
AFRL-IF-RS-TR-1999-225, Volume I (of two)
Final Technical Report
October 1999

KBSA LIFE CYCLE EVALUATION

USC Center for Software Engineering

Barry Boehm, A. Winsor Brown and Prasanta Bose

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY DfgPBOfBD 4 19991222 075

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-225, Volume I (of two) has been reviewed and is
approved for publication.

APPROVED:
DOUGLAS A. WHITE
Project Engineer

iLf ff&*i(*>
FOR THE DIRECTOR:

NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public report™ burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and maintaining the data needed, «ndcomple ting andkram ng
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burdaMo Washington Headquarters Services, Directorate for Information
Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

Oct99

3. REPORT TYPE AND DATES COVERED

Final Sep 96 - Aug 98
4. TITLE AND SUBTITLE

KBSA LIFE CYCLE EVALUATION

6. AUTHOR(S)

Barry Boehm, A. Winsor Brown, and Prasanta Bose

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC Center for Software Engineering
Computer Sciences Department
University of Southern California
Los Angeles, CA 90089-0781

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Rd
Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

C - F30602-96-C-0274
PE -62702F
PR -5581
TA -27
WU-96

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-225
Vol I (of two)

AFRL Project Engineer: Douglas White, IFTD, 315-330-2129

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)
The objective of this research effort was to develop and validate technical approaches for evaluating the effects of
Knowledge-Based Software Assistant (KBSA) and Evolutionary Design of Complex Software (EDCS) process concepts and
technology on software development effort and schedule, and to use these technical approaches to perform comparative
evaluations of technology. The approach taken for this research included four tasks. The first was to characterize sources of
software technology in the context of recent and emerging software trends. The second was to develop models and an
evaluation framework providing a baseline for assessing the effects of software technology on software development effort
and schedule. The third task used these models to evaluate KBSA, EDCS and commercial technology with respect to the
baseline. The fourth task formulated conclusions and recommendations based upon the results of the study. The report is
divided into two volumes because of its length. The first volume documents the study and summarizes the data and results
The second volume provides additional detail on the models and the evaluations performed.

14. SUBJECT TERMS

metrics, models, life cycle evaluation, software, knowledge-based design, evolutionary design 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

60

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

A.1 Table of Contents

A.1 Volume I Table of Contents i
A.2 Volume I List of Figures X1

A.3 Volume I List of Tables P-11

B. Executive Summary 1
C. Objectives of the Effort 4
D. Approach 5
E. Discussion of Tasks ; 6
E.l KBSA and Other Technologies 6
E.2 KBSA Evaluation Framework and Models 10
E.3 KBSA Comparative Impact Analysis Results 24
E.4 Conclusions and Recommendations 30
F. Discussion of Tools: Technology Impact Analyzer 32
G. Technical Transition Activities 44
H. Summary and Lessons Learned 45
I. World Wide Web Home Pages and References 46
1.1 World Wide Web Home Pages 46
1.2 References , 47

A.2 List of Figures

Figure 1. Effects of Commercial/Basic DoD (CD), KBSA (K), and EDCS/KBSA (EK)
Technology on Effort 2

Figure 2. Overview of Impact Assessment Approach 11

Figure 3. COCOMO 11.1998 Productivity Ranges and Current Practice 12

Figure 4. COCOMO Stages (Rational Phases) and Anchor Point Milestones 13

Figure 5. CORADMO Revision to COCOMO II Schedule Estimator 14

Figure 6. RESL: Architecture/ Risk Resolution Analysis 19

Figure 7. Impact of Technologies on Software Effort or Cost 24

Figure 8. Impact of Technologies on Software Schedule 26

Figure 9. Effect of 50% Reduction in Effort Improvement Factors 28

Figure 10. Software Expansion Factor vs. Time [Bernstein, 1997] 29

Figure 11. TIA Abbreviations and Sheet Descriptions 32
Figure 12. PREC's Driver Entry, Modification and Display 34
Figure 13. Staged Schedule and Effort Distribution... 35

Figure 14. RVHL's Inception Stage Schedule Multiplier Driver Information 36
Figure 15. Fifty Percent SIZE Impact 38

Figure 16. RVHL Inception Stage Adjustment for 50% Impact 39

Figure 17. RVHL Elaboration Stage Adjustment for 50% Impact 40

Figure 18. Total Effort after applying modified COCOMO-II.1998 & CORADMO Drivers.... 40

Figure 19. One of the comparisons of COCOMO-II.1998 only results and Final Results 41
Figure 20. Comparisons of Effort Final Results for Default and New Drivers 42

Figure 21. Comparisons of Schedule Final Results for Default and New Drivers 43

ii

A.3 List of Tables

Table 1. Comparative COCOMOII Effort Calculations 22

Table 2. Final Result Charts 37

iii

B. Executive Summary

The objective of this research effort has been to develop and validate technical
approaches for evaluating the effects of Knowledge Based Software Assistant (KBSA) process
concepts and technology on software development effort and schedule, and to use the approaches
to perform comparative evaluations of KBSA and other sources of software technology.

The research approach has involved four tasks.

Task 1. Characterize KBSA and other sources of software technology in the context of
recent and emerging software trends. We provide a summary of KBSA technology,
concentrating on the KBSA Advanced Development Model developed by Andersen Consulting.
We also summarize two other comparative sources of software technology: the commercial
marketplace and the DARPA/AFRL Evolutionary Design of Complex Software (EDCS)
program. To our knowledge, this is the first software technology payoff analysis done in
comparison to concurrent advances in commercial software technology.

Task 2. Develop models and an evaluation framework for assessing the effects of KBSA
and other sources of software technology on software development effort and schedule. Our
recently developed and calibrated COCOMO II model provides an approach for evaluation based
on the effects of alternative software technologies on the model's effort-driver parameters. The
model's calibration to over 100 1990's software projects also provides a 1990's baseline from
which to evaluate the technologies' effects.

For assessing schedule effects, we have developed another model, CORADMO, for
evaluating the effects of rapid application development (RAD). Our evaluation framework also
includes a domain focus: DoD warfighting systems; and a particular evaluation example: a
representative embedded, high-assurance, real-time (EHART) missile software project. We have
also developed a spreadsheet version of the evaluation model. This enables technology decision
makers to perform tradeoff and sensitivity analyses of alternative software technology
investment strategies.

Task 3. Use the models to evaluate KBSA, EDCS, and commercial technology with
respect to the baseline. The primary result is shown in Figure 1, which compares the
technologies' relative effects on development effort, using relatively conservative assumptions.
It shows that commercial technology is likely to reduce development effort of the EHART 1998
baseline project by a factor of 2.5 in 8 years (2006) and another factor of 3 in 15 years (2013).
Relative to commercial technology, a fully-supported mix of KBSA and EDCS technologies
could reduce development effort by another factor of 3 in 8 years and another factor of 6 in 15
years. These assessment results are consistent with such analyses of commercial software
technology impact as [Bernstein, 1997].

600

500

400

I c
o
!300
o
e
9
0.

200

100

i 576.25 Effort

\\

\\

\\ _ 231.12

\ X-^917 N.

©u_Z3^04 ^^\^^ ^*. 72.61

-C^\^x 22.54
~-—^5113°

—— CO —*t—K e EX

1995 2000 2005 Time 2010 2015

Figure 1. Effects of Commercial/Basic DoD (CD), KBSA (K), and EDCS/KBSA (EK)
Technology on Effort

Task 4. Formulate study conclusions and recommendations.

The six primary conclusions are:

1. The KBSA Advanced Development Model was not sufficiently robust and scalable to
provide appreciable benefits to critical DoD software projects.

2. However, the KBSA concepts, if otherwise realized, have strong potential for reducing
costs and schedules for DoD-critical warfighting software applications, The key to realizing this
potential is to develop the KBSA technology in the context of DoD warfighting domain
knowledge.

3. The KBSA Decision Support area provides an attractive new direction for Air Force
and DoD software technology investments.

4. EDCS technology investments and payoffs have both commonalities and
complementarities with respect to KBSA technology investments and payoffs.

5. The Software Technology Impact Analysis spreadsheet model provides a useful tool
for assessing alternative software technology assessment strategies.

6. There is no software technology silver bullet for DoD warfighting systems, including
reliance on commercial technology.

The two primary recommendations are:

1. The Air Force and DoD should continue a strong level of investment in software
technology, particularly for warfighting domains.

2. The software technology investments should be part of an integrated DoD software
management/process/technology strategy to ensure DoD software supremacy, particularly in
warfighting domains.

The conclusions and recommendations are not particularly surprising. They are
quantitative counterparts of the qualitative conclusions and recommendations about the need for
DoD investments in software technology in recent Air Force Scientific Advisory Board studies
[SAB, 1995; SAB, 1997] and recent DoD-level studies [NAE, 1995; Fox et al., 1995; NRC,
1997]. What is surprising is that in response to this consistent set of signals, DoD has been
reducing its level of investments in software technology.

C. Objectives of the Effort

The objectives of this research effort have been to develop and validate technical
approaches for evaluating the effects of Knowledge Based Software Assistant (KBSA) process
concepts and technology on software development effort and schedule, and to use the approaches
to perform comparative evaluations of KBSA and other sources of software technology.

These objectives relate to the strong Air Force needs for improved software technology,
particularly in areas not well served by commercial software technology. These needs are
expressed in such Air Force Scientific Advisory Board studies as New World Vistas [SAB,
1995] and Air Expeditionary Forces [SAB, 1997]. Similar needs have been expressed at the
DoD level by recent reviews of DoD/DARPA software technology programs [NAE, 1995; Fox et
al., 1995], and the National Research Council "Ada and Beyond" report [NRC, 1997].

D. Approach

The research approach has involved four tasks:

Task 1. Characterize KBSA and other sources of software technology in the context of
recent and emerging software trends. Section E.l summarizes KBSA technology, concentrating
on the KBSA Advanced Development Model developed by Andersen Consulting. It also
summarizes two other comparative sources of software technology: the commercial marketplace
and the DARPA/AFRL Evolutionary Design of Complex Software (EDCS) program. Details of
the KBSA ADM evaluation are in Section M.

Task 2. Develop models and an evaluation framework for assessing the effects of KBSA
and other sources of software technology on software development effort and schedule. Our
recently developed and calibrated COCOMOII model provides an approach for evaluation based
on the effects of alternative software technologies on the model's effort-driver parameters. The
model's calibration to over 100 1990's software projects also provides a 1990's baseline from
which to evaluate the technologies' effects.

Section E.2 summarizes COCOMO II and an additionally-developed model, CORADMO,
for evaluating the effects of rapid application development (RAD) strategies on software
development schedules. It also summarizes the evaluation domain focus — DoD-critical
embedded, high-assurance, real-time (EHART) projects — and the evaluation timeframe: current
1998 baseline efforts and schedules on a representative DoD EHART project starting in 1998,
and counterpart project efforts and schedules if the project were started in 2006 or 2013 with the
benefit of commercial technology or well-supported KBSA and EDCS technology.

Section F provides a summary of a spreadsheet-based Software Technology Impact Analysis
model, which can be used to evaluate other software technologies or to perform sensitivity
analyses on the evaluations performed in this study. Details of the models are provided in
Section J, K, and O.

Task 3. Use the models to evaluate KBSA, EDCS, and commercial technology with respect
to the baseline. Section E.3 presents example worksheets showing the technology assessments in
terms of their COCOMO II and CORADMO effort and schedule driver ratings, with rationales
for each. The primary benefits of well-supported KBSA technology come from domain-KB-
based applications generation and KB software decision aids, particularly in the EHART domain
and other DoD warfighting domains, which are less supported by commercial technology. The
primary benefits of well-supported EDCS technology come from domain architectures, general
architecture and collaboration technology, and high-assurance software technology. The
complete set of worksheets and spreadsheet calculations are in Section L.

Task 4. Formulate study conclusions and recommendations.

These are provided in Section E.4, and were summarized in the Executive Summary
(Section B).

E. Discussion of Tasks

E.1 KBSA and Other Technologies

E.1.1 The 1983 KBSA Vision

The "Report on a Knowledge Based Software Assistant" [Green et al., 1983] provided a
vision for achieving major improvements in software development and maintenance. It involved
the following primary technical advances:

a. Automatic generation of desired software systems from formal specifications.

b. Life cycle maintenance and evolution of software via modification of specifications and re-
derivation of the resulting software, rather than modifying the source code itself.

c. A life cycle process model organized around development of specifications, iteration of
automatic program generation directives to achieve desired target software performance, and
subsequently iterating the specifications to accommodate software changes.

d. Knowledge based "activity coordination" expertise built into software development and
management tools, to ensure effective software acquisition and evolution management.

E. 1.2 Developments Since 1983

E. 1.2.1 Evolution of Conventional Technology Toward KBSA Vision

Since 1983, conventional software development technology has been undergoing
significant changes, reorienting it more toward aspects of the KBSA vision. Large, powerful
COTS software components (e.g., Microsoft Foundation Classes) now form the basis for many
domain-specific applications generators, such as spreadsheets, business fourth generation
languages (4GL's), and graphic user interface (GUI) builders. The process model for using these
packages largely follows the KBSA process model (except generally for the lack of a
performance tuning cycle), as it is much more natural and cost-effective to modify applications
at the 4GL level than at the target-code level.

Concurrently, large software organizations such as AT&T, HP, DoD, and its contractors
have been making significant investments in software product line management based on domain
specific software architecture (DSSA)-based reusable components. The DSSA's are based on a
domain engineering process, which is a mix of systems engineering and knowledge engineering
focused on the applications domain of interest.

However, significant limitations remain with respect to the evolving conventional
technology. Combinations of large COTS components are extremely hard to integrate, often
leading to factors of 4-5 in budget and schedule overruns [Garlan et al., 1995]. Various
commercial and government interface standardization initiatives have been formed to address
this problem (e.g., OMG's CORBA, DoD's Defense Information Infrastructure-Common

Operating Environment (DII-COE)). Wrapper and glue-code technology has been developed to
address the problem also, but the problem remains significant.

E. 1.2.2 Evolution of KBSA Technology

The AFRL/Information Directorate KBS A program began with a number of exploratory
research efforts addressing the various facets of a KBSA capability. These facets included
prototype KBSA tools supporting software project management, requirements acquisition and
analysis, formal specification development, transformation of specifications into code, and
performance optimization. Some additional research efforts focused on facets of an
infrastructure capability such as tool integration, activity coordination, and communication
coordination [White, 1991].

Concurrently with the later stages of the facets research, Andersen Consulting developed
an exploratory Concept Demonstration version of an overall KBSA system. It demonstrated the
integration of portions of the requirements acquisition, code development, and project
management facets in an Air Traffic Control domain [De Bellis et al., 1992].

As the program has proceeded toward its ultimate objectives, it has spawned a number of
productivity-enhancing spinoffs such as the Refine-based software reengineering and testing
tools, and domain-specific applications generators covering portions of avionics, transportation
planning, and military message processing applications. These have had significant productivity
benefits for portions of a process or product, but await further capabilities to be able to address a
full life cycle process or a full system product.

The KBSA activity-coordination area began with the work on automating configuration
management and producing software project management decision aids. A number of additional
exploratory software decision support aids have been produced in such areas as risk assessment,
process model selection, review preparation, and schedule-slip assessment, e.g., [Böse et al.,
1995]. More recent AFRL-sponsored work has been for decision support aids for DoD
warfighting domains such as for security and survivability.

A major effort to integrate KBSA technology has been the KBSA Advanced
Development Model described in the next section.

E.1.3 The KBSA Advanced Development Model

The KBSA Advanced Development Model developed as part of the AFRL/Information
Directorate Laboratory's Knowledge-Based Software Assistant effort is aimed at improving
software development productivity and software quality. The fundamental approach in
achieving the above goal is providing automated support that mediates, automates and
documents all activities throughout the development lifecycle for both individual developers and
teams of developers. The challenge is building such computer based assistants as elaborated in
the KBSA program vision [Green et al., 1983].

The key concepts to meeting the above challenge are based on the understanding that
software development is a knowledge intensive activity. Creating large software based systems
requires knowledge of the domain (typically multi-disciplinary in nature), knowledge of the

process context, knowledge of existing components and hardware, and personnel resources. The
KBSA approach is then to provide means for capture and effective use of this knowledge with
the goal that such use of this knowledge by the stakeholders will lead to timely production of
high-quality software.

Given the above understanding, the key idea in the KBSA approach is exploiting artificial
intelligence (AI) concepts and representations to capture and use knowledge. The different types
of product specific knowledge are user requirements, system specifications, code, test scenarios
and documentation. Process specific knowledge corresponds to the software development plans,
resources and status of the project. Some major problems here are: a) integrated usage of the
knowledge [Selfridge, 1992]; b) managing change; and c) managing complexity. Significant
progress has been made in addressing the above problems individually [Johnson et al., 1991, Mi
et al., 1990, Smith, 1991]. The ADM objective was to build on such advances to provide an
integrated set of concepts and tools that address the problems within a single framework.

The goals of our analysis were restricted to evaluating the ADM concepts and support
features. In particular we focused on: a) understanding the ADM conceptual model, b) analyzing
ADM facilitated software development processes, c) analyzing ADM in the context of specific
application development case study, and d) mapping ADM contributions into the parameters of a
cost benefit evaluation of the ADM support features. This report documents our findings with
respect to the above goals. Here is a summary of the findings:

1. The ADM environment framework has good technical concepts (model-view
controller architecture; process-driven environment; persistent object base).

2. These concepts have several critical issues regarding the feasibility of their use on
large, complex projects (scalability; overconstraining people-collaboration processes).

3. The ADM was not fully-enough implemented to resolve these issues.

4. Much of the ADM has been overtaken by commercial technology (e.g., Rational
Rose).

5. The ADM has some good concepts such as the use of critics for software project
decision assistance or conceptual debugging.

6. For the foreseeable future, KBSA technology will have more impact on software
project costs and schedules if pursued in terms of specialized tool enhancements of
commercial environments (e.g., domain-specific application generators; critics or
software project decision aids), rather than in terms of alternative environments.

E.1.4 Related Technology

Most technology impact analyses simply compare the downstream effect of applying
their technology to the results achievable with current practice. This is generally unsatisfactory,
because it leaves the reader with no way to assess the gains via the technology being analyzed to
the gains which would have accrued via commercial technology evolution, non-technology (e.g.,
process and management) gains, or via alternative technologies.

With our COCOMO-oriented baseline of current practice and technology assessment
approach, we can do better than this. In addition to assessing the downstream effect of KBSA
technology, we also assess the counterpart downstream effects of commercial software
technology, DoD non-technology initiatives (e.g., integrated product teams, process maturity,
existing-asset reuse initiatives), and the major alternative DoD software technology initiative, the
DARPA/AFRL Evolutionary Design of Complex Software (EDCS) program.

Commercial technology can reduce software costs and schedules in a number of ways
captured by COCOMO cost drivers. Moore's Law increases in hardware speed and memory
capacity can reduce execution time and storage constraints. Commercial off-the-shelf (COTS)
software, class libraries, and open architecture frameworks can reduce costs and schedules via
increased reuse. CASE tool improvements reduce software specification, development, test, and
documentation costs. Commercial network-based collaboration tools can reduce both costs and
schedules.

The EDCS program has five technology clusters focused on two primary themes. One is
improved support for incremental software evolution (contrary to popular perception, evolution
technology begins paying off not only after delivery but after the first specifications are
formulated). The second is technology development in DoD mission contexts, such as aircraft,
missiles, satellite systems, and sensor systems. Its five technology clusters are described in the
recent EDCS Demo Days 98 document [Salasin - La Monica, 1998] as follows:

Rationale Capture and Software Understanding: Rationale is captured in a knowledge
base and represented in a manner that permits explanation, exploration, and management.
Constraint maintenance techniques can be used to monitor rationale, such as design decisions, so
that future changes to the system do not violate previous requirements.

Architecture and Generation: Architecture activities combine descriptions of component
functionality with specifications of how a component interacts, coordinates, cooperates, and
communicates with other components. The goal is to recognize the fundamental qualities
imparted to systems by these various interconnection strategies, verify that implementations
achieve these qualities, and encourage informed choices. Executable code can be generated or
composed in the context of the specified architecture.

High Assurance and Real-Time: Design, development, deployment, integration,
interoperation, and evolution of systems that provide evidence supporting high confidence that
all critical system requirements will be met. Two approaches are being explored. The first
approach combines testing and analysis of executable code. The second emphasizes providing
run-time assurances that the system will conform to desired properties.

Design Management: Addresses a scaleable information substrate that is aimed at the
retention, organization, and exploitation of all useful software information. It will: provide
shared views of the information infrastructure; support information conceptualization,
representation, and manipulation of multi-media software artifacts; enable effective collaboration
in a distributed setting; provide consistency management of all software-pertinent artifacts; and,
support processes for the controlled evolution of the substrate.

Dynamic Languages: The capabilities of dynamic languages to support incremental
changes, rapid prototyping, and optimized software performance, are combined with techniques
to increase reliability and efficiency, and facilitate interoperability with more conventional static
languages. Dynamic languages also promote implementation decisions that are made at the
latest possible stages of system development to avoid costly rework.

E.2 KBSA Evaluation Framework and Models

E.2.1 Overall Evaluation Framework

We have used the COCOMO II cost and schedule estimation model [Boehm et al., 1995]
as the primary model used in performing the KBSA impact evaluation. The rationale for using
COCOMO II involves four primary factors:

1. It was designed as a revision of the original Constructive Cost Model (COCOMO)
[Boehm, 1981] to better address current and future software life cycle practices.

2. Its internals are in the public domain, and it is available either as a free basic tool or
in several more powerful commercial versions.

3. It is well-calibrated to recent projects. The COCOMO 11.1998 calibration produces
estimates within 30% of project actuals 71% of the time for its sample of 161
projects, and 76% of the time when its coefficient is calibrated to individual
organizations [Chulani et al., 1998].

4. Its project database provides a baseline for the KBSA evaluation. Over 100 of the
projects in the database were completed in the 1990's. Their average cost driver
ratings provide a current-practices baseline from which we can assess the impact on
the cost drivers of KBSA and other technologies. We can then use the model to
derive the resulting cost and schedule estimates associated with these resulting cost
drivers.

We have found that the COCOMO II schedule estimation model is good for traditional
software projects, but not for Applications Composition or other forms of Rapid Application
Development (RAD). COCOMO II, along with COCOMO 81 and most other software cost-
schedule estimation models, uses a variant of the classic cube-root model for schedule
estimation:

M = 3VPM

where M is the development schedule in months and PM is the development effort in
person-months.

Recently, many organizations, including DoD mission-critical system organizations, have
found that it is more important to minimize software development or modification schedule
(cycle time) than to minimize cost. They have also found a number of techniques, such as rapid
prototyping, development process reengineering and critical path streamlining, collaboration

10

technology, architecture-based parallel development, and prepositioning of assets, which can
make schedules faster than the cube root model.

In concert with its Affiliates, USC-CSE has developed a RAD Opportunity Tree
providing a structural approach to such methods [Boehm-Chulani-Egyed, 1997]. We have
recently completed a COCOMO II extension called CORADMO for estimating the schedule
effects of various mixes of RAD strategies (see sections E.2.2 and K for further details).

Figure 2 provides an overview of how we use COCOMO II and CORADMO to perform
the software technology impact assessments for the representative DoD embedded, high-
assurance, real-time (EHART) missile software project.

1998 EHART project
baseline cost drivers

Projected 2006 and 2013
EHART cost drivers for:

• Commercial tech. &r
DoD practices (CD)

• KBSA technology
improvements over CD

EDCS technology
improvements over CD

COCOMO n,
CORADMO

-^ Resulting 1998
EHART cost,
schedule estimates

2006,2013 EHART-CD
"^ cost, schedule estimates

2006,2013 EHART-
KBSA cost schedule

2006,2013 EHART-
EDCS cost schedule
estimates

2006,2013 EHART-
KBSA/EDCS cost,
schedule estimates

Figure 2. Overview of Impact Assessment Approach

11

E.2.2 Evaluation Approach

Figure 3 provides more specifics on how the evaluation is conducted. It shows the ranges
of the effort multipliers and scale factors in the 1998 calibration of the COCOMO II model. A
diamond on each of the ranges shows the average multiplier for the 106 1990's projects in the
COCOMO II database.

♦ Average Multiplier for 1990's projects

Figure 3. COCOMO 11.1998 Productivity Ranges and Current Practice

For example, the range of multipliers for the TOOL (Use of Software Tools) cost driver
runs from a multiplier of 1.17 for a Very Low project use of software tools (17% less efficient
than a project using a Nominal level of tools), to a multiplier of 0.78 for a Very High project use
of software tools (22% more efficient). Detailed rating scales for TOOL and the other variables
are in Section J.

In the COCOMO family of models, software development or modification effort in
person months (PM) is calculated as:

PM = ATI (cost driver multipliers)(Effective Size)B+Scale Factors

Cost is calculated from PM via an average cost/PM factor. Effective size is converted
into equivalent thousands of lines of source code (KSLOC), including effects of reuse, breakage,
function points and language level.

The average TOOL multiplier for the 106 1990's projects in the COCOMO II database is
1.01. For TOOL and each of the other COCOMO II cost drivers and scale factors, we have
provided a worksheet in Section L providing our assessments of the effects of
commercial/normal DoD, KBSA, and EDCS improvements on the project's TOOL rating and
multiplier for the years 2006 and 2013.

12

For example, our assessment was that commercial technology would decrease the
project's TOOL multiplier from 1.01 to 0.94 by the year 2013 (about 1/3 of the way to the lowest
multiplier of 0.78). We assessed that KBSA technology would lower the multiplier farther, to
0.90; and that the combination of KBSA and EDCS technology would lower the project's TOOL
multiplier to 0.86, about 2/3 of the way to the lowest multiplier. The rationale for these
reductions was that KBSA and EDCS technology would be providing stronger tools for EHART
applications than mainstream commercial technology would provide.

Once all the cost driver multipliers and scale factors (and the reductions in effective size
due to reuse, very high level languages, and reduced breakage) were assessed, we could enter
them into COCOMO II to generate estimates of the required effort and schedule for the various
combinations of technologies and assessment dates. A similar approach was used to adjust the
estimates for RAD improvement via CORADMO.

E.2.3 Overview of COSSEMO and CORADMO Models

E.2.3.1 Introduction

The COCOMO RAD MODEL (CORADMO) is currently implemented in two parts: a
front end staged schedule and effort model, COCOMO Stage Schedule and Effort MODEL
(COSSEMO), and a back end RAD model

E.2.3.2 COCOMO Stage Schedule and Effort MODEL (COSSEMO)

The COSSEMO model is based on the lifecycle anchoring concepts discussed by
[Boehm, 1996]. The anchor points are defined as Life Cycle Objectives (LCO), Life Cycle
Architecture (LCA), and Initial Operational Capability (IOC). Figure 4, adapted from Rational
Corporation [Rational, 1998] shows the stages around the anchor points.

rganization
long
ontent

Activity levels vs. time

Stages
Process Components

Requirements Capture

Analysis & Design

Implementation
Test

Supporting Components
Management
Environment
Deployment

LCO LCA IOC

preliminary | iter. I iter. iter. I iter. I iter.
iteration(s) I #1 #2 #n #n+1 #n+: #n+2

iter.
#m

Iterations

Tier

Figure 4. COCOMO Stages (Rational Phases) and Anchor Point Milestones

13

COCOMO II, COSSEMO & CORADMO use the word "stage" so it is not confused with the
classic waterfall phases which correspond to the activities shown in Figure 4: Requirements
Capture, Analysis & Design, Implementation, and Test.

COCOMO's effort and schedule estimates are focused on Elaboration and Construction
(the Stages between LCO and IOC). Inception corresponds to the COCOMO's "Requirements"
activity, which is actually an additional (fixed percentage) effort, above and beyond the effort
calculated by COCOMO.

Another important difference of COSSEMO/CORADMO's schedule estimation from
COCOMO II's simple schedule estimation is the use of a more complex calculation for the low
effort situations. The initial COCOMO II baseline schedule equation roughly follows the classic
"three times the cube root of the effort" model. For low-effort situations, for example PM =
twenty seven (27) person months, this yields a very pessimistic and unlikely duration of M=nine
(9) months at an average staff level of P= three (3) people. As a result, a new mathematical
function is used to calculate (predict) the calendar months for a given amount of effort: the
function is only radically different in low (under 25) person-month efforts where it seems more
normal to have an equal number people and months to accomplish the task. At the higher
(greater than 64) person-month efforts, the traditional COCOMOII-1998 function is used which
is based on the traditional cube-root-like function of effort. A smooth curve is fit within these
ranges. An example using the square root and classic 3-times-cube-root formulas is shown in
Figure 5.

16.00

12.00

£

o
E

8.00

Figure 5. CORADMO Revision to COCOMO II Schedule Estimator

14

E.2.3.3. COCOMO RAD MODEL (CORADMO)

The COCOMO RAD model has its roots in the results of a 1997 CSE Focused Workshop
on Rapid Application Development [Boehm - Chulani - Egyed, 1997]. RAD is taken to mean
application of any of a number of techniques or strategies to reduce software development cycle
time. A "RAD Opportunity Tree" presented at the workshop identified 5 classes of strategies
whose degree of implementation can be used to parameterize a schedule estimate given an effort
estimate produced by COCOMOII-1998. These strategies replace the simple add-staff strategy
embodied in the COCOMO II SCED cost driver. The five classes are development process re-
engineering (DPRS), re-use and very high level languages (RVHL), collaboration efficiency
(CLAB), architecture and risk resolution (RESL), and pre-positioning of assets (PPOS). RESL
corresponds to the COCOMO II scale factor; the other four are new. All have their effects
reflected as multipliers on effort (person months, PM), schedule (months, M) and/or average
number of personnel (P). Person months of effort can actually be increased because certain pro-
active strategies, like pre-positioning of assets, are only possible with extra effort.

CORADMO utilizes the COSSEMO extension which allocates effort and schedule to the
stages which are anchored at the LCO/LCA/IOC points in a development life cycle. Staged
schedule and effort distribution is needed because the effects of the RAD strategies identified
above is different for the different stages.

The intent of CORADMO is to calculate/predict the schedule (months, M), personnel (P),
and adjusted effort (person-months, PM) based on the distribution of effort and schedule to the
various stages, and impacts of the selected RAD strategy schedule driver ratings on the M, P, and
PM of each stage.

15

E.2.4 Evaluation Cases Considered

E.2.4.1 EHART

It is important to note that the embedded, high-assurance, real-time (EHART)
applications domain is not the only domain to which this analysis applies. The EHART domain
is just one example of a class of domains called "warfighting" domains in the NRC "Ada and
Beyond" report [NRC, 1997] for which commercial technology solutions are unlikely to satisfy
many of DoD's application needs.

Other examples of warfighting domains from the NRC report are electronic warfare,
wideband surveillance, battle management, and battlefield communications. The assessment of
commercial, KBSA, and EDCS technology impact presented in this report for the EHART
domain would be applicable in large measure for the other warfighting domains as well. For
DoD commercially-dominated domains such as finance and logistics the impact of commercial
technology would be considerably higher, and the impact of KBSA and EDCS technology
considerably lower.

The particular representative EHART application used in this analysis is a 100,000
source line of code missile software suite (100KSLOC; 1400 function points if using Ada and
the 71 SLOC/FP ratio for Ada in [Jones, 1990]). It is starting its development in 1998. The
application has a higher required reliability (RELY1), execution time constraint (TIME2), and
main storage constraint (STOR3) than the COCOMO II 1990's database averages; these values
have been adjusted upwards for the analysis.

The analysis assumes that the counterpart missile software projects starting in 2006 and
2013 have substantially the same functionality, but their accuracy and performance requirements
are adjusted upwards to capitalize on improvements in computer, sensor, and guidance
technology. The net effect of these on key COCOMO II cost drivers is the following:

• SIZE: the application and architecture remain similar enough to enable significant gains
via domain-engineered reuse and applications generators.

1 Required Software Reliability (RELY): This is the measure of the extent to which the software must perform its
intended function over a period of time. If the effect of a software failure is only slight inconvenience then RELY is
low. If a failure would risk human life then RELY is very high.

2 Execution Time Constraint (TIME): This is a measure of the execution time constraint imposed upon a software
system,. The rating is expressed in terms of the percentage of available execution time expected to be used by the
system or subsystem consuming the execution time resource. The rating ranges from nominal, less than 50% of the
execution time resource used, to extra high, for 95% of the execution time resource is consumed.

3 Main Storage Constraint (STOR): This rating represents the degree of main storage constraint imposed on a
software system or subsystem. The rating ranges from nominal, less that 50%, to extra high, 95%.

16

• CPLX: the application complexity level remains essentially constant

• TIME, STOR: hardware advances reduce the resource constraints, but do not eliminate
them due to the increased accuracy and performance requirements.

These assumptions are also applicable to applications in the other warfighting domains discussed
above.

E.2.4.2 KBSA

The analysis separately considers the application of the two major KBSA technology
branches - Applications Generation (KG) and Decision Support (KD) - and their combined
KBSA application (K). The analysis assumes that programs have been put in place to develop,
extend, and transition the indicated technologies, with a particular emphasis on the development
and use of solutions capitalizing on domain knowledge for the selected DoD applications area (in
this case, EHART missile applications, but comparably applicable to other DoD warfighting
domains).

The KBSA Applications Generation (KG) program would focus on domain models,
domain architectures, tailorable components, domain-oriented very high level languages for
visual programming of applications, and general and domain-oriented applications generator
technology enabling efficient generation of both originally-specified applications or
modifications to such applications.

The KBSA Decision Support (KD) program would focus on general and domain-oriented
technology providing effective guidance on such software engineering decisions as process
model selection; domain architecture selection; architecture view integration; achievement of
system properties such as performance, reliability, safety, survivability, security, interoperability,
adaptability, usability, etc.; risk assessment and risk management planning; COTS integration;
cost and schedule management; verification and test planning and management. The intent
would be to bring decision support for such decisions to the level of maturity and applicability as
it currently is for such decisions as change control or process control via control limits.

E.2.4.3 EDCS

The analysis assumes that a strong EDCS Phase II effort would be put in place, with a particular
emphasis on developing and transitioning domain-oriented solutions in the selected warfighting
domains. It also assumes that a strong EDCS follow on technology development effort would be
put in place to expand the capabilities being developed in such areas as requirements
determination, architecture, software collaboration, incremental specification/generation/
verification, and achievement of high-assurance software.

E.2.4.4 Commercial Technology

The analysis assumes that commercial software technology will continue to focus on
mass-market domains and tool support such as broad-use requirements, design, programming,
test, project management, and configuration management aids. As indicated in the [NRC, 1997]
study, commercial software tool vendors will focus primarily on technology investments with

17

near-term payoff. Thus, commercial tools for niche markets such as DoD warfighting
applications will develop slowly.

E.2.4.5 Technology Combinations

The analysis begins with the 1998 baseline. It uses the 100 KSLOC EHART missile
application and the average 1990's cost driver ratings from the COCOMO II database. These
ratings might be considered optimistic, as they come from organizations sufficiently advanced to
have collected thorough data on their software projects. However, this is offset by the fact that
the average date of the projects' completion is 1994. On balance, the ratings should be well-
representative of 1998 EHART project practice, with the EHART adjustments noted for the
RELY, TIME, and STOR cost driver ratings.

The commercial technology and DoD practice (CD) ratings for 2006 and 2013 are
assessed next. The KBSA Applications Generation (KG) and Decision Support (KD) ratings for
2006 and 2013 are assessed relative to the CD rating levels, followed by a similar assessment for
the combined KBSA technology impact ratings. Finally, a similar set of ratings for 2006 and
2013 EDCS technology impact is assessed, followed by ratings for the combination of KBSA
and EDCS technology.

The assessments are made with the aid of a spreadsheet implementation of the technology
impact analysis model. This enabled us to easily perform sensitivity analyses with respect to our
technology ratings. We provide one set of sensitivity analyses indicating the results of our
assessments if KBSA and EDCS technology were optimistic by a factor of 2 with respect to
commercial technology. Even with this conservative assessment, the results indicate a strong
DoD payoff for the technology investments.

E.2.5 Example of Model Driver Analysis

We presented a simple summary of our model driver analysis approach for the
COCOMO II TOOL cost driver in Section E.2.2. Figure 6 below presents an example of the
actual model driver analyses performed for this study, using the COCOMO II Architecture and
Risk Resolution (RESL) scale factor. The full set of model driver analysis worksheets are
provided in Section L.

18

Driver; Baseline

RESL [default

RESL I new

3.97 3.50

RESL: Architecture/Risk Resolution
CD@.8;D@»1! KG@.8<G@M

3.00 3.20 2.50
KD@.8 <D@»1! K@«8

3.20 2.50 3.00
K®*15

2.20
E@*8

3.00
E@»15

2.20
EK@»8

2.70
EK@.15

1.70

r\ vi/ m RESL CwrentfNetf

^

1995-

L0
EH

A 141 A 2.83 ife A 4.24
VH H N

—i 1 1 i 1

A 5.85
L

A 7.07
VL

0.00 1.00 2.00 3.00 4.00 5.00 6.00
•CD- ■KG ■KD- EK A SF

7.00 8.00

CD:

KD:

EK

Significant gains due to open systems technology, commercial OO architecture technology
and DoD emphasis on risk management
Significant additional gains over CD via domain architectures I
Significant additional gainsjwer CDj/iajarchitecture and risk advisor technology
Complementary gains from KG and KD I i
Major additional gains over CD via domain architecture, general architecture technology,
high assurance technology, and rationale capture

Complementary gains from E_and_kj_ \ | j__ j |_ i I .

Figure 6. RESL: Architecture/ Risk Resolution Analysis

RESL and other COCOMO II scale factors add increments to the exponent B in the
COCOMOII effort equation:

PM = ATI (Effort Multipliers)(Size)B, where

B = B0+ 0.01 £ (Scale Factors).

The figures by the triangles show the calibrated scale factors for the RESL ratings,
ranging from 0 for very thorough architecture and risk resolution to 7.07 for very lax architecture
and risk resolution. The effect of a scale driver is higher on larger-size products: for a 100
KSLOC product, it is a factor of 10010707/100 = 1.38; for a 1000 KSLOC product, it is a factor of
10001 /1000 = 1.63. The behavioral explanation for the difference is that projects with lax
architecture and risk resolution spend much more effort in rework due to late risk and defect
removal and communications overhead across poorly-defined interfaces. These effects are larger
for larger products.

The 1998 baseline average from the COCOMO II project database is a RESL scale factor
of 3.97. The effect of commercial technology and DoD practices (CD) on this scale factor was
assessed as significant: a reduction to 3.5 by 2006 and to 3.0 by 2013. This is due partly to
ongoing commercial and DoD open systems initiatives, such as CORBA and the Defense
Information Infrastructure Common Operating Environment (DII-COE); improved commercial
object-oriented architecture support largely based on the Unified Modeling Language; and DoD

19

emphasis on risk management in DoDD 5000.1, DoDI 5000.2, and the DoD Software Best
Practices Initiative.

However, the effect is not larger because these advances do not fully address a number of
EHART domain issues (e.g., distributed real-time deadline management). Thus, there are a
number of added advances that can be achieved via KBSA and EDCS technology improvements,
particularly if pursued within an EHART domain context.

The KBSA Applications Generator (KG) technology when pursued in an EHART
domain context would provide improved domain architectures and avoidance of various classes
of architecture and real-time scheduling risks. The KBSA Decision Support (KD) technology
would provide complementary improvements via decision aids for such issues as architecture
choices, risk identification and resolution, and choices of scheduling algorithms, process models,
and verification strategies. Each of these is assessed as providing significant additional gains
down to a scale factor of 3.20 in 8 years (2006) and down to 2.50 in 15 years (2013). The
sources of gains are complementary, so that the effect of a 2-prong KBSA program (K) is
assessed to reduce the scale factor to 3.0 by 2006 and 2.2 by 2013.

The EDCS program (E) would provide some of the same improvements, particularly via
its EHART domain coverage. It would not cover some of the KBSA Decision Support
technology, but would provide stronger capabilities than the KBSA program in such areas as
general architecture description and analysis, high-assurance test and verification, risk reduction
via rationale capture, and evolutionary/incremental specification, development, and verification
techniques. The net improvement in the RESL scale factor over the CD values would be about
the same as those for a full KBSA program, to 3.0 by 2006 and 2.2 by 2013.

Since the KBSA and EDCS programs provide some complementary benefits, there is an
additional scale factor reduction assessed for a combined KBSA-EDCS program (EK) down to
2.70 in 2006 and 1.70 in 2013. The overall improvement contribution in reducing the RESL
scale factor from 3.97 to 1.70 is about 12% for a 100 KSLOC product.

E.2.6 Spreadsheet Model Overview

A multi-sheet Excel Workbook has been developed to show the impacts of the
COCOMOII and CORADMO drivers projected over time and technology type on a selected
domain's typically sized application. This spread sheet model has the name "Software
Technology Impact Analyzer". The sheets include a description of the other sheets and the
COCOMOII-1998 Calibration values and ranges for reference, and sheets for the COCOMOII
and CORADMO drivers and their impacts.

The workbook also has several protected sheets which are used for the detailed layout of
the drivers to facilitate the graphing shown in the "Drivers" sections. There are also protected
sheets for the default values (i.e. the USC Center for Software Engineering assessed values) of
the COCOMO-II.1998 and CORADMO drivers.

20

E.2.6.1 COCOMO-II Drivers, Calculations and Impacts

There are three sheets in this grouping. The first, "CII SF&EM Drivers", has the
projected drivers over time. The second, "CII SF&EM Data", aggregates the driver data and
does the COCOMOII calculations. The third, "CII E&S Impact", has graphs showing the effort
and schedule impact of the COCOMO-II. 1998 drivers projected over time.

"CII SF&EM Drivers" shows our assessed values for each of the drivers projected over
time and our rationale, and allowing the input of new values and additional or modified
rationales. A graph of the current values of the driver projected over time is included; the data
points on this graph change when new values are entered.

"CII SF&EM Data" has the assessed COCOMO-II. 1998 drivers, both scale factors and
effort multipliers, organized in a compact, single page sheet along with the calculations of the
COCOMOII effort and schedule. The calculations use the COCOMO-II. 1998 model equations
for effort and the COSSEMO equations for schedule (different schedule formulas for three
ranges of months: 0 to 16; 16 to 64; and 64 and up). Each data column of the table performs the
full set of COCOMO-II calculations for a particular year and one technology-type combination.

E.2.6.1.1 Example Spreadsheet Calculations

An example of the comparative COCOMO II effort (PM) calculations is shown in Table
1. The columns correspond to the 1998 baseline and pairs of 2006 and 2013 projections of the
effort effects of commercial/general DoD technology (CD); the KBSA Applications Generator
(KE), Decision Support (KD), and Combined (K) effects; the EDCS (E) effects; and the
combined EDCS and KBSA (EK) effects.

The six rows starting with row 4 (PREC - row 7 in the computer version) show the
assessed values of the five COCOMO II scale factors and their sum S. For example, the values
for Architecture and Risk Resolution (RESL) are exactly those explained in Figure 6. Row 10
shows the impact of the various technologies in reducing the COCOMO II diseconomy-of-scale
factor B from its 1998 baseline value of 1.076 to a 2013 EK value of 0.991. Recall that the
COCOMO II effort estimation equations in Section E.2.5 are:

PM = ATI (Effort Multipliers)-(Size)B , where

B = B0+ 0.01-Z (Scale Factors)

For COCOMO 11.1998, the calibrated values of A and B0 are 2.94 and 0.91, respectively.

Rows 11-27 (14-30 in computer version) of Table 1 show the corresponding assessed
effects of the various technologies on the COCOMO II effort multipliers. For example, the
reduction in the TOOL effort multiplier from a 1998 baseline value of 1.01 to a 2013 value of
0.86 for the combination of KBSA and EDCS (EK) technology is exactly as discussed in Section
E.2.2. The resulting effect of the ensemble of effort multipliers is to reduce their product n (row
28) from a 1998 baseline of 1.21 to a 2013 EK value of 0.38, a factor of more than 3.

21

Baseline CD CD KG KG KD KD K K EDC: EDC: EK EK I

Cost-
Driver

(now; 8Yr 15Yr 8Yr 15Yr 8Yr 15Yr 8Yr 15Yr 8Yr 15Yr 8Yr 15Yri
1998 2006 2013 2006 2013 2006 2013 2006 2013 2006 2013 2006 2013*

PREC 3.1 2.8 2.5 2.5 2.0 2.8 2.5 2.5 2.0 2.5 2.0 2.5 2.0
FLEX 3.2 2.8 2.5 2.5 2.0 2.6 2.3 2.4 1.8 2.4 1.8 2.2 1.5
RESL 4.0 3.5 3.0 3.2 2.5 3.2 2.5 3.0 2.2 3.0 2.2 2.7 1.7
TEAM 2.7 2.4 2.0 2.4 2.0 2.0 1.4 2.0 1.4 2.1 1.6 1.8 1.1
PMAT 3.7 3.0 2.2 3.0 2.2 2.8 1.8 2.8 1.8 3.0 2.2 2.8 1.8

2 16.6 14.5 12.2

1.032

13.6

1.04«

10.7

1.017

13.4

1.044 1.015

12.7

1.037

,,11
1.002

13.0

1.040

9.8 12.0 8.1

B
RELY

1.07«. 1.055 1.00« 1.030 0.991

1.16 1.14 1.12 1.14 1.12 1.14 1.12 1.14 1.12 1.10 1.06 1.10 1.06

DATA 1.04 1.01 0.98 1.01 0.98 1.01 0.98 1.01 0.98 1.01 0.98 1.01 0.98

CPLX 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16

RUSE 1.01 1.05 1.03 1.10 1.08 1.05 1.03 1.10 1.08 1.10 1.08 1.10 1.08

DOCU 1.01 0.97 0.95 0.93 0.91 0.95 0.93 0.92 0.89 0.92 0.89 0.92 0.89

TIME 1.20 1.12 1.08 1.12 1.08 1.12 1.08 1.12 1.08 1.08 1.04 1.08 1.04

STOR 1.08 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02

PVOL 1.03 1.01 0.98 1.01 0.98 1.01 0.98 1.01 0.98 0.98 0.94 0.98 0.94

ACAP 0.88 0.88 0.88 0.88 0.88 0.86 0.82 0.86 0.82 0.88 0.88 0.86 0.82

PCAP 0.91 0.91 0.91 0.91 0.91 0.89 0.85 0.89 0.85 0.91 0.91 0.89 0.85

PCON 0.98 0.98 0.98 0.98 0.98 0.96 0.93 0.96 0.93 0.96 0.93 0.95 0.91

AEXP 0.90 0.89 0.87 0.87 0.84 0.89 0.87 0.87 0.84 0.87 0.84 0.87 0.84

PEXP 0.95 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92

LTEX 0.97 0.95 0.92 0.93 0.89 0.95 0.92 0.93 0.89 0.93 0.89 0.93 0.89

TOOL 1.01 0.98 0.94 0.98 0.94 0.96 0.90 0.96 0.90 0.94 0.88 0.94 0.86

SITE 0.93 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.88 0.88 0.84 0.88 0.84

SCED 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

n 1.21 0.93 0.67 0.89 0.63 0.83 0.52 0.81 0.49 0.72 0.45 0.68 0.38

SCEDK 95.71 «.71 95.71 95.71 95.71 95.71 95.71 95.71 95.71 95.71 95.71 95.71 95.71

SIZE 100 60 30 40 15 60 30 40 15 35 12 30 10
Cll PM 505.4« £04.55 *5.7* 124.00 25.97 175.«5 4S.05 10*.$3 21.51 $5.«.* H.37 «t.71 10.90

Table 1. Comparative COCOMOII Effort Calculations

The other major influence on software effort in the COCOMO II equations is SIZE,
roughly equivalent to the number of source instructions one needs to program. Technology can

22

reduce this via reuse, reduced breakage, or very high level languages, particularly in concert with
domain specialization and knowledge. The SIZE worksheet in Section L provides the rationale
for the size reduction effects of the various technologies; the resulting reductions are shown in
row 35 of Table 1.

Given the values of B, n, and SIZE, the COCOMO II equations produce the
corresponding effects on effort (CII_PM) of the various technologies (row 36). The effects will
be displayed graphically and discussed in Section E.3 below. The full set of spreadsheet
calculations for cost/effort and schedule impacts are provided on Section L.

E.2.6.2 CORADMO Drivers, Calculations and Impacts

Like the COCOMOII-1998 sheets, there are three sheets in this grouping. The first,
"RAD Drivers " has the projected drivers over time. The second, " CORADMO Data ",
aggregates the driver data and does the CORADMO calculations. The third, "RAD SM Impact",
has graphs showing the resulting impacts of the COCOMO-II.1998 and CORADMO drivers
projected over time.

"RAD Drivers" has our assessed values for each of the CORADMO schedule multiplier
drivers projected over time and our rationale, and allowing the input of new values and
additional or modified rationales. A graph of the current values of the driver projected over time
is included; the data points on this graph change when new values are entered.

"CORADMO Data" aggregates the CORADMO drivers, both scale factors and effort
multipliers, organized in a compact, single page sheet along with the calculations of the
CORADMO effort and schedule. The sheet also allows for the distribution of effort and
schedule to the various stages as specified in the COSSEMO model. The calculations use the
CORADMO model equations to distribute schedule and effort based on the selected percentage
allocations and the schedule multiplier driver ratings. Each PM & M pair of data columns of the
table performs the full set of CORADMO calculations for a particular year and one technology-
type combination.

"RAD SM Impact" has graphs showing the effort, schedule and Full-time Software
Personnel (FSP) impacts of the entered CORADMO drivers projected over time. All three are
shown for each stage (Inception, Elaboration, and Construction) since the schedule multipliers
can impact both effort and schedule; and the FSP values are then simply the result of dividing
effort (in person months) of a stage by its duration (in months).

E.2.6.3 Technical Impact Final Results

At the end of the "RAD SM Impact" worksheet, following the RAD impacts by stage, are
the summary charts for effort and schedule by technology over time that result from the
COCOMO II and CORADMO driver changes over time. The data for these charts is actually
shown on the second page of the "CORADMO Data" sheet. The effort and schedule results are
generated by adding the effort or schedule, respectively, for all three stages. Since COCOMO II
only calculates the effort and schedule for development, a second set of summary charts was
generated so the COCOMO-II model results could be easily compared to the CORADMO model

23

results. The second set of charts totals effort and schedule only for the Elaboration and
Construction stages. Along with each chart are copies of the rows of the appropriate data from
"CORADMO Data" sheet.

E.3 KBSA Comparative Impact Analysis Results

E.3.1 Cost/Effort Impact

Figure 7 shows the relative assessed effect of the various technologies in reducing the
amount of effort required to develop the 100 KSLOC EHART missile application. The 1998
baseline effort is 505 person months (PM). The assessed effect of commercial technology and
DoD practices (CD) is to reduce this effort by a factor of 2.5 (to 204 PM) by 2006 and another
factor of 3 (to 64 PM) by 2013.

510.0

480.0

450.0

420.0

390.0

360.0

330.0

vt 300.0

3 270.0

c
9 240.0

' 210.0

180.0

150.0

120.0

90.0

60.0

30.0 • ■

CORADMO
Development (E»C) Effort

0.0-

64.3
-RAD CD

-RADE
, ^ ^ 28.5
^<^2 15.7

1995 2000 2005 2010 Time 2015

Figure 7. Impact of Technologies on Software Effort or Cost

These are impressive gains, but it must be remembered that most of them are also within
reach of any rogue nation or terrorist organization purchasing commercial technology. To keep a
competitive military edge, USAF and DoD need to have superior software management and
technology capabilities.

The remainder of the curves indicate that significant improvements are available via
investments in KBSA and EDCS technology. A combination of EDCS and KBSA technology
investments is assessed to provide another factor-of-3 gain over commercial/DoD technology
and practices (to 65 PM) by 2006 and another factor-of-6 gain (to 10 PM) by 2013.

24

An analysis of the major factors contributing to the additional technology gains indicates
that the primary source is the reductions in effective size due to combinations of software
technology and domain knowledge engineering. These account for almost all of the gains from
KBSA Applications Generator (KG) technology, and much of the gains from EDCS (E)

technology.

However, as seen by the relative position of the KG effort values, domain engineering is
not a single silver-bullet solution for achieving DoD warfighting software productivity gains (nor
is commercial technology). Other particularly strong contributors were:

• High assurance technologies, strongly improving the cost driver factors for RESL
(Architecture and Risk Resolution), RELY (Required Reliability), TIME (Execution
Time Constraints), and TOOL (Use of Software Tools);

• Requirements, collaboration, and rationale capture technologies, strongly improving
the cost of driver factors for RESL (Architecture and Risk Resolution), TEAM (Team
Cohesion), PCON (Personnel Continuity), and SITE (Multisite Development);

• KBSA decision support technologies, strongly improving the cost driver factors for
RESL (Architecture and Risk Resolution), TEAM (Team Cohesion), ACAP and
PCAP (Analyst and Programmer Capability), PCON (Personnel Continuity), and
TOOL (Use of Software Tools), particularly in the longer term (2013).

• Software architecture and incremental evolution support technologies, strongly
improving the cost driver factors for RESL (Architecture and Risk Resolution),
TOOL (Use of Software Tools), and MCF (Maintenance Change Fraction, factored
into SIZE).

Some software technology areas receiving recent DoD support which did not generate
significant cost and schedule impacts over commercial technology impacts were Integrated
Software Environments and Formal Methods.

Integrated Software Environments are being supported at such a critical-mass level by
commercial technology that they become too difficult to match via independent DoD efforts.
Formal Methods are very important for ultra-high assurance DoD applications such as computer
security and information warfare; they also provide support for small-scale applications
generation capabilities. But they do not apply well or scale up well to large COTS-intensive
applications.

E.3.2 Schedule Impact

Figure 8 shows the counterpart results of the CORADMO-based analysis of the impact of
the various technologies on the development schedule for the representative EHART project.
The detailed spreadsheet analysis for this and related effects are in Section L.

25

25»

20

15

1 CoRADMo Development (E«C) Schedule

OR

10.3

-RAD CD -RADK ■RADEK

1995 .2000 2005 Time 2010 2015

Figure 8. Impact of Technologies on Software Schedule

P*!8™6™1 trends of ^ results are similar to those in the cost/effort analysis shown in
figure 7. The main highlights are:

• Commercial technology and DoD practices (CD) provide significant gains, reducing
the 1998 baseline EHART schedule from 24.1 months to 16.5 months by 2006 and to
10.3 months by 2013. Besides the contributions via reduced effort, the primary added
RAD contributions came from added collaboration efficiencies via commercial
collaboration technology gains and DoD Integrated Product Team practice gains.

• KBSA technology has the potential to reduce the development schedule even lower
to 12.4 months by 2006 and to 3.5 months by 2013. Besides reducing effort, the
added RAD gains come from rapid prototyping via domain knowledge-based
application generators and from KB decision aids for accelerated processes and
collaboration.

• EDCS technology can reduce the schedule even further, via domain application
generators plus other architecture-based prepositioning of assets and via collaboration
technology.

• A unified EDCS/KBSA/commercial technology/DoD practices approach is assessed
to reduce the schedule even further, to 10.3 months by 2006 and to 2.3 months by
2013. The main reason for the significant additional shortening by 2013 is that the

26

project size has been reduced to the point that schedule and staffing can follow the
square-root relation in Figure 5 rather than the 3-times-cube-root relation.

The CORADMO analyses also address effects of the RAD strategies on development
effort, but the net results for the EHART project were not much different from the COCOMO II
estimates. The detailed results are in Section L.

E.3.3 Sensitivity Analyses

The technology-impact results in Figure 7 and Figure 8, and in the detailed analyses in
Section L, are based on the KBSA ADM evaluation and the authors' experience-based
judgement It is always possible that these judgements are overly optimistic or pessimistic. To
reduce these possibilities, we have performed or provided several cross-checks:

• Boehm and Brown independently assessed the effects of the technologies on the
model parameters, resulting in considerable iteration of the parameter values.

• We reviewed the values and results with two industry software metrics experts and
did a preliminary briefing of the results for AFRL/IFTD, resulting in further
suggestions and iteration of the results.

• We have done a comparative analysis with the results of similar studies (in Section
E.3.4 below), and have found the results fairly consistent.

• We have developed the spreadsheet model so that anyone with different technology
assessments can enter them in the model and see the results. The model and its usage
instructions are in Section N, and also available via our Web site at
http://sunset.usc.edu/COPROMO/KBSA_LCE/kbsa_lce.html.

• We have used the spreadsheet model to perform various analyses of the sensitivity of
the results to the model's inputs. The most significant example is presented next;
others are included in Section L.

Figure 9 shows the result of a sensitivity analysis in which we assumed that all of our
assessments of the influence of KBSA and EDCS technology were optimistic by a factor of 2.
For example, in the last column of Table 1 (Section E.2.6.1.1), the effect of the combined 2013
EDCS and KBSA technology was to reduce the scale factor sum 2 from its 2013 CD value of
12.2 down to 8.1. Similarly, the assessment reduced the effort multiplier product n from 0.67 to
0.38, and the effective size from 30 to 10 KSLOC.

For the analysis in Figure 9, these differences, and all the other differences between the
2013 CD assessed values and the assessed values in the columns to the right of it were reduced
by a factor of 2. For the 2013 EK values above, the 2 value became 10.2, the tl value became
0.52, and the SIZE value became 20 KSLOC.

27

250

200

150.

100

50-

CD Factors

50% EK Factors
EK Factors

2006 2013

Figure 9. Effect of 50% Reduction in Effort Improvement Factors

The results in Figure 9 show that reducing the EK improvement parameters by a factor of
2 leads to reduction in effort savings by a factor of 1.7-1.75 (e.g., for 2013, (67-ll)/(67-32) =
1.75). For the other technology comparisons, the results were similar: a savings reduction close
to but somewhat less than a factor of 2. Even with the more conservative payoff assessments,
the resulting benefits appear well worth the technology investments.

E.3.4 Comparison to Other Studies

A good comparative study of commercial technology impact on software effort or
productivity is provided in [Bernstein, 1997]. Bernstein's Figure 10 shows the trend in
"expansion factor," the ratio of machine language instructions per line of generated source code,
between 1960 and 1995. The trend line in Figure 10 indicates a factor-of-10 improvement every
20 years, a figure very consistent with this study's factor-of-7.7 improvement from commercial
technology over 15 years. Bernstein's 1995 and projected 2000 expansion factors rise above this
trend line, and appear to be due to a^strong degree to domain-oriented reuse gains. This is again
consistent with this study's determination of additional productivity benefits from domain-
oriented technology in DoD warfighting domains not well covered by commercial technology.

28

Projection,

1,000

Expansion
factor

The ratio of
machine -
level lines
of code to 10

source lines
of code

Technology
change: 1960 1965

Machine Macro
instructions assemblers

1995 2000
Object- Large-
oriented Kale
program- reuse

ming

Regression
testing

461 Small-scale
reuse

Figure 10. Software Expansion Factor vs. Time [Bernstein, 1997]

A similar study to this was done for the DoD STARS program [Boehm - Standish, 1983].
It predicted a factor-of-4.34 effort reduction over 10 years, but did not distinguish between
STARS-based and commercial technology-based gains. The DoD Software Technology
Strategy [DoD, 1991] used a different value-chain approach to estimate effort reductions for each
type of software activity (requirements, design, code, test, documentation, management, etc.). It
indicated a potential factor-of-12 savings in software effort over 15 years, but a more likely
factor-of-4 savings in 15 years due to technology transition inertia. It did not distinguish
between savings due to DoD technology investments vs. those due to commercial technology.

Both of these studies indicated that effective size savings via reuse was the largest source
of savings, although only the latter emphasized domain-specific reuse. All three of the major
recent books on software reuse, [Poulin, 1996; Jacobson et al., 1997; Reifer, 1997], indicate that
reuse is the most attractive source of software savings, and that domain-specific reuse is far more
effective than domain-independent reuse.

29

E.4 Conclusions and Recommendations

E.4.1 Conclusions

1. The KBSA Advanced Development Model was not sufficiently robust and scalable to
provide appreciable benefits to critical DoD software projects. We found its framework
difficult to scale to large projects, and its toolset to be small with respect to large project
needs.

2. However, the KBSA concepts, if otherwise realized, have strong potential for
reducing costs and schedules for DoD-critical warfighting software applications. The key
to realizing this potential is to develop the KBSA technology in the context of DoD
warfighting domain knowledge. For KBSA Applications Generation, this implies
focusing on DoD warfighting areas where a good start exists towards domain
engineering, domain architecting, and development and use of reusable domain assets.
Some of the USAF/ESC Product Line areas are good candidates, as are some avionics,
missile, and sensor processing domains.

For KBSA Decision Support, this involves both domain-specific decision aids and more
generic decision aids for security, survivability, risk assessment, architecture definition,
and process definition and management.

3. The KBSA Decision Support area provides an attractive new direction for Air Force
and DoD software technology investments. Knowledge-based and agent-based mixed-
initiative technical approaches are generating high payoffs in decision support areas
similar to software engineering such as manufacturing and logistics. A similar initiative
for software engineering would build on existing technology in attractive new directions.

4. EDCS technology investments and payoffs have both commonalities and
complementarities with respect to KBSA technology investments and payoffs. To some
extent, good portions of a KBSA Applications Generation program have been pursued
under EDCS. A KBSA Decision Support program could build upon and provide new
directions for some current EDCS efforts in such areas as rationale capture, design webs,
and architecture technology.

5. The Software Technology Impact Analysis spreadsheet model provides a useful tool
for assessing alternative software technology assessment strategies. It enables
technology managers to relate candidate technologies' effects on software cost and
schedule drivers to resulting project cost and schedule improvements. It is well
calibrated and baselined with respect to current software practice and commercial
technology and productivity trends.

6. There is no software technology silver bullet for DoD warfighting systems, including
reliance on commercial technology. A mixed strategy of commercial technology and
complementary DoD warfighting software technology is necessary to address DoD's full
range of needs.

30

E.4.2 Recommendations

1. The Air Force and DoD should continue their investments in software technology,
particularly for warfighting domains. Both a strong DoD integrating emphasis and
strong service domain-focused applications emphasis are needed. A sustaining EDCS
Phase I-level technology generation program with continuing EDCS Phase Il-level
technology insertion efforts appears to be an appropriate magnitude for such a program.

Given their commonalties, a combined EDCS-KBSA program could be pursued at
roughly the initially-planned EDCS Phase I and II levels of investment. If
complementary DoD management and commercial technology assimilation strategies
were in place, the program could generate software cost and schedule benefits similar to
those estimated in the analysis in Section E.3. As noted in [NAE, 1995] and [Fox et al.,
1995] the resulting return-on-investment ratio for DoD would be very high.

From Section E.3.1, the strongest software technology investment impacts are likely to
come from DoD warfighting domain-based reuse and applications generation; high
assurance technologies; requirements, collaboration, and rationale capture technologies;
and software architecture and incremental evolution support technologies. Areas with
less strong general investment impacts were integrated software environments and formal
methods, although formal methods are important for some small or ultra-high assurance
DoD applications areas.

2. The software technology investments should be part of an integrated DoD software
management/process/technology strategy to ensure DoD software supremacy,
particularly in warfighting domains. Besides the technology development and transition
investments, elements of the integrated strategy are OSD management initiatives toward
integrated Capability Maturity Models and best practices; acquisition initiatives such as
the USAF/ESC Product Line strategy; domain engineering initiatives such as the SEI
Product Line Systems program; and enterprise architectures building on the DII-COE.

The conclusions and recommendations are not particularly surprising. They are
quantitative counterparts of the qualitative conclusions and recommendations about the need for
DoD investments in software technology in recent Air Force Scientific Advisory Board studies
[SAB, 1995; SAB, 1997] and recent DoD-level studies [NAE, 1995; Fox et al, 1995; NRC,
1997]. What is surprising is that in response to this consistent set of signals, DoD has been
reducing its level of investments in software technology.

31

F. Discussion of Tools: Technology Impact Analyzer

F.l Tool Overview

The Technology Impact Analyzer is a multi-sheet Excel Workbook that shows the
impacts of the COCOMO II and CORADMO drivers projected over time and technology-type
on a selected domain's typically sized application. The sheets include an overview and sheets for
the COCOMO-II.1998 , COSSEMO and CORADMO drivers, data and their impacts.

The overview sheet includes abbreviations and descriptions of the other sheets on the first
page, Figure 11. More information on the overview and the other sheets is available Appendix 5.

Techonology Impact Analyzer Abbreviations i

CD= Commercial technology and DoD general practice j

KBSA= Knowledge Based Software Assistant j

KBSA Applications Generators, including KB domain engineering («CD)

KBSA Project Decision Support (SE decision assistant concept) (>CD)
BothKG&KD

EDCS or Evolutionary Delivery of Complex Software Sysetms j
both EOCS & KBSA (KG & KD)

EHART= Embedded, High Assurance, Real Time (baseline application domain]

KG=

KD=

K=
E=

EK=

Cll= CoCoMo 11-1998

SF= Scale Factor EM= Effort Multiplier

RAD= CoRADMo (schedule & effort)
SM= Schedule Multiplier

PM= Person Months

M: Months

FSP= Fulltime Software Personnel
SSE= Staged Schedule and Effort

Hncepstion Elaboration iC= Construction
The Techonology Impact Analyzer Workbook has several worksheets covering |

|Jechnoloy Impact Analyzer Overvjew Sheet ('TIA^tab): This sheet with | I

 [:, j. 1.1 Abbreviations and worksheet overviews J i j
2. jCOCOMOJM 398 Calibration values and ranges [; j

 [COCOMOIM998 Scale'Factor & Effort Multiplier Drivers (j i

PPCOMOI-1998 Scale Factor 8c Effort Multiplier Drivers projected over time ("Cll Drivers" tab)

ilndiuidua! parameters displayed with default and new/current numeric values, and graph of current values.

,„ ^0001^011-1998 Scale Factor Sc Effort Multiplier Data ("Cll Data" tab) ""(

!• |Pa'amete's organized in aicompact. single page for review, along with schedule & effort calculation*
2. j Calculates effort according to the COCOMOII-98 rules and schedule according COSSEMO rules

 „ U.... lWif.fer*DMch?d.^ 18; 16 to 64; and 64 and up).
 .„J .COCOMOj]-1998Effort ar^ Scheduje Impact ("Cll Impact" tab) £ T "i ~" "* (' ~J —-r— -

 ,,.... lM?Plaas the Effort & Schedule impactsthat result from thedriyer values" change over dme i T ™

 PP.'?ä™PiJia5*M*eM9niI^ra,'9nand Construction) percentage distribution of Schedule and Effort ("SSE V" tab) ''■
 u_ .] l-ijjnpuyjf inception.^] "]" " *

 ; 1 2 J Chart of distribution °M effort impacts on the current COCOMO II caiculations 1 "1 T
 CORADMO: Schedule and Effort Multipliers Projected Over Time for KBSA Eyaluator \~™~ t "~"."
 j I.CpRADMo Orjyersprojected over time ("RAD Drivers" tab) ' 1 " > ; ~T ' '""""1 "~"""t""""

l!ndjyidual parameters displayed with default and newilcurrent numeric values, and graph of current values, i *
 I CpRADMo Driversprojectedlovertime ("RAD Data" tab))

I |:...J ParametersOrganized in compact single page for review > j j

. ?■ICalculates effort, schedule & FSP according CORADMO rules after distribution of effort & schedule per COSSEMO rules
 CoRADMo Schedule and Effort Multipliers Impact ("RAD Impact" tab) |

■£i!!^?'»!tg;f-°>-----J Displays the Effort, Schedule and FSP impacts that result from the driveryajues^changeover timej _ j

Ll±JMi\llJL/ CHDrivers /(a^ateXgnn^^^

Figure 11. TIA Abbreviations and Sheet Descriptions

F.l.l COCOMO-II Drivers, Calculations and Impacts

There are three sheets in this grouping. The first, "CII Drivers", has the current projected
scale factors and effort multipliers drivers over time and allows for changing the default values
to their new values. The second, "CII Data", aggregates the driver data and does the COCOMO
II calculations. The third, "CII Impact", has graphs showing the effort and schedule impact of
the COCOMO-II.1998 drivers projected over time. Only "CII Drivers" allows input. More
information on "CII Drivers" is available the next section. More information on all these sheets
is available in Appendix 5.

32

F. 1.2 CoSSEMo Schedule and Effort Percentage Distributions per Stage

This sheet "SSE %", allows the input of percentage distributions of effort and schedule
to the various stages, Inception, Elaboration, and Construction, as required for the COCOMO II
Staged Schedule and Effort Model (COSSEMO). The impact of these distributions on the
COCOMO-II.1998 baseline results is shown in the chart at the end of the worksheet.

F.l .3 CORADMO Drivers, Calculations and Impacts

Like the COCOMO-II.1998 sheets, there are three sheets in this grouping. The first,
"RAD Drivers", shows the new or default projected drivers over time. The second, "RAD Data",
aggregates the driver data and does the CORADMO calculations. The third, "RAD Impact , has
graphs showing the resulting impacts of the CORADMO drivers projected over time when
applied to the corresponding COCOMO-II.1998 results with the COCOMO drivers projected
over time. At the end of the page of the "RAD Data" sheet are the summary calculations for
totals of schedule and effort across stages allowing comparison with the results ^ol
COCOMO-II1998. Only "RAD Drivers" allows input. More information on RAD Drivers is
available the next section. More information on all these sheets is available in Appendix 5.

F.l.4 Technical Impact Final Results

At the end of the "RAD Impact" worksheet, following the nine RAD impacts by stage
charts, are the summary charts for effort and schedule by technology over time that result from
the COCOMO-II 1998 and CORADMO driver changes over time. The effort and schedule
results are generated by adding the effort or schedule, respectively, for either all three stages or
just for the Elaboration and Construction stages. More information on this sheet is available in
Appendix 5.

33

F.2 COCOMOII Drivers Display, Modification and Rationale

The worksheet with the "CII Drivers" shows all of our assessed values for each of the
scale factor or effort multiplier drivers, projected over time and technology, and our rationale.
Each page of this worksheet has the current projected COCOMO-II.1998 drivers, both scale
factors and effort multipliers, over time and allows for changing the default values to their new
values. The rationales for the default settings of the drivers are included; they should be
modified when "new" values are provided. Figure 12 shows the scale factor PREC's
information.

PREC: Precedentedness

c~^ ~ JS^ but not ,argg|

KG. jSolid gains due to stronger domain understanding and technology, but offset by continuing
need for more advanced systems

K:_
E:
EK:

No additional domajn gains over KG

No additional^domaingains over CD
Same as KG) 1

Same as E and K

r
— i..

Figure 12. PREC's Driver Entry, Modification and Display

The default and current values of the driver, projected over time and technology, are shown in a
small table above the chart of the current values. The last row of this table accepts the input of
new values of the driver, projected over time and technology. The chart below the table shows
the driver's current values over time for each technology combination. The data points on this
graph change when new values are entered.

Since each value of a driver should have a rationale, the rationales for the default values
(our assessed values) are shown below the chart. The area below the rationales for the default
values allows the input of additional or modified rationales.

34

F.3 COSSEMO Distribution of Schedule and Effort per Stage

There are two parts to this worksheet: 1) Input of inception, elaboration and construction
stages' schedule and effort percentages; and 2) Chart of distribution of schedule and effort
impacts on the current COCOMOII calculations.

Input of schedule and effort percentage distributions per stage, Inception, Elaboration,
and Construction, is required for the COCOMO II Staged Schedule and Effort Model
(COSSEMO). To help visualize these distributions, their impact on the COCOMO-II.1998 100K
EHART baseline is displayed in the chart at the end of the worksheet. Figure 13 shows the
entire content of this worksheet.

Staged Schedule and Effort: Percentages
% Effort
inception

■Mijjg

tx*pt.f#.de/i<*.V; 14

% Effort 28
Elaboration

Ebä f« <*/#*%• ! IS

«Schedule
inception

40 iSÜ

tXft.st*r<t<tf/x*X- I it

«Schedule' 40 ij

£M scAfd dr/tuk.t^

% Effort
Construction

ft» «?<**%>

72 ! M**41• *Uk>*} <K«»4*4 rttr

«Schedule
CÖnstfuctibri

60

Con -<«A defK* \ 1W

The following chart shows;'the dTsWbuiön of effort and schedule
»Is Important because the RAb-driyer multipljers have different effects on drffgrentstaoes.; ,

30.0 -I

25.0 -

* 20.0 -
.

w 15.0 •
•
°* 10.0 -

\ ;
5.0 •

0.0 ! i , 1 (1 ' h 1 1 B-l

0.0 5.0 10.0 15.0 20.0
Months

25.0 30.0 35.0 40.0

-Inception -Elaboration -Construction --A--Ave —o— ai_P

Figure 13. Staged Schedule and Effort Distribution

The values of the Inception and Elaboration percentages for schedule and effort are
adjusted by clicking on the up/down arrows (spinners) shown to the right of their values. The
current values are displayed in bold, along with the corresponding calculated values for the
Construction stage. The default values for all the percentages are shown in italics.

35

F.4 CORADMO Drivers Display, Modification and Rationale

"RAD Drivers" has our assessed values for each of the relevant CORADMO schedule
and effort multipliers projected over time and our rationale. It also allows the input of new
values and additional or modified rationales. A graph of the current values of each driver
projected over time and technology is included; the data points on this graph change when new
values are entered.

Schedule! RVHL: Reuse and Very Hi gh Level
Inception 1 Baseline :D@.8 D@.15 <G@»8
=WHL-M jdefgjj 1.001 0.991 0.981 0.98
WHL-MI new

G®.15 <D©»8
0.96 0.98

PMsarr

D@«15

0.96

K@.8 K.@15
0.97

Language

0.94

E@*8

0.97

E@*15

0.94

Inception
EK@.8 K@«15

0.96 0.92

2010 - ^%v RttL Schedule Multiplieis—lneeption

2005- ^.\A
2000- ■^x

1995-

A>r A 0.94
H

A 0.98"*% 1.00 A 1.0+
N L VL

0.85 0.89 0.93 0.97 1.0
 CD-S-KQ-e-KD-*-K—I— E-o— EK A Siwj

1.05

 J.J 1 _ I ..] _ 1. J?W^ . I... j j
B?senne: JRel8*ivö|y,ow current capability and experience in EHART domain (standard 3GL module reuse)

CD:

KD:_

KG:

KT~

B<:

NOTE:

As indicated under SIZE in the Effort impact analysis, commercial technology and DoD EHART

595!*!™-^?? wi" Provic,e some but not much improvement over standard 3GL module reuse

•^™.!LI5i^ asset identification and decision support

Some gains over CD via domain oriented prototype applications generation!

Complementary gains from KD and KG

^p1??8^ 9?^s ?y?r 9^.^.^
Some complement any gains from E and K

RVHL^effects in construction accounted for with regular COCOMOII effort adjustment

 I

Figure 14. RVHL's Inception Stage Schedule Multiplier Driver Information

The default and current values of the driver, projected over time and technology, are
shown in a small table above the chart of the current values. The last row of this table accepts
the input of new values of the driver, projected over time and technology. The chart below the
table shows the driver's values over time for each technology combination.

Since each value of a driver should have a rationale, the rationales for the default values
(our assessed values) are shown below the chart. The area below the rationales for the default
values allows the input of additional or modified rationales.

36

F.5 Final Results: Technology Impacts

At the end of the "RAD Impact" worksheet, following the nine RAD impacts by stage
charts, are the summary charts for effort and schedule by technology over time that result from
the COCOMO-II.1998 and CORADMO driver changes over time. The "new/current" data for
the summary charts is actually shown at the end of the "RAD Data" sheet.

There are three different types of charts:

1. Overall (effort or schedule for all three stages or just for development (elaboration plus
construction), with some of these having alternative axes layouts;

2. COCOMO-II.1998 compared to CORADMO (final) results, with some of these charts
showing only the major technology groupings (CD, K and EK);

3. Final results of default driver settings compared to new/current driver settings' results.

The list of all the charts corresponding to final results is shown in the Table 2, below.
More detailed information and examples of these charts are given in an Appendix.

Number

1.

3.

4.

Title

CORADMO Total Effort (effort on x axis)

CORADMO Total Effort (years on x axis)

CORADMO Total Effort (only for CD, K and EK)

CORADMO Development (E+C) Effort with COCOMOII Development (E+C)
Effort

5. CORADMO Development (E+C) Effort with COCOMO II Development (E+C)
Effort (only for CD, K and EK) ^_

CORADMO Total Schedule (schedule on x axis)

CORADMO Development (E+C) Schedule with COCOMO II Development
(E+C) Schedule(only for CD, K and EK)

8.

9.

10.

CORADMO Development (E+C) Schedule with COCOMO II Development
(E+C) Schedule

New/Current CORADMO Total (I+E+C) Effort with Default CORADMO Total
(I+E+C) Effort

New/Current CORADMO Total (I+E+C) Schedule with Default CORADMO
Total (I+E+C) Schedule

Table 2. Final Result Charts

37

F.6 Sensitivity Analysis Example

One of the reasons for allowing input of new values for the drivers is to permit sensitivity
analysis. Suppose it is believed that the impact of reuse and very high level languages has been
over estimated, and that only 50% of the originally estimated impact seems to be justified.

F.6.1 COCOMO-II. 1998 Driver Modification

First, the impacted COCOMO-II. 1998 drivers need to be adjusted. Since there is no
explicit driver for reuse, but rather the effective size is modified to reflect the decreased amount
of reuse and/or use of a very high level language. This can be accomplished by filling each cell
in the "new" row except the baseline, which remains the same, by a formula that subtracts fifty
percent of the difference between the baseline and the default. The new values are shown in
Figure 15.

B57
HI
650
661
111
663
664
US

A B; C D G H K ;ie o Qi R

jji68
669
670
|7i
672
673

674
676

Driver
SIZE default 100.0
SIZE I new

2015

2010

2005

SIZE: KSLOC (repeated for new values and justi cation)

2000

1995

Size (KSLOC) is the primary determinant of software effort in COCOMO II (and other SCE models).
For COCOMO II, effective size = f(KSLOC or FP, BRAK, ADSI, DM, CM, IM, SU, UNFM).

Baseline is a 100 KSLOC embedded, high-assurance, real-time (EHART) software application.

ALL: Only fifty percent impact on size due to reuse/RVHL

Figure 15. Fifty Percent SIZE Impact

The "new" values, except baseline, in the table above the chart, like that in E632, were
calculated with a formula like: "=$D659-($D659-E659)*(50/100)". The new values are reflected
in the chart below. Also, the rationale is noted in the section following the chart.

F.6.2 CORADMO Driver Modification

Since RVHL reflects the impacts of reuse and/or very high level languages, it is the only
driver that needs to be adjusted. Figure 16 shows the new values for the RVHL schedule
multiplier for the inception stage.

38

A B C
P Q R

Schedule: IRVHL: Reuse and Very High Level Language Inception

Ji
JB.

.20

.21
J2

_2«

.26

23

RVHL Projection Rationales ; \
Baseline: Relatively low current capability and experience in EHART domain (standard 3GL module reuse)

As indicated under SIZE in the Effort impact analysis, commercial technology and DoD EHART
domain initiatives will provide some but not much improvement over standard 3GL module reuse

Some gains over CD via domain oriented reuse asset identification and decision support

CD:

KD:

KG:

K:

E: 7
EK:

NOTE:

^Some gains over CD via domain oriented prototype applications generation ;

Complementary gains from KD and KG '.
Significant gains over CD via domain architecture technology and associated prototype applications generation

■Some complement any gains from E and K
RVHL effects in construction sccounted for with regular COCOMOII effort adjustment ; ;

ALL: Only'50% impact as part of:swsitjvity analysis '...!.. > I i

Figure 16. RVHL Inception Stage Adjustment for 50% Impact

The "new" values, except baseline, in the table above the chart, like that in E4, were
calculated with a formula like: "=$D4-($D4-E4)*(50/100)'\ The new values are reflected m the
chart below. Also, the rationale is noted in the section following the chart.

Similarly, Figure 17 shows the new values for the RVHL schedule multiplier for the
elaboration stage as well as the rationale for the modification.

F.6.3 Sensitivity Analysis Results: Technology Impact Estimates

The effort and schedule results after applying the COCOMO-II.1998 and CORADMO
driver modifications identified above are shown in Figure 18. This result can be compared to^the
default driver settings results shown in Figure 20. CORADMO Total Effort in Figure 18 refers
to the same values as CORADMO Total (I+E+C) Effort in Figure 20.

39

.^dL.P/^^MRM!9ina|ö^(RjJ5e^ed)
|!^^:aR?!^iw.H!el^Ä^«^™!? B^.*m* (äanclard 3GL module reuse) :

lea ! ** ha1ca,ed under si26 h ** Effort impact analysis, cormeräri technology: andl DoD' EHART"" '" ~ *

Some S*1?.0^..CP.* *?^ Pr*8^ ^"se »«set kientification and decision support:
Some S*!?..,?y<!r. ^..^.^'*!.E18"1«1 Prototype applications generation'
Comp^ertarygahsfromKDandIKO j j j 5] ■

Some complement any gains from E and K 1 1 I]
•*?ü...|ripL •?§*>' Ine^^^iiie^Mtär^[ngti» COCOMOil effort adjustment' 1
 j.J L L 1 L i L ' ; ! 1 ! i i r •
ALL Only 50% impact as part of senslivlty araSysTs] ;'" T I t~" "I 1 '""!"' ' " ""■

Figure 17. RVHL Elaboration Stage Adjustment for 50% Impact

Total f>E.Q Effort SB^.K»| » CDHJCO«IJK6»<|<G*I|KDH|{O«I| K*»

I| m.i h n .il m ,I [m.> I m .11 m .4 H»7

K»15| C»»|t*15 I

Figure 18. Total Effort after applying modified COCOMO-II.1998 & CORADMO Drivers

40

Figure 19 is a comparison of COCOMO-II.1998 only results and the final CORADMO
with only 50% of the reuse and high level language impact.

2015

Figure 19. One of the comparisons of COCOMO-II.1998 only results and Final Results

Here both the COCOMO-II.1998 set of calculations and the final results calculations are
shown in the table above the chart. Again, the final results row's values will contain the results
based on the "current" CORADMO driver values, and thus may have changes anytime there is
input in the "new" row of the drivers. While only the data associated with the top row of the
table, which contains the COCOMO-II.1998 calculation results, is shown in the chart, the final
results values are evident due to the dashed lines appearing in the chart.

For sensitivity analyses, the set of comparison charts is especially useful. They show the
overall effort and schedule results using the default driver values and the new/current driver
values Along with each chart are copies of the rows of the appropriate data from "CORADMO
Data" sheet. Figure 20 shows a comparison of final CORADMO results for default and new
drivers (with the only driver change being SIZE (change amount reduced by 50%)).

41

Effort Eu.ii». co>« :o*i KG»« <G»1 KD»« <0»1 K»* K»15 E«* E«15 EK»»:K«1!

Dthtilt CORADMO: PM(I»E»C) 1 »1.1 111.1 72.« 111.1 3M 11M 50.« 111.1 K.S »5.« 175 73.« 11}
'"j~"""~'~:

N»u CORADMO: PM(I»E»C) 1 ! »1.1 11 u 111.1 »1.1 m.i 1(1.1 111.1 111.7 «7.2 111.1 *J.S 111.1 »11 ! | !
600.0

500.0

400.0

o
3oo.o

o
CO

0}
CL

200.0

100.0

0.0

576.3 New/Current CORADMO
Total (l+E+C) Effort

with Default CORADMO
Total (l+E+C) Effort

-x^newK

^-161.6

kB 126.7
Vl11.4

- default CO
- default K
-new CD

- default KG
- default E

-—□—new KG
—+—»newE

—O— newKD
—o^newEK

^O 61.8

1995 2000 2005 2010 Time 2015

Figure 20. Comparisons of Effort Final Results for Default and New Drivers

Here, both the default and new final results calculations are shown in the table above the
chart. Again, the new final results row's values will contain the results based on the "current"
CORADMO driver values, and thus may have changes anytime there is input in the "new" row
of the drivers. While only the data associated with the bottom row of the table, which contains
the new calculation results, is shown in the chart, the default results values are evident due to the
solid lines appearing in the chart.

The corresponding schedule final results comparison is shown in Figure 21.

42

Sch»Jul»H«E*C)l Eatflii CD*«3D*I

Default CORADMO: M[l*E*C M n.t

New CORADMO: M(I*E*C]

35

M 33.«

23.0

25.3

KG»S <S»1

14.3 U.O

22.7

KD*t <D*1

6.7 20.7 9.6
K»1S

4.9
13.3

E«1S

4.1
13.S

EK*15

1995

New/Current CoRADMo Total (l+E+C) Schedule
with Default CoRADMo Total (l+E+C) Schedule

2000 2005 Time 2010 2015

Figure 21. Comparisons of Schedule Final Results for Default and New Drivers

43

G. Technical Transition Activities

The Bayesian approach for calibrating parametric models to a mix of expert-consensus-
determined values and project data [Chulani et al., 1998] has been applied to COCOMO 11.1998,
and results reported at the 1997 COCOMO/Software Cost Modeling Forum, the 1998
International Conference on Software Engineering, and the 1998 ISPA/SCEA Conference. It is
also being applied to USC-CSE's Constructive COTS Integration cost model (COCOTS) and
Constructive Quality Estimation Model (COQUALMO), initially reported at the 1997 California
Software Symposium [Chulani, 1997].

These and the other recently completed models discussed in this report (CORADMO,
COSSEMO, and the Software Technology Impact Assessment Model) were presented at the
1998 COCOMO/Software Cost Modeling Forum in October 1998. Concurrently with this
Forum, USC-CSE held an Affiliates' Workshop on COCOMO II Extensions to provide the
models to the Affiliates and discuss their usage and refinement.

The preliminary results of the KBSA Life Cycle Evaluation were briefed to AFRL/IFTD
personnel at Rome on July 8, 1998. The final results will be briefed to selected Air Force and
DoD software technology managers.

As indicated in Section I, we are also making the results and model available via the
USC-CSE Web site.

44

H. Summary and Lessons Learned

1. The KBSA Advanced Development Model was not sufficiently robust and scalable to
provide appreciable benefits to critical DoD software projects. We found its framework
difficult to scale to large projects, and its toolset to be small with respect to large project

needs.

2. However, the KBSA concepts, if otherwise realized, have strong potential for
reducing costs and schedules for DoD-critical warfighting software applications. The
key to realizing this potential is to develop the KBSA technology in the context of DoD
warfighting domain knowledge. For KBSA Applications Generation, this implies
focusing on DoD warfighting areas where a good start exists towards domain
engineering, domain architecting, and development and use of reusable domain assets.
Some of the USAF/ESC Product Line areas are good candidates, as are some avionics,
missile, and sensor processing domains.

For KBSA Decision Support, this involves both domain-specific decision aids and more
generic decision aids for security, survivability, risk assessment, architecture definition,
and process definition and management.

3. The KBSA Decision Support area provides an attractive new direction for Air Force
and DoD software technology investments. Knowledge-based and agent-based mixed-
initiative technical approaches are generating high payoffs in decision support areas
similar to software engineering such as manufacturing and logistics. A similar initiative
for software engineering would build on existing technology in attractive new directions.

4. EDCS technology investments and payoffs have both commonalities and
complementarities with respect to KBSA technology investments and payoffs. To some
extent, good portions of a KBSA Applications Generation program have been pursued
under EDCS. A KBSA Decision Support program could build upon and provide new
directions for some current EDCS efforts in such areas as rationale capture, design webs,
and architecture technology.

5. The Software Technology Impact Analysis spreadsheet model provides a useful tool
for assessing alternative software technology assessment strategies. It enables
technology managers to relate candidate technologies' effects on software cost and
schedule drivers to resulting project cost and schedule improvements. It is well
calibrated and baselined with respect to current software practice and commercial
technology and productivity trends.

6. There is no software technology silver bullet for DoD warfighting systems, including
reliance on commercial technology. A mixed strategy of commercial technology and
complementary DoD warfighting software technology is necessary to address DoD's full
range of needs.

45

/. World Wide Web Home Pages and References

1.1 World Wide Web Home Pages

1. USC Center for Software Engineering:
http://sunset.usc.edu/

2. Technical Reports:
http://sunset.usc.edu/TechReports/electronicopy.html

3. COCOMOII Research Program and Results:
http://sunset.usc.edu/COCOMOII/cocomo.html

4. Software Technology Impact Assessment Model:
http://sunset.usc.edu/COPROMO/KBSA LCE/kbsa lce.html

46

1.2 References

[Basili et al., 1995]. V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R.
Pajerski, "SEL's Software Process Improvement Program," IEEE Software, November 1995, pp.
83-87.

[Bernstein, 1997]. L. Bernstein, "Software Investment Strategy," Bell Labs Technical
Journal, Summer 1997, pp. 233-242.

[Boehm, 1981]. B. Boehm, "Software Engineering Economics," Prentice Hall, 1981.

[Boehm - Standish, 1983]. B. Boehm and T. Standish, "Software Technology in the
1990's: Using an Evolutionary Paradigm," IEEE Computer, November 1983, pp. 30-37.

[Boehm et al., 1995]. B. Boehm, B. Clark, E. Horowitz, R. Selby, and C. Westland,
"Cost Models for Future Software Processes: COCOMO 2.0," Annals of Software Engineering,
Vol. 1, No. 1,1995.

[Boehm, 1996]. B. Boehm, Anchoring the Software Process," IEEE Software Vol. 13,
No. 4, July 1996, pp. 73-82.

[Boehm - Chulani - Egyed, 1997]. B. Boehm, S. Chulani, and A. Egyed, "Knowledge
Summary: USC-CSE Focused Workshop on Rapid Application Development," USC-CSE
Technical Report, June 1997.

[Chulani, 1997]. S. Chulani, "Modeling Software Defect Introduction," Proceedings,
1997 California Software Symposium, UCI/USC, November 1997, pp. 41-49.

[Chulani et al., 1998]. S. Chulani, B. Boehm, and B. Steece, "Calibrating Software Cost
Models Using Bayesian Analysis," USC-CSE Technical Report CSE-98-508, June 1998.

[De Bellis et al., 1992]. M. De Bellis, K. Miriyala, S. Bhat, W. Sasso, and O. Rambow,
"Final Report: KBSA Concept Demonstration System," Rome Labs Contract F30602-89-C-
0160, October, 1992.

[DoD, 1991]. U.S. Department of Defense, "Draft DoD Software Technology Strategy,"
ODDR&E, December 1991.

[Fawcett et al., 1997]. J. Fawcett, B. Brunk, K. Ganesh, and U. Parvate, "Evaluation of a
KBSA Advanced Development Model," Syracuse University Report, May 1997.

[Fox et al., 1995]. J. Fox et al., "ARPA Software Review Panel: Final Report," October
1995.

[Garlan et al., 1995]. D. Garlan, R. Allen, and J. Ockerbloom, "Architectural Mismatch:
Why Reuse Is So Hard," IEEE Software, November 1995, pp. 17-26.

47

[Green et al., 1983]. C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rieh,
"Report on a Knowledge Based Software Assistant," Kestrel Institute, RADC-TR-83-195, June
15,1983.

[Jacobson et al., 1997]. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse, Addison
Wesley Longman, 1997.

[Jones, 1990]. C. Jones, "Applied Software Measurement," McGraw-Hill, 1990.

[NAE, 1995]. National Academy of Engineering, "Defense Software Research,
Development, and Demonstration: Capitalizing on Continued Growth in Private-Sector
Investment," NAE Workshop Report, 1995.

[NRC, 1997]. National Research Council, "Ada and Beyond: Software Policies for the
Department of Defense," National Academy Press, Washington D.C., 1997.

[Poulin, 1996]. J. Poulin, Measuring Software Reuse, Addison Wesley, 1996.

[Rational Corp., 1998]. "Rational Objectory Process 4.1 - Your UML Process,"
available online at http://www.rational.com/support/techpapers/toratobjprcs/, Rational
Corporation, 1998.

[Reifer, 1997]. D. Reifer, Practical Software Reuse, John Wiley and Sons, 1997.

[SAB, 1995]. USAF Scientific Advisory Board, New World Vistas: Information
Technology Volume, USAF-SAB. 1995.

[SAB, 1997]. USAF Scientific Advisory Board, Report on United States Air Force
Expeditionary Forces, SAB-TR-97-01, November 1997.

[Salasin - La Monica, 1998]. J. Salasin and F. La Monica (eds.), "EDCS Demonstration
Days '98: A Revolution in Software Evolution," DARPA/AFRL-ITD, July 1998.

[Sasso, 1997]. W. Sasso, "Empirical Evaluation of KBSA Technology," Rome
Laboratory Report RL-TR-97-49, July 1997.

[Sasso-Benner, 1995]. W. Sasso and K. Benner, "An Empirical Evaluation of KBSA
Technology," Proceedings, KBSE 95, IEEE Press, November 1995, pp. 71-78.

[White, 1991]. D. White, "The Knowledge-Based Software Assistant: A Program
Summary," Proceedings, Sixth Annual Knowledge-Based Software Engineering Conference
IEEE, September 1991, pp. 2 '

=U.S. GOVERNMENT PAINTING OFFICE: 19>>9-51ö-079-!tl 1'ifl

48

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

