U.S. Coast Guard Research and Development Center

1082 Shennecossett Road, Groton, CT 06340-6096

Report No. CG-D-24-99, II

PREDICTING THE BEHAVIOR OF ORIMULSION SPILLED ON WATER

VOLUME II

APPENDIX I:	WORKPLAN FOR PROJECT
APPENDIX II:	PLACKETT-BURMAN DESIGN FACTOR EFFECT TABLES
APPENDIX III:	RESPONSE SURFACE DESIGN MODEL CALCULATIONS
APPENDIX IV:	POLYCYCLIC AROMATIC HYDROCARBON DATA/RESPONSE SURFACE EXPERIMENTS
APPENDIX V:	ENERGY DENSITY SPECTRA FOR FLUME WIND-WAVE SETTINGS
APPENDIX VI:	DATA FROM FLUME TESTS

FINAL REPORT JULY 1999

This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

Prepared for:

U.S. Department of Transportation United States Coast Guard Marine Safety and Environmental Protection (G-M) Washington, DC 20593-0001

ΝΟΤΙCΕ

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

This report does not constitute a standard, specification, or regulation.

Marc B. Mandler, Ph.D. Technical Director United States Coast Guard Research & Development Center 1082 Shennecossett Road Groton, CT 06340-6096

Technical Report Documentation Page							
1. Report No.	r 3. Recipient's Catalog No.						
4. Title and Subtitle	5. Report Date July 1999						
PREDICTING THE BEHAVIOR OF C WATER, VOLUME II	ORIMULSION SPILLED ON	6. Performing Organization Code					
		Project No. 4120.11					
7. Author(s)		8. Performing Organization Report No.					
9. Performing Organization Name and	T	10. Work Unit No. (TRAIS)					
Address Battelle	U.S. Coast Guard	ant Conton					
397 Washington St.	1082 Shennecossett Roa	d Grant No. DTRS-57-95-G-00063					
Duxbury, Massachusetts 02334	Groton, CT 06340-6090	5					
12. Sponsoring Organization Name and	13. Type of Report & Period Covered Final						
U.S. Department of Transportation United States Coast Guard Marine Safety and Environmental Prote Washington, DC 20593-0001	14. Sponsoring Agency CodeCommandant (G-MOR)U.S. Coast Guard HeadquartersWashington, DC 20593-0001						
15. Supplementary Notes							
The R&D Center's technical point of cont	act is Mr. Ken Bitting, 860-4	41-2733, email: kbitting@rdc.uscg.mil.					
16. Abstract (MAXIMUM 200 WORDS) Orimulsion is a fuel that is a bitumen-in-water emulsion made of approximately ~70% natural bitumen and ~30% fresh water. Orimulsion is of great interest to electric power utilities because of its competitive cost and pricing structure. Previous work on Orimulsion has determined it may largely float, remain suspended, or settle depending on the spill conditions. In this study, the mechanisms at work and the relative importance of different spill conditions (e.g., salinity, temperature, energy, Orimulsion concentration, particulate load, and particulate type) are investigated by (1) forty-seven benchtop scale (3L) experiments conducted and evaluated using design of experiment principles and (2) five flume scale (4000L) experiments. The insight gained from these laboratory experiments is interpreted in light of the limitations inherent in laboratory spills into confined vessels (e.g., vessel wall effects and absence of dilution) in order to predict the gross behavior that might be anticipated if Orimulsion were spilled in a 'real world,' open water setting. The most important environmental parameters identified, probably listed in order of their descending importance, were determined to be the receiving water salinity, receiving water energy, and presence/absence of suspended mineral matter. Interactions between these parameters determine whether most bitumen will ultimately float on or near the surface, remain suspended within the water column, or settle through the water column. The gross behavior of Orimulsion under different combinations of these parameters is predicted. These predictions provide the best available guidance to contingency planners and spill responders.							
17. Key Words Orimulsion, oil spill, bitumen, PAH, pet hydrocarbons, emulsion, design of expe	troleum, 18. Di riment, flume test Natio Sprin	stribution Statement document is available to the U.S. public through the onal Technical Information Service, ngfield, VA 22161					

9. Security Class (This Report)	20. Security Class (This Page)	21. No of Pages	22. Price
UNCLASSIFIED	UNCLASSIFIED		
Earm DOT E 1700 7 (9/72) B	correduction of form and completed p	and in outborized	

Form DOT F 1700.7 (8/72) Reproduction of form and completed page is authorized.

[This page intentionally left blank.]

APPENDIX I

Detailed Workplan

Predicting the Behavior of Orimulsion Spilled on Water

EXECUTIVE SUMMARY

Orimulsion, an alternative fuel for power generation, is currently being used in countries such as Canada, Italy, Denmark, Japan and China and has been tested in the U.S. in Florida and Illinois. To each of these locations, Orimulsion is being shipped in ocean going tankers. In order to assess the required countermeasures in case of a spill, a thorough understanding of its behavior when released in water is required." Bench top and flume tank studies to date have demonstrated the complexities surrounding its behavior in the event of a release. For example, previous studies have shown that receiving water salinity will markedly effect Orimulsion's behavior. However, the impact and interactions of potentially important independent variables other than salinity, e.g., water temperature, Orimulsion concentration, particulate load, particulate type and turbulence of the water are poorly known. As a result, the need exists to rigorously evaluate the behavior of Orimulsion under a wide range of environmental conditions. This workplan describes a joint study devised by Battelle Memorial Institute, Bitor America Corp. Bitúmenes Orinoco, S.A., Intevep S.A., United States Coast Guard, and National Oceanographic and Atmospheric Administration and co-funded by Bitor America Corp. and the United States Coast Guard Research and Development Center.

The workplan consists of two principal phases - a benchtop study phase and a meso-scale flume tank study phase. The benchtop phase utilizes design of experiment (DOE) principles in order to reduce the number of experiments necessary to achieve a statistically valid result. These experiments will be conducted in 4L glass vessels. Initially, the benchtop experiments will include a 12-run Plackett-Burman screening design phase in which the gross behavior of Orimulsion will be evaluated under a wide range of environmental conditions represented by the six independent variables of interest (salinity, temperature, Orimulsion concentration, particulate loading, particulate type, and turbulence). The screening design will determine if any of the six independent variables has no impact on Orimulsion's behavior, as measured by particle growth and its 'compartmentalization' (i.e., does it float, sink, remain suspended, Four high Orimulsion concentration (50,000 mg/L) dissolve, or stick to walls) after 24 hours. experiments will also be performed during this phase. Those variables that influence Orimulsion's behavior will subsequently be evaluated and quantified in a 3-level factorial, face-centered cube design phase that will include up to 47 additional experiments. The objectives of the 3-level design are to (1) quantify the influence of the individual independent variables and interaction between independent variables on Orimulsion's behavior and (2) help focus the conditions under which the meso-scale flume tank studies will be conducted in the second phase of the study.

In the meso-scale flume tank study phase, a limited number of experiments will be conducted in Battelle's 4000L flume tank under environmental conditions identified as critical in the benchtop phase. The results of the flume studies will be used to ground truth the benchtop studies under conditions that more closely mimic open water conditions. Prior to the Orimulsion release experiments, an attempt will be made to quantify the turbulent diffusive energy within the flume tank under varying wind speed, wave height, and wave frequency conditions. This information is necessary in order to project the results from the flume experiments to open water conditions. Realizing the shortcomings of any laboratory experiments in mimicking nature, the ultimate objectives of this study are to improve the understanding of Orimulsion's behavior when spilled on water and to provide practical guidelines for responders in the event of an Orimulsion spill under a variety of conditions.

TABLE OF CONTENTS

1. Introduction	1
2. Scope of Study	1
3. Phase II - Evaluation of Factors Effecting The Fate of Orimulsion	2
3.1 Introduction to Experimental Design	2
3.2 Evaluation of Variables	3
3.2.1 Independent Variables	3
3.2.1.1 Water Salinity and Temperature	3
3.2.1.2 Orimulsion Concentration	4
3.2.1.3 Particulate Amount and Type	5
3.2.1.4 Energetics	6
3.2.1.5 Summary of Independent Variables to be used in Benchtop Experiments	7
3.2.2 Dependent Variables	7
3.2.2.1 Bitumen Particle Size	7
3.2.2.2 Mass Balance Measurements	8
3.2.2.3 Fate of Polycyclic Aromatic Hydrocarbons	9
3.2.2.4 Summary of Dependent Variables to be Measured in Benchtop Experiments	9
3.3 Design of Experiment Principles	10
3.3.1 Screening Designs	10
3.3.2 Two-level Factorial Design	12
3.3.3 Three-level Response Surface Design	13
3.3.3.1 Overview and Justification for this Approach	13
3.3.3.2 Types of Three-level Response Surface Designs	14
3.4 Utility of the DOE Phase of Experimentation	16
4. Design of Benchtop Experiments	16
4.1 Overview and Description of Proto-Type Benchtop Apparatus	16
4.2 Vessel Construction	17
4.3 Salinity Determination and Maintenance	18
4.4 Temperature	18
4.5 Orimulsion Concentration	18
4.6 Particulate Load	18
4.7 Energetics	19
5. Analytical Methods During Benchtop Experiments	19
5.1 Mixing and Characterization of Fresh Orimulsion	19
5.1.1 Density	19
5.1.2 Viscosity	19
5.1.3 SARA Analysis	19
5.1.4 Particle Size Analysis	20
5.1.5 Gas Chromatographic Analysis of Fresh Orimulsion	21
5.1.6 Polycyclic Aromatic Hydrocarbons in Fresh Orimulsion	21
5.1.7 Volatile Organic Compounds (VOC)	21
5.2 Collection and Analysis of Benchtop Samples	23
5.2.1 Collection of Samples during Benchtop Experiments	23
5.2.2 Measurement of Particle Size	23
5.2.3 Extraction of Water Samples for TPH and PAH	24

.

TABLE OF CONTENTS (continued)

	5.2.4	Measurement of total and dissolved TPH	24
	5.2.5	Measurement of total and dissolved PAH	25
	5.2.6	Measurements for Mass Balance	
	5.2.7	Reporting of Results	27
6.	Phase	III - Meso-Scale Flume Tank Experiments	
(5.1 Intr	oduction	
(6.2 San	ple Collection and Preparation	
(6.3 Pha	se IIC – Evaluation and Quantification of Energy within the Flume Tank	
7.	Time	Considerations	
8.	Refer	• ences	

LIST OF FIGURES

Figure 4-1: Photograph showing prototype vessels resting on and seated in a custom made orbital shaker	
tabletop capable of holding four vessels.	17
Figure 5-1: Close-up of Mastersizer X internal flow through cell (A) and circulating unit (B).	20
Figure 5-2: Example of floating surface patty (arrow) formed after 24 hours in a preliminary experiment	
involving 17,000 mg/L Orimulsion in seawater.	26
Figure 6-1: Battelle's 4000 L flume tank showing conditions producing spilling breaking waves	28

LIST OF TABLES

Table 3-1:	Summary of Independent Variables to be use in our Benchtop Experiments.	7
Table 3-2:	Inventory of proposed independent and dependent variables.	. 10
Table 3-3:	Twelve-run Plackett-Burman design	. 11
Table 3-4:	Factors assigned to the first six columns of Table 3-3 and sorted by temperature.	. 11
Table 1-4':	High Orimulsion concentration experiments to be conducted concurrently with those in Table 3-4	. 12
Table 3-5:	Example of a four-factor two level factorial design	. 13
Table 3-6:	Size of response surface model necessary for 2 to 5 independent variables.	. 14
Table 3-7:	Hypothetical three-factor face-centered cube design	. 15
Table 5-1.	Target analyte list for characterization of fresh Orimulsion.	. 22
Table 5-2.	Surrogate Internal Standard (SIS) spiking information	. 24
Table 5-3.	Recovery Internal Standard (RIS) spiking information	. 24
Table 6-1.	Possible Sampling and Testing Scheme for Orimulsion [®] during Phase III Flume Testing	. 29
Table 7-1:	Inventory of Tasks to be Performed in each Phase of the Study	.31

1. INTRODUCTION

In the event of an oil spill at sea, most oils will float and rapidly begin to undergo fairly predictable modifications to their physical and chemical properties collectively known as weathering. Most oil spill contingency measures currently available have been developed for floating oils and their respective emulsions. Recently, however, there is increased interest in predicting the behavior of a relatively new, petroleum-derived fuel known as Orimulsion.

Orimulsion is a fuel that is an emulsion made of approximately 73% natural bitumen and 27% fresh water that is of great interest to electric power utilities because of its competitive cost and pricing structure. Orimulsion is in commercial use in other countries (e.g., Denmark, Canada, Japan, Italy, China, Lithuania, Barbados) but is not in use in the United States. At the present time, Florida Power and Light Co. has proposed to transport Orimulsion through Tampa Bay for their Manatee plant. The permit for that operation is being reviewed by the Governor of Florida and his Cabinet. If approved, FPL expects to bring Orimulsion into Tampa Bay in two years. In addition to FPL there are thought to be several other East Coast oil-fired power plants considering conversion to Orimulsion. As the potential for transport of Orimulsion in U.S. water is eminent, the need exists to better understand the fate of Orimulsion if it were to be accidentally spilled.

2. SCOPE OF STUDY

Orimulsion is classified as a Group V product along with other heavy oils called low API oils (LAPIO). Various benchtop scale studies of Orimulsion and other LAPIO fuels, in particular fuel oil #6, have been performed (Brown et al., 1995; Febres et al., 1995; Potter, 1995). Battelle's 1997 meso-scale (i.e., flume tank) study of LAPIO fuels included Orimulsion (Ostazeski et al., 1997a). During this study 14.2 L of Orimulsion was released into a 4000 L flume tank (3542 mg Orimulsion/L water) containing, on separate occasions, freshwater $(0 \, ^{\circ}/_{\infty})$ and salt water $(32 \, ^{\circ}/_{\infty})$. It was determined that the behavior of Orimulsion 100 when spilled in water is very different from other Group V products and as a result, it presents a variety of very challenging response scenarios.

The receiving water salinity was determined to be a critical factor effecting Orimulsion's behavior. In the fresh water flume test, the Orimulsion was observed to disperse in a black cloud of fine droplets that remained in suspension throughout the 120-hour experiment. In the sea water flume test, Orimulsion initially dispersed throughout the water column but within 15 minutes, a heavy viscous product composed of coalesced bitumen particles began to float on the surface. The surface slick continued to 'grow' by coalescence throughout the 120-hour experiment. The complex interaction of bitumen particle buoyancy, turbulence, and reduced effectiveness and concentration of the polyethoxylated nonylphenol surfactant in sea water was believed to allow the bitumen particles to either (1) coalesce and rise to the surface forming the viscous surface slick, (2) rise to the surface and then coalesce, or (3) a combination of these processes.

At this point, the behavior of Orimulsion in salinities representative of brackish estuaries is uncertain. Similarly, the effect that other potentially important variables, e.g., water temperature, Orimulsion concentration, particulate load, particulate type, and turbulence of the water (i.e., energetics), have on Orimulsion's behavior are not well known. Therefore in the event of a release, Orimulsion could be found to predominantly float, or sink, or remain suspended in the water column. The need to predict the fate of Orimulsion under a variety of environmental conditions is of critical importance for containment, recovery and spill modeling.

This workplan outlines Battelle's proposed approach to gaining an understanding of the important parameters that affect the behavior of Orimulsion when spilled on water. The objective of the study is to

investigate the weathering characteristics of Orimulsion in water, particularly as it relates to the ultimate fate of spilled Orimulsion. The project was proposed to consist of three phases, namely;

- D Phase I Design of Behavior Characterization Experiments
- D Phase II Evaluation of Factors Effecting Orimulsion's Fate in Water
 - Phase IIA design and conduct an appropriate number of benchtop experiments to evaluate the numerous independent variables effecting Orimulsion's fate based on design of experiment (DOE) principles
 - Phase IIB evaluate bench-top data using DOE principles to identify the most significant factors effecting the fate of Orimulsion.
 - Phase IIC further investigate and quantify flume tank energetics so that Phase III can be conducted under more representative wave and wind conditions (than previous flume experiments).
- Phase III Perform meso-scale flume experiments that focus on conditions which have the greatest effect on Orimulsion's fate in water (as based on the results of Phase II) and prepare a detailed comprehensive report of the entire study.

This report comprises the deliverable for Phase I of this study. The objective of this phase is to propose a detailed course of study for Phases II and III. Upon review and concurrence of this course of study by both the U.S. Coast Guard (USCG) and BITOR America Corp. (BITOR), Phase II will be initiated.

3. PHASE II - EVALUATION OF FACTORS EFFECTING THE FATE OF ORIMULSION

3.1 Introduction to Experimental Design

The independent variables identified as potentially impacting the fate of Orimulsion spilled in water were discussed and agreed upon at a meeting held at our Duxbury facility on Oct. 31, 1997 which was attended by BITOR, NOAA, and USCG representatives. These variables and their ranges of interest included:

Independent Variables	Range	Selected Values of Interest
water salinity	0-35 ppt	0, 17, 35 ppt
water temperature	0-30 °C	3, 15, 25 °C
Orimulsion conc.	1000-17000 mg/L	1000-16000 mg/L; 50,000 mg/L ^a
particulate loading	none to heavy	none, 20-120 mg/L
particulate type	calcite/kaolinite	calcite/kaolinite
water energetics	calm to heavy seas	static to dynamic

With six variables and 19 degrees of freedom an *ad hoc* approach (i.e., changing only one variable at a time while holding the others constant) would require 648 separate experiments. The costs and interpretation of such an approach would be impractical. Furthermore, this 'one variable at a time approach' ignores the interaction(s) that may exist among the individual variables. Therefore, an alternative approach was discussed, namely design of experiment.

^a It was recently suggested to include at least a couple of benchtop experiments with a very high concentration.

Design of experiment (DOE) is a discipline that incorporates statistics into the process of experimentation. DOE principles can be used to systematically vary a number of independent variables in order to evaluate their effect on dependent variables (Hicks, 1982). In the case of Orimulsion behavior in water, DOE can be used to establish the minimum number of bench-top experiments that can be used to evaluate the independent variables of interest in a statistically valid manner. DOE will also enable one to determine the existence of, and even quantify, interaction between variables.

3.2 Evaluation of Variables

It is important to distinguish between independent and dependent variables. Independent variables are those parameters that will be deliberately controlled while dependent variables are those parameters that are to be measured. In preparation for this study there were six independent variables identified as having a role in bitumen particle growth (see Section 3.1). It is appropriate to ask at this point, are these independent variables appropriate for the purposes of this study? In the Section 3.2.1, data and observations from Battelle's previous experiments on Orimulsion and those by other researchers are reviewed with the goal being able to justify including all of the variables selected for study.

3.2.1 Independent Variables

3.2.1.1 Water Salinity and Temperature

Most oceanic waters occur over a relatively narrow range of salinity (33-37 ppt). However, the salinity of coastal waters can vary widely due the competing influences of evaporation, precipitation and freshwater river discharge. Therefore, consideration of widely varying salinity (0-35 ppt) is certainly justified.

Temperature variation due to unequal heating with latitude and seasonality produces a significant range of surface water temperatures. The ocean is warmest $(25-30^{\circ}C)$ in the tropical and subtropical regions and coldest (down to $-1.7^{\circ}C$) near the poles. Given the latitude variation of the continental U.S., the potential for Orimulsion shipping into continental U.S. waters limits the temperature range to between approximately 10 and 25°C. Therefore, our plan to consider temperature over the range of 4°C to 25°C is more than adequate.

The most important influence of salinity and temperature on Orimulsion's behavior is probably related to their effect on density. It is well known that the density of seawater varies largely with salinity and is further impacted by temperature (see Knudson's Hydrographic tables, e.g., in Riley and Chester, 1971). Direct comparison of Orimulsion's measured density at different temperatures (e.g., 1.0176 at 0°C to 1.0048 at 25°C; Ostazeski et al., 1998) to a seawater density table reveal that bitumen particles are more dense than seawater with salinity < 20 ppt between 0°C and 20°C, and less dense than seawater with salinity > 25 ppt between 25°C and 30°C. Thus considering no other variables, this relationship would indicate that bitumen should sink when salinity < 20 ppt (between 0-20°C) and < 25 ppt (between 25-30°C). Oppositely, it should float when salinity > 20 ppt (between 0-20°C) and > 25 ppt (between 25-30°C).

This float/sink relationship was confirmed in the static vessel experiments by Febres et al. (1995) in which bitumen particles sank and floated when salinity was below and above 20 ppt, respectively. However, similar static vessel tests conducted by Brown et al. (1995) at 24.3°C showed that after an initial period of stirring the bitumen floated in all instances where the salinity exceeded 10 ppt. Thus, there is still some discrepancy in what to expect under different salinity conditions and water salinity and temperature are certainly important variables worthy of further study herein.

An important effect of salinity may lie in the influence that dissolved salts have on the effectiveness of the surfactant. This influence is evidenced by the coalescence of bitumen in seawater and lack of coalescence in freshwater (Ostazeski et al., 1997a). It can be envisioned that the dielectric potential of water varies with salinity and that charged ions in the water (i.e., salts) may reduce the effectiveness of the surfactant bound to bitumen particles.

3.2.1.2 Orimulsion Concentration

In addition to the float/sink behavior of Orimulsion, there is the issue of coalescence of bitumen particles. Among other factors, coalescence must be related to the effectiveness of the surfactant after being spilled. Orimulsion originally contains approximately 30% water (Jokury et al., 1995; Febres et al., 1995). When it is spilt into water the bitumen particles readily disperse, in other words, the water content increases drastically. A substantial proportion of surfactant is thought disassociate from the bitumen particles into the water (Potter, 1995). This process would seem to promote coalescence of bitumen particles if they collide. Theoretically speaking, the collision frequency of bitumen particles should be a function of (1) bitumen concentration, (2) energetics in the system, and (3) the buoyancy forces resulting from the salinity-temperature driven density differences between the water and the bitumen (as described above). Therefore, our experiments must include each of these factors.^b

Experiments have shown that when the Orimulsion concentration in water is high (>20,000 mg/L) it retains the properties of the emulsion (Febres et al., 1995). One can assume that under such conditions the surfactant concentration in the water and on the bitumen particle surfaces is high enough to prevent coalescence of bitumen particles. However, if the concentration is low (<10,000 mg/L) the Orimulsion looses the properties of an emulsion and bitumen particles become widely dispersed (Febres et al., 1995). Under these conditions the surfactant concentration in the water is too low to prevent coalescence of any colliding bitumen particles (i.e., the critical micelle concentration is not exceeded). Theoretically speaking, if the concentration of Orimulsion spilled is very low (<1000 mg/L) the extremely low concentration of bitumen particles in the water may preclude coalescence due to the scarcity of collisions between particles.

As noted above, collision frequency is undoubtedly also related to the turbulent energy of the system. (This is discussed further below.) However, if energy alone were responsible for collisions and the resulting coalescence of bitumen particles, then one would expect the same degree of coalescence to occur in freshwater as occurs in saltwater. However, the flume experiments of Ostazeski et al. (1997a; 1997b; 1998) have shown that under the same bitumen concentration and energetic conditions, the particle growth (particularly surface patty formation) is much greater in saline conditions.

The reason for the different responses in freshwater and saltwater has been theorized to be the result of a chemical 'denaturing' of the surfactant in saltwater (Ostazeski et al., 1998). However, this theory remains untested as there is no evidence of the chemical change. It could also be theorized that the degree of disassociation/partitioning of the surfactant from the bitumen may be greater in saltwater than in freshwater. However, Ostazeski et al. (1998) showed that the dissolved surfactant concentration remained the same and stable throughout both the freshwater and saltwater flume experiments. Therefore, the third factor controlling collision frequency may well lie in the density-float/sink

^b However, based upon experiments involving clay particles in water, other factors that undoubtedly play at least minor roles in collision frequency of bitumen particles are; (1) the particle distribution and shape (i.e., polydispersed populations and non-spherical particles generally exhibit greater collision potential than uniform particles) and (2) orthokinetic coagulation (i.e., the rate of collision as smaller particles are 'captured' by rising or falling larger particles).

relationship discussed above. One can envision how the number of collisions might be increased in saltwater where the buoyant bitumen particles will tend to rise, become more concentrated in the surface layer, and thereby increase the frequency of their collisions. On the other hand, in freshwater, where the bitumen particles remain dispersed (or even sink) the collision frequency is greatly reduced. Perhaps, under real spill conditions in freshwater the bitumen particles would sink to the bottom and, perhaps, even coalesced there (i.e., form a sinking patty). Notably, in the Ostazeski et al. (1997a; 1997b; 1998) freshwater flume tank experiments (with a finite and relatively shallow water depth) the tank's energetics kept the bitumen particles dispersed and thereby may have prevented their sinking (and perhaps their coalescence). Undoubtedly, a range of Orimulsion concentrations must be included in our experiments. The proposed range of 17,000 to 1000 mg Orimulsion/L water seems appropriate to test the effect of concentration on coalescence. However, it was recently suggested that a much higher concentration, ca. 50,000, also be included for observational purposes only. Therefore, at least a couple of tests will be performed at this concentration.

3.2.1.3 Particulate Amount and Type

Particulate matter in oceanic waters includes both organic (living and dead) and inorganic moieties. The concentration of particulates is typically reported as the total suspended solids (TSS). For our purposes, the importance of TSS in the water into which Orimulsion is spilled probably lies with their potential to increase coalescence of bitumen particles by increasing the potential for collisions. This phenomenon was observed by Brown et al. (1995) who showed that when excessively large concentrations of (Tampa Bay) sediment was added to agitated vessels significant quantities of bitumen became adhered to the finer particles and rapidly sank (due to the relatively high specific gravity of the mineral-bitumen particles). It was envisioned that suspended sediments in water provided a surfactant-free surface to which bitumen particles could adhere upon a collision.

The concentration of TSS in water will be a function of the particle size and the turbulent energy in the system (i.e., energetics). In addition, in the case of freshwater the concentration of some particulates will also be dependent upon their solubility (e.g., calcite added to freshwater will be subject to some dissolution). Furthermore, since energetic conditions in our experiments will vary we can expect the TSS concentration to vary. Therefore, we propose to add a given amount of particulate matter to each experiment that will represent the 'high' particulate load. The 'low' load amount to be added will be zero. The combined effect of the energetics and particle size of this material will then determine the amount of particulate in suspension. What amount is appropriate to add?

Open ocean concentrations of TSS are generally in the 0.5-250 μ g/L range (Riley and Chester, 1971). Concentrations in areas of deltaic sedimentation are much higher (e.g., Mississippi River average 270 mg/L; Milliman, 1990). We propose to select a 'high' concentration of around 270 mg/L.° We envision only a certain amount of this will stay in suspension, especially under the low energetic conditions.

What kind of material should be added? Theoretically speaking, smaller-sized particulate matter would seem to favor collisions and adherence of bitumen due to the increased surface area and ease of suspension of smaller particulates, e.g., clay- and silt-sized particles (< 2 and 2-62.5 μ m, respectively). This was also confirmed in the study by Brown et al. (1995) who showed that these fine grained particulates (< 75 μ m) demonstrated approximately three orders of magnitude greater adhesion potential than coarser grained particulates (> 75 μ m). Small particulates also comprise the majority of the lithogenous sediment load carried to coastal waters by rivers and these particles also have the longest residence time in seawater. Thus, only clay-to-silt size particles will be considered in these experiments.

^c Note that the 35,710 to 142,860 mg/L sediment concentrations used in the experiments by Brown et al. (1995) far exceeded the typical suspended solid (TSS) load in Tampa Bay waters which ranges from 20-120 mg/L.

Appendix I Page: 6

What kind of clay-silt size particles will be used? It had been suggested that two types of particulate material be used in these experiments, kaolinite and calcite. Kaolinite's selection is reasonable, as it comprises a significant proportion (10-20%) of the clay-sized materials in U.S. coastal marine sediments. The impact of additional particles (other than bitumen) in our experiments will confound the measurement of bitumen particle size. Kaolinite, like all clays, are platy minerals whose crystal structure consists of layers or sheets. Thus, the size of an individual kaolinite particle varies significantly depending on the orientation of the plates and the number of plates in a 'stack'. Our preliminary investigations have revealed that the particle size distribution of a kaolinite slurry exhibits maxima around 2 μ m and 25 μ m. We believe these maxima represent the 'side' and 'top' views of kaolinite particles. These populations of particles cannot be distinguished from bitumen; therefore, it must be realized that for the experiments in which kaolinite is added the particle diameters being measured will be a composite of bitumen, kaolinite, and potentially bitumen/kaolinite particles.

It had also been suggested that we consider the influence of a non-lithogenous particulate material, e.g., a precipitated material. Calcite is the most common carbonate mineral which forms from the precipitation of $CaCO_3$ from seawater. Since calcite is not carried by rivers to larger water bodies and deposited, it typically does not occur as TSS in most settings. In areas where carbonate sedimentation predominates (e.g., coastal Florida) it is possible to get calcite particles into suspension through disturbing of the bottom sediments. Therefore, we will still consider including calcite. However, one important factor that has not been considered in our earlier discussions is the fact that if we were to use a second type of particulate material, the particle size of it would be different from the other (e.g., kaolinite). Calcite will also partially dissolve in our freshwater experiments. Since particle size measurements are already going to be confounded by the presence of kaolinite, we will further confound the particle size results by using a second type of particulate material. Nonetheless, it is considered valuable to include calcite in order to address the issue of whether or not the type of particulate matter may influence the coalescence phenomenon. As will be evident in the Section 3.3, the use of both kaolinite and calcite introduces a discrete variable into the experimental design. In doing so, the options for the design become limited, therefore, we expect that the addition of calcite will be limited to the screening phase of the study.

3.2.1.4 Energetics

Previous benchtop experiments involving Orimulsion have been performed under static conditions or under gentle agitation by magnetic stirrers. No attempt was made to quantify the energy in the latter systems. In our study we intend to introduce some degree of turbulence to all of our benchtop experiments (i.e., no static tests). The objective of evaluating this variable is to determine the impact that turbulent energy has on the frequency of collisions between bitumen particles and between bitumen and clay particles. Therefore, the method used need only increase the propensity for collisions.

Naturally, there are a variety of ways in which turbulence can be introduced. We have considered many different options. We intentionally have not considered any method that required putting some type of agitator into the vessels (e.g., oscillating rings, propellers, etc.) due to the 'stickiness' of Orimulsion. We have also considered rotating flasks and based on earlier experience have eliminated this option. (Previous experiments with Orimulsion in seawater have produced a bitumen 'plug' in these vessels.) We have also had to consider the need to conduct a fairly large number of experiments on moderate volumes of water. Therefore, from a practical standpoint we propose to introduce turbulence to our benchtop experiments by using an orbital shaker table apparatus (described in Section 4.1). A brief discussion here is directed at understanding the turbulence within such a system.

A turbulence spectrum will include eddies of different amounts of energy and sizes. According to turbulence theory the largest eddies will cascade into smaller eddies and the smallest will dissipate by being converted into heat by the viscosity of the water (Delvigne, 1993). In our proposed shaker table

experiments the larger eddies created will be of the same order of magnitude as the disturbance, i.e., the diameter of the container. Recently, Intervep researchers (Masciangioli et al., personal communication, 1998) have conducted orbital shaker table studies in which the cascade process is believed to occur and the kinetic energy (K) of the water due to its rotation (i.e., not its oscillation due to the surface wave) could be estimated by the following equation:

$K = \pi \rho \omega^2 H R^4/4$

Where ρ =density of fluid, ω =mean angular velocity of the fluid, H=water depth and R=radius of vessel. They demonstrated that in a 1L vessel with H=12.7 and R=5 cm, rotated at 120 rpm, the water had an oscillation frequency of 25 rpm (reduced from the table's rpm's due to inertia, friction and other effects) and the K could be calculated from the equation above to be 0.52 Joules/m². The mean tangential velocity of a water particle 5 cm from the center of the vessel was determined to be 13 cm/sec. This was considered comparable to a 1.44 cm amplitude progressive wave having an orbital velocity of 16.5 cm/sec.

We have conducted some preliminary experiments using our prototype benchtop apparatus (described in Section 4.1). We propose that the following operating conditions be used: diameter of oscillation of 1.9 cm, shaker table frequencies of 10 and 100 rpm, shaker table oscillation periods of 6.0 and 0.60 sec, radius of 3L water of 9 cm, height of 3L of water is 14 cm. Calculations like those described above were performed on these operating conditions. These resulted in a K of 1.096 J/m². The mean tangential velocity of a water particle 8 cm from the center of the vessel was determined to be 17.5 cm/sec. This was considered comparable to a 2.1 cm amplitude progressive wave having an orbital velocity of 12.0 cm/sec.

3.2.1.5 Summary of Independent Variables to be used in Benchtop Experiments

Table 3-1 summarizes the evaluation of the independent variables that we propose to include in our benchtop experiments. All but one of the variables to be included are continuous variables, i.e., they can have any value over some numerical range. The complicating factors introduced by the inclusion of the discrete variable, particulate type, have been discussed. It was nonetheless decided to include this variable in the screening phase of our study (See below).

		EXPERI	MENTAL RA	NGE	
INDEPENDENT VARIABLES	FACTOR TYPE	LOW	HIGH	CENTER	UNITS
Salinity	continuous	0	35	17.5	ppt
Water temperature	continuous	4	25	14.5	°C
Orimulsion concentration	continuous	1000	17000	9000	mg/L
Particulate loading	continuous	0	270	135	mg/L
Particulate Type	discrete	kaolinite	calcite		
Water energetics	continuous	10	100	45	rpm

rable 3-1. Summary of muchemucht variables to be use in our dencintop experiment	Fable 3-1:	: Summary of	f Independent	Variables to	be use in our	r Benchtop E	xperiments
--	-------------------	--------------	---------------	--------------	---------------	--------------	------------

3.2.2 Dependent Variables

3.2.2.1 Bitumen Particle Size

The primary dependent variable that was to be measured is bitumen particle size. The method for collection and measurement of bitumen from the benchtop vessels is described in Section 5.2. As

mentioned above, bitumen particle size measurements will be complicated by the addition of kaolinite and calcite in some of the experiments. Our preliminary experiments have shown that it will be extremely difficult to describe bitumen particles separately from kaolinite or calcite, therefore, any particle size measurements will be a composite of bitumen, kaolinite (or calcite), and bitumen/kaolinite (or bitumen/calcite) particles. Nonetheless, with careful interpretation and knowledge of kaolinite's and calcite's particle size, it should still be possible to qualitatively recognize <u>changes</u> in overall particle size. However, absolute bitumen particle size cannot be determined in the experiments that will include kaolinite. Those experiments that will not include any kaolinite or calcite will allow for bitumen particle growth to be quantified.

The need to measure changes in particle size over the course of the experiments requires that either the measurements be performed at discrete intervals throughout the experiments or that experiment duration become another independent variable. The former seems like a more cost-effective approach since far fewer experiments will need to be conducted. We propose to measure particle size (bitumen, clay/calcite, or bitumen/clay/calcite) of the suspended material in intervals of 1, 3, 8 and 24 hours following the release of Orimulsion in our benchtop studies. These four intervals should provide the information necessary to determine if particle growth is occurring and at what relative rate for the variable conditions of our experiments. One potential problem with this approach is that after 24 hours it is possible that there will be too few suspended particles to provide a reliable particle size measurement.

Another confounding aspect of particle size measurements will be the formation of a wide range of particle sizes (e.g., from 2 micron clay particles to 10 cm diameter patties). Measurement of particles over such a wide dynamic range is virtually impossible. Only via techniques such as microscopy or sedimentation can this wide range of particles be measured. However, these techniques cannot be used in the case of bitumen since they would undoubtedly change the particles' environment to the point where the particle size would continue to change. Thus, the measurement technique must be relatively fast. The most appropriate technique is laser diffraction but this technique is unable to 'see' particles over such a wide dynamic range. (Even the most expensive units can only see from 0.4 to 2000 microns). The widest dynamic range available on our instrument is 1.5 and 600 microns (see Section 5.1.4). Our experience tells us that particles well above 600 microns can be formed in these experiments. Nonetheless, we will measure particle size throughout our experiments with the intention being to recognize changes rather than absolute particle diameters.

3.2.2.2 Mass Balance Measurements

We believe that bitumen particle size should not be the only dependent variable to be measured in these experiments. A variety of chemical and physical measurements can be made that will provide additional insight into the fate of Orimulsion when spilled under a variety of conditions. After all, this is the primary goal of these studies. First and foremost among these is an attempt to 'mass balance' the end products.

A mass balance of bitumen's fate was attempted in the previous flume experiments conducted in Battelle's 4000L tank. In the seawater study it was estimated that at the end of the 168 hour test that 65% of the bitumen occurred in the surface patty, $\sim 35\%$ was adhered to the walls near the water level, and $\sim 1\%$ was still within the water column. We intend to attempt a more thorough reconciliation of the fate of Orimulsion in our benchtop experiments. Our preliminary experiments using the prototype apparatus have shown that Orimulsion's bitumen will either

- (1) form a floating patty,
- (2) form a sinking patty,

- (3) coalesce with kaolinite and sink to form noncohesive grains of bitumen/kaolinite,
- (4) dissolve into the water,
- (5) remain suspended in the water, or
- (6) stick to the vessel walls in the vicinity of the water line (i.e., form a "bathtub ring").

We propose to quantify the bitumen that ends up in each of these six 'compartments' (see Section 5.2.6).

The weight of the floating patty will be measured at the conclusion of the experiment. It's moisture content will be determined in order to 'back out' the mass of bitumen in the patty. If a sinking patty has formed it will be weighed and analyzed in the same manner. Any sediment that accumulates in the bottom of the vessels after 24 hours will be collected and analyzed to determine the concentration of total petroleum hydrocarbons (TPH) that occurs in the 'sink' fraction. The TPH that occurs in suspension will be determined after 1 and 8 hours. The concentration of TPH that is dissolved (filtered water) and remains suspended (filtered material) in the water column after 24 hours will be determined on an aliquot of water. Finally, the amount of bitumen that has adhered to the vessel will be determined gravimetrically.

The fact that some bitumen will be removed from the vessels in the course of the experiments for particle size and TPH measurements implies that some small percentage of the bitumen will not be accounted for in the mass balance. Nonetheless, the results will provide a semi-quantitative and relative sense of just where the organic matter is going. These semi-quantitative results will provide the basic information necessary to predict Orimulsion's behavior under the wide range of conditions to be studied and also help to focus the meso-scale experiments. We believe that herein may lie the greatest practical yield of information from the benchtop experiments proposed herein.

3.2.2.3 Fate of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons are perhaps the most important chemicals of concern in terms of their potential impact to marine and coastal biota. These experiments provide the opportunity to investigate the influence of several variables on determining where the PAH's would end up in the event of an Orimulsion spill. We propose to determine the concentration of PAH that occur dissolved in the water and those which occur in the sediment at the conclusion of the benchtop experiments.

3.2.2.4 Summary of Dependent Variables to be Measured in Benchtop Experiments

In summary of the discussion above, Table 3-2 lists the dependent variables that will be measured in the course of the benchtop experiments.

DEPENDENT VARIABLES
particle size in suspension after 1 hour - µm
particle size in suspension after 3 hours - µm
particle size in suspension after 8 hours - µm
particle size in suspension after 24 hours - µm
Mass of floating bitumen/patty after 24 hours - g
Mass of sinking bitumen/patty after 24 hours - g
Mass of bitumen adhered to glass walls after 24 hours - g
TPH in sediment after 24 hours – mg/kg
TPH in suspension after 1 hours - mg/L
TPH in suspension after 8 hours - mg/L
TPH in suspension after 24 hours - mg/L
Dissolved TPH in water after 24 hours – µg/L
Dissolved PAH in water after 24 hours $-\mu g/L$

Table 3-2: Inventory of proposed independent and dependent variables.

3.3 Design of Experiment Principles

There are three basic levels to DOE, (1) screening level, (2) two-level factorial design and (3) three-level response surface design. The screening level experiments are intended to identify those variables that have the greatest effect on the outcome and thereby reduce the number of variables for a more sophisticated two- or three-level design study. In our case, screening would help identify which of the five independent variables (Table 3-1) have the greatest effect on the dependent variables (Table 3-2). Because we are monitoring multiple dependent variables some judgement may have to be made regarding the 'most important' ones if it is found that they are controlled by different independent variables. In this study it will be prudent to perform a set screening level experiments in order to potentially reduce the number of independent variables in some additional two- or three-level experimental designs.

3.3.1 Screening Designs

There are two types of screening techniques Plackett-Burman (PB) and fractional factorial (FF), with the former being much more widely used do to its ease of interpretation. PB designs are multi-variable, two-level designs that can be used to evaluate any number of variables up to four less than the number of experiments. Given the six independent variables determined for these experiments (Table 3-1) we propose to screen using a 12-run PB design as shown in Table 3-3. In Table 3-3 the '+' and '-' signs represent the high and low values for each of the dependent variables. Assigning these values to our list of five variables yields the design shown in Table 3-4.

Trial	Value	X1	X2	X3	X4	X5	X6	X7	X8	X 9	X10	X11
1	+	+	+	-	+	+	+	-	-	-	+	-
2	+	+	-	+	+	+	-	-		+	-	+
3	+	-	+	+	+	-	-	-	+	-	+	+
4	+	+	+	+	-	-	-	+	-	+	+	-
5	+	+	+	-	-	-	+	-	+	+	-	+
6	+	+	-	-	-	+	-	+	+	-	+	+
7	+	-	-	-	+	-	+	+	-	+	+	+
8	+	-	-	+	-	+	+	-	+	+	+	-
9	+	-	+	-	+	+	-	+	+	+	-	-
10	+	+	-	+	+	-	+	+	+	-	-	-
11	+	-	+	+	-	+	+	+	-	-	-	+
12	+	-	-	-	-	-	-	-	-	-	-	-

 Table 3-3: Twelve-run Plackett-Burman design

Table 3-4: Factors assigned to the first six columns of Table 3-3 and sorted by temperature.

Trial	Dependent Variable	S (ppt)	Temp. (°C)	Orim. conc. (mg/L)	Part. Loading (mg/L)	Energetics (rpm)	Part. Type	X7	X 8	Х9	X10	X11
2		35	4	17000	270	10	Kaol.	· -	-	+	-	+
6		35	4	1000	0	10	Kaol.	+	+	-	+	+
7		0	4	1000	270	100	Calc.	+	-	+	+	+
8		0	4	17000	0	100	Calc.		+	+	+	-
10		35	4	17000	270	100	Calc.	,+	+	-	-	-
12		0	4	1000	0	10	Kaol.	-	-	-	-	-
1		35	25	1000	270	100	Calc.	-	-	-	+	-
3		0	25	17000	270	10	Kaol.	-	+	-	+	+
4		35	25	17000	0	10	Kaol.	+	-	+	+	-
5		35	25	1000	0	100	Calc.	-	+	+	-	+
9		0	25	1000	270	10	Kaol.	+	+	+		-
11		0	25	17000	0	100	Calc.	+	-	-	-	+

In Table 3-4 the first six columns contain the assigned 'extreme' values for the independent variables. (The extreme Orimulsion concentration, 50,000 mg/L, is not included in this design-see below). Using these extremes is considered to be an important part of any DOE as it will make it easier to recognize the variables which have the greatest effect. Examination of Table 3-3 reveals that there is a balance among all of the variables so that each variable is paired with each other variable's extreme values. While it would be most appropriate to conduct the experiments (trials) sequentially and in a random order this is considered impractical given the need to minimize costs. Since temperature is the most difficult parameter to control, we propose to perform two sets of 6 experiments to be conducted at $4^{\circ}C$ and $25^{\circ}C$.

The last five columns in Table 3-4, the unassigned columns, will be used to measure the "noise" (or standard error of the factor effect; S_{FE}) within the system. The effect of these unassigned factors will also provide a means of assessing the presence of a large interaction between variables.

The dependent variables that will be quantified in the course of the 12 PB design experiments include all of those listed in Table 3-2. Calculation of the t-value and 95% confidence limits of the S_{FE} will provide a means of identifying and ranking those independent variables that have a significant effect on each of the dependent variables being measured. Interpreting which independent variables lead to the highest or lowest concentrations of TPH or PAH, or greatest patty weight after 24 hours will be straightforward.

However, an evaluation of the particle growth, i.e., particle size at different times in the course of the experiments (1, 3, 8 and 24 hours) will be more difficult since it requires qualitative analysis of four different results. We intend to synthesize the particle size results for each individual time period in order to identify/rank the most important variables leading to increased particle size throughout the entire experiment. Interpretation of these variables on particle growth will be further complicated by the presence of kaolinite/calcite in some of these runs.

It can be anticipated that the PB screening process will help to identify the three to five most significant independent variables that effect each of the dependent variables over 24 hours. However, as mentioned above, because we are monitoring multiple dependent variables some judgement will have to be made regarding the 'most important' dependent variables, particularly if it is found that they are controlled by different independent variables. In any case, in having eliminated some variables from further consideration, we have two options by which to proceed, namely a two-level factorial design experiment or a three-level response surface design (i.e., a face-centered cube design or a Box-Behnken spherical design). These two scenarios are described below for completeness. However, for reasons described at the beginning of Section 3.3.3, we believe that we will perform only the three-level response surface design.

In addition to the PB screening design shown in Table 3-4, it is proposed that four additional experiments be conducted at extremely high concentrations of Orimulsion, namely 50,000 mg/L. Four experiments are proposed in which the primary independent variables to be investigated are salinity, temperature and energetics (Table 3-4'). The dependent variable results of these investigation will not be include in the statistical results of the screening study but rather they will be investigated and described qualitatively. Experiments at this high concentration of Orimulsion are intended to provide some basis upon which to predict its response in the immediate vicinity of a release or spill, i.e., where concentrations would be their highest.

Trial	Dependent	S	Temp.	Orim. conc.	Part. Loading	Energetics	Part. Type
1. ¹ . 1	Variable	(ppt)	(°C)	(mg/L)	(mg/L)	(rpm)	
13	1	35	4	50,000	0	10	
14		0	4	50,000	0	100	
15		35	25	50,000	0	100	
16		0	25	50,000	0	10	

Table 3-4': High Orimulsion concentration experiments to be conducted concurrently with those in
Table 3-4.

3.3.2 Two-level Factorial Design

A two-level factorial design approach is used to estimate all factor effects in linear interaction effects. (This approach must be used if we were to change our approach to include any discrete variables, e.g., particulate type.) The variables with significant effects identified by the PB screening experiments will be used to construct either a three-, four-, five- or six-factor two-level factorial design leading to a total of 8, 16, 32 or 64 additional experiments. We fully anticipate that the PB screening can be used to limit the number of significant variables to three or four, thus limiting the number of additional experiments to 8 or 16. As an example to this approach, Table 3-5 shows the four-factor two-level factorial design assuming salinity, temperature, Orimulsion concentration, and energetics were identified as being significant in the PB screening.

	X1	X2	- X3	X4	X1	X2	X3	X4	. •
Run #	Salinity	Temp	Conc.	Energetics	Salinity	Temp	Conc.	Energetic	Batch
		· · . 						S	
1	-1	-1	-l	-1	0	4	1000	10	1
2	1	-1	-1	-1	35	4	1000	10	1
3	-1	1	-1	-1	0	25	1000	10	2
4	1	1	-1	-1	35	25	1000	10	2
5	-1	-1	1	-1	0	4	17000	10	1
6	1	-1	1	-1	35	4	17000	10	1
7	-1	1	1	-1	0	25	17000	10	2
8	1	1	1	-1	35	25	17000	10	2
9	-1	-1	-1	1	0	4	1000	100	1
10	1	-1	-1	1	35	4	1000	100	1
11	-1	1	-1	1	0	25	1000	100	2
12	1	1	-1	1	35	25	1000	100	2
13	-1	-1	1	1	0	4	17000	100	1
14	1	-1	1	1	35	4	17000	100	1
15	-1	1	1	1	0	25	17000	100	2
16	1	1	1	1	35	25	17000	100	2

Table 3-5: Example of a four-factor two level factorial design.

No blocking or randomization would be used but rather the experiments would be conducted in two 'batches' depending on the temperature (4 or 25°C), again, in order to reduce costs. As was the case in the PB screening the same set of dependent variables (Table 3-2) would be measured for each experiment. The factor effect and interaction effects of these four (or other number of) factors will be calculated according to standard methods that would produce a measure of the effect. The unassigned factor effects would be used to calculate random error in the system and 95% confidence limits. Evaluation of the results would proceed as described above for the PB screening. If the two-level factorial design is performed, the most important independent variables identified would be used to select a set of conditions that would be used in the meso-scale flume experiments (see below).

3.3.3 Three-level Response Surface Design

3.3.3.1 Overview and Justification for this Approach

A three-level response surface design is preferred over the two-level factorial design because the former will allow for the recognition and quantification of the non-linear (i.e., curvature) effects. In other words, two-level factorial design can only recognize changes over a linear response curve. However, our preliminary experiments and previous work by others give us reason to believe that the properties of Orimulsion will cause it to not necessarily respond linearly. For example, at some salinity value between 32 and 4 $^{\circ}/_{\circ\circ}$ it might be anticipated that particle growth and patty formation will occur but at only a slightly lower salinity particle growth and patty formation will not occur. Thus, the response may be non-linear.

In order recognize this and other non-linear effects there can be no discrete variables among the independent variables being evaluated in a three-level response surface design. (This, therefore, is another good reason to not complicate the study by including both kaolinite and calcite.) This is because if curvature effects are to be estimated, each independent variable must have at least three levels. In our opinion, there is no realistic intermediate level in the case of particulate type (i.e., 50:50 kaolinite:calcite

× .

is not a real world situation). It is for these reasons that we propose to perform the three-level response surface design on the most critical continuous independent variables identified in the PB screening.

As a result of considering intermediate values for continuous variables, three-level response surface designs are better able to describe the responses throughout the entire experimental ranges. This is accomplished by the use of quadratic polynomials to match the response surfaces. This will permit more accurate prediction of the responses even at factor combinations not actually run. For example if, as we believe, salinity will play an important role in particle growth or floating patty weight, the response surface design will permit us to identify the 'key' salinity value at which these responses are most effected. Furthermore, this approach will allow us to narrow the range over which each variable has a significant effect on the dependent variables of interest. These results will permit an identification and narrowing of the conditions to be used during the subsequent meso-scale studies of Phase III.

3.3.3.2 Types of Three-level Response Surface Designs

There are two types of three-level response surface designs, namely a face-centered cube design or a Box-Behnken spherical design. The former considers a cubical experimental region and the latter considers a spherical experimental region. The best way to consider this is to imagine a three variable problem. The shape describing the range for each variable would be a cube, with the high and low values of each of the three variables occurring at the corners of the cube. This cube would have 8 corners, 6 face centers, and one center point. This design would include all values within the ranges for each variable and is the basis for the face-center cube design. Connecting only the midpoints of these same three variable ranges would form a polyhedron that approximates a sphere (within the original cube). This polyhedron would have 12 edge points and one center point. This design would exclude the corners of the cube, i.e., the high and low values for each variable and is the basis for the Box-Behnken spherical design.

The face-centered cube design is considered more 'bold' than the Box-Behnken design. The facecentered cube design may be more appropriate for the problem at hand since it includes the entire range for each independent variable. It seems prudent to not ignore the 'extreme' conditions given that they may occur in the 'real world'. For example, it is possible that a situation exists were Orimulsion is released into 35 °/oo seawater, at 25°C, with no inorganic particulates, and 'mild' energetics. Therefore, we recommend that a face-centered cube design be used in this part of Phase II. The number of significant variables identified in the PB screening will determine the number of experiments necessary in a face-centered cube design according to Table 3-6.

Number of Variables	Experiments required - Face-centered cube
	design
2	11
3	17
4	31
5	45

Table 3-6: Size of response surface model necessary for 2 to 5 independent variables.

If all five of the independent variables (Table 3-1) are identified as important then 45 additional experiments will be necessary. If any can be eliminated then 31 or fewer experiments will be necessary. This number will still provide a modest number of degrees of freedom for calculating error.

Let us assume that the PB screening has determined that only salinity, temperature, and bitumen concentration are important in determining most of the dependent variables (Table 3-2). Evaluating these three independent variables would require 17 experiments performed according to the three-factor face-centered cube design shown in Table 3-7.

Run #	Cube Location	X1	X2	X3	Salinity	Temp	Conc.	Batch
					°/00	°C	mg/L	
1	Corner	-	-	-	0	4	1000	1
2	Corner	+	-	-	35	4	1000	1
3	Corner	-	+	-	0	25	1000	3
4	Corner	+	+	-	35	25	1000	3
5	Corner	-	-	+	0	4	17000	1
6	Comer	+	-	+	35	4	17000	1
7	Corner	-	+	+	0	25	17000	3
8	Corner	+	+	+	35	25	17000	3
9	Face Center	-	0	0	0	14.5	9000	2
10	Face Center	+	0	0	35	14.5	9000	2
11	Face Center	0	-	0	17.5	4	9000	1
12	Face Center	0	+	0	17.5	25	9000	3
13	Face Center	0	0	-	17.5	14.5	1000	2
14	Face Center	0	0	+	17.5	14.5	17000	2
15	Center	0	0	0	17.5	14.5	9000	2
16	Center	0	0	0	17.5	14.5	9000	2
17	Center	0	0	0	17.5	14.5	9000	2
18	Center	0	0	0	17.5	14.5	9000	2

Table 3-7: Hypothetical three-factor face-centered cube design.

As was the case previously, the maximum (+) and minimum (-) of each variable are used as well as the arithmetic mean of these values (0) to design the experiments. If temperature turns out to be important then the experiments will be conducted in 3 batches that correspond to the temperature of the experiments in order to save time and reduce costs. This will eliminate the ability to block or randomize the results but is considered a necessary step given the large impact on costs. In the hypothetical case described here, that would require 3 batches of 5, 11, and 5 experiments. Analysis of four center point replicates (runs 15-18) will provide a means to determine the pure error within the system.

As in the previous experimental designs discussed, the dependent variables to be measured in the course of these experiments are listed in Table 3-2. Once again, only those dependent variables that can be quantified can be analyzed statistically. That is to say the particle growth <u>rate</u> cannot be quantified.

While simple 'cube' plots or X-Y scatter plots can provide some means of interpreting the results of a face-centered cube design, generally speaking interpretation will require computer assistance. We propose to use JMP Software Version 3.1 from SAS Institute, Inc. to perform our analysis. This package allows for the determination of the b coefficients, standard error in b, and t-values for the quadratic solution for each dependent variable being considered. The results can be graphically depicted using 2-dimensional contour plots.

In the case of our hypothetical 3-factor face-centered cube design depicted in Table 3-7, the output would include calculation of each of the b-coefficients for each factor in the quadratic formula:

 $Y = b_0 + b_1 X 1 + b_2 X 2 + b_3 X 3 + b_{12} X 1 X 2 + b_{13} X 1 X 3 + b_{23} X 2 X 3 + b_{11} X 1^2 + b_{22} X 2^2 + b_{33} X 3^2$

Where:

Y	=	dependent variable of interest (Table 3-2)
X 1	=	temperature (linear effect)
X2	=	salinity (linear effect)
X3	=	bitumen concentration (linear effect)
X1X2	=	temperature-salinity (two-way interaction effect)
X1X3	=	temperature-bitumen concentration (two-way interaction effect)
X2X3	=	salinity-bitumen concentration (two-way interaction effect)
X1 ²	=	temperature (curvature effect)
X2 ²	=	salinity (curvature effect)
X3 ²	=	bitumen concentration (curvature effect)

The solution to this equation provides a means of predicting the outcome for any "Y" for any setting of "X". The fit of the equations for each "Y" is determined by standard least squares regression analysis.

3.4 Utility of the DOE Phase of Experimentation

The outcome of the benchtop experiments will result in

- (1) identification and ranking of the independent variables (Table 3-1) which have the greatest impact on each of the dependent variables of interest (Table 3-2),
- (2) a narrowing/focussing of the ranges over which changes in the independent variables have the greatest impact, and
- (3) qualitative understanding of the fate of Orimulsion when present in extremely high concentrations (50,000 mg/L).

For example, if salinity is determined to be the most important variable in determining bitumen particle size, TPH in sediment, or dissolved PAH, our benchtop results should help to narrow the range over which salinity is most critical, e.g., 15 to 20 $^{\circ}/_{\circ\circ}$. This result would allow us to design a focussed set of meso-scale (flume) experiments to address particle growth over this narrow range of salinity.

4. DESIGN OF BENCHTOP EXPERIMENTS

4.1 Overview and Description of Prototype Benchtop Apparatus

As described in Section 3.2, the fate of Orimulsion spilled onto natural waters will depend on the complex interaction of physical, chemical, and biological processes. Reproducing the effects of these processes in the laboratory is extraordinarily difficult, essentially impossible. Keeping this in mind, the benchtop experiments to be performed in the course of this study must be kept relatively simple and thereby allowing for some reasonable level of understanding of the effects of the five independent variables (Table 3-1) to result. The design of the experiments is intended to provide insight into the expected behavior of Orimulsion when spilt under a wide range of conditions. The objectives of the benchtop

study is to help focus the meso-scale experiments that will follow and also to aid in the design of contingency actions under a wide variety of conditions.

In this section we describe our proposed benchtop design. We have drawn upon our first-hand experience in designing and testing of a prototype apparatus (Fig. 4-1). Our design has attempted to incorporate practical knowledge obtained in previous studies on Orimulsion by other labs (e.g., Intevep, S.A., Univ. of Mass., and Univ. of Miami). Some key elements related to each step in the benchscale experimental design are discussed in the following sections.

Figure 4-1: Photograph showing prototype vessels resting on and seated in a custom made orbital shaker tabletop capable of holding four vessels.

4.2 Vessel Construction

Four-liter, open top, clear glass vessels will be fabricated from 5 L bottles by removing their tops and polishing the cut edges. The final vessel dimensions will be 24 cm high by 18 cm diameter. A small sampling port consisting of a glass neck containing a Teflon stopcock will be added to each vessel. This sampling port will be located approximately 4 cm from the bottom of the vessels (Fig. 4-1). We find this location for the sampling port provides a good head pressure so that a representative water sample can be drawn. Samples for particle size analysis (1, 3, 8, and 24 hours), TPH in water (1, 3, 8 and 24 hours) will be collected through these ports. Attached to each port will be a flexible Tygon tube that will permit collection of these samples without interruption of the orbital shaking motion. During the experiments the vessels will be loosely covered with aluminum foil to minimize evaporation and contamination.

4.3 Salinity Determination and Maintenance

In the experiments to be conducted the salinity of the water will be determined with the aid of a conductivity meter. Seawater from Duxbury Bay (~23 ppt) will be adjusted accordingly using Instant Ocean sea salts or freshwater in order to achieve the desired salinity for each experiment. During the high temperature experiments (20-25°C) there may be some change in the salinity of the water due to evaporative losses. However, we believe that this change will be minimized by the use of aluminum foil and the relatively short duration of these experiments (24 hours).

4.4 Temperature

The benchtop experiments will be conducted in Battelle's temperature controlled rooms. One of these rooms contains benches for the benchtop experiments and the other contains the 4000 L flume tank. Both rooms must be operated at the same temperature. The range of temperatures is from 0° C to 30° C.

4.5 Orimulsion Concentration

A new shipment of Orimulsion will be used in these experiments (see below). The concentration of Orimulsion to be added to the benchtop experiments will be determined based upon the measured density of this material. With a maximum and minimum concentrations of Orimulsion in these experiments being 17,000 mg/L and 1000 mg/L, respectively (Table 3-1), and a density of approximately 1.01 g/ml, we can expect the need to add approximately 50.5 ml and 2.97 ml, respectively, to the 3 L of water to obtain the desired max. and min. concentrations.^d These volumes of Orimulsion will be precisely added to the vessels using pre-weighed 50 ml plastic syringes. Our preliminary experiments have shown that this method of measuring and adding Orimulsion can be very precise. The exact volume of the Orimulsion added to each vessel will be determined by weighing the syringes after squirting out as much Orimulsion as possible (as some will stick to the outside of the syringe). Orimulsion will be added to the vessels after the shaker tables have been turned on in order to assure a more realistic mixing of the product in the water column.

4.6 Particulate Load

Pure kaolinite clay has been obtained from the Southeaster Clay Co., Aiken, South Carolina (803-648-3246). The density of this material has been determined to be 2.6 g/ml. The particle size distribution of a kaolinite slurry has been measured using the Malvern MasterSizer X (Section 5.2.2) and the clay was determined to have a bi-modal particle size distribution. The first population was centered around 2 microns and the second was centered around 25 microns. It is our impression that these populations represent the thickness (2 microns) and width (25 microns) of these platy minerals. The total particle size ranged from less than 1.4 microns to 100 microns. The source and characteristics of the calcite to be used has not yet been identified.

The mass of kaolinite or calcite to be added to each vessel will range up to 270 mg/L which, for the 3 L benchtop experiments, indicates 810 mg of kaolinite or calcite will be added. We propose to add the kaolinite/calcite to the vessels and vigorously stir the water to achieve a complete slurry. Following this the orbital shaker table will be turned on (see Section 4.7) and undoubtedly some of the clay will settle out, certainly under the 'mild' agitation conditions. However, some will remain suspended and be in suspension at the time when the Orimulsion is introduced. We believe this is the most appropriate manner by which to treat all the experiments equally. The initial particle size distribution of the clay slurry will be determined in order to help interpret the particle size results once the Orimulsion is added to the system.

^d The four extremely high concentration experiments (50,000 mg/L) will require approximately 150 ml Orimulsion be added to the vessels (Table 3-4').

4.7 Energetics

The energetics of the benchtop apparatus will be introduced with the aid of a modified orbital shaker table (Figure 4-1). Two of these will be constructed which will allow for 8 experiments to be performed at any given time. The proposed 'mild' and 'harsh' agitation conditions are 10 and 100 rpm, respectively. Our preliminary experiments conducted under these conditions indicate that these rpm levels should provide an adequate range of turbulent energy in the 3L vessels. Higher rpm's tended to create a considerable vortex within the vessel which acted to draw Orimulsion down from the surface near the center of the vessel. A discussion of the turbulent energy introduced by orbital shaking was presented in Section 3.2.1.4.

5. ANALYTICAL METHODS DURING BENCHTOP EXPERIMENTS

5.1 Mixing and Characterization of Fresh Orimulsion

Prior to the initiation of benchtop testing, the new shipment of Orimulsion currently en route to Battelle will be thoroughly mixed using an air powered stainless steel drum mixing apparatus. Aliquots of approximately 4-L will be drawn off into one gallon paint cans, where they will be stored for future use throughout these benchtop and subsequent meso-scale flume experiments. The new "1998" batch of Orimulsion will be put through an abbreviated suite of physical and chemical measurements to ensure the exact makeup of the material relative to the "1997" Orimulsion previously analyzed at Battelle (Ostazeski et al., 1998), as well as, any specification or data provided by Bitor. These measurements will include density, viscosity, Iatroscan chemical analysis of saturate, aromatic, resin, and asphaltene (SARA) fractions, and bitumen particle size.

5.1.1 Density

The density of the fresh Orimulsion[®], and water-in-oil emulsions was determined using an Anton Paar DMA 48 Density Meter oscillating cell digital density meter. This method is based on ASTM D4052-91, *Standard Test Method for Density and Relative Density of Liquids by Digital Density Meter* (ASTM, 1993). Where the density or viscosity of the bitumen or emulsions formed exceeded the practical operational limits of the density meter, the density will be obtained gravimetrically using a 3 or 5 mL plastic syringe. The mass of the syringe and the emulsion is then made and the mass of the emulsion determined by difference (equation 2.1).

Mass emulsion (g) = [Mass emulsion (g) + Mass syringe (g)] - Mass syringe (g)

5.1.2 Viscosity

The viscosity of the fresh Orimulsion, resulting bitumen and any water-in-oil emulsions will be determined using a Haake RV-20 Rotational Viscometer. The viscosities will be determined using the viscometer, operated at the lowest shear rate necessary for accurate measurement of viscosity (Daling and Almås 1988). Typically, viscosities for fresh and weathered oils are measured at shear rates of 1 s^{-1} , 10 s^{-1} , 100 s^{-1} , and 1000 s^{-1} . Based on our past experiences, we expect the viscosity of the fresh Orimulsion will be measured at 100 s^{-1} .

5.1.3 SARA Analysis

The relative concentrations of saturated hydrocarbons, aromatic hydrocarbons, polars/resins and asphaltenes (SARA) will be determined by latroscan TLC/FID. Approximately 10 μ g of Orimulsion or concentrated water extract is spotted onto a silica rod, and the saturated, aromatic, and resin fractions of the oil separated by development of the rods in a series of increasingly polar solvents (*n*-hexane, toluene,

dichloromethane:methanol). The relative distribution of the saturated, aromatic, and resin fractions on each rod is then determined.

5.1.4 Particle Size Analysis

Particle size analysis of the fresh Orimulsion will conducted using a Malvern Mastersizer[®] X laser diffraction particle size analyzer (Fig. 5-1). The Mastersizer[®] will be calibrated initially using Duke Scientific Corporation (Palo Alto, CA) NIST particle size standards. It is well known that the diameters of non-spherical particles in a population of particles can be calculated and reported by numerous methods. These methods are simply different ways of describing the diameters of non-spherical particles in Orimulsion. We propose to use the most commonly referenced type of diameter, the volume mean diameter (D[4,3]), throughout this study. The volume mean diameter is defined as the diameter of a sphere having the same volume as the particles being measured.

Reporting a single diameter for a broad range of particles can be misleading. For example, if multiple populations of particles are observed the volume mean diameter for the entire range of particles is meaningless. If appropriate the raw data of these analyses will be provided so that the particle size distribution is available.

Bitumen particle diameters for the fresh Orimulsion[®] will determined by adding small, well-stirred quantity of Orimulsion to a circulating volume of milli-Q ultrapure water following a background measurements on the water alone. An obscuration of 10-30% will be obtained. A series of measurements will be obtained and averaged. The Malvern MasterSizer will be equipped with the internal flow through sample cell (Fig. 5-1A) and the 300 mm focusing lens. This lens allows for measurement of particles in the 1.5 to 600 micron range. Processing of the data will be performed using the polydispersion model and the 2\$\$D presentation code. (Some results may be re-processed and reported using the 40HD presentation code, as per Intevep's method. We are unable to use a 118 mm focal lens as per Intevep's method).

Figure 5-1: Close-up of Mastersizer X internal flow through cell (A) and circulating unit (B). Orimulsion will be added to circulating (background) Milli-Q water sample through the opening in the circulating unit until an appropriate obscuration is achieved. Multiple measurements will immediately follow as bitumen particles are circulated through the internal flow through cell, thus passing through the laser beam.

5.1.5 Gas Chromatographic Analysis of Fresh Orimulsion

Analysis of the fresh Orimulsion[®] for C₈ to C₃₆ *n*-alkanes, isoprenoid hydrocarbons, and overall boiling range of selected samples will be performed according to modifications of EPA Methods 8015. The total gas chromatographic hydrocarbon signature of fresh Orimulsion[®] will be determined using a Hewlett-Packard 5890 Series II capillary gas chromatograph with flame ionization detection (GC/FID). A 3 μ L aliquot of a 5 mg/mL dichloromethane dilution of the Orimulsion will be injected using splitless techniques onto a 30-m DB-5 capillary column (J&W fused silica DB-5, 30-m, 0.32-mm internal diameter, and 0.25- μ m film thickness), and the oven will be programmed from 35EC to 320°C at 6°C/min. Prior to sample analysis, a multi-point calibration curve containing *n*-C₈ to *n*-C₃₆ *n*-alkanes, pristane, and phytane will be generated to demonstrate instrument calibration and performance. Based on previous experience we do not expect any resolved alkanes or isoprenoids to be present. If they are, however, they will be quantified by the method of internal standards using the internal standard 5 α androstane.

5.1.6 Polycyclic Aromatic Hydrocarbons in Fresh Orimulsion

The analysis of target parent polycyclic aromatic hydrocarbons (PAH's), alkylated PAHs, and dibenzothiophenes (Table 5-1) will performed on the fresh Orimulsion[®] using HRGC/MS methods modified from EPA Method 8270. Basically, prior to sample analysis, the GC/MS will be tuned with perfluorotributylamine (PFTBA), and a multi-point initial calibration consisting of parent and alkylated PAH compounds will be established to demonstrate the linear range of the analysis. A calibration check standard will be analyzed in order to monitor instrument response relative to the initial calibration. Quantification of individual components will be performed by the method of internal standards using relative response factors (RRF) for individual components relative to the internal standards acenaphthene- d_{10} , phenanthrene- d_{10} , and benzo[*a*]pyrene- d_{12} . PAH alkyl homologues will be quantified using the straight baseline integration of each level of alkylation and the RRF of the respective parent PAH compound (Table 5-1).

The fresh Orimulsion sample will be analyzed by GC/MS using a Hewlett-Packard 5890 gas chromatograph equipped with a Hewlett-Packard 5970 mass selective detector operating in the selected ion monitoring (SIM) mode. A 2 μ L aliquot of the sample will be injected into a gas chromatograph equipped with a high-resolution capillary column (J&W fused silica DB-5-MS, 30-m, 0.25-mm i.d., and 0.25- μ m film thickness) operated in the splitless mode.

5.1.7 Volatile Organic Compounds (VOC)

The fresh Orimulsion will also be analyzed for target volatile organic compounds (VOC; Table 5-1) using modified EPA 8260 purge and trap techniques, utilizing a GC/MS system equipped with a 50-m Petrocol[®] capillary column. Prior to sample analysis, the instrument will be tuned with PFTBA and a minimum three-point calibration will be performed to demonstrate the linear range of the analysis. The calibration solution is composed of selected VOCs identified in Table 5-1.

Appendix I Page: 22

s <u>GC/FID Target Analytes</u> Spiking (n-C₈ through n-C₃₆ <u>GC/MS S</u> Pristane Naphthale Phytane Fluorene-

Table 5-1. Target analyte list for characterization of fresh Orimulsion.

GC/MS Target Analytes

Naphthalene C₁-naphthalenes C2-naphthalenes C3-naphthalenes C4-naphthalenes Biphenyl Acenaphthylene Dibenzofuran Acenaphthene Fluorene C₁-fluorenes C₂-fluorenes C3-fluorenes Anthracene Phenanthrene C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes C3-phenanthrenes/anthracenes C4-phenanthrenes/anthracenes Dibenzothiophene C1-dibenzothiophenes C2-dibenzothiophenes C3-dibenzothiophenes C4-dibenzothiophenes Fluoranthene Pyrene C1-fluoranthenes/pyrenes C2-fluoranthenes/pyrenes C3-fluoranthenes/pyrenes Benz[a]anthracene Chrysene C1-chrysenes C₂-chrysenes C3-chrysenes C4-chrysenes Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[e]pyrene Benzo[a]pyrene Perylene Indeno[1,2,3-c,d]pyrene Dibenz[a, h]anthracene Benzo[g,h,i]perylene

n-C₈ through *n*-C₃₆ Pristane Phytane Isoprenoid 1380 Isoprenoid 1470 Isoprenoid 1650 TPH Monoaromatic Hydrocarbons (VOCs)

Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Isopropylbenzene n-Propylbenzene 1-Methyl-3-ethylbenzene 1-Methyl-4-ethylbenzene 1-Methyl-2-ethylbenzene 1,3,5-Trimethylbenzene 1,2,4/1,2,3-Trimethylbenzene sec-Butylbenzene 1-Methyl-3-isopropylbenzene 1-Methyl-4-isopropylbenzene 1-Methyl-2-isopropylbenzene 1-Methyl-3-n-propylbenzene 1-Methyl-4-n-propylbenzene 1,3,dimethyl-5-ethylbenzene 1,2-Diethylbenzene 1,3-Diethylbenzene 1,4-Diethylbenzene 1-Methyl-2-n-propylbenzene 1,4-Dimethyl-2-ethylbenzene 1,2-Dimethyl-4-ethylbenzene 1,3-Dimethyl-2-ethylbenzene 1,3-Dimethyl-4-ethylbenzene 1,2-Dimethyl-3-ethylbenzene 1,2,4,5-Tetramethylbenzene 1,2,3,5-Tetramethylbenzene 1,2,3,4-Tetramethylbenzene

Spiking Compounds and Reporting Limits

GC/MS SIS Compounds Naphthalene-d₈ Fluorene-d₁₀ Chrysene-d₁₂ Phenol -d₅

GC/FID SIS Compound o-terphenyl

<u>GC/MS RIS Compounds</u> Acenaphthene- d_{10} Phenanthrene- d_{10} Benzo[a]pyrene- d_{12}

Reporting Limits

PAH: 5 mg/kg VOC: 10 mg/kg alkanes: 100 mg/kg TPH: 100,000 mg/kg

5.2 Collection and Analysis of Benchtop Samples

5.2.1 Collection of Samples during Benchtop Experiments

In the course of the benchtop experiments, water samples will be collected for TPH analysis from the vessel sampling ports (Fig. 4-1) at intervals of 1 and 8 hours. The orbital shaker tables will not be turned off during sampling in order to maintain a constant degree of turbulence in the water. Approximately 40 ml water samples will be drawn at each interval from each sample vessel for TPH analysis. Given our experience with some preliminary experiments the reduced quantity of water collected should be sufficient for TPH analysis by gravimetric of GC-FID methods. Some difficulties may occur during the 8-hour sampling when under some circumstances too little bitumen might be still suspended in the water. In these cases the TPH may be below the detection limit. The water sample drawn at the end of the experiments (24 hr) will be larger, consisting of between 1 and 2 L. This volume of sample will permit the sample to be split and still provide enough sample to obtain good concentration data. One half of the water will be used for TPH analysis and one half will be used for dissolve PAH analysis. The latter aliquot will be filtered through a 0.45 micron filter prior to analysis in order to remove all but the dissolved materials.

At the 1, 3, 8 and 24-hour intervals, samples will also drawn for bitumen particle size analysis. It should be noted (as is described in greater detail in Section 5.2.2) that for those experiments that include kaolinite particulates, it will not be possible to distinguish <u>bitumen</u> particle size from <u>particulate</u> particle size. In the latter case, particulates will include bitumen, clay, and bitumen/clay conglomerates. The volume of water drawn during each of these sampling events will vary slightly depending upon the concentration of suspended particulates in the water. Our preliminary experiments have shown that early in the experiments as little as 10 ml is sufficient to achieve appropriate obscuration levels during particle size measurement. However, later in the experiment, when very little suspended particulate is present, a larger volume 100 ml may be necessary. Under some circumstances we can imagine that not enough suspended matter will remain in the water to achieve a reliable particle size measurement. In such instances, no values will be reported.

5.2.2 Measurement of Particle Size

Measuring particle size in a mixture can be done by a variety of methods. These include (1) microscopy, (2) sieving and weighing, (3) settling experiments, and (4) laser diffraction. We believe that because of the potential to change bitumen particle size upon changing the environment of the sample, only laser diffraction is appropriate for the bitumen/clay particles that will be formed in the course of these experiments. However, because our preliminary experiments have indicted that particles beyond the range of the Mastersizer X will be formed (> 600 microns), we propose to supplement the laser particle size analysis by qualitative microscopy.

The parameters for the measurement of particulates in the water from the benchtop experiments using the MasterSizer X will be the same as described for fresh Orimulsion (Section 5.1.4). Diameters will be reported as the volume mean diameter (D[4,3]), which refers to the diameter of a sphere having the same volume as the particles being measured. Our preliminary experiments have indicated that there may be multiple populations present in any given sample. If this is the case, then the diameter of each population will be determined separately. Qualitative light microscopy will be used to describe the populations (e.g., clay/calcite-dominant, bitumen-dominant, mixed, etc.) and this may aid in determining which population is most representative of the bitumen that is present.

As noted previously, a complication in the measurement of bitumen particle size lies in the inability to differentiate bitumen particles from clay/calcite particles in the samples. This will be problematic as

particulate load is considered to be an important independent variable. We believe this problem can be managed as the real goal of the experiments to be performed is to recognize <u>changes</u> in the size of the bitumen particles. Our preliminary experiments have shown that even with kaolinite in the system the change in the overall particle diameter can be recognized by the change in the distribution of all of the particles in a sample. With microscopy to supplement the laser diffraction analysis we believe a reasonable interpretation of the total distributions (i.e., bitumen and inorganic particles) can be made. However, we believe that it would be inappropriate to use the average diameters of these mixed populations in any attempt to 'model' bitumen particle growth rate. They could only be used to model a total particle growth rate. (Of course, the data from the experiments in which no kaolinite or calcite is added will provide 'bitumen-only' particle diameters, and these results could be used to model a bitumen particle growth rate).

5.2.3 Extraction of Water Samples for TPH and PAH

Water samples collected for TPH and PAH analysis will be extracted according to BOS SOP 5-200. Each batch of samples will include a procedural blank and a blank spike. Samples will be spiked with surrogate internal standards (SIS) prior to extraction according to Table 5-2. Final extracts will be concentrated to a volume of 0.5 mL. All extracts will then be spiked with recovery internal standard (RIS) according to Table 5-3, split, and transferred to the GC/FID and GC/MS task leaders for TPH and PAH analysis, respectively.

Standard ID	Contents	Volume to Spike (µL)
EM82	PAH/SHC SIS	50
EM85 (BS only)	Alkanes	50
EM84 (BS only)	PAHs	50 ~

Table 5-2. Surrogate Internal Standard (SIS) spiking information.

Table 5-3. Recovery Internal Standard (RIS) spiking information.

the second s		
EM83	PAH/SHC RIS	50
		volume to spike (µ1)
Standard ID	Contents	Volume to Spil-e (uL)

5.2.4 Measurement of total and dissolved TPH

Analysis of water sample extracts for TPH will be determined by HRGC methods modified from EPA Method 8015 and defined by Battelle SOP 5-202, *Determination of Low Level Total Petroleum Hydrocarbon and Individual Hydrocarbon Concentrations in Environmental Samples*. Prior to sample analysis, a minimum of a five-point calibration will be performed to demonstrate the linear range of the analysis. The calibration solution will be composed of selected normal and iso-alkanes ranging in molecular weight from C_8 through C_{36} . Calibration check standards will be analyzed at least every 10 samples to monitor instrument response relative to the initial calibration. Instrument calibration and other data quality objectives are detailed in SOP 202.

The GC/FID condition for the analysis will be:

Initial Column temperature:	35°C
Initial hold time:	5 minutes
Program rate:	6°C/minute
Final column temperature:	320°C
Final hold time:	10 minutes
Injector temperature:	275°C
Detector temperature:	325°C
Column flow rate:	l mL/min

The reporting limit for TPH in water will be 20.0 μ g/L (ppb).

5.2.5 Measurement of total and dissolved PAH

The analysis of the target PAH compounds will be performed using HRGC/MS methods modified from EPA Method 8270 and defined by Battelle SOP 5-157, *Identification and Quantitation of Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography/Mass Spectrometry*. Prior to sample analysis, the GC/MS will be tuned with perfluorotributylamine (PFTBA) and a minimum of a 5-point initial calibration consisting of the target compounds will be established to demonstrate the linear range of the analysis.

Analyte concentrations in the standard solutions will range from approximately 0.02 to 10 ng/ μ L. Quantification of individual components will be performed by the method of internal standards using the relative response factors (RRFs) of the parent PAH compounds in the calibration solutions. Final data will be reported vs. the appropriate surrogate compound, following our standard IS designation procedures (only the PAH data will be surrogate corrected). Quantification at the instrument may be vs. the RIS acenaphthene-d₁₀ and/or fluorene-d₁₀, followed by surrogate correction of the data in a spreadsheet, or by direct quantification vs. the surrogate compound in the instrument method whichever the analyst deems most efficient. Instrument calibration and other data quality objectives are detailed in SOP 5-157.

The GC/MS condition for the analysis will be:

Initial column temperature:	40°C
Initial hold time	1 minute
Program rate:	6°/minutes
Final column temperature:	290°C
Final hold time:	10 minutes
Injector temperature:	300°C
Detector temperature:	280°C
Column flow rate:	1 mL/min

Electronic pressure control (EPC) conditions:

Vacuum compensation:	On
Pressure at injection:	15 psi
Hold time:	1.50 min.
Pressure program ramp:	99 psi/min
Final pressure	7.7 psi

Reporting limits for individual PAHs in water will be 1.0 ng/L (ppt).

5.2.6 Measurements for Mass Balance

As described in Section 3.2.2.2, considerable knowledge regarding the fate of Orimulsion can be obtained by determining which five 'compartments' the bitumen ends up in at the end of our benchtop experiments:

- (1) floating bitumen/patty,
- (2) sunk bitumen/patty,
- (3) dissolved in water,
- (4) suspended in the water, or
- (5) stuck to the vessel walls ("bathtub ring").

There will be a known volume of Orimulsion added to each vessel (determined by the desired concentration). Approximately 73% of this volume will be bitumen and the density of bitumen can be used to determine the mass of bitumen added to each experiment. Each vessel will originally contain 3 L of water and immediately following the addition of the Orimulsion all of the bitumen will be dispersed into the water. After 24 hours the bitumen will occur in one of the five compartments.

After 24 hours any floating patty (e.g., Fig. 5-2) will be recovered using pre-weighed wooden tongs and placed in a hood to dry for a minimum of 24 hours. The weight of the floating bitumen will then be recorded.

Figure 5-2: Example of floating surface patty (arrow) formed after 24 hours in a preliminary experiment involving 17,000 mg/L Orimulsion in seawater. Note formation of the 'bathtub ring' of bitumen on the glass walls of the vessel.

After 24 hours the water in the vessel, a slightly reduced volume from the original 3L due to the 1, 3 and 8 hours samplings, will be drained through the sampling port into an appropriate container in preparation for TPH and PAH analysis. The volume of water drained will be recorded. The thoroughly mixed water sample will be split for dissolved and total TPH and PAH analysis as described in Sections 5.2.3 and 5.2.4. The "dissolved" split will be filtered through pre-weighed 0.45 micron filter and analyzed to determine the concentration of dissolved TPH in the water (Compartment 3). The mass of dissolved material (Compartment 4) will be calculated given the total volume of water drained. The filter will be dried and weighed in order to determine the weight of total (bitumen and perhaps clay) suspended material in the water. The "total" water split will be determined and the total mass will be calculated given the total volume of suspended and dissolved TPH will be determined and the total mass will be calculated given the total volume of the total water of suspended and dissolved TPH will be determined and the total mass will be calculated given the total volume of the total water drained. The mass of suspended TPH (Compartment 4) will be determined by the difference between the total and dissolved masses.

After draining the water, if a sinking patty is present it will be collected, dried, and weighed as described above. If no patty is present, only bitumen particles these will be recovered. The method of recovering this may vary but our preliminary experiments have shown that this material, mostly a mixture of bitumen and clay, can be rinsed from the bottom of the vessel with a squirt bottle into a pre-weighed beaker. This bitumen/sediment mixture will be dried and weighed. The calculated weight of the sediment (mineral matter) will be subtracted from the total "sunk" weight to yield the mass of the sunk bitumen (Compartment 2).

Finally the now "empty" vessel, having been pre-weighed prior to the experiment, can be re-weighed in order to determine the mass of bitumen that occurs stuck to the vessel (Compartment 5). Our preliminary experiments have indicated that this material will only occur at the water-air interface in the form of a 'bathtub ring'.

The collective total of the masses of the bitumen in each compartment should approach the total mass of bitumen spilled in each experiment. These results will be compared for the given experimental conditions in order to determine the influence of the independent variables on the fate of Orimulsion.

5.2.7 Reporting of Results

All analytical data generated as part of this study will be reviewed by Battelle's Quality Assurance Unit (QAU). Data will be subjected to a targeted audit prior to delivery to the client. Data will be reviewed by the Project Managers for chemical reasonableness. All project deliverables will be subjected to peer review for technical and editorial content. Prior to issuance the final Phase II and Phase III reports and supporting documentation (e.g. relevant figures, tables and data) will undergo a QA audit.

A report summarizing the results of the benchtop experiments will be issued at the completion of Phases II and III. The Phase II report will include a discussion of the effects of the five independent variables (Table 3-1) on the various dependent variables (Table 3-2) and on the mass balance results as determined from the benchtop studies. This report will also include the results of our flume energetic study and our recommendations for Phase III's meso-scale flume experiments generally described below.

6. PHASE III - MESO-SCALE FLUME TANK EXPERIMENTS

6.1 Introduction

The meso-scale experiments comprising Phase III of this study will be conducted in Battelle's 4000 L flume tank under appropriate energy conditions (see below). The specifications for the tank have been described elsewhere (Fredriksson et al., 1996). The tank will be prepared for the weathering experiments by filling it with the desired amount and type of water. The initial water to be used will be (1) seawater

from Duxbury Bay, MA that will be acquired with Battelle's seawater system and/or (2) fresh water obtained from Battelle's fresh water well. The target salinity will be obtained by mixing these two water sources and/or by the addition of Instant OceanTM sea salts. The salinity will be monitored with a conductivity meter calibrated for the temperature of the water. Both seawater and freshwater will be filtered to 5 microns prior to its use in the flume experiments.

The temperature conditions that are ultimately decided for the flume experiments will be set for the flume room. The temperature of the water added to the tank will be monitored until it reaches the temperature set for the room.

Figure 6-1: Battelle's 4000 L flume tank showing conditions producing spilling breaking waves. The flume has a track length of 9.1 m and a depth of 0.8 m. Fifteen wind vanes can generate up to 25 m/sec wind speed and the wedge-shaped plunger (foreground) stroke ranges from 2-30 cm at rates up to 100 cpm.

6.2 Sample Collection and Preparation

Once the flume experiments are initiated, samples of Orimulsion within the water column will be taken at pre-set times for analysis according to the schedule and analyses summarized in Table 6-1. Naturally, the schedule and analysis may be changed after considering the Phase II results. The parameters to be measured in the course of these experiments will likely parallel those made at the benchtop scale (Table 3-2) and those from previous flume experiments on Orimulsion (Ostazeski et al., 1998).

At the indicated sampling times following introduction of the Orimulsion, water samples will be collected using a stainless steel hand pump. The samples will be collected from a depth of approximately 35 cm below the water surface and mid channel in the flume track. The water column samples will be prepared for the appropriate analyses according to standard operating procedures described in Section 5-2.
	Float	ing/Sinki	ng Bitumen		Unfiltere	d Water		Filtere	d Water
Time (hours)	Viscosity	Density	TPH Analysis (sediment)	SARA Analysis (Iatroscan)	TPH Analysis	PAH Analysis	Particle Size	TPH Analysis	PAH Analysis
0		-						1	-
15 min				- √	\checkmark	- √	-√	- √	- √
30 min				- √	√	- √	1	- √	- √
1	<u> </u>				√	1	- √	- √	1
2				✓	\checkmark	- √	\checkmark	\checkmark	- √
4	—			1	√	1	1	√	
8				1	1	1	1	√	✓
12				1	√	1	1	- √	- ✓
24				1	- √	- √	1	√	-√
48				1	1	1	-√	1	1
72				1	-√	1	\checkmark	√	1
96				1	-√	- ✓	-√	✓	✓
120				√	√	√	\checkmark	-√	-√
144	<u> </u>	<u> </u>	_	1	√	√	√	√	-√
168		<u></u>	<u> </u>					<u> </u>	<u> </u>

Table 6-1. Possible Sampling and Testing Scheme for Orimulsion[®] during Phase III Flume Testing

6.3 Phase IIC – Evaluation and Quantification of Energy within the Flume Tank

The quantification of the energy conditions prior to the spilling of any Orimulsion in the flume tank is a separate and integral part of this study. This will be particularly true if the benchtop studies reveal that energetics plays a very important role in the fate of Orimulsion spilled on water. The problem remains separate, however, because translating the kinetic energy levels from the benchtop to the meso-scale will be essentially impossible.

The conditions of the earlier Orimulsion studies (Ostazeski et al., 1997a; 1997b; 1998) were arbitrarily set to match those previously used by IKU (Singsaas et al., 1995). The 'energetics' of the previous studies conducted in Battelle's flume tank were all performed under these conditions which were described by Fredriksson et al. (1996). In that study the following data were generated; (1) wave height measurements using a capacitance wave probe and (2) current velocity measurements at the center of the channel at six depths using acoustic Doppler velocimeters (ADV) and neutrally-buoyant styrene beads. These measurements were made with the plunger and wind vane operating at the same levels as in the previous Orimulsion spill experiments, i.e., wind vanes at 80 cpm and plunger at 50 cpm with a 12 cm stroke (Ostazeski et al., 1997a; 1997b; 1998). The energy density under these conditions was determined to be 22.39 Joules/m², which is well within the energy density estimates for open ocean sea-state 2 conditions (10.48 to 298.61 Joules/m²).^e Stokes second order wave theories were used to determine the mean vertical, radial and tangential current, wave and turbulent velocity components under these conditions.

Concern was recently expressed that the earlier work performed on Orimulsion, in fact, on all previously spilled oils, were conducted at energies that were too high. The basis for this concern was the fact that in the event of a real spill, there is normally a decrease in the turbulent mixing with depth (P. Masciangioli, 1997, personal communication). However, it was observed that in the flume comparable turbulence

 $^{^{\}circ}$ Note that without the plunger operating the energy was only 7.06 Joules/m².

existed throughout the entire flume water depth leading to the complete mixing of the water mass. This was suggested to be the reason that, during the freshwater experiments, the bitumen was not observed to settle out of the water. Perhaps the simplest solution to this concern would be to eliminate the use of the plunger apparatus since it is presumably responsible for introducing most of the energy into the deeper parts of the flume tank.

The "flume energetics" aspect of the proposed study undoubtedly requires additional discussions between Bitor, NOAA, USCG and Battelle personnel. We anticipate the scope of this phase of the study to be determined collectively during our meeting March 19, 1998 in Duxbury. Both the technical and financial limitations of the study must be kept in mind throughout these discussions.

It is our original proposal to perform a series of measurements in the flume tank under a variety of wind vane and plunger settings. We propose to measure:

- (1) wave height,
- (2) wave period, and
- (3) wind speed.

It is our opinion that these gross measurements may allow for an easier 'translation' of real world conditions and if particle velocities were measured and modeled. Therefore, we do not intend to measure current velocity nor calculate current, wave or turbulence component velocities. Instead, we would simply use the matrix of wind vane/plunger conditions *versus* wave height, wave period and wind sped data to select the appropriate wind vane and plunger settings to be used for the meso-scale studies. We would propose to acquire this data at the same time that the benchtop studies would be being conducted. We would seek agreement from Bitor and USGC representative on the conditions under which the meso-scale studies should be conducted in order to more closely match real world conditions.

After receiving additional comments on this workplan, we have agreed to consider including a study by which the turbulent diffusity through the flume can be investigated for a small number of wind/wave conditions or settings. The data from these investigations could be used by NOAA and Intevep representatives to aid in determining the wind/wave conditions under which to conduct the flume experiments and allow for modeling the results in open water conditions. This study will involve the use of inert particles of a known diameter and density. (The nature of these materials is yet to be determined and we expect to receive some guidance from NOAA on an appropriate product to use). Let's assume these are slightly buoyant particles. The buoyant particles will be added to the flume tank for a given wind/wave condition. The turbulent energy within the tank will drive them down into the tank and distribute the particles throughout the water column. Buoyant forces will attempt to drive them back up, but turbulence will keep some down. These forces should result in a fairly "steady state" at which the concentration of particles decreases with increasing depth. Using video or photography, the number of particles at a given depth range will be determined as accurately as possible. The number density of particles at discrete depths within the tank can be used to calculate the turbulent diffusivity according to the following equation:

$$dN/dt = D (d^2N/dz^2) - U (dN/dz)$$

Where D=turbulent diffusivity, N = number density of particles, n = number of particles, U = Stokes velocity, z = depth.

If still considered to be important enough to justify the additional costs, and some technical guidance becomes available regarding the selection of 'inert particles', we will attempt to collect number density

data for a small number of wind/wave conditions that will allow some capacity to translate the flume energetics to open water energetics. Battelle's role in this phase of the study is limited to collection of data under guidance from NOAA/USGC and Bitor/Intevep representatives. The costs for this additional component of the study are not included in Section 7.

7. TIME CONSIDERATIONS

This workplan constitutes the deliverable for Phase I of this project. Table 7-1 summarizes the tasks that will be performed in both Phases II and III. Because of the dynamic character of Phases II and III Battelle will provide monthly updates regarding the progress and costs accrued throughout the project. This will allow constant re-assessment of the direction and scope of subsequent phases.

Table 7-1: Inventory of Tasks to be Performed in each Phase of the Study

PHASES AND TASKS
Phase I - Design of Behavior Characterization Experiments
Planning Meeting
Literature Review
Technical Meetings
Evaluation of particle size analyzers
Development of Design of Experiment
Development Benchtop Prototype
Conducting Preliminary Benchtop Experiments
Preparation of Phase I deliverable
· ·
Phase II - Evaluate Fate and Determine Conditions for Meso-Scale Testing
Phase IIA - Conduct Benchtop Experiments
analytical costs - fresh Orimulsion
construct benchtop apparatus, purchase materials
perform 12 screening design experiments
Report screening results
perform up to 47 three-level response surface design experiments
analytical costs - dependent variables and mass balance
Phase IIB - Data Interpretation
DOE evaluation using JMP software
Phase IIC - Energetic Study
Construct wind speed/wave height/wave frequency matrix
Phase II Report Preparation with Recommendations for Phase III
Review Meeting - Duxbury
Phase III - Meso-Scale Flume Tank Tests
Conduct 4 or 5 meso-scale flume tests
Analytical Costs - dependent variables of interest in Phase II
Phase III Report with Final Section on Synthesis of Project

8. REFERENCES

- Brown, J.W., Fuentes, H.R., Jaffe, R. and Tsihrintzis, V.A., 1995, Chapter 4 Comparative evaluation of physical and chemical fate processes of Orimulsion and fuel oil no. 6 in the Tampa Bay marine environment. In, Comparative Ecological Risk Assessment Final Report. June 1995. Center for Marine and Environmental Analysis, Univ. of Miami.
- Delvigne, G.A.L., 1993, Natural dispersion of oil by different sources of turbulence. Proc. 1993 Oil Spill Conference, p. 415.
- Febres, G.A., Goncalves, J.A., Masciangioli, P, and Vilas, J., 1995, Fate and behavior of Orimulsion spilt in sea water. Internal Report, Intervep, S.A.
- Fredriksson, D.W., Albro, C.S., and Ostazeski, S.A., 1996, Hydrodynamic calibration of a meso-scale, windwave flume basin for the study of spilled oil. Proc. 19th Annual Artic and Marine Oil Spill Program, Calgary, Alberta. Pp. 1541-1553.
- Hicks, C.R., 1982, Fundamental Concepts in the Design of Experiments. 3rd Edition., Holt, Rinehart and Winston, New York.
- Marshall, C.F. 1964. The Physical Chemistry and Mineralogy of Soils, Vol. 1: Soil Materials. J. Wiley & Sons, Inc., New York.
- Milliman, J.D., 1990, Fluvial sediment in coastal seas: flux and fate. Nature and Resources 26(4):10-26.
- Ostazeski, S.A., Macomber, S.C., Roberts, L.G. and Uhler, A.D., 1997a, Micro- and meso-scale methods for predicting the behavior of low API gravity oils (LAPIO) spilled on water. Report to VOLPE Nat'l. Transportation Systems.
- Ostazeski, S.A., Macomber, S.C., Roberts, L.G., and Uhler, A.D., 1997b, The environmental behavior of Orimulsion spilled on water. Proc. 1997 Int'l. Oil Spill Conf., API Publ. No. 4651, Washington, D.C., p. 469-477.
- Ostazeski, S.A., Stout, S.A., and Uhler, A.D., 1998, Testing and characterization of Orimulsion 400. Report to Bitor America.
- Potter, T.L., 1995, Chapter 14 Chemistry of fuel oil #6 and Orimulsion. In, Comparative Ecological Risk Assessment – Final Report. June 1995. Center for Marine and Environmental Analysis, Univ. of Miami.
- Riley, J.P. and Chester, R., 1971, Introduction to Marine Chemistry. Acad. Press, Inc., New York.
- Singsaas, I., Reed, M., Daling, P.S and Lewis, A., 1995, Mesoscale flume calibration and testing. Report submitted to Esso Norge by IKU Sintef Group.

APPENDIX II

Plackett-Burman Design Factor Effect Tables

article iize 1 h	ala di secondo di secon	NA	46.37	20.36	NA	20.40	NA S	48.31	23.23	22.80	98.34	19.76	16.57										
	X11		+	+		+		+	ŧ	•		+	•	155.20	160.94	316.14	-5.74	-0.96	-30.87	28.96			
ED	X10		1	+		•		+	+	ı	•	•	•	91.90	224.24	316.14	-132.34	-22.06	-51.97	7.86			
IASSIGN	6 X	1	÷	1		+		Ŧ	+	+	ı	1	·	161.11	155.03	316.14	6.08	1.01	-28.90	30.93			
Ŋ	X8		'n	+		+		•	+	+	+	·	•	185.13	131.01	316.14	54.12	9.02	-20.90	38.94			
	X7		•	١		•		+	ı	+	+	+	ı	189.21	126.93	316,14	62.28	10.38	-19.54	40.30			
Energ- etics (rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	10	210.04	106.10	316.14	103.94	17.32	-12.59	47.24			
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kao!	230.40	85.74	316.14	144.66	24.11	-5.81	54.03			
Part. Loading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	236 1R	79.96	316.14	156.22	26.04	-3.88	55.95			
Orim. conc. (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	208.06	108.08	316.14	99.98	16.66	-13.25	46.58			
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	83.32	232.82	316.14	-149.50	-24.92	-54.83	5.00			
Salinity (ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	165 11	151.03	316.14	14.08	2.35	-27.57	32.26			
Mean Depende nt Variable	Mean				•	•								216 11		316.14	316.14	26.35				11.04	29.92
Trial		-	- ~	10	4	·	0 0	2	60	0	10	- -	12	E C	- uno	Check Sum	Difference	Factor Effect	Lower CL	Upper CL	c	0FE	tS _{FE} =

Particle Size 3 h		NA .	54.17	17.85	NA	18.35	NA	15.78	17.00	17.37	58.29	22.92	11.87								
	X11		+	÷		+		+	•	٩	۰	+	٠	129.07	104.53	233.60	24.54	4.09	-22.22	30.40	
	X10			+				÷	+	F	·	•	r	50.63	182.97	233.60	-132.34	-22.06	-48.36	4.25	
SSIGNED	6X		+	•		+		+	+	+	·			122.67	110.93	233.60	11.74	1.96	-24.35	28.26	
UND	X8		settentile, a binnin	+		+		•	+	+	+	ı	5	128.86	104.74	233.60	24.12	4.02	-22.29	30.33	
	X7		e o contra e difica e fillencenero	•				+		+	+	+	•	114.36	119.24	233.60	-4.88	-0.81	-27.12	25.49	
inerg- etics (rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	10	132.34	101.26	233.60	31.08	5.18	-21.13	31.49	
Part. E Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	150.19	83.41	233.60	66.78	11.13	-15.18	37.44	
Part. bading mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	163.46	70.14	233.60	93.32	15.55	-10.75	41.86	
Orim. conc. Lc mg/L) (i	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	170.23	63.37	233.60	106.86	17.81	-8.50	44.12	
emp.	X2	25	4	25 1	25	25	4	4	4	25	4	25	4	76.49	157.11	233.60	-80.62	-13.44	-39.74	12.87	
allnity T ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	130.81	102.79	233.60	28.02	4.67	-21.64	30.98	
Mean pende Si nt (iriable	Mean													233.60	0.00	233.60	233.60	19.47			10.24
Trial De Va	4		CN	e	4	ري ا	9	7	æ	ŋ	10	11	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	-ower CL	Jpper CL	

tS_{FE} =

÷

Particle Size 24 h	· 21, 21, 27, 200 € BARNESS STATISTICS	NA	365 17	7 86	CO. /				2.01	15.62	9.21	4.73	10 61	10.21	0/./											
	X11				+ 1993/1413/1993/1993				+	ı	•	,	•	t	•	387.64	37.32	424.96	350 33		20.39	-95.98	212.76			
	X10								+	+	۱	I	ł	ŧ	•	25.48	399.48	424.96	00 120	-0.4.00	-62.33	-216.70	92.04			
SSIGNED	6X		tiona (12000000000000000000000000000000000000	ŀ					+	+	÷	•	•	•	•	392.01	32.95	424.96		00.805	59.84	-94.53	214.21			
UNA	X8			4	+				ŧ	+	4	, 	ŧ	٠	•	37.41	387.55	424 GG		-350.14	-58.36	-212.73	96.01			
	X7			1					+	,	4	⊦	÷	+	•	28.56	396.40	AD ACA		-367.84	-61.31	-215.68	93.06			
Energ- etics (rpm)	X6			01	10	10	- 100- T	10 U	100	100	<u></u>	2	001	100	9	34.97	389.99	104 06	00.474	-355.02	-59.17	-213.54	95.20			
Part. Type	X5	El CSUNS		kaol	calc	kaol	calc	kaol	calc	oleo Calco		kaol	calc	calc	kaol	42.82	382 14	00 101	424.00	-339.32	-56.55	-210.92	97.82			
Part. Loading (mg/L)	X4		2/2	270	270	0	Ø	C	270	Ċ		2/0	270	0	0	388.97	35,00		424.30	352.98	58.83	-95.54	213.20			
Òrim. conc. (mg/L)	X3			17000	17000	17000	1000	1000	1000	17000		0001	17000	17000	1000	405.98	18 08	00.01	424.90	387.00	64.50	-89.87	218.87			
Temp. (°C)	67	1 1 1	ON N	4	25	25	25		4		t ¦	25	4	25	4	29.67	206 20	00.000	424.96	-365.62	-60.94	-215.31	93.43			
Salinity (ppt)	ţ		ĉ	35	0	35	85	ŭ C	} c		יכ	0	35	0	0	369 90	55.00		424.96	314.84	52.47	-101.90	206.84			
Mean Depende nt	Variable	MCAH														90 000	0000	0.00	424.96	424.96	35.41				60.07	154.37
Trial				2	co.	4	.) ଓ	7	~ 0	ά	ი	10	÷	12	H min		- muc	Check Sum	Difference	Eactor Effect		Upper CL	- - - -	S _{FE} =	tS _{FE} =

Particle Size Size 8 h		NAME	293.80	11.10	MANNE	NA	NA	5.12	20.30	13.25	9.10	17.96	7.13										
	X11		*	• +		Ŧ		+	ı		1	+	·	327.98	49.78	377.76	278.20	46.37	-76.00	168.73			
	X10		und president de la constant de la c	+				+	+	•	ı	ı	•	36.52	341.24	377.76	-304.72	-50.79	-173.15	71.58			
ASSIGNED	6X	の新聞の語言が		• •				+	+	+	1	ı		332.47	45.29	377.76	287.18	47.86	-74.50	170.23			
NN	X8		ran sandrifa a na shakalasiy	+		+			+	+	~ +	ı	٠	53.75	324.01	377.76	-270.26	-45.04	-167.41	77.32			
	X7			. 1		3 		+	1	+	+	+	•	45.43	332.33	377.76	-286.90	-47.82	-170.18	74.55			
Energ- etics (rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	10	52.48	325.28	377.76	-272.80	-45.47	-167.83	76.90			
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	63.58	314.18	377.76	-250.60	-41.77	-164.13	80.60			
Part. oading mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	332.37	45.39	377.76	286.98	47.83	-74.54	170.20			
Orim. conc. L(mg/L) (X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	352.26	25.50	377.76	326.76	54.46	-67.91	176.83			
Temp.	ž	25	4	25	25	25	4	4	4	25	4	25	4	42.31	335.45	377.76	-293.14	-48.86	-171.22	73.51			
alinity (ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	302.90	74.86	377.76	228.04	38.01	-84.36	160.37			
Mean Depende S nt Variable	Mean													377.76	0.00	377.76	377.76	31.48			17 64	10.74	122.37
Trial		•	2	e C	4	Q	9	7	80	თ	10	1	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL			tS _{FE} =

TPH in water 1 hr (mg/L)		204./6	12.1221	2045.45	0.95	20.092	19.0	243.90	8625.00	1020201	1350.00	00.35.20	100.03	
	X11	•	+	+		+	+	+	•	ı	•	+	ı	10040.10 12199.60 22239.70 -2159.51 -359.92 -1780.18 1060.34
	X10	+	ı	+	+	1	+	+	+	ı	•	ı	•	11120.98 11118.72 22239.70 2.26 0.38 -1419.88 1420.64
ASSIGNED	6X	ı	+	·	+	+	•	+	+	+	، ت	•	ı	12237.13 10002.57 22239.70 2234.55 372.43 372.43 1792.68
ΩN	X8	١	•	+	۱	÷	+	•	+	+	+	١	ł	14161.36 8078.34 22239.70 6083.03 1013.84 -406.42 2434.10 2434.10
	X7	·	•		+	,	+	+		+	+	+	,	9678.32 12561.38 22239.70 -2883.06 -480.51 -1900.77 939.75
Energ- etics (rpm)	X6	100	10	10	10	100	0	100	100	10	100	100	10	16946.22 5293.48 22239.70 11652.74 1942.12 521.87 3362.38
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaoi	calc .	calc	kaol	calc	calc	kaol	18786.92 3452.78 22239.70 15334.13 2555.69 1135.43 3975.95 3975.95
Part. -oading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	6921.39 15318.31 22239.70 -8396.92 -1399.49 -2819.74 -2819.74 20.77
Orim. conc. ¹ (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	19481.24 2758.46 22239.70 16722.78 2787.13 1366.87 4207.39
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	10623.73 11615.97 22239.70 -992.25 -165.37 1254.88 1254.88
Salinity (ppt)	¥1	35	37	3 c	35	35	35	0	0		35	0	0	3073.90 19165.80 22239.70 -16091.91 -2681.98 -4102.24 -1261.73
Mean Depende nt	Variable Mean													22239.70 0.00 22239.70 22239.70 1853.31 1853.31 1853.31 1420.26
Trial		Ŧ	- c	4 0	04	ן על	о u	• r	. 00	σ	, C	2 =	12	Sum + Sum + Check Sum Difference Factor Effect Lower CL Upper CL SFE = SFE =

TPH in water 8 hr (mg/L)		2.00	737.50	452.38	1.05	23.81	2.73	48.65	10581.40	245.00	305.00	6047.62	79.55											
	X11	٠	÷	+	•	+	+	+	•	•	1	+	•	7312.69	11213.99	18526.68	-3901.31	-650.22	-2569.95	1269.52				
	X10	+	•	÷	+	•	+	÷	+	•	ı	·	•	11088.20	7438.47	18526.68	3649.73	608.29	-1311.45	2528.02				
ASSIGNED	6X	ı	+	ŧ	+	+	٠	+	Ŧ	+	•	ι	٠	11637.41	6889.27	18526.68	4748.13	791.36	-1128.38	2711.09				
Ň	X8	ı	ı	+	ı	+	+		+	÷	+	ı	۰	11610.31	6916.37	18526.68	4693.95	782.32	-1137.41	2702.06				
	X7		•	1	+	•	+	+	·	+	+	+	•	6650.05	11876.63	18526.68	-5226.58	-871.10	-2790.83	1048.64	-			
Energ- etics (rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	10	17008.47	1518.21	18526.68	15490.27	2581.71	661.98	4501.45				
, Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	17458.85	1067.83	18526.68	16391.03	2731.84	812.10	4651.57				
Part. Loading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	1790.53	16736.15	18526.68	-14945.62	-2490.94	-4410.67	-571.20				
Orim. conc. (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	18124.95	401.73	18526.68	17723.22	2953.87	1034.13	4873.60				
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	6771.86	11754.82	18526.68	-4982.95	-830.49	-2750.23	1089.24				
Salinity (ppt)	۲	35	35	0	35	35	35	0	0	0	35	0	0	1072.09	17454.59	18526.68	-16382.50	-2730.42	-4650.15	-810.68				
Mean Depende nt Variable	Mean													18526.68	0.00	18526.68	18526.68	1543.89				/46.98	1919.73	
Trial		4	N	ო	4	ß	9	7	ω	თ	10	11	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL	i u		lS _{FE} =	

TPH in water 24 hr (mg/L)		0.64	2159.66	629.61	NA NA	0.90	18.13	6.35	1764.97	77.20	26.78	647.76	12.31		1			4 19 19 19 19 19 19	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	X11	•	+	+		+	+	+	ı	ı	•	+	•	346	188	534	158	20 20	89	120		
-	X10	+	•	+		•	+	+	+	1	•	ı	•	2420	2925	5344	-505	-84	-1030	862		
ASSIGNED	6X	1	+	,		+	•	÷	÷	+	١	ı	·	4009	1335	5344	2674	446	-500	1391		
N	X8	,	•	+		+	+	•	+	+	+	ı	ı	2518	2826	5344	-309	Ļ	-997	894		
	X7	•	•	1			+	+	•	+	÷	+	ł	776	4568	5344	-3792	-632	-1578	314		
Energ- etics (rpm)	X6	100	5	10	10	100	10	100	100	10	100	100	10	2447	2897	5344	-450	- 15	-1021	871		
Part. Type	, X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	3076	2268	5344	808	135	-811	1081		
Part. Loading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	2900	2444	5344	456	76	-870	1022		
Orim. conc. (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	5229	116	5344	5113	852	-94	1798		
Temp. (°C)	X2	25	} 4	25	22	25	4	4	4	25	4	25	4	1356	3988	5344	-2632	-439	-1384	507		
Salinity (ppt)	X1	35	35	} c	35	35	35	0	0	0	35	0	0	2206	3138	5344	-932	-155	-1101	290		
Mean Depende nt Veriable	Mean													5344	0	5344	5344	445			368	222
Trial		Ŧ	- ດ	1 0.) 4	- 1 2	9	- 1-	. œ	0	10	11	12	+ mu	um -	Check Sum	Difference	actor Effect	ower CL	Jpper CL		

946

tS_{FE} =

TPH dissolved in water 24 hr		0.64	2.65	19.78	NANE	0.59	0.48	0.46	1.99	0.76	3.27	5.38	0.41										
	X11	ł	+	+		+	+	+	•	•	٠	+	1	29.35	6.42	35.78	22.93	3.82	-4.20	11.84			
	X10	+	•	+		1	+	+	+		ı	·	٠	23.36	13.06	36.42	10.30	1.72	-6.31	9.74			
SSIGNED	6X		+	ı		+	•	+	+	+	ı	ı		6.46	29.96	36.42	-23.50	-3.92	-11.94	4.11			
UNA	X8	•		+		•+	+	1	+	æ +	+	•	ŀ	26.87	8.90	35.78	17.97	2.99	-5.03	11.02			
	X7		ı			ı	+	+	•	+	+	+	r	10.35	26.07	36.42	-15.71	-2.62	-10.64	5.40			
nerg- etics rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	10	12.33	24.08	36.42	-11.75	-1.96	-9.98	6.06			
Part. E Type (X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	31.47	4.94	36.42	26.53	4.42	-3.60	12.44			
Part. bading mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	27.56	8.86	36.42	18.70	3.12	-4.91	11.14			
Orim. conc. Lo mg/L) (i	X3	1000	17000	17000	000//	1000	1000	1000	17000	1000	17000	17000	1000	33.07	3.35	36.42	29.73	4.95	-3.07	12.98			
emp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	27.15	9.26	36.42	17.89	2.98	-5.04	11.00			
alinity ¹ (ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	7.64	28.78	36.42	-21.15	-3.52	-11.55	4.50			
Mean Depende S nt Variable	Mean													36.42	0.00	36.42	36.42	3.03			3 10	2.0	8.02
Trial		-	~	e	4	5	9	7	80	6	10	11	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL	See =		tS _{FE} =

% sunk after 24 hr		0.25	0.07	0.62	NA ST	0.19	0.20	0.59	0.05	0.92	0.05	0.25	0.98									
	X11	•	+	+		+	+	+	·	ı	,	+	•	1.93	2.00	3.93	-0.07	-0.01	-0.19	0.17		
	X10	+	ı	+		•	+	+	+	•	·	۱	•	1.71	2.46	4.17	-0.76	-0.13	-0.31	0.05		
ASSIGNED	6X	ı	+	•		+	ı	+	+	+	ŧ	1	•	1.82	2.35	4.17	-0.52	-0.09	-0.27	0.09		
NN	X8	•	•	+		+	+	8	+	+	+	ı	•	2.04	1.89	3.93	0.14	0.02	-0.16	0.20		
	X7	•					+	+		+	+	+	٠	2.02	2.16	4.17	-0.14	-0.02	-0.20	0.16		
Energ- etics (rpm)	X6	100	10	10	10 C	100	10	100	100	10	100	100	10	1.38	2.79	4.17	-1.41	-0.23	-0.42	-0.05		
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	1.75	2.42	4.17	-0.66	-0.11	-0.29	0.07		
Part. Loading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	2.50	1.67	4.17	0.83	0.14	-0.04	0.32		
Orim. conc. (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	1.04	3.14	4.17	-2.10	-0.35	-0.53	-0.17		
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	2.23	1.94	4.17	0.29	0.05	-0.13	0.23		
Salinity (ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	0.76	3.41	4.17	-2.65	-0.44	-0.62	-0.26		
Mean Depende nt Variahle	Mean					-								4.17	0.00	4.17	4.17	0.35			20.0	 0.18
Trial		T	. ର	က	4	ъ	ц С		80	റ	10	1	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL	u v	tS _{FE} =

	% float after 24 hr			0.00	0.40	0.27		0.00	0.66	0.00	0.00	0.00	0.00	0.21	0.00	3		3	3	9			-			
			X11	۱	+	+		+	+	+	·	ŀ	ł	+	ı	1.5	0.0	1. Ç	1. 27.	0.2(- 0.0	0.5				
			X10	+	•	+			+	+	+	ı	ı	ł	1	0.92	0.61	1.53	0.32	0.05	-0.29	0.39				
	ASSIGNED		6X	ı	+	1		+	•	+	+	+	ı	ı	•	0.40	1.13	1.53	-0.73	-0.12	-0.46	0.22				
	NN		X8			+		+	+	٦	+	+	ہ . +		ı	0.92	0.61	1.53	0.32	0.05	-0.29	0.39				
			X7	•	·				+	+	,	÷	+	+	,	0.87	0.67	1.53	0.20	0.03	-0.31	0.37				
2	Energ- etics	(rpm)	X6	100	5	10	10	100	9	100	100	10	100	100	10	0.21	1.33	1.53	-1.12	-0-19	-0.52	0.15				
	Part. Tvpe		X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	0.47	1.06	1.53	-0.59	-0.10	-0.44	0.24				
	Loading	(mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	0.67	0.87	1.53	-0.20	-0.03	-0.37	0.31				
	conc.	(mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	0.88	0.66	1.53	0.22	0.04	-0.30	0.37				
	Temp. (°C)		X2	25	4	25	25	25	4	4	4	25	4	25	4	0.47	1.06	1.53	-0.59	-0.10	-0. 44.	0.24				
	Salinity (ppt)		X1	35	35	0	35	35	35	0	0	0	35	0	0	1.06	0.47	1.53	0.59	0.10	-0.24	0.44				
Mean	Depende nt	Variable	Mean											•		1.53	0.00	1.53	1.53	0.13				0.13	0.34	
	Trial				2	e	4	с С	Q	7	8	თ	9	7	12	sum +	Sum -	Check Sum	Difference	actor Effect	-ower CL	Jpper CL	,	ÖFE =	S _{FE} =	

•

•

•

.

% stuck to sides after 24 hr		0.75	0.21	0.01	NA	0.80	0.12	0.40	0.77	0.00	0.95	0.47	0.00									
	X11	ı	+	+		+	+	+	•	•	•	+	·	2.02	1.71	3.73	0.30	0.05	-0.29	0.39		
	X10	+	r	+		1	+	+	+	1	ı	ı		2.06	2.43	4.48	-0.37	-0.06	-0.40	0.28		
ASSIGNED	6X	ı	+	•		+	1	+	+	+	•		•	2.18	2.30	4.48	-0.13	-0.02	-0.36	0.32		
'n	X8			+		+	+		+	+	+	ı	•	2.66	1.07	3.73	1.58	0.26	-0.07	0.60		đ
	X7	•	ı				+	+	ŀ	+	+	+	•	1.94	2.54	4.48	-0.60	-0.10	-0.44	0.24		
Energ- etics (rpm)	X6	100	10	10	10	100	10	100	100	10	100	100	1 0	4.14	0.34	4.48	3.80	0.63	0.30	0.97		
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	3.40	1.08	4.48	2.32	0.39	0.05	0.72	·	
Part. -oading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	2.32	2.16	4.48	0.15	0.03	-0.31	0.36		
Orim. conc. l (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	2.40	2.08	4.48	0.32	0.05	-0.28	0.39		
Temp. (°C)	X2	25	4	25	55	25	4	4	4	25	4	25	4	2.04	2.45	4.48	-0.41	-0.07	-0.41	0.27		
Salinity (ppt)	X1	35	35	0	35	35	35	0	0	0	35	0	0	2.84	1.65	4.48	1.19	0.20	-0.14	0.54		
Mean Depende nt Variable	Mean													4.48	0.00	4.48	4.48	0.37			0.13	0.34
Trial		•	0	ო	4	S	9	- 7	ω	თ	10	11	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL		tS _{FE} =

% suspended in water 24		0.00	0.32	0.10	NAME NO	0.00	0.02	0.01	0.18	0.08	0.00	0.07	0.02										
	X11	۰	+	÷		+	÷	+	•	ı	•	+	۰	0.52	0.28	0.80	0.24	0.04	-0.09	0.17			
	X10	+	•	÷		•	+	+	+	,	•	•	ı	0.31	0.50	0.80	-0.19	-0.03	-0.16	0.10			
ASSIGNED	6X		+			+	ı	+	+	+	•		,	0.59	0.21	0.80	0.38	0.06	-0.06	0.19			
'n	X8	•	·	+		+	+		+	+	+	ı	•	0.38	0.42	0.80	-0.04	-0.01	-0.13	0.12			
	X7		1	ı			+	+	•	+	+	+	Ŧ	0.18	0.63	0.80	-0.45	-0.08	-0.20	0.05			
Energ- etics (rpm)	X6	100	10	10	10	100	10	<u>10</u>	100	10	100	100	10	0.27	0.53	0.80	-0.27	-0.04	-0.17	0.08			
Part. Type	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	0.37	0.44	0.80	-0.07	-0.01	-0.14	0.12			
Part. -oading (mg/L)	X4	270	270	270	<u>0</u>	0	0	270	0	270	270	0	0	0.51	0.29	0.80	0.21	0.04	-0.09	0.16			
Orim. conc. 1 (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	0.68	0.12	0.80	0.57	0.09	-0.03	0.22			
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	0.25	0.55	0.80	-0.30	-0.05	-0.18	0.08			
Salinity (ppt)	۲X	35	35	0	35	35	35	0	0	0	35	0	0	0.34	0.46	0.80	-0.12	-0.02	-0.15	0.11			
Mean Depende nt Variable	Mean													0.80	0.00	0.80	0.80	0.02			0.05		0.0
Trial		 -	ณ	ო	4	ц,	9	7	ω	თ	0	 !	21	Sum +	Sum -	Check Sum	Difference	Factor Effect		upper CL	S _{FE} =	ty -	10 FE -

% Dissolved (total) ifter 24 hr	0.0007 0.0004 0.00032 0.0005 0.0005 0.0008 0.0008 0.0008 0.0008 0.0008	
LI 63	5 · + + * + + + · · · + ·	0.0057 0.0018 0.0075 0.0038 0.0038 0.0007 0.0007 0.0020
	5 + · + + + · · · · ·	0.0051 0.0032 0.0033 0.0018 0.0011 0.0017
SSIGNED	6 , +, +, + + + +, , , ,	0.0024 0.0059 0.0083 -0.0035 -0.0026 0.0008 0.0008
UNA	8 , , + , + + , + + + , ,	0.0054 0.0021 0.0075 0.0033 0.0005 0.0019 0.0019
	X · · · * · + + · + + + ·	0.0025 0.0058 0.0083 -0.0033 -0.0033 0.0005 0.0008
nerg- tics rpm)	8 § 5 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0028 0.0055 0.0083 -0.0027 -0.0018 0.0009
art. El Type (X X Kaol Calc calc calc calc calc calc calc cal	0.0053 0.0030 0.0083 0.0023 0.0014 0.0018
Part. Pading 1 ng/L)	X4 270 270 0 270 0 270 0 270 0 0 0 0 0 0 0	0.0058 0.0024 0.0083 0.0006 -0.0008 0.0019
Drim. I sonc. Lo ng/L) (1	X3 1000 77000 17000 17000 17000 17000 17000 17000	0.0047 0.0036 0.0083 0.0011 0.0012 0.0016
emp.	X 8 4 8 8 8 4 7 4 8 4 8 4 8 4 8 4 8 4 8 4	0.0059 0.0023 0.0083 0.0006 -0.0008 0.0020
alinity T (ppt)	X 38 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0 0 8 0	0.0023 0.0059 0.0036 -0.0036 -0.0006 -0.0008 0.0008
Mean)epende Si nt (/ariable	Mean Mean Market an Market	0.0083 0.0000 0.0083 0.0083 0.0083 0.0007 0.0007 0.0005 0.0014
Trial D	τ α σ 4 υ ο Γ ∞ ο C τ τ	Sum + Sum + Check Sum Difference Factor Effect Lower CL Upper CL S _{FE} = tS _{FE} =

..

.

4

3

7

ŗ

Dissolved PAH (ug/L) fter 24 hr		315.75	2997.78	86418.26	NAL STATE	287.64	4149.12	5104.11	12008.47	8712.17	4389.93	26192.70	5722.73										
	X11	•	+	+		+	+	÷		•	•	+	•	125150	30833	155983	94316	15719	-18198	49637			
	X10	+	•	+		•	+	+	+	ı		,		107996	48303	156299	59693	9949	-23969	43866			
ASSIGNED	6X	ı	+			+		+	+	+	•	·	1.	29110	127188	156299	-98078	-16346	-50264	17571			
CN CN	X8	ł		+		+	+	,	+	+	+	•	ı	115966	40017	155983	75948	12658	-21259	46576			
	X7		ı	1		•	+	+	•	+	+	+	•	48548	107751	156299	-59203	-9867	-43785	24050			
Energ- tics (rpm)	X6	100	10	10	10	100	10	100	100	5	100	100	10	48299	108000	156299	-59701	-9950	-43868	23967			
Part. Type _e	X5	kaol	kaol	calc	kaol	calc	kaol	calc	calc	kaol	calc	calc	kaol	134401	21898	156299	112504	18751	-15167	52668			
Part. Loading (mg/L)	X4	270	270	270	0	0	0	270	0	270	270	0	0	107938	48361	156299	59577	0866	-23988	43847			
Orlm. conc. (mg/L)	X3	1000	17000	17000	17000	1000	1000	1000	17000	1000	17000	17000	1000	132007	24292	156299	107716	17953	-15965	51870			
Temp. (°C)	X2	25	4	25	25	25	4	4	4	25	4	25	4	121927	34372	156299	87554	14592	-19325	48510			
Salinity (ppt)	X	35	35	0	35	35	35	0	0	0	35	0	0	12140	144158	156299	-132018	-22003	-55921	11914			
Mean Dependent Variable	Mean													156299	0	156299	156299	13025			13197.48	03 21000	50.71855
Trial		•	2	ო	4	n .	9	7	8	D	10	11	12	Sum +	Sum -	Check Sum	Difference	Factor Effect	Lower CL	Upper CL	S _{FE} =	- 	2FE -

APPENDIX III

Response Surface Design Model Calculations

Summary of Fit					
RSquare	0	.759198			
Roquare Adj Root Moon Savera	0	.548497			
Mean of Besponso	+ Error 4	2.03504			1
Observations (or S	um Wats)	3.49046			
					1
Analysis of Variand	ж)			ļ	
Source DF	Sum of Square	es Mean S	quare	F Ratio	
Model 14	91695.7	'8 65	49.70	3.6032	
Error 16	29083.9	15 18	17.75	Prob>F	
C Total 30	120779.7	'3 		0.0081	
Lack of Fit					
Parameter Estimat	es				
Term	Estimate	Std Error	t Ratio	Prob> t	
ntercept	40.498531	41.96349	0.97	0.3489	
Salinity	6.2048185	3.297419	1.88	0.0782	[[
DR400	0.0023283	0.007949	0.29	0.7734	[[
Energy	-2.864445	1.516547	-1.89	0.0772	[]
oading	1.297812	0.427443	3.04	0.0079	
Salinity*Salinity	-0.170765	0.086419	-1.98	0.0657	
DH400*Salinity	0.0000758	0.000076	1.00	0.3340	
	-1e-7	4.135e-7	-0.24	0.8119	
nergy Sallhity	0.0073556	0.013535	0.54	0.5943	
Enerov*Enerov	0.0000081	0.00003	U.27 1 80	0./0// 0.0870	
oading*Salinity	0.0230104	0.01307	1.02 -0 43	0.0072	
oading*OR400	-0.00003	0.004312	-0.43	0.7683	
.oading*Enerov	0.0003928	0.001755	0.22	0.8257	
oading*Loading	-0.004774	0.001452	-3.29	0.0046	
ffect Test)	
	5				1
Response Surface	J				
rediction Profile)					
		<u> </u>		Т	
			- + ·	_┲ <u></u> <u> </u>	
o 130.0924 -	TIT	\bowtie	++-	┢═╡┼╁	-1-
L_					
10 05 -		111		- [

reening Fit		. <u></u>		`	
PS 3		*			
Summary of Fit					
RSquare	0.74371	12			
RSquare Adi	0.51946	61			
Root Mean Square E	Error 46.0657	73			
Mean of Response	65.0590	03			
Observations (or Su	m Wgts) 3	31			
Analysis of Vanance					
Source DF Si	um of Squares Me	ean Square	F Hatio		
Model 14	98526.52	7037.61	3.3164		
Error 16	33952.83	2122.05	Prod>F	1	
Ciotal 30	132479.34		0.0121		
Lack of Fit					
Parameter Estimate	es)				-
Term	Estimate Std	Error t Ratio	Prob>[t]		
Intercept	48.721588 45.3	4014 1.07	0.2985		
Salinity	12.502851 3.56	2751 3.51	0.0029		
OR400	0.0170416 0.00	8589 1.98	0.0647		
Energy	-4.833287 1.63	8578 -2.9	5 0.0094		
Loading	0.2018765 0.46	1838 0.44	0.6679		
Salinity*Salinity	-0.353135 0.09	3373 -3.78	3 0.0016		
OR400*Salinity	0.0000479 0.00	0082 0.58	0.5682		
OR400*OR400	-9.132e-7 4.46	58e-7 -2.04	0.0578		
Energy*Salinity	-0.000777 0.01	4624 -0.0	5 0.9583		
Energy*OR400	0.0000005 0.00	0032 0.02	0.9869		
Energy*Energy	0.041263 0.01	4121 2.92	2 0.0100		
Loading*Salinity	-0.001479 0.00	4875 -0.30	0.7656		
Loading*OR400	-0.000003 0.00	00011 -0.29	0.7770		
Loading*Energy	0.0007787 0.00	01896 0.41	0.6867		
Loading*Loading	-0.000603 0.00	01569 -0.38	3 0.7059		
(Effect Test	*****	. <u> </u>			
	$\overline{\mathcal{A}}$				
Unesponse Sunace				J	
Prediction Profile					
- 296.05 -			7		
-	1				
ຕ ທີ່ 110 6542			~ - ! ~		
ຕ <i>119.6542</i> -				* + *	
ິດ <i>119.6542</i> 12.92 –	V		M		
ເ <u>ດັ່</u> <i>119.6542</i> - 12.92 -					
ເ <u>ຕັ້ 119.6542</u> - ເບີ້ 12.92 - ເ	17.5				
ທີ່ <i>119.6542</i> - 12.92 –	17.5		17000-		

Ŧ┤

270-

1

Summary of Fit						
RSquare	0.7	12097				
RSquare Adj	0.4	60183				
Root Mean Square	Error 51.9	90606				
Mean of Response	63.	57742				
Observations (or Si	um Wgts)					
Analysis of Variance);e)					
Source DF S	Sum of Squares	Mean So	quare	F Ratio		
Model 14	106622.78	76 ⁻	15.91	2.8267		
Error 16	43107.83	26	94.24	Prob>F		
C Total 30	149730.61			0.0246		
Lack of Fit						
Parameter Estimat	es		~			
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	32.095051	51.08847	0.63	0.5387		
Salinity	12.773623	4.014445	3.18	0.0058		
OR400	0.0263109	0.009677	2.72	0.0152		
Energy	-3.596207	1.846321	-1.95	0.0692		
Loading	-0.58055	0.520391	-1.12	0.2811		
Salinity*Salinity	-0.348884	0.105211	-3.32	0.0044		
OR400*Salinity	0.0000195	0.000093	0.21	0.8364		
OR400*OR400	-0.000001	5.035e-7	-2.75	0.0142		
Energy*Salinity	-0.002492	0.016478	-0.15	0.8817		
Energy*OR400	-0.000011	0.000036	-0.30	0.7650		
Energy*Energy	0.0312045	0.015912	1.96	0.0675		
Loading*Salinity	-0.001763	0.005493	-0.32	0.7523		
Loading*OR400	-0.000003	0.000012	-0.25	0.8036		
Loading*Energy	0.0006202	0.002136	0.29	0.7753		
Loading*Loading	0.0019681	0.001768	1.11	0.2821		
Effect Test	·····					
Response Surface	D					
Prediction Profile					/	
295 78.	<u></u>					1
۵	-			JI	_ T	T
ഗ 119.5419 പ		╤┤╤	-1-1-	₹ ┯∔ᡗ	++/	<u>+ </u>
Q 97.	1/1/	$\mathbb{N} \mid \mathbb{P}$	^ ⊺	±∕/	T	
5.21	4			┯╇┸┍		1
		35- 200-	9000	- 000 - 10	55 0	0
		1		171	•	

270-

creening Fit		•	_
PS 24			
(Summary of Fit)			
RSquare	0.54186		
RSquare Adi	0.140987		
Root Mean Squar	e Error 67.30239		
Mean of Response	e 60.17194		
Observations (or S	Sum Wgts) 31		
Analysis of Variar			
Source DF	Sum of Squares Mean S	guare F Ratio	
Model 14	85717.49 61	22.68 1.3517	
Error 16	72473.78 45	29.61 Prob>F	
C Total 30	158191.28	0.2792	
Lack of Fit			
Parameter Estima	ites		
Term	Estimate Std Error	t Ratio Prob>ltl	
Intercept	26.35642 66.24229	0.40 0.6960	
Salinity	10.659205 5.205206	2.05 0.0574	
OR400	0.0103664 0.012548	0.83 0.4209	
Energy	-4.831103 2.393975	-2.02 0.0607	
Loading	0.9624622 0.674749	1.43 0.1730	
Salinity*Salinity	-0.277094 0.136418	-2.03 0.0592	
OR400*Salinity	-0.00003 0.00012	-0.25 0.8073	
OR400*OR400	-4.154e-7 6.528e-7	-0.64 0.5336	
Energy*Salinity	-0.000165 0.021366	-0.01 0.9939	
Energy*OR400	-0.00003 0.000047	-0.65 0.5245	
Energy*Energy	0.0462938 0.020631	2.24 0.0393	
Loading*Salinity	-0.001607 0.007122	-0.23 0.8244	
Loading*OR400	-0.000005 0.000016	-0.32 0.7512	
Loading*Energy	0.0014041 0.00277	0.51 0.6191	
Loading*Loading	-0.003545 0.002292	-1.55 0.1416]]
Effect Test	<u> </u>		
Response Surfac			
Prediction Profile)		
271.53			T T
4 1 07,9593] _ _ T	- + - T	$N \downarrow I \downarrow$
0 101.0000 A		111	┶┲┲┲┶┼╢
7.1	- [-]]	1	
	ິ 17.5 ^ເ ດິ OO	9000 8	÷ 55 6 0
	4	2	_
	Salinity	OR400	Energy

270-

135

Loading

	Screening Fit		•		
	(TPH 24HR Susp		_		
	Summary of Fit]		
	RSquare	0.740479			
	RSquare Adj	0.513399			
	Root Mean Square	Error 748.9078			
	Mean of Response	469.8548			
	Observations (or SL	im vvgts) 31	J		
	Analysis of Variance				
	Source DF S	um of Squares Mea	an Square	F Ratio	
	Model 14	25604573	1828898	3.2609	
	Error 16	8973806	560863	ProD>F	
	C Total 30	345/83/9		0.0130	
	Lack of Fit				
	Parameter Estimate	es			
	Term	Estimate Std E	rror t Ratio	Prob> t	•
	Intercept	1942.768 737.1	115 2.64	0.0180	
	Salinity	46.758148 57.92	097 0.81	0.4313	
	OR400	0.1343998 0.139	628 0.96	0.3501	
	Energy	-126.9313 20.03	09/ -4./0 27/ 1.00	0.0002	
	Salinity*Salinity	-2 47083 1 517	996 -1.63	0.1231	
	OB400*Salinity	0.0017653 0.001	337 1.32	0.2054	
	OR400*OR400	-0.000011 0.000	007 -1.57	0.1353	
	Energy*Salinity	0.3208968 0.237	749 1.35	0.1959	
	Energy*OR400	0.000824 0.00	052 1.58	0.1327	
	Energy*Energy	1.0586954 0.229	573 4.61	0.0003	
ł	Loading*Salinity	0.1275317 0.07	925 1.61	0.1271	
	Loading*OR400	0.0002399 0.000	173 1.38	0.1854	
	Loading*Energy	0.0412891 0.030	1819 1.34 508 .1.81	0.1991	
		-0.040123 0.023	-1.01		
-	Effect Test				
	Response Surface				
:	Prediction Profile				
		1	1 1		
	ຶສ 4468.4 ທ				. T
	<u><u><u></u></u> 577.0808</u>				
	Н 24		+		
				<u> </u>	Ť
				· 8 ₽	2 55 8
		17.5 07	ē 300	170,	55 22
		Salinity	OR4	00	Energy
1	6				

1

135

Loading

270-

0

creening Fi	it				•		
TPH 24HR	Diss			_			
Summary	of Fit						
RSquare		i	0.793133				
RSquare /	Adj	1	0.612124				
Root Mea	n Square	Error	1.805823				
Mean of F	Response	e :	2.874194				
Observati	ons (or S	Sum Wgts)	31	J			
Analysis o	of Varian	ce					ן ר
Source	DF	Sum of Squar	res Mea	in Sq	uare	F Ratio	,
Model	14	200.043	38	14.	2888	4.3817	/
Error	16	52.175	97	3.	2610	Prob>F	:
C Total	30	252.219	35			0.0030	
Lack of Fi	Ð						
Paramete	r Estima	tes					
Term		Estimate	e Std Er	ror	t Ratio	Prob>	t
Intercept		0.0374578	3 1.7773	379	0.02	0.983	14
Salinity		0.0861456	6 0.1396	63	0.62	0.546	io
OR400		0.0001886	6 0.0003	337	0.56	0.583	я []
Energy		-0.024585	5 0.0642	234	-0.38	0.706	9
Loading		0.0119271	0.0181	05	0.66	0.519	4
Salinity*S	alinity	-0.0036	0.003	366	-0.99	0.338	17
OR400*Sa	alinity	0.000089	0.0000	003	2.75	0.014	1
OR400*O	R400	-7.898e-9	9 1.752	e-8	-0.45	0.658	1
Energy*Sa	alinity	0.0011349	0.0005	573	1.98	0.065	;2
Energy*O	R400	0.0000026	6 0.0000	001	2.04	0.058	18 _.
Energy*Er	nergy	0.0001701	0.0005	54	0.31	0.762	25
Loading*S		-0.000294		91	-1.54	0.143	
Loading*C	0H400	-/.8(38-/	4.18	9-7	-1.87	0.080	
Loading*L	nergy	-0.000135		1/4 NGO	-1.81	0.088	
			0.0000		0.13	0.099	
Effect Tes	ŧ)						
Response	Surface	\mathbb{D}					
Prediction	Profile						
c Diss	16.5	-					
4HF	3.5256	4	_			т	

%Float)	
Summany of Eit						
Summary of Fit						
RSquare	0.9	913948				
RSquare Adj	0.8	338653				
Root Mean Square	Error 0.1	127845				
Mean of Response	0.3	384694				
Observations (or S	um Wgts)					
Analysis of Variance	;e)					
Source DF	Sum of Squares	Mean S	quare	F Ratio		
Model 14	2.7774886	6 0.19	8392	12.1382		
Error 16	0.261511	0.01	6344	Prob>F		
C Total 30	3.0389997	7		<.0001		
Lack of Fit						
Parameter Estimat	es					
Term	Estimate	Std Error	t Ratio	Prohalti		
Intercent	-0 155355	0.125832	-1 23	0 2348		
Salinity	-0.133355	0.120002	3 34	0.2340		
	0.0000322	0.0000024	1 95	0.0041		
Enorgy	0.0131156	0.000024	2.88	0.1900		
Loading	-0.002200	0.004040	-1.97	0.0706		
Colinity*Colinity	-0.002399	0.001202	-1.07	0.0790		
OR400*Solinity	-0.000333	2 2820 7	-1.25	0.2147		
	2 0390 0	1.240.0	1.70	0.1002		
Energy*Salinity	-2.0008-9	0.000041	-1.04	0.0006		
Energy Saminy	0.000002	8 8780-8	2 /8	0.0000		
Energy*Energy	-0.000126		-3.91	0.0247		
Loading*Salinity	-0.000120	0.0000033	-0.40	0.0000		
Loading Salinity	-0.000007	2 0500-8	-0.43	0.0041		
	-2.7040-0	2.9096-0	-0.93	0.3041		
Loading*Energy	0.00005	0.000005	-0.93	0.3053		
	0.00001	0.000004	2.29	0.0359		
(Effect Test						
Response Surface)					
Prediction Profile						- <u></u>
0 7000	<u></u>	тТ				11
U.7882 -		HL		ŢŢ.	<u> </u>	N
0.562244						
1%	P	11		- 1	· ⁻ N	
0-	-{ ⁺				L L	
		, , , , ,		<u>, , , , , ,</u>	<u> </u>	┶┰╍┾
	17.5	3£ 1000	9000	7000	55 00	13
	Salinity	,	OR40	0	Energy	Load
						

 \mathbf{F}

270-

creening Fit					
%Sunk)	· · · · · · · · · · · · · · · · · · ·			1.45	
(Summary of Fit)		1			
BSquare	0 881017				
RSquare Adi	0.001017				
Boot Mean Square F	Error 0.149496				
Mean of Besponse	0.284797				
Observations (or Su	m Wats) 31				
	<u> </u>)			
Analysis of Variance		0	E Detia		
Source DF SI	um of Squares Mear		F Hallo		
	2.64///45 0	000040	8.4024 Drobs 5		
Error 10	0.3070000 0	.022349	< 0001		
C Total SU	3.0053003		<.0001		
Lack of Fit					
Parameter Estimate	s)		
Term	Estimate Std Err	or t Ratio	Prob> t		
Intercept	0.5019611 0.14714	41 3.41	0.0036		
Salinity	-0.03787 0.01156	52 -3.28	0.0048		
OR400	-0.000051 0.00002	28 -1.84	0.0848		
Energy	0.0064977 0.0053	18 1.22	0.2394		
Loading	0.0020299 0.00149	9 1.35	0.1944	· ·	
Salinity*Salinity	0.0006596 0.00030	03 2.18	0.0448		
OR400*Salinity	-6.663e-7 2.67e	-7 -2.50	0.0239		
OR400*OR400	4.2415e-9 1.45e	-9 2.93	0.0099		
Energy*Salinity	0.0001224 0.00004	47 2.58	0.0202		
Energy*OR400	-1.057e-7 1.038e	-7 -1.02	0.3237		
Energy*Energy	-0.000097 0.00004	46 -2.11	0.0505		
		16 -0.26	0.7971		
		-0 -2.00	0.0033		
Loading Energy		05 -1 00	0.3335		
			0.0000		
Effect Test	_				
Response Surface					
Prediction Profile)	
	T	<u> </u>	<u> </u>		<u></u>
0.9455 - 	T I	_	_		
0.177566 -	N_{τ}				
*		╧┸╧╪	₹+¦ _T	J-I-T-	╎┯┯╪┥
0-					
	1 ' ' 0 ₁₇₅ 6		· · · ·	55 8	0 195
	17.5	ę 3000	170	33 2	100
	Salinity	OR40	0	Energy	Loading
	-				

-

270-

%Ring)							
Summary of Fit							
RSquare	0.8	855077					
RSquare Adj	0.7	28269			ł	•	
Root Mean Square E	Error 0.1	07847					
Mean of Response	0.2	268977					
Observations (or Su	m Wgts)	31					
Analysis of Variance	 •)						
Source DF S	um of Squares	Mean So	quare	F Ratio			
Model 14	1.0980061	0.07	8429	6.7431			
Error 16	0.1860966	6 0.01	1631	Prob>F			
C Total 30	1.2841027	7		0.0003			
Lack of Fit							
Parameter Estimate	es)	<u></u>			ון		
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	0.4306283	0.106149	4.06	0.0009			
Salinity	-0.002011	0.008341	-0.24	0.8125			
OR400	-0.000001	0.00002	-0.05	0.9596			
Energy	-0.004101	0.003836	-1.07	0.3009			
Loading	-0.000951	0.001081	-0.88	0.3921	[]		
Salinity*Salinity	-0.000043	0.000219	-0.20	0.8463			
OR400*Salinity	-5.116e-8	1.926e-7	-0.27	0.7939			
OR400*OR400	-7.73e-10	1.046e-9	-0.74	0.4709			
Energy*Salinity	0.0000437	0.000034	1.28	0.2196			
Energy*OR400	-1.282e-7	7.489e-8	-1.71	0.1062			
Energy*Energy	0.0000853	0.000033	2.58	0.0201			
Loading*Salinity	0.0000062	0.000011	0.54	0.5956	[]		
Loading*OR400	8.6285e-8	2.496e-8	3.46	0.0033			
Loading*Energy	-0.000018	0.000004	-3.95	0.0011			
Loading*Loading	0.0000011	0.000004	0.29	0.7745	Л		
Effect Test							
Response Surface							
Prediction Profile					_ر_		
	<u> </u>					Τ	Т
0.5554 - D -							
۲. 193734 -					.	L_1	
× .	╎┠┰╪┊	╺╶┨┤┨	-₽-‡-	±1+	<u>⊢</u>		╀
0.0174 -	└┰╌╷┤─	┯┯┹┯		$\frac{1}{1}$, , , , , , , , , , , , , , , , , , , 	<u> </u>	L
	o 17.5	35 1000	9000	7000	2 !	55 <u>Q</u>	
				۲.			

270-

135

Loading

•

	1				
0.7	24263				
0.4	82992			1	
Error 0.0	80382				
0.0	61119				
m Wgts)	31				
Ð					
um of Squares	Mean So	quare	F Ratio		
0.27154148	0.01	9396	3.0019		
0.10337987	0.00	6461	Prob>F		
0.37492135			0.0190		
s)	<u></u>				
Estimate	Std Error	t Ratio	Prob> t		
0.2218206	0.079116	2.80	0.0127		
0.0068229	0.006217	1.10	0.2887		
0.0000202	0.000015	1.35	0.1961		
-0.015513	0.002859	-5.43	<.0001		
0.0013159	0.000806	1.63	0.1220		
-0.000281	0.000163	-1.73	0.1036		
0.0000003	1.435e-7	2.29	0.0362		
-1.439e-9	7.8e-10	-1.85	0.0836		
0.0000069	0.000026	0.27	0.7906		
1.3576e-8	5.582e-8	0.24	0.8109		
0.0001374	0.000025	5.58	<.0001		
0.0000045	0.000009	0.53	0.6017	-	
1.0451e-8	1.861e-8	0.56	0.5821		
0.0000034	0.000003	1.04	0.3129		
-0.000006	0.000003	-2.17	0.0450		
J					
			······································		
		Ì	T	J	
			1	$\backslash \mid \Lambda$	
				N/	
	·] /		<u>+ </u>	Ť	
0 175	35-	9000	- <u>- </u>	<u>55</u> 8	0 195
17.5	10	5000	170	99 2	100
Salinity		OR40	0	Energy	Loading
	0.7 0.4 Error 0.0 m Wgts) Jm of Squares 0.27154148 0.10337987 0.37492135 S Estimate 0.2218206 0.0068229 0.000202 -0.015513 0.0013159 -0.000281 0.0000033 -1.439e-9 0.0000069 1.3576e-8 0.0001374 0.0000045 1.0451e-8 0.0000034 -0.000006	0.724263 0.482992 Error 0.080382 0.061119 m Wgts) 31 Jm of Squares Mean Sc 0.27154148 0.01 0.10337987 0.00 0.37492135 Estimate Std Error 0.2218206 0.079116 0.0068229 0.006217 0.000022 0.000015 -0.015513 0.002859 0.0013159 0.000806 -0.000281 0.000163 0.000003 1.435e-7 -1.439e-9 7.8e-10 0.0000069 0.000026 1.3576e-8 5.582e-8 0.0001374 0.000025 0.0000045 0.000009 1.0451e-8 1.861e-8 0.0000034 0.000003 -0.000006 0.000003	$\begin{array}{c c} 0.724263 \\ 0.482992 \\ \hline \\ \hline \\ 0.061119 \\ \hline \\ $	$\begin{array}{c} 0.724263\\ 0.482992\\ \hline 0.060382\\ 0.061119\\ m Wgts) 31 \end{array}$	$0.724263 \\ 0.482992 \\ 0.061119 \\ m Wgts) 31 \\ \hline \\ m of Squares Mean Square F Ratio \\ 0.27154148 0.019396 3.0019 \\ 0.10337987 0.006461 Prob>F \\ 0.37492135 0.0190 \\ \hline \\ S \\ Estimate Std Error t Ratio Prob>[t] \\ 0.2218206 0.079116 2.80 0.0127 \\ 0.0068229 0.006217 1.10 0.2887 \\ 0.000020 0.00015 1.35 0.1961 \\ -0.015513 0.002859 -5.43 <.0001 \\ 0.0013159 0.000806 1.63 0.1220 \\ -0.000281 0.000163 -1.73 0.1036 \\ 0.0000003 1.435e-7 2.29 0.0362 \\ -1.439e-9 7.8e-10 -1.85 0.0836 \\ 0.0000009 0.00026 0.27 0.7906 \\ 1.3576e-8 5.582e-8 0.24 0.8109 \\ 0.0001374 0.00025 5.58 <.0001 \\ 0.0000045 0.00009 0.53 0.6017 \\ 1.0451e-8 1.861e-8 0.56 0.5821 \\ 0.000006 0.00003 1.04 0.3129 \\ -0.00006 0.00003 -2.17 0.0450 \\ \hline \\ \hline \\ 17.5 & g 9000 & g 55 & g \\ 0.0000 & 55 & g \\ 0.0000 & 0.00003 & -2.17 & 0.0450 \\ \hline \\ $

Г

270-

%Diss)							1
Summary of Fit]					
RSquare	0.70	02738					
RSquare Adj	0.44	42635					
Root Mean Square	Error 0.00	00238			1		
Mean of Response	0.0	00394					
Observations (or Si	um Wgts)	31					
Analysis of Varianc	e)						
Source DF S	Sum of Squares	Mean Se	quare	F Ratio			
Model 14	0.00000215	1.5	35e-7	2.7018			
Error 16	0.00000091	5.6	33e-8	Prob>F	{		
C Total 30	0.00000306			0.0298			
Lack of Fit							
Parameter Estimat							
Term	Estimate	Std Error	t Ratio	Prob>ltl			
Intercept	0.0009368	0.000235	3.99	0.0010			
Salinity	0.0000001	0.000018	0.01	0.9941			
OR400	-1.827e-7	4.444e-8	-4.11	0.0008			
Energy	-0.000001	800000.0	-0.14	0.8914			
Loading	0.0000058	0.000002	2.43	0.0270			
Salinity*Salinity	-3.992e-7	4.832e-7	-0.83	0.4208			
OR400*Salinity	9.375e-10	4.26e-10	2.20	0.0427			
OR400*OR400	7.465e-12	2.31e-12	3.23	0.0053			
Energy*Salinity	0.0000001	7.568e-8	1.78	0.0936			
Energy*OR400	3.646e-10	1.66e-10	2.20	0.0427			
Energy Energy	-1.10-8	7.3086-8	-0.15	0.8823			
	-7.9376-9	2.0238-0 5.520.11	-0.31	0.7571			
Loading*Enerov	-1 955e-8	9.810-9	-0.73	0.4735			
Loading*Loading	-1.768e-8	8.119e-9	-2.18	0.0447			
	5						
Response Surface					J		
Prediction Profile					-	<u></u>	<u></u>
0.0016 -	1 1				T	T	
у И	4	ΙT		_			
ក្តុំ 0.000387	┥_ │	_ <u>}</u>			.	_	
°` • • • • • • •	<u>}}₽₽₽₽</u>		<u> </u>	<u>┲</u> ┲ <u></u>	_]_‡_]		\mathbf{H}
0.0001-	┚╨┯┯┥┯	<u> </u>		╶╻╴╴╸╽╺╽	·	<u> </u>	\downarrow
	17.5	35- 000-	9000	. 000- - 01	55	100 -	13 ¹
	Salinity	4-	OB40	, ¢	Enerov		heo l
	y		2.1.10	-			Louu

	·····				
(Summary of Fit					
RSquare	0.68452				
RSquare Adj	0.408476				
Root Mean Square	Error 8375.271				
Mean of Response	5796.961				
Observations (or Si	um Wgts) 31				
Analysis of Variance	e				
Source DF S	oum of Squares Mean	Square	F Ratio		
Model 14	2435188423 1.	7394e8	2.4797		
Error 16	1122322623 70	145164	Prob>F		
C Total 30	3557511046		0.0422		
Lack of Fit					
Parameter Estimate	28				
Term	Estimate Std Erro	or t Ratio	Prob> t		
Intercept	6293.3322 8243.3	5 0.76	0.4563		
Salinity	-875.3955 647.748	4 -1.35	0.1954		
OR400	0.0170025 1.56149	9 0.01	0.9914		
Energy	-56.02128 297.91	2 -0.19	0.8532		
Loading	34.982893 83.9673	8 0.42	0.6825		
Salinity*Salinity	15.107808 16.9762	2 0.89	0.3867		
OR400*Salinity	0.0250849 0.01495	6 1.68	0.1129		
OR400*OR400	0.000002 0.00008	1 0.00	0.9983		
Energy*Salinity	5.0158159 2.65881	6 1.89	0.0775		
Energy*OR400	0.0109507 0.00581	6 1.88	0.0780		
Energy*Energy	0.1415734 2.56739	2 0.06	0.9567		
Loading*Salinity	-1.494825 0.88627	2 -1.69	0.1111		
Loading*OR400	-0.003833 0.00193	9 -1.98	0.0655	1	
Loading*Energy	-0.583095 0.34466	1 -1.69	0.1101		
Loading*Loading	0.118695 0.28526	6 0.42	0.6829		
Effect Test					
Response Surface	\mathbb{D}				
Prediction Profile				<u>/</u>	
60904.54 -					
diss	4				
1681.491 ·				1	
<u>ت</u> . ۲۵		T_T_	∓ <u></u>]⊺	_ 	╽┝╼┰╺┟
20.04 -			<u>- + [</u>	<u> </u>	
	17.5 m	9000	7000-	55 0	13
	Colinity			F	1 1

APPENDIX IV

Polycyclic Aromatic Hydrocarbon Data

Response Surface Experiments

PAH Concentrations in Filtered Water (ng/L)

٠

v

מיר הי	n o o o o o o o o o o o o o o o o o o o	N 8 +
Trial 12 UT69FI	т т т т т т т т т т т т т т	4 / 8
Trial 11' UT68FIL 0.990	1.85 5.28 5.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	51 82 71 82
Trial 10' UU12FIL 0.870	48.4 49.4	62 63 63 63
Trial 9' UU11FIL 0.880	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	93 93 93
Trial 8' UT57FIL 0.790	1057.57 1497.60 1497.60 544.51 78.63 0.00 279.25 151.87 251.87 251.33 15.67 149.50 149.50 15.68 131.92 553.19 735.19 131.92 553.18 131.92 553.18 131.92 553.18 131.92 553.18 15.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	62 78 69
Trial 7' UT56FIL 0.720	1479.97 1686.74 954.19 559.84 88.33 0.00 282.69 88.35 88.35 1559.84 26.02 26.0	66 82 74
Trial 6' UU27FIL 0.910	16/7.05 1522.66 686.49 91.75 0.00 0.00 260.60 261.41 15.15 17.176 221.1.36 17.176 221.1.36 17.176 221.1.38 232.07 15.15 15.15 15.15 15.15 15.15 15.15 15.15 0.00 0	64 94 81
Trial 5' UU26FIL 0.840	2255.90 1534.77 743.79 554.57 111.27 0.00 283.40 111.27 282.18 316.13 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 124.98 124.98 124.98 124.98 124.98 124.98 192.23 284.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	54 83 74
Trial 4' UT55FIL 0.700	519.99 519.99 503.41 667.72 664.84 0.00 223.60 667.72 664.84 133.81 220.85 308.64 157.65 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.7	54 78 79
Trial 3' UT54FIL 0.800	271.78 2553.63 2635.63 2635.63 263.65 263.65 263.65 263.65 263.65 263.65 261.69 263.65 261.69 263.65 261.69 263.65 261.69 263.65 261.68 263.65 261.68 263.65 261.68 263.65 261.68 263.65 263.75 263.65 263.55 263.65	29 82 87
Trial 2' UU25FIL 0.870	1436.03 1448.1368.03 1448.448 510.43 87.53 87.53 87.53 87.53 87.53 88.75 246.148 248.13 248.132 248.132 233.29 248.132 233.29 248.132	58 97 93
Trial 1' UU24FIL 0.870	1124.13 1265.96 768.59 768.93 83.96 83.96 99.67 90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	67 95 89
NA VV53PB 1.000	4 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76 88 90
. NA 1.000	4.4 9.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8 98 93 80 80
NA VU66PB 1.000	7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	68 78 77
	der freigen de la constant de la const Constant de la constant de	
	hracenes Tracenes Tracenes Tes Tes	
(T) et	and the second s	coveries 18 -d10
nt ID slie ID ple Volun	interesting aphthale	ogate R¢ 1thalene⊣ 1anthrene sene-d12
Cile Batte Sam	C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-4- C2-4- C2-2- C2-4- C2-2- C2-4- C2-2- C2-2- C2-2- C2-2- C2-2- C2-2- C2-2- C2-2- C2-2- C2-2-2- C2-2-2- C2-2-2- C2-2-2- C2-2-2-2-	Surr Napt Chry Chry

Page 1 of 3

PAH Concentrations in Filtered Water (ng/L)

																		•																		'							. •
Trial 30' UT98FIL 0.880		85.30	155 00	190.48	86.33	0.00	224.42	58.44	17.25	100.04	237.69	71.71	13.98	41.49	52.23	140.90	0.0	0.0	205./U 199 19	221.81	0.00	0.00	0.00	0.0	0.0	0.0	8.0	0.0	0.00	0.00	0.0	8.6	800	0.0	0.0	0.00	0.00	0.0	0.00	2403.93	Ş	5 Ş	38
Trial 29' UT97FIL 0.880		63.28	100 16	193.31	135.71	0.00	241.14	80.39	19.36	10.0/1	277.41	122.76	15.61	64.71	69.59	133.96	0.0	0.00	310.33	301.84	0.0	0.00	0.00	0.00	0.0	0.0	8.0	0.0	0.00	0.0	8.8		0.0 0.0	0.00	0.00	0.00	0.0	0.00	0.00	2795.73	Ş	2 8	85
Trial 28' UT96FIL 0.920		91.68	216 55	190.58	132.44	0.00	227.41	67.96 2.20	0.00	00.00	359.22	0.00	22.08	64.90	77.28	115.38	0.0	0.00 2E0 4E	137.82	166.06	406.84	0.00	0.00	0.00	0.0	3.6	8.0	0.00	0.00	0.0	8.6	800	0.0	0.00	0.00	0.00	0.0	0.0	0.00	3060.95		‡ ¥	87
Trial 27' UT95FIL 0.900		83.45 174.79	178.86	320.09	0.00	5.66	217.77	64.42	15.21	80.05	397.97	0.00	23.43	68.04	52.30	224.68	0.0	00.0 20 A G 7	150.86	154.60	0.00	0.00	0.00	0.0	8.0	3 6	8 8 8	0.00	0.0	0.0	0.0	0000	0.00	0.00	0.0	0.00	0.00	0.0	00.0	2631.54	8	38	88
Triai 26' UT84FIL 0.930		49.69 E2 20	130.44	87.34	0.00	0.00	109.42	15.43	10./9 78.01	80.02	196.57	119.05	0,00	19.43	80.65	84.66	0.0	132.25	149.10	143.57	0.00	0.00	0.00	0.0	0.0	8.6	8.0 8.0	0.00	0.00	0.0	8.0	0.00	0.00	0.00	0.00	0.0	0.00	0.0	00.0	1549,44	2 Y	5 5	82
Trial 25' UT83FIL 0.900		71.7C	106.95	100.48	23.42	0.0	170.89	29.04	01.0	75.18	236.31	0.00	0.00	26.01	74.67	133.69	8.0	170.82	183.87	127.57	0.00	0.00	0.00	0.00	0.0	800	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.00	8.0	0.0		09'NC01	5	98	92
Trial 24' UT82FIL 0.980	51 20	90.40 90.96	140.10	119.74	90.60	0.00	202.00	48.85	9.7U RG 53	98.41	309.45	180.15	0.00	25.01	72.41	10.05	800	206.73	184.03	215.57	344.05	0.0	0.0	0.0		000	0.0	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.0		2500 75	C/ 6007	20	88	91
Trial 23' UT81FIL 0.970	46.40	134.84	170.23	110.39	60.73	3.31	256.23 79.46	12.01	103 24	164.02	259.05	135.85	22.08	46.59	103.21	87.44		280.23	218.31	293.96	489.08	293.40	10.02	10.74		0.00	4.67	10.21	9.37	0.0	00.0	3.47	4.88	4.93	4.58	8.0	0.00		3606 E7	10.0000	44	62	91
Triai 22' UT72FIL 0.875	JE EE	48.27	50.91	0.00	0.00	0.00	0.00			00.0	0.00	0.00	0.0	0.0	0.0	8.0	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0	800	0.00	0.00	0.00	0.0	8.6	8.0	0.00	0.00	0.0	0.0	0.0	8.0	800	125.73	2.031	56	83	82
Trial 21' UU15FIL 0.920	AE 1.4	66.49	90.93	58.11	23.71	0.00	19.10	8 65	23.16	74.91	221.16	0.00	15.58	64.62	69.20	000	0.00	620.96	237.12	346.94	230.80	0.00	0.0	8.6	000	0.0	0.00	0.0	8.6	8.6	0.00	0.00	0.00	0.0	8.8	8.6	8.0	000	2317 53	2	73	101	94
Trial 20' UT45FIL 0.945	00 0C	51.00	137.56	137.73	0.00	14.96		97 25	54.29	107.48	0.00	0.00	0.00	49.50	0.0	800	0.00	224.43	229.81	205.60	0.0	0.00	0.0		0.00	0.00	0.00	0.00	0.0	800	0.0	0.00	0.0	0.00	8.6	00.0		0.00	1369.61		59	87	85
Trial 19' UT44FIL 0.940	15.84	17.56	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.0	000	0.0	59.30	161.87	248.86	0.0	0.0	00.0	0.00	0.00	0.00	0.00	0.00	8.0	0.0	0.0	0.00	0.0	0.00	0.0	8.0	0.00	0.0	522.45		53	78	82
Trial 18' UT43FIL 0.925	24.30	49.68	38.72	0.00	0.0	0.00 24 60	00.00	13.02	0.0	0.00	0.00	0.0	0.0	8.6		0.00	0.00	245.24	234.20	239.88	0.00	00.0	3.0		00.0	0.00	0.00	0.0	8.6	0.00	0.0	0.00	0.0	0.0	300		0.00	0.0	879.75		54	85	83
Trial 17' UT42FiL 0.905	2055.04	2149.75	1366.66	765.45	594.86 e1 ee	00.10	276.52	83.95	162.03	270.62	403.72	163.52	13.69 956.07	16.000	250.44	0.00	0.00	172.42	446.70	367.44	0.00	00.0	13.58	00.0	0.00	0.00	0.0	0.0	8.0	0.0	0.00	0.0	0.0	0.0		0.00	0.00	0.00	10243.67		51	1	69
Trial 16' UT71FIL 0.900	123.38	118.01	233.52	226.24	7 15	10.20	133.59	44.94	78.68	110.84	136.94	0.0	0.00	54 18	142.69	0.00	0.00	61.16	86.72	223.35	5/.082	20.00	000	0.00	0.00	0.00	0.00	0.0	88	0.0	0.00	0.00	0.0		000	0.0	0.00	0.00	2514.80		56	88	80
Trial 15' UT70FIL 1.000	30.12	27.88	633.68	2098.03	00.00	000	190.64	38.13	157.22	584.76	2197.43	3/55.71	0.00 475.85	1407.04	4788.72	5832.14	3187.95	275.68	1818.18 2022 22	5387.25	0630.00	00.0	159.31	553.53	940.35	1049.87	28.05	1/1./0 AE1 77	629.52	357.10	0.00	0.0	0.0	0.0	0.00	0.0	0.00	0.00	60904.54		56	87	73
Triai 14' UU14FIL 0.900	31.83	46.55	96.89	84.12 57.14	41.7c	00.0	0.00	0.00	0.00	0.00	0.00	00'0 87 PC	48 96	103.49	113.50	0.00	0.00	492.37	161.89	413.12	8.0	00.0	0.00	0.00	0.00	0.00	0.0	8.0	0.00	0.00	0.00	0.00	0.0	800	0.00	0.0	0.00	0.00	1674.64		76	1 <u>0</u>	8 6
Trial 13' UU13FIL 0.855	46.44	52.14	99.07	77.26	0.00	0.0	23.87	0.00	5.90	42.00	252.37 76 60	21 45	29.68	101.00	106.80	0.00	0.00	312.81	146.69	303.19 479.87	107.50	00.0	0.0	0.00	0.00	0.0	8.0	8.0	0.0	0.00	0.00	0.00	0.0	000	0.0	0.00	0.00	0.00	2428.83		26	<u>8</u>	DR
	z	۶	Z	5N N4	5 8	ACY	ACE	5	دد i		26	2 4	: A	P1	P2	P3	7 I	0 1	58	32	8 2	പ	ΡY	FP1	FP2	FP3	A C	5 G	3	ប	26			BAP	PER	₫	đ	GHI	TOTAL				

Page 2 of 3

3

PAH Concentrations in Filtered Water (ng/L)

Trial 31' UT99FIL 0.845	60.87	147.45	155.95	129.18	92.07	0.00 228.60	54.16	12.25	81.82	79.75	247.14	79.57	24.00 24.00	55.25	131.72	0.00	0.00	259.64	102.43	190.30	0.00	0.0	0.0	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	2157.47	55	105	ç
	Z	ž	N2	N3	ži		ACE	ō	Ľ.			۲. ۲.	4 ۵	. 5	P2	P3	P4	۵	5	23	82	5 0	1 5		FP2	FP3	BA	с U	5	ខ	33	58	0 2		BAP	PER	₫	DA	GHI	TOTAL			

1. J. 1

8

Page 3 of 3
APPENDIX V

Energy Density Spectra for Flume Wind-Wave Settings

APPENDIX VI

Data from Flume Tests

pH of water used in flume tests

Instrument Calibration:

Buffer:	4.0	7.0	10.0
Results:	4.0	7.0	10.0

Battelle Freshwater (0 °/,):	7.4	7.5	7.5	1
Mixed Brackish water (17.5 $^{\circ}/_{\circ\circ}$):	7.6	7.6	7.6	2,3
Duxbury Bay Seawater (32 %) w/ Kaol:	7.8	7.8	7.8	4
Battelle Freshwater w/ Kaol:	6.8	6.9	6.9	5

Appendix VI

FESTS 4& 5	
TA - FLUME	
SOLIDS DA	
USPENDED	HOD 160.2N
TOTAL SI	EPA MET

Stdev		7.91			3.29		
Average		101.00			45.43		
Concentration (mg/L) 1.760	97.600 95.367	110.040	41.667	46.867	47.767		
Volume Filtered (ml) 250	300 300	250	300	300	300		
Filter Final Wt (g) 0.01659	0.04493 0.04435	0.04365	0.02853	0.02974	0.02972		
Filter Tare Wt (g) 0.01615	0.01565 0.01574	0.01614	0.01603	0.01568	0.01539		
Sample ID Blank	l est#4 Hep1 Test#4 Rep2	Test#4 Rep3	Test#5 Rep1	Test#5 Rep2	Test#5 Rep3		

•

FLUME TESTS 1 THROUGH 5 AVERAGE PARTICLE SIZE RESULTS

Battelle Flume Tank Particle Size Results (1998)

.

		Flume T	est #1			Flume Te	st #2	Γ		Flume Te	st #3	F	ſ	Flume Te	st #4		ſ	Flume Te	st #5	Γ
	Rep 1	Rep 2	Rep 3	Avg	Rep 1	Rep 2	Rep 3	Avg	Rep 1	Rep 2	Rep 3	Avg	Rep 1	Rep 2	Rep 3	Avg	Rep 1	Rep 2	Rep 3	Avg
Kaol. Conc.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.3	20.5	15.9 I	16.6	10.7	10.7	10.6	10.6
t=0	21.9	23.3	22.1	22.4	24.6	24.1	27.5	25.4	23.0	21.5	NA	22.2	23.2	23.1	NA	23.2	22.7	22.5	22.5	22.6
t=15min	23.0	22.8	23.6	23.2	73.7	73.5	70.6	72.6	113.9	102.7	109.3	108.6	37.9	52.8	74.5	55.0	22.7	22.7	22.7	22.7
t-30min	22.2	23.8	22.1	22.7	80.5	81.3	83.1	81.6	131.4	116.3	107.9	118.5	64.7	555	73.9	64.7	23.0	22.0	21.8	22.3
t=1hr	22.2	23.0	22.4	22.5	120.2	0'.0	139.4	118.9	116.6	139.9	109.6	122.0	88.8	125.2	78.6	97.5	22.6	21.6	22.0	22.1
t=2hr	24.6	23.8	22.6	23.7	155.8	126.2	121.8	134.6	154.9	119.3	101.9	125.4	104.1	128.5	114.4	115.7	22.6	22.9	21.0	22.2
t=4hr	23.0	23.2	22.0	22.8	185.2	181.2	200.3	188.9	98 .3	113.7	1179	110.0	122.7	104.0	166.0	130.9	22.3	22.4	22.6	22.4
t=6hr	22.4	22.9	22.6	22.7	236.8	190.6	229.4	218.9	118.4	104.7	104.0	1.001	156.8	90.1	163.0	136.6	23.3	22.2	22.7	22.7
t=12hr	21.5	20.9	21.7	21.4	258.8	248.2	263.2	256.7	112.9	110.3	110.0	111.0	124.4	102.9	133.5	1203	21.4	28.4	24.1	24.6
t=24hr	20.5	18.8	19.0	19.4	286.8	255.0	222.3	254.7	133.8	88.0	79.2	100.3	46.2	60.4	3 64 1	95.4	26.8	27.7	25.0	26.5
t=48hr	16.2	14.9	NA	15.6	283.8	283.8	209.1	258.9	82.0	76.5	116.7	61.7	38.3	52.7	46.6	45.8	27.3	25.1	26.8	26.4
t=72hr	13.3	11.2	12.0	12.2	219.7	2467	2003	222.2	148.7	6:96	848	101	84.7	53.9	90. I	76,97	23.2	24.1	23.6	23.6
	T C _ det	- Passara																		

.

SHADED CELLS = data become suspect due to limitations in measureing particles > 600 microns

. •

Appendix VI

.

~

FLUME TESTS 1 THROUGH 5

TPH RESULTS IN FILTERED AND UNFILTER WATERS

Laboratory Name: Battelle Duxbury Operations Project Name:Bitor Flumw Tests 1& 2 Project Number: G003477-0002 File Created by: RMU 11-23-98 File Name: C:\Active\GCProjects\Fingerprinting\Bitor\Bitor 11-98.xis

	Amt Rec'd Amt Rec'd EN04 50 ul % Recovered % Recovered (ug) (ug) (ug)	2.23 1.85 2.49 90 Å74	1.58 · 1.38 2.50 63 35	1.66 1.37 2.48 67 55	1.88 2.49 75 75	2.08 2.26 2.60 · 80 87	1.80 1.91 2.50 72 77	2.15 2.26 2.35 91 96	2.33 2.42 2.50 93 97	2.01 2.10 2.49 81 84	2.02 2.17 2.49 81 87	1.98 2.18 2.50 79 87	1.87 2.10 2.50 75 84	1.73 2.26 2.50 69 90	1.74 2.16 2.48 70 87	1.63 2.66 2.50 65 107	78 88
	Amt Rec'd A (ug)	2.23	1.58	1.66	1.88	2.08	1.80	2.15	2.33	2.01	2.02	1.98	1.87	1.73	1.74	1.63	
Batch ID:	Analyte	C10	C12	C14	C16	Pristane	C18	Phytane	C19	C20	C22	C24	C26	C28	C30	C36	OTP % Recovery:

Laboratory Name: Battelle Duxbury Operations Project Name:Bitor Flumw Tests 1& 2 Project Number: G003477-0002 File Created by: RMU 11-23-98 File Name: C:\Active\GCProjects\Fingerprinting\Bitor\Bitor 11-98.xts Data reported in ug/l

20.660 9.639 3.101 2.020 40523.48 28785.70 58.31 158.12 0.913 2529.2 Filtened 98-355 Water 0.85 UgJ UU40FIL-REP2 I=72 hr d=35 cm 11523.35 2 UU40FiL-REP1 t=72 hr d≕35 cm 40156.63 28785.70 20.660 9.839 3.101 2.020 Filtered 98-355 Water 0.**01** Ugu 59.99 157.40 11163.64 0.913 2620.3 22 UU36FIL t=24 hr 41293.64 28785.70 98-355 Water 0.55 60.48 165.19 20.660 9.839 3.101 2.020 0.913 3049.8 /Bn 2 2282.27 Filtered UU31FIL t= 1 hr Filtered 98-355 Water 40241.23 28785.70 0.67 20.660 9.839 3.101 2.020 0.913 Įĝ 68.71 164.57 82 2295.5 11222.25 98-355 Water 65.74 165.36 Blank Spike <u>6</u> ₹₹ 20.660 9.839 3.101 2.020 0.813 WA41BS ģ ₹ 28 ₹ 28441.57 28785.70 98-355 WA40PB 1.0 52.06 163.88 560.07 9.839 3.101 2.020 0.913 Procdural Blank Water /ßn 20.660 8 9 PAH Surrogate Amount (ug): PAH Internal Std. Amt (ug): Average Response Factor: Internal Std Amount (ug): Surrogate Amount (ug): Surrogate Recovery: SampleVolumet (I): Total Sample Area: Total DCM: Internal Std. Area: Reporting Units: Total THC (ug/l): BDO Sample ID: Surrogate Area: **Dilution Factor:** Client Field ID: **Total Area:** Batch ID: OTP RF Matrix:

FLUME TEST 1

Laboratory Name: Battelle Duxbury Operations Project Name:Bitor Flumw Tests 1& 2 Project Number: G003477-0002 File Created by: RMU 11-23-98 File Name: C:\Active\GCProjects\Fingerprinting\Bitor\Bitor 11-98.xts Data reported in ug/l 85

BDO Sample ID:	UU40FIL-REP3	UU31-D	UU36-D	UU40-REP1-D	UU40-REP2-D	UU40-REP3-D
Client Field ID:	t=72 hr d=35 cm	ti tir	t=24 hr	t=72 hr d=35 cm	t=72 hr d=35 cm	t=72 hr d=35 cm
	Filtered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered
Batch ID:	98-355	98-355	98-355	98-355	98-355	88-355
Matrix:	Water	Water	Water	Water	Water	Water
SampleVolumet (I):	0.65	0.79	0.70	0.74	0.80	0.85
Reporting Units:	l/bn	l/Bn	l/ôn	l/bn	l/Bn	l/6n
Total Sample Area:	41898.97	55391.3	53418.2	54614.2	50817.1	56627.2
Total DCM:	28785.70	28785.70	28785.70	28785.70	28785.70	28785.70
Surrogate Area:	68.79	7.03	13.6	24.0	19.2	27.0
Internal Std. Area:	183.21	183.08	177.9	167.0	169.2	185.9
Total Area:	12860.27	26415.48	24441.07	25637,49	21842.92	27528.62
Internal Std Amount (ug):	20,660	20.660	20.660	20.660	20.660	20.660
Surrogate Amount (ug):	9.839	614.940	614.940	614.940	614.940	614.940
PAH Internal Std. Amt (ug):	3.101	3.101	3.101	3.101	3.101	3.101
PAH Surrogate Amount (ug):	2.020	126.240	126.240	126.240	126.240	126.240
Dilution Factor:	1	500	400	200	250	002
Average Response Factor:	0.913	0.913	0.913	0.913	0.913	0.913
OTP RF	1.072	1.072	1.072	1.072	1.072	1.072
Surrogate Recovery:	75	60	98	06	88	91
Total THC (ug/l):	2435.8	1984565.8	1703092.5	903937.8	872268.4	758019.8

FLUME TEST 2

000096

758019.8

872268.4

903937.8 ...

1703092.5

1984565.8

FLUMETEST 2

Laboratory Name: Battelle Duxbury Operations Project Name:Bitor Flumw Tests 1& 2 Project Number: G003477-0002 File Created by: RMU 11-23-98 File Name: C:\Active\GCProjects\Fingerprinting\Bitor\Bitor Data reported in ug/l

BDO Sample ID:	WB70PB	WB71BS	UU43FIL	UU48FIL	UU61FIL-REP1	UU61FIL-REP2
Client Field ID:	Procdural Blank	Blank Spike	t= 1 hr	t=24 hr	t=72 hr d=35 cm	t=72 hr d=35 cm
			Filtered	Filtered	Filtered	Filtered
Batch ID:	98-386	98-386	98-386	98-386	98-366	98-386
Matrix:	Water	Water	Water	Water	Water	Water
SampleVolumet (I):	1.00	1.00	0.95	0.69	0.92	0.85
Reporting Units:	l/ôn	l/ôn	l/gu	l/8n	l/đn	l/gu
Total Sample Area:	21533.05	NA	47401.80	41931.68	40287.27	38225.81
Total DCM:	27722.98	NA	27722.98	27722.98	27722.98	27722.98
Surrogate Area:	87.16	104.67	104.97	100.83	108.35	24.49
Internal Std. Area:	221.82	235.12	247.15	243.39	255.43	238.75
Total Area:	-6498.91	AN	18326.70	13864.48	12202.51	11171.64
Internal Std Amount (ug):	20.660	20.680	20.660	20.660	20.660	20.860
Surrogate Amount (ug):	9.839	9.839	9.839	9.839	9.839	9.839
PAH Internal Std. Amt (ug):	3.101	3.101	3.101	3.101	3.101	3.101
PAH Surrogate Amount (ug):	2.020	2.020	2.020	2.020	2.020	2.020
Dilution Factor:	.	~	-	-	-	~
Average Response Factor:	0.896	0.896	0.898	0.896	0.896	0.896
OTP RF	1.061	1.061	1.061	1.081	1.061	1.061
Surrogate Recovery:	78	88	84	82	82	79
Totał THC (ug/i):	QN	NA	1892.6	1470.1	1191.8	1274.0

Ŷ۶

Laboratory Name: Battelle Duxbury Operations Project Name:Bitor Flumw Tests 1& 2 Project Number: G003477-0002 File Created by: RMU 11-23-98 File Name: C:'Active\GCProjects\Fingerprinting\Bitor\Bitor 11-98.xis Data reported in ug/I

BDO Sample ID:	UU51FIL-REP3	UU43-D	UU48-D	UU51-REP1-D	UU51-REP2-D	UU51-REP3-D
client ried iu:	t=72 hr d=35 cm Filtered	t=1 hr Linditered	t=24 hr	t=72 hr d=35 cm	t=72 hr d=35 cm	t=72 hr d=35 cm
Batch ID:	98-386	08-386	08-386	CHIIICE 08-386	98-386 98-386	08-388
Matrix:	Water	Water	Water	Water	Water	Water
SampieVolumet (I):	0.8	0.95	0.8700	0.8600	0.8600	0.8500
Reporting Units:	l/Bn	l/Bn	l/ôn	l/Bn	l/Bn	/Dn
Total Sample Area:	38053.78	51936.29	56017.8	70731.8	66638.5	68491.7
Total DCM:	27722.98	27722.98	27722.98	27722.98	27722.98	27722.98
Surrogate Area:	92.39	2.10	23.2	50.5	62.5	52.3
Internal Std. Area:	223.17	239.17	252.2	a 241.3	250.0	247.1
Total Area:	11015.25	23972.04	28019.42	42716.99	38613.06	40469.35
Internal Std Amount (ug):	20.660	20.660	20.660	20.660	20.660	20.660
Surrogate Amount (ug):	9.839	49.195	49.195	9.839	9.839	9.839
PAH Internal Std. Amt (ug):	3.101	3.101	3.101	3.101	3.101	3.101
PAH Surrogate Amount (ug):	2.020	10.099	10.099	2.020	2.020	2.020
Dilution Factor:	£	250	25	2	2	
Average Response Factor:	0.896	0.896	0.896	0.896	0.896	0.896
OTP RF	1.061	1.061	1.061	1.061	1.081	1:081
Surrogate Recovery:	82	87	81	83	83	22
Total THC (ug/l):	1416.2	604713.2	73222.5	9479.8	8272.0	8874.3

FLUMETEST 2

000136

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-393 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug

Blank Spike		
WB94BS		
98-393		
Amt Rec'd	EN04 100 ul	% Recovered
(ug)	(ug)	
0.10	4.95	2 &
0.24	4.98	5 &
0.95	5.00	19 &
2.12	4.95	43
2.82	4.97	57
4.31	5.20	83
3.26	4.99	65
3.79	4.70	81
4.33	5.00	87
3.95	4.98	79
4.46	4.98	89
5.05	5.00	101
5.48	5.00	110
7.65	4.99	153 &
5.82	4.95	118
5.21	4.99	104
	Blank Spike WB94BS 98-393 Amt Rec'd (ug) 0.24 0.95 2.12 2.82 4.31 3.26 3.79 4.33 3.95 4.46 5.05 5.48 7.65 5.82 5.21	Blank Spike WB94BS 98-393 Amt Rec'd EN04 100 ul (ug) (ug) 0.10 4.95 0.24 4.98 0.95 5.00 2.12 4.95 2.82 4.97 4.31 5.20 3.26 4.99 3.79 4.70 4.33 5.00 3.95 4.98 5.05 5.00 5.48 5.00 7.65 4.99 5.82 4.95 5.82 4.95 5.21 4.99

OTP % Recovery:

,

83

& Analyte recovery outside of program criteria

FLUME TEST 3

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-393 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug/L

Client/Field ID: BOS Sample ID: Batch ID: Matrix: Sample Volume (L):	Procedural Blank WB93PB 98-393 Water 1.000	Blank Spike WB94BS 98-393 Water 1.000	US59, t = 1hr. UU55-D 98-393 Water 0.780	US59, t = 24hr. UU60-D 98-393 Water 0.890	US59, t = 72hr. @ 35 cm UU63REP1-D 98-393 Water 0.860	US59, t = 72hr. @ 35 cm UU63REP2-D 98-393 Water 0.860	US59, t = 72hr. @ 35 cm UU63REP3-D 98-393 Water 0.870	
Sample Area: DCM Area: Surrogate Area: Internal Std. Area:	10996.99 11378.77 234.09 268.79	NA NA 212.57 244.49	100370.45 11378.77 85.58 282.38	88464.57 11378.77 742.75 252.68	83656.61 11378.77 54.50 270.77	81591.70 11378.77 52.73 266.81	88435.19 11378.77 55.88 284.22	
Std. Corrected Total Area:	QN	NA	88623.72	76090.37	71952.56	69893.38	76716.31	
Internal Std Amount (ug): Surrogate Amount (ug): PAH Int. Std. Amt (ug): PAH Surrogate Amount (ug):	20.66 19.68 3.10 4.04	20.66 19.68 3.10 4.04	20.66 614.94 3.10	20.66 614.94 3.10	20.66 19.68 3.10	20.66 19.68 3.10	20.66 19.68 3.10	
Dilution Factor: Average Response Factor: OTP RF	1.00 1.002 1.101	1.00 1.100 1.101	100.00 1.002 1.101	10.00 1.002 1.101	5.00 1.002 1.101	5.00 5.00 1.002 1.101	4.04 5.00 1.002 1.101	
Surrogate Recovery:	83	83	92	06	96	94	94	
Total Hydrocarbons (ug/L): NA-Not Applicable ND-Not Detected	Ð	NA	829076	69587	31832	31380	31962	

FLUME TEST 3

.

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-393 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug/L

Client/Field ID:	US59, t = 1hr. Filtered	US59, t = 24hr. Filtered	US59, t = 72hr. Filtered @ 35 cm	US59, t = 72hr. Filtered @ 35 cm	US59, t = 72hr. Filtered @ 35 cm
BOS Sample ID:	UU55FIL	UU60FIL	UU63FILREP1	UU63FILREP2	UU63FILREP3
Batch ID:	98-393	98-393	98-393	98-393	98-393
Matrix:	Water	Water	Water	Water	Water
Sample Volume (L):	0.900	0.830	0.870	0.800	0.870
Sample Area:	28085.82	26049.71	31101.95	29289.53	31036.85
DCM Area:	11378.77	11378.77	11378.77	11378.77	11378.77
Surrogate Area:	238.26	229.73	269.09	249.91	254.46
Internal Std. Area:	269.44	253.59	291.37	265.32	274.55
Std. Corrected Total Area:	16199.35	13187.61	19162.72	17395.53	19129.06
Internal Std Amount (ug):	20.66	20.66	20.66	20.66	. 20.66
Surrogate Amount (ug):	19.68	19.68	19.68	19.68	19.68
PAH Int. Std. Amt (ug):	3.10	3.10	3.10	3.10	3.10
PAH Surrogate Amount (ug):	4.04	4.04	4.04	4.04	4.04
Dilution Factor:	1.00	1.00	1.00	1.00	1.00
Average Response Factor:	1.002	1.002	1.002	1.002	1.002
OTP RF	1.101	1.101	1.101	1.101	1.101
Surrogate Recovery:	84	86	88	06	88
Total Hydrocarbons (ug/L): NA-Not Applicable ND-Not Detected	1369	1283	1550	1681	1643

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-398 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug

Client/Field ID:	Blank Spike		
BOS Sample ID:	WC11BS		
Batch ID:	98-398		
	Amt Rec'd	EN04 100 ul	% Recovered
Analyte	(ug)	(ug)	
C9	1.12	4.95	23 &
C10	1.36	4.98	27 &
C12	1.82	5.00	36 &
C14	2.44	4.95	49
C16	3.02	4.97	61
Pristane	4.08	5.20	78
C18	3.14	4.99	63
Phytane	3.40	4.70	72
C19	3.90	. 5.00	78
C20	3.35	4.98	67
C22	3.34	4.98	67
C24	3.37	5.00	67
C26	3.37	5.00	67
C28	3.86	- 4.99	77
C30	3.57	4.95	72
C36	3.80	4.99	76

OTP % Recovery:

73

& Analyte recovery outside of program criteria

FUNNE TEST 4

Laboratory Name: Battelle Project Name: Bitor 98 - Fiume Test #3-5 Batch 98-398 G003477-0002 File Name: C:Nctive\BittonTblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug/L

Client/Eicld ID:	Broodinal Black	Black Calles	11060 t - 1hr	11050 + - 34hr	11050 t = 73hr @ 36 cm	11060 t = 70hr @ 36 cm	11060 t - 73hr @ 36 cm	
DOS SAMPIE IU:							UU/OKERJ-U	
Batch ID:	98-398	98-398	98-398	98-398	98-398	98-398	98-398	
Matrix:	Water	Water	Water	Water	Water	Water	Water	
Sample Volume (L):	1.000	1.000	0.830	0.880	0.870	0.830	0.840	
Sample Area:	10179.42	AN	64734.54	45238.35	64943.31	45264.43	64186.78	
DCM Area:	9396.82	NA	9396.82	9396.82	9396.82	9396.82	9396.82	
Surrogate Area:	167.11	126.25	314.71	402.27	706.51	388.81	668.76	
Internal Std. Area:	195.99	174.00	176.58	188.42	161.38	172.47	147.84	
Std. Corrected Total Area:	419.50	NA	54846.43	35250.84	54678.60	35306.34	53973.35	
Internal Std Amount (ug):	20.66	20.66	20.66	20.66	20.66	20.66	20.66	
Surrogate Amount (ug):	19.68	19.68	922.41	922.41	922.41	922.41	922.41	
PAH Int. Std. Amt (ug):	3.10	3.10	3.10	3.10	3.10	3.10	3.10	
PAH Surrogate Amount (ug):	4.04	4.04	189.36	189.36	189.36	189.36	189.36	
Dilution Factor:	1.00	1.00	25.00	20.00	10.00	20.00	10.00	
Average Response Factor:	0.943	0.943	0.943	0.943	0.943	0.943	0.943	
OTP RF	1.041	1.041	1.041	1.041	1.041	1.041	1.041	
Surrogate Recovery:	86	73	96	92	94	26	97	
Total Hydrocarbons (ug/L):	40	NA	204642	92868	85068	107770	94955	
NA-Not Applicable ND-Not Detected								

Laboratory Name: Battelle Project Name: Bitor 98 - Fiume Test #3-5 Batch 98-398 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug/L

FLUME TEST 4

Client/Field ID:	US59, t = 1hr. Filtered	US59. t = 24hr. Filtered	US59. t = 72hr. Filtered @ 35 cm	US59. t = 72hr. Filtered @ 35 cm	11859 t = 72hr Filtered @ 35 cm
BOS Sample ID:	UU67FIL	UU72FIL	UU75FILREP1	UU75REP2FIL	UU75REP3FIL
Batch ID:	98-398	.98-398	98-398	96-398	98-398
Matrix:	Water	Water	Water	Water	Water
Sample Volume (L):	0.910	0.880	0.830	0.850	0.870
Sample Area:	21210.04	18994.21	19722.25	20950.27	19986 B1
DCM Area:	9396.82	9396.82	9396.82	9396.82	9396.82
Surrogate Area:	172.87	138.77	144.83	138.81	131.11
Internal Std. Area:	201.73	168.66	183.86	164.40	155.71
Std Corrected Total Aroa:	11190 60				
ou. Cuilecteu Tutai Aitaa.	11430.02	92.6026	9996.74	11250.24	10303.18
Internal Std Amount (ug):	20.66	20.66	20.66	20.66	. 20.66
Surrogate Amount (ug):	19.68	19.68	19.68	19.68	19.68
PAH Int. Std. Amt (ug):	3.10	3.10	3.10	3.10	3.10
PAH Surrogate Amount (ug):	4.04	4.04	4.04	4.04	4.04
				~	
Dilution Factor;	1.00	1.00	1.00	1.00	1.00
Average Response Factor:	0.943	0.943	. 0.943	0.943	0.943
OTP RF	1.041	1.041	1.041	1.041	1.041
Surrogate Recovery:	86	83	79	85	85
Total Hydrocarbons (ug/L):	1357	1363	1427	1755	1658
NA-Not Applicable ND-Not Detected					

000131

ø

000102

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-446 G003477-0002 File Name: C:\Active\Bitor\TblsTest3-5.xls Entered By: LGR, 01-18-99 Data reported in ug

Client/Field ID:	Blank Spike		
BOS Sample ID:	WD77BS		
Batch ID:	98-446		
	Amt Rec'd	EN04 100 ul	% Recovered
Analyte	(ug)	(ug)	
C9	2.73	4.95	55
C10	2.79	4.98	56
C12	3.26	5.00	65
C14	3.53	4.95	71
C16	3.77	4.97	76
Pristane	5.31	5.20	102
C18	4.07	4.99	82
Phytane	4.55	4.70	97
C19	5.21	5.00	104
C20	4.74	4.98	95
C22	5.10	4.98	102
C24	5.44	5.00	109
C26	5.71	5.00	114
C28	8.29	4.99	166 &
C30	6.27	4.95	127 &
C36	6.73	4.99	135 &

OTP % Recovery:

87

& - Analyte recovery outside of program criteria NA - Not Applicable

FLUME TEST S

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-446 G003477-0002 File Name: C:\Active\Bitor Tbls8-98.xls Entered By: LGR, 01-18-99, պիժշեջ ۱-21-44 Lo-X Data reported in ug/L

Client/Field ID: BOS Sample ID:	Procedural Blank WD76PB	Blank Spike WD77BS	US59, t = 1hr. UU79-D	US59, t = 24hr. UU84-D	US59, t = 72hr. @ 35 cm UU87REP1-D	US59, t = 72hr. @ 35 cm UU87REP2-D	US59, t = 72hr. @ 35 cm UU87REP3-D
Batch ID:	98-446	98-446	98-446	98-446	98-446	98-446	98-446
Matrix:	Water	Water	Water	Water	Water	Water	Water
Sample Volume (L):	1.000	1.000	0.930	0.940	0.910	0.900	0.8900
Sample Area:	14648.84	NA	139224.09	125837.47	142328.42	143364.94	139717.13
DCM Area:	14484.20	NA	14484.20	14484.20	14484.20	14484.20	14484.20
Surrogate Area:	227.68	233.00	127.08	242.22	1215.73	1126.03	1191.77
Internal Std. Area:	260.03	254.75	254.89	238.71	250.81	255.68	249.55
Std. Corrected Total Area:	QN	NA	124357.92	110872.34	126377.68	127499.03	123791.60
Internal Std Amount (ug):	20.66	20.66	20.66	20.66	20.66	20.66	20.66
Surrogate Amount (ug):	19.68	19.68	922.41	922.41	922.41	922.41	922.41
PAH Int. Std. Amt (ug):	3.10	3.10	3.10	3.10	3.10	3.10	3.10
PAH Surrogate Amount (ug):	4.04	4.04	189.36	189.36	189.36	189.36	189.36
Dilution Factor:	1.00	1.00	100.00	50.00	10.00	10.00	10.00
Average Response Factor:	1.002	1.002	1.002	1.002	1.002	1.002	1.002
OTP RF	1.101	1.101	1.101	1.101	1.101	1.101	1.101
Surrogate Recovery:	83	87	101	103	66	06	26
Total Hydrocarbons (ug/L):	QN	NA	1081147	509025	113928	114000	114676
NA-Not Applicable ND-Not Detected							

FLUME TEST S

Laboratory Name: Battelle Project Name: Bitor 98 - Flume Test #3-5 Batch 98-446 G003477-0002 File Name: C:\Active\Bitor Tbis8-98.xis Entered By: LGR, 01-18-99 Data reported in ug/L

Client/Field ID:	US59, t = 1hr. Fittered	US59, t = 24hr. Filterad	US59, t = 72hr. Filtered @ 35 cm	US59, t = 72hr. Filtered @ 35 cm	US59, t = 72hr. Filtered @ 35 cm
BOS Sample ID:	UU79FIL	UU84FiL	UU87FILREP1	UU87FILREP2	UU87FILREP3
Batch ID:	98-446	98-446	98-446	98-446	98-446
Matrix:	Water	Water	Water	Water	Water
Sample Volume (L):	0.850	0.890	0.860	0.750	0.870
Sample Area:	34764.34	37744.23	49095.65	43648.95	44358.05
DCM Area:	14484.20	14484.20	14484.20	14484.20	14484.20
Surrogate Area:	256.57	189.35	259.28	251.78	250.20
Internal Std. Area:	247.50	248.79	251.35	a, 246.11	264.45
Std. Corrected Total Area:	19776.06	22821.88	34100.81	28666.86	29359.19
Internal Std Amount (ug):	20.66	20.66	20.66	20.66	20.66
Surrogate Amount (ug):	19.68	19.68	19.68	19.68	19.68
PAH Int. Std. Amt (ug):	3.10	3.10	3.10	3.10	3.10
PAH Surrogate Amount (ug):	4.04	4.04	4.04	4.04	4.04
Dilution Factor:	1.00	1.00	1.00	1.00	1.00
Average Response Factor:	1.002	1.002	1.002	1.002	1.002
OTP RF	1.101	1.101	1.101	1.101	1.101
Surrogate Recovery:	66	73	98	86	08
Total Hydrocarbons (ug/L): NA-Not Applicable	1907	2117	3245	3193	2623
ND-Not Detected					

FLUME TESTS 1 THROUGH 5

PAH RESULTS IN FILTERED AND UNFILTER WATERS

Lubostory Nerves, Bantide - Durbury Project Nerves - Elizan Tosterg and Chranslottation of Ormulson 400 (1998) Project Nerves - Elizanza - Count - Tosterg and Chranslottation of Ormulson 400 (1998) FLE_D Material Investors and chearted DNN 1921/98

FLUME TEST 1 -FILTERED & UNFILTERED WATERS

,

Table 1. Surrogate Corrected Fillered Freathwater PAH c	oncentrations in ug/L							
Battotte iD	WAADPB	LUG1FIL	UU36FIL	UU40FIL-REP1	UU40FIL-REP3	D-1600	0.000-0	UL40REP3-D
Client ID	2	I = 1hr fitured water	t = 24hr fillerod water	l = 72hr d = 35cm filened weler rep 1	(= 72hr d = 35cm fillared water rap 3	t = 1hr unlitered water	t a 24hr unittered weter	Le 72hr d = 35cm unititered weier rep 3
Matrix Sampio Volumo (L)	Fradwater 5.000	Frachweler 0.670	Findomator 0 550	Frontiner 0.610	Frodtwaler 0.650	Frashwater 0.780	Fradmeater 0.700	Fination
		0 524	0 459	6/1/0	90270	901'IC	127.01	500.5
C 1 Hapmonistered		192.0	0610	0 15/	767.0			
				2007-D	0000		ALC: NO	and and
Carbon the former						1200 045	241.170	928 217
Biphenvi	0N 000 0	9400	UN 00010	000	100	7.241	0.000 N	0.636
Aconsphit/vience	CN DOD O	0 000 ND	UN 00010	DI DODI DI	01 000 D	0.000 ND	N 0000	QN 000 0
Acenephthene	0000 ND	0.102	GN 00010	CIN 0000	0 055	28,631	16.695	CIN 000'0
Cherzohran	0.000 ND	0.043	CIN 000 0	1001	0.025	14, 168	11.921	C14/C
Fluorene	0.000 ND	0 010	GN 00010	D DOD D	000	27.602	C9971	2072
C1-fluerenes	DN 0000	0 181	GN 000 0	0N 000 0	0,000 ND	174.870	131,832	37,569
C2-fluoranea	ON 000 0	612.0	DN 000 0	0.000 U	00 000 D	549.951	465.401	175.874
C3-fuoranea	0.000 ND	0 434	GN 000 0	CIN 0000	0000 ND	1121.918	921.659	350.657
Anthrecone	D 000 UD	0 037	0 670	1000	0.038	GN 000'0	19.487	4,155
Phenendhrone	0.000 ND	0.114	0 060	0.052	0 075	146.905	83.979	875.61
C1-phananthronos/anthractions	DN 00010	0110	0 103	0.105	0.072	395.340	288.349	71.982
C2-phenanthranos/anthraconos	D. 000 ND	0 167	0 207	802.0	0.144	1343.784	1081.259	423.206
C3-phenanthrones/enthracomos	0.000 ND	01 000 D	GN 000 0	QIN 0000	CIN 00010	106.7291	1694.128	628.254
C4-phenanthrones/anthracenes	0.000 ND	0 000 ND	GN 00010	0.000 ND	ON 000/0	1124.059	854.254	413.230
Drbenzothiophene	0,000 ND	0 869	1.619	776.1	1.069	67.437	61.205	16.206
C 1-dibenzothisphenes	0,000 ND	0, 140	0.263	0 237	0.108	624.873	405.607	126.065
C2-dibenzolhiophones	DN 000.0	1 032	1.647	1361	0.844	1823.144	1617.301	530.061
C3-dibenzothiophanos	DN 00010	0.550	0,860	0 603	0.541	3670.776	3041.267	1195,196
C4-dibantothiophenas	0.000 ND	0 000 ND	QN 00010	0.000 ND	DN 00010	ACT.7206 12	2356.407	1032.726
Fluorantheno	0.000 ND	0.007	GN 00010	0.000 ND	0000 ND	17.436	13.650	6.016
Pyrana	0.000 ND	0012	ON 000:0	0 000 D	0,000 ND	49.510	620°92	14:371
C1-fluomnthenes/pyranes	01 000 D	0 000 ND	GN 000'0	GN 000 D	CN 000'0	209.817	174.401	67.467
C2-fluoranthenea/pyranos	0 000 ND	0 000 ND	ON 000:0	0 000 ND	0000 ND	417.204	100.102	140.540
C3-illuoranthones/pyranes	GN 000 0	0 000 ND	CN 000 0	0.000 ND	ON DOD D	690.010	100.801	199.660
Channessing	000 000 0				000000	197-11	14,302	
							40.000	900.US
						100:001	120.032	
							373 67	
Benzolbiliuorenthene			0N 000 0	ON DOO U		000 0	7.206	3.412
Benzo(k)Iluoranthone	CN DOD D	CIN DOOLO	GN 000 0	0.002		2.024	0,000 NI	CN 000 0
Bonzo(e)pyrano	0 000 ND	0 000 ND	QN 000 0	0 000 ND	CIN 000 0	14,897	9.098	6 336
Benzo(a)pyrone	0 000 ND	0 000 ND	GN 00010	QN 000'0	0.000 ND	10.710	11.079	4.244
Parytene	0.000 ND	0 000 ND	QN 000 0	QN 0000 D	CN 000'0	34.962	26.656	11.767
Indeno(1.2.3-c.d)pyrane	QN 000 0	0 000 ND	QN 000 0	CIN 000/0 .	QN 000'0	QN 000'0	0.000 N	0000 00 00 00 00 00 00 00 00 00 00 00 0
Debenz(a,h)anthracone	0 000 ND	0 000 ND	DN 000 0	C:00 ND	01000 ND	GN 00010	0.000 NI	DN 000/0
Banzo(g.h.!)peryleno	GN 000 0	CIN 00010	0000 MD	GN 000'0	0.000 ND	6.395	4.792	2451
Discretic Ratics								
Tolsi PAHa	50 0	6.64	578	4 97	11.4	20303.67	09.06191	6285.27
D2/P2	NA	618	7.95	6.56	5.07	1.36	1.40	1.15
03VP3	V N	NA	NA	ž	¥	1.90	1.91	1.80
Surrocate Beroverlag								
Nephthelene-d8	10	61	8	52	8	105	8	101
Phonenthrane-d10	. 3	50	2	2	; 2	2	8	ē
Chrysone-d12	67	18	7	2	E.	ā	105	ā

Laboratory Name: Battelle - Duxbury Project Name: Bilor America - Flume Testing and Characterization of Orimulsion 400 (1998)

Project Number: G003477-0002 FILE: D:/Active/Bitor/98385.xts CREATED: WN 12/21/98

Table 1. Surrogate Corrected Filtered Brackishwater PAH concentrations in ug/L.

FLUME TEST 2 -FILTERED & UNFILTERED WATERS

		•					
Battelle (D	WB70PB	0043FIL 11558 1 - 117 - Ellorod	UU48FiL 11550 1 - 24br Eilerred	UU558 1 = 72hr - Elliprod @ 35cm	UU43-D 11550 + - 15-	UU48-D 11550 1 - 24hr	0051HEP2-0 11550 1 - 72hr 0 35cm
Matrix	Brackichwater	UO33, I = 117 - FINGEU Reckishwater	0000, t = 24/11 - FIIIBIBU Bracklehwater	uoda, t = 7,211 - Fillered 🖉 docifi Brackishwater	Brackishwater	Brackishwater	Brackishwater
Sample Volume (L)	1.000	0.950	0.69.0	0.850	0.950	0.870	0.860
Naphthalene	0.056	0.077	0.047	0.025	2.130	0.216	0.041
C1-naphthalenes	0.137	0.128	0.051	0.069	2.498	0.358	0.091
C2-naphthalenes	00.000 ND	0.209	0.057	0.024	12.072	0.581	210.0
Cu-naphinalenes		0.326	0.036	0.000 ND	1/0728	500.1 201 10	
Dishoovi		0.000					
Acanachthylene		846 U				GN 000 0	200
Acenaphthene		0.067			3.428	00000	0.007
Dibenzofuran	000000	0.051	GN 000.0	DN 000'0	4.011	0.145	0.006
Fluorene	CIN 000.0	0.281	GN 000'0	DN 000'0	4.272	0.158	0.016
C1-fluorenes	CIN 000.0	0.516	DN 0000	0.000 ND	40.703	1.172	0.024
C2-fluorenes	0.000 ND	0.487	CN 000.0	CIN 000.0	157.190	11.990	0.000 ND
C3-fluorenes	0.000 ND	0.150	0.000 ND	O.000 ND	327.693	32.420	0.000 ND
Anthracene	0.000 ND	0.025	600.0	0.007	4.181	0.000 ND	0.043
Phenanthrene	0.000 ND	0.062	0.020	0.014	14.544	0.371	0.037
C1-phenanthrenes/anthracenes	O.000 ND	0.207	0.054	O.000 ND	80.095	3.333	0.009
C2-phenanthrenes/anthracenes	CIN 000.0	0.161	CIN 000.0	0.000 ND	370.670	38.943	0.067
C3-phenanthrenes/anthracenes	0.000 ND	CIN 000'0	0.000 ND	GN 000/0	524.143	71.472	0.000 ND
C4-phenanthrenes/anthracenes	O.000 ND	0000 ND	0000 ND	CIN 000 0	7 305.082	45,393	0.000 ND
Dibenzothiophene	0.000 ND	0.608	0.000 ND	0.000 ND	15.033	0.415	0.036
C1-dibenzathiophenes	0000 ND	0.165	0.000 ND	0.000 ND	129,680	8.634	0.023
C2-dibenzotniopnenes	01.000 0	0.333	ON 000.0	00000	506.333 071 026	43.755	0.034
Co-citerizonnoprieties C4-dihenzothionhenes		0.414			971.200 11400	117 215	
Fluoranthene		0.007			4477	0.534	0.033
Pvrene		2000			14.748	2.048	0.153
C1-fluoranthenes/pyrenes	CIN 000.0	0.077		DN 00010	58.844	8.054	0.000 ND
C2-fluoranthenes/pyrenes	0.000 ND	DN 000.0	GN 0000	UN 00000 1	117.448	16.908	0.000 ND
C3-fluoranthenes/pyrenes	0.000 ND	GN 000.0	GN 00010	CN 000'0	166.893	23.470	GN 000.0
Benz(a)anthracene	CIN 000.0	0.000 ND	GN 000.0	CIN 000.0	4.144	0.569	0.034
Chrysene	0.000 ND	ON 000.0	GN 000'0	0.000 ND	13.828	2.011	0.137
C1-chrysenes	0.000 ND	ON 000.0	0.000 ND	0.000 ND	38.049	5.135	0.365
C2-chrysenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	51.750	7.776	0.518
Sanasenda. M	00.000 D	CN 0000	GN 000:0	0.000 UD	36.842	01/0	0.400
Benzo(h)filioranihane					21.907	52C.2	020
Benzofkilluoranthene							
Benzo(e)pyrene				GN 0000	3.557	0.539	0.051
Benzo(a)pyrene	GN 00010	CIN 00010	CIN 00010	0.000 ND	3.523	0.747	0.054
Perylene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	117.7	1.091	0.095
Indeno(1,2,3-c,d)pyrene	0.000 ND	0.000 ND	0.000 ND	GN 000'0	0.000 ND	GN 0000	0.006
Dibenz(a,h)anthracene	0.000 ND	0.000 ND	ON 000.0	0.000 ND	0.000 ND	0.000 ND	0.002
Benza(g,h,i)peryiene	0:000 ND	0.000 ND	0.000 ND	0.000 ND	1.490	0.251	0.020
Diagnostic Ratios							
Total PAH's	0.19	4.88	0.27	0.14	5178.09	608.87	2.67
DZHZ	AN .	2.07	AN .	NA S	1.37		0.51
13/143	NA	AN	NA	NA	1.85	1.83	NA .
Surrogate Recoveries				:	i	;	:
Naphthalene-d8 Phenanthrane-d10	20 2 20	39 6 5 60	55 8	61 85	40 90	52 GE	42 242
Chrysene-d12	3 06	30 06	32	82	109	16	105

•

,1

Laboratory Name: Battelle - Duxbury

Project Name: Bitor America - Flume Testing and Characterization of Orimulsion 400 (1998) Project Number. G003477-0002 FILE: D:Active/Bitor/98393.xls CREATED: WN 1/6/99

FLUME TEST 3 -FILTERED & UNFILTERED WATERS

.

Table 1. Surrogate Corrected Saitwater PAH concentrations in ug/L

Battelle ID Client ID Matrix Sample Volume (L)	WB93PB NA Saltwater 1.000	UU55FIL US59, t = 1hr - Filtered Sahwater 0.900	UUG0FIL US59, t = 24hr - Filtered US59, t = 7; Sattwater 0.830	UU63FILREP1 2hr - Filtered @ 35cm Saltwater 0.870	UU55-D US59, t = thr Sathwater 0.780	UU60-D US59, t = 24hr Sattwater 0.890	UU63REP1-D US59, t = 72hr @ 35cm Sallwater 0.860
Naphthalene	0.000 ND	0.038	0.046	0.030	2.505	0.176	0.093
C1-naphthalenes	0.000 ND	0.051	0.127	0.066	4.290	ON 000'0	0.000 ND
oc-naphmatenes C3-nanhthatenes			CIN 000.0		36.812 128 112	0.000 ND	DN 00010
C4-naphthalenes	0.000 ND	0000 ND	0.000 ND	0.000 ND	512.063	32.951	4.999
Biphenyl	0.000 ND	0.000 ND	O.000 ND	0.000 ND	0.000 ND	O.000 ND	0.000 ND
Acenaphthylene	GN 000'0	0.015	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND
Acenaphtnene	0.000 ND	0.026	0.000 ND	0.000 ND	8.118	0.000 ND	0.000 ND
Dibenzoiuran Fluorene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	4.700	0.082	00000
C1-flingenes			CIN 000.0	0.000 ND	8.451	0.140	0100000
C2-fluorenes	00000 ND				71.408 250 037	3.UDI 17.663	0.000 NLJ 9.373
C3-fluorenes	ON 000.0	0.000 ND	0.000 ND	0.000 ND	450.931	36.474	12.754
Anthracene	0.000 ND	0.031	0.012	0.005	6.502	0.240	0.093
Phenanthrene	ON 000.0	0.119	0.016	0.013	40.138	0.560	0.105
C1-phenanthrenes/anthracen	0.000 ND	0.194	0.036	0.024	140.457	6.442	1.266
C2-phenanthrenes/anthracen	0.000 ND	0.148	00.000 ND	0.000 ND	514.480	36.341	10.283
Co-primitation continuation C4-nhenanthranes (anthracen				0.000 ND	112.080	50.213	23.779
Diberzothionhene			0,000	0.000 NU	0/6./64	G02'/2	12.803
C1-dibenzothionhenes		0420	0.000	0.042	20.321 136 510	808.D	0.173
C2-dibenzothiophenes	0.000 ND	0.166		0.000 ND	2014.322	48.605	1.302.1 16.138
C3-dibenzothiophenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	1284.415	97.599	40.263
C4-diberzothiophenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	1029.008	73.853	35.404
Fluoranthene	0,000 ND	0.004	0.000 ND	0.000 ND	5.482	0.449	0.200
r yrene C1-fiinranthenes/ovrenes		0.001	ON 000.0	0.004	17.702	1.673	0.663
C2-flitoranthenes/nvrenes					C1.042	079 01 009 01	2.731
C3-fluoranthenes/pyrenes	0.000 ND				104-040	13.626	20.209
Benz(a)anthracene	0.000 ND	GN 000.0	00000 ND	GN 00070	5.194	0.461	0.235
Chrysene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	19.667	1.760	0.926
C1-chrysenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	42.684	4.067	1.700
C2-chrysenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	55.984	3.408	2.110
C3-chrysenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	48.424	2.089	1.185
C4-Citrysenes Benzo(h)thucranthere			00000 OI	0.000 ND	GN 000.0	0.000 ND	00000 ND
Benzo(k)fluoranthene					3.7/4 0.000 ND	G6270	0.113 0.000 ND
Benzo(e)pyrene	0.000 ND	ON 000.0	00:000 ND	0.000 ND	3.492	0.269	0.133
Benzo(a)pyrene	0.000 ND	0.000 ND	O.000 ND	CIN 000.0	2.874	0.227	0.050
Perylene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND
nueno(1,2,3-c,a)pyrene Dibenzta bisathracane			ON 000.0	00000	0.000 ND	0.000 ND	ON 000.0
Benzo(a,h,i)pervlene						0.000 ND	0.000 ND
Diagnostic Ratios Total PAM's	d N						
D2/P2	A N	1.12	AU AN	U.Z.I NA	130.13	191.94	185./5
D3/P3	NA	NA	NA	NA	1.87	1.94	1.69
Surrogate Recoveries							
Naphthalene-d8	48	64 20	13 & 21	17 &	87	28 1	64
Chrsene-d12	a/ B	76	19 00	92 88	95 70	97 20	60 00
	3	3	מר	00	102	5	n n

:

Laboratory Name: Battelle - Duxbury

Project Name: Bitor America - Flume Testing and Characterization of Orimulsion 400 (1998) Project Number: G003477-0002 FILE: D:Active/Bitor98398.xis CREATED: WN 17699

Table 1. Surrogate Corrected Saltwater PAH concentrations in ug/L.

FLUME TEST 4 -FILTERED & UNFILTERED WATERS

Battelle ID	WC10PB	UU67FIL	UUZZFIL	UU75FII BEP3	11167.D	0-62111	
Client ID	NA	US59, t = 1hr - Filtered	US59, t = 24hr - Filtered US5	9, t = 72hr - Filtered @ 35cm	US59. 1 = 1hr	US59. 1 = 24hr	US59, t = 72hr 6 35cm
maurix Sample Volume (L)	Saltwater 1.000	Saltwater 0.910	Saltwater 0.880	Saltwater 0.870	Sattwater 0.830	Saltwater 0.880	Saltwater 0.840
Naphthalene	0.007	0.047	360.0	0.032	0.855	0.244	0.173
C1-naprimatenes	0.008	0.075	0.066	0.069	0.737	CN 000'0	CIN 00010
Ca-naphilatenes C3-naphilatenes	0.000 ND	0.000 ND	0.131	0.101	13.213	0.000 ND	3.627
C4-naphthalenes			0.169	GN 000.0	36.229	12.142	11.381
Biphenyi				000000	114.284	47.277	38.454
Acenaphthylene	DN 00010	0.246		U.000 NU	GN 00070	000000	0.000 ND
Acenaphthene	0000 ND	0.092	0.076	2027.0 2000	0.782	CIN 00010	0.641
Dibenzofuran	0.000 ND	0.033	0.026		2.001		0.5/5
Fluorene	0.000 ND	0.124	0.128		0.940	0.171	0.250
C1-fluorenes	0.000 ND	0.195	0.185	0.195	1.00.1	21212	10/0/D
C2-fluorenes	0.000 ND	0.139	0.155	0.155	100.FT	010.0 702 90	17/5 21 235
C3-fluorenes	0.000 ND	0.000 ND	0.000 ND		100 563	50.578 50.578	CC1 CV
Anthracene	CIN 000'0	0.018	0.015	0.019	1 161	0.613	1347 D 347
Phenanthrene	0.000 ND	0.050	0.041	0,030	0 498	2105	SON C
C1-phenanthrenes/anthracenes	ON 000.0	0.092	0.069	0.065	192 UE	11 557	0.400 11 050
C2-phenanthrenes/anthracenes	0.000 ND	0.000 ND	0.000 ND	CN 00010	116 936	11.001	11.200 48 256
C3-phenanthrenes/anthracenes	0.000 ND	0.000 ND	ON 000 0	0.000 U	156.708	71.007	61 930
C4-phenanthrenes/anthracenes	0.000 ND	0.000 ND	0.000 ND	ON 000.0	65.441	42.025	36.665
Cioenzonniophene	0.000 ND	0.258	0.222	0.289	5.918	1.912	2.136
C1-diheatothiophenes	ON 00070	0.120	0.094	0.181	29.971	12.031	10.698
C3-dibenzothionhenes		0.170	0.209	0.231	163.320	76.082	62.327
C4-dibenzothiophenes			0.139	0.168	286.579	143.542	115.309
Fluoranthene				0.000 ND	221.927	110.613	88.085
Pyrene	CIN 00010				1.086	0.625	0.478
C1-fluoranthenes/pyrenes				CIN DOC D	4.214	2:015	1.702
C2-fluoranthenes/pyrenes	CN 000.0				15.486	8.710	8.066
C3-fluoranthenes/pyrenes	ON 000.0	0.000 UD			31.410	13.913	11.541
Benz(a)anthracene	0.000 ND	CIN 000.0			30.045	10.9/0	15,102
Chrysene	0.000 ND	0.000 ND	UN 00010		1.420	0.04	6/C/D
C1-chrysenes	0.000 ND	ON 000.0	CIN 000'0		101.1	5, 5, 10 2, 5, 10	
C2-chrysenes	0.000 ND	0.000 ND	0.000 ND		645.11	01010 B 100	
C3-chrysenes	0.000 ND	ON 0000	ON 000 0	GN 000.0	4.658	2.499	0040
C4-Cnrysenes	0.000 ND	0.000 ND	O.000 ND	0.000 ND	0.000 ND	0.000 ND	CIN 00010
Gento(v)nuotanutere Benzo(v)fitiorenthene	CIN 00010	0.000 ND	0.000 ND	0.000 ND	0.365	0.400	0.245
Benzo(e)ovrene		CIN 000 0	CI 0000 ND	CIN 000.0	0.000 ND	GN 0000	GN 00070
Benzo(a)pyrene			GN 000.0	0.000 ND	0.593	0.432	0.236
Perylene	01000 ND			000 000 00 00 00 00 00 00 00 00 00 00 0	GN 00070	GN 0000	0.000 ND
Indeno(1,2,3-c,d)pyrene	0.000 ND				0100000	CIN 00000	GN 00010
Dibenz(a,h)anthracene	0.000 ND	CIN 000 0					
Benzo(g,h.i)perylane	0.000 ND	0.000 ND	ON 000.0	CIN 000'0	GN 000'0	0.000 ND	00000 ND
Diagnostic Ratios							
Total PAH's	0.01	1.66	2.26	1.85	1561.46	732.36	R10 R5
	NA	NA	AN	NA	1.40	1.37	1.35
22.23	NA	NA	NA	NA	1.83	2.02	1.86
Surrogate Recoveries							
Naprinalene-du Phenanthrene-d10	75	50	48	83	88	28	86
Chrysene-d12	5 88	50 87	83 70	91 96	56	94 1	88
	*	5		8	88	68	3

,

Project Name: Blior America - Flume Testing and Characterization of Orimulsion 400 (1998) Project Number: G003477-0002 FILE: D:Active(Blior)98446.xis CREATED: WN 1/7/99

.

FLUME TEST 5 - FILTERED & UNFLITERED WATERS

Table 1. Surrogate Corrected Freshwater PAH concentrations in ug/L.

Battelle ID	WD76PB	UU79FIL	UU84FIL	UU87FILREP1	D-62UU	UU84-D	UU87REP1-D
Client ID	A N	US59, t = 1hr - Filtered	US59, t = 24hr - Filtered US59,	t = 72hr - Fillered @ 35cm	US59, L = 1M Economics	CODY, La 24n Freehweler	UCCOS, LE / Zin COCCII
mainx Sample Volume (L)	1.000	0.860	0.890	0.860	0.930	0.940	0.910
Nanhihalane	0.008	0.151	0.076	0.034	2.949	1.463	0.395
C1-naphthalenes	0.029	0.062	0.050	0.048	0.000 ND	0.000 ND	0.000 ND
C2-naphthalanes	0.000 ND	ON 000.0	ON 000.0	ON 000'0	0.000 ND	0.000 ND	0.000 ND
C3-naphthalenes	0.000 ND	0.000 ND	ON 000.0	GN 00010	108.356	14.752	CIN 000'0
C4-naphthalenes	0.000 ND	0.000 ND	0000 ND	01.000.0	527.307	151.470	UN 00070
Biphenyl	0.000 ND	0.000 ND	0.000 ND	ON 000.0	0.000 ND	01.000 0	ON 0000
Acenaphthylene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	GN 00010	0.000 CIN 000	
Acenaphthene	0.000 ND	0.000 ND	00000	CIN 00010	01.000 U		
Dibenzofuran	0.000 ND	000000	GN 000.0			0.000 NO	
Fluorene	0.000 ND	0.000 ND	CIN 000 0	GN 00070	3.813	0.040	
C1-fluorenes	0.000 ND	0.000 ND	GN 000'0	0.000 ND	913.15	500.7 57 57 57	
C2-fluorenes	CN 000.0	0.000 ND	GN 000'0		246.959	02:010 170 305	
C3-fluorenes	0.000 ND	0.000 ND	0000 ND	ON 00010	463.502	CDC-8/1	
Anthracene	0.000 ND	0.023	0.000 ND	0.000 ND	3.050	804.L	0.242
Phenanthrene	0.004	0.062	0.000 ND	O.000 ND	4.798	1.947	424-D
C1-phenanthrenes/anthracenes	0.010	0.000 ND	CIN 000:0	0.000 ND	54.427	15.963	0.680.0
C2-phenanthrenes/anthracenes	0.000 ND	0.000 ND	0000 ND	ON 000.0	463.211	134.699	10/-G
C3-phenanthrenes/anthracenes	0.000 ND	0.000 ND	GN 000'0	ON 000'0	713.503	302.408	00.140
C4-phenanthrenes/anthracenes	0.000 ND	0.000 ND	0.000 ND	0.000 ND	397.070	176.818	31.530
Dibenzothiophene	0.000 ND	0.903	0.308	0.366	7.269	2:332	0.425
C1-dibenzothiophenes	0.000 ND	0.000 ND	0000 MD	0.000 ND	30.584	0.000 ND	
C2-dibenzothiophenes	0.000 ND	0.000 ND	CN 000.0	0.000 ND	575.403	101.131	0.000 HJ
C3-dibenzonriophenes	0.000 ND	GN 00010	CIN 000.0	000000	1304-771	454 988	R4 188
C4-dibenzoiniopnenes	0.000 NU	CIN 00010	CIN 000.0			1.668	0.486
	0.002				00 FA7	6.528	1.711
r yrene C1 - frioranthanás /nivenas	0.000	0.014			0F9 44	28.067	6.585
Co-recommended pyrenes					170.796	68.043	15.560
C3-fireranthenec/pyrenes					211 DE4	79.647	18.991
Banzialanthracene					7 545	2.752	0.492
Chrysone				CIN 00070	20.650	10.183	1.941
C1-chrysones					47,352	20.386	4.800
C2-chrysenes				CIN 00010	55.433	26.754	6.692
C3-chrysenes	0.000 ND	QN 00010	GN 000'0	0.000 ND	37.941	11.255	1.831
C4-chrysenes	0.000 ND	ON 000.0	GN 000'0	ON 00010	0.000 ND	0.000 ND	0.000 D
Benzo(b)Iluoranthene	0.000 ND	GN 00010	- 0000 ND	0.000 ND	2.304	1.258	0.310
Benzo(k)fluoranthene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	CIN 0000	0.000 ND	0.000
Benzo(e)pyrene	0.000 ND	0.000 ND	0000 ND	0.000 ND	3.468	1.392	0.300
Benzo(a)pyrene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	3.631		
Perylene	0.000 ND	0.000 ND	0.000 ND	0.000 ND	CIN 000'0		
Indeno(1,2,3-c,d)pyrene	GN 000.0	0.000 ND	GN 000.0	CIN 000'0	CIN 000'0		
Dibenz(a,h)anthracene	0.000 ND	0.000 ND	0.000 ND	GN 00070	0.000 ND	UN 000 0	
nenzo(g,n,i)peryiene	0.000 ND	0.000 NU	0.000 ND				
Diagnostic Ratios							
Total PAH's	0.05	122	0.44	0.45	6718.22	2463.76	10.512
D3/P3	AN	47 47	AN AN	82 8	1.83	1.76	1.73
		5			2		
Surrogate Recoveries Naphthalene-d8	67	69	46	69	92	100	96
Phenanthrene-d10	82	91	69	91	55	105	101
Chrysene-d12	93	93	69	91	103	102	91

FLUME TESTS 1 THROUGH 5

MASS BALANCE RESULTS

	Mass Bitumen Added (g)	Floating (g)	Sunk (g)	Bathtub Ring (g)	Suspended (g)	Dissolved (g)
TEST 1	26280	45	17211	5	9009	10
TEST 2	10366	9453	-27	861	74	5
TEST 3	10366	8000	2004	29	326	6
TEST 4	10366	7030	1192	1407	730	6
TEST 5	10366	3630	-157	1212	5668	12

FINAL MASS BALANCE TABLES

	Spill Conditions	Floating (%)	Sunk (%)	Bathtub Ring (%)	Suspended (%)	Dissolved (%)
TEST 1	low energy, freshwater	0.2	65.5	0.0	34.3	0.0
TEST 2	high energy, brackish water	91.2	-0.3	8.3	0.7	0.0
TEST 3	low energy, brackish water	77.2	19.3	0.3	3.1	0.1
TEST 4	high energy saltwater	67.8	11.5	13.6	7.0	0.1
TEST 5	high energy, freshwater	35.0	-1.5	11.7	54.7	0.1

٩.

Battelle - latroscan Data Flume Tests 1 through 5

¢

TEST 1 Percent Area Response

Time					Sample
(hr)	Saturates	Aromatics	Resins	Asphaltenes	٥
1.0	8.5	43.2	33.2	15.1	UU31
24.0	8.8	47.0	30.3	14.0	UU36
72.0	8.9	44.7	31.7	14.7	UU40

Percent Area Response TEST 2

Asph
Resins
Aromatics
Sati irates

			Sample
Aromatics	Resins	Asphaltenes	Q
47.3	29.3	13.7	UU43
29.7	42.7	19.9	UU48
9.6	60.3	26.1	UU51
	Aromatics 47.3 29.7 9.9	Aromatics Resins 47.3 29.3 29.7 42.7 9.9 60.3	Aromatics Resins Asphaltenes 47.3 29.3 13.7 29.7 42.7 19.9 9.9 60.3 26.1

TEST 3 Percent Area Response

Time					Sample
(hr)	Saturates	Aromatics	Resins	Asphaltenes	₽
1.0	7.7	41.0	34.7	16.6	UU55
24.0	7.4	33.3	40.2	19.1	0900
72.0	3.9	24.5	45.4	26.3	UU63

TEST 4 Percent Area Response

,

			_	
Sample	۵	10067	UU72	UU75
	Asphaltene	17.5	20.0	17.4
	Resins	33.0	38.4	36.3
	Aromatics	41.1	32.4	38.1
	Saturates	8.4	9.2	8.2
Time	(hr)	1.0	24.0	72.0

TEST 5 Percent Area Response

urates / 8.2	Aromatics 47.9	Resins 27.4	Asphaltene: 16.5	sample ID UU79
	47.4	27.8	16.9	UU84
	38.1	38.7	19.1	UU87

Appendix VI
TPH and PAH Data - Battelle Flume Tests 1 through 5

TEST 1	TPH (TOTAL)	TPH (DISSOLVED)	PAH (TOTAL)	PAH (DISSOLVED)
TIME	(mg/L)	(mg/L)		
(hrs)	GRAV	INST	(ug/L)	(ug/L)
1	5063.29	2.30	20303.6	6.6
2	5328.95	NA	NA	NA
4	5064.94	NA	NA	NA
6	5197.37	NA	NA	NA
12	5031.85	NA	NA	NA
24	4200.00	3.05	16198.9	5.8
48	3184.00	NA	NA	NA
72Rep1(15cm)	2081.08	NA	NA	NA
72Rep2(15cm)	2062.50	NA	NA	NA
72Rep3(15cm)	1776.47	NA	NA	NA
72Rep1(35cm)	2187.50	2.62	NA	5.0
72Rep2(35cm)	2211.76	2.53	NA	NA
72Rep3(35cm)	2280.00	2.44	6285.3	4.1
72Rep1(55cm)	2617.45	NA	NA	NA
72Rep2(55cm)	2535.21	NA	NA	NA
72Rep3(55cm)	2518.52	NA	NA	NA

NA - not analyzed

٤

TEST 3	TPH (TOTAL)	TPH(DISSOLVED)	PAH (TOTAL)	PAH (DISSOLVED)
TIME	(mg/L)	(mg/L)	(ug/L)	(ug/L)
(hrs)	GRAV	INST		
1	1878.21	1.37	7090.1	1.3
2	1549.67	NA	NA	NA
4	741.75	NA	NA	NA
6	630.00	NA	NA	NA
12	361.14	NA	NA	NA
24	157.30	1.28	491.9	0.3
48	155.57	NA	NA	NA
72Rep1(15cm)	73.45	NA	NA	NA
72Rep2(15cm)	72.50	NA	NA	NA
72Rep3(15cm)	78.19	NA	NA	NA
72Rep1(35cm)	81.40	1.55	185.75	0.2
72Rep2(35cm)	79.07	1.68	NA	NA
72Rep3(35cm)	80.46	1.64	NA	NA
72Rep1(55cm)	77.53	NA	NA	NA
72Rep2(55cm)	107.47	NA	NA	NA
72Rep3(55cm)	83.72	NA	NA	NA

TPH and PAH Data - Battelle Flume Tests 1 through 5

NA - not analyzed

œ

•

٤

TEST 5	TPH (TOTAL)	TPH(DISSOLVED)	PAH (TOTAL)	PAH (DISSOLVED)
TIME	(mg/L)	(mg/L)	(ug/L)	(ug/L)
(hrs)	GRAV	INST		_
1	2381.72	1.91	6718.2	1.2
2	2396.74	NA	NA	NA
4	2144.44	NA	NA	NA
6	2135.87	NA	NA	NA
12	2134.41	NA	NA	NA
24	2122.34	2.12	2483.8	0.4
48	1552.69	NA	NA	NA
72Rep1(15cm)	1289.47	NA	NA	NA
72Rep2(15cm)	1364.13	ŅA	NA	NA
72Rep3(15cm)	1472.22	NA	NA	NA
72Rep1(35cm)	1366.48	3.25	273.87	0.5
72Rep2(35cm)	1381.11	3.19	NA	NA
72Rep3(35cm)	1385.96	2.62	NA	NA
72Rep1(55cm)	1467.74	NA	NA	NA
72Rep2(55cm)	1478.02	NA	NA	NA
72Rep3(55cm)	1548.94	NA	NA	NA

TPH and PAH Data - Battelle Flume Tests 1 through 5

NA - not analyzed

1

1