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Testing Software Based Systems: 
The Final Frontier 
by Thomas Drake, Coastal Research & Technology Inc. (CRTI) 

Where are We? Setting the Stage 

The increasing cost and complexity 
of software development is leading 
software organizations in the 
industry to search for new ways 
through process methodology and 
tools for improving the quality of 
the software they develop and 
deliver. However, the overall process 
is only as strong as its weakest link. 
This critical link is software quality 
engineering as an activity and as a 
process. Testing is the key 
instrument for making this process 
happen. 

Software testing has traditionally 
been viewed by many as a necessary 
evil, dreaded by both software 
developers and management alike, 
and not as an integrated and parallel 
activity staged across the entire 
software development life cycle. 
One thing is clear - by definition, 
testing is still considered by many as 
only a negative step usually 

occurring at the end of the software 
development process while others 
now view testing as a "competitive 
edge" practice and strategy. 

The best that can happen under the 
former perception is that no 
problems are detected in the software 
and that none exist for detection until 
after delivery. We know this is not the 
case in the real word of application 
development. In reality, it is testing 
that finds problems which trigger a 
feedback loop to development for 
resolution and retesting to make sure 
the fix works and has not created 
other problems. All of this activity 
invariably happens under extreme 
time constraints and with significant 
management visibility. But it is the 
kind of visibility that no one usually 
wants because everyone else above in 
the development food chain could 
slip. 
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The Real World of 
Software Development - A 
Sobering Perspective 

The following scenario is not unusual 
and represents a composite 
perspective gleaned from this writer's 
10 years of experience in the 
information technology industry and 
DoD environments. 

A software test specialist is assigned 
to work on a multimillion dollar 
effort to develop a new system. The 
test specialist knows that the 
completion date for the program is 
unrealistic, given the scope and 
complexity of the development 
effort. 

As a result of testing, the test 
specialist knows that there are some 
real serious technical difficulties 
impacting the software system's 
interface performance with a very 
large relational database system, as 
well as numerous bugs in the query 
routines for the graphical user 
interface. 

After months of keeping growing 
concerns private, the test specialist 
decides to share these concerns with 
a fellow colleague. These concerns 
were not raised earlier because 
attempts to do so by others with 
management had resulted in 
management telling them not to rock 
the boat. They had learned that 
viewpoints perceived as negative 
were unwelcome and not wanted. 
Fellow colleagues had stopped giving 
feedback to management because 
they now felt their views would be 
ignored and were afraid that 
additional feedback of this type 
would affect their careers. So this test 
specialist told management what we 
thought they wanted to hear, that 
there were some minor problems 

with the software but nothing that 
could not be resolved in time for the 
projected delivery date. 

However, as the release date loomed 
ever closer, it was becoming obvious 
that the software was overly 
complex, had a lot of functional 
problems, and most importantly, 
would not operate as promised at the 
point of delivery. The test specialist 
knew it would be a disaster if the 
system were delivered as scheduled. 

The system went through a 
development test and evaluation 
(DT&E) period that was aborted, 
and the program was subsequently 
canceled by the acquisition 
organization after multiple tens of 
millions of dollars had been spent 
on development. The test 
organization was later disbanded 
because it was perceived as part of 
the problem. 

Test professionals who find 
themselves in similar circumstances 
are faced with a difficult choice. 
What should this test specialist have 
done? 

The Association for Computing 
Machinery (ACM) code of ethics 
states the following: 

"The honest computing 
professional will not make 
deliberately false or deceptive 
claims about a system or system 
design, but will instead provide 
full disclosure of all pertinent 
system limitations and 
problems." 

And the biggest single obstacle is 
cultural. Testing is not generally 
viewed in our software development 
environments as where the real 
action is. The general perception is 
still the following in many 

development organizations - testers 
are software developers who could 
not make it and only real developers 
become programmers. Testers, in 
particular, are often regarded as 
second class citizens and rewarded 
accordingly. This often leads to high 
turnover, junior level experience, and 
no commitment to a comprehensive 
test program on the part of 
management. 

However, becoming a good test 
engineer requires a skill set at least 
as equally complex as that of a good 
software developer. And the 
importance of testing is becoming 
more and more relevant with the 
dependencies we place on software 
creating "consequential damages" 
and legal quicksand when it does not 
work as advertised. What does it 
take? 

Creating the Right 
Environment - The People 
Side of the Equation 

Senior managers within information 
technology must create an 
environment and foster a 
professional climate in which their 
test and development engineers are 
encouraged to recognize and respond 
positively within a software 
development effort and where all 
project tasking is rigorously and 
regularly reviewed. It is the job of the 
tester to "tell it like it is." 

We usually think of testing in 
software development as something 
we do when we run out of time or 
after we have developed code. 
However, the fundamental approach 
as presented here focuses on testing 
as a fully integrated but independent 
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STN 



activity with development that has a 
lifecycle all its own, and that the 
people, the process and the 
appropriate automated technology 
are crucial for the successful delivery 
of the software based system. 
Planning, managing, executing, and 
documenting testing as a key process 
activity during all stages of 
development is an incredibly difficult 
process. By definition, it has to be 
comprehensive. And finally, who 
does the testing and the requisite 
commitment to testing is perhaps as 
important as the actual testing itself. 

Software Quality 
Engineering - 
As a Discipline and 
as a Practice 
(Process and Product) 

Software Quality Engineering is 
composed of two primary 
activities - process level quality 
which is normally called quality 
assurance, and product oriented 
quality that is normally called 
testing. Process level quality 
establishes the techniques, 
procedures, and tools that help 
promote, encourage, facilitate, 
and create a software 
development environment in 
which efficient, optimized 
acceptable, and as fault-free as 
possible software code is 
produced. Product level quality 
focuses on ensuring that the 
software delivered is as error-free as 
possible, functionally sound and 
meets or exceeds the real user's 
needs. Testing is normally done as a 
vehicle for finding errors in order to 
get rid of them. This raises an 
important point - then just what is 
testing? 

Common definitions for testing - 
A Set of Testing Myths: 

"Testing is the process of demon- 
strating that defects are not 
present in the application that was 
developed." 

"Testing is the activity or process 
which shows or demonstrates that 
a program or system performs all 
intended functions correctly." 

"Testing is the activity of estab- 
lishing the necessary 'confidence' 
that a program or system does 
what it is supposed to do, based 
on the set of requirements that the 
user has specified." 

"Software implementation is 
a cozy bonfire, warm, bright, 
a bustle of comforting 
concrete activity. But beyond 
the flames is an immense 
zone of darkness. Testing is 
the exploration of this 
darkness." 

- extracted from the 
1992 Software Maintenance 
Technology Reference Guide 

All of the above myths are very 
common and still prevalent 
definitions of testing. However, 
there is something fundamentally 
wrong with each of these myths. The 
problem is this - each of these myths 
takes a positive approach towards 

testing. In other words, each of these 
testing myths represents an activity 
that proves that something works. 

However, it is very easy to prove that 
something works but not so easy to 
prove that it does not work! In fact, if 
one were to use formal logic, it is 
nearly impossible to prove that 
defects are not present. Just because 
a particular test does not find a 
defect does not prove that a defect is 
not present. What it does mean is that 
the test did not find it. 

These myths are still entrenched in 
much of how we collectively view 
testing and this mind-set sets us up 
for failure even before we start really 

testing! 

So what is the real definition of 
testing? 

"Testing is the process of ex- 
ecuting a program/system with 
the intent of finding errors." 

The emphasis is on the 
deliberate intent of finding 
errors. This is much different 
than simply proving that a 
program or system works. This 
definition of testing comes from 
"The Art of Software Testing" 
by Glenford Myers. It was his 
opinion that computer software 
is one of the most complex 
products to come out of the 
human mind. 

So why test in the first place? You 
know you can't find all of the bugs. 
You know you can't prove the code is 
correct. And you know that you will 
not win any popularity contests 
finding bugs in the first place. So 
why even bother testing when there 
are all these constraints? The 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

continued on page 4 

STN     § 



Testing Software Based Systems: The Final Frontier 
Continued from page 3 

fundamental purpose of software 
testing is to find problems in the 
software. Finding problems and 
having them fixed is the core of what 
a test engineer does. A test engineer 
should WANT to find as many 
problems as possible and the more 
serious the problems the better. So it 
becomes critical that the testing 
process is made as efficient and as 
cost-effective as possible in finding 
those software problems. The 
primary axiom for the testing 
equation within software 
development is this: 

"A test when executed that reveals a 
problem in the software is a success." 

The purpose of finding problems is 
to get them fixed. The benefit is code 
that is more reliable, more robust, 
more stable, and more closely 
matches what the real end-user 
wanted or thought they asked for in 
the first place! A tester must take a 
destructive attitude toward the code, 
knowing that this activity is, in the 
end constructive. Testing is a 
negative activity conducted with the 
explicit intent and purpose of 
creating a stronger software product 
and is operatively focused on the 
"weak links" in the software. So if a 
larger software quality engineering 
process is established to prevent and 
find errors, we can then change our 
collective mind-set about how to 
ensure the quality of the software 
developed. 

The other problem is that you will 
really never have enough time to test. 
We need to change our understanding 
and use the testing time we do have, 
by applying it to the earlier phases of 
the software development life cycle. 
You need to think about testing the 
first day you think about the system. 

Rather then viewing testing as 
something that takes place after 
development, focus instead on the 
testing of everything as you go 
along to include the concept of 
operations, the requirements and 
specifications, the design, the code, 
and of course, the tests! 

The Further Along You Are 
In The Software 

Development Life Cycle 
The More It Costs To Test! 

Lesson learned - just test early. Test 
early and often. Test the design of 
the system before you build any 
pseudo-code. Test the specs before 
you actually code. Review the code 
during coding before you test the 
code, and then finally execute actual 
test cases. By doing the reviews and 
the code-level analyses during all 
phases of the development life cycle 
you will find many, if not most of 
the problems in the system before 
the traditional testing period even 
begins. These activities alone will 
greatly improve the quality of the 
delivered system. 

Find out the cause of this effect, Or 
rather say, the cause of this defect, 
For this effect defective comes by 
cause. 
- Hamlet (with thanks to DeMarco) 
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Survivability as a Component of Software Metrics 
by David L Wells, Object Services and Consulting Inc. and 
David E. Langworthy, Langworthy Associates 

Introduction 

Software metrics provide estimates 
of software quality that are used to 
determine where to spend additional 
development testing resources or to 
determine the suitability of software 
for particular (often critical) 
applications. Metrics have 
traditionally focused on code quality. 
However, the trend toward 
constructing large, distributed 
applications as a collection of 
independent "services" interacting 
across a software backplane (e.g., 
CORBA), makes the process of 
configuring the application an 
important part of the development 
process. This affects the kinds of 
software metrics required, since 
perfect software, imperfectly 
deployed, or deployed in such a way 
that is vulnerable to failure or attack 
is of no more value than imperfect 
software that fails of its own accord. 
This paper describes metrics we 
developed [5] for measuring the 
survivability of software systems that 
can be applied to the more general 
realm of software metrics. 

The Importance of 
Configurations 

Service-based applications can have 
many physical configurations that 
provide the same (or approximately 
the same) logical functionality using 
identical services. Multiple 
configurations are enabled by the 
following: 

• Clients and services may run on 
different platforms in differing 
combinations, 

• Partial application failure (e.g., a 
client running, service down) is 
possible due to software or 
environmental factors, 

• Interfaces that hide 
implementation details allow a 
service to have multiple 
implementations, 

• Multiple objects to provide the 
same or equivalent services, 

• Services can fail because of 
programming errors or because 
of a failure of the underlying 
resources (e.g., hosts or 
networks), 

• Connections between clients and 
services are typically loose, 
which makes it possible in 
principle to change the 
connections on the fly. 

A truly useful metric for distributed, 
service-based software must 
measure both the quality of the 
software itself (the traditional role) 
and the quality of its configuration 
vis a vis the underlying 
infrastructure and the kinds of 
threats to which the software and 
infrastructure are subject. In the real 
world, systems can fail for a variety 
of reasons other than code and 
specification errors (e.g., a virus 
might corrupt the file system that 
the software relies upon). Thus, 
rather than ask simply whether the 
specification and code are correct, it 
is necessary to ask how likely it is 
that the system will be to continue 
to provide the desired functionality, 
or failing this, something 
approaching it. A survivable system 
[1,2] is one in which actions can be 
taken to reconfigure applications in 
the event of partial failures to 
achieve functionality approximating 
the functionality of the original 
system. The usefulness of a 
survivable system can be judged in 
several ways: how useful is what it 
is doing now?; how useful is it likely 

to be in the future?; if it breaks, can it 
be repaired so that it can again do 
something useful? 

Overview of Utility Theory 

Utility theory is the study of decision 
making under risk and uncertainty 
among large groups of participants 
with differing goals and preferences 
[4]. A participant has direct control 
over the decisions he makes, but 
these decisions are only indirectly 
linked to their outcomes, which 
depend on the decisions of other 
participants and random chance. 

Utility can be used to quantify the 
goodness of states and actions in a 
survivable system. System states can 
be compared using utility measures 
to determine which are preferred, and 
as a result, which survival actions 
should be taken in an attempt to 
move the system to a better state or 
avoid worse states. A key aspect of 
measuring the utility of a system 
state or administrative action is that 
utility depends on both the services 
that are currently running and the 
future configurations that can be 
reached. Future configurations need 
to be considered to differentiate 
between a rigid configuration that 
offers good current performance 
from a flexible configuration that 
offers slightly lower current 
performance but is more resilient to 
faults and is more likely to continue 
offering good performance. A 
balance must be reached between 
present performance and future 
performance. For example, for most 
systems the potential configurations 
a year in the future are not nearly as 
important as the configurations the 
system could reach during the next 
12 hours. 

Continued on page 6 
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Continued from page 5 

Applying Utility Theory to 
Software Metrics 

Every client receives a benefit from 
every service it uses, expressed as a 
utility function, U, that maps a 
description of the service being 
provided to a value received. The 
service to be received can be 
described in many ways, including 
using quality of service (QoS) 
concepts such as timeliness, 
precision, and accuracy of the results 
to be provided. Further, utility itself 
can have multiple definitions, 
depending on the overall goals to be 
achieved. For example, one utility 
function could value maximizing the 
work performed another utility 
function could value minimizing the 
likelihood that the level of service 
provided falls below some threshold 
and a third utility function could 
value minimizing the probability that 
information is divulged to an 
opponent. All are equally valid and 
depending upon circumstances could 
in turn be valued to different degrees. 
This would result in a combined 
utility function that is some 
aggregation of the underlying utility 
functions. 

The benefit a client receives from a 
service is accrued only if the service 
completes its task; i.e., an 
instantaneous, ephemeral connection 
to a service provides no value. Thus, 
every benefit function must include a 
duration over which the service must 
be provided in order to attain the 
specified benefit. Our analysis 
restricts the duration to fixed size 
discrete time intervals; a client 
receives the benefit only if the 
service is still being provided at the 
end of the interval. We define the 
utility of a configuration, U(c), to be 
the aggregation across all clients in a 
configuration of the value of the 
services they receive. Because there 

can be multiple utility functions, we 
differentiate between them using 
subscripts when necessary; ergo, 

A configuration provides utility only 
for tasks it completes. Since a 
system that begins a time interval in 
some configuration c may end it in 
some other configuration that 
provides a possibly different utility, 
a more useful measure of utility is 
the expected utility of a 
configuration c, EU(c). EU(c) 
measures the benefit of a collection 
of potential configurations, C, that 
can be reached from c in one time 
interval. It is the probability 
weighted sum of the utilities of each 
individual configuration that can be 
reached. The probability function, 
P(c.), is the probability of ci being 
instantiated out of all the 
configurations in the set. 

Expected Utility = EU(c)=EU(Cj)=Z p(c) x u<c) 

Net utility is thus a sum of future 
expected utilities. In general, not all 
time periods are of equal 
importance; the near term behavior 
of a system is usually valued more 
highly than behavior far into the 
future. To handle this, we introduce a 
discount function, D(t), which maps 
from time to an appropriate 
weighting factor. The discount 
function is related to net present 
value in finance. 

The use of a discount factor has an 
additional benefit, since it allows us 
to discount far future states for 
computational as well as policy 
reasons. This has a practical 
advantage, since when one projects 
the configuration space further into 
the future, the computations rapidly 
become more expensive (due to state 
explosion) and the results rapidly 
become less precise (due to 

imprecise 
"V p*c\ x JJ/C\      estimates of event 

probabilities). 
The benevolent 

ct& 

Expected utility allows us to 
compute the benefit expected to be 
obtained from a configuration even 
after considering the near term 
negative events that can cause the 
configuration to degrade. A second 
utility measure allows us to consider 
longer term changes to the system 
and to incorporate the ability to 
perform beneficial administrative 
transformations. We call this net 
utility, NU(c). Net utility measures 
the fact that the long term 

myopia introduced by the discount 
factor allows us to ignore 
incomputable or dubious future 
states. 

Utility Metrics 

The meaning and power of the 
metrics defined above vary greatly 
depending on the precise definition 
of the base utility function U(c). As 
noted the base utility function 
measures what is valued most highly. 
We introduce two very different 
utility metrics. 

Net Utility = NU(c) =* 2 D® x EU (°>) 
t>now 

desirability of a configuration 
depends upon the services that are 
currently running and the future 
configurations that can be reached. 

Utility of Value is based 
on a measure for 
aggregate performance. 
This work is developed 

from a market based distributed 
resource allocation prototype. 

continued on page 7 

STN 



The goal of the market was to 
maximize the aggregate value of all 
the services provided by the system. 
End users or administrators would 
assign values to services. The 
resources, both hardware and 
software, would compete to offer the 
best service at the lowest cost. The 
resources' goal was to accumulate 
profits which would be gathered by 
the owners of the resources and 
allocated to end users and 
administrators, closing the loop. If 
users value a service highly, it will 
replicate itself to assure that it is 
highly available. If resources are 
removed from the system, the prices 
will rise and only the more valued 
services will obtain resources; if 
resources are added, prices will fall 
and lower priority services will run. 
Utility of Value implements a simple 
microeconomic model that tends 
toward Pareto Optimality, a local 
optimality criterion. If the Net Utility 
of Value is maximized, then future 
performance of the system will be 
maximized. There are many possible 
definitions of survivability, but a 
relatively straightforward one is that 
the system continues to offer good 
performance into the future. 

Utility of Operation is based on a 
binary measure depending on 
whether the system meets some 
minimal level of operation over a 
given interval. This gives rise to a 
very different notion of survivability. 
Using this measure, EU(C) is itself a 

probability: the probability that the 
system is operational. Maximizing 
the Net Utility of Operation 
minimizes the possibility of some 
catastrophic failure in the future, 
possibly at the cost of optimal 
average case performance. This is 
arguably a better survivability 
metric than the Net Utility of Value, 
since the purpose of survivability is 
to avoid catastrophic failures. The 
two could be used in conjunction so 
that after a minimal level of service 
is guaranteed, performance is 
optimized for the normal case. 

Examples: 
Replica Balancing 

There are two services, A and B, and 
six hosts, 1-6. Each service can be 
replicated and each replica requires 
an entire host. There is a 10% 
probability of failure of each host 
during a period, so the probability of 
success of a service with n replicas 
is 1-0.1". In the initial 
configuration, Cl, each service has 
three replicas: Cl = A{1, 2, 3}; B{4, 
5, 6}. At step 2, B loses two 
replicas, so C2 = A{1, 2, 3}; B{4}. 
The third configuration, C3, is the 
result of a possibly automatic 
administrative action which trades a 
second backup from A to provide a 
single backup for B, C3 = A{ 1, 2}; 
B{4, 3}. This last transition is 
voluntary. The administrator or 
survivability service would take 
whatever action seemed best. 

Table 1 calculates the expected 
utility for each configuration in the 
example. A bar over the service label 
in the State column (RC) indicates 
the service is not operational at the 
end of the period. The second 
column is the value of the 
configuration. The aggregation 
function is simple addition, so if both 
A and B are operational the value of 
the configuration is 2000. P(i) and 
E(i) show the calculation of the 
expected utility of Ci,EU(Ci), which 
is shown on the last row of the table. 

In Cl everything is running fine. Out 
of a possible value of 2000 the 
expected utility is 1998, almost 
perfect. After the failures, the 
expected utility drops to 1899 
because of the uncertainty that B will 
complete. C3 reflects the 
administrative action of taking a 
replica from A and giving it to B. 
This increases the expected utility to 
1980, a dramatic improvement 
considering that no resources were 
added. 

Utility of Value vs. Utility 
of Operation 

The following illustrates the 
difference between utility of value 
(which optimizes for performance) 
and utility of operation (which 
optimizes for stability). Service A 
now has two levels of operation, 

continued on page 8 

Table 1. Expected Utility 

RC    Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3) 

AB     2000 .9980 1996 .8991 1798 .9801 1960 

ÄB     1000 .0009 1 .0999 100 .0099 10 

ÄB     1000 .0009 1 .0009 1 .0099 10 

AB       0 .0000 0 .0001 0 .0001 0 

1998 1899 1980 
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Survivability as a Component of Software Metrics 
Continued from page 7 

high and low. The high level offers a 
value of 2000 and requires 3 hosts to 
run. The low level is required for a 
minimal level of operation and offers 
a value of 1000 but requires only 1 
host to run. If the high level of 
service cannot be maintained, it 
automatically drops to the low level 
of service. In the example A starts 
out at the high level of QoS. If A 
loses a host, it drops to the low level 
of QoS with one replica. The 
probability that A completes the 
period at the high level is the 
probability that all three hosts 
complete. The probability that A 
completes the period at the low level 
is the probability that any single host 
completes minus the probability that 
A completes at the high level. There 
are now 6 possible outcomes. B is 
still worth 1000, so if A completes at 
the high level along with B the value 
is 3000. 

Table 2 calculates the utility of value. 
In the initial configuration all hosts 
are operational and the expected 
Utility of Value is nearly optimal at 
2739. After the failures, the expected 
value drops by about 150 reflecting 
B's instability. C3 evaluates the 
administrative action of removing a 
host from A to increase B's stability. 
In this case, the action does not 

appear to be desirable and would not 
be taken. The reason is that 
removing a host from A would cause 
it to drop from a high level of QoS 
to a low level of QoS at a cost of 
nearly 1000. 

Utility of Value metric maximizes 
perceived performance and 
maintaining A at a high level of QoS 
is consistent with this goal. 
However, the survivability of the 
system is sacrificed by this choice 
as Table 3 using Utility of Operation 
shows. 

In the initial state all hosts are 
operational and A is operating at the 
high level. After the failures, B is 
reduced to one replica and the 
expected Utility of Operation drops 
to .8991. A is still operating at the 
high level, but this is not reflected in 
the binary operational metric. Step 3 
reflects the administrative action of 
taking a host from A. This causes A 
to drop from the high level to the 
low level and increases the stability 
of B. As a result the expected 
operational utility increases to 
.9801. 

Conclusions 

The metrics presented allow 
measurement of the useful work that 

is likely to be done by software as 
actually deployed and subject to the 
various kinds of attacks and failures 
that exist in the real world. These 
metrics can be combined with more 
traditional software metrics that 
measure the likelihood of failure due 
to software or specification failure to 
produce a combined metric that 
measures both the quality of the code 
and its expected long-term behavior 
in a realistic environment. 
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Table 2. Utility of Value 

RC Value 

A,B 3000 

A,B 2000 

AB 1000 

AlT 2000 
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AB 0 

P(C1) E(C1) 
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.2697 
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2183 
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1 

14 

0 

0 
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P(C2) E(C2) 
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.0001 
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73 

54 

1 

0 
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P(C3) E(C3) 

.0000 0 
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.0099 10 

.0001 0 

1980 
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Table 3. Utility of Operation 

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3) 

A,B 1 .7283 .7283 .6561 .6561 .0000 0 

A,B 1 .2697 .2697 .2430 .2430 .9801 .9801 

AB 0 .0010 0 .0729 0 .0099 , o 
A? 0 .0007 0 .0270 0 .0000 0 

A,B 0 .0003 0 .0009 0 .0099 0 

ÄB 0 .0000 0 .0001 0 .0001 0 

.9980 .8991 .9801 
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Using Models for Test Generation and Analysis 
Mark R. Blackburn, Software Productivity Consortium 

Introduction 

Systems are increasing in 
complexity. More systems perform 
mission-critical functions, and 
dependability requirements such as 
safety, reliability, availability, and 
security are vital to the users of these 
systems. The competitive 
marketplace is forcing companies to 
define or adopt new approaches to 
reduce the time-to-market as well as 
the development cost of these critical 
systems. Much focus has been placed 
on front-end development efforts, not 
realizing that testing accounts for 40 
to 75 percent of the lifetime 
development and maintenance costs 
[3; 11]. Testing is traditionally 
performed at the end of development, 
but market-driven schedules often 
force organizations to release 
products before they are adequately 
tested. The long-term effect is 
increased warranty costs due to 
product's poor reliability and poor 
quality. 

Model-based development tools are 
increasing in use because they 
provide tangible benefits by 
supporting simulation and code 
generation, in addition to the 
traditional design and analysis 
activities. These tools help 
users develop requirements 
and design models of target 
systems. Certain tools are 
based on formal models, and 
the underlying models are 
represented using specification 
languages. Such formal 
specifications provide a basis 
for test case generation. 
However, the underlying 
development models are 
generally not represented in a 
form that supports automatic 

test case generation. The key 
challenge is to translate 
development-oriented modeling 
languages into a form that is suitable 
for automated test vector generation, 
specification-based test coverage 
analysis, requirement to test 
traceability, and design-to-test 
traceability. 

Using Models for Testing and 
Analysis 

Figure 1 illustrates a conceptual view 
for using models to support test 
generation and analysis. Models and 
their associated tools typically provide 
various views of the system under 
development. When modeling tools 
are based on precise semantics, user 
models can also support: 

• Test Vector Generation. A test 
vector includes inputs, expected 
outputs, and an association with 
the specification from which it 
was derived. 

• Static Analysis. Typically used to 
determine if there are 
contradictions in specification. 

• Dynamic Analysis. Analysis 
based on execution of the model. 

Modeling tools are beginning to 
support simulation and code 
generation. Simulation of a model 
can help developers assess the 
correctness of the model with respect 
to user requirements; however, it can 
be time consuming to develop the 
simulation data required for thorough 
dynamic analysis. Automatically 
generated test vectors can provide a 
cost effective way to exercise a 
model in a simulator using the 
boundary values associated with the 
constraints of a model specification; 
it is at the boundaries where model 
anomalies are typically discovered. 
In addition, these same test vectors 
can also be used to test the code in a 
host or target environment. 

Scope 

This article describes the use of 
automated test generation and 
analysis from specification models. 
Through the integration of 
commercial off-the-shelf (COTS) 
model development and test 
generation tools, a process has been 

continued on page 11 

Static Analysis 

Specification 
Analysis 

Test Vector 
Generation 

Figure 1. Using Models for Test Generation and Analysis 

Copyright (c) 1998 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from the Proceedings of Digital System Conference 1998. 
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developed that eliminates most of the 
traditional testing activities. This 
approach has been demonstrated to 
identify many types of specification 
errors prior to any implementation. 
This article is based on experiences 
in developing two model translators 
[4; 5] supporting: 

• Software Cost Reduction (SCR) 
[12] /Consortium Requirements 
Engineering Method (CoRE) [18] 
for modeling requirements 

• Real-Time Object-Oriented 
Modeling (ROOM) [17] method 
for analysis and design 

For each respective method and 
associated tool, the translators 
produce a specification that is used 
by the T-VEC tool system to 
generate test vectors and perform 
specification-based test coverage 
analysis. The model transformation 
process is briefly described using a 
specification example. The article 
summarizes the results of applying 
the process and tools to industrial 
applications. 

Models and Specifications 

Formal specifications provide simple 
abstract descriptions of the required 
behaviors describing what the 
software should do. Because formal 
specifications have, in the past, been 
considered difficult to use, they have 
not been widely used. Recent 
advances in visual model-based 
development tools provide the basis 
for developing formal specifications 
while hiding the formalism. 

It has been commonly accepted that 
formal specifications provide a basis 
for test case generation. Goodenough 
and Gerhart may have been the first 
to claim that testing based only on a 
program implementation is 

fundamentally flawed [8]. Gourlay 
developed a mathematical 
framework for specification-based 
testing [10]. Figure 2 graphically 
represents Gourlay's mathematical 
framework for testing and the key 
relationships between specifications, 
tests, and programs. Given a 
specification that describes the 
requirements for some system, there 
are one or more programs that 
implement the specification. Tests 
are derived from the specification; if 
every test executed by a program 
computes the appropriate expected 
results (i.e., passes every test), there 
is some level of confidence that the 
program satisfies the specification. 

In Figure 2, the specification 
symbol (i.e., rounded rectangle) is 
generically used to represent 
requirement, design, or test 
specifications. Certain specification 
languages have tool support that 
helps in developing complete and 
consistent specifications. 
Such tools provide the 
syntactic and semantic 
rigor that is required for 
transforming 
specifications into a form 
suitable for test vector 
generation. Model-based 
specification methods 
that support functional, 
state transition, and event 
based techniques are 
increasing in popularity 
and use because the tool support has 
helped make them easier to use1. 

A model-based specification 
approach constructs an abstract 
model of the system states and 
characterizes how a state is changed 
by abstract or concrete operations 
(paraphrased from Cohen et al. and 
Cooke et al. [7; 6]). Operations in 

the system are specified by defining 
the state changes or events that affect 
the model using existing 
mathematical constructs like sets or 
functions. State transitions define 
relationships between sequences of 
states based on conditions of the 
system state. Event specifications 
define certain conditions related to a 
change in the system state1. 

A test specification model is 
defined by a set of test specification 
elements, as shown in Figure 3 on 
page 12. A test specification 
element is an input-to-output relation 
and an associated constraint defined 
by a conjunction (i.e., logically 
ANDed) of Boolean-valued relations 
that define constraints on the inputs 
associated with the input-to-output 
relation. 

Given a specification element, a test 
vector is a set of test input values 
derived from the constraint, and an 
expected output value derived from 

ition Specification U-Specification • 

V 
Derived from 

Satisfies 

Program 

Passes every 
test 

Tests 

Figure 2. Testing Model and Relationships 

the input-to-output relation with 
respect to the test input values [1]. 
Informally, from a test generation 
perspective, a specification is 
satisfiable if at least one test vector 
exists for every specification element 
[2]. 

continued on page 12 

1 Zave and Jackson [21] identify potential implementation bias of model-oriented techniques but support the claim that model-oriented techniques are gaining in 
popularity. 
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Using Models for Test Generation and Analysis 
Continued from page 11 

Model Transformation 

Model transformations are typically 
required to transform model-based 
specifications into a form to support 
test generation. Hierons describes 
rewriting rules for Z specifications 

Program/ 
Function/ 
Operation 

has a 
Defines Constraints 

on Inputs 

Specification 

Defines Irtpüts-to-Oufputä 
Relation for Expected; 

Output 

shortcomings in the rules described 
in prior work that was presented at 
the 1997 Computer Assurance 
Conference [2J. 

Similar model transformation 
efforts, not described in this article, 

were performed for the 
ROOM method using the 
Object Time Developer 
tool set as part of the 
validation 
environment^]. 

V 
has a has a 

y 
Precöridftiöh 

I 
defines 

I 

Oracle (Postcondition) 

.'..I        - 
used as inputs 

Set of Specification Elements 

Constraint 1 
OR 
Constraint 2 

Constraint n 

-* output * f!(inputs) 

-»output - f2 (inputs) 

-#Output - £„(Inputs) 

Evaluation 
Environment 

Figure 3. Representation of Test 
Specification Model 

[13] to support test case generation, 
but does not address specifications 
composed of combinations of 
specification techniques, particularly 
specifications composed using event 
specification techniques. In general, 
model transformation to support tool 
interoperability is an important area 
of investigation [9]. 

Blackburn [5] describes a tool based 
approach for transforming a 
model-based specification into a 
form that supports test vector 
generation. The model-based 
specification supports composition 
using function, state, and event 
specifications. A translator 
implements rules for transforming 
SCR model specifications into a 
language used by the T-VEC test 
vector generation tool. The 
development of the prototype 
translator and evaluation 
environment helped identify 

Figure 4 identifies generic 
tool types that are related 
to the elements of the test 
model shown in Figure 2. 
Such tools use or produce 
the three primary types of 
system artifacts (i.e., 
specifications, programs, 
and tests). A specific 
instance of this 

model was created to 
support the model 
transformation approach 
using the SCR tool 
(referred to as SCR* - 
pronounced SCR star) as 
the source for 
model-based 
specifications and the 
T-VEC tool system as the 
tool that supports test 
generation and 
specification-based 
coverage analysis. 

• Test Vector Generation. A test 
vector generator produces test 
vectors from test specifications. 

• Specification-Based Coverage 
Analysis. This tool analyzes the 
transformed specification to 
determine whether all 
specification elements have a 
corresponding test vector. This is 
the mechanism used to assess 
satisfiability of the transformed 
specifications. 

Applications and Results 

The remainder of this article 
describes a simple example to 
illustrate the use of this approach for 
model analysis and testing. Consider 
the example of an electronic 
regulator, shown in Figure 5. The 
requirements for the regulator are: 

• When the temperature reaches the 
High zone (i.e., 180 degrees), the 
valve opens. 

SCfiASOJeeTIn» 

TranstoriiaBon 

SpedfcaUon 
Meaning 

iBDHteem 
Represents«» 

T-VBT 

Figure 4. Tools of the Evaluation 
Environment 

SCR*, developed by the 
Naval Research Laboratory, 
supports modeling and analysis of 
requirement specifications using a 
formal modeling language (i.e., a 
language with well-defined syntax 
and semantics). 

T-VEC, developed by T-VEC 
Technologies, Inc. supports: 

The amount the valve opens is a 
function of the temperature from 
120 degrees (closed) up to 300 
degrees (fully open). 

continued on page 13 
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•    Once the valve is open, it remains 
open until the temperature 
reaches the Low zone (i.e., 120 
degrees). 

The specification is described in the 
SCR tabular notation. Heitmeyer, et 
al. [14] describes the SCR method. 
The specifications are defined in two 
parts. The first part of the spec- 
ification defines the relationships 
between the temperature and the 
associated modes that relate to the 
temperature zones. This is referred to 
as the Sensor Mode Table shown in 
Figure 5. The system can be in one of 
three modes: LOW, READY, and 
HIGH. At the time when the 
temperature becomes greater than the 
constant Low (i.e., 120 degrees), the 
system transitions into the mode 
READY. The formal expansion of the 
event is: 

Table 1. Relationship of Translated Constraints 
■                          "■   —IW                            .,      ,     III !»■■■■     'H. '...'„.        ', 

i Events                     .;'-■> •■.-•':: 

@T(TemD >= Low) (Temp >= Low) AND (Temp < Low) 

@T(Temp >= High) (Temp >= High) AND (Temp < High) 

@T(Temp < Low) (Temp < Low) AND (_Temp >= Low) 

Table 2. Tests for Each Translated Constraint 

Output Inputs 

Translation Sensor Sensor Temp 

120 
179 

Temp 

-100 
119 

(Temp >= Low) AND 
(Temp < Low) 

READY 
READY 

LOW    ■? 
LOW 

(Temp >= High) AND 
(Temp < High) 

HIGH 
HIGH 

READY 
READY 

180 
300 

120 
179 

(Temp >= Low) AND 
(Temp < Low) 

LOW 
LOW 

HIGH 
HIGH 

-100 
119 

180 
300 

Tamp: range (-100... 300) Valve Condition Table 

High 

Ready 

Low ' 

f\                  iw.Bewr i may  

^M    '^^ Regulator 

WF ""/Senior 

fiSÄ- 

Flow 

Fwm EMM» To 
LOW aTfT«np>sL0w) READY 
REAOV •T(Tm«xHWD HÖH 
HIGH • T(T«ge<lo«) LOW 

Sensor Mode Table 

operational Summary 
Hfatnp reach» High 
zone then Valve open 
«afunclonof 
iempenture unli euch 
Km» when Temp 90« 
Into the Low zone al 
**fcti «me the valve 
cfote» 

Figure 5. Example of Electronic 
Regulator 

@T(Temp >= Low) means: 

if the previous value of Temp 
denoted NOT(_Temp >= Low) and the 
new value of Temp >= Low then the 
event is true and the mode 
transitions from LOW to READY 

Table 1 shows the translated 
meaning for each event 
specification of the Sensor Mode 
Table. For each constraint, there is a 

minimal set of tests as shown in 
Table 2. The T-VEC test 
generation system uses a test 
selection heuristic based on 
domain testing theory where 
low-bound and high-bound 
values are selected for each 
constraint2. For example, the 
first test selects the low-bound 
value for the previous state 
value of_TEMP3 (-100), which 
is less than the constant Low, 
and selects a value of 120 for 
the next state value of TEMP. 
For the high-bound selection, 

the value of 119 (i.e., one less that 
the constant Low) is selected for 
_TEMP, and 179 for TEMP (i.e., 
one less than the constant High). 

The second part of the 
specification defines the constraints 
and functions for the Value 
Condition Table shown in Figure 5. 
This table depends on the Sensor 
Mode Table. The Valve Condition 
Table is interpreted as follows: 

if  Sensor mode = High  then 
Valve  =  255-(Max_Temp-Temp 

*   255/(High-Low)) 
else   if  Sensor mode  = LOW 

or Sensor mode = READY then 
Valve  =  0 

endif 

Each SCR output variable and 
associated function map to a T-VEC 
functional relationship of an output 
variable with respect to the 
constraints on the input variables. 
The SCR model does not necessarily 
define a system state strictly in terms 
of constraints on the input variables 
as is required for T-VEC. For 
example, the Sensor mode is defined 
in terms of a mode transition table. 

continued on page 14 

1 White and Cohen proposed domain testing theory as a strategy to select test points to reveal domain errors [19]. Their theory is based on the premise that if 
there is no coincidental correctness, then test cases that localize the boundaries of domains with arbitrarily high precision are sufficient to test all the points in 
the domain. When there is a strong correlation between the specification constraints and implementation paths, the selected test data should uncover 
computation and domain errors. As defined by Howden and refined later by Zeil, a computation error occurs when the correct path through the program is 
taken, but the output is incorrect due to faults in the computation along the path. A domain error occurs when an incorrect output is generated due to executing 
the wrong path through a program [15; 20]. 
3 An underbar (_) precedes the variable name to indicate that the variable represents the previous state variable before the event versus the next state variable 
after the event. 
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Using Models for Test Generation and Analysis 
Continued from page 13 

This results in table dependencies as 
illustrated in Figure 6. The mode 
variables and the associated table 
relations must be transformed into 
constraints on the input variables. 
Figure 6 provides a perspective of the 

Program/ 
Function/ 
Operation 

Valve Condition TÄ6 
M«ie 

Sensor   J+V»ke= 

jsssmss. 

asMMsJcTwipTemp* 

TIBg" I 

Baa_ 
1>w> IjjLOW 
_Twn> -j> READY 

IHIOH 

Events 
eTfTemc >g Low) 

ISL. 

eT(Temo>»HKlh) 
eTfTemp<low> 

READY 
HIGH 
LOW 

Functional 
Relationship 

Constraints/ 
Precondition 

Figure 6. Dependency Relationship 

example SCR specification 
represented in a form that is 
compatible with the test model 
shown in Figure 3. The constraint for 
the Valve Condition Table includes 
the conditions of the Valve table and 
the Sensor Mode transition table. 
This means that the constraint: 

(Temp >= High) AND (JTemp < High) 

must be satisfied (i.e., the Sensor 
mode is HIGH) as a requirement for 
the value to be computed using the 
functional relationship: 

1) 255-(Max_Temp-Temp 
2) *   255/(High-Low)) 

previous and next states of variables 
Temp and Sensor. 

A test specification requires the 
constraints of a specification to be 
defined strictly in terms of the input 
and output variables. A model-based 

approach defines states that 
are relations of inputs, terms, 
or state variables (e.g., Sensor, 
_Sensor). This allows the 
constraint/precondition and 
functional relationship 
(defined in terms of a 
Condition Table) to be defined 
as a relation on inputs, states, 
or terms. This approach 
typically simplifies the task of 
specifying behavior, but it is 

the key reason why a model 
transformation process is required. 

Static Analysis 

Static analysis helps determine 
whether there are contradictions in 
the model without executing the 
model. Contradictions exist if 
constraints cannot be satisfied. This 
is typically the most common 
problem, especially when the 
dependencies of specif ications 
become large. This example is a 
simple 2-level dependency problem, 

but typical systems can have 10 or 
more dependency levels. It is also 
possible to identify functional 
relationships that specify values that 
are inconsistent with the domain of 
the output variables. These are 
analogous to computation errors in 
the code. 

Consider the function to compute the 
Valve function. The requirements are 
that as the temperature reaches the 
maximum temperature (i.e., 300 
degrees), the valve should be 
completely opened, and when the 
value reaches the constant Low (i.e., 
120 degrees), the valve should be 
closed. Electronically controlled 
devices typically use some type of 
digital value to represent a fully open 
valve (in this case 255 - an 8-bit 
unsigned integer), and the value 
should be 0 when the valve is closed. 
It is common for implementors to 
make errors in scaled arithmetic 
conversions. To illustrate this point, 
the computation has two errors. 

Figure 7 shows a sample test vector 
that has identified a problem in the 
computation. A warning is appended 
to the expected output because the 
computation is out of range. This is 

continued on page 15 

In general, mode transition 
tables can have dependencies 
on other terms and modes. 
Events for modes and terms 
create the need to identify the 
previous and next state 
variable dependencies. As 
shown in Figure 6, the Sensor 
Mode table depends on both 
the previous and next state 
input value of Temp; 
similarly the condition table 
Valve depends on the 

  / 
RP \«V»/ 

Indicates output out of range 

X Valve« 1», 
OUTPUT 
Valve  FLOAT  32   720.0  { 0 . 00 . . 255 . 0}     "WARNINING: VALUE OUTSIDE EXPECTED RANGE' 

INPUT 
Sensor ENUMERATION    32 
Temp INTEGER 32 
_Sensor ENUMERATION    32 
JTemp INTEGER 32 

JUSTIFICATION { 
SOLUTION   :   1 
STATE_SPACE_SCAN : OFF 
SWITCHES : LEAST_RECENT, 
DCP : 1 
Valve,' Valve_FR_l,' cv_Valve_RP_l-, ■Valve_RP_l, Valve JRP JO 
Sensor LS, Sensor«2», Sensor_FR_2, Sensor_RP_2, Sensor_RP_0," Sensor_Valve_2 

3 HIGH { LOW. .HIGH} 
180 { -100. .300} 
3 READY { LOW. .HIGH} 
120 { -100. .300} 

LOW BOUND, SINGLE, OPPOSITE 

Figure 7. Internal Form of Test Vector with Warning 
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typically an indication that there 
is a computation error in the 
specification or that there are 
missing constraints on the inputs. 
The original expression (line 1 of 
the functional relationship under 
Figure 6) is missing parentheses 
around Max_Temp-Temp. In 
line 2, the subtraction should be 
Max_Temp-Low rather than 
High-Low. The correct 
computation is as follows: 

Output Inputs Test Selection 

Mode ; Mode Conditions Valve Sensor _Sensor Temp „Temp 
HIGH TRUE FALSE 85.00 HIGH READY 120 -100 LOW_BOUND 

255.00 HIGH READY 179 119 HIGH_BOUND 

LOW, 
READY 

FALSE TRUE 0.00 LOW HIGH -100 180 LOW_BOUND 

0.00 LOW HIGH 119 300 HIGH_BOUND 

0.00 READY LOW -100 180 LOW_BOUND 

0.00 READY LOW 119 300 HIGH BOUND 

Figure 8. Test Vectors for Valve Condition Table 

255-((Max_Temp-Temp) 
(Max_Temp-Low)) 

255/ 

Identifying this type of problem is 
time consuming. In addition, it is 
well known that identification and 
removal of errors in the 
implementation or integration phase 
is much more costly than it is during 
the requirements phase. 

Figure 8 provides a summary of a 
minimal set of test values for the 
translated condition table for Valve. 
In this figure, the associated test 
selection mode (i.e, LOW_BOUND, 
HIGH_BOUND) is also shown. 

Sample Results 

Table 3 shows some sample results 
on the application of this approach to 
other systems. Each specification 
originally had one or more 
specification problems or anomalies. 
As seen in Figure 5, the electronic 
regulator problem is very small (two 
tables, five functional relationships, 
six constraints, and a maximum 
depth of two table dependencies). A 
flight guidance system is a real-world 
industrial problem [16]; it has 78 
tables, 423 functional relationships, 
7,349 constraints, and a maximum 
dependency depth of 12. The results 
on this project are planned for 
publication in the next year. 

Summary 
Software testing will play a role in 
the development of software 
systems for some time to come. 
Although testing can account for 40 
to 75 percent of the lifetime 
development and maintenance costs, 
the results summarized in this article 
provide promising evidence that the 
use of test automation to support the 
manually intensive test generation 
and model-based analysis is feasible 
and practical. 

There is a great need to demonstrate 
and integrate new and advanced 
technologies. This article describes 
an environment developed to 
validate the use of model-based 
translators on real-world 
applications. The environment 
integrates model-based development 
tools with a specification-based test 
vector generator and 
specification-based coverage 
analyzer. 

Table 3. Sample Results Statistic 

As modeling tools and associated 
methodologies continue to evolve, 
these results provide the basis for 
building translators for other 
modeling tools. This allows new 
tooling technology to be integrated 
with existing tools and has the 
indirect effects of reducing the cost 
and time of specialized training and 
tool expenditures. 

The ability to integrate front-end 
development tools with back-end 
testing tools fosters the use of 
model-development tools, and such 
tools can significantly reduce the 
maintenance phase of a product, 
which typically consumes 70 percent 
of the product life cycle. 
Maintenance typically requires 
minimal development effort but 
typically large efforts in testing. 
Because the original developers 
usually are not available to assist in 
maintenance and evolution efforts, 
test automation can significantly 
minimize reverification efforts 

continued on page 16 

; System/ 
: Projects 

Condition 
Table 

Event 
Table 

Mode 
Table 

Functional 
Relationship Constraint Level 

; Temperature 
if regulator 1 1 •'■•':.• 5 •:' 6 2 

*> Safety injection 1 1 1 10 68 3 

• Electronic flight 
l instrumentation 
Isystem 37 5 0 88 389 3 ' 

| Elevator system 10 6 0 38 90 3 
i Flight Guidance 
1 system 49 15 14 423 7349 ,,'•12 .■■ 

STN .:;:-■    - : : r;.;, : ;. 15 



Using Models for Test Generation and Analysis 
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because the designer's requirement 
and design knowledge is captured in 
model specifications. 
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Task-Based Software Testing 
Daniel G. Telford, MacAulay Brown, Inc. 

Introduction 

There is a plethora of software 
testing techniques available to a 
development team. A survey by Zhu, 
et. al.[l] identified over 200 unit 
testing techniques. However, for the 
services' operational test agencies, 
there has been a continuing, 
unanswered question of how to test 
software's impact on a system's 
mission effectiveness. I propose a 
task-based approach as part of an 
integrated test strategy in an effort to 
answer this long-standing question. 

Why Test? 

From a speech by Lloyd K. 
Mosemann II, at the time the Deputy 
Assistant Secretary for the Air Force 
(Communications, Computers, and 
Support Systems) [2], a customer's 
concerns are: 

They want systems that are on-time, 
within budget, that satisfy user 
requirements, and are reliable. 

A report from the National Research 
Council[3] refines the latter two 
concerns in his statement by 
presenting two broad objectives for 
operational testing: 

1. to help certify, through 
significance testing, that a 
system's performance satisfies its 
requirements as specified in the 
ORD and related documents, and 

2. to identify any serious 
deficiencies in the system design 
that need correction before full 
rate production 

Following the path from the system 
level to software, these two reasons 
are consistent with the two primary 
reasons for testing software or 
software intensive systems [4,5,6]. 
Stated generically, these are: 

1. test for defects so they can be 
fixed, and 

2. test for confidence in the 
software 

The literature often refers to these as 
"debug" and "operational" testing, 
respectively [4]. Debug testing is 
usually conducted using a 
combination of functional test 
techniques and structural test 
techniques. The goal is to locate 
defects in the most cost-effective 
manner and correct the defects, 
ensuring the performance satisfies 
the user requirements. Operational 
testing is based on the expected 
usage profile for a system. The goal 
is to estimate the confidence in a 
system, ensuring the system is 
reliable for its intended use. 

Task-Based Testing 

Task-based testing, as I define it 
here, is a variation on operational 
testing. It uses current DoD 
doctrine and policy to build a 
framework for designing tests. The 
particular techniques are not new, 
rather it leverages commonly 
accepted techniques by placing them 
within the context of current DoD 
operational and acquisition 
strategies. 

Task Analysis 

Task-based testing, as the name 
implies, uses task analysis. Within 
the DoD, this begins with the 
Uniform Joint Task List [7] and, in 
the case of the Air Force, is closely 
aligned with the Air Force Task List 
(AFTL)[8]. TheAFTL "...provides 
a comprehensive framework for all 
of the tasks that the Air Force 
performs." Through a series of 
hierarchical task analyses, each unit 
within the service creates a Mission 

Essential Task List (METL). The 
Mission Essential Tasks (METs) are 
"... only those tasks that represent 
the indispensable tasks to that 
particular organization." 

METLs, however, only describe 
"what" needs to be done, not "how" 
or "who." Further task 
decomposition identifies the 
system(s) and people required to 
carry out a mission essential task. 
Another level of decomposition 
results in the system tasks (i.e. 
functions) a system must provide. 
This is, naturally, the level in which 
developers and testers are most 
interested. From a tester's 
perspective, this framework 
identifies the most important 
functions to test by correlating 
functions against the mission 
essential tasks a system is designed 
to support. 

This is distinctly different from the 
typical functional testing or "test-to- 
spec" approach where each function 
or specification carries equal 
importance. Ideally, there should be 
no function or specification which 
does not contribute to a task, but in 
reality there are often requirements, 
specifications, and capabilities 
which do not or minimally support a 
mission essential task. Using task 
analysis, one identifies those 
functions impacting the successful 
completion of mission essential tasks 
and highlights them for testing. 

Operational Profiles 

The above process alone has great 
benefit in identifying what functions 
are the most important to test. 
However, the task analysis above 
only identifies the mission essential 

continued on page 18 
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Task-Based Software Testing 
Continued from page 17 

tasks and functions, not their 
frequency of use. Greater utility can 
be gained by combining the mission 
essential tasks with an operational 
profile—an estimate of the relative 
frequency of inputs that represent 
field use. This has several benefits: 

1. "... offers a basis for reliability 
assessment, so that the developer 
can have not only the assurance 
of having tried to improve the 
software, but also has an 
estimate of the reliability actually 
achieved." [4] 

2. ".. .provides a common base for 
communicating with the 
developers about the intended 
use of the system and how it will 
be evaluated." [3] 

3. "When testing schedules and 
budgets are tightly constrained, 
this design yields the highest 
practical reliability because if 
failures are seen they would be 
the high frequency failures." [3] 

The first benefit has the advantage of 
applying statistical techniques, both 
in the design of tests and in the 
analysis of resulting data. Software 
reliability estimation methods such 
as those in [5] and [9] are available 
to estimate both the expected field 
reliability and the rate of growth in 
reliability. This directly supports an 
answer to the long-standing question 
about software's impact on a 
system's mission effectiveness as 
well as answering Mr. Mosemann II's 
fourth concern a customer has (is it 
reliable). 

Operational profiles are criticized as 
being difficult to develop. However, 
as part of its current operations and 
acquisition strategy, the DoD 
inherently develops an operational 
profile. At higher levels, this is 
reflected in such documents as the 
Analysis of Alternatives (AOA), the 

Operational Requirements 
Document (ORD), Operations 
Plans, Concept of Operations 
(CONOPS), etc. Closer to the 
tester's realm is the interaction 
between the user and the developer 
which the current acquisition 
strategy encourages. The tester can 
act as a facilitator in helping the 
user refine his or her needs while 
providing insight to the developer 
on expected use. This highlights the 
second benefit above the 
communication between the user, 
developer, and tester. 

The third benefit is certainly of 
interest in today's environment of 
shrinking budgets and manpower, 
shorter schedules (spiral 
acquisition), and greater demands 
on a system. Despite years of 
improvement in the software 
development process, one still sees 
systems which have gone through 
intensive debug testing (statement 
coverage, branch coverage, etc.) and 
"test-to-spec," but still fail to satisfy 
the customer's concerns as stated by 
Mr. Mosemann II. By involving a 
customer early in the process to 
develop an operational profile, the 
most needed functions to support a 
task will be developed and tested 
first, increasing the likelihood of 
satisfying the customer's four 
concerns. 

Task-Based Software Testing 

Task-based software testing, as 
defined herein, is the combination 
of a task analysis and an operational 
profile. The task analysis helps 
partition the input domain into 
mission essential tasks and the 
system functions which support 
them. Operational profiles, based 
on these tasks, are developed to 
further focus the testing effort. 

Integrated Testing 
Operational testing is not without its 
weaknesses. As a rather obvious 
example of this, one can raise the 
question, "What about a critical 
feature that is seldom executed?" 
Operational testing, or task-based 
testing as defined herein, does not 
address such questions well. Debug 
testing, with the explicit goal of 
locating defects in a cost-effective 
manner, is more suited to this. 

Debug Testing 

Debug testing is "... directed at 
finding as many bugs as possible, by 
either sampling all situations likely 
to produce failures (e.g., methods 
informed by code coverage or 
specification criteria), or 
concentrating on those that are 
considered most likely to produce 
failures (e.g., stress testing or 
boundary testing methods)." [4] 
Zhu's, et. al. [1] survey of unit 
testing methods are examples of 
debug testing methods. These 
include such techniques as statement 
testing, branch testing, basis path 
testing, etc. Typically associated 
with these methods are some criteria 
based on coverage, thus they are 
sometimes referred to as coverage 
methods. Debug testing is based on 
a tester's hypothesis of the likely 
types and locations of bugs. 
Consequently, the effectiveness of 
this method depends heavily on 
whether the tester's assumptions are 
correct. 

If a developer and/or tester has a 
process in place to correctly identify 
the potential types and locations of 
bugs, then debug testing may be very 
effective at finding bugs. If a 
"standard" or "blind" approach is 
used, such as statement testing for 
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its own sake, the testing effort may 
be ineffectual and wasted. A subtle 
hazard of debug testing is that it may 
uncover many failures, but in the 
process wastes test and repair effort 
without notably improving the 
software because the failures occur 
at a negligible rate during field use. 

Integration of Test Methods 

Historically, a system's developer 
relied on debug testing (which 
includes functional or "test-to-spec" 
testing). Testing with the perspective 
of how the system would by 
employed was not seen until an 
operational test agency (OTA) 
became involved. Even on the 
occasions when developmental test 
took on an operational flavor, this is 
viewed as too late in the process. 
This historical approach to testing 
amplifies the weaknesses of both 
operational and debug testing. I 
propose that task-based software 
testing be accelerated to a much 
earlier point in the acquisition 
process. This has the potential of 
countering each respective method's 
weaknesses with the other's 
strengths. This view is supported by 

the current philosophy in the test 
community, to develop a combined 
test force spanning contractor, 
developmental, and operational test 
(CT/DT/OT). 

Summary 
Task-based software evaluation is a 
combination of demonstrated 
existing methods (task analysis and 
operational testing). Its strength 
lies in matching well with the 
DoD's current operational strategy 
of mission essential tasks and the 
acquisition community's goal to 
deliver operational capability 
quickly. By integrating task-based 
software testing with existing debug 
testing, the risk of meeting the 
customer's four concerns (on-time, 
within budget, satisfies 
requirements, and is reliable) can be 
reduced. 

Caveat 

The success of the process 
presented herein, like so many of 
the processes presented in the 
software engineering community, is 
only a proposal at this point. 

However, as pointed out earlier, 
many of the individual components 
of task-based software testing are not 
new and have been shown effective 
both in the literature and in the 
author's personal experience. Task- 
based software testing is an approach 
of taking established methods and 
techniques and matching them 
against the current DoD operations 
and acquisition strategy. 
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Thread-Based Integration Testing: Lessons Learned from an Iterative Approach 
William M. Borgia, Neil J. Hrdlick, Northrop Grumman Corporation 

Introduction 

Our organization has recently 
completed the development of a 
large-scale command and control 
system through the implementation 
and formal qualification phases of 
the project. This development 
involved over eighty software 
engineers developing roughly 1.5 
million source lines of code using 
multiple languages and platforms. In 
order to deliver the product within 
the projected schedule, parallel 
development and rapid integration 
occurred over many related software 
functional areas. To facilitate the 
decomposition of our design into 
manageable components we chose 
the concept of a "functional thread" 
as the elementary building block for 
integration. In this context, a 
"functional thread" is defined as a 
logical execution sequence through a 
series of interfacing software 
components resulting from or ending 
in the receipt of a message, event or 
operator interaction. 

Threads not only serve as the basis 
for integration, they also tend to 
drive the entire software 
development effort from scheduling 
to status reporting. Each thread itself 
represents a microcosm of the 
system in that each has a 
documented definition and general 
execution path, an internal design 
and an associated test. Thread 
definition intends to communicate 
functional background and execution 
details between developers and from 
developers to testers. More 
importantly, the desired 
independence of threads supports 
incremental integration and system 
testing while the corresponding 
thread definition substantiates the 
results. Finally, since all system 

development activity progresses in 
relation to threads, management has 
an accurate method of judging the 
status of individual tasks, functional 
areas and requirements. 

Threads 

Keeping the goals of iterative 
development and testing in mind 
each thread has its own lifecycle 
with autonomous states and a formal 
process for state transitions (see 
Figure 1). Individual team leaders 
usually decompose general 
requirements into groups of threads 
at the beginning of formal, six 
month software builds and assign 
threads to developers. Developers 
maintain ownership of their threads 
and are responsible for documenting 
a scenario under which an integrator 
can verify the basic functionality, 
providing rudimentary definition to 
the thread. Following 
implementation and unit test, the 
developer releases the 
corresponding software components 
to a daily integration build at which 
point the thread enters a "testable" 
state. After verifying the 
functionality in the integration build 
the developer marks the thread 
"ready" for an integrator who 
performs more extensive testing and 
eventually "integrates" the thread 
and corresponding software 
components into the system. At the 
end of each formal build a team of 
key engineers in conjunction with 
quality assurance checks all threads 
against requirements as a regression 
test and "finalizes" those threads 
which pass. 

While the development team 
originally tracked threads manually, 
we quickly developed a shared 
database application to serve as a 
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central repository for thread 
development, maintenance and 
tracking. The database provides a 
formal mechanism for defining and 
documenting threads, changing 
thread status and reporting status to 
project management. Moreover, the 
database manages references 
between threads: threads can serve as 
preconditions to other threads and 
developers may incorporate thread 
test steps from previous threads. 
Most importantly, the interface helps 
enforce the process by demonstrating 
the autonomy of thread status and 
establishing clearly defined 
responsibilities among developers 
and testers. 

Thread Test Steps 

Thread test steps and other 
background information from the 
database serve as a contract between 
developers and integrators. 
Integrators use thread test steps as a 
simple scenario to identify the scope 
of a thread rather than as a rigid test 
case that may only rubber-stamp a 
developer's unit test. Consequently, 
the integrators are responsible for 
developing several execution 
scenarios within the boundaries of 
the thread and applying appropriate 
testing mechanisms such as known 
exceptional cases and boundary 
checking. Furthermore, the 
integration team often stresses 
exercising subsystem interfaces 
during integration testing, which was 
an area that thread steps often 
overlooked. 

In addition to helping formalize the 
implementation process, the thread 
testing approach standardizes the 
integration testing process as well. 
As a result, the number of detected 
coding errors increased almost 250 
percent over three formal builds after 
thread testing had been introduced. 

Although errors attributable to 
integration doubled during the first 
formal build during which our group 
used threads, that number has 
subsequently dropped to almost fifty 
percent below the level at which we 
started using threads. 

While thread-based development 
certainly contributes greatly to the 
main goals of early, rapid integration 
and iterative development, we have 
also identified several potential 
areas of further process 
improvement. Perhaps most notably, 
developers and testers shared 
concerns that thread scope lacked 
uniformity among subsystems. At 
times, thread definitions were far 
too specific and a conscientious 
integrator could verify the basic 
functionality in fewer steps than the 
developer identified. Likewise, 
developers sometimes defined 
threads at too high a level, requiring 
the integrator to seek further 
information from the developer to 
ensure a meaningful test. A thread 
review process, perhaps as part of a 
design walk through, may answer 
this problem. Likewise, we 
recommend requiring completion of 
a code walk through as a 
prerequisite to thread completion 
due to the implications of walk 
through initiated design and code 
changes. 

Thread Maintenance 

A related area of improvement is 
thread maintenance. While the 
process encouraged (and the 
database supported) threads 
referencing other threads, 
maintaining consistency was not 
always an easy task. Furthermore, 
while software that composes a 
thread often changes after a thread 
has been integrated there is no 
formal update process for the 

thread. The changes to process here 
are obvious and one could modify 
the tool to help enforce these 
concerns. For example, the tool 
would benefit from the ability to 
attach references to source code 
units so that changes to code might 
trigger the need for associated 
thread changes. 

In this project the thread process 
focused on the integration activities 
rather than the full development 
lifecycle. This is certainly the main 
difference between our thread-based 
approach and use-case analysis. The 
thread database requires references 
to user interface specifications 
where applicable, but the process 
did not link the thread directly to the 
requirements database. Thus 
software testing and overall system 
testing were somewhat disjoint in 
that system testers found it difficult 
to use the thread database as a 
reference when creating test cases. 
Though it might be desirable to shift 
thread definition to the requirements 
analysis phases of the project, such 
analysis usually occurs at a higher 
level than what we had used for our 
threads and almost always span 
subsystem boundaries. Instead we 
suggest a more hierarchical 
approach to thread definition rooted 
in requirement-based parent threads. 

This would directly link the software 
thread repository to system 
requirements and better facilitate a 
similar iterative approach to system- 
wide testing. Finally, by linking 
threads directly to requirements, 
project management would have 
better insight about the status of 
entire requirements. 

Since threads drove the software 
efforts and status, developers viewed 
threads as the most visible formal 
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Thread-Based Integration Testing 
Continued from page 21 

process in place. The simplicity of 
the process, accurate status and 
integration efficiency contributed to 
the development team's acceptance 
of the process and enthusiasm to 
suggest improvements. In addition, 
the empirical results suggest that the 
introduction of thread-based testing 
exposed design and coding errors 
earlier and attributed fewer errors to 
the integration process itself, 
probably due to the enhanced 
communication between developers 
and testers. In short, our method 
appears to have synchronized the 
notion of task completion among 
developers, testers and management. 

Summary 
Thread-based integration testing 
played a key role in the success of 
this software project. At the lowest 
level, it provided integrators with 
better knowledge of the scope of 
what to test, in effect a contract 
between developers and testers. At 
the highest level, it provided a 
unified status tracking method and 
facilitated an agreement between 
management and the developers as to 
what would be delivered during each 
formal build. Furthermore, instead of 
testing software components directly, 
it required integrators to focus on 
testing logical execution paths in the 
context of the entire system. Because 
of this, it strongly supported the 
goals of early, rapid integration 
coupled with an iterative 
development approach. In summary, 
the thread approach resulted in 
tangible executable scenarios driving 
development and integration while 
the autonomous, well-defined thread 
states strengthened the use of threads 
as an accurate method of scheduling 
and tracking status. 
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Product Description Format Quantity Price Total 
The DACS Information Package *Note: AH Disks 

□   Including: 2 recent Software Tech News newsletters, and PC or Mac 
several DACS Products & Services Brochures Documents FREE FREE 

Empirical Data 
□   Architecture Research Facility (ARF) Error Dataset Disk $50 
□   NASA / Software Engineering Laboratory (SEL) Dataset CD-ROM $50 
□   NASA / AMES Error/Fault Dataset Disk $50 
□   Software Reliability Dataset Disk $50 
□   DACS Productivity Dataset Disk $50 

Technical Reports 
Spreadsheet' ^)$25 Q   A Business Case for Software Process Improvement Document 

□   ROI from Software Process Improvement Spreadsheet Disk $40 
□   A History of Software Measurement at Rome Laboratory Document $25 
□   An Analysis of Two Formal Methods: VDM and Z Document $25 
□   An Overview of Obj ect-Oriented Design Document $25 
□   Artificial Neural Networks Technology Document $25 
□   A Review of Formal Methods Document $25 
□   A Review of Non-Ada to Ada Conversion Document $25 

NEW! ^   Using Defect Tracking & Analysis to Improve SW Quality Document $50 
□   Software Design Methods Document $25 
□   Distributable Database Technology Document $25 
□   Electronic Publishing on the World Wide Web: SALE 

An Engineering Approach Document Item! *" "^  $   5 
]\EW' Q   Object Oriented Database Management Systems (Revisited) Document $50 

□   Software Analysis and Testing Technologies Document $25 
□   Software Design Methods Document $25 
Ü   Software Prototyping and Requirements Engineering Document $25 
Q   Software Interoperability Document $25 
□   Software Reusability Document $25 

NEW! □   Understanding & Improving Technology Transfer in 
Software Engineering Document $50 

Bibliographic Products 
□   DACS Custom Bibliographic Search Disk $40 
□   DACS Software Engineering Bibliographic Database (SEBD) CD-ROM $50 

Method of Payment: 
□   Check □   Mastercard □   Visa 

Credit Card #  

Number of 
Items Ordered 

Expiration Date. 

Total 
Cost 

Name on Credit Card Signature. 

Mail this form or:    Phone: (315) 334-4905, Fax: (315) 334-4964 
E-mail: cust-liasn@dacs.dtic.mil 

This form is also on-line at: www.dacs.dtic.mil/forms/orderform.shtml 
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