
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A NETWORK DESIGN ARCHITECTURE
FOR DISTRIBUTION OF

GENERIC SCENE GRAPHS

by

Panagiotis Fiambolis
Georgios Prokopakis

September 1999

Thesis Advisor:
Co-Advisors:

Michael J. Zyda
Michael V. Capps

John S. Falby

Approved for public release; distribution is unlimited.

DITO QWALXTTfinraBTBD 8 19991230 022

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
A NETWORK DESIGN ARCHITECTURE FOR DISTRIBUTION OF GENERIC SCENE
GRAPHS

6. AUTHOR(S)
Fiambolis, Panagiotis and Prokopakis, Georgios

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Sharing a common view while collaborating in networked virtual environments is

complex. The SOFT project examines a new approach: using generic scene graphs as a bus,
for graphics distribution. This thesis (as part of the SOFT project) examines network
architecture for distribution of generic scene graphs.

We design and implement the network architecture with a centralized Java server.
This server provides scalability, persistence, reliability, and latecomer support. The
server provides interoperability and can support any SSGs on any platform. The
extraction of information from the network layer is implemented in two ways. In the
first, we use Java's inherent serialization mechanisms; in the second, we use the Dial-
a-Behavior (DaBP) protocol.

We empirically test the server's overhead with both network mechanisms. We have
concluded that using DaBP significantly reduces the server's overhead by a factor of
six but only for less than 50,000 packets. Moreover, the use of DaBP provides
implementation flexibility because data format can change dynamically without requiring
re-compilation. Finally, DaBP, while promising, must mature and be shown to reduce
overhead for large number of packets before it is ready to be incorporated into the
final architecture solution for SOFT.
14. SUBJECT TERMS
Networking Virtual Environments

15. NUMBER OF
PAGES
165

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

A NETWORK DESIGN ARCHITECTURE FOR
DISTRIBUTION OF GENERIC SCENE GRAPHS

Panagiotis Fiambolis
Major, Greek Army

B.S., Greek Army Academy, 1985

Georgios Prokopakis
Major, Greek Army

B.S., Greek Army Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCBENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Authors:
*l/L"—l/

iotiTFiämbolis

Approved by:

V(SJL
Michael V. Capps, Cor Advisor

' IohrrS>Falbv,CoAdyj£0r

Dan C. Boger, Chafoman
Department of Computer Science

in

IV

ABSTRACT

Sharing a common view while collaborating in networked

virtual environments is complex. The SOFT project examines

a new approach: using generic scene graphs as a bus, for

graphics distribution. This thesis (as part of the SOFT

project) examines network architecture for distribution of

generic scene graphs.

We design and implement the network architecture with

a centralized Java server. This server provides

scalability, persistence, reliability, and latecomer

support. The server provides interoperability and can

support any SSGs on any platform. . The extraction of

information from the network layer is implemented in two

ways. In the first, we use Java's inherent serialization

mechanisms; in the second, we use the Dial-a-Behavior

(DaBP) protocol.

We empirically test the server's overhead with both

network mechanisms. We have concluded that using DaBP

significantly reduces the server's overhead by a factor of

six but only for less than 50,000 packets. Moreover, the

use of DaBP provides implementation flexibility because

data format can change dynamically without requiring re-

compilation. Finally, DaBP, while promising, must mature

and be shown to reduce overhead for large number of packets

before it is ready to be incorporated into the final

architecture solution for SOFT.

VI

TABLE OF CONTENTS

I. INTRODUCTION , 1

A. OVERALL GOALS 1
1. SOFT 1
2. NTH . 1
3. Internet2 2

B. SCOPE OF THIS THESIS , 2
1. Server Design 2
2. Multi-Tier 5

C. CONTRIBUTIONS AND GOAL OF THIS THESIS 7
D. CHAPTER SUMMARY 8

II. SOFT PROJECT. 9

A. OBJECTIVES 9
1. Network Collaboration 9

B. PROPOSED CLIENTS OF SOFT . . . 13
1. Telecubicle 13
2. Telesurgery 18
3. Generic Sharing of Stand-Alone Applications 19

C. ARCHITECTURE /. . . 21
1. SSG and Reporting . 22
2. Mapping Layer (ML) 22

■ 3. Network Scene Graph Layer (NSG) 23
4. Dial-a-Behavior Protocol (DaBP) .. . 25

III. RELATED WORK 27

A. INTRODUCTION ... 27
B. INTERCONNECTING PROPRIETARY STANDALONE APPLICATIONS . 27
C. INTERCONNECTING HETEROGENEOUS VIRTUAL ENVIRONMENTS . 30
D. BUILDING FRAMEWORKS FOR DISTRIBUTED VIRTUAL
ENVIRONMENTS BASED ON A CLIENT/SERVER APPROACH AND
REPLICATION 32

1. Community Place (CP) Architecture 32
2. Spline Architecture 35
3. Repo-3D Architecture 36

E. CONCLUSIONS 38

IV. SOFT NETWORK ARCHITECTURE 41

A. INTRODUCTION 41
B. SERVER 42

1. Justification for Centralized Server 42
2. Justification for Java Server . 46

C. CLIENT SIDE . 50
1. API to Network 50

VI1

2. Client High-Level Architecture 51
D. MULTICASTING 51

V. SERVER DESIGN AND IMPLEMENTATION...................... 55

A. INTRODUCTION 55
B. METHODOLOGY 55
C. PHASES OF DEVELOPMENT . . . 59

1. Phase One — 59
2. Phase Two 62
3. Phase Three 65
4. Phase Four 69
5. Phase Five 13

VI. CLIENT SIDE ARCHITECTURE AND DESIGN................... 77

A. NETWORK SCENE GRAPH (NSG) PROTOCOL... 77
1. UID 77
2. NSGtag v . , . 77
3. Owner 79
4. Contention Flags' 79
5. Fields . 79

B. NSG SERIALIZATION/DESERIALIZATION . . . 80

VII. EMPIRICAL TESTING ..-..■' 83

A. INTRODUCTION 83
B. TESTING SERVER OVERHEAD WITH DaBP . .s 83
C. TESTING SERVER OVERHEAD WITHOUT DaBP 84
D. PROBLEMS TESTING WITH DaBP". 85
E. CONCLUSIONS . .". 86

VIII.CONCLUSIONS AND FUTURE WORK 89

A. INTRODUCTION 89
B. CONCLUSIONS 89
C. FUTURE RESEARCH IDEAS............................... 90
D. SUMMARY . , .'...■ 91

APPENDIX A - JAVA CODE FOR "PHASE ONE" 93

APPENDIX B - JAVA CODE FOR "PHASE TWO" ."■' 99

APPENDIX C - JAVA CODE FOR "PHASE THREE" 103

APPENDIX D - JAVA CODE FOR "PHASE FOUR" 107

APPENDIX E - XML FILE 117

APPENDIX F - DABP CLIENTS H9

VI11

APPENDIX 6 - JAVA CODE FOR "PHASE FIVE" J25

APPENDIX H - JAVA CODE FOR TESTING CLIENTS . . 133

LIST OF REFERENCES . . \yj

BIBLIOGRAPHY . . 141

INITIAL DISTRIBUTION LIST . 145

ix

LIST OF FIGURES

Figure 1: Multithreaded Process Model 4
Figure 2: Multi-Tier Architecture . . 6
Figure 3: Common Visual Environment10
Figure 4: A Sample Scene of Paris and Its

Corresponding Scene Graph .10
Figure 5: SOFT Layering . . .12
Figure 6: Components of a Telecubicle . .16
Figure 7: Intuitive Human Communication .16
Figure 8: The First Four Telecubicles17
Figure 9: CAVE .18
Figure 10: ImmersaDesk .18
Figure 11: Telesurgery System Components20
Figure 12: Telesurgery Workstation20
Figure 13: Master Tool Handle , .20
Figure 14: Dataglove .20
Figure 15: SOFT Architecture 21
Figure 16: Connecting to a Virtual World 28
Figure 17: CP Architecture • «33
Figure 18: Repo-3D Architecture . . .37
Figure 19: Use of Server for Reliability45
Figure 20: Scalability .45
Figure 21: Categories of Multicast Applications. . .53
Figure 22: First Working Prototype . . .56
Figure 23: Synthesizing a Common Environment57
Figure 24: Spiral Model Implementation58
Figure 25: Phase One 60
Figure 26: UML Sequence Diagram (Phase One) 61
Figure 27: Phase Two . 62
Figure 28: UML Sequence Diagram (Phase Two).64
Figure 29: Phase Three 65
Figure 30: Parsed Stream 66
Figure 31: UML Sequence Diagram (Phase Three).68
Figure 32: Phase Four .69
Figure 33: UML Sequence Diagram (Phase Four)72
Figure 34: UML Sequence Diagram (Phase Five)75
Figure 35: UML Documentation for NSG Node 81
Figure 36: Trend Analysis with/without DaBP87

XI

xn

LIST OF TABLES

Table 1: Supported Flow-Types of Tele-Immersive
Applications .15

Table 2: NSG Contention Flags 24'
Table 3: Implemented NSG Tags 78
Table 4: Designed NSG Tags78
Table 5: NSG Fields. 79
Table 6: Average Server Overhead with DaBP85
Table 7: Average Server Overhead without . 86

Xlll

XIV

LIST OF ACRONYMS

ADÜ Abstract Data Unit
AI Artificial Intelligence
AO Application Object
API Application Programming Interface
CORBA Common Object Request Broker
COTERIE Columbia Object-Oriented Test-Bed for Exploratory

Research in Interactive Environments
CP Community Place
DaBP Dial-a-Behavior Protocol
DCOM Distributed Component Object Model
DR Designated Receiver
DS Designated Server
DSM Distributed Shared Memory
HCI Human Computer Interface
HTML Hyper Text Markup Language
JDBC Java Data-Base Connectivity
JVM Java Virtual Machine
ML Mapping Layer
ms milliseconds
NSG Network Scene Graph
NTH National Tele-Immersion Initiative
OMG Object Management Group
ORB Object Request Broker
PARIS Personal Augmented Reality Immersive System
RMTP Reliable Multicast Transport Protocol
SG Scene Graph
SGML Standard Generalized Markup Language
SOFT Software Framework for Tele-immersion
SSG Standard Scene Graph
SSS Simple Shared Script
TAWS Totally Active Workspace
UID unique Identifier
VRML Virtual Reality Modeling Language
VSCP Virtual Society Client Protocol
XML Extensible Markup Language

xv

XVI

ACKNOWLEDGEMENT

The writers wish to recognize the professionalism and

guidance, and all the support of our advisors. We would

like to express bur appreciation to Mr. Howard Abrams who

helped us debug the C++ client implementation and to Mr.

Ryan Brunton for his help in debugging the DaBP

implementation. Finally, we thank our families for their

devotion and support.

XVll

xvm

I. INTRODUCTION

A. OVERALL GOALS

Alvin Toffler, in his book The Third Wave, forecasts

that future white-collar workers will be able to work from

home. '"Home will become the center of society," but people

will still "need face-to-face contact with each other to

develop the trust and confidence necessary to work

together." [TOFF80]

With the capability of computer systems rapidly

increasing, and the swift expansion of computer networks,

these predictions are approaching fulfillment. Today this

vision is materializing through the Software Framework for

Tele-immersion (SOFT) project, National Tele-Immersion

Initiative (NTH), and Internet2. Their goals respectively

are:

1. SOFT

The goal of the SOFT project is the painless

introduction of networked collaboration into single-user

computer graphics applications. The applications as well as

the platforms they run on can be dissimilar.

2. NTH

The NTH goal is to provide a rigorous test for

Internet2 and increase the degree of cooperation between the

research laboratories involved. This will aid advances in

virtual reality research [WEB1].

3. Internet2

The goals of Internet2 are [WEB2]:

• Enable a new generation of applications;

• Create a leading edge research and education network
capability;

• Transfer new capabilities to the global production
Internet.

B. SCOPE OF THIS THESIS

The scope of this thesis is the design and

implementation of a network architecture for distribution of

generic scene graphs. This network architecture provides a

common graphical distributed environment for remote clients,

which use various platforms. We examine the most effective

structure to support this streamed communication between

server and clients. Moreover, we investigate how Java-C++

server/clients can be integrated into the SOFT architecture.

We examine multi-tier architecture and multicasting

technology in order to transfer the vast amounts of data

required for networked graphical applications.

1. Server Design

SOFT will support distributed graphical applications

collaborating freely in computer graphics client

communities. Thus, the server must have the following

characteristics:

a) Multi-Client

The client/server model can support relationships,

such as one-to-one and one-to-many. The one-to-many

relationship refers to one client sending information

through a server to multiple clients (multi-client).

b) Multithread

A thread is wa dispatchable unit of work."

[STAL98] Each thread is' executed sequentially and can be

interrupted so that a single processor can switch to another

thread. Each process can be divided into threads able to run

simultaneously while executing an application. Moreover, all

the threads can share the state and resources of the same

process. This makes multithreading useful for applications

that can execute independent tasks which do not need to be

serialized. As a result, running multiple threads under the

same process can result in less processor overhead because:

• Thread creation requires less time than the creation
of a new process;

• A thread can terminate more rapidly than a process;

• Switching between threads is less expensive.

Figure 1 illustrates a multithreaded process model in

which each thread has its own control block, user stack, and

kernel stack, while sharing the same address space of the

common process. An example of this model is a server that

listens for and processes multiple clients' requests.

Thread Thread Thread

Thread
Control
Block

Thread
Control
Block

Thread
Control
Block Process

Control
Block

User
Stack

User
Stack

User
Stack

User
Address
Space Kernel

Stack
Kernel
Stack

Kernel
Stack

Figure 1. Multithreaded Process Model [STAL98]

c) Persistence

Two different views of persistence are needed in

the SOFT project: scene persistence and persistence binding.

(1) Scene Persistence. The users in the

client community will be able to make changes in their

graphical environment. However, when they log out and log in

again, they must see the scene as they left it. Thus, there

is a need for scene persistence, which must be supported

either in the server or the client.

(2) Persistence Binding. When two applica-

tions make a logical connection and are prepared to exchange

commands and data, they perform a client/server mechanism

called binding. The binding mechanism can be either

persistent or nonpefsistent. The SOFT server must be able to

support communication among multiple clients. These repeated

calls must be maintained through persistent binding from the

server side, which will keep the logical connection open as

long as active clients are still in the system.

2. Multi-Tier

The term tier is used to "describe the logical

partitioning of an application across clients and servers."

[EDWA97] A two-tier client/server system exchanges

information directly between a client and a server. In a

three-tier architecture, an application layer between client

and server exists (Figure 2). The three-tier architecture is

less complex on the client side and has high security, high

data .encapsulation, excellent Internet support, hetero-

geneous resource management support, rich communication

choices, flexible hardware architecture, and excellent

performance. The middle-tier in the three-tier architecture

is responsible for servicing requests and responses between

the client and the server.

Tier-1 Tier-2

Resource
Managment GUI

Two-Tier Architecture

Tier-l Tier-2 Tier-3

Resource
Managment

GUI

RPC's, Queues, Broadcasts, etc.

Three-Tier Architecture

Figure 2. Multi-Tier Architecture [EDWA.97]

The middle-tier components are of two types:

a) Services

These are stateless procedures.

b) Objects

These have methods and can communicate across

networks, operating systems, and languages. They are called

Object Request Brokers (ORB's) and support:

(1) Stateless Objects. These do not

have a unique state. Microsoft's Distributed Component

Object Model (DCOM) is one example and Common Object Request

Broker Architecture (CORBA) of Object Management Group (OMG)

is another.

(2) Stateful Objects. These use a

unique object identifier in order to request services of a

certain object.

C. CONTRIBUTIONS AND GOAL OF THIS THESIS

In a shared graphical environment with multiple

clients, maintaining the same view for all clients networked

together is generally the vital issue. Today, popular

graphics libraries, such as Openlnventor, VRML, Java3D, and

Fahrenheit use a scene graph as their main data structure.

A client in a distributed graphical environment may wish to

use any of these various scene graph implementations. SOFT

envisions sharing via the scene graph. Each client is able

to modify his or her own scene graph. Through network

collaboration, this scene graph as bus metaphor provides the

changes to other clients for a shared common view. The

primary implementation contribution of this thesis is the

server, which efficiently allows for reliable messaging,

occasional reduction in traffic, and persistent storage.

D. CHAPTER SUMMARY

The remainder of this thesis consists of the following

chapters:

• Chapter II: SOFT. We provide the objectives of the
SOFT project, considering network collaboration and
interoperability. We propose clients of SOFT, such
as telecubicle, telesurgery, and generic sharing of
standalone applications. Moreover, we present the
logical architecture for the mapping layers of SOFT.

• Chapter III: Related work. Here we evaluate other
research related to and similar to SOFT projects.

• Chapter IV: SOFT network architecture. Here we
justify the use of the Java server and its
centralized role. We also design the client side and
provide a multicasting technique for the network
architecture.

• Chapter V: Server design and implementation. The
methodology and the phases that followed in
designing and implementing the server are discussed.

• Chapter VI: Client side architecture and design. We
provide the NSG protocol and its serialization.

• Chapter VII: Empirical study of efficiency. We
examine the overhead for the server ' and
communication in example sessions.

• Chapter VIII: We reach ' conclusions and make
proposals for future work.

II. SOFT PROJECT

A. OBJECTIVES

As stated by Brown University, the goal of the SOFT

project is the painless introduction of networked

collaboration into single-user computer graphics

applications. The primary research goal is to determine

those minimal alterations needed to integrate a stand-alone

program neatly into a networked environment.

1. Network Collaboration

In a networked shared environment (Figure 3) each

client is able to create his or her own objects and modify

any other object, provided it has permission of the owner.

Each new client, upon logging in, must be able to share the

same view. Additionally, when the user selects an object on

his image plane and brings it into his natural working

volume, we must decide how this appears to an observer

standing close by or at a distance. [PIER98]

A graphical scene may contain various objects,

different colors, objects within objects, different levels

of detail, etc (Figure 4). These can be defined as a set of

nodes organized into a set of hierarchies. The scene graph

(SG) is the data structure "used to denote the entire

ordered collection of these scene hierarchies." [LEA96]

7 :^
\

Network / \
Resources ^-~A./ \

AT

*k C:Client

Figure 3 - Common Visual Environment

Group:
'Paris''

Eiffel^
Tower }

- Arc de
Tromphe

Not» :VersaiBes
Dan» '. Palace .

 ■

Geometry
 ■—:—

Geometry Geometry
 :

Geometry

Appearance Appearance Appearance Appearance

Figure 4. A Sample Scene of Paris and Its Corresponding
Scene Graph [WEB3]

10

SOFT will provide the network framework for these SGs

(e.g., Openlnyentor, Fahrenheit, Java3D, etc.) to

communicate. A graphical application using Openlnventor will

be able to make calls to another which uses Java3D as SG.

Essentially this should lead to free collaboration in

computer graphics client communities. The need for access to

the application is vital in order to ensure consistency and

atomicity in scene modifications. We trade programming

complexity for additional collaboration functionality.

a) Layering

Dividing SOFT into three logical layers reduces

this programming complexity. The three layers are:

(1) The Standard Scene Graph Layer (SSG).

The SSG is the SG used by a specific application. Any

extensions to the SSG will be contained as a sublayer in

order to provide ■ the functionality needed for the next

layer, the mapping layer.

(2) The Mapping Layer (ML). The ML provides

the mapping between the SSG and the Network Scene Graph

(NSG) . As we may have different kinds of SSGs,

architectures, and languages, a new ML has to be written to

support each desired combination.

(3) The Network Scene Graph Layer (NSG).

The NSG is a special abstract SG that is not displayed, but

11

rather changes to it are mapped to changes in the SSG. The

NSG is shared among all networked hosts in a SOFT session.

It must contain data formats and contention resolution

mechanisms. Additionally, it must specify the SG data

semantics to be implemented in the mapping of the mapping

layer. Thus, an API is used indirectly through the mapping

layer. The SOFT layering is shown in Figure 5.

SSG
(e.g.Openlnventor)

ML

msG

SSG
(e;g. JAVA 3D)

ML

Network NSG

Figure 5 - SOFT Layering

b) Sharing via Scene Graph

The NSG is responsible for maintaining the same

view for all the clients networked together in the same

session. This is achieved as follows:

• Each SG node maps its own set of 3D objects and
attributes to the NSG;

12

• The network layer uses the NSG as a bus metaphor to
transmit the created or modified nodes to the remote
client's NSG;

• The NSG of the remote client is then mapped to its
own SG.

B. PROPOSED CLIENTS OF SOFT

SOFT aims to support any kind of distributed graphical

application. Such applications can be, for example:

• Telecubicle (office of the future, enhanced
teleconferencing);

• Medical Diagnosis and Telesurgery;

• Surveillance;

• Bomb Disposal;

• Mining.

We focus on the telecubicle because some industrial

progress has been made in this area [WEB4] . Also, some

significant progress has been made in telesurgery, although

it is too early for a commercialized product.

1. Telecubicle

As synthesized by Andy van Dam, a pioneer of graphics

at Brown University, immersion and presence can be

independent. People surrounded by panoramic views will feel

immersion without presence. [DERT98] Telecubicle will be a

new interface design of an office that can appear to become

13

one quadrant in a larger shared virtual office space. As

shown in Figure 6, a telecubicle will consist of a stereo-

immersive desk surface and at least two stereo-immersive

walls. Projectors on the ceiling and various other points

will render the images on the walls with ultra high color

resolution (i.e., 5000x5000). Moreover, a telecubicle

[DeFA98]:

• Will be stereo capable without special glasses;

• Will be networked to teraflop computing via multi-
gigabit networking with low latency;

• Will be available in a range of compatible hardware
and software applications;

• And will incorporate AI-based predictive models to
compensate for latency and anticipate user
transitions.

Tele-immersive applications need to support nine

distinct flow types [FOST98], which are shown in Table 1.

Telecubicles will be linked to form a common work

environment, demanding the previous flow of information. As

shown in Figure 7, workers will be able to share virtual

objects and data while having eye contact with each other.

Henry Fuchs believes that "the ceiling lights are replaced

by computer controlled cameras and ''smart' projectors that

are used to capture dynamic image-based models with

imperceptible structured light techniques, and to display

14

high-resolution ' images

surfaces."[FÜCH98]

on designated display

Table 1. Supported Flow-Types of Tele-Immersive Applications

Flow type Latency Reliable Multicast Stream

Control < 30 ms Yes No No

Text < 100 ms Yes No No

Audio < 30 ms No Yes Yes

Video < 100 ms No Yes Yes

Tracking < 10 ms No Yes Yes

Database < 100 ms Yes Maybe Maybe

Simulation < 30 ms Mixed Maybe Maybe

Haptics < 10 ms Mixed Maybe Yes

Rendering < 30 ms No Maybe Maybe

A goal of telecubicle technology is to give the

scientist, the engineer, and the worker the impression of

collaboration. People will interact with each other through

this mix of real and virtual environment - manipulating

objects, experimenting, simulating, designing, amusing, and

teaching.

15

,2 .obHqae£»Ä'*te»ö
■.jwqjedsonsources'""

Figure 6. Components of a Telecubicle ["NEBS]

16

Figure 8 shows the first four telecubicles that have been

connected. [WEB7]

link to NASA
Emphasis cm facial
sensing and
representation, and1

on sonic elements.
Emphasis an cubicle design,
application connectivity.

link to CAVE, supercomputing, and
international res earn h. commüniti es.

software
medcal applications

Yale University

{[Emphasis cm
^environment
j:sc anmng/resynthesis, J
and integration of
sensing and display

IinktcTDARPA systems

user interface
Columbia
University

] authoring tools

Emphasis on network
research, user interface i
software, authoring.

Brown University
Carnegie Mellon
University

Iinkto worlds of education,
entertainment other funders.

University of Utah
integration wifn
physical part
fabrication

network design and research

v

Naval Postgraduate School
University of Wisconsin h tenet 2

Figure 8. The First Four Telecubicles [WEB7]

Tele-immersive work stations, such as CAVE (Figure 9,

[WEB8].), ImmersaDesk3 (Figure 10, [WEB9]) , Totally Active

Workspace (TAWS), and Personal Augmented Reality Immersive

System (PARIS), have already been implemented [DeFA98].

During her nomination as Indiana University's first

Distinguished Visiting Technologist in its Advanced

Information Laboratory at University, Professor Donna J. Cox

17

described this process as "stepping inside the computer,

because it widens the user's creativity and control

[WEB10]."

'?(■?&''%

-.

Figure 10. ImmersaDesk
[WEB9]

2. Telesurgery

A. Alexander in 1978 [ALEX78] was one of the first

researchers to formulate the concept of telesurgery. "The

driving force behind military interest in remote surgery is

that 90% of all deaths in wartime occur on the battlefield,

before surgical care can reach the casualty" [HILL97].

Telesurgery can save the lives of isolated patients in the

battlefield, rural areas, and aboard ship.

18

With telesurgery, the surgeon can perform surgery

remotely (Figure 11, [WEB11]) using a special telesurgery

console (Figure 12, [WEB12]), instruments (Figure .13,

[WEB13]), and haptic devices (Figure 14, [WEB12]).

But surgery usually involves many other people (other

surgeons, medical staff, and observers) all needing to share

information. These people must also share the same view in

telesurgery. This can be achieved through the network

collaboration between clients. Each can interact and

simulate face-to-face cooperation. The major components of

telesurgery are [WEB14]:

• Human Computer Interface (HCI);

• Computer Assistance;

• Communication Methods;

• Telesurgical Worksites.

SOFT could benefit the "communication methods" component by

providing the networked collaboration among clients, and the

HCI by providing an identical view to everyone.

3. Generic Sharing of Stand-Alone Applications

Stand-alone applications, already written in popular

scene graph implementations, should be able to use SOFT for

networking capabilities with minimum effort. This will

19

increase reusability and performance of graphics stand-alone

applications.

Figure 11. Telesurgery System
Components [WEB11]

f;?.<- /*

Figure 12. Telesurgery
Workstation [WEB12]

Figure 13. Master Tool
Handle [WEB13]

20

C. ARCHITECTURE

Tele-immersion is likely the most technically

challenging advanced network application. Thus, considering

interoperability and standardization, the architecture shown

in Figure 15 has been chosen to support the previously

identified nine distinct components to tele-immersion

architecture, such as flow control, audio, video, tracking,

etc.

SSG's

3 £
SG

Modifications
& Reporting

ML's .DaBP

"^
Serializing

SG
Representations

NSG
Registered
Callbacks

>

Network
Layer

Figure 15. SOFT Architecture

21

1. SS6 and Reporting

SOFT is designed to be independent of SG

implementations. Openlnventor has been chosen as the primary

SG, and Java3D • and Fahrenheit will likely follow.

Implementation has begun in C++ on SGI and SUN machines. SSG

will be composed of nodes and fields with a unique

identifier (ID) for each host. The SSG will report any

modifications to the ML. Every modification requires locking

for consistency purposes.

2. Mapping Layer (ML)

The ML is a single-base mapping layer between the SSG

and the universal NSG. Being the interface between the SSG

and the NSG, the ML accepts callbacks from the NSG. The ML

behaves as follows:

• Establishes top level reporting and defaults,
initializing the NSG and network;

• Recognizes SSG changes and serializes them;

• Passes changes to the NSG;

• Registers callbacks from the NSG;

• Deserializes NSG information and reconstructs the
respective SG nodes (special nodes with no analogy

- in the supported SG are simply ignored);

• Passes deserialized SG nodes to the SSG.

22

The ML will require an API for locking objects on the

network for editing. This API cannot be in the NSG layer

because it must translate an SSG node to enable locking of

the appropriate NSG node.

3. Network Scene Graph Layer (NSG)

The NSG maintains a common hierarchy of nodes available

to the client community. Any ML modifications are mapped to

the NSG and reported to the other clients. This is

implemented through an API, responsible for exchanging

information between the ML and the NSG. The NSG has the

following structure:

a; NSG Node

A node is the fundamental element of a scene

graph, such as separator, color, cone/sphere, etc. The NSG

node supports any type of node. To do so, it contains

certain fields.

b) NSG Nods Fields

• Node type;

• Unique identifier for the node, namely a node ID and
.. a times tamp;

• Unique identifier for the creator/owner of the node,
i.e. the correspondent IP address and the
communicating port;

• A set of contention flags.

23

c) NSG Field Contention Flags

Proper handling of contention issues requires a

network token/locking/check-out mechanism. The desired

behavior is integrated into the system with the following

flags to this point (Table 2).

Table 2. NSG Contention Flags

Flag True False

Distribute If (own object)
Distribute locally

Else
Send to owner

Do not share writes

Local edit Set value on local
write

none

Remote edit Set value locally when
reading network change

none

Local callback Invoke a list of local
callback when reading
local change

No callback on
local change

Remote callback Invoke a list of remote
callback when reading
local change

No callback on
local change

This architecture benefits in hiding network

proprietary issues. Additionally, it gives the opportunity

to various SGs to call each other, even over different

hardware platforms.

24

4. Dial-a-Behavior Protocol (DaBP)

Fundamentally, a protocol is used for exchanging data.

This data exchange is a crucial issue in the SOFT

architecture. Serializing and deserializing the exchanged

data among clients over the network is a very cumbersome

approach. With this approach, whenever there is a change in

the data format of the exchanged data, the programmers must

rewrite and recompile the application. For such a large

project as SOFT is, flexibility was needed. This flexibility

is provided through the DaBP, which provides methods to

return the data from the network packets.

The DaBP, developed at the Naval Postgraduate School,

is currently implemented with Java and there is a C++

version under development. In this protocol, we must specify

the field names and types of the exchanged data. This

information is specified in a structured text file, using

the Extensible Markup Language (XML), which is a

reformulation of Standard Generalized Markup Language

(SGML). XML is more powerful than Hypertext Markup Language

(HTML), a standard SGML subset, because it can identify and

process - document structure and provide extensibility

[SURV99]. Moreover, XML allows users to define their own

tags and customize the way the protocol behaves.

25

DaBP is described with a predefined set of fixed tags.

Each tag is uniquely associated with a specific field in the

XML file. Beyond this, the protocol interpreter is

responsible for converting binary data into usable

information. Consequently, with the use of this protocol, we

achieve the required flexibility. Thus, the NSG layer does

not have to serialize and deserialize the exchanged data.

Instead, the NSG layer retrieves the data fields needed,

querying the packets using DaBP methods.

26

III. RELATED WORK

A. INTRODUCTION

The spread of software systems, the expansion of

networks, and the relatively low cost of graphics cards and

their increased performance has generated the need for

network collaboration among graphical applications.

Additionally, the variety of important standalone graphical

applications led developers to consider reusability and

networking carefully. Concerning these two factors, the

related work is divided into three areas of interest:

• Interconnecting proprietary stand-alone
applications;

• Interconnecting heterogeneous virtual environ-
ments;

• Building frameworks for distributed virtual
environments based on client/server approach and
replication.

B. INTERCONNECTING PROPRIETARY STAND ALONE APPLICATIONS

The popularity of the Virtual Reality Modeling Language

(VRML) used to describe 3D worlds established it as a

language which developers could use for graphic

applications. The great progress in the presentation of

stand-alone virtual worlds encouraged the VRML community to

implement multiple worlds and users to interact with each

27

other. This progress was made possible by the network

capabilities of the Java language, which provides

appropriate and efficient communication mechanisms.

Wolfgang Broil presented an approach in "Supporting

Multiple Users and Shared Applications with VRML" ■ [BROL97].

He exhibits a network infrastructure and appropriate

mechanisms to partition the virtual worlds. He uses a

multi-user daemon, which provides reliable TCP/IP

connections in order to download shared virtual worlds. To

overcome the problem of inconsistency between shared worlds,

the daemon retains incoming events and transmits them to new

clients after the transmission of the basic virtual world

has been completed (Figure 16.) After the successful

transmissions, the TCP/IP connection is closed.

(2) World connects
and

Multi-User
Daemon

Connect
to world

New Client Multicast
Group

(3) New connection
to be established

Figure 16. Connecting to a Virtual World

28

The multi-user daemon acknowledges all events sent by

consecutively numbered messages. The sender resends all

messages that haven't been acknowledged. A unicast

connection is used for receiving the missing messages. To

avoid the multi-user daemon bottleneck caused by unicast

connections, additional server daemons may be used. However,

to avoid slowing down the performance of multi-user daemons,

all the additional servers require access to the multicast

group.

Usually, in a large-scale virtual environment, the

client needs to participate in only a portion of the world.

According to Broil, the solution is to subdivide the world

in regions and link them through mechanisms that do not

interfere with user navigation. Thus, only currently visible

parts of the world need to be updated, reducing the network

traffic. Broil's approach exploits the VRML Region node.

Moreover, he uses the VRML User node and the VRML Avatar

node to limit user interactions in the shared virtual

environment. Each user has a personal VRML file, which is

transmitted by the local browser to all the participants and

the central daemon. In this way, each participant has his or

her own individual scene graph. Furthermore, shared

behaviors and interactions between clients are required.

29

Broil identifies four general classes of shared

behaviors:

• Autonomous behaviors (e.g. a clock, a blinking
light);

• Synchronized behaviors (e.g. a bouncing ball, a
flying bird);

• Independent interactions (e.g. a button to ring a
bell);

• Shared interactions (e.g. avatars with a single
region where the behavior is described within this
single region).

He represents these shared behaviors and interactions

with nodes. Behavior nodes receive and send events. Finally,

he uses synchronization and .locking mechanisms for the

events.

C. INTERCONNECTING HETEROGENEOUS VIRTUAL ENVIRONMENTS

Capps et al. in their work "Distributed Interoperable

Virtual Environments" present the use of a software bus

(Polylith) as a utility to compose existing applications

instead of modifying them [CAPP96]. They focused on the

issue of interoperability between different graphic software

applications that run on different hardware platforms. They

assumed that next generation virtual environments will not

30

depend on specific languages and hardware. Furthermore, they

were concerned about reusing software components.

Based on these issues, they used a Polylith software

bus as a connection module, capable of listening to a

variety of event classes and handling them both

simultaneously and asynchronously. They built an event-

listener as a central intermediary that can serve all the

components in the virtual reality environment. This

intermediary provides the "glue" for interconnecting the two

different virtual reality applications.

This software bus encapsulates decisions concerning the

interfacing of modules instead of distributing them among

the participants. Thus, there is only one responsibility for

mapping each domain into the abstract bus specification.

Then developers for either side can easily use these

abstractions within their configurations.

These researchers conclude that the same collaboration

issues used in shared editors and workspace environments

apply in multi-user virtual environments. These can be

exploited by software bus modules that provide for the

mapping between the interconnecting domains.

31

D. BUILDING FRAMEWORKS FOR DISTRIBUTED VIRTUAL
ENVIRONMENTS BASED ON A CLIENT/SERVER APPROACH AND
REPLICATION

We present the following three different approaches

using a client/server mechanisms and replication:

1. Community Place (CP) Architecture

Lea, Honda, and Matsuda in their work "Community Place:

Architecture and Performance" [LEA97] presented a

client/server system where a central server is responsible

for sharing a VRML scene. Participants connect to this

server in order to load the VRML file that is responsible

for rendering the shared scene. The basic architecture is

shown in Figure 17. The order of actions is:

• The Community Place (CP) browser loads the 3D data
file (VRML format);

• The CP browser contacts the server via the Virtual
Society Client Protocol (VSCP) that runs above IP;

• The server informs the CP browser for other
participants.

The VSCP runs above TCP and ensures connectivity. It

has an object-oriented packet definition allowing

applications to extend the basic ' packet format with

application specific messages. Thus, VSCP ensures exchanging

of script level messages that permit browsers to share

32

events and therefore support shared interaction with the 3D

scene,

Application
Objects

Authentication
Server

Message
Replicator
Server

VSCP

Voice Chat
Server

.* ,-▼

CP Browser
(Java)

Figure 17. CP Architecture

Each user navigating through the scene sends position

information to the server. Using area of interest

algorithms, the server decides which other browsers a user

needs to be aware of. The server need not know information

about -the scene loaded by the browser.

Lea, Honda, and Matsuda introduced the idea of a Simple

Shared Script (SSS) model mechanism, which is responsible

for downloading the same script and executing it locally. To

33

deal with issues such as ownership and persistence, they

added the notion of a master browser to the SSS model.

Whenever the master browser is selected by the server, it is

told that the master has been selected. Scripts are capable

of sending events to other browsers. In cases where the user

wants to implement serialization as a scene object, it is

done via the master browser. Afterwards, the master browser

distributes the changes.

For more complex situations, they introduced the idea

of an Application Object (AO) which exists externally to the

browser and the server. This AO consists of three parts:

• The 3D data description that represents the
application in the shared scene;

• The associated scripts that accept user input and
communicate back to the AO;

• The AO side code that implements the application
logic.

The AO allows the creation of 3D objects dynamically

during run-time. The applications use the Virtual Society

Application Protocol (VSAP) to register their application

objects with the server. ' ,

They use a spatial model to reduce network traffic

among participants who share a 3D scene. Their communication

mechanism is based on multicasting.

34

2. Spline Architecture

Another approach for building these frameworks is the

Spline architecture used for the Diamond Park Virtual

Reality System designed by the Mithubishi Electrical

Research Laboratory (MERL) [WEB15] . Spline's world model is

not a scene graph but rather an object-oriented database

supporting visual and audio information. The objects have

ownership attributes to avoid reader/writer conflicts. The

ownership of an object can be transferred from one process

to another. Spline's objects do not persist over time.

This architecture is based on replication so that each

world model resides in each application process. Focusing on

the issue of speed Spline provides approximate equality

between world model copies. Users are grouped together in

locales of interest. Each locale is associated with a

separate multicast communication channel avoiding

propagation of messages to uninterested participants. A

hybrid communication approach was proposed for the Spline

3.0 version where client/server communication will be point-

to-point and server/server communication will be peer-to-

peer multicast. The exchanged messages are divided into

small rapidly changing objects, large slowly changing

objects, and continuous streams of data. In Spline 3.0, Java

will be the primarily high level interface.

35

3. Repo-3D Architecture

Blair Maclntyre and Steven Feiner in their paper "A

Distributed 3D Graphics Library" present Repo-3D, a general

purpose object-oriented library for developing distributed,

interactive 3D graphics applications across a range of

heterogeneous workstations [MACI98]. According to them, from

the programmer's viewpoint, objects reside in a large

distibuted shared memory (DSM) instead of a single process.

The underlying system is responsible for replicating the

objects among the processes. Simple, remote, and replicated

are three types of distributed objects semantics in DSM.

Since the refresh rate is a crucial factor in

interactive-graphics virtual-reality applications, the data

needs to be local to the process doing the rendering. Repo-

3D uses the Columbia Object-Oriented Testbed for Exploratory

Research in Interactive Environments (COTERIE) as the

replication mechanism because neither Inventor nor Java3D

provides support for distribution.

The CORBA solution was rejected for being too

heavyweight and for not supporting replication. Java proved

to be more suitable for the implementation language because

of its cross-platform compatibility and support for threads

and garbage collection. The Repo-3D architecture is shown in

Figure 18 where distributed data sharing is provided by two

36

packages, the Network Object client/server object package

and the Replicated Object shared object package.

Distanim-3D is derived from Anim-3D, a powerful, non-

distributed, general purpose 3D graphics library. Anim-3D is

a scene graph model suitable to a distributed environment.

In Anime-3D, properties are attached to nodes and any

changes do not affect the result, unlike Inventor, ordering

is not necessary. Properties are only inherited down the

graph.

Repo-3D

Repo DistAnim-3D

Replicated
Objects

Network Objects Events Native Graphics

Modula-3 Runtime

Operating System Services

*
Network W

Figure 18. Repo-3D Architecture

37

The Network object package provides support for remote

objects. This package is similar to Java's Remote Method

Invocation (RMI). The Replicated Object package of course

supports replicated objects. Each process can call any

method of an object it shares. This package follows the

principles of atomicity and serialization of an object.

Repo-3D rationale provides programmers with the

illusion of a large shared memory using Distributed Shared

Memory (DSM), making it easy for them to prototype

distributed 3D graphics applications. Their future work will

most likely use Java because even if Java does not support a

replication object system, the JSDT may be a fine starting

point.

E. CONCLUSIONS

Our SOFT architecture has both similarities to, and

differences from, the presented approaches. Like CP, SOFT

uses a centralized server.

Its architecture doesn't depend on a particular scene

graph (Inventor is used as an example of a scene graph

implementation), as the ML is responsible for mapping any

scene graph to the NSG. SOFT differs from Spline and CP

because it stores scene graphs using Java native structures,

instead of an object oriented database. Moreover, SOFT

38

doesn't depend on any database replication mechanism, as

Spline does. Furthermore, instead of distributing VRML

files, like CP or Broil's architecture does, SOFT

distributes scene graphs.

Lastly, unlike Repo3D, which is based on COTERIE for

the underlying distribution of scene graphs, SOFT invokes

Java networking methods and is capable of using RMI.

39

THIS PAGE WAS INTENTIONALLY LEFT BLANK

40

IV. SOFT NETWORK ARCHITECTURE

A. INTRODUCTION

As outlined in Chapter III, virtual environment

researchers are attempting to solve the problem of

networking collaborative virtual environments with various

architect-ures. Some developers use multicast groups, others

try to solve the problem using replicated databases, and a

few others use hybrid techniques. According to Michael Zyda,

replicated world databases are more efficient than

centralized or distributed shared database schemes, but they

generally lack a way to maintain world consistency

[ZYDA97]. Also, large virtual environments could use hybrid

models with small replicated data sets and a distributed

client/server model. Thus, the client/server module could be

integrated in such environments.

Thinking of implementation, we considered .that Java

provides innovative methods for building virtual worlds.

Furthermore, since our primarily goal was to maintain a

common shared view, and no database or replication

capability existed, we decided to design and implement a

centralized server using Java. Below, we present our

decision and provide more details.

41

B. SERVER

We chose to implement the SOFT network architecture

using a centralized server. This server would be responsible

for providing a common share view among clients. Below we

present both our justifications for the centralized server

and the use of the Java programming language.

1. Justification for Centralized Server

First let us examine the rationale for our decision to

implement the centralized server. Our decision was based on

the following criteria:

a.) Reliability

Several data exchanged in a tele-immersion session

must be sent reliably. This .is required in order to ensure

consistency of the world database or to reflect an accurate

update from a simulation or user interface event. [FOST99]

As stated in Chapter II, a major aim of SOFT is to

provide a common graphical distributed environment, where

each client must be able to share the same view. This means

that every action on any client must be broadcast to all the

other clients concurrently connected. Moreover, users must

be able to collaborate using the available objects. Object

use must have the permission of the owner and thus a

universal locking mechanism must exist. The use of a

42

centralized server facilitates all these transactions.

Clients notify or query the server in order to create,

modify, or use an object. The server is responsible for

storage, locking, and broadcasting to the currently

connected users (Figure 19).

The only drawback is that this kind of implement-

ation is based upon the reliability of a single server. Any

failure of this server will affect the common shared virtual

environment.

b) Scalability

Usually a server creates a bottleneck, an

undesireable factor in terms of scalability. But using

multiple servers, we can overcome the bottleneck and

increase the scalability. Furthermore, multiple servers can

be used in conjunction with the Reliable Multicast Transport

Protocol (RMTP). RMTP uses receivers associated with local

regions or domains. In each domain, there is a special

receiver, called a designated receiver (DR) [PAUL98].

Additionally, a special client can also be a server during a

session, called a designated server (DS) (Figure 20).

A centralized server implementation may reveal

potential problems that could be spread in a networked

collaborative environment. Fortunately, the centralized

. 43

server implementation can isolate and solve these problems,

providing a more robust scalable module that can more easily

be integrated in the previously mentioned architecture.

c) Persistence

The status of the objects in a virtual environment

varies according to the indication of their contention

flags. Some objects will vanish when their owner disconnects

from the system, while others may remain until their owner

deletes them, even if the owner is not currently logged on

the system.

With a centralized server, storing the contention

flags and providing the necessary persistence is easy. Also,

objects can be independent from client existence and can be

retrieved easier from a centralized server.

d) Latecomer Support

When new clients join the virtual environment,

they must be aware of all the currently existing objects.

The server can store and maintain the current status of

every object which is present in the environment. Also,

whenever- new clients connect to the network, the server

sends them all the available data. Thus, the new client

becomes a member of the common virtual environment.

44

S:Server ^ }:Locking Mechanism

C:Client :Object Pool

Figure 19 - Use of Server for Reliability

C: Client DS: Designated Server

Figure 20 - Scalability

45

e) Conclusion

The centralized server implementation has some

drawbacks such as:

• Network bottleneck through which all traffic must
pass;

• The environment depends on the reliability of a
single machine.

But the benefits are:

• Simple and clear implementation;

• Universal locking mechanism;

• Can be used as a scalable module to serve a domain
in a more complex implementation;

• Easier storage/retrieval mechanisms used to provide
persistence;

• Latecomer support.

Since the benefits provide a flexibility which is more

important in the current state of the project, we chose the

centralized server implementation.

2. Justification for Java Server

In Chapter III, the derived conclusions focus mainly on

Java implementations. Since the working prototype had been

developed in C++ with UNIX as the operating system, we had

to chose between C++ and Java. Below we present our criteria

46

and analysis which resulted in Java being chosen for the

implementation.

a) Built-in Standard Libraries

Java contains standard libraries for solving

specific tasks [ECKE98]. These tasks include networking and

multi-threading, which are major aspects of the server

implementation. Using standard libraries promotes rapid

development time allows us to focus on the specifications,

and requirements for the server. On the other hand, C++

relies on third-party non-standard libraries or on code from

scratch. Development is time consuming and involves higher

risk potential. Moreover, Java standard libraries support

database connectivity via JDBC and distributed objects via

RMI and CORBA. These features are not of immediate value,

but they enhance the scalability and flexibility of the

project in the future.

b) Garbage Collection

Memory management during the server session is a

factor dramatically affecting robustness. Java provides a

built-in. mechanism for memory management called garbage

collection [CHEW98]. Garbage collection is responsible for

non-referenced memory release so that it may be reused. This

way memory-leaked-addresses are corrected, and explicitly

47

deallocating memory is not needed. Note, however, that a

memory leak can still exist if unused memory remains

referenced. Memory management is a critical factor for the

server because there is a permanent "read a stream into a

buffer, store the data, release the buffer"' loop.

Robust memory management may affect performance

too. According to Bruce Eckel, overall, Java could possibly

be as fast or faster than C++ [ECKE98] . This can happen

because, even though interpreted Java code can be even 20

times slower compared to equivalent compiled C++ code, the

new-delete mechanism for memory management in C++ leaves

holes in the heap eventually making it slower. The

allocation mechanism has to seek available space through

those holes in order to prevent running out of heap storage.

This searching may seriously decrease performance. The Java

garbage collector rearranges memory, allowing the high-

speed, ihfinite-free-heap model to be used while allocating

storage. [ECKE98]

c) Platform Independence

Java programs are compiled to an architecture-

neutral byte-code format [FLAN97]. These byte-codes can be

interpreted by the same version or newer Java Virtual

Machine (JVM) on any platform. Platform independence is a

48

real benefit for the SOFT server as it allows users to use

SOFT without purchasing new hardware or installing a new

operating system.

d) XML, Java and DaBP

As stated in Chapter II, XML is quite powerful. It

provides a universal schema or metadata mechanism for

defining, understanding, and interchanging files and data

between two systems [SÜRV99]. XML is already being used by

the DaBP. We intend to examine the feasibility of

incorporating DaBP in the SOFT architecture. Moreover, "Java

is on the XML action both as driver and utilizer of XML

capabilities." [SURV99]

e) Evolution - Maintenance

The SOFT project is an evolving environment, and

major modifications are likely in the future. Every

modification or improvement may affect the server also. A

simple Java server will require less effort and time to

update than a C++ implementation.

f) Conclusion

The built-in standard libraries for networking,

the garbage collection mechanism, the platform independence,

49

the cooperation with XML and DaBP, and the easiest way to

maintain the system prompted us to employ Java.

C. CLIENT SIDE

In the SOFT architecture, the client can be any

standalone application (graphical or not). Every client must

be able to exchange information among other clients

transparently. Therefore, SOFT must provide an API for the

upper layers of its architecture.

1. API to Network

The client provides an API for the mapping layer core.

This makes the network layer independent of the SSG

implementation. The methods available to the mapping layer

include the following:

Initialize the network;

Set and get per-typed callbacks;

Serialize data into a single NSG node;

Get a list of nodes;

Map from name to NSG node;

Set and get global callbacks;

Get and set local root of the scene graph;

Set, get, and call end of frame callbacks;

Get list of roots of remote scene graphs.

50

2. Client High-Level Architecture

The client is an abstraction that provides network

access to the mapping layer of the SOFT architecture. It is

independent from the SSG and can be used by different

graphics applications- It is not hardware specific and

handles large and little-endian issues, providing inter-

operability. The client has been implemented in C++.

D. MULTICASTING

One of the most common ways of communication is one-to-

one. The client-server model falls into this category.

Another category is unicast communication where the web

client retrieves information from the web server. A third

example is broadcast communication, for instance radio and

television where each client tunes to a certain frequency to

retrieve information. Multicast falls between unicast and

broadcast and "is a one-to-many communication" [PAUL98].

When providing the same data for multiple graphical

applications in the client community, multicast transmission

is needed, rather than repeated unicast transmission to each

receiver [FOST99] . In this way, the sender can transmit a

single copy of a packet, regardless of the number of

clients. The routers in the network infrastructure are

responsible for delivering the packet to the clients. The

51

packet is replicated as many times as the number of clients,

which improves the efficiency of the network use.

The multicast data can be in a variety of forms: audio,

video, haptic device streams, and tracking. The size of the

data, especially the video, can be enormous in size per

second. Thus, latency plays a key role in the sharing of a

common graphical environment among the client communities.

So far, the ' use of multicasting has two drawbacks, which

actually do not rely on multicasting itself:

• Difficulty in accessing high-performance multicast
enabled networks;

• Lack of middleware tools with access to multicast.

Based on the reliability and the latency requirements,

the multicasting applications are divided into three

categories [PAUL98]:

• Interactive applications;

• Streaming applications;

. • Reliable multicast applications.

The relationship between latency and reliability is

illustrated in Figure .21.

For many applications, despite the issues of

reliability and latency, there is a basic need for selective

52

distribution. This means only a certain group of clients

must receive the information.

R
elia

b
ility

 £ r-

Interactive
Applications

Streaming
Applications

Reliable
Multicast
Applications

End-to-End
Latency

Figure 21. Categories of Multicast Applications
[PAUL98]

53

THIS PAGE WAS INTENTIONALLY LEFT BLANK

54

V. SERVER DESIGN AND IMPLEMENTATION

A. INTRODUCTION

In the SOFT architecture, the server must support

multiple clients, latecomers, and use the DaBP. The client

side could be any standalone application. The server must be

responsible for providing the clients a common shared

environment. In order to analyze and understand the previous

work done, we had to follow a methodology under a strict

time frame. We present the methodology used to accomplish

this and the way the server was implemented.

B. METHODOLOGY

When we were engaged in the SOFT project, a working

prototype existed. This prototype consisted of two modules,

a server and a client, working together as a pair. Both the

client and the server had been implemented in C++ on Silicon

Graphics machines running UNIX. This prototype provided a

two-way communication between the client and the server

(Figure 22). The server and the client were running

Openlnventor and rendered a simple cone. After establishing

a communication channel, each one (the server and the

client) was responsible for delivering its own scene graph

55

to the other. At this point, both were able to render a

synthetic image consisting of each other's cone (Figure 23).

w/ r*\ \ S -A ^

;^\

Server Client

Figure 22. First Working Prototype

In this prototype, Openlnventor was used as the SSG and

reporting mechanism. The ML layer was provided through

separate functionality, specifically designed for the

Openlnventor implementation. The NSG layer was also separate

and provided the above communication functionality. Our

objective was to augment the functionality of the first

prototype and to design a server module with:

• Multi-Client Functionality;

• Latecomer Support;

• Persistence;

• Locking Mechanism.

56

Before establishing communication:

Server Client
After establishing communication:

Server Client

Figure 23. Synthesizing a Common Environment

According to Schach, some popular software life-

cycle models are:

• Build-and-Fix;

• Waterfall;

• Rapid Prototyping;

• Incremental;

• Synthesize and Stabilize;

• Spiral;

• Object Oriented. [SCHA99]

57

Having the above working prototype as a basis and

considering timing limitations and involved risk, we decided

to use the spiral model. The spiral model corresponds each

cycle to a phase. As shown in Figure 24, we used the working

prototype as a core, and we gradually progressed to phase

five.

Figure 24. Spiral Model Implementation

58

C. PHASES OF DEVELOPMENT

We developed the application in five phases. We present

in each phase below, our objectives and the derived

conclusions that provided us the feedback to continue onto

the next one.

1. Phase One

a.) Objective

In order to examine the feasibility of such an

independent mechanism, our objective was the intervention of

a client/server mechanism between the existing pair of

client and server (Figure 25) . The benefit from this was a

better understanding of the working prototype and the format

of exchanged data.

b) Implementation

This intervening mechanism was implemented in Java

1.2 on Windows NT 4.0, as shown in Appendix A. The UML

documentation of this phase is shown in Figure 26. The new

intervening mechanism was a hybrid client/server system

consisting of two modules - the Java client/server module,

and the original C++ client/server module. The reason for

this was to emulate painlessly the current client/server

mechanism.

59

es

JS Java Server

Q \ Java Client

CS

JS

C++ Server

C\ C++ Client

New Java
Implementation

Figure 25. Phase One

The server C++ module started the execution of a

graphics application. Following this, the Java server and

the Java client started. The Java server waited to be

invoked by listening to the Java and. C++ clients using TCP

sockets. Once this communication had been established, the

Java server waited for the C++ client requests. Upon

request, the Java server opened the communication channel

with the original C++ client and sent the data. Then, both

of them had a common view of the scene. Whenever the server

60

or the client made modifications to its own respective

scene, these modifications were automatically transferred

through the network and reflected to the other.

server actor | dient_actor server dient thread dient thread... serveOne serveOne:...

.

server actor client actor server clientthread client thread:run senreOne seiveOnerrun

i start ^ 1 1

Object server_actor 1 L r ere axe sewer socxei
■
■

n

■*

J create local clientthread

• create i nput stream

t
i
i

f' •^
acce >t local client *-

""«
^

ff ^

accept e) dernal clients
r

start

i

<—'
r

\ J read loca client

r
y «^

|j

J write to lo cal sewer

s
*■%

^

start thread >■
x

r

1 create i nput

t*
*x

create o utput

s v>
-1 start

Y read

ft ^
-1 write

** *>,

Figure 26. UML Sequence Diagram (Phase One)

61

c) Conclusions

In this phase, we introduced seamlessly an

independent client/server mechanism in the existing

prototype, while maintaining the same functionality. We

examined the exchanged data format and were able to build

our own server.

2. Phase Two

a) Objective

In this phase, our objective was providing a

single-server mechanism between two equivalent existing

clients (Figure 27). The benefit of this was forming a new

independent server-mechanism. This mechanism was the basis

for the new implementation.

JS : Java Server

CS: C++ Server

CC: C++ Client

JS

Figure 27. Phase Two

62

b) Implementation

We improved the phase one prototype, as in

Appendix B. The UML documentation is shown in Figure 28.

Then, we created the "ServeOne" class as a thread

responsible for opening a connection between two predefined

C++ clients. Once the connection was established, the thread

was reading the input stream from the CS client and was

writing the output stream to the CC client. We also created

the Server class, responsible for initiating the ServeOne

thread.

The CS initiated a new session. Then the JS

connected to CS and waited for the CC client to connect.

Upon the CC connection, the uni-directional flow of

information from the C++ server (CS) to C++ client (CC).

c) Conclusions

We successfully excluded the Java client

implementation from the intermediate server module of Phase

One, managing to maintain the same functionality. This

simple server module provided scalability for the next

phase.

63

server actor 1 clientactor | server serveOne run

server actor client actor

start

server serveOne run

T} start the tread

stop

■»r1 □
! create server socket

create data input stream

accept

H
create data output stream

start

TJ
read input

write output

*0
close socket

Figure 28. UML Sequence Diagram (Phase Two)

64

3. Phase Three

a) Objectives

Our objectives were to establish a bi-directional

communication and to provide a storing/retrieving mechanism

for the NSG messages communicated via the server (Figure

29) . This storing/retrieving mechanism demanded a

deserialization of the NSG messages. Thus, we would be able

to gain scalability for the next phases. Additionally, we

would be able to examine the effectiveness of such a

mechanism because the existing client implementation

required the message retrieval in a specific order.

Client

Hash Table

Client

Server

Figure 29. Phase Three

65

b) Implementation

First, we modified the server in order to interact

with only CC clients. The server listened to CC clients to

connect. Upon their connection, the server initiated two

threads, one reading the input stream of the first client

and writing to the output stream of the second, and vice

versa for the second thread.

Second, we provided the server with a hash table

implementation as the storing data structure.

static Hashtable htable = new HashtableO;

Moreover, we implemented the method:

public void parseStream(byte[] buf, int len)

as a deserialization mechanism in order to get the unique

identification (ID) of each received message and store it to

the hash table (Figure 30).

int int byte [] int byte [].. int byte []

(ID)
Identification

Figure 30. Parsed Stream

66

We chose the Hashtable Java implementation because it

guarantees O(log(n)) time cost for the get, put, and remove

operations. Moreover, the Hashtable is synchronized [WEB16].

According to this unique ID, the message was either inserted

into the hash table (if the ID were a new one) or modified

an existing one (if the ID already existed in the table.)

Appendix C contains complete implementation. The UML

documentation is shown in Figure 31.

c) Conclusions

We managed to establish the bi-directional

communication between two clients. Additionally, we

stored/retreived the exchanged data in the hash table. In

this manner we maintained a common-shared-view among the

clients. As this shared view was stored in the hash table,

we were ready to provide' latecomer support in the future

implementation.

During the testing, we discovered that having

stored the messages in the hash table, we were unable to

retrieve them in the specific order required by the existing

C++ client implementation. Consequently, we concluded that

in the next phase we had to change the hash table data

structure used for storing and replace it with ä dictionary.

61

Server actor \ clientgactor srveOne | run | parseStrearrT"

wivtf actor

J

ff

Olient MCtCT serveOne

■*o

F
create server socket

aooeptlst olient

-*0

F
get olient address

]

I accept second dient — J

7 get client address

Q
u

ore ate thread for olient one •

create input stream

0=
I oreate output stream

D=
H -o

D:
writ« data

fc=i
D

I Object cDerrt_actor|

u
orcat« thread for oli*rrtt/wo > u create input stream

0 oreate output stream

■*D

stop

■*D

Tl step thread

olose server socket

0=

p.afsegftream

Tl

F
Q

store object
1

Figure 31. UML Sequence Diagram (Phase Three)

68

4. Phase Four

a.) Objective

Our aim was to provide multi-client functionality

to the server (Figure 32.) The benefit from this was

latecomer support and persistence. Latecomers would be able

to retrieve the common environment from the storing

mechanism. Since the hash table proved to be inefficient

during Phase Three, we had to replace it with a more

appropriate one.

A
 i

s
/ C* *

()

/ U Y
/ \
/ \ / \
Client

Server

Hash Table

Client

Client-Pool

Figure 32. Phase Four

69

b) Implementatxon

First, we added a client-pool

static Vector castTable = new VectorO;

to store the currently running clients. In the castTable, we

stored the DataOutputStream of each client. Thus, every new

message could be retransmitted to all the clients in the

pool.

Second, we provided latecomer support, where each new

client received all the stored messages. Following this, we

replaced the storage data structure (hash table) with a

dictionary.

public class NSGRepository extends Dictionary

Since the dictionary is an abstract class, we decided

to implement it using vector. Despite its time cost of 0(n)

for get, put, and remove, we gained the required

functionality of retrieving the records in the order we

needed them. This was a temporary solution, as the clients

would not require an ordered set of messages in the future.

Third, we provided multi-client support. The server

entered in an endless loop where it accepted every new

70

client, creating a new thread to support it. The new thread

was responsible for up-loading the existing environment to

the client so that each shared a common view. After this,

the new thread started to read from the InputStream of the

client and to write to every OutputStream existing in the

client pool. The complete implementation is presented in

Appendix D. The UML documentation is shown in Figure 33.

c) Conclusions

We managed to store the exchanged messages in a

dictionary storage data structure. Consequently, we provided

latecomer support and persistence. Furthermore, we were able

to function in a multi-client environment.

On the other hand, we concluded that the parsing

stream mechanism was able to process only a limited set of

message types (e.g. primitive shapes and transformations.)

Therefore, we identified the need for an independent

mechanism able to read formated messages rather than simple

byte arrays requiring deserialization.

71

server actor client actor NSGScrver NSGServeOne run parseStream

parse Stream

,_send objeefeto the late-comer

read from input

broadcast to the other clients

store data

■»Ü i read ID

! store object

0=
i stop thread

Figure 33. UML Sequence Diagram (Phase Four)

72

5. Phase Five

a) Objective

Our goal was to provide the ability to read

formated data from the InputStream of each client. The idea

was that the server should be unaware of the type of

transmitted messages but still be able to dynamically

process and store them. This would give better scalability

and would make the server implementation less proprietary.

As a result, we examined the feasibility of using DaBP.

b) Implementation

Since DaBP requires the use of XML files for

reading the format of the protocol, we created a sample XML

file as in Appendix E responsible for the representation of

the transformation message. The transmitted messages are

called Abstract Data Units (ADUs), and they are structured

according to the protocol.

We also created two sample Java clients (with no

graphical interface) because the C++ clients were not mature

enough to be invoked in a reliable testing procedure. The

Java implementation of these clients can be found in

Appendix F. These Java clients simulated the real clients by

sending and receiving messages using DaBP.

73

The server was responsible for creating the protocol:

ProtocolDescription protocol;

protocol = new ProtocolDescription("SOFTexp.xml");

and each thread was responsible for establishing a stream

for reading using the ADUStreamTCP class, which reads one or

more ADUs transmitted across the TCP socket.

ADUStreamTCP tcpStream;

Socket in_socket;

tcpStream = new ADUStreamTCP(in_socket, protocol);

Next, the thread was able to read from this stream

using an ADUData class. This class represents data received

from the network in the protocol defined format. Appendix G

contains the complete implementation. The UML documentation

is shown in Figure 34.

74

jactor f~ cHelEK53Bir "T" NSGServer ~~T" NS'GSelSreSKeMB

««iv«r actor dl.nt jctor NSGS.rv.r MSISStivtOnt

f

Q
request

• or*«1c server socket

If Initialize protocol

accept client request

^=3

-^T1!

get client address

create new thread

Tl create output stream

0= create ADU TCP stream

¥
•dd elUntto list

D=
G" *D

send objects to lateoome

IC=1
! «ad ADU

IF

IT

U

U
stop

H
> close server socket

*0

IF
broadoastto other clients

If
T

L stop thread

Figure 34. UMP Sequence Diagram (Phase Five)

75

c) Conclusion

After examining the feasibility of using the DaBP,

we conclude that:

• DaBP integrated and cooperated efficiently under the
current architecture;

• DaBP provided the necessary flexibility for the SOFT
project because instead of a stream parsing
mechanism, we could directly access the fields of
the ADUs;

• DaBP uses XML, which is derived from the ISO
Standard Generalized Markup Language (SGML),
cooperates with Java, and provides scalability for
future implementation;

• DaBP is worth being evolved and included in the SOFT
architecture.

76

VI. CLIENT SIDE ARCHITECTURE AND DESIGN

A. NETWORK SCENE GRAPH (NSG) PROTOCOL

The NSG protocol is an information exchange mechanism

between the network layer and the ML. This information is

the scene graph appropriately modified and serialized in

order to provide platform independence across the network.

Each NSG is owned by one host at a time. Specifically, it is

composed of nodes and fields. A node consists of:

1. UID

The UID is a unique identifier for the node, consisting

of a combination of owner ID and time of creation. A UID is

required because we may have multiple clients running on the

same host.

2. NSGtag

This defines the type of the node. Different nodes with

the same tag may have different type signatures. Once the

node has been created, the type signature is not changed.

Setting NSGtag only during node creation enforces this

policy.

SOFT provides a base set of tags (Table 3) which every

SOFT implementation can interpret. The application and the

user may define any new tags they wish, ones which are not

implemented yet. The tags of Table 4 have already been

77

designed. Tags are sent as text strings roughly equivalent

to notations in a mark-up language.

Table 3. Implemented NSG Tags

NSGsep_node Contains an array of "noderef" UIDs. The
NSG uses left-right/top-down inheritance
(as in Openlnventor) instead of top-down
inheritance as used in Java3D and FSG

NSGcolor node Contains a NSGfield vec3 [rgb]
NSGxform node 4x4 matrix
NSGcone_node A cone centered at (0,0,0) that goes from

-1 to +1 in each dimension.
NSGcube_node A cube centered at (0,0,0) that goes from

-1 to +1 in each dimension.
NSGcyl_node A cylinder centered at (0,0,0) that goes

from -1 to +1 in each dimension.
NSGsphere_node A sphere centered at (0,0,0) that goes

from -1 to +1 in each dimension.

Table 4. Designed NSG Tags

Array of
Tristrips

The number of tristrips. A tristrip
contains two arrays of three vectors
[position, normal] and two vectors
[texture coordinates] and an int[size]

Material Material properties such as emissive,
specular, etc. -

Texture Texture images [contains a URL to the
image]

Light A light object (enumerated such as,
spotlights, point-lights)

Camera Viewport mapping (aspect ratio, etc.)
near, far, position, focal distance, typed
orientation

FaceSet Indexed face set: array of three vectors
[points] and array of ints.

Transparency Contains a double [alpha]

78

3. Owner

This term identifies uniquely the creator or owner of a

node. The owner is stored as an IP address and port for

communicating updates.

4. Contention Flags

Each node has a set of independent Boolean flags for

handling contention. The flags have default settings in the

NSG. Any complex sort of contention control requires

dropping to a callback. Certain callbacks, which are used

frequently in combination to provide desired behavior, are

integrated into the system as flags (Table 2).

5. Fields

A field is one of the static, non-extensible sets of

enumerated primitive types listed in Table 5.

Table 5. NS6 Fields

NSGfield_double IEEE 64 bit floating point number

NSGfield_int 32 bit signed integer

NSGfield_string String of ASCII characters

NSGfield_vec3 Three doubles

NSGfield_matrix 4x4 matrix

NSGfield_noderef A node UID

NSGfield_ntnoderef A-non-default-traversed reference to a
node, in UID format

A runtime-variable-:
types

Length array of any of the preceding

79

If an application does not provide a traversal behavior

for a given tag, then the behavior is changed to traverse

any and all "noderef" fields of the node, according to their

order. Consequently, the point of an "ntnoderef" is that it

allows, a user-defined tag node to reference, another node

without being traversed by applications that don't

understand the tag.

The node UID and the owner are required to solve

contention issues arising during modification of a remotely-

owned object. The ordered list of types of the fields of the

node is called the "type signature" of the node. Different

nodes with the same tag may have different type signatures.

Once a node has been created, the type of signature cannot

be changed. A more detailed description of the NSG node is

shown in Figure 35.

B. NSG SERIALIZATION/DESERIALIZATION

All the NSG information is encapsulated in a byte,

array. This byte array is actually transmitted over the

network. It consists of:

• An integer that indicates the length of the byte
array; •

• The body of the message, which carries on the same
logic.

80

NSGxfomi node
%_pend: NSGfieldJist

^oldjtfO: NSGfieldjtfbrm &
tfxformO: NSGfield_xform &
^pending_xfQ: NSG1ield_xform &
♦NSGxform node(constNSGfield list &l, const NSGname ftname)
♦tagO: NSGtag &
♦static make(const NSGfieldJist 8J, const NSGname &name): NSGnods
♦set(ccnst NSGfiledjrform 8x): void
♦unsetO:void
♦make_pending():void
♦get_pendingO: NSGfieldJist &
♦get():NSGmat&
♦static cast(NSGid node): NSGxform_node *

NSGcolor node

♦NSGcolor_node(const NSGfieldJist &l, const NSGname &name)
♦tagO: NSGtag &
♦static make(const NSGfieldJist &l, const NSGname &name): NSGnod
♦getO: NSGvec3
♦unsetO: void
♦setfconst NSGfield_vec3 &s): void
»static castfNSGid node): NSGcolor node *

NSGsepjiode X
\ ♦NSGsep_node(const NSGfieldJist 61, const NSGname Sname)

♦tagO: NSGtag &
♦static make(const NSGfieldJist &l, const NSGname ftname): NSGnodefO
♦unsetO: void
♦set(constNSGfield_noderefs &s) :void
♦getO: vector<NSGnode *, alloc> &
♦state cast(NSGid node): NSGsepjiode *

NSGnode

NSGcyl_node

♦NSGcyl_node(const NSGfieldJist &l, const NSGname &name)
♦tagOCargname): NSGtag &
♦state make(const NSGfieldJist 8J, const NSGname &name): t

NSGcube node

♦NSGcube_node(const NSGfieldJist &l, const NSGnarp«/&name)
♦tagrj: NSGtag & /
♦state make(const NSGfieldJist &l, const NSGname &name): NSGnode'

NSGcone node NSGspherejiode

♦NSGcone node(constNSGfield list &l, const NSGname Kname)
♦tagO: NSGtag &
♦state make(const NSGfieldJist &l, const NSGname &name): NSGnode'

♦NSGsphere_node(const NSGfieldJist &l, const NSGname &name)
♦tagO: NSGtag &
♦state makefconst NSGfieldJist &l, const NSGname &name): NSGnode

Figure 35. DML Documentation for NS6 Node

The serialization is implemented overloading the "«"

operator. According to Meyers, the purpose of operator

overloading is that it is easy to read, write, and

understand [MEYE97]. Likewise, deserialization is

implemented overloading the "»" operator. During the

81

deserialization process, the byte array is broken into its

individual parts. This architecture provides scalability

because the implementers can seamlessly add new data

structures.

82

VII. EMPIRICAL TESTING

A. INTRODUCTION

A shared virtual environment with many clients requires

low communications latency. We examined the overhead of our

centralized server implementation in a uni-directional data

exchange between two clients, both with and without the

DaBP.

For experimental purposes, we implemented two specific

clients: a sending client (Sclient), and a receiving client

(Rclient) . A sample packet was used to simulate the exchange

of a generic transformation between the two clients. When

DaBP was used, the packet was created from the XML file.

Without DaBP, the packet was a sample packet taken from the

transmission of a real SOFT client. The clients and server

ran on an Intel-based computer with Windows NT4.0. The

client implementation can be found in Appendix H.

B. TESTING SERVER OVERHEAD WITH DABP

In this experiment we tested the server's overhead

involving the DaBP. We transmitted 1,000, 5,000, 10,000,

50,000, 100,000, and 120,000 packets. The results are shown

in Table 6. According to the results, as the number of

83

packets increases the timing cost per packet increases from

1.035 ms to 6.88 ms.

Table 6. Average Server Overhead with DaBP

Packets Transmitted Timing Cost/

packet

1000 1.035

5000 1.106

10000 1.319

50000 3.085

100000 5.574

120000 6.880

C. TESTING SERVER OVERHEAD WITHOUT DABP

In this experiment we tested the server's overhead

without DaBP. The results from the experiment are shown in

Table 7. The results reveal a timing cost fluctuating

between 6.023 ms and 6.162 ms per packet. The server's

overhead is independent from the number of packets

transmitted.

84

Table 7. Average Server Overhead without DaBP

Packets Transmitted Timing
Cost/packet

1000 6.082

5000 6.122

10000 6.049

50000 6.063

100000 6.023

120000 6.162

D. PROBLEMS TESTING WITH DABP

During the experimental session, we encountered some

problems using DaBP. First, we were unable to install it

properly due to hardcoded absolute paths. Thus, we inserted

our own absolute paths to make it work. Second, the String

data type was not supported. We tried to substitute String

with arrays of unsigned bytes, without success. In order to

solve this problem, we created fixed-length byte arrays.

Third,- during packet transmission null pointer exceptions

were thrown. Our first assumption was a buffer overflow,

which led us to increase the size of the input and output

buffers without result. The problem was solved by replacing

85

the InputStream with Data Input St ream and the read method

with readFully. Finally we discovered a memory-leak problem,

which significantly reduced its performance for large number

of packets (over 50,000).

E. CONCLUSIONS

Performing a trend analysis (Figure 36) we discovered

that using DaBP gives significant performance enhancement

(approximately six time speedup) when the number of

transmitted packets is small (less than 50000). When the

number of packets increases, the server's overhead is

increased, due to memory-leak problems of the DaBP. The

parsing of byte streams is a much more time consuming method

than extracting the necessary information of a previously

formatted-with-DaBP message, but it has a neutral behavior

to the number of packets transmitted. The previously

discussed problems do not remove DaBP as a viable candidate

for integration into the SOFT architecture. But, it needs

further implementation and extensive debugging in order to

become a stable product.

86

1000000.00 .

600000.00 .

400000.00 -

•»
E

* / s /
200000.00 . ^ -yrfl y« jt .

0.00 . m IP"1

1 --'^

#^ * ^^-^

^2 3 4 5 6

-400000.00 ■

I • byteQ—*—DaBP - - -Linear (byteQ)—Linear (DaBP) I

Figure 36. Trend Analysis with/without DaBP

87

THIS PAGE WAS INTENTIONALLY LEFT BLANK

88

VIII. CONCLUSION AND FUTURE WORK

A. INTRODUCTION

This thesis designs and implements a network

architecture for distribution of generic scene graphs. We

concentrated on the design and implementation of a

centralized server that supports multiple clients, providing

them with a common shared environment. The results are

intended to be incorporated into the SOFT project.

B. CONCLUSIONS

We built a centralized server using Java that provided

reliability, persistence, scalability, and latecomer support

in a multi-client SOFT environment. This server provides

interoperability and can support any SSGs on any platform.

We concluded that this implementation demonstrated the

benefits of the DaBP.

Empirically testing the server overhead, we discovered

that using DaBP reduced the overhead by a factor of six for

less than 50,000 packets. The performance and flexibility of

DaBP indicates that it is worth the effort to extend it to a

stable product and incorporate it into the SOFT

architecture. Of course, empirical testing to confirm

89

performance improvement for large number of packets must be

conducted.

C. FUTURE RESEARCH IDEAS

The goal of the SOFT project is network collaboration

between computer graphics applications. These applications

can be implemented in various languages over different

platforms. SOFT clients are currently implemented in C++ on

UNIX platforms. They use Openlnventor as the Standard Scene

Graph (SSG). In order to fulfill the objectives of the SOFT

architecture, the implementation must be extended to include

other platforms (e.g., Intel-based), languages (e.g., Java),

and SSGs (e.g., Java3D).

As stated in Chapter IV, the SOFT server can be part of

a topologically larger network environment. In this

environment, various clusters can have their own server

modules. Furthermore, the clients have been implemented

separately from the server. Merging the server and the

client modules would be ideal. This new module would act

either as a server and/or as a client. This would mean the

module could take turns being a server, and whenever the

server module left, it would migrate and transfer duties.

The current implementation of the SOFT client and

server modules requires an ordered procedure. Specific

90

programs must be invoked and executed using command line

methods. A user interface could be built in order to act as

a SOFT session manager.

Currently, the DaBP library is limited. For instance, a

limited set of data types is supported (e.g., integer,

float.) Additionally, the libraries are prototype versions

and contain errors. In the future, DaBP libraries could be

improved and completed resulting in a mature product. Since

DaBP provides flexibility, it can be extended to include

designs of application-specific protocols that can be

changed based on network load.

The feasibility of using multicasting technology for

the distribution of generic scene graphs should be examined

as multicast hardware becomes more widely available. Also,

the use of multi-tier architecture, like CORBA and COM, can

be exploited under the SOFT architecture.

D. SUMMARY

The SOFT project approaches networking collaborative

virtual environments these environments with the use of the

scene graph as bus metaphor. This networking has been

implemented with centralized servers responsible for the

distribution of the scene graphs. This shared visual

environment is the first stepping stone towards networking

91

Client communities. Later goals of SOFT include sharing of

entity behaviors and actions, and will be addressed in

follow-on work.

92

APPENDIX A - JAVA CODE FOR "PHASE ONE'

// _
// Filename: Server.Java
// Date: 20-April-99
// Compiler: JDK 1.2
//
import java.net.*;
import j ava.io.*;

/**
* Server for "Phase One". Creates a client/server mechanism between
* the existing pair of SOFT client and server.
*
* @author P.Fiabolis,G.Prokopakis
*/

public class Server {

/*
* Main function
*
* Sparam args: Command line arguments
* @exception IOException
*/

public static void main (String[] args) throws IOException {

ServerSocket s = new ServerSocket(9999);
ServerSocket is = new ServerSocket(8099);
System.out.println("Server started: " + s);
System.out.printing"Local server started: " + is);

InetAddress addr = InetAddress.getByName ('"royal");
new ClientThread(addr) ;
System.out.println("Connection with master started ...");

Socket in_socket = is.accept();

try {
while(true) {

Socket socket = s.accept();
try {

System.out.println("Slave found ...");
new ServeOne(socket, in_socket);

}
catch(IOException e) {

System.out.println("Server.main: IOException");
socket.close();

}
} // end while

}
finally {

s.close();
'is.close() ;

}

93

} // end of main()

} // end of class Server

// end of file Server.Java

// —
// Filename: ServeOne.java
// Date: 20-April-99
// Compiler: JDK 1.2 •

import java.io.*;
import java.net.*;

/**
*. Thread running for each connection. A simple client/server
* mechanism, reading from the input stream and wrighting to
* the output stream.
*
* @author P.Fiabolis,G.Prokopakis
*/

class ServeOne extends Thread {

/** '
* Socket of the current thread.
*/

private Socket socket;

/**
* Stream to read from.
*/

DatalnputStream in;

/ * *
* Output stream.
*/

DataOutputStream out;

94

/*
* Class constructor
*
* @param s: Socket for output
* Sparam in_socket: Socket for input
* ©exception IOException
*/

public ServeOne(Socket s, Socket in_socket) throws IOException {
socket = s;

in = new DataInputStream(in_socket.getInputStream());

out = new DataOutputStream(s.getOutputStream());

start() ;

} // end of ServeOne

/*
* Thread main loop. Performs the read/write operation until
* the clients are disconnected.
*
*/

public void run() {
byte[] buf = new byte[1024];
int len = 0, tmp =0;

try {
while(true) {

try {
len = in.readlnt();
in.readFully(buf, 0, len);

out.writelnt(len) ;
out.write(buf, 0, len);
}

catch(IOException e) {
System.out.println("Cannot read ...");

}
}

}
finally {

// Always close it:
try {

socket.close();
}
catch (IOException e) { '

System.out.println("ServeOne.run: IOException");
}

}

} // end of run()

} // end of class ServeOne
// end of file ServeOne.Java

95

//— — ——
// Filename: ClientThread.Java
// Date: 20-April-99
// Compiler: JDK 1.2
// . —— —
import java.net.*;
import java.io.*;

/**
* Thread implementation of the internal client module.
* This module reads from the C++ SOFT Server, and writes
* to the Java server module.
*
* Gjauthor P.Fiabolis,G.Prokopakis
.*/
class ClientThread extends Thread {

/**
* Socket of the current thread.
*/

private Socket socket;

/**
* Output socket.
*/

private Socket out_socket;

/**
* Stream to read from.
*/

DatalnputStream data_in;

/**
* Output stream.
*/ . .

DataOutputStream data_out;

/*
* Class constructor
* . • '
* @param addr: Inet address where this client should connect ■
*/

public ClientThread(InetAddress addr) {
System.out.println("Making client ...");
try {

socket = new Socket(addr, 8080);

InetAddress self = InetAddress.getByNairie ("127.0.0.1");
- out_socket = new Socket(self, 8099);

}
catch (IOException e) {

// If the creation of the socket fails, no need for cleanup.
}

try {
data in = new DatalnputStream(socket.getlnputStreamO);

96

data_out = new
DätaOutputStream(out_socket.getOutputStream());

start();
}
catch (IOException e) {

// The socket should be closed on any failures
// other than the socket constructor :
try {

socket.close();
out_socket.close();

}
catch (IOException e2) {
}

}
}

/*
* Thread main loop. Performs the read(from C++ server)/write
* operation until the clients are disconnected.
*
*/

public void run() {

byte[] buf = new byte[1024];
int len = 0, tmp = 0;

try {
while(true) {

try {
len = data_in.readlnt{);

data_in.readFully(buf, 0, len);
data_out.writeInt(len);
data_out.write(buf, 0, len);

}
catch(IOException e) {

System.out.println("Cannot read ...");

} // end while
}
finally {

// Always close it:
try {

socket.close();
out_socket.close();

"' • }
catch (IOException e) {
}

* }

} // end of run()
} // end of class ClientThread
// end of file ClientThread.Java

97

98

APPENDIX B - JAVA CODE FOR "PHASE TWO'

//
// Filename: Server.java
// Date: 04-May-99
// Compiler: JDK 1.2
//
import j ava.net.*;
import java.io.*;

/**
* Server for "Phase Two". Performs the read/write operation
* between a C++ SOFT server and a C++ SOFT client, without
* needing an internal client module.
*
* Sauthor P.Fiabolis,G.Prokopakis
*/

public class Server {

/*
* Main function
*
* 8param args: Command line arguments
* Sexception IOException
V

public static void main (String[] args) throws IOException {

new ServeOne();

} // end of main

} // end of class Server

// end of file Server.java

// —
// Filename: ServeOne.java
//Date: 04-May-99
// Compiler: JDK 1.2
//
import java.io.*;
import java.net.*;

/**
* Thread running for each connection. A simple client/server
* mechanism, reading from the input stream and wrighting to
* the output stream.
*
* @author P.Fiabolis,G.Prokopakis

99

*/
class ServeOne extends Thread {

/**
* Sockets for read and write.
*/ ■'-....,'■

private Socket in_socket, out_socket;

/ * *
* Server Socket for the connection of the C++ client.
*/

private ServerSocket server_socket;

/**
* Stream to read from.
*/

DatalnputStream in;

/**
* Output stream.
*/

DataOutputStream out;

'/*
* Class constructor
*
* @exception IOException
*/

public ServeOne() throws IOException {
server_socket = new ServerSocket(8080);
InetAddress addr = InetAddress.getByName("royal");
in_socket = new Socket(addr, 9999);

in = new DatalnputStream(in_socket.getInputStream());

out_socket = server_socket.accept();
out = new DataOutputStream(out_socket.getOutputStream());

start();

/*
* Thread main loop. Performs the read/write operation until
* the clients are disconnected.
*
*/

public void run() {
byte[]-buf = new byte[1024];
int len = 0, tmp = 0;

try {
while(true) {

try {
len = in.readlnt();

100

in.readFully(buf, 0, len);

out.writelnt(len);
out.write(buf, 0, len);

}
catch(IOException e)•{

System.out.println("Cannot read ...");
}

}
}
finally {

// Always close it:
try {

in_socket.close();
out_socket.close();

server_socket.close();
}
catch (IOException e) {
}

}
} // end of run()

} // end of class ServeOne

// end of file ServeOne.java

101

UD2

APPENDIX C - JAVA CODE FOR "PHASE THREE'

// _
// Filename: Server.java
// Date: 03-June-99
// Compiler: JDK 1.2
//
import java.net.*;
import java.io.*;

/**
* Server for "Phase Three". Performs the read/write operation
* between two C++ SOFT clients.
*
* @author P.Fiabolis,G.Prokopakis
*/

public class Server {

/*
* Main function
*
* Sparam args: Command line arguments
* @exception IOException
*/

public static void main (String[] args) throws IOException {

if(args.length != 3) {
usageMessage ();
System.exit(0);

}

String server_name = args[0];

ServerSocket server_socket;
Socket in_socket, out_socket;
InetAddress addr;

try {
server_socket = new ServerSocket(Integer.parselnt(args[2]));

in_socket = server_socket.accept() ;
InetAddress client_addrl = in_socket.getlnetAddress();

System.out.println("Client found ..." +
client_addrl.getHostName()); ,

"out_socket = server_socket.accept() ;
InetAddress client_addr2 = out_socket.getlnetAddress();

System.out.println("Client found ..." +
client_addr2.getHostName());

try {
new ServeOne(in socket, out socket, "SOFT client 1");

103

new ServeOne(out_socket, in_socket, "SOFT client 2");

System.out.println(Thread.activeCount());
while(Thread.activeCount() > 1) {
} // end while

> "
finally {

try {
in_socket.close();
out_socket.close();

}
catch (IOException e) {

System.out.println("Could not close socket.");
} ' '■■■'■

}
>
catch(IOException ie) {

System.out.println("Server problem");
System.exit(0);

}

} // end of main

/*
* Provide help message if the command line arguments
* are not valid.
*
*/ ' '■

public static void usageMessage() {
System.out.print("Usage: Java Server <server name>");
System.out.println(" <server port> <client port>");
System.out.printlnO ;
System.out.println("Exaple: Java Server venus 9000 8000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port");
System.out.println("\t8000 - client machine port");

} // end of usageMessage

} // end of class Server

// end of file Server.Java

104

//
// Filename: NSGStreamRecord.Java
// Date: 04-May-99
// Compiler: JDK 1.2
//

* Implementation of a record to be stored by the SOFT server.
*
* @author P.Fiabolis,G.Prokopakis
V . .

class NSGStreamRecord {

/**
* Unique key for the message.
*/

String key;

/**
* Message as it was received from the network.
*/

byte[] data;

/*
* Class constructor
*
* @param id: Message ID
* @param len: Message length
* @param record: Original message
*/

public NSGStreamRecord(byte[] id, int len, byte[] record) {
key = new String(id, 0, len);
data = new byte[65535];
data = record;

} // end of NSGStreamRecord

} // end of class NSGStreamRecord

// end of file NSGStreamRecord.Java

105

106

APPENDIX D - JAVA CODE FOR "PHASE FOUR'

//
// Filename: NSGServer.java
// Date: 18-June-99
// Compiler: JDK 1.2
//
import j ava.net.*;
import java.io.*;

/**
* Main class for the NSG server. Enters an endless loop waiting
* for client requests.
*
* @author P.Fiabolis,G.Prokopakis
*/

public class NSGServer {

/* '
* App main function.
*
* @param args: Command line param. Should have the port number.
* @exception IOException
*/

public static void main (String[] args) throws IOException {
if(args.length != 1) {

usageMessage();
System.exit(0);

}

ServerSocket server_socket;
InetAddress addr;

int counter = 1;

try {
server_socket = new ServerSocket(Integer.parselnt(args[0]));

while(true) {
Socket in_socket = server_socket.accept();

addr = in_socket.getInetAddress();

System.out.println("Welcome " + addr.getHostName());

try {
new NSGServeOne(in_socket, counter++);

}
catch(IOException e) {

in_socket.close();
}

} // end while
}

107

catch(IOExceptione) {
System.out.printin("Cannot initialize server. Exiting ...");
System.exit(0);

>

} // end of main

/* '
* Message to display in case of invalid command line arguments.
*
*/

public static void usageMessage() {
System.out.println("Usage : Java Server <port number>");
System.out.println();
System.out.println("Example: Java Server 9999");

} // end of usageMessage

} // end of class NSGServer

•// end of file NSGServer.Java

//
// Filename: NSGServeOne.Java
// Date: 18-June-99
// Compiler: JDK 1.2
//

import java.io.*;
import java.net.*;
import java.util.Hashtable; '
import java.util.Enumeration;
import java.util.Vector;

/**
* An instance of this class is running for every client connected to

the
* NSGServer.
*
* @author P.Fiabolis,G.Prokopakis
*/

class NSGServeOne extends Thread {

/**
* Unique ID for each thread. For the moment this is a simple counter
*/ . ■■

int threadID;

/**
* Stream where this thread reads from

10'8

*/
DatalnputStream in;

/**
* Stream where this thread will write the NSG's stored in the

repository.
*/

DataOutputStream me;

/**
'* Table holding the ports for all conected clients. Common for all
threads
*/

static Vector castTable = new Vector();

/**
* Table holding SG data sent from clients. Common for all threads
*/

static NSGRepository table = new NSGRepository() ;

/**
* Semaphore for thread exit.
*/

boolean stopThread = false;

/**
* Socket associated with this thread.
*/

Socket threadSocket;

/*
* Class constructor
*
* @param in_socket: Socket for this thread connection
* @param id: unique ID for this client. For the moment just a counter
* @exception IOException
*/

public NSGServeOne(Socket in_socket, int id) throws IOException {

threadID = id;

threadSocket = in_socket;

in = new DatalnputStream (in_socket.getlnputStreamO) ;

me = new DataOutputStream(in_socket.getOutputStream());

// Add the new comer to the client list.
castTable.addElement (me) ;

start();

} // end of NSGServeOne

I*

109

* Thread main loop. Runs until thread needs to be alive.
*
*/

public void run() {

int len = 0;

DataOutputStream out;

// Send the data (if any) from the repository to the newcomer.

try {
Enumeration enum = NSGServeOne.table.elements();

while(enum.hasMoreElements()) {

NSGStreamRecord s = (NSGStreamRecord)enum.nextElement(};
if (s.threadID != threadID) {

System.out.println("TABLE: " + s.key);

byte[] tmpBuf = new byte[65535];

tmpBuf = s.data;

me.writelnt(s.dataLength);

me.write(tmpBuf, 0, s.dataLength);

me.flush();
}

}
}'■■■' ■ ■ ■
catch(IOException e) {

System.out.println("Thread stopped. Connection with " +
threadID + " failed.");

. closeThreadO ;
}

while(IstopThread) {
try {

len = in.readlnt();

byte[] buf = 'new byte [len] ;

in.readFully(buf, 0, len);

// Send the message to everyone
Enumeration enum = castTable.elements();
while(enum.hasMoreElements()) {

out = (DataOutputStream)enum.nextElement();

if (out != me) {
out.writelnt(len);
out.write(buf, 0, len);

}

110

} // end while

// Store or update the data.
parseStream(buf, len);

}
catch(IOException e) {

System.out.println("Goodbye " + threadID);
closeThreadO ;

}

} // end while(!stopThread)

} // end of run

/*
* Close the thread after finishing connection or failure
*
V

public void closeThreadO {
try {

threadSocket.close();
castTable.removeElement(me);
stopThread = true;

}
catch(IOException e) {

System.out.println("ERROR: Could not close socket @
closeThread");

}

} // end of closeThread

/*
* Parse data received from the network and store them in an appropriate
* repository. Data for existing objects are been updated.
*
* @param buf: Byte array send from the client.
* @param len: Length of the byte array.
*/

public void parseStream(byte[] buf, int len) {
byte[] buffer = new byte[65535];

buffer = buf;

ByteArraylnputStream byte_stream;

DatalnputStream data_stream;

int" dat'aLen = len;

int headerLen; // Size of data header

int nameLen; // Size of NSG node name

int keyLen; // Length of unique key for this data

111

int lenLeft;

int bytesToRead;

byte[] tmp_buf = new byte[65535];

// Create a new stream just to break it and extract the NSG ID.

byte_stream = new ByteArrayInputStream(buf);
data_stream = new DataInputStream(byte_stream);

try {
bytesToRead = data_stream.readlnt();

len = len 4;

name)

updated.")

if (bytesToRead == 4) {
// Read in header

headerLen = data_stream.readlnt();
len = len - 4;
data_stream.readFully(tmp_buf, 0, headerLen);
len = len - headerLen;
String header = new String(tmp_buf,0, headerLen);

// Read in node name
nameLen = data_stream.readlnt();
len = len - 4;
data_stream.readFully(tmp_buf, 0, nameLen);

if (!header.equals("NSGnew")) {
// This record doesn't describe a NSGnode, so make a
// key by concatenating the header with the "key" (node

String name = new String(tmp_buf, 0, nameLen);
String final_key = header + "I" + name;

tmp_buf = final_key.getBytes();
keyLen = final_key.length();

>
else {

keyLen = nameLen;
} ' '

NSGStreamRecord stream_rec = new NSGStreamRecord(tmp_buf,
keyLen, buffer, dataLen, threadID);

Object val = table.put(stream_rec.key, stream_rec);
System.out.println(stream_rec.key);

if (val == null) {
System.out.println(threadID + ": New record added.");

>
else {

System.out.println(threadID + ": Record found +

}

11.2

}
else {

System.out.println("ERROR: No recorded message. Length = " +
bytesToRead + " @ parseStream.");

}
}
catch(IOException ie) {

System.out.println("ERROR: Problem reading integer @
parseStream.");

}

} // end of parseStream

} // end of class NSGServeOne

// end of file NSGServeOne.Java

//__
// Filename: NSGStreamRecord.Java
// Date: 18-June-99
// Compiler: JDK 1.2
//

* NSG record. Stored in the NSGRepository.
* Should be modified to match the appropriate structure of the NSG.
*
* Sauthor P.Fiabolis,G.Prokopakis
*/

class NSGStreamRecord {

/**
*Uniqe key of the NSG
*/

String key;

/**
* Byte array. It is stored as it is read from the client.
*/

byte[] data;

/**
* Length of the byte array (data).
*/

int dataLength;

/**
* Thread that this NSG came from. Used in order to avoid retransmiting

this back.
*/

113

int threadID;

/*
■* Class constructor.
*
* @param recKey: Unique ID of the NSG.
* @param keyLen: Length of the key.
* @param record: Byte array as it is read from the client.
* @param dataLen: Length of the byte array (record)
* Sparam id: Thread ID.
*/ ■

public NSGStreamRecord(byte[] recKey, int keyLen, byte[] record, int
dataLen, int id) {

key = new String(recKey, 0, keyLen);

data = new byte[65535];

data = record;

dataLength = dataLen;

threadID = id;

} // end of NSGStreamRecord

} // end of class NSGStreamRecord

// end of file NSGStreamRecord.Java

//
// Filename: NSGRepository.Java
// Date: 18-June-99
/'/ Compiler: JDK 1.2
// ______; _
import java.util.*;
import j ava.io.*;

/**
* Implementation of the data structure where NSG's are stored.
* For the moment a Vector is used in order to provide NSG's
* to the new comers in the order they have arrived.
* This is going to be replaced by the TreeMap class (jdk 1.2).
*
* @author P.Fiabolis,G.Prokopakis
*/

public class NSGRepository extends Dictionary {

114

* Vector to store the keys of the NSG's.
*/

private Vector Keys = new Vector();

/**
* Vector to store the byte arrays (data)
*/

private Vector Values = new Vector();

/*
* Gives the number of the contents of the repository.
*
*/

public int size() {
return Keys.size();

}

/*
* Check if the vector is empty.
*

*/
public boolean isEmptyO {

return Keys.isEmpty();
}

/*
* Insert a new NSG record in the repository.
*
* @param key: Unique ID of the NSG.
* gparam value: NSG record to be stored.
*/

public Object put(Object key, Object value) {
if(Keys.contains(key)) {

int index = Keys.indexOf(key);
Values.setElementAt(value, index);
return key;

}
else {

Keys.addElement(key);
Values.addElement(value);
return null;

}
}

/*
* Get the record of the NSG with ID = key.
*
* @param key: Unique ID of NSG to look for.
'*/
public Object get(Object key) {

int index = Keys.indexOf(key);

115

if(index == -1) {
return null;

>
else {

return Values.elementAt(index);
}

/*
* Remove the record of the NSG with ID = key.
*
* gparam key: Unique ID of NSG to be removed.
*/

public Object remove(Object key) {
Object retVal;

int index = Keys.indexOf(key);

if(index == -1) {
retVal = null;

>
else {

Keys.removeElementAt(index);
retVal = Values.elementAt(index);
Values.removeElementAt(index);

return retVal;

/*
* Provide an Enumeration data structure for the keys Vector.
*

*/
public Enumeration keys() {

return Keys.elements() ;
}

/*
* Provide an Enumeration data structure for the elements Vector.
*

*/
public Enumeration elements() {

return Values.elements();
} " "

} // end of class NSGRepository

// end of file NSGRepository.Java

116

APPENDIX E - XML FILE

<?xml version="1.0"?>

<!— Simple XML file for use with the SOFT experiment —>
<!— Note the hard-wired reference to the dtd. This should be fixed —>
<!— in order to run on another system —>

<!DOCTYPE PROTOCOL_DESCRIPTION SYSTEM
"file:////DaB/Documentation/dabp/protocols/protocol_description.dtd">

<!— SOFT/DABP XML PACKET DESCIPTIONS —>

<PROTOCOL_DESCRIPTION>

<PROTOCOL_INFORMATION>
<PROTOCOL_NAME>SOFT</PROTOCOL_NAME>
<PROTOCOL_MARKER_FIELD>PacketType</PROTOCOL_MARKER_FIELD>
<PROTOCOL_MARKER_POSITION>0</PROTOCOL_MARKER_POSITION>

<PROTOCOL_MARKER_TYPE>org.web3d.vrtp.datatypes.UnsignedByte</PROTOCOL_MA
RKER_TYPE>

<PROTOCOL_TYPE_LIST>
<TYPE>org.web3d.vrtp.datatypes.UnsignedByte</TYPE>
<TYPE>org.web3d.vrtp.datatypes.UnsignedShort</TYPE>
<TYPE>org.web3d.vrtp.datatypes.Signedlnteger</TYPE>
<TYPE>org.web3d.vrtp.datatypes.DoublePrecision</TYPE>
<TYPE>org.web3d.vrtp.datatypes.array6</TYPE>
<TYPE>org.web3d.vrtp.datatypes.arrayl6</TYPE>
<TYPE>org.web3d.vrtp.datatypes.array40</TYPE>

</PROTOCOLJT YPE_LIST>

<!— XXXX These fields are wrong! what should they be?! —>
<PROTOCOL_HANDLER>http://www.stl.nps.navy.mil/~foo</PROTOCOL_HANDLER>

<PROTOCOL_SEMANTICS_HANDLER>demo.dabp.Semantics</PROTOCOL_SEMANTICS_HAND
LER>

</PROTOCOL_INFORMATION>

<ADUS>

<!— XFORM PACKET ~>
<ADU_DESCRIPTION>
<ADU_INFO>
<ADU_NAME>XFORM</ADU_NAME>
<ADU_MARKER_VALUE>1</ADU_MARKER_VALUE>

</ADU_INFO>

<FIELDS>

<FIELD_PRIMITIVE>

117

<FIELD_NAME>PacketType</FIELD_NAME>
<FIELD_TYPE>org.web3d.vrtp.datatypes.UnsignedByte</FIELD_TYPE>
<FIELD_DEFAULT>K/FIELD_DEFAULT>

</FIELD_PRIMITIVE>

<FIELD_PRIMITIVE>
<FIELD_NAME>Tag</FIELD_NAME>
<FIELD_TYPE>org.web3d.vrtp.datatypes.array6</FIELD_TYPE>
<FIELD_DEFAULT>9</FIELD_DEFAULT>

</FIELD_PRIMITIVE>

<FIELD_PRIMITIVE>
<FIELD_NAME>CCode</FIELD_NAME>
<FIELD_TYPE>org.web3d.vrtp.datatypes.Signedlnteger</FIELD_TYPE>
<FIELD_DEFAULT>0</FIELD_DEFAULT> ...',.'

</FIELD_PRIMITIVE>

<FIELD_PRIMITIVE>
<FIELD_NAME>NodeName</FIELD_NAME>
<FIELD_TYPE>org.web3d.vrtp.datatypes.array40</FIELD_TYPE>
<FIELD_DEFAULT>9</FIELD_DEFAULT>

</FIELD_PRIMITIVE>

<FIELD_PRIMITIVE>
<FIELD_NAME>mat</FIELD_NAME> ■
<FIELD_TYPE>org.web3d.vrtp.datatypes.arrayl6</FIELD_TYPE>
<FIELD_DEFAULT>9</FIELD_DEFAULT>

</FIELD_PRIMITIVE>

</FIELDS>
</ADU DESCRIPTION>

</ADUS>
</PROTOCOL DESCRIPTION

118

APPENDIX F - DaBP CLIENTS

//
// Filename: SClient.java
// Date: 23-Aug-99
// Compiler: JDK 1.2
//

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;
import org.web3d.vrtp.net.*;

import java.net.*;
import java.io.*;
import java.util.*;

/**
* SClient
*
* Simple client sending packets to the SOFT server.
* It is used for the empirical testing.
* SClient uses SOFTexp.xml in order to create the protocol description.

Then
* it creates a byte array according to this protocol and sends this

1000 times
* to the server. The byte array contains the default data.
* Syntax: SClient <server name> <server port>
*
* Sauthor P.Fiabolis,G.Prokopakis
*/

public class SClient
{

/**
* Main method. Creates the protocol description, connects to the server

and
* sends an ADU 1000 times to him.
*. We need to add a time delay between sending packets. Whithout this

delay
* we get a NullPointerException exception (in the NSGServeOne) at the
* ProtocolDescription.deterimineADUFromBinaryData method.
*
*/

public static void main(String[] args) throws SocketException
{

// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {
usageMessage();
System.exit(0);

}

ProtocolDescription protocol; > '

119

ADUData packet;

InetAddress addr;
Socket socket;
OutputStream os;
DataOutputStream dos;
ByteArrayOutputStream bos;

DataOutputStream me;

byte data[];

protocol = new ProtocolDescription("SOFTexp.xml");
packet = protocol.getADÜDataForNameC'XFORM") ;

try

addr = InetAddress.getByName(args[0]);
System.out.printin("addr = " + addr);

catch(UnknownHostException uhe)

System.out.printin("Unknown Host ...");
return;

try

socket = new Socket(addr, Integer.parselnt(args[1]));

catch(IOException ioe)

System.out.printin("Cannot create the socket ...");
return;

try

.")

try
{

os = socket.getOutputStreamO ;
}'.■'■
catch(IOException e)
{

System.out.println("Could not initialize output stream

return;
}

" PrintStream p = new PrintStream(os);
bos = new ByteArrayOutputStream();
dos = new DataOutputStream(bos);
try {

me = new DataOutputStream(socket.getOutputStreamO);
}
catch(IOException ioe) {
return;

120

packet.serialize(dos);
data = bos.toByteArrayO ;

for(int i = 0; i < 120000; i++)
{

try
{

me.write(data);
me.flush();

}
catch(IOException ioe)
{

System.out.println("Could not write to the output stream
..." + i);

return;
' }

} // end while(true)

}
finally
{

System.out.println("Closing client ...");
try
{

socket.close();
}
catch(IOException e)
{

System.out.println("Could not close socket...");
return;

}
} // end try-finally

} // end main

/**
* Provides a hint message when the number of the command line arguments
* is wrong.

*/'
public static void usageMessage() {

System.out.print("Usage: Java SClient <server name>");
System.out.println(" <server port>");
System.out-println();
System.out.println("Exaple: Java SClient venus 9000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port");

} // end usageMessage

} // end of class SClient

// end of file SClient.Java

121

// —
// Filename: RClient.java
// Date: 23-Aug-99
// Compiler: JDK 1.2
//

import org.web3d.vrtp.dabp. *;
import org.web3d.vrtp.util.*;
import org.web3d.vrtp.net.*;

import j ava.net. *; '
import java.io.*;
import j ava.util.*;

/**
* RClient
*
* Simple client reading packets from the SOFT server.
* It is used for the empirical testing.
* RClierit uses SOFTexp.xml in order to create the protocol description.

Then,
* it reads ADUs from the server. No packet processing takes place.
* Syntax: RClient <server name> <server port>
*
* @author P.Fiabolis,G.Prokopakis
*/

public class RClient
{

/**
* Main method. Creates the protocol description, connects to the server

and
* reads ADUs from him.

■ *

■*/

public static void main(String[] args)
{ '
// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {
usageMessage ();
System.exit(0);

} :

ProtocolDescription protocol;
ADUData packet;

InetAddress addr;
Socket socket;
OutputStream os;
DataOutputStream dos;
ByteArrayOutputStream bos;

ADUStreamTCP tcpStream;
ADUData data;

122

protocol = new ProtocolDescription("SOFTexp.xml");
packet = protocol.getADUDataForName("XFORM");

try
{

addr = InetAddress.getByName(args[0]);
System.out.println("addr = " + addr);

}
catch(UnknownHostException uhe)
{

System.out.println("Unknown Host ...");
return;

}

try
{

socket = new Socket(addr, Integer.parselnt(args[1]));
}
catch(IOException ioe)
{

System.out.println("Unknown Host ...");
return;

}

tcpStream = new ADUStreamTCP(socket, protocol);

try
i

while(true)
{

data = tcpStream.readNextADU(67);
if(data != null) {

System.out.print(".") ;
}

} // end while(true)
}
finally
{

System.out.println("Closing client ...");
try
{

socket.close();
}
catch(IOException e)
{

System.out.println("Could not close socket...");
return;

}

} n end try-finally

} // end main

/**
* Provides a hint message when the number of the command line arguments
* is wrong.

123

*/
public static void usageMessage() {

System.out.print("Usage: Java RClient <server name>");
System.out.printlnC <server port>") ;
System.out.println();
System.out.println("Exaple: Java RClient venus 9000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port");

} // end of class RClient

// end of file RClient.Java

124

APPENDIX G - JAVA CODE FOR "PHASE FIVE'

// .—
// Filename: NSGServer.java
// Date: 28-Aug-99
'// Compiler: JDK 1.2
//

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;

import java.net.*;

import java.io.*;

* Main class for the NSG server. Enters an endless loop waiting
* for client requests.
*
* @author P.Fiabolis,G.Prokopakis
*/

public class NSGServer {

/* .
* App main function.
*
* Sparam args: Command line param. Should have the port number.
* @exception IOException
*/

public static void main (String[] args) throws IOException {

ProtocolDescription protocol;

if(args.length != 1) {
usageMessage();
System.exit(0);

}

protocol = new ProtocolDescription("SOFTexp.xml");
ServerSocket server_socket;
InetAddress addr;

int counter = 1;

try {
server_socket = new ServerSocket(Integer.parselnt(args[0]));

while(true) {
Socket in_socket = server_socket.accept();

addr = in_socket.getlnetAddress();
System.out.println("Welcome " + addr.getHostName());

125

try {
new NSGServeOne(in_socket, counter++, protocol);

>
catch(IOException e) {

in_socket.close();
}

} // end while
>
catch(IOException e) {

System.out.println("Cannot initialize server. Exiting ...");
System.exit(0);

}

} // end of main

/*
* Message to display in case of invalid command line arguments.
*

*/
public static void usageMessage() {

System.out.println("Usage : Java Server <port number>");
System.out.println();
System.out.println("Example: Java Server 9999");

} // end of usageMessage

}. // end of class NSGServer

// end of file NSGServer.Java

//
// Filename: NSGServeOne.Java
// Date: 20-Aug-99
// Compiler: JDK 1.2
//

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;

import java.io.*;
import j ava.net.*;
import java.util.Hashtable;
import java.util.Enumeration;
import java.util.Vector;

import java.util.Calendar;

126

* NSGServeOne
*
* An instance of this class is running for every client connected to

the
* NSGServer. Reads from an ADUStreamTCP stream. Each ADU is transformed

to
* a byte array and retransmitted to the other clients currently

connected.
*
* Gauthor P.Fiabolis,G.Prokopakis
*/

class NSGServeOne extends Thread { ,

/**
* Unique ID for each thread. For the moment this is a simple counter
*/

int threadID;

/**
* Stream where this thread will write the NSG's stored in the

repository.
*/

OutputStream me;

/**
'* Table holding the ports for all conected clients. Common for all
threads
*/ ■

static Vector castTable = new Vector();

/**
* Table holding SG data sent from clients. Common for all threads
*/

static NSGRepository table = new NSGRepositoryO;

/**
* Semaphore for thread exit.
*/'

boolean stopThread = false;

/**
* Socket associated with this thread.
*/'

Socket threadSocket;

/**
* DaBP" stream to read from. We can read ADUs directly from here.
*/

ADUStreamTCP tcpStream;

/**
* Represents one ADU read from the network.
*/

ADUData data;

127

■/*

* NSGServeOne
*
* Class constructor. Initialize input and output streams, adds this

client
* to the client pool, and starts the thread execution.
* A NullPointerException occurs after reading a number of packets
(265).
* Reason is not known for the moment but it is eliminated when a
* time delay is added to the sending client (SClient) between packet
* sending.
*
* @param in_socket: Socket for this thread connection
* @param id: unique ID for this client. For the moment just a counter
* Sexception IOException
*/

public NSGServeOne(Socket in_socket, int id, ProtocolDesCription
protocol)

throws IOException {

threadID = id;
threadSocket = in_socket;

/* // try to increase the input buffer size
System.out.println("Buffer size 1 = " +

threadSocket.getReceiveBufferSize());

threadSocket.setReceiveBufferSize(threadSocket.getReceiveBufferSize.() *
3) ;

System.out.println("Buffer size 2 = " +
threadSocket.getReceiveBufferSize()) ;
*/ ' '

me = new DataOutputStream(in_socket.get0utputStream());

// Add the new comer to the client list.
castTable.addElement(me);

tcpStream = new ADUStreamTCP(in_socket, protocol);

start() ;

/* •
* Waits until a packet arrives. Then, it starts reading ADUs, stores

them, and
* retransmits them to the other clients. When done (1000 reads)

calculates'
* the duration.
*
*/

public void run() {

int len = 0;
OutputStream out;

128

Calendar begin, end;

byte[] byteData;

try {

// late-comer support not needed for this experiment.

InputStream is;

// Wait until there is something avilable to read,
while(len ==0)
{

try
{

is = threadSocket.getlnputStreamO ;
len = is.available();

}
catch(IOException ioe)
{

System.out.println("Cannot get input stream ...");
closeThreadO ;

}
} // end while(len ==0)

// Start the timer.
begin = Calendar.getlnstance();
System.out.println("Timer started ...");

int counter = 0;

while(!stopThread)
.{

try
{

data = tcpStream.readNextADU(67);

if(data != null) {

try {
Object val = table.put(data.get("Tag"), data);

}
catch(FieldNotFoundException fnf) {

System.out.println("Field not found ...");
}

Enumeration enum = castTable.elements();

byteData = data.getBinaryData();

while(enum.hasMoreElements()) {
out = (OutputStream)enum.nextElement ();
if (out != me) {

out.write(byteData);
}

129

} // end while v ■

counter++;
if(counter >= 120000) {

end = Calendar.getlnstance();

long startTime =
(begin.get(Calendar.HOUR)*60*60*1000) +

(begin.get(Calendar.MINUTE)*60*1000) +

(begin.get(Calendar.SECOND)*1000) +

(begin.get(Calendar.MILLISECOND));
long endTime =

(end.get(Calendar.HOUR)*60*60*1000) +

(end.get(Calendar.MINUTE)*60*1000) +
(end.get(Calendar.SECOND)*1000) +
(end.get(Calendar.MILLISECOND));

long duration = endTime - startTime;

System.out.println("Duration = " + duration);

System.out.println("Goodbye " + threadID);
System.out.println("1000 packets read ...");
closeThread();

' }

}-// end if

}
catch(IOException eee)
{

System.out.println("Goodbye " + threadID);
System.out.println("Could not read next ...");
closeThread();

■}

} // end while(true)
}
finally {

closeThread();
}

* Close the thread after finishing connection or failure.
*

■*/.

public void closeThread() {
try {

threadSocket.close();
castTable.removeElement(me);

130

stopThread = true;
}
catch(IOException e) {

System.out.println("ERROR: Could not close socket @
closeThread");

}
}

} // end NSGServeOne

// end of file NSGServeOne.java

131

132

APPENDIX H - JAVA CODE FOR TESTING CLIENTS

//
// Filename: SClient.java
// Date: 24-August-99
// Compiler: JDK 1.2
// Comments: Simple client sending packets to the SOFT server
// Used for the empirical testing.
// _

import j ava.net. *;
import j ava.io.*;
import java.util.*;

public class SClient
{

public static void main(String[] args)
{

// args[0] = Server name
// argsfl] = socket number

if(args.length != 2) {
usageMessage();
System.exit(0);

}

InetAddress addr;
Socket socket;
FilelnputStream fis;
DataOutputStream dos;

try

catch(UnknownHostException uhe)

System.out.println("Unknown Host
return;

addr = InetAddress.getByName(args[0]);
System.out.println("addr = " + addr) ;

');

try

socket = new Socket(addr, Integer.parselnt(args[1]));

catch(IOException ioe)

System.out.println("Cannot create the socket ...");
return;

try

133

// packet.exp contains a byte array extracted from a C++
client.

.// this packet corresponds to a transformation,
fis = new FilelnputStream("packet.exp");

}
catch(FileNotFoundException fnfe)
{ ' •

System.out.println("File packet.exp not found ...");
try
{

socket.close();
}
catch(IOException ioe)
{

System.out.printlhf"Can not close socket ...");
}
return;

}

byte[] b = new byte [65535] ;• '
int len;

try
<

len = fis.read(b);
dos = new DataOutputStream(socket.getOutputStreamO) ;

for(int i = 0; i < 120000; i++)
{

dos.writelnt(len);
dos.write(b, 0, len);

} // end for

System.out.println("Done") ;
'}
catch(IOException ioe)
{

System.out.println("Can not read file ...");
}

try
{

socket.close();
}
catch(IOException ioe)

■{•■'■
System.out.println("Can not close socket
return;

}

} // end main

public static void usageMessage() {
System.out.print("Usage: Java SClient <server name>");

134

System.out.printin(" <server port>");
System.out.printin();
System.out.printin("Exaple: java SClient venus 9000");
System.out.printin("\tvenus - machine running the SOFT server");
System.out.printin("\t9000 - venus machine port");

} // end of class SClient

//_
// Filename: RClient.Java
// Date: 24-August-99
// Compiler: JDK 1.2
/•/ Comments: Simple client receiving packets from the SOFT server
// Used for the empirical testing.
//_

import j ava.net.*;
import java.io.*;

public class RClient
{

public static void main(String[] args) throws IOException
{

// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {
usageMessage();
System.exit(0);

}

InetAddress addr;
Socket socket;
DataInputStream in;

try

addr = InetAddress.getByName(args[0]);
System.out.println("addr = " + addr);

catch(UnknownHostException uhe)

System.out.println("Unknown Host
return;

");

try

socket = new Socket(addr, Integer.parselnt(args[1]));

135

catch(IOException ioe)
•{

System.out.printin("Cannot create the socket....");
return;

. }

byte[] b = new byte[65535];
int len; .

in = new DatalnputStream (socket.getlnputStreamO);

try
{

while(true)
{

len = in.readlnt();

byte[] buf = new byte[len];

in.readFully(buf, 0, len);'

} // end while(true)
}
finally

try
{

socket.close() ;
>
catch(IOException ioe)
{

System.out.println("Can not close socket ...");
return;

} ■ ■

> ' '

} // end main

public static void usageMessage() {
System.out.print("Usage: Java RClient <server name>");
System.out.println(" <server port>");
System.out.printlnO ;
System.out.println("Exaple: Java RClient venus 9000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port");

}

} // end RClient

136

LIST OF REFERENCES

[ALEX78] Alexander, A. 1978. "Impacts of Telemation on

Modern Society." Proceedings 1st IFToMM

Symposium, Vol. 2.

[BROL97] Broil, Wolfgang. 1997. wPopulating the

Internet: Supporting Multiple Users and Shared

Applications with VRML." Proceedings of the

VRMI/97 Symposium (Monterey, CA, 24-2 6

February, 1997).

[CAPP96] Capps, M. et al. 1996. "Distributed Inter-

operable Virtual Environments." Proceedings of

the Third International Conference on

Configurable Distributed Systems (Annapolis,

Maryland, 6-8 May, 1996).

[CHEW98] Chew/ F. 1997. The Java/C++ Cross-Referencer

Handbook. Prentice Hall.

[DeFA98] DeFanti, T. et al. 1998. Personal Tele-

Immersion Devices. IEEE.

[DERT98] Dertouzos, M. 1998. What Will Be. Harper

Collins, New York, NY.

[ECKE98] Eckel, B. 1998. Thinking in Java. Prentice

Hall.

137

[EDWA97] Edwards, J. and DeVoe, Deborah. 1997. 3-tier

Client/Server at work. John Wiley & Sons.

[FLAN97] Flanagan, D. 1997. Java in a Nutshell. O'Reilly

and Associates.

[FOST98] Foster, I. and Kesselman, C. 1998. The Grid:

Bluprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers.

[FUCH98] Fuchs, H. et al. 1998.. "The Office of the

Future: A Unified Approach to Image-Based

Modeling and Spatially Immersive Displays."

Proceedings SIGGRAPH 98 Conference. Annual

Conference Series. ACM SIGGRAPH, Orlando,FL.

[HILL97] Hill, J. and Jensen, J. 1998. "Telepresence

Technology in Medicine: Principles and

Applications." Proceeding of the IEEE, Vol. 86,

No. 3, March 1998.

[LEA96] Lea, R. et al. 1996. Java for 3D and VRML

Worlds. New Riders Publishing.

[LEA97] Lea, R. et al. "Community Place: Architecture

and Performance." Proceedings of the VRML7 97

Symposium (Monterey, CA, 24-26 February, 1997).

[MACI98] Maclntyre, B. and Feiner S. 1998. "A

Distributed 3D Graphics Library." Computer

138

Graphics Proceedings, Annual Conference Series

of 1998.

[MYER97] Meyers, S. 1996. More Effective C++. Addison

Wesley.

[PAUL98] Paul, S. 1998. Multicast on the Internet and

Its applications. Kluwer Academic Publishing.

[PIER98] Pierce, J. et al. 1998. "Image Plane

Interaction Techniques in 3D Immersive

Environments." Proceedings of 1997 Symposium on

Interactive 3D Graphics, (Providence, Rhode

Island, April 27-30, 1997).

[SCHA99] Schach, S. 1999. Classical and Object-Oriented

Software Engineering with UML and Java. McGraw-

Hill, Fourth Edition.

[STAL98] Stallings, W. 1998. Operating Systems,

Internals and Design Principles. Prentice Hall,

Third Edition.

[TOFF80] Toffler, A. 1980. The Third Wave. Bandam Books.

[ZYDA97] Zyda, M. and Macedonia, M. 1997. "A Taxonomy

for Networked Virtual Environments." Periodical

IEEE Multimedia, Vol. 4, No. 1, January - March

1997.

139

[WEB]

1 Www.cis.upenn.edu/~kamberov/doc/teleimmersion.html

2 Www.internet2.edu/html/mission.html

3 Www.sgi.com/fahrenheit/scene.pdf

4 Www.pyramidsystems.com

5 Www.advanced.org/teleimmersion/board/cubelabel.html

6 Www.es.unc.edu/Research/stc/teleimmersion/index.html

7 Www.advanced.org/teleimmersion/board/cubelover.html

8 Www.evl.uic.edu/pape/CAVE

9 Www.pyramidsystems.com/idesk.html

10 Www.iuinfo.indiana.edu/ocm/releases/coxuits.htm

11 Wph . mi t.. PHII /hmsl /www/Tel e surgery /hardware . html

12 Www-dss . rinn . i r.. an .-nk/'nd /surprise_96 /Journal /vol 4 /

an^/rspnrt.htmlftsaf e_surgery

13 Wph, mi r.. <*dn /hmsl /www/markott /cooptel esurg. html

14 Cs.franklin.edu/Faculty/Giuliani/mba682/~cgriggs/

tsld003.htm

15 Www.merl.com/proj ects/spline

16 Www.java.sun.com/products/jdk/l.2/docs/api

140

BIBLIOGRAPHY

Berzins, V. 1995. Software Merging and Slicing. IEEE.

Booch, G. and Rumbaugh, J. and Jacobson, I. 1999. The

Unified Modeling Language User Guide. Addison Wesley.

Brooks, F. 1995. The Mythical Man-Monthr Second Edition.

Addison-Wesley.

Couch, J. 1999. JAVA 2 Networking. McGraw-Hill.

D'Souza, D. and Wills A. 1999. Objects, Components and

Frameworks with UML. Addison Wesley.

Deitel, H. and Deitel, P. 1994. C++ How to Program. Prentice

Hall.

Deitel, H. and Deitel, P. 1998. JAVA How to .Program.

Prentice.Hall.

Eckel, B. 1998. Thinking in JAVA. Prentice Hall.

141

Edwards, J. 1997. 3-Tier Client/Server At Work. John Wiley.

Flanagan, D. 1997. JAVA in a Nutshell, Second Edition.

O'Reilly.

Foster, I. And Kesselman, C. 1999. The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann.

Gordon, R. 1998. Essential JNI, Java Native Interface.

Prentice Hall.

IEEE. 1997. Software Engineering. IEEE Standards Collection.

Larman, G. 1998. Applying UML and Patterns. Prentice Hall.

Lea, R. and Matsuda, K. and Miyashita, K. 1996. Java for 3D

and VRML Worlds. New Riders.

Meyers, S. 1996. More Effective C++. Addison Wesley.

Meyers, S. 1998. Effective C++, Second Edition. Addison

Wesley.

Myers, G. 1979. The Art of Software Testing. Wiley.

142

Oaks, S. and Wong, R. 1999. JAVA Threads, Second Edition.

O'Reilly.

Paul, S. 1998. Multicasting on the Internet and Its

Applications. Kluwer Academic Publishers.

Rago, S. 1993. UNIX System V Network Programming. Addison

Wesley.

Robbins, K. and Robbins, S. 1996. Practical UNIX

Programming, A Guide to Concurrency, Communication and

Multithreading. Prentice Hall.

Rumbaugh, J. and Jacobson, I. and Booch, G. 1999. The

Unified Modeling Language Reference Manual. Addison Wesley.

Schach, S. 1999. Classical and Object-Oriented Software

Engineering with UML and C++, Fourth Edition. McGraw-Hill.

Schach, S. 1999. Classical and Object-Oriented Software

Engineering with UML and JAVA, Fourth Edition. McGraw-Hill.

143

Stallings, W. 1998. Operating Systems, Internals and Design

Principles. Prentice Hall, Third Edition.

Stevens, R. 1993. Advanced Programming in the UNIX

Environment. Addison Wesley. •

Stevens, R. 1998. UNIX Network Programming, Networking

API's: Sockets and XTI, Vol 1, Second Edition. Prentice

Hall.

Stevens, R. 1999. UNIX Network Programming, Interprocess

Communication, Vol 2, Second Edition. Prentice Hall.

Stroustrup, B. 1997. The C++ Programming Language, Third

Edition. Addison Wesley.

144

INITIAL DISTRIBUTION LIST

1 Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VÄ 22060-6218

2 Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA, 93943-5101

3 Professor, Michael J. Zyda 1
Code CS/Zk
Naval Postgraduate School
Monterey, CA, 93943

4 Research Assistant, Michael V. Capps 1
Code CS/Ca
Naval Postgraduate School
Monterey, CA, 93943

5 Senior Lecturer, John S. Falby. 1
Code CS/Fa
Naval Postgraduate School
Monterey, CA, 93943

6 Jaron Lanier . . 1
Advanced Network Services
200 Business Park Drive
Armonk, NY 10504

7 Brigadier Constantinos Gerokostopoulos 1
Research and Informatics Corps
Hellenic Army General Staff
Stratopedo Papagou
Hölargos 15561
GREECE

8 Panagiotis Fiambolis . .
Ithakis & Dodekanisou 2A
Gerakas 15344
GREECE

145

8 George Prokopakis
Smyrnis 1
Zografou 15772
GREECE

9 Chairman, Code CS
Naval Postgraduate School
Monterey, CA, 93943

146

