
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

MODELING CONTROL CHANNEL DYNAMICS OF
THE S AAM ARCHITECTURE USING THE NS

NETWORK SIMULATION TOOL

by

Brian E. Tiefert

September 1999

Thesis Advisor: Geoffrey Xie

Approved for public release; distribution is unlimited.

OTIC QUALITY ÖJSP5DCT.I5D 3 19991230 026

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of informatioa including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999.

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE Modeling Control Channel Dynamics of the S AAM
 Architecture Using the NS Network Simulation Tool

6. AUTHOR(S) Brian E. Tiefert

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILrrY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The explosive growth of the Internet and the advent of real-time network applications have stretched the capacity of current

network technology. It has become evident that to realize the full potential of the Information Super Highway a new

network architecture would have to be developed. It was for these reasons the Next Generation Internet Project was started.

As a part of this effort the Server and Agent based Active network Management (SAAM) Project was started. SAAM is a

server based hierarchical routing architecture designed to provide Quality of Service (QoS) routing services for network

resource intensive applications. Because the study of this topic entailed emulating large Wide Area Networks, a simulation

of the entire architecture would have to be developed. This thesis provides the first step towards achieving that goal. The

model developed as the basis for this thesis concentrates on the control traffic overhead required to configure and

implement the routing mechanism of SAAM. Specifically it simulates the control channel dynamics required to pass

control messages between servers, routers and real-time applications.

14. SUBJECT TERMS SAAM, Quality of Service, Network Simulation 15. NUMBER OF
PAGES 132

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

MODELING CONTROL CHANNEL DYNAMICS OF THE SAAM
ARCHITECTURE USING THE NS NETWORK SIMULATION TOOL

Brian E. Tiefert
Major, United States Marine Corps
B.S., University of Florida, 1988

M.S.B.A., Boston University, 1993

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
September 1999

Brian E. Tiefert
r

Geoffrey Xie, Thesis Advisor

Michael J. Holden, Second Reader

Dan Boger, CMrman
Department of Computer Science

in

IV

ABSTRACT

The explosive growth of the Internet and the advent of real-time network

applications have stretched the capacity of current network technology. It has

become evident that to realize the full potential of the Information Super Highway

a new network architecture would have to be developed. It was for these reasons

the Next Generation Internet Project was started. As a part of this effort the Server

and Agent based Active network Management (SAAM) Project was started.

SAAM is a server based hierarchical routing architecture designed to provide

Quality of Service (QoS) routing services for network resource intensive

applications. Because the study of this topic entailed emulating large Wide Area

Networks, a simulation of the entire architecture would have to be developed.

This thesis provides the first step towards achieving that goal. The model

developed as the basis for this thesis concentrates on the control traffic overhead

required to configure and implement the routing mechanism of SAAM.

Specifically it simulates the control channel dynamics required to pass control

messages between servers, routers and real-time applications.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. MOTIVATION 2
C. PURPOSE 3
D. EXECUTIVE SUMMARY 4
E. BENEFITS OF STUDY 5
F. ORGANIZATION 7

1. Chapter II '. 7
2. Chapter m 7
3. Chapter IV 8
4. Chapter V 8

E. SAAM CONCEPT 9
A. OVERVIEW 9
B. ARCHITECTURE 9
C. QOS PATH MANAGEMENT 12
D. CONTROL CHANNEL 14

m. NS 19
A. HISTORY 19
B. DESCRIPTION AND INTERNALS 20

1. Description 20
2. Schedulers 21
3. Addressing 22

C. ARCHITECTURE 22
D. WHY NS? 32

TV. THEMODEL 35
A. GOALS 35
B. PACKET FORMATS 36
C. APPLICATION. 39
D. SERVER 40
E. ROUTER 44
F. STRENGTHS AND WEAKNESSES 45

1. Strengths • 45
2. Weaknesses 46

V. CONCLUSION 49
A. LESSONS LEARNED 49

1. NS Development 49
2. SAAM Development 51

B. FUTURE WORK 52

vii

1. Flow Based Routing 52
2. Dynamic PIB Configuration 53
3. Service Level Pipes 54

C. SUMMARY 54

APPENDIX A. [NS DOWNLOADING AND INSTALLATION PROCEDURES] 57

APPENDK B. [DEVLOPMENT STRUCTURE] 61

APPENDIX C. [SERVER SOURCE CODE] 67

APPENDIX D. [ROUTER SOURCE CODE] 81

APPENDK E. [MODIFIED SOURCE CODE] 87

LIST OF REFERENCES 119

INITIAL DISTRIBUTION LIST 121

vm

LIST OF FIGURES

Figure 1: Example SAAM Hierarchy 10
Figure 2: Partitioning of a Physical Link 13
Figure 3: Sample Simulation Script 24
Figure 4: Structure of a Typical Node 26
Figure 5: Sample Simulation Topology 30
Figure 6: SAAM Execution Sequence Starting from Flow Request 62
Figure 7; SAAM Execution Sequence Starting from Sending of LSA 63
Figure 8; NS Runtime Initialization 66

IX

I. INTRODUCTION

A. BACKGROUND

Computer networking technology has experienced explosive growth over the past

decade. However, increases in volume of network traffic are rapidly outgrowing the

ability of existing networks to provide the adequate Quality of Service (QoS) they require

to function properly. The Next Generation Internet (NGI) Initiative was developed in

order to solve this problem. In a concept paper describing the NGI Initiative the goal was

stated as follows:

Today's Internet suffers from its own success. Technology
designed for a network of thousands is laboring to serve millions.
Fortunately, scientists and engineers believe that new technologies,
protocols, and standards can be developed to meet tomorrow's
demands. These advances will start to put us on track to a next
generation Internet offering reliable, affordable, secure information
delivery at rates thousands of times faster than today. [NATI97]

One proposal developed to realize the goals of the NGI Initiative was The SAAM

Project. SAAM stands for Server and Agent based Active network Management. SAAM

is a DARPA funded project initiated by Dr. Geoffrey Xie at the Naval Postgraduate

School in Monterey, California. SAAM is intended to define an architecture to achieve

the goals of the NGI Initiative. The concept of the SAAM Project is to use a server based

hierarchical architecture to compute and disseminate routing information in order to

support guaranteed Quality of Service (QoS) network traffic. This type of QoS guarantee

is required in order to assure satisfactory performance of many emerging real-time

network applications, such as voice, video and distributed computing. It is these types of

applications that are driving the requirement for the Next Generation Internet.

B. MOTIVATION

S AAM is still under development and many of the underlying concepts require

study and refinement. Because SAAM is being developed to be implemented over very

large networks, simulation is the only scaleable method to accomplish proof of concept

type studies. No hardware has been developed, as of yet, to implement the SAAM

Architecture. Emulation software for SAAM routers and servers that operate at the

application layer is under development. It is important that a simulation model be created

that will interact with these emulation applications to broaden the SAAM research.

In order to create a suitable SAAM simulation model, a simulation software

product either had to be developed or an existing one adapted to meet the requirements

presented by the architecture. Because of the complexity and difficulty associated with

developing simulation tools it was deemed that adaptation of an existing simulation

package was the appropriate choice. The simulation package had to be able to be

modified to allow for development of new routing protocols and message passing

schemes. In addition, the simulation had to be able to interface with the emulation

software being developed for the SAAM routers and server. This meant interjecting real

network traffic into the simulation for the purpose of stressing the newly developed

emulation products.

C. PURPOSE

The purpose of this thesis is to select an existing network simulation tool and develop a

preliminary model of the SAAM Architecture. Specifically this model will concentrate

on the message passing schemes between the SAAM servers, routers and the applications

which will operate over the entire architecture. The purpose of the messages being

transmitted is to relay control information between the entities of the architecture in order

to coordinate the appropriate routing information in a timely and scaleable fashion.

These "control messages" will carry routing information, network state

information, flow requests and flow responses. In the SAAM Architecture the SAAM

server is responsible for making all routing decisions for all QoS flows. In order to

accomplish this the server is required to maintain as accurate a picture of the network-

state as possible. It maintains this view of the network-state by receiving updates from

the routers in its region. By maintaining this picture it can accurately calculate the most

advantageous path to route flows as requested by applications requiring certain levels of

QoS. The model developed for this thesis provides an adequate message-passing scheme

to accomplish these tasks.

The simulation package chosen for this thesis was the NS network simulation

tool. NS is a product of The University of California, Berkley. It was developed as part

of the VTNT Project. It is an open source network simulation tool and it is a stochastic

discrete event simulator. Because the source code is available it is modifiable and

configurable. NS has been under development in excess of 10 years and is fairly robust.

It contains all of the prerequisites needed to accomplish the objectives of this thesis.

D. EXECUTIVE SUMMARY

In order to build an appropriate model of the SAAM Architecture an extensive

analysis of the NS Network Simulator was conducted and the intricacies of its operation

examined. Once this analysis was completed it had to be determined what modifications

had to be made to the simulator so that it could model the SAAM Architecture. As will

be discussed later, the simulator models network behavior by utilizing nodes as network

entities. On these nodes agents can be attached to simulate different network protocols.

Scripts are used to schedule network events. To model the SAAM Architecture three

new agents had to be developed. Two of these agents were to emulate new types of

network entity, a SAAM router and a SAAM server. The third agent to be developed was

a special type of agent that is used to model network routing protocols.

The SAAM Server agent was required to emulate the actions that take place in a

notional SAAM server. The details of the SAAM Architecture will be discussed in

detail, but in general the SAAM server has to be able to accomplish several tasks. First

the server has to be able to maintain a Path Information Base (PIB). The PDB is a detailed

table of the entire network that the server is responsible for controlling including all links

between nodes and the pertinent QoS parameters inherent to each link. The server must

then be able to accept messages from applications requesting flow assignments that

require a certain level of quality of service that are defined by expressing them in terms of

the set parameters.

Once these flow requests are received the server must be able to calculate an

appropriate path from source to destination that meets the quality of service requirements

requested from the application. Once the path is determined for a flow the server must

send flow routing table updates to each router that is associated with each link in the

determined path. Once all of the associated routers have been updated the server then

must be able to send a flow response to the requesting application.

The SAAM Router agent had to be able to send messages to the server in order to

keep the server informed of the state of all of its associated links in terms of the quality of

service parameters. In addition it had to be able to update a flow routing table that resides

within the protocol agent. The flow routing table is used to forward packets assigned to a

flow to the designated next hop in the network. In order to maintain the flow routing

table the router had to be able to receive flow routing table updates from the server.

The protocol agent is the entity in the simulator that actually forwards the packets.

As mentioned above the protocol agent actually maintains the flow routing table. The

protocol agent uses the flow routing table to lookup next hop information based on a flow

identification fixed to each packet by the source application as assigned by the server.

Once the next hop has been determined the protocol agent actually forwards the packet to

the next hop. This procedure repeats at each node in the assigned path until the packet

reaches its destination.

E. BENEFITS OF STUDY

With the advent of new technologies and the requirement to support near real-time

network traffic, a routing architecture that can schedule network resources and adapt to

changing environments is required. SAAM provides such an architecture. In order for

SAAM to make appropriate routing decisions it must be able to track and adjust to

volatile network conditions. Information concerning these conditions must be passed

from router to server and back rapidly while consuming a minimum of network resources.

This study will provide, if not a method for doing that, at least a better understanding of

the problems faced in the attempt. The Next Generation Internet and QoS dependent

applications will become a reality and will be in common use in the near future. This

research and the lessons learned from the SAAM Project will provide a framework for

capitalizing on these technologies.

The model developed in this thesis provides a platform from which future

research can be conducted into the SAAM concept. Comparisons of control message

passing schemes, routing protocols, fault tolerance implementations and new transport

protocols can all be made through use of this model with minimal modification. The

ability of researchers to test and compare and develop these concepts in a SAAM context

will not only extend progress in the SAAM Project, but can also further concepts required

for NGI research in general. Many of these concepts can be adapted to be incorporated

into new or existing network architectures that support the type of QoS routing that is

required to implement NGI goals. The ability to develop and test these concepts is

essential to progression of a coherent NGI model, and can significantly reduce

development time required to make NGI a reality.

The SAAM project is intended to provide a mechanism for managing integrated

services and providing real-time performance guarantees. If successful, the benefit to the

Department of Defense (DoD) would be tremendous. The impact of SAAM's

capabilities would be far-reaching and could revolutionize the way DoD organizations are

able to operate and communicate. It would significantly enhance the department's ability

to disseminate information on and off the battlefield. Such capabilities could affect areas

ranging from planning, warfighting, command and control and simulation. The ability to

transmit and receive real-time information and data is essential to information-centric

warfare.

F. ORGANIZATION

The remainder of this thesis is organized as follows:

1. Chapter II

Chapter II is a detailed description of the S AAM Architecture with special

emphasis on the control channel message passing apparatus. The chapter will discuss

SAAM in theory and outline proposed topologies for implementation. It will also discuss

new network hardware that will be required to implement S AAM in the real world. An

overall illustration of interactions between network entities in the SAAM Architecture is

also included. In addition, it provides details of the types and structure of the proposed

control messages required to implement the SAAM Architecture. Finally, a comparison

to existing proposals for QoS routing is made and discussion of how portions of these

proposals may be incorporated into SAAM.

2. Chapter III

Chapter HI is an analysis and description of the NS Network Simulation Tool.

The reasons why this tool was chosen are discussed along with the internal architecture of

the tool. The analysis includes the duality of objects in both C++ code and Tel code as

utilized in the NS architecture. Descriptions of required classes in both programming

languages are provided along with detailed analysis of the interactions between these

classes during simulations.

3. Chapter IV

Chapter IV is a detailed analysis of the model built. It includes a discussion of all

developed and modified classes and their purposes. Descriptions of each of these classes

are given along with their interactions with other NS classes. Detailed explanations of

how these classes provide realizable implementations of the SAAM Architecture are

provided.

4. Chapter V

Chapter V is a summary detailing strengths and weaknesses of the model and a

discussion of topics for follow on research and development. The chapter is meant to

illustrate what portions of the SAAM Architecture were modeled and the relative

successes or failures that they represent. In addition, it provides a review of the NS

simulation tool and its appropriateness for this study. Finally, the chapter provides

recommendations for extended use of the model for further research and proposed

modifications to enhance the capabilities of other researchers.

II. SAAM CONCEPT

A. OVERVIEW

SAAM is a unique concept developed in order to realize the goals of the NGI

Project. Specifically its goals are to provide an architecture that will provide for

guaranteed quality of service for applications that require certain levels of network

performance for optimal functionality. To maintain this level of quality of service the

architecture must be able to provide a number of distinct characteristics. These

characteristics include responsiveness, fault tolerance, adaptability, and scalability. As

will be explained, SAAM has provisions to address all of these criteria.

The SAAM concept is a departure from the router-based architecture prevalent

throughout the Internet today. The fundamental precept is to use a hierarchy of SAAM

servers to control and guide a network of light-weight routers in order to maintain a

guaranteed QoS for applications that require a certain level of performance. This level of

performance can be measured by several means. The most prevalent and important

metrics include packet delay, packet loss and throughput.

B. ARCHITECTURE

The architecture is based on a hierarchy of logical servers and lightweight routers.

Each SAAM server is responsible for collecting and aggregating routing and topology

information for its subsection of the network, or autonomous region. The server

aggregates this information and advertises it to the next higher level in the hierarchy. An

example hierarchy is shown in Figure 1. This mechanism provides the architecture

scalability by creating an exponential reduction in the passing of duplicate information

between routers and servers.

Figure 1. Example SAAM Hierarchy

Each server collects the topology and routing information for its region from the

subordinate routers and servers in that region. This information is maintained in a Path

10

Information Base (PIB) at the server. The PIB includes every path from each source to

each destination in the region. The path consists of not only the logical route a packet

would travel from source to destination, but also the specific QoS parameters available on

that path. The server's PIB forms the basis from which all routing decisions within the

region are made.

An application requiring a minimum level of performance would make a request

from the server to register its data flow. All routing decisions for QoS flows are made at

the server. Once the server receives the request it calculates a path that would satisfy the

application's QoS requirement by consulting its PIB. Once an adequate path is identified

all routers in that path have to be notified and updates made to their routing tables. All

routing table entries for QoS flows at the router are received from the server. By

calculating routes at the server, the routers have minimal processing required to forward

packets, as each packet belonging to a flow will travel along the same path.

The routers are responsible for maintaining statistics on the state of all of their

associated links so that they can advertise this information to the server. It is these Link

State Advertisements (LSA's) that the server uses to build and update its PIB. The more

frequently the routers send LSA's to the server the more accurate a picture of the state of

the network the server can maintain. However, LSA's travel in band, that is they are sent

along the same physical medium as all other traffic. This can present a problem as a link

becomes more congested. S AAM presents mechanisms for balancing the requirement for

LSA's and other control channel information with the need for making the maximum

amount of network resources available for normal traffic. Also, there is a need for a

11

mechanism to ensure that LSA's reach the server. This is the purpose of the control

channel.

For efficiency the S AAM architecture needs to be able to rapidly adapt to volatile

changes in network traffic patterns and link states. To achieve this rapid response SAAM

will employ two methods. The first method is the triggering of link state advertisements

by significant change of link state. The second method entails the use of active agents

deployed by the server to poll information from various points in the network to assess

the efficiency of the current configuration and routing patterns. Information provided by

these active agents will be utilized to update the PIB in order to make better routing

decisions.

An advanced concept proposed to be incorporated in future versions of SAAM is

the use of active agents in conjunction with a simulation protocol in the attempt to predict

future network traffic patterns. Such a prediction would allow the SAAM structure to

prepare for additional traffic and perform load balancing so that a greater efficiency can

be achieved and a higher level of fault tolerance can be realized. To date this concept has

not been successfully implemented in any of the currently used routing architectures.

C. QOS PATH MANAGEMENT

One of the major challenges in implementing SAAM is QoS path management.

The concept to be employed by SAAM partitions each physical link into service level

pipes as shown in Figure 2. Each of these service level pipes is defined by a set of QoS

parameters. [XIE98] These parameters include a bound on packet delay, rate of packet

12

loss and available bandwidth. An application requiring a certain level of QoS will make a

request from the SAAM server. The server will determine a suitable path for the

application's data flow by consulting its PIB. This path is composed of a series of service

level pipes whose composite QoS metrics meet the specified requirements. [XEE 98]

Figure 2. Partitioning of a Physical Link

Path management not only includes the initial selection and assignment of a path

to a flow, but also the monitoring and possible reassignment of paths to flows based on

13

changing network dynamics. If there is a degradation of performance in any of the QoS

parameters associated with a path that violates the source's original requirement, then a

reconfiguration is required which will necessitate that new paths be assigned to affected

flows. This process must be accomplished automatically, before the user perceives a

degradation of service. This level of fault tolerance will be revolutionary by today's

standards.

Each service level pipe will be associated with an outbound packet queue above

each network interface. The QoS parameters, which define each service level pipe, will

be maintained partly through queue management. Packet loss and delay statistics can be

controlled by varying queue size and packet scheduling. By manipulating packet flow

through various queues SAAM will be able to dictate the QoS deliverable across all

service level pipes. This is more advantageous than most reservation protocols, which

earmark network resources, for particular flows whether they utilize the resource or not.

The SAAM protocol allows network resources to remain available for use by any traffic,

but ensures that those with QoS guarantees are serviced within acceptable limits.

D. CONTROL CHANNEL

Management of the SAAM system requires communication of control information

such as LSA's, routing table updates, and flow requests and responses. In order to

maintain an efficient configuration, the SAAM architecture requires timely delivery of

this control information. The mechanism for delivering control messages is the control

channel. The control channel is a logical partition of the physical route that control

14

messages are transmitted on. It can be viewed as a distinct service level pipe. Because

control messages are perishable and timely delivery is important, the control channel

must have the highest priority of all the service level pipes.

In order for the server to make appropriate and timely routing and configuration

decisions, it must receive and maintain the most current available information pertaining

to network state down to the individual link level. It receives this information in by two

means, probing and Link State Advertisements (LSA's). Probing is the use of active

agents by the server to dynamically poll usage and latency information from subsections

of the network. LSA's are the chief method used by the routers to update the server's

network awareness. Both of these methods require use of the control channel to transmit

information to and from the server.

LSA's are the principal method for transmitting network state information to the

server and will typically make up the majority of control traffic flowing through the

control channel. Minimizing the number of LSA's required to update the server is a

major objective of SAAM. Therefore, determining when to send an LSA becomes an

important question. There are two possible methods of triggering LSA's. The first is by

timed intervals. This method entails the router sending an LSA at regular intervals

whether or not any change in link-state has occurred. Utilizing this method allows very

regular patterns of topology updates so that the server can maintain a view of the network

with a fidelity dependent upon the stability of the traffic patterns.

The disadvantage of using timed intervals between LSA's is that modern network

traffic is extremely bursty. To minimize the amount of control traffic, the interval

between LSA's would be increased. However, with this increased interval major changes

15

in link-state could occur which should affect routing decisions, but because they occurred

between LSA's the server will be unaware of them until the next update. In the interim

several poor routing decisions could be made due to expired information at the server. To

improve this the interval could be decreased to minimize the chances of a link-state

change not reaching the server in time. This, however, would increase the overall control

traffic, which we are trying to minimize. In addition it would be inherently wasteful, as

many LSA's would be sent that would reflect no substantive changes in the server

topology information. Advertised changes may be of a short duration and subsequent

advertisements may just cancel out.

The second method is to use a trigger. The trigger is a measurement in vital link-

state statistics. If the rate of change in any QoS parameter crosses its identified threshold

then a link-state advertisement is constructed and sent to inform the server. In this way

only meaningful changes in link-state would be advertised. This method also presents

problems. If a link or router were to go down or be taken out of service then the server

would not receive an LS A from it. The server might mistakenly interpret the lack of

information as meaning that no change in its link-state has occurred and continue to route

traffic over the downed link.

The solution to this dilemma is to combine the two methodologies. The first step

is to incorporate a trigger scheme much like that presented in [GUER98]. The idea

behind this philosophy is to set up thresholds in rate of change in link-state parameters to

trigger an LS A, but to use a hold-down timer to delay the sending of the LS A. This

ensures that every significant change in link-state is advertised unless it is negated by a

subsequent change that occurs before the hold-down timer expires. The length of the

16

interval for the hold-down timer can be used as an adjustment to fine-tune the system. It

can be adjusted to compensate for the volatility and "burstiness" of the network traffic.

The second step is to send periodic LSA's at less frequent intervals. The purpose

of the periodic intervals is to ensure confirmation that a link is operational and update

link-state status even when no change large enough to trigger an LS A by the first method

has occurred. The interval between periodic updates starts from the time the last LSA

was sent regardless of which method triggered the transmission. By using this

methodology the network manager can adjust to the dynamics of the traffic. Meanwhile

the SAAM system as a whole has been able to minimize control traffic while providing

timely information to the server from which it can make appropriate routing and

configuration decisions.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

in. NS

A. HISTORY

The NS simulator began as a variant of the REAL (REalistic And Large) network

simulator in 1989. REAL was primarily developed to evaluate queuing theory and

algorithms in networks. [KESH] NS is now an integral element of the VINT (Virtual

InterNetwork Testbed) Project. The goal of VINT is to transform network protocol

design and engineering practices in the same way that simulation and VHDL-based

methods transformed chip and board level design. NS provides the simulation platform

for the VINT Project and is intended to provide a framework for composing simulation

modules that will create synergy between disjoint simulation efforts and enable the

simulation of complex interdependences between protocols. [SCH096]

NS Version 1 was a simulation tool developed by the Network Research Group at

the Lawrence Berkeley National Laboratory and is an extensible, easily configured and

programmed event-driven simulation engine, with support for several flavors of TCP

(include SACK, Tahoe and Reno) and router scheduling algorithms. NS Version 2

extended Version l's capabilities. Version 2's most significant modification was the

incorporation of MIT's Object Tel (OTcl) scripting language. OTcl is, in itself, an

extension of John Ousterhout's Tool Command Language, better known as Tel

(pronounced tickle). OTcl allows for a finer grained object decomposition within the

simulator. The details of this object decomposition will be described in detail.

19

B. DESCRIPTION AND INTERNALS

1. Description

NS is a stochastic, object oriented, discrete event simulator. It is an extensible,

easily configured and programmed event-driven simulation engine specifically developed

to support development and testing of network protocols and their interactions. The code

for the simulator is entirely open-source.1 The simulator is written in C++ code, but also

incorporates OTcl classes and methods to be used as an interpreter. This allows

interaction with the simulation through use of Tel scripts and commands. Users create

and manipulate simulator objects through the interpreter which instantiates objects and

invokes methods in a C++ class hierarchy.

The objects instantiated in the OTcl class hierarchy are closely mirrored in the

C++ hierarchy. It is this duality of objects that allows the user to manipulate and control

the simulation through the Tel scripts and commands. The use of Tel also allows for the

programming of arbitrary actions within a simulation. This is useful for simulating

events like packet loss and packet delay during a simulation and is accomplished by the

user by manipulating instance variables within the interpreter. [FALL99]

1 The source code for all elements of the NS network simulator are available from the NS Website URL:
http://www-mash.cs.berkeley.edu/ns/

20

2. Schedulers

The simulator is single threaded and only one event can be in execution at any

given time. The scheduler selects the next event, in order, and executes it to completion.

The scheduler then returns to execute the next event. No partial execution of events or

preemption of processes is supported. If multiple events are scheduled to execute at any

given time they are first ordered and executed one at a time. This ordering is dependent

upon the scheduler in use. Event handling is scheduled through use of one of four

different schedulers. The current schedulers available are a single linked list scheduler

(default), a heap scheduler, a calendar queue scheduler and a real-time scheduler. The

two schedulers of interest for this thesis are the single linked list scheduler and the real-

time scheduler.

The single linked list scheduler operates as one would expect, all events are

scheduled by appending them to a linked list and then are executed in order, First In First

Out (FIFO). The real-time scheduler is used to introduce a simulated network into a real-

world topology. This allows for emulated network nodes operating remotely from the

simulation to interact with the simulator. The scheduler attempts to synchronize the

execution of events with real-time. This scheduler is still under development and works

for only relatively slow network traffic data rates. It will require before it can be

incorporated into the SAAM simulation model.

21

3. Addressing

Although NS appears to support IP v6 addressing formats, in reality the

mechanism for addressing of network entities is implemented using a unique scheme.

Network addresses in NS, that is addresses of individual agents assigned to a node, are

assigned by using unsigned 16-bit integers. The first eight bits represent the node id_.

The second eight bits identify the specific agent at that node. When a packet reaches a

node its header information is accessed by an address classifier. This classifier inspects

the destination field of the packet header and determines if the packet is destined for that

node by inspecting the first eight bits. If the first eight bits correspond to the node's id_ it

is then passed to a port classifier referred to as dmux_. The dmux_ classifier then matches

the second eight bits to the appropriate port corresponding to an agent at the node and

passes the packet to that agent. If the packet is not destined for that node it is forwarded

to the next node in the path according to the routing table at that node.

C. ARCHITECTURE

The NS architecture is complicated and extensive. Comprehension of the intricate

linkage between the C++ class hierarchy and the OTcl hierarchy is essential to understand

the methodology behind NS's inner workings. In an attempt to elucidate the architecture

this thesis will describe several of the more important classes in both the C++ class

hierarchy and the OTcl class hierarchy. Interactions between the hierarchies will be

defined where useful and bindings between the OTcl instance variables and C++ instance

variables will be discussed. In addition, methods for creating new classes in either

22

hierarchy will be presented along with procedures for creating class interactions. The

easiest way to describe the architecture is to walk through an example simulation and

discuss the NS classes and interactions as they are encountered .

When the simulator is invoked it creates a shell, much like tcsh or corn, that can

be used much like any other shell. Interaction with the shell is done by way of Tel

commands or a pre-written Tel script. Figure 3 is an example of such a script and will be

the basis for a description of the NS architecture. Statements preceded by the "#" symbol

are comments. The first line of the script is a declaration.

set ns [new Simulator]

In this case ns is the variable being declared. In OTcl brackets,"[]'\ are used as

precedence indicators. The full meaning of this line is; Instantiate a new Simulator

instance and assign it to the variable ns. The Simulator instance is an object of the Class

Simulator class. The initialization procedure for this class performs several operations. It

initializes the packet formats, which will be utilized throughout the simulation. The

second operation it performs is that it creates a scheduler. The default scheduler is the

linked list scheduler. The final initialization procedure creates a null agent, which is used

as a packet sink used in various places.

2 In order to follow this discussion a familiarity of OTcl syntax is required. An adequate tutorial of the
OTcl language is provided in the download of the source code and is presented in Appendix D.

23

#Create a simulator object
set ns [new Simulator]

#Create three nodes
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]

#Create links between the nodes
$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $nl $n2 1Mb 10ms DropTail
$ns ,duplex-link $n0 $nl 1Mb 10ms SFQ

$ns cost $nl $n2 1
$ns cost $n0 $n2 1
$ns cost $n0 $nl 2

#Create a CBR agent and attach it to node nO
set cbrO [new Agent/CBR]
$ns attach-agent $n0 $cbrO
$cbrO set packetSize_ 500
$cbr0 set interval_ 0.005

#Create a CBR agent and attach it to node nl
set cbrl [new Agent/CBR]
$ns attach-agent $nl $cbrl
$cbrl set packetSize_ 500
$cbrl set interval. 0.005

#Create a Null agent (a traffic sink) and attach it to node n2
set nulll [new Agent/Null]
$ns attach-agent $n2 $nulll

#Create a Null agent (a traffic sink) and attach it to node nl
set nullO [new Agent/Null]
$ns attach-agent $nl $null0

«Connect the traffic sources with the traffic sink
$ns connect $cbr0 $null0
$ns connect $cbrl $nulll

$ns rtproto Static

#Schedule events for the CBR agents
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$cbrl start"
$ns at 4.0 "$cbrl stop"
$ns at 4.5 "$cbr0 stop"

#Run the simulation
$ns run

Figure 3. Sample Simulation Script

The new simulator object provides numerous instance procedures, which fall into

three categories: methods to create and manage the topology, methods to perform tracing

functions and helper methods. The initialization procedure for this class performs several

operations. It initializes the packet formats, which will be utilized throughout the

simulation. Then it creates a scheduler. The default scheduler is the linked list scheduler.

24

Finally, the initialization procedure creates a null agent, which is used as a packet sink

used in various places.

The next series of commands is the building of the topology of the network to be

simulated.

set nO [$ns node]

This command is also a declaration. The command inside of the brackets calls the

Simulator Class instance procedure node. This procedure creates a new object of the

Node Class. There are dual Node classes, one in the C++ class hierarchy and one in the

OTcl class hierarchy. The instantiation of the OTcl object automatically triggers the

creation of the C++ object. This is typical of most objects created through the OTcl

interpreter. The Node Class is the basic building block of topologies within the

simulator. An object of this class holds variables that reflect state information. This state

information includes a reference to the simulator object, an array of neighbors, an array of

agents attached to the node and a node identification.

In addition, the instantiation of a node creates two classifiers for that node. The first

classifier is an address classifier. This classifier is used to inspect the destination field in

the packet header to determine if the incoming packet is destined for this node. If the

packet is destined for a different node then the classifier directs the incoming packet to

the proper downstream node. The second classifier is a port classifier. If the packet's

destination address is the same as the node's address then the address classifier passes the

packet to the port classifier. The port classifier extracts the port address from the packet

25

and directs the packet to the proper agent at that node. The structure of a typical node is

depicted in Figure 4.

Figure 4. Structure of a Typical Node

The next step in building the topology is connecting the nodes with links.

$ns duplex-link $n0 $n2 1Mb 10ms DropTail

This line creates a duplex link between node nO and n2. There is also an option to create

a simplex link if that is part of the topology to be modeled. This line calls another of the

26

Class Simulator instance procedures, duplex-link. This instance procedure instantiates a

link object of the Class Link class, which is implemented entirely in the OTcl class

hierarchy. The link object maintains the bandwidth and the propagation delay of the link.

In addition, it allows the modeler to designate what type of queue the link will utilize. In

this case a drop-tail queue is selected. Other types of queues that can be used include

Stochastic Fair Queues (SFQ), Weighted Fair Queues (WFQ) and Deficit Round Robin

queues (DRR).

The next set of commands in the simulation script assigns costs to each of the links.

$ns cost $nl $n2 1

It is important to note that these are one-way costs and different cost values can be

assigned to a link depending on which way a packet is traveling on a link. Cost is a

generic metric controllable by the modeler. The cost value is used by routing algorithms

to determine proper path selection. Routing mechanisms utilized in the simulation will

be discussed later.

The next four blocks of commands in the simulation script deal with the creation,

assignment and configuration of agents. Agents are the most important factors for

determining the behavior of simulations. They determine how simulation packet events

are created, sent, received and handled. Agents often represent endpoints where network

layer packets are constructed or consumed. Agents are also used in the implementation of

protocols at various layers.

Agents are implemented from classes in both the C++ hierarchy and the OTcl

hierarchy. The C++ class Agent maintains data members that keep internal state and are

assigned to fields in simulated packet headers before the packets are sent. In the

27

definition of each class the type of packet header that class can create is also defined. The

data members of the C++ class Agent can only be manipulated by a Tel script if they have

been linked to corresponding instance variables in an OTcl agent object. This linking is

done using the bind command. The bind command links the C++ variable with the OTcl

instance variable so that any change in one will be automatically reflected in the other. If

a C++ variable is not bound to an OTcl variable then it can not be set, changed or

manipulated by the simulation script.

In a simulation model an agent is created and then attached to a node. The agent is

assigned a port address automatically based on what order it and other agents were

attached to that node. Packets addressed to an agent will carry this port address appended

to the node's address. Each portion of the address, the port number and the node address,

is represented by one byte. The entire address is sent as an unsigned 16-bit integer, but

the two halves are accessed separately by use of predefined offsets. All fields in packet

headers are accessed in this manner. In the packet definition the offsets for each packet

header field are declared. When the packet header is accessed the offset for the field

being looked at is used to extract the values for that field.

From the simulation script the lines that create a CBR (Constant Bit Rate) agent and

attach the agent to a node appear below.

set cbrO [new Agent/CBR]
$ns attach-agent $n0 $cbrO
$cbrO set packetSize_ 500
$cbrO set interval_ 0.005

The first line instantiates a new CBR agent and assigns it to the variable cbrO. CBR

stands for Constant Bit Rate and refers to a generic packet generator agent that emits a

28

stream of packets at a constant interval. The next line calls another of the Simulator

Class instance procedures, attach-agent. This appends the newly created agent to node

nO's array of assigned agents. The last two lines are assignment statements; packetSize_

and interval_ are instance variables of the newly created object and values are being

assigned to those variables.

In order for an agent to transmit packets it must be connected to another agent.

The address of the packet receiver is stored in the packet generator's dest_ instance

variable. The next block of commands creates a generic packet receiver called a sink or

null agent.

set nulll [new Agent/Null]
$ns attach-agent $n2 $nulll

These two lines create a new null agent, assign it to the variable nulll and then attach the

agent to node n2.

The next step is to connect a packet sender to a packet receiver. This is done in

the next series of commands in the simulation script.

$ns connect $cbrO $nullO

This line sets the destination instance variable in the CBR agent to handle for the null

agent and visa versa. It is important to note that packets are sent between agents by the

sender calling a procedure that belongs to the receiving agent. The simulated routing of

that packet is done separately by specialized routing agents attached to each node in the

simulation.

At this point the topology for the simulated network is complete. A graphical

representation of this topology is presented in Figure 3. Circles represent simulated

29

nodes with their node identifiers centered. Agents attached to each node are in boxes and

connected with dashed lines. The duplex links between nodes are depicted using solid

black lines and the associated costs are annotated next to each link.

Figure 5. Sample Simulation Topology.

Now that the topology has been set, a routing capability needs to be added. This

is done in the next line.

$ns rtproto Static

This line represents another call to a Simulator instance procedure. In this case the

instance procedure is rtproto. The rtproto instance procedure provides the modeler a

mechanism for specifying the desired routing strategy to be implemented by selecting a

30

protocol, which is used as the argument for the instance procedure. The current version

of NS provides three different routing protocols; static routing, session routing and

distance vector routing.

Static is the default routing protocol. If no rtproto command is given in the

simulation script, then static routing is implemented for all nodes in the simulated

network. When static routing is used all routes are calculated once, prior to the beginning

of the simulation. If the topology changes then nodes may become unreachable from

some sources. It is an implementation of Dijkstra's all-pairs shortest path first routing

algorithm. The routes are computed using an adjacency matrix and link costs of all the

links defined in the simulated topology.

The session routing protocol is very similar to the static routing protocol. Both

use identical methods to compute routes. Like static routing, session routing computes

routes prior to the beginning of the simulation. Session routing differs from static in that

if a change in topology occurs during a simulation, session routing will re-compute routes

based on the new topology. Routes are re-computed utilizing the same algorithm as the

original computation.

Both static and session routing are centralized routing schemes. That is, they both

utilize one global routing table to make routing decisions and forward packets. The other

option is to incorporate a decentralized routing scheme. In NS this is considered a

dynamic routing strategy. In dynamic routing the routing tables are maintained at each

node. In addition, dynamic routing allows for more than one routing protocol to be

implemented at each node. The only dynamic routing protocol included with the standard

31

NS distribution is the Distance Vector routing protocol. The Distance Vector routing

protocol utilizes the Distributed Bellman-Ford algorithm.

Once the topology is defined and a routing scheme is established the simulation is

ready to start scheduling events. This scheduling is accomplished using the Simulator

instance procedure at as illustrated below.

$ns at 0.5 "$cbrO start"
$ns at 1.0 "$cbrl start"
$ns at 4.0 "$cbrl stop"
$ns at4.5 "$cbr0 stop"

The at procedure takes a simulated time and a string representing a command as

arguments. The end result is the simulator evaluates the string as a command and

schedules its execution at the prescribed time. The first line from above evaluates to:

start agent cbrO at simulation time 0.5 seconds. This initiates the CBR agent, cbrO,

sending of packets to its prescribed destination at the prescribed interval until the stop

command is scheduled at simulation time 4.5 seconds.

The final command issued from the simulation script is run. The run command

actually initiates the simulation. It begins executing all commands in accordance with the

topology and parameters given. Tracing mechanisms are also available, but are beyond

the scope of this discussion. Once all commands are executed and there are no events

remaining in the scheduler the simulation is complete and the program exits.

D. WHYNS?

The NS simulation tool was selected for a number of reasons. The single most

important factor was that NS is one of only a few open source network simulation

32

packages available. Finding an open source simulation package to model SAAM was

essential in the development of new protocols and implementing new behaviors in the

simulation. In order to model centralized routing decision making and decentralized

packet forwarding, as in the SAAM architecture, new routing mechanisms and node

behavior had to be developed. Without the ability to modify an existing package, this

would not be feasible.

A second reason for the selection of NS was its stability. NS has a substantial

history and has been under constant development for nearly ten years. It has been widely

accepted throughout the network research community. In addition, the core functionality

and architecture has been extensively validated and verified and subsequent additions are

not allowed until appropriate validation and verification has been conducted. This level

of assurance is paramount when attempting to develop new architectures. The new

models developed in NS still require validation and verification, but having these tasks

accomplished on the core of the simulation package already significantly simplifies this

process.

The final criteria for selecting NS was its robustness. Many existing protocols

and behavior have already been modeled using NS and have been incorporated into the

standard release. For SAAM to receive wide acceptance it will have to be shown that it

can be seamlessly integrated with existing protocols in use. These protocols include

existing network and transport layer protocols, many of which have already been

incorporated in NS.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

IV. THE MODEL

A. GOALS

The largest goal in the designing of this model was to be able to simulate the

dynamic behavior of control message traffic within a SAAM architecture. In order to

accomplish this the model had to first emulate the architecture, which meant being able to

produce expected behaviors through use of a simulation tool. The first control channel

behavior to be modeled was simply being able to pass control messages to and from

simulated nodes across a control channel. The first step was creating the packet headers

of the applicable control messages. Next specialized nodes had to be created. These

nodes were to interpret and use the control messages. Specialized nodes are constructed

by attaching agents to the nodes. The agents actually dictate the behavior of the node.

The agents to be created represented the SAAM server, router, and a specialized

application, which utilized a flow request to register its network traffic. The server had to

maintain a PIB from which to calculate routing information. It also had to be able to

receive and act on flow requests and LSA's. In addition the server had to be able to send

Flow Routing Table (FRT) updates to routers on a specific flow path. The router had to

be able to generate and send LSA's to the server and receive FRT updates from the server

in order to make appropriate changes to its FRT to accommodate a newly admitted flow.

Once the agents controlling the specialized nodes were created, flow based

routing needed to be implemented in order to emulate the mechanism that SAAM uses to

route packets. This required the creation of a new rtproto agent to handle the specialized

35

routing mechanism. This operation in particular required an in depth study and

modification of the existing NS source code and an intricate understanding of the NS

architecture.

The remainder of this chapter describes in detail the new classes and objects that

had to be created in the making of this model. In addition, explanation of the

modification of existing NS source code will be provided. The chapter will be broken

down by the agents that were created. Specifically, the chapter will address the creation

of the SAAMServer/Agent, the SAAMRouter/Agent, and the SaamApp/Agent. References

to the source code will be made where applicable. The new and modified NS source code

can be found in Appendices C - E.

B. PACKET FORMATS

There are five control messages of interest in this model. They are flow requests,

flow responses, flow routing table adds, flow routing table deletes, and link state

advertisements. Each control message is responsible for carrying information important

for the proper configuration of the SAAM routing mechanism. They can be grouped by

the type of specialized node where they originate. The flow request is generated by the

application and is sent to the server. Messages which originate from the server, flow

responses, flow routing table adds and flow routing table deletes are grouped into a single

packet format called SIF's (Server Initiated Functions). LSA's originate at the router.

The flow request initiates the model's configuration process. Sent by the

application to the server the flow request contains the information pertaining to the QoS

parameters that the application requires for its network traffic. These parameters include

36

ts_

packet delay, packet loss and throughput. In addition the header contains a time stamp

and the flow destination. Because all traffic in the simulation is carried in IP packet

format, the flow request packet is carried as part of the IP data payload. The flow request

packet carries all of its information in the form of the header and has no real payload.

The packet header structure is defined in the file associated with the SaamApp/Agent,

"saamapp.h". The structure of the flow request packet is displayed below.

Common Header

ptype_ uid size iface_

(int) (char*) (int) (int) (int)

IP Header

src_ dst_ ttl_ fid pno_

(intl6 (intl6 (int) (int) (int)

FlowRequest Header

time_stamp dest delay loss throughpu

(int32 (intl6 (float) (float) (float)

The Common Header and the IP Header are generic to NS packets. The Common

Header contains a time stamp, a packet type, a unique Id, packet size, and an interface

identifier. The packet type field is to alert the receiving classifier what type packet is

arriving so that the receiver can use the appropriate offsets to access the header

information. The IP header fields are an abbreviated form of the standard, note that it

includes a flow Id and a priority field which are IP v6 specific. It should be noted, also,

that the destination field in the IP Header refers to the destination of the packet, where as

the destination field of the Flow Request Header refers to the ultimate destination of the

flow for which the application is requesting.

37

Server Initiated Function (SIF) packets are defined in the "saamserver.h" file.

One packet format is sufficient to accomplish all requirements of messages originating at

the server. The packet format is displayed below. Note that the Common Header and IP

Header have been omitted.

SIF Header

time_stamp sif_type fid nextho si

(int32 (int) (int) (intl6 (int)

flow_request_id

(int)

The sifjype field identifies which type of SIF the packet contains. A value of 1 in this

field identifies the SIF as a Flow Routing Table Add, which is used to add an entry to a

router's flow routing table. A value of 2 identifies the SIF as a Flow Routing Table

Delete. A Value of 3 identifies it as a Flow Response.

Tb& fid field is the Flow Id. It is generated by the server once a Flow Request is

received. It is used by the requesting application to fill in the Flow Id field in the IP

packet header for all packets in the flow once the flow has been established. The fid field

is used by the router to index entries in the Flow Routing table. The nextjiop field

identifies the next hop a router should use to forward packets with the corresponding fid.

The si field identifies the service level pipe the server has identified that supports the

requesting application's QoS requirements. The flowjrequestjd is used by the

application to match the flow response with the appropriate flow request.

LSA's are defined in the file "saamrouter.h". The packet format is displayed

below.

38

LSA Header

time_stamp ongin endpoin delay loss throughpu

(int32 (intl6 (intl6 (float) (float) (float)

The origin and endpoint fields are NS addresses and are used to identify the link that is

being described by the LSA. The delay, loss and throughput fields reflect the QoS

parameters that are available on that link and are of the float data type. These QoS fields

are used by the server to identify available network resources when assigning flows to a

path. The server uses the information in the LSA to update its PIB, which is used to keep

track of the state of the network as a whole.

Any new packet header class that is created in NS has to be registered in the file

"packet.h". This is where the simulator keeps a record of all packet headers in the

simulation. Upon initiation of the simulator, one of each type of packet is created and

kept for reference by the packet manager. It is by this method that the simulator can de-

reference the offsets for each field in a header.

C. APPLICATION

The SAAM routing mechanism is initiated when an application sends a flow

request. To represent this action a new application agent had to be created within the NS

simulator. The SaamApp/Agent is defined in the files "saamapp.h" and "saamapp.cc".

The header file includes a structure for the flow request packet header. The

SaamApp/Agent is inherited from the C++ class Agent. A new SaamApp/Agent is

instantiated through the OTcl interpreter when the user declares one.

39

In this version of the model the SaamApp/Agent is only able to send Flow

Requests and receive Flow Responses. In future versions of the model the application

will utilize the information in the Flow Response to append it to its application flows.

The SaamApp/Agent is able to send Flow requests by utilizing the command method as

inherited from the Agent class. This allows the user to input a character string as a

command to an object through the OTcl interpreter. The interpreter forwards the string to

the C++ object and if the string is recognized as one of the developer defined command

options it executes the command. In the case of the SaamApp/Agent the model has

created a launch command under the command method. When launch is called the

SaamApp/Agent allocates a new Flow Request packet. It then fills in the applicable

header information. Currently the SaamApp/Agent fills in the time_stamp field and the

dst_ field. This is enough information to begin the SAAM configuration process.

The SaamApp/Agent's recv method is used to act on incoming packets addressed

to the application. When a packet arrives at the application, the recv method is

automatically called. In the case of the SaamApp/Agent the recv method accesses the IP

and SIF headers. Currently the application only acknowledges receipt of the SIF packet.

In future versions the application will use the information appropriately.

D. SERVER

The server is the workhorse of the SAAM architecture. In the model it is

represented by the SaamServer/Agent. The SaamServer/Agent is defined in the files

"saamserver.h" and "saamserver.cc". This agent also inherits from the C++ class Agent.

When an application sends a flow request to the server the server must be able to process

40

the request. The server is responsible for maintaining the Path Information Base (PIB).

The PIB is an array of PIB„entries. A PIB_entry is a structure which represents a

complete path from a source to a destination to include the QoS parameters available

across the path. The definition of the PIB_entry is shown below.

struct PIB_entry{
nsaddrj src;
nsaddrj dest;
nsaddrj nodes_in_path_array[4] ;
int delay;
int loss;
int throughput;

};

The PIB contains a PIB_entry for each possible path from all sources to every destination

in the simulated topology. The src and dest fields are of the type nsaddrj which is

declared as a 16 bit unsigned integer. Currently the model contains a static PIB, which is

hard coded to reflect a single sample topology. Future versions of the model will require

methods to dynamically build and modify the PIB based on changing topology

information as gathered by the server.

Normally the PIB is used as the basis for making all routing decisions. The topology

information reflected by the PIB is gathered by the server by either active agents or by the

receipt of LSA's. In order to collect this information the server must be able to receive

and process LSA's. The model does this through its recv method. The server's recv

method must be able to differentiate between the different types of messages that the

server may receive. In order to do that the recv method accesses the common header of

the incoming packet. The ptype_ field of the common header tells the server what type of

packet it has just received and can then process it accordingly.

41

Once an incoming packet is recognized as an LS A, the server would access the

header and use the information to update its PIB. Currently the SaamServer/Agent is only

able to acknowledge the receipt of an LS A. Future versions will use the source and

destination fields of the LSA to identify all paths, which include that link. It will

determine if the QoS parameters of each of the affected paths need to be adjusted based

on the LSA information, and then make appropriate changes to those PlB_entries. It is

by this method that the model is able to demonstrate the adaptability of the SAAM

architecture.

If the packet received is determined to be a flow request, then the server must be ,

able to appropriately process that request. The server would first access the flow request

header to determine the source and destination of the requested flow. Using this

information the server would index its PIB to find a PIB_entry with the same source and

destinations and whose QoS fields were greater than or equal to the requested flow

parameters. The first flow, which met the parameters, would be selected and the flow

assigned an Id. The server would then access the nodes_in_path_array field of the

selected PIB_entry.

The nodes_in_path_array contains the Id's of all of the routers which are associated

with the path identified by the PIB_entry. Using these Id's the server would generate and

send Row Routing Table Updates to each of the affected routers. Currently the model is

not able to include the appropriate routing information in the Routing Table Updates.

The model is, however, able to launch a Server Initiated Function (SIF) which is

designated as a Routing Table Update to every router in the simulated topology in

response to the reception of a Flow Request.

42

Once all affected routers have been updated the server sends a Flow Response to the

requesting application. The Flow Response is a SIF and would normally include the fid

and iheflow_request_id. Currently the model is only able to launch a generic Flow

Response message. Future versions of the model will include this information to inform

the requesting application that its request has been granted, if available network resources

exist.

In order for the server to be able to address and send messages to all routers in the

topology it must first know of the router and second maintain a record of the router's

address. The SaamServer/Agent maintains a rtr_array. The rtrjxrray is an array of

router addresses. Currently the rtr_array is limited to 40 routers, but is easily expandable

to accommodate larger topologies. Each time a router sends an LS A to the server the

source address of the IP packet is accessed and compared to each element in the rtr_array

until a match is found. If no match is found the address is appended to the rtr_array. In

this way the server is able to maintain a record of all routers which have sent it an LSA.

As part of the initialization of the simulation each router is required to register with the

server by artificially connecting its agent with the SaamServer/Agent and launching an

introductory LSA. This registration is accomplished through the simulation script.

In a method similar to router registration, each application also registers with the

SaamServer/Agent. The applications are not required to register as a part of the

initialization of the simulation. Each application is registered with the server upon the

receipt of its Flow Request. The applications are recorded in the app_array. Currently

the appjxrray is limited to 2 application addresses, but can be easily be expanded in the

simulation for future versions.

43

E. ROUTER

In the model the router is represented by the SaamRouter/Agent. The router is

responsible for implementing all of the routing decisions made by the server. It should

also be able to monitor the state of all of its associated links. The actual forwarding of

application traffic is accomplished by a separate agent, which must also be attached to

any node designated as a router. The agent, which accomplishes the forwarding of

packets, inherits from the rtproto/Agent and is called SaamRtproto/Agent. This

specialized agent is defined in the files "rtProtoSAAM.h" and "rtProtoSAAM.cc" and

will be discussed later. The SaamRouter/Agent is defined in the files "saamrouter.h" and

"saamrouter.cc".

The SaamRouter/Agent is responsible for the sending and receiving of control

messages. It must be able to receive the two types of SIF messages "Flow Routing Table

Add" and "Flow Routing Table Delete". The SaamRouter/Agent is responsible for

extracting the information from the server sent SIF's and passing that information directly

to the SaamRtproto/Agent. The router is also responsible for generating LSA's and

sending them to the server.

Currently the router is able to receive SIF's, extract the contained information and

acknowledge receipt. The router is also able to generate LSA messages and update the

time_stamp field. Once the LSA's are generated the router is able to launch them to the

server. The model is currently unable to monitor the associated links in order to maintain

44

a picture of the network-state, but this is not required to model the message passing

characteristics.

F. STRENGTHS AND WEAKNESSES

1. Strengths

Although the model is incomplete, it represents some invaluable progress in the

modeling of the SAAM control channel dynamics. The model defines the structure of all

control messages. These definitions include the data types and fields required to relay all

pertinent information from object to object. The mechanism for the sending and

receiving of these control messages is in place. This accomplishment in itself represents

the establishment of the control channel and forms the basis for all future work in the

model.

The model was built in an object-oriented design under the NS framework. The

modularity of the model allows for ease of implementation and future design efforts, at

least under the limitations presented by the NS simulation tool. The modeler with a

reasonable understanding of NS can easily comprehend the design structure of the model

and be able to extend its functionality with a minimum study period. The code is

reasonably well commented and documented so that the logic implemented is easily

followed and understood.

Where possible, duplication of packet fields has been avoided. Duplication does

exist, but only to the extent that the duplication was required to carry information that

45

would have been lost as a packet travels up and down the protocol stack. If certain data

would become consumed by the lower layer of the protocol stack and was of importance

to the next layer, then duplication of this information was unavoidable. This is consistent

with current practices, and where practiced represents more efficient use of resources than

passing additional messages between protocol layers.

The greatest strength in this model is groundwork that has been constructed for

future iterations and research. The creation of the basic objects and the establishment of

the required C++ and OTcl linkages represent a monumental step forward in the

development of a useable architectural model that will enhance the study and research of

the SAAM project. A majority of the effort reflected in the development of this model

was gaining an understanding of the inner workings and architecture of the NS simulation

tool. Converting relatively simple conceptual designs to implementable model entities

and behaviors was no small task and represented the most time consuming portion of the

work effort in developing this model.

2. Weaknesses

The model in its current configuration is unmistakably incomplete. To completely

model control channel dynamics a flow based routing mechanism is required.

Unfortunately the effort to implement this mechanism has been heretofore unsuccessful.

An even greater understanding of the NS simulation tool is required and the resident

expertise to achieve that goal was not locally present or available in time to incorporate it

in this version of the model. Future development in this area will be predicated on a more

focused and in depth study of this particular facet of NS.

46

The current version of the model possesses no mechanism for discovery of nodes

in the network. That is, there is no automated way for the server to receive information

pertaining to the existence of routers or host nodes in the simulation. This lack of

discovery results in the need for an awkward initialization process through the simulation

script. This initialization requires that each router be artificially connected to the server

agent in order to send an introductory LS A so that the router can be registered with the

server and be added to the server's rtr_array. A simple version of a hello protocol may

be useful for future versions to rectify this shortfall.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

CONCLUSION

A. LESSONS LEARNED

The model as presented in its current form does not reach the goals as set out at

the beginning of this study, but many lessons have been gleaned in the development of

the model thus far. These lessons learned fall into two broad areas. The model

development area mostly consists of the intricacies involved in building simulation

models using the NS simulation tool. The other broad area concerns the SAAM

architecture and its implementation.

1. NS Development

In order to conduct development in NS the developer must know 3 different

languages. A knowledge of C++ and Tel is required along with an understanding of NS

itself. NS is a difficult and convoluted software package, which takes a great deal of

study to comprehend. Although there are volumes of information available to support the

NS developer, none of them seem to offer a clear and understandable description of the

architecture. The most informative (and confusing) of the material is contained in the NS

Notes and Documentation. [FALL99] This document contains a detailed, but disjointed,

technical description and users manual.

Even with all of the so-called help available for NS there is no substitution for

getting your hands dirty in the code. It took a great deal of reading, searching and

experimentation with the NS code before any serious development could begin. Though

49

the NS learning curve is very steep, it is still a very promising research tool and should be

considered for any further work in the SAAM modeling effort.

Selecting a development platform was also an initial stumbling block in the model

building effort. Originally it was planned to accomplish the modeling effort on a standard

Personal Computer architecture using the Microsoft Windows NT operating system.

According to the NS web page (URL: http://www-mash.cs.berkeley.edu/ns/ns-build.html)

the simulation tool can be compiled and run from this architecture. However, after many

weeks and numerous attempts, successful compilation was never accomplished.

Different choices of operating systems were tried. The ultimate choice of operating

systems was the Linux operating system. Several versions of the Linux operating system

were used to compile and run NS and no significant problems were discovered on any of

them. Documentation for downloading, unpacking and compiling NS is available in

Appendix A.

A significant roadblock to designing an object-oriented model in NS is that the

tool itself is not completely object oriented. It is written in a combination of object-

oriented design and functional programming. The shear volume of source code

associated with the simulation tool is daunting, but the convoluted aggregation of

functional code, object oriented design, C++ code and Tel code presents a conflagration

which is not easily deciphered. With this model as a basis, however, extension of this

concept should prove more fruitful in future versions and a useful more robust model can

be developed with a minimum of effort.

50

2. SAAM Development

Throughout the course of this study great strides have been made in the further

refining of the SAAM concept as a whole. Definitions of packet structures, required

objects, use cases and object interactions received great consideration and study. This

thesis was developed in parallel and in conjunction with another work pertaining to the

SAAM architecture. Marine Corps Captains Dean Vrable and John Yarger have

accomplished an in depth study of the SAAM architecture as a whole and developed an

application layer emulation of both the SAAM server and the SAAM router. Their work

incorporates many of the lessons learned and would be a beneficial starting point in the

study of the SAAM architecture. [VRAB99]

The conceptualization and development of the PIB and the flow routing tables

were two of the more noteworthy accomplishments of the joint effort provided between

the two studies. Though the full realization and conceptualization of these concepts are

not completely reflected in this thesis, their contribution cannot be ignored and represent

a monumental step forward in the final realization of the goals set out for the SAAM

project as a whole.

The control channel dynamics that this thesis proposed to model are also

important factors, which will ultimately determine the success of the SAAM project.

Determining the timing of when LSA's should be initiated by the router is a fundamental

question. Use of triggers and hold-down timer will present a realistic and implementable

solution to this question. However, much study and experimentation is still required to

determine the change thresholds and hold-down timer values that will provide the most

effective and efficient control configuration.

51

B. FUTURE WORK

Though this model represents a great step forward in the S AAM research, there is

still much left to be done to create a viable model worthy of running detailed simulations

for architecture development and testing. Many of the stated goals for this thesis remain

unfulfilled and require future work. The remainder of this sub-section identifies many of

the areas requiring future development. Though the following list is not all-inclusive, the

author feels that these areas will provide the most significant impact on extending and

improving upon this work.

1. Flow Based Routing

The greatest hurdle left in the development of this model is the implementation of

a flow based routing scheme. Until a viable flow based routing scheme is implemented

further exploration of control message causality cannot be explored. In order to validate

the effect of control channel messages on the configuration of the system, the system

must be able to route network traffic packets. Without this ability there is no way to test

the validity of the concept or conduct any worthwhile experimentation with the

components that have been developed in the current model.

To implement flow based routing in this model a further study into the NS routing

mechanism is required. In specific, the study needs to concentrate on the dynamic routing

algorithms already implemented in the NS architecture. Particular attention needs to be

paid to the rtProto agents, the route-logic objects and their implementations of routing

52

tables and lookup procedures. Examples of these agents can be found in the files

"rtProtoDV.h" and "rtProtoDV.cc". In addition the Tel files which define the instance

procedures to manipulate these objects through the OTcl interpreter are "route-proto.tcF

and "ns-route.tcl". Focus on these areas and development of flow based routing

schemes, may in themselves present a complete topic for future study.

2. Dynamic PIB Configuration

The current model implements a test topology based upon a static PIB "hard-

coded" into the SAAMServer/Agent. To fully realize the proposed S AAM architecture the

PIB must be able to incorporate topology changes as presented to the server based on

LSA's received from individual routers. These changes should not only reflect the

connectivity diagram maintained by the server, but should also include the QoS

parameters associated with each link.

The PIB is the basis for all routing decisions made by the server and should reflect

the most up to date information available to the server. Implementing dynamic updating

of the PIB should not present the developer with a major challenge. It simply entails

extracting the information from a received LS A and making the appropriate change to the

corresponding PIB_entry in the PIB. The challenge will lie in the proper selection of an

appropriate data structure for the PIB. Latency of updates and lookups in the PIB

represent a major bottleneck in the performing of the server's mission. Reducing this

latency will greatly enhance the overall speed of the model in subsequent simulations.

53

3. Service Level Pipes

The implementation of service level pipes into the model is probably the

most challenging endeavor left for the successful modeling of the SAAM architecture.

The concept of service level pipes represents the single most important factor for the

implementation of QoS routing in SAAM. To implement service level pipes into the

model will require determining how to partition individual links. The next step is to

develop a method for actually assigning network flows to an individual service level pipe.

One concept developed to solve this problem is in the use of individual outbound queues

for each service level pipe.

To ensure that each link maintains its QoS guarantees schedulers will have to be

developed to manage the delay and loss rate at each queue. To maximize available

resources, service level pipes that are not being fully utilized should be made available to

traffic from other service levels as long as the additional packet flow doesn't degrade the

QoS of the traffic assigned to that pipe. Queue management and the development of the

required schedulers represent a large developmental effort and are the topic of another

individual study.

C. SUMMARY

Though not all of the goals of this thesis have been met, it undoubtedly represents

a significant step towards the successful modeling of the SAAM architecture. Much has

been learned in the effort that will undoubtedly progress the project as a whole. The

SAAM project represents a major conceptual breakthrough in the effort to realize the

54

Next Generation Internet. Much is left to be done before implementation of SAAM can

be accomplished, but the research already completed lays the groundwork for future

accomplishments. Regardless of the ultimate success or failure of the project, the

research being conducted in this effort is applicable and beneficial to the research

community. Many of the concepts, which SAAM has proposed, represent "out-of-the

box" thinking and will without a doubt result in a paradigm shift in the network research

field. For the author this has been a worthwhile experience and it is his hope that he may

continue in this ongoing effort.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

APPENDIX A. [NS DOWNLOADING AND INSTALLATION PROCEDURES]

This brief tutorial is a step-by-step instruction list for downloading and

installing the NS network simulator on a standard IBM compatible personal computer.

These particular instructions reflect steps required to install the simulator on a computer

utilizing the LINUX operating system. The computer utilized for purposes of this tutorial

was a dual Pentium 300 architecture with 256 Mb of RAM. The system was dual booted

with Microsoft Windows NT 4.0 and the Slackware variant of LINUX. Differences in

configuration of computers may impact on installation procedures.

The entire source code for NS including all required and optional packages are

available at URL: http://www-mash.cs.berkeley.edu/ns/. Generic installation procedures

and specific trouble shooting guides based on different architectures are also available at

this location. The minimum required download consists of the following files:

ns-src_21b5_tar.tar

otcl-l_0a4_tar. tar

tclcl-src-l_0b8_tar. tar

tcl8_0_4_tar.tar

tk8_0_4_tar.tar

STEP 1: Download required source code.

There are two options for downloading the source code. All packages,

required and optional, can be downloaded using the all-in-one download option. The

other option is to download only those packages required one at a time. Whichever

option is selected, source code should be downloaded into one main directory.

STEP 2: Unpack the source code.

57

The source code when downloaded is compressed in a tar format. In order

to be utilized it must be first unpacked. Unpacking is done at the command prompt

utilizing the tar command with the -xzvf options. Below is an example of a typical

unpacking command.

tar -xzvf <file name>

The result of this command is to unpack all of the associated files into their own

subdirectory. This needs to be done for every file downloaded from the website.

STEP 3: Make the Executable for each package and Install

This is where it may get a little tricky. The instructions on the website are

terse and sometimes incomplete. It is important to install all of the packages in order.

The first package to install is the Tel package. The following steps are required to

compile and install the Tel package. Begin in the Tel directory.

1. Change to the unix sub-directory type cd unix

2. From the unix sub-directory type ./configure

3. Now compile the package type make

4. Install the package type make install

If any problems arise during this phase there are README files in both the Tel directory

and the unix sub-directory, which may help in resolving conflicts.

The next package to install is the Tk package. The following steps are required to

compile and install the Tk package. Begin in the Tk directory.

1. Change to the unix sub-directory type cd unix

2. From the unix sub-directory type ./configure

58

3. Now compile the package type make

4. Install the package type make install

There are also README files in both the Tk directory and the unix sub-directory to assist

in resolving compilation and install errors.

The tclcl package is the next to be installed. Start in the tclcl directory.

1. Directly from the tclcl directory type ./configure

2. Compile the package type make

3. Install the package make install

Next the OTcl package must be compiled and installed. Start in the otcl directory.

1. Directly from the otcl directory type ./configure

2. Compile the package type make

3. Install the package type make install

Finally you are ready to compile the NS simulation tool package. Start in the ns

directory.

1. Directly from the ns directory type ./configure

2. To compile type make

3. A test package is available to verify that all packages and dependencies are

correctly installed and compiled, type /validate. Be prepared as the

validation programs may take up to 20 minutes to complete.

When the validation programs complete without error you have successfully compiled

and installed all requirements needed to use the NS simulation tool. It is important to

remember that if you alter the source code or add additional files and need to recompile, it

is first required to delete all of the previous NS object files. To do this type make clean.

59

Then prior to re-compiling be sure to recreate any needed dependencies by typing make

depend.

Extensive additional help to resolve installation and compiling errors is available

at the NS homepage URL - http://www-mash.cs.berkeley.edu/ns/ns-build.html

60

APPENDIX B. [DEVLOPMENT STRUCTURE]

Below is the directory structure for this development;

NSJHOME = Msdev/ns-2.1b5
TCLCLJIOME = /nsdev/tclcl-1.0b8
OTCLJiOME - Msdev/otcl-l.Oa.4
TCLHOME = /nsdev/tcl8.0
TK_HOME = /nsdev/tk8.0

In this directory structure Msdev is the original directory where the original compressed

source files were downloaded. Subdirectories of Msdev were created when these original

files were unpacked as described in appendix A. This directory structure will be used

when describing file location throughout the remainder of this appendix.

1. SAAM EXECUTION SEQUENCE STARTING WITH A FLOW REQUEST

This section will describe the SAAM execution sequence that starts with an

application sending a Flow Request to the server. As can be seen in Figure 6 the SAAM

execution sequence begins once an application requiring QoS sends a Flow Request to

the server. The code required to accomplish this can be found in

"NSHOME/SaamApp.cc". The actions which take place at the server can be found in

"NSHOME/SaamServer.cc". The pseudo code shown in the boxes represent the code

that actually executes these actions. The sending of a Flow Request is initiated through

the Tel simulation script. The syntax for this action looks like this;

$ns at 0.2 "$appl launch"

The flow request would contain the bounds on packet loss, delay and throughput that the

application was requesting along with the source and destination of the requested flow. It

is sent using the command method in the saamapp/agent.

Upon the Flow Request's arrival at the server the recv method is called and the

SaamServer/Agent will begin processing the request. First the server must access the

Flow Request packet header and be able to extract the necessary fields. Using the sre and

dest fields the server will index the PIB to find a PIB_entry which contains the link

between sre and dest and has values in the loss, delay and throughput fields which are

greater than or equal to those requested. The server then generates and sends Flow

61

Routing Table Add (one of the sifjypes) messages for each router contained in the

nodes_in_path_array of the selected PlB_entry.

Generate
flow_request(src,dest,loss,delay,throughput)

launch (flow_request)

SaamAPPl

Flow_request (p)

recv(s)
update

SaamServer

SaamApp2

recv(p)
PIB_Lookup(src,dest,loss,delay,throughput)

»returns PIB_entry(path)
generate fid()
for each node nodes_in_path_array(path) {

generate sif(time_stamp,fid,nexthop)
launch (sif)

generate flow_resp(time_stamp,sif_type,fid,next_hop,sl,flow_request_id)

Figure 6. SAAM Execution Sequence Starting from Flow Request

2. SAAM EXECUTION SEQUENCE STARTING WITH AN LSA

The router code resides in "NSHOMWSaamRouter.ee". After the recv

method is called the router accesses the SIF header and uses the fid, nextjiop and si fields

to update its Flow Routing Table.

62

Figure 7 shows the S AAM execution sequence which is started when a router

sends an LSA message to the server. The code which generates and sends an LSA can be

found in "NSHOMFVSaamRouter.ee". The router must be able to monitor all of the

service level pipes on each of its associated links.3 When a significant change in the QoS

parameters occurs on a service level pipe the router will generate an LSA. The link is

identified by the address of the origin router and the endpoint router that the link is

attached to. The router then sends the LSA to the server.

SaamAPPl

generate
lsa(time_stamp,origin,endpoint,loss,delay,throughput)

SaamServer SaamApp2

Recv (1)
update PIB(ocigin,endpoint,loss,delay,throughput)

for each PIB_entry
if PIB_entry.nodes_m_path_array

contains(origin,endpoint)

Figure 7. SAAM Execution Sequence Starting from Sending of LSA

Upon receipt of the LSA the server accesses the LSA header information. Using

the origin and endpoint fields it indexes those PIB_entry's which contains those routers

in its nodes_in_path_array and updates the loss, delay and throughput fields.

' The current version of this model does not contain this functionality

63

In the creation of this model several NS source files had to be modified. The

"NSHOME/packet.h" file contains the enumerated type PTYPE. PTYPE contains the

names of all packet types that can be used in NS. If a new packet type is created when

building a model it must be included as an enumerated member of PTYPE. The new

packet types created in this model are PT_FLOW_RQST, PT_SIF and PT_LSA. All of

these packet types had to be added to the enumerated type PTYPE. These packet types

are used in the instantiation of an agent. When the agent's constructor is called the packet

type that agent uses is sent as an argument to the parent object's constructor. The parent

object for all agents is the class Agent.

The "Makefile" also had to be modified. When a new object is inserted to the

model by adding source code files, the "Makefile" must be adjusted so that it knows to

compile the additional files. The new file name with the extension replaced by a ".o"

must be inserted into the OBJ portion of the "Makefile". This signals the compiler to

source the new code and compile the object.

The new files created for this model were; "SaamApp.h'7'SaamApp.cc",

"SaamRouter.h", SaamRouter.cc", SaamServer.h" and "SaamServer.cc". Each pair of

new file required a new entry into the "Makefile".

3. NS RUNTIME INITIALIZATION

This section describes the initialization process the simulator goes through when a

user runs the executable. The main program routine resides in HOME/tclAppinit.cc".

The main program calls a Tcljnain program, which in turn calls Tcl_AppInit.

Tcl_AppInit creates an interpreter process called interp. The interpreter process is an

instance of an OTcl shell. The shell is created by a combination of function calls,

Tcljnit and Otcljnit. Tcljnit is located in "TCLHOME/tcl8.0/generic/tcl.h", and

Otcljnitis located in "OTCLHOME/generic/otcl.h ".

64

Once the Tel interpreter process has been started there are five steps in the

Tcl_AppInit routine. The first step is to read in required resource files. This is done by

the following command;

Tcl_SetVar(interp, "tcl_rcFileName", "-/.ns.tcl, TCL_GLOBAL_ONLY);

The next step is to name the shell instance. In all cases the shell gets the handle "ns".

The code that does this is shown below;

Tcl::init(interp, "ns");

Once the shell has been named, the simulation must load all of the possible packet types

that have been compiled and registered. The code to accomplish this is below;

et_ns_ptypes. load();

The packet types registered in the file "NSHOME/packeth" are turned into Tel useable

code through the "NSHOME/ptypes2tcl" file. They are put in the file

"NSHOME/gen/ptypes.cc". In fact all NS files written in Tel must be converted to C++

code in order to be recognized and accepted by the compiler. At run time during

initialization the Otcl interpreter can access these items, both objects and commands, to

instantiate required objects. This is also the method that allows Tel code to be used by

the simulation script. In this way all NS Tel code is made available to the interpreter.

The next step is to load simulator object commands. This is accomplished in the

same way that the packet types were loaded.

et_ns_lib.load();

Finally the Tcl_AppInit function loads all of the remaining miscellaneous commands;

Init_misc(); i

These miscellaneous commands include thing like random number generators and unit

conversion functions.

65

Once these five steps are complete the the main routine contimues to run and

execution never returns to it unless an error occurs. Subprograms run in the background

which listen and await instructions and provide the insightful command prompt, "%".

NS RUNTIME INITIALIZATION

MAINO

JJ
Create Tel Interpreter

process (interp)

JJ

_S.

Add packet definitions

$NS_HOME/tclAppInit.cc

$NS_HOME/tclAppInit()
Tcl_SetVar(interp, "tcLrcFileName",

"-/.ns.tcl", TCL_GLOBAL_ONLY)

Tcl::init(interp, "ns")

et_ns_ptypes.load()

et_ns_lib.load()

Init_misc()

Figure 8. NS Runtime Initialization

66

APPENDIX C. [SERVER SOURCE CODE]

67

File name: saamserver.h
* Author: Brian Tiefert
* Date: as of 12 Aug 1999
* abilities: able to create new saamserver through Tel script
* PIB definition
*

*/

#ifndef ns_saamserver_h
#define ns_saamserver_h

#include "agent.h"
#include "tclcl.h"
#include "packet.h"
#include "address.h"
#include "ip.h"

stract hdr_sif {
double time_stamp;
int sif_type;
int fid;
nsaddr_t next_hop;
int si; //service level
double flow_req_id;

};

struct PIB_entry{
nsaddr_t sre;
nsaddr_t dest;
nsaddr_t nodes_in_path_array[4];
int cost;

};

//SaamServerAgent class definition

class SaamServerAgent: public Agent {
public:

//member functions

//constructor
SaamServerAgent();

void initialize();

68

int is_element(nsaddi_t array[], nsaddr_t router);
int command(int arge, const char*const* argv);

//should override recv() from Agent but this is same method definition
void recv(Packet*, Handler*);

protected:
int off_sif_;
int off_lsa_;
int off_flow_rqst_;
nsaddr_t rtr_array[40]; //max of 40 routers allowed in simulation
int router_index;
nsaddr_t app_array[2]; 111 apps allowed per simulation
int app_index;

//for now set up a static PIB
//only 34 paths allowed

PIB_entryPIB[34];
};

#endif

69

/*
* File name: saamserver.cc
* Author: Brian Tiefert
* Date: as of 17 Aug 1999
* abilities: Able to create a new saamserver through Tel script,
* Able to send sif packets to router and recieve lsa's/flow_rqst
* creates a static PIB utilizing known topology
*

*/

#include "saamrouter.h"
#include "saamserver.h"
#include "saamapp.h"
#include <iostream.h>

static class SaamServerHeaderClass : public PacketHeaderClass {
public:

SaamServerHeaderClassO: PacketHeaderClass("PacketHeader/Sif',
sizeof(hdr_sif)) {}

} class_saamserverhdr;

//definition for SaamServerClass inherits from TclClass
static class SaamServerClass : public TclClass {
public:
//SaamServerClass constructor calls TclClass constructor using
//"Agent/SaamServer" as argument

SaamServerClassO : TclClass("Agent/SaamServer") {}

TclObject* create(int, const char*const*) {
//make a new SaamServerAgent by calling SaamServerAgent constructor

return (new SaamServerAgent());
}

} class_saamserver;

//constructor for SaamServerAgent calls constructor for Agent using PT_SIF as
//an argument

SaamServerAgent::SaamServerAgent(): Agent(PT_SIF) {

initialize();

//bind the compiled variables to the interpreted variables
bind("packetSize_", &size_);

70

bind("off_sif_", &off_sif_);
bindC'offJsaJ*, &off_lsa_);

cout«"new SaamServer\n";

}

void SaamServerAgent::initialize()

{
//first initialize the router array
routerjndex = 0;
for (int i=0; i<40; i++){

rtr_array[i] =0;}
cout «"rtr_array initialized\n";
//next initialize application array
app_index = 0;
for (intj=0;j<2;j++){

app_array[j] = 9999;}
cout <<"app_array initialized\n";

}

//is_element() array search function

int SaamServerAgent::is_element(nsaddr_t array[], nsaddr_t agent)

{
int array_size;
if (array == app_array) array_size = 2;
else if (array == rtr_array) array_size = 40;
for(int i = 0; i<array_size; i++){

if (agent == array[i]){
return i;

}
}
return -1;

}

/* The command function allows the developer to create methods
that can be accessed through the OTcl interpreter. The function
takes a character string as an argument and compares it to the
developer created command name. If a match is found the code
is executed
*/.

int SaamServerAgent::command(int arge, const char*const* argv)

71

{
if(argc==2){
if (strcmp(argv[l], "launch") == 0) {

//Create new packet
Packet* pkt = allocpkt();
//Access the Sif header for the new packet
hdr_sif* hdr = (hdr_sif*)pkt->access(off_sif_);
//Set the sif_type to LSA
hdr->sif_type = 1;
//Assign time_stamp
hdr->time_stamp = Scheduler: :instance().clock();
//send the packet
send(pkt, 0);
//return TCL_OK, so the calling function knows that the
//command has been processed
return (TCLOK);
//Acknowledge the packet was sent
cout«"sif packet launchedVn";

}
else if (strcmp(argv[l], "build_PIB") == 0) {

cout« "building PIB\n";
// for now build a static PIB based on known topology
nsaddr_t nO = app_array[0];
nsaddr_t nl = this->addr_;
nsaddr_t n2 = rtr_array[0];
nsaddr_t n3 = rtr_array[l];
nsaddr_t n4 = rtr_array[2];
//n0->nl
PIB[0].src = nO;
PIB[0].dest=nl;
PIB[0].nodes_in_path_array[0] = nO;
PIB[0].nodes_in_path_array[l] = n2;
Pffi[0].nodes_in_path_array[2] = nl;
PIB [0].cost = 2;
//n0->n2
PIB[l].src = nO;
PIB[l].dest= n2;
Pffi[l].nodes_in_path_array[0] =n0;
PIB[l].nodes_in_path_array[l] = n2;
PIB[l].cost=l;
//n0->n3
PIB[2].src = nO;
PIB[2].dest=n3;

72

PIB[2].nodes_in_path_array[0] = nO;
Pffi[2].nodes_in_path_array[l] = n2;
PIB[2].nodes_in_path_array[2] = n3;
PIB[2].cost = 3;
//nO->n3
PB[3].src = nO;
PIB[3].dest=n3;
PIB[3].nodes_in_path_array[0] = nO;
Pffi[3].nodes_in_path_array[l] = n2;
PIB[3].nodes_in_path_array[2] = n4;
PIB[3].nodes_in_path_array[3] = n3;
PB[3].cost = 6;
//nO->n4
PIB[4].src = nO;
PB[4].dest= n4;
PIB[4].nodes_in_path_array[0] = nO;
PIB[4].nodes_in_path_array[l] = n2;
PB[4].nodes_in_path_array[2] = n4;
PIB[4].cost = 5;
//n0->n4
PB[5].src = nO;
PIB[5].dest=n4;
PIB[5].nodes_in_path_array[0] = nO;
PB[5].nodes_in_path_array[l] = n2;
PIB[5].nodes_in_path_array[2] = n3;
PB[5].nodes_in_path_array[3] = n4;
PIB[5].cost = 4;
//nl->nO
PIB[6].src = nl;
PB[6].dest= nO;
PB[6].nodes_in_path_array[0] = nl;
PIB[6].nodes_in_path_array[l] = n2;
PIB[6].nodes_in_path_array[2] = nO;
PB[6].cost = 2;
//nl->n2
PIB[7].src = nl;
PIB[7].dest=n2;
PB[7].nodes_in_path_array[0] = nl;
PB[7].nodes_in_path_array[l] = n2;
PB[7].cost=l;
//nl->n3
PIB[8].src = nl;
PB[8].dest=n3;
PB[8].nodes_in_path_array[0] = nl;
PIB[8].nodes_in_path_array[l] = n2;

73

PEB[8].nodes_in_path_array[2] = n3;
PBB[8].cost = 3;
//nl->n3
PIB[9].src = nl;
PEB[9].dest=n3;
PIB[9].nodes_in_path_array[0] = nl;
Pffi[9].nodes_in_path_array[l] = n2;
PIB[9].nodes_in_path_array[2] = n4;
PIB[9].nodes_in_path_array[3] = n3;
PIB[9].cost = 6;
//nl->n4
PIB[10].src = nl;
PIB[10].dest= n4;
PDB[10].nodes_in_path_array[0] = nl;
Pffi[10].nodes_in_path_array[l] = n2;
PIB[10].nodes_in_path_array[2] = n4;
PIB[10].cost = 5;
//nl->n4
PIB[ll].src = nl;
PIB[ll].dest=n4;
Pffi[ll].nodes_in_path_array[0] = nl;
PIB[ll].nodes_in_path_array[l] = n2;
PIB[ll].nodes_in_path_array[2] = n3;
Pffi[ll].nodes_in_path_array[3] = n4;
PIB[ll].cost = 4;
//n2->n0
PIB[12].src = n2;
PIB[12].dest= nO;
PIB[12].nodes_in_path_array[0] = n2;
PIB[12].nodes_in_path_array[l] = nO;
PIB[12].cost=l;
//n2->nl
PIB[13].src = n2;
PIB[13].dest=nl;
PB[13].nodes_in_path_array[0] = n2;
PIB[13].nodes_in_path_array[l] = nl;
PB[13].cost=l;
//n2->n3
PB[14].src = n2;
PB[14].dest=n3;
PIB[14].nodes_in_path_array[0] =n2;
PIB[14].nodes_in_path_array[l] = n3;
PIB[14].cost = 2;
//n2->n3
PIB[15].src = n2;

74

PIB[15].dest=n3;
PIB[15].nodes_in_path_array[0] = n2;
PIB[15].nodes_in_path_array[l] = n4;
PIB[15].nodes_in_path_array[2] =n3;
PIB[15].cost = 5;
//n2->n4
PIB[16].src = n2;
PIB[16].dest= n4;
PIB[16].nodes_in_path_array[0] = n2;
PIB[16].nodes_in_path_array[l] = n4;
PIB[16].cost = 4;
//n2->n4
PIB[17].src = n2;
PIB[17].dest=n4;
PIB[17].nodes_in_path_array[0] = n2;
PIB[17].nodes_in_path_array[l] = n3;
PIB[17].nodes_in_path_array[2] = n4;
PIB[17].cost = 3;
//n3->nO
PIB[18].src = n3;
Pffi[18].dest= nO;
PIB[18].nodesJn_path_array[0] = n3;
PIB[18].nodes_in_path_array[l] = n2;
PIB[18].nodes_in_path_array[2] = nO;
PIB[18].cost = 3;
//n3->n0
PIB[19].src = n3;
PIB[19].dest=nO;
PIB[19].nodes_in_path_array[0] = n3;
PIB[19].nodes_in_path_array[l] = n4;
PIB[19].nodes_in_path_array[2] = n2;
PIB[19].nodes_in_path_array[3] = nO;
PIB[19].cost = 6;
//n3->nl
PB[20].src = n3;
PIB[20].dest=nl;
PIB[20].nodes_in_path_array[0] = n3;
PIB[20].nodes_in_path_array[l] = n2;
Pffi[20].nodes_in_path_array[2] = nl;
PIB[20].cost = 3;
//n3->nl
PIB[21].src = n3;
PIB[21].dest=nl;
PIB[21].nodes_in_path_array[0] = n3;
PIB[21].nodes_in_path_array[l] = n4;

75

PIB[21].nodes_in_path_array[2] = n2;
Pffi[21].nodes_in_path_array[3] =nl;
PIB[21].cost = 6;
//n3->n2
PIB[22].src = n3;
PIB[22].dest= n2;
PIB[22].nodes_in_path_array[0] = n3;
PIB[22].nodes_in_path_array[l] = n2;
PIB[22].cost = 2;
//n3->n2
PB[23].src = n3;
PB[23].dest=n2;
Pffi[23].nodes_in_path_array[0] = n3;
PIB[23].nodes_m_path_array[l] = n4;
PIB[23].nodes_in_path_array[2] = n2;
PIB[23].cost = 5;
//n3->n4
PIB[24].src = n3;
PIB[24].dest=n4;
PIB[24].nodes_in_path_array[0] =n3;
PIB[24].nodes_in_path_array[l] = n4;
PEB[24].cost=l;
//n3->n4
PIB[25].src = n3;
PIB[25].dest= n4;
PIB[25].nodes_in_path_array[0] = n3;
PIB[25].nodes_in_path_array[l] = n2;
PIB[25].nodes_in_path_array[2] = n4;
PIB[25].cost = 6;
//n4->n0
PIB[26].src = n4;
PIB[26].dest=nO;
PIB[26].nodes_in_path_array[0] = n4;
Pffi[26].nodes_in_path_array[l] = n2;
PIB[26].nodes_in_path_array[2] = nO;
PIB[26].cost = 5;
//n4->nO
PIB[27].src = n4;
PIB[27].dest= nO;
Pffi[27].nodes_in_path_array[0] = n4;
PIB[27].nodes_in_path_array[l] = n3;
PIB[27].nodes_in_path_array[2] = n2;
PIB[27].nodes_in_path_array[3] = nO;
PIB[27].cost = 4;
//n4->nl

76

}
}

PIB[28].src = n4;
PIB[28].dest=nl;
PIB[28].nodes_in_path_array[0] = n4;
PIB[28].nodes_in_path_array[l] = n2;
Pffi[28].nodes_in_path_array[2] = nl;
PIB[28].cost = 5;
//n4->nl
PB[29].src = n4;
PIB[29].dest=nl;
PIB[29].nodes_in_path_airay[0] = n4;
PIB[29].nodes_in_path_array[l] = n3;
PB[29].nodes_in_path_array[2] = n2;
PIB[29].nodes_in_path_array[3] = nl;
PDB[29].cost = 4;
//n4->n2
PIB[30].src = n4;
PB[30].dest= n2;
PIB[30].nodes_in_path_array[0] = n4;
PIB[30].nodes_in_path_array[l] = n2;
PIB[30].cost = 4;
//n4->n2
PIB[31].src = n4;
PIB[31].dest=n2;
PIB[31].nodes_in_path_array[0] = n4;
PIB[31].nodes_in_path_array[l] = n3;
PIB[31].nodes_in_path_array[2] = n2;
PB[31].cost = 3;
//n4->n3
PB[32].src = n4;
PEB[32].dest=n3;
PIB[32].nodes_in_path_array[0] = n4;
PIB[32].nodes_in_path_array[l] = n3;
PIB[32].cost=l;
//n4->n3
PB[33].src = n4;
PB[33].dest=n3;
PIB[33].nodes_in_path_array[0] = n4;
PIB[33].nodes_in_path_array[l] = n2;
PIB[32].nodes_in_path_array[2] = n3;
PBB[33].cost = 5;

return (TCLOK);

77

// If the command hasrrt been processed by SaamServerAgent()::command,
// call the commandO function for the base class

return (Agent::command(argc, argv));

}
/* The receive method tells the agent how to handle incoming
packets addressed to the agent*/

void SaamServerAgent::recv(Packet* pkt, Handler*)

{
//Access the IP header for the received Packet
hdr_ip* hdrip = (hdr_ip*)pkt->access(off_ip_);
//Access the common header for the received packet
hdr_cmn* hdrcmn = (hdr_cmn*)pkt->access(off_cmn_);
if (hdrcmn->ptype_ == PT_LSA){

//cout«"lsa packet recieved\n";
//Access the lsajidr
hdrjsa* hdrlsa = (hdr_lsa*)pkt->access(off_lsa_);

//cout«"time of lsa packet recv'd is "«Scheduler::instance().clock()«endl;
// determine if src router is element of rtr_array
int index = is_element(rtr_array, hdrip->src_);
if (index = -1) {

cout«"router not in array so add\n";
rtr_array[router_index] = hdrip->src_;
nsaddr_t newrtr = rtr_array[router_index];
//cout«"router added was "« newrtr «endl;
router_index ++;

} //endif

}

else if (hdrcmn->ptype_ == PT_FLOW_RQST){
//access the flow_rqst header

hdr_flow_rqst*flowRqstHdr=(hdr_flow_rqst*)pkt->access(off_flow_rqst_);
//double tmstamp =flowRqstHdr->time_stamp;
cout«"Flow request received at server\n";

//cout«"Flow request was received at:"«Scheduler::instance().clock()«endl;

// determine if app is element of app_array
int index = is_element(app_array, hdrip->src_);
if (index ==-1) {

cout«"app not in array so add\n";
app_array[app_index] = hdrip->src_;
nsaddr_t newrtr = app_array[app_index];
//cout«"app added was "« newrtr «endl;
app_index ++;

78

} //endif

// send flow_resp
Packet* resppkt = allocpkt();
//Access the Sif header for the new packet
hdr_sif* hdr = (hdr_sif*)resppkt->access(off_sif_);
// need to fill in flow_resp info here
hdr->sif_type = 3;
hdr->time_stamp = Scheduler::instance().clock();
send(resppkt, 0);
//cout«"flow_resp packet launched at:" « hdr->time_stamp «endl;
// send frt_add to router
// first need to change target_
// need to find routers addresses
for (int i=0; i<40; i++){

nsaddr_t rtr = rtr_array[i];
if(rtr!=0){
this->dst_ = rtr;
Packet* frtpkt = allocpkt();
//Access the Sif header for the new packet
hdr_sif* resphdr = (hdr_sif*)frtpkt->access(off_sif_);
// need to fill in flow_resp info here
resphdr->sif_type = 1;
resphdr->time_stamp = Scheduler: :instance().clock();
send(frtpkt, 0);

//cout«"frt_add packet launched at:" «resphdr->time_stamp;
//cout« "to " « rtr «endl;

}

}

else {
//A packet was received. Use tcl.eval to call the Tel interpreter
// with the ping results.
charout[100];

//sprintf(out, "%s recv %d %3.1f', name(),
//hdrip->src_» Address: :instance().NodeShift_[1],

//(Scheduler::instance().clock()-flowRqstHdr->time_stamp) * 1000);
Tcl& tel = Tcl::instance();
tcl.eval(out);

//Discard the packet
Packet: :free(pkt);

}

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

APPENDIX D. [ROUTER SOURCE CODE]

81

/*
* File name: saamrouter.h
* Author: Brian Tiefert
* Date: as of 12 Aug 1999

*/

#ifndef ns_saamrouter_h
#define ns_saamrouter_h

#include "agent.h"
#include "tclcl.h"
#include "packet.h"
#include "address.h"
#include "ip.h"

struct hdr_lsa{
double time_stamp;
nsaddr_t origin;
nsaddr_t endpt;
int delay;
int loss;
int throughput;

};

//SaamRouterAgent class definition

class SaamRouterAgent: public Agent {
public:

//member functions

//constructor
SaamRouterAgentO;

//
int command(int arge, const char*const* argv);

//should override recv() from Agent but this is same method definition
void recv(Packet*, Handler*);

protected:
int off_lsa_;
int off_sif_;

};

#endif

82

/*
* File name: saamrouter.cc
* Author: Brian Tiefert
* Date: as of 12 Aug 1999
* abilities: Able to recv sif packets from server and send lsa's to server
*

*/

#include "saamserver.h"
#include "saamrouter.h"
#include <iostream.h>
static class SaamRouterHeaderClass : public PacketHeaderClass {
public:

SaamRouterHeaderClassO: PacketHeaderClass("PacketHeader/Lsa",
sizeof(hdr_lsa)) {}

} class_saamrouterhdr;

//definition for SaamRouterClass inherits from TclClass
static class SaamRouterClass : public TclClass {
public:
//member methods

//SaamRouterClass constructor calls TclClass constructor using
//"Agent/SaamRouter" as argument

SaamRouterClassO : TclClass("Agent/SaamRouter") {}
TclObject* create(int, const char*const*) {

//make a new SaamRouterAgent by calling SaamRouterAgent constructor
return (new SaamRouterAgent());

}
} class_saamrouter;

//constructor for SaamRouterAgent calls constructor for Agent using PTJLSA as
//an argument

SaamRouterAgent::SaamRouterAgent(): Agent(PT_LSA) {
//bind the compiled variables to the interpreted variables

bind("packetSize_", &size_);
bindfoff_lsa_", &off_lsa_);
bind("off_sif_", &off_sif_);
cout«"new SaamRouter\n";

}

83

int SaamRouterAgent::command(int arge, const char*const* argv)

{
if(argc==2){
if (strcmp(argv[l], "launch") == 0) {

//Create new packet
Packet* pkt = allocpkt();
//Access the Lsa header for the new packet
hdrjsa* hdr = (hdr_lsa*)pkt->access(off_lsa_);
// Set the 'ret' field to 0, so the receiving node knows
// that it has to generate an echo packet
//hdr->sif_type = 1;
hdr->time_stamp = Scheduler: :instance().clock();
send(pkt, 0);
//return TCL_OK, so the calling function knows that the
//command has been processed
cout«"lsa packet launched\n";
return (TCL_OK);

}
else if (strcmp(argv[l], "initialize") == 0) {

//Create new packet
Packet* pkt = allocpkt();
//Access the Lsa header for the new packet
hdrjsa* hdr = (hdrJsa*)pkt->access(offJsa_);
hdr->time_stamp = Scheduler: :instance().clock();
send(pkt, 0);
//return TCL_OK, so the calling function knows that the
//command has been processed
cout«"lsa packet launched\n";
return (TCL_OK);

}

}

// If the command hasn't been processed by SaamRouterAgent()::command,
// call the command() function for the base class

return (Agent:.•command(argc, argv));
}

void SaamRouterAgent::recv(Packet* pkt, Handler*)

{
//Access the IP header for the received Packet
hdr_ip* hdrip = (hdr_ip*)pkt->access(off_ip_);
// if pkt is of type lsa then access hdrjsa
// Access the Sif header for the received packet

84

hdr_sif* hdr = (hdr_sif*)pkt->access(off_sif_);
if (hdr->sif_type == 1){

cout«"frt_add packet recieved\n";
//Send an echo. First save the old packet's send_time
double tmstamp = hdr->time_stamp;
cout«"time of frt_add sent packet is " «tmstamp << endl;
//Discard the packet
//Packet: :free(pkt);

//send packet to rtprotoS AAM or RouteLogic
//Create new packet
Packet* pktret = allocpkt();
//Access the Ping header for the new packet
hdrjsa* hdrret = (hdr_lsa*)pktret->access(off_lsa_);
//Set the time_stamp field to the correct value
hdrret->time_stamp = Scheduler::instance().clock();
//send packet to dst_
send(pktret, 0);
}

else if (hdr->sif_type == 2) cout«"frt_del packet received\n";

else if (hdr->sif_type = 3) cout«"flow_resp packet received\n";

else {
//A packet was received. Use tcl.eval to call the Tel interpreter
// with the ping results.
charout[100];

sprintf(out, "%s recv %d %3.1f', name(),
hdrip->src_» Address: :instance().NodeShift_[1],

(Scheduler::instance().clock()-hdr->time_stamp) * 1000);
Tcl& tel = Tcl::instance();
tcl.eval(out);

//Discard the packet
Packet: :free(pkt);
}

}

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

APPENDIX E. [MODIFIED SOURCE CODE]

87

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */
/*
* Copyright (c) 1997 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Computer Systems
* Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#) $Header: /usr/src/mash/repository/vint/ns-2/packet.h,v 1.59 1999/03/13 03:52:59 haoboy Exp $ (LBL)

*/

#ifndef ns_packet_h
#define ns_packet_h

#include <string.h>
#include <assert.h>

#include "config.h"
#include "scheduler.h"
#include "object.h"
#include "list.h"
#include "packet-stamp.h"

#define RTJPORT 255 /* port that all route msgs are sent to */

88

#defme HDR_CMN(p) ((struct hdr_cmn*)(p)->access(hdr_cmn: :offset_))
#defme HDR_ARP(p) ((struct hdr_arp*)(p)->access(off_arp_))
#defme HDR_MAC(p) ((struct hdr_mac*)(p)->access(hdr_mac: :offset_))
#defme HDR_MAC802_ll(p) ((struct hdr_mac802_ll*)(p)->access(hdr_mac::offset_))
#defme HDR_LL(p) ((struct hdr_ll*)(p)->access(hdr_ll: roffsetj)
#defme HDR_IP(p) ((struct hdr_ip*)(p)->access(hdr_ip: roffsetj)
#define HDR_SAAM(p) ((struct hdr_saam*)(p)->access(hdr_saam: :offset_))
#defme HDR_SIF(p) ((struct hdr_sif*)(p)->access(hdr_sif: roffsetj)
#define HDR_RTP(p) ((struct hdr_rtp*)(p)->access(hdr_rtp: roffsetj)
#defme HDRJTCP(p) ((struct hdr_tcp*)(p)->access(hdr_tcp::offsetJ)

enum packet J: {
PTTCP,
PTJJDP,
PT_CBR,
PT_AUDIO,
PTJ7IDEO,
PT_ACK,
PT_START,
PT_STOP,
PTJPRUNE,
PT_GRAFT,
PT.GRAFTACK,
PTJOIN,
PT.ASSERT,
PT_MESSAGE,
PT_RTCP,
PT_RTP,
PT_RTPROTO_DV,
PT_RTPROTO_SAAM,
PT_CtrMcast_Encap,
PT_CtrMcast_Decap,
PT_SRM,

/* simple signalling messages */
PT_REQUEST,
PT_ACCEPT,
PT_CONFIRM,
PTJTEARDOWN,
FTJJVE, II packet from live network
PT_REJECT,

PTJTELNET, //not needed: telnet use TCP
PTJFTP,
PTJ7ARETO,
PT_EXP,
PT_INVAL,
PT_HTTP,

/* new encapsulator */

89

PT_ENCAPSULATED,
PT_MFTP,

/* CMU/Monarch's extnsions */
PT_ARP,
PT_MAC,
PT_TORA,
PT_DSR,
PT_AODV,

// RAP packets
PT_RAP_DATA,
PT_RAP_ACK,

// insert new packet types here
PT_FLOW_RQST, //new packet for flow requests
PT_SIF, // new packet for SaamServer
PT_LSA, // new packet for SaamRouter
PTJSAAM, // new packet type for saam
PT_ECHO, // new packet type for ping requests
PT_PING, // new packet type for ping requests
PT NTYPE // This MUST be the LAST one

class p_info {

p_info() {
name_ .[PT_TCP]= "top";
name_ .[PT_UDP]= "udp";
name_ .[PT_CBR]= "cbr";
name_ .[PT_AUDIO]= "audio";
name_ .[PT_VIDEO]= "video";
name_ .[PT_ACK]= "ack";
name_ .[PT_START]= "start";
name_ .[PT_STOP]= "stop";
name_ .[PT_PRUNE]= "prune";
name_ .[PT_GRAFT]= "graft";
name_ .[PT_GRAFTACK]= "graftAck";
name_ .[PT_JOIN]= "join";
name_ .[PT_ASSERT]= "assert";
name_ .[PT_MESSAGE]= "message";
name_ .[PT_RTCP]i "rtcp";
name_ .[PT_RTP]= "rtp";
name_ .[PT_RTPROTO_DV]= "rtProtoDV";
name_ .[PT_RTPROTO_SAAM]= "rtProtoSAAM";
name_ .[PT_CtrMcast_Encap]= "CtrMcast_Encap";
name_ [PT_CtrMcast_Decap]= "CtrMcast_Decap";
name_ [PT_SRM]= "SRM";

name_[PT_REQUEST]= "sa_req";

90

name_[PT_ACCEPT]= "sa_accept";
name_[PT_CONFIRM]= "sa_conf';
name_[PT_TEARDOWN]= "sa_teardown";
name_[PT_LIVE]= "live";
name_[PT_REJECT]= "sa_reject";

name_[PT_TELNET]= "telnet";
name_[PT_FTP]= "ftp";
name_[PT_PARETO]= "pareto";
name_[PT_EXP]= "exp";
name_[PT_INVAL]= "httplnval";
name_[PT_HTTP]= "http";
name_[PT_ENCAPSULATED]= "encap";
name_[PT_MFTP]= "mftp";
name_[PT_ARP]= "APvP";
name_[PT_MAC]= "MAC";
name_[PT_TORA]= "TOPvA";
name_[PT_DSR]= "DSR";
name_[PT_AODV]= "AODV";

name_[PT_RAP_DATA] = "rap_data";
name_[PT_RAP_ACK] = "rap_ack";
name_[PT_FLOW_RQST] = "flow_rqst";
name_[PT_SIF] = "Sif';
name_[PT_LSA] = "Lsa";
name_[PT_SAAM] = "Saam";
name_[PT_ECHO] = "Echo";
name_[PT_PING] = "Ping";
name_[PT_NTYPE]= "undefined";

}
const char* name(packet_t p) const {

if (p <= PTJNTYPE) return name_[p];
return 0;

}
static bool data_packet(packet_t type) {

return ((type) == PTTCP || \
(type) = PTJTELNET || \
(type) = PT_CBR || \
(type)==PT_AUDIO||\
(type) == PT_VIDEO || \
(type)==PT_ACK);

}
private:

static char* name_[PT_NTYPE+l];

};
extern p_info packet_info; /* map PT_* to string name */
//extern char* p_info::name_[];

«define OFFSET(type, field) ((int) &((type *)0)->field)

91

//Monarch ext
typedef void (*FailureCallback)(Packet *,void *);
//
class Packet: public Event {
private:

unsigned char* bits_; // header bits
unsigned char* data_; // variable size buffer for 'data'
unsigned int datalen_; // length of variable size buffer

//void init(); // initialize pkts getting freed.
bool fflag_;

protected:
static Packet* free_; // packet free list

public:
Packet* next_; // for queues and the free list
static int hdrlen_;
PacketO : bits_(0), datalen_(0), next_(0) { }
unsigned char* const bits() { return (bits_);}
Packet* copy() const;
static Packet* alloc();
static Packet* alloc(int);
inline void allocdata(int);
static void free(Packet*);
inline unsigned char* access(int off) const {

if(off<0)
abortO;

return (&bits_[offJ);

}
inline unsigned char* accessdata() const { return data_; }
inline int datalen() const { return datalen_; }

//Monarch extn
// the pkt stamp carries all info about how/where the pkt

// was sent needed for a receiver to determine if it correctly
// receives the pkt

PacketStamp txinfo_; .

//monarch extns end;

};

/*
* static constant associations between interface special (negative)
* values and their c-string representations that are used from tcl
*/

class iface_literal {
public:

enum iface_constant {
UNKN_IFACE= -1, /* iface value for locally originated packets

*/

92

ANY_IFACE= -2 /* hashnode with iif == ANY_IFACE_
* matches any pkt iface (imported from TCL);
* this value should be different from hdr_cmn::UNKN_IFACE
* from packet.h
*/

};
iface_literal(const iface_constant i, const char * const n):

value_(i), name_(n) {}
inline int value() const { return value_; }
inline const char * const name() const { return name_; }

private:
const iface_constant value_;
const char * const name_; /* strings used in TCL to access those special values */

static const ifaceJiteral UNKN_IFACE(iface_literal::UNKN_IFACE,"?");
static const ifacejiteral ANYJDFACE(ifaceJiteral::ANYJOFACE, "*");

struct hdr_cmn {
packet_t ptype_; // packet type (see above)
int size_; // simulated packet size
int uid_; // unique id
int error_; // error flag
double ts_; // timestamp: for q-delay measurement
int iface_; // receiving interface (label)
int direction_; // direction: 0=none, l=up, -l=down
int ref_count_; // free the pkt until count to 0

//Monarch extn begins
nsaddr_t next_hop_; // next hop for this packet
int addr_type_; // type of next_hop_ addr

#defme AF_NONE 0
#defme AF_ILINK 1
«define AFJNET 2

// called if pkt cant obtain media or isnt ack'd. not called if
// droped by a queue
FailureCallback xmit_failure_;
void *xmit_failure_data_;

/*
* MONARCH wants to know if the MAC layer is passing this back because
* it could not get the RTS through or because it did not receive
* an ACK.
*/

int xmit_reason_;
«define XMTT_REASON_RTS 0x01
«define XMTT_REASON_ACK 0x02

93

// filled in by GOD on first transmission, used for trace analysis
int num_forwards_; // how many times this pkt was forwarded
int opt_num_forwards_; // optimal #forwards

// Monarch extn ends;

static int offset_; // offset for this header
inline static int& offset() { return offset_; }
inline static hdr_cmn* access(Packet* p) {

return (hdr_cmn*) p->access(offset_);
}

/* per-field member functions */
inline packet_t& ptype() { return (ptypej; }
inline int& size() { return (size_);}
inline int& uid() { return (uid_);}
inline int& error() { return error_;}
inline double& timestampO { return (ts_);}
inline int& iface() { return (ifacej;}
inline int& direction() { return (direction.); }
inline int& ref_count() { return (ref_count_); }
// monarch_begin
inline nsaddr_t& next_hop() { return (next_hop_); }
inline int& addr_type() { return (addr_type_); }
inline int& num_forwards() { return (num_forwards_); }
inline int& opt_num_forwards() { return (opt_num_forwards_); }

//monarch_end
};

class PacketHeaderClass : public TclClass {
protected:

PacketHeaderClass(const char* classname, int hdrsize);
virtual int method(int arge, const char*const* argv);
void field_offset(const char* fieldname, int offset);
inline void bind_offset(int* off) { offset. = off; }
inline void offset(int* off) {offset_= off;}
int hdrlen_; // # of bytes for this header
int* offset ; // offset for this header

public:

};

virtual void bind();
virtual void export_offsets();
TclObject* create(int arge, const char*const* argv);

inline Packet* Packet: :alloc()
{

Packet* p = free_;
if(p!=0){

assert(p->fflag_ == FALSE);

94

free_ = p->next_;
if (p->datalen_) {

delete[] p->data_;
// p->data_ = 0;
p->datalen_ = 0;

}
p->uid_ = 0;
p->time_ = 0;

else {
p = new Packet;
p->bits_ = new unsigned char[hdrlenj;
if (p == 0 || p->bits_ == 0)

abort();
// p->data_ = 0;
// p->datalen_ = 0;

bzero(p->bits_, hdrlen_);
}
p->ffiag_ = TRUE;
p->next_ = 0;
return (p);

}

/* allocate a packet with an n byte data buffer */

inline Packet* Packet: :alloc(int n)
{

Packet* p = alloc();
if(n>0)

p->allocdata(n);
return (p);

}

/* allocate an n byte data buffer to an existing packet */

inline void Packet: :allocdata(int n)
{

datalen_ = n;
data_ = new unsigned charfn];
if(data_==0)

abort();

}

inline void Packet: :free(Packet* p)
{

int off_cmn_ = hdr_cmn::offset_;
hdr_cmn* ch = (hdr_cmn*)p->access(off_cmn_);
if(p->fflag_){

if (ch->ref_count() == 0) {

95

/*
* A packet's uid may be < 0 (out of a event queue), or
* == 0 (newed but never gets into the event queue.
*/

assert(p->uid_ <= 0);
p->next_ = free_;
free_ = p;
//init();
p->fflag_ = FALSE;

} else {
ch->ref_count() = ch->ref_count() - 1;

}

}

inline Packet* Packet: :copy() const

{
Packet* p = alloc();
memcpy(p->bits(), bits_, hdrlen_);
if(datalen_){

p->datalen_ = datalen_;
p->data_ = new unsigned char[datalen_];
memcpy(p->data_, data_, datalen_);

}
p->txinfo_.init(&txinfo_);
return (p);

}

#endif

96

Copyright (c) 1997 by the University of Southern California
All rights reserved.

File Name: route-proto.tcl
Modified by: Brian Tiefert
#Date: as of 20 Sept 1999

Permission to use, copy, modify, and distribute this software and its
documentation in source and binary forms for non-commercial purposes
and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both the copyright notice and
this permission notice appear in supporting documentation, and that
any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was
developed by the University of Southern California, Information
Sciences Institute. The name of the University may not be used to
endorse or promote products derived from this software without
specific prior written permission.

THE UNIVERSITY OF SOUTHERN CALIFORNIA makes no representations about
the suitability of this software for any purpose. THIS SOFTWARE IS
PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Other copyrights might apply to parts of this software and are so
noted when applicable.

Maintainer: <kannan@ isi.edu>.

This file only contains the methods for dynamic routing
Check ../lib/ns-route.tcl for the Simulator routing support

set rtglibRNG [new RNG]
SrtglibRNG seed 1

Class rtObject

rtObject set unreach_ -1
rtObject set maxpref_ 255

rtObject proc init-all args {
foreach node $args {

if { [$node rtObject?] == "" } {
set rtobj($node) [new rtObject $node]

97

}
}
foreach node $args { ;# XXX

$rtobj($node) compute-routes

}
}

rtObject instproc init node {
$selfnext
$self instvar ns_ nullAgent_
$self instvar nextHop_ rtpref_ metric. node_ rtVia_ rtProtos_

set ns_ [Simulator instance]
set nullAgent_ [$ns_ set nullAgent J

$node init-routing $self
set node_ $node
foreach dest [$ns_ all-nodes-list] {

setnextHop_($dest)""
if {$node==$dest} {

set rtpref_($dest) 0
set metric_($dest) 0
set rtVia_($dest) "Agent/rtProto/Local" ;# make dump happy

} else {
set rtpref_($dest) [$class set maxprefj
set metric_($dest) [$class set unreachj
setrtVia_($dest) ""
$node add-route [$dest id] $nullAgent_

}
}
$self add-proto Direct $node
$rtProtos_(Direct) compute-routes

$self compute-routes
}

rtObject instproc add-proto {proto node} {
$self instvar ns_ rtProtos_
set rtProtos_($proto) [new Agent/rtProto/$proto $node]
$ns_ attach-agent $node $rtProtos_($proto)
set rtProtos_($proto)
update nodes Protos_
#$node updateProtos rtProtos_

rtObject instproc lookup dest {
$self instvar nextHop_ node_
if {![info exists nextHop_($dest)] || $nextHop_($dest) == ""} {

return -1

98

} else {
return [[$nextHop_($dest) set toNodeJ id]

}

rtObject instproc compute-routes {} {
choose the best route to each destination from all protocols
$self instvar ns_ node_ rtProtos_ nullAgent_
$self instvar nextHop_ rtpref_ metric_ rtVia_
setprotos""
set changes 0
foreach p [array names rtProtos J {

if [$rtProtos_($p) set rtsChanged J {
incr changes
$rtProtos_($p) set rtsChanged_ 0

}
läppend protos $rtProtos_($p)

}
if !$changes return

set changes 0
foreach dst [$ns_ all-nodes-list] {

if {$dst = $node_} continue
setnh""
set pf [$class set maxprefj
set mt [$class set unreach J
setrv""
foreach p $protos {

set pnh [$p set nextHop_($dst)]
if { $pnh == "" } continue

set ppf [$p set rtpref_($dst)]
set pmt [$p set metric_($dst)]
if {$ppf < $pf || ($ppf = $pf && $pmt < $mt) || $mt < 0} {

setnh $pnh
setpf $ppf
setmt $pmt
setrv $p

}
}
if {$nh ==""}{

no route... delete any existing routes
if { $nextHop_($dst) != "" } {

$node_ delete-routes [$dst id] $nextHop_($dst) $nullAgent_
set nextHop_($dst) $nh
set rtpref_($dst) $pf
set metric_($dst) $mt
set rtVia_($dst) $rv
incr changes

}

99

} else {
if { $rv == $rtVia_($dst) } {

Current protocol still has best route.
#See ifchanged
if { $nh != $nextHop_($dst)} {

$node_ delete-routes [$dst id] $nextHop_($dst) $nullAgent_
set nextHop_($dst) $nh
$node_ add-routes [$dst id] $nextHop_($dst)
incr changes

}
if { $mt != $metric_($dst)} {

set metric_($dst) $mt
incr changes

}
if { $pf != $rtpref_($dst)} {

setrtpref_($dst)$pf

}
\ else {

if { $rtVia_($dst) !=""}{
set nextHop_($dst) [$rtVia_($dst) set nextHop_($dst)]
set rtpref_($dst) [$rtVia_($dst) set rtpref_($dst)]
set metric_($dst) [$rtVia_($dst) set metric_($dst)]

}
if {$rtpref_($dst) != $pf || $metric_($dst) != $mt} {

Then new prefs must be better, or
new prefs are equal, and new metrics are lower
$node_ delete-routes [$dst id] $nextHop_($dst) $nullAgent_
set nextHop_($dst) $nh
set rtpref_($dst) $pf
set metric_($dst) $mt
set rtVia_($dst) $rv
$node_ add-routes [$dst id] $nextHop_($dst)
incr changes

}
}

}
}
foreach proto [array names rtProtos_] {

$rtProtos_($proto) send-updates $changes

}

#xxx
detailed multicast routing hooks must come here.
My idea for the hook will be something like:
set mrtObject [$node_ mrtObject?]
if {$mrtObject !=""}{
$mrtObject recompute-mroutes $changes

#}
$changes == 0 if only interfaces changed state. Look at how
Agent/rtProto/DV handles ifsUp_

100

$changes > 0 if new unicast routes were installed.

$self flag-multicast $changes

rtObject instproc flag-multicast changes {
$self instvar node_
$node_ notify-mcast $changes

rtObject instproc intf-changed {} {
$self instvar ns_ node_ rtProtos_ rtVia_ nextHop_ rtpref_ metric,
foreach p [array names rtProtos_] {

$rtProtos_($p) intf-changed
$rtProtos_($p) compute-routes

}
$self compute-routes

}

rtObject instproc dump-routes chan {
$self instvar ns_ node_ nextHop_ rtpref_ metric_ rtVia_

if {[info proc SplitObjectCompare] == ""} {
XXX: in tcl8 we need to find this in the global namespace
if {[info proc -SplitObjectCompare] == {}} {
puts stderr "${class}::${proc} failed. Update your TclCL library"
return
}
}

if {$ns_ !=""}{
set time [$ns_ now]

} else {
set time 0.0

}
puts $chan [concat "Node:\t${node_}([$node_ id])\tat t =" \

[format "%4.2f' $time]]
puts $chan " Dest\t\t nextHop\tPref\tMetric\tProto"
foreach dest [lsort -command SplitObjectCompare [$ns_ all-nodes-list]] {

if {[llength $nextHop_($dest)] > 1} {
set p [split [$rtVia_($dest) info class] /]
set proto [lindex $p [expr [llength $p] - 1]]
foreach rt $nextHop_($dest) {

puts $chan [format "%-5s(%d)\t%-5s(%d)\t%3d\t%4d\t %s"
$dest [$dest id] $rt [[$rt set toNodeJ id] \
$rtpref_($dest) $metric_($dest) $proto]

}
} elseif ($nextHop_($dest) != ""} {

set p [split [$rtVia_($dest) info class] /]
set proto [lindex $p [expr [llength $p] -1]]

101

}
}

puts $chan [format "%-5s(%d)\t%-5s(%d)\t%3d\t%4d\t %s" \
$dest [$dest id] \
$nextHop_($dest) [[$nextHop_($dest) set toNodeJ id] \
$rtpref_($dest) $metric_($dest) $proto]

} elseif {$dest == $node_} {
puts $chan [format "%-5s(%d)\t%-5s(%d)\t%03d\t%4d\t %s" \

$dest [$dest id] $dest [$dest id] 0 0 "Local"]
} else {

puts $chan [format "%-5s(%d)\t%-5s(%s)\t%03d\t%4d\t %s" \
$dest [$dest id] -" 255 32 "Unknown"]

}

rtObject instproc rtProto? proto {
$self instvar rtProtos_
if [info exists rtProtos_($proto)] {

return $rtProtos_($proto)
} else {

return""

}
}

rtObject instproc nextHop? dest {
$self instvar nextHop_
$self set nextHop_($dest)

}

rtObject instproc rtpref? dest {
$self instvar rtpref.
$self set rtpref_($dest)

}

rtObject instproc metric? dest {
$self instvar metric_
$self set metric_($dest)

#_
Class rtPeer

rtPeer instproc init {addr els} {
$self next
$self instvar addr_ metric_ rtpref.
set addr_ $addr
foreach dest [[Simulator instance] all-nodes-list] {

set metric_($dest) [$cls set INFINITY]
set rtpref_($dest) [$cls set preference J

}

102

rtPeer instproc addr? {} {
$self instvar addr_
return $addr_

}

rtPeer instproc metric {dest val} {
$self instvar metric_
set metric_($dest) $val

}

rtPeer instproc metric? dest {
$self instvar metric_
return $metric_($dest)

}

rtPeer instproc preference {dest val} {
$self instvar rtpref.
set rtpref_($dest) $val

}

rtPeer instproc preference? dest {
$self instvar rtpref.
return $rtpref_($dest)

}

#_
#Class Agent/rtProto -superclass Agent

Agent/rtProto proc pre-init-all args {
By default, do nothing when a person does $ns rtproto foo.

}

Agent/rtProto proc init-all args {
error "No initialization defined"

Agent/rtProto instproc init node {
$self next

$self instvar ns_ node_ rtObject_ preference. ifs_ ifstat_
set ns_ [Simulator instance]

catch "set preference. [[$self info class] set preference.]" ret
if {$ret ==""}{

set preference. [$class set preferencej
}
foreach nbr [$node set neighbor.] {

set link [$ns_ link $node $nbr]

103

set ifs_($nbr) $link
set ifstat_($nbr) [$link up?]

}
set rtObject_ [$node rtObject?]

}

Agent/rtProto instproc compute-routes {} {
error "No route computation defined"

Agent/rtProto instproc intf-changed {} {
#NOTHING

}

Agent/rtProto instproc send-updates args {
#NOTHING

}

Agent/rtProto proc compute-all {} {
#NOTHING

}

Static routing, the default

Class Agent/rtProto/Static -superclass Agent/rtProto

Agent/rtProto/Static proc init-all args {
The Simulator knows the entire topology.
Hence, the current compute-routes method in the Simulator class is
well suited. We use it as is.

[Simulator instance] compute-routes

}

Session based unicast routing

Class Agent/rtProto/Session -superclass Agent/rtProto

Agent/rtProto/Session proc init-all args {
[Simulator instance] compute-routes

}

Agent/rtProto/Session proc compute-all {} {
[Simulator instance] compute-routes

}

104

#_
// //IIIIIIIIIIIIIIIIIII!II7///IIIIIIIIIIIIIIIIIIIIIIIIII'"IIIIIIIIIIIIIIIIIIIIIIII Uli IIII Uli IIIIIIIIIIIIII

Code below this line is experimental, and should be considered work
in progress. None of this code is used in production test-suites, or
in the release yet, and hence should not be a problem to anyone.

Class Agent/rtProto/Direct -superclass Agent/rtProto
Agent/rtProto/Direct instproc init node {

$self next $node
$self instvar ns_ rtpref_ nextHop_ metric_ ifs_

foreach node [$ns_ all-nodes-list] {
set rtpref_($node) 255
set nextHop_($node) ""
set metric_($node) -1

}
foreach node [array names ifs J {

set rtpref_($node) [$class set preference.]

}
}

Agent/rtProto/Direct instproc compute-routes {} {
$self instvar ifs_ ifstat_ nextHop_ metric. rtsChanged_
set rtsChanged_ 0
foreach nbr [array names ifsJ {

if {$nextHop_($nbr) == "" && [$ifs_($nbr) up?] = "up"} {
set if stat_($nbr) 1
set nextHop_($nbr) $ifs_($nbr)
set metric_($nbr) [$ifs_($nbr) cost?]
incr rtsChanged_

} elseif ($nextHop_($nbr) != "" && [$ifs_($nbr) up?] != "up"} {
set ifstat_($nbr) 0
set nextHop_($nbr) ""
set metric_($nbr) -1
incr rtsChanged_

}
}

}

Distance Vector Route Computation

Class Agent/rtProto/DV -superclass Agent/rtProto
Agent/rtProto/DV set UNREACHABLEfrtObject set unreachj
Agent/rtProto/DV set mid_ 0

added for rtProtoSAAM
Class Agent/rtProto/SAAM -superclass Agent/rtProto
Agent/rtProto/SAAM set UNREACHABLE [rtObject set unreachj
Agent/rtProto/SAAM set mid_ 0

105

Agent/rtProto/DV proc init-all args {
if { [llength $args] = 0 } {

set nodeslist [[Simulator instance] all-nodes-list]
} else {

eval "set nodeslist $args"

}
Agent set-maxttl Agent/rtProto/DV INFINITY
eval rtObject init-all $nodeslist
foreach node $nodeslist {

set proto($node) [[$node rtObject?] add-proto DV $node]

}
foreach node $nodeslist {

foreach nbr [$node neighbors] {
setrtobj [$nbr rtObject?]
if {$rtobj !=""}{

set rtproto [$rtobj rtProto? DV]
if {$rtproto !=""}{

$proto($node) add-peer $nbr [$rtproto set addr J

}
}

added for rtProtoSAAM
Agent/rtProto/SAAM proc init-all args {

if { [llength $args] == 0 } {
set nodeslist [[Simulator instance] all-nodes-list]

} else {
eval "set nodeslist $args"

}
Agent set-maxttl Agent/rtProto/SAAM INFINITY
eval rtObject init-all $nodeslist
foreach node $nodeslist {

set proto($node) [[$node rtObject?] add-proto SAAM $node]

}
foreach node $nodeslist {

foreach nbr [$node neighbors] {
setrtobj [$nbrrtObject?]
if { $rtobj != "" } {

set rtproto [$rtobj rtProto? SAAM]
if {$rtproto !=""}{

$proto($node) add-peer $nbr [$rtproto set addrj

}
}

}

106

Agent/rtProto/DV instproc ink node {
global rtglibRNG

$self next $node
$self instvar ns_ rtObject_ ifsUp_
$self instvar preference, rtpref. nextHop_ nextHopPeer_ metric. multiPath_

set UNREACHABLE [$class set UNREACHABLE]
foreach dest [$ns_ all-nodes-list] {

set rtpref_($dest) $preference_
setnextHop_($dest)""
set nextHopPeer_($dest)""
setmetric_($dest) $UNREACHABLE

}
set ifsUp_""
set multiPath_ [[$rtObject_ set nodej set multiPathJ
set updateTime [$rtglibRNG uniform 0.0 0.5]
$ns_ at $updateTime "$self send-periodic-update"

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc init node {

global rtglibRNG

$selfnext$node
$self instvar ns_ rtObject_ ifsUp_
$self instvar preference, rtpref. nextHop_ nextHopPe'er_ metric. multiPath.

set UNREACHABLE [$class set UNREACHABLE]
foreach dest [$ns_ all-nodes-list] {

set rtpref_($dest) $preference_
setnextHop_($dest)""
set nextHopPeer_($dest)""
setmetric_($dest) $UNREACHABLE

}
set ifsUp_ ""
set multiPath_ [[$rtObject_ set nodej set multiPathJ
set updateTime [$rtglibRNG uniform 0.0 0.5]
$ns_ at $updateTime "$self send-periodic-update"

}

Agent/rtProto/DV instproc add-peer {nbr agentAddr} {
$self instvar peers_
$self set peers_($nbr) [new rtPeer $agentAddr $class]

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc add-peer {nbr agentAddr} {

$self instvar peers_
$self set peers_($nbr) [new rtPeer $agentAddr $class]

107

}

Agent/rtProto/DV instproc send-periodic-update {} {
global rtglibRNG

$self instvarns_
$self send-updates 1 ;# Anything but 0
set updateTime [expr [$ns_ now] + \

([$class set advertlnterval] * [$rtglibRNG uniform 0.9 1.1])]
$ns_ at $updateTime "$self send-periodic-update"

}

#added for rtProtoSAAM
Agent/rtProto/SAAM instproc send-periodic-update {} {

global rtglibRNG

$self instvar ns_
$self send-updates 1 ;# Anything but 0
set updateTime [expr [$ns_ now] + \

([$class set advertlnterval] * [$rtglibRNG uniform 0.9 1.1])]
$ns_ at $updateTime "$self send-periodic-update"

}

Agent/rtProto/DV instproc compute-routes {} {
$self instvar ns_ ifs_ rtpref. metric. nextHop_ nextHopPeer_
$self instvar peers_ rtsChanged_ multiPath_

set INFINITY [$class set INFINITY]
setMAXPREF [rtObject set maxpref J
set UNREACH [rtObject set unreachj
set rtsChanged_ 0
foreach dst [$ns_ all-nodes-list] {

set p [lindex $nextHopPeer_($dst) 0]
if {$p !=""}{

set metric_($dst) [$p metric? $dst]
setrtpref_($dst) [$ppreference? $dst]

}

setpf$MAXPREF
set mt $DMFINITY
set nh(0) 0
foreach nbr [array names peers J {

set pmt [$peers_($nbr) metric? $dst]
set ppf [$peers_($nbr) preference? $dst]

if peer metric not valid continue
if peer pref higher continue
if peer pref lower set to latest values
else peer pref equal

108

if peer metric higher continue
if peer metric lower set to latest values
else peer metrics equal append latest values

if { $pmt < 0 || $pmt >= SINHNTTY || $ppf > $pf || $pmt > $mt} \
continue

if { $ppf < $pf || $pmt < $mt} {
set pf $ppf
set mt $pmt
unset nh ;# because we must compute *new* next hops

}
set nh($ifs_($nbr)) $peers_($nbr)

}
catch "unset nh(0)"
if { $pf == $MAXPREF && $mt == $INFINITY } continue
if { $pf > $rtpref_($dst) || \

($metric_($dst) >= 0 && $mt > $metric_($dst)) } \
continue

if{$mt>=$INFINrrY}{
set mt $UNREACH

}

incr rtsChanged_
if { $pf < $rtpref_($dst) || $mt < $metric_($dst) } {

set rtpref_($dst) $pf
set metric_($dst) $mt
set nextHop_($dst) ""
set nextHopPeer_($dst)""
foreach n [array names nh] {

läppend nextHop_($dst) $n
läppend nextHopPeer_($dst) $nh($n)
if !$multiPath_ break;

}
continue

}

set rtpref_($dst) $pf
set metric_($dst) $mt
setnewNextHop""
set newNextHopPeer""
foreach it $nextHop_($dst) {

if [info exists nh($rt)] {
läppend newNextHop $rt
läppend newNextHopPeer $nh($rt)
unset nh($rt)

}
}
set nextHop_($dst) $newNextHop
set nextHopPeer_($dst) SnewNextHopPeer
if { $multiPath_ || $nextHop_($dst) = "" } {

109

foreach rt [array names nh] {
läppend nextHop_($dst) $rt
läppend nextHopPeer_($dst) $nh($rt)
if !$multiPath_ break

}
}

}
set rtsChanged_

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc compute-routes {} {

$self instvar ns_ ifs_ rtpref. metric. nextHop_ nextHopPeer_
$self instvar peers_ rtsChanged_ multiPath_

set INFINITY [$class set INFINITY]
setMAXPREF [rtObject set maxprefj
setUNREACH [rtObject set unreachj
set rtsChanged_ 0
foreach dst [$ns_ all-nodes-list] {

set p [lindex $nextHopPeer_($dst) 0]
if {$p !=""}{

set metric_($dst) [$p metric? $dst]
set rtpref_($dst) [$p preference? $dst]

}

setpf$MAXPREF
set mt $INFINITY
set nh(0) 0
foreach nbr [array names peers J {

set pmt [$peers_($nbr) metric? $dst]
set ppf [$peers_($nbr) preference? $dst]

if peer metric not valid continue
if peer pref higher continue
if peer pref lower set to latest values
else peer pref equal
if peer metric higher continue
if peer metric lower set to latest values
else peer metrics equal append latest values

if { $pmt < 0 || $pmt >= $INFINITY || $ppf > $pf || $pmt > $mt} \
continue

if { $ppf < $pf || $pmt < $mt} {
set pf $ppf
set mt $pmt
unset nh ;# because we must compute *new* next hops

}
set nh($ifs_($nbr)) $peers_($nbr)

}

110

catch "unset nh(0)"
if { $pf == $MAXPREF && $mt = SINFINTTY } continue
if { $pf > $rtpref_($dst) || \

($metric_($dst) >= 0 && $mt > $metric_($dst))}
continue

if{$mt>=$INFINITY} {
set mt $UNREACH

}

incr rtsChanged_
if { $pf < $rtpref_($dst) || $mt < $metric_($dst)} {

set rtpref_($dst) $pf
set metric_($dst) $mt
setnextHop_($dst)""
set nextHopPeer_($dst)""
foreach n [array names nh] {

läppend nextHop_($dst) $n
läppend nextHopPeer_($dst) $nh($n)
if !$multiPath_ break;

}
continue

}

set rtpref_($dst) $pf
set metric_($dst) $mt
setnewNextHop""
set newNextHopPeer""
foreach rt $nextHop_($dst) {

if [info exists nh($rt)] {
läppend newNextHop $rt
läppend newNextHopPeer $nh($rt)
unset nh($rt)

}
}
set nextHop_($dst) $newNextHop
set nextHopPeer_($dst) $newNextHopPeer
if { $multiPath_ || $nextHop_($dst) == "" } {

foreach rt [array names nh] {
läppend nextHop_($dst) $rt
läppend nextHopPeer_($dst) $nh($rt)
if !$multiPath_ break

}
}

}
set rtsChanged_

}

Agent/rtProto/DV instproc intf-changed {} {
$self instvar ns_peers_ ifs_ ifstat_ ifsUp_ nextHop_ nextHopPeer_ metric.

111

set INFINITY [$class set INFINITY]
set ifsUp_""
foreach nbr [array names peers_] {

set state [$ifs_($nbr) up?]
if {$state != $ifstat_($nbr)} {

set ifstat_($nbr) $state
if{$state!="up"} {

if ![info exists all-nodes] {
set all-nodes [$ns_ all-nodes-list]

}
foreach dest${all-nodes} {

$peers_($nbr) metric $dest $INFINITY

}
} else {

läppend ifsUp_ $nbr

}
}

}
}

#added for rtProtoSAAM
Agent/rtProto/SAAM instproc intf-changed {} {

$self instvar ns_ peers_ ifs_ ifstat_ ifsUp_ nextHop_ nextHopPeer_ metric,
set INFINITY [$class set INFINITY]
set ifsUp_""
foreach nbr [array names peersJ {

set state [$ifs_($nbr) up?]
if {$state != $ifstat_($nbr)} {

set ifstat_($nbr) $state

if{$state!="up"}{
if ![info exists all-nodes] {

set all-nodes [$ns_ all-nodes-list]

}
foreach dest${ all-nodes} {

$peers_($nbr) metric $dest $INFTNITY
}

} else {
läppend if sUp_ $nbr

}
}

}
}

Agent/rtProto/DV proc get-next-mid {} {
set ret [Agent/rtProto/DV set midj
Agent/rtProto/DV set mid_ [expr $ret + 1]
set ret

}

added for rtProtoSAAM

112

Agent/rtProto/SAAM proc get-next-mid {} {
set ret [Agent/rtProto/SAAM set midJ
Agent/rtProto/SAAM set mid_ [expr $ret + 1]
set ret

Agent/rtProto/DV proc retrieve-msg id {
set ret [Agent/rtProto/DV set msg_($id)]
Agent/rtProto/DV unset msg_($id)
set ret

}

added for rtProtoSAAM
Agent/rtProto/SAAM proc retrieve-msg id {

set ret [Agent/rtProto/SAAM set msg_($id)]
Agent/rtProto/SAAM unset msg_($id)
set ret

Agent/rtProto/DV instproc send-updates changes {
$self instvar peers_ ifs_ ifsUp_

if $changes {
set to-send-to [array names peers J

} else {
set to-send-to $ifsUp_

}
setifsUp_""
foreachnbr${to-send-to} {

if { [$ifs_($nbr) up?] == "up" } {
$self send-to-peer $nbr

}
}

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc send-updates changes {

$self instvar peers_ ifs_ ifsUp_

if $changes {
set to-send-to [array names peers J

} else {
set to-send-to $ifsUp_

}
set ifsUp_""
foreachnbr${to-send-to} {

if { [$ifs_($nbr) up?] == "up" } {
$self send-to-peer $nbr

}
}

113

}

Agent/rtProto/DV instproc send-to-peer nbr {
$self instvar ns_ rtObject_ ifs_ peers_
set INFINITY [$class set INFINITY]
foreach dest [$ns_ all-nodes-list] {

set metric [$rtObject_ metric? $dest]
if {$metric<0} {

set update($dest) $INFINITY
} else {

set update($dest) [$rtObject_ metric? $dest]
foreach nh [$rtObject_ nextHop? $dest] {

if{$nh==$ifs_($nbr)} {
set update($dest) SINFINTTY

}
}

}
}
set id [$class get-next-mid]
$class set msg_($id) [array get update]

set n [$rtObject_ set node_];
puts stderr [concat [format ">» %7.5f' [$ns_ now]]

"${n}([$n id]/[$self set addrj) send update"
"to ${nbr}([$nbr id]/[$peers_($nbr) addr?]) id = $id"];

setj 0;
foreach i [lsort -command TclObjectCompare [array names update]] {

puts -nonewline "\t${i}([$i id]) $update($i)";
if {$j = 3} {

puts"";
};
setj[expr($j + l)%4];

};
if$j{puts"";}

XXX Note the singularity below...
$self send-update [$peers_($nbr) addr?] $id [array size update]

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc send-to-peer nbr {

$self instvar ns_ rtObject_ ifs_ peers_
set INFINITY [$class set INFINITY]
foreach dest [$ns_ all-nodes-list] {

set metric [$rtObject_ metric? $dest]
if {$metric<0} {

set update($dest) $INFINITY
} else {

set update($dest) [$rtObject_ metric? $dest]
foreach nh [$rtObject_ nextHop? $dest] {

if{$nh = $ifs_($nbr)}{

114

set update($dest) $INFESfTTY

}
}

}
}
set id [$class get-next-mid]
$class set msg_($id) [array get update]

set n [$rtObject_ set node_];
puts stderr [concat [format ">» %7.5f" [$ns_ now]]

"${n}([$n id]/[$self set addrj) send update"
"to ${nbr}([$nbr id]/[$peers_($nbr) addr?]) id = $id"];

setj 0;
foreach i [lsort -command TclObjectCompare [array names update]] {

puts -nonewline "\t${i}([$i id]) $update($i)";
if {$j = 3> {

puts ;

};
setj [expr ($j + 1) % 4];

};
if$j{puts"";}

XXX Note the singularity below...
$self send-update [$peers_($nbr) addr?] $id [array size update]

}
Agent/rtProto/DV instproc recv-update {peerAddr id} {

$self instvar peers_ ifs_ nextHopPeer_ metric_
$self instvar rtsChanged_ rtObject_

set INFINTTY [$class set INFINITY]
set UNREACHABLE [$class set UNREACHABLE]
set msg [$class retrieve-msg $id]
array set metrics $msg

setn [$rtObject_setnode_J; \
puts stderr [concat [format "<« %7.5f' [[Simulator instance] now]] \

"${n}([$n id]) recv update from peer SpeerAddr id = $id"]
foreach nbr [array names peersj {

if {[$peers_($nbr) addr?] == SpeerAddr] {
set peer $peers_($nbr)
if { [array size metrics] > [Node set nn_] } {

error "$class::$proc update $peerAddr:$msg:$count is larger than the simulation
topology"

}
set metricsChanged 0
foreach dest [array names metrics] {
set metric [expr $metrics($dest) + [$ifs_($nbr) cost?]]

if {$metric > $INFINITY} {
set metric SINFINITY

}
if {$metric != [Speer metric? $dest]} {

Speer metric $dest $metric

115

incr metricsChanged

}
}
if $metricsChanged {

$self compute-routes
incr rtsChanged_ $metricsChanged
$rtObject_ compute-routes

} else {
dynamicDM multicast hack.
If we get a message from a neighbour, then something
at that neighbour has changed. While this may not
cause any unicast changes on our end, dynamicDM
looks at neighbour's routing tables to compute
parent-child relationships, and has to do them
again.

$rtObject_ flag-multicast -1

}
return

}
}
error "$class::$proc update $peerAddr:$msg:$count from unknown peer"

}

added for rtProtoSAAM
Agent/rtProto/SAAM instproc recv-update {peerAddr id} {

$self instvar peers_ ifs_ nextHopPeer_ metric_
$self instvar rtsChanged_ rtObject_

set INFINITY [$class set INFINITY]
set UNREACHABLE [$class set UNREACHABLE]
set msg [$class retrieve-msg $id]
array set metrics $msg

set n[$rtObject_ set node J; \
puts stderr [concat [format "<« %7.5f' [[Simulator instance] now]] \

"${n}([$n id]) recv update from peer $peerAddr id = $id"]
foreach nbr [array names peersj {

if {[$peers_($nbr) addr?] == $peerAddr} {
set peer $peers_($nbr)
if { [array size metrics] > [Node set nnj } {

error "$class::$proc update $peerAddr:$msg:$count is larger than the simulation
topology"

}
set metricsChanged 0
foreach dest [array names metrics] {
set metric [expr $metrics($dest) + [$ifs_($nbr) cost?]]

if {$metric > SINFINTTY} {
set metric $INFINITY

}
if {$metric != [$peer metric? $dest]} {

116

Speer metric $dest $metric
incr metricsChanged

}
}
if $metricsChanged {

$self compute-routes
incr rtsChanged_ $metricsChanged
$rtObject_ compute-routes

} eise {
dynamicDM multicast hack.
If we get a message from a neighbour, then something
at that neighbour has changed. While this may not
cause any unicast changes on our end, dynamicDM
looks at neighbour's routing tables to compute
parent-child relationships, and has to do them
again.

$rtObject_ flag-multicast -1

}
return

}
}
error "$class::$proc update $peerAddr:$msg:$count from unknown peer"

}
Agent/rtProto/DV proc compute-all {} {

Because proc methods are not inherited from the parent class.
}

added for rtProtoSAAM
Agent/rtProto/SAAM proc compute-all {} {

Because proc methods are not inherited from the parent class.

Manual routing

Class Agent/rtProto/Manual -superclass Agent/rtProto

Agent/rtProto/Manual proc pre-init-all args {
Simulator set node_factory_ ManualRtNode

}

Agent/rtProto/Manual proc init-all args {
The user will do all routing.

}
Local Variables:
mode: tcl
tcl-indent-level: 4
tcl-default-application: ns
###End:

117

THIS PAGE INTENTIONALLY LEFT BLANK

118

LIST OF REFERENCES

[FALL99] Kevin Fall and Kannan Varadhan, NS Notes and Documentation, The
VINT Project, 1999.

[KESH88] Srinivasan Keshav, REAL: A Network Simulator, Computer Science
Division, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1988.

[NATI97] National Coordination Office for Computing, Information, and
Communications, Next Generation Internet Initiative,
http://www.ccic.gov/ngi/concept-Jul97/. (HTML Document), 1997.

[SCH096] Herbert Schorr and Deborah Estrin, Virtual InterNetwork Testbed(VINT):
methods and system, Information Sciences Institute, University of
Southern California, Los Angeles, 1996.

[XJE98] Geoff Xie, SAAM: Network Management for Integrated Services,
Department of Computer Science, Naval Postgraduate School, Monterey
CA, 1998.

[GUER98] Guerin, QoS Routing Mechanisms and OSPF Extensions, Internet
Engineering Task Force, 1998.

[VRAB99] Dean Vrable and Jon Yarger, The SAAM Architecture: Enabling
Integrated Services, Department of Computer Science, Naval Postgraduate
School, Monterey CA, 1999

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
28725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd. Monterey, California 93940-5101

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, Virginia 22134-5027

4. Director, Marine Corps Research Center 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, Virginia 22134-5107

5. Director, Studies and Analysis Division.... 1
MCCDC, Code C45
300 Russell Road
Quantico, Virginia 22134-5130

6. Marine Corps Representative 1
Naval Postgraduate School
Code037,Bldg.330,IN-116
555 Dyer Road
Monterey, CA 93940

7. Chairman,Code CS 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

8. Dr. Geoffrey Xie • 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

121

CDR Michael J. Holden
Computer Science Department, Code CS/HM
Naval Postgraduate School
Monterey, California 93943-5100

10. Maj Brian Tiefert...
2205 Star Lane
Albany, GA 31707

122

