
/ 
rfflC*  ' btr»~*a 

NWC TP 5594 

Difference Equations and the 

Optimal Control of 

Single Server Queueing Systems 
by 

Frank C. Reed 

Research Department 

JUNE 1974 

Approved for public release; distribution unlimited. 

19991214 082 

■      Naval V\feapons Center 
W" CHINA LAKE, CALIFORNIA 93555 



Naval Weapons Center 
AN   ACTIVITY  OF THE  NAVAL MATERIAL COMMAND 

,,™, ... .Commander 
Paul E. Pugh, RAdm., USN      . 

 Technical Director (Acting) 
Leroy Riggs       ^  

FOREWORD 

This report was written by Mr. Reed in the course of pursuing a 
Ph. D. during calendar years 1972-1974 at Stanford University. The 
work was directed by Professor Frederick S. Hillier, Department of Oper- 
ations Research, and it has been published as Department of Operations 
Research Report No. 44, March 22, 1974. 

This report gives examples of the use of difference equations in 
the investigation of optimal control policies in queueing systems.  It 
is the second in a series of four reports which will cover Mr. Reed s 
research at Stanford in queueing optimization.  Since queueing systems 
and their optimization have applications to a number of DOD problems 
the report is reproduced here as an NWC TP for distribution to various 
defense installations. 

Mr. Reed was supported by Navy Director of Laboratory Programs, 
Task Assignment R00001-R01405.  Review and report preparation at Stan- 
ford University were supported in part.by National Science Foundation 
Grant GK-35491 and Army and Navy Contract N00014-67-A-0112-0052 

(NR-042-002). 

DELBEjfE^ZILMER, Head HUGH W. HUNTER,^ead 

Mathematics  Division 
3 June 1974 

Under authority of 
JGH W. HUNTER, Head 
Research Department 

NWC Technical Publication 5594 

Published by. . 
Collation . . . 
First printing. 

, .Research Department 
, . . Cover, 52 leaves 
,150 unnumbered copies 

I 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Wien Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.   REPORT NUMBER 

NWC TP 5594 

2. GOVT ACCESSION NO 3.    RECIPIENT'S CATALOG NUMBER 

4.    TITLE (and Subtitle) 

DIFFERENCE EQUATIONS AND THE OPTIMAL CONTROL OF 
SINGLE SERVER QUEUEING SYSTEMS 

5.   TYPE OF REPORT & PERIOD COVERED 

A research report 
6. PERFORMING ORG. REPORT NUMBER 

7.    AUTHORfs; 

Frank C.   Reed 

8.   CONTRACT OR GRANT NUMBERfsJ 

9.   PERFORMING ORGANIZATION NAME AND ADDRESS 

Naval Weapons Center 
China Lake, CA 93555 

10.   PROGRAM ELEMENT, PROJECT, TASK 
AREA ft WORK UNIT NUMBERS 

1152N, R00001, R01405 
160070-6 

1.    CONTROLLING OFFICE NAME AND ADDRESS 

Naval Weapons Center 
China Lake, CA 93555 

12.    REPORT DATE 

June 1974 
13.   NUMBER OF PAGES 

10? 
14.   MONITORING AGENCY NAME ft ADDRESSf» dlflerent from Controlling Office) 15.   SECURITY CLASS, (of thla report) 

UNCLASSIFIED 

15a.   DECLASSIFI CATION/DOWN GRADING 
SCHEDULE 

16.   DISTRIBUTION STATEMENT (of thla Report) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report) 

18.   SUPPLEMENTARY NOTES 

19.   KEY WORDS (Continue on reverse aide it necessary and Identify by block number) 

Single-Server Queueing Systems,  Optimal Control,  Expected Discounted Costs, 
Expected Average Cost per Unit Time,  Intermittent Service, 
Service Rates Selection,  Bulk Service,  Difference Equations 

20.    ABSTRACT (Continue on reverse aide If necessary and Identify by block number) 

See reverse side 

DD , ™RM73 1473 EDITION OF  1 NOV 65 IS OBSOLETE 
S/N  0102-014-6601 UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE flWien Data Bntmrad) 



UNCLASSIFIED 
itCURITY CLASSIFICATION OF THIS PAOEflWien Data Entered) 

(U) Difference Equations and the Optimal Con- 
trol of Single Server Queueing Systems  by Frank C. 
Reed.  China Lake, Calif., Naval Weapons Center, 
June 1974. 102 pp.  (NWC TP 5594, publication 
UNCLASSIFIED). 

(U) This report demonstrates the use of differ- 
ence equations in solving optimal control problems 
in single server queueing systems.  One obtains the 
discounted or relative cost function associated with 
a specific stationary policy by solving an appropri- 
ate system of difference equations. The policy im- 
provement algorithm is applied parametrically lead- 
ing to a characterization of the cost function 
satisfying the functional equation of optimality. 
If this cost function satisfies an appropriate suf- 
ficient condition, the associated stationary policy 
is optimal. 

(U) The method of solution is illustrated by 
solving three queueing optimization problems. 
These problems include optimal control of the M/G/l 
queue with intermittent service, a bulk queueing 
version of this same problem, and control of the 
M/M/l queue with selection of running speed.  All 
of these problems have been investigated by other 
authors.  Results in this report believed to be 
new include a complete characterization of opti- 
mal policies for the optimal control of the M/G/l 
queue in the discounted case, the extension of the 
optimal control of the bulk queueing problem from 
instantaneous to general service, and the determina- 
tion of an optimal speed selection policy for the 
M/M/l queue without solving a sequence of truncated 
problems. 

SECURITY CLASSIFICATION OF THIS PAGEfWTian Data Entered) 



NWC TP 5594 

CONTENTS 

Introduction  ■, 

The M/G/l Queue with Removable Server   6 
Existence of Stationary Optimal Policy for the 

Average Cost Case  7 
Qualitative Attributes of an Optimal Policy for 

the Average Cost Case  n 
Quantitative Results Associated with an Optimal 

Policy in the Average Cost Case  17 
Qualitative and Quantitative Results for the Discounted Case . 22 

Optimal Control of a Bulk Queueing System   46 
Existence of a Stationary Optimal Policy   . 48 
Qualitative Attributes of an Optimal Policy  53 
Determination of an Optimal Policy   55 

The M/M/l Queue with Variable Service Rate  66 
Existence of a Stationary Optimal Policy . . .  66 
Qualitative Attributes of an Optimal Policy '. 70 
Quantitative Results for the Linear Holding Cost Case  76 

Appendixes: 
A. Functional Equations of Optimality  83 
B. Glossary  no 

References  ,QQ 



NWC TP 5594 

DIFFERENCE EQUATIONS AND THE OPTIMAL 
CONTROL OF SINGLE SERVER 

QUEUEING SYSTEMS 

by 

Frank C. Reed 
Stanford University and Naval Weapons Center, China Lake 

1.  Introduction 

This report describes, by way of example, the use of difference 

equations to obtain optimal control policies in single server queueing 

systems.  The difference equations solved in this report give explicit 

expressions for expected discounted costs or relative costs as defined 

in Howard [5] for use in a policy improvement algorithm to solve the 

dynamic programming functional equations of optimality.  Assuming that 

a stationary optimal policy exists the solution is carried out in the 

following way: 

(i) Determine the qualitative attributes of an optimal stationary 

policy, thus restricting the family of stationary policies and class 

of difference equations one must consider. 

(ii) If necessary, apply the policy improvement algorithm and deter- 

mine the difference equation solution to the functional equations of 

optimality. 

(iii) Show that the policy obtained under (ii) satisfies sufficient 

conditions for optimality. 
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A classical method of solving queueing optimization problems is to 

concentrate on (i) without consideration of the difference equations 

involved. Once the family of stationary policies has been suitably 

restricted, one may then construct specialized algorithms for arriving 

at an optimal policy.  Since it is possible to infer qualitative properties 

of optimal policies by consideration of (ii), the difference equation 

approach allows for flexibility in the combined use of (i) and (ii) 

in determining optimal queueing policies. It appears, moreover, that 

the solution of the difference equations involved may lead to highly 

efficient computing algorithms. 

To illustrate the method, optimal control policies are obtained for 

three single server queueing systems. Aside from the difference equation 

approach the solutions depend on material presented in Reed [7]. That 

report establishes sufficient conditions for both the existence of sta- 

tionary optimal policies and the optimality of stationary policies in 

Markov decision processes for which an assumption of bounded costs is 

not appropriate. 

In the discounted cost case it is shown that if costs are non-negative, 

a stationary optimal policy exists.  Sufficient conditions for the optimality 

of a stationary policy require that an explicit expression for the difference 

equations associated with the policy be available. Briefly in the average 

cost case it is shown that if 

A(l): There is a policy for which the average cost per unit time 

is finite, 

A(2): There exists a state that is positive recurrent over all 

policies, 

A(3): Relative costs for all policies are bounded below, 

then a stationary optimal policy exists.  Sufficient conditions for optimality 

4 
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of a stationary policy require explicit expressions for relative costs 

obtained by solving the appropriate difference equations. 

It will be assumed that the reader is familiar with the assumptions, 

definitions, notation, and precise form of the above results as presented 

in Reed [7]. For reference, a summary of ba^ic results and notation in that 

report is given in Appendix B. 

Section 2 considers the control of an M/G/l queue with removable server, 

when the optimization criteria are the minimum expected average cost per unit 

time and the minimum expected discounted cost over an infinite horizon. The 

average cost case has been studied by Heyman [4] and Sobel [10]. The solution 

presented here for the average cost case provides a new proof for the exis- 

tence of a stationary optimal policy. Proofs different from Heyman?s are 

given to restrict the class of stationary policies in which an optimal 

policy lies, and difference equations are solved to express the average cost 

per unit time as a function of two parameters.  This function is easily 

minimized and Heyman's results are extended to include rewards and a more 

general holding cost assumption.  For the discounted case investigated by 

Heyman [4], Bell [1], and Blackburn [2], the stationary optimal policy is 

obtained using the difference equation approach to solve explicitly the 

functional equation associated with optimality.  It is then shown that 

this solution satisfies sufficient conditions for optimality. The final 

result is a complete characterization of all optimal policies, without 

resorting to numerical application of the policy improvement algorithm 

or stopping rule algorithms. 

Section 3 presents two versions of a bulk queueing problem which are 

both generalizations of the mail truck problem presented by Ross [8, pp. 164 

ff]. This problem is solved for the average cost case and allows a general 

5 
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distribution-for the time ütö;pvef form *büK äätv£ce.<::täe0tuöFVeräiötish - 

result from different"cösVstfucture assumptions. -¥of ;¥otfi;problems;?if is 

shown that-a'stationary öptMal'policy :exlstsi^ahd:;drfference equations are 

"used tö6cöhstruct"ä policy Improvement:iaigö^itnm';   < '•'<- -■:■•-'■-■•-■   >• -■,- '■'  

ri /'Section 4 considers  the Control'of-the M/M/ivqÜeÜe":wi:th variable'   '* 

service rate that was originally investigated hy;Crabill -[3], Kakalik;'[6], 

Sabetl  [9]r ah^^mofe Tecentiy for closed 'systems ^ tforbexi  [li^-^or 

Crabill' s förmvöf 'this' prohlem :i t is' shown 'that Ja; 's tatiottäf y optimal! policy 

exists" anVthat/it has :'a simple" iota'.;; triiikeiJGrWilfrsv Wöof;: this proof 

avoids  truncation-of'the i'öriginäl'p fob lern &^riUsing Jd±£ ferehcs ^nations' the 

expected 'aveirage cost per' unit ;;time: id -obtained Jis ssrf unction of a1 parameter 

which-descr'ibis-th^fimily of ':pe;rmisslbie;:!statiohary; policies " I method of 

determining'the: "minimum1 of; this  function is presented.' 

2.    the M/G/l' Queue with Removable Server ""'    

Consider.the situation where an M/G/l queue is controlled by ^tuniing 

the server off and on.  Customers arrive according to a Poisson process with 

rate A > 0.  Service times are non-negative,, independent random variables 

with common distribution function B.^ It is assumed that the mean service 

time ....  ■...:-..■■:!■'■>,,,.      -2 -, :• ■-> - r ; •: o     !■,<■:   i;-  ■.-■.:■:     ;:: : rb 

-1 y L  = /tdB(t) 

with 

u -1 > 0 
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and 

P = Ay-1 < 1. 

There is a cost R±    of turning the server on when he is idle, and 

a cost R2 of turning the server off when he is active. There also is a 

cost r^    per unit time of maintaining the queueing system when it is idle, 

and a cost r2 per unit time of operating the system when the server is 

active.  In addition, there is a holding cost of h per customer per unit 

time. For the average cost case there is a reward G received at the 

completion of a service.  Rewards are not included in the discounted case. 

Decisions are made at the time of service completion, or if the server 

is idle decisions are made at the time of customer arrival.  In the former 

case, the server may either remain active and continue service or he may shut 

down and go idle.  In the latter case he may either remain idle or start up. 

We associate k = 0 with the decision to remain idle or shut down.  We 

associate k = 1 with the decision to remain active or start up. 

The state of the system is described by the pair  (i, j) where i 

indicates the number of customers is the queue (waiting or in service); 

j = 0 if the server is idle and j = 1 if the server is active.  We shall 

adopt the convention that for any realisation of the stochastic process 

associated with this queueing system i is right continuous and j  is left 

continuous with respect to the time parameter. 

2.1. Existence of Stationary Optimal Policy for the Average Cost Case 

We now proceed to verify assumptions A(l), A(2), and A(3) of Reed [7] 

for the existence of a stationary optimal policy. At this point we must 

Rewards were not considered in Heyman's work and this provides a minor 
extension to his results. 
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place some restrictions on permissible service distributions. 

LEMMA 2.1. 

If y9 = /t
2dB(t) < », then A(l) is satisfied. 

Proof. We consider that stationary policy fQ which always provides 

service. It follows from Reed [7] and Appendix A that the difference 

equations associated with this policy are 

v, - j v^ /.-»' 4g- dB(t> + * P-1 
k=0 u 

1   Xhy2 o 
= (hi + r,)y  + —5 G i = 1, 2, 

vQ - v± +  <}>f A = r2/X 

where v, = 0 allows determination of <f>f . 
0 r

0 

Setting 

.2 
v. = bi + ci , 

(2.1) 

substituting in (2.1), and interchanging summation and integration which 

is permissible in this case, we have 

hiT1 c " 2(l-p) 

.. -1    Xhy,    [(*fn - r2)y 
1 + G] 

b = 2<1"^   2(l-p)2 ^P 

8 
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Since 

<(>f = Xv, + r„ = A(b+c) + r2, 

A hy2 

♦f0" r2 + hp + 2ä^y-XG- (2>2) 

Since y„ < <» we may set M in A(l) equal to $f  . 
±0 

With respect to the optimal cost function V we have 

V((i,0)) < V ((i,0)) = R + bi + ci2, 
0 

V((i,l)) < V, ((i,D) = bi + ci2, 
r0 

♦ 1 *f   • 

LEMMA 2.2.  Assumption A(2) is satisfied. 

Proof. We must show there exists a state recurrent over all policies ir 

for which <i> < <i>. . We define 
77 " f0 

I0 - {(1,0): hi + rx <_ <fr  + XG} =  {(0,0)... d0,0) } 
0 

I = {(i,l): hi + r, <_ 4>  + AG} = { (0,1)... (i, ,1) } 
T0 L 

We note that <j) + AG is the cost per unit time of any policy u which 

services customers in such a way that the number of customers held without 

service does not grow without bound.  For any such policy T\    for which 

9 
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<j>    + XG <_ <f>f    + XG 
IT £Q 

the set I Uli  is recurrent. Since 1/X < », any policy IT will consist 

of a sequence of services possible separated by idle periods of finite duration. 

Moreover, since y"1 < «, v    will give rise to a sequence of services with 

finite expected times between service. With each service completion the pro- 

bability of a transition into IQ U I±    (the complement of IQ U 1^ exceeds 

I     h~Xt ^TT dB^> >  ° 
k=kQ 

where kQ = max [iQ + 1, i±  + 1].  It follows that IQ U^±    is recurrent.  In 

going from IQ \J 1±    to IQ U l±    the state  (max [iQ + 1, ±±  + 1],D must 

be entered; hence this state is recurrent over all ir    for which «j»^ <_  <f>f . 

LEMMA 2.3.  If U2  < °°> A(3^ holds ■ 

Proof.  To prove this lemma we use Reed [7], Theorem 4.3 and Appendix A. 

We have 

hi + rx 
c(i,o)(0) =-T— 

C(i,0)(1) =Ri 

1   Ahy2 
C(i,l)(1) = <hi+r2)y_ +-2— ~G 

C(i)1)(0) =R2 

10 
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t(1)1)(0) =0. 

Since t,± Q.(1) = t.±  ^(0) = 0, we must verify that the elimination of 

trivial sequences as defined in Reed [7], Section 3.2.2 implies that Condition 

1 holds. All trivial sequences have non-negative costs associated with them 

and the average cost per unit time cannot be reduced by including them. 

Consequently, we may assume that every instantaneous action is followed by 

an action with positive expected transition time.  It follows that Condition 

1 is satisfied. 

Since y„ < °°, <j>  < » an(j the set S of Theorem 4.3 is finite, it 

follows that V is bounded below since C.(k) are bounded below. 

We summarize these results in a theorem. 

THEOREM 2.4. 

If \ij  < °°> there exists a stationary optimal policy. 

2.2.  Qualitative Attributes of an Optimal Policy for the Average Cost Case 

If f  is an optimal stationary policy, then the cost function VfÄ 

has certain properties which we shall now investigate. We recall the 

functional equations which Vf* must satisfy 

<J>fft      hi + r1 
Vfft(i,0)  - min  [Vfft(i + 1,0)   ~~ +  ~L,  VfÄ(i,l)  + R^     i - 0,1,2, 

11 



NWC TP 5594 

Vrt(i,l) - min I I    Vf,(i + k-1,1) /e"
Xt *$- dB(t) 

f        k=o r 

1 -1  Ahy2 
-<f>f*y 

+ (hl + r2)y + ~2 G' 

i = 1,2, VfA(i,0) + R2] 

VfA(0,l) = min [Vf,(l,D -"f
+ T' Vf*(°'0) + R2]* 

With respect to these functional equations we prove the following lemma. 

LEMMA 2.5.  If R + R2 > 0, then for each i there are only three possi- 

bilities, 

(i) Vf*(i,D = Vfft(i,0) +R2 i = O»1'2»- 

<j>    hi + r 
vfÄ(i,o) - vf*<i + i,o) - — + —— 1-0,1,... 

(Ü)  V£ft(i,D = I    V  (i + k-1,1) /e-U-^- dB(t) 
■      k=0 

1   Xhy2 
-<t>fÄy

_1 + (hi + r2)y"
X +—2~- 6     1 = 1,2,... 

*f*  r2 
vfÄ(o,i) = vfÄ(i,D - —+ — 

<j)fÄ  hi + r, 
Vf,(i,0) - Vf,(i+1,0) - — + —y— i " O»1'2'- 

(iii) VfA(i,0) = VfÄ(i,l) + Rx 

12 

i = 0,1,. 
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CO ]£ 

V *(i,l)  -    I    V    (i + k-1,1)  /e_Xt-^_ dB(t) 
k=0    r k- 

-1  .,,...       s  -1  .   Xhy2 - <f>f*y      + (hi + r2)p      + —2 G i = 1,2,. 

*f*      r2 

Proof. The only other possibility is 

Vf*(i,l) = Vf*(i,0) + R2 

Vf*(i,0) - Vf*(i,l) + Rx 

so that 

0 = R±  + R2, 

a contradiction. 

We note that if (i) in Lemmas 2.5 holds, then 

f*(i,0) - 0 

and 

f*(i,D = 0. 

Any i for which (i) in Lemma 2.5 holds is called an idle integer.  If (ii) 

in Lemma 2.5 holds, then 

13 
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f*(i,0) = 0 

f*(i,D = I- 

Any i for which this holds in called an indifference integer. Finally, 

if (iii) in Lemma 2.5 holds, then 

f*(i,0) = 1 

f*(i,D = 1 

and i will be called a'service integer. As a consequence, if i is the 

number of customers in the queue, then the determination of an optimal policy 

f* is equivalent to categorizing all integers i as idle, indifference, or 

service. 

* 
LEMMA 2.6.  The set of i for which (i) in Lemma 2.5 holds is bounded for f . 

Proof. Assume the set of i for which (i) holds is unbounded and let N 

be such that (i) holds and hN + min(r-.,r„) > (j>  + XG.  Also let SQ = x "    z0 
Ui 1):     i > N}.  If service is never performed, <j> -* °° ><(>,., a contradiction. 

'      — r0 

Thus, service periods alternate with finite idle periods and S^ is accessible 

in finite time.  Once SQ is entered the number in the queue never drops 

below N. 

It follows that 

<J> + AG > hN + min(r-,r_)   >  4>f    + XG, 
LI IQ 

14 
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a contradiction. Hence the set of i for which (i) holds is bounded. 

LEMMA 2.7.  If R + R2 > 0, 

-^ < Vf*(i,l) - Vf*(i,0) < R2 

with one equality holding when case (i) or (iii) of Lemma 2.5 holds. 

Proof.  If (i) in Lemma 2.5 holds, 

Vf*(i,l) - Vf*(i,0) = R2. 

If (iii) in Lemma 2.5 holds, 

Vf*(i,l) - Vf*(i,0) = -R1. 

If (ii) holds, then from the functional equations defining Vf*, 

Vf*(i,0) < Vf*(i,l) + Rlf 

Vf*(i,l) < Vf*(i,0) + R2, 

from which the desired result follows. 

LEMMA 2.8. There exists an N such that (iii) of Lemma 2.5 holds for all 

i >_ N. 

15 
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Proof. From Lemma 2.6 it follows that for i sufficiently large 

V-*(i,l> = I    Vf*(i + k-1,1) /e"
Xt^- dB(t) 

f      k=0 f 

-1           -1  XhtJ2 
- <)>f*y  + (hi + r2)y  + — G. 

It follows from Lemma 2.1 that 

-1     -1   Ahjj2    (r2 - <j)f*)y~ -G 

vf*d + i.i) -vf*(i,D = iVi + iV"+7^72 + era 

Now assume (ii) in Lemma 2.5 holds. 

V£*(i + 1,0)   - V,*(i,Q)   = 
+f* " rl      h   . 

-  T-   1 

so that 

Vf*(i + 1,1)  - Vf*(i + 1,0)  +  [Vf*(i,0)   - Vf*(i,l)] 

-1 -1 "I ,   -1.         ,   -1         Atip9          i> *y          r„y          ^y G _ hy    l hy       , ^ f +    l        + _± !i_ 

" p(l-p)  + 1-p 2(l-p)2 ' P(1_P) 1_P P 1_P 

From Lemma 2.7 we have 

«l + »2i^)+k- 

For i sufficiently large this leads to a contradiction. 

Now applying Lemma 2.6 we let E±    be the maximum integer for which 

(i) in Lemma 2.5 holds.  If there is no idle integer we set ^±  = -1. 

16 
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Applying Lemma 2.8 we let N2 be the smallest integer greater than or 

equal to KL  for which (iii) in Lemma 2.5 holds. From Lemma 2.5 it follows 

that N1 < N2 and i with 1L < i < N2 are indifference integers. We 

shall always be concerned with a well-defined set of closed states which 

communicate with (N.,, 1) or (0, 1) if N.. = -1. 

Since (N2 + j,0) for j > 0 are transient with respect to this 

closed set, we may specify that decision 1 is made in states  (N? + j,0). 

Thus all i 2: N2 may be regarded as service integers.  Since the states 

($1 ~  j»0) and (N1 - j,l) for j > 0 are transient with respect to 

this closed set, we may arbitrarily specify that decision 0 is made in these 

states. Thus all i £ N  may be regarded as idle integers. We summarize 

these remarks in the following theorem: 

THEOREM 2.9. 

A stationary optimal policy is characterized by two integers, N.. 

and N2 with -1 <_ 1^ < N2 where all i <_ 1L are idle integers, all 

i >_ N2 are service integers, and all i with ÜL < i < N„ are indifference 

integers. 

2.3. Quantitative Results Associated with an Optimal Policy in the Average 

Cost Case 

We proceed to determine optimal values for N,  and N„. 

LEMMA 2.10. Let f(N^ N2> be a stationary policy with K.     and N2 

defined in Theorem 2.9. Then the average cost per unit time associated with 

f is given by 

17 
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,2 
X  y2 

►f(NrN2) = rl(1 " P) + r2p + MP + W-^)) 

(N. - 1 + N.)h  X(l - p)(R, + R2) 
2 + s zr =-- AG      (2.3) 2 N2 - Nx 

for N1 >^ 0, and 

^f(-l,N„) " *fn ' 

Proof,  if N = -1, the server will start in finite time and then never be 

turned off so *f^ N ) " +f • Dropping reference to ^ and N2 we 

have the following system to solve for N1 >_ 0, 

A      hi + r 
V(i,0)  = V(i + 1,0)  -f + — 0<i<N2-l 

V(i.l)  - Iv(i + k-1,1)  /e_Xt *$- dB(t) 

Xhy„ , 
+ (hi + r2)y_1 + —Y- - *y      -G        i - Nx + 1  .. . 

V(i,l)  = V(i,0)  + R2 i - 0,   1 Nx 

V(i,0)  = V(i,l)  + Rx i - N2,  N2 + 1,   .. 

We set    V(0,0)  = 0    and let 

V(i,0)  = BQi + CQi  , 

18 
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with the result 

♦ " rl   h 
B0 X        + 2Ä 

C = - A L0    2X * 

Setting 

V(i,l) = A± +  Bxi + ^i
2 

K -1    (r2 - »vT1  - G    Ahy2 
JJ = -7-7; r +     ,       + 
1  2(1-»       1~» 2U-P)2 

C. - -^- Jl  2(1 - p) * 

Since 

V(N2,0) = V(N2,1) + \ 

and 

V(NltO) = V(N1,1) - R2, 

we have 

VB0 - Bl) " A2 = <C1 " C0>N1 - R2 

N2(B0 - B±)  -  A2 = (C± -  C0)N2 + Rl 

19 
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(N2 " Nl)  Rl + R2 
B0 " Bl " 2X(1 - p)  N2 - Nx 

+ N2 - N1 

Since 

A 1 _ V     A1UJ2   , h(l -_.2pl + 
B0 " Bl = A(l - p) " T " T^7 - 2(1 _ p)2 

T 2X(1 - p)  1 - P ' 

(2,3) follows. 

THEOREM 2.11. 

A stationary optimal policy is characterized by a single integer N. 

If N = 0, all i are service integers and fQ is optimal.  If N _> 1, 

i = 0  is an idle integer, all i >. N are service integers, and i for 

which 0 < i < N are indifference integers. 

Proof.  For stationary policies described by N1 >. 0 and N2, we have 

d*f(Nn,N9)  .   X(l - p)(R- + R2) 
 _1_2_ = £ + l  ,    > 0 

dNl      *     (N2 - Nx)
2 

and d> ,  „ v  is minimized by setting N = 0.  It is easily shown that Tf(N1,N2; 
x 

A   , x  is convex in N„ and the optimal value of N2 is one of the two Tf(0,N2) ^ 

integers adjacent to 
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N2 = 
2X(1 - pX^ + R2) 1/2 

Defining <a)  to be the smallest integer greater than or equal to a, 

the minimum value of <j>-.    .is given by 

♦f(HrM2) = ■dn'I*£0* *f(0,<N2> - 1' *f(0,<N2>)
]' 

If the minimum is attained for the first entry, N = 0.  If the minimum 

is attained by the second or third entry, then N - <NL> - 1 or N = <N„> , 

respectively. 

These results are easily extended to include different holding rates, h. 

when the server is idle and h2 when active.  In this case 

.2. X  h2u2 

♦fCKV*2)  = rl(1 - P> + V + V + 2(1^7) 

(N2 - 1 + Nl) X(l - p)(R + R ) 
(h2p + hl(l - p» +  H^l 

and 

Nx = 0, 

N2 = 
2A(1 - p)(R1 + R2) 

h,p + h-U - P) 

1/2 
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2.4.  Qualitative and Quantitative Results for the Discounted Case 

Since G = 0, C. (k) >_ 0, and it follows from Reed [7] Theorem 3.12 

that there exists a stationary ß-optimal policy. Our plan is to determine 

a ß-optimal improvement policy as defined in Reed [7] Section 3.2.2 and 

then impose sufficient conditions that this policy be optimal. The final 

result is a complete characterization of all optimal policies, without 

resorting to numerical application of policy improvement or stopping rule 

algorithms. As a consequence both qualitative and quantitative results 

will be obtained together. 

We define V0(i,j)  as the total expected discounted cost over an 
ß 

infinite horizon given the process begins in state  (i,j).  From Reed [7] 

and Appendix A, it follows that the functional equations associated with an 

optimal stationary policy are as follows: 

Vß(i,0) - min{-j^Vg(i+l,0) + (hi + rJ/CX+ß), Vß(i,l) + Rjh  i > 0 

Vß(0,l) = min{Vß(0,0) + R2, ^ Vg(l,l) + j^i 

V (is.l) = min{Vg(is0) + R2, 

I    V«-,,!, /^ .-<«>'«(« + (hi + r2)^li 
k=0 P 

+ ^| (l-B(ß) - ß /te"3tdB(t))} ,     i > 1» 

where Mß) - / e ßtdB(t) 
0 
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We shall refer to the following equations in characterizing integers 

associated with various types of policies: 

A hi + r. 
V3(i>0) " W  Vi+1>0) - -THT1      * 1 ° (2.4) 

Ve(l.l) - I Vß(i+k-l,l)/ -&*£ e-
(A+ß)tdB(t) 

. (hi + r2)^p- + *£ (1-^(3) - ß/te-ßtdB(t)  i > 1 
3 

Vg(i.O) = Vß(i,l) + Rx (2.6) 

Vg(l,D - Vg(i,0) + R2 . (2.7) 

Any i for which (2.4) and (2.7) hold is defined as an idle integer. Any i 

for which (2.5) and (2.6) hold is defined as a service integer, and any i 

for which (2.4) and (2.5) hold is defined as an indifference integer. 

Since Q±(k)  _> 0, the elimination of trivial sequences implies that there are 

no integers for which (2.6) and (2.7) hold. 

We consider solutions to (2.4) and (2.5) of the form 

Vß(i,0) = A± +  Bji + K-jAXS)-1 

and 

Vß(i,l) = A2 + B2i + K2G(3)
1, 
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where 

x»> - w 

and G(ß) satisfies 

G(0) = B(ß + X(l - G(ß))) 

Defining 

£/fli _   hB(g) H(f3) " ß(l-B(ß)) 

and 

r2 " rl 
^1=-T-+R1, 

the solution for (2.4) and (2.5) (except for i = 0) is specified by 

A±  = rx/3 + Ah/ß
2 

A2 = r2/ß + Ah/ß
2 - H(ß) 

B1 = B2 = h/ß, 

and K  and K„ are determined by boundary conditions that hold. Since 

ß is fixed, we shall set A(ß) - A, G(ß) = G, and H(ß) = H. 
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THEOREM 2.12. 

If H <. \l>1 £ HA(1-G)/(1-AG) + R + R^ that policy for which all 

i >^ 0 are indifference integers is a 3-optimal improvement policy. 

Proof. In this case we solve (2.4) and (2.5) for all i, where the equation 

in Vg(0,l) imposes a boundary condition from which K„ is determined. 

Imposing this boundary condition gives 

K2 = H(1-A)/(1-AG) 

and, since there is no boundary condition on K,, we set K, = 0. The 

above solution is optimal if for all i 

V$(i,0) < Vß(i,l) + Rx 

Vfi(i,l) < Vft(i,0) + R, . 

In the former case we have for all i 

A± +  B^ <. A2 + B2i + K26
X + R^^, 

i.e. 

^ > max H(l - {XEAG)" G±) = H' 

In the latter case we have for all i 
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A2 + B2i + K^G
1 >_ A1 + B1i + R2 

i.e. 

*i ± f H(1 " O^AGT 
G±)

 
+ Ri + R2 = HA

O3GT 
+ Rl + R2' 

If ip. < h, there will be an n such that 

♦i< H(1" o^y G±> 

for all i ^ n.  From the policy improvement algorithm the total discounted 

cost will be reduced by making all i >_ n service integers. 

For IJJ, < H we consider the solution of the transcendental equation 

^ = H(1-GX) 

giving 

log(-=^) 
x =  2  . (2.8) 

logG 

We also set n = <x>, where <x > is the smallest integer greater than or equal 
o 

to  X. 

THEOREM 2.13. 

If $.   <  H and Rx + R2 _> i " , then that policy which makes all 

i ^_ n  service integers and all non-negative i < n  indifference integers 

is a ß-optimal improvement policy. 
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Proof. In this case we solve (2.5) for all i, (2.4) for all i with 

0 £ i < nQ, and (2.6) for all i >_ n . The solution requires that 

yV0) =Vß(n0,l)+Rr 

which gives 

K1-A
n%1-H)(l-££ir,5

n0) 

and 

K2  U(1-AG) * 

For this solution to be optimal we must have 

V^-^V^^TTF-        ^»o 

This is equivalent to 

x ,.,       hifr. 
A2 + B2i + K2G + Rl - ^ (A2 + B2i + B2 + K2Gi+l + ^ < _1 

which reduces to 

*, < Hd-G1). i > n i — o 

Since H(l-G ) is increasing in i, and by definition this inequality is 

satisfied for i = nQ, it is satisfied for all i>nQ. 
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Also for i >_ nQ we must have 

V (i,l) < V (i,0) + R, = V (1,1) +R1 +  R2, 'gv-,-/ _ -3 

or equivalently 

0 1 Rl + R2 i - n0 

which is satisfied. 

For i < nn we must have 

Vg(i,0) < V (i,l) + Rv 

i.e., 

Al + Bli + K1A_1 - A2 + B2i + K2G1 + Rl* 

Substitution for K^ and K2 yields the equivalent condition 

■ '      H _ HG
1 (l~4a-(AG>n°  ) (2.9) 

1 ~        (1-AG)(1-An°-1) 

nQ-l 
we add and subtract HG     to the right hand side of (2.9) above. An 

equivalent condition is 

28 



NWC TP 5594 

1|L   > H(l - G U    )   - HG1 ^-^2- [1 + A6 +...+. (AG)   ° 

(1-A °    ) 

n -i-1 »n^1*1 

-Gu (1 + A+ ... + A U        )] 

- H(l - GVl)  - HG1—Ü^ [I - GVi_1 + 

(1-An°_1) 

nQ-i-2 n -i-2 
+ AG(1 - G U        )+...+ (AG)  U (1-6)], 

where the second expression on the right is non-negative for all i < nn-l. 
n -1 " ° 

Since ^ > H(l - G        ), the desired result follows. 

Also for i < n0 we must have 

V3(i,l) < Vß(i,0) + R2, 

i.e., 

(♦x - H)(l - A"0 X) < Rl + R2 - HG
1-^^- (1 - (AG)"0"1). 

Since 

v    +  p > TT(1-A)  > n^
1"^ r1 

Rl + R2 - "(l-AG) - "(l-AG) G ' 

the above inequality holds if 

(♦x - H) (1 - A"0 ) < H i^- (AG)n°"V, 
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i.e., if 

, <  n - n <1-A)(AG) ° G1 *1 < H + H —— 

(1-AG)(1-A U ) 

Since by assumption ^ < H, the above inequality is satisfied if i < nQ. 

Corollary 2.14. If i^ <  H and ^ > 0, nQ > 0. 

Proof. The proof is immediate from the solution for ^ in (2.9) and the 

fact that nQ >^ x > 0. 

If R + R9 < H(1-A)/(1-AG), it may be possible to introduce idle 

integers and obtain a policy improvement. Toward this end we consider 

the following transcendental equation in y: 

(H - ^)r(l-A)(l-(AG)y - Gy(l-AG)(1-Ay))] = (^ + R^(l-AG)Gy   (2.10) 

and define 

n^y), 

providing (2.10) has a solution. A sufficient condition that (2.10) has a 

solution is contained in the following lemma. 

Lemma 2.15.  If ^ < H, there exists an ^    such that 
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(H - *x) [(1-A) (MAG)
1) ■ - G1 (1-AG) (1-A1)] > (^ + R2)(1-AG)G

1 i >_ n- 

(H - ^)[ (1-A) (MAG)1) - - G1(1-AG)(1-A1)] < (R2 + R2)(1-AG)G
1 0 : z_ i < n-. 

Proof. Since 

(1-A)(l-(AG)1) - G1 (1-AG)(1-A1) 

= (1-A) (1-AG) 11 - G1 + AGd-G1'1) + ... + (AG)1-1(1-G)] >_ 0 

and H - ik > 0, both sides of the inequality above are non-negative . The 

right hand side of (2.10) is strictly decreasing in i. Moreover, 

(1-A)(1-(AG)1+1) - G*+*(1-AG)(1-Ai+1) - (1-A)(l-(AG)1) - 61(1-AG)(1-A1) 

= G1(1-AG)(1-6)(1-Ai+1) > 0, 

so the left side of (2.10) is strictly increasing in i.  Since the left 

side of (2.10) is 0 for y = 0 and the right side of (2.10) is >0 for 

y = 0, the result follows. 

We now prove a somewhat stronger form of Theorem 2.13. 

THEOREM 2.16. 

If 4»1 < H and nQ < n^,  then that policy which makes all i j> no 
service integers and all non- -negative i < nQ indifference integers is a 

3-optimal improvement policy. 

Proof. The proof is exactly the same as in Theorem 2. 13 until we check if 
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Vgd',1)  < Vg(i,0) + R2, 

i.e.,  for    i < nf 

Wl - H) (1 - P~\  < h ♦ R2 - HO^ (1 - A"0"1*"0"1)       (2.11, 

From Lemma 2.15 with    nn < n^ 

n_-i    nn-i n -i 
(H - ^^[(l-AXl-CAG) ° ) - G U  (1-AG)(1 - A   )] 

nQ-i 
< (R + R2)(1-AG)G   . (2.12) 

Inequality (2.11) may be rewritten as 

-6n°"1(H-*1)(l-A
l0"1)(l-A6) < Gn°"1(R1 + ty (1-AG) - cX (1-A) (1-(AG) ° ) 

n„-i 

Adding and subtracting (H-^) (1-A) (1-(AG) ° )  to the left hand side of 

(2.11) yields 

nn-i    nn-i        n -I         ,  "(f1 

(H-^Md-AMl-CAG) °" ) - 6 °  (l-AG)d-A ° )] - (H-^) (1-A) (l-(AG)   ) 

nn-i nn nQ-i 
< G °  (Rx + R2)(1-AG) - G 

UH(1-A)(1-(AG)   ). 

From (2.12) above this inequality will be satisfied if 

no. 
(H-^) >. G WH 
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which is true by definition of nQ. 

We now consider that policy which makes i = 0 an idle integer, i >^ n 

service integers, and all positive i < n indifference integers. 

THEOREM 2.17. 

If ^i>1 <  H and ^ < nQ, then that policy which makes all i>n. 

service integers, all positive i < n.,  indifference integers and i = 0 

an idle integer is a 3-optimal improvement policy. 

Proof. In this case we solve (2.4) for all i such that 0 < i < n,, 

(2.5) for all i >_ 1, (2.6) for all i >_ n^ and (2.7) for i = 0. The 

solution is of the form 

Vß(i,0) = Ax +  B1i + K^"
1 

Vg(i,l) - A2 + B2i + KjG
1, 

where K.  and K. are determined by the boundary conditions 

Vß(nr0) = V (ni,l) + Rx 

V3(0,1) - V (0,0) + R2, 

which implies 
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n    n 
K±  - K2(AG) 

±  = A ^-H) 

-K^ + K2 = Rx + R2 - (ifrj-H) , 

i.e., 

nl. 

K„ = 
(^ + R2) + (H-*1) (1-A *) 

2 n1 
1 - (AG) 1 

(AG) 1(R1 + R2) - A 
1(1-G ^(H-^) 

K- = ■ ■■'"" ™ . ' ' 
1 n 

1 - (AG) L 

For optimality we must have for i ^_ n.. 

Vg(i.o)i^vg(i+i,o)+41-J
i 

which reduces to the condition 

OHO > 

nl  i 
[(R1 + R2) + (H-^) (1-*A ■L)]G1(1-AG) 

1 nr (l-A)Cl-(AG) L) 

Clearly the right hand side is decreasing in i, and from Lemma 2.15 the 

inequality is satisfied for i = n,, so that it holds for all i >^ n^. 

Also for i 21 n, we must have 

Ve(i,l) < VB(i,0) + R2 
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Since 

Vg(i,0) = Vg(i,l) + R1, 

this condition is satisfied. 

For i < n. we check if 

Vg(i,0) < Vg(i,l) + Rr 

which after some algebraic manipulation results in the condition 

(H-^MU-A X )(1-(AG) 1) - 6±(1-(AG) X ) (1-A X) ] 

i "l"1 < 6X(RX + R2)(1-(AG) 
X ) 

It may be shown that for 0 < i < n^ the coefficient of H - i|>.  is non- 

negative. Recalling that 

n-1 
(R.. + R,)G   (1-AG) 

<H-*T> < l        l 

1 n-1    n-1 n -1 » 
(l-A)d-(AG)   ) - G •"■  (1-AG) (1-A X ) 

the condition for optimality will be satisfied if 

n-1 
 G   (1-AG)  

n-1    n--l        n.,-1 
(l-A)d-(AG)   ) - G X  (1-AG) (1-A X ) 

n--i 
GX(1-(AG) X ) 

n,-i      n n -i   n 
(1-A X )(1-(AG) X) - GX(1-(AG) X )(1-A X) 
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which results in 

nn-i n.,-1    n.-l        n,-l    n.,-1        ^ 
Gi(l-(A6) X    )[(1-A)(1-(AG) 1 )-G1  (1-AG)(1-A   )+G   (1-AG)(1-A )] 

11,-1        n..-i      n 
> G   (1-AG)(1-A X )(1-(AG) x). 

Since 

nn-l   nn-l       n,-l   n n 
(l-A)d-(AG) 1 ) - G -1  (1-AG) (1-A L    -1+A X) = (1-A)(1-(AG)  ), 

the condition for optimality will be satisfied if 

n,-i        n.,-1        n--i 
G1(1-(AG)   )(1-A)>.GJ-  (1-AG) (1-A   ), 

i.e., if 

n.-l-i       n -i-2 n^i-2 
G1(1-AG)(1-A)U-G X   +(AG)(1-G     )+...+ (AG)     (1-G)] > 0. 

Since this inequality holds for 0 <_ i <_ n.,-1, the result follows. 

For 0 < i < n, we check if 

Vg(i,D 1 Vß(i,0) + R2, 

which reduces to the equivalent condition 
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(H-i^HU-A 1 Xl-CAG)1) - Gi(l-(AG) 1 ) (1-A1) 

i   n3-i ni    1 
> -(Rx  + R2)[l-G

1 + Ai G ±(1-A1)]. 

One may show that 

nl-1       i    i      "l"1    1 
(1-A x    Xl-CAG)1) - G^MAG) L    Xl-A1) 

= (1-A)(1-AG)[1-G1 + AG(1-Gi_1) + ... + Ai~1G1"1(l-G) 

+ A(l-Gi+1) + A^Cl-G1) + ... + AiG1"1(l-G2) 

n -1-1   n -1    n -1    n -2 n -2      n -i 
+ A     (1-G x    ) + A A G(l-G X    ) + ...+ A ■ G^U-G X )] 

It follows that the left hand side of the above inequality is non-negative and 

the associated condition for optimality is satisfied. 

For i = 0 we check if 

yo,D -^yi,i)+1If 

which is equivalent to 

(H-^)(l-A 1)(1-AG) - (1-A)(1-(AG) X)H < -(1^ + R,,) (1-AG) , 

i.e. , 
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-G 1(H-1|)l)(l-A 
1)(1-AG> + G 1(1-A)(1-(AG) 1)H 

n n 
+ (H-if-^d-AXl-CAG) X) - H(1-A)(1-(AG) x) 

n n 
>_ G X(1-AG)(R1 + R2) - ^(l-AXl-CAG) 

x) . 

From Lemma 2.15 and the definition of n^ the condition for optimality will be 

satisfied if 

nl 
H(l-G •"■) < *1. 

Since n < n_, this condition is satisfied. 

THEOREM 2.18. 

If n = n0 
= ni» ^i < H and 

(H-i^Hl-A11 )(1-AG) - H(l-A)(l-(AG)n ) >. -(R][ + Rj) (1-AG) , 

the policy of Theorem 2.16 is a ß-optimal improvement policy.  If 

n = nQ = n, , i|;, < H and 

(H-^)(1-An )(1-AG) - H(l-A)(l-(AG)n ) < -(R1 + R,,) (1-AG) , 

the policy of Theorem 2.17 is a 3-optimal improvement policy. 

Proof.  In the proof of Theorem 2.16 we note that the argument for optimality 

goes through for n„ _< n^ providing we restrict our attention to i > 0. 
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For i = 0 we must have 

now, .„,    „„ .w, ,.^V (H-*1)(l-A )(1-AG) - H(1-A)(1-(AG) u) >_ -^ + 1^) (1-AG) 

In the proof of Theorem 2.17 we have the condition 

n n 
(H-^1)(l-A 

A)(1-AG) - H(1-A)(1-(AG) A) < -0^ + R2> (1-AG). 

With n = n~ = n.  at least one of these results must hold. 

We now prove two additional theorems which allow a complete character- 

ization of all optimal policies. 

THEOREM 2.19. 

If 

max{H^^G) + R± +  R2, H} < ^ < H + R± + R^ 

then that policy for which i = 0 is an idle integer and all i _> 1 are 

indifference integers is a ß-optimal improvement policy. 

Proof.  In this case 

Vg(i,0) = A± + B±± 

Vg(i,l) = A2 + B2i + K^
1, 
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where K„ is determined from 

V3(0,1) = Vp(0,0) + R2, 

so 

K2 » H - ^ + Rj_ + R2- 

For optimality we must have for i _> 0 

Vg(i,0) < V3(i,l) + \, 

i.e., 

*! ~  H ! "IH + Ri + R2 " ^i^1- (2.13) 

Since 

H 1 $1 1 H + Ri + R2» 

the left side of (2.13) is non-negative and the right hand side of (2.13) 

is non-positive. 

For i >_ 0 we must have 

V3a,D 1 Vß(i,0) + R2 

i.e., 

*x " H <_ [^ - H - (R± +  R2)]G
1 + Rx + R2. 

This inequality is immediately satisfied for i = 0, and for i > 0 we have 
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(ij^-H) (1-G1) < (Rx  + R2) (1-G
1) , 

X • 6 • j 

^ < H + R + R2, 

which holds by assumption. 

Finally we must check if 

V^^V1'1^^' 

X • S o y 

. HA(l-G) 
*1-<1-AG) +Ri+R2' 

which holds by assumption. 

THEOREM 2.20. 

If ip1 >_ H + R1 + R2, then that policy for which all i >_ 0 are idle 

integers is a ß-optimal improvement policy. 

Proof.  In this case 

Vg(i,0) = A1 + B^, 

Vg(i,l) = A1 + B^ + R2. 
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We must check if 

Vg(i,0) < Vg(i,D + Rx = V3(i,0) + Rx + R2 

which is satisfied since 

0 <_ R1 + R2- 

Also for    i > 1    we must have 

vß(i,D-   l   vß(i+k-i,i) /iM^ e-
a+ß)tdB(t) 

ß k=o   ß fc! 

<   (hi+ro)   (k±mi + ^ (i-^ß)-ß/te-ßtdB(t)). 
2'        ß 3

2 

Substitution for    Vß(i,l)    yields 

ry,„.   , (v   -ßt 
(A1+B1i+R2)(l-B(ß)) + B1(B(ß)-x/te"P dB(t)) 

...        . (1 
< (hi+    ) 0=|(3)1 + ^(l^ß^/te"* V<t>>. 

2 ß ^ 

Reduction of terms yields 

(r2~rl) 

i.e., 

^ >_ H + ^  + R2, 

which is satisfied by assumption. 

For i = 0 we check if 
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V^-x^V1'1^^' 
i.e., 

(r2"rl) 

1 Ro» 

X • 6 • y 

*1 -> \  + R2» 

which is satisfied since H ^ 0. 

We now prove a theorem which allows us to replace the expression 

$-optimal improvement policy by ß-optimal policy in all the preceding 

theorems. 

THEOREM 2.21. 

All 8-optimal improvement policies of Theorems 2.12, 2.13, 2.16, 2.17, 

2.18, 2.19, and 2.20 are ß-optimal policies. 

Proof. Since 0 < G < 1, V_(i,j) _< Ki for some K ^ 0, all i >. 0 and 

j = 0 or 1 in all theorems in question.  It follows from Reed [7] Theorem 

3.17 that the implied policies are optimal if 

-1 
)i~ = /tdB(t) < oo,, 

Since we have assumed throughout this investigation that X > 0 and 

p = \]x    <1,   the result follows. 
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At this point we define three basically different policies. 

Definition; A policy of type A is determined by an integer nQ such that 

all i >_ nn are service integers and all non-negative i < n^ are in- 

difference integers. For nQ = «>, all integers are indifference integers. 

Definition: A policy of type B is determined by an integer n1 such that 

all i >_ n1 are service integers, all positive i < n^ are indifference 

integers and 0 is an idle integer.  If n1 = «, all i >. 1 are indifference 

integers and i = 0 is an idle integer. 

Definition: A policy is of type C if all i >_ 0 are idle integers. 

We now give a theorem which completely characterizes all possible 

optimal policies. 

THEOREM 2.22. A stationary optimal policy exists for any combination of 

queueing system parameters, and the appropriate policy is given in the 

following table: 
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Conditions Optimal Policy 

*1 >. H + R + R2 C 

max{HA^~^ + Rx + R2, H} < ^ <_ H + ^ + R£ B (n1 - «) 

,  HA(l-G) 
H - *1 - (1-AG) + Rl + R2 A (nQ = ») 

^ < H and nQ < n^,  or l^ < H, n„ = IK, and 

n0                 nn 
(H-^Xl-A U)(1-AG) - H(1-A)(1-(AG) U) A (nQ < oo) 

>_-(Rx +  R2)(1-AG) 

^ < H and ^ < nQ, or iK < H, n1 = nQ, and 

n                    n 
(H-^1)(l-A 

X)(1-AG) - H(1-A)(1-(AG) X) B (n1 <  oo) 

< -(R1 + R2)(1-AG) 

For i^  >^ H the results above are identical to Blackburn [2] Chapter 

2 Lemmas 6 and 7. For ifi- < H the above results provide a characterization 

of optimal policies different from Balckburn's. 

It should be noted that we have derived closed form expressions for 

all expected discounted costs given any starting state.  In particular for 

type A policies 
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Vg(0,0) = A± + K± 

where A1 and K1  are given in the proof of Theorem 2.13. 

For TLQ  = k, 

Vo(0,0) = -r + ^ + Ak(^-H) + H(l-A)(AG)k/(l-AG) 
3       3   g2     i 

" Cnn(k) on 

where    C    (k)  is Eq.   (3)  in Bell [1].   Similarly,  for type B policies with 
on 

n,  = k    and results  in  the proof of Theorem 2.17 

r.       ., . i<(Ri+V  +  (H-^Xl-A16)} 
Vß(0,0)  = -f + ±f + Ak(^-H)  +  (AG)* — £  

ß ß        $Z y l-(AG) 

= C(k), 

where C(k) is Eq. (2) in Bell [1]. 

3.  Optimal Control of a Bulk Queueing System 

Consider a single-server queueing system that is controlled by turning 

the server on and performing a bulk service, after which he is turned off. 

Customers arrive according to a Poisson process with rate X >  0. Once 

bulk service begins, all customers in the queue at the time of service initia- 

tion are served. Bulk service times are non-negative, independent random 

variables with common distribution function B.  It should be stressed that 
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B in no way depends on the number of customers served in bulk, and all 

customers beginning service together are finished together.  Customers 

arriving while the service facility is busy from a new queue; consequently, 

a bulk service may end with a queue of any length. 

We shall also assume that 

V~    = /tdB(t) < » 

and 

2 
y2 = /t dB(t) < ~. 

Decisions are made at the time of service completions, or with the 

arrival of a customer if the server is not busy.  Since it is assumed that 

the server is shut down (at least momentarily) at the completion of service, 

the decision at all permissible decision times is whether to remain idle 

or provide service for customers currently in the queue. We let k = 0 imply 

the decision to remain idle and we let k = 1 imply the decision to provide 

service. 

The state of the system at a decision time is i, the number of people 

in the queue immediately after an arrival (when the server is idle) or 

immediately after completion of a bulk service. As in Section 2, i is 

right continuous with respect to the time parameter. The only exception is 

that i is discontinuous at decision points for which k = 1 when y~. = 0. 

There is a fixed charge R of providing the bulk service, independent 

of the number in the queue. There is a holding cost of h per unit time 

for each customer waiting for service. We shall make two alternative assump- 

tions with regard to holding costs for customers during the service period. 
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Under one assumption holding costs for a customer end once he enters service; 

under the other assumption there is a holding cost of h per unit time for 

each customer while being served.  If the former of these assumptions holds, 

we shall be concerned with problem 1. If the second of these alternative 

assumptions holds, we shall be concerned with problem 2. We seek a policy 

which minimizes the expected average cost per unit time for both problems 

1 and 2. 

3.1. Existence of a Stationary Optimal Policy 

We proceed to verify assumptions A(l), A(2), and A(3) of Reed [7] 

Section 4.1 for the existence of a stationary optimal policy. 

2 
LEMMA 3.1. If y2 = /t dB(t) < «>, A(l) is satisfied. 

Proof. If u-1 > 0, we consider that stationary policy fQ which continually 

provides service. It follows from Reed [7] and Appendix A that the difference 

equations associated with this policy are 

vi - K /e_xt -^if-dB(t) + V"1 = s°+ Sli (3,1) 

where 

Xhy» 
so = R + — 

Sl = ° 

for problem 1 and 
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Ahy 
S0 = R+     2

2 

Sx - hp"1 

for problem 2. 

Setting 

v± = Bi 

and substituting in (3.1) yields 

B - S, 

For problem 1 

For problem 2 

♦f0 = AS1 + -II 0       u 

Ahy, 
R + 

-1 

Ahy, 

-i    R + -r 
Xjj ■Lh + -±- 

It is interesting to note that for problem 2 there is an optimal expected 

service time 

1 

y 

r        Ahy.- 
R+     2

2 

Ah 

for which 
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Ahy. • 
Ah(R + ■—£-=) 

1/2 

If y  = 0, we consider that policy, f., which always waits for the 

arrival of a single customer before providing instantaneous service.  In 

this case it is easily shown that 

♦f = Ak. 
1 

LEMMA 3.2. Assumption A(2) holds. 

Proof.  If n customers arrive during time t, then it is a property of 

the Poisson distribution that the total cost associated with holding these 

customers in hnt/2, where E(t) = n/A. Now let IT be any policy for which 

the probability that n customers are allowed to arrive between the conclu- 

sion of one service and the start of the next service is given by P  for n 

n = 0, 1, ... .  If service is never provided, we set P^ = 1. Since R ^ 0, 

it can only add to the average cost per unit time. Neglecting this cost 

and all holding costs for customers who arrive while a service is in progress, 

Y P Isau. 
,  . L    n 2 A 

L  n A 

N-l     2      °° 
V p *HL_ + M. V p S. L
n    n 2A   2 \.    n A n=0 n=N  

N-l P n   » P n    n v      n  .  v  n  .  -1 

n=0 A   n=N 
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N-l P n2h 
y  — L i 

n=0 2X        hN 
k P n  + 2 

I -?- 
XT   * ,. n=N = lim 

. _  ,  N-l P n k-~ y-i + £ _SL_ 
n=0 X.+ 1 

k P n 

n=N A 

If y , the mean time between the end and start of service, is °°, then 

k P n n_ 
X 

Lim I    -S- - - 
k-x» n=N 

and 

+ff > hN/2 

for all N, showing that <|> = °°. Lemma 3.1 excludes such policies and hence 

y^ < «°. Thus for any permissible policy IT the mean recurrence time between 

bulk services is y + y  < °°. 
ir 

Each time bulk service is performed there is a probability, 

-At 
/e  dB(t) > 0, that the state 0 will be entered. Thus, for all permissible 

policies 0 is a positive recurrent state with mean recurrence time of 

-Xt 
(yff + y)/ e  dB(t). 

LEMMA 3.3. Assumption A(3) holds. 
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Proof. If y"1 > 0, 

C±(0) - f , 

Ahy 
C.(I) = R + ~2—   for Problem 1, 

Ahy     _± 

C.(l) = R + —s— + hy i for problem 2, 
l 2 

t.(C) = j ,  and 

t.U) = y-1. 

For problem 1 

Ahy_ 

hi   <* + -r^> 
C, (0) - A  /A - — -       , 

f0    X      Ay X 

c,(D - *f y"
1 - o, 

fo 

For problem 2 

Ahy2 

hi   -1   R "*  2 
C.(0) - * /A = -y^ - y h 3T-, 

f0    A Ay 

-1    -1     -2 
C(l) - 4>f y  = hy i - Ay h. 
1   '  t0   ' 

It follows from Reed [7] Theorem 4.3 that V is bounded below. 

If y_1 = o, trivial sequences with non-negative costs are eliminated 

by not allowing service in state 0. In this case Condition 1 is satisfied 

and Reed [7] Theorem 4„3 becomes applicable by setting y  = y2 = 0 
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in C±(j)    and t^Cj) and computing (^(j) - <fr t. (j) . We summarize 

these results in a theorem. 

THEOREM 3.4. 

If p2 
< °°» there exists a stationary optimal policy for bulk queueing 

problems 1 and 2. 

3.2. Qualitative Attributes of an Optimal Policy 

We now investigate the attributes of V *, the cost function associated 

with an optimal policy f*. From Reed [7], Theorem 4.1, the optimal cost 

function must satisfy 

hi  *f* 
V_*(i) = min[Vc*(i+l) + 

ni   * f*v '  —ff**-*/ ■ A    x > 

k=0 

LEMMA 3.5.  The set of i for which 

00 k 
1 Vf*(k)/e~Xt ^- dB(t)  + S0 + S^ - ^y""1] 

Vf*(i)  = I Vf*(k)/e"Xt iAt)_ dB(t)  + SQ .+ si± _  ^-1 
K. 

is unbounded. 

Proof.     Suppose  the contrary is  true,  so that there exists an    n    such that 

Vf*(i)  - lii - JL + vf*(i+l) i = n,  n+1,   ... 
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Now suppose that an upper bound N > n is imposed on the number of customers 

allowed in the queue. Let <j)f*(N) be the average cost per unit time for 

this bounded problem under the policy f , where 4>f*(N) <_ *f*.  For i = N 

we have 

so that 

4>f*(N) = hN. 

In the limit, <j>f*(N) ->- «, contradicting the assumption that <f>f* < °°. 

LEMMA 3.6.  The set of  i  for which 

hi       +f* 
vf*(i) = x ~ "T" + V(i+1) 

is bounded. 

Proof.  Assume the contrary is true.  From Lemma 3.5 it follows there is 

an unbounded sequence  {i.}  such that 

hi.        <f>f* 

v(i
J
)=-rL--f + v(1

J
+1) 

.k 

-1 r„      „ » f   ~Xt    (At) 

V,*(i.)   <  S    + S.i,  -  <)>f*U      + I V *(k)   je AU ^- dB(t) k! 

k 
Vf*(i.  + 1)  - So + Sl(i.  + 1)   - *f*y_1 + IVf*(k)/e-AC ^~ dB(t) 
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Now since <j>,.* < °°, there exists an i. such that 
f 3 

Vf*(ij) - Vf*(i +1) > 0. 

Also 

Vf*(ij) - Vf*(i +1) < -S± 

< 0, 

since S.. >^ 0. This gives a contradiction. 

Since the possible actions in each state are (1) perform service immedi- 

ately or (2) hold customers for future service, determining a stationary optimal 

policy is nothing more than deciding if each state i is a "service state" 

or a "holding state". Lemma 3.5 merely says that service states are unbounded 

and Lemma 3.6 says that holding states are bounded. We may restrict our 

search of an optimal stationary policy to policies with this attribute. 

We summarize this result in a theorem. 

THEOREM 3.7. 

If 0 < A < w and y« < °°, then a stationary optimal policy exists 

and is characterized by having its set of holding states bounded. 

3.3.  Determination of an Optimal Policy 

We now show that an optimal improvement policy exists which is a special 

case of the policies described in Theorem 3.7. Finally, we shall show that 

this optimal improvement policy is optimal. We shall consider the following 

policy: 
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Hold customers until n are in the queue and then start 

bulk service. If there are n or more customers in the new 

queue at the end of bulk service, begin a new bulk service. If 

there are less than n at the end of bulk service, wait until 

there are n and then begin bulk service. We shall refer to the 

above policy as a monotone policy with parameter nf 

The difference equations associated with this policy are 

v. - v.^ + -^ = ^ i - 0,l,2,...,n-l (3.2) 
l   x+1   X   X 

v, " I v, / e"Xt-^f- dB(t) + vTh    = SQ + S i  i = n,n+l,..., 
1  k=0 k 0 

where S. >_ 0. 

In this case we attempt to find a solution of the form 

2 v. = bi + ci    i = 0, 1, 2,   ..., n-1, and 

v. = K* + B*i   i = n, n+1, ...  . 
in 

(3,3) 

ebstituting in (3.3) for i = n, n+1, ..., we have 

K* + B*i - 1  (bk+ck2) f  e"At -^f- dB(t) 
k=0       0      k! 

- I     (K* + B*k) /" e"At ^g-.dB(t) + y"V - So + SI. 
k=n 0 

Seating B = S.., we have 
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Kn P(n-1,  0)  + 4>n(ti    -P(n-2,   1))  = SQ - 4p P(n-3,  2)  + S^u    -P(n-2,1)) 

(3.4) 

where 

P(n,r)  = /      I    e"U ■ %• trdB(t) 
0    k=0 K- 

is obtained in the course of interchanging summation and integration, which 

is permissible from the properties of the exponential function and the fact 

that B is a distribution function. 

Substitution for i = n-1 in (3.2) yields 

^E _ K* - hn(n-l) . _ n 
X        Kn~~+ Sln« (3.5) 

Clearly, equations (3.4) and (3.5) provide two linear equations in 

<|>n and KR which provide a solution for the average cost per unit time 

for such a policy. We shall consider the form of improvement that can occur 

if the policy improvement algorithm is applied to a monotone policy with 

parameter n. 

If there exists i _> n such that 

, Mi  hi 
v. - v. ,, + -T— > -r—. i   i+1   X X ' 

then an improvement in policy will be obtained by starting bulk service only 

after n > n customers have arrived.  If, on the other hand, there exists 

i < n such that 

00 ]£ 

vi - J0 
vk /e_Xt -TT- dB(t) + ^n >  S0 + h1' 
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Then there will be a set S(n) such that an improvement in policy will be 

obtained by starting service for all i e S(n) and all i >_ n. 

& • 
For    i > n, v.  = K    + S,i,  so the first condition becomes    n <_ i < 

— l n 1 

(d> -XS^/h,  and we define XTn      1 

W(n)  = {i; n £ i <   («j^-XS^/h}. 

Since 

K* + S.i -    I    vk /V
U ^ dB(t) + y"\ - SQ + S.i, 

n     ±     k=o    ■ o 

the second condition becomes 

v.   > K    + S,i i < n. 
l n 1 

This in turn is equivalent  to 

*n   .    hx.        h    .2 

Substitution for K  from (3.5) gives for n > i 
n 

2(<f> -XSJ 
>  2= — -   (n-1), 

and we  define 

S(n)  =  {i:   a^-XS-^/h -   (n-1)   <  i £ n-1}. 

If $ is the empty set and S(n) - * and W(n) - *, the associated 

monotone policy cannot be improved by policy improvement and it will be a 

o-optimal improvement policy.    We now consider the effect of applying the 
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policy improvement algorithm to a monotone policy. 

LEMMA 3.8.  If S(n) 4  $, then W(n) = $. Thus, if W(n) 4  *, then S(n) = *. 

Proof. Assume there exists i.. > n such that 

<*n-
ASl> 

1    h 

and there exists iQ <_ n-1 such that 

(^-XS^  n+iQ-l 

■ h    ^  2   ' 

Therefore, 

<|> -AS.  n+in-l              <(> -XS, 

h   "*  2   -" 1 ^ n-V  h  ' 

a contradiction. 

LEMMA 3.9. Policy improvement of a monotone policy leads to a monotone 

policy. 

Proof.  If W(n) 4  *. we define 

* 
n = maxii: n _< i < (<f> -XS.)/h} + 1. 

* 
the monotone policy with parameter ri _> ri+1 is a result of the policy 

improvement. 

59 



NWC TP 5594 

If S(n) 4  $, then for all 1 e S(n), inequality (3.6) is satisfied. 

We observe that if there exists i < n for which (3.6) is satisfied, then 

the inequality (3.6) will hold for i, i+1 n-1.  In this case, if we 

define n = min{i: i e S(n)}, then the policy improvement algorithm leads 

* 
to a monotone policy with parameter n . 

LEMMA 3.10.  If n. is the parameter associated with the j   iteration 

of the policy improvement algorithm and j .  is the iteration on which 

W(n.  ..) i  $ for the i   time, then W(n. ) = $ and n. < n.   < ... < 

n. . 

Proof. 

Part (i) W(n. ) = $. 
Ji 

The    i iteration leads  to 

n.     = max{k:  n.     ,   < k <   ((|>n.     n   - ASj/h} + 1, 
Ji Ji Jx 

from which it follows  that 

(<|>n.     ,   - XS.)/h < n.   . 
J±-l 1        -    3± 

If on step    j.+l, W(n.   )  7* $,   then there would exist an    i-     such that 

n.     <_ i,   <   (<()n.     - XSj/h, 
Ji 3± 

which implies 
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<fin. 

a contradiction. Hence W(n. ) = * and either S(n. ) = * or S(n. ) ?M 
Ji Ji Ji 

In the former case the policy improvement algorithm has converged. In the 

latter case the policy improvement algorithm goes on. 

Part (ii) {n. } is strictly decreasing in i: 
Ji 

If S(n ) iM, then on step j.+l there exists iQ < n 
i ^i 

such that 

so that n > n. +1 • If, moreover, S(n   ) f  $ for m = l,2,...,r, 

we obtain in the same way a sequence n,, > n. ,,>...> n.  . , stopping 

only when S(n +r+1) - ». If W(n. +r+1) - •, the policy improvement 

algorithm has converged.  If W(n. . .,) ^ *, then 

Now 

n = max{k: n <_ k <   (*n. .)  - XSj/h} + 1. 
Ji+i 3±+r± 3±+l~X        l 

<f>P. ,   - AS <j>n. -AS 
Ji+1               x          Ji .  ,— <  < n      _ ! 

h -        h Ji 

so 

and 

Ji+1 
n.        <  r + 1 < n.    - r+ 1 - n.   , 
Ji+1 h ^ Ji 
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n.   < n. . 
Ji+1   Ji 

THEOREM 3.11. 

The Policy Improvement Algorithm terminates with a monotone, 0-optimal 

improvement policy. 

Proof. Application of the policy improvement algorithm gives rise to a 

sequence of the following form: 

n. > n. .->...> n.  , 
J0    J0

+1 Jr1 

n.  > n.,,>...> n.  , 
Ji h+1 J2-1 

n. > n. ...>...> n. . 
J 2   J2+l        J3-l 

n.  > n.   > .. . > n.   n 

Jk   Jk+1        Jk+l_1 

Since 

n. >n. > ... > n. , 
3±        32 

* 
this sequence must stop in a finite number of steps with some n  with 

W(n ) = S(n ) = *. Otherwise, n. '-»■ -» and clearly, n >^ 0 for all j. 
* 

The resulting policy from Lemma 3.9 is monotone with parameter n . 

THEOREM 3.12. 

The monotone, 0-optimal improvement policy of Theorem 3.11 is optimal. 
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Proof. We let f  be that stationary monotone policy with parameter n 

obtained from convergence of the policy improvement algorithm.  If S = 0, 

Vf*(i) - (— + -jjjH ~ 2X i    i = 0, 1, 2, ..., n -1 

4f JL        JL 

Vf*(i) = K n* i = n , n +1  

Clearly the Vf*(i) are bounded and from Reed [7], Corollary 4.9 the 

resulting stationary policy is optimal. 

If sx >  0, 

*n* . h x.   h.2      „ .      * Vf*(i) = (-X" + -27)i - -g-i    i = 0, 1 n -1 

Vf*(i) = K n* + S-ji i = n*, n*+l, ... . 

In this case the Vf*(i)  are unbounded and from Reed [7], Theorem 4.8 

a sufficient condition for optimality is x(f)V * < » for all f e^. 

Lemma 3.6 shows that the Markov matrix of all feasible stationary policies 

f will be of the form 
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poo(f) P
01(f) 

• • • V» 
pio<f) Pu(f) • • • pi„<» 

PN-10(f) PH1<« • • • Vf> 

n 

where 

P. = / e 
1  0 

-*t (*0 '—  dB(t) 

It follows that 

x,(f) = I    x.(f)P..(f) + P, I    x (f)      1=0,1,2, 
1     i=0 J   J1       j=N J 

There are only two possibilities for P..(f)  for j = 0, 1, 2, ..., N-l. 

Either P.,(f) = P.  for all i or P1±(f) =0 for i > N. Let 

= Ü: 0 <_ j <. N-l and P...(f) =0   for i > N}. 

Now 

:.(f) = I    x.(f)P..(f) + P± ^x(f) 
1     j£T 

3   J?-       jeT J 

where T is the complement of T on {0, 1, 2, ...}. 
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N 00 

I    x  (£)  V *(i)  =    I 
i=0    X          r               i=0 

I    x (f)  P    (f)V *(i) +    I    V *(i)    1    x.(f) 
jeT    J          J1        x               i=0    r          jeT    J 

N 00 

-    1 
i=0 

I    x (f)P.. V*(i)+   l_xAf)    I    V*(i). 
jeT    J         J1    x               jeT    3         i=0    r 

We observe that    V,.*(i)  < 
l          — 

A + Bi    with    B >  0    and 

N 

I       I 
i=0 jeT 

x.(f)P..  V.*(i) 

is  clearly bounded.    Also 
00 

£    x.(f)     is bounded and      £    x. (f)  V.*(i)  < °° 
jeT    J                                            i=0    1          t 

00 

if and only if      ][    P V *(i)     is bounded,  and this expression is bounded 
i=0 

00 

if and only if      J    iP.   < 
i=0     1 

«>.    The generating function associated with    P. 

is 

00 

K(z)  -    I P.r»  . /VAt+Uz dB(t), 
j=o 3           0 

with mean 

00 

K'(l)  = /    AtdB(t)  =  Ay"1. 
0 

We have assumed    0 < A < ■<*> and    \i      < «>,  so    Ap      < °=    and the sufficient 

condition  for optimality is  satisfied. 
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4.  The M/M/l Queue with Variable Service Rate 

Consider an M/M/l queue that is controlled by selecting one of two 

service rates.  Customers arrive according to a Poisson process with 

rate X > 0.  Service times are non-negative, independent random variables 

with an exponential distribution with service rate p1 or y2> with 

y, < y9 < °°. We shall assume that 

2  y2 

There is a cost r. per unit time of operating the queueing system with 

service rate y±, i « 1, 2. It is assumed x± < x^     If i customers are 
* 

in the queueing system, there is a holding cost of c±, where c < cQ < c^.. 

c ■*■  °° as i -y °°    and c > -°° is a lower bound on the holding cost rate, 
i 

Decisions are made at the time of service completion or the arrival of 

a customer in the system.  We associate k = 1 with the decision to use 

service rate jj^ and we associate k = 2 with the decision to use service 

rate y2- 

The state of the system is described by the pair  (i,j) where i 

indicates the number of customers in the queue and j  implies service 

rate y.  is in use. As in Section 2, i is right continuous and j  is 

left continuous with respect to the time parameter. 

The optimization criterion is minimum expected average cost per unit 

time. 

4.1.  Existence of a Stationary Optimal Policy 

We now proceed to verify assumptions A(l), A(2), and A(3) of Reed [6] 
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Section 4.1 for the existence of a stationary optimal policy.  It should be 

noted that in the two preceding examples we made an explicit assumption about 

the second moment of the general service distribution, to assure that costs 

over a service period are finite. In this particular example we must assume 

that the c. are such that there exists a policy irn    for which <J>  < ». 1 ° *o 
We shall first prove a lemma giving a sufficient condition that A(l) be 

satisfied. 

LEMMA 4.1. If I    p' c, < », A(l) is satisfied. 
i=0 Z X 

Proof. Let f_ be the stationary policy which always uses fast service. 

From Reed [7] Section 2.2 we have 

I    x. (c.+r2)/(X+p2) +x0 (c0+r2)/X 

fo 
I    x ./(X+uJ + xn/X 

i=l u 

where 

Xi = X+y Xi+1 + X+p xi-l i = 1, 2, ... 

y 
X0 " X+y Xl " 

It follows that 

x± = p
1-1(l-p2)/2 i = 1, 2, ... 

x0 = (l-p)/2 

and 
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*f = r? + I     (1"P2)p2 c-i < 
f0       i=0 1 

LEMMA 4.2.  If A(l) holds, A(2) is satisfied. 

Proof. A(l) implies the existence of a policy fQ for which <}>f < °°. 

Now we must show there exists a state recurrent over all policies IT for 

which ^ < *f^ We def.ne 

I- = {(i,l) : c. + r £ <|)f } = {(0,1) ... (i.,,1)} 

I_ = {(i,2) : c, + r, < <fr. } =  {(0,2) ... U2,2)} . 
z 1   z   iQ 

Regardless of the number in the queue the probability of entering 1^ U  I2 

while a service is being performed exceeds 

P  y2 
(A+y2

}   ■ 

Hence I1 l> I9 is recurrent with expected transition time from I^Ul-, 

less than 

y   A+y9 1 

In  going from    I    [J I2    to    ^ U I2    one of  the states     {(i^l),   (i.j-1,1) 

(i2,l),   (i2,2)},  must be entered.     There  are    i-^l + 2     of  these states. 

Since  this  finite set  is  recurrent,  at least one of  these states must be 

positive  recurrent under any policy    TT    for which    <\>    <  4>f  .     Let     s    be 
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any of these states.  Once s is entered the probability of bringing the 

queue to zero before the arrival of a single customer is at least 

(y,/(X+y,)  . The process is in either (0,1) or (0,2) when this occurs. 

Since r, < r«, the average cost per unit time may always be reduced by 

making decision k = 1 in (0,2).  This restriction on the class of 

permissible policies in no way eliminates a possible optimal policy and 

we may assume that whenever the queue is empty, the process is in state 

(0,1). It follows that the event, "Enter s and reach (0,1) before 

the arrival of single customer," is positive recurrent for all permissible 

IT. Clearly, the state (0,1)  is positive recurrent for all ir. 

LEMMA 4.3. Assumption A(3) holds. 

Proof. We use Reed [7] Theorem 4.3 and Appendix A. We have 

c.+rn 
C(i,l)U;   A+u. 

c(lfl)(2)-0 

_ Ci+r2 
C(i,2)(2) "l+yT 

c(lf2)d)-0 

t(i,l)(1) " X+y1 

t(i,2)(2) " X+y, 

t(1>2)d) =o. 
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The exclusion of trivial sequences with non-negative costs leads 

to the verification of Condition 1 and justifies the inclusion of 

'(i.l)^ = t(i,2)(1) = °-  SlnCe Ci"><" Wlth Ci<Ci+l and °i-C* 

the set S of Reed [7] Theorem 4.3 is finite.  It follows that V is 

bounded below. 

We summarize these results in a theorem. 

THEOREM 4.4. 

If 1  pi c. < °°, then there exists a stationary optimal policy. 

Crabill [3] Chapter VI investigates the K service rate problem. 

For this problem we have service rates ]i± <  P2 < ... < yR with corresponding 

operating costs r1 < r2 < ... < rR.  If PR = — < 1, one may show that 
K 

a stationary optimal policy exists by proving lemmas corresponding to 

Lemmas 4.1, 4.2, and 4.3 in essentially the same way.  One may also 

include rewards for completed service. 

4.2.  Qualitative Attributes of an Optimal Policy 

We now investigate properties of V *, an optimal cost function, 

and f*, an optimal stationary policy.  The cost function ,Vf* must 

satisfy 

A   „ ,  yl „  ,.. , „    *f* 
Vf*(i,l) - min[ ^ Vf*(i+1,1) + — Vf*(i-l,l)  A+y 

1 

+ ^7' V(i'2)] 1 = 1' 2' 
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Vf*(0,l) = min[Vf*(l,l) --j- + -±t  Vf*(0,2)] 

Vf*(i,2) = min[ ^ Vf*(i+1,2) + ^ Vf*(i-1,2) 

♦f*  Ci+r2 

Vf*(0,2) = min[Vf*(l,2) = Jp +-2 Vf*(0,l)]. 

Since Vf*(i,l) < Vf*(i,2) < Vf*(i,l), Vf*(i,l) = Vf*(i,2)  and the 

above functional equations may be rewritten as 

V *(i)  =    min     [ 3^- V *(i+l) + -£- V * (1-1,1)  - r-f- + ^] 
r k-1,2      A pk    * A+Jik    f A+yk      A    yk 

i - 1,2,, 

V *(0)  =    min     [Vf*(l)  --4- + -f]. 
k=l,2       r A A 

We see that if the minimum is attained for k = 1, then f (i) = 1. 

Any i for which this is true will be called a slow service point.  If 

the minimum is attained for k = 2, then f (i) = 2. Any i for which 

this is true will be called a fast service point. The determination of 

an optimal policy is equivalent to optimally classifying each i as 

slow or fast. We shall agree that if for some i the minimum is attained 

for both k = 1 and k = 2, we shall set f (i) = 1. 

We now prove a number of lemmas which correspond to those of Crabill 

[3], Chapter II. The difference is that there is never any reference to 

truncated problems. The lemma of Crabill's which most nearly corresponds 
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to each of the following lemmas will be noted. It whould also be pointed 

out that the inequality manipulations are much the same as Crabill*s. 

LEMMA. 4.5.  [Crabill Lemma 1]:  f (0) = 1. 

Proof. Since r^ <  r2> 

<j> *  r +f*  r2 
Vf*(l) --f + -£< Vf*(l) - —+ T 

r2"rl 
LEMMA 4.6.  [Crabill Lemma 2]: Letting R =     > 

y2 Pl 

Vf*(i) - Vf*(i-1) > R ♦ f*(i) =2       i = 1,2, 

Vf*(i) - Vf*(i-1) <  R * f*(i) = 1       i = M» 

Proof. This follows immediately from the functional equation defining 

an optimal policy. 

LEMMA 4.7.  [Crabill Lemma 3]:  The set of i for which f (i) = 2 is 

unbounded. 

Proof. Assume the contrary; then there exists an N such that for all 

i > N, f*(i) = 1 and 

U;L(Vf*(i) - Vf*(i-D) = X(Vf*(i+D - Vf*(i)> - <()f* +-c± + r1. 

From Lemma 4.6 
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^(V^Ci) - Vf*(i-1)) >_ XR - <J>f* + c± + t±. 

Since <|>f* < » and c±  -*■ » as i -*■ <», one may find ifl > N such that 

XR - <|)f* + c±    + x1 >  Ry., 

i.e., 

Vf*(i0) - Vf*(i0-1) > R. 

This result contradicts Lemma 4.6. 

LEMMA 4.8.  [Crabill Lemmas 4 & 6]:  If f*(i) = 2, then 

f (i+k) = 2 for k = 1, 2  

Proof. The proof of this lemma is virtually identical to Crabill's Lemma 4. 

Assume f*(i) - 2 and f*(i+l) - 1. 

f*(i) = 2 -» Vf*(i) - Vf*(i-1) > R 

F*(i+1) = 1 "♦ V£*(i+1) - V£*(±) < R. 

For i we have 

♦f* = c± +  r2-u2(Vf*(i) - Vf*(i-1)) + X(Vf*(i+l) - Vf*(i)) 

and 

*f* < Ci + r2 " (y2~X)R* 
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For i+1 we have 

♦f*= ci+i+ rryi(vf*(1+1) - v(i)) + *<v
f*(i+2) - v

f*(i+1) 

and 

♦f* - ci+i + ri-1iR + X(Vf*(i+2) ~ Vf*(i+D) 

It follows that 

X(Vf*(i+2) - Vf*(i+1) < AR - (c±+1 - c±) 

and 

Vf*(i+2) - Vf*(i+1) < R 

=*f*(i+2) = 1. 

For i+2 we have 

♦f* = Cl+2 + r1-y1(Vf*(i+2) - Vf*(i+1)) + A(Vf*(i+3) - Vf*(i+2)) 

and 

♦f* 1 c
i+2 

+  rl ~ ylR + x<vf*
(i+3) " Vf*(i+2)). 

It follows that 

A(Vf*(i+3) - Vf*(i+2)) < *f* - c±+2 - r± + VjR 

<_  AR - (c±+2 - c±) . 
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This implies 

f*(i+3) = 1. 

Proceeding in this same way, f*(i+k) = 1 for K=2, 3, 4 This 

result contradicts Lemma 4.7. 

We are now in a position to state a stronger theorem than that of 

Crabill. 

THEOREM 4.9.  [Crabill Theorem 1] 
00 

If l    p~c. < °°, then a stationary optimal policy f  exists and is 
i=0   x 

characterized by a single positive finite integer N, such that f*(i) = 1 

for i < N and f*(i) =2 for i > N. 

Proof. The proof follows as a consequence of Theorem 4.4, Lemma 4.5, and 

Lemma 4.8. 

The approach to the control of the M/M/l queue with variable service 

rate presented here is formulated as a semi-Markov decision process, 

whereas Crabill formulated the problem as a continuous time Markov decision 

process.  The semi-Markov formulation allows for instantaneous changes 

in state in a natural way, whereas instantaneous changes in state present 

some conceptual problems in the continuous time formulation. 

Since this result shows that the optimal stationary policy is optimal 

over all admissible policies, the remarks following Theorem 4.4 show 

that Crabill's optimal stationary policy for the K service rate problem 

is an optimal policy. The ideas presented in this section may be combined 
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with those of Crabill to extend the results to K service rates. In 

particular, proofs that do not depend on queue truncation may be made. 

4.3. Quantitative Results for the Linear Holding Cost Case 

In the linear holding cost case we have ci = hi where h is the 

cost per unit time of holding a customer in the queueing system. Based 

on the preceding qualitative results, we are led to the following system 

of difference equations to obtain relative costs and <|> , the expected 

average cost per unit time associated with a policy of the form described 

in Theorem 4.9: 

Xv0 - AV-L = ^ - ^ 

(A+y1)v. ~ p1vi_1 - Av±+1 = hi+r;L - 4>N, 0 < i < N 

(A+y2)v. - ^v.^ - Xv±+1 = hi+r2 - ^     i > N 

For i _> N we set 

.2 
v. = A„ + B_i + C„i . 
l   2   2    I 

For i < N we make use of the homogenous solution and have 

2     yl i 
v± = B±±  + Cji* + K[(—)  - 1], 

which makes    v„  = 0.     One easily finds  that 

h(y.+A) r.-<frN 

B.   = r + -—r- i =  1,   2 
1       2(y.-A)2       VX 
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Ci = 2(y±-X)        1 - 1, 2. 

The above system must satisfy the boundary conditions 

2 2     yl N A2 + B2N + C21T = BjN + CjIT + K[(-^) - 1] 

2        2        2     Ml N_1 
A2 + B2(N-1) + C2(N-1)^ = B1(N-1)

Z + C^N-ir + K[(-^)  -1]. 

Finally, 

4>N = \vx + t± 

yl, = X(BX + C^  + XK((-y) - 1] + rr 

Elimination of A2 in the boundary condition equation and substitution 

for Bp €»,82, and C2 gives 

K(y -A)(y -X)2 y N-1  p h (r.-rj (y,-A) 
*N -   Aft^)    <->   =l=p7+r2 + l^+h(N-l)-  2

(^.pi)
2 

Substitution for B1 + C-  in the expression for <|>  yields 

KCy^X)2  pxh 

*N y~- = I3p- + rl 

where p. = —. Elimination of K gives 
i 

P2
h r-(y.-X) - r9(y,-X) 

-£_ + r. + hN +    X , f-*  
Plh       1-Po   2 (v0-V-,) 

A ±— + r, +  l    X 

Tu  1-p. " "1 ' ...    N 
1 (y,-x) y, 

1 - — (—\ 1  (y2-yx)^X
; 
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One may verify that 

p2h 
4 = -i— + r_ (Always use y9) y0  l-p0   2 ^ 

P2
h 

* = ^j—+ P2
r
2 
+ (1_P2)rl  (Use yl °nly f°r £ = 0) 

"p2 

and providing A < y^^, 

P,h 
A = ——+ r, (Always use yj. 

o°        1-D,     1 ± 

Setting 

r1(y1-X) - r2(y2-X) 

6(N) jj  
(y2-X)  y1 

(p2~yl^ X 
(-T)     "I 

then 

<f,(n) = ^ - G(N). 

It is conjectured in Crabill [3] that ^ is a convex function of N. 

We now show that <}> is not convex in N.  A necessary and sufficient 

condition for <$>    to be convex in N is that 

d2(?f> < 0     for all N. 
dN 

Consider the case X <  y^ For convenience we write 

G(N)=A^ 
1^3-1 
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where 

then 

and 

kl =  (v2"A)/(lJ2",'il)  >  X 

e=T>i 

A   .  . ri(prA) ' r2(ti2-x) 
A = 4>n + -  

0 y2-y1 

(k..0N-l)h - (A+hN)k13
Nlog 0 

G» (N) = -± j—-!  
(k 0N-1)2 

h - G(N)k10
N log 0 

(k10
N-l) 

GM(N) = -(k.3-1)1 
N ^GODk^Uog 0)

2 + kx0
N log 0G'(N) 

1 (k/-l)2 

(h - G(N)k10
N log 0)k10

N log 0 

(k^-l)2 

which after some manipulation reduces to 

V  log 0 y  (l+M1*) 
G"(N) r- [-2h + (A+hN) log -i ^—] 

(^0 -l)2 A  (-1+k 0N) 
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Since A + hN > 0 for N sufficiently large 

k^N log g U, 

G"(N) > -^—JT 2~ I_2h + log X (A + hN)] 
(k^ -1) 

for N sufficiently large. Also for N sufficiently large the expression in 

brackets is positive, so <f>(N) is not convex. 

However, <j>(N) is unimodal, since G(N)  is unimodal. To show this when 

A < y,, consider G(N). Since A + hN > 0 for N sufficiently large, 

G(N) > 0 for N sufficiently large. 

Moreover, 

Lim G(N) = 0, 

showing that G is decreasing for sufficiently large N.  Since 

G(l) - G(0) = <j>(0) - <J-(D > 0, 

G is increasing for some positive N and hence G has at least one 

relative maximum for positive values of N. 

A necessary condition for a relative maximum is that G1(N) = 0. 

Thus we are interested in N for which 

(k gN-l)h 
A + hN = N 

Tn^    log g 

We observe that the expression on the right as a function of N is non- 

negative, increasing and strictly concave. At N = 0 this function has 

value (1 - 1/k..).,     and as N ■*■ °° the function approaches h/log g. 
1 log g 

The derivative at N = 0 is h/k...  The expression on the left is linear 

in N with value A at N = 0 and derivative h at N = 0.  Since G 
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has at least one relative maximum for positive N, 

(1 - 1/kJ 
l'log 6 

> A. 

If this were not the case, there would be no positive N satisfying the 

condition G'(n) = 0. This follows from the concavity of the expression 

on the right and the fact that slopes at zero are such that 

h/k1 < h. 

We may plot both expressions for N to graphically solve for minimizing 

values of N. A typical plot is given in Figure 1. 

A + hN (k-^-Dh/kjß1* log ß 

N 

Figure 1.  Graphical solution for G'(N) = 0. 

From the concavity of the expression on the right and the linearity 

of the expression on the left the N for which G'(N) = 0 is unique, so 

G(N)  has exactly one relative maximum for positive N. 

The value of N which maximizes G may be obtained by successive 

approximation.  We begin by solving 
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A + hxQ = (1 - l/\) log 3 

A + hx. = 
(k^ i_1-l)U 

k-jg 1_ log 3 

A graphical interpretation of this procedure is given in Figure 2. 

kj.g*-1 log ß 

N 

x0  X^^ X2 

Figure 2.  Successive approximation solution for optimal N. 

If p <_ A, unimodality may be established similarly but the method 

of successive approximations will diverge, so one must solve the trans- 

cendental equation associated with a relative minimum differently or 

use a search technique to minimize <j>N directly.  Since <|>N is unimodal, 

standard procedures may be used. Another possibility is to use the 

policy improvement algorithm. With this algorithm, if one begins with 

a policy such that f(i) =2 for i > N and f(i) =1 for i < N, then 

all improvements will be of this form and the method converges to the optimal 

value of N. 
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Appendix A 

FUNCTIONAL EQUATIONS OF OPTMALITY 

Introduction 

This appendix is written to display the functional equations of 

optlmality for special cases that arise in the queueing applications in 

this report. We recall that a stationary semi-Markov process starts at 

time 0 in state i « 0,1,... with probability P . With the observation 

of state i an action k = 1,2,..., or K is taken. The next state, j, of 

the process occurs with probability P (k). Conditional on the event 

that the next state is j, the time until the transition from i to j 

occurs is a random variable with distribution function F (*|k). With 

♦:he observation of state j an action k = 1,2,...K is taken and this 

procedure goes on indefinitely. Whenever the process is in state i and 

action k is taken, a cost is incurred which depends on random events 

occurring during the transition interval. 

We are interested in two optimization criteria, minimum expected 

average cost per unit time and minimum expected total discounted cost. 

For the average cost criterion the functional equation of optlmality is 

given by 

Vf*(i) " m£n {Ci(k) ~ *f*Ci<k) + S Pi:j(k)Vf*(j)} 

where CjL(k) is the expected cost of a transition and t (k) is the 

expected transition time when action k is taken in state i. The 
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expected average cost per unit time, $fit*  
ls obtained from VfA(0) - 0. 

The functional equation of optimality for the discounted cost criterion 

is given by 

V3(i) - min (C±(k) + Jo^j^-^ßÜ^ij^'^
1 

where C (k) is the expected discounted cost of a transition when action k 

is taken in state i, and the discount factor ß implies a cost C at time t 

—ßt contributes Ce   to the total discounted cost. 

Functional Equations in a Special Case 

In this section we consider the form of the above functional equations 

for a special case that arises in the applications. First, we assume that 

F±(t|k) = ?P±j(k)F±j.(t|k) 

is basic in the problem formulation. We also assume that if action k is 

taken in state i and the transition time is t then j, the next state of the 

process, is given by 

j = i + m + s 

where m has a Poisson distribution with parameter X±(k)t, and s is inde- 

pendent of m and t with finite distribution P^slk). It is understood 

that s may take on negative as well as positive integer values. We set 

*    «v   A  
—A 

P(n;A) - ^j e 

and our problem is to express P±j (k) and F±j(t|k) in terms of Fi(t|k), 

P±(s|k) and p(n;X±(k)t). 
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For fixed t 

P1;j(k|t) = 2 Pi(s+v|k)p(m-v;X±(k)t) 

and 
00 

PHOO - 2 P,(s+v|k)/p(m-v;X.(k)t)dF,(t|k) 
iJ     V x              o      1     i 

The joint event, the next state is j and the transition time is less than t 

given state i and decision \ has probability 

t 
P[j. and T < t] - 2 Pi(s+v|k)/p(m-v;Xi(k)x)dFjL(x|k) 

It follows that 

2 P.(s+v|k)/p(m-v;X.(k)x)dF.(xlk) 
F (t|lt) - V        °            i 
1:5
      2 P1(s+v|k)/p(m-v;Xi(k)x)dF.(x|k) 

For the average cost criterion the functional equation of optimality 

becomes 

VfJk(i) = min {C±(k) - (J^t^k) 

+ 222 P.(s+v|k)V..(i+m+s)/p(m-v;X.(k)t)dF.(t|k)} 
smv x                £      0     x              *• 

For the discounted cost criterion we have 

Vß(i) «min (C,(k) 
Ü             k   1 

+ 222 P.(s+v|k)V (i+m+s)/e"3tp(m-v;X,(k)t)dF,(t|k)} 
smv *      P     o         i     i ' 
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If a particular action k is taken in state i then F±(t |k) .vP^slk), 

and X (k) will be determined for a given i and k. This consideration 

allows one to write in more detail the entries for particular i and k on 

the right hand sides of the functional equations above. There are 

essentially two classes of actions used in this report. 

If action k belongs to class 1 and it is taken in state i then the 

transition time is exponential and the transition rate from state i to 

state j is a (k). In this case 

-a.(k)t 
F±(t|k) - 1 - e 

where 

a, (k) = 2 a,, (k) 

For actions of class 1 it is further assumed that X±(k) =0.  It follows 

that in the equation j = i + m + s,m = 0 with probability 1, and 

For the average cost criterion in this case 

t±(k) -/tdF±(t|k) -^ 

and 

222 P.(ff+v|k)V4:.(Hmfs)/p(m-v;X.(k)OdFi(t|k) 
smv1   '  £*      0      i 

o..(k) 
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For the discounted cost criterion in this case, 

222 P±(»+v|k)VR(i-tefs)/e"
Btp(in-v;X. (k)t)dF, (tlk) 

smv A      p     o 1 ' 

o (k)    .      -a.(k)t 

„y
aij(k) 

j a±(k) + ß V
j) 

If action k belongs to class 2 and it is taken in state i then F. (t|k) 

is general, A^k) > 0, and there exists an sQ such that P (s_|k) = 1. For 

example, sQ = -1 and sQ = -i are important special cases. We have for the 

average cost criterion in this case 

=    -1, t±(k) «= /tdF±(t|k) = vl  00 

and 

22 
s 
22p  (s+v|k)V     (i4nH-s)/p(m-v;X,(k)t)dF.(t|k) 
mV    *■ r o * * 

00 

- 2 Vfjt(i+m+s0)/p(m;Xi(k)t)dFi(t|k) 

For the discounted cost criterion in this case, 

222 P (s+v|k)VR(i4m+s)/e"
ßtp(m-V;X. (k)t)dF. (tlk) 

SBV ■*■      p     0 i     i ' 

2 VR(i-hn+s0)/e"
3tp(m;Xi(k)t)dFi(t|k) 
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If, moreover, 

F±(t|k) = 0 t < 0 

Fi(t|k) - 1 t >o 

then the right hand side above is simply VfA(i+S()) for the average cost 

criterion and Vß(i+sQ) for the discounted cost criterion. 

Expected Transition Costs 

To complete the specification of the functional equations of optimality 

we must compute C±(k), the expected cost of a transition if action k is taken 

in state i. For the discounted cost criterion this calculation is required 

for all i and k assuming that action k is taken at time 0. Since the calcu- 

lation for the average cost criterion is the sane regardless of the time of 

the action it is convenient to always think of action k taken in state i at 

time 0. 

We now derive C±(k) when the cost structure is linear.  If at time 0 

the process is in i and action k is taken, an instantaneous cost Cik is 

incurred and costs start to accrue at a rate of rfc + t^i. Costs accrue at 

this rate until either the transition ends or the occurrence of a random 

event at time Tr If T±  occurs before the end of the transition then 

beginning at time T±  costs accrue at a rate of rfc + hk(i+l). Thus if m 

random events occur at times 0 < ^ < T2 ... < Tn < t during the transition 

time interval (0,t), the cost rate over time interval (Tn.
T
n+1) 

is 

rk + h^i+r,) for n = 0.1....m where TQ = 0 and T^ - t. We assume that 

T ,T ,... are generated according to a Poisson process with parameter X±(k). 
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It follows that for a. transition time t the number of random events occurring 

at times T^ < T2 < • < t has a Poisson distribution with parameter X (k)t. 

We recall that if action k is taken in state i and the transition time 

is t then j, the next state of the process, satisfies 

j = i + m + s 

where m has a Poisson distribution wich parameter X.(k)t. Whereas only the 

number of these events is important in determining the next state of the 

process, both the number and times of occurrence of these events determine 

transition costs. 

For the average cost criterion the expected transition cost if action 

k is taken in state i, given T..,T-,...T , m, and t is 
i.    i. m 

C1(k|T1,T2f...Tmlmft) 

^Ik + Jo^l-V^k + V1^» 

■Clk+<rk + hk1)t + Vt-hk1!1
Ii 

Similarly for the discounted cost criterion 

C1(kjT1,T2,...Tmtm,t) 

" Cik +   Z«(rk + Mi4*))'      e      ds 1K     n=0    K        K T 
n 

T t    R m n+1    fl 

■ cik + <rk + V^"*8*8 + ^Vf    «"^ 
n 

Cik + ((rk + yjd - e"Bt) - ffl^e"8' + 1^   | e"    ^/ß 
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Conditional on in and t, T^,...^ are independently and uniformly 

distributed over (0,t). It follows that 

m      t     ..        • 
E 2 T. » — /xdx = rr- 

i-1 i  t o     2 

and 

„ * "ßTi  m f -ßx.   m ,,   -et. E 2 e    « — /e  dx - or (1 - e  ) 
i«l      t  0       pt 

The conditional cost of action k in state i given m and t is 

■ v        *  lot 

C1(k|m,t)-Clk+Crk + hki>
t + ,lkT 

for the average cost criterion and 

C±(k|»,t) = C±k + 'Ödllöa - e-ßt) 

32t 

for the discounted cost criterion. 

Since 

E(mjt) - Xi(k)t, 

we have the expected transition cost for the average cost criterion 

,       X (k) 
C±M-" Cik + (rk + V^i (k) + \ T~ yi2(k) 

where 

-1 p^OO - /tdFi(t|k) 

and 

2. 
pi2(k) - /t

zdF±(t|k) . 
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For the discounted cost criterion 

ci(k)" cik +       ß      <x - £e ^(tlw) 

X, <k>\ 
+   ±ß2      (1 - /e"etdP±(t|k) - ß/te-^dF^tlk)) 

-a. (k)t 
For actions in class 1 where X (k) = 0 and F.(t|k) « 1 - e 

the expected transition cost for the average cost criterion is 

(r + 1L i) 
Ci(k> - Cik +  al(k) 

For the discounted cost criterion in this case 

(r, + U) 
Ci(k) " Cik + ttl0c) + ß 

For actions in class 2 when X±(k) > 0 there is no special reduction 

of the above formulae. If, however, 

F^tjk) =0        t < 0 

- 1        t >0 

c±(k) - cik 

for both the average cost and discounted cost criterion. 
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Appendix B 

GLOSSARY 

This glossary summarizes the notation and key results of Reed {7]. 

Section A provides basic concepts.  Section B is concerned with the case 

when the optimization criterion is minimum expected discounted costs. 

Section C is concerned with the case when the optimization criterion is 

minimum expected average cost per unit time. All theorem numbers refer 

to theorems in Reed [7]. 

A.  Basic Concepts and Notation 

Semi-Markov decision process: A sequential decision process associated 

with a semi-Markov process which starts at time 0 in one of the states 

i = 0, 1, 2  With the observation of state i, an action k = 1, 2, ..., 

or K is taken. The next state, j, of the process occurs with probability 

Pi.(k). Conditional on the event that the next state is j, the time until 

the transition from i to j occurs is a random variable with distribution 

function F^Ojk). With the observation of state j, an action k = 1, 2,..., 

or K is taken, and this iterative procedure goes on indefinitely. The 

transition time distribution when action k is taken in state i is given by 

F (t|k) = I  P  (k) F  (t k). 
•  -*-j    -i-j 

Trivial sequence of decisions: A sequence of decisions k,, k„, .... k  _     -* 1' 2'   ' m 

is said to be trivial with respect to state i if 

Pi i   (V = 1   r = 1, 2 m 
r r+1 
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and 

F. .   (tlk ) = 0      t < 0 
r r+1 

= 1      t > 0 

for r = 1, 2, ..., m, where ±±  = i^ = i and ±r ^ i for r = 2, 3, 

m. 

Condition 1: There exists an integer nn and a fraction q with 

0 < q £ 1 such that for all n >_ nQ wi 

0 

ith decisions k,, k„, ...., k n 

in states i.., i0, ..., i  and transition time distribution F . (t|k..), 
ll n ^12 

..., F .   (tlk )  there exists an e > 0 and a 6 > 0 such that for 
n n+1 

jj_» J2» '••' Jn* 

?.  .   (6|k. ) < 1-e 

W1   ]i " 

where j-,»Jo» ■••> j * is a subsequence of 1, 2, ..., n and n >_ qn„ 

M/M/l Queue; A single server queue where customers arrive according to 

a Poisson process with parameter X. Service times are independently and 

-ut 
identically distributed with cumulative distribution function 1-e 

M/G/l Queue: A single server queue where customers arrive according to 

a Poisson process with parameter X.     Service times are independently and 

identically distributed with cumulative distribution function B. 
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-1 
y 

p=Ay 

n 

TT 

f 

-1 

Mean of service time distribution 

Second moment about the origin of service 
time distribution 

Queue utilization factor 

Class of admissible policies 

Element of II 

Class of Stationary Policies 

Element of <j 

B.  List of Symbols and Key Theorems for Discounted Cost Criterion 

List of Symbols: 

ß 

-Bt Ce 

C.(k) 

V (i) 
TT 

v0(i) 

Discount factor 

Equivalent cost at time 0 of a cost C incurred 
at time t 

Expected discounted cost of a transition when 
action k is taken in state i 

Total expected discounted cost of using TT 

given the process begins at time 0 in state i 

Optimal discounted cost function where 

V (i) = inf V^i) 
* iren 

■n      is 3-optimal if V *(i) = V.(i)  for all i 
TT     a 

f      is  stationary ß-optimal if    f*e<£T  and 
Vf*(i)  = V  (i)     for all    i 

Key Theorems: 

THEOREM 3.10.  (Functional Equation of Optimality) 

V (i) = min {C (k) + I    P  (k) / e~ßtV (j)dF..(t|k)} 
k j=o  J   0      p    XJ    . 

(3.5) 
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(If V (1) satisfies (3.5), then f is called a ß-optimal improvement 

policy.) 

THEOREM 3.12, 

If C (k) > 0 for all i and k, then there exists a stationary 
i   -r 

ß^optimal policy. 

THEOREM 3.17. 

If the condition of Theorem 3.12 holds, Vf*(i)    satisfies  (3.5)  and 

V *(i)  <. Q(i)    where    Q    is a polynomial of finite degree    r,  increasing 

in    i    with 

-A,t  (X,t)x 

fi,huW° ■/e    —li—-,<t|fc>    x" "• u -'• 
k   *   1,   £• ,    ...»   *"C\ 

where 

/ trdF(t|k)  < o> k = 1,  2,   ...., Kc 

and 

x = 0,   1 M- Pi,h(i,k)+x(k)  " Pk(x) 

F 0 x > Mx; 

independent of F(t|k) for k - KQ + 1, .... K, where h is a 

deterministic function of i and k satisfying 

0 <_ h(i,k) <_ i + MQ k = 1, 2 K 

then f* is a ß-optimal policy. 
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C List of Symbols and Key Theorems for the Average Cost Case 

List of Symbols: 

^(k)        Expected cost of transition if action k is 
taken in state i 

t^Ck)        Expected time of transition if action k is 
taken in state i 

^ Expected average cost per unit time if policy TT 
is used 

<j> inf d> 
irell    * 

* * 
TT TT  is optimal if ^ * = $ 

TT 

f f* is stationary optimal if f*e<£f and <j> * = <j> 

^0 First passage time into state 0 given the process 
begins in state i 

Ci0 Cost associated with first passage to state 0 
given the process begins in state i 

V^Ci.ö)      Expected relative cost with respect to 6 of 
first passage to state 0 given the process 
begins in state i and policy ir is used, i.e., 

V (i,9) = E [C.n - 6T.J TT TT  lO      l0 

V(i,6)       Optimal relative cost function where 

V(i,6) = inf V (i,e) 
TT  TT 

Key Theorems: 

THEOREM 4.1.  (Functional Equation of Optimality) 

For i = 0, 1, 2, ..., 

00 

V(i,<f>) = min {Ci(k) - <f,ti(k) + I    P (k)V(j,(j,)}       (4.3) 
k j=0 1J 

or in vector notation 
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V(4>) = min {C(f) - <j)t(f) + P(f)V(<|>)} 
fe# 

where <|> is determined from V(0,<j>) = 0.  (If Vf(<(>f) satisfies (4.3) 

with Vf(0,<|>f) = 0, then f is called a 0-optimal improvement policy.) 

THEOREM 4.3. 

If the    C(k)     are bounded below,  <j>    <_ M < »    for some    ir,  and 

S = {i:  C.(k)  - Mt.(k) < 0    for some    k} is finite,  then    V(<j>)    exists 

and is bounded below. 

Assumptions common to remaining theorems: 

A(l):    II = {ir:   4>    <. M}    is non-empty where    0 _< M < ». 

A(2):    There exists a state,  say state    0,   that is positive 

recurrent over all irell  . 

A(3):    V(<|>)    exists and is bounded below. 

THEOREM 4.4. 

If A(l), A(2), and A(3) hold, then a stationary optimal policy f 

exists, and it satisfies the relationship 

V * = min [C(f) - *f*t(f) + P(f)Vf*] (4-4> 

where <)>f* is determined from Vf*(0,<j>f*) = 0. 

THEOREM 4.8. 

If assumptions A(l), A(2), A(3) hold and f*e^ is such that Vf* 

and <j)f* satisfy (4.4) with x(f)Vf* < » for all fe$C where x(f) 
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is the stationary distribution of the imbedded Markov chain associated with 

f, then f  is optimal over II, 

COROLLARY 4.9. 

If assumptions A(l), A(2), A(3) hold and f*e^ is such that 

Vf* and $f* satisfy (4.4) with Vf* _< M*, then f* is optimal 

over II. 
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