NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A NETWORK DESIGN ARCHITECTURE
FOR DISTRIBUTION OF
GENERIC SCENE GRAPHS

by

Panagiotis Fiambolis
Georgios Prokopakis

September 1999
Thesis Advisor: Michael J. Zyda

Co~Advisors: Michael V. Capps
John S. Falby

Approved for public release; distribution is unlimited.

et i

E— 19991230 022

REPORT DOCUMENTATION PAGE | rommoms

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
: : ‘ : September 1999 Master’s Thesis v

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A ‘NETWORK DESIGN ARCHITECTURE FOR DISTRIBUTION OF GENERIC SCENE

GRAPHS

6. AUTHOR(S)
Fiambolis, Panagiotis and Prokopakis, Georgios

8. PERFORMING

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) : ORGANIZATION REPORT
Naval Postgraduate School : NUMBER
Monterey, CA 93943-5000 , :
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING .
- AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES -

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

Sharing a common view while collaborating in networked virtual environments is
complex. The SOFT project examines a new approach: using generic scene graphs as a bus,
for graphics distribution. This thesis (as part of the SOFT project) examines network
architecture for distribution of generic scene graphs.

We design and 1mplement the network architecture with a centrallzed Java server.
This server provides scalability, persistence, reliability, and latecomer support. The
server provides interoperability ' and can support any S8SGs on any platform. . The
extraction of information from the network layer is implemented in two ways. In the
first, we use Java’s inherent serialization mechanisms; in the second, we use the Dial-
a-Behavior (DaBP) protocol. »

. We empirically test the server’s overhead with both network mechanisms. We have
concluded that using DaBP significantly reduces the server’s overhead by a factor of
six but only for 1less than 50,000 packets. Moreover, the use of DaBP provides
implementation flexibility because data format can change dynamically without requiring
re-compilation. Finally, DaBP, while ‘promising, must mature and be shown to reduce
overhead for large number of packets before it is ready to be :anorporated into the
final architecture solution for SOFT. :

14. SUBJECT TERMS '

" . . - , -} 15. NUMBER OF
Networking Virtual Environments ' PAGES

o | 165

16. PRICE CODE

18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFI- CATION 20. LIMITATION

17. SECURITY CLASSIFICATION OF .
REPORT . I]"'slp AGE fied OF ABSTRACT OF ABSTRACT
Unclassified ncilassitie Unclassified ' UL

NSN 7540-01-280-5500 ’ : . Standard Form 298 (Rev. 2-89)
' ‘ ’ Prescribed by ANS! Std. 239-18

Approved for public release; distribution is unlimited

- ANETWORK DESIGN ARCHITECTURE FOR
DISTRIBUTION OF GENERIC SCENE GRAPHS

Panagiotis Fiambolis
Major, Greek Army
B.S., Greek Army Academy, 1985

Georgios Prokopakis

Major, Greek Army
B.S.? Greek Army Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

" Authors:

= S
s
Gedrgios Pfokopaki

Approved by: /7 ', M
esis Advisor

Mlchj
Michael V. ‘Capps /C%dwsor

Sy 4

~Dan C. Boger, C
Department of Computer Science

iii

ABSTRACT

Sharing a common view.while COllaboratingbin_netﬁorked
virtual environments is complex. The SOFT project‘examines
a new approach:’usiﬁg generic scene.graphs as a bus;lfofg
graphics distribution. This theSis _(as ‘part ‘of .the SOFT
projecf) examines network architecture for distribution of
generic scene graphs.

We design and implement the network architecture with
-a centralized Java server. This ‘server provides
scalability, persistence, reliébility;v ‘and ’latecomer
support. Theﬂ server provides interoperébility, and 'can‘
support any SSGs on any platform. . The ‘extractionblof
information from the hetwofk layer is impleméntedin two‘
iways.vInbthe first, we use Java’'s inherent seriglizatioﬁ
‘mechanisﬁs; in the second, we use the Dial~é-Béhavior{;
(DaBP) protocol. |

We empirically test the server’s overhead 'with both
network mechanisms. We'_have concluded‘ that using‘ DaBP
'significantiy reduces the server’s overhead by a factor of
six but only'fbr less thén 50,QOO packets. Mofeovér,’the
‘use of DaBP provides imﬁlementation flexibility’ because
dafa format can changei dynamicaliy' without requiring re- -
compilation. Finally,- DaBP, while promising, must mature

and be shown to reduce overhead for large number of packets

before it is ready to be incorporated into the final

architecture solution for SOFT.

vi

TABLE OF CONTENTS

I. INTRODUCTION.uuouvvrnnnennnns S e 1

A. OVERALL GOALS .ttt ittt neneeescansassacncsasonsss veeeee 1
1. SOFT .viveviinennns Seseesaas S e (S |
2. NTII ..t eeneeecennneonncncosans [PIPIP veo 1
3. Internet? ...iceeeeeeeetoesaosessosasssossssnssseeees 2

B. SCOPE OF THIS THESISccevee.n et i . 2
1. Server DEeSIgN .u.eeeeeeeeeeeeeoeesensonsensonnrenses 2
2. MUulti-Ti€r ...cieeeeeeeenccesonescasoneaannsas e e e 5

C. CONTRIBUTIONS AND GOAL OF THIS THESISvvvenn. e 1

D. CHAPTER SUMMARY (. .c.citetncenecncacsnonannsans T -

II.SOFT PROJECT vcveeesseseensssccncanaas e ecsesenanses 9 -

A. OBJUECTIVES..... PR Ceeeteecreteateceeasanaaaaaaaaa 9
I. Network Collaboration ettt te et eeeseedee. 9

B. PROPOSED CLIENTS OF SOFT ... iiieeeneneconnnnns S 13
1. TelecubiCle .uv.ieereeneenaonseeoesoensssenssnaanas 13
2. TEleSUXGEILY .eeeeeeereesonesosocosssenncnnos ceee... 18
3. Generic Sharing of Stand—Alone Applications e 19

C. ARCHITECTURE +.vvvnveenennenennenennansnnnnss ceedena 21
1. SSG and REPOXtING «oveeeeeeneoenssonnonas e 22
2. Mapping Layer (ML)eeueeeeenennneneesenionnannns 22
.3. Network Scene Graph Layer (NSG)eeeieeeenn el 23
4. Dial-a-Behavior Protocol (DaBP)eue.. e 25

III. RELATED WORKciviuernnnennnnnnnnnnn e weee. 27

A. INTRODUCTION vt v e e eesnennneeeeeneeneennnns eeee.. 27

B. INTERCONNECTING PROPRIETARY STANDALONE APPLICATIONS . 27
C. INTERCONNECTING HETEROGENEOUS VIRTUAL ENVIRONMENTS . 30
D. BUILDING FRAMEWORKS FOR DISTRIBUTED VIRTUAL.
ENVIRONMENTS BASED ON A CLIENT/SERVER APPROACH AND

REPLICATION,....32
1. Community Place (CP) Architecture 32
2. Spline Architecture eeeeen IR ... 35
3. Repo-3D Architectureeeeeeees. e eaee 1)

E. CONCLUSIONS @i/ttt eeessnssocssenssssssscscssassncnsaess 38

IV. SOFT NETWORK ARCHITECTURE. vvvveeneeennennonenn ... 41

A. INTRODUCTION (. iceteeeeessesscasncsans ce e e eenees 41

B. SERVER . .1ttt eetroeseisssenssanssossssassscsancsas 42
1. Justification for Centralized Server 42
2. Justification for Java SEIVEILeeeveevensans .. 46

C. CLIENT SIDE e e e e et es s essasasasecnne B 10
1. API tO NetWOILK v eeeienieueeeeeoeneenssosnonsocenss 50

J

2. Client High-Level Architecture 51

D. MULTICASTING £ emeseceneaas e et e 51
V. SERVER DESIGN AND IMPLEMENTATION........... e.B5
A. INTRODUCTION ..vvvvvvnnnns S R e . 55
B. METHODOLOGY « « v v eoeevneenaneenneeenneeaneeeaeananeeanss 55
C. PHASES OF DEVELOPMENTcuvuuueeecenn. e ... 59
1. Phase One e P ceeeea... 59
2. Phase TWOueruiinernnnanneineneenannsss [-4
3. Phase Threeeeeieeneuenanenns P 65
4. Phase FOULueeunenitennsessoonnioneanonasanns . 69
5. Phase Five R R R P P & |
VI.CLIENT SIDE ARCHITECTURE AND DESIGN........... ;..;,...77
A. NETWORK SCENE GRAPH (NSG) PROTOCOL e 77
1. UID...... . ieee e vee. 77
2. NSGtAG veveiveneannnens R eeeeseens .. 77

3., OWIEL v v ivieeeseensonseens T vees 79,
4. Contention Flags «....eeeveeene e e eeeesessseeess " 79
G FielAS vveeeeeeseeoseaisoocosnsnnensa '......;....;...‘79

B. NSG SERIALIZATION/DESERIALIZATION e v... 80
VII. EMPIRICAL TESTING.................;.....;‘.,,...,.,.83
'A. INTRODUCTION R AP . 83
B. TESTING SERVER OVERHEAD WITH DaBP . ..vvvvurnn. S 83
C. TESTING SERVER OVERHEAD WITHOUT DaBP 84
D. PROBLEMS TESTING WITH DaBP «u..uvevnn... e e e 85
E. »CONCLUSIONS...................,,' eeiie..... 86
'VIII.CONCLUSIONS AND FUTURE WORK i eesesacsesieennes ‘89
A. INTRODUCTION «.vvevuvnnnnnnnn. e [-
B. CONCLUSIONS..... e ettt e eeeieeeie... 89
C. FUTURE RESEARCH IDEAS..._ S 90
D. SUMMARY e e S 91
APPENDIX A - JAVA CODE FOR “PHASE ONE” e e e 93
'APPENDIX B - JAVA CODE FOR “PHASE TWO” O 99

'APPENDIX C - JAVA CODE FOR “PHASE THREE” 103
APPENDIX D - JAVA CODE FOR “PHASE FOUR”vueeenneenns 107
APPENDIX E = XML FILE - v v v voeee s ie e s se e imeenaeaenaan 117
APPENDIX F = DABP CLIENTS ... vvvneiosemnnneeeeasnseneens 119

viii

APPENDIX G - JAVA CODE FOR “PHASE FIVE” RS 125

APPENDIX H - JAVA CODE FOR TESTING CLIENTSovvnnnn 133
LIST OF REFERENCEScunneunnennnennns. [P 137
BIBLIOGRAPHY freee et 141
INITIAL DISTRIBUTION LIST .. .uvouvnenennrnnnnnnn. eeeaes .. 145

ix

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure -

Figure
Figure
Figure
‘Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
- Figure
Figure
Figure
Figure
Figure
Figure

1:
2:

LYY

e o0 e

28 es e se ee e

e eo

LIST OF FIGURES

Multithreaded Process Model

‘Multi-Tier Architecture . .

Common Visual Environment
A Sample Scene of Paris and Its
Corresponding Scene Graph
SOFT Layering . . . e e e s e e e
Components of a Telecublcle . . '
Intuitive Human Communication . . .
The First Four Telecublcles e e e

CAVE . + ¢« v v 6 @ o o o o o o o
ImmersaDesk .« e e . .. o o e
Telesurgery System Components .
Telesurgery Workstation
Master Tool Handle
Dataglove . . . s e s s s e e e e e
SOFT Archltecture e e e e e e e e e e
Connecting to a Virtual World
CP Architecture
Repo-3D Architecture
Use of Server for Reliability
Scalability

Categories of Multicast Appllcatlons
First Working Prototype . . .
Synthesizing a Common Env1ronment .
Spiral Model Implementation . .

Phase One « . . ¢ . e w
UML Sequence Diagram (Phase One). . .
Phase Two « « « «.¢ « . .

UML Sequence Diagram (Phase Two). . .
Phase Three« « « « « « « .«
Parsed Stream « ¢« ¢« < o « « &
UML Sequence Diagram (Phase Three). .
Phase Four ¢ e e e e e s

UML Sequence Diagram (Phase Four) .
UML Sequence Diagram (Phase Five) . .
UML Documentation for NSG Node . . .
Trend Analysis with/without DaBP

xi

=N

.10
.12

.16

.16
.17
.18
.18
.20
.20
.20
.20

.o.21

.28
.33
.37
.45
.45
.53
.56
.57
.58
.60
.61
.62
.64
.65
.66

. .68

.69

72

.75
.81
.87

Table

Table
Table
Table
Table
Table
‘Table

~NoyOoyds W

se o4 o0 se se s

" Average Server Overhead with DaBP .

LIST OF TABLES

Supported Flow-Types of Tele-Immersive

Applications

- NSG Contention Flags
Implemented NSG Tags
Designed NSG Tags « « .« « .
NSG Fields. ' .

Average Server Overhead without . . .

xiii

.15
.24
.78
.78
.79
.85
.86

[xiv

ADU
Al
AO

"API
CORBA
COTERIE

Ccp
DaBP
DCOM
DR
DS -
DSM
HCI
HTML
JDBC

ML
ms
NSG
NTII
OMG
ORB
PARIS
RMTP
SG
SGML
" SOFT
SSG
SSS
TAWS
UID
VRML
VSCP
XML

LIST OF ACRONYMS

Abstract Data Unit

Artificial Intelligence
Application Object

Application Programming Interface
Commén Object Request Broker

© Columbia Object-Oriented Test-Bed for Exploratory

Research in Interactive Environments
Community Place

Dial-a-Behavior Protocol
Distributed Component Object Model
Designated Receiver

Designated Server

* Distributed Shared Memory

Human Computer Interface
Hyper Text Markup Language

- Java Data-Base Connectivity

Java Virtual Machine

Mapping Layer

milliseconds

Network Scene Graph

National Tele-Immersion Initiative
Object Management Group

Object Request Broker

Personal Augmented Reality Immersive System
Reliable Multicast Transport Protocol
Scene Graph

Standard Generallzed Markup Language
Software Framework for Tele- 1mmer51on'
Standard Scene Graph

Simple Shared Script

Totally Active Workspace

Unique Identifier

Virtual Reality Modeling Language
Virtual Society Client Protocol

"Extensible Markup Language

XV

Xvi

ACKNOWLEDGEMENT

The writers wish to recognize the professionalism and
guidance, and all the support of our advisors. We would‘
iike to express our appreciation to Mr. Howard Abrams Who‘
helped us debug the C++ client implementation and to Mf;‘_
Ryan Brunton - for his help in debugging the DaBP !
implementation. Finally, we thank our families for their ,

devotion and support.

Xvil

xviii

I. INTRODUCTION

A. OVERALL GOALS

Alviﬁ Toffler, in his book The Third Wave, forecasts
that .future white-collar workers will be able to work from
home. “Home will become the center of society,” but people
will still “need face-to-face contact with each other to
developk the trust and confidence necessary to wotk
together.” [TOFF80]

With the capability of computer systems rapidly
increasing, and the swift expansion of computer networka,
these prediations are approaching'fuifillment. Today.this‘
visioa is materializing through the Software Framework for
Tele-immersion (SOFT) project, National Tele-Immersion
Initiative (ﬁTIi), and Internet2. Their goals respectively
are:

1. SOFT

The goal of the SOFT pfoject is the painless
introduction of networked collaboration into single-user
computer graphics applicafions. The applications as well as
the platforms they run on can be dissimilar.

2. NTII

The NTII goal is to provide a rigordus test for

Internet2 and increase the degree of cooperation between the

research laboratories involved. This will aid advances in
virtual reality research [WEB1].
3. Internet2

The goals of Internet2 are [WEB2]:

e Enable a new generation'of applications;

e Create a leading edge research and education network
capability;

e Transfer new capabilities to the global production
Internet. ' o :

B. SCOPE OF THIS THESIS

The scope' of this thesis ~is the | design ~and
implementation of a network srchitecture fOr distribution of
generic scene graphs. This network_srohitecturepprovides a
common graphical distributed environméot for remote cliehfs,
which use various platforms. Wébexamine thevmost effective
structure to support this strsamed communication between
sefver and clients. Moreover, we invsstigate how Java-C++
server/clients can be integrated into the SOFT architecture;
We examine multi-tier architecture and hulticasting
technology in order to transfer fhe vast amounts of data
reqﬁired for networked graphical spplications; |

1. Server Design |

SOFT will support distributed graphical applications

collaborating | freely _in 'compdter graphics client

communities. Thus, the server must have the following

characteristics:

a) Multi-Client

The client/server model can support relationships,
such as one-to-one and one—to?many. The one-to-many
reiationship refers to one client sehding information

through a server to multiple clients (multi-client).

b) Multithread

A thread is “a dispatchable unit of work.”
[STAL98] Each thread\is executed sequentially and can be
intérrupted so that a single processor can switch to another
thread. Each process can be divided into threads able t6 run
simultaneously whilé executing an.application. Moreover, all
the threads can share the statevand resources ofAthe same
‘process. This makes multithreading useful for applicatiQns‘
that can execute independent tasks which do not need to be
sérialized. As a result, running multiple threads under‘the

' same process can result in less processor overhead because:

e Thread creation requires less time than the creation
of a new process;

e A thread can terminate more rapidly than a process;

e Switching between threads is less expensive.

Figure 1 illustrates a multithreaaed procesé'modél'in
which each thread has its dwn controi blbck; user stack,‘and"
kernel stack, while éhariﬁg the same'addres$ space of the
common process. An example of this model is 'a servér that

listens for and processes multiple clients’ requests.

Thread Thread = Thread

Thread Thread Thread
Process Control Control Control
- Block Block ‘Block
Control
Block '
User User User
Stack Stack - Stack
User o ,
Agg:i:s Kernel Kernel Kernel
Stack Stack Stack

Figure 1. Multithreaded Process Model [STAL98]

c) Persistence
Two different views of persistence are needed in

the SOFT project: scene persistenée and pérsistence binding.

(1) Scene Persistence. The users in ‘the
client community will be able to make changes in _their

graphical environment. However, when they log out and log in

again, they must see the scene as they left it. Thus, there

is a need for scene persistence, which must be supported

either in the server or the client.

(2) Persistence Binding. When two applica-
tions make a logical cbnnection and are prepared to exchange
commands andvdata, they perform a client/server mechanism
called binding. The binding mechanism can be either
persistent or nonpersistent. The SOFT server must be able to
support communication among multiple clients. These repeated
calls must be maintained through persistent binding from the
server side, which will keep the lbgical conneCtion open as
long as active clients are still in the system..'

2. Multi-Tier

The term tier is ‘used to “describe the logical
partitioning of an application across client§ and servers.5
[EDWAS7] A two-tier client/server system ,exchanges
information directly between a client and a server. In a
three-tier architecture, an application layer betweén client
and server exists (Figure 2). The three-tier architecture is
less complex on the client side and has_high'security, high
data .encapsulation, excellent internet support,v hetero-
geneous resource management support, rich communication
choices, flexible hardware architecture, and excellent
performance. The middle-tier in the three-tier architecture
is responsible for servicing requests and responses between

the client and the server.

Tier-1 | ‘ c ’ Tier-2

Resource o I ’
: : . GUI

Managment :
Two-Tier Architecture

 Tier-2 Tier-3

Tier—l

GUI-

Resource
Managment

RPC's, Queues, Broadcasts, etc.

Three;Tier Architecture

Figure 2. Multi-Tier Architecture [EDWA97]

The middle-tier components are of two types:

a) Services

These are stateless pfocedures.

b) Objects
These have methods and can communicate across
networks, operating systems, and languages. They are called

Object Request Brokers (ORB’s) and support:

(1) Stateless Objects.‘ These do not
have a wunique state.' Microsoft’s Distributed Component
Object Model (DCOM) is one example and Common Object Request
Broker Architecture (CORBA) of Object Management Group (OMG)

is another.

A (2) Stateful = Objects. These USe a
unique object identifier in order to request services of a
certain object.. |
C. CONTRIBUTIONS AND GOAL OF THIS THESIS
In a shared graphical environment with multiple
clients, maintaining the same view for all cliénts networked
together is generélly the vital issue. Today, popular
graphics liBraries, such as Openlnventor, VRML, Jéva3D, and
Fahrenheit use a scene graph as their main data structure.
A"élient in a distributed graphical environment may wish to
usekény of these various scene graph impiementations. SOFT
envisions sharing via the scene graph. Eaéh client is able
to modify his or her own scene graph. Through network
collaboration, this écene graph as bus metaphor provides the

changes to other clients for a shared common view. The

primary implementation contribution of this thesis is the
server, which efficiently allows for reliable messaging,

occasional reduction in traffic, and persistent storage.

D. CHAPTER SUMMARY

The remainder of this thesis consists of the following

chapters:

e Chapter II: SOFT. We provide the objectives of the-
SOFT project, considering nétwork collaboration and
interoperability. We propose clients of SOFT, such
as telecubicle, telesurgery, and generic sharing of
standalone applications. Moreover, we present the
logical architecture for the mapping layers of SOFT.

e Chapter III: Related work. Here we evaluate other
research related to and similar to SOFT projects.

e Chapter 1IV: SOFT network architecture. Here "we
justify the wuse of the Java server ‘and its
centralized role. We also design the client side and
provide a multlcastlng technique - for the network
architecture. o

e Chapter V: Server design and implementation. The
methodology and the phases that followed in
designing and 1mplement1ng the server are discussed.

e Chapter VI: Client side architecture ‘and des1gn. We
provide the NSG protocol and its serialization.

e Chapter VII: Empirical study of- efficiehcy. We
examine the overhead -for the ~ server -~ and
communication in example sessions. -

e Chapter VIII: We ' reach ' conclusions and make
proposals for future work. ‘ . R

II. SOFT PROJECT

A. OBJECTIVES

As stated by Brown University, the goalﬁof the SOFT
project is the painless introduction of networked
colléboratioﬁ into - single-user computer graphics.
applications. The primary research goal 'is‘ to determine
those minimal alterations needed to integrate a stand-alone
program neatly into a‘networked environment.

- 1. Network Collaboration

»In a networked shared environment (Figure 3) each
clieﬁt is able to create his or her own objecté and modify
any other object,.provided it has permissioh of the owner.
Each new client, upon logging in; must 5e able to share the
same view. Additionally, when the user selects an object on
his image plane and brings it into his natural working

volume, we must decide how this appears to an observer
standing close by or at a distance. [PIER98]

A graphical scene may contain various - objects,
different colors, objects within objects, different levels
of detail, etc (Figure 4). These can be defined aé a set of
_nodes organized into a set of hierarchies. The scene graph
(SG)b is the data structure “used to denote the entire

ordered collection of these scene hierarchies.” [LEA96]

. Network -
. " /Résources’

C:Client

Figure 3 - Common‘Visual Environment

Fﬂf?’rtion 4 FM¥iticn & P&:mﬂn 1

crigmatian orientation aripntation

Appearance B Appearance Appeamance :kppnalanoa

Figure:4. A Sample Scene of Paris and Its Corresponding
Scene Graph [WEB3] '

10

SOFT will provide ihe network framework for these SGs
(e.g., OpenlInventor, Fahrenheit, JaVa3D, etc.) to
communicate. A.graphical application using OpenInventor will
be able to make calls to another which uses Java3D as SG.
Essentially this should lead to free collaboration' in
computer graphics élient commﬁnities. The need for access to
the application is vital in order to ensure consistency and
atomicity in scene modifications. We trade programming

complexity for additional collaboration functionality.

a) Layering
Dividing SOFT into three logical layers reduces

this programming complexity. The three layers are:

(1) The Standard Scene Graph Layer (SSG).
The SSG is the SG used by a specific application. Any
extensions to the SSG will be contained as a sublayer in
order to provide rthe functionality needed for the next

layer, the mapping layer.

(2) The‘Mapping Layer (ML). The.ML provides
the mapping between the SSG and the Network Scene Graph
(NSG). As we may have different kinds of SSGs,
architectures, and languages, a new ML has to be written to

support each desired combination.

_ (3) The Network Scene Graph Layer (NSGX.
The NSG is a special abstract SG that is not displayed, but

11

rather changes to it are mapped to Changes in the SSG. The
NSG is shared among all networked,hosté_in a SOFT session.
It must contain data formats and contention resolution
mechanisms.- Additidnally, it‘imust specify thé SG data
semantics to be implémented in the mapping of the mapping
layer. Thus, an API is used indirectly through the mapping

layer. The SOFT layering is shown in Figure 5.

- 88G
(e.g. JAVA 3D)

SSG

(e.g.OpenInventor)

' Figure 5 - SOFT Layering

b) Sharing via Scene Graph
The NSG is responsible for maintaining the same
view for all the clients networked together in the same

session. This is achieved as follows:

e Each SG node maps its own set of 3D objects and
attributes to the NSG; : ‘ .

12

e The network layer uses the NSG as a bus metaphor to
transmit the created or modified nodes to the remote
client’s NSG;

e The NSG of the remote client is then mapped to its
own SG.

‘B. PROPOSED CLIENTS OF SOFT
- SOFT aims to support any kind of distributed graphical‘

applicatibn. Such applications can be, for example:

e Telecubicle (office of the future, enhanced
teleconferencing);

e Medical Diagnosis and Telesurgery;
e Surveillance;
e Bomb Disposal;

e Mining.

We focué on the telecubicle because some industrial
progress has been made in this‘ area [WEB4]. Also, some
significant progress has been madebin telesﬁrgery; although
it is too early for a commercialized product.

1. Telecubicle

As synthesized by Andy jan Dam, a pioneer of graphics
‘at Brown University, immersion and preéencek can be
independent. People surrounded by panoramic views will feel
immersion without presenée. [DERT98] Teiecubicle will be a

new interface design of an office that can appear to become

13

one quadrant in a laréer shared virtﬁal office spade. As
shown in Figuré 6, a telecubicle'will cbnsiSf of é stereo—
immersive desk 'surface and at least two stereo-immeréive

walls. Projectors on the ceiling and Various other points'
will render the.images on the walls with ultra‘high‘color

resolution (i;e;, 5000x5000) . Moreover, a telecubicle

[beFA98]:

e Will be stereo capable‘without special glasses;

e Will be networked to teraflop computing via multi—
gigabit networking with low latency;

e Will be avallable in a range of compatible hardware
and software applications;

e And will incorporate AI-based predictive models to

compensate for latency and anticipate user
transitions.

Tele-immersive applicatioﬁs' néed ﬁo support nine
distinct flbw;types [FOST98], which are shown in Tablé 1.
Telecubicles will Dbe 1linked to[form a common work
environment, demanding the preﬁious;flow of information. As
shown in Figure 7, workers will be ablé to share virtual
objects‘and data while having eye contact with each other.
Henry Fuché belie#es that “thevceiliﬁg lights are '‘replaced
by computer contrdlléd camerés and“smart' projectors that
are used to capture dynamlc image-based modelé ;with

1mpercept1ble structured 1light technlques, and to display

14

high-resolution - images on designated ‘ ,display

surfaces.” [FUCH98]

Table 1. Supported Flow-Types of Tele-Immersive Applications

Flow type Latency | Reliable | Multicast Stream
Control |< 30 ms Yes No No
Text ‘ < 100 ms |Yes No No
Audio < 30 ms No Yes Yes
Video < 100 ms |[No Yes Yes
Tracking < 10 ms No Yes | Yes
Database < 100 ms |Yes Maybe Maybe
Simulation |< 30 ms Mixed Maybe Maybe
Haptics < 10 ms Mixed Maybe | Yes
Rendering < 30 ms No Mafbe | Maybe

A .goal. of telecubicle technology is to give the
scientist, the engineer, and the worker the‘impression of
collaboration. Peeple will interact‘with each‘other‘thrbugh
this mix Qf real and virtﬁal environment - manipule;ing
objects, experimenting, simulating, designing, amusing, and

teaching.

15

2 Gbligefront sterec
projechonsources

ooy

Figure 7. Intuitive Human Comm_unicat:i.on [Andréi "State]

16

Figure 8 shows the first four telecubicles that have been

connected. [WEB7]

Link to NASA
Emphasis on facial

Link to CAVE, supercomputing, and
international research commumities.
Emphasis on cubicle design,
_ app lication cormectivity.

software

/ medical appicatons
¥ale University

user interface
A e Columbia
NN NN - =
R - R4 University

N,

N

\.
N
A

N,
’\

X

N
S
N

_authoring tools

_ Brovn University
: g ' Carnegie Mellon
Emphasis onnetsvark University

N
A
N
N

X

7\
NN

S,
N

N
AN
N
R

A

-
NN
X

NN

N
/\l

Y
7\
7\

3
N

R
X

,
N

N
AN

N
N
N
.
X
X

DR N, research, user interface *,

AL KK software, authoring, *
Link to worlds of education,
-entertainment, other funders.

University of Utah network design and research
integration with - ~
physical part Naval Postgraduate School
fakrication {_University of Wisconsin Internet 2)

Figure 8. The First Four Telecubicles [WEB7]

Tele-immersive work stations, such as CAVE (Figuré 9,‘
[WEB8]), ImmersaDesk3 (Figure 10, [WEB9]), Totally Active
Workspace (TAWS), and Personal Augmented Reality Immersive
System (PARIS), have already been implementedv [DeFA98].
Dﬁring her nomination as Indiana Universityfs first
Distinguished Visiting Technologist in its Advanced

Information Laboratory at University, Professor Donna J. Cox

17

described this process as “stepping inside the computer,

because it widens the user’s

[WEB10] .”

Figure 9. CAVE [WEBS8]

2. Telesurgery

creativity 'and control

Figure 10. ImmersaDesk
[WEB9]

A. Alexander in 1978 [ALEX78] was one of the first

researchers to formulate the Concept of telesurgery. “The

driving force behind military interest in remote surgery is

that 90% of all deaths in wartime occur on the_battléfield,

before surgical care can reach the casualty” [HILLS7].

Telesurgery can save the lives of isolated patients in the

battlefield, rural areas, and aboard ship.

18

With .telesurgery, the surgedn can perform surgery
rembtely (Figure 11, {WEB11]) using a spécial telesurgery
console (Figure 12, '[WEB12]), instruments (Figure 13,
[WEB131), and héptic devices (Figure 14, [WEBlZ]).

| “But surgery usually involves many other peoplei(other
surgeons, medical staff, and observers) all needing to share
information. These people must‘alsd share the same view in
telesurgery. This can belyachieQed through the network
coilaboration between clients. Each can interact and
simulate face-to-face cooperation. The ﬁajor components of

telesurgérykare_[WEB14]:

e Human Computer Interface (HCI);
e Computer Assistance;
e Communication Methods;

e Telesurgical Worksites.

. SOFT could benefit the “communication methods” component by

-providing the networked collaboration among clienfs, and the

|

“HCI by providing an identical view to everyone.

3. Generic Sharing of Stand-Alone Applications
Stahd—aloné applications, already written in popular

scéne graph implementations, should be able to use SOFT for

. networking capabilities with minimum effort. This will

- 19

increase reusability and performance of graphics stand-alone

applications.

- Figure 11. Telesurgery'System
Components [WEB11]

Figure 12. Telesurgery | | Figure 13. Master Tool
Workstation [WEB12] _Handle [WEB13]

Figuré 14. Dataglove
- [WEB12]

20

C. ARCHITECTURE

Tele-immersion is likely the most technically

challenging advanced network application. Thus, considering

interoperabiiity and Standardization, the architecture shown
in Figure 15 has been chosen to support the pfeviously
identified nine distinct components to ’tele—immérsion
architectufe, such as flow confrol, audio, vidéo, tracking,

etc.

3

SSG’ s

—

~ SG
Modifications
& Reporting

Serializing
SG
Representations

Registered //
Callbacks/

Figure 15. SOFT Architecture

21

1. ‘SSG and Reporting

SOFT is designed *tol . be '.indépendent- of SG
implementations. OpénInvéntor haS‘been‘choseh as the primary‘
SG, and Java3D . and Fahrenheit will likely follow.
Implementation has begun in C++ on SGI and SUN machines.vSSG
will be 'comPOSed of nodes and fields with ‘a unique
identifier (ID) for éach host. The ‘SSG will ‘report Cany
modifications to the ML. Every modification requires locking
for qonsistency purposes.

2. Mapping Layer (ML)

The ML is a single-base mapping iayer between thé‘SSG
and the universal NSG. Being the_interféce bétween'the'SSG
and the NSG, the ML accepts callbacks from the NSG. The ML

behaves as follows:

e Establishes ‘top - level reporting ~and defaults,
~ initializing the NSG and network; -

e Recognizes SSG changes and serializes them;

e Passes changes to the.NSG;

. Registers callbacks from the NSG;

e Deserializes NSG information and reconstructs the
respective SG nodes (special nodes with no analogy

- in the supported SG are simply ignored);

e Passes deserialized SG nodes to the SSG.

22

 The ML will require an API for locking objects on the
network for editing. This API cannot be in the NSG layer
because it must translate an SSG node to enable locking of
the appropriate NSG node.

3. Network Scene Graph Layer (NSG)

The NSG maintains a common hierarchy of nodes available
to the client community. Any ML modifications are mapped to
the ;NSG and reported td the other <clients. This 1is
implemented through an API, responsible for exchanging
information between the ML and the NSG. The NSG has the

following structure:

a) NSG Node

A node is the fundamental element of a. scene
graph, such as separator, color, cone/sphere, etc. The NSG‘
node supports any type of node. To do so, it chtains

certain fields.

b) NSG Node Fields

e 'Node type:

e Unique identifier for the node, namely a node ID and
.. a timestamp; :

e Unique identifier for the creator/owner of the node,
i.e. the correspondent IP address and the
communicating port;

e A set of contention flags.

23

c) NSG Field Contention Flags

Proper handling of coﬁtention'issues requires a
network token/locking/check—out mechanism. The desired
behavior is integrated into the system with the following

flags to this point (Table 2).

Table 2. NSG Contention Flags

Flag True False

Distribute ‘If (own object) Do not share writes

Distribute locally ‘
Else
S Send to owner
Local edit Set value on-local ‘ none
‘lwrite ’
Remote edit . Set value locally when. none
o g reading network change ,

Local callback Invoke a list of local No callback on
callback when readlng local change
local change - -

Remote callback | Invoke a list of remote No callback on
callback when reading local change
local change ' -

This architecture benefits in ~ hiding network
proprietary issues. Additionally, it gives 'the opportunity
to verious SGs to call each other, even over different

hardware platformso

24

4. Dial—a-BehaVior Protocol (DaBP)

Fundamentally, a protocol is used for exchanging data.
This data exchange is a crucial issue in the SOFT
architecturé. Serializing and deserializing the ’excﬁanged
data among clients over the network is a very cumbersome
approach. With this approéch, whene?er there is a change in
the data format of the exchanged data, the programmers must
rewrite and recompile the application. For such a large
project as SOFT is, flexibility was needed. This flexibility
is provided through the DaBP, which provides methodsf'to
return fhe data from the network packets.

The DaBP, developed at the Naval Postgraduate Sbhool,
~is "currently implemented with Java and thére 'is a C++
version under development. In this protocol, we must specify
the field names and types of the. exchanged data. This
information is specified in a étructured text file, using
the Extensible Markup Language _ (XML); which is a
reformulation of lStandard Generalized Markup Language
(SGML) . XML is more powerful than Hypertext Markup Language
(HTML), a standard SGML subset, because it can identify and
proceés - document structure and provide extensibility
[SURV9S]. Moreover, XML ailows users to define their own

tags and customize the way the protocol behaves.

25

DaBP is described with a predefined set of fixed tags.
Each tag is uniquely associated wifh a specific field in the
XML file. Béyond this, the prdtocol interpreter'~is
responsible for convertiné binary dat‘a’ 'iﬁto‘ usabi_e'
information. Consequently, with the use of this proto'co‘l, we
achieve the required flexibility. Thus, the NSG layer does
not have to serialize and deserialize the exchanged data.

Instead, the NSG layer retrieves the data fields needed,

querying the packeté using DaBP methods.

III. RELATED WORK

A. INTRODUCTION

The spread of software systems, the ‘expansion of
networks, and the relatively low cost of graphics cards and
their increased performance has generated the need for
network ’collaboration among graphical applications.
- Additionally, the variety of importantbstandalone graphical
applications 1led developers to consider reusability and
networking 'éarefully. Concerning these two factors, the

reléted work is divided into three areas of interest:

e Interconnecting proprietary stand-alone
applications; ‘ '

e Interconnecting heterogeneous virtual environ-
ments; ‘

e Building frameworks for distributed virtual

environments based on client/server approach and
replication. '

B. INTERCONNECTING PROPRIETARY STANDFALONE APPLICATIONS
The popularity of the Virtual Reality Modeling Language
(VRML) wused to describé 3D worlds .established it as 'a
1anguage. which developers could use for gfaphic
applications. The great progress in the presentation of
sténd—alone virtual worlds encouraged the VRML coﬁmunity to‘

implement multiple worlds and users to interact with each

27

othér. This progress _was made péssible .by the network
capabilities of the Java r)language; | which provides
appropriate and effiéient communication mechanisms.

Wolfgang Broll presented"an Iapproach in “Supporting
Multiple Users and Shared Applicaﬁions wifﬁ VRML” [BROL97].
He exhibits a .network infrastructuré and appropriate
mechanisms to partitioh the virtual worlds. ;He uses a
multi-user daemon, which ﬁ provides‘v>reliable TCP/IP
connections in order to download shared virtual worlds. To
overcome the problem ofvinconsistenCy bétween'shared woilds,
the daemon retains incoming events and transmité them to new
clients after the transmission of the basic virtual world:
has been completed' (Fiéure 2 16.) Aftefv‘the successfﬁl

‘transmissions,fthe‘TCP/IP connection is closéd.

Multi-User
Daemon

(2) World connects
' and events

(1) Conneét
to world

Multicast

New Client |m e o= == == m= == = v
, , Group

(3) New conneCtion‘v
to be established

Figure 16. Connecting to a Virtual World

28

The multi-user daemon acknowledges all events sent by
consecutively nﬁmbered messages. The sender resends _all‘
messages that haven’t been acknowledged. A unicast
connection is used for receiving the missing messages. To
avoid the multi-user daemon bottleneck caused by unicast
connections, additional server daemons may be used.-However,‘
to avoid slowing down the performance of multi-user daemons,
all the additional servers require access to the multicast
group.

Usually, in a large-scale virtual environment, the
client needs to participate in only a portion of the world.
According tovBroll, the solution is to subdivide the world
in‘regions and link them througﬁ mechanisms that do not
interfere with user navigation. Thus, only currently.visible
parts of thé world need to be updated, reducing the netwbrk
traffic. Broll’s approaéh exploits the VRML Region node.’
Moreove?, he uses the VRML User node and the VRML Avata£
node to limit wuser interactions in the shared virtual
environment. Each user has a pefsonal VRML file, which is
transmitted by the local browser to all the participants and

the central daemon. In this way, each participant has his or

her own individual scene graph. Furthermore, shared

behaviors and interactions between clients are required.

29

Broll identifies four‘ general. classes of shared

behaviors:

e Autonomous behaviors (e.g; a clock, a blinking
light): C -

° Synchronlzed behav1ors (e.g. a bouncing ball, a
flying bird);

] Independent interactions (e.g. a button to ring a
bell); ’

e Shared interactions (e.g. avatars with a single

region where the behavior is described within thlS
single region). -

He represents these shared behaviors and interactions
with nodes. Behavior nodes receive and send events. Finally,
he wuses synchrohization and locking mechanisms for ' the

_events.

hC. iNTERCONNECTING HETEROGENEOUS VIRTUAL ENVIRONMENTS

Capps et al. in their work'“Distributed Interoperable
'Virtual Environments”‘ present .the used of a software bus
(Polylith) as a utility ‘tq compose existing applications
instead of ‘modifying them [CAPP96].>Theydchused on the
~isSue_Of'interoperability’between’different graphie software
appllcatlons that run on dlfferent hardware platforms. They

assumed that next generatlon virtual environments will not

30

depend on specific languages and hardware. Furthermore; they
were concerned about reusing software components.

Based on these issues, tﬁey used a PolYlith software
bus as a connectioﬁ module, capable of 1listening to a
variety .of event classes and handling them Dboth
'siﬁultaﬁeously and asynchronously. They built an event-
listener as a central intermediary that can serve all the
components in the virtual reality environment. This
intermediary provides the “glue” for interconnecting the two
different virtual reality applications.

This software bus encapsuiaﬁes decisions concerning the
interfacing of modules instead of distributing them among
the participants. Thus, there is only one responsibility fqr
mépping each domain into the abstract bus speCification.
Then developers for either side can easilyy use these
abstractions within their configurations.

These researchers conclude that the same collaboration
issues used in shared editors and workspace environmenté
apply in ﬁulti—user virtual environments. These can be
exploited by‘ software bus modules that provide for the

mapping between the interconnécting domains.

. 31

D. BUILDING FRAMEWORKS FOR DISTRIBUTED VIRTUAL
ENVIRONMENTS BASED ON A CLIENT/SERVER APPROACH AND
REPLICATION

We present the foliowing three - differeht apprcaches
using a client/server mechanisms and replication:v

1. Community Place (CP)‘Architecture

Lea, Honda, and Matsuda in their wcrk “Community‘Place:
Architecture and Performance”‘ [LEA97] presented a
client/server>system where a central server isiresponeible,
for sharing a VRML scene. Participahts connect to this
Aserver in order to load the VRML file thatiie responsible
for rendering‘the'shared scene. The‘basic arChitectUre is

shown in Figure 17. The order of actions is:

e The Community Place (CP) browser loads the 3D data
~ file (VRML format):

e The CP browser contacts the server via the Virtuai
Society Client Protocol (VSCP) that runs above IP;

e The server informs the CP browser for other
participants. '

The VSCP runs above TCP and ensures connect1v1ty It
has an object-oriented = packet definition allow1n§
applications to extend the basic' packet.‘format' with
application specific messages. Thus, VSCP ensures exchangiﬁg

of script level meSsages that' permit browsers"to-~share‘

32

events and therefore support shared interaction with the 3D

scene.
Application
Objects
Authentication
Server
Message :
Replicator g01ce Chat
Server erver
Y Y

VSCP

CP Browser
(Java)

Figure 17. CP Architectufe

Each user navigating through the scene sends position‘
information to the server. Using area of interest
algorithms, the server decides which other browseré a user
needs to be aware of. The server need not knowvinformation
about -the scene loaded by the browser.

Lea, Honda, and Matsuda introduced the'idea of a Simple
Shared Script (SSS) model mechanism, which is responsible

for downloading the same script and executing it locally. To

33

deal with issues such as ownefShip and persistence, £hey
added the notion of e master broWser to the SSS model.
Whenever the master browser is selected by the server, it is
told that fhe master has been selectedf Scripts are capable
of sending events to other broweers. InvcaseSWhere ﬁhe user
wants te impiement serialization as a scene object, it is
done via the master browser. Afterwards,,the master browser
distributes the changes. |

For more complex situations, ﬁhey introduced the idea
of an Appiication Object (AO) whieh exists’externaily to the

browser and the server. This RO consists of three parts:

e The 3D data description that represents the
application in the shared scene; '

e The associated scripts that accept user input and
communicate back to the AO;

. The AO side code that implements the applicatien
logic. v -

The AO allows the ereation of 3D objects dynamicelly’
during run—time. The applieations use'the;Virtual Society
Application Protocol (VSAP) to regiSter their appiication
objects with the server. ' | . o

‘They use a spatial model to reduce'bnetﬁork ‘tfaffic
among participahte who share a 3D scene. Their communication

mechanism is based on multicasting.

34

2. Spline Architecture
Anothei approach for building these frameworks is the',
Spline architecture »used for the Diamond Park ‘Virtual
Reality System designed by the Mithubishi Electrical
Researbh Laboratory (MERL) [WEB15]. Spline’s world model is

not a scene graph but rather an object-oriented database

supporting visual and audio information. The objects have

ownership attributes to avoid reader/writer éonfliéts. The
ownership of an object can be transferred from one process
to another. Spline’s objects do not persist over‘timé.

This architecture is based on replication so‘that each
world model.resides in each application process; Focﬁsing on
the issue of speed Spline provides approximate eqUality
between world model copies. Users are grouped together iﬁ
locales of interest. Each locale is associafed with a
separaté multicast communication channel avoidiﬁg
propagation of messages to uninterested participants: A
hyb:id communication approach was proposed for the Spline
3.0 version where client/server communication will be<point—
to-point and sefver/server communication will be peer-to-
peer fulticast. The exchanged messages are divided into
small rapidly changing objects, 1large slowly changing
objects, and continuous streams of data. In Spline 3.0, Java

will be the primarily high level interface.

35

3. Repo-3D Architecture

Blair MacIntyre and.Steven Feiner in their papef “A
Distributed 3D Graphics Library” present Repo-3D, a general
purpose object—oriented'library for developing distributed,
interaCtivé 3D graphics applications across ia range »of ;
heterogeneous workstations [MACI98]. According to_thém, from
the programmerfs viewpoint, object§' roSide in a large
distibuted share& memory (DSM) instead_of a single process.
The undorlying system 1is presponsibleb for replicating the
objects among‘the processes.ASimple, remote, and replicated
are three types of distributed objeots semantics in DSM.

Since Ithe refresh rate is a crucial factor in
interactive—gréphios virtual-reality‘applications, the‘data
bneeds to be iocal to the prooess doing the rendering. Repo¥
3D uSés‘the Columbié Object-Oriented Testbed for Exploratory
xResearch 'in IpteractivevrEnvifonments (COTERIE) as the
replication mochaoism becéuso neither Inventor nor‘Java3D
provides support for distribution. o | | .

The CORBA Solution was' rejectéd for being too
heavyWeightvand for not supporting replication. JaVa proved
to be-more Suitable‘for tﬁe implementation language because
of its oross—platform compatibility and support for threads .
and garbage collection. The Repo-3D orchitecture is shown in

Figure 18 where distributed data sharing is providéd by two

36

packages, the Network Object client/server object packagé
and the Repliéated Object shared object package.

Distanim-3D is defived from Anim-3D, a powerful, non-
distributed, general purpose 3D graphics library. Aﬁim—BD isj
a scene graph model suitable to a distributed environment.
In Anime-3D, properties are attached to nodes and any
changes do not affect the result; Unlike Inveﬁtor, ordering

-

is not necessary. Properties are only inherited down the

graph.
Repo-3D
Repo DistAnim-3D
Replicated

Objects
Network Objects Events Native Graphics
Modula-3 Runtime
Operating System Services

Network

Figure 18. Repo-3D Architecture

37

~

The Network object packaée provides Suppqrt for remote
objects. This packége is similaf-to‘Java’s'Rémpte Method
Invocation (RMI). The Replicated Object paCkége of course
supports replicated objects. Each process can call any
method of an object it shares. .This paékage follows the
principles of atomicity and seriélization_of an object.

Repo-3D rationale provideé programmers with the
illusion of a latge shared memory using Distributed Shared
Memory (DSM), making it easy for them vto. prototype
distributéd 3D graphics applications. Their future work wiii
most likely use Java because even if Javabdées'not~support a
replication object system, thé‘JSDT may be a fine starting

point.

- E. CONCLUSIONS

Our SOFT architecture .has both similarities to, and
differences from, the presented approachés. Like CP, SOFT
usés a centrélized servef. | |

Its architecture doésn't depend 6n a particular scene
graph (inventor‘ is used as' an example‘ of a scene éraph
implémentation), as thé ML is reéponsiblé for mépping any
sceneiéréph to the'NSG; SOFT differs from Spline and CP
‘because it stores scene graphs using Java native structures, -

‘instead of an object oriented database. Moreover, SOFT

38

.

doesn’t depend on any database replication mechanism, as

Spline does. Furthermore, instead of distributing VRML

files, like CP or Broll’s architecture does, SOFT

distributes scene graphs.
Lastly, unlike Repo3D, which is based on COTERIE for
the underlying distribution of scene graphs, SOFT ‘invokes

Java networking methods and is capablé of using RMI.

39

THIS PAGE WAS INTENTIONALLY LEFT BLANK

40

IV. SOFT NETWORK ARCHITECTURE

A. INTRODUCTION

As outlined in Chapter III, = virtual environment
researchers are attempting to solve the problem of
networking collaborative virtual environments with various
architect-ures. Some developers use multicast groups,’ others
try to solve the problem using replicated dafabases, and a
few others use hybrid techniques. According to Michael"Zyd‘a,
replicated world databases are more efficient 'than
centralized or distributed shared database schemes, but they
generally lack a way to maintain world consistency

[2YDA97]. Also, large virtual environments could use ‘hybrid

‘models with small replicated data sets and a distributed

client/server model. Thus, the client/server module could be
integrated in such environments.

Thihking of implementation, we considered .that Jax}a
provides innovative methods for building wvirtual worlds.
Furthermore, since our pfimarily goal' was to maintain a
common shared view, and no database bor .replication
capability ex'isted, we decided to design and implément a
centralized server wusing Java. Below, we preseﬁt our

decision and provide more details.

41

B. SERVER

We chose’ tb iﬁplementt the SOFT network architecture
using a.centraliZed sefver. This server would be responsiblé
for providing a common share view among clients. Below we
preéent bbth our justificétions for the centralized server
and the use of the Java programmiﬁgllanguage.

1. Justification for Centralized Server

vFirst let us examine the rationale for our decision to

implement the centralized server. Our decision was basea‘bn

the following criteria:

a) Reliability
Several data exchanged in a tele-immersion session -
- must be sent reliably.kThis is required in order to ensure
consistency of the world database or to reflect an accurate
‘update fromva‘simuiatién or user interface event. [FOST99]
“As stated in.Chapter II, a major aim of SOFT is to
provide a common gfaphicél'distributed envirbnment, where
- eéch client must be able to shére'the same view. This means
that every action on any client must bé broaddast to all the
~other clients concurrenﬁly cénnected. Moreover, users musf
be abié.to cdllaboraté using the‘available objects. Object
usé must have the permission of the owner and thus a

~universal 1locking mechanism must exist. The use of a

42

N |

¢entraiized server facilitates all these transactions.
Clients notify or query the server in order to create,
modify, or use an object. The server is responsible for
storage, locking, and broadcasting to the currently
connected users (Figure 19).

The only drawback is that this kind of impleﬁent—
ation is based upon the reliabilify of a single server. Any
failure of this server will affect the common shared virtual

environment.

b) Scalability
Usually a server creates a bottleneck, an
undesireable factor in terms of scalability. But using
multiple servers, we can overcome the bottleneck. and
iﬁcrease the scalability. Furthermore, multiple servers can
be used in conjunction with the Reliable Multicast Transport
Protocol (RMTP). RMTP uses recei#ers associated with local
regions of domains. In each domain, there 1is a special
receiver, <called a designated receiver (DR) [PAUL98].
Additionally, a special client‘can also'Be a server during a
session, ca;led a designated server (DS) (Figure 20).
| A centraliied server implementation may reveal
éotential problems that» could be spread in a networked

collaborative environment. Fortunately; the centralized

.43

server implementation can isolate and solve these problems,
~providing a more robust scalable module that can more easily

be integrated in the pfeviously mentioned architecture.

) Persistence
The status'of‘thé objects in é viftual environment
varies according to‘ the“indiCation of théir cpntention
flags. Some objecté will vanisﬁ when their owner aiscgnnects
-from the system,‘while”others may rémain.until their oWﬁer
deletes them, e&envif the owner-isvnot currently logged on
the system. | |
With a centralized server, storingvthe contentibn
flags and providing the necessary peréistence is eaéy. Also,
objects can be independent from clientvexistence and can be .

retrieved easier from a centralized server.

d) Lateéamer qupért

When ﬁew ‘clients .join the ﬁirtuél' environment,
they must be aware of ail thé currently exiétingvobjects.
The server can store and 1néintaih' the currént' étatus of
every object which ‘is' présent »in thé environment. Also,
whenever . néw‘clients cOnneét to the hetwork, thé server
sends them all the available ‘data. Thﬁs,' the new client

becomes a member of the common virtual environment.

44

:Locking Mechanism

(O

:0Object Pool -

S:Server

C:Client

Figure 19 - Use of Server for Reliability"

DS

Designated Server

Domain

C: Client

Figure 20 - Scalability

45

e) Conclusion

The centralized server implementation has some

drawbacks such as:

e Network bottleneck throﬁgh which.all traffic must
pass; ' ' ‘

e The environment depends on the reliability of a
'single machine. :

But the benefits are:
e Simple and clear implemehtatibn;
e Universal locking mechaniém;

e Can be used as a scalable module to serve a domain
~in a more complex implementation;

e Easier storage/retrieval mechanisms used to provide
persistence; ‘

Latecomer support.

Since the benefits provide a flexibility which is more
importént in the current state‘of'the prdject, we chose the
centralized server implementation.

2. ‘Justification for.Java Servet‘

In Chapter III, the derived conclusions focus mainlyion
‘Java implementations. Since the wofking prototype had been_
develépéd in C++ With UNIX as’the opérating system, we had

to chose between C++ and Java. Below we present our criteria

46

and analysis which resulted in Java being chosen for the

implementation.

a) Built-In Standard Libraries

Java contains‘ standard libraties for 'solving
specific tasks [ECKE98].-These tasks include networking and
multi-threading, which are major aspects 'of the server
implementation. Using standard libraries promotes irapid
development time allows us to focus on' the Specifications
and requirements for the server. On the other hand, C++
relies on third-party non-standard libraries or on code from
'scratch. Development is time consuming and involves higher
risk potential. Moreover, dJava standard libraries support
database connectivity via JDBC and distributed objects via
RMI and CORBA. These features are not of immediate Value;
but they enhance the scalability and flexibility of the

project in the future.

b) Garbage Collection

Memory management during the server session.is'a
factor dramatically affecting'robustness. Java provides a
built—in. mechanism for memory management called garbage
collection [CHEWS8]. Garbage collection is responsible for
non-referenced memory release so that it may be ieused. This

way memory-leaked-addresses are corrected, and explicitly

47

deallocating memory is not needed. Noté;‘howevér, that a
memory leak can ‘still exist if unused memory remains
refefenCed. Memory management is a critical factor for the
server because there is a permaneht “read é‘st;eam into a‘
buffef, store ﬁhé data, release the buffer” loop.

Robust .meﬁbry' maﬁagement may‘ affect performance
- too. According to Bruce Eckel, overall, Java could'possibly
be as fast or faster than C++ [ECKES8]. This can happen
| because, even thoﬁgh.interpreted Java code can be éveﬁ 20
times slower‘compared to equiﬁalent coﬁpiledlc++ code, the
new-delete .mechanism 'for' memory management in C++ leaves
holes in the heap éventuaily making it slower. The
'allocation. mechanisnl has‘ to seek available space through
those holes in order tb prevent running out of heap storage.
This searching méy seriously decrease performance. The Java
garbage qolléétor réarranges memory, allowing‘ the high-
speed, infinite-free-heap model to be used while alldﬁating

storage. [ECKE98]

e) Platfbrﬁ Independence
| Java programs are compiled vté an architecture-
neutrél byté;code;foimatS[FLAN97]. These byte-codes .can be
‘interpreted by thé same version or newer Java Virtual

Machine (JVM) on any platform. Platform independence is a

48

real benefit for the SOFT server as it allows users to use
SOFT without purchasing new hardware or installing a new

operating system.

d) XMI,, Java and DaBP

As stated in Chapter II, XML is quite powerful. It

“provides a wuniversal schema or metadata mechanism for

defining, understanding, and interchanging files and data
between two systems [SURV99]. XML is already being used by
the DaBP. We intend to examine ' the feasibility of
incorporating DaBP in the SOFT architecture. Moreover, “Java
is on the XML action both as driver and utilizer of XML

capabilities.” [SURV99]

e) Evolution - Maintenance

The SOFT‘project is an evolving environment, and
major modifications are likely 'in thé future. Every
modification or improvement may affect the server also. A
simple Java server will require less effért and time to

update than a C++ implementation.

£) Conclusion

The built-in standard 1libraries for networking,

" the garbage collection‘mechanism, the platform independence,

49

the cooperation with XML and DaBP, and the easiest way to

maintain the system prompted us to employ Java.

C. CLIENT SIDE

In the SOFT architecture, the cliént ‘can‘ be any
standalone application (graphicél or‘nqt).'Every;élient must
be able to exchange information among other clients
transparently. Therefo;e, SOFT mustuprovide an‘API for thé
upper layers of its architecturé. |

‘1. API to Network

The client provides an'APIvfor the mappihg layer core.
This makes the network layer independent of the SSG
implémentation. The methodsbavailable to the mépping laye;

include the following:

. Initialize the ﬁetwork;
. Sef and get péf—typed éallbécks;
o Serialize data_intq a»single’NSG node;
e Get a list of nodes;
e Map from name to NSG node;
. : Set‘and get élobal calibaék#;‘
0 " Get and set local root of the scene graéh;
° Set; get, and call end of frame gallbacks;
° Get 1list of roots of reméte scene graphs.‘

50

2. Client High-Level Architecture‘

The client is an abstraction that provides network
access to the mapping layer of the SOFT architecture. it is
independent from the SSG and can be used by different
graphics applications. It is not hardware specific and
handles large and little-endian issues, providing inter-

operability. The client has been implemented in C++.

D. MULTICASTING

One of the mostlcommon ways of communication is one?to—‘
"one. The clieﬁt—server model falls into fhis category.
Another category is unicast communication where the web
client retrieves information from the web server. A third
example is broadcast communication, for instance radio and
television where each client tunes to a certainbfrequency to
retrieve infoimation. Multicast falls betweeﬁ unicast and
broadcast and “is a one-to-many communication” [PAUL98].

When providing the same data for multiplé graphical
applications in the client community, multicast transmission
is needed, rather than repeated unicaét transmission to each
receiver [FOST99]. In this way, the sender can transmit a
single‘ éopy of a packet, regardless of the number of
clients. The routers in the network infrastructure are

responsible for delivering the packet to the clients. The

51

packet is repiicafed as many times as the number Qf clienté,
which improveé the efficiency of the network use.

The multicast data-Can'beAin‘a variety of forms: audio,
video, haptic deviée streams, aﬁd tracking. The éizé'of the
data, especially the wvideo, can be Venormous in‘vsize per
second. Thus, iatency plays a kgy role in the éhariﬁg of a
common gfaphical en#ironment'among thé client communities.
So far, the 'use of nmlticasting has two draﬁba¢ks, Which.

actually do not rely on multicasting itself:

e Difficulty in 'accéssing high—perfofmance multicast
enabled networks; -

e Lack of middleware tools with access to multicast.

‘Based on the reliability and the latency requirements,
the multicasting applicatidns are divided into fhreek
categories [PAUL98]:

e Interactive applications;

e Streaming applications;‘

e Reliable multicast applications.

The re;ationship between latency and reliability is
illustrated in Figure 21.
For many applications,_ despite the issues of

‘reliability and laﬁency, there is a basic need for selective

52

!

distribution. This means only a certain group of clients

must receive the information.

A
5
=
g
..l.
-
o Reliable
s Interactive Streaming Multicast

Applications Applications Applications -

100%’

200m _ 2 End-to-End
s . Latency

>

Figure 21. Categories of Multicast Applications
[PAULS8]

53

THIS PAGE WAS INTENTIONALLY LEFT. BLANK

V. SERVER DESIGN AND IMPLEMENTATION

A. INTRODUCTION

In the SOFT architecture, the server must support
multiple clients, latecomers, and use the DaBP. The client
side could be any standalone application. The server must be
responsible for providing the clients a common shared
environment. In ordér to analyze and understand the previous
work doﬁe, we had to follow a methodology under a strict
time frame. We preéent the methodology used to accomplish

this and the way the server was implemented.

B. METHODOLOGY

When we were engaged in the SOFT project, a working

prototype existed. This prototype consisted of two modules,

a server and a client, working together as a pair. Both the
client and fhe server had been implemented in C++ on Silicon
Graphics machines running UNIX. This prototype provided a
two-way communication betweeﬁ the client and the server
(Eigﬁre 22). The server and the client were runhing
OpenInveptor and rendered a éimple cone. After’establishing
a communication channel, each one (the' server and the

client) was responsible for delivering its own scene graph

55

to the other. At this point/‘both were able to rehder a

~synthetic image COnsisting of each other’s cone: (Figure 23).

S |l

Server 1 Client

figure 22. First Working Prototype

In this prototype, OpenInvéntCr was‘used as the SSG and
reporting mechanism. The -Mi‘ layer Was’ §fovidéd thrbugh
sepaﬁate functionaiity, specifically designed‘ for fhe
OpenInventor imblemehtation. The NSG layér was:also‘sebarate
and provided the abo&é commuﬁication functionality. oOur
objective waé to augment the functionality of ‘the ‘first

protbtype and to design a server modulé with:;

J Multi—Client Functionality;
e Latecomer Support;
e Persistence;

e Locking Mechanism.

56

Before establishing communication:

Server Client

After establishing communication:

Server Client =

Figure 23. Synthesizing a Common Environment

According to Schach, some popular software

cycle models are:

. Build;andQFix;

e Waterfall;

e Rapid Prototyping;

e Incremental;

e Synthesize and Stabilize;
e Spiral;

e Object Oriented. [SCHA99]

57

life-

Having the above working prototype as a basis and
considering timing limitations'and involvéd fisk, we decided
to use the spiral model. The spiral model»cprresponds‘each

~cycle to a phase. As shown in Figure 24, we used the workihg
prototype as ‘a core, and we gradually progréssed to bhase

five.

Woﬁking
Prototype

Figure 24. Spiral Model-Implementatién

58

C. PHASES OF DEVELOPMENT

We developed the application in five phases. We present‘
in each phase below, our »objectives and the derived
conclusions that provided us the feedback to continue onto
the nexﬁ one. | |

1. Phase One

a) Objective

In order to examine the feasibility of suéh an
independent mechanism, our objective was the intervehtion of
a client/server mechanism between the existing péir of
client and server (Figure 25). The benefit ffom this was a
better understanding of the working prototype ahd the format

of exchanged data.

b) Implementation

This intervening mechanism was implemenﬁed in Java
1.2 on Windows NT 4.0, as shown in Appendix A. The UML
documentation of this phase is shown in Figure 26. The new
intervening mechanism was a hybrid client/server system
‘consisting of two modules - the Java client/server modulé,
and the .original C++ client/server module. The reaéon for
this was to emulate painlessly the current client/server

mechanism. -

59

CS — JCN\

Js cC

New Java

‘_’ ’ : o ' Implementation
Java Client & C++ Client

Figure 25. Phase One

Js| Java Server [CS | c++ Server

The sé;ver C}+ module started the execution of a
graphics application. Followiné this, the Java server and
the Java client startéd.‘ The Java sérver' waited to be
invoked by listening to the Java and. C++ clients using TCP
sbckets; Once this communication had been established, the
Java rse:ver waited 'fér the C++ client requésts; Upoﬁ
request, the‘Java server opened the communication channél
with the original C¥+ ciient-and sent the data. Then, both

of them had a common view of the scene. Whenever the server

- 60

its

to

own respective

or the client made modifications

scene,

these modifications were automatically transferred

through the network and reflected to the other.

serveOne:run

serveOne

client thread:run

client thread

sernver

olient actor

server_actor

lll U-I. 1=
A
5 5
g £ 5
& E]
@ 5
© 5
.. —}--————-——1- Jewmmmam -
r 'y
- s
] g
B %
3 s
2 £
-
lllllllllllllllllllllllllllllllllllll - - —Il —Illlllllllllll'll'llIlllil'llll'lllll'
€ m \ﬂl_
&
z H -
£ i 5 5
a @ =
= 3 = =
w £ © 8 @
:-..W. m.\ﬂ: J= === oo R LR R D L R LR LR L R
5 G v
% 3 s £
2] = 5 5
HIE 3 :
s = LW £
= T 1---- B -- ¥ Foemmmmmmm———— s R e L
s 2
b o
8
= L]
%
o
@d M ccamaavaunmeswe ownonsn oo e s cimemb m o o - € oo ® e @S- a
S Hnieettei ittt ittt et |
m 4
8
5
L
=]
Q
O mmann LT T D L L T LT PP

Figure 26. UML Sequence Diagram (Phase One)

61

c) Conclusions

In this phase, we introduced Seaﬁlessly an
independent client/server 'meéhénism " in ~ the éxisting
prototype, while maintaining ‘the same functionality. We
examined the eXéhanged data format and were able to build
our own server. | -

2. Phase Two

a) Objective
-.In this phase, . our objeétive was providiﬁg a
single-server mechanism between two equivalent existing
clients (Fiéure 27) . The benefit of this was forming a new
independent server-mechanism. This mechanism was the basis

for the new implementation.

JS: Java Seiver

CS: C++ Server

CC: <C++ Client

Figure 27. Phase Two

62

b) Iﬁplemeptatien

We improved the phase one prototype, as in
Appendix B. The UML documentation is shown in Figure 28.
Then, we created the “ServeOne” class .as a thread
respoﬁsible for opening a connection between two predefined
C++ clients. Once the connection was established, the thread
was reading the input stream from the CS client and was
writing the output stream to the CC client. We also created
the Server class, responsible for initiating the ServeOne
tﬁread.

The CS >initiated a new session. Then the‘ Js
connected to CS and waited for the CC client to connect.
Upon the CC connection, the uni—direetional flow of

information from the C++ server (CS) to C++ client (CC).

e) Cbnélusions
We successfully excluded the Java client
implementation from the intermediate server‘module of Phase
One, managing to maintain the same functionality. This
simple server module provided scalability for the next

phase.

63

read input
write outpﬁt

[~

S | e - - - -

te data input stream

create server socket
create data output stream
start

|

1 Crea

'
-

e |
=

serveOne
gl
0
Figure 28. UML Sequence Diagram (Phase Two)

]
L
'
. !
U
'
'
T eyl
!
[}
=
'
]
[
[}
1
L}
]
)
t
L]
1)
[}
[}
"V |
i
]

64

start the tread

client actor
N
1
'
i
]
1
1
1
]
'
1
i
i

server_actor
(]
b
]
]
1
1
]
1
'
'
]
'
]
'
:
'
]
1
]
'
(]
[}
1]
'
i

3. Phase Three

a) Objectives

Our_objeétives were to establish‘a bi—directional
communication and to provide a storing/retrieving mechanism
for the NSG messages communicated via the server (Figure
29); This storing/retfieving mechanism deménded a .
deserialization of the NSG messages. Thus, we ﬁould be able
to gain scalabilityvfor_the next phases. Additionally, we
would bev able to lexamine the effectiveness of .such a
mechanism because the existing client implementation

required the message retrieval in a specific order.

S

h
C Hash Table C

Client Client

Server

Figure 29. Phase Three

65

b) | Implementaﬁion:

First,.we‘modified the server ‘in order to interact
with only CC clients. The server listeﬁed to CC clients to
connect. Upon theirv'coﬁneetion, ‘the eerver initiated two
threads, one reading the‘input stream of the firet client
and writing to the output sfreamkof the Second, and viee:
- . versa for the secend thread." ”
Second, we provided the server With a hash table

implementation as the storing data‘St;ucture.
static Hashtable htable = new Hashtable();
Moreover, we implemented the method:
public Yoifl parseSj:ream(byte[] buf, int Ien)
as a‘deSerialization mechanism in order to get the unique

identification (ID) of each,received message and store it to

the hash table (Figure 30).

int | int | bytel[l |int |byte[l | ... | int | bytell |

(ID)
Identification

Figure 30. Parsed Stream

66

We chose the Hashtable Java implementation because it
guarantees'O(log(n)) time cost for the get, put, and remove
operations. Moreover, the Hashtable is synchronized [WEBl6]{
According to this unique ID, the message was either inserted
into the hash table (if the ID were a new one) or modified‘
an existiné one (if the ID already existed iﬁ the table.)

Appendix C contains cémplete implementation.‘ The UML

documentation is shown in Figure 31.

c) Conclusions

We managed to establish the bi-directional
communication between two clients. Additionally, we
stored/retreived the excﬁanged data in the hash table. In
this manner we maintained a common-shared-view among the
clients. As this shared view was stored in the hash table,
we were ready>to provide latecomer sﬁpport in the future
implementation. |

During the testing, we discovered that having '
stored the messages in the hash table, we were unable to
‘retrieve them in the specific order required by the existing
C++ client implementation. Consequently, we concluded that
in the ﬁext phase we had to change thé hash table data

structure used for storing and replace it with a dictionary.

67

| mesmesesescmesanscdcnmnnancsnarananrreannanassan
m Avevesesacccnsnananccana
meacssecemsnucnccncan
. U.- = messeann
m] n N e—
-0 v -] £ n
m sesseans cmcasansa mesesascennn -
esumcscenssssssmnuna - e |
| P11 -a eemmceoane |
[[P -
—1 ‘ n\ onnn o Mt SEEET RN
[[} crcanccemed
.m 5 m c 5] m
| ¢ H 4 ¢ . g
conees | o - a
cacemaan cscccnacnrees
on on esnvancnna
|] L= _ sencaccccasnana .
| cemesesscasassnmnnnd . U
v | - - afecmee
‘ . « ™ . mesevascmccmccscsancaaa
” o L] nu ° e 2 M - ‘ n
u R [w .Im m_
] 4 .n R4 $ 2 ;
y o] o L Im _- (] 14)]
N— - _ }-f }]} secvecee } } 4 W
- o -a -
ol
! .. ccccnccaccnennan | .
“ececse sesscacnsnnanne P |
.w avemsvesccaccancannn |
[P - mamasns)
»| e
vfonnn [ensssnccsuscmncnns - 4
CECIITITTLTTLEE mannst CETEEENY
E
emucevescannusasencssccs ssnnanan
meesemesrasssunsnanaanne
nevucesssusanannesnnsunn
— cesen evendancanncncse
-+ [raevenad r .
- U-.--u.-n.n-u-..-.-.:.-a:-::-.-:'-..n--ono-..-.--.uc:ucnuau:.:.n.-no.cu- eesonen savacasnssscesnane H.::-.:nun.

4. Phase Four

a) Objective

Our aim was to provide multi-client functionality
to the server (Figure 32.) The benefit from this was
latecomer suppprt and persistence. Latecomers would be able
to retrieve the common environment from the storiﬁg
mechanism. Since the hash table pro#ed to be inefficient
during Phase Three, we had to replace it with a more

appropriate one.

C

Client

Client

Server

Client

E Hash 'Ifablé. O Client-Pool

Figure 32. Phase Four

69

'b) Implementation
First, we added a client-pool

/

static Vector castTable = new Vector();

to stofe the currently runnihg ¢lients. Ih‘the castTable, we
stored the DataOutputStream of each clieht.‘Thus, every new
message could be retransmitted to all the clients in the‘
pool. |

Second, we provided latec@mer support; where each new
client received all ;he storéd”messageé.‘Following this, we
replaced the storage data structure (hash tablé) Qith ka

dictionary.
public clasé NSGRepository extends Dictionary

Since the dictionary ié anvabstract class, we decided
to implement it using vector. Despite its timevcost.of O(n)
for gét, put, and remove,. we ‘gained‘_the required
functionality of retrieving the records in vthe order we
‘needed them. This Qas a temporary solution, as the clients
would not require an ordered sét of messages}ih'the future. -

Third, Vwe provided multi-client support. Thé sefvér

entered in an -endless loop. where it accepted every ‘new

70

client, creating a new thread to support‘it. The new thread
was responsible for up-loading the existing environment to
the client so that each shared a common View. After this,
the new thread started to read from the InputStream of the
client and to write to every OutputStream existing in thé
client pool. The complete implementation is vpresented in

Appendix D. The UML documentation is shown in Figure 33.

c) Conclusions

We managed to étore the exéhanged messages in a -
dictionary storage data structure. Consequently, we pfovided
latecomer support and persistence. Furthermore,'we were able
to function in a multi-client environment.

On the other hand, we concluded that the parsing

stream mechanism was able to process only a limited set of

message types (e.g. primitive shapes and transformations.)

- Therefore, we identified the need for an independent

mechanism able to read formated messages rather than simple

byte arrays requiring deserialization.

71

)
L
L]
)
]
1
)
1
L
L
t
L}
)
]
)
)
)
L
’
[}
L
L}
t
)
)
L}
1
)
)
)
]
1}
L}
L]
)
1
I'.Jread 1D

arseStream
|
store object

o
£
g ~
& = H
: o
£ 4 o
o 5 M =
I I S
S_e_x_ 3 3 9
tmtinl nl £ A a
HEEEEE 2
c g 2|\ 2 # g
= I bttt R L b] n.HT_ 1+ Fo--emocsom=- u/”._.-—h bt
£ E B
- -~ |
% # £
5 H £ % H
g & _ %+ e
" [] &[] 5 =1
o g 3 S A
£ - " .
G| | cemremmeeememememee ey) }- 1-1 I et et e D DL L L S L EEP LR PR PR RS (3 N
9 M 0 o~
2 3 &
i Y X]
M 2 o 3 -
: 8 - : x £ &
5 £ 3 3 2 3 2 9
m m z W’ “_. M.' a s
] = 2 s & . .
-) m m s 8 @
b] L & m
& -1~ }-- — L EE? 1 e D D it S R T} - W eennne-
e K : : ;) A .
- @
% a]
N v " M
: ? § &
Y R SRRRREEDIEEEEELILD [B L C LT L P PP EEPOPP PP EER T P mmme—— ERTPETTLIILL LD e R AR ol
3 fy
g
et s STTEERPPRTEN
kR
i

5. Phase Five

a) Objective

Our goal was to provide the ability to read

. formated data from the InputStream of each client. The idea

was that the server should be unaware of the type of

transmitted messages but still be able to dynamically

process and store them. This would give better scalability

and would make the server implementation leSs proprietary.

As a result, we examined the feasibility of usingvDaBP.

b) Implementation
Since DaBP requires theA use of XML files for
reading the formatbof the protoeol, we created a sample XML
file‘as in Appendix E responeible for the representation of
the transformatioh message. The transmitted messagesb are
called Abstract Data Units (ADUs), and they are struetured,
according to the protocol. | | |
We also created ktwo sample Java elients’ (with‘ no
graphical interface) because the C++ clients ﬁere not meture
enough to be invoked in a reliable testing procedure. The
Java implementation of .these clients can be found in
Appendix F. These Java clients simulated the real clieﬁts by

sending and receiving messages using DaBP.

73

The server was responsible for creating the protocol:

ProtocolDescription protocol;

protocol = new ProtocolDescription(“SOF Texp.xml”);

and each thread was responsible for establishing a stream
for reading using the ADUStreamTCP'class, which reads one or

more ADUs trénsmitt'ed across the TCP so'cket. s

ADUStreamTCP tcpStream;
Socket in_socket;

tcpStream = new ADUStreamTCP(in_socket, protoéol);

Next, the thread was ‘abl‘e to réad from this stream
ﬁsing an ADUData clas‘s. This cla’s‘s represents data received
from'rthe network in the protocol defined ‘for’mat. Appendix G
contains the complete ’implbéme'ntétion; The UML doéumentation

is shown in Figure 34.

74

fEerver actor

.: initialize protocol

i acoept client request

request

J U get olient sddress
[

oreate hew thread

T

create output stream

create ADU TCP stream

¢ add client to list

;

S

send ADU

b

?

send objacts to latecome

! read ADU

O o AP

store ADU

broadoast to other olients

close server socket

T ey mm S

stop thread

Figure 34. UMP Sequence Diagram (Phase

Five)

75

c) Conclusion
After examining the feasibility of using the DaBP,

we conclude that:

e DaBP integrated and cooperated efficiently under the
current architecture; ‘ ’ ’ Co

e DaBP provided the necessary flexibility for the SOFT .
project because - instead of a = stream parsing
mechanism, we could directly access the fields of
the ADUs; | | s |

e DaBP uses XML, which is derived from the ISO
Standard ~ Generalized Markup Language (SGML) ,
cooperates with Java, and provides scalability for
future implementation; ; S

e DaBP is worth being evolved and included in the SOFT
architecture. ‘ ‘

76

VI. CLIENT SIDE ARCHITECTURE AND DESIGN

A. NETWORK SCENE GRAPH (NSG) PROTOCOL

The NSG protocol is an information exchange mechanism
between the network layer and the ML. This information is
the scene graph approprlately' modified and serlallzed in-
order to provide platform independence across the network.
Each NSG is owned by one host at a time. Specificaily, it is
composed of nodes and fields. A node consists of:

1. UID

The UID is a unique identifier for the node, eonsisting
of a combination of owner ID and time of creation. A UID is
required because we may have multiple clientsrrunning on the'_
same host.

2. NSGtag

This defines the type of the node. Different nodes with
the same tag may have different type signatures; Once the
node has been created,-the type signature is not changed.
Setting NSGtag only during node creation enforces this:
policy. |

SOFT provides a base set of tags (Table 3) which every
SOFT implementation can interpret. The application and the
user may define any new tags they wish, ones‘which ere not

implemented yet. The tags of Table 4 have already been

77

designed. Tags are sent as text strings roughly equivalent

tovnotations in a mark-up language.

Table 3. Implemented NSG Tags

NSGsep_node Contains an array of “noderef” UIDs. The
NSG uses left-right/top-down inheritance
(as in Openlnventor) instead of top-down
inheritance as used in Java3D and FSG

NSGcolor node Contains a NSGfield vec3 [rgb]

NSGxform node 4x4 matrix ,
NSGcone node A cone centered at (0,0,0) that goes from
o -1 to +1 in each dimension. o
NSGcube_node A cube centered at (0,0,0) that goes from
-1 to +1 in each dimension.
NSGcyl node A cylinder centered at (0,0,0) that goes

from -1 to +1 in each dimension.
NSGsphere _node |[A sphere centered at (0,0,0) that goes
from -1 to +1 in each dimension.

Table 4. Designed NSG Tags

Array of ‘ The number of tristrips. A tristrip

Tristrips contains two arrays of three vectors
[position, normal] and two vectors
‘[texture coordinates] and an int[size]

Material Material properties such as emissive,
specular, etc.

Texture - Texture 1mages [contalns a URL to the
image]

Light , A light object (enumerated such as,

’ spotlights, point-lights)

Camera . | Viewport mapping (aspect ratio, etc.)
near, far, position, focal distance, typed
orientation '

FaceSet Indexed face set: array of three vectors

' [points] and array of ints.

Transparency Contains a double [alpha]

78

3. Owner

This term identifies uniquely the creator or owner of a
node. The owner is stored as an IP address and port for
communicating updates.

4. Contention Flags

Each node has a set of independent Boolean flags for
handling contention. The flags have default settings in the
NSG. Any complex sort of contention control# requires
dropping to a caliback. Certain callbacks, which are used
- frequently in combination to provide desired behavior, are‘
integrated into the system as flags (Table 2).

5. Fields |

A field is one of the static, non-extensible sets of

-enumerated primitive types listed in Table 5.

- Table 5. NSG Fields

NSGfield double [IEEE 64 bit floating point number

NSGfield_int 32 bit signed integer '

NSGfield_string String of ASCII characters

NSGfield vec3 Three doubles ‘

NSGfield matrix 4x4 matrix

NSGfield noderef A node UID

NSGfield ntnoderef |A-non-default-traversed reference to a
node, in UID format :

A runtime-variable-length array of any of the preceding

types '

79

If an application does not provide a traversal behavior’
for a given tag, ﬁhen the'behavior is'changed td tfaverse
any and all “noderef” fields Qf thé node; accbrdiﬁg to their
order. ansequentiy, the point_of an “‘ntnoderef” is that'it
allows a user—defined»tag node td referénce.another nodev
without being traversed >by applicatioﬁs that _don’fs
understand the tag.

Theb node UID. énd"the owner are reqﬁired to\{soive
contention issues érising during modificétion of a remoteiy—
oWned object. The ordered list of'typeé of‘the fields of the
node is célled the “type signature” of.the node. Differént
nbdes with the same tag mayvhave different type signatufes.
Once a node has been createa} the type of-signa£ure cannot
be changed. A more detailed déSéription,of the NSG’node is

shown in Figure 35.

B;. NSG SERIA;IZATION/DESERIALIZATION
All the NSG information is eﬁéapsulated in ‘a byte
array. Thié byté array 'is actuélly trénsmitted over the
network. It consists of: | |
e An integer that indicates fhé length of the byte
array; °* . - . o

e The body of the message, which carries on the same
logic. : ‘ o

80

NSCxiorm_node

IQ_pend : NSGfield_list

&old 10 : NSGfield_xform &
& dorm() : NSGfield_xform &
&nending_xf) : NSGfield_xform &
NS Gxforrn_node{const NSGfield_list &, const NSGriame &name)
ag0) : NSGtag &
$static make(const NSGfield_list &1, const NSGhame &name) : NSGnode *
et(const NSGfiled_xform &x) : void
Sunset() ; void
Smake_pending() : void
$get_pending() : NSGfield_list &
$get() : NSGmat &
Wstatic castiNSGid node) : NSGxform_node *

N
NSGsep_node) \

x

ag(: NSGlag &
$siatic make(const NSGfield_list &, const NSGname &name) : NSGnod

WNSGsep_node(const NSGTield_list &), const NSGname &name) \\

NSGcolor_node

WNSGeolor _node(const NSGfield_list &, const NSGname &name)
g0 : NSGtag &

static make(const NSGfield_list &I, constNSGname &name) : NSGnodp *
®ge1() : NSGvec3

Sunset) : vold

:set(cnnst NSGfield_vec3 &s): void

NSGcyl_node

NSGnode NSGeyl_node{const NSGfield_list &1, const NSGname &name)
%1200 (argname) : NSGtag &

ctatic castiNSGid node) | NSGsep_node *

%unset(: void
®set(const NSGfield_noderefs &s) : void /‘//V
®getf) : vector<NSGnode *, alloc> & //

NSGcube_node /|

#NSGeube_node{const NSGfield_list &, const NSGname &name)
“tag() : NSGtag &
$static make(const NSGfield_list &, const NSGnaifie &hame) : NSGnode *

#static make(const NSGfield_list &, const NSGname &name):

NSGcone_node

NSGsphere_node

’NSGcone_node(const NSGfield_jist &, const NSGname &name)
$ag) : NSGtag &
$static make(const NSGfield_ist &, const NSGname &name) : NSGnode *

$NSGsphere_node{const NSGfield_list &1, const NSGhame &name)
%tag(: NSGtag &
‘statlc make(const NSGfield_list &I, const NSGname &name) N8Gnodg*

Figure 35. UML Documentation for NSG Node

The serialization is implemented overloading the “<<”

operator. According to Meyers,

overloading 1is that it is

understand [MEYES7].

implemented

Likewise,

overloading the

the purpose of operator
easy to read, write, and
deserialization is

“>>” operator. During the

81

deserialization process, the byte array is broken into its
individual parts. This architecture provides scalability.
because the implementersk'can seamlessly add new data

structures.

82

VII. EMPIRICAL TESTING

A. INTRODUCTION

A shared virtual environment with many clients requires
low communications latency. We examined the overhead‘of‘our
centralized server implementation in a uni~directional data
exchange between two clients, both with and without the
DaBP. |

For experimental purposes, we implemented two specific
clients: a sending client (Sclient), and a receiving client
(Rclient). A sample packet was used to simulate the exchange
of a generic transformation between the two ciients. Wheh
DaBP was used, the packet was created froﬁ the XML file.
Without DaBP, the packet was a sample packet taken from the
'transmission of a real SOFT client. The clients and server’
rah on an Intel-based computer with Windows NT4.0. The

client implementation can be found in Appendix H.

B. TESTING SERVER OVERHEAD WITH DABP

| In this experiment we tested the server'e. everhead
involving the DaBP. We transmitted 1,000, 5,000, 10,000,
50,000, 100;000, aﬁd 120,000 packets. The results‘are shown

in Table 6. According to the results, as the number of

83

packets increases the timing cost per packet increases from

1.035 ms to 6.88 ms.

Table 6. Average Server Overhead with DaBP

Packets Transmitted Timing Cost/
packet
1000 1.035
‘ 15000 - ..1.106
10000 '1.319
50000 ' 3.085
100000 5.574
120000 6.880

c. ‘TESTIﬁG SERVER QVERHEAD'WITHOUT DABP

In 'ﬁhis experiment we tested the server’s overhead
without DaBP. The results f:ombthe experiment are shown in
Table 7. The results reveal a timing cost fluctuating
between 6.023 ms .éﬁd 6.162 ms per packet. The server’s

overhead 1is independent from the number of packets

transmitted.

Table 7. Average Server Overhead without DaBP

Packets Transmitted Timing
Cost/packet
1000 | | 6.082
5060 6.122
10000 6.049
50000 . 6.063
100000 6.023
120000 | 6.162

D. PROBLEMS TESTING WITH DABP

During the experimental session, we encountered some
problems using DaBP. First, we were unable to»inétall it
propérly due to hardcoded absolute paths. Thus; we inserted
ourrown absolute paths to make it work. Second,.the String
data typé was not supported.»We tried to substitute Stringw
with arrays of unsigned bytes, without success. In order to
solve this problem, we _created fixed-length byte arrays.
Third,-- during packet transmission null péinter exceptions
were thrown. Our first assumption was a buffer overflo&,
which led us to increase the size of the input'éhd output

buffers without result. The problem was solved by replacing

85

the InputStreanl with DataInputStream and thev read method
with readFully. Finally we discovered a memory—leak problem, -
which significantly reduced its performance for large number

of packets (over 50,000).

' E. - CONCLUSIONS
Performing‘a‘frend analysié (Figure.36)_we discovered
that using\ﬁaBP giveé significant performance énhancement
(approximatély six time speedup) when the number of
.transmittéd packets 1is smallk(less thaﬁ 50000); Whén the
number of packets ipcreases; the server’s overhead is
increased, due to memolry—leak problems of -the DaBP. Thé
parsing of byte streams is a huch more ﬁimekconsuming method
than extracting the neceésary information of a pre#iously
formatted—with—DaBP message,-but‘it has a neutrai behavior
~to the number of packets transﬁitted. The previouély
discussed problems do not remove DaBé as a Viable‘candidate
forvintegration into the SOFT architecture; But, itwhéeds
further implementation and extensive debﬁgging in ordér to

become a stable product.

86

ms

1000000.00 -

800000.00

600000.00

400000.00

200000.00

-200000.00

~400000.00 -

I—.—-byta[] ww—— DaBP « = a=Linear (byte[]) Linear (DaBP)]

Figure 36. Trend Analysis with/without DaBP

87

THIS PAGE WAS INTENTIONALLY LEFT BLANK g

88

VIII. CONCLUSION AND FUTURE WORK

A. INTRODUCTION‘

This thesis designs " and implements a network
architecture for distribution of generic scene graphs. We
concentrated on the design and implementation of a
centralized server that supports multiple clients, providing
them with a common shared environment. The results are

intended to be incorporated into the SOFT project.

B. CONCLUSIONS

We built a centralized server using Java that provided

reliability, persistence, scalability, and latecomer support

in a multi—client SOFT environment. This server provides

interoperability and can sppport any SSGs on any platform.

We concluded that this implementation demonstrated the
benefits of the DaBP.

Empirically testing the server overhead, we discoVered
that using DaBP reduced the overhead by a factor of six for
less than 50,000 peckets. The performance and flexibility of
DaBP indicates that it is worth the effort to extend it to a
stable product and incorporate it into the SOFT

architecture. Of course, empirical testing to confirm

89

performance improvement for large number of packets must be

conducted.

C. FUTURE RESEARCH‘IDEAS' =

The goal of the SOFT project is network collaboration
between computer.gréphics apélidations. These~applicatioﬁs
ean' be impiemented in various ‘langueges over differeﬁt
platforms. SOFT clients are currently implemented in>C++ on
| UNIX platforms. They use OpenInventdr as the Standardlseene
Graph (SSG). In order to fulfill the objectives of the SOFT
architecture, the implementetion must be extended to include
~other platforms'(e.g., Intel—based), languages (etg.,‘Java),
and SSGs (e.g., Ja§a3D). |

As stated in Chapter IV, the SOFT server cah”be part of
a tonlogicaily . larger network environment. In this
‘environment, various clusters can have their own -serVer
moduies. ~Furthermore; the clients have been implemented
separately from the server. Merging the server and the
eiient modules would.be ideal. This new module - would act
‘either as:a server and/or as a client. This would mean the
module could take turns being a’server, and whenever the
serve£-medule,left,fit would migrate and transfer duties.

The current implementation of the SOFT client ;and

server modules requires an ordered procedure. Specific

90

pfograms must be invoked and executed using command 1line
methods. A user interface could be built in order to aét as
a SOFT se;sion manager.

Currently, the DaBP.library is limited. For instance, a
limited set of data fypes is supported (e.g., integer;‘
fléat.) Additionally, fhe libraries are prototype versions
and contain errors.‘In the future, DaBP libraries could be
improved and completed resulting in a mature product. Since
DaBP provides flexibility, itbcan be extended to includé
designs of application—specificv prdtocols that can be
changed based.on network load.

The feasibility of using multicasting technology for
tﬂerdiétribution of generic scene graphs should be examined
as multicast hardware becomes more widely évailable. Also,
thé use of multi-tier architecture, like CORBA and COM, canb

be exploited under the SOFT architecture.

D. SUMMARY

The SOFT project approaches networking collaborative
virtual environments these environments with the use of the
scene graph as bus metaphor; This networking has been
impleﬁénfed with centralized servers responsible for the

distribution of the scene graphs. This ‘shared visual

environment is the first stepping stone towards networking

91

client communities. Later goals of SOFT include sharing of
‘entity behaviors and actions, and will be addressed in

follow—on work.

92

APPENDIX A - JAVA CODE FOR “PHASE ONE”

// Filename: Server.java
// Date: 20-April-99
// Compiler: JDK 1.2

import java.net.*;
import java.io.*;

/**

* the existing pair of SOFT client and server. .
* C.

* @Qauthor P.Fiabolis,G.Prokopakis

>-k/ .

public class Server {

* Main function

* @param args: Command line aréuments
* @exception IOException
*/ ,
public static void main (String[] args) throws IOException {

ServerSocket s = new ServerSocket (9999);
ServerSocket is = new ServerSocket (8099);
System.out.println("Server started: " + s);
System.out.println("Local server started: " + is);

InetAddress addr = InetAddress.getByName ("royal");
new ClientThread(addr); ’
System.out.println("Connection with master started ..."};

Sockét in socket = is.accept();

try { ‘
while (true) {
Socket socket = s.accept():;
try { -
System.out.println("Slave found ...");
new ServeOne (socket, in_socket);
}
catch (IOException e) {
System.out.println("Server.main: IOException”);
- socket.close();

}
} // end while
}
finally {
s.close():
“is.close();

93

* Server for "Phase One". Creates a client/server mechanism between

} // end of main()
/} // end‘of class Server

// end of file Server.java

[m e e e e e S smm—sem
// Filename: ServeOne.java

// Date: 20-April-99

// Compiler: JDK 1.2

] [e e e e e S m s

import java.io.*;
import java.net.*;

/** ‘

* Thread running for each connection. A simple client/server
* mechanism, reading from the input stream and wrighting to
* the output stream. - , : : ’

* .

*

@author P.Fiabolis,G.Prokopakis

* .
class ServeOne extends Thread {

/**'

* Socket of the current thread.
*/ .
private Socket socket;

/**

* Stream to read from.
*/ -
DataInputStream in;

/**)

. * Qutput stream.

*/

DataOutputStream out;

94

Class constructor

@param s: Socket for output
@param in_socket: Socket for 1nput
@exception IOException

* * ok

*

*/
public ServeOne (Socket s, Socket in socket) throws IOExceptlon {
socket = s;

in = new DatalnputStream(in_socket.getInputStream());
out = new DataOutputStream(s.getOutputStream()):
start();

} // end of ServeOne

/*
* Thread main loop. Performs the read/write operation until
* the clients are disconnected.

* .
*/
public void run{() {
byte[] buf = new byte[1024};
int len = 0, tmp = 0;

try {
while (true) {

try { |
len = in.readInt():
in.readFully(buf, 0, len); .

out.writeInt(len);
out.write(buf, 0, len);
}

catch (IOException e) {

System.out.println("Cannot read ...");
} .
}
}
finally {
// Always close it:
try {

socket.close();

}
catch (IOException e) {°
System.out.println("ServeOne.run: IOException");

‘ }
}
'} // end of run()

} // end of class ServeOne
// end of file ServeOne.java

95

// Filename: ClientThread.java

// Date: 20-April-99
// Compiler: JDK 1.2
J e ettty

import java.net.*;
import java.io.*;

/**
* Thread implementation of the internal client module.
* This module reads from the C++ SOFT Server, and writes

* to the Java server module.
*

" * Rauthor P.Fiabolis,G.Prokopakis
* / .
class ClientThread extends Thread {

J** v . _
* Socket of the current thread.
*/

private Socket socket; .

J% ,
* Qutput socket.
*/ -

private Socket out_socket;

/**

* Stream to read from.
*/

DataInputStream data_in;

/**
. * Qutput stream.

*/ ‘ .
DataOutputStream data_out;

/* ~
* Class constructor
* .

* @param addr: Inet address where this client should connect

*/
public ClientThread (InetAddress addr) {
System.out.println("Making client ...");
try { : '

socket = new Socket (addr, 8080);

InetAddress self = InetAddress.getByName("127.0.0.1");
o ' out_socket = new Socket (self, 8099);

} ‘
catch (IOException e) {
// If the creation of the socket fails, no need for cleanup.

}

try { o
data_in = new DataInputStream(socket.getInputStream());

96

data_out = new
DataOutputStream(out_socket.getOutputStream()3;
start ();
} .
catch (IOException e) ({ :
// The socket should be closed on any failures
// other than the socket constructor :
try {
socket.close();
out_socket.close();

}
catch (IOException e2) {
} ‘

/*
* Thread main loop. Performs the read(from C++ server) /write
* operation until the clients are disconnected.
*
*/
public void run{() {

byte[]l buf = new byte[1024];
int len = 0, tmp = 0;

try {

while (true) {
try {
len = data_in.readInt();
data_in.readFully(buf, 0, len);
data out.writelnt (len);)
data_out.write(buf, 0, len);
}
catch (IOException e) {
System.out.println("Cannot read ...");
} .
; } // end while
}
finally { -
// Always close it:
try {

socket.close():;
out_socket.close():

}
catch (IOException e) {

}
}

} // end of run()

} // end of class ClientThread
// end of file ClientThread.java

97

98

APPENDIX B - JAVA CODE FOR “PHASE TWO"

e e e
// Filename: Server.java

// Date: 04-May-99

// Compiler: JDK 1.2

[e e e e e e e e e e e e e e e S S s Sme e

import java.net.*;
import java.io.*;

/** ~ .
* Server for "Phase Two". Performs the read/write operation
* between a C++ SOFT server and a C++ SOFT client, without
* needing an internal client module.

*
* Qauthor P.Fiabolis,G.Prokopakis

*/
public class Server {

/* ‘
* Main function
*

* @param args: Command line arguments
:/@exception IOException
public static void main (String[] args) throws IOExceptlon {
new ServeOne();
} // end of main
} // end of class Server

// end of file Server.java

[[e e e e e e e e e e e e e s
// Filename: ServeOne.java

// Date: " 04-May-99

// Compiler: JDK 1.2

[] = e e e e e e

import 3ava.io.*;
. import java.net.*;

/** '

* Thread running for each connection. A simple client/server
~ * mechanism, reading from the input stream and wrighting to
-* the output stream.

*

*

Qauthor P.Fiabolis,G.Prokopakis

99

* / -
class ServeOne extends Thread {

/**

* Sockets for read and write.

*/ .
private Socket in_socket, out _socket;

/**
* Server Socket for the connectlon of the C++ client.
*/

private ServerSocket server_socket;

/**
* Stream to read from.
*/

DataInputStream in;

/**

* Qutput stream.

*/
DataOutputStream out;

/ *
* Class constructor
* .
* @exception IOException
*/
public ServeOne() throws IOException {
server_ socket = new ServerSocket (8080) ;
InetAddress addr = InetAddress. getByName("royal")
in _socket = new Socket (addr, 9999);

in = new DataInputStream(in_socket.getInputStream());

out_socket = server_socket. accept();
out = new DataOutputStream(out socket getOutputStream()),'

"~ start():

/* .
* Thread main loop. Performs the read/write operatlon until
* the clients are disconnected.
*
*/
public void run() {
byte€é[]-buf = new byte[1024],
int len = 0, tmp 0;

try {
while (true) {

try { .
len = in.readInt();

100

in.readFully(buf, 0, len);

out.writeInt(len):;
out.write(buf, 0, len);

} .
catch (IOException e) - {
System.out.println("Cannot read
. }
}
}
finally {
// Always close it:
try {
in socket.close();

out_socket.close();
server_socket.close();

}
catch (IOException e) {
}

} .
.} // end of run{()
} // end of class ServeOne

// end of file ServeOne.java

101

")

102

APPENDIX C - JAVA CODE FOR “PHASE THREE”

[/ m e e e e e e
// Filename: Server.java

// Date: 03-June-99

// Compiler: JDK 1.2

J ettt ittt

import java.net.*;
import java.io.*;

/**
* Server for "Phase Three". Performs the read/write operation
* between two C++ SOFT clients. .
.
* @author P.Fiabolis,G.Prokopakis
*/
public class Server ({

* Main function

* @param args: Command line arguments
* @exception IOException
*/

public static void main (String([] args) throws IOException {

if (args.length != 3) {
usageMessage () ;
System.exit (0);

}

String server_name = args[0];
ServerSocket server socket;

Socket in_socket, out_socket;
InetAddress addr; ‘

try {
server_socket = new ServerSocket (Integer.parselnt (args[2]));

in_socket = server_socket.accept();
InetAddress client_addrl = in_socket.getInetAddress();

System.out.println("Client found ..." +
client_addrl.getHostName()); . :

. “out_socket = server_socket.accept();
InetAddress client_addr2 = out_socket.getInetAddress();

System.out.println("Client found ..." +
client_addr2.getHostName());

try { .
new ServeOne(in_socket, out_socket, "SOFT client 1");

103

new ServeOne(out_soCket,'ih;socket, "SOFT client 2");

System.out.println(Thread.activeCount());
while (Thread. actlveCount() > 1) {
} // end while o
}
finally ({
try {
in_socket.close(),
out_socket.close(),
} .
catch (IOException e) {
- System.out.println("Could not close socket.");
} v
}
} ' .
catch (IOException ie) { : ‘
System.out.println("Server problem");
System.exit (0);

}

} // end of main

/*
* Provide help message if the command llne arguments
* are not valid. .
*
*/
'publlc static void usageMessage() {
System.out.print ("Usage: java Server <server name>");
System.out.println(" <server port> <client port>");
System.out.printlin(); ,
System.out.printin("Exaple: java Server venus 9000 8000");
System.out.println("\tvenus - machine running the SOFT server”);
System.out.println("\t9000 - venus machine port");
System.out.println("\t8000 - client machine port");

} // end of usageMessage
} // end of class Server

. // end of file Server.java

104

// Filename: NSGStreamRecord.jav

// Date: 04-May-99 -

// Compiler: JDK 1.2

//..______._.._______.._' ___
/**

* Implementation of a record to be stored by the SOFT server.
*

* @author P.Fiabolis,G.Prokopakis
*/
class NSGStreamRecord {

/**
* Unique key for the message.
*/

String key:

/** _
* Message as it was received from the network.
. */

byte[] data;

/*
Class constructor

*
*
* @param id: Message ID
* @param len: Message length
* @param record: Original message
*/ :
public NSGStreamRecord(byte[] id, int len, byte[] record) ({
key = new String(id, O, len);
"data = new byte[65535];
data = record;

} // end of NSGStreamRecord
} // end of class NSGStreamRecord

// end of file NSGStreamRecord.java

105

APPENDIX D - JAVA CODE FOR “PHASE FOUR"

/e e e
// Filename: NSGServer.java

// Date: 18-June-99

// Compiler: JDK 1.2

F e it

import java.net.¥*;
import java.io.*;

/**
* Main class for the NSG server. Enters an endless loop waiting

* for client requests.
*

* @author P.Fiabolis,G.Prokopakis
*/

public class NSGServer {

/*
* App main function.
%*

* @param args: Command line param. Should have the port number.
* @exception IOException
*/
public static void main (String[] args) throws IOException {
if(args.length != 1) { '
usageMessage () ;
System.exit (0);
}

ServerSocket server_socket;
InetAddress addr;

int counter = 1;

try {]
server_socket = new ServerSocket (Integer.parselnt (args[0]));

while(true) {
Socket in_socket = server_socket.accept{):;

addr = in_socket.getInetAddress();
System.out.println("Welcome " + addr.getHostName()):;

try {
new NSGServeOne (in_socket, counter++);

}
catch (IOException e) {
in_socket.close():
}
} // end while

107

catch (IOException e) { ‘ _
System.out.println("Cannot initialize server. Exiting ...");

System.exit (0);
} . ;

v} // end of main

/* _ .
* Message to display in case of invalid command line arguments. .
x/ ‘ |

public static void usageMessage() {

System.out.println("Usage : java Server <port number>");

System.out.println();
System.out.println("Example: java Server 9999");

} // end of usageMessage
} // end of class NSGServer

.// end of file NSGServer.java

[/ e e e e e
// Filename: NSGServeOne.java

// Date: = 18-Juhe-99

// Compiler: JDK 1.2

] e e e e e

import java.io.*;

import java.net.*;

import java.util.Hashtable;
import java.util.Enumeration;
import java.util.Vector;

/**) ’
* An instance of this class is running for every client connected to

the «

* NSGServer.
*

* Rauthor P.Fiabolis,G.Prokopakis

* .
class NSGServeOne extends Thread {

/**) . . ‘
* Unique ID for each thread. For the moment this is a simple counter
*/ . ‘

int threadlD;

/** .
* Stream where this thread reads from

1078

*/
DatalnputStream in;

/** .
* Stream where this thread will write the NSG's stored in the
repository.

*/
DataOutputStream me;

/** .
'* Table holding the ports for all conected clients. Common for all
threads .

*/

static Vector castTable = new Vector();

/**

* Table holding SG data sent from clients. Common for all threads
*/ _ :

static NSGRepository table = new NSGRepository():;

/** .
* Semaphore. for thread exit.
*/

boolean stopThread = false;

/** . .
* Socket associated with this thread.
*/

Socket threadSocket;

/*

Class constructor

*

* \

* @param in_socket: Socket for this thread connection

* @param id: unique ID for this client. For the moment just a counter
* @exception IOException

*/ ~

public NSGServeOne(Socket in_socket, int id) throws IOException {

threadID = id;

threadSocket = in_socket;

*in new DataInputStream (in_socket.getInputStream()):

me new DataOutputStream(in_socket.getOutputStream());

// Add the new comer to the client list.
castTable.addElement (me);

start();

} // end of NSGServeOne .

/*

109

* Thread main loop. Runs until thread needs to be alive.
* ' .

*/
public void run() {
int len = 0;
DataOutputStream out;

// Send the data (if any) from the repository to the newcomer.

fry {
Enumeration enum = NSGServeOne.table.elements():;
while (enum.hasMoreElements()) ({
NSGStreamRecord s = (NSGStreamReco:d)enum.nextBlement();

if (s.threadID != threadID) {
System.out.println("TABLE: " + s.key);

byte[] tmpBuf =‘néw byte[65535];
tmpBuf = s.data; '

R me.writelnt(s.datalength);
me.write (tmpBuf, 0, s.datalength);
me.flush{(); | |

}

}
catch(IOExceptlon e) {
System.out.println("Thread stopped Connection with " +

threadID + " failed.");

. closeThread();
}

while('étopThread) {
try {
len = in.readint();
byte[] buf = new byte[len];
in.readFu;ly(buf, 0, len):

// Send the message to everyone _
Enumeration enum = castTable.elements();

- while (enum.hasMoreElements()) {
oo out = (DataOutputStream)enum. nextElement(),
if (out != me) {

out.writeInt(len)}
out.write(buf, O, len);

} // end while

// Store or update the data.
parseStream(buf, len);

}

catch (IOException e) {
System.out.println("Goodbye " + threadlD);
closeThread();

}

} // end while(!stopThread)

} // end of run

/* ' :
* Close the thread after finishing connection or failure
* .
*/ :
public void closeThread() {
try {

threadSocket.close();
castTable.removeElement (me);
stopThread = true;

}
catch (IOCException e) {

System.out.println("ERROR: Could not close socket @
closeThread");

}

} // end of closeThread

/ *

* Parse data received from the network and store them in an appropriate
* repository. Data for existing objects are been updated.

* .) .

* @param buf: Byte array send from the client.

* @param len: Length of the byte array.

xy

public void parseStream(byte[] buf, int len) {
‘byte[] buffer = new byte[65535];

buffer = buf;

ByteArrayInputStream byte_ stream;
DataInputStream data_stream;

int 'datalen = len;

int headerLen; // Size of data header
int namelen; // Size of NSG ndde name

int keylen; // Length of unique key for this data

111

int lenLeft;

int bytesToRead;

byte[] tmp buf = new byte[65535];

// Create a newVStream‘just to break it and exfract the NSG 'ID.

new ByteArrayInputStream(buf);

byté_stream
new DatalnputStream(byte_ stream);

data_stream

o

try { :
bytesToRead = data_stream.readInt();

len = len - 4;

if (bytesToRead == 4) {
// Read in header

headerlLen = data_stream.readInt();

len = len - 4;

data_stream.readFully (tmp | buf, 0, headerlen):;

len = len - headerlen; :

String header = new String(tmp_buf,0, headerLen);

// Read in node name

namelen = data_ stream readInt ();

len = len - 4;

data_stream. readFully(tmp buf, 0, namelen):;

if (!header.equals("NSGnew")) { _
: // This record doesn't descrlbe a NSGnode, so make a
// key by concatenating the header with the "key" (node

name)
String name = new String(tmp_buf, 0, namelLen);
String final key = header + "|" + name;
tmp_buf = final key.getBytes(};
keyLen = final key.length();
} : K
else { .
keylLen = namelen;
}
NSGStreamRecord stream_rec” new NSGStreamRecord(tmp buf,
keyLen, buffer, datalen, threadlID):;
Object val = table.put(stream_rec.key, stream rec);
) System.out.println(stream_rec.key);
if (val == null) {
System out. prlntln(threadID + ": New record added."):;
} ' ‘
else { : ' ‘
System.out.println(threadID + ": Record found +
updated. ") ; ' _ '

112

}

else { ' L

System.out.println("ERROR: No recorded message. Length = " +
bytesToRead + " @ parseStream."); ‘

}

}
catch(IOException ie) {
System.out.println("ERROR: Problem reading integer @

parseStream.");)

}
} // end of parseStream
} // end of class NSGServeOne

// end of file NSGServeOne.java

[m o e e e e e e e
// Filename: NSGStreamRecord.java

// Date: 18-June-99

// Compiler: JDK 1.2

[/ e e e e
/*’*

* NSG record. Stored in the NSGRepository.
* Should be modified to match the appropriate structure of the NSG.
*

* Qauthor P.Fiabolis,G.Prokopakis
* / .
class NSGStreamRecord ({

/**

*.Unige key of the NSG
*/

String key;

/** ' _ :

* Byte array. It is stored as it is read from the client.
* /)

byte[] data;

/** -

* Length of the byte array (data).
*/

int datalength;

/**

* Thread that this NSG came from. Used in order to avoid retransmiting
this back.
*/

113

int threadID;

/*
* Class constructor.

* : .

* @param recKey: Unique ID of the NSG.

* @param keyLen: Length of the key.

* @param record: Byte array as it is read from the cllent.
* @param datalen: Length of the byte array {record)

* @param id: Thread ID.

*/ .
public NSGStreamRecord{byte[] recKey, int keyLen, bytel[] record int
datalen, int id) {

key = new Strlng(recKey, 0, keylen);

data new byte[65535];

data = record;
dataLength = datalen;
threadID = id;

} // end of NSGStreamRecord

} // end of class NSGStreamRecord

// end of file NSGStreamRecord;java

/] = e
// Filename: NSGRepository.java

// Date: 18-June-99

// Compiler: JDK 1.2 ' , ,
/] e e e e e e e

import java.util.*;
import java.io.*;

/** - } ‘ .)
* Implementation of the data structure where NSG's are stored.
* For the moment a Vector is used in order to provide NSG's
* to the new comers in the order they have arrived.

* This is going to be replaced by the TreeMap class (jdk 1.2).
- ‘
* @author P.Fiabolis,G.Prokopakis
*/ ’
public class NSGRepository extends Dictionary {

114

/**
* Vector to store the keys of the NSG's.
*/

private Vector Keys = new Vector();

/** .)

* Vector to store the byte arrays (data).
*/ : .
private Vector Values = new Vector();

/* ,
* Gives the number of the contents of the repository.
N .
* / 4
public int size() {
return Keys.size();

} .

/-k
* Check if the vector is empty.
*
*/
public boolean isEmpty () {
return Keys.isEmpty():;

}

/*
* Insert a new NSG record in the repository.
*
* @param key: Unique ID of the NSG.
* @param value: NSG record to be stored.
*/
public Object put (Object key, Object value) {
if (Keys.contains (key)) { _
int index = Keys.indexOf (key);
Values.setElementAt (value, index);
return key;
}
else { _
Keys.addElement (key) ;
Values.addElement (value);
return null;

/* :
* Get the record of the NSG with ID = key.
*

* @param key: Unique ID of NSG to look for.
)
public Object get (Object key) {
int index = Keys.indexOf (key);

115

if(index == -1) {
return null;
}
else {
return Values. elementAt(lndex)
}

/* ; -
* Remove the record of the NSG with ID = key.
% : .
* @param key: Unique ID of NSG to be removed.
*/ .) .
public Object remove (Object key) {

Object retvVal;

int index = Keys.indexOf (key):;

if(index == -1) {
retVal = null;

}

else { o

Keys.removeElementAt (index) ;
retVal = Values.elementAt (index);
Values.removeElementAt (index) ;

} -

return retVa;;

/* ‘ : o .
* Provide an Enumeration data structure for the keys Vector.
* . - . .

*/
public Enumeration keys() {
return Keys.elements(); -

}

/* . . B :
* Provide an Enumeration data structure for the elements Vector.
* T

*/
.public Enumeration elements() {
return Values.elements():

}
*} // end of class NSGRepository

// end of file NSGRepository.java

116

APPENDIX E - XML FILE

<?xml version="1.0"?>

<!-- Simple XML file for use with the SOFT experiment -->
<!-- Note the hard-wired reference to the dtd. This should be fixed -->
<!-- in order to run on another system -—>

<'DOCTYPE PROTOCOL DESCRIPTION SYSTEM
"file:////DaB/Documentation/dabp/protocols/protocol_description.dtd">

<!-- SOFT/DABP XML PACKET DESCIPTIONS -->
<PROTOCOL_DESCRIPTION>

<PROTOCOL_INFORMATION>
<PROTOCOL NAME>SOFT</PROTOCOL_NAME>
<PROTOCOL_| _ MARKER FIELD>PacketType</PROTOCOL MARKER FIELD>
<PROTOCOL_] MARKER POSITION>O</PROTOCOL MARKER POSITION>

<PROTOCOL_MARKER_TYPE>org.web3d. vrtp datatypes. Un51gnedByte</PROTOCOL MA
RKER_TYPE>

<PROTOCOL_TYPE_LIST>
<TYPE>org.web3d.vrtp.datatypes.UnsignedByte</TYPE>
<TYPE>org.web3d.vrtp.datatypes.UnsignedShort</TYPE>
<TYPE>org.web3d.vrtp.datatypes.SignedInteger</TYPE>
<TYPE>org.web3d.vrtp.datatypes.DoublePrecision</TYPE>
<TYPE>org.web3d.vrtp.datatypes.array6</TYPE>
<TYPE>org.web3d.vrtp.datatypes.arrayl6</TYPE>
<TYPE>org.web3d.vrtp.datatypes.array40</TYPE>

</PROTOCOL_TYPE_LIST>

<!-- XXXX These fields are wrong! what should they be?! -->
<PROTOCOL_HANDLER>http://www.stl.nps.navy.mil/~foo</PROTOCOL_HANDLER>

<PROTOCOL_SEMANTICS_HANDLER>demo.dabp . Semantics</PROTOCOL_SEMANTICS_HAND
LER>

</PROTOCOL_INFORMATION>

<ADUS>

<1-- XFORM PACKET -->

<ADU_DESCRIPTION>

<ADU_INFO>

<ADU_NAME>XFORM</ADU_NAME>
<ADU_MARKER_VALUE>1<7ADU_MARKER_VALUE>
</BADU_INFO>

<FIELDS>

<FIELD_PRIMITIVE>

117

<FIELD NAME>PacketType</FIELD NAME>

<FIELD _TYPE>org.web3d.vrtp.datatypes

<FIELD_ DEFAULT>1</FIELD DEFAULT>
</FIELD_ PRIMITIVE>

<FIELD PRIMITIVE>
<FIELD NAME>Tag</FIELD NAME>

<FIELD TYPE>org.web3d.vrtp.datatypes.

<FIELD_ DEFAULT>9</FIELD DEFAULT>
</FIELD PRIMITIVE>

<FIELD_PRIMITIVE>
<FIELD NAME>CCode</FIELD_ NAME>

<FIELD _TYPE>org.web3d. vrtp.datatypes.

<FIELD_ DEFAULT>0</FIELD DEFAULT>
</FIELD PRIMITIVE>

<FIELD_PRIMITIVE> o '
<FIELD NAME>NodeName</FIELD NAME>
<FIELD _TYPE>org.web3d.vrtp. datatypes
<FIELD DEFAULT>9</FIELD DEFAULT>
</FIELD PRIMITIVE>

<FIELD_ PRIMITIVE>
<FIELD NAME>mat</FIELD_ NAME>

<FIELD _TYPE>org.web3d. vrtp.datatypes.

<FIELD_DEFAULT>9</FIELD_DEFAULT>
- </FIELD_PRIMITIVE>

</FIELDS>
</ADU_DESCRIPTION>

</ADUS>
</PROTOCOL_DESCRIPTION>

118

.UnsignedByte</FIELD TYPE>

array6</FIELD_TYPE>

SignedInteger</FIELD_TYPE>

.array40</FIELD_TYPE>

arrayl6</FIELD_TYPE>

APPENDIX F - DaBP CLIENTS

[] e e e e e e e e e e e e e
// Filename: SClient.java

// Date: 23-Aug-99

// Compiler: JDK 1.2

] e e e e e e e e e e

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;
import org.web3d.vrtp.net.*;

import java.net.*;
import java.io.*;
import java.util.*;

/**
SClient

*
* .
* Simple client sending packets to the SOFT server.

* Tt is used for the empirical testing.

* SClient uses SOFTexp.xml in order to create the protocol descrlptlon
Then

* it creates a. byte array according to this protocol and sends this
1000 times

* to the server. The byte array contains the default data

* Syntax: SClient <server name> <server port>

*

* @author P.Fiabolis,G.Prokopakis

*/
public class SClient
{

/** ' .
* Main method. Creates the protocol description, connects to the server -
and '
* sends an ADU 1000 times to hlm
* We need to add a time delay between sending packets. Whithout this
delay
* we get a NullPointerException exception (in the NSGServeOne) at the
* ProtocolDescription.deterimineADUFromBinaryData method.
*
*/
public static void main(String{] args) throws SocketException
{
// args[0] = Server name
// args[l] = socket number

if{args.length != 2) {
usageMessage() ;
System.exit (0);

}

ProtocolDescription protocol; -

119

ADUData packet;

InetAddress addr;

Socket socket; .
OutputStream os;
DataQutputStream dos;
ByteArrayOutputStream bos;

DataOutputStream me;
byte datall:

protocol = new ProtocolDescription("SOFTexp.xml");
packet = protocol.getADUDataForName ("XFORM") ;
try
{ : _ ‘
addr = InetAddress.getByName (args[0]);
System.out.println("addr = " + addr);
}

catch (UnknownHostException uhe)

{

System.out.println("Unknown Host ..."):
return; i

}

try
{ : . ,
socket = new Socket(addr, Integer.parselnt(args{l])):

catéh(IOException ioe)

{ : A S
System.out.println("Cannot create the socket ..."):
return; .

}

try

{
try

{
os = socket.getOutputStream();

b} ‘
catch (IOException e)
{ ' : v .
" System.out.println("Could not initialize output stream
") g : : .
return;
}
“PrintStream p = new PrintStream(os);
bos = new ByteArrayOutputStream();
dos = new DataOutputStream(bos);
try { C ; ;
me = new DataOutputStream(socket.getOutputStream()):
} .
catch (IOException ioe) {
return; ‘

120

packet.serialize (dos);
data = bos.toByteArray();

for(int i = 0; i < 120000; i++)
{ .
try
{
me.write(data);
me.flush();
}

catch (IOException ioe)
{ ‘
System.out.println("Could not write to the output stream
M+ i) |

return;

)
} // end while(true)
}
finally
{

System.out.println("Closing'clieht e ")
try
{

}
catch(IOException e)

{

socket.close();

System.out.println("Could not close socket "),
return;

}
} // end try-finally

} // end main

/**
* Provides a hint message when the number of the command llne argunments

* is wrong.
*

*/

public static void usageMessage() {
Systém.out.print ("Usage: java SClient <server name>");
System.out.println(" <server port>");
System.out.println();
System.out.println("Exaple: java SClient venus 9000"};
System.out.println("\tvenus - machine running the SOFT server")
System.out.println("\t9000 - venus machine port");

} // end usageMessage
} // end of class SClient

// end of file SClient.java

121

// Filename: RClient.java

// Date: 23-Aug-929
// Compiler: JDK 1.2
J] e e e o mmm—————e

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;
import org.web3d.vrtp.net.*;

import java.net.*;
import java.io.*;
import java.util.*;

/**

* RClient

* .

* Simple client reading packets from the SOFT server.

* It is used for the emplrlcal testing. ’ :

* RClient uses SOFTexp.xml in order to create the protocol descrlptlon

Then,

* it reads ADUs from the server. No- packet process1ng takes place.
* Syntax: RClient <server name> <server port>

*

* @author P.Fiabolis,G.Prokopakis

.o*/
public class RClient
{

/**
* Main method. Creates the protocol desctiption, connects to the server
and :

* reads ADUs from him.

.

*/
public static void main(String[] args)

{ .

// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {b
usageMessage () ;
System.exit (0);

} .

ProtocolDescription protocol;
ADUData packet;

InetAddress addr;
Socket socket;

" QutputStream os;
DataOutputStream dos;
ByteArrayOutputStream bos;

ADUStreamTCP tcpStream;
ADbUData data;

122

protocol = new ProtocolDescription("SOFTexp.xml");
packet = protocol.getADUDataForName ("XFORM");

try
{ .
addr = InetAddress.getByName (args[0]);
System.out.println("addr = " + addr);

catch (UnknownHostException uhe)

{ :
System.out.println("Unknown Host ..."):
return;

}

try
{

socket = new Socket (addr, Integer.parselnt(args[l]));

catch (IOException ioe)

{
System.out.println("Unknown Host ces);
return;

}

tcpStream = new ADUStreamTCP(socket, protocol);

try
{
while(true)
{
data = tcpStream.readNextADU(67);
if(data != null) {
System.out.print (".");

}
} // end while(true)
}
finally
{
System.out.println("Closing client ...");
try
{
o}
- catch (IOException e)
{

socket.close();

System.out.println("Could not close socket...");
return;

}
} /7 end try-finally
} // end main

«

/**
* Provides a hint message when the number of the command line arguments
* is wrong.

123

*

*/

public static void usageMessage() {

System.
System.
System.
System.
System.
System.

}

out.
out.
out.
out.
out.
out.

print ("Usage: java RClient <server name>") ;
println(" <server port>")- .

println();

println("Exaple: java RClient wvenus 9000");
printin("\tvenus - machine running the SOFT server")
println("\t9000 - venus machine port"),

} // end of class RClient

// end of file RClient.java

124

APPENDIX G - JAVA CODE FOR “PHASE FIVE”

[/===== e e e e e
// Filename: NSGServer.java

// Date: 28-Aug-99

"// Compiler: JUDK 1.2

[e e e e e e e e

import org.web3d.vrtp.dabp.*;
import org.web3d.vrtp.util.*;

import java.net.*;

import java.io.*;

/** ‘ ‘
* Main class for the NSG server. Enters an endless loop waiting
* for client requests.
*
* @author P.Fiabolis,G.Prokopakis
*/

public class NSGServer {

/*
* App main function.
*

* @param args: Command line param; Should have the port number.
* @exception IOException
*/

public static void main (String[] args) throws IOException {
ProtocolDescription protocol;

if(args.length != 1) {
usageMessage () ;
System.exit (0);

}

protocol = new ProtocolDescription("SOFTexp.xml");
ServerSocket server_socket;
InetAddress addr;

int counter = 1;

try { f .
server_socket = new ServerSocket(Integer.parseInt(a:gs[O]));,

while (true) {
Socket in_socket = server_ socket.accept();

addr = in_socket.getInetAddress();
System.out.printlin("Welcome " + addr.getHostName()):

125

try {
new NSGServeOne (in_socket, counter++, protocol);
y .
catch (IOException e) {
in_socket.close();
} B

}'// end while

}
catch (IOException e) {

System.out. prlntln("Cannot initialize server.

Exiting L")

System.exit (0);

}

} // end of main

/;
*

*/

public static void usageMessage() {
' System.out.println("Usage

* Message to display in case of invalid command line arguments.

java Server <port number>");

System.out.println();

System.out.println("Example:

} // end of

} // end of

java Server 9999");

usageMessage

class NSGServer

// end of file NSGServer.java

// Filename:

' // Date:

// Compiler:

NSGServeOne. java
20-Aug-99
JDK 1.2

import org.web3d.vrtp.dabp.*;:
import org.web3d.vrtp.util.*;

import
import

import java

import

import

java.
Java.
import java.
.util.Enumeration;
java.

java.

io.*;
net.*;
util.Hashtable;

util.Vector;

util.Calendar;

/**
* NSGServeOne

*

* An instance of thls class is running for every cllent connected to
the

* NSGServer. Reads from an ADUStreamTCP stream. Each ADU is transformed
to

* a byte array and retransmltted to the other cllents currently

connected.
*

* Qauthor P.Fiabolis, G.Prokopakis
*/

class NSGServeOne extends Thread {

/**
* Unique ID for each thread. For the moment this is a 51mple counter
*/

int threadlID;

J**
* Stream where thls thread will wrlte the NSG's stored in the
repository.

*/

OutputStream me;

/** ‘
* Table holding the ports for all conected cllents Common for all
threads '

*/
static Vector castTable = new Vector ();

/** .)

* Table holding SG data sent from clients. Common for all threads -
*/

static NSGRepository table = new NSGRepository();

./**

~* Semaphore for thread exit.
*/

‘boolean stopThread = false;

/-k.*
* Socket associated with this thread.
*/

Socket threadSocket,

/**
* DaBP ‘stream to read from. We can read ADUs directly from here.
*/

ADUStreamTCP tcpStream;

/**
* Represents one ADU read from the network.
*/

ADUData data;

127

/* :
* NSGServeOne
* .
* Class constructor. Initialize input and output streams, adds this
client ' » R ,

* to the client pool, and starts the thread execution.

* A NullPointerException occurs after readlng a number of packets
(265)
Reason is not known for the moment but it is ellmlnated when a
time delay is added to the sending cllent (SClient) between packet

sendlng

@param in_socket: Socket for thlS thread connectlon)
@param id: unique ID for this cllent For the moment just a counter
@exception IOException

* ok * * ¥ %

* / .
public NSGServeOne (Socket in _socket, int id, ProtocolDescrlptlon

protocol)
throws IOException {

threadID = id; :
threadSocket = in_socket;

/* // try to increase the input buffer size
System.out.println("Buffer size 1 = " +
threadSocket. getRecelveBuffer51ze()),

threadSocket. setRece1veBuffersze(threadSocket getRecelveBuffer81ze() *
3):

System.out.println("Buffer size 2 = " +

threadSocket. getRecelveBufferslze()),

*/ :
me = new DataOutputStream(1n_socket.getOutputStream());
// Bdd the new comer to the client list.
castTable.addElement (me) ;
tcpStream = new ADUStreamTCP(in_socket, protocol);
start ();

}

/*

* Waits until a packet arrives. Thén;‘it starts reading ADUs, stores
them, and .

* retransmits them to the other cllents When done (1000 reads)
calculates” : o

* the duration.
*

*/
public void run() {

int len = 0;
OutputStream out;

Calendar begin, end;
byte[] byteData;

try {

// late-comer support not needed for this experiment.

InputStream is;

// Wait until there is something avilable to read.
while(len == 0)

{
try

{
is = threadSocket.getInputStream();

len = is.available();

.catch (IOException ioe)

{

System.out.println("Cannot get input stream ...");
closeThread() ;

} ,
} // end while(len == 0)

-// Start the timer.
begin = Calendar.getInstance():;
System.out.println("Timer started ...");

int counter = 0;

while(!stopThread)

A
try

{
data = tcpStream.readNextADU(67);

if(data != null) {

“try {
Object val = table.put(data.get("Tag"), data):;
}

catch (FieldNotFoundException fnf) {
System.out.println("Field not found ...");

}

Enumeration enum = castTable.elements();
. byteData = data.getBinaryData():;

while (enum.hasMoreElements ()) {
out = (OutputStream)enum.nextElement ()

if (out != me) {
out.write (byteData);

}

129

} // end while ’ .

counter++; .
if (counter >= 120000) {
end = Calendar.getInstance();

long startTime =
(begin.get(Calendar.HOUR)*60*60*1000) +

(begin.get (Calendar.MINUTE) *60%1000) +
(begin.get (Calendar.SECOND) *1000) +

(begin.get (Calendar.MILLISECOND)) ;
long endTime =

(end.get (Calendar.HOUR) *60*60*1000) +

(end.get(Calendar.MINUTE)*60*1000) + B B ‘
o (end.get (Calendar.SECOND) *1000) +
(end.get (Calendar.MILLISECOND));

long duration = endTime - startTime;
System.out.println("Duration = " + duration);

System.out. prlntln("Gobdbye " + threadID);
System.out. prlntln("lOOO packets read ..."):
closeThread () ;

-}
}-// end if

catch (IOException eee)

{ ‘ .
System.out.println("Goodbye " + threadlID):

System.out.println("Could not read next ..."):
closeThread(),
}

, } // end while(true)

} ;
finally { |
. closeThread(); , , j
} ‘ o S . |
) . |

. , , v ,

\

/* ‘ _
* Close the thread after finishing connection or failure.
* o . .

*/

public void closeThread() {

try {

threadSocket.close():;
castTable.removeElement (me);

130

stopThread = true;
}
catch (IOException e) {

System.out.println("ERROR: Could not close socket @
closeThread");

}
}
} // end NSGServeOne

// end of file NSGServeOne.java

131

132

APPENDIX H — JAVA CODE FOR TESTING CLIENTS

[/= e e e e e
// Filename: SClient.java
// Date: 24-Rugust-99

// Compiler: JDK 1.2 ,
// Comments: Simple client sending packets to the SOFT server
// ‘ Used for the empirical testing.

import java.net.*;
import java.io.*;
import java.util.*;

public class SClient
{
public static void main(String[] args)
{ ‘ -
// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {
usageMessage();
System.exit (0);
} .

InetAddress addr;
Socket socket;
FileInputStream fis;
DataOutputStream dos;

try
{
addr = InetAddress.getByName (args([0]);
System.out.println("addr = " + addr);
} .

catch (UnknownHostException uhe)

{

System.out.println("Unknown Host ...");
return;

}

try
{
socket = new Socket (addr, Integer.parseInt(args[l]))}

-catch (IOException ioe)
{

System.out.println("Cannot create the socket ...");
return;

}

try
{

133

// packet.exp contains a byte array extracted from a C++

client. : : ‘ . ,
// this packet corresponds to a transformation.
fis = new FilelInputStream("packet.exp"”);

}

catch(FileNotFoundException fnfe)

{
System.out. prlntln("Flle packet exp not found ")

try
{

} .
catch (IOException ioe)

{
}

return;

socket.close();

System.out.println("Can not close socket ...");

} N
byte[] b = new byte[65535];: , '

int len;

try

{
len = fis.read(b):;
dos =

new DataOutputStream(socket getOutputStream()),

for(int i = 0; i < 120000; i++)
{ .
dos.writelInt (len); :
dos.write(b, 0, len);
} // end for

System.out.println("Done");
3 ‘
catch (IOException ioe)
{

System.out.println("Can‘not fead file ...")}
} .

try
{

}

catch (IOException ioe)

{

socket.close();

System.out.priﬁtln("Can not close socket ...");
return; ‘ ‘

}

} // end main

public static void usageMessage() {
System.out.print {"Usage: java SClient <serxver name>");

134

System.out.println(" <server port>");

System.out.println();

System.out.println("Exaple: java SClient venus 9000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port"); :

}

} // end of class SClient

[/<= m e
// Filename: RClient.java
// Date: 24-RAugust—-99

// Compiler: JDK 1.2
// Comments: Simple client receiving packets from the SOFT server
// Used for the empirical testing.

import java.net.*;
import java.io.*;

public class RClient
{ .
public static void main(String[] args) throws IOException
{ ,
// args[0] = Server name
// args[l] = socket number

if(args.length != 2) {
usageMessage () ;
System.exit (0);

}

InetAddress addr;
Socket socket;
DataInputStream in;

try

{
addr = InetAddress.getByName (args[0]);
System.out.println("addr = " + addr);

catch (UnknownHostException uhe)

-1 : ‘ :
System.out.println("Unknown Host ...");

return;
} .
try
{
}

socket = new Socket(addr, Integer.parselnt(args[1l]}));

135

catch (IOException ioe)
1 .
’ System.out.println("Cannot create the socket ...");
return; i :

}

byte[] b = new byte[65535];
int len; . :

in = new DataInputStream (socket.getIhputStream());

try
{

while (true)
{ o
len = in.readInt();

byte[] buf = new byte[len];
in.readFully (buf, 0, len);

, } // end while(true)
}
finally
{
. try
{

} .

catch (IOException ioe)

{ o

System.out.println("Can not close socket ...");:
return;) ‘

soqket.close();

}
} // end main

public static void usageMessage() {

System.out.print ("Usage: java RClient <server name>");
‘System.out.println(" <server port>"); .
System.out.println():; .

System.out.println("Exaple: java RClient venus 9000");
System.out.println("\tvenus - machine running the SOFT server");
System.out.println("\t9000 - venus machine port");

}
} // end RClient

136

LIST OF REFERENCES

[ALEX78] Alexander, A. 1978. “Impacts of Telemation on

Modern Society.” Proceedings 1°° IFToMM

Symposium, Vol. 2.
[BROL97] Broll, Wolfgang. 1997. “Populating the

Internet: Supporting Multiple Users and Shared -

Applications with VRML.” Proceedings of the

VRML' 97 Symposium (Monterey, CA, 24-26
February, 1997). |
[CAPPO6] Capps, M. et al. 1996. ™“Distributed Inter-

operable Virtual Environments.” Proceedings of

the Third International Conference on

Configurable Distributed Systems (Annapolis,

Maryland, 6-8 May, 1996).

[CHEW98] Chew,” F. 1997. The Java/C++ Cross—Referencer
Handbook. Prentice Hall. |

[DeFA98] DeFanti, T. et al. 1998. Personal Tele-

Immersion Devicés. IEEE.

[DERT98] Dertouzos, M. 1998. What Will Be. Harper
Collins, New York, NY.

[ECKE98] Eckel, B. 1998. Thinking in Java. Prentice

Hall.

137

[EDWAS7]

[FLANS7]

[FOST98]

[FUCH98]

[HILLS7]

[LEAS6]

[LEA97]

[MACIO98]

Edwards, J. and DeVoe; Deborah. 1997. 3—tier

Client/Server at work. John Wiley & Sons.

Flanagan, D. 1997. Java in a Nutshell. O’Reilly

and Associates.

Foster, 1I. end Kesselman, C. 1998. The Grid: -

Bluprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers.

Fuchs, H. et el. >199é._ “The Office‘ of the
Future:v’A Unified Appreach to Image-Based
Modeling: aﬁd. Spatially immersiVe Displays."

Proceedings SIGGRAPH 98 Conference. Annual

Conference Series. ACM SIGGRAPH, Orlando,FL.
Hill, J. and Jensen, J. 1998. “Telepresence
Technology in Medicine:'- Principles and

Applications.” Proceeding of the IEEE, Vol. 86,

No. 3, March 1998.

Lea, R. et al. 1996. Java for 3D and VRML

Worlds. New Riders Publishing.

Lea, R. et al. “Community Place: Architecture

and Performance.” ‘Proceedings of the VRML’97

Symposium (Monterey, CA,f24~26 February, 1997).

MacIntyre, B. and Feiner S. = 1998. “A

Distributed 3D Graphics Library.” Computer

138

[MYER97]
[PAUL98]

[PIER98]

[SCHA99]

[STAL98]

[TOFF80]

[ZYDAST]

Graphics Proceedings, Annual Conference Series
of 1998.

Meyers, S. 1996. More Effective C++. Addison

Wesley.

Paul, S. 1998. Multicast on the Internet and

Its applications. Kluwer Academic Publishing.

Pierce, J. et al. 1998. “Image Plane
Interaction Techniques in 3D Immersive

Environments.” Proceedings of 1997 Symposium on

Interactive 3D Graphics, (Providence, Rhode

Island, April 27-30, 1997).

Schach, S. 1999. Classical and Object-Oriented

Software Engineering with UML and Java. McGraw-

Hill, Fourth Edition.

Stallings, W. 1998. Operating Systems,

Internals and Design Principles. Prentice Hall,

Third Edition.

Toffler, A. 1980. The Third Wave. Bandam Books.
Zyda, M. and Macedonia, M. 1997. “A Taxonomy
for Networked Virtual Environments.” Periodical

IEEE Multimedia, Vol. 4, No. 1, Jahuary - March -

1997.

139

[WEB]

10
11
12

13
14

15

16

Www.cis.upenn.edu/~kamberov/doc/teleimmersion.html

Www.internet2.edu/html/mission.html

Www.sgi.com/fahrenheit/SCene.pdf -

Www.pyramidsystems.com

Www.advanced.org/téleimmersion/board/cubelabel.html

Www.cs.unc.edu/Reséarch/stc/teleimmersion/ihdex.html

Www.advanced.org/teleimmersion/board/cubeloﬁer;htmi

Www.evl.uic.edu/pape/CAVE

Www.pyramidsyStéms.com/idesk.html

Www.iuinfo.indiana.edu/ocm/releases/coxuits.htm

Cs.franklin.edu/Faéulty/Giuiiani/mba682/~cgriggs/

t£s1d003.htm

Www.merl.com/projects/spline

, rored /4dk /1.2 /docs/api

140

BIBLIOGRAPHY
Berzins, V. 1995. Software Mérgiﬁg and Slicing. IEEE.

Booch, G. and Rumbaugh, J. and Jacobson, I. 1999. The

Unified Modeling Language User Guide. Addison Wesley.

. Brooks, F. 1995. The D@%hidal Man-Month, Second Edition.‘

‘Addison-Wesley.
Couch, J. 1999. JAVA 2 Networking. McGraw-Hill.

D’Sduza, D. and Wills A. 1999. Objects, Components and

Frameworks with UML. Addison Wesley.

Deitel, H. and Deitel, P. 1994. C++ How to Program. Prentice
Hall. |

N
Deitel, H. and Deitel, P. 1998. JAVA How to Program.

Prentice. Hall.

Eckel, B. 1998. Thinking in JAVA. Prentice Hall.

141

'Edwards, J. 1997. 3-Tier Client/Server At Work. John Wiley.

Flanagan, D. 1997. JAVA in a Nutshell, Second Edition.

0’Reilly.

Foster, 1I. And Kesselman, C. 1999. The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann.

Gordon, R. 1998. ‘Essential JNT, Java Native Interface.

Prentice Hall.
IEEE. 1997. Software Engineering. IEEE Standards Collection.
Larman, G. 1998. Applying UML and Patterns. Prentice Hall.

Lea, R. and Matsuda, K. and Miyashita, K.k1996. Java for 3D

and VRML Worlds. New Riders.
Meyers, S. 1996. More Effective C++. Addison Wesley.

Meyers}‘fS. 1998. Effective C++, Second Edition. Addison

Wesley.

Myers, G. 1979. The Art of Software‘Testing. Wiley.

142

Oaks, S. and Wong, H. 1999. JAVA Threads, Second Edition.

0’Reilly.

Paul, S. 1998. Multicasting on the Internet and Its

Applications. Kluwer Academic Publishers.

Rago, S. 1993. UNIX System V Network‘Programming. Addison

Wesley.

Robbins, K. and Robbins, S. 1996. Practical UNIX
Programming, A Guide to Concurrency, Communication and

Multithreading. Prentice Hall.

Rumbaugh, J. and _Jacobson,‘ I. and Booch, G. 1999. The

Unified Modeling Language Reference Manual. Addison Wesley.

Schach, S. 1999. C(Classical and Object-Oriented Software

~ Engineering with UML and C++, Fourth Edition. McGraw-Hill.

Schacﬁl 'S. 1999. Classical and Object-Oriented Software

Engineering with UML and JAVA, Fourth Edition. McGraw-Hill.

143

Stallings, W. 1998. Operating Systems, Internals and Design

Principles. Prentice Hall, Third Edition.

Stevens, R. 1993. Advanced Programming in the UNIX

Environment. Addison Wesley.

Stevens, R. 1998. UNIX Network Programming, Networking

: API’s: Sockets and XTI, Vol 1, Second Edition. Prentice

Hall.

Stevens, R. 1999. UNIX Network Programming, Interprocess

Communication, Vol 2, Second Edition. Prentice Hall.

‘ Stroustrup, B. 1997. The C++ Programming"Language, Third

Edition. Addison Wesley.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center . .
8725 John J. Kingman Rd., STE 0944
~Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School

- 411 Dyer Rd.

Monterey, CA, 93943-5101

" Professor, Michael J. Zyda.
Code CS/Zk

Naval Postgraduate School

Monterey, CA, 93943

Research Assistant, Michael V. Capps . .
Code CS/Ca

Naval Postgraduate School

Monterey, CA, 93943

Senior Lecturer, John S. Falby.
Code CS/Fa

Naval Postgraduate School

Monterey, CA, 93943

Jaron Lanier.« ¢ ¢ ¢ e + 4 e 4 e .
Advanced Network Services

200 Business Park Drive

Armonk, NY 10504

Brigadier Constantinos Gerokostopoulos .
Research and Informatics Corps

Hellenic Army General Staff

Stratopedo Papagou

Holargos 15561

GREECE

Panagiotis Fiambolis
Ithakis & Dodekanisou 2A '

Gerakas 15344

' GREECE

145

8 George Prokopakis S |
Smyrnis 1 o '
Zografou 15772
GREECE

9 Chairman, Code CS . . . R |
Naval Postgraduate School : : ' '
Monterey, CA, 93943

146

