
AFRL-IF-RS-TR-1999-235 
Final Technical Report 
October 1999 

MULTIPROCESSOR STATION (MIPS) 

Nichols Research Corporation 

Jaye Bass 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

ÜTIC QUALITY nWHBOTBD 4 19991220 051 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-IF-RS-TR-1999-23 5 has been reviewed and is approved for publication. 

APPROVED: 
SCOTT F. ADAMS 
Project Engineer 

FOR THE DIRECTOR:        ^ . 
JOHN V. MCNAMARA, Technical Advisor 
Information & Intelligence Exploitation Division 
Information Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed^by 
your organization, please notify AFRL/IFEC, 32 Brooks Road, Rome, NY 13441-4114. 
This will assist us in mamtaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE OMBNo. 0704-0188 

SHSSHrSaSSSS^Ss«^ 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

Oct99 

3. REPORT TYPE AND DATES COVERED 

4. TITLE AND SUBTITLE 

MULTIPROCESSOR STATION (MIPS) 

Final   Apr 96-Jan 99  

6. AUTHOR(S) 

Jaye Bass 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Nichols Research Corporation 
4040 S. Memorial Parkway 
PO Box 400002 
Huntsville, AL 35815-1502 

5. FUNDING NUMBERS 

C    - F30602-96-C-0083 
PE -63260F 
PR -3480 
TA -PD 
WU-49 

9. SPONSORING/MONITORING AGENCY NAIWE(S) AND ADDRESSIES) 

AFRL/IFEC 
32 Brooks Road 
Rome, NY 13441-4114 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

1D. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-IF-RS-TR-1999-235 

11. SUPPLEMENTARY NOTES 

AFRL Project Engineer: Scott F. Adams, IFEC, 315-330-1430 

12a. DISTRIBUTION AVAILABILITY STATtNlENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) „„»„♦♦«. 
The objective of the Multiprocessor Station (MIPS) effort was to establish a software development environment to. 
maximize cross-platform portability of image and video processing software; maximize the utilization of available 
multiprocessors on intelligence workstations; and maximize the life-span and minimize the life-cycle cost of software, rne 
end product is: an object-based visual programming environment in which image and video data and operations are 
represented by icons; an environment which permits mixing of legacy code and new development; a framework providing the 
capability to visually program new algorithms without writing any source code; tight integration of the constructor mode with 
the main window mode means that new algorithms can be developed and easily installed on any computer with MIPS 
software- the image cube object, which is used to store all imagery and video, makes it possible for all image processing 
algorithms to be applied to all types of data; versatility for exploiters of multi-spectral imagery, in that processing and 
display of image bands can be tightly controlled, easily modified, and packaged for widespread use; the environment 
demonstrates portability across platforms, software reusability, adaptability to various multiprocessor configurations, and 

extensibility to other application areas (i.e. signal processing). 

14. SUBJECT TERMS 
Image processing, parallel processing, video processing, visual programming, portable 
programming, spectral imaging 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

ia SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

44 

iö.UMITAYI6rtui-' 
ABSTRACT 

UL 
Standard Form 298 IRey. Z-89) (tu) 



Table of Contents 
1 INTRODUCTION 1 

2 OVERVIEW • 2 

2.1 MIPS FRAMEWORKS 2 

2.2 MIPS CONSTRUCTOR  
2.3 MIPS MAINWINDOW  

3 THE MTPS FRAMEWORKS 6 

3.1 IPCC FRAMEWORK  
3.2 IP FRAMEWORK • 
3.3 PIP FRAMEWORK  
3.4 IF FRAMEWORK  
3.5 VIE FRAMEWORK  

19 4 CONSTRUCTOR iy 

4.1 THE WORK AREA: OBJECT CANVAS ^ 
4.2 CREATING OBJECTS: THE OBJECT PALETTE ^ 

4.2.1 System View  
4.2.2 Oass View  

4.3 OBJECT TO OBJECT CONNECTIONS: REFERENCES j\ 
4.4 OBJECT PARAMETERS: THE OBJECT INSPECTOR 24 

5 THEMAINWINDOW 28 

6 CONCLUSION M 

7 RECOMMENDATION FOR FUTURE ACTIVITIES 33 



Table of Figures 

FIGURE 1. ILLUSTRATED ABOVE is A GRAPHICAL REPRESENTATION OF THE MIPS FRAMEWORKS 2 
FIGURE 2. OVERVIEW OF THE MIPS CONSTRUCTOR INTERFACE 3 
FIGURE 3. JAVA BASED LIVE PLOTTING IMPLEMENTED IN MIPS 4 
FIGURE 4. JAVA BASED MPEG VIDEO VIEWER IMPLEMENTED IN MIPS 4 
FIGURE 5 THE MAINWINDOW INTERFACE SHOWING THE ALGORITHM MENU SYSTEM 5 
FIGURE6 GRAPHICAL DEPICTION OF THE MIPS "DATA CENTRIC" PARALLEL PROCESSING 7 
FIGURE 7. THE OBJECT CANVAS CONTAINING A PROCESSING CHAIN. NOTE THE HORIZONTAL AND VERTICAL SLIDERS 

USED FOR VIEWING CHAINS THAT ARE LARGER THAN THE VIEWABLE SIZE OF THE CANVAS 19 

FIGURE 8. THE SYSTEM VIEW OF THE OBJECT PALETTE 20 
FIGURE 9 THE CLASS VIEW OF THE OBJECT PALETTE. DISPLAY ONLY BASE CLASSES ARE HIGHLIGHTED IN RED 21 
FIGURE 10 AFTER INVOKING THE REFERENCE RESOLVER (STEPS 1 & 2) FOR THE READER OBJECT, THE REFERENCE 

RESOLVER DIALOG APPEARS. READER WILL BE CONNECTED TO IMAGE. NOTE THE RED BORDER SIGNIFYING 
THAT THE READER HAS AT LEAST ONE UNSATISFIED OR UNCONNECTED REFERENCE 22 

FIGURE 11 APPEARANCE OF THE REFERENCE RESOLVER AFTER SELECTING THE IMAGE OBJECT FROM THE LIST OF 

POTENTIAL RESOLVERS AND PRESSING THE CONNECT BUTTON. NOTE THE IMAGE OBJECT IS LISTED AS THE 

"VALUE" OF THE REFERENCE 23 

FIGURE 12 ONCE THE OK BUTTON IS PRESSED THE REFERENCE RESOLVER DIALOG CLOSES. THE RED LINE BETWEEN 

READER AND IMAGE APPEARS AFTER THE DIALOG CLOSES, SIGNIFYING A REFERENCE CONNECTION FROM THE 

READER OBJECT TO THE IMAGE OBJECT. NOTE THE GREEN BORDER AROUND READER SIGNIFYING THAT ALL 

REQUIRED REFERENCES HAVE BEEN RESOLVED 23 

FIGURE 13. ILLUSTRATED ABOVE IS THE OBJECT INSPECTOR FOR THE READER OBJECT. SEVERAL TYPES OF 
PARAMETERS ARE AVAILABLE, EACH WITH THEIR OWN EDITOR 24 

FIGURE 14. SELECT THE PARAMETER "IMAGE FILE" TO MODIFY BY PLACING THE CURSOR ON THE APPROPRIATE ROW, 

CLICKING ONCE WITH THE LEFT MOUSE BUTTON ■- 25 

FIGURE 15. AFTER SELECTING THE "IMAGE FILE" PARAMETER, A FILE OPEN DIALOG IS PRESENTED. FIND THE DESIRED 

FILE ON DISC AND PRESS OPEN.  
FIGURE 16. RESULT OF THE ACTION DESCRIBED IN FIGURE 15 ^ 
FIGURE 17 To SET A VALUE IN THE BOOLEAN EDITOR, SELECT TRUE OR FALSE FROM THE PULLDOWN LIST lb 
FIGURE 18 THE PARAMETER "CHANNELS" IS A COLLECTION. "NUMBER OF CHANNELS" IS THE PARAMETER THAT 

CONTROLS THE SIZE OF THE COLLECTION. ALL COLLECTION INPUT PARAMETERS HAVE AN ACCOMPANYING SIZE 

PARAMETER. OPERATOR OBJECTS AUTOMATICALLY SIZE COLLECTIONS THAT ARE USED AS OUTPUT 
 26 

FIGURE^ AFTER ^GraN^OFCHi TO 3, SELECT THE "CHANNEL" PARAMETER TO DISPLAY THE 

COLLECTION. IN THIS CASE THE COLLECTION IS A VECTOR OF CHANNEL OR BAND NUMBERS. EACH OF THESE 

CAN BE EDITED INDEPENDENTLY "•-  
FIGURE 2Q SHOWN ABOVE IS THE APPEARANCE OF THE INSPECTOR WHILE EDITING THE VALUE OF THE 2    CHANNEL 

NOTE CHANNELS ARE NUMBERED FROM 0 TO N-l, WHERE N IS THE NUMBER OF CHANNELS 27 

FIGURE 21. MAINWINDOW ORGANIZATION AND APPEARANCE. NOTE THAT THE SYSTEM FILE EDGEFILTERS.SYS 

CONTAINS VIEMACROS LABELED SOBEL, CANNY, KlRSCH, ANDPREWITT 28 

FIGURE 22. THE INSPECTOR IS DISPLAYED TO FURTHER ENHANCE FLEXIBILITY 2y 
FIGURE 23. THE RESULT OF THE APPLICATION OF THE SOBEL FILTER IS DISPLAYED. UNDO WILL RESTORE THE IMAGE 

TO ITS PREVIOUS STATE  
FIGURE24. SAMPLE SYSTEM, EDGEFILTERS.SYS, VIEWED AT THE TOP LEVEL *j 

FIGURE 25. THE SOBEL FILTER MACRO CONTENTS ■■■■■■ fö 

FIGURE 26 COMPLEX MACRO ALGORITHM. FIRST GAUSSIAN NOISE IS ADDED TO THE IMAGE, THEN THE CONTRAST IS 

STRETCHED USING HISTOGRAM EQUALIZATION, AND FINALLY THE RESULT IS SMOOTHED USING A GAUSSIAN 
SMOOTHING FILTER. NOTE THE USE OF FLUSHABLE INTERMEDIATE IMAGES 31 



1   Introduction 

This report describes the activities and accomplishments of the "Multi-Processor Station 
(MIPS)" program performed by Nichols Research Corporation (NRC). The work was sponsored 
by Air Force Research Laboratory (AFRL), Multi-Sensor Exploitation Branch, Contract No. 
F30602-96-C-0083 from 30 April 1996 to 31 January 1999. Within the effort, the MIPS suite of 
re-usable object-oriented frameworks, the MIPS constructor and the MIPS Mainwindow were 
developed and delivered to AFRL. 

The AFRL Program Manager was Mr. Scott Adams. The NRC Program Manager was Mr. Gary 
Grider Mr. Jaye Bass served as technical lead. Mr. Brett Gossage developed the object server 
framework. Mr. John Spears developed the GUI's for both the Constructor and the Mainwindow. 
Ms. Marisa Wheelock developed the image processing algorithms. Mr. Chris Parker served as 
lead test engineer. 

The primary objective for this effort is to improve the information flow to the warfighter by 
providing an automated image processing workstation which provides near real-time imagery 
data reduction. This was accomplished by developing the MIPS Constructor, an object oriented, 
parallel processing, visual programming image exploitation tool, and the MIPS Mainwindow, a 
window oriented image exploitation tool integrated with and upgradeable by the Constructor. 
These tools provide the warfighter with an easy to use, field upgradeable, parallel 
processing solution to all source (RGB/grayscale, video, or multi/hyperspectral) image 
exploitation. Additional objects of this effort included: 

■ Demonstration of the advantages of a multiprocessor workstation to exploit imagery. 
■ Construction of a prototype workstation using cost effective commercial off the shelf 

components integrating image and video analysis routines developed for the Image 
Exploitation 2000 (IE2000). 

■ Demonstrate the software reuse advantages of an object oriented software development 
environment. 

■ Demonstrate an innovative cost effective upgrade path for existing Air Force assets. 



2   Overview 

In response to the objectives stated on the previous page, NRC has developed 3 core products. 

2.1 MIPS Frameworks 

The first product is a set of re-usable object oriented frameworks: 

■ Image Processing (IP) Framework 
■ InterProcess Communication and Control (IPCC) Framework 
■ Image Formats (IF) Framework 
■ Parallel Image Processing (PIP) Framework 
■ Visual Imaging Environment (VIE) Framework 

Figure 1. Illustrated above is a graphical representation of the MIPS frameworks. 

Each of these frameworks, illustrated in figure 1, was carefully designed for re-use, portability 
extensibility, easy maintainability, and to support multi-threaded processing. The IP framework 
contains the lowest level image processing operators. The IPCC framework is the backbone of 
portable parallel processing in MIPS. The IPCC is completely portable to symmetric multi- 
processor platforms that use either Posix or Win32 thread libraries. The PIP framework contains 
the parallel processing versions of the IP framework and a set of processing functions that 
transparently implement, by using IPCC classes, parallel image processing. The IF framework 
contains the image format encoding and decoding classes. The VIE framework classes are the 
link between the user and the MIPS applications. VIE level objects enable runtime visual 
programming. They are represented as icons that are manipulated by the user to create arbitrarily 
complex processing chains. 



2.2   MIPS Constructor 
The second product is the MIPS Constructor. This portable, multi-threaded application is 
designed to allow the user to visually construct complex image processing algorithms by 
manipulating objects that are represented as icons. These image processing algorithms consist of 
reader/writer, data, processing, and display objects connected together in a processing chain. 
Processing chains automatically execute in parallel and can be of arbitrary complexity. All image 
data regardless of source (RGB/grayscale, video, or multi/hyperspectral images) is represented 
by a single data object - Vielmage. Vielmage is based on the idea of an image cube. The image 
processing objects in the Constructor all connect to Vielmage objects. Hence, the image 
processing objects perform their processing functions regardless of the source of the image data. 
Thus, one can perform edge detection on an entire video stream or a grayscale image with the 
same'processing chain. An overview of the Constructor interface is shown below in figure 2. 

O W1   S*1   SS"*"'   Ac*""   H** 

s   , 
'„■' u>', . _^, r r^, ^^^,5^^™-^, _ ~T7 - - „, -^ - niäsiiii 

Figure 2. Overview of the MIPS Constructor interface. 

The constructor will also display live plots and MPEG video streams. These fully portable 
features are implemented in Java and accessed vie the Java Native Interface. The MPEG viewer 
uses the Java Media Framework and native runtime codecs to display MPEG data. Figures 3 and 
4 illustrate the live plotting facility and MPEG viewer. 



Eile    Edit   Window   Action    Help 

7M*PM. 

Figure 3. Java based live plotting implemented in MIPS. 

'ss^äßms^Bs^^ms^ 

Figure 4. Java based MPEG video viewer implemented in MIPS. 



2.3   MIPS Mainwindow 
The third product is the Mainwindow. The Mainwindow interface, shown in figure 5, is a 
window based image exploitation application, which has been integrated with the Constructor. 
The Mainwindow loads special archived processing chains (system files) at program 
initialization. Menus and submenus are created dynamically to correspond to each archived 
processing chain. Thus the Mainwindow can be field upgraded with new algorithms and 
capabilities by simply reading an additional set of system files. The internal processing is the 
same as that of the Constructor - parallel processing of all algorithmic operations. 

«MIPS Main Window HRsO: 

• ••    -       ■:--:-.-,-;.:^.-:-- =_J 

.. ■   •  -.' .- -■ .":•■ "" ""s.'."'.".'s"T:"■'■".;-" ■■■'" '-:" 

Figure 5. The Mainwindow interface showing the algorithm menu system. 



3   The MIPS Frameworks 

The MIPS software suite is comprised of 5 frameworks - the InterProcess Communication and 
Control (IPCC) framework, the Image Processing (IP) framework, the Parallel Image Processing 
(PIP) framework, the Image Formats (IF) framework, and the Visual Imaging Environment 
(VIE) framework. In this section we will cover each of these frameworks with an emphasis on 
how to create new MIPS Constructor and Mainwindow compatible VIE classes. 

Many of the complexities of "data centric" parallel processing have been hidden in high level 
classes. Thus the would-be programmer can concentrate on writing portable, cross platform, 
parallel image/data processing algorithms without having detailed knowledge of the underlying 
mechanics, namely portable multi-threaded processing. 

3.1   IPCC Framework 

The classes in the IPCC framework are used to create and manage multiple threads and 
processes The thread, process and mutex classes are built using the bridge pattern to assure link 
level portability across operating systems and platforms. The synchronization classes are written 
in terms of the thread interface class and hence are portable because the thread class is portable. 

Thread is the abstract base class for all derived thread types. It provides a pure virtual function 
process that when overridden by derived classes, will be executed when the child thread begins 
execution This arrangement means that derived classes of Thread can define, for their own 
purposes, the structure and form of the work performed by overriding the method process. 

The classes WorkerThread, WorkPile, Work, and ThreadSet are the workhorse of MIPS parallel 
processing  WorkerThread is a derived class of Thread. It is a template class with two template 
parameters - JDBJTYPE and _WORKTYPE. The policy enforced for _OBJTYPE is simply a 
doWork method that takes an object of type _WORKTYPE as a parameter. The policy enforced 
for _WORKTYPE consists of two functions, next() and end(), and a comparison operator >. The 
method next() should get the next available piece of work and the method end() should signal the 
end of the work in some fashion compatible with the comparison operator and an object of type 
WORKTYPE Because a WorkPile object is instantiated with an object of type _WORKTYPE 

in the WorkerThread constructor, objects of type _WORKTYPE have extra policy constraints 
imposed by the class WorkPile. 

As was stated previously, WorkPile is a template class that takes a template parameter 
„WORKTYPE. WorkPile allows the thread system to synchronously process the current piece of 
work decrement the amount of work in the "workpile", and test for an end condition. The next() 
method gets, sequentially, the next piece of work by returning the current value of on object of 



type _WORKTYPE and decrement the member m_work. The end method returns an object of 
type _WORKTYPE constructed with a zero as an argument. 

Work is an abstraction that describes how much work is yet to be processed. It is a base class that 
provides a basic functionality as a counter that tracks the current value of the number of 
"chunks" or pieces of work remaining. This class or its descendents are used with the class 
WorkPile. However, the concepts were kept separate so that the developer could redefine what is 
meant by work and still be compatible with the WorkerThread class. 

ThreadSet is a set or group of threads with a method that implements the so-called barrier 
synchronization method. Derived classes of Thread may be added or deleted to the set. The 
method wait() waits for all threads in the set to finish execution before relinquishing control to 
the called method. Hence, wait() implements barrier synchronization in that all threads must join 
at the barrier before the caller can proceed. 

These classes cooperate to allow multiple threads to automatically process data until no more 
work is left to perform. Figure 6 below illustrates this process in the context of image data. 

Input Image 

ROIl 

ROIZ 

ROI3 

ROI4 

ROI5 

ROI6 

ROI7 

ROI8 

ROI9 

ROI10 

^ 

w 
o 

k 
P 
..«.-■ 

1 

e 

£ THREAD ONE 

THREAD TWO 

Output Image 

,rr ROIl 

■■''       4 
ROI2 

ft ROI3 

V-.     //** ROI4 

\/-/C'., jf ROI5 

/y*~S\'*' ROI6 

y\ * ROI7 
\ 

ROI8 

\    H ROI9 

ROI10 

■ WorkPile parcels out the work, currently work corresponds to an ROI counter 
• Concept of Work and WorkPile is generic and can be adapted to other datatypes. 
• Current implementation is basically a protected counter. 

• Threads are spawned when needed and run until no more work remains. 
- Automatic load balancing of the type. 
- Will execute, in parallel, any object that conforms to the policy.. .doWork( ). 

Figure 6. Graphical depiction of the MIPS "data centric" parallel processing. 

Two template functions are provided that hide the details of using the WorkerThread, WorkPile, 
Work, and ThreadSet of classes. The first one is ApplyParallel. It is a general-purpose function 



that takes two parameters - an object with an appropriately defined doWork method and a Work 
object that has been constructed with the number of chunks to process. A call to ApplyParallel 
will automatically setup the thread system, run the contents of doWork in parallel, and wait for 
the threads to terminate. The other template function is launch. Launch is a higher abstraction 
than ApplyParallel. It takes a single argument, the object with the doWork method, and 
automatically creates an appropriate Work object, calling ApplyParallel to start the parallel 
processing. 

Table 1 below summarizes the IPCC classes. 

Class Name 
ApplyParallel 

Guard 
launch 

Mutex 

Process_ 

Thread 

ThreadSet 

Work 

WorkPile 

WorkerThread 

Description 
Function that creates and executes a parallel 
processing job. 
Provides mutex synchronization for a calling scope. 
Function that creates and executes a parallel 
processing job using ApplyParallel. 
Base interface class for mutex synchronization 
objects 
Base interface class for spawning and executing heavy 
weight processes. 
Abstract base thread class. Defines much of the 
interface for working with threads 
A container class for subclasses of Thread. Also 
contains a barrier synchronization method. 
A base class that defines the notion of work as a 
counter. 
Manages how the Work is parceled out among the 
WorkerThreads. 
Derived class of Thread. WorkerThread processes data 
in pre-defined chunks.  .  

3.2   IP Framework 
The IP framework is a collection of classes that perform some image processing function on a 
region of interest (roi) of an image. These classes are unaware of any parallelism and can 
potentially be used in an other applications where parallelism is not required. The IP classes are 
the low level image processing operators of the MIPS software suite. The PIP framework uses 
these classes as a basis for developing parallel aware operators. Since these classes are all 
templates (meaning there are no .cpp files to compile) there are no build instructions associated 
with these classes. 



There are several base classes within this framework that provide member variables, such as 
pointers to input and output images, to derived classes that relieve the developer of new classes 
from duplicating these member variables. These classes are ImageOperator and ImageOutputOP. 
ImageOperator provides to derived classes a pointer to an input image. All classes that require an 
input image but only create scalar output should derive from this class. Operator classes that 
require an input and output image pointer should derive from ImageOutputOP. All IP operators 
that are part of the MIPS software suite derive from one of these three classes. It should also be 
noted that MIPS operators do not overwrite input images with computed output values but rather 
writes the computed values to a new output data structure. 

Table 2 below summarizes the IP framework classes: 

Class Name 
AbsoluteOp 
AccumulateOp 
AddBitErrorOp 
AddConstantOp 
jAddCjuassOp 
AddlmpulsiveOp 
AddOp 
AddUniformOp 

ApplyMapOp 

= ClipValOp 

ApplyFunctionOp 

ATrimmedSqMeanOp 

ConvolveAvgOp 

ConvolveOp 
CopyOp 

CrossGradientOp 
CropImageOp 

CrossGradientTOp 
CrossGradLevelBOp 

: CrossGradLevelGOp 
CrossGradLevelOp 
CrossMedianOp 
DifferentiateSpectrumOp 

FlipHorzOp 
FlipVertOp 
GtThresholdOp 
HistogramOp 

Description 
Computes the absolute value of pixels in a roi. 
Accumulates pixel values from two inputs 
Adds bit error. 
Adds a constant. 
Adds gaussian noise. 
Adds impulsive noise.        
Adds coincident roi's from two images to form; a third. 
Adds uniform noise. 
Applies a function^ contained in an input object, to the 
pixels in aroi. 
Applies an image map topixels in a roi 
Applies the alpha trimmed square mean filter. 
Clips pixels in a Toi between two values. 
Spatial cbttvdlutiöh With a divisor applied after the kernel 
has been applied. 
Spatial convolution of a kernel with pixels in a roi. 
Copy's roi's from input to output. 
Crops the input image- 
Base cross gradient operator 
Thresholded version of the base class 
Sets the background pixels to a constant- 
Sets the edge pixels to a constant 
Sets both the edge and background pixels to constants. 
Applies the cross median filter. 
Differentiates the spectrum of each pixel (i,j) in a multi- 
channel image- 
Flips each roi horizontally. 
Flips each roi vertically. 
Counts the number of pixel in a roi above a threshold. 
Computes the histogram of a roi 



HysteresisOp 
Image 
ImageMap 
ImageOperator 

ImageOutputOP 

ImageROI 
IntegrateSpectrumOp 

IPExceptions 
Kernel 
LtThresholdOp 
MaxPixelCompOp 

MaxPixValOp 
MedianOp 
MinPixValQp 
MlPSImage 

MIPSKernel 
MultConstantOp 
NonmaxSuppressOp 
Norm20p  
Plottable 
Rotate90Op 

ScaleOp 
SelectDynamicRangeOp 
setB order  
SetPixelsOp 
StatQp 
SubtractOp 
SumOp  

Computes the hysteresis of a roi. 
The image cube 
Data structure representing image maps. 
Base class for operators needing only an input image 
pointer; 
Base class for operators needing both an input and output 
image pointer. 
Class representing an image roi. 
Integrates the spectrum of a multi-channel image for each 
location(ij) 
IP Framework exception classes 
Data structure representing a convolution kernel 
Counts the number of pixels in a roi below a threshold. 
Compares the pixels of two coincident roi's and outputs 
the largest one to the output roi.  
Determines the largest pixel value in a roi.  
Applies a median filter; 
Determines the smallest pixel value in a roi. 
The image cube instantiated with short, allows MIPS to 
process images of up to 16 bits of precision.  
The kernel instantiated with short. 
Multiplies a constant times each pixel in a roi. 
Suppresses non local maximum pixels 
Computes the norm between two coincident roi's. 
Class representing plottable data. 
Rotates an roi by 90 degrees in the anti-clockwise 
direction.  
Zooms in or out of a roi 
Extracts an 8 bit dynamic range from each pixel in a roi. 
Sets border pixels in a roi. 
Sets pixels in a roi to a value- 
Computes stats on a roi. 
Subtracts coincident roi's from two images to form a third. 
Computes the sum and sum of squares for pixels in a roi. 

3.3   PIP Framework 

The PIP framework is a collection of the parallel aware low level image processing operators and 
associated parallelizing template functions. Each operator class in the PIP framework contains a 
doWork method and is derived from an IP framework class. The template functions start the 
parallel processing for each operator type. A single call to one of these template functions will 

10 



perform, in parallel, the operation represented by the PIP operator. The parallel system will be 
started, the image data will be processed and written to output objects when one of these 
functions is called. For example, in the code fragment shown below, the absolute value of an 
input image will be computed (in parallel if possible) and written to the output image. 

void someFunction() 
{ 

MIPSImageinputImage,outputImage; 

// get the input image...in MIPS this is accomplished via references 
inputlmage = getlnputlmage(); 

// now get the absolute value 
parallelAbsoluteVal(&inputImage,&outputImage); 

} 

The template function parallelAbsoluteVal is shown below: 

template <class _IMAGETYPE> 
void parallelAbsoluteVaK JMAGETYPE* inputlmage, JMAGETYPE* outputlmage) 

{ 
// Instantiate the parallel operator 
PAbsoluteOp<_IMAGETYPE> absoluteVal( inputlmage, outputlmage); 
// Launch the operator into the parallel system 
launch( absoluteVal); 

} 

The parallelizing template functions are a set of high level functions that give the developer 
access to a wide range of parallel operators. Developers can develop new template functions 
using the available PIP operators or they can develop template functions based on new PIP (and 

hence new IP) operators. 

With respect to the image cube, these functions/classes process a single 2-dimensional channel at 
a time. To process an entire image cube in parallel, the template function must be embedded in a 

channel loop as shown below. 

template <class _IMAGETYPE> 
void someFunctionLIMAGETYPE* inImage, JMAGETYPE* outlmage, unsigned constant) 

{ 

//Since channel(i) returns a pointer each channel of the input image will be processed and written 
// to the associated channel in the output image 
for(unsigned i=0; i<inlmage->channels(); i++) 

parallelAddConstant(inImage ->channel(i), outlmage ->channel(i), constant); 

}// end someFunction 

11 



Table 3 below summarizes the PIP framework classes: 

Class Name 
PAbsoluteOp 
PAccumulateOp 
PAddBitErrorOp 
PAddConstantOp 
PAddGuassOp 
PAddlmpulsiveOp 
PAddOp 

PAddUniformOp 
PApplyFunctionOp 

PApplyMapOp 
PATrimmedSqMeanOp 
PClipValOp 
PConvolveAvgOp 

PConvolveOp 
PCopyOp 
PCropImageOp 
PCrossGradientOp 
PCrossGradientTOp 
PCrossGradLevelBQp. 
PCrossGradLevelGOp 
PCrossGradLevelOp 

PCrossMedianQp 

Base Class Functionality 
Computes the absolute value of pixels in a roi. 
Accumulates pixel values from two inputs 
Adds bit error. 
Adds a constant. 
Adds gaussiän noise- 
Adds impulsive n^ise; 
Adds coincident roi's from two images to form a 
third.  
Adds uniform noise. 
Applies a function, contained in an input object, to 
the pixels in a roi.  
Applies an image map to pixels in a roi.  
Applies the alpha trimmed square mean filter. 
Clips pixels in a roi between two values 
Spatial convolution with a divisor applied after the 
kernel has been applied. 
Spatial convolution of a kernel with pixels in a roi. 
Copy's roi's from input to output. 
Crops the input image. 
Base cross gradient operator. 
Thresholded version of the base class 
Sets the background pixels to a constant. 

PDifferentiateSpectrumOp 

PFlipHorzOp 
: PFlipVertOp 
PGtThresholdOp 

PHistogramOp 
PHysteresisQp 
PIntegrateSpectrumOp 

PLtThresholdOp 

Sets the edge pixels to a constant 
Sets both the edge and background pixels to 
constants.  
Applies the cross median filter. 
Differentiates the spectrum of each pixel (i,j) in a 
multi-channel image. 
Flips each roi horizontally; 
Flips each roi vertically. 
Counts the number of pixel in a roi above a 
threshold.  
Computes the histogram of a roi. 
Computes the hysteresis of a roi. 
Integrates the spectrum of a multi-channel image 
for each location (i,j) 
Counts the number of pixels in a roi below a 
threshold.   

12 



PMaxPixelCompOp 

PMaxPixValOp 
PMedianQp  
PMinPixValOp 
PMultConstantOp 

jPMDiiMkSüppressQp 

Compares the pixels of two coincident roi's and 
outputs the largest one to the output roi. 
Determines the largest pixel value in a roi. 
Applies a median filter 

PNorm20p 
PRotate90Op 

PScaleOp 
PSelectDynamicRangeOp 

PSetPixelsOp 

Determines the smallest pixel value in a roi 
Multiplies a constant times each pixel in a roi. 
Suppresses non local maximum pixels 
Computes the norm between two coincident roi's. 
Rotates a roi by 90 degrees in the anti-clockwise 
direction. 
Zooms in or out of a roi. 
Extracts an 8 bit dynamic range from each pixel in 
a roi. _^__^__ ; :— 

ipStatOp 
PSubtractOp 

PSumOp 

Sets pixels in a roi to a value. 
Computes stats on a roi. 
Subtracts coincident roi's from two images to form 
a third. 
Computes the sum and sum of squares for pixels in 
a roi. 

Table 4 below summarizes the parallelized template functions of the PIP Framework. 

Function Name 

parallelAddConstan 

parallelAbsoluteVal 
paxallelAccumulate, 

Functionality 
Computes the absolute value of pixels in a roi. 

parallelAddBitError 

parallelAddGuass 
parallelAddlmpulsive 
parallelAdd 
parallelAddUniform 
parallelApplyFunction 

pärallelApplyMap 

Accumulates pixels values from two inputs. 
Adds bit error. 
Adds a constant. 
Adds gaussian noise. 
Adds impulsive noise. 
Adds two images to form a third. 
Adds uniform noise. 
Applies a function, contained in an input object, to the 
pixels in an image. 

parallelATrimmedSqMean 
Applies an image map to pixels in an image 

parallelClipVal 
parallelConvolveAvg 

parallelConvolve 
parallelCopy 
parallelCropImage 
parallelCrossGradient 

Applies the alpha trimmed square mean filter. 
Clips pixels in an image between two values 
Spatial convolution with a divisor applied after the 
kernel has been applied. 
Spatial convolution of a kernel with an image. 
Copy an image. 
Crops the input image. 

ip^allelCrössMediäh 

Cross gradient filter. 
Applies the cross median filter. 

13 



parallelDifferentiateSpectrum 

parallelMipHorzontal 
parallelFlipVertical 
parallelGtThreshold 

parallelHistogram 
parallelHysteresis 
parallellntegrateSpectrum 

parallelLtThreshold 

parallelMaxPixelComp 

parallelMaxPixVal 
parallelMedian 
parallelMinPixVal 
parallelMultConstant 
parallelNonmaxSuppress 
parallelNorm2 
parallelRotate90 

parallelScale 
parallelSelectDynamicRange 

parallelSetPixels 
parallelStat 

Differentiates the spectrum of each pixel (i,j) in a multi- 
channel image- 
Flips the image horizontally. 
Flips the image vertically 
Counts the number of pixels in an image above a 
threshold. 
Computes; the histogram.of an image. 
Computes the hysteresis of ah image 
Integrates the spectrum of a multi-channel image for 
each location (i,j) 
Counts the number of pixels in an image below a 
threshold 
Compares the pixels of two input images and outputs 
the largest one to the output image. 

parallelSubtract 
parallelSum 

Determmes the largest 
Applies a median filter. 
Determines the smallest pixel yalue in an image: 
Multiplies a constant times each pixel in an image. 
Suppressesnonlocal maximum"pixels 
Computes the norm between two images: 
Rotates an image by 90 degrees in the anti-clockwise 
direction.  
Zooms in or out of an image. 
Extracts an 8 bit dynamic range from each pixel in an 
image. 
Sets pixels in ah image to a value. 
Computes stats on an image. 
Subtracts two images to form a third. 
Computes the sum and sum of squares for pixels in an 
image. :  

3.4   IF Framework 

The IF framework is a cooperative set of classes that are used to encode and decode image, 
video, and multi/hyperspectral file formats. The interface for encoding and decoding is found in 
the abstract base class, ImageFormat. ImageFormat contains two methods, read() and wnte(), 
that must be overwritten by derived classes. The read() method contains the decoding 
instructions and the write() method contains the encoding instructions. 

The MIPS Mainwindow and Constructor interfaces interact with the IF framework classes by 
extracting the proper format, based on a list of registered file extensions, from a metaclass pool. 

14 



This means, that on the gui side, there are no case or if statements to update or change when 
installing a new file format. File formats can be added or changed without changing any code 
outside of the IF framework. ImageFormat is the root class of the pool and all other formats are 
members of the pool. Several statements must be included in each derived format class so that 
they may be included in the format metaclass pool. In addition, a special constructor and a static 
method, extensions() must also be included in a new format class. 

Table 5 below summarizes the IF framework classes. 

Class Name 
AVIRISBRZFormat 
AVIRISFormat 
FileFilterCodex 

FormatExtensionCodex 

ImageFormat 
ImageFormatMetaClass 

JPEGFormat 
MPEGForrnat 
NITFFormat 

Class Description 
AVIRIS Browse format (4 bands) 
AVIRIS format (all bands) 
Contains the file filter descriptions. 
(singleton) 
Contains descriptions of the legal extensions 
for all the format types, (singleton) 
Abstract base class for format types 
Contains metaclass typedefs for the 
ImageFormat pool. 
Encodes and decodes JPEG format 

PPMRAWFormat 

TJFFFormat 
TFormatClass 

Encodes and decodes MPEG format 
Encodes and decodes NTTF format 
Encodes and decodes a simple binary PPM 
format  
Encodes and decodes TIFF format 
Metaclass templates instantiated for 
ImageFormat ;  

3.5   VIE Framework 

Classes in the VIE framework are displayed and manipulated by the MIPS Constructor and 
Mainwindow. Parallel video, 2-dimensional, and multi/hyperspectral image processing 
algorithms are performed by classes in the VIE framework. Image input and output is controlled 
by classes in this framework as well as image display and plotting. These classes represent the 
high level of functionality in the MIPS software suite. Of primary concern to the developer are 
the methods for creating new VIE level classes and how to interact with the execution model that 
controls data processing. 

15 



Most VIE classes can be characterized by their input and output references. Generally, a class 
will have an input image reference and no output reference, an input image reference and an 
output image reference, an input image reference and an output plottable reference, or an input 
plottable reference and no output reference. Base classes exist for each of these cases to simplify 
development of new VIE classes. Table 6 below summarizes the set of VIE base classes. 

Class Name 
VieOperator 
VielmageOp 
ViePlottableOp 
ViePlot 

ReferenceTypes 
image input/ no output 
image input/ image output 
image input/ plottable output 
plottable input/ ho output 

Programming new VIE level classes usually involves inheriting from one of the aforementioned 
base classes (to inherit the bulk of the required interface) and selectively overriding base class 
methods. Inheriting from one of the standard, supplied base classes will assure that the new class 
will be visible to the Constructor and Mainwindow gui. Taking advantage of the base classes 
through inheritance also means that the new classes will not have to "re-invent the wheel" with 
respect to references, attributes, metaclass and execution model related interface and functional 
requirements.. .most of the work has been done by the base classes. Overriding selective 
baseclass methods gives the new VIE class its individual behavior. The run method has not been 
implemented for any of the base classes, therefore any new derived VIE classes that processes 
data in some fashion during MIPS execution must override the run method. To create inputs 
unique to the newly created VIE class the get Attributes method must also be overridden. If new 
or different references are required then the getReferences method must be overridden. Other 
methods such as update or upkeep are occasionally overridden to define unique execution model 
behavior. VieAdd and VieSubtract override update due to special execution model requirements. 
Each must wait on two image objects to receive image data before these algorithm objects can 
proceed with their processing duties. 

Table 7 below summarizes the VIE framework classes: 

Class 
VieAboveThreshold 
VieAdd 
VieAddBitError 
VieAddConstant 
VieAddGauss 
VieAddlmpulsive 
VieAddNFrames 
VieAddUniform 
VieATrimmedSqMean 
Vie Average  

Description 
Count the number of pixels above a threshold 
Add two images 
Add bit error to an image 
Add a constant to an image 
Add gaussian noise to an image 
Add impulsive noise to an image 
Add N consecutive frames of video 
Add uniform noise to an image 
Apply the alpha trimmed square mean filter 
Compute the average pixel value  

16 



VieBelowThreshold Count the number of pixels below a threshold 
VieCannyEdge Apply the Canny edge filter 
VieCenterMean Center the mean of the image 
VieCombiner Combine N images into an N channel image 
VieContrastAdjust Adjust the contrast 
VieConvolve Convolve a kernel with the image 
VieCopy Make a copy of the image 
VieCropImage Crop the image 
VieCrossMedian Apply the cross median filter 
VieDifferentiateSpectrum Differentiate the spectra at a wavelength 
VieFlipHorizontal Flip about the vertical axis 
VieFlipVertical Flip about the horizontal axis 
VieFreiEdge Apply the Frei Edge filter 
VieGaussianSmooth Apply a gaussian smoothing filter 
VieHistogramEq Equalize the histogram 
Vielmage The image cube 
VielmageHistogram Compute the histogram 
VielmageMax Compute the max pixel value 
VielmageMetric Base class for VielmageMax and VielmageMin 
VielmageMin Compute the min pixel value 
VielmageMoments Compute the moments of an image 
VielmageOp Base class... 
VielmgReader Read an image from disc 

: VielmgWriter Write an image to disc 
Vielnitiator Base class... 

VielntegrateSpectrum 
Integrate the spectrum of an image between two 
wavelengths 

VielntensityMap Apply an intensity map to an image 
Vielnvertlmage Invert the image 
VieKirschEdge Apply the Kirsch edge filter 
VieMacro Mainwindow helper class 
VieMoments Moments base class 

, VieMpegEncoder Encode frames to an MPEG file 
VieMultConstant Multiply a constant times an image 
l#i0BilIil:li'll!lIIIIIIIIll: Base class... 
VieOperator Base class... 
ÄlfeföÄlliPÄ:-^§t|f^ Plot the contents of a plottable 
ViePlottable Data object that contains plottable data 
ViePlottableOp Base class... 
ViePrewittEdge . Applv the Prewitt Edge filter 
VieRobertsEdge Apply the Roberts edge filter 
VieRotate90Deg Rotate the image by 90 degrees 

17 



VieScalei 
VieSelectDynamicRange 
VieServer   
VieSobelFilter 
VieSplitter 
VieSquareMedian 
VieStatSummary 
VieStretchRange 
VieSublmageSpectra 
VieSubsystem 
VieSubtract 
VieSystem 
VieThreshold 
VieUnsharpMask 
VieVideoViewer 
VieViewer 
VieWindowMean 
VieWindowStdDev 

Zoom in or out 
Select an 8 bit chunk of the dynamic range 
Base class. 
Apply the Sobel filter 
SjJlit a multichannel image into N single channel images 
Apply the square median filter 
Generate a statistics Sülmnary 
Stretch the histogram 
Plot the spectra of a sub image 
Base class... 
Subtract two images 
Base class... 
Base class. 
Apply an unsharp mask  
View the contents of an MPEG file 
View up to 3 channels and 8 bits per channel of an image 
Mean of a subimage 
Standard deviation of a subimage 

18 



4   Constructor 

The Constructor is used to create algorithms in the form of processing chains. These chains are 
composed of interacting objects, represented by icons, that cooperate to read, write, process and 
display image data. In order to understand how to create complex algorithms, one must 
understand how to assemble processing chains by placing objects on the object canvas, 
connecting the objects together and setting their parameters. 

4.1   The Work Area: Object Canvas 

The object canvas is the working space or "bread board" for connecting objects and setting their 
parameters. The user may change the position of object icons by selecting the icon and dragging 
it with the mouse. Any connections will "follow" the icon. Figure 7 illustrates the object canvas 
filled with objects and subsystems. 

Figure 7. The object canvas containing a processing chain. Note the horizontal and vertical sliders used for viewing chains that 
are larger than the viewable size of the canvas. 

4.2   Creating Objects: The Object Palette 

The object palette, as shown in figure 2, has two components or views - the system view and the 
class view. Select a tab to show the corresponding view. The system view shows all the objects 
currently on the canvas. The class view shows all the I/O, data, processing, and display classes 

19 



that are available in the Constructor. The class view is also used to drag and drop objects, 
instances of classes, to the canvas. 

4.2.1    System View 

The system view shows all the objects in the current system. The tree of objects is organized 
with respect to containment in either the top level system or subsystems. A subsystem is denoted 
as a folder If the folder is closed, Hi, the subsystem is not currently selected. An open folder, 
i3 denotes a selected subsystem. Objects, represented as <B, are shown indented below their 
containing subsystem. Items on the same level are not indented with respect to each other. The 
top level system is a subsystem that contains all other subsystems and objects within a given 
system. The system view is illustrated in figure 8. 

H (H TopLeve! 
- 

<g£ Reader 
B in Subsystem 

<gj AddBitError 
<=J Interlmgl 
<=* CannyEdge 

<=J Outputimage      k 
Writer 
Viewerl 

: Viewer2 
r Viewer3 

Subsystem and 
constituent 
objects 

Object Symbol 

r\System/class/ ; 

Figure 8. The system view of the object palette. 

4.2.2    Class View 

The class view contains the class tree. The class tree is a graphical depiction of the classes 
available in the Constructor. It is also the control from which objects are placed on the canvas 
This is done by selecting a class in the class tree and "dragging and dropping  an object from the 

20 



tree to the canvas. The hierarchy of the tree is expressed in terms of inheritance, in the object- 
oriented sense. Descendent or derived classes are shown indented with respect to their ancestor 
or base classes. Some base classes are displayed to organize the class tree. Objects of these 
classes will not function in a processing chain. These display only classes are: Vielnitiator, 
VieOperator, VielmageMetric, VielmageOp, VieMoments, ViePlottableOp and VieThreshold. 
Clicking on the plus sign, H, will display nested classes. Clicking on the minus sign, B, will 
collapse the branch showing only the base class. Figure 9 shows the class view of the object 
palette. 

B ;@ VieSubsystem 

i B lS Vielmage 
i B'@ Vielnitiator 

I <=} VieCombiner 

H <•"=:; VieOperator 

<=i VieAverage 

-'=;! VieColorViewer 

B # VielmageMetric 

B •§• VielmageOp 
<=i VielmgWriter 

B-S? VieMoments 

B -g; ViePlottableOp 

■•=:! VieStatSummaiy 

B <§■! VieThreshold 

;=;; VieWindowMean 

*=: VieWindowStdDev 

«— 

The base class, 
VieOperator, shown 
with its immediate 
descendents. 

*=!; ViePiot 

«g?. VieSpiitter 
; <=? ViePlottable 
I <=\ VieVideoViewer 

1 

1 

r\system\class/ 

Figure 9. The class view of the object palette. Display only base classes are highlighted in red. 

4.3   Object to Object Connections: References 

A reference represents a connection between objects. A reference enables direct object-to-object 
communication and is represented, visually on the object canvas, by a red line segment 
connecting one object to another. The reference resolver is the tool that is used to graphically 
connect objects. Connecting objects via the reference resolver requires 5 steps. 

21 



Step 1. Select the object whose reference must be resolved. A connection is made/rom the object with the reference 
to the object that satisfies the reference. 

Step 2. Press either the IB button on the tool bar or invoke the Edit::References menu item. Tbe reference resolver 

dialog will be displayed. 

Step 3   Select the reference to resolve by selecting the appropriate row under Reference Status in the lower portion 
of the dialog. The row will be highlighted and a list of objects that can legally satisfy that particular 
reference will be listed under Potential Resolvers in the top portion of the dialog. 

Step 4 From the list shown in the Potential Resolvers portion of the dialog, select the desired object with which to 
connect and press the Connect button. The name of the connected object will then appear under the Value 

column in the Reference Status portion of the dialog box. 

Step 5. Press the Ok button to close the dialog box after all references have been resolved. Red lines will then appear 

between the connected objects. 

To disconnect two objects follow the steps outlined above but instead of pressing Connect in step 
4 press the Disconnnect button. At this point, the user may re-connect the disconnected reference 
to any object that appears in the Potential Resolver list. Figures 10 through 12 illustrate the use 
of the reference resolver. 

>idntxiül'l -■IFlf.v'Sj'stmi] "• 

'rjjjJiiQfjl!§liil i*i£iMZJ ®.Ü2 

i -talxi 

EB <g VieSubsystem 
[ü £§ Vietmags 
R ^ Vielnitiator 

::*™$mmsssm 
<?S VieOpi   PclBn' si Ftesolvare; 

«! ViePlot    ' imsga 

<g< VieSplitle|j 
«: ViePlottaA 
«: VieVideolS 

Rstsrencs Smlira 

j \SffH-)yCHj«71 IE  NJV1  JZ13PHJ 

Fiaure 10 After invoking the reference resolver (steps 1 & 2) for the Reader object, the reference resolver dialog appears. 
^rttoSSSlm*. Note the red border signifying that the reader has at least one unsat.sf ,ed or unconnected 

reference. 

22 



Idriex Olli - [Hex Svstoml 

[+] S; VieSubsystem 
E *:i Vielmoge 
3<«: Vielnitiotor 

i© VieK^ 
.*! VieCombf 
a A: VieOpe* Pot^fHialRe8olvB^ 
-: viePioi  . C3SEHHBBB 
«: VieSplittef 
gj ViePlottaf 
Ä VieVideo' 

I 
!\s>"t'""Mg/ f?n 

Figure 11. Appearance of the reference resolver after selecting the Image object from the list of potential resolvers and pressing 
the Connect button. Note the Image object is listed as the "Value" of the reference. 

»Flex GUI - [Flex System 
[.n Eile    Edit- ,V£mdow   Action. Help! 

&\&M I jtljalsl I^IM^IS 
El eg; VieSubsystem 
EB £=5 Vielmage 
H &• Vielnitiator 

rasaa 

Figure 12. Once the Ok button is pressed the reference resolver dialog closes. The red line between Reader and Image appears 
after the dialog closes, signifying a reference connection from the reader object to the image object. Note the green border 

around Reader signifying that all required references have been resolved. 

23 



4.4   Object Parameters: The Object Inspector 

In addition to references, Constructor objects also have parameters that control their behavior. 
Parameters are modified via a dialog called the Object Inspector. Parameters can be booleans, 
strings, filenames, integers, real numbers, and collections of any of these types. Modifying 

parameters involves 4 steps: 

Step 1 Invoke the Object Inspector by double clicking on the icon representing the object whose parameters will be 
modified. In the case of subsystem objects the subsystem must be selected (a single click on the icon) and 
the Edit::Properties menu item invoked. 

Step 2. In the object inspector, select the parameter to modify by placing the cursor on the appropriate row and click. 

Step 3 If the parameter is not a collection but a single Boolean, string, filename, integer or real number an Edit box 
will appear. Place the cursor in the Value portion of the Edit box and enter the value. Press OK to close the 
Edit box. 

If the parameter is a collection, another object inspector will appear. Choose the appropriate parameter in the 
collection (this may be another collection). Repeat, if necessary, until a single boolean, string, filename, 
integer or real number is encountered. At this point an edit box will appear and the user may enter the 
desired value. Edit the values in the collection, as required. 

Step 4. Continue setting all the parameters as shown in steps 3 and 4 until all parameters have been set, then click 
OK in the original object inspector to exit the inspector and save the edited values. 

Figures 13-16 illustrate the use of the object inspector. 

Jfl Fin Cll).   (t}t«-S«lTO| ■ -.'„■■' 

Mi® B@ä lilI0ZJJ|]|O 

MJM 'l£46FW. 

Figure 13. Illustrated above is the object inspector for the Reader object. Several types of parameters are available, each with 
their own editor. 

24 



Object Inspector [Reader] 

H Properties $i^^0!i>&f%$&M ^Ä^^|^^|^:^>^|^^|; 

Name MDataType Units Value 

Beginning Frame unsigned int N/A 0 

ill- Ending Frame unsigned int N/A 0 ■':.:v',V:::".::H^-: 

is» Image File cpath           f\ N/A testin.img 

Label cstrlng N/A Reader 
!!% Load Every Frame bool N/A True 

Read the Image? bobl N/A True 

OK AM 

Figure 14. Select the parameter "Image File" to modify by placing the cursor on the appropriate row, clicking once with the left 
mouse button. 

paseGtr in«*}»««)-      ' 

f^lälial [xTil-Tal' ■■■1?'fcT/l >1 LB 
83 & VieSubsystem 

'«5 Viglmoga 
g A. Vislnitiator 

ri|»jrclliu|iiir«ift|Kiud<At   I 

,- Floperfa» ; 

. Name Dale Type      i Unhi 
^llBeglhiilhn Frame lunslgnedliit. .|H/A-. 

Image File cpath N/A 

^S^jg Ml-       ■n-J>-   (jftCfto-M 3.-'     o^l'   [< 

Figure 15. After selecting the "Image File" parameter, a file open dialog is presented. Find the desired file on disc and press 
Open. 

Ohiect Ittroertoi- (Reader! 

^bj^pp^nW 
;p Name Data Type Units Value 

Beginning Frame' unsigned Int N/A 0" 

Ending Frame unsigned Int N/A 0' 

Image File cpath N/A C:\FIex\MIPS\mipsguiVracy.jpg 

Label cstrlng N/A Reader 

Load Every Frame bobl N/A True'  '■-.■' ■• 

Read the Image?: boot N/A True 

OK 

Figure 16. Result of the action described in figure 15. 

25 



Figures 17 through 20 illustrate the Boolean and Collection parameter editors. 

Boolean Edit [ReärlerUQäd Everym 

Value:! 

OK 

True 
True 

icel 

Figure 17. To set a value in the Boolean editor, select True or False from the pulldown list. 

Obiect Insfletfdr [ÄädBitEno 

Properties 

iNalmel Data Type Units Silul 

Channels ia^i 
Error percent float 

Label [cstring 
NürhberiofCharine|lrit 

Process every chabpdl 
Random nutnber sjlong 

Unitless 

mm 
N/A 
N/A 
N/Ä 

0J5 
AddBitError 

True 

9999! 

EH! 

Figure 18 The parameter "Channels» is a collection. "Number of channels" is the parameterthat controls ^esizeofthe_ 
collectorI All collection input parameters have an accompanying size parameter. Operator objects automat.cally size collects 

that are used as output parameters. 

13 ja.- jdi  83°'"» :A"»»  H'fr':    ■' 

M ES® üMHa^Sj 
r Iff Kl 

ä. sra^pB» 
t«5 VieAddConstont 
««i MeAddGouss 
«fis VieAddlmputsive 
<££ VteAddNFromes 
<fr VieAddUniform 
s». VisCannyEdge •H 

\SyiUm^CI*«/  . 

Figure 19. After setting the number of channels to 3, select the. "Channel" parameter to display thei colledioa In this case the 
collection is a vector of channel or band numbers. Each of these can be edited independently. 

26 



JJrUaGM   iriev System] 
!>3 El*  B*»  HMow A1*00 H«'P 

'l-aitfiBj uWaj Mgj<g»i/i EB ED 

NUM:I.12'.E«PM 

Figure20 Shown above is the appearance of the inspector while editing the value of the 2nd channel. Note channels are 
numbered from 0 to N-1, where N is the number of channels. 

27 



5   The Mainwindow 
The Mainwindow, shown below in figure 21, is tightly integrated with the Constructor. It is 
remotely upgradeable by incorporating, at program initialization, Constructor produced 
processing chains, that have been archived into system files. It reads system files from a special 
directory and loads the algorithms from these system files into the Macro menu. A unique feature 
of the Mainwindow is that the macros are not interpreted or translated but run at the speed of 
native compiled code. Also the Mainwindow macro based algorithms retain all their parallel 
processing abilities. 

The special macro directory is installed as ../Program/macros by the MIPS installer but can be 
changed to another directory by editing the file, mainwin.prf, and changing the parameter 
"MACRO_DIRECTORY=./Somedir/anydir/". Note that the path must end with a slash. Standard 
directory navigation symbols apply such as "." and ".." . 

Double clicking on the mainwin.exe icon launches the mainwindow. An open image must be 
present for the algorithms to take effect. The selected algorithm will be applied to the image 
window with focus. A single undo buffer allows for a one level undo. Algorithms can be 
repeatedly applied to the open image but the undo only reverts to the previously displayed image. 

Figure 21. Mainwindow organization and appearance. Note that the system tile EdgeRlters.sys contains VieMacros labeled 
Sobel, Canny, Kirsch, and Prewitt. 

28 



To apply an algorithm to an image, select the algorithm category then the specific algorithm. The 
inspector for the appropriate macro will be displayed, the user has the flexibility to change 
parameters at this point. After the Ok button has been pushed the algorithm will be applied to the 
image and the result will be displayed. The following figures illustrate this process. 

iilBWII; 

■n 

Figure 22. The inspector is displayed to further enhance flexibility. 

H MIPS Mai» «Mm:« 
|^#^ispf^^^^^^c^£ 

iABil 

Figure 23. The result of the application of the Sobel Filter is displayed. Undo will restore the image to its previous state. 

29 



The basic method for creating a set of related algorithms for inclusion into the main window is to 
create a new system file, add the number of desired VieMacro objects to the top level, re-label 
the macro subsystems, then navigate into each macro subsystem and create the desired 
algorithm. Note, that if a new set of algorithms is created the main window must be restarted to 
load the new algorithms. The following figures outline creation of macros for inclusion in the 
main window. 

Z\ File" Edit   Window   Action   Kelp 

'äJJJHJIIT^lsll^lglMJItgll] 

■MEt 
sm 

218 PM 

Figure 24. Sample system, EdgeFilters.sys, viewed at the top level. 

• J Eil«   Eat   ffindOT   Action   H«lp ._. 4   •;_ .. 

K-AFlBxaaiPSfWIaMacTas'iEdgerateTS.STJil i|!?[x|; 
l*J.*Ji 

2:19 PM 

Figure 25. The Sobel filter macro contents. 

The following is an example of a macro containing a more complicated algorithm. 

30 



Figure 26. Complex macro algorithm. First gaussian noise is added to the image, then the contrast is stretched using histogram 
equalization, and finally the result is smoothed using a gaussian smoothing filter. Note the use of Flushable intermediate images. 

31 



6   Conclusion 

In the context of today's fast paced electronic battlefield, improved information flow to the 
warfighter is a requirement. Fast, portable, and upgradeable image exploitation tools contribute 
to improving the flow of information. In response to this requirement NRC has developed the 
MIPS suite of products. The MIPS suite responds to the needs of software developers, image 
analysts, and warfighters. The MIPS frameworks allow for easy extension of basic processing 
capability The MIPS Constructor provides a framework for visual programming that gives the 
analyst unique capability to visually program new algorithms without writing any source code. 
The MIPS Mainwindow provides, to the warfighter, a simple menu based image exploitation 
tool which quickly processes image data from a variety of sources - 2D, video, and 
multi/hyperspectral images. The tight integration of the Constructor with the Mainwindow means 
that algorithms can be developed in a lab and quickly sent to fielded systems, where upgrades are 
installed without any modification to the fielded systems. The Mainwindow can be instantly 
upgraded by transmitting a file by any means necessary - email or removable storage media. 

During the execution of the MIPS program NRC has: 

■ .. .demonstrated the advantages of a multiprocessor workstation to exploit imagery, 
■ '.. .constructed a prototype workstation using cost effective commercial off-the-shelf 

components, integrating image and video analysis routines developed for the IE 2000, 
■ .. .demonstrated the software reuse advantages of an object-oriented software development 

environment, .   .        . 
■ .. .and demonstrated an innovative, cost effective upgrade path for existing Air Force assets. 

To execute the development of the MIPS software suite, NRC developed innovative solutions to 
the problems of platform/operating system portability, all source image exploitation, and real- 
time field upgradeable software. 

The MIPS program has been successfully completed. NRC developed the MIPS frameworks and 
the MIPS applications - the Constructor and Mainwindow. The MIPS software (frameworks and 
applications) and the hardware platform were delivered to the AFRL/IFEC Image Exploitation 
2000 (IE 2000) facility. 

32 



7   Recommendation for Future Activities 

NRC's successful completion of the MIPS program has created the foundation for an end-to-end 
image exploitation system. The following recommendations are proposed. 

■ Implementation of a broader selection of algorithms to include material classification, scene 
segmentation, and frame-to-frame video processing. 

■ Enhance the existing user interface. 

■ Develop "hot swappable" domain object sets. 

■ Implement a hardware MPEG solution. 

■ Develop communication and network connectivity. 

33 



MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


