA1 

(see Table 1). 

The inherent instability of algorithms RA1 and RA2 was addressed by their reformulation 

as predictor-corrector algorithms, using a linear interpolation for the modal force, and a single 

corrector step. This reformulation was successful in that it demonstrated that the limiting value 

of unity for the spectral radii of RA1 and RA2 could be removed, and that spectral radii less than 
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unity are achievable. However, the study performed indicated that the degree of stability 

provided by this basic reformulation is not sufficient to provide a robust algorithm. Therefore, 

rather than continue with the development of these recursive predictor-corrector algorithms, this 

work will continue with the development of a recursive algorithm which is not based on a 

transition matrix, but rather on a block-by-block convolution algorithm. It will be shown in the 

next section that this block-by-block convolution algorithm preserves all the features of the 

existing synthesis formulation, and provides a dramatic decrease in the computing time required. 

This algorithm is considered a non-modal formulation, as it is based on the use of physical 

impulse response to represent the (linear) substructures, which are subjected to structural 

modification, substructure coupling, and ground-motion input through isolation. This algorithm 

will be shown to be exponentially convergent, regardless of the linear substructure properties, 

and for a general and broad class of nonlinear modifications. 
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