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The maximin algorithm adapts the weights of an antenna array to 
provide simultaneous interference suppression and beamforming in a 
frequency-hopping communication system. The algorithm is derived and 
a digital implementation is presented. Simulation experiments illustrate 
the ability of the maximin algorithm to rapidly form deep nulls in the 
directions of interference sources. For the full exploitation of an adaptive 
array for wideband frequency-hopping communications, some form of 
frequency compensation is necessary. The strengths, limitations, and 
variations of three methods are examined. 



Preface 
Recent advances in digital technology and the increased possibility of 
Army applications of frequency hopping have rekindled our interest in 
the maximin algorithm, which was originally proposed and studied more 
than a decade ago. This report modifies and extends the original pub- 
lished research results. Along with many minor improvements, there are 
four major revisions: 

1. The theory is derived in terms of complex envelopes rather than analytic 
signals, because complex envelopes are directly extracted in many mod- 
ern digital implementations. 

2. The use of a one-sided monitor filter rather than a two-sided band-reject 
filter is recommended. 

3. A new convergence analysis of this highly nonlinear algorithm is 
presented. 

4. Far more extensive simulation experiments indicate the potential power 
and the limitations of the maximin algorithm. 

in 
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1. Introduction 
The maximin algorithm is an adaptive-array algorithm that suppresses 
interference before it enters the demodulator of a frequency-hopping 
communication system and thereby provides a spatial processing gain 
that supplements the inherent processing gain of the frequency-hopping 
system [1-3]. The algorithm discriminates between the desired signal and 
the interference on the basis of the distinct spectral characteristics of 
frequency-hopping signals. The maximin algorithm is so named because 
the desired signal is enhanced and the interference is suppressed simulta- 
neously. The maximin algorithm is a blind adaptive algorithm. Blind algo- 
rithms do not require training sequences, decision-directed adaptation, or 
knowledge of the direction of the desired signal, but instead rely on the 
basic characteristics of the desired-signal waveform. The maximin algo- 
rithm requires only that the frequency-hopping pattern must be known 
by the receiver. 



2. Derivation 
The basic configuration of an adaptive array for frequency-hopping 
communications is. displayed in figure 1. The frequency-hopping replica, 
which is produced by a synchronized frequency synthesizer, is used to 
dehop the arriving desired signals [4], thereby removing the time varia- 
tions in the carrier frequency. The sampled values of the complex envel- 
opes of the dehopped signals are extracted by the initial processors and 
applied to the adaptive filter, which executes the maximin algorithm. 

The maximin algorithm can be derived by the method of steepest descent 
[4] with the signal-to-interference-plus-noise ratio (SINR) as the perform- 
ance criterion. The desired signal and the interference are assumed to 
arrive at an adaptive array of N antennas. The desired signal, interference 
signals, and thermal noise are modeled as independent zero-mean, wide- 
sense-stationary stochastic processes. Let X(z) denote the discrete-time 
vector of the complex envelopes of the N antenna outputs after each one 
has been dehopped, filtered, and sampled. The index i denotes the sample 
number. The vector X(i) can be decomposed as 

X(0 = s(0 + n(i) , (1) 

where s(z') is the vector of desired-signal complex envelopes, and n(z') is 
the vector of interference and thermal-noise complex envelopes. Let W 
denote a vector of complex weights. Let an asterisk denote the complex 
conjugate, T the transpose, and H the conjugate transpose. The complex 
system output is 

y(0 = wTX(i)=ys(0 + y„(0, (2) 
where 

ys(i) = WT 8(f),  yn(i) = Wr n(0 . (3) 

The power in the complex signal is defined to be one-half the expected 
value of the magnitude squared. The factor of one-half is inserted for 
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consistency with the convention that the power in the complex envelope 
s(f) is equal to the power in the original bandpass signal (e.g., see Proakis 
[5]). If W is regarded as deterministic, the desired-signal output power is 

\2 
P =1 E Ls    2 >ys[i ir = l WHR  W , (4) ss 

where Rss is the desired-signal correlation matrix, 

Rss = E[s*(0sT(i)] , (5) 

and E[x] denotes the expected value of x. The interference-plus-noise 
output power is 

P  =iwHR    W (6) 

where R„„ is the interference-plus-noise correlation matrix 

Rnn = E[n*(i)nT(i)] . (7) 

TheSINRis 

Ps    w%ssw (8) 
Pn     WHRnnW 

To use the method of steepest descent in deriving an adaptive algorithm, 
it is necessary to calculate the gradient of the SINR with respect to the 
weight vector. In terms of its real part WR and its imaginary part Wj, a 
complex weight vector is defined as 

W = WR-jVfIr (9) 

where / = v^T. Let Vy/R and Vpy; denote the gradients with respect to W^ 
and Wj, respectively. The complex gradient with respect to W is defined 
as 

Vw = VWK-/'VM- (10) 

A direct calculation using equations (4) and (6) gives 

V   p 
R W    R   W ss tin 

P P s n 

(11) 

Let Ts denote the time interval between samples. Let m denote the num- 
ber of samples between weight iterations. The time interval between 
weight iterations is m Ts. The method of steepest descent for discrete-time 
systems gives the recursive equation for the weight vector: 

W(* + 1) = W(fc) + \i0(k) V(fc) (12) 

where k denotes the weight iteration number, fjQ(k) is a scalar sequence 
that controls the rate of change in the weight vector, andV(fc) is an esti- 
mate of the gradient in equation (11) at iteration k. The ideal steepest- 
descent algorithm results if V(fc) is set equal to equation (11) with W(fc) in 
place of W. However, this algorithm requires the estimation of Rnn, which 
is unknown in general, and Rss, which is unknown in the absence of 
information about the direction of the desired signal. To avoid the direct 



estimation of these two matrices, several approaches are possible. If the 
desired signal is assumed to be narrowband, then an approximate linear- 
ization [4] of equation (11) leads to the Howells-Applebaum algorithm. 
Other approximations lead to the Shor feedback loop [6], which does not 
completely specify an adaptive algorithm. A third approach leads to the 
maximin algorithm, which is developed here. 

The discrete-time vector s(z') is obtained from a continuous-time vector 
S(t) of complex envelopes. Each component of S(f) can be decomposed as 

Si(t) = SiR(t)+jSi](t),  f = l,2,...,N, (13) 

where Sr#(£) is the real part or in-phase component of S;(f), and Su(t) is the 
imaginary part or quadrature component of Sj(t). Each Su(t), i = 1,2,..., 
N, is a delayed version of the first component Su(t), which is modeled as 
a zero-mean, wide-sense stationary process. Two fundamental properties 
of the components of a complex envelope are [4,5] 

E[siR(t) S1R(t + T)] = E[su(t) Su(t + T)] (14) 

E
[
S
IR(0 

S
I# +*)] = - E[

S
I/W S1R(t + T)] , (15) 

where T is an arbitrary delay. Using these equations, we obtain 

E[s(f) sT(0] = 0 . (16) 

The desired-signal component of the adaptive-filter output can be decom- 
posed as 

ys(0 = ysR0')+;'ys/(0, (17) 

where I/SR(Z) and ysi(f) are the real and imaginary parts of ys(i), respec- 
tively. If the weight vector is treated as a constant W, then equations (3), 
(16), and (17) imply that 

IW)]- s*(i){lsr(f)W + lsH(i)W = lE *(i)sT(i)]w.    (18) 

This equation and equation (5) yield 

RssW = 2E[s*(f)ysR(;)] . (19) 

Similarly, if the interference arriving at each antenna is a delayed version 
of the interference arriving at antenna 1, and if the thermal noise is inde- 
pendent in each array branch, then 

E[n(i) nT(/)] = 0 , (20) 

and, hence, 

RnnW = 2E[n*(i)y„R(i)] , (21) 



where ynR{i) is the real part of yn(i). Substitution of equations (19) and (21) 
into equation (11) yields 

^.2pj^d-^y      «22, 
where the time index has been omitted, because stationarity implies that 
the expected values are independent of time. 

To derive the maximin algorithm, let Ps(k) and Pn{k) denote estimates of Ps 

and Pn at iteration k. The estimate of r at iteration k is 

Let s*ysR(k) and n*Vn^{k) denote estimates at iteration k of the desired- 
signal correlation vector E[s*ysp} and the interference-plus-noise 
correlation vector E[j\*yn$\, respectively. The scalar sequence fio(k) in 
equation (12) ultimately controls the stability and rate of convergence of 
the maximin algorithm. It is desirable that this sequence be chosen so that 
as p{k) increases, the changes in W(fc) will be small. Thus, we set 

2ß0(k)ß(k) = ^L- , (24) 

where a is a constant. Using equations (22) and (24) and the preceding 
estimates in equation (12), we obtain the basic form of the maximin 
algorithm: 

W(fc + 1) = W(Jt) + a 
P(k) 

s*ys#) n*yw#) 
Ps(k) Pn(k) 

(25) 

where k > 0 and W(0) is a deterministic initial weight vector. The subse- 
quent convergence analysis and simulation results confirm that the choice 
given by equation (24) is effective and robust, provided that the adaptation 
constant a is appropriately selected. The first term within the brackets in 
equation (25) can be interpreted as a signal term that enables the algorithm 
to direct the array beam toward the desired signal. The second term 
within the brackets is a noise term that enables the algorithm to null 
interference signals. 

The remaining issue is the choice of estimates for s*ys$(k) , n*ynR(k) / 
Ps(k), and Pn(k). The specific nature of frequency-hopping signals allows 
these estimates to be made without depending on known steering vectors 
or reference signals, as shown in the next section. 



3. Implementation 

Antenna 1 

Figure 2 illustrates the principal components of a digital implementation 
of the processing behind antenna 1 of an adaptive array; the processing 
behind the other antennas is similar. The front-end devices include a 
bandpass filter that excludes noise outside the hopping band and a low- 
noise amplifier. After dehopping from a variable frequency to a fixed 
intermediate frequency (IF), the received signal is filtered to prevent 
aliasing and to reject noise. The signal is then sampled by an analog-to- 
digital (A/D) converter at a rate typically four times the intermediate 
frequency. These samples are applied to a baseband converter, which 
typically includes a Hilbert transformer and a complex multiplier [7], to 
produce sampled values of the complex envelope of the intermediate- 
frequency signal. The discrete-time output of the converter is passed 
through a baseband filter with a bandwidth equal to that of a frequency 
channel. The filter blocks as much interference and noise as possible 
without distorting the desired signal. Thus, the passband of the frequency 
channel being used by the frequency-hopping desired signal is translated 
to baseband. The baseband-filter output is the first complex component of 
X(f), a vector applied to the adaptive filter. 

Figure 3 illustrates the digital processing required by the maximin algo- 
rithm. If the interference occupies only a small fraction of the hopping 
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band, then it is usually absent from X(z') and y^(t'). As the weights con- 
verge to their steady-state values, the interference component of J/R(Z) 

becomes small, even if the interference is present in X(z'). Thus, if the noise 
power is much less than the desired-signal power, then a suitable esti- 
mate of the desired-signal correlation vector is 

  .. km 
»%#) = *,.=(t2)Bi+1x-(.')yEH, 

where I/R(Z) is the real part of the adaptive-filter output y(z') given in 
equation (2). 

(26) 

An analogous estimate for n*ynR(fc) is not possible, because when the 
system hops into a part of the band with interference power, then both 
the desired signal and the interference are imbedded in X(z'). Instead, the 
receiver observes the interference and noise in a nearby frequency chan- 
nel that is not currently being used by the desired signal, but will be after 
a subsequent frequency hop. After a frequency translation, the interfer- 
ence and noise in the nearby monitored channel are extracted by each 
antenna's monitor filter from the baseband converter output, as shown in 
figure 2. The intermediate-frequency filter must have a passband large 
enough to encompass both the downconverted frequency channel being 
used by the desired signal and the downconverted monitored channel. 

The monitor filter has a passband offset by f0 from the baseband filter and 
coinciding with a downconverted frequency channel, as depicted by the 
transfer function sketched in figure 4. The parameter ß is the ratio of the 
bandwidth of the monitor filter to the bandwidth of the baseband filter. 
Alternatively, the monitor filter may be a band-reject filter with two 
passbands symmetrically located and an approximate notch over the 
passband of the baseband filter [1-3]. The monitor filter allows the 
adaptive filter to monitor the interference that will be present in the 
baseband filter when the carrier frequency of the desired signal eventu- 
ally coincides with that of the interference. Whenever this interference is 
observed at the output of the monitor filter, the adaptive weights are 
changed to cancel the interference. There is negligible spillover of the 
desired signal into the output of the monitor filter if the filter offset is 
f0 = IB or f0 = -IB, where B is the bandwidth of both the baseband filter 
and a frequency channel. Subsequently, the single-sided monitor filter of 

Figure 4. Transfer 
functions of filters for 
complex envelopes. 
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figure 4 with ß = 1 is assumed, because then the monitor filter passes 
almost exactly the same interference waveforms as are subsequently 
passed by the baseband filter. 

When the carrier frequency is at or near one of the ends of the hopping 
band, the monitor filter will not be able to observe interference in the 
hopping band. However, this effect will be of negligible importance when 
there are a large number of carrier frequencies. 

Let n(z) denote the vector of N discrete-time outputs of the monitor filters 
and define 

The vector 

yn(/) = Wr(f)n(/ 

ne{i) = n(i)exp(-j2nf0Ts) 

(27) 

(28) 

provides an estimate of the baseband-filter input n(z') that will occur when 
the desired-signal carrier frequency is such that the interference and noise 
currently in the monitor filter enter the baseband filter. Treating the 
weight vector as a constant so that equation (21) is valid and assuming 
thatR nn 

tor as a consta 
E\ned) n J(f)j, we obtain 

4n1z')y^')]4£KWn^)]w(o. 
From equation (20), it is reasonable to assume that En^i) nj(z 
assumption and equations (27) to (29) yield 

(29) 

- 0. This 

«*(0 ynR(i) n*(i) ifiT(i)W(f) + lnH(0W*(0 

(30) 

= E [fi*(o wo]. 
where ynR{i) is the real part of yn(i). This equation implies that a suitable 
estimate is 

  - km 
(31) 

The estimate Ps(k) can be simplified by observing from a straightforward 

calculation using equations (3), (16), and (17) that E[y^,| = E^], so that 

equation (4) implies that Ps = E[y*R] ~ E[yQ . Similarly, P„ = E^] 

~ ^L^HR] • Therefore, suitable power estimates are obtained by computing 

1 km 

*»<*> = £ 
km 

i = {k-\)m + !&(')■ 

(32) 

(33) 



In applications where the desired signal may sometimes be absent, it may 
be necessary to lower-bound Ps(k) by a small positive number chosen to 
prevent a possible singularity in the maximin algorithm. 

The estimates in equations (26), (31), (32), and (33) complete the specifica- 
tion of the maximin algorithm given by equation (25). If the underlying 
assumptions are changed, then different versions of these estimates, and 
hence of the maximin algorithm, result. For example, if the interference 
occupies large spectral regions of the hopping band, then usually I/R(J) 

will contain significant interference power before the weights converge. 
To compensate for this power, closely related alternative versions of the 
maximin algorithm can be derived [1-3]. However, many simulation 
experiments indicate that the version of the algorithm derived above is 
the most flexible, nearly always gives a similar or better performance than 
alternative versions, and is computationally the simplest. 

During acquisition of the frequency-hopping pattern, the frequency 
synthesizer produces different frequencies from those of the received 
frequency-hopping pulses. Consequently, the desired signal is usually 
absent from the outputs of the baseband filters, and the maximin algo- 
rithm must be modified. During acquisition, a suitable adaptive algo- 
rithm is the recursive suppression algorithm [8], which tends to suppress 
signals arriving from any direction. Cancellation of the desired signal is 
avoided because of its infrequent appearance in the outputs of the 
baseband and monitor filters. 

During acquisition, the adaptive system forms nulls in the directions of 
the interference signals, thereby assisting the receiver in synchronizing 
with the received frequency-hopping signal. Although a grating null 
might be inadvertently placed on the desired signal during acquisition, 
the probability of this event can usually be kept small by appropriate 
placement of the antenna elements [6]. After acquisition is confirmed by 
the receiver, it activates the maximin algorithm. 



4. Convergence Analysis 
A frequency-hopping signal consisting of pulses transmitted at many 
different frequencies is a wideband signal. However, the frequency 
channel associated with a single pulse is usually narrow. Thus, although a 
frequency-hopping signal may hop over a wide band, it has a narrow 
instantaneous bandwidth. For a narrowband desired signal, the vector of 
sampled complex envelopes is well approximated by [4,6] 

s(i) = s1(i)S0, (34) 

where S\(i) is the sampled complex envelope at antenna 1, which serves as 
a reference point, and So is a steering vector. If the antenna patterns are 
identical and the antennas are close enough that the signal amplitudes at 
all the antennas are nearly the same, then component i of the steering 
vector is exp(-/ 2 nfc T7), where fc is the center frequency and T,-, 2 < i < N, 
is the arrival-time delay at antenna i relative to antenna 1. After the 
substitution of equations (5) and (34) into equation (8), the maximization 
of the SINR yields the optimal weight vector [4,6] 

wo = ^S0, 05) 

where r\ is an arbitrary constant, and the superscript -1 denotes the 
inverse. For those pulses that hop over a sufficiently small band within 
the hopping band, the optimal weight vector is well approximated by 
equation (35), with S0 evaluated at the center frequency of the small band. 

The highly nonlinear nature of the maximin algorithm precludes a com- 
pletely rigorous convergence analysis. However, with enough approxima- 
tions, the convergence of the mean weight vector to WQ can be demon- 
strated and bounds on the adaptation constant can be derived. Assume 
that enough algorithm iterations have occurred that the power estimates 
are well approximated by the values they would have if the weight vector 
were equal to Wo- The desired-signal power at an antenna is 

12' 
P . = 1 F 1 si    2 'iwr (36) 

Using equations (4), (5), (34), (35), and (36), and the fact that R„n is Hermi- 
tian, we obtain 

Ps(k) «Pso = 1W?Rss W0 = |77|2Psi(sJR;i S0)2 . (37) 

Similarly, 

*„(*) = Pno - \ K Kn W0 = l^L Sj R^ S0 ■ (38) 

Equations (37) and (38) imply that 

^) = |j|-PO = 2PsfsjR^S0. (39) 

10 



Assuming the zero-mean stationarity of the signals and the independence 
of the desired-signal and the interference-plus-noise, we obtain from 
equations (26), (1), and (2) that 

= E[x*{i)yR{i)} 

= 4s*(f)ys*(0 +EkMy«*(0 
s*ys#) (40) 

Equation (25) indicates that W(fc + 1) depends on S(Z) and n(Z) for / < k, but 
not directly on S(k + 1) and n(k + 1). Therefore, we make the approxima- 
tion that W(k) is statistically independent of S(k) and n(k). A calculation 
similar to equation (18) using equations (16) and (20) then yields 

4s"^(fc)]4K+RnJElww]- (41) 

Similarly, equations (30) and (31) imply that 

;E[W(*)] . nX#) 2     nn' 
(42) 

Taking the expected value of both sides of equation (25), substituting 
equations (37) to (42), and simplifying algebraically, we obtain 

E[W(fc+l)] = Jl-I-^-f(po_i)Rnfi. 
I "osoV 

R ss E[W(*)] , (43) 

where k > 0 and E[W(0)] = W(0). Assuming that p0 » 1, we set p0 -1 = p0 

and define 

D ' Po "nn       ss 

We obtain the approximate result 

E[W(* + 1)] = (i - 2^p- Dl E[W(k)] . 
y       "o so   f 

A straightforward calculation using equations (5), (34), (36), and (39) 
yields 

(44) 

(45) 

(46) 

This equation indicates that Rnn SQ is an eigenvector of D, and the corre- 
sponding eigenvalue is 0. Since D is Hermitian, it has a complete set of N 
orthogonal eigenvectors, one of which is R~„ S0 . Thus, we can make the 
decomposition 

E[W(fc)] = m R-J, SQ + .E aß) ef , 

where each a;(k) and t](k) are scalar functions and e, is one of the N -1 
eigenvectors orthogonal to R^n SQ . Substituting equation (47) into equa- 
tion (45) and using the orthogonality of the eigenvectors, we obtain 

r1(k + l) = r1(k) = V (48) 

(47) 

aß+l) = (l-v-f^x]ai(k), i = l,2 N-l 
\ "o   so     ) 

(49) 

11 



where r\ is an arbitrary constant and Af is the eigenvalue corresponding to 
e;. Equations (48), (47), and (35) give 

E[W(k)] = W0+ tiaß)ei , (50) 

which implies that E[W(k)] converges to Wo if and only if each a^k) 
converges to 0. From equation (49), it follows that 

fl^) = (l-^A,.)\.(o),  *>0. (51) 

Therefore, at{k) converges to 0 if and only if 

-JTnr-^i <1  ,  i = l,2 N-l . (52) 
^0    so 

As shown subsequently, each A,- is positive. Equation (52) yields the 
necessary and sufficient convergence condition for the convergence of 
E[W(*)]: 

4o P 0<a<^pLii<>/ (53) 
max 

where A^* is the largest eigenvalue of D. 

It remains to show that each A,- is positive. Since the SINR is maximized 
when W = W0, it follows from equation (8) that 

WHRSSW ,C„X 
H    

ss—^P0, (54) 
nn 

where the inequality is strict when W * W0. Combining equations (44) 
and (54) gives 

WHDW>0, (55) 

which proves that the Hermitian matrix D is nonnegative definite. Hence 
all its eigenvalues must be nonnegative. Since only W = Wo gives an 
equality in equation (55), setting W = e, implies that 

efDe;>0 ,  z = 1,2,..., N-l . (56) 

Therefore, A,- = 0 is impossible and 

A;>0 ,  i = l,2,...,N-l . (57) 

The sum of the eigenvalues of a square martrix is equal to its trace. Thus, 
A/-1 

^max * .X   h = KP) = prf*m) - ^R«) 
(58) 

where tr(A) denotes the trace of A. Consequently, equation (53) implies 
that 

4P 0<a<j-=^ (59) 
tr Rnn 

12 



is a sufficient condition (but not a necessary condition) for the conver- 
gence of the mean weight vector to the optimal weight vector. 

Assume the interference-plus-noise power in each component of n(i) is 

equal to P„/. Then tr(Rnn) = 2N Pni. Let | z | denote the Euclidean norm of a 

vector z. From equations (5), (34), (36), and (37) and the Schwarz inequal- 

ity, it follows that Pso < | W01   | S 01  Psi. If each component of S0 is a 

complex exponential, | S01  = N and Pso < N | W01  Psi. Substituting 

E[W(0)] = W(0) into equation (50) and using the orthogonality of the 

eigenvectors gives | W01 < | W(0) J. Therefore, the upper bound au = 4 Pso/ 

tr Rnn in equation (59) is approximately bounded by 

au<2|W(0)|2p1 , (60) 

where p\ = Psi/Pniis the SINR in a single baseband-filter output prior to 
the adaptive filtering and equals the SINR per frequency channel at an 
antenna input. Since the bound in this inequality is easily calculated, it 
provides a useful, albeit imperfect, guide in selecting the appropriate 
value of the adaptation constant. 

13 



5. Description of Simulation 

Table 1. System 
parameters. 

In the simulation, the antenna array consists of four omnidirectional 
antennas located at the vertices of a square. The symmetry of this archi- 
tecture ensures a relatively mild dependence of the array response on the 
signal directions and allows full azimuthal coverage. The edge length is 
equal to 1 or 2 times the wavelength A corresponding to the center fre- 
quency of the desired signal, 3 GHz. Each interference source is in the 
plane of the array. The desired signal arrives from a direction perpendicu- 
lar to one of the edges, and this direction is defined to be 0°. All signals 
are assumed to arrive as plane waves. The system parameters are summa- 
rized in table 1. 

The frequency-hopping signal has a randomly chosen carrier frequency 
within the hopping band and is modulated by binary minimum-shift 
keying (MSK). The sequence of data bits is randomly generated at the rate 
of 100 kbps. The hop dwell time is 1 ms. The thermal noise at the output 
of each intermediate-frequency filter following an antenna element is 
modeled as filtered white Gaussian noise. The ratio of the signal power to 
the thermal-noise power is defined relative to a single frequency channel 
and is set equal to 20 dB. Since the frequency-hopping signal is assumed 
to be noncoherent in carrier phase from one hop to the next, each 
frequency-hopping pulse has an initial phase that is uniformly distrib- 
uted over the interval [-n, n]. The hopping frequencies are separated by 
100 kHz and spread uniformly over the total hopping band, which occu- 
pies either 30 or 300 MHz. Thus, there are either 300 or 3,000 contiguous 
frequency channels. The total interference power due to all interference 
signals is equal to 10 times the number of frequency channels, which 
maintains a constant value of total interference power per frequency 
channel. Thus, px is slightly less than -10 dB. Each interference signal has 
the same power and distributes tones in some of the frequency channels. 

Parameter Value 

Array antennas 4, omnidirectional, at vertices of square 
Array edge length 1 or 2 wavelengths 
Center frequency 3 GHz 
Hop dwell time 1 ms 
Data rate 100 kbps 
Frequency modulation MSK 
Signal-to-noise ratio 20 dB per antenna and channel 
Hopping bandwidth 30 or 300 MHz 
Number of frequency channels M = 300 or 3000 
Monitor filter offset 200 kHz 
Sampling rate 800 ksamples/s 
Weight iterations per hop 8 
Total interference-to-signal ratio 10 M 
Interference type Tones in channels 
Number of hops per experiment 50 
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Perfect synchronization between the frequency-hopping signals at all the 
antenna outputs and the frequency synthesizer in the receiver is assumed. 
The baseband and monitor filters are modeled as digital 8-pole Butter- 
worth filters with the 3-dB bandwidths equal to 100 kHz, the bandwidth 
of a frequency channel. The monitor filter has a single passband, as 
depicted in figure 4, with parameters f0 = 200 kHz and ß = 1. The 
sampling rate of the analog-to-digital converter is 800 kilosamples per 
second. There are 8 weight iterations per hop. 

In each of the subsequent simulation experiments, the initial weight 
vector is W(0) = Wbeam, where 

Wbeam^1   *   *   H- (61) 

This weight vector points the array beam or gain pattern in the direction 
of the desired signal. Thus, the subsequent simulation experiments 
indicate the performance of the maximin algorithm after the sudden 
appearance of interference from various directions. An alternative is to set 
W(0) = Womni, where 

Womni = [l  0  0  0]. (62) 

This weight vector corresponds to an omnidirectional gain pattern. Its use 
as the initial weight vector is appropriate if one wishes to assess the 
convergence of the maximin algorithm from a cold start. Since the algo- 
rithm then has to form a beam in the direction of the desired signal while 
simultaneously attempting to null the interference signals, the conver- 
gence is slowed relative to what it would be if W(0) = Wbeam- Simulation 
experiments verify that the steady-state performance is not affected by 
the choice of Wbeam or Womni as the initial weight vector, so Wbeam is 
always used. 

Inequalities (59) and (60) indicate that Q<a<au, where a„ < 0.8 is suffi- 
cient for convergence if the interference signals approximate stationary 
processes. Simulation experiments confirm that the maximin algorithm 
does converge to a steady state when 0 < a < 0.8. It is found that a - 0.2 
usually provides close to the fastest convergence and the best perform- 
ance when each interference signal comprises tones in every frequency 
channel. 

An example of the results of a typical simulation trial is illustrated in 
figure 5(a). The SINR at each weight iteration is calculated by averaging 
the SINR over all sampling intervals from after the preceding weight 
iteration to just before the current weight iteration. The system param- 
eters are array edge = X and hopping bandwidth - 30 MHz. Two equal- 
power interference signals arrive from 40° and 70° relative to the desired- 
signal direction. Each of these signals distributes tones in all the 
frequency channels, and the adaptation constant is a = 0.2. The SINR 
gradually increases until the adaptive system reaches a nearly steady- 
state condition during which the SINR fluctuates by a few decibels. 
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Figure 5. (a) SINR for 
single simulation 
trial with two 
interference signals, 
each comprising 
tones in every 
frequency channel, 
and hopping 
bandwidth 
= 30 MHz, (b) array 
gain pattern at end of 
trial, and (c) average 
SINR for 20 trials. 

-50 0 50 
Incident angle (degrees) 

150 200 250 300 
Number of weight updates 

350 

Figure 5(b) depicts the array gain pattern at the end of the simulation 
trial. There are nulls of less than -20 dB in the directions of the interfer- 
ence sources. Figure 5(c) shows the average SINR, which is defined as the 
SINR obtained by averaging over 20 simulation trials at each weight 
iteration. 

If each interference signal independently distributes tones of equal power 
in every fourth frequency channel to cover 25 percent of the hopping 
band, then the simulation results are quite different. As shown in figures 
6(a) and (c), the convergence is slowed and the fluctuations in SINR are 
increased, because the monitor filter only observes each interference 
signal 25 percent of the time. Between these observations, the weights 
tend to slowly drift toward the values they would have without the 
interference. This drift and the occasional large interference levels force 
the lowering of the adaptation constant to obtain good algorithm 
convergence, and a = 0.05 is used to generate figure 6. Figure 6(b) 
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Figure 6. (a) SINR for 
single simulation 
trial with two 
interference signals, 
each comprising 
tones in 25 percent of 
frequency channels, 
and hopping 
bandwidth 
= 30 MHz, (b) array 
gain pattern at end of 
trial, and (c) average 
SINR for 20 trials. 

(a) 
30 

m 
S.20 

55 10 

h!\ rr -MT^WH/Aj^VvWS/H^ 

50 100 150 200 250 
Number of weight updates 

300 350 

150 200 250 
Number of weight updates 

indicates that the array gain pattern is very similar to that of the preced- 
ing example as a nearly steady-state condition is approached. 

In general, interference that occupies Only a small part of the hopping 
band, or even frequency-hopping interference signals, can be suppressed 
by the maximim algorithm supplemented by an error-correcting code. If 
the interference passes through the monitor filter often enough, it is 
suppressed by the maximim algorithm; if it passes through only occasion- 
ally, then it is accommodated by the error-correcting code. 

The results of seven representative simulation experiments with the edge 
length = A are summarized in table 2. The interference signals distribute 
tones in all the frequency channels and a = 0.2 is used. Each experiment 
comprises 20 trials with 50 hops and 400 weight iterations per trial. The 
first column gives the hopping bandwidth. The second column gives the 
arrival angles of 1,2, or 3 interference signals relative to the desired-signal 
direction. The SINRs for the last 40 weight iterations of all the trials are 
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Table 2. Simulation 
results with edge 
length = X. 

averaged to obtain the final SINR and are used to calculate the standard 
deviation of the final SINR, which are listed in the third and fourth 
columns of the table. The final column gives the crossing number, which is 
defined as the number of weight iterations required for the average SINR 
over all the trials to exceed a threshold value equal to 3 dB less than the 
final SINR. The crossing number provides a rough measure of the relative 
time required for convergence to the steady state. 

The first row of table 2 shows the system response to a single interference 
signal. The second row, which is obtained from the same experiment that 
gave figure 5, indicates that there is slower convergence and a 2.5-dB loss 
in final SINR due to the presence of a second equal-power interference 
signal. The third and fourth rows illustrate the further losses that occur 
when three equal-power interference signals are present. In the third row, 
the third interference signal at an angle -60° fortuitously arrives near a 
grating null naturally generated when the first two interference signals 
are nulled, as observed in figure 5(b). In the fourth row, the final SINR is 
much smaller because the third interference signal arrives in the natural 
grating lobe. The fifth and sixth rows illustrate the decrease in the final 
SINR and the sharp increase in the standard deviation that result when 
the bandwidth increases by a factor of 10 while the total interference 
power remains the same. The final row illustrates the limitations imposed 
by the resolution of the array. 

The resolution of an adaptive array is the minimum angular separation 
between the interference and desired-signal sources that can be accommo- 
dated without significant performance degradation. The resolution is 
limited by the angular extent of a null formed against an interference 
signal, and is proportional to A/D, where D is the aperture or separation 
of the antennas. Thus, to decrease the resolution, the edge length of the 
square array can be increased. However, the increase in the separation 
between antennas inevitably causes an increase in the number of grating 
nulls. The tendency of the array to form grating nulls at certain angles 
may impede the formation of nulls against two or more interference 
signals. Furthermore, since a decrease in the resolution causes a decrease 
in the angular width of a null, there is a decrease in the fractional band- 
width that can be accommodated by the array, as explained in the next 
section. 

Bandwidth Direction of Final Standard Crossing 
(MHz) interference (°) SINR (dB) dev. (dB) number 

30 40 25.7 1.5 5 
30 40,70 23.2 1.3 24 
30 40, 70, -60 19.8 1.9 88 
30 40, 70, -50 15.5 2.1 207 

300 40 23.7 5.2 6 
300 40,70 20.4 4.3 22 
30 10 19.0 1.3 128 
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Table 3 indicates the effects of an increase in the array aperture or edge 
length of the square array. The superior resolution of the larger array 
yields greatly improved performance when the interference is from 
approximately the same direction as the desired signal. However, as 
indicated by the sixth row in the table, the performance advantage usu- 
ally disappears when the hopping bandwidth is large and there are two 
or more equal-power interference signals. 

Table 3. Simulation 
results with edge 
length = 2A. 

Bandwidth Direction of Final Standard Crossing 

(MHz) interference (°) SINR (dB) dev. (dB) number 

30 40 25.3 1.5 2 

30 40,70 24.5 2.6 15 

30 40, 70, -60 19.9 2.0 58 

30 40, 70, -50 23.6 2.7 22 

300 40 23.8 2.2 3 

300 40,70 14.0 8.6 12 

30 10 23.9 1.3 9 
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6. Frequency Compensation 

Figure 7. (a) SINR for 
single simulation 
trial with two 
interference signals, 
each comprising 
tones in every 
frequency channel, 
and hopping 
bandwidth 
= 300 MHz, (b) array 
gain pattern at end of 
trial, and (c) average 
SINR for 20 trials. 

Adaptive processing may be significantly impaired if the fractional band- 
width, which is defined as the hopping bandwidth divided by the center 
frequency of the hopping band, exceeds a few percent and no frequency 
compensation is used. As an example, the hopping bandwidth in the 
previous example of figure 5 is expanded to 300 MHz, a 10 percent frac- 
tional bandwidth, but all the other conditions remain the same. The 
simulation results are shown in figure 7. The significantly increased SINR 
fluctuations are caused by the large changes in the carrier frequency of 
the frequency-hopping desired signal that sometimes occur. Not only is 
convergence slowed, but also the steady-state SINR is reduced relative to 
the results in figure 5. 

Frequency compensation is sometimes needed because the antenna 
elements produce only relative phase information. Consider two antenna 

-150 -100 -50 0 50 
Incident angle (degrees) 

100 150 

50 100 150 200 250 

Number of weight updates 
300 350 
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Figure 8. Two 
antenna elements of 
adaptive array 
receiving plane 
wave. 

elements of an adaptive array receiving a plane wave, as illustrated in 
figure 8. The phase shift of a narrowband signal at one element relative to 
the phase of the signal at the other is 

6 = f D sin <p , (63) 

where w is the carrier frequency in radians per second, c is the velocity of 
an electromagnetic wave, 0 is the arrival angle of the plane wave relative 
to a line perpendicular to the straight line through the two elements, and 
D is the distance between the elements. If the carrier frequency of the 
received signal changes from co to co + Aft), then the phase shift changes by 

(AÖ^^Dsin^. <64) 

If the frequency is constant, but the arrival angle changes from 0 to 
</> + A0, then the phase-shift change is 

(A0)2 = f D sin (0 + A<f>) - f D sin <f> . (65) 

If the adaptation is realized by the use of a single adaptive weight behind 
each antenna element, the adaptive system cannot distinguish between 
the two possible causes for a change in the phase shift. Thus, a change in 
frequency due to frequency hopping is processed as if a change occurred 
in the arrival angle. 

Setting (A0)! equal to (A0)2, we conclude that the equivalent changes in 
frequency and arrival angle are related by 

sin(0 + A0) = (4(r + l)sin0 (66) 

This equation can be solved for A0 as a function of Aco if | sin 01 < co/ 
(co + Am). For small or moderate values of A</>, a Taylor-series expansion of 
equation (66) yields 

Aco 
Atp = -ß- tan </>, A0 tan 0 < < 1 (67) 

Suppose that an adaptive system creates an approximate spatial null in 
the direction of a source of interference at the instantaneous hopping 
frequency 6). If the instantaneous frequency of the desired signal changes 
to (o + Aco and the interference source produces significant power at 
a + Am, then the equivalent A<$> for the interference is given by 

Plane wave 
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equations (66) and (67). If Act) is sufficiently large, A0 may be larger than 
the angular width of the original null. Consequently, after the carrier 
frequency of the desired signal hops to co + Aco, the interference is not 
immediately nulled, but further adaptation is required to again establish 
a spatial null. Thus, if the fractional bandwidth is large, then unless 
(1) the angular width of a null is large, (2) A© is restricted to small values, 
or (3) some type of frequency compensation is adopted, the benefit of the 
adaptive processing may diminish significantly. 

The angular width of a null can be increased by decreasing the separation 
among antennas in the array, but then the resolution may be increased to 
an unsatisfactory level. The restriction of the frequency change after a hop 
Aco to a small value keeps the interference near the center of a spatial null 
and makes it possible for the adaptive system to rapidly increase the 
interference rejection. However, the variety of hopping patterns is re- 
duced, which diminishes the resistance to frequency-selective fading and 
increases the susceptibility to wideband interference or jamming. Thus, 
frequency compensation is the preferred alternative. 

Three basic methods of frequency compensation for frequency hopping 
are parameter-dependent, spectral, and anticipative processing. 
Parameter-dependent processing introduces additional parameters in an 
attempt to increase the angular extent and spectral bandwidth of the 
nulls. For the maximin algorithm, a compatible realization applies v 
successive discrete-time outputs of each baseband filter and each monitor 
filter as inputs to the adaptive filter, thereby increasing the number of 
weights in figure 3 by a factor of v. However, the filters sharply limit the 
degree of spectral or beam shaping that might be possible using the 
successive outputs. Simulation results confirm that parameter-dependent 
processing is ineffective for the maximin algorithm. 

Spectral processing is based on dividing the hopping band into a number 
of spectral regions and adapting independently when the carrier fre- 
quency is in one of the regions. The weights associated with each spectral 
region are stored in a memory within the weight processor of figure 3. At 
the end of the signal dwell time at a specific frequency, the weights of the 
adaptive filter are transferred to the memory. Then the weights associated 
with the new carrier frequency are transferred from the memory to the 
filter. These weights are updated during the time interval at the new 
frequency. Transfers between the memory and the filter are controlled by 
the frequency-hopping code generator. The number of spectral regions Ns 

is ultimately limited by the proportional increase in the required number 
of iterations to converge to steady state, because only 1/NS of the 
frequency-hopping pulses are associated with each region. However, this 
increase is slowed by the contraction of each region as Ns increases, which 
expedites the convergence within each region. The relatively slow conver- 
gence rate of spectral processing is its major disadvantage; its major 
advantage is its relatively simple implementation. 
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An anticipative adaptive system begins adaptation toward the optimal 
weights for a carrier frequency before that frequency is transmitted. 
Anticipative processing with an auxiliary processor operating in parallel 
with the main processor is illustrated by figure 9. A time-advanced 
frequency-hopping replica hops one hopping period ahead of the replica 
used for dehopping the desired signal. While the main adaptive filter 
produces the output, the auxiliary filter adapts the weights corresponding 
to the next hopping frequency. After each hop, the weights associated 
with the new hopping frequency are transferred from the auxiliary filter 
to the main filter. Transfers are triggered by the clock that controls the 
frequency-hopping carrier transitions. The weight vector in the auxiliary 
filter is not necessarily updated at the same times as the weight vector in 
the main filter. The auxiliary filter may update its weight vector during 
the switching times between hops, but in the simulation, the duration of 
the switching time is assumed to be negligible. 

The desired signal is not present in the auxiliary processors because they 
monitor the frequency channel of the next hop. Consequently, baseband 
filters can be used as monitor filters to extract various estimates of the 
interference-plus-noise. These baseband filters allow narrower 
intermediate-frequency filters and, hence, a lower sampling rate in the 
auxiliary processor than in the main processor. 

Let Wfl(Z) denote the anticipative weight vector computed by the auxiliary 
adaptive filter at iteration I. The recursive equation for Wfl(Z + 1) is de- 
rived by modifying the maximin algorithm to allow for the absence of the 
desired signal in the auxiliary filter and for the measurements by the 
auxiliary filter. Thus, the signal term within the brackets in equation (25) 
is discarded, and the remaining equation is simplified. The anticipative 
maximin algorithm is 

«l[S^(Z)]a wfl(/ + i) = wfl(/)- m 
(68) 

where a\ is the anticipative adaptation constant and the subscript a on the 
bracketed factor indicates that it is measured by the auxiliary adaptive 

Figure 9. Basic 
configuration of 
adaptive array with 
anticipative 
processing. 
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filter, which uses the output of a frequency channel that will not be 
observed by the main adaptive filter until the next hop. The desired- 
signal power estimate Pß) is the most recent estimate computed by the 
main adaptive filter and is assumed to be nearly independent of the 
frequency channel. The bracketed factor is defined by equation (31), with 
n(z') interpreted as the discrete-time vector of complex envelopes at the 
input of the auxiliary adaptive filter and ynR{i) as the real part of the filter 
output. 

The weight vector in the main adaptive filter is updated by computing 
equation (25), except at sampling instants occurring during switching 
times. At these instants, the weight vector in the main adaptive filter is set 
equal to that of the auxiliary adaptive filter. The switching times occur 
when k = nk0 in the main filter and i = nk\ in the auxiliary filter, where ko 
is the number of iterations per hop in the main filter, k\ is the number of 
iterations per hop in the auxiliary filter, and n = 1,2,... is the hop num- 
ber. Thus, the maximin algorithm in the main filter becomes 

W(jt+l) = W(*) + -2- 
P{k) 

X#)    *X#) 
?s(k) Uk) 

k+1* nkQ 

W(nfc0) = W8(nfc1) ,    »1 = 0,1,.. 

(69) 

The anticipative maximin algorithm, which is closely related to the 
recursive suppression algorithm [8] for direction finding, attempts to null 
all signals with power in the hopping band, but does not null the desired 
signal because it is never present in the baseband filters of the auxiliary 
adaptive filter. This absence ultimately is due to the system's knowledge 
of the frequency-hopping pattern. 

One might consider a version of the anticipative maximin algorithm in 
which the signal term in equation (25) is retained. The signal term cannot 
be computed by the auxiliary adaptive filter because it does not receive 
the desired signal. Therefore, the signal term computed by the main 
adaptive filter is used to enable beamforming by the auxiliary adaptive 
filter in the direction of the desired signal. However, the signal term does 
not include frequency compensation, and any beamforming tends to 
erode the nulls when interference is absent in the monitor filter outputs. 
Simulation results indicate that this algorithm version can accommodate 
larger adaptation constants and, hence, expedites the convergence when 
the interference signals occupy all the frequency channels, but its 
performance is inferior when interference signals occupy only a fraction 
of the hopping band. Thus, equation (68) is the preferred form of the 
anticipative maximin algorithm. 

The results of nine simulation experiments are displayed in table 4, where 
the edge length is A, the hopping bandwidth is 300 MHz, and the frac- 
tional bandwidth is 10 percent. The first three rows in table 4 give results 
for no frequency compensation and a = 0.2 as a reference for comparison. 
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The next three rows indicate that spectral processing with three regions 
and a = 0.2 provides an increased final SINR at the cost of a large increase 
in the crossing number. The standard deviation is substantially reduced 
for one or two interference signals. Using two regions is slightly less 
effective. Further gain in the final SINR and a reduction in the standard 
deviation occurs as the number of hops is increased beyond the 50 used 
in generating table 4, because the weights of each of the three spectral 
regions approach steady-state values. This additional gain increases with 
the number of interference signals. 

In the simulation experiments with anticipative processing, the initial 
value of the auxiliary weight vector is Wa(0) = [l 1 1 1], and the number 
of iterations per hop is kx = k$ = 8. For one or two interference signals, the 
adaptation constants are a=<Xi = 0.08; for three interference signals, 
a - a\ = 0.02. Many other combinations of k\, a, and a.\ were tried, but 
none gave an improved overall performance compared with the results 
listed in the last three rows of table 4. The results indicate that anticipative 
processing provides better performance in both the final SINR and the 
standard deviation than spectral processing or no compensation, 
although the convergence rate of anticipative processing against three 
interference signals is very slow. 

The simulation results indicate that when the fractional bandwidth is 
10 percent, either spectral or anticipative processing usually provides a 
significant benefit. Anticipative processing has the advantage of usually 
providing the best performance, but spectral processing is simpler to 
implement. 

Table 4. Simulation 
results with edge 
length = X and total 
hopping bandwidth 
= 300 MHz. 

Compensation 
method 

None 
None 
None 
Spectral 
Spectral 
Spectral 
Anticipative 
Anticipative 
Anticipative 

Type 

Ns = 3 

fc1 = 8 

Direction of Final       Standard    Crossing 
interference (°)     SINR (dB)   dev. (dB)     number 

40 
40,70 

40, 70, -60 
40 

40,70 
40, 70, -60 

40 
40,70 

40, 70, -60 

23.7 
20.4 
13.6 
25.1 
22.1 
14.9 
26.0 
23.4 
16.0 

5.2 
4.3 
5.6 
2.7 
2.4 
5.8 
1.3 
1.4 
5.1 

6 
22 
63 
6 
70 

142 
12 
32 
190 
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7. Summary 

The maximin algorithm is a blind adaptive algorithm that simultaneously 
forms a beam in the desired-signal direction and cancels interference in a 
frequency-hopping communication system. Each weight-vector iteration 
of the maximin algorithm is specified by the equations 

W(Jfc+l) = W(Jfc) + -S_ 
ß{k) 

s*ys#) n*y nK (*) 

W W 

p(k) = 
PsW 

km 
X 

= (fc-l)« 

km 
X 

= (*-l)B »v^w-A,   £ +1 «•(<)</„«(<). 

w=*,=(t-l+1^)- (fc-1)« 

The adaptation constant a usually should be chosen from within the 
range defined by 

0<a<2lW(0)|2Pl . 

In these equations, 

k   = weight iteration number, 
i  = sample number, 

m = number of samples between weight iterations, 
N = number of antennas in array, 

X(z) = input vector of baseband filter, 
yjj(z) = real part of output of baseband filter, 
n(0 = input vector of monitor filter, 

ynR^ = real Part of output of monitor filter, and 
p\ = SINR per frequency channel at an antenna input. 

If the fractional bandwidths exceeds a few percent, either spectral proc- 
essing or anticipative processing is effective as a means of frequency 
compensation. Spectral processing divides the hopping band into spectral 
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regions and independently adapts the weights associated with each 
region. The anticipative maximin algorithm for the auxiliary weight 
vector is 

wfl(/ + i) = wfl(i). 
«1 *%R(l)}a 

m 
where the bracketed factor is measured by the auxiliary adaptive filter. 
The maximin algorithm in the main adaptive filter is modified by requir- 
ing that 

W(nk0) = Wfl(n ky),   n = 0,1,... . 

In these equations, 

/ = anticipative weight iteration number, 
0]_ - anticipative adaptation constant, 
kQ - number of weight iterations per hop in the main filter, 
ki = number of weight iterations per hop in the auxiliary filter, and 
n = hop number. 
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