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Abstract 

An architectural style is a description of component types and their topology. It also includes a 
description of the pattern of data and control interaction among the components and an infor- 
mal description of the benefits and drawbacks of using that style. Architectural styles are 
important engineering artifacts because they define classes of designs along with their associ- 
ated known properties. They offer experience-based evidence of how each class has been used 
historically, along with qualitative reasoning to explain why each class has its specific proper- 

ties. 

Attribute-Based Architectural Styles (ABASs) build on architectural styles to provide a foun- 
dation for more precise reasoning about architectural design by explicitly associating a reason- 
ing framework (whether qualitative or quantitative) with an architectural style. These 
reasoning frameworks are based on quality attribute-specific models, which exist in the vari- 
ous quality attribute communities (such as the performance and reliability communities). 

Architectural styles, and hence ABASs, are powerful because they provide a designer with the 
concentrated wisdom of many preceding designers faced with similar problems. In this report 
we exemplify the use of ABASs in both design and analysis. We argue that ABASs provide 
the groundwork to create an engineering discipline of architectural design—to make design a 
predictable process rather than an ad hoc one. 
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1     Introduction 

An architectural style (as defined by Shaw and Garlan [Shaw 96]) and elaborated on by others 
[Buschmann 96], is a description of component types and their topology, which includes a 
description of the pattern of data and control interaction among the components. Architectural 
styles also provide an informal description of the benefits and drawbacks of using that style. 
Architectural styles are important engineering artifacts because they define classes of designs 
along with their associated known properties. They offer experience-based evidence of how 
each class has been used historically, along with qualitative reasoning to explain why each 
class has its specific properties. "Use the pipe and filter style when reuse is desired and perfor- 
mance is not a top priority" is an example of the type of description that has been found in 
existing definitions of the pipe and filter style. Architectural styles are powerful because they 
provide a reuser with the concentrated wisdom of many preceding designers faced with similar 
problems. Using architectural styles allows an architect to reuse the collected wisdom of the 
architecture design community in much the same way that object-oriented design patterns give 
novice designers access to a vast array of experience collected in the object-oriented design 

community [Gamma 95]. 

In 1999, we introduced the notion of an Attribute-Based Architectural Style (ABAS), the pur- 
pose of which is to make architectural styles the foundation for more precise reasoning about 
architectural design [Klein 99]. This is accomplished by explicitly associating a reasoning 
framework (whether qualitative or quantitative) with an architectural style. These reasoning 
frameworks are based on quality attribute-specific models, which exist in the various quality 
attribute communities (such as the performance and reliability communities). This means that 
ABASs are not only attribute based, but unlike existing architectural styles, are also attribute 
specific. When we design or analyze using ABASs, we consider only one quality attribute at a 
time, because each ABAS is associated with only one attribute reasoning framework (what we 
call an "attribute model"). An architectural style that is interesting from both a performance 
and a reliability point of view would be motivation for creating the respective performance 
and reliability ABASs. For example, there could be distinct pipe-and-filter performance and 

reliability ABASs. 

We view ABASs as the next generation in the development of architectural styles. Using 
ABASs is a step in moving architecture design closer to being an engineering discipline [Shaw 
90] and to bring the benefit of an engineering discipline—predictability—to architecture 
design. ABASs promote a new way of doing the design and analysis of software architecture 
based on reusing known patterns of software components with predictable properties. We will 
emphasize this point throughout this report and exemplify it in a design example in Chapter 4. 
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The purpose of this report is to 

• take a step in showing the utility of ABASs by presenting several samples covering the 
quality attributes of modifiability, performance, and availability 

• offer a variety of examples of how ABASs can be used in both design and analysis 

• show how ABASs can aid in discovering design tradeoffs 

The grander purpose of this report is to try to establish a common format for documenting 
ABASs in the hope that they will become the foundation of an architect's handbook when 
doing design and analysis. 

We will begin by discussing quality attributes and how we characterize them, and next we 

present an example ABAS to show how we document them. Then we present an example of 

designing using ABASs and briefly discuss how we use ABASs in aiding architecture tradeoff 
analysis. 

CMU/SEI-99-TR-022 



2     Quality Attribute Characterizations 

ABASs show how to reason about architectural decisions with respect to a specific quality 
attribute such as performance, security, or reliability. However, a prerequisite for constructing 
and using ABASs is to have a precise characterization for the quality attribute of concern. For 
example, understanding a style from the point of view of modifiability requires an understand- 
ing of how to measure or observe modifiability and an understanding of how architectural 
decisions impact this measure. To facilitate using the wealth of knowledge that already exists 
in the various quality attribute communities, we have created a standard characterization for 

the quality attributes of performance, modifiability, and availability. 

We divide quality attribute information into three categories: external stimuli, architectural 
decisions, and responses. External stimuli (or just stimuli for short) are the events that cause 
the architecture to respond or change. To assess an architecture for adherence to quality 
requirements, those requirements need to be expressed in terms that are measurable or at least 
observable. These measurable/observable quantities are described in the responses section of 
the attribute characterization. Architectural decisions are aspects of an architecture—compo- 
nents, connectors, and their properties—that have a direct impact on achieving attribute 

responses. 

For performance, the external stimuli are events arriving at the system such as messages, mis- 
siles, or user keystrokes. The architectural decisions include: processor and network arbitra- 
tion mechanisms; concurrency structures including processes, threads, and processors; and 
properties including process priorities and execution times. Responses are characterized by 
measurable quantities such as latency and throughput. For modifiability, the external stimuli 
are change requests to the system's software. Architectural decisions include encapsulation 
and indirection mechanisms, and the response is measured in terms of the number of affected 
components, connectors, and interfaces and the amount of effort involved in changing these 

affected elements. 

This way of characterizing a quality attribute is central to ABASs. You will see the role played 
by attribute characterizations in the next section, which offers a walkthrough of an ABAS. The 
characterization of performance that we are currently using is given in Figures 1-3. 

These characterizations transcend their use in ABASs. We simply take advantage of the exist- 
ing body of knowledge in each of the quality attribute communities, and we organize this 
knowledge in a consistent way, once, for use in every ABAS related to a particular quality 
attribute. That is to say, all modifiability ABASs are organized around the same modifiability 

CMU/SEI-99-TR-022 



characterization; all availability ABASs are organized around the same availability character- 
ization, and so forth. 

Performance 

Stimuli Architectural Parameter 
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—Clock Interrupt 
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Figure 1:    Performance Characterization—Stimuli 
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Figure 3:    Performance Characterization—Architectural Decisions 
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3     ABAS Example 

Every ABAS has the same four parts: 

1. Problem description - informally describes the design and analysis problem that the 
ABAS is intended to solve, including the quality attribute of interest, the context of use, 
constraints, and relevant attribute-specific requirements. 

2. Stimulus/Response attribute measures - a characterization of the stimuli to which the 
ABAS is to respond and the quality attribute measures of the response. 

3. Architectural style - a description of the architectural style in terms of its components, 
connectors, properties of those components and connectors, and patterns of data and con- 
trol interactions (their topology), and any constraints on the style. 

4. Analysis - a description of how the quality attribute models are formally related to the 
architectural style and the conclusions about "architectural behavior." 

Many ABASs are intended to achieve similar goals and do so via similar structural means. For 
example, modifiability ABASs use various forms of indirection; availability ABASs use vari- 
ous forms of redundancy. So, these naturally fall into groups, which we call ABAS families. 
In this report, we will present one family of related modifiability ABASs. These are all related 
to the Data Indirection ABAS and are found in Appendices B-D. We organize ABAS families 
as a hierarchy, with one ABAS at the root and the remaining sub-ABASs inheriting (and over- 
riding) some of the properties of the root ABAS. 

For the moment, however, we will concentrate on explaining the parts of an ABAS via a single 
example. The following is a walkthrough of an example ABAS: Concurrent Pipelines. 

This ABAS is called "Concurrent Pipelines" because it takes the pipe and filter architectural 
style [Shaw 96] and places it in a real-time setting, allowing for multiple concurrent chains of 
pipes and filters. Real-time performance is the attribute of concern in this ABAS. 
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3.1    Problem Description 
The problem description offers an informal description of the situation the ABAS is intended to 

offer insight for, including the attribute-specific requirements to which the ABAS applies. 

Classical pipe and filter systems are used when a sequence of transformations is applied to a 
stream of data by a sequence of processes (or threads), producing a final output. Concurrent 
pipelines are needed when multiple streams are co-located on a single processor and where 
there are real-time requirements associated with the production of final outputs. In systems 
implemented in such a style, there are sometimes unintended performance consequences. The 
purpose of the Concurrent Pipelines ABAS is to provide a reasoning framework so that the 

performance consequences of architectural decisions are understood at design time. 

For the Concurrent Pipelines ABAS, we consider a single processor on which multiple pro- 

cesses reside and are organized into sequences. Each process performs computations on its 

own input data stream. Each final output from the system must be produced within a specified 
time interval after the arrival of an input, after all computations have been performed. The 
input data will be referred to as a message. The requirement then is to completely process each 
message with a specified bounded end-to-end latency—a deadline. 

The analysis focus of the Concurrent Pipelines ABAS is how to reason about the effects of the 
process prioritization strategy on end-to-end latency. 

3.1.1     Criteria for Choosing this ABAS 

These criteria are meant to summarize situation(s) for which this ABAS is relevant by describ- 
ing the style's topology and the attribute response behavior that the ABAS allows a designer to 
reason about and predict. 

This ABAS will be relevant if 

• your problem inherently has real-time latency requirements associated with the production 
of final outputs 

• the topology you are using or considering consists of multiple processes arranged as 
concurrent pipelines 

1.    Text shown in italics in this section is descriptive and not part of the ABAS itself. 
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3.2   Stimulus/Response Attribute Measures 
The important stimulus and the response that we want to reason about, control, and measure 
are characterized as follows: 

• Stimulus: periodic or sporadic arrival of messages 

• Response: worst-case latency associated with processing this message 

3.3   Architectural Style 
This section explicates the topology and key architectural decisions. 

An example of the Concurrent Pipelines style is shown in Figure 4. Multiple messages arrive 
at the first process in each sequence (for example, process Pll and Pnl). In this style, mes- 
sages are queued using a FIFO (first in, first out) queuing discipline and are processed when 
they reach the head of the queue. Each process vies for the processor using a fixed-priority, 
preemptive-scheduling discipline. 

*- ---►(P11 )---►(P12) •••(P13}->^(P14) 

^ -•H® 
• 
• 
• 

+- ---►(Pnl) ##t(Pn2) -H>n3) 

Figure 4:    Concurrent Pipelines 

Legend 

Processor 

Process 

o 
Data Flow 

You can think of each sequence of processes as a pipeline. Each input message is incremen- 
tally transformed by each process in the sequence. Hence, sequential messages of the same 
type might be in different stages of processing at the same time. As shown in Figure 4, there 
can be more than one pipeline on the processor (some of which might be trivial). 

Systems are built like this to take advantage of the classical benefits of a pipe and filter archi- 
tecture [Shaw 96]. Pipe and filter architecture benefits are 
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• The system can be easily understood as a sequence of data transformations. 

• Each filter can be modified or replaced, in principle, without affecting any of 
the other filters. 

• Filters can be reused elsewhere. 

This ABAS can also arise in object-oriented systems. From a module perspective, the system 
might look like a set of interacting objects, each in its own thread, but from a process perspec- 
tive, it could look like concurrent pipes and filters. 

The architectural decisions that are important for performing analyses are listed in the table 

below. This table is based on the performance attribute characterization given in Chapter 2. 

The architectural parameters of concern for this ABAS are those necessary for creating an ana- 

lytic model of end-to-end, worst-case latency. Table 1 describes the performance architectural 
parameters and their values. 

Performance Architectural Parameters 

topology: pipeline(s) 

preemption policy: priority-based preemption 

execution time for each process associated with processing each input: C,- 

prioritization strategy: sequence of priorities in the pipeline 

process scheduling discipline: fixed priority 

Table 1:     Architectural Decisions for the Concurrent Pipelines ABAS 

3.4   Analysis 

The goal of the analysis is to convey the relationships between topology and key architecture 
decisions and the stimulus/response behavior. A formal analysis is presented when possible; 
otherwise qualitative analysis is performed. 

In the following sections, we present a formal analysis showing how to predict the end-to-end, 
worst-case latency in this ABAS given a knowledge of the parameters listed in Table 1. We 
also include a set of informal qualitative analysis heuristics, telling the designer what issues to 
be aware of in creating and assessing any design of a concurrent pipelines ABAS. 
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3.4.1     Reasoning 

This section articulates the key points for how to think about this ABAS in terms of a formal 

performance analysis. 

The analysis issue for this ABAS is how to reason about the incremental processing of inputs, 
where each increment can be made by a different process, each executing at its own fixed pri- 

ority [Gonzalez 91]. To calculate the latency of a message traversing the i* pipeline, you must 
determine the preemptive effects of the other pipelines. The key to determining these preemp- 

tive effects is to first identify the lowest priority process in the Ith pipeline. In brief, the follow- 
ing steps can be used to obtain an estimate of the worst-case latency for an input message 

using the ith pipeline consisting of processes Pjj, Pi2 ... Pim: 

1. Determine the priority of the lowest priority process in the i* pipeline, denoted by LowPj. 

2. Determine the set of pipelines whose lowest priority process has a priority greater than 
LowPj. In other words, all of the processes in these pipelines have a priority greater than 

LowPj. Denote this set as H for high. 

3. Determine the set of pipelines that start with processes whose priority is greater than 
LowPj but eventually drop below LowPj. Denote this set by HL, standing for starting 

higher and dropping lower. 

4. Determine the set of pipelines that start with processes whose priority is lower than LowPj 

but eventually rise above LowPj. Denote this set by LH, standing for starting lower and 

rising to higher. 

Calculate the worst-case latency for the 1th pipeline by iteratively applying the following for- 

mula until it stabilizes. 

in+i = 2 
jeH 

1   1_       _       _    _ (1) 
cj+ci+ 2 CJ +max(CP 

jeHL JeLH 

The above steps for calculating latency illustrate the sensitivity of the pipeline's latency to the 
priority of the lowest priority process in the pipeline under scrutiny (i.e., LowPj) since the pri- 

ority categories (i.e., H, HL, and LH) are determined by LowPj. 
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3.4.2    Analysis and Design Heuristics 

This section consists of qualitative questions and heuristics, which direct attention to the rela- 

tionships between architectural decisions and the stimulus/response behavior of the style. The 
previous section provides a starting point for answering these questions and thus provides a 
basis for developing a skeletal analysis. 

Even if one does not build a formal analytic model of the latency in a concurrent pipelines 
ABAS, a designer should keep in mind that the latency of pipelines is very sensitive to the pri- 
oritization strategy, in particular to the priority of the lowest priority process in the pipeline. 
Thus, when designing a system that employs such an ABAS, one should ask 

• How does your choice of priority assignment impact latency? 

• Is there another prioritization strategy that might reduce latency, in particular should the 
priority of the lowest priority process in each pipeline be changed? 

• Is the architectural design flexible enough to accommodate reprioritization later in design? 

• Is the effect of reallocating functionality to processes easily understood? 

To realize the concurrent pipelines ABAS, one should consider the following: 

1. What are desirable priority assignments? 

Answer: In many situations assigning higher priorities for shorter deadlines is a good strat- 
egy. 

2. What if deadlines are beyond the end of the period? 

Answer: When deadlines are beyond the end of the period it is not sufficient to only exam- 
ine the completion time of the first job as this job might not be the one with the longest 
completion time. 

3.5   Summary 

This example has shown the parts of an ABAS and illustrated the purpose of each part. The 
problem description delineates how and why you would go about using this ABAS—the kind 
of problem on which you need to get an engineering handle. The stimulus/response attribute 
measures tell you precisely what measurable attribute of the system about which you can rea- 
son. The architectural style tells you what key design decisions are fixed if you want to use this 
ABAS and what decisions you still need to make as an architect. The analysis section tells 
you, both formally and informally, how to think about this ABAS and to what key properties 
of the style need to be paid special attention. 
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4     Using ABASs for Design and Analysis 

Imagine a handbook with a collection of ABASs, including several ABASs for performance, 
several for reliability, several for modifiability, and so on. To help you imagine such a hand- 
book, we have included six ABASs in the Appendices, pages 31-72, of this report. You are 
strongly encouraged to turn to these ABASs as an adjunct to understanding this section. This is 
in the spirit of a handbook—one typically doesn't read a handbook cover to cover, but rather 
reads small sections on an as-needed basis to analyze the problem at hand. 

Given a collection of ABASs, one natural question to ask is: how can multiple ABASs be used 
together to facilitate the design and analysis of an architecture? The purpose of this section is 
to suggest some answers to this question. A model problem will be used to help illustrate the 

use of ABASs. 

4.1    Model Problem 
The Sea Buoy problem: A collection of buoys is floating in the sea to 
acquire and maintain navigation and weather data, and to provide these data 
to air and sea traffic [Booch 96]. Each buoy collects and maintains air and 
water temperature, wind speed, and buoy location data. Wind-speed read- 
ings are to be taken every 30 seconds; air and water temperature readings are 
to be taken every 10 seconds; and buoy location readings are taken every 10 
seconds. Temperature, wind, and location information is broadcast every 60 
seconds using a radio transmitter attached to each buoy. 

On demand, a 24-hour history of wind, temperature, and location informa- 
tion is broadcast in response to requests from passing vessels. Requests are 
received via a radio receiver on each buoy. This history transmission takes 

priority over the periodic broadcasts. 

If sailors in distress can reach the buoy, they can flip an emergency switch to 
activate the continuous broadcasting of an SOS signal, which takes priority 
over all other transmissions until it is reset by a passing vessel. Some buoys 
are equipped with a red light that can be activated/deactivated by a passing 

vessel during sea-search operations. 

CMU/SEI-99-TR-022 13 



Each buoy can have a different number of wind and temperature sensors, 
and each buoy might be modified in the future to support different sensor 
types. 

The sea buoy problem has explicit performance and modifiability requirements. We will add a 
new availability requirement, which is clearly important to this problem even though this was 
not stated explicitly in the original description. A number of ABASs described in the Appendi- 
ces of this report will be employed to create an initial design that satisfies the basic require- 
ments of this problem. These ABASs include 

• The Synchronization ABAS, which is relevant because most likely, mutually exclusive 
access to one or more data repositories will be necessary. 

• The Concurrent Pipelines ABAS, which is relevant because there will be several pipelines 

of information in the system and it is important to reason about the performance of these 

pipelines. In particular, it is important to reason about how managing the performance of 
one pipeline can affect the others. 

• The Abstract Data Repository ABAS which is relevant because it addresses modifications 
such as changes in sensors and sensor types that might result in data format changes or the 
introduction of new data types. 

Our strategy in presenting this example is to show how to incrementally build a design by 
applying different ABASs to address different parts of the problem space. We will begin by 
addressing the need to have mutually exclusive access to shared data in the Sea Buoy problem 
while meeting performance goals (i.e., it is desired that access to the shared data does not 
become a performance bottleneck in the system). 

4.2   Applying the Synchronization ABAS 
The Synchronization ABAS (detailed in Appendix A, page 31) is a single-processor, client- 
server style augmented with real-time scheduling analysis. It highlights the key architectural 
decisions that will have an impact on performance and then offers quantitative and qualitative 
advice for reasoning about the impact of those decisions. The architectural decisions high- 
lighted by the ABAS are 

• the choice of processes and their relationships 

• the process prioritization strategy 

• the scheduling discipline 

• the shared-data, store-locking policy 

The Synchronization ABAS is directly applicable to the Sea Buoy problem. This is because 
sensor data must be stored and later retrieved for periodic or on-demand transmission, and so 
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we need to have a way for processes to share a data store. The wind sensor (W), air tempera- 
ture (Ta), water temperature (Tw), and location (Loc) functions can each be mapped into their 
own processes, all of which write to or read from a common data store (DB) as shown in Fig- 

ure 5. 

Legend 

Processor 

Process 

Data Flow 

Figure 5:    Initial Concurrency View for Sea Buoy 

The Synchronization ABAS offers insight for how to reason about the impact of architectural 
decisions. In this case, the insight is packaged in the formula (shown below), which shows the 
effects of the various design decisions on latency. In this formula; C denotes execution time; T 
denotes period; and B denotes blocking time. 

i-l 

Ln+l =  I 
j = l 

Cj + q+B, 

(2) 

Section A.4.1 explains how the terms in this equation reflect the topology shown in Figure 5. 

Given that the processes with the shortest periods are to be assigned the highest priorities (as 
suggested by the ABAS), the impact of the architectural decisions embodied by this style on 
the latency of the wind-sensing process is captured by the following formula. 
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"n + 1 
[Ln] 

TLoc 
^Loc + "V 

TTa 
CTa + 

[Ln] 
TTw 

(3) 

cTw + cw 

The preemptive effect of high priority processes is captured by the terms with ceiling func- 
tions. The execution time of the wind-sensing process is accounted for by Cw. There are no 

blocking (B) terms representing the effect of lower priority processes on latency. Since the 

wind-sensor process is the lowest priority process (that we have included in the architectural 
design up to this point), Bj is equal to zero. This will change as we flesh out the design. 

4.3   Composing Like-Attribute ABASs 

Our strategy is to incrementally incorporate different aspects of the problem into the architec- 
tural design (the solution). However, this begs the question of how to compose multiple like- 
attribute ABASs—each of which addresses a small aspect of the design—to realize a complete 
solution. To facilitate composition, we focus our attention on the analytic underpinnings and 
let these guide our design. For example in this case, the latency for the wind-sensing process 

can be viewed as a function of execution times (C), priorities (P), and periods (T):2 

Latencywind = fwind(CLoc, CTa, C^ Cw, PLoc, PTa, P^ TLoc, TTa, T^) 

Composing other aspects of the problem with the initial style discussed above involves recog- 
nizing the impact of other aspects of the problem on this function and vice versa. That is, to 
compose ABASs, we need to understand where decisions made in some other ABAS might 
affect terms such as CLoc, CTa, and GJV This illustrates how design via ABASs work; we con- 

sider not only the functionality and topology of the solution, but also how the measurable 
properties of the system will be affected by each design decision. Places where multiple 
ABASs affect a single property require special attention on the part of the architect 
[Kazman 99]. 

2.     Here and in the following discussion, we will not show the details of the modified formulae, as they simply follow the 
pattern of Equation 3. 
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Reapplying the Synchronization ABAS 

To begin illustrating how we compose ABASs, consider adding the broadcast (BC) and trans- 
mission (XMT) functions to the design presented in Figure 5. The resulting design is given in 

Figure 6. 

*(y)-""s/ 
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  Data Flow 

Figure 6:    Concurrency View After Adding Broadcast and Transmission 

First, from the point of view of the Synchronization ABAS, BC is a new client of DB. The rea- 
soning associated with the Synchronization ABAS would suggest assigning the broadcast pro- 
cess a lower priority than the other periodic processes because of its lower frequency, which is 
dictated in the problem description. The first question is then: how does this affect 
Latencywind? Since the broadcast process' priority is lower than that of the other periodic 

tasks, Latencywin(i does not depend on the execution time or period of broadcast. On the other 

hand, since broadcast accesses DB, the possibility exists that it can block the wind-sensing 
process and thus affect LatencyWind. Therefore, the representation of Latencywind is now mod- 

ified to reflect that it is also a function of blocking due to broadcast: 

Latencywind = fwind(^Loc ^Ta» ^Tw *""w' ^Loc' ^Ta' PTW
' ^

LOC
' 

Txa' ^^BßC^ 
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This brings us to an important question: how do the other periodic processes affect Latency- 

Broadcast7 The other processes preempt broadcast and thus LatencyBroadcast is a function of 

their periods, priorities, and execution times and its own execution time: 

LatencyBroadcast = fBroadcast(CLoc> ^Ta» ^Tw ^W» CBo PLoc> PTa> PTw PW> ^Loc ^Ta. Tiw T\y) 

Applying the Concurrent Pipelines ABAS 

The broadcast function is not complete until the data is actually transmitted via the transmis- 
sion process. The broadcast and transmission processes form a simple pipeline (as shown in 

Figure 6). We can draw on the Concurrent Pipelines ABAS discussed above for insight here as 

it offers the rule of thumb that the effective priority of the pipeline is strongly related to the 

lowest priority of all processes in the pipeline. This calls specific attention to the relative prior- 
ities of the broadcast and transmission processes. In particular, it tells us that assigning the 

transmission process a priority lower than that of the broadcast process can, in effect, lower the 
priority of the entire pipeline. This observation would be critical if the priority of the broadcast 
process were higher (to meet an early deadline, for example). 

We still have to account for execution time needed to actually carry out the transmission of the 
data. LatencyBroadcast is therefore also a function of CBC + CXMT

: 

LatencyBroadcast - fBr0adcast(CLoc> CTa' CTw> CW> CBC + CXMT' PLoc> PTa> PTw> PW> TLoc> TTa> 

TTWTW) 

There are several observations that can be made at this point. First, we have shown how 
ABASs can offer insight pertaining to architectural design decisions that have a key influence 
on requirements, in this case, latency requirements. Second, we have shown that a key to com- 
posing ABASs is to understand how the architectural decisions of one ABAS affect the stimu- 
lus/response behavior of the other ABAS, and vice versa. We have only illustrated 
composition for the relatively simple case of composing ABASs of the same attribute, which 
also use the same underlying modeling technique. In subsequent sections, we will discuss 
relaxing these restrictions. 

Composing Different Analytic Approaches 

The history function has not yet been folded into the design. The performance characteristic, 
which distinguishes this function is that it is event driven (or aperiodic). Up to this point, the 
underlying analytic approach used in the Synchronization and Concurrent Pipeline ABASs has 
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been Rate Monotonie Analysis (RMA) which is primarily a deterministic method. Assuming 
that the demands for historical information are stochastic, the history function might be more 
naturally treated using a stochastic technique such as queuing analysis. 

Composing ABASs, in this case, hinges on being able to understand the interactions between 
the two analytic models employed: RMA and queuing analysis. A queuing analysis might 
need to be adjusted to account for preemption and synchronization. An RMA analysis might 
need to be adjusted to account for random bursts of aperiodic arrivals. A detailed discussion of 
these interactions is beyond the scope of this report. 

The main point that we want to make here is that by revealing the analytic underpinnings of an 
architectural style (through formulae and/or a collection of heuristics), ABAS composition 
involves understanding the interactions at an analytic level. The analytic underpinnings help 
guide the designer to places of interaction between disparate modeling techniques. 

ABASs Offer Clues for Extrapolating Beyond the Specific Situation 

No matter how large (and seemingly comprehensive), a collection of ABASs will always be 
incomplete; there will always be situations that are not exactly covered by one or more ABASs 
in the current collection. However, ABASs are designed with rules of thumb and references 
for extrapolating beyond the specific model situation described. To illustrate, we now intro- 
duce the design constraint that the SOS, history and broadcast processes all use the transmis- 
sion process. 

This situation looks much like the situation discussed in the Synchronization ABAS. However, 
the original requirements state that the history function takes priority over the periodic broad- 
cast function, and the SOS function takes priority over everything else. To accommodate the 
apparent need for a quick response to the SOS request, the SOS message might have to inter- 
rupt a relatively lengthy broadcast of the 24-hour history. This, in turn, means that the trans- 
mission function needs to be preemptable. However, the Synchronization ABAS treats the 
server process (in this case XMT) as a critical section. It is the critical section that results in the 
blocking terms above. The effect of interrupting is to reduce or eliminate the blocking term. 

While the Synchronization ABAS does not deal directly with preemptable servers, it does 
highlight the relationship between critical sections in the server and blocking. The ABAS also 
highlights the relationship between the priority of the server process and blocking. This 
knowledge gives an architect a handle on how to make sensible design decisions. For example, 
the ABAS allows one to deduce that sending a long message in small chunks, where the trans- 
mission is preemptable between chunks, is a viable way to reduce the blocking of the SOS pro- 
cess to a level that is acceptable for the SOS function. 
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4.4   Composing ABASs of Different Attribute Types 
Until now, we have exclusively focussed our design on performance considerations and the 
ABASs that aid us in achieving our performance goals. These ABASs have shaped the soft- 
ware architecture to the state that is represented in Figure 6 on page 17. In this section, we will 
consider how to go about composing ABASs that focus on different quality attributes and see 
what additional kinds of reasoning ABASs bring to bear on this more demanding problem. 

Folding in Modifiability Requirements 

One explicit modifiability requirement in the Sea Buoy problem description is the need to sup- 
port adding new sensor types. The Data Indirection ABAS (detailed in Appendix B) and its 
sub-ABASs, the Abstract Data Repository Sub-ABAS (detailed Appendix C), and the 
Publish/Subscribe Sub-ABAS (detailed in Appendix D) are all potentially applicable here as 
they deal with the situation in which data producers and consumers interact with a data reposi- 
tory. Consulting the relevant ABASs, several considerations become apparent from the reason- 
ing section. These considerations are as follows: 

• Will the new sensors be producing data using the same or a different data format? 

• Are the new sensors being added to or substituted for existing sensors? 

• Is a new environmental parameter (such as air pressure) being sensed? 

The various scenarios considered in the Analysis section of the Data Indirection ABAS and its 
sub-ABASs (see Section B.4) offer insights for considering these questions. If the new sensors 
are using the same data format, then the modification has a minimal impact. If a different data 
format is being used, the impact is potentially pervasive when using the Data Indirection 
ABAS, but is easily managed using the Abstract Data Repository or the Publish/Subscribe 
sub-ABASs. Likewise, if a new environmental parameter is being sensed the impact could 
also be pervasive. 

Since in the case of the Sea Buoy problem, we want to plan for expansion of capabilities, we 
need to explicitly allow for new data types being stored in the repository. In addition, we have 
little control over the outputs of the sensors (since these are purchased "off the shelf). As a 
result, we assume that the sensors will be producing data in different formats. Considering 
these scenarios, we find the Abstract Data Repository ABAS to be preferable to the Data Indi- 
rection ABAS for minimizing the impacts of the anticipated modifications. We do not need to 
use the Publish/Subscribe sub-ABAS, since we do not anticipate any temporal ordering issues 
in the changes to the Sea Buoy's data producers and consumers. If such concerns did arise in 
the future, the Publish/Subscribe sub-ABAS could be substituted here. The resulting software 
architecture, once the Abstract Data Repository has been added, is depicted in Figure 7. 
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Figure 7:    Concurrency View After Adding the Abstract Data 
Repository ABAS 

While the use of the Abstract Data Repository ABAS would have favorable effects on the rip- 
ple effects of a new data format, introducing such a conversion might have an effect on the 
execution time of the process. We know that the latency functions discussed above depend on 
execution time. Adding new sensors will also create an additional execution time load. These 
are tradeoff points, architectural decisions that affect both modifiability and performance 
[Kazman 99]. Such architectural decisions have to be made carefully, with both modifiability 
and performance requirements in mind. ABASs give us a way to rigorously reason about these 
critical points in the architecture. 

To notice tradeoffs—interaction across ABASs of different attribute types—you must 

• be aware of how architectural decisions affect each quality attribute in isolation as 
exemplified by the discussion of latency functions in Section 4.3 

• be disciplined about looking for situations in which the changes to an architecture from the 
point of view of one attribute affect the independent parameters of functions associated 
with other attributes. The analysis section of each ABAS gives guidance here by 
identifying the known sensitivities and tradeoffs. 

Folding in Availability Requirements 

While there were no explicit reliability requirements in the initial description of the Sea Buoy 
problem, it seems natural to assume that the availability of the SOS function is critical. 
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Appealing to the Simplex ABAS (detailed in Appendix F) reveals analytic redundancy as a 
strategy for achieving high levels of availability. To exemplify the notion of analytic redun- 
dancy, you can think of the relationship between power steering and mechanical steering in a 
car as analytically redundant. Both mechanisms have the same effect on the environment, that 
is, they change the direction of the wheels, but the mechanisms used and how they perform are 
different. Power steering is less reliable (since it depends on the car's power) but is easier to 
use; mechanical steering is more reliable (only depending on mechanical linkages), but is 
much harder to use. 

Analytically redundant SOS mechanisms could be employed in this example, as shown in Fig- 
ure 8. In this case, a separate hardware unit could be used to generate and transmit a simple 
SOS signal, the premise being that a relatively simple, specialized hardware unit is more reli- 

able (and easier to verify) than the on-board processor. In addition to a highly reliable analyti- 

cally redundant SOS component, the Simplex ABAS also calls for a highly reliable "Decision 

and Switch" component. This component implements rules for deciding if an output is valid 

and deciding what to do if an output is invalid. For the Sea Buoy problem, we have decided to 

simply broadcast both the simple and more comprehensive SOS signals, thereby eliminating 
the need for the decision and switch component. Note that the redundant SOS component also 
has its own transmission capability. 

The simple SOS hardware serves as a backup to the more sophisticated signaling mechanism 
that runs on the on-board computer, which delivers a more comprehensive SOS message 
(potentially including position, weather information, time, etc.). Including this more compre- 
hensive SOS mechanism is a tradeoff between performance and availability. The on-board 
SOS function will be invasive on the performance of the other Sea Buoy functions, as it runs at 
a high priority. The higher performance demands of the SOS transmission are presumably jus- 
tified in their effects on the other components, but this assumption, now that it has been made 
explicit, needs to be checked with the system's stakeholders. 
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Figure 8:    Concurrency View After Adding Simplex-Style Redundancy 

4.5   Summary 
Using ABASs in design causes one to think about the process of designing differently. ABASs 
do this by facilitating both the generation of design alternatives (by choosing ABASs based 
upon attribute-specific requirements) and the discrimination between design alternatives 
(based upon the reasoning associated with each ABAS). As illustrated by the above example, 
we choose the pieces of the design based upon matching both topological requirements (for 
example, the data store is a shared resource and this topology is inherent in the problem) and 
quality attribute requirements, which come from the system's stakeholders. An important part 
of using ABASs for system design and analysis is knowing how to compose them. This report 
does not give a cookbook; no such cookbook is possible at this point in the field's maturity, nor 
is it possible even in mature fields except in well understood specialized subdomains. Instead, 
it gives a way of thinking about design and the interactions of design decisions on different 
quality attributes. 
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5     ABASs in Analysis 

Up to now, we have concerned ourselves with using ABASs to aid in the design of architec- 
tures for large, complex systems. However, we have also used ABASs extensively in analyz- 
ing existing systems as part of the Architecture Tradeoff Analysis Method (ATAM) [Kazman 
99]. This should not come as a surprise to the reader, given our focus on analysis as the impor- 
tant distinction between existing architectural styles and ABASs. Since every ABAS is associ- 
ated with an analytic model, whether formal or informal, we can use these models to 
understand the ramifications of architectural decisions that have already been made. ABASs 
can support two levels of analysis: a quantitative analysis in which formal reasoning and math- 
ematical models are used, and a less formal qualitative analysis in which probing questions 
and rules of thumb are used. Qualitative analysis has proven to be very useful for the ATAM 
process, since time pressures typically forbid the building of detailed models. 

The ATAM process consists of the following steps. 

1. Present ATAM. 

2. Present business drivers. 

3. Present architecture. 

4. Identify architecture styles. 

5. Generate quality attribute utility tree. 

6. Elicit and analyze architecture-styles. 

7. Generate seed scenarios. 

8. Brainstorm and prioritize scenarios. 

9. Map scenarios onto styles. 

10. Present out-brief. 

Steps 5 and 6 are most relevant to the use of ABASs in analyzing existing architectures. In step 
5, we elicit the quality attributes that are most critical to the system's success, and have the 
system's stakeholders prioritize these attributes and provide examples of them as scenarios. 
Using this information, we can then probe the architecture for the styles that are used to satisfy 
the attribute-specific requirements. Once these ABASs have been identified in the architec- 
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ture, the analytic models associated with them can be applied to understand the ramifications 
of architectural decisions on the quality-attribute goals. 

For example, if a quality-attribute goal is for an architecture to be insulated from changes to 
the Object Request Broker (ORB) middleware, one possible way of realizing that goal in the 
architecture is to create a middleware abstraction layer. After that, have all of the application- 
specific code use the services presented by that layer, rather than directly accessing the inter- 
faces provided by the ORB. If the system's architect identifies layering as a strategy used by 
the architecture to realize this modifiability goal, we can immediately make use of Layering 
ABAS (detailed in Appendix E). The analysis portion of this ABAS gives us a set of tools for 
asking questions of the architecture to determine the implications of a change to the middle- 
ware on the remainder of the system. 

In this way, ABASs provide the foundation for an efficient architecture analysis technique by 
providing a set of pre-packaged analyses and questions for the architect, based upon both 
known solutions to commonly recurring problems and known difficulties in employing those 
solutions. 
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Conclusion 

In this report, we have introduced the idea of an ABAS, pre-packaged units of architectural 
design and analysis. What separates ABASs from existing catalogs of architectural styles and 
design patterns is the emphasis on analysis. In each ABAS, we link analytic models (styles of 
reasoning) to topölogical architecture patterns. Because of our focus on analysis, the different 
responses to specific measurable aspects of quality attributes are the distinguishing character- 
istics between competing designs. ABASs give you, as an architect, a way to reason about 
design in direct relation to the quality attributes that you want to achieve. 

Thus, architectural design using ABASs is different from ordinary design. Rather than design- 
ing first from principles or by limiting reasoning to topology we envision a process where a 
designer considers the problem's constraints, its inherent topology (for example, some compu- 
tational environments are inherently distributed), and the quality attribute responses that must 
be controlled for the system to be successful. From these considerations, the designer can then 
look up appropriate ABASs from the handbook, indexing into the handbook by attribute 
responses and topology. The design and reasoning effort thus becomes one of applying the 
existing styles and their analytic models, rather than designing from scratch. There is still 
design work to do: combining ABASs requires careful thought and reasoning. Knowing how 
to adapt ABASs to similar but not identical environments also requires careful attention. The 
bulk of the design and analysis work is ready for the architect to reuse wholesale, and this, we 
believe, is an enormous benefit. We have already reaped this benefit in practice many times by 
using ABASs in analyzing software architectures. 

In this report, we have attempted to show how ABASs can be used to facilitate both design and 
analysis. But our experience with using ABASs is still limited to a small number of design and 
analysis experiences. Our greater goal in writing the report is, on analogy with the design pat- 
terns community, to stimulate the community to generate a large number of ABASs covering 
every known quality attribute. The seven ABASs that we present here are just the beginnings 
of what we hope will be a larger effort that will support the creation of a true engineering dis- 

cipline of architectural design. 
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Example ABASs 

The purpose of this appendix is to offer a small but representative set of ABASs to illustrate 
the concept from the points of view of several different quality attributes. This is not meant to 
be a "write-only" appendix; it should be read with Chapter 4. 

There are six ABASs in the appendices. The first one, Synchronization ABAS, is a perfor- 
mance ABAS concerned with multiple processes that need to synchronize to ensure mutually 
exclusive access to a resource. This is followed by four modifiability ABASs. The first is the 
Data Indirection ABAS which addresses a key style for affecting modifiability. This style uses 
either an explicit or implicit data repository to obviate the need for producers and consumers 
of data to have direct knowledge of each other. The second and third modifiability ABASs are 
variants of Data Indirection: the Abstract Data Repository ABAS and the Publish/Subscribe 
ABAS. The fourth modifiability ABAS is the Layering ABAS, which is a classical style for 
providing cumulative layers of abstraction on top of some base of functionality. The last 
ABAS in this appendix is an availability one, known as the Simplex ABAS, that uses a special 
form of redundancy to achieve high levels of availability. 
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Appendix A   Synchronization ABAS 

A.1   Problem Description 
For the Synchronization ABAS, we consider a single processor on which multiple processes 
reside, each of which perform computations on their own input data stream. Each final output 
from the system must be produced within a specified time interval after the arrival of an input 
and after all computations have been performed. We will refer to the input data as a message. 
The requirement then is to completely process each message with a specified bounded end-to- 
end latency—a deadline. 

The interesting feature of the Synchronization ABAS is that this requirement must be met in 
the face of contention for a shared resource, for which the multiple processes must compete. 
The central property of this ABAS for reasoning purposes is: how contention for the shared 
resource is handled, and how this contention affects performance, in particular, end-to-end 
latency. The Concurrent Pipelines ABAS discussed in the body of this report is a related 
ABAS. The Concurrent Pipelines ABAS focused on multiple processes contending for a sin- 
gle processor using a preemptive scheduling discipline, whereas this ABAS focuses on multi- 
ple processes requiring mutually exclusive access to a shared resource such as shared data. 

A.1.1 Criteria for Choosing this ABAS 

This ABAS will be relevant if your problem inherently has real-time performance require- 
ments and consists of multiple processes on a single processor that share a resource. 

A.2   Stimulus/Response Attribute Measures 

We characterize the important stimuli and their measurable, controllable responses as follows: 

• Stimuli: two or more periodic or sporadic input streams 

• Response: end-to-end, worst-case latency 

"End-to-end" refers to a measure beginning at the point of message input, through all stages of 
computation to its final output. 
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A.3   Architectural Style 

The synchronization style is shown in Figure 9 in a concurrency view mapped onto a hardware 
view. In this ABAS, there is a single processor and a set of processes with the associated 
known (or estimated) properties, listed in Table 2, that are transforming input streams into out- 
put streams. Some of these processes need to synchronize to share a resource controlled by S, 
the "server" process. 

High 

Medium " ^" 

d> 
Low 

P3 

Legend 

Processor 

Process 

CD 
Data Flow 

Figure 9:    Synchronization ABAS 
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Table 2 describes the architectural decisions that are necessary for creating an analytic model 

of end-to-end, worst-case latency for this ABAS. 

Performance Architectural Parameters 

topology: star 

preemption policy: priority based 

execution time for each process associated with processing each input: Q 

period associated with each process: 7} 

scheduling discipline: fixed priority 

synchronization protocol including: 

• the queuing discipline (e.g., FIFO or priority) for the server process 

• how the priority is managed during the critical section (e.g., the section of code during 
which other processes are locked out) 

Table 2:     Architectural Decisions for the Synchronization ABAS 

A.4   Analysis 
In the following sections, we present both a formal analysis, showing how to predict the end- 
to-end, worst-case latency in this ABAS, given a knowledge of the parameters listed in Table 
2; and a set of informal qualitative analysis heuristics, telling the designer what issues to be 
aware of in creating and assessing any design of a synchronization ABAS. 

A.4.1 Reasoning 

There are three types of time "experienced" by an arbitrary process under these circumstances: 
preemption, execution, and blocking time. Preemption time is the contribution to latency 
attributable to higher priority processes. Blocking is the contribution to latency due to low pri- 
ority processes. Blocking time arises as a consequence of the shared resource topology. Let Cj 

denote the execution time of process i, Tj denote the period of process i, and Bj denote the 

blocking time incurred by process i. The worst-case latency for process i, assuming that pro- 
cesses 1 through i-1 are of higher priority, can be found by iterating the following formula 
until it converges (that is, the value of Ln remains the same for two consecutive iterations). 

Ln + 1 

i-l_     _ (4) 
L"  Cj + Cj+Bj -I 
Tj 
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This equation is a reflection of the architecture decisions shown in Table 2. The first term 
reflects the use of a priority-based, preemptive scheduling policy. This term computes the 
number of times higher priority processes can preempt process i in a window of time that starts 
at time 0 and extends to time Ln. With each iteration, the formula accumulates the execution 

time associated with each of these preemptions, adds in the execution time of process i (Cj) 

and adds in the blocking time (Bj). As stated above, the blocking terms capture the effects of 

lower priority processes. The blocking time is directly affected by the synchronization proto- 
col that is used. 

Given an initial value of Ln for Q, iterating until Ln equals Ln+1 results in a determination of 

the worst-case latency for process Pj. If the iterations do not converge or they converge beyond 

the process's deadline, this is an indicator of potential timing problems. The lack of conver- 
gence signals an unbounded latency. Equation 4 illustrates the potential sensitivity of latency 
to higher priority processes and blocking time. 

A.4.1.1   Priority Assignment 

One potential pitfall in the synchronization ABAS is the prioritization strategy. It is possible to 
have very low levels of CPU utilization and still miss deadlines if an inappropriate prioritiza- 
tion strategy is used. Consider the situation in which there are two processes with the follow- 
ing characteristics 

• Process 1: High priority; execution time is 10 and period is 100 

• Process 2: Low priority; execution time is 1, period and deadline are 10 

If the two processes are initiated at the same time, process 2 will miss its deadline and yet the 
utilization of this set of processes is only 20%. The deadline monotonic [Leung 82] priority 
assignment is a strategy for avoiding this problem in the context of fixed-priority scheduling. 
This strategy assigns priorities as a monotonic function of deadline, with the shortest deadline 
receiving the highest priority. 

A.4.1.2   Priority Inversion 

This ABAS is a classical situation in which priority inversion and potentially unbounded pri- 
ority inversion can arise. Consider the following situation. Assume that process PI has a high 
priority; P2 has a medium priority; and P3 has a low priority (for now the priority of S, the 
server process, is unspecified). While the low priority process is synchronizing with process S, 
the high priority process will have to wait if it also needs to synchronize with S. This is prior- 
ity inversion in the sense that the high priority process is waiting while the low priority process 

34 CMU/SEI-99-TR-022 



is executing (or strictly speaking, while process S is executing on behalf of the low priority 
process). This could happen easily if the high priority process preempts process S while it is 
executing at a low priority on behalf of the low priority process. The medium priority process 
could further exacerbate the situation by preempting the critical section and causing even fur- 

ther delay for the high priority process. This is unbounded priority inversion in the sense that 
the high priority process could be delayed arbitrarily by adding other medium priority pro- 
cesses. This problem illustrates the sensitivity of the high priority process's latency to the pri- 

ority of the server process. 

A.4.1.3   Blocking Time 

While blocking time is a seemingly innocuous term in Equation 1, blocking is a significant and 
sometimes insidious contributor to latency. In general, blocking occurs whenever an architec- 
tural design permits a low priority process to execute when a higher priority process is also 

ready to execute. 

In some cases, blocking is unavoidable. In other cases, such as with the priority inversion dis- 
cussion, blocking can be managed much more effectively. Several common sources of block- 

ing are listed below: 

• Critical section: As discussed above, a critical section is a source of blocking. An 
improper server priority can result in an unnecessarily large amount of blocking. The key 
to circumventing unbounded priority inversion is to ensure that medium priority processes 
do not have an opportunity to preempt the critical section that is blocking the high priority 
process. One such prevention technique is to set the priority of process S to be at least as 
high as the highest priority client process. Another technique is to use apriority 
inheritance protocol [Rajkumar 91], which raises the priority of S to the highest priority 

process that is blocked waiting for the services of process S. 

• Deadlock: Deadlock is an extreme form of blocking in which processing comes to a halt. 
It occurs when two or more processes need mutually exclusive access to two or more of 
the same resources. Deadlock is discussed in most books on operating systems. 

• FIFO: A first-in-first-out queue is another common source of blocking. If a high priority 
process is stuck in a FIFO queue behind a lower priority process, the blocking time can be 

arbitrarily long. 

• Non-preemptable section: Sections of lower priority processes that are non-preemptable 

can delay a higher priority process, since the high priority process is prevented from 
preempting if it is time for it to execute and the lower priority process is in its non- 

preemptable section. 

CMU/SEI-99-TR-022 35 



• Interrupt: Strictly speaking, interrupts are not a source of blocking, but rather a source of 
preemption. However, often a lower priority thread is initiated by an interrupt. Since the 
interrupt is executing on behalf of the lower priority process, it can be viewed as a source 
of blocking to other higher priority processes. 

• Threads and processes: Some operating systems support threads, which are lightweight 
units of concurrency that execute within a single, shared address space (whereas each 
process executes in its own address space). Sometimes in this situation, a two-level 
scheduler is used. In other words, processes are first scheduled, and then threads within 
the process are scheduled. A thread's high priority can be virtually ineffective if the thread 
resides in a process that has been assigned a relatively low priority. 

A.4.2 Analysis and Design Heuristics 

Even if one does not build a formal analytic model of the latency in a synchronization ABAS, 
a designer should keep in mind that the latency of a process that synchronizes to access shared 
data is very sensitive to the: 

• Prioritization strategy 

How does your choice of priority assignment impact latency? 

Is there another prioritization strategy that might reduce latency? 

• Sources of blocking 

Has blocking been accounted for in estimating latency? 

Are there sources of blocking in black-box components that have not yet been 
accounted for? 

• Priorities used during the critical section 

Does an unbounded priority inversion situation exist? 

-    Can blocking time be reduced by using a different technique for managing the 
priority of a critical section? 
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Appendix B   Data Indirection ABAS1 

B.1   Problem Description 

This ABAS is characterized by keeping the producers and consumers of shared data from hav- 
ing knowledge of each other's existence and the details of their implementations. This is 
accomplished by interposing an intermediary—a component and/or protocol—between the 
producer and consumers of shared data items. The general principle at work here is that modi- 
fiability is enhanced by reducing the data or control coupling between distinct components. In 
this ABAS, coupling is reduced by having the intermediary—typically a shared data reposi- 
tory—coupled to both the producers and consumers, and hence having them decoupled from 
each other. 

B.1.1 Criteria for Choosing this ABAS 

This ABAS will be relevant if you anticipate changes in the producers and consumers of data, 
including the addition of new producers and consumers. If these changes are frequent and per- 
vasive enough to warrant concern about the cost of modification, this ABAS is relevant. 

B.2   Stimulus/Response Attribute Measures 

We characterize the important stimuli and their measurable, controllable responses as follows: 

• Stimuli: 
a new producer or consumer of data 

-    a modification to an existing producer or consumer of data 
a modification to the internals of the data repository 

• Response: the number of components, interfaces, and connections added, deleted, and 
modified, along with a characterization of the complexity of these changes/deletions/ 
modifications 

1.    Appendices C and D are sub-ABASs of this ABAS. 
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B.3   Architectural Style 

Figure 10 shows the generic structure of this ABAS. Its topology is a star, with the repository 
located at the center and the producers and consumers at the periphery. 

Producer 

Producer 

Data Repository 

*c Consumer 

Consumer 

Figure 10:  The Data Indirection ABAS 
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The data repository can be a location that is known to both producers and consumers (e.g., a 
file or a global data area) or it can be a separate computational component (a blackboard that is 
hosted in a separate process, potentially even on a separate computer). The only constraint on 
the repository is that it can hold data. The data repository is a persistent data store such as a 
shared data area in memory, a file, or a database. 

In addition to the repository, there are some number of data producers and some number of 
data consumers. A single component may be both a producer and a consumer of data. The 
repository has a specified data layout—a file structure, or schema—and a set of data types that 
are known by all producers and consumers. This layout remains consistent during a single exe- 
cution of the system. The producers place their data in the repository by virtue of the fact that 
they know the details of the repository's layout; the consumers similarly retrieve data from the 
repository. The issues of how performance and concurrency control are managed (e.g., the pol- 
icy and mechanisms for determining who gets to update the repository and when) are outside 
the scope of this ABAS. 

The components can be independent processes on the same processor or different processors. 
They could also be bundled together in a single process. Thus, there are no restrictions within 
this ABAS on the run-time packaging of the components. For those considerations and their 
implications, we would turn to a performance ABAS such as the Synchronization ABAS 
shown in Appendix A. 
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Table 3 discusses the architectural parameters and decisions of concern for this ABAS. 

Modifiability Architectural Parameters 

topology: star 

persistence of data: persistent 

client knowledge of data schema: complete knowledge 

activeness of repository: passive 

Table 3:     Architectural Decisions for the Data Indirection ABAS 

The activeness of the repository, persistence of data, and client knowledge of the data schema 

are design decisions that allow us to differentiate between several sub-styles of the Data Indi- 
rection ABAS including the Abstract Data Repository and Publisher/Subscriber ABASs 

described in Appendix C and Appendix D, respectively. 

B.4   Analysis 
To measure and more importantly, to predict the impact of the modifications, we have two 
choices of analytic techniques: walkthroughs or metrics. With specific metrics, we can assess 
the coupling and cohesion of a layered architecture which should predict the average transitive 
closure of changes and hence the average difficulty of changes. With walkthroughs, we can 
directly assess the effects of a set of anticipated changes on an architecture. In both cases, 
these techniques are an attempt to associate the stimuli (in this case, a set of changes to the 
architecture) with the difficulty of the changes. This difficulty is couched in terms of the 
amount of work needed to add, delete, or modify the affected components, connectors, and 

interfaces. 

The goal of a modifiability walkthrough is to understand how well the style reacts to various 
types of modifications. That is, we want to know, for some representative set of typical 
changes to the system, whether the effects of those changes are localized or "ripple" to other 
components. Rippling is a consequence of implicit and explicit dependencies between compo- 

nents. Examples of such dependencies include the following: 

• producers needing to know about the existence and names of consumers 

• assumptions about the types of data and their relationships (e.g., data about a family 
includes a mother, father, and up to ten children; ages are represented by three digits and 

are positive integers) 
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assumptions about the meaning of the data (e.g., temperature data is in degrees Fahrenheit 
versus Celsius or Kelvin) 

internal representation of data (e.g., data is stored in an array versus a linked list) 

Because the clients in the Data Indirection ABAS have complete knowledge of the data 
schema, they are affected by changes made to the repository. Hence this ABAS is particularly 
vulnerable to rippling, as we will see in the next section. 

B.4.1 Reasoning 

In this ABAS, the producers and consumers of shared data are sharing assumptions about the 
data repository, via its schema/layout. That is, the producers and consumers need to agree 
upon the types, meanings, and organization of the data that they share, or else they cannot 
communicate just as humans cannot communicate unless they share a common lexicon, syn- 
tax, and semantics. This is a constraint of the style and a potential source of rippling. The data 
repository in this ABAS can, however, obviate the need for producers to know of the name, or 
even the existence, of particular consumers. Producers and consumers can simply exchange 
information via the data in the repository, which is the strength of this style. 

For this ABAS, the architectural parameter of greatest interest for analysis is "client knowl- 
edge of data schema." If the client has complete knowledge of the data schema, there is no 
abstraction being employed. If an abstraction interface has been defined that masks file layouts 
during reads and writes or via database access methods such as SQL queries, some aspects of 
the data schema (such as its layout in memory or the internal data types and structures 
employed) may be changed without changing the clients. We will discuss a different setting of 
this parameter in the Abstract Data Repository ABAS in Appendix C. 

When we analyze instances of the Data Indirection ABAS, we want to understand how 
changes to the data repository, data producers, and data producers will ripple throughout the 
remainder of the system. We want to measure the extent to which these components are cou- 
pled. 

While we cannot always measure coupling directly, we will suggest in our analysis here (and 
in all modifiability ABASs) ways of approximating appropriate measures of coupling. The 
analysis technique for this ABAS is to investigate a representative set of anticipated change 
scenarios [Kazman 94]. These scenarios form a palette of types of changes that can occur to 
this ABAS, and you can evaluate your own instances of this ABAS by determining the extent 
to which your anticipated changes fall into each category. 
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For the purpose of this analysis, we assume five scenarios. The following discusses each in 

detail: 

1. adding a new consumer of data 

2. adding a new producer of an existing data type 

3. adding a new producer of a new data type 

4. changing the internal representation of an existing data item 

5. deleting an existing data type 

We will consider each of these scenarios in turn. 

Scenario 1: Adding a New Consumer of Data 

Scenario 1 affects only one place in the architecture; it requires the creation of a new compo- 
nent (the consumer) and a new instance of an existing connector. The new consumer would 
simply need to directly access the data repository as other consumers do. The change does not 
affect any of the other consumers or any producers, as indicated in Figure 11, where new com- 
ponents are shown shaded. 

(      Producer      ) ^J,     Consumer     J 

;      Data Repository 
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x C   Consumer   J 

A, 

New Consumer 

Figure 11: Adding a New Consumer 
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Scenario 2: Adding a New Producer of an Existing Data Type 

On analogy with Scenario 1, Scenario 2 causes the creation of a single new component, as 
illustrated in Figure 12. Adding a new data producer of an existing data type only affects the 
new producer, which will access the data repository using the same techniques as other pro- 
ducers and consumers—that is, via detailed knowledge of the data repository's layout. Other 
producers and consumers of the data type are unaffected. 

Producer 

Producer 

J,       Consumer     j 

Data Repository 

Consumer 

Figure 12: Adding a New Producer of an Existing Data Type to the Data Repository 

Scenario 3: Adding a New Producer of a New Data Type 

In this scenario, a new data type is being added to the repository. Assuming that this data type 
is being added because some consumer of the data needs it, three changes are needed: the new 
producer must be created, the repository must be modified to accept the new type, and either a 
new consumer must be created or an existing consumer must be modified. This is shown in 
Figure 13. Modified components are indicated with diagonal stripes. 
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Figure 13: Adding a New Producer of a New Data Type to the Data Repository 

We only show a single consumer being affected. However, if the new data is added in such a 
way that it affects the data access of other producers and consumers (for example, if data is 
accessed based upon a known position in an array and this new data changes some array indi- 
ces), the change will ripple to additional producers and consumers. The key observation here 
is that while typically only the consumers that are interested in the data will be affected, if the 
data repository is not managed carefully (for example, if new array data is added anywhere in 
the array) then changes may have considerably greater rippling effects. 

Scenario 4: Changing the Internal Representation of an Existing Data 
Item 

Under the assumption that there is at least one producer and one consumer of any data type in 
the repository, then scenario 4—changing the internal representation of a data item—also 
causes three changes, as shown in Figure 14. As with scenario 3, we assume here that this 
change does not affect the layout of the other parts of the data repository. 
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Figure 14:  Changing the Internal Representation of a Data Item in the Data 
Repository 

Scenario 5: Deleting an Existing Data Type 

"Delete an existing data type" could have several meanings. One is that data of that type is no 
longer being produced. Obviously this affects both the producer and consumer of this type. 
However, this doesn't necessarily have to affect the data repository; it could simply continue 
supporting this as an unused data type. 

"Deleting an existing data type" could also mean deleting it from the repository, affecting the 
data repository as well as selected producers and consumers. This is the version of the scenario 
that we have shown in Figure 15. This realization of the scenario is more in keeping with good 
software engineering practice, since otherwise over time the repository could contain many 
unused data areas, complicating its understandability and hence its maintainability. 

This realization, while maintaining good software engineering practice, has the potential 
immediate problem that removing the data type may affect the layout of the entire repository 
and hence cause this change to ripple to other components which are neither consumers nor 
producers of the data type. 
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Figure 15: Deleting a Data Type 
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B.4.2 Analysis and Design Heuristics 

You should choose this ABAS if you don't expect to add, delete, or change the data types used 
in the repository frequently. If, for example, your most frequently anticipated change is to add 
a new consumer of an existing data type, this ABAS will be simple to implement (since you 
have not had to go to the additional trouble of defining an abstraction interface) and will easily 
support your anticipated palette of modifications. 

If you are adding new data to the repository, you should add it in such a way that it does not 
affect the access of existing data. This could mean, for example, adding new data to the end of 
an array, if arrays are used. Similarly, when removing a data type from the ABAS, the data 
type could be left in place as an unused field in the repository, or it can be removed, potentially 
causing ripple effects to other data types and their producers and consumers. 

If you expect to change the data types relatively frequently, then you should consider a sub- 
ABAS such as the Abstract Data Repository or the Publish/Subscribe ABAS which, while 
more complex to implement, will shield you from the ripple effects that are inherent when pro- 
ducers and consumers have intimate knowledge of the data repository's layout. 
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Appendix C   Abstract Data Repository 
Sub-ABAS 

C.1   Problem Description 

This sub-ABAS extends the Data Indirection ABAS by not only keeping the producers and 
consumers of shared data from having knowledge of each other's existence and the details of 
their implementations, but also by keeping the details of the shared data repository's imple- 
mentation a secret from the producers and consumers. This secret is embodied in an abstract 
interface to the data repository. This abstract interface further reduces the coupling between 
the data producers and consumers above and beyond what the Data Indirection ABAS does. 

C.1.1 Criteria for Choosing this ABAS 

This ABAS should be chosen if you anticipate that the data producers will change the internal 
format of the data they produce. The consequences of such changes, if left unchecked, will rip- 
ple to the data repository, and hence to any consumers of the data. In addition, such changes 
might affect the layout of the data repository in non-local ways, thus affecting producers and 
consumers of other data if there were not an abstract interface. Using this ABAS will protect 
data producers and consumers from changes to each other and to the underlying repository. 
This comes at a slight performance cost, however, since the abstraction interface is a level of 
indirection away from the data itself, and so each data access typically incurs at least the over- 
head of traversing this extra layer of software. 

C.2   Stimulus/Response Attribute Measures 

We characterize the important stimuli and their measurable, controllable responses as follows: 

•    Stimuli: 

a new producer or consumer of data 

a modification to an existing producer or consumer of data 

a modification to the internals of the data repository 
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Response: the number of components, interfaces, and connections added, deleted, and 
modified, along with a characterization of the complexity of these changes/deletions/ 
modifications 

C.3   Architectural Style 

Figure 16 describes the architectural structure for the Abstract Data Repository sub-ABAS. In 
this ABAS there are some number of data producers and some number of data consumers. A 
single component may be both a producer and consumer of data. These producers and con- 
sumers know nothing of each other's existence, communicating solely through the "methods" 
that the abstract data repository's interface provides. These methods control the creation, dele- 
tion, modification, and retrieval of data from the repository. The producers send their data to a 
abstract data repository, but have no insight as to how or where this data is stored or retrieved. 
The repository holds this data for consumers who can access it via the provided methods, 
again, with total ignorance of the underlying layout and algorithms of the data in the reposi- 
tory. The abstract data repository stores the produced data until it is explicitly deleted. 

Producer 

Producer 

*c Consumer 

Abstract Data 
Repository 

f    Consumer 

Figure 16:  The Abstract Data Repository Sub-ABAS 

The architectural style of this sub-ABAS inherits its architectural decisions from the Data 
Indirection ABAS. However, being a sub-ABAS, some of the architectural decisions are set 
differently. You can think of the relationship between ABASs and sub-ABASs as one of inher- 
itance. Thus, the style is the same unless some parameter is explicitly overridden in the sub- 
type. 
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Table 4 describes the architectural parameters and decisions of concern for the Abstract Data 
Repository sub-ABAS. 

Modifiability Architectural Parameters 

topology: star 

persistence of data: persistent 

client knowledge of data schema: no knowledge 

activeness of repository: passive 

Table 4:     Architectural Decisions for the Abstract Data Repository Sub-ABAS 

C.4   Analysis 
As with the Data Indirection ABAS, the architectural parameter of greatest interest for analy- 
sis here is "client knowledge of data schema." Unlike the Data Indirection ABAS, the Abstract 
Data Repository sub-ABAS sets this feature as "no knowledge." The critical ramification of 
this ABAS feature is that data producers and consumers are kept ignorant of the specific ways 
in which the data repository is managing its data. 

C.4.1 Reasoning 

We will now consider how the Abstract Data Repository sub-ABAS reacts to the scenarios 
listed for the Data Indirection ABAS. 

We will only indicate ways in which this sub-ABAS differs from the Data Indirection ABAS. 
In this case, the Abstract Data Repository sub-ABAS reacts identically to Scenarios 1, 2,3, 
and 5. It reacts differently to Scenario 4. 

Scenario 4: Changing the Internal Representation of an Existing 
Data Item 

Unlike the Data Indirection sub-ABAS, this change has minimal effects on the Abstract Data 
Repository sub-ABAS because the producers and consumers do not directly access the reposi- 
tory. So, for example, a data producer can change how it is representing some data type, but 
this change will not ripple to any other component in the system, assuming that the existing 
interfaces to the repository are left unchanged. 

The ramifications of this change are indicated in Figure 17. As you can see, only the data pro- 
ducer itself needs to be changed. 
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Figure 17: Changing a Data Item's Internal Representation in the Abstract Data 
Repository Sub-ABAS 

C.4.2 Analysis and Design Heuristics 

You should choose this ABAS if you expect to be frequently changing the producers and/or 
consumers of data, but not the temporal ordering of producers and consumers (that class of 
change is dealt with in the Publish/Subscribe sub-AB AS in Appendix D). For example, if you 
have many possible sources of a particular data item, or if you anticipate needing to interoper- 
ate with new sources of similar kinds of data over the system's lifetime, this ABAS will insu- 
late you from the effects of these changes. This is because the sources of the data may change, 
but the changing specifics of how this data is collected and represented do not ripple through 
the data repository to the consumers. 

There is typically a performance implication of using an abstraction interface, given that this 
interface adds a layer of indirection to the interaction between producers/consumers and the 
data repository. While this overhead is typically not large, in systems with tight performance 
deadlines, or where the repository is heavily used, it might be a significant factor and should 
not be overlooked. 
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Appendix D   Publish/Subscribe Sub-ABAS 

D.1   Problem Description 

This sub-ABAS aids in automatically synchronizing the state of data producers and consum- 
ers. The data producers are called "Publishers," and the consumers are called "Subscribers." 
When a Publisher publishes a new piece of data, all subscribers are notified and automatically 
receive the data. That is, the repository does not simply passively accept requests to store and 
retrieve data but rather keeps track of which data consumers are interested in which data items 
and informs them when new relevant data has been deposited in the repository. This sub- 
ABAS extends the Data Indirection ABAS and the Abstract Data Repository sub-ABAS by 
not only keeping the producers and consumers of shared data ignorant of each other and of the 
details of the shared data repository's implementation, but by making the repository active and 
the data in the repository transient. 

D.1.1 Criteria for Choosing this ABAS 

This ABAS should be chosen if you anticipate that all of the following conditions will be true: 

• The data producers will change the format of the data that they produce. 

• The number and identity of producers and/or consumers of a particular data item is 
unknown or is likely to change. 

• The temporal ordering between producers and consumers of data is either unknown or 
subject to frequent changes. 

• There are no complex temporal dependencies or tight, real-time deadlines associated with 
the production and consumption of data. 

The third and fourth points are the crucial ones for this sub-AB AS. The Publish/Subscribe sub- 
ABAS dissociates producers and consumers of data in terms of their identities (as with the 
Data Indirection ABAS), their locations, the mutual knowledge of their existence, and the 
internal format of their shared data (as with the Abstract Data Repository sub-ABAS), and the 
temporal control between data producers and consumers. 
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This sub-ABAS keeps producers and consumers synchronized in terms of the state of their 
data, but this synchronization is not controlled tightly by the producers or consumers. Thus, 
this ABAS is typically inappropriate for applications where complex temporal dependencies 
exist (e.g., this data item must be processed by consumer B exactly 0.05 seconds after it is pro- 
cessed by consumer A), or where hard, real-time deadlines exist (e.g., all data from each frame 
must be processed in 0.1 seconds). 

D.2   Stimulus/Response Attribute Measures 

We characterize the important stimuli and their measurable, controllable responses as follows: 

• Stimuli: 

a new producer or consumer of data 

a modification to an existing producer or consumer of data 

a modification to the internals of the data repository 

a change in the timing of data production and consumption 

• Response: the number of components, interfaces, and connections added, deleted, and 
modified, along with a characterization of the complexity of these changes/deletions/ 
modifications 

D.2.1 Architectural Style 

The architectural style for this ABAS is shown in Figure 18. The component types are data 
producers (publishers) and consumers (subscribers). A single component may be both a pro- 
ducer and consumer. The connections between the components are shown as data flow, but in 
reality, this is often realized as both data and control flow (i.e., via a procedure call, remote 
procedure call, or remote method invocation). Although the subscription manager is shown as 
a separate component here, in practice it is frequently implemented in a distributed fashion, as 
a set of services that a data producer provides to data consumers. For example, in object-ori- 
ented systems, producer and consumer objects can inherit from a base class that provides basic 
subscription and notification services [Gamma 95]. 
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Figure 18:  The Publish/Subscribe Sub-ABAS 

The architectural style of this sub-AB AS inherits its architectural decisions from the Data 
Indirection ABAS. However, being a sub-ABAS, some of the architectural decisions are set 
differently. Table 5 describes the architectural decisions of concern for the Publish/Subscribe 
sub-AB AS. The changed parameters of note are the "persistence of data," the "client knowl- 
edge of data schema," and the "activeness of the repository." 

Modifiability Architectural Parameters 

Topology: star 

Persistence of data: transient 

client knowledge of data schema: no knowledge 

activeness of repository: active 

Table 5:     Architectural Decisions for the Publish/Subscribe Sub-ABAS 

D.3   Analysis 
One of the salient features of this ABAS is that consumers are informed of changes to data in 
which they have registered an interest. Thus, there is a registration process whereby consum- 
ers subscribe to a named set of data, and it is this registration list that the subscription manager 
uses to inform the appropriate subset of the existing consumers. There may be multiple con- 
sumers interested in a particular data item in which case the subscription manager must have 
some rules to determine the order of notification. This notification may be synchronous or 
asynchronous. There may even be no consumer interested in a particular data item. The pro- 
ducer can thus remain completely unaware of if and how its data is being consumed. For anal- 
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ysis, this leads to a consideration of how a change in the ordering of data production and 
consumption will affect this ABAS. 

D.3.1 Reasoning 

We will now consider how the Publish/Subscribe sub-ABAS reacts to the scenarios listed for 
the Data Indirection ABAS. 

We will, for the moment, only indicate ways in which this sub-ABAS differs from the Data 
Indirection ABAS. In this case, the Publish/Subscribe sub-ABAS responds the same to Sce- 
narios 1,2,3, and 5 and responds differently to Scenario 4, in that changing a data item's inter- 
nal representation affects only the producer of the data. These responses are identical to the 
Abstract Data Repository sub-ABAS. 

We need to introduce a new scenario to distinguish the Publish/Subscribe sub-ABAS from the 
Abstract Data Repository sub-ABAS. This scenario is based upon the new stimulus that this 
ABAS responds to: 

•    a change in the rate of data production and consumption 

We will now consider the implications of this stimulus on the Publish/Subscribe sub-ABAS. 

Scenario 6: Changing the Timing of Data Production and Consumption 

Consider a concrete example of this scenario: a process control system that includes a data 
producer that produces temperature reports. These reports might be received by two subscrib- 
ers: one that controls a furnace and one that shows the current temperature to an operator. The 
response to this scenario is quite simple in the Publish/Subscribe sub-ABAS. The producer 
simply changes the times at which it produces data. The coordination of the production and 
consumption of data is handled by the subscription management service, which automatically 
propagates the changed data to all interested consumers. As a consequence, this scenario does 
not ripple—it affects no components beyond the data producer. This is indicated in Figure 19. 
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Figure 19: Changing the Timing of Data Production and Consumption in the 
Publish/Subscribe Sub-ABAS 

On the other hand, this scenario would have significant ripple effects for the Data Indirection 
ABAS and the Abstract Data Repository sub-ABAS since in these ABASs you would have to 
change not only the rate of data production in the producer, but also all of the consumers. Fur- 
thermore, using these other ABASs you would have to somehow synchronize the producers 
and consumers to ensure data integrity. Otherwise the furnace controller and operator might be 
operating on old data or miss a data update. 

D.3.2 Analysis and Design Heuristics 

You should choose this ABAS if you expect to be changing the timing of data production and 
consumption frequently, or if this timing is not under programmatic control but rather is a 
reaction to external stimuli. In such cases, the use of the Publish/Subscribe sub-ABAS is 
appropriate. It allows the architect to plan for dynamically changing the timing of data produc- 
tion and consumption, add new consumers, or delete old consumers with virtually no effect on 
the remainder of the system. 

This flexibility of course comes at a performance cost, which is twofold. First of all, there is a 
performance penalty to pay because the coupling between the data producer and consumer is 
now indirect, through the subscription manager (irrespective of whether this is implemented as 
a separate component). Secondly, if there are complex data dependencies (e.g., A sends a mes- 
sage to B which triggers sending a message to C) and these dependencies need to change (e.g., 
you now want to filter the message that A sends to B via component Q), these changes will be 
non-local; B will now have to subscribe to component Q and unsubscribe from component B; 
Q will have to subscribe to component A and provide a subscription interface for B. Further- 
more, any cyclic dependencies or timing requirements on message deadlines may be difficult 

to reason about in this sub-ABAS. 
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Appendix E   Layering ABAS 

E.1   Problem Description 

Layered architectures exist to provide cumulative levels of abstraction on top of some base 
functionality. These layers exist to hide implementation details and provide for modifiability at 
varying levels of abstraction. Layered architectures are used, for example, to provide portabil- 
ity layers for software systems that must run on different operating systems and hardware plat- 
forms, and to provide a common abstraction for communications. Many complex systems use 
layers as its software architecture or as a significant part of its architecture. 

User Interface Toolkit 

*A 

** 

User Interface Primitives 

i: 
Device Drivers 

Legend 

Layer 

c Jontrol Flow 

Data Flow 

AA 

"» 

Graphics Hardware 

Figure 20: A Typical Representation of a Layered System 

A typical example of a layered system, as shown in Figure 20, is found in graphics and user 
interfaces where the bottom layer knows how to physically draw onto a specific graphical out- 
put device or receive input from an input device, and the top layers consist of high-level inter- 
faces that a programmer can use to create a user interface. Various intermediate layers exist to 
provide portability or intermediate abstractions for more fine-grained control over the user 
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interface. We say that this system is strictly layered because, as is indicated by the connec- 
tions, every layer communicates only with its immediate neighbors. 

Another common example of a layered system is found in communication protocol stacks, 
where each successive layer knows less about the details of the underlying communications 
hardware and provides higher level, more powerful abstractions for the programmer. 

E.1.1 Criteria for Choosing this ABAS 

This ABAS will be relevant if your problem inherently has distinguishable broad categories of 
functionality that 

• are internally highly coherent 

• are stable with respect to changes (that is, the categories do not change often, even if their 
internals do change) 

• depend upon each other in predictable ways 

• do not have cycles of dependencies 

• have low coupling with other categories, and in particular, are typically only coupled with 
at most two other categories 

E.2   Stimulus/Response Attribute Measures 

Layering exists to isolate some parts of a system from others. Layers are inserted wherever 
changes are perceived to be independent. So, for example, layers are typically used to hide 
communication or database protocols and hide operating system or user interface toolkit 
implementation specifics. As a consequence of this use of layering, the stimuli of interest to 
layering is a modification to the system, and the measurable aspect of a layered system that the 
layering is expected to improve is the consequence of the change to the system, in terms of the 
added, changed, or deleted components, interfaces, and connections. We want to measure both 
the numbers of changed components, interfaces, and connections, and the magnitude of each 
change. 

We characterize the important stimulus and its measurable, controllable responses as follows: 

• Stimulus: a change to a layer in the software 

• Responses: number of layers affected and number of components, interfaces, and 
connections added, deleted, and modified, along with a characterization of the complexity 
of these changes/deletions/modifications 
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E.3   Architectural Style 
The layered architectural style consists of sets of components that implement distinguishable 
broad categories of functionality. Each of these sets is organized into a layer. Elements of each 
layer can, in the strictly layered style, only interact with elements in their layer or an adjacent 
layer. The elements within a layer are usually packaged uniformly, and are most commonly 
objects or procedures. Less commonly a layer may be constructed of processes, threads, fil- 
ters, or some other component type. Elements of a layer may communicate with elements in an 
adjacent layer via data connections (e.g., sockets, HTTP), but are more commonly via connec- 
tions that transfer both data and control (e.g., procedure call, RPC, method invocation). 

Attempts to enforce layering within an architecture are typically made through means such as 
naming conventions (e.g., all functions defined by the X windows library, Xlib, begin with the 
letter "X"), code ownership (the graph layout layer is owned by a single development group, 
and only they can change it), and design conventions (the graph layout layer cannot directly 
call the window system, but must instead call a virtual toolkit layer). For example, the "operat- 
ing system" layer seen in many architectural diagrams is only a layer by virtue of code owner- 
ship; few designers or developers have access to its source. So, designers must treat it as a 
sealed layer. 

Table 6 describes the architectural parameters and decisions of concern for the ABAS neces- 
sary for creating an analytic model of modifiability. 

Modifiability Architectural Parameters 

topology: layers 

connectivity: to adjacent layers only 

knowledge of data schema: no knowledge 

Table 6:     Architectural Decisions for the Layering ABAS 

E.4   Analysis 
To measure and, more importantly, to predict the impact of the modifications, we have two 
choices: walkthroughs or metrics. With metrics, we can assess the coupling and cohesion of a 
layered architecture which should predict the average transitive closure of changes and hence 
the average difficulty of changes. With walkthroughs, we can directly assess the effects of a set 
of anticipated changes on an architecture. 

In both cases, these techniques are an attempt to associate the stimuli, in this case a set of 
changes to the layered architecture, with the difficulty of the changes. This difficulty is 
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couched in terms of the amount of work needed to add, delete, or modify the affected compo- 
nents, connectors, and interfaces. 

E.4.1 Reasoning 

The point of the layering ABAS is to minimize the effects of changes to one layer of the soft- 
ware when a portion of another layer changes. 

While we cannot always measure coupling directly, we will suggest, in our analysis, ways of 
approximating appropriate measures of coupling. The analysis technique for this ABAS (at 
least for the modifiability attribute) is to investigate a representative set of anticipated change 
scenarios. When examining the ABAS's response to these scenarios, what we are really doing 
is examining the transitive closure of change propagation. 

For the purpose of this analysis, we assume the following three scenarios. The following dis- 
cusses each in detail: 

1. changing the internals of a component in a layer with no side effects 

2. changing an existing interface 

3. adding a new interface and exposing this functionality to an upper layer 

Scenario 1: Changing a Component's Internals 

One kind of modification (the most desirable kind) affects only the internals of a single com- 
ponent within a single layer, as shown in Figure 21. It is clear from this representation that the 
transitive closure (TC) of such a change = 1, because it does not affect any interface and can- 
not propagate beyond a single component. 
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Figure 21: Changing a Component's Internals 

Scenario 2: Changing an Existing interface 

In another kind of modification to a layered system, the proposed modification requires that 
some functionality be added that changes an existing interface or creates a new interface. For 
example, consider the case where the user interface primitives were previously only able to 
draw polygonal regions, and now a new version of the primitives is available that can draw 
arbitrary spline paths. 

In this case, the modification will affect some component internals in the User Interface Prim- 
itives layer (to add the new functionality) and will affect that component's interface (to 
"expose" the new functionality). This is depicted in Figure 22. In this case, TC = 3; that is, the 
component itself needs to be changed, and its interface needs to be changed to expose the new 
functionality, which might require changes in the User Interface Toolkit layer. 
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Figure 22:  Changing a Component's interface 

Scenario 3: Exposing a New Interface 

Additionally, the uppermost layer might want to expose the new spline capability to the user, 
in which case it needs to be changed as well, increasing the TC to 4, as shown in Figure 23. 
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Figure 23: Changing and Exposing a New Interface 

E.4.2 Analysis and Design Heuristics 
Layering is a technique that is primarily used for portability. It works simply because it 
isolates some parts of the system from others. There are a few common design consid- 
erations to keep in mind when creating a layered system: 

• can the system's performance afford the number of layers that you have proposed? Each 
layer comes at a cost of a performance penalty to be paid in terms of the overhead of the 
additional calls made when traversing the layers. 

• will the layering be strict or is it acceptable to "bridge" layers? Layer bridging is often 
done for performance reasons in places where the overhead of traversing additional layers 
makes it difficult to meet performance goals. Bridging layers defeats the purpose of 
layering: changes at lower layers can easily be non-local and hence compromise the 
modifiability and portability of the system. 

• will the layering permit downward calls only or will it permit upward calls as well? 
Strictly layered systems typically only permit downward calls. Allowing calls in both 
directions increases the coupling of the layers, which decreases the system's modifiability. 
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Appendix F   Simplex ABAS 

F.1    Problem Description 

The Simplex [Sha 96] ABAS focuses on the problem of software reliability and availability in 
control systems. In particular, Simplex addresses the problem of tolerating software faults 
introduced as a consequence of upgrading control algorithms. Simplex also addresses the 
problem of how to take advantage of redundancy to increase reliability while avoiding "com- 
mon mode" software failures. 

To illustrate the problem that Simplex is addressing, consider "the update paradox," [Sha 96]. 
Consider the case in which a component is replicated to ensure its reliability. Each replica per- 
forms its calculations and sends its results to a voter. If the results do not agree (to within a 
specified tolerance), the voter "votes for the majority." 

Let's say that a key algorithm is updated which will yield a different output value than the 
older algorithm. Here's the paradox: if the new algorithm is placed in a minority of the repli- 
cated components, it will be voted out and have no effect; if it's placed into a majority of the 
replicated components and is faulty, the bad output will used. 

There are two problems highlighted by the upgrade paradox. The first problem is how to intro- 
duce redundancy to ensure the proper level of reliability/availability without introducing com- 
mon mode failures. (Even components that have been implemented by different groups and 
hence have different implementations can suffer from common mode failures.) The second 
problem is how to upgrade a system without compromising its reliability/availability? In gen- 
eral, the Simplex ABAS offers insights for using redundancy to manage availability/reliability. 

F.1.1  Criteria for Choosing this ABAS 

This ABAS will be relevant if your problem 

• has the need for online upgrade 

• has high availability requirements, and in particular the requirement to avoid common 
mode failures 

• can run in one or more degraded modes, one of which can be implemented via a simple, 
"trusted" algorithm 
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• if you are considering using redundancy to manage reliability/availability 

F.2    Stimulus/Response Attribute Measures 

We characterize the important stimuli and their measurable, controllable responses as follows: 

• Stimulus: 

a fault "arrival" at the system 

• Responses: 

the levels of degraded service 

-    the reliability/availability for each level of service 

Types of faults: the goal of this architecture is to handle timing faults (e.g., timing overruns), 
semantic faults (wrong output values), and system faults (such as memory overruns due to bad 
pointers). 

Reliability of service levels: There is a specified desired level of availability for the upgraded 
or higher performance level of service and specified level of reliability for the baseline level of 
service. 

F.3   Architectural Style 

Simplex is an architectural style that belongs to a general family of reliability styles that could 
be called redundancy styles. The general pattern for a redundancy style is shown in Figure 24. 
The pattern, from a reliability point of view, consists of multiple redundant components. Data 
flows into one or more redundant components, which then send their output to another compo- 
nent (or possibly components) responsible for detecting failures, switching to a working com- 
ponent, and possibly initiating recovery of the failed component. 
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Figure 24: A Redundancy-Specific Architectural Style 

The Simplex style, as shown in Figure 25, is an instance of the redundancy style in which the 
redundant components are processes. The components don't necessarily receive the same 
input or generate the same output. The components are analytically redundant, meaning they 
are redundant with respect to the general effect their output has in controlling their environ- 
ment, but not necessarily redundant in their implementation, the algorithms used, or the output 

produced.2 

In Figure 25, the "leader" component, the other redundant components (Rl and R2), and the 
"safety" component are analytically redundant. 

You can think of the relationship between power steering and mechanical steering as analytically redun- 
dant. Both mechanisms have the same effect on the environment, that is, they change the direction of the 
wheels, but the mechanisms used, the output produced, and their performance are all different. Manual 
steering provides the "safety" component in such a system. 

CMU/SEI-99-TR-022 67 



Input 

0 .eade 0 
4 

& 

R1 

R2 

) 

) 

\ 

0 Safety 
) 

Decision and 
Switch 

Output 

Figure 25: The Simplex Architectural Style 

The "leader" is typically the upgraded version of a critical component. All components exe- 
cute concurrently. The leader's output is used if it passes the acceptance test applied by the 
decision and switch unit. The acceptance test is based on a model of the controlled environ- 
ment and the ability of the safety component to recover from actions of the other components. 
If the leader doesn't pass this test, a new leader is picked (either Rl or R2). The "safety" com- 
ponent is a simple, highly reliable analytically redundant component that is used as a last 
resort. The safety component might be used to affect a recovery to the point where one of the 
other (more able) components can once again take over. Note that the decision and switch 
component receives a copy of the input and uses it as a basis for performing its acceptance test. 

The Simplex style assumes that mechanisms exist to bound the execution time of the compo- 
nents, thereby preventing timing overruns. Another ABAS should address these performance 
issues. The Simplex style also assumes that the concurrent units are processes with address 
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space protection thereby preventing the propagation of system faults such as memory over- 
runs. 

Simplex Architectural Parameters 

Failure rates of the components (leader, safety, decision/switch, etc.): Ä,j 

Repair rates of the components (leader, safety, decision/switch, etc.): u.j 

Number and type of redundant components: m 

A characterization of the level of service provided by each component: optimal/degraded 

Voting mechanism: comparison each other and safety controller 

Table 7:     Architectural Decisions for the Simplex ABAS 

In most cases, it is necessary to estimate the failure and repair rates of the various components. 
We will assume, in the analysis that follows, that the failure rates for the decision/switch com- 
ponent and the safety component are very low in comparison to the failure rates of the other 
components. 

F.4    Analysis 

To model the availability of this style, you have to estimate the failure and repair rates of the 
components to calculate the availability of the system. Reliability growth models. 

F.4.1   Reasoning 

Modeling a Simpler Problem 

Before discussing the analysis of the Simplex style, we'll take a look at a similar style, the 
majority voting style. This is the style that we used in the problem description to illustrate the 

update paradox. For this style, there are three redundant components.3 At least two of the three 
components must produce results that agree, otherwise the system has failed. When the system 
is working (in this case controlling some aspect of its environment, for example, the trajectory 
of a missile or the temperature and pressure of a chemical process) it is performing at a con- 
stant level of service. The system, as defined, can be in only one of three states: three working 
components, two working components, or failed. If F failures per year occur and a component 

3.    This is known as Trimodular redundancy (TMR). However, majority voting is not restricted to 3 compo- 
nents. 
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repair takes on the average 1/R years, the Markov model shown in Figure 26 can be used to 
calculate the availability (that is, the proportion of time that the system is not in the failed 
state). 

& ./^ 2F ^ 

R N—^ R 

Figure 26: A Markov Model for the Majority Voting Style 

The representation of a Markov model in Figure 26 can be viewed as a state diagram. State "3" 
represents the state in which three components are working; state "2" represents the state in 
which two components are working; and the gray state is the failed state. The transition arrows 
are labeled with failure (F) and repair (R) rates. Since each component fails independently 
with an average rate of F, three components fail with an average fail rate of 3F and hence the 
label for the transition from state "3" to state "2.' lii*\   99 

The steady-state solution of the Markov model yields the long-term proportion of time that the 
system is in each state. Therefore, the availability of the majority voting case is the proportion 
of time in which the system is in state "3" or state "2," and hence not in the failure state. 

More information about Markov models can be found in standard texts on probability. Our 
goal is to illustrate the mapping from architectural parameters to a predictive model and to 
show how the model provides the motivation for the characterization of the ABAS. (In this 
case, the predictive model is a mathematical model. In other ABASs, qualitative reasoning 
techniques might also be used.) For this case, we use the model to gain an understanding of 
how the availability varies as a function of the assumed failure and repair rates, not to get 
absolute availability estimates. The trends of the majority voting style will then be compared 
with the Simplex style. 

Modeling Simplex 

The Simplex style achieves relatively high levels of availability of the high performance (e.g., 
a very precise algorithm) variant by using a highly reliable but lower performing (e.g., a less 
accurate algorithm) variant to recover from faults. To illustrate the concept, consider a system 
with two redundant controllers (Rl and R2), a highly reliable safety controller, and a monitor- 
ing and decision unit. The Simplex style preserves the total number of active components, as 
compared with the majority voting style, but allocates functions to components differently 
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depending on their states, and ultimately the components have different failure properties. The 
Markov model for this style is shown in Figure 27. 

Figure 27: A Markov Model for the Simplex Style 

The system starts in state "2" with two high performance controllers, the outputs of which are 
compared. If they agree, we assume that they are correct (that is, we assume no common mode 
failure, but rather random failures). If they disagree, one is picked. If the right one is picked 
(that is, the output will not place the system in a state which can not be controlled by the high 
performance controller), the model transitions from state "2" to state "1." If the wrong one is 
picked, the model transitions from state "2" to state "Kl," where Kl stands for the state in 
which the safety component is made to be active. Since one of the high performance control- 
lers continues to work, the transition from "Kl" to "1" is relatively quick and thus has a quick 
repair (QR) rate. We assume that QR=n*R, for some n greater than 1. If a failure occurs while 
in state "1," the system also transitions to the safety controller, but in this case the repair rate is 
that of a "normal" repair (i.e., a software or hardware fix). 

A key to the availability properties of this style is the relatively quick repair rate (QR) from 
state "Kl" to state "1." To see this, imagine that QR is so quick that virtually no time is spent 
in state "Kl." In this case, the model in Figure 27 closely approximates the model in Figure 
28, below. The availability properties of the model shown in Figure 28 are better than for 
majority voting (shown in Figure 24) due to the higher transition rates for majority voting. The 
higher transition rates for majority voting are a consequence of needing a majority of the 
redundant components to agree in order to detect a failure, whereas Simplex uses a semantic 
check of the output for failure detection. 
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Figure 28: An Approximate Markov Model for the Simplex Style 

F.4.2 Analysis and Design Heuristics 

There are several key heuristics embodied in the Simplex architecture. Rather than consider a 
system to be in one of two states, working or failed, Simplex uses several analytically redun- 
dant levels of service. Analytically redundant levels help to circumvent common mode failures 
by using a very highly reliable albeit less precise backup to a very precise but possibly less 
reliable level of service. Also, the simplex style exploits the possibility that repair from a 
reduced level of service could be more efficient than repair from a completely failed state. 
This quick repair allows for a relatively high level of availability. 

The Simplex approach circumvents the upgrade paradox by substituting a different failure 
detection criterion; majority voting uses "majority" as the correctness criterion, whereas Sim- 
plex applies correctness heuristics (based on principles of control theory) to the output values 
themselves. As long as the output values can pass the Simplex correctness criterion, a "minor- 
ity" value can still be accepted. 
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