
Ü A

Software Testing
Part 2

In This Issue:
Testing Software Based Systems:
The Final Frontier 1

Survivability as a Component
of Software Metrics 5

Using Models for Test Generation
and Analysis 10

Task-Based Software Testing.... 17

Thread-Based Integration Testing:
Lessons Learned From an Iterative
Approach 20

About this newsletter 22

Software Testing
Resources on the WWW 23

DACS Products
Order Form Insert

Read additional Software
Testing materials at:

www.dacs.dtic.mil/awareness/
-newsletters/listing.shtml

DoDDte&Airiysfc öfterer Software
http://www.dacs.dtic.mil

*3& &** **%

■'/.■/'

news
The DoD Source for Software Technology Information.

Testing Software Based Systems:
The Final Frontier
by Thomas Drake, Coastal Research & Technology Inc. (CRTI)

Where are We? Setting the Stage

The increasing cost and complexity
of software development is leading
software organizations in the
industry to search for new ways
through process methodology and
tools for improving the quality of
the software they develop and
deliver. However, the overall process
is only as strong as its weakest link.
This critical link is software quality
engineering as an activity and as a
process. Testing is the key
instrument for making this process
happen.

Software testing has traditionally
been viewed by many as a necessary
evil, dreaded by both software
developers and management alike,
and not as an integrated and parallel
activity staged across the entire
software development life cycle.
One thing is clear - by definition,
testing is still considered by many as
only a negative step usually

occurring at the end of the software
development process while others
now view testing as a "competitive
edge" practice and strategy.

The best that can happen under the
former perception is that no
problems are detected in the software
and that none exist for detection until
after delivery. We know this is not the
case in the real word of application
development. In reality, it is testing
that finds problems which trigger a
feedback loop to development for
resolution and retesting to make sure
the fix works and has not created
other problems. All of this activity
invariably happens under extreme
time constraints and with significant
management visibility. But it is the
kind of visibility that no one usually
wants because everyone else above in
the development food chain could
slip.

continued on page 2

Software 20000103 038
Testing

Series: Part 2
Note: This is the second in a series of newsletters devoted to Software Testing.

Testing Software Based Systems: The Final Frontier
Continued from page 1

The Real World of
Software Development - A
Sobering Perspective

The following scenario is not unusual
and represents a composite
perspective gleaned from this writer's
10 years of experience in the
information technology industry and
DoD environments.

A software test specialist is assigned
to work on a multimillion dollar
effort to develop a new system. The
test specialist knows that the
completion date for the program is
unrealistic, given the scope and
complexity of the development
effort.

As a result of testing, the test
specialist knows that there are some
real serious technical difficulties
impacting the software system's
interface performance with a very
large relational database system, as
well as numerous bugs in the query
routines for the graphical user
interface.

After months of keeping growing
concerns private, the test specialist
decides to share these concerns with
a fellow colleague. These concerns
were not raised earlier because
attempts to do so by others with
management had resulted in
management telling them not to rock
the boat. They had learned that
viewpoints perceived as negative
were unwelcome and not wanted.
Fellow colleagues had stopped giving
feedback to management because
they now felt their views would be
ignored and were afraid that
additional feedback of this type
would affect their careers. So this test
specialist told management what we
thought they wanted to hear, that
there were some minor problems

with the software but nothing that
could not be resolved in time for the
projected delivery date.

However, as the release date loomed
ever closer, it was becoming obvious
that the software was overly
complex, had a lot of functional
problems, and most importantly,
would not operate as promised at the
point of delivery. The test specialist
knew it would be a disaster if the
system were delivered as scheduled.

The system went through a
development test and evaluation
(DT&E) period that was aborted,
and the program was subsequently
canceled by the acquisition
organization after multiple tens of
millions of dollars had been spent
on development. The test
organization was later disbanded
because it was perceived as part of
the problem.

Test professionals who find
themselves in similar circumstances
are faced with a difficult choice.
What should this test specialist have
done?

The Association for Computing
Machinery (ACM) code of ethics
states the following:

"The honest computing
professional will not make
deliberately false or deceptive
claims about a system or system
design, but will instead provide
full disclosure of all pertinent
system limitations and
problems."

And the biggest single obstacle is
cultural. Testing is not generally
viewed in our software development
environments as where the real
action is. The general perception is
still the following in many

development organizations - testers
are software developers who could
not make it and only real developers
become programmers. Testers, in
particular, are often regarded as
second class citizens and rewarded
accordingly. This often leads to high
turnover, junior level experience, and
no commitment to a comprehensive
test program on the part of
management.

However, becoming a good test
engineer requires a skill set at least
as equally complex as that of a good
software developer. And the
importance of testing is becoming
more and more relevant with the
dependencies we place on software
creating "consequential damages"
and legal quicksand when it does not
work as advertised. What does it
take?

Creating the Right
Environment - The People
Side of the Equation

Senior managers within information
technology must create an
environment and foster a
professional climate in which their
test and development engineers are
encouraged to recognize and respond
positively within a software
development effort and where all
project tasking is rigorously and
regularly reviewed. It is the job of the
tester to "tell it like it is."

We usually think of testing in
software development as something
we do when we run out of time or
after we have developed code.
However, the fundamental approach
as presented here focuses on testing
as a fully integrated but independent

continued on page 3

STN

activity with development that has a
lifecycle all its own, and that the
people, the process and the
appropriate automated technology
are crucial for the successful delivery
of the software based system.
Planning, managing, executing, and
documenting testing as a key process
activity during all stages of
development is an incredibly difficult
process. By definition, it has to be
comprehensive. And finally, who
does the testing and the requisite
commitment to testing is perhaps as
important as the actual testing itself.

Software Quality
Engineering -
As a Discipline and
as a Practice
(Process and Product)

Software Quality Engineering is
composed of two primary
activities - process level quality
which is normally called quality
assurance, and product oriented
quality that is normally called
testing. Process level quality
establishes the techniques,
procedures, and tools that help
promote, encourage, facilitate,
and create a software
development environment in
which efficient, optimized
acceptable, and as fault-free as
possible software code is
produced. Product level quality
focuses on ensuring that the
software delivered is as error-free as
possible, functionally sound and
meets or exceeds the real user's
needs. Testing is normally done as a
vehicle for finding errors in order to
get rid of them. This raises an
important point - then just what is
testing?

Common definitions for testing -
A Set of Testing Myths:

"Testing is the process of demon-
strating that defects are not
present in the application that was
developed."

"Testing is the activity or process
which shows or demonstrates that
a program or system performs all
intended functions correctly."

"Testing is the activity of estab-
lishing the necessary 'confidence'
that a program or system does
what it is supposed to do, based
on the set of requirements that the
user has specified."

"Software implementation is
a cozy bonfire, warm, bright,
a bustle of comforting
concrete activity. But beyond
the flames is an immense
zone of darkness. Testing is
the exploration of this
darkness."

- extracted from the
1992 Software Maintenance
Technology Reference Guide

All of the above myths are very
common and still prevalent
definitions of testing. However,
there is something fundamentally
wrong with each of these myths. The
problem is this - each of these myths
takes a positive approach towards

testing. In other words, each of these
testing myths represents an activity
that proves that something works.

However, it is very easy to prove that
something works but not so easy to
prove that it does not work! In fact, if
one were to use formal logic, it is
nearly impossible to prove that
defects are not present. Just because
a particular test does not find a
defect does not prove that a defect is
not present. What it does mean is that
the test did not find it.

These myths are still entrenched in
much of how we collectively view
testing and this mind-set sets us up
for failure even before we start really

testing!

So what is the real definition of
testing?

"Testing is the process of ex-
ecuting a program/system with
the intent of finding errors."

The emphasis is on the
deliberate intent of finding
errors. This is much different
than simply proving that a
program or system works. This
definition of testing comes from
"The Art of Software Testing"
by Glenford Myers. It was his
opinion that computer software
is one of the most complex
products to come out of the
human mind.

So why test in the first place? You
know you can't find all of the bugs.
You know you can't prove the code is
correct. And you know that you will
not win any popularity contests
finding bugs in the first place. So
why even bother testing when there
are all these constraints? The

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

continued on page 4

STN §

Testing Software Based Systems: The Final Frontier
Continued from page 3

fundamental purpose of software
testing is to find problems in the
software. Finding problems and
having them fixed is the core of what
a test engineer does. A test engineer
should WANT to find as many
problems as possible and the more
serious the problems the better. So it
becomes critical that the testing
process is made as efficient and as
cost-effective as possible in finding
those software problems. The
primary axiom for the testing
equation within software
development is this:

"A test when executed that reveals a
problem in the software is a success."

The purpose of finding problems is
to get them fixed. The benefit is code
that is more reliable, more robust,
more stable, and more closely
matches what the real end-user
wanted or thought they asked for in
the first place! A tester must take a
destructive attitude toward the code,
knowing that this activity is, in the
end constructive. Testing is a
negative activity conducted with the
explicit intent and purpose of
creating a stronger software product
and is operatively focused on the
"weak links" in the software. So if a
larger software quality engineering
process is established to prevent and
find errors, we can then change our
collective mind-set about how to
ensure the quality of the software
developed.

The other problem is that you will
really never have enough time to test.
We need to change our understanding
and use the testing time we do have,
by applying it to the earlier phases of
the software development life cycle.
You need to think about testing the
first day you think about the system.

Rather then viewing testing as
something that takes place after
development, focus instead on the
testing of everything as you go
along to include the concept of
operations, the requirements and
specifications, the design, the code,
and of course, the tests!

The Further Along You Are
In The Software

Development Life Cycle
The More It Costs To Test!

Lesson learned - just test early. Test
early and often. Test the design of
the system before you build any
pseudo-code. Test the specs before
you actually code. Review the code
during coding before you test the
code, and then finally execute actual
test cases. By doing the reviews and
the code-level analyses during all
phases of the development life cycle
you will find many, if not most of
the problems in the system before
the traditional testing period even
begins. These activities alone will
greatly improve the quality of the
delivered system.

Find out the cause of this effect, Or
rather say, the cause of this defect,
For this effect defective comes by
cause.
- Hamlet (with thanks to DeMarco)

About the Author

Mr. Drake is a software systems
quality specialist and management
and information technology
consultant for Coastal Research &
Technology Inc. (CRTI). He
currently leads and manages a U.S.
government agency-level Software
Engineering Knowledge Based
Center's software quality
engineering initiative. As part of an

industry and government outreach/
partnership program, he holds
frequent seminars and tutorials
covering code analysis, software
metrics, Object-Oriented (00)
analysis for C++ and Java, coding
practice, testing, best current
practices in software development,
the business case for software
engineering, software quality
engineering practices and principles,
quality and test architecture
development and deployment,
project management, organizational
dynamics and change management,
and the people side of information
technology. He is the principal
author of a chapter on "Metrics
Used for Object-Oriented Software
Quality" for a CRC Press Object
Technology Handbook published in
December of 1998. In addition, Mr.
Drake is the author of a theme
article entitled: "Measuring
Software Quality: A Case Study"
published in the November 1996
issue of IEEE Computer. Mr. Drake
is listed with the International Who's
Who for Information Technology for
1999, is a member of IEEE and an
affiliate member of the IEEE
Computer Society. He is also a
Certified Software Test Engineer
(CSTE) from the Quality Assurance
Institute (QAI).

Author Contact Information

Thomas A. Drake
Coastal Research & Technology Inc.

5063 Beatrice Way
Columbia, MD 21044

Phone: (301) 688-9440
Fax: (301) 688-9436

tadrake@earthlink.net

"5«GS
noil» * wi4(w«s*"

STN

Survivability as a Component of Software Metrics
by David L Wells, Object Services and Consulting Inc. and
David E. Langworthy, Langworthy Associates

Introduction

Software metrics provide estimates
of software quality that are used to
determine where to spend additional
development testing resources or to
determine the suitability of software
for particular (often critical)
applications. Metrics have
traditionally focused on code quality.
However, the trend toward
constructing large, distributed
applications as a collection of
independent "services" interacting
across a software backplane (e.g.,
CORBA), makes the process of
configuring the application an
important part of the development
process. This affects the kinds of
software metrics required, since
perfect software, imperfectly
deployed, or deployed in such a way
that is vulnerable to failure or attack
is of no more value than imperfect
software that fails of its own accord.
This paper describes metrics we
developed [5] for measuring the
survivability of software systems that
can be applied to the more general
realm of software metrics.

The Importance of
Configurations

Service-based applications can have
many physical configurations that
provide the same (or approximately
the same) logical functionality using
identical services. Multiple
configurations are enabled by the
following:

• Clients and services may run on
different platforms in differing
combinations,

• Partial application failure (e.g., a
client running, service down) is
possible due to software or
environmental factors,

• Interfaces that hide
implementation details allow a
service to have multiple
implementations,

• Multiple objects to provide the
same or equivalent services,

• Services can fail because of
programming errors or because
of a failure of the underlying
resources (e.g., hosts or
networks),

• Connections between clients and
services are typically loose,
which makes it possible in
principle to change the
connections on the fly.

A truly useful metric for distributed,
service-based software must
measure both the quality of the
software itself (the traditional role)
and the quality of its configuration
vis a vis the underlying
infrastructure and the kinds of
threats to which the software and
infrastructure are subject. In the real
world, systems can fail for a variety
of reasons other than code and
specification errors (e.g., a virus
might corrupt the file system that
the software relies upon). Thus,
rather than ask simply whether the
specification and code are correct, it
is necessary to ask how likely it is
that the system will be to continue
to provide the desired functionality,
or failing this, something
approaching it. A survivable system
[1,2] is one in which actions can be
taken to reconfigure applications in
the event of partial failures to
achieve functionality approximating
the functionality of the original
system. The usefulness of a
survivable system can be judged in
several ways: how useful is what it
is doing now?; how useful is it likely

to be in the future?; if it breaks, can it
be repaired so that it can again do
something useful?

Overview of Utility Theory

Utility theory is the study of decision
making under risk and uncertainty
among large groups of participants
with differing goals and preferences
[4]. A participant has direct control
over the decisions he makes, but
these decisions are only indirectly
linked to their outcomes, which
depend on the decisions of other
participants and random chance.

Utility can be used to quantify the
goodness of states and actions in a
survivable system. System states can
be compared using utility measures
to determine which are preferred, and
as a result, which survival actions
should be taken in an attempt to
move the system to a better state or
avoid worse states. A key aspect of
measuring the utility of a system
state or administrative action is that
utility depends on both the services
that are currently running and the
future configurations that can be
reached. Future configurations need
to be considered to differentiate
between a rigid configuration that
offers good current performance
from a flexible configuration that
offers slightly lower current
performance but is more resilient to
faults and is more likely to continue
offering good performance. A
balance must be reached between
present performance and future
performance. For example, for most
systems the potential configurations
a year in the future are not nearly as
important as the configurations the
system could reach during the next
12 hours.

Continued on page 6

STN

Survivability as a Component of Software Metrics
Continued from page 5

Applying Utility Theory to
Software Metrics

Every client receives a benefit from
every service it uses, expressed as a
utility function, U, that maps a
description of the service being
provided to a value received. The
service to be received can be
described in many ways, including
using quality of service (QoS)
concepts such as timeliness,
precision, and accuracy of the results
to be provided. Further, utility itself
can have multiple definitions,
depending on the overall goals to be
achieved. For example, one utility
function could value maximizing the
work performed another utility
function could value minimizing the
likelihood that the level of service
provided falls below some threshold
and a third utility function could
value minimizing the probability that
information is divulged to an
opponent. All are equally valid and
depending upon circumstances could
in turn be valued to different degrees.
This would result in a combined
utility function that is some
aggregation of the underlying utility
functions.

The benefit a client receives from a
service is accrued only if the service
completes its task; i.e., an
instantaneous, ephemeral connection
to a service provides no value. Thus,
every benefit function must include a
duration over which the service must
be provided in order to attain the
specified benefit. Our analysis
restricts the duration to fixed size
discrete time intervals; a client
receives the benefit only if the
service is still being provided at the
end of the interval. We define the
utility of a configuration, U(c), to be
the aggregation across all clients in a
configuration of the value of the
services they receive. Because there

can be multiple utility functions, we
differentiate between them using
subscripts when necessary; ergo,

A configuration provides utility only
for tasks it completes. Since a
system that begins a time interval in
some configuration c may end it in
some other configuration that
provides a possibly different utility,
a more useful measure of utility is
the expected utility of a
configuration c, EU(c). EU(c)
measures the benefit of a collection
of potential configurations, C, that
can be reached from c in one time
interval. It is the probability
weighted sum of the utilities of each
individual configuration that can be
reached. The probability function,
P(c.), is the probability of ci being
instantiated out of all the
configurations in the set.

Expected Utility = EU(c)=EU(Cj)=Z p(c) x u<c)

Net utility is thus a sum of future
expected utilities. In general, not all
time periods are of equal
importance; the near term behavior
of a system is usually valued more
highly than behavior far into the
future. To handle this, we introduce a
discount function, D(t), which maps
from time to an appropriate
weighting factor. The discount
function is related to net present
value in finance.

The use of a discount factor has an
additional benefit, since it allows us
to discount far future states for
computational as well as policy
reasons. This has a practical
advantage, since when one projects
the configuration space further into
the future, the computations rapidly
become more expensive (due to state
explosion) and the results rapidly
become less precise (due to

imprecise
"V p*c\ x JJ/C\ estimates of event

probabilities).
The benevolent

ct&

Expected utility allows us to
compute the benefit expected to be
obtained from a configuration even
after considering the near term
negative events that can cause the
configuration to degrade. A second
utility measure allows us to consider
longer term changes to the system
and to incorporate the ability to
perform beneficial administrative
transformations. We call this net
utility, NU(c). Net utility measures
the fact that the long term

myopia introduced by the discount
factor allows us to ignore
incomputable or dubious future
states.

Utility Metrics

The meaning and power of the
metrics defined above vary greatly
depending on the precise definition
of the base utility function U(c). As
noted the base utility function
measures what is valued most highly.
We introduce two very different
utility metrics.

Net Utility = NU(c) =* 2 D® x EU (°>)
t>now

desirability of a configuration
depends upon the services that are
currently running and the future
configurations that can be reached.

Utility of Value is based
on a measure for
aggregate performance.
This work is developed

from a market based distributed
resource allocation prototype.

continued on page 7

STN

The goal of the market was to
maximize the aggregate value of all
the services provided by the system.
End users or administrators would
assign values to services. The
resources, both hardware and
software, would compete to offer the
best service at the lowest cost. The
resources' goal was to accumulate
profits which would be gathered by
the owners of the resources and
allocated to end users and
administrators, closing the loop. If
users value a service highly, it will
replicate itself to assure that it is
highly available. If resources are
removed from the system, the prices
will rise and only the more valued
services will obtain resources; if
resources are added, prices will fall
and lower priority services will run.
Utility of Value implements a simple
microeconomic model that tends
toward Pareto Optimality, a local
optimality criterion. If the Net Utility
of Value is maximized, then future
performance of the system will be
maximized. There are many possible
definitions of survivability, but a
relatively straightforward one is that
the system continues to offer good
performance into the future.

Utility of Operation is based on a
binary measure depending on
whether the system meets some
minimal level of operation over a
given interval. This gives rise to a
very different notion of survivability.
Using this measure, EU(C) is itself a

probability: the probability that the
system is operational. Maximizing
the Net Utility of Operation
minimizes the possibility of some
catastrophic failure in the future,
possibly at the cost of optimal
average case performance. This is
arguably a better survivability
metric than the Net Utility of Value,
since the purpose of survivability is
to avoid catastrophic failures. The
two could be used in conjunction so
that after a minimal level of service
is guaranteed, performance is
optimized for the normal case.

Examples:
Replica Balancing

There are two services, A and B, and
six hosts, 1-6. Each service can be
replicated and each replica requires
an entire host. There is a 10%
probability of failure of each host
during a period, so the probability of
success of a service with n replicas
is 1-0.1". In the initial
configuration, Cl, each service has
three replicas: Cl = A{1, 2, 3}; B{4,
5, 6}. At step 2, B loses two
replicas, so C2 = A{1, 2, 3}; B{4}.
The third configuration, C3, is the
result of a possibly automatic
administrative action which trades a
second backup from A to provide a
single backup for B, C3 = A{ 1, 2};
B{4, 3}. This last transition is
voluntary. The administrator or
survivability service would take
whatever action seemed best.

Table 1 calculates the expected
utility for each configuration in the
example. A bar over the service label
in the State column (RC) indicates
the service is not operational at the
end of the period. The second
column is the value of the
configuration. The aggregation
function is simple addition, so if both
A and B are operational the value of
the configuration is 2000. P(i) and
E(i) show the calculation of the
expected utility of Ci,EU(Ci), which
is shown on the last row of the table.

In Cl everything is running fine. Out
of a possible value of 2000 the
expected utility is 1998, almost
perfect. After the failures, the
expected utility drops to 1899
because of the uncertainty that B will
complete. C3 reflects the
administrative action of taking a
replica from A and giving it to B.
This increases the expected utility to
1980, a dramatic improvement
considering that no resources were
added.

Utility of Value vs. Utility
of Operation

The following illustrates the
difference between utility of value
(which optimizes for performance)
and utility of operation (which
optimizes for stability). Service A
now has two levels of operation,

continued on page 8

Table 1. Expected Utility

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)

AB 2000 .9980 1996 .8991 1798 .9801 1960

ÄB 1000 .0009 1 .0999 100 .0099 10

ÄB 1000 .0009 1 .0009 1 .0099 10

AB 0 .0000 0 .0001 0 .0001 0

1998 1899 1980

STN

Survivability as a Component of Software Metrics
Continued from page 7

high and low. The high level offers a
value of 2000 and requires 3 hosts to
run. The low level is required for a
minimal level of operation and offers
a value of 1000 but requires only 1
host to run. If the high level of
service cannot be maintained, it
automatically drops to the low level
of service. In the example A starts
out at the high level of QoS. If A
loses a host, it drops to the low level
of QoS with one replica. The
probability that A completes the
period at the high level is the
probability that all three hosts
complete. The probability that A
completes the period at the low level
is the probability that any single host
completes minus the probability that
A completes at the high level. There
are now 6 possible outcomes. B is
still worth 1000, so if A completes at
the high level along with B the value
is 3000.

Table 2 calculates the utility of value.
In the initial configuration all hosts
are operational and the expected
Utility of Value is nearly optimal at
2739. After the failures, the expected
value drops by about 150 reflecting
B's instability. C3 evaluates the
administrative action of removing a
host from A to increase B's stability.
In this case, the action does not

appear to be desirable and would not
be taken. The reason is that
removing a host from A would cause
it to drop from a high level of QoS
to a low level of QoS at a cost of
nearly 1000.

Utility of Value metric maximizes
perceived performance and
maintaining A at a high level of QoS
is consistent with this goal.
However, the survivability of the
system is sacrificed by this choice
as Table 3 using Utility of Operation
shows.

In the initial state all hosts are
operational and A is operating at the
high level. After the failures, B is
reduced to one replica and the
expected Utility of Operation drops
to .8991. A is still operating at the
high level, but this is not reflected in
the binary operational metric. Step 3
reflects the administrative action of
taking a host from A. This causes A
to drop from the high level to the
low level and increases the stability
of B. As a result the expected
operational utility increases to
.9801.

Conclusions

The metrics presented allow
measurement of the useful work that

is likely to be done by software as
actually deployed and subject to the
various kinds of attacks and failures
that exist in the real world. These
metrics can be combined with more
traditional software metrics that
measure the likelihood of failure due
to software or specification failure to
produce a combined metric that
measures both the quality of the code
and its expected long-term behavior
in a realistic environment.

About the Authors

David Wells, is Vice President of
Object Services and Consulting Inc.
and the head of software research.
Wells received his D. Eng. degree in
Computer Science from the
University of Wisconsin-Milwaukee
in 1980. He was Assistant Professor
in the Computer Science
Deptartment at Southern Methodist
University from 1980 to 1986 where
he conducted research in databases,
computer security, and computer
graphics.

Dr. Wells was the Principal
Investigator on the DARPA/ITO
project Survivability in Object
Services Architectures. He was

continued on page 9

Table 2. Utility of Value

RC Value

A,B 3000

A,B 2000

AB 1000

AlT 2000

Aß 1000

AB 0

P(C1) E(C1)

.7283

.2697

.0010

.0007

.0003

.0000

2183

539

1

14

0

0

2739

P(C2) E(C2)

.6561

.2430

.0729

.0270

.0009

.0001

1968

486

73

54

1

0

2582

P(C3) E(C3)

.0000 0

.9801 1960

.0099 10

.0000 0

.0099 10

.0001 0

1980

8 .. :.:.-.:.' ■..■ \ '.'.. ..-:,.;-: \ ; •■ . ■-.-.-..::.;:'.. ■ -V.:; T ■"..--' STN

Table 3. Utility of Operation

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)

A,B 1 .7283 .7283 .6561 .6561 .0000 0

A,B 1 .2697 .2697 .2430 .2430 .9801 .9801

AB 0 .0010 0 .0729 0 .0099 , o
A? 0 .0007 0 .0270 0 .0000 0

A,B 0 .0003 0 .0009 0 .0099 0

ÄB 0 .0000 0 .0001 0 .0001 0

.9980 .8991 .9801

previously PI on the DARPA funded
Open OODB and Open OODBII
projects at Texas Instruments where
he was the principal architect of a
modular object-oriented database
that seamlessly added persistence to
programming objects. Those
projects produced many of the ideas
of flexible service binding used in
this software survivability work.
Wells has also done work in
cryptography for databases and risk
assessment. Wells holds 5 patents
and has published over 20 technical
articles in journals and conferences.

David E. Langworthy performs
experimental computer science
research in both academic and
industrial contexts. He has ten years
experience in the design of scaleable

distributed systems with a focus on
object oriented database technology.

Langworthy received his PhD from
Brown University in May of 1995.

While completing his PhD,
Langworthy was a consultant at
Microsoft, and designed the
Information Retrieval system for the
Microsoft Network. This system
scaled to thousands of queries per
second using parallel arrays of NT
servers. The work resulted in
fundamentally new technology for
combined query evaluation.

Other accomplishments include:
teaching a course in Object
Oriented Analysis and Design,
developing courseware, and
consulting for Semaphore and the
Trilogy Development Group.

Author Contact Information

David L.Weils
Object Services and Consulting, Inc.

Baltimore, MD
Phone:(410)318-8938

Fax:(410)318-8948
wells@objs.com

David E. Langworthy
Langworthy Associates

del@onr.com

■2€5

References
[1] "Survivability in Object Services Architectures -1998 Annual Report," David Wells, Object Services and Consulting Inc.,

www.objs.com/Survivability/, 1998.
[2] DARPA/ITO Information Survivability Website, Defense Advanced Research Projects Agency,

www.darpa.mil/ito/research/is/, 1998.
[3] "Lazy Replication: Exploiting the Semantics of Distributed Services," R. Ladin, B. Liskov, L. Shrira, Proceedings of the Ninth Annual

ACM Symposium on Principles of Distributed Computing, Quebec, 1990.
[4] Game Theory in the Social Sciences: Concepts and Solutions, Martin Shubik, MIT Press, Cambridge Massachusetts, 1982.
[5] "Survivability is Utility," David Langworthy and David Wells, Object Services and Consulting, Inc.,

www.objs.com/Survivability/Utility.doc

STN

Using Models for Test Generation and Analysis
Mark R. Blackburn, Software Productivity Consortium

Introduction

Systems are increasing in
complexity. More systems perform
mission-critical functions, and
dependability requirements such as
safety, reliability, availability, and
security are vital to the users of these
systems. The competitive
marketplace is forcing companies to
define or adopt new approaches to
reduce the time-to-market as well as
the development cost of these critical
systems. Much focus has been placed
on front-end development efforts, not
realizing that testing accounts for 40
to 75 percent of the lifetime
development and maintenance costs
[3; 11]. Testing is traditionally
performed at the end of development,
but market-driven schedules often
force organizations to release
products before they are adequately
tested. The long-term effect is
increased warranty costs due to
product's poor reliability and poor
quality.

Model-based development tools are
increasing in use because they
provide tangible benefits by
supporting simulation and code
generation, in addition to the
traditional design and analysis
activities. These tools help
users develop requirements
and design models of target
systems. Certain tools are
based on formal models, and
the underlying models are
represented using specification
languages. Such formal
specifications provide a basis
for test case generation.
However, the underlying
development models are
generally not represented in a
form that supports automatic

test case generation. The key
challenge is to translate
development-oriented modeling
languages into a form that is suitable
for automated test vector generation,
specification-based test coverage
analysis, requirement to test
traceability, and design-to-test
traceability.

Using Models for Testing and
Analysis

Figure 1 illustrates a conceptual view
for using models to support test
generation and analysis. Models and
their associated tools typically provide
various views of the system under
development. When modeling tools
are based on precise semantics, user
models can also support:

• Test Vector Generation. A test
vector includes inputs, expected
outputs, and an association with
the specification from which it
was derived.

• Static Analysis. Typically used to
determine if there are
contradictions in specification.

• Dynamic Analysis. Analysis
based on execution of the model.

Modeling tools are beginning to
support simulation and code
generation. Simulation of a model
can help developers assess the
correctness of the model with respect
to user requirements; however, it can
be time consuming to develop the
simulation data required for thorough
dynamic analysis. Automatically
generated test vectors can provide a
cost effective way to exercise a
model in a simulator using the
boundary values associated with the
constraints of a model specification;
it is at the boundaries where model
anomalies are typically discovered.
In addition, these same test vectors
can also be used to test the code in a
host or target environment.

Scope

This article describes the use of
automated test generation and
analysis from specification models.
Through the integration of
commercial off-the-shelf (COTS)
model development and test
generation tools, a process has been

continued on page 11

Static Analysis

Specification
Analysis

Test Vector
Generation

Figure 1. Using Models for Test Generation and Analysis

Copyright (c) 1998 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from the Proceedings of Digital System Conference 1998.

10 STN

developed that eliminates most of the
traditional testing activities. This
approach has been demonstrated to
identify many types of specification
errors prior to any implementation.
This article is based on experiences
in developing two model translators
[4; 5] supporting:

• Software Cost Reduction (SCR)
[12] /Consortium Requirements
Engineering Method (CoRE) [18]
for modeling requirements

• Real-Time Object-Oriented
Modeling (ROOM) [17] method
for analysis and design

For each respective method and
associated tool, the translators
produce a specification that is used
by the T-VEC tool system to
generate test vectors and perform
specification-based test coverage
analysis. The model transformation
process is briefly described using a
specification example. The article
summarizes the results of applying
the process and tools to industrial
applications.

Models and Specifications

Formal specifications provide simple
abstract descriptions of the required
behaviors describing what the
software should do. Because formal
specifications have, in the past, been
considered difficult to use, they have
not been widely used. Recent
advances in visual model-based
development tools provide the basis
for developing formal specifications
while hiding the formalism.

It has been commonly accepted that
formal specifications provide a basis
for test case generation. Goodenough
and Gerhart may have been the first
to claim that testing based only on a
program implementation is

fundamentally flawed [8]. Gourlay
developed a mathematical
framework for specification-based
testing [10]. Figure 2 graphically
represents Gourlay's mathematical
framework for testing and the key
relationships between specifications,
tests, and programs. Given a
specification that describes the
requirements for some system, there
are one or more programs that
implement the specification. Tests
are derived from the specification; if
every test executed by a program
computes the appropriate expected
results (i.e., passes every test), there
is some level of confidence that the
program satisfies the specification.

In Figure 2, the specification
symbol (i.e., rounded rectangle) is
generically used to represent
requirement, design, or test
specifications. Certain specification
languages have tool support that
helps in developing complete and
consistent specifications.
Such tools provide the
syntactic and semantic
rigor that is required for
transforming
specifications into a form
suitable for test vector
generation. Model-based
specification methods
that support functional,
state transition, and event
based techniques are
increasing in popularity
and use because the tool support has
helped make them easier to use1.

A model-based specification
approach constructs an abstract
model of the system states and
characterizes how a state is changed
by abstract or concrete operations
(paraphrased from Cohen et al. and
Cooke et al. [7; 6]). Operations in

the system are specified by defining
the state changes or events that affect
the model using existing
mathematical constructs like sets or
functions. State transitions define
relationships between sequences of
states based on conditions of the
system state. Event specifications
define certain conditions related to a
change in the system state1.

A test specification model is
defined by a set of test specification
elements, as shown in Figure 3 on
page 12. A test specification
element is an input-to-output relation
and an associated constraint defined
by a conjunction (i.e., logically
ANDed) of Boolean-valued relations
that define constraints on the inputs
associated with the input-to-output
relation.

Given a specification element, a test
vector is a set of test input values
derived from the constraint, and an
expected output value derived from

ition Specification U-Specification •

V
Derived from

Satisfies

Program

Passes every
test

Tests

Figure 2. Testing Model and Relationships

the input-to-output relation with
respect to the test input values [1].
Informally, from a test generation
perspective, a specification is
satisfiable if at least one test vector
exists for every specification element
[2].

continued on page 12

1 Zave and Jackson [21] identify potential implementation bias of model-oriented techniques but support the claim that model-oriented techniques are gaining in
popularity.

STN ■ ■■- "■ v 11

Using Models for Test Generation and Analysis
Continued from page 11

Model Transformation

Model transformations are typically
required to transform model-based
specifications into a form to support
test generation. Hierons describes
rewriting rules for Z specifications

Program/
Function/
Operation

has a
Defines Constraints

on Inputs

Specification

Defines Irtpüts-to-Oufputä
Relation for Expected;

Output

shortcomings in the rules described
in prior work that was presented at
the 1997 Computer Assurance
Conference [2J.

Similar model transformation
efforts, not described in this article,

were performed for the
ROOM method using the
Object Time Developer
tool set as part of the
validation
environment^].

V
has a has a

y
Precöridftiöh

I
defines

I

Oracle (Postcondition)

.'..I -
used as inputs

Set of Specification Elements

Constraint 1
OR
Constraint 2

Constraint n

-* output * f!(inputs)

-»output - f2 (inputs)

-#Output - £„(Inputs)

Evaluation
Environment

Figure 3. Representation of Test
Specification Model

[13] to support test case generation,
but does not address specifications
composed of combinations of
specification techniques, particularly
specifications composed using event
specification techniques. In general,
model transformation to support tool
interoperability is an important area
of investigation [9].

Blackburn [5] describes a tool based
approach for transforming a
model-based specification into a
form that supports test vector
generation. The model-based
specification supports composition
using function, state, and event
specifications. A translator
implements rules for transforming
SCR model specifications into a
language used by the T-VEC test
vector generation tool. The
development of the prototype
translator and evaluation
environment helped identify

Figure 4 identifies generic
tool types that are related
to the elements of the test
model shown in Figure 2.
Such tools use or produce
the three primary types of
system artifacts (i.e.,
specifications, programs,
and tests). A specific
instance of this

model was created to
support the model
transformation approach
using the SCR tool
(referred to as SCR* -
pronounced SCR star) as
the source for
model-based
specifications and the
T-VEC tool system as the
tool that supports test
generation and
specification-based
coverage analysis.

• Test Vector Generation. A test
vector generator produces test
vectors from test specifications.

• Specification-Based Coverage
Analysis. This tool analyzes the
transformed specification to
determine whether all
specification elements have a
corresponding test vector. This is
the mechanism used to assess
satisfiability of the transformed
specifications.

Applications and Results

The remainder of this article
describes a simple example to
illustrate the use of this approach for
model analysis and testing. Consider
the example of an electronic
regulator, shown in Figure 5. The
requirements for the regulator are:

• When the temperature reaches the
High zone (i.e., 180 degrees), the
valve opens.

SCfiASOJeeTIn»

TranstoriiaBon

SpedfcaUon
Meaning

iBDHteem
Represents«»

T-VBT

Figure 4. Tools of the Evaluation
Environment

SCR*, developed by the
Naval Research Laboratory,
supports modeling and analysis of
requirement specifications using a
formal modeling language (i.e., a
language with well-defined syntax
and semantics).

T-VEC, developed by T-VEC
Technologies, Inc. supports:

The amount the valve opens is a
function of the temperature from
120 degrees (closed) up to 300
degrees (fully open).

continued on page 13

12 . .-v ----- - - ----- -, I STN

• Once the valve is open, it remains
open until the temperature
reaches the Low zone (i.e., 120
degrees).

The specification is described in the
SCR tabular notation. Heitmeyer, et
al. [14] describes the SCR method.
The specifications are defined in two
parts. The first part of the spec-
ification defines the relationships
between the temperature and the
associated modes that relate to the
temperature zones. This is referred to
as the Sensor Mode Table shown in
Figure 5. The system can be in one of
three modes: LOW, READY, and
HIGH. At the time when the
temperature becomes greater than the
constant Low (i.e., 120 degrees), the
system transitions into the mode
READY. The formal expansion of the
event is:

Table 1. Relationship of Translated Constraints
■ "■ —IW ., , III !»■■■■ 'H. '...'„. ',

i Events .;'-■> •■.-•'::

@T(TemD >= Low) (Temp >= Low) AND (Temp < Low)

@T(Temp >= High) (Temp >= High) AND (Temp < High)

@T(Temp < Low) (Temp < Low) AND (_Temp >= Low)

Table 2. Tests for Each Translated Constraint

Output Inputs

Translation Sensor Sensor Temp

120
179

Temp

-100
119

(Temp >= Low) AND
(Temp < Low)

READY
READY

LOW ■?
LOW

(Temp >= High) AND
(Temp < High)

HIGH
HIGH

READY
READY

180
300

120
179

(Temp >= Low) AND
(Temp < Low)

LOW
LOW

HIGH
HIGH

-100
119

180
300

Tamp: range (-100... 300) Valve Condition Table

High

Ready

Low '

f\ iw.Bewr i may

^M '^^ Regulator

WF ""/Senior

fiSÄ-

Flow

Fwm EMM» To
LOW aTfT«np>sL0w) READY
REAOV •T(Tm«xHWD HÖH
HIGH • T(T«ge<lo«) LOW

Sensor Mode Table

operational Summary
Hfatnp reach» High
zone then Valve open
«afunclonof
iempenture unli euch
Km» when Temp 90«
Into the Low zone al
**fcti «me the valve
cfote»

Figure 5. Example of Electronic
Regulator

@T(Temp >= Low) means:

if the previous value of Temp
denoted NOT(_Temp >= Low) and the
new value of Temp >= Low then the
event is true and the mode
transitions from LOW to READY

Table 1 shows the translated
meaning for each event
specification of the Sensor Mode
Table. For each constraint, there is a

minimal set of tests as shown in
Table 2. The T-VEC test
generation system uses a test
selection heuristic based on
domain testing theory where
low-bound and high-bound
values are selected for each
constraint2. For example, the
first test selects the low-bound
value for the previous state
value of_TEMP3 (-100), which
is less than the constant Low,
and selects a value of 120 for
the next state value of TEMP.
For the high-bound selection,

the value of 119 (i.e., one less that
the constant Low) is selected for
_TEMP, and 179 for TEMP (i.e.,
one less than the constant High).

The second part of the
specification defines the constraints
and functions for the Value
Condition Table shown in Figure 5.
This table depends on the Sensor
Mode Table. The Valve Condition
Table is interpreted as follows:

if Sensor mode = High then
Valve = 255-(Max_Temp-Temp

* 255/(High-Low))
else if Sensor mode = LOW

or Sensor mode = READY then
Valve = 0

endif

Each SCR output variable and
associated function map to a T-VEC
functional relationship of an output
variable with respect to the
constraints on the input variables.
The SCR model does not necessarily
define a system state strictly in terms
of constraints on the input variables
as is required for T-VEC. For
example, the Sensor mode is defined
in terms of a mode transition table.

continued on page 14

1 White and Cohen proposed domain testing theory as a strategy to select test points to reveal domain errors [19]. Their theory is based on the premise that if
there is no coincidental correctness, then test cases that localize the boundaries of domains with arbitrarily high precision are sufficient to test all the points in
the domain. When there is a strong correlation between the specification constraints and implementation paths, the selected test data should uncover
computation and domain errors. As defined by Howden and refined later by Zeil, a computation error occurs when the correct path through the program is
taken, but the output is incorrect due to faults in the computation along the path. A domain error occurs when an incorrect output is generated due to executing
the wrong path through a program [15; 20].
3 An underbar (_) precedes the variable name to indicate that the variable represents the previous state variable before the event versus the next state variable
after the event.

STN 13

Using Models for Test Generation and Analysis
Continued from page 13

This results in table dependencies as
illustrated in Figure 6. The mode
variables and the associated table
relations must be transformed into
constraints on the input variables.
Figure 6 provides a perspective of the

Program/
Function/
Operation

Valve Condition TÄ6
M«ie

Sensor J+V»ke=

jsssmss.

asMMsJcTwipTemp*

TIBg" I

Baa_
1>w> IjjLOW
_Twn> -j> READY

IHIOH

Events
eTfTemc >g Low)

ISL.

eT(Temo>»HKlh)
eTfTemp<low>

READY
HIGH
LOW

Functional
Relationship

Constraints/
Precondition

Figure 6. Dependency Relationship

example SCR specification
represented in a form that is
compatible with the test model
shown in Figure 3. The constraint for
the Valve Condition Table includes
the conditions of the Valve table and
the Sensor Mode transition table.
This means that the constraint:

(Temp >= High) AND (JTemp < High)

must be satisfied (i.e., the Sensor
mode is HIGH) as a requirement for
the value to be computed using the
functional relationship:

1) 255-(Max_Temp-Temp
2) * 255/(High-Low))

previous and next states of variables
Temp and Sensor.

A test specification requires the
constraints of a specification to be
defined strictly in terms of the input
and output variables. A model-based

approach defines states that
are relations of inputs, terms,
or state variables (e.g., Sensor,
_Sensor). This allows the
constraint/precondition and
functional relationship
(defined in terms of a
Condition Table) to be defined
as a relation on inputs, states,
or terms. This approach
typically simplifies the task of
specifying behavior, but it is

the key reason why a model
transformation process is required.

Static Analysis

Static analysis helps determine
whether there are contradictions in
the model without executing the
model. Contradictions exist if
constraints cannot be satisfied. This
is typically the most common
problem, especially when the
dependencies of specif ications
become large. This example is a
simple 2-level dependency problem,

but typical systems can have 10 or
more dependency levels. It is also
possible to identify functional
relationships that specify values that
are inconsistent with the domain of
the output variables. These are
analogous to computation errors in
the code.

Consider the function to compute the
Valve function. The requirements are
that as the temperature reaches the
maximum temperature (i.e., 300
degrees), the valve should be
completely opened, and when the
value reaches the constant Low (i.e.,
120 degrees), the valve should be
closed. Electronically controlled
devices typically use some type of
digital value to represent a fully open
valve (in this case 255 - an 8-bit
unsigned integer), and the value
should be 0 when the valve is closed.
It is common for implementors to
make errors in scaled arithmetic
conversions. To illustrate this point,
the computation has two errors.

Figure 7 shows a sample test vector
that has identified a problem in the
computation. A warning is appended
to the expected output because the
computation is out of range. This is

continued on page 15

In general, mode transition
tables can have dependencies
on other terms and modes.
Events for modes and terms
create the need to identify the
previous and next state
variable dependencies. As
shown in Figure 6, the Sensor
Mode table depends on both
the previous and next state
input value of Temp;
similarly the condition table
Valve depends on the

 /
RP \«V»/

Indicates output out of range

X Valve« 1»,
OUTPUT
Valve FLOAT 32 720.0 { 0 . 00 . . 255 . 0} "WARNINING: VALUE OUTSIDE EXPECTED RANGE'

INPUT
Sensor ENUMERATION 32
Temp INTEGER 32
_Sensor ENUMERATION 32
JTemp INTEGER 32

JUSTIFICATION {
SOLUTION : 1
STATE_SPACE_SCAN : OFF
SWITCHES : LEAST_RECENT,
DCP : 1
Valve,' Valve_FR_l,' cv_Valve_RP_l-, ■Valve_RP_l, Valve JRP JO
Sensor LS, Sensor«2», Sensor_FR_2, Sensor_RP_2, Sensor_RP_0," Sensor_Valve_2

3 HIGH { LOW. .HIGH}
180 { -100. .300}
3 READY { LOW. .HIGH}
120 { -100. .300}

LOW BOUND, SINGLE, OPPOSITE

Figure 7. Internal Form of Test Vector with Warning

14 STN

typically an indication that there
is a computation error in the
specification or that there are
missing constraints on the inputs.
The original expression (line 1 of
the functional relationship under
Figure 6) is missing parentheses
around Max_Temp-Temp. In
line 2, the subtraction should be
Max_Temp-Low rather than
High-Low. The correct
computation is as follows:

Output Inputs Test Selection

Mode ; Mode Conditions Valve Sensor _Sensor Temp „Temp
HIGH TRUE FALSE 85.00 HIGH READY 120 -100 LOW_BOUND

255.00 HIGH READY 179 119 HIGH_BOUND

LOW,
READY

FALSE TRUE 0.00 LOW HIGH -100 180 LOW_BOUND

0.00 LOW HIGH 119 300 HIGH_BOUND

0.00 READY LOW -100 180 LOW_BOUND

0.00 READY LOW 119 300 HIGH BOUND

Figure 8. Test Vectors for Valve Condition Table

255-((Max_Temp-Temp)
(Max_Temp-Low))

255/

Identifying this type of problem is
time consuming. In addition, it is
well known that identification and
removal of errors in the
implementation or integration phase
is much more costly than it is during
the requirements phase.

Figure 8 provides a summary of a
minimal set of test values for the
translated condition table for Valve.
In this figure, the associated test
selection mode (i.e, LOW_BOUND,
HIGH_BOUND) is also shown.

Sample Results

Table 3 shows some sample results
on the application of this approach to
other systems. Each specification
originally had one or more
specification problems or anomalies.
As seen in Figure 5, the electronic
regulator problem is very small (two
tables, five functional relationships,
six constraints, and a maximum
depth of two table dependencies). A
flight guidance system is a real-world
industrial problem [16]; it has 78
tables, 423 functional relationships,
7,349 constraints, and a maximum
dependency depth of 12. The results
on this project are planned for
publication in the next year.

Summary
Software testing will play a role in
the development of software
systems for some time to come.
Although testing can account for 40
to 75 percent of the lifetime
development and maintenance costs,
the results summarized in this article
provide promising evidence that the
use of test automation to support the
manually intensive test generation
and model-based analysis is feasible
and practical.

There is a great need to demonstrate
and integrate new and advanced
technologies. This article describes
an environment developed to
validate the use of model-based
translators on real-world
applications. The environment
integrates model-based development
tools with a specification-based test
vector generator and
specification-based coverage
analyzer.

Table 3. Sample Results Statistic

As modeling tools and associated
methodologies continue to evolve,
these results provide the basis for
building translators for other
modeling tools. This allows new
tooling technology to be integrated
with existing tools and has the
indirect effects of reducing the cost
and time of specialized training and
tool expenditures.

The ability to integrate front-end
development tools with back-end
testing tools fosters the use of
model-development tools, and such
tools can significantly reduce the
maintenance phase of a product,
which typically consumes 70 percent
of the product life cycle.
Maintenance typically requires
minimal development effort but
typically large efforts in testing.
Because the original developers
usually are not available to assist in
maintenance and evolution efforts,
test automation can significantly
minimize reverification efforts

continued on page 16

; System/
: Projects

Condition
Table

Event
Table

Mode
Table

Functional
Relationship Constraint Level

; Temperature
if regulator 1 1 •'■•':.• 5 •:' 6 2

*> Safety injection 1 1 1 10 68 3

• Electronic flight
l instrumentation
Isystem 37 5 0 88 389 3 '

| Elevator system 10 6 0 38 90 3
i Flight Guidance
1 system 49 15 14 423 7349 ,,'•12 .■■

STN .:;:-■ - : : r;.;, : ;. 15

Using Models for Test Generation and Analysis
Continued from page 15

because the designer's requirement
and design knowledge is captured in
model specifications.

About the Author

Mark R. Blackburn, Ph.D., is the
President of T-VEC Technologies,
Inc. and co-inventor of the T-VEC
system, an advanced specification
and verification environment.
Blackburn has eighteen years of
software systems engineering
experience in development, project
leadership and applied research in
software systems engineering
experience in development, project

leadership and applied research in
specification-based testing, object
technology, requirement and design
specification, formal methods, and
formal verification.

Mark is currently Chief Technologist
at the Software Productivity
Consortium where his current
assignment includes the
development of a specification-
based test automation framework; he
is developing a generalized
specification-based testing model
and language that is being used to
support translators for four
specification-based methods and

associated tools (two requirement
specification methods, a real-time
00 design specification method, and
a hybrid structured/object-based
design method). He has also been
involved in applied research and
advanced technology demonstrations
in web-based knowledge
engineering, domain engineering,
reverse engineering of programs to
specifications, object technology,
formal methods approaches to high
assurance, requirement specification
and model-based verification.

EBDWaiWkGi«s»<Sc*M>i:

References
[I] Blackburn, M.R., R.D. Busser, "T-VEC: A Tool for Developing Critical System," Proceeding of the Eleventh International Conference on

Computer Assurance, Gaithersburg, Maryland, pages 237-249, June, 1996.
[2] Blackburn, M.R., R.D. Busser, IS. Fontaine, "Automatic Generation of Test Vectors for SCR-Style Specifications," Proceeding of the

12th Annual Conference on Computer Assurance, Gaithersburg, Maryland, pages 54-67, June, 1997.
[3] Beizer, B., Software Testing Techniques, New York, New York: Van Nostrand Reinhold, 1983.
[4] Blackburn, M.R., J.S. Fontaine, "Specification Transformation to Support Automated Testing," TR SPC-97036-MC, Version 02.00.01,

Software Productivity Consortium, March 1998.
[5] Blackburn, M.R., "Specification Transformation and Semantic Expansion to Support Automated Testing," Ph.D. Dissertation, George

Mason University, 1998.
[6] Cooke, D, A. Gates, E. Demirors, O. Demirors, M. Tankik, B. Kramer, "Languages for the Specification of Software," Journal of Systems

Software, 32:269-308, 1996.
[7] Cohen, B., W. T. Harwood, M.I. Jackson, The Specification of Complex System, Addison-Wesley, Great Britain, 1988.
[8] Goodenough, J. B., S. L. Gerhart, "Toward a Theory of Test Data Selection," IEEE Transactions on Software Engineering, 1(2): 156-173,

1975.
[9] Gill, D. H., "Formal Methods for Software Evolution, Solicitation," Defense Advanced Research Projects Agency,

BAA 98-10, November 1997
[10] Gourlay, J.S., "Introduction to the Formal Treatment of Testing, Software Validation," Proceeding of the Symposium on Software

Validation, 1983.
[II] Ghiassi, M., K.I.S. Woldman, "Dual Programming Approach to Software Testing," Software Quality Journal, 3:45 58, 1994.
[12] Heninger, K., "Specifying Software Requirements for Complex Systems: New Techniques and Their Application,"

IEEE Transactions on Software Engineering, 6(1):2-13, 1980.
[13] Hierons, R. M., "Testing from a Z Specification," Journal of Software Testing, Verification and Reliability, 7:19-33, 1997.
[14] Heitmeyer, C, R. Jeffords, B. Labaw, "Automated Consistency Checking of Requirements Specifications,"

ACMTOSEM, 5(3):231-261, 1996.
[15] Howden, W.E., "Reliability of the Path Analysis Testing Strategy," IEEE Transactions on Software Engineering, 2(9):208-215, 1976.
[16] Miller, S., "Specifying the Mode Logic of a Flight Guidance System in CoRE and SCR," Accepted to the Second Workshop on Formal

Methods in Software Practice (FMSP'98), Clearwater Beach, Florida, March, 1998.
[17] Selic, B., G. Gullekson, P.T. Ward, Real Time Object-Oriented Modeling. New York, New York: John Wiley & Sons, 1994.
[18] Software Productivity Consortium, Consortium Requirements Engineering Guidebook, SPC-92060-CMC, version 01.00.09. Herndon,

Virginia, 1993.
[19] White, L.J., E.I. Cohen, "A Domain Strategy for Computer Program Testing," IEEE Transactions on Software Engineering, 6(3):247-257

May, 1980.
[20] Zeil, S.J., "Perturbation Techniques for Detecting Domain Errors," IEEE Transactions on Software Engineering, 15(6):737-746, 1989.
[21] Zave, P., M. Jackson, "Four Dark Corners of Requirements Engineering," ACM Transactions on Software Engineering and Methodology,

6(1): 1-30, 1997.

16 & STN

Task-Based Software Testing
Daniel G. Telford, MacAulay Brown, Inc.

Introduction

There is a plethora of software
testing techniques available to a
development team. A survey by Zhu,
et. al.[l] identified over 200 unit
testing techniques. However, for the
services' operational test agencies,
there has been a continuing,
unanswered question of how to test
software's impact on a system's
mission effectiveness. I propose a
task-based approach as part of an
integrated test strategy in an effort to
answer this long-standing question.

Why Test?

From a speech by Lloyd K.
Mosemann II, at the time the Deputy
Assistant Secretary for the Air Force
(Communications, Computers, and
Support Systems) [2], a customer's
concerns are:

They want systems that are on-time,
within budget, that satisfy user
requirements, and are reliable.

A report from the National Research
Council[3] refines the latter two
concerns in his statement by
presenting two broad objectives for
operational testing:

1. to help certify, through
significance testing, that a
system's performance satisfies its
requirements as specified in the
ORD and related documents, and

2. to identify any serious
deficiencies in the system design
that need correction before full
rate production

Following the path from the system
level to software, these two reasons
are consistent with the two primary
reasons for testing software or
software intensive systems [4,5,6].
Stated generically, these are:

1. test for defects so they can be
fixed, and

2. test for confidence in the
software

The literature often refers to these as
"debug" and "operational" testing,
respectively [4]. Debug testing is
usually conducted using a
combination of functional test
techniques and structural test
techniques. The goal is to locate
defects in the most cost-effective
manner and correct the defects,
ensuring the performance satisfies
the user requirements. Operational
testing is based on the expected
usage profile for a system. The goal
is to estimate the confidence in a
system, ensuring the system is
reliable for its intended use.

Task-Based Testing

Task-based testing, as I define it
here, is a variation on operational
testing. It uses current DoD
doctrine and policy to build a
framework for designing tests. The
particular techniques are not new,
rather it leverages commonly
accepted techniques by placing them
within the context of current DoD
operational and acquisition
strategies.

Task Analysis

Task-based testing, as the name
implies, uses task analysis. Within
the DoD, this begins with the
Uniform Joint Task List [7] and, in
the case of the Air Force, is closely
aligned with the Air Force Task List
(AFTL)[8]. TheAFTL "...provides
a comprehensive framework for all
of the tasks that the Air Force
performs." Through a series of
hierarchical task analyses, each unit
within the service creates a Mission

Essential Task List (METL). The
Mission Essential Tasks (METs) are
"... only those tasks that represent
the indispensable tasks to that
particular organization."

METLs, however, only describe
"what" needs to be done, not "how"
or "who." Further task
decomposition identifies the
system(s) and people required to
carry out a mission essential task.
Another level of decomposition
results in the system tasks (i.e.
functions) a system must provide.
This is, naturally, the level in which
developers and testers are most
interested. From a tester's
perspective, this framework
identifies the most important
functions to test by correlating
functions against the mission
essential tasks a system is designed
to support.

This is distinctly different from the
typical functional testing or "test-to-
spec" approach where each function
or specification carries equal
importance. Ideally, there should be
no function or specification which
does not contribute to a task, but in
reality there are often requirements,
specifications, and capabilities
which do not or minimally support a
mission essential task. Using task
analysis, one identifies those
functions impacting the successful
completion of mission essential tasks
and highlights them for testing.

Operational Profiles

The above process alone has great
benefit in identifying what functions
are the most important to test.
However, the task analysis above
only identifies the mission essential

continued on page 18

STN 17

Task-Based Software Testing
Continued from page 17

tasks and functions, not their
frequency of use. Greater utility can
be gained by combining the mission
essential tasks with an operational
profile—an estimate of the relative
frequency of inputs that represent
field use. This has several benefits:

1. "... offers a basis for reliability
assessment, so that the developer
can have not only the assurance
of having tried to improve the
software, but also has an
estimate of the reliability actually
achieved." [4]

2. ".. .provides a common base for
communicating with the
developers about the intended
use of the system and how it will
be evaluated." [3]

3. "When testing schedules and
budgets are tightly constrained,
this design yields the highest
practical reliability because if
failures are seen they would be
the high frequency failures." [3]

The first benefit has the advantage of
applying statistical techniques, both
in the design of tests and in the
analysis of resulting data. Software
reliability estimation methods such
as those in [5] and [9] are available
to estimate both the expected field
reliability and the rate of growth in
reliability. This directly supports an
answer to the long-standing question
about software's impact on a
system's mission effectiveness as
well as answering Mr. Mosemann II's
fourth concern a customer has (is it
reliable).

Operational profiles are criticized as
being difficult to develop. However,
as part of its current operations and
acquisition strategy, the DoD
inherently develops an operational
profile. At higher levels, this is
reflected in such documents as the
Analysis of Alternatives (AOA), the

Operational Requirements
Document (ORD), Operations
Plans, Concept of Operations
(CONOPS), etc. Closer to the
tester's realm is the interaction
between the user and the developer
which the current acquisition
strategy encourages. The tester can
act as a facilitator in helping the
user refine his or her needs while
providing insight to the developer
on expected use. This highlights the
second benefit above the
communication between the user,
developer, and tester.

The third benefit is certainly of
interest in today's environment of
shrinking budgets and manpower,
shorter schedules (spiral
acquisition), and greater demands
on a system. Despite years of
improvement in the software
development process, one still sees
systems which have gone through
intensive debug testing (statement
coverage, branch coverage, etc.) and
"test-to-spec," but still fail to satisfy
the customer's concerns as stated by
Mr. Mosemann II. By involving a
customer early in the process to
develop an operational profile, the
most needed functions to support a
task will be developed and tested
first, increasing the likelihood of
satisfying the customer's four
concerns.

Task-Based Software Testing

Task-based software testing, as
defined herein, is the combination
of a task analysis and an operational
profile. The task analysis helps
partition the input domain into
mission essential tasks and the
system functions which support
them. Operational profiles, based
on these tasks, are developed to
further focus the testing effort.

Integrated Testing
Operational testing is not without its
weaknesses. As a rather obvious
example of this, one can raise the
question, "What about a critical
feature that is seldom executed?"
Operational testing, or task-based
testing as defined herein, does not
address such questions well. Debug
testing, with the explicit goal of
locating defects in a cost-effective
manner, is more suited to this.

Debug Testing

Debug testing is "... directed at
finding as many bugs as possible, by
either sampling all situations likely
to produce failures (e.g., methods
informed by code coverage or
specification criteria), or
concentrating on those that are
considered most likely to produce
failures (e.g., stress testing or
boundary testing methods)." [4]
Zhu's, et. al. [1] survey of unit
testing methods are examples of
debug testing methods. These
include such techniques as statement
testing, branch testing, basis path
testing, etc. Typically associated
with these methods are some criteria
based on coverage, thus they are
sometimes referred to as coverage
methods. Debug testing is based on
a tester's hypothesis of the likely
types and locations of bugs.
Consequently, the effectiveness of
this method depends heavily on
whether the tester's assumptions are
correct.

If a developer and/or tester has a
process in place to correctly identify
the potential types and locations of
bugs, then debug testing may be very
effective at finding bugs. If a
"standard" or "blind" approach is
used, such as statement testing for

continued on page 19

18 STN

its own sake, the testing effort may
be ineffectual and wasted. A subtle
hazard of debug testing is that it may
uncover many failures, but in the
process wastes test and repair effort
without notably improving the
software because the failures occur
at a negligible rate during field use.

Integration of Test Methods

Historically, a system's developer
relied on debug testing (which
includes functional or "test-to-spec"
testing). Testing with the perspective
of how the system would by
employed was not seen until an
operational test agency (OTA)
became involved. Even on the
occasions when developmental test
took on an operational flavor, this is
viewed as too late in the process.
This historical approach to testing
amplifies the weaknesses of both
operational and debug testing. I
propose that task-based software
testing be accelerated to a much
earlier point in the acquisition
process. This has the potential of
countering each respective method's
weaknesses with the other's
strengths. This view is supported by

the current philosophy in the test
community, to develop a combined
test force spanning contractor,
developmental, and operational test
(CT/DT/OT).

Summary
Task-based software evaluation is a
combination of demonstrated
existing methods (task analysis and
operational testing). Its strength
lies in matching well with the
DoD's current operational strategy
of mission essential tasks and the
acquisition community's goal to
deliver operational capability
quickly. By integrating task-based
software testing with existing debug
testing, the risk of meeting the
customer's four concerns (on-time,
within budget, satisfies
requirements, and is reliable) can be
reduced.

Caveat

The success of the process
presented herein, like so many of
the processes presented in the
software engineering community, is
only a proposal at this point.

However, as pointed out earlier,
many of the individual components
of task-based software testing are not
new and have been shown effective
both in the literature and in the
author's personal experience. Task-
based software testing is an approach
of taking established methods and
techniques and matching them
against the current DoD operations
and acquisition strategy.

About the Author

Daniel G. Telford is a systems
engineer for MacAulay Brown, Inc.,
a support contractor for the U.S. Air
Force. Prior to beginning a second
career at MacAulay Brown, he
completed a career as an officer in
the U.S. Air Force with experience in
field operations, operational test, and
acquisition.

Author Contact Information

Daniel G. Telford
MacAulay Brown, Inc.

11728 Linn Ave. NE, Suite B
Albuquerque, NM 87123

dan.telford@macb.com

9«GS

References
[1] Hong Zhu, Patrick A. V Hall, and John H.R. May, "Software Unit Test Coverage and Adequacy," Communications of the ACM, Volume 29,

#4, December 1997.
[2] Lloyd K. Moseman II, Deputy Assistant Secretary of the Air Force for Communications, Computers, and Support Systems. Speech to the

Software Technology Conference, Salt Lake City, UT, 1994.
[3] Michael L. Cohen, John E. Rolph, and Duane L. Steffey, editors, Statistics, Testing, and Defense Acquisition: New Approaches and

Methodological Improvements, National Academy Press, Washington, D.C., 1998.
[4] Phyllis Frankl, Dick Hamlet, Bev Littlewood, and Lorenzo Strigini, "Evaluating Testing Methods by Delivered Reliability," IEEE

Transactions on Software Engineering, 24 (8), 1998.
[5] Michael A. Friedman and Jeffrey M. Voas, Software Assessment: Reliability, Safety, Testability, John Wiley & Sons, 1995.
[6] Little Book of Testing, Vol I and II, Computers and Concepts Associates, under contract to the Software Program Managers Network, 1998.
[7] "Chairman of the Joint Chiefs of Staff Manual (CJCSM) 3500.04A, Universal Joint Task List."
[8] "Air Force Doctrine Document 1-1, Air Force Task List," 12 August 1998.
[9] Michael R. Lyu, editor, Handbook of Software Reliability Engineering, IEEE Computer Society Press, McGraw-Hill, 1996.

STN 19

Thread-Based Integration Testing: Lessons Learned from an Iterative Approach
William M. Borgia, Neil J. Hrdlick, Northrop Grumman Corporation

Introduction

Our organization has recently
completed the development of a
large-scale command and control
system through the implementation
and formal qualification phases of
the project. This development
involved over eighty software
engineers developing roughly 1.5
million source lines of code using
multiple languages and platforms. In
order to deliver the product within
the projected schedule, parallel
development and rapid integration
occurred over many related software
functional areas. To facilitate the
decomposition of our design into
manageable components we chose
the concept of a "functional thread"
as the elementary building block for
integration. In this context, a
"functional thread" is defined as a
logical execution sequence through a
series of interfacing software
components resulting from or ending
in the receipt of a message, event or
operator interaction.

Threads not only serve as the basis
for integration, they also tend to
drive the entire software
development effort from scheduling
to status reporting. Each thread itself
represents a microcosm of the
system in that each has a
documented definition and general
execution path, an internal design
and an associated test. Thread
definition intends to communicate
functional background and execution
details between developers and from
developers to testers. More
importantly, the desired
independence of threads supports
incremental integration and system
testing while the corresponding
thread definition substantiates the
results. Finally, since all system

development activity progresses in
relation to threads, management has
an accurate method of judging the
status of individual tasks, functional
areas and requirements.

Threads

Keeping the goals of iterative
development and testing in mind
each thread has its own lifecycle
with autonomous states and a formal
process for state transitions (see
Figure 1). Individual team leaders
usually decompose general
requirements into groups of threads
at the beginning of formal, six
month software builds and assign
threads to developers. Developers
maintain ownership of their threads
and are responsible for documenting
a scenario under which an integrator
can verify the basic functionality,
providing rudimentary definition to
the thread. Following
implementation and unit test, the
developer releases the
corresponding software components
to a daily integration build at which
point the thread enters a "testable"
state. After verifying the
functionality in the integration build
the developer marks the thread
"ready" for an integrator who
performs more extensive testing and
eventually "integrates" the thread
and corresponding software
components into the system. At the
end of each formal build a team of
key engineers in conjunction with
quality assurance checks all threads
against requirements as a regression
test and "finalizes" those threads
which pass.

While the development team
originally tracked threads manually,
we quickly developed a shared
database application to serve as a

continued on page 21

Developer adds
integration test
steps.

Defined

Developer
releases
components to
dally build.

Testable

Developer is
satisfied with
components on
integration
bench.

Integrator is
not satisfied
with
functionality.

Developer
makes
changes and
integrator is
satisfied with
functionality.

Integrator is
satisfied with
functionality.

Integrated

Technical
director reviews
against
requirements.

Figure 1. Thread State
Transition Diagram

20 STN

central repository for thread
development, maintenance and
tracking. The database provides a
formal mechanism for defining and
documenting threads, changing
thread status and reporting status to
project management. Moreover, the
database manages references
between threads: threads can serve as
preconditions to other threads and
developers may incorporate thread
test steps from previous threads.
Most importantly, the interface helps
enforce the process by demonstrating
the autonomy of thread status and
establishing clearly defined
responsibilities among developers
and testers.

Thread Test Steps

Thread test steps and other
background information from the
database serve as a contract between
developers and integrators.
Integrators use thread test steps as a
simple scenario to identify the scope
of a thread rather than as a rigid test
case that may only rubber-stamp a
developer's unit test. Consequently,
the integrators are responsible for
developing several execution
scenarios within the boundaries of
the thread and applying appropriate
testing mechanisms such as known
exceptional cases and boundary
checking. Furthermore, the
integration team often stresses
exercising subsystem interfaces
during integration testing, which was
an area that thread steps often
overlooked.

In addition to helping formalize the
implementation process, the thread
testing approach standardizes the
integration testing process as well.
As a result, the number of detected
coding errors increased almost 250
percent over three formal builds after
thread testing had been introduced.

Although errors attributable to
integration doubled during the first
formal build during which our group
used threads, that number has
subsequently dropped to almost fifty
percent below the level at which we
started using threads.

While thread-based development
certainly contributes greatly to the
main goals of early, rapid integration
and iterative development, we have
also identified several potential
areas of further process
improvement. Perhaps most notably,
developers and testers shared
concerns that thread scope lacked
uniformity among subsystems. At
times, thread definitions were far
too specific and a conscientious
integrator could verify the basic
functionality in fewer steps than the
developer identified. Likewise,
developers sometimes defined
threads at too high a level, requiring
the integrator to seek further
information from the developer to
ensure a meaningful test. A thread
review process, perhaps as part of a
design walk through, may answer
this problem. Likewise, we
recommend requiring completion of
a code walk through as a
prerequisite to thread completion
due to the implications of walk
through initiated design and code
changes.

Thread Maintenance

A related area of improvement is
thread maintenance. While the
process encouraged (and the
database supported) threads
referencing other threads,
maintaining consistency was not
always an easy task. Furthermore,
while software that composes a
thread often changes after a thread
has been integrated there is no
formal update process for the

thread. The changes to process here
are obvious and one could modify
the tool to help enforce these
concerns. For example, the tool
would benefit from the ability to
attach references to source code
units so that changes to code might
trigger the need for associated
thread changes.

In this project the thread process
focused on the integration activities
rather than the full development
lifecycle. This is certainly the main
difference between our thread-based
approach and use-case analysis. The
thread database requires references
to user interface specifications
where applicable, but the process
did not link the thread directly to the
requirements database. Thus
software testing and overall system
testing were somewhat disjoint in
that system testers found it difficult
to use the thread database as a
reference when creating test cases.
Though it might be desirable to shift
thread definition to the requirements
analysis phases of the project, such
analysis usually occurs at a higher
level than what we had used for our
threads and almost always span
subsystem boundaries. Instead we
suggest a more hierarchical
approach to thread definition rooted
in requirement-based parent threads.

This would directly link the software
thread repository to system
requirements and better facilitate a
similar iterative approach to system-
wide testing. Finally, by linking
threads directly to requirements,
project management would have
better insight about the status of
entire requirements.

Since threads drove the software
efforts and status, developers viewed
threads as the most visible formal

continued on page 22

STN jjc:r; 21

Thread-Based Integration Testing
Continued from page 21

process in place. The simplicity of
the process, accurate status and
integration efficiency contributed to
the development team's acceptance
of the process and enthusiasm to
suggest improvements. In addition,
the empirical results suggest that the
introduction of thread-based testing
exposed design and coding errors
earlier and attributed fewer errors to
the integration process itself,
probably due to the enhanced
communication between developers
and testers. In short, our method
appears to have synchronized the
notion of task completion among
developers, testers and management.

Summary
Thread-based integration testing
played a key role in the success of
this software project. At the lowest
level, it provided integrators with
better knowledge of the scope of
what to test, in effect a contract
between developers and testers. At
the highest level, it provided a
unified status tracking method and
facilitated an agreement between
management and the developers as to
what would be delivered during each
formal build. Furthermore, instead of
testing software components directly,
it required integrators to focus on
testing logical execution paths in the
context of the entire system. Because
of this, it strongly supported the
goals of early, rapid integration
coupled with an iterative
development approach. In summary,
the thread approach resulted in
tangible executable scenarios driving
development and integration while
the autonomous, well-defined thread
states strengthened the use of threads
as an accurate method of scheduling
and tracking status.

About the Authors

William M. Borgia received a B.S.
in computer science from Truman
State University in Kirksville,
Missouri.

He currently serves as a software
engineer for command and control
systems at Northrop Grumman
Electronic Sensors and Systems
Sector in Baltimore, Maryland.

Neil J. Hrdlick received a B.S. in
computer science from the
University of Maryland and a M. S.
in computer science from The Johns
Hopkins University.

As a fellow engineer at Northrop
Grumman Electronic Sensors and
Systems Sector in Baltimore,
Maryland he serves as software
technical director for command and
control systems.

Author Contact Information

William M. Borgia
Northrop Grumman Corporation

Electronic Sensors &
Systems Sector
Mailstop B320

Box 17320
Baltimore, MD 21203

(410) 993-2875
Borgia@acm.org

Neil J. Hrdlick
Northrop Grumman Corporation

Electronic Sensors &
Systems Sector
Mailstop B320

Box 17320
Baltimore, MD 21203

(410)765-1578
NeilJ_hrdlick@mail.northgrum.com

http://sensor.northgrum.com/

The people that bring you
this publication, the

DoD Software Tech News
Editorial Board Members

Lon R. Dean, Editor,
DoD Software Tech News

ITT Industries, Systems Div

Paul Engelhart -
DACS COTR

Air Force Research Laboratory
Information Directorate/IFTD

Elaine Fedchak
ITT Industries, Systems Div

Morton A. Hirschberg,
Editorial Board Chariman

Information Science &
Technology Directorate,

US Army Research Laboratory
(Retired)

Thomas McGibbon,
DACS Director

ITT Industries, Systems Div

Marshall Potter
DDR&E (IT)

Dan Snell,
DACS Deputy Director

ITT Industries, Systems Div

Nancy L. Sunderhaft
ITT Industries, Systems Div

VG

The Software Tech News is a publication of
the DoD Data & Analysis Center for Software
(DACS). The DACS is a DTIC Sponsored
Information Analysis Center (IAC) and the
DoD Software Information Clearinghouse.
The DACS is operated by ITT Industries,
Systems Division and technically managed by
Air Force Research Laboratory - Information
Directorate (AFRL/IF).

22 STN

E
■

o

(/>
o

DoD DACS Products & Services Order Form

Name: Position/Title:
Organization: Acronym:
Address:
City: State: Zip Code:
Country: E-mail:
Telephone: Fax:

CM
O)

■

CM

00
■ ■

(0 o
<
Q

Product Description Format Quantity Price Total
The DACS Information Package *Note: AH Disks

□ Including: 2 recent Software Tech News newsletters, and PC or Mac
several DACS Products & Services Brochures Documents FREE FREE

Empirical Data
□ Architecture Research Facility (ARF) Error Dataset Disk $50
□ NASA / Software Engineering Laboratory (SEL) Dataset CD-ROM $50
□ NASA / AMES Error/Fault Dataset Disk $50
□ Software Reliability Dataset Disk $50
□ DACS Productivity Dataset Disk $50

Technical Reports
Spreadsheet' ^)$25 Q A Business Case for Software Process Improvement Document

□ ROI from Software Process Improvement Spreadsheet Disk $40
□ A History of Software Measurement at Rome Laboratory Document $25
□ An Analysis of Two Formal Methods: VDM and Z Document $25
□ An Overview of Obj ect-Oriented Design Document $25
□ Artificial Neural Networks Technology Document $25
□ A Review of Formal Methods Document $25
□ A Review of Non-Ada to Ada Conversion Document $25

NEW! ^ Using Defect Tracking & Analysis to Improve SW Quality Document $50
□ Software Design Methods Document $25
□ Distributable Database Technology Document $25
□ Electronic Publishing on the World Wide Web: SALE

An Engineering Approach Document Item! *" "^ $ 5
]\EW' Q Object Oriented Database Management Systems (Revisited) Document $50

□ Software Analysis and Testing Technologies Document $25
□ Software Design Methods Document $25
Ü Software Prototyping and Requirements Engineering Document $25
Q Software Interoperability Document $25
□ Software Reusability Document $25

NEW! □ Understanding & Improving Technology Transfer in
Software Engineering Document $50

Bibliographic Products
□ DACS Custom Bibliographic Search Disk $40
□ DACS Software Engineering Bibliographic Database (SEBD) CD-ROM $50

Method of Payment:
□ Check □ Mastercard □ Visa

Credit Card #

Number of
Items Ordered

Expiration Date.

Total
Cost

Name on Credit Card Signature.

Mail this form or: Phone: (315) 334-4905, Fax: (315) 334-4964
E-mail: cust-liasn@dacs.dtic.mil

This form is also on-line at: www.dacs.dtic.mil/forms/orderform.shtml

—fold here-

—fold here-

DoD Data & Analysis Center for Software
Attn: DACS Customer Liaison
PO. Box 1400
Rome, NY 13442-1400

