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EXECUTIVE SUMMARY 

SRI International modeled the comminution and flow of ceramic under conditions like 

those in ceramic armor at the nose of an advancing penetrator. We have delivered a model, 

FRAGBED2, that models fracture, comminution, compaction, and fragment flow, and can be 

implemented in hydrocodes. Fragment motion is treated by analogy with atomic dislocation 

theory. That is, blocky fragments are imagined to glide in small increments along fixed planes in 

the material. As fragments flow one way, lines of holes flow the other way. Compaction occurs 

by the outflow of holes, and dilatancy occurs by the influx of holes, and dilatancy occurs by the 

influx of holes. Comminution is treated by an "overstress" type of rate model. The rate of 

comminution is zero below a threshold stress, saturates above a saturation stress, and varies 

smoothly in between. 

FRAGBED2 is an improvement over models used presently for armor simulations 

because it captures the relevant physics. FRAGBED2 parameters are directly related to readily 

measured material properties, such as the fracture toughness, friction coefficient, relative size of 

pre-existing flaws, density, and porosity. 

We tested FRAGBED2 by comparing results from three types of experiments: spherical 

cavity expansion tests, thick-walled cylinder collapse tests, and ballistic tests. In the cavity 

expansion tests, an explosive charge in a spherical cavity machined in a split block of ceramic 

produced a distribution of fragment sizes as a function of distance. By examining the 

distribution posttest, we obtained parameters for calibrating the comminution model. The thick- 

walled cylinder test, conceived by Nesterenko, was modified by introducing a taper that allowed 

a complete range of strains to be produced. Extensive shear banding was observed in recovered 

specimens. Two-dimensional hydrocode simulations with FRAGBED2 were able to model the 

final deformation of the cylinder, but were not able to model the observed shear banding. We 

found that three-dimensional flow in the specimen makes it difficult to compare these 

experimental results with the results of two-dimensional calculations. Thus, three-dimensional 

hydrocode calculations probably will be required to test the ability of FRAGBED2 to model 

shear banding. FRAGBED2 did a good job of matching the ballistic test results. The 

experimental results were for long-rod penetrations into alumina ceramic, and were obtained 

from the literature. 
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SECTION 1 

INTRODUCTION AND BACKGROUND 

SRI International modeled the comminution and flow of ceramic under conditions like 

those in ceramic armor at the nose of an advancing penetrator. Penetrating weapons or explosive 

charges in brittle materials such as ceramics, concrete, or hard rock, produce fracture and 

fragmentation near the cavity boundary to form a bed of fragmented or granulated material. 

Penetration occurs by further comminution of the material into a finely granulated bed (called the 

Mescall zone) and the subsequent flow of the granules out of the way of the advancing penetrator 

[1], as shown schematically in Figure 1. In quasi-static and dynamic tests under conditions of 

compression and shear, the yielding behavior of brittle frictional materials can be interpreted as 

the result of frictional sliding of debonded granules. Thus, modeling the formation and flow of a 

granulated bed is key to computing cratering and penetration in brittle materials, and to 

interpreting laboratory tests of such materials. 

Impact Surface Ejecta 

• Mescall Zone 

Figure 1. Damage pattern in ceramic during long-rod penetration. 



In a prior paper [2], we presented a granulated material model for use in finite element 

hydrocodes applied to penetration of ceramic armors or hard rock. The model, named 

FRAGBED, included a mesomechanical description of shear flow and associated dilatancy. It is 

a non-local, multiplane, plasticity model (see, for example, Batdorf and Budianski [3], 

Curran et al. [4], and Bazant et al. [5]) that proved useful in computational simulations and 

associated interpretations of penetration experiments in which ceramic armors were attacked by 

long-rod penetrators [1]. 

However, a drawback to FRAGBED was that the pore compaction was handled from a 

continuum viewpoint, whereas the shear flow and associated dilatancy were treated from a 

mesomechanical viewpoint. In fact, both dilatancy and pore compaction arise from the same 

mesomechanical processes. In addition, the important process of granule comminution was not 

treated in FRAGBED, and the fracture processes that initially produce the fragmented bed were 

treated only cursorily. 

We expanded the FRAGBED model to be a complete micromodel for the fracture, 

fragmentation, comminution, shear flow, dilatancy, and pore compaction processes in ceramics. 

We call this expanded model FRAGBED2, and the original model FRAGBED 1. 



SECTION 2 

APPROACH 

The FRAGBED models are mesomechanical and average the behavior inside a relevant 

volume element (RVE), as discussed by Curran et al. [4], Bazant [5], Nemat-Nasser [6], and 

numerous other authors. The RVE must contain many granules. As described in [2], the 

FRAGBED approach to modeling the flow of granulated material is to focus not on the granules 

themselves, but rather on the holes between the granules. Figure 2 provides a schematic view of 

this approach. 

By analogy to atomic dislocation theory, a hole large enough to allow sliding of a granule 

into it is called a vacancy, and strings of such holes are called dislocations. Just as for the atomic 

case, the dislocations can be mobile or pinned, will have edge and screw components, and can 

glide or climb. The dislocations can become pinned when obstacles stop their motion, and can 

later become unpinned by granule rearrangement. As discussed in [2], this analogy is useful 

because it allows us to easily relate non-elastic slip in the granular bed to macroscopic plastic 

strain rate. By casting the model in the framework of multiplane plasticity theory, the analogy 

between granular flow and slip in single crystals is direct, and many of the techniques and results 

of the community engaged in mesomechanical modeling of crystalline plasticity can be applied. 

We can thus use terms commonly associated with atomic dislocation theory to refer to granular 

flow processes. 

Before the dislocation analogy can be applied, the material must be converted from an 

intact material to a fragmented bed. FRAGBED 1 currently uses a very simple damage evolution 

algorithm based on a combination of tensile and shear strains. When the damage function attains 

a critical value, the material cohesion and tensile strength reach zero and the material element is 

declared fragmented. Thereafter the fragmented bed model is used, with the average fragment 

size and dislocation density specified as input constants. 

In FRAGBED2 we introduced three changes. First, FRAGBED2 provides a simple 

model of the coalescence of cracks nucleated at flaws to form an initial granule size distribution 

(FRAGBED 1 assumed a constant initial granule size; this option remains available in 

FRAGBED2). However, this initial fragmentation algorithm remains very approximate. The 
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Figure 2. FRAGBED2 dislocation analogy. 
(a) Case I - unimpeded motion, (b) Case II - impeded motion, 
(c) Definition of parameters, (continued) 
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Figure 2. FRAGBED2 dislocation analogy. 
(a) Case I - unimpeded motion, (b) Case II - impeded motion, 
(c) Definition of parameters, (concluded) 



second change was to introduce evolution equations for the average fragment size and the 

dislocation density, i.e., we introduced a comminution model. The third change was to introduce 

a micromechanical model for porosity evolution. This model replaced the dilatancy model and 

the continuum model for compaction used in FRAGBED1. Both the dilatancy and pore 

compaction are a consequence of dislocation flux across the boundary of the RVE; dilatancy is 

caused by dislocations flowing into the RVE, whereas compaction is caused by dislocations 

flowing out of the RVE. 



SECTION 3 

DESCRIPTION OF FRAGBED2 

FRACTURE AND FRAGMENTATION PROCESS 

We assume that initially intact brittle material is converted to a fragmented bed by the 

activation, growth, and intersection of cracks that initiate at inherent flaws in the material. For 
example, in an initially intact ceramic under compressive and shear stresses, one could imagine 

that the flaws, which may consist of relatively weak grain boundaries, microcracks, or other 
stress raisers, will become active when the shear stresses exceed the cohesion, or when local 
anisotropy and inhomogeneity cause local tensile stresses even under global compression. 

[Under uniaxial strain conditions, this would occur at the Hugoniot elastic limit (HEL)]. In a 
jointed hard rock formation, the same process could occur under compressive and shear loads 
that vary slowly over the scale of the joint spacing. For common ceramics or intact hard rock, 

this will require compressive stresses on the order of 10 GPa, but would occur at much lower 
pressures for heavily jointed, weakly cemented rock. For the ceramic penetration and tapered 
cylinder experiments to be discussed later, we assume that the primary fragmentation process 
near the nose of the penetrator and in the tapered cylinder is grain boundary debonding. Thus, the 
initial fragment size distribution is that of the ceramic grains. (In these cases, significant shear 
flow occurs, and it is the fragment sizes of the flowing material that are relevant.) 

For cavity expansion experiments, although the above compression and shear process will 

occur in the immediate vicinity of the cavity boundary, the fragmentation process farther from 
the cavity boundary occurs via the intersection of tensile cracks. These tensile cracks are 
nucleated by the spherically divergent shock wave, which produces tensions normal to the 
direction of propagation. These larger fragments exhibit negligible shear flow. We next develop 

a simple algorithm for this fragmentation process. 

A complete description of this process would begin by using a mesomechanical model 
such as that of Simons et al. for concrete [7], to calculate the fragment pattern. For a recent 
review of such approaches, see Rajendran [8]. However, we postpone such complexity by using 
a simple algorithm as a preprocessor to establish the initial fragmented bed, as discussed below. 
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In cases of penetration or cratering, we observe experimentally that cone cracks radiate 

into the target, and these are intercepted by spoke cracks. The spoke cracks are sketched in 

Figure 3. The shaded region is the loaded region, or cavity. Both spoke and cone cracks arise 

from membrane tensions produced by the spherically divergent shock wave and associated 

particle velocity field. Surface observations commonly show many such cracks near the load 

center and fewer cracks at relatively large distances from the center. 

Spoke 

crack 

S = crack 

spacing 
Cavity of radius a 

Figure 3. Radial spoke crack pattern on surface of brittle target. 

The compressive stress in the shock propagation direction is followed by tesions that can 

cause lateral cracks that intersect the spoke and cone cracks to produce a fragmented bed. Also, 

the spoke and cone cracks branch and meander to intersect and form fragments. 

The divergent shock wave will produce high hoop tensions at high strain rates (>104 s"1) 

in the target material near the load center. These tensions will initiate many spoke and cone 

cracks, and their average spacing can be estimated with the Grady algorithm (for a recent review, 

see [9]) for brittle material: 



5-3 
pcydt 

K 
(3-D 

where S is the crack spacing, Kc is the fracture toughness, p is the density, de /dt is the 
continuum strain rate at the time of fracture, and c is the longitudinal sound speed. 

The strain rate of interest is the rate at which the material is stretching in the membrane 
direction in the shock pulse, which is given by 

de _ u 
dt     r 

(3-2) 

where u is the radial particle velocity and r is the distance from the impact site. We obtain u 

from the jump condition 

u —■ 
pc 

(3-3) 

where P is the compressive shock stress and c is the shock velocity. Combining Eqs. (1) - (3) 

yields 

'5rKc Y
3 

{   P   J 
(3-4) 

The shock pressure in an elastic fluid decays according to the equation 

P = P- 
r 

(3-5) 



where a is the initial cavity radius, which we can approximate with the penetrator radius, and PQ 

is the impact pressure. Combining Eqs. (4) and (5), and setting S equal to the initial fragment 

size, Bo, yields 

#o 
rsK,y 
Kp«aj 

rX (3-6) 

As discussed later, in modeling the cavity expansion test, we used the above equation to create 

the initial fragmented bed before we began the hydrocode simulations. We adjusted the 

comminution parameters to match experimental observations. Thus, although Eqs. (3-6) give 

initial sizes somewhat larger than the grain sizes, the comminution process soon reduces the sizes 

to below the average grain size. 

COMMINUTION PROCESS 

We return to the simplified picture of the fragmented bed discussed in [2], as shown in 

Figure 2. We assume an initial size distribution of fragments, idealized here as equisized square 

blocks. 

A key result of confinement at boundaries is that dislocation flux across material element 

boundaries is decreased, thereby inhibiting non-elastic flow of the fragmented bed. Perfect 

confinement would in fact prevent long-rod penetration of a ceramic target because, although the 

fragmented bed could flow slightly into any initial porosity, the granules would ultimately have 

no place to go. 

We next consider the comminution of the initial fragment bed of Figure 2. We assume 

that the comminution process mainly consists of blocks pushing on each other to produce local 

shear and tensile stresses that in turn cause the blocks to fracture. 

Figure 2 shows that fracture of a single block to form two smaller blocks causes the small 

holes above and to the right of the fractured block to become a single dislocation (a dislocation is 

a line of holes big enough to allow non-elastic block motion), because as the top part of the 

fractured block moves it produces a hole twice as big to its left, thereby allowing the full-sized 

blocks to move. The lower part of the fractured block moves to the left at the same time to form 

a right-moving dislocation. Thus, the fracture of the block nucleates a pair of edge dislocations 

10 



traveling in opposite directions, and the dislocation nucleation rate is directly tied to the 

comminution rate. 

If all the Case II blocks were to break in two in the same manner, the situation would 
become that of Case I, with no block interference, but with twice the number of dislocations. In 
all cases, the nucleation process as such does not cause increased porosity (the hole area to 

volume ratio remains the same). A generalization of this process will be discussed later. 

DILATANCY AND PORE COMPACTION PROCESSES 

The internal dislocations in Figure 2 move up and left and down and right to cross the 

RVE boundaries, and result in the hole closures and associated compaction. At the same time, 

dislocations from adjacent RVEs may move into the RVE, resulting in dilatancy. Thus, the 

dilatancy or pore compaction is a result of the net flux of dislocations across RVE boundaries. 

This process will be discussed in more detail in Section 4. 

11 
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SECTION 4 

EVOLUTION EQUATIONS 

NON-ELASTIC SLIP 

As discussed in [2], the Orowon [10] equation is used on each slip plane. That is, on the 

ith slip plane, 

^~ = gMBfr = giNiBfr (4-1) 

where } ? is the non-elastic (plastic) slip strain on the ith plane, Ndi is the mobile dislocation 

density on that plane, Bt is the block (granule) size in the direction of slip, biBi is the size of the 

dislocation hole in the direction of slip (a sort of macro Burger's vector), vdi is the dislocation 

velocity, vhi is the corresponding block velocity, and gt is a variable coefficient that depends on 

granule geometry. A detailed discussion is given in [2]. 

As in [2], the total strain rate on a slip plane is the sum of the elastic and non-elastic rates: 

By _  1 far,. ^   By? 
Bt     2G Bt Bt 

(4-2a) 

3f„ 1     (dP_\<ty 
dt        K(l-</>) 

(4-2b) 
v dt j    dt 

where the porosity </> = ^T 0,. (see later discussion), ?, is the total shear strain on the ith plane, 

%i is the resolved macroscopic shear stress across the plane, ev is the total volumetric strain, P is 

the pressure in the porous material, (j>t is the porosity (the ratio of void volume to total volume) 

associated with the ith plane, and G and K are the shear and bulk moduli of the intact material, 

13 



respectively. The division by (l -<f) in the first term on the right-hand side (rhs) of (2b) is based 

on the assumption of a partial pressure relationship: 

P = (l-<ß)Ps (4-2c) 

where Ps is the compressive mean stress in the intact material. We have also neglected terms of 

the order of Ps/K(i -(f). In the applications to be discussed, the porosity is restricted to a few 

percent by comminution and associated compaction, and this approximation is justified. Our 

model is not suitable in any case for large porosity, because in that event the dislocation approach 

appears unrealistic. 

POROSITY 

We assume for simplicity that all porosity is associated with dislocations. The total 

porosity <f> is defined as the sum of the porosities 0, associated with each plane, where <j)i is 

defined as the ratio of void volume associated with slip on the i th plane to the total volume. To 

simplify the notation, the i subscript will be dropped in further equations, and the equations will 

be assumed to refer to the i th plane unless otherwise specified. Thus, the value of porosity on 

each slip plane associated with Nd mobile dislocations per unit area is 

</> = nNdbB2 (4-3) 

where we have approximated the individual mobile dislocation area as nbB2, where n in Figure 

2 is unity. For more realistic fragmented bed geometries than those of Figure 2, we can expect n 

to be greater than unity to allow unimpeded block motion. We have arbitrarily chosen n = 3/2. 

The porosity can change only by hole migration across a material element boundary 

(dislocation flux). That is, as discussed in [2], the non-local nature of FRAGBED arises from the 

choice of a control volume (RVE) that contains many granules and associated dislocations. 

Applying the divergence theorem to the dislocation density for this control volume yields (on a 

single slip plane) 

14 



ctNjjN^    d(Ndvd) (44) 

dt        dt dx 

where the first term on the right refers to the net nucleation rate of mobile dislocations (the 

nucleation rate minus the pinning rate), and the second term on the right refers to the net flux of 

dislocations across the surface of the material element. As seen in Figure 2, the nucleation and 

pinning processes do not change the porosity. Thus, only the second term on the right of 

Eq. (4-5) is used to obtain the evolution relation for the porosity, and for constant b and B 

r*n  =_i^fe) (4-5) 
x,b,B       2 & va'y 

where x is in the direction of slip on the i th plane. 

The parameter b is important because it helps determine the porosity through Eq. (4-5). 

Its value is determined physically by the granule geometry and configurations. In the current 

form of FRAGBED2, however, the value of b is simply taken to be an adjustable constant with 

magnitude between zero and unity. (A value larger than unity would mean that the dislocation 

jog would be greater than the granule size.) 

GRANULE AND DISLOCATION VELOCITIES 

We also need an equation for the dislocation velocity, which is in turn related to the 

granule velocity [see Eq. (4-1)]. We can obtain the form of the equation from the simplified 

picture of Figure 2. Consider a cubic block of size B undergoing shear stress Tacross an 

interface that may produce a slip in the x direction. The frictional resistance to slip is juon. The 

impulse-momentum relation is 

(r - pon )B2dt = psB
3dv (4-6a) 

where fi is the coefficient of intergranular friction, on is the compressive normal stress across 

the interface between granules, ps is the solid density, and v = dx/dt is the block velocity. 

15 



Integration of Eq. (4-6a) gives 

v= Sz^5 (4-6b) 

From Eqs. (4-6a) and (4-6b), the time for the granule to move across the gap bB is 

t = B\-^- (4-6c) 

When the block moves a distance of bB, the dislocation moves a distance B. Thus, the 

dislocation velocity vd is given by 

"'■7=f^-   0S"'S£ (4"6d) 

In [2], a more approximate derivation was used that produced a linear dependence on 

(t-juan). The new formulation Eq. (4-6d) produces weaker dependence of dislocation velocity 

on stress and hence lower strain rate sensitivity than the FRAGBED1 formula. 

DISLOCATION NUCLEATION PROCESS 

As discussed above and illustrated schematically in Figure 2, fracture of a granule has the 

effect of nucleating new mobile dislocations (two of opposite sign in the example of Figure 2). 

In an actual fragmented bed, the granules will not be equisized, but will have a distribution of 

sizes. We could replace the equisized blocks in Figures 1 and 2 with a commonly observed 

Poisson granule size distribution: 

Nbg(R)=Nbte-«IB (4-7) 
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where Nbg (R) is the number of granules per unit volume with radii greater than R, Nbt is the 

total number of granules per unit volume, and B is thus the characteristic size of the granule size 

distribution. 

We could then reinterpret the JSs in the previous equations as applying to the B in 

Eq. (4-7). However, in the results presented in this report, we have continued to assume that the 

granules in a computational cell all have one size, B. 

The net nucleation rate of mobile dislocations can be related to the comminution rate 

dB/dt through Eq. (4-3). Because the nucleation process does not create porosity, we can 

differentiate Eq. (4-3) with respect to time, and set d</>/dt = 0, to obtain 

^L = -2^£ (4-8) 
dt B   dt 

Substituting Eq. (4-8) into Eq. (4-4) yields 

dNd^   2NddB    d(Ndvd) (49) 

dt B   dt dx 

GRANULE COMMINUTION PROCESS 

We imagine a situation like that depicted in Figure 2. Fragments, or rather the voids 

between them, can be thought of as dislocations gliding along planes oriented in discrete 

directions. Our present concern is the further fracture of the fragments, such as might occur at 

the potential fracture site indicated in Figure 2. 

In the comminution model, fragment size, B(x,t), decreases at a rate determined by the 

amount the driving stress exceeds a threshold defined by the current fragment size and the 

fracture toughness. At sufficiently high stresses, the rate saturates. We imagine that fragments 

break in two once every period At. Then 

<& = Aß=_^_ = _J_ß/ (4_10) 

ot     At       At 2 

17 



where / = l/A* is the frequency of breaking. We assume that fragments contain crack-like flaws 

of size 7]B and that linear elastic fracture mechanics applies. Fragments break if the stress 

intensity induced by the driving stresses exceeds the fracture toughness, i.e., if 

<*i> ArjB 

V2 

(4-11) 

The frequency is postulated to reach a limit because the cracks cannot grow faster than some 

speed, CR, possibly but not necessarily the Rayleigh wave speed. The limit breaking frequency 

is then CR/2. We ignore the possibility for crack branching. Thus, we expect the comminution 

rate to behave as shown in Figure 4. 

We can model this behavior using 

ot        I 
(4-12) 

where S(pd, B) is a shelf function that makes a transition from 0 to 1 as the driving stress 

parameter öd increases from below the critical threshold to above the saturation limit. The 

threshold is determined by the current fragment size, B, and the saturation limit is chosen to be 

some fixed multiple of the threshold. 

From an infinity of possibilities we have chosen the cumulative distribution function for 

the Weibull distribution [11] for our shelf function. Specifically, 

dB 

dt 
1-exp (4-13) 

where e is the base of the natural logarithm, the parameter ow specifies the half-width of the 

transition and the parameter o0 anchors the location of the transition. See Figure 4. The e arises 

because we normalize the Weibull shelf function so that the slope at o0 is 2ow/l (the width 
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divided by the rise of 1). Rather than specify the width and location of the transition directly, 
however, we choose to specify the threshold stress for the beginning of the transition and a 

parameter m > 1 such that the saturation stress is m times the threshold stress. The threshold 

depends on the current fragment size, the fracture toughness, and the relative sizes of 
microcracks. The threshold stress, as given by the right-hand side of Eq. (4-11), is simply the 

result obtained from linear elastic fracture mechanics, with any geometrical factors accounting 

for fragment and crack shape and orientation suppressed. 

The width of the transition is defined as the difference between the threshold and 
saturation stresses. The location of the transition is the mean of the threshold and saturation 

stresses. Thus, 

<Tv = (m-1] 

and 

ArjB 

V'2 

(4-14) 

1 f     JKK) 
cr0=-(m + l] —'- 0    2V       \4?]E 

2 V/2 

(4-15) 

At a constant driving stress and with an initial fragment size that places the threshold below it, 

the comminution rate öB/öt will decrease toward zero, as can be shown by substituting Eqs. (4- 
14) and (4-15) into the differential equation (4-13) and recasting in non-dimensional form. In 

effect, the rate curve in Figure 4 shifts to the right as fragment size decreases. 

The comminution equation in the non-dimensional form is 

= -< 1 - exp 
L   v 

e[m+\] \ 
ß&lm-l] 

J 

(4-16) 

where 

B 16^ 
nKf(m + if 

B (4-17) 
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Figure 4. Comminution rate as a function of driving stress. 
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and 

t=-ißf^j> (4-18) 

As B approaches zero from above, dB/ei approaches zero, and comminution ceases. For the 

parameter values in Table 1, 

5(0)=1.10xl05m1ß(0) (4-19) 

and 

f = 2.75xlOVV (4-20) 

i.e., for an initial fragment size around 10 urn, the non-dimensional initial size is around 1, and 

for a duration of 1 us, the non-dimensional duration is around 275. 

Table 1 

COMMINUTION MODEL PARAMETERS 

Parameter Symbol Value 

Relative crack size 

Maximum crack speed 

Driving stress 

Fracture toughness 

Saturation stress multiplier 

We can exercise the FRAGBED2 comminution equations independently by considering 

the compression and shearing of a thin layer of ceramic that is infinite in extent. If we assume 

that stresses are homogeneous and equilibrated (i.e., that the layer is thin, then the comminution 

equation (4-16) is a set of ordinary differential equations in time, one equation per slip plane. In 

V 0.1 

cR 5000 m/s 

o-d 4GPa 

K; 4MPaJm 

m 1.15 
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general, the comminution law differential equation (4-16) cannot be integrated analytically, but 

we can solve numerically for fixed stress using Mathematica software [12]. 

Several numerical solutions and their exponential decay approximations are compared in 

Figure 5 for a small matrix of the parameters Z?(o) shown in Table 2. We performed L2D 

hydrocode [13] calculations using a single element to check our implementation of the 

comminution model. The Mathematica numerical solution and the L2D solution are virtually 

identical. 

Table 2 

MATRIX OF COMMINUTION MODEL PARAMETER VARIATIONS 

m i     B(0) -> 0.5 1.0 1.5 

1.05 X X X 

1.10 X X X 

1.15 X X X 

For very large times, the solution to the comminution equations under constant stress 

loading approaches a power law decay, independent of B(0): 

8(m-l) 

ß(f)oc ?8(«-lM«+l) (4-21) 

where e is the base of the natural logarithm. For certain values of 5(0), the solution follows a 

power law decay for all times. For other values of B(0), the solutions approach power law decay 

more slowly for larger values of m. 

LOCAL STRESSES 

Local stress variations around the average or continuum stress state occur within a RVE, 

and these local stresses are important in the comminution process. Following an approach by 

Costin [14], local stresses are calculated on each plane that are different from the average or 

continuum stresses. These local stresses are meant to reflect the existence within the RVE of 
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Figure 5. Normalized fragment size as a function of normalized time. 
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local stress variations around the average due to granule interactions. The local stresses are used 
to govern the comminution within a RVE, but are not used to transfer momentum to adjacent 
meshes. (The average stresses are used in the equations for conservation of mass and energy.) 

In the comminution equations, we therefore allow od to be a local stress defined by 

a] = m,T2 + m2(rl (4-22) 

where the m's are adjustable parameters. 
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SECTION 5 

NUMERICAL IMPLEMENTATION IN HYDROCODES 

SOLUTION PROCEDURE FOR SLIP PLANE EQUATIONS 

We follow the work by Peirce et al. [15] on slip in single crystals. We decompose the 

total deformation tensor 

F = FeFp (5-1) 

into an elastic deformation tensor and a plastic deformation tensor. Given the plastic 

deformation F^, we can solve for the elastic deformation Fe from Peirce's Eq. (18). The total 

deformation F is input into the FRAGBED routine. Because as the elastic constitutive equation 

is assumed to be isotropic, we can make Cauchy stress a direct function of \e (see Malvern [16], 

Eq. 6.8.35), where Ye is defined from the left polar decomposition of Fe: 

Fe=VeR, (5-2) 

and where Re is the elastic rotation tensor (see [16], Eq. 4.6.1). We use logarithmic strain 

£=Ln(Ve) (5-3) 

where Ln stands for the tensor logarithm of a tensor. Finally, we have the evolution equation for 

the plastic deformation tensor: 

dFp 

at     j. 
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Here, j* is the non-elastic shear strain rate on the k th slip plane, and s* and n* are the slip 

direction and slip plane normal unit vectors, respectively. The symbol ® denotes the dyadic 

product. Henceforth, we will suppress the superscript k but assume that it is there. 

Vectors s and n are referred to as the plastic configuration (determined by Fp ), and s* and 

n* are the corresponding vectors in the current configuration (determined by F). 

n*=nF;' (5-5a) 

The slip plane normal n is simply a constant vector given by the original orientation of the plane. 

The assumption is that only elastic deformations change the orientation of a plane. The slip 

direction s* is given by the following equations 

t = na (5-5b) 

a„=n-t (5-5c) 

s*=t-crn* (5-5d) 

s = F;V (5-5e) 

Here, a is the stress tensor, t is the traction vector on the plane and <J„ is the normal stress on the 

plane. Equations (5-5c,d) ensure that vectors s* and n* are orthogonal. From Eq. (5-5a,e) it 

follows that s and n are orthogonal whenever s* and n* are orthogonal. Equation (5-5e) follows 

from the definition of a deformation tensor. Equation (5-5a) does not have a similar physical 

meaning, but is simply a formula that generates a vector that is normal to any vector that lies in 

the slip plane. The various vectors s, s*, n, and n* must be normalized before use in equations 

like (5-4). 

Analytically, the plastic deformation tensor will always be incompressible for the 

following reason. The plastic strain rate tensor on each individual plane, } *s* ® n*, is traceless 

because the tensor product between two vectors that are normal to each other is traceless. The 
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sum of a set of traceless tensors is also traceless. Equation (5-4) has the same form as the rate of 

the total deformation tensor, see [16], Eq. 4.5.14: 

dt 
(5-6) 

where F is the deformation tensor and L is the velocity gradient. Whether we choose to interpret 

the sum of the tensors } ps  ® n   as a plastic velocity gradient, L,p, or not, mathematically the 

rate of the plastic deformation tensor has the same form as the rate of the total deformation 

tensor. Therefore, because a traceless L (zero volumetric strain rate) leads to incompressible 

flow, a traceless Lp will lead to incompressible plastic flow. 

Numerically there is potentially a problem with incompressibility. We use the following 

finite difference equation to update Fp: 

^ ^ = -L„(F"+1+F") 
Ar 2   pK "        p) 

(5-7a) 

Superscript n stands for time step level. The rhs is correctly time centered at n +1/2 because L,p 

is ordinarily centered on half time steps. Rearranging we get 

V^Wi+^V; (5-7b) 

The equation can be solved as a linear equation system for the unknown F^    using Cramer's 

rule. Therefore, we again rearrange 

F;+1 = .-^LYYI^LA; 1 + YL,   r, 
Z J 

(5-7c) 
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Everything on the rhs is known. In principle, the fact that the determinant of 
[l - (At/2)L J must be non-zero poses a restriction on At. In practice, a zero determinant means 

that the flow is so quick that the cell inverts in a single time step. In that case, the calculations 

would abort before applying the above equations. 

When we test Eq. (5-7c) above, we find that incompressibility is satisfied to within 

machine roundoff. We do not yet completely understand how this fortuitous situation comes 

about, but the correct time centering of the rhs of Eq. (5-7a) may be critical. 

The plastic flow is modeled entirely as slip on discrete slip planes. We have equilibrium 

on a certain plane when 

x<c + juan (5-8a) 

where c is the cohesion, while we will get slip when 

t>c + juan (5-8b) 

When we have slip on one or several planes, the plastic deformation tensor has to be modified to 

reduce the resolved shear stresses. Because the dislocations have a limited mobility, the 

reduction in the resolved shear stress is subject to a limit on the plastic strain rate. 

jp<gbBNdvd (5-9) 

where g is a proportionality factor, b is the burgeris vector, B is the block size, Nd is the 

dislocation density, and vdis the dislocation velocity. An initial thought is to enforce 

i=c + juon (5-10) 

on all planes that want to slip. 
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The following example with a pair of slip planes at right angles shows why this approach 

does not generally work. One plane is along the x axis, the other plane along the y axis. We 

assume 2D symmetry, which means that the direction of the resolved shear stress is in the x-y 

plane. On the plane with the normal in the y direction, Eq. (5-10) requires 

iyx=c + /ioyy (5-1 la) 

while on the plane with the normal in the x direction, Eq. (5-10) requires 

ixy=c + /to„ (5-1 lb) 

The symmetry of the stress tensor requires tyx=txy, while at the same time p^ will not 

generally be equal to (Tyy. This example shows that we cannot generally expect to fulfill 

Eq. (5-10) on several slip planes at the same time. 

We therefore implemented a scheme where we solve one plane at a time. The plane with 

largest plastic strain rate is processed first. The processing order is important because a change 

in shear stress on one plane may change the stress state on some other plane. We must also 

check at the next plane to be processed to see if the no slip condition, Eq. (5-8a), has been 

fulfilled. If not, we back-calculate a trial strain rate from 

>  JLZMÄ (5-12) 
,p GAt 

where G is the shear modulus. This equation gives the strain rate that relieves the overshear in a 

single time step. This strain rate is limited by Eq. (5-9). The shear modulus enters as one G 

because we are slipping on one plane. The cohesion does not appear in Eq. (5-12) because it is 

set to zero after the first slip. We have found that the cohesion makes little difference to the 

results, so we have not implemented anything more elaborate. 
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Equation (5-12) assumes an infinitesimal linear Hooke's law. Because of constitutive 

and geometric non-linearities we have to iterate while fine adjusting }p. The ultimate goal is 

z-/ion=0 (5-13) 

All this is subject to the limit on the strain rate from Eq. (5-9). 

The model assumes that there is a porosity <j>s associated with each slip plane, given by 

(j)s=\.5NdbB2 (5-14a) 

The total porosity $ is given by the linear sum of Eq. (5-14) over all the slip planes. 

In the present formulation the porosity affects the pressure equation of state. We are 

using a Mie-Griineisen V(V, E) relation. The specific volume V that enters the equation of state 

is modified to 

V = (l-<t>ys (5-15b) 

where V  is the macroscopic specific volume. At zero porosity the macroscopic and equation of 

state volumes are the same. As the porosity increases for a constant macroscopic volume the 

pressure increases, too. 

WELL-POSEDNESS, THERMODYNAMIC RESPECTABILITY, MESH SIZE 
INDEPENDENCE, AND INTERNAL CONSISTENCY REQUIREMENTS 

FRAGBED2, a mesomechanical internal state variable model, is similar to the type 

discussed by Coleman and Gurtin [17], who provided a recipe that guarantees well-posedness 

and thermodynamic respectability. However, FRAGBED2 does not exactly fit the Coleman and 

Gurtin recipe for internal state variable models because it contains a flux term in the evolution 

equation for the mobile dislocation density Nd- However, we can use an approach developed by 

Whitham [18, 19] to analyze the shear wave propagation equation across each slip plane, and 

thereby establish well-posedness and thermodynamic respectability. 

Consider one of the slip planes in FRAGBED2. If we define the slip to be in the x 

direction, and the normal to the slip plane to be the y direction, and x and y arc Lagrangian 

30 



coordinates, then the conservation of momentum and the mass equations on that slip plane 

become: 

Momentum: P-r- = -r- (5-16) 
dt     dy 

Mass: * ^ = ^ (5-17) 
dt     dy 

where u is the particle velocity in the x direction, p is the density, ris the shear stress across the 

slip plane, and y\s the strain (displacement gradient) associated with the slip. 

The constitutive relation for slip on the plane is 

|U±|+WVA(T) (5_18) 

where G is the shear modulus, b is the relative macrodislocation size (dimensionless), B is the 

granule size, Nd is the mobile macrodislocation density (number per unit area), and vd is the 

stress-dependent macrodislocation velocity. The first term on the rhs. of Eq. (5-18) is the elastic 

strain rate, and the second term is the plastic strain rate due to granular slip on the slip plane. 

Next we operate on Eq. (5-16) with 3% and on Eq. (5-17) with dßt, and combine with 

Eq. (5-18) to obtain: 

1 d2t     1 d2T | d{NdbBvd) (519) 

p dy2    G dt2 dt 

The FRAGBED 2 comminution and dislocation nucleation models yield 

1  dNd =    2 dB     1  d(Ndvd) 

Nd   dt        B dt    Nd     dx 
(5-20) 
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Combining Eqs. (5-19) and (5-20) yields 

d2T   Gdh    „3T 

dt2    p dy2       dt 
+ X^+F = 0 (5-21) 

where X = bBGNd dvjdt 

and 

F=bBGNdvd 
1 dB      1  d(Ndvd) 

B ddt    N,,     dx 
(5-22) 

We first note that X is always positive, because b, B, G, Nd, and dvd /dz are positive. The 

reason that dvd/di is positive is that the model requires higher shear stresses to increase the 

dislocation velocity, i.e., the system is dissipative. 

The FRAGBED 2 comminution model makes dB/dt a function of the stresses. Thus F is 

a function of the stresses, Nd, and the macrodislocation flux in the x direction, d(NdVd )/dx. 

We next linearize Eq. (5-21) by holding all the variables constant at their values at a 

given instant (labeled by the subscript 0) and then replacing tby tQ + A. Then Eq. (5-21) 

becomes 

a2A    Gd2A    , dA    _     _ 
(5-23) 

Next we define D = A+^ (5-24) 
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Combining Eqs. (5-23) and (5-24) yields 

dr     p dy2 dt 

Eq. (5-25) is of the form shown by Whitham to have solutions that are both unique and stable. 

Stability means that D decreases with time. Taking the time derivatives of Eq. (5-24) yields: 

^ = ^+^<0 (5-26) 
dt      dt     XQ 

F0 can be positive or negative, depending on the comminution rate and macrodislocation 

flux. If the comminution rate is zero, for example, F0 will be negative if the macrodislocation 

density is decreasing because more macrodislocations are flowing out of the mesomechanical 

relevant volume element (RVE) than into it. In any event, if F0 is positive, dA/dt will be 

negative, and must be greater in absolute magnitude than Fo/X0. However, if F0 is negative, 

dA/dt can be positive, but must have an absolute value less than that of F0A,0. 

In summary, the FRAGBED 2 model should satisfy well-posedness and thermodynamic 

respectability requirements because the shear wave equations associated with each slip plane 

satisfy Whitham's criteria. Because the same analysis applies to each slip plane, the uniqueness 

and stability requirements should also be satisfied for an RVE containing many such planes. The 

physical reason for thermodynamic respectability is that the granule comminution and flow 

process is dissipative. 

Internal consistency is defined as the requirement that the mesomechanical model does 

not predict large variations in calculated variables over the dimension of the RVE. Compliance 

with both this requirement and that of mesh size insensitivity must be demonstrated for each 

specific application. 
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SECTION 6 

EXPERIMENTS FOR CALIBRATION AND VALIDATION OF FRAGBED2 

CAVITY EXPANSION EXPERIMENTS 

Calibration of the comminution parameters in FRAGBED2 requires an experiment that 

applies a known, relevant stress and strain history to a specimen, then allows the specimen to be 

recovered to quantify and correlate the damage. Impact recovery experiments in which a thin 

stelliform flyer impacts a ceramic specimen to produce a single well-characterized stress pulse 

would be useful for calibrating the comminution model. Such experiments have been performed 

on aluminas similar to our AD-995 [20], but only at stress levels insufficient to cause significant 

comminution. 

In work reported elsewhere [21, 22], experiments were performed by detonating an 

explosive charge within a spherical cavity machined in a ceramic specimen confined in an 

impedance-matching bronze container. The resulting loading of the material (stress, strain, and 

strain rate) is well characterized, nominally one-dimensional, and is similar to the conditions 

occurring near the tip of a rod projectile during a penetration event. The test is instrumented with 

electromagnetic particle velocity history gages located at several radii from the charge. Posttest 

microscopic examination of the recovered samples has revealed an overall damage less severe 

than in typical penetration experiments, and has allowed a more detailed description of the 

fracture and comminution processes. 

The spherical cavity expansion experiments [21,22] provide an order-of-magnitude 

estimate of fragment size as a function of time and stress level. In experiments on AD-995, 

stresses near the cavity wall were estimated to be around 8 GPa, pulse durations were on the 

order of 1 us, and fragment sizes were on the order of 10 urn. Corresponding normalized values 

are i = 275, and B = 1. Comparing these values with the results shown in Figure 5, we see that 

B = 1 at f=275 corresponds to a value of m greater than 1.15. 

The FRAGBED2 model in L2D does a reasonably good job of matching particle velocity 

histories measured in spherical cavity expansion tests on Coors AD-995 alumina (see Figure 6). 
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Figure 6. Comparison of measured radial particle velocity at different radii 
with those computed by FRAGBED2 in L2D. (continued) 
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The results are sensitive to the initial fragment size distribution B0 computed using Eq. 3-6. We 

found that the results were also sensitive to the choice of limiting crack speed (or breaking 

frequency), CR (see Eq. 4-13). CR is essentially a parameter that scales time. We found that if B0 

was too small or CR too large, comminution proceeded too quickly, the response was too non- 

elastic, and the velocity waveforms did not display the negative rebound phases that are in the 

measured histories. By our choice of m, B0, and CR, we could compute final fragment sizes that 

matched the experiments. In particular, the variable-size initial fragment bed approach outlined 

in Eq. 3-1 to 3-6 was used, with Kc = 4MPaVm, P0 =15.5GPa, and a = 0.01 m. Those 

parameter values, along with a uniform initial porosity, 0O = 5.85 xlO-6, m = 1.5, and CR = 496 

m/s (see Eq. 4-10 through 4-15), gave the result that nearly all of the comminution occurred 

within about a millimeter of the charge, as was observed in the experiments. In the thin 

comminuted zone, the porosity rose rapidly to 3% within 6 us, by the influx of dislocations from 

the wall of the spherical cavity. Experiments with stronger charges and therefore greater 

comminution would be useful for calibrating the comminution model. 

INVESTIGATION OF SHEAR LOCALIZATION IN CERAMICS 
USING A MODIFIED THICK-WALLED CYLINDER METHOD 
Note: The thick-walled cylinder experiments were designed with the help of 

Professor Vitali F. Nesterenko, University of California, San Diego. He will be a co-author of 

the journal manuscript resulting from the following section. 

Compared to steels, ceramic armors are attractive from the standpoint of weight. To 

design ceramic armors efficiently, good computational models are needed that include the 

relevant material physics. Shockey et al. [1] describe the relevant physics to include the fracture 

of the ceramic, the comminution of the fractured ceramic into a fragmented bed (the Mescall 

zone), and the subsequent flow of the fragmented bed out of the penetrator's path. Curran et al. 

developed a computational model, FRAGBED [2,21], that captures these physics. Other models 

have also been developed for ceramic behavior under armor penetration conditions [23-25]. To 

calibrate any of these models, tests are required that exercise the relevant physics in relative 

isolation. In particular, a test is needed that subjects ceramic to intense, high rate, compressive 

flows like those in the Mescall zone, which is the zone immediately in front of an advancing 

penetrator. Nesterenko et al. developed the thick-walled cylinder method (TWCM) [26,27] to 

meet these requirements. 
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Nesterenko et al. applied the TWCM to study the large deformation, high strain rate 

behavior of metals [28], reactive mixtures [29], ceramic powders [30], and intact ceramics [31]. 

In the TWCM, depicted schematically in Figure 7, a copper tube is inserted inside a thick-walled 

tube of specimen material. This assembly is in turn inserted inside a copper outer tube. The 

outer tube is surrounded by explosive which, when detonated, compresses the assembly radially 

inward. By sectioning the recovered assembly and measuring the radial displacement, the 

circumferential strain in the ceramic can be quantified and the amount of fragmentation and shear 

banding related to the strain. The TWCM is attractive because it allows specimens to be 

subjected to intense rapid loading yet be recovered. 

In the original application of the TWCM to ceramics [30,31], the tube assembly was 

subjected to two explosions. For the first explosion, a solid copper rod rather than a tube was 

inserted in the inner bore of the specimen. The first explosion fragmented and compacted the 

specimen into an in situ fragment bed but did not strain it much. Before the second explosion, 

the solid copper rod was drilled out to form a tube. The second explosion compressed the 

assembly inward until the drilled hole collapsed completely. The amount of strain was controlled 

by varying the diameter of the drilled hole. Clearly, the need for two explosions complicates the 

TWCM when applied to ceramics. 

We realized, however, that the need for two explosions can be eliminated. As shown in 

Figure 8, by tapering the bore of the inner copper tube or by inserting a tapered pin into a straight 

bore, the diameter of the bore (and therefore the allowed range of strain) can be varied along the 

length of the assembly from near zero at the solid end to as much as needed at the open end. The 

tapered pin scheme was chosen for implementation because of the difficulty associated with 

machining a tapered bore. 

In this section of the report, we (1) describe the tapered TWCM, (2) show its application 

to alumina ceramic to illustrate high rate flow phenomenology and the transition to localized 

deformation, and (3) present data for validating the FRAGBED2 ceramic comminution and 

fragment flow model. Details of the tapered TWCM are presented so that others can model the 

experiment. Results for Coors AD-998 alumina are shown. Among the results, particular 

emphasis is placed on shear band phenomenology and implications for the fragment flow picture 

of ceramic deformation. Also included are the results of simulating the experiment using a two- 

dimensional hydrocode. 
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Figure 7. Original Nesterenko thick-walled cylinder method. 
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Figure 8. Modified thick-walled cylinder method. (Continued) 
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Figure 8. Modified thick-walled cylinder method. (Concluded) 

42 



Extruded AD-998 alumina ceramic tubes 11.1-mm outside diameter, 7.9-mm inside 

diameter, and 44.5-mm long were obtained from Coors Ceramics, Golden, CO. The alumina was 

reported to be 99.8% pure with porosity around 1%. The porosity is estimated from the ratio of 

the theoretical density of a-alumina, 3.97 g/cm3, to that of extruded AD-998, 3.92 g/cm3. As 

depicted in Figure 8, the tubes were fitted into and onto copper tubes with about 50 urn of 

clearance. The assemblies were completed by inserting copper rings below the specimens and 

inserting the brass pin through the conical cap and into the inner tube. Finally, the momentum 

trap was bonded to the bottom of the assembly and the brass pin was bonded to the cap with 

cyanoacrylate adhesive. The assembly was then placed inside a 100-mm length of PVC pipe and 

topped with a foam attenuator. About 130 g of PETN explosive was packed around the assembly 

and covered with a disk of sheet explosive. The explosion was initiated from the center of the 

disk. The recovered assemblies were sectioned, polished, and micrographed. 

Transverse optical photographs of sections at 10-mm intervals measured from the most 

deformed end of the ceramic are shown in Figure 9, and a longitudinal section is shown in 

Figure 10. Average radial displacements, u, finite Lagrangian hoop strains, eee, and radial strains, 

3r, are computed for each section from the radial displacement, uo, of the inner wall of the inner 

copper tube from its initial position, R0 = 2.38 mm, to its final position against the tapered pin, 

assuming incompressible, plane deformation. 

(6-1) 

1 

-4R — LRQUQ + MQ 

R2       I) 
R2- 2 2i?0«0 + u0      ) 

\\u 0(MO-2^)1 

A R2        J 

(6-2) 

£ee=~\   "v" ,        I (6-3) 

The strains are plotted in Figure 11. 

As revealed in the Figure 9 cross sections, a significant portion of the total deformation is 

accommodated by displacement jumps across shear bands. Figure 12 shows that if all the 

deformation were accommodated in one logarithmic spiral shear band, then an approximate 
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(a) 

Figure 9. TWCM cross sections from different locations along the taper, with average 
hoop strains shown, (continued) 

44 



£««-0.04 

(b) 

Figure 9. TWCM cross sections from different locations along the taper, with average 
hoop strains shown, (continued) 
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Figure 9. TWCM cross sections from different locations along the taper, with average 
hoop strains shown, (continued) 
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Figure 9. TWCM cross sections from different locations along the taper, with average 
hoop strains shown, (concluded) 
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Figure 10. Longitudinal TWCM cross section. 
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Figure 12. Graphical construction of the relationship between band slip and 
circumferential strain. 
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relationship between the circumferential strain and the displacement jump, S, across the shear 

band is 

AS        6 u ., .. 
 = 7=  ~ £gg  ~ — (6-4) 
S     iJlnR R 

where S is the circumference and u is the average radial displacement. Thus, when all of the 

deformation is accommodated by shear bands, the relationship between the average radial 

displacement and the displacement jump across each of N bands is 

sJ^-u (6-5) 
N 

Figure 13 plots the displacement and displacement jump for the sections in Figure 9, assuming 

incompressible plane deformation and assuming that all of the deformation is accommodated in 

N= 8 identical bands. Displacement jumps at the section with the largest strain, Figure 9d, are 

computed to be around 700 urn. 

SEM photographs of the same sections shown in Figure 9 were taken of individual shear 

bands, cracks, and relatively undeformed regions. From the SEM micrographs of the shear 

bands, shear band displacement jumps can be measured. In some cases, the size of the jump is 

different on the inside and the outside of the tube, implying that the material on one side of the 

band is stretched. This is particularly evident for the band on the left-hand side in Figure 14, in 

which there is virtually no step on the outside diameter and a large step on the inside diameter 

and many open cracks on the rhs of the band. Figure 15 is a magnified view of the cracked 

region. 

The shear bands vary in character independently of where they are around its 

circumference or along the length of the tube, i.e., independently of the amount of strain. Some 

bands are very sharp and crack-like, e.g., Figure 16; some are more broad and diffuse, e.g., 

Figure 17; some are difficult to discern at higher magnification, e.g., Figure 18; some contain 

debris at their ends, e.g., Figure 19; and some do not, e.g., Figure 20. 
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Figure 13. Shear band displacement jumps in the ceramic for the cross 
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300 |jm 

Figure 14. Pair of shear bands with dilated region on the right-hand side of the left-hand band. £ed~ -0.12 
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100 um 

Figure 15. Magnified view of the dilated region in Figure 6. 
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Figure 16. Sharp, highly localized shear bands. 
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Figure 17. More diffuse shear band, %, ~ 0.12. 
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10 um 

Figure 18. High magnification view of shear band at eee ~ 0.04. Band is located between the dashed lines 
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Figure 19. Debris accumulated at OD end of the shear band at % « 0.12. 
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Figure 20. ID tip of shear band with minimal debris accumulation, £99 = 0.12 
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Shear band quantity is relatively independent of the amount of deformation. Although the 

section taken where the core was solid (Figure 9a) has no bands, about 5 cracks are oriented 

roughly radially and spaced non-uniformly. About 10 bands are at the lowest level of 

compression (Figure 9b), with about 4 of those having significant shear steps on the ID or OD. 

About 8 bands are at the next level of compression (Figure 9c), all having significant shear. 

Finally, about 9 bands are at the highest level of compression (Figure 9d) with even more 

significant shear in each. Thus, the number of bands appears to be roughly constant at 

8-10 spaced non-uniformly in the circumferential direction independently of the amount of 

inward compression. 

Two-dimensional, free-Lagrange, hydrocode simulations of the experiment were 

performed using the FRAGBED2 implementation in the L2D hydrocode [13] to estimate the 

stress and strain rate conditions in the ceramic. The model included the explosive detonation. 

Two sets of simulations were performed. In one set, cylindrical axisymmetry was assumed, that 

is, the problem coordinates were the axial and radial directions. Figure 21 shows the mesh and 

Table 3 lists input parameters. The copper was modeled as Von Mises elastic-plastic. The 

axisymmetric model cannot capture the shear banding behavior and the simulation therefore 

provides only qualitative estimates of the average conditions in the ceramic. 

Table 3 

FRAGBED2 TWCM AND BALLISTIC SIMULATION PARAMETERS 

Parameter Symbol Value Units 

Fracture Toughness K|c 4 MPaVm 

Burgers Vector b 0.01 

Initial Block Size" B0 3 um 

Initial Dislocation Density Nd0 1.14X1010 m"2 

Comminution Rate Saturation Width m 1.5 

Relative Crack Size f] 0.01 

Max Crack Speed cR 496 m/s 

Friction Coefficient V 0.3 

*±20% random variation introduced in plane strain simulation. 
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In the second set of simulations, plane strain deformation was assumed and the problem 

coordinates were the radial and circumferential directions (see Figure 22 and Table 3). The 

simulation corresponded to modeling the behavior of a single axial location, e.g., Figure 9d. As 

in the axisymmetric simulations, the copper was modeled as elastic-plastic, and the alumina was 

modeled using the FRAGBED2 model. The FRAGBED2 model uses an analogy to dislocation 

theory to describe the deformation of the ceramic. Fragments are imagined to slide on discrete 

planes at speeds controlled by the local stresses. Fragments can also reduce in size according to a 

comminution rate law. In an attempt to precipitate localization, a random ± 20% variation in 

initial fragment size and dislocation density was introduced in the axisymmetric simulations. 

The results from the axisymmetric model show that the radial stress pulse is compressive 

and persists for about 10 us and peaks around 4-8 Gpa; the circumferential stress pulse plateaus 

at about the input Hugoniot elastic limit for the ceramic, 6 Gpa, and has a duration of up to 

15 us; and the axial stress is compressive, about 2 Gpa in magnitude, and persists for about 

25 us. The radial velocity is around 1.5 m/s inward. Radial strains are overall positive and vary 

from 0% to 20% along the taper section, and the radial strain rate is about 2 x 104 s"1. Hoop 

strains are compressive and vary up to -15% at similar rates. Axial strains are at most 5%. 

Figure 23 shows strain paths in the r-0 plane. 

The fact that the radial stress pulse is 5 us shorter than the circumferential stress pulse 

and 10 us shorter than the axial stress pulse may explain some of the propensity for shear 

banding and the radially stretched region on the right side of the band in Figures 14 and 15. The 

circumferential and axial stresses remain high after the radial stress falls off, which places the 

ceramic in a state of biaxial compression. The reduced stress in the radial direction implies that 

the ceramic might be able to expand in the radial direction and that faulted blocks might be able 

to slide off each other in the radial direction. 

The deformation computed in the plane strain, FRAGBED2 model shows only slight 

tendency to localize into logarithmic spiral shear bands. As shown in Figures 24 and 25, there 

are indications of localized comminution and localized deformation, but the localization is of a 

different form and more diffuse than observed in the experiments, and might be related to the fact 

that fragment dislocations are restricted to move on a set of discrete planes, rather than the 

emergence of a true softening instability. It might also be related to the fact that in the plane 

strain simulation there is a strong radial shock, whereas in the TWCM test the wave sweeps 

down the length of the ceramic tube. In the simulation, the radial motion rebounds strongly after 
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Figure 23. Strain paths corresponding to Figure 9 cross sections obtained 
from L2D axisymmetric simulations. 
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Figure 25. Contour plot of FRAGBED2 equivalent plastic strain at t = 8 us. 
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the inner copper tube contacts the central pin, but there is no evidence of rebound in the TWCM 

assemblies sectioned posttest (see Figures 9 and 10). The sweeping motion combined with the 

shear localization makes the TWCM fully three-dimensional. Thus, plane strain simulations are 

not completely faithful representations of the true deformation. Perhaps the sweeping motion 

helps trigger localization. On the other hand, the experimental rock mechanics literature 

contains instances of quasistatic and dynamic plane strain radial compression of holes leading to 

spiral shear bands. 

The transverse sections show clearly that shear localization or faulting is a significant 

mechanism by which the hoop compression is accommodated, even at the smallest levels of 

hoop compression (Fig. 9b). However, the displacement jumps in Figure 9 are significantly 

smaller than those estimated as if all the deformation were by shear banding (Figure 13), which 

implies that, indeed, not all of the deformation is accommodated by the bands. Another 

significant mechanism must be present for accommodating hoop compression. Given the 

fragmentation visible in Figure 9 and 10, and given the low amount of atomic dislocation 

plasticity observed in other explosively loaded alumina samples [32], shifting, rearrangement, 

and breaking of fragments appears to be a likely mechanism. 

The transverse section taken where the core was solid and where there was therefore only 

minimal straining shows radial cracks (Figure 9a) that could immediately lead to the shear 

banding mechanism with further compression. For instance, a detail of one of these cracks, 

Figure 26, shows that it is curved and that further compression could be accommodated by 

sliding along the crack faces. 

Chen and Ravichandran [33] performed split-Hopkinson bar compression tests on glass- 

ceramic cylinders surrounded by thick metal jackets intended to provide radial confining stress. 

All of their confined cylinders failed by faulting, and the faulting appeared to begin at the earliest 

stages of the deformation. As was the case for TWCM, there seemed to be little or no 

homogeneous inelastic deformation prior to the onset of faulting. In contrast with TWCM, 

however, the amount of debris in the fault slip region seemed to correlate with the amount of 

slip. 

Nesterenko et al. applied the untapered TWCM to compacted ceramic powders [30]. 

Compared with the results obtained here, the powder tests produce many more bands and the 

bands are more uniform in displacement jump and spacing. The same is true for Nesterenko's test 

on ceramic subjected to two explosions. In either case, more than 50 bands were produced at an 

average circumferential strain around -0.2. As in the work reported here, Nesterenko et al. [30] 
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Figure 26. Curved crack in section with solid core, eee ~ 0. 
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found that significant portions of the total deformation were accommodated by mechanisms other 

than shear banding. 

The flowing fragment bed picture of ceramic deformation differs from the shear 

localization picture observed in the TWCM tests. Which picture applies to ceramic armor 

penetration is an important issue. Apparently, both pictures apply, perhaps at different stages in 

the penetration process. This issue has strong implications for armor design, modeling, and 

choice of experiments for characterizing penetration resistance. 

The preponderance of shear bands and the fact that even the smallest levels of radial 

compression result in cracks that could become bands suggest that, under the geometry, stresses, 

strain, and loading rate conditions under consideration, shear banding is a significant mechanism 

by which the ceramic deforms. However, fragment flow also appears to be a significant 

mechanism. 

BALLISTIC TESTS 

Subramanian and Bless [34] have performed a series of ballistic experiments in which 

they shot confined AD-995 alumina cylinders against stationary L/D=20 tungsten rod 

penetrators in the reverse ballistics mode. Penetration and rod erosion histories were recorded 

using flash x-rays. We simulated their tests at 1.5 and 3.5 km/s using FRAGBED2 in L2D, with 

the same set of parameters for both simulations. Parameter values are shown in Table 3. 

Figure 27 shows the computational mesh at a stage part way through a penetration. Figure 28 

shows the computed penetrator tip and tail trajectories for the two simulations, along with 

average steady-state velocities reported by Subramanian and Bless [34]. At 1.5 km/s, the 

computed penetration rate is well within the scatter band of the measured rates. At 3.5 km/s, 

computed rates are barely within the low side of the scatter band, about 15% below the mean of 

the measured rates. 

The computed results are sensitive to initial fragment size and to the initial porosity. 

Subramanian and Bless claim an initial porosity for their AD-995 of around 2%. Our 

microscopic observations of AD-995 indicate a porosity well below 5%. Based on the ratio of 

the manufacturer's reported density for AD-995, 3.89 g/cm3, to that of a-alumina, 3.97 g/cm3, 

we also estimate the porosity to be around 2%. In any case, we found that FRAGBED2, with an 

initial porosity around 2%, gave the best match to the ballistic experiments of Subramanian and 

Bless. 
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Figure 27. FRAGBED2/L2D simulation of tungsten long rod penetration in AD-995 
alumina. Scale is in centimeters. 
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Figure 28  Comparison of FRAGBED2 and measured [34] steady-state 
penetration velocities. The cover plate occupies from 3 to 0 mm along the 
position axis and the ceramic extends from 0 to -51 mm. 
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SECTION 7 

DISCUSSION AND CONCLUSIONS 

In this section, we list the FRAGBED2-specific input parameters and discuss the 

importance of each in determining key aspects of penetration or cratering behavior. FRAGBED2 

requires the following FRAGBED2-specific input parameters. (Non-FRAGBED2-specific 

parameters include the solid density and the solid moduli.) 

Table 4 

FRAGBED2 PARAMETERS 

Parameter Description Comments 

No. and orientation of planes Arbitrary; can be tailored to 
each problem 

All non-elastic slip occurs on 
these planes. 

ß0(cm) Characteristic fragment granule 
size at onset of granular flow 
and comminution 

This parameter is determined 
from fracture calculations or 
algorithms. 

Wan (no./cm2) Initial dislocation density 
(number/unit area) 

Depends on boundary and initial 
conditions 

b Dislocation jog coefficient Related to granule morphology 

V Coefficient of friction between 
granules 

Normally based on handbook 
values 

h, m Comminution parameters Chosen by correlation with 
cavity expansion experiments 

9 Granule geometry factor Normally set to unity 

-3/2 
K1D(dynecm   ) Solid dynamic fracture initiation 

toughness 
Normally based on handbook 
value 

mi, A7T2 Local stress factor coefficients Related to granule morphology 

All ten parameters in the above table can be in principle assigned different values on each 

plane of this multiplane model. (This is in fact an important capability for cases in which pre- 
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existing interfaces or planes of weakness exist in the material.) The total number of potential 

input parameters is thus equal to 10 times the number of planes used in the model. For example, 

in the L2D applications discussed above we used 13 planes, so the number of potential 

parameters in that case is 130. 

However, in initially isotropic cases, we use the same parameters on all planes. Thus, in 

many if not most armor ceramic applications (such as the examples shown in this report), the 

number of FRAGBED-specific, input material, property parameters is 10. 

The effects of varying input parameters in FRAGBED2 are difficult to predict a priori 

because of the many interactions between different parts of the model. In a parametric study 

leading to the correlation between computations and experimental data discussed above, we 

varied all the above input parameters except g (assumed to be unity) and KID (set to 

4 MPa^n )_ The results showed that, as hoped, they depended on the input parameters in a 

stable way, i.e., modest changes in the input cause only modest changes in the output. 

In conclusion, 

• The FRAGBED2 model treats the physics relevant to ceramic armor 
penetration: fracture, comminution, and flow of the fragmented bed. 

• FRAGBED2 models reasonably well laboratory experiments in which alumina 
armor was impacted by tungsten long rods. 

• FRAGBED2 correctly models particle velocity histories obtained in spherical 
cavity expansion experiments. 

• FRAGBED2 predictions are sensitive to readily identifiable and measurable 
material parameters, such as initial fragment size, fracture toughness, and 
friction coefficient. 

• We have not found a set of FRAGBED2 parameters that would allow it to 
predict the shear bands observed in TWCM tests performed on alumina. 

• The deformation in TWCM tests on alumina is accompanied by both shear 
bands and by fragment flow. 
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APPENDIX: NUMERICAL DEFINITIONS AND ROUTINES 

DEFINITIONS 

Block size = initial block size in centimeters. There is only one initial block size, common for all 

planes. No default. 

Burger = burgerfs vector, non-dimensional. No default. 

Coheslip = initial cohesion on all slip planes in MBar. Default zero. 

Crayleig = Rayleigh wave velocity in cm/|ns. No default. 

Dislocde = initial dislocation density on all planes in cm" . No default. 

Elastic: elastic only calculation. No slip on planes. For testing purposes. 

Endsub: end of FRAGBED input. 

Eta = T| in the comminution model, dimensionless. No default. 

Ftoughne = fracture toughness in MBar | cm. No default. 

Gsmall = g in the formula for the plastic strain rate on a slip plane, dimensionless. No default. 
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Initfp: non-trivial initialization of the plastic deformation tensor Fp. Ordinarily Fp is initialized 

to unity. This flag will make the code initialize Fp to a non-trivial value that is hard-wired in 

the code (look for the string NON-TRIVIAL FP). For testing purposes. 

Ml = the shear stress factor in the driving stress formula, dimensionless. No default. 

M2 = the normal stress factor in the driving stress formula, dimensionless. No default. 

Mufricti = the coefficient of friction on all planes, dimensionless. No default. 

Notslip: ordinarily two pairs of out-of-plane planes allow slip that limits the out-of-plane shear 

stresses. This flag will limit the planes to the ones that the user specifies in the x-y plane. 

Setting NOTSLIP in a 2D problem would cause all slip to occur on planes with normals in 

the x-y planes. This would result in unlimited shear strength in the two tangential directions. 

For testing purposes and true 3D problems. For 3D simulations, the user should always set 

the planes manually. 

Notransp: turns off the dislocation transport on all planes. For testing purposes. 

Nslip = number of slip planes. In 2D, these are the planes that the user specifies. Do not include 

the default out-of-plane planes. In 3D, remember to set the notslip flag above. No default. 

Satwidth = the m parameter in the saturation and threshold stress formulas in the comminution 

model, dimensionless. No default. 

Snormal(I) = Nx Ny Nz 

I = plane number (1 through nslip). No default. 

(Nx,Ny,Nz) is the slip plane normal. The code will normalize the vector. No default. Always 

three values. In 2D, Nz should be zero. 
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ROUTINES 

SUBROUTINE FRAGB(ffiRR,LUUT,NCALL,DELTC,EQ,SDEV,FD,FPI,EXC,HEPS, 

PCUT,S,EXM,LABEL,RLABEL,JPOSN,LM3,NUM) 

This is the main subroutine for the FRAGBED model. This is the only routine that the 

simulation code needs to interface. There are essentially three times when the simulation code 

needs to call FRAGB: at material model parameter setup, at internal state variable setup, and at 

calculation of the stress from the deformation. See NCALL below. 

FRAGB Arguments 

In the following INTEGER and REAL*8, refer to FORTRAN programming syntax. REAL*8 

is called double precision on most computers. 

INTEGER IERR: negative for error. Initially set to 0 by FRAGB. Returns storage used by the 

EXM and EXC arrays. 

INTEGER LUUT: FORTRAN logical unit number for the general output file. Should be set at 

any call. 

INTEGER NCALL: 

0 for material model setup. The material model parameters must be supplied via LABEL, 

RLABEL, etc. for this call. The number of REAL*8 words needed for the material model 

parameters in the array EXM is returned in IERR. 

1 for initialize internal state variables. The number of REAL*8 words needed for the material 

model parameters in the array EXC is returned in IERR. 

2 for compute new stress tensor given new deformation tensor FD. This is the critical point 

for this model. Everything in the finite difference update scheme is updated in this call. 
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However, the dislocation transport requires one immediately preceding call to load transport 

variables and one immediately succeeding call to unload the updated transport variables. 

3 for return slip plane variables in the array EQ. For this call, EQ must be an array of at least 

dimension NSLIP*7+2. Where NSLIP is the maximum number of slip planes possible in the 

model (not the particular number of slip planes for this case). This call can be used to extract 

information for contour plots, time histories, etc. 

4 for load transport variables. When updating the dislocation transport, the scheme must have 

information about the internal state variables for the cell neighbors to the cell that we are 

currently processing. Also needed are the normal vector and surface area of the interface 

between the current cell and the respective neighbor. This information about the neighbors is 

transferred via the RLABEL and LM3 variables borrowed for this purpose. The information 

is stored internally in the subroutine in static variables. This call must be immediately 

preceding the compute call above (NCALL=2). 

5 for unload transport variables. The dislocation density is returned for all the neighbor cells 

that have been updated. The dislocation density for the current cell itself is returned as part 

of the compute call above (NCALL=2). This call must immediately succeed the compute call 

above (NCALL=2). 

6 for return plastic deformation tensor rigid body angle. This is part of the rezoning calls 

described below. The rezoning is by necessity very code dependent. Also, the call only 

applies to 2D, because in 3D there are three angles. 

7 for backcalculate Fe from F and Fp for rezoning purposes. 

8 for do the rezoning. 

9 for after rezone clean up. 

10 for printing a summary of the internal state variables on the file connected to logical unit 

LUUT. The printout is 80 column wide. There is one printout for every call to FRAGB, i.e., 

the caller must loop over all the cells for which a printout is desired. 

REAL*8 DELTC: the current timestep of the finite difference scheme. 
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REAL*8 EQ: array whose dimension varies with the call. The general use is to provide 

information for the pressure equation of state. The details depend on the model. In the L2D 

code, EQ provides specific volume and internal energy and returns pressure, temperature, and 

sound velocity. EQ is also used for returning slip plane variables (NCALL=3). 

REAL*8 SDEV: array of dimension five. Transfers stress deviator components. The 

components are in the order listed below: 

1: aexx 

2:      GSyy 

3: aexy 

4: aezx 

5: aeyz 

Together with the pressure in EQ above we have a total of six components. 

REAL*8 FD: array of dimension 3 by 3. The total deformation tensor. 

REAL*8 FPI: array of dimension 3 by 3. The inverse of the plastic deformation tensor. 

REAL*8 EXC: array of dynamic dimension. The internal state variables are stored in this array. 

When the internal state variables are initialized (NCALL=1), the total space in REAL* 8 

words used up in EXC is returned in IERR. 

REAL*8 HEPS: returns Hillis equivalent plastic strain. 

REAL*8 PCUT: pressure tension cutoff. The use of this argument and S below depends on the 

elastic model. 
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REAL*8 S: array. The dimension depends on the elastic model. Contains parameters for the 

elastic model. For L2D S contains the parameters for pressure equation of state plus the 

shear modulus for the stress deviator model. 

REAL*8 EXM: array of dynamic dimension. The parameters for the slip plane model are stored 

in this array. When the model parameters are read in (NCALL=0), the total space in 

REAL*8 words used up in EXM is returned in IERR. 

CHARACTER*8 LABEL: array of dynamic dimension. The user input labels for the material 

parameters (NCALL=0) are sent to FRAGB in this array. 

REAL*8 RLABEL: array of dynamic dimension. The values corresponding to the LABELs 

above are sent to FRAGB in this array. 

INTEGER JPOSN: array of dynamic dimension. Indicators, indices, and the like associated with 

LABEL and RLABEL are sent to FRAGB in this array. For example, the following user 

input, "SNORMAL(2) = 0.3" would result in LABEL = "SNORMAL", RLABEL = 0.3, and 

JPOSN = 2. 

INTEGER LM3: the array position in LABEL, RLABEL, and JPOSN that is now processed. 

Ordinarily LM3 is 1 upon entry of FRAGB. However, if the FRAGBED input is part of a 

larger free format input, LM3 might be non-trivial. 

INTEGER NUM: the maximum value for LM3, i.e., the total number of free format input items. 

The FRAGB routine reads in the material model parameters, initializes the internal state 

variables, and does part of the stress computations. 

The first step in the stress computation is to call routine FRAGE that calculates the elastic 

stresses given a certain plastic deformation tensor. Next, routine FRAGY is called to check for 
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slip on the slip planes. If there is slip, FRAGY iterates for a plastic deformation tensor that 

fulfills the slip condition on all planes. During this iteration, FRAGE is called repeatedly from 

within FRAGY. 

The slip will limit shear stresses but will not limit hydrostatic tension. The routine FRAGC is 

called to check the normal stress for tension on each plane. If the normal tension exceeds the 

cohesion on the plane, the pressure is reset to push up the normal stress on the plane. The 

pressure is not reset if it is already compressive. The slip adjusts the stress deviators, so there 

should only be need for adjustment of the pressure if the pressure is tensional. 

Thereafter the comminution equation is solved. Finally the dislocation transport is done. The 

neighbor cell values needed for the transport were stored in arrays local to FRAGB by a previous 

call to load the transport variables (NCALL=4). 

FRAGB also responds to various service calls, e.g., NCALL=3, 6, 10 above. 

Hull's equivalent plastic strain is ordinarily defined as the summation of the square root of the 

second invariant of the plastic strain increment. Having a finite deformation tensor, we define 

Hillis equivalent plastic strain instead as the square root of the second invariant of the plastic 

strain tensor. 

The comminution constitutes an ordinary differential equation with one unknown variable, the 

block size, and one independent variable, the driving stress. The problem with solving the 

equation numerically is that, for a certain range of the driving stress, the block size varies very 

rapidly. For other ranges of the driving stress, it does not vary at all. Because we know that the 

block size varies monotonically (it always decreases), a solution method with a variable time step 

is the best approach. 

When the block size varies, we must subiterate on the comminution equation over the global 

time step (of the Lagrangian simulation). We start with a time step equal to the global time step. 
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We take a trial increment. If the block size decreases by more than a factor of two, we decrease 

the time step by a factor of two and try again. If the decrease in the block size is less than 0.1 %, 

we have a good increment and we take the next trial increment. 

If the change in the block size is between those two limits, we calculate the mean of the old and 

new block size, Bmn, and use this mean to calculate the new driving stress and the new width of 

the transition. The increment in the block size is a function of these two variables. We therefore 

want the driving stress and the transition width to be time centered between the old and the new 

time step level. We then go back and increment the block size with these mean values. We 

finally check that the resulting block size is smaller than or equal to Bmn above. If it is not, we 

cut the time step in half and do the trial increment over again. This maniac check is important 

when the block size varies very quickly. 

If for a good increment the decrease in the block size is less than 1 %, we increase the time step 

by 50% on the next trial increment. 
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