AFRL-IF-RS-TR-1999-235
Final Technical Report
October 1999

MULTIPROCESSOR STATION (MIPS)

Nichols Research Corporation

Jaye Bass

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

e 19991220 031

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
_ Information Service (NTIS). AtNTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-235 has been reviewed and is approved for publication.'

APPROVED: %yﬁ} %C

SCOTT F. ADAMS
Project Engineer

Dl Mbsna

JOHN V. MCNAMARA, Technical Advisor
Information & Intelligence Exploitation Division
Information Directorate

FOR THE DIRECTOR:

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFEC, 32 Brooks Road, Rome, NY 13441 -4114.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned. P

\Form Approved
REPORT DOCUMENTATION PAGE OMB No., 0704.0188

Public upo!lirq burden for this colisction of information is as.l'mmd 10 average 1 hour per responss, including the time for raviewing instructions, saseching existing data sources, pathering and maintaining the data neodad, and completing and reviewing
tha colection of information. Serd comments ragarding this burden estimate of any other aspect of this collection of information, including supgestions for reducing this burden, to Washington Heatquarters Sarvices, Directorate for Information
Operations and Reports, 1215 Jetferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papsrwiark Reduction Projact (0704-0188), Washington, 0C 20503,

1. AGENCY USE ONLY fLeave blankl 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
- Oct 99 Final Apr 96 - Jan 99
4. TITLE AND SUBTITLE) 5. FUNDING NUMBERS
C - F30602-96-C-0083
MULTIPROCESSOR STATION (MIPS) PE - 63260F
PR - 3480
5. AUTHOR(S) TA -PD
WU - 49
Jaye Bass
UGS >
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Nichols Research Corporation REPORT NUMBER
4040 S. Memorial Parkway v
PO Box 400002) N/A
Huntsville, AL 35815-1502
I e =
9. SPONSORING/MONITORING AGENCY NAME(S] AND ADDRESSIES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL/IFEC : 4 ’
32 Brooks Road AFRL-IF-RS-TR-1999-235
Rome, NY 13441-4114
11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Scott F. Adams, IFEC, 315-330-1430
- I
12a, DISTRIBUTION AVAILABILITY STATEMENT : 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT Maximum 200 words) :
The objective of the MultiProcessor Station (MIPS) effort was to establish a software development environment to:

maximize cross-platform portability of image and video processing software; maximize the utilization of available
multiprocessors on intelligence workstations; and maximize the life-span and minimize the life-cycle cost of software. The
end product is: an object-based visual programming environment in which image and video data and operations are
represented by icons; an environment which permits mixing of legacy code and new development; a framework providing the
capability to visually program new algorithms without writing any source code; tight integration of the constructor mode with
the main window mode means that new algorithms can be developed and easily installed on any computer with MIPS
software; the image cube object, which is used to store all imagery and video, makes it possible for all image processing
algorithms to be applied to all types of data; versatility for exploiters of multi-spectral imagery, in that processing and
display of image bands can be tightly controlled, easily modified, and packaged for widespread use; the environment
demonstrates portability across platforms, software reusability, adaptability to various multiprocessor configurations, and
extensibility to other application areas (i.e. signal processing).

—

14, SUBJECT TERMS 15. NUMBER OF PAGES
Image processing, parallel processing, video processing, visual programming, portable 44
programming, spectral imaging 16. PRICE CODE

e —————————————————— T ——— T ———————————————————————

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Standard Fﬂ@ s%?%f'ﬂ" 2.89) (E
uuumaI qubiv\gl’ufm ‘Pro, WHSIDIOR, Oct 94

Table of Contents

INTRODUCTION 1
OVERVIEW 2
2.1 MIPS FRAMEWORKScucveverererrrssesssssessmesssssssssssssnssssess it sstssssssisssesssssessiesshsusssatssssiiissssasstmsssssssssasss 2
99 MIPS CONSTRUCTOR ...cvvevesesesermresenssssesossersssssssssssessssssssssesstssssstssssassssonsssssessssisssssistassststssssssesssssninssssssss 3
0.3 MIPS MAINWINDOW.cvreeverersessesrmessesessmssssssssersssssssessssststassssssssssssss st ssssstsssshimasasha s ssssssnsssssisisstsussrenses 5
THE MIPS FRAMEWORKS 6
3.1 IPCC FRAMEWORKcveveresesesessessstasssssesmssiesssssssassesssssssissstsmssasnssssssstsdstosssssasathsasasssssasesssssststsssnsusnssnencs 6
3.2 TP FRAMEWORK «..eeeuievseseessssesesessesssssssssssosssssesassssmatssssstatssesensssssasssssssassshs st sa st s m L s sttt b0 8
3.3 PIP FRAMEWORKcecvvesssssessesesessemsasssssesssssssssessssessisesosssssness s sasssess s s siesasas bt s st st s s 000 10
3.4 TFE FRAMEWORK ...eoveverereaeseneseesesssssessnssmsssssssssssssassssssstsmassessssssssssessssssasssssrtassnsisamnsssnssisonstsessasesesees 14
3.5 VIE FRAMEWORK c..ccuevurusesssssssssssrssessssnsssesssssssssesssasssssesesssassesssssssssssstasssis st st shssasssssssanasssssnscossasastsssonsess 15
CONSTRUCTOR .. 19
4.1 THE WORK AREA: OBIECT CANVAS ..cocimrrinrirmensrenensesssisisnsnsssantsssssssssnsisnsnsisnssssssossssasines errererereerenees 19
42 CREATING OBJECTS: THE OBJECT PALETTE ...ucovemiritrrasesensssinersstsssstss s sttt st es 19
421 SYSIEM VEEW .orvreeecerrrsernsisssssssstsst s a8 20
4.2.2 CLASS VEEW ovreveeevevesssesreresssssosssesanssssssssasetomssssssssasbasasansssssestasstssssnmast st i satsassbansust sttt crseartarsacmsisits 20
4.3 OBJECT TO OBJECT CONNECTIONS: REFERENCEScvvecsetnincssssinmrsnssssnssssssessssisassnmssssssss s snsisiscasisasssessins 21
4.4 OBJECT PARAMETERS: THE OBJECT INSPECTOR .vcovvrisississsmsssssnssssisessississmnmsss s s st sss 24
THE MAINWINDOW......cco0veuees 28
CONCLUSION 32
RECOMMENDATION FOR FUTURE ACTIVITIES 33

Table of Figures

FIGURE 1. ILLUSTRATED ABOVE IS A GRAPHICAL REPRESENTATION OF THE MIPS FRAMEWORKS. ...vvverececnrneeressssssannne 2

FIGURE 2. OVERVIEW OF THE MIPS CONSTRUCTOR INTERFACE.cc00cvees 3
FIGURE 3. JAVA BASED LIVE PLOTTING IMPLEMENTED INMIPS.cccccovvvnivinininnnnnns 4
FIGURE 4. JAVA BASED MPEG VIDEO VIEWER IMPLEMENTED IN MIPS. cooeieeeeeeeeeecrssrvireereersaressssseseessssssnesessssrvsssnaans 4
FIGURE 5. THE MAINWINDOW INTERFACE SHOWING THE ALGORITHM MENU SYSTEM. ..cccvueiuimemenmininnsssinensinseccacans 5
FIGURE 6. GRAPHICAL DEPICTION OF THE MIPS “DATA CENTRIC” PARALLEL PROCESSING. ...covvunucveisirmnnniscees v 1
FIGURE 7. THE OBJECT CANVAS CONTAINING A PROCESSING CHAIN. NOTE THE HORIZONTAL AND VERTICAL SLIDERS
USED FOR VIEWING CHAINS THAT ARE LARGER THAN THE VIEWABLE SIZE OF THE CANVAS 19
FIGURE 8. THE SYSTEM VIEW OF THE OBJECT PALETTE. ..eevversesiniserrrussssnsnismernssesssastasisionnaassinisssssossscsstomsssssanssses 20
FIGURE 9. THE CLASS VIEW OF THE OBJECT PALETTE. DISPLAY ONLY BASE CLASSES ARE HIGHLIGHTED IN RED. 21

FIGURE 10. AFTER INVOKING THE REFERENCE RESOLVER (STEPS 1 & 2) FOR THE READER OBJECT, THE REFERENCE
RESOLVER DIALOG APPEARS. READER WILL BE CONNECTED TO IMAGE. NOTE THE RED BORDER SIGNIFYING
THAT THE READER HAS AT LEAST ONE UNSATISFIED OR UNCONNECTED REFERENCE.ccorueueinmsmnininnanincnsecsusnee 22

FIGURE 11. APPEARANCE OF THE REFERENCE RESOLVER AFTER SELECTING THE IMAGE OBJECT FROM THE LIST OF
POTENTIAL RESOLVERS AND PRESSING THE CONNECT BUTTON. NOTE THE IMAGE OBJECT IS LISTED AS THE
"V ALUE" OF THE REFERENCE. ...v.vueetessesesssessssessrssessassnsssrsssssssssssssnssssssassssssssssss sostasissshisianisssssssssasacsssssssssssss 23

FIGURE 12. ONCE THE OK BUTTON IS PRESSED THE REFERENCE RESOLVER DIALOG CLOSES. THE RED LINE BETWEEN
READER AND IMAGE APPEARS AFTER THE DIALOG CLOSES, SIGNIFYING A REFERENCE CONNECTION FROM THE
READER OBJECT TO THE IMAGE OBJECT. NOTE THE GREEN BORDER AROUND READER SIGNIFYING THAT ALL

REQUIRED REFERENCES HAVE BEEN RESOLVED. w..cccvuurummummnmisisssssssssesssesssssssssssnsssmsssusssumssinssonssisss s ensnssnnses 23
FIGURE 13. ILLUSTRATED ABOVE IS THE OBJECT INSPECTOR FOR THE READER OBJECT. SEVERAL TYPES OF
PARAMETERS ARE AVAILABLE, EACH WITH THEIR OWN EDITOR. c.c.cuiutmnimmmmnsrensssmsestcmsmsatnisnsrnssessesssncsceces 24
FIGURE 14. SELECT THE PARAMETER "IMAGE FILE" TO MODIFY BY PLACING THE CURSOR ON THE APPROPRIATE ROW,
CLICKING ONCE WITH THE LEFT MOUSE BUTTON. ...0evttettseseresessssssssassssessressnsssssnstsssasssasssssssssasssnsnsssssssssannss 25
FIGURE 15. AFTER SELECTING THE "IMAGE FILE" PARAMETER, A FILE OPEN DIALOG 1S PRESENTED. FIND THE DESIRED
FILE ON DISC AND PRESS OPEN. ..cccoruirruerermmsiensnessossesssinsssnsssnssssosassnse 25
FIGURE 16. RESULT OF THE ACTION DESCRIBED IN FIGURE 15 25
FIGURE 17. TO SET A VALUE IN THE BOOLEAN EDITOR, SELECT TRUE OR FALSE FROM THE PULLDOWN LIST. ...cc00c0u0s 26

FIGURE 18. THE PARAMETER "CHANNELS" IS A COLLECTION. "NUMBER OF CHANNELS" IS THE PARAMETER THAT
CONTROLS THE SIZE OF THE COLLECTION. ALL COLLECTION INPUT PARAMETERS HAVE AN ACCOMPANYING SIZE
PARAMETER. OPERATOR OBJECTS AUTOMATICALLY SIZE COLLECTIONS THAT ARE USED AS OUTPUT
PARAMETERS. ..ovvvveeeeressannrees reresnrareeeessnnes eeeteretesstesasesasesanessesessesate aRseesaseeaTSe SR sssR RS e E s e R RS s sE s s b TS Rt e bR e SR e e s R0 26

FIGURE 19. AFTER SETTING THE NUMBER OF CHANNELS TO 3, SELECT THE "CHANNEL" PARAMETER TO DISPLAY THE
COLLECTION. IN THIS CASE THE COLLECTION IS A VECTOR OF CHANNEL OR BAND NUMBERS. EACH OF THESE

CAN BE EDITED INDEPENDENTLY. ...cccceeseurusisisesssessssssssssssstsossassensssssssssassssssetsssnssssasasssssssossasssssssisnscsusassione 26
FIGURE 20. SHOWN ABOVE IS THE APPEARANCE OF THE INSPECTOR WHILE EDITING THE VALUE OF THE 2"> CHANNEL.
NOTE CHANNELS ARE NUMBERED FROM 0 TO N-1, WHERE N IS THE NUMBER OF CHANNELS. ..cooeernvereraersossenee 27
FIGURE 21. MAINWINDOW ORGANIZATION AND APPEARANCE. NOTE THAT THE SYSTEM FILE EDGEFILTERS.SYS
CONTAINS VIEMACROS LABELED SOBEL, CANNY, KIRSCH, AND PREWITT. «.ucecererserserseensersseesesssssssnsssssnsennanes 28
FIGURE 22. THE INSPECTOR IS DISPLAYED TO FURTHER ENHANCE FLEXIBILITY . c.cccotseneumnremnuisnninsusessisisasusnsnnnsnenes 29
FIGURE 23. THE RESULT OF THE APPLICATION OF THE SOBEL FILTER IS DISPLAYED. UNDO WILL RESTORE THE IMAGE
TO ITS PREVIOUS STATE. ...vvreerevsssssssersssssssssssssssessnraesssssossssassssssssesssssissssasssiossssthshsssasisssnsussessasssssasssassasses 29

FIGURE 24. SAMPLE SYSTEM, EDGEFILTERS.SYS, VIEWED AT THE TOP LEVEL....

FIGURE 25. THE SOBEL FILTER MACRO CONTENTS

FIGURE 26. COMPLEX MACRO ALGORITHM. FIRST GAUSSIAN NOISE IS ADDED TO THE IMAGE, THEN THE CONTRAST IS
STRETCHED USING HISTOGRAM EQUALIZATION, AND FINALLY THE RESULT IS SMOOTHED USING A GAUSSIAN
SMOOTHING FILTER. NOTE THE USE OF FLUSHABLE INTERMEDIATE IMAGES. ...ccouvmiurmrmimeusunninsminiessssssnsssassnns 31

ii

1 Introduction

This report describes the activities and accomplishments of the “MultI-Processor Station
(MIPS)” program performed by Nichols Research Corporation (NRC). The work was sponsored
by Air Force Research Laboratory (AFRL), Multi-Sensor Exploitation Branch, Contract No.
F30602-96-C-0083 from 30 April 1996 to 31 January 1999. Within the effort, the MIPS suite of
re-usable object-oriented frameworks, the MIPS constructor and the MIPS Mainwindow were
developed and delivered to AFRL.

The AFRL Program Manager was Mr. Scott Adams. The NRC Program Manager was Mr. Gary
Grider. Mr. Jaye Bass served as technical lead. Mr. Brett Gossage developed the object server
framework. Mr. John Spears developed the GUI’s for both the Constructor and the Mainwindow.
Ms. Marisa Wheelock developed the image processing algorithms. Mr. Chris Parker served as
lead test engineer.

The primary objective for this effort is to improve the information flow to the warfighter by
providing an automated image processing workstation which provides near real-time imagery
data reduction. This was accomplished by developing the MIPS Constructor, an object oriented,
parallel processing, visual programming image exploitation tool, and the MIPS Mainwindow, a
window oriented image exploitation tool integrated with and upgradeable by the Constructor.
These tools provide the warfighter with an easy to use, field upgradeable, parallel
processing solution to all source (RGB/grayscale, video, or multi/hyperspectral) image
exploitation. Additional objects of this effort included:

» Demonstration of the advantages of a multiprocessor workstation to exploit imagery.

» Construction of a prototype workstation using cost effective commercial off the shelf
components integrating image and video analysis routines developed for the Image
Exploitation 2000 (IE2000).

= Demonstrate the software reuse advantages of an object oriented software development
environment.

= Demonstrate an innovative cost effective upgrade path for existing Air Force assets.

2 Overview

In response to the objectives stated on the previous page, NRC has developed 3 core products.

2.1 MIPS Frameworks

The first product is a set of re-usable object oriented frameworks:

» Image Processing (IP) Framework

s InterProcess Communication and Control (IPCC) Framework
* Image Formats (IF) Framework

» Parallel Image Processing (PIP) Framework

» Visual Imaging Environment (VIE) Framework

arallel Image Proc
Image Formats (IF) - v (PIP) meework :

Framework ; Image Processing (IP) -~ - InterProcess Communication and -
Framework - . Control {IPCC}) Framework

Figure 1. lllustrated above is a graphical represehtation of the MIPS frameworks.

Each of these frameworks, illustrated in figure 1, was carefully designed for re-use, portability,
extensibility, easy maintainability, and to support multi-threaded processing. The IP framework
contains the lowest level image processing operators. The IPCC framework is the backbone of
portable parallel processing in MIPS. The IPCC is completely portable to symmetric multi-
processor platforms that use either Posix or Win32 thread libraries. The PIP framework contains
the parallel processing versions of the IP framework and a set of processing functions that
transparently implement, by using IPCC classes, parallel image processing. The IF framework
contains the image format encoding and decoding classes. The VIE framework classes are the
link between the user and the MIPS applications. VIE level objects enable runtime visual
programming. They are represented as icons that are manipulated by the user to create arbitrarily

complex processing chains.

2.2 MIPS Constructor

The second product is the MIPS Constructor. This portable, multi-threaded application is
designed to allow the user to visually construct complex image processing algorithms by
manipulating objects that are represented as icons. These image processing algorithms consist of
reader/writer, data, processing, and display objects connected together in a processing chain.
Processing chains automatically execute in parallel and can be of arbitrary complexity. All image
data regardless of source (RGB/grayscale, video, or multi/hyperspectral images) is represented
by a single data object — Vielmage. Vielmage is based on the idea of an image cube. The image
processing objects in the Constructor all connect to Vielmage objects. Hence, the image
processing objects perform their processing functions regardless of the source of the image data.
Thus, one can perform edge detection on an entire video stream or a grayscale image with the
same processing chain. An overview of the Constructor interface is shown below in figure 2.

= VieCipetator

YieAvarage - .
= ie ColanViewsr i ‘(gr
¥ \\//‘;ZI:KZEE:;::MC puinage Capefitn Dapaltnege Witer
* YielmgWiter
VieMaments
ViePloteblaCp
o StatSummany
VieThreshold
eViewsy
= ViaWindowtdann
& VieWindowStdDev
2, ViePlot
2 VieSplitter
= ViePlotable
1 VieVideoViewer

B

B EE

flost -
|:Ium

Figure 2. Overview of the MIPS Constructor interface.

The constructor will also display live plots and MPEG video streams. These fully portable
features are implemented in Java and accessed vie the Java Native Interface. The MPEG viewer
uses the Java Media Framework and native runtime codecs to display MPEG data. Figures 3 and
4 illustrate the live plotting facility and MPEG viewer.

ollas

B Flex Systom [E\Flex:MIPS\mipsgui'De
s oo 4 8 .

ogram PiatData

Histogram Plot

120 180
Pixel Values

Vigimagel

Figure 4. Java based MPEG video viewer implemented in MIPS.

2.3 MIPS Mainwindow

The third product is the Mainwindow. The Mainwindow interface, shown in figure 5,isa
window based image exploitation application, which has been integrated with the Constructor.
The Mainwindow loads special archived processing chains (system files) at program
initialization. Menus and submenus are created dynamically to correspond to each archived
processing chain. Thus the Mainwindow can be field upgraded with new algorithms and
capabilities by simply reading an additional set of system files. The internal processing is the
same as that of the Constructor — parallel processing of all algorithmic operations.

Figure 5. The Mainwindow interface showing the algorithm menu system.

3 The MIPS Frameworks

The MIPS software suite is comprised of 5 frameworks — the InterProcess Communication and
Control (IPCC) framework, the Image Processing (IP) framework, the Parallel Image Processing
(PIP) framework, the Image Formats (IF) framework, and the Visual Imaging Environment
(VIE) framework. In this section we will cover each of these frameworks with an emphasis on
how to create new MIPS Constructor and Mainwindow compatible VIE classes.

Many of the complexities of “data centric” parallel processing have been hidden in high level
classes. Thus the would-be programmer can concentrate on writing portable, cross platform,
paralle] image/data processing algorithms without having detailed knowledge of the underlying
mechanics, namely portable multi-threaded processing.

3.1 IPCC Framework

The classes in the IPCC framework are used to create and manage multiple threads and
processes. The thread, process and mutex classes are built using the bridge pattern to assure link
Jevel portability across operating systems and platforms. The synchronization classes are written
in terms of the thread interface class and hence are portable because the thread class is portable.

Thread is the abstract base class for all derived thread types. It provides a pure virtual function
process, that when overridden by derived classes, will be executed when the child thread begins
execution. This arrangement means that derived classes of Thread can define, for their own
purposes, the structure and form of the work performed by overriding the method process.

The classes WorkerThread, WorkPile, Work, and ThreadSet are the workhorse of MIPS parallel
processing. WorkerThread is a derived class of Thread. It is a template class with two template
parameters - _OBJTYPE and _'WORKTYPE. The policy enforced for _OBJTYPE is simply a
doWork method that takes an object of type _ZWORKTYPE as a parameter. The policy enforced
for _'WORKTYPE consists of two functions, next() and end(), and a comparison operator >. The
method next() should get the next available piece of work and the method end() should signal the
end of the work in some fashion compatible with the comparison operator and an object of type
_WORKTYPE. Because a WorkPile object is instantiated with an object of type _ZWORKTYPE
in the WorkerThread constructor, objects of type _'WORKTYPE have extra policy constraints
imposed by the class WorkPile.

As was stated previously, WorkPile is a template class that takes a template parameter
_WORKTYPE. WorkPile allows the thread system to synchronously process the current piece of
work, decrement the amount of work in the “workpile”, and test for an end condition. The next()
method gets, sequentially, the next piece of work by returning the current value of on object of

type _WORKTYPE and decrement the member m_work. The end method returns an object of
type _ZWORKTYPE constructed with a zero as an argument.

Work is an abstraction that describes how much work is yet to be processed. It is a base class that
provides a basic functionality as a counter that tracks the current value of the number of
“chunks” or pieces of work remaining. This class or its descendents are used with the class
WorkPile. However, the concepts were kept separate so that the developer could redefine what is
meant by work and still be compatible with the WorkerThread class.

ThreadSet is a set or group of threads with a method that implements the so-called barrier
synchronization method. Derived classes of Thread may be added or deleted to the set. The
method wait() waits for all threads in the set to finish execution before relinquishing control to
the called method. Hence, wait() implements barrier synchronization in that all threads must join
at the barrier before the caller can proceed.

These classes cooperate to allow multiple threads to automatically process data until no more
work is left to perform. Figure 6 below illustrates this process in the context of image data.

ROI1 S pp—
ROI2 Tor2
o {THRERDBNE (‘} ROI3
wora A THREAN BNE Uo7 —
ROLS \ oL
ROL6 X ROL6
RoL7 . — - - : 3y ROI7
RO S y'ﬂ’lﬁﬁﬂﬂtwo(3 ROIS
ROI 9 - — A ROI9
ROL10 ROL10

« WorkPile parcels out the work, currently work corresponds to an ROI counter
» Concept of Work and WorkPile is generic and can be adapted to other datatypes.
! » Current implementation is basically a protected counter.
o Threads are spawned when needed and run until no more work remains.
- Automatic load balancing of the type. _
- Will execute, in parallel, any object that conforms to the policy...doWork(). .

Figure 6. Graphical depiction of the MIPS “data centric” parallel processing.

Two template functions are provided that hide the details of using the WorkerThread, WorkPile,
Work, and ThreadSet of classes. The first one is ApplyParallel. It is a general-purpose function

that takes two parameters — an object with an appropriately defined doWork method and a Work
object that has been constructed with the number of churiks to process. A call to ApplyParallel
will automatically setup the thread system, run the contents of doWork in parallel, and wait for
the threads to terminate. The other template function is launch. Launch is a higher abstraction
than ApplyParallel. It takes a single argument, the object with the doWork method, and
automatically creates an appropriate Work object, calling ApplyParallel to start the parallel
processing.

Table 1 below summarizes the IPCC classes.

3.2 IP Framework

The IP framework is a collection of classes that perform some image processing function on a
region of interest (roi) of an image. These classes are unaware of any parallelism and can
potentially be used in an other applications where parallelism is not required. The IP classes are
the low level image processing operators of the MIPS software suite. The PIP framework uses
these classes as a basis for developing parallel aware operators. Since these classes are all
templates (meaning there are no .cpp files to compile) there are no build instructions associated
with these classes.

There are several base classes within this framework that provide member variables, such as

pointers to input and output images,

to derived classes that relieve the developer of new classes

from duplicating these member variables. These classes are ImageOperator and ImageOutputOP.
ImageOperator provides to derived classes a pointer to an input image. All classes that require an
input image but only create scalar output should derive from this class. Operator classes that
require an input and output image pointer should derive from ImageOutputOP. All IP operators
that are part of the MIPS software suite derive from one of these three classes. It should also be
noted that MIPS operators do not overwrite input images with computed output values but rather

writes the computed values to a new output data structu

Table 2 below summarizes the IP framework classes:

Ie.

IDescription .~ .

| Computes the absolute value of pixels in a roi.

Accumulates pixel values from two inputs.

1 Adds bit error.

| Adds a constant. .

1 Adds gaussian noise. =0

T "Adds impulsive noise.

1 Adds coincident roi’s from two.i

mages y‘toﬂ.-fqm PR

has been‘applied. . o0t

Spatial convolution with a divisor applied after the

Spatial convolution of a kernel with pixels in a roi.

Copy’s roi’s from input to output. -
Crops the input image. A

Base cross gradient operator.; .

Thresholded version of the base class

Sets-the background pixels to a constant.

Sets the edge pixels to a constant. "= "

istants.

Sets both the edge and background pixels to
_Applies the cross median filter. - e

co

Differentiates the spectrum of eachplxel(l,J) ina

channelimage. .-

multi

Flips each roi horizontally.

“Flips each roi vertically, -

“Counts the number of pixel in a roi above a threshold

‘Computes the histogramofaroi. -~

}?JHysteresmOp Computes the hysteres1s of a roi. T
The image cube: - R
"Data structure representmg 1mage maps,*s RERTIRT

3.3 PIP Framework

The PIP framework is a collection of the parallel aware low level image processing operators and
associated parallelizing template functions. Each operator class in the PIP framework contains a
doWork method and is derived from an IP framework class. The template functions start the
parallel processing for each operator type. A single call to one of these template functions will

10

perform, in parallel, the operation represented by the PIP operator. The parallel system will be
started, the image data will be processed and written to output objects when one of these
functions is called. For example, in the code fragment shown below, the absolute value of an
input image will be computed (in parallel if possible) and written to the output image.

void someFunction()

{
MIPSImage inputlmage,outputImage;
// get the input image...in MIPS this is accomplished via references
inputImage = getInputImage();
1/ now get the absolute value
paralle]AbsoluteVal(&inputImage,&outputImage);

}

The template function parallelAbsoluteVal is shown below:

template <class _IMAGETYPE>
void parallelAbsoluteVal(_IMAGETYPE* inputlmage, _IMAGETYPE* outputlmage)

// Instantiate the parallel operator

PAbsoluteOp<_IMAGETYPE> absoluteVal(inputimage, outputImage);
// Launch the operator into the parallel system

launch(absoluteVal); 4

}

The parallelizing template functions are a set of high level functions that give the developer
access to a wide range of parallel operators. Developers can develop new template functions
using the available PIP operators or they can develop template functions based on new PIP (and
hence new IP) operators.

With respect to the image cube, these functions/classes process a single 2-dimensional channel at
a time. To process an entire image cube in parallel, the template function must be embedded in a
channel loop as shown below.

template <class _IMAGETYPE>
void someFunction(IMAGETYPE* inlmage, _IMAGETYPE* outlmage, unsigned constant)

{
// Since channel(i) returns a pointer each channel of the input image will be processed and written
/10 the associated channel in the output image
for(unsigned i=0; i<inImage->channels(); i++)
parallelAddConstant(inImage ->channel(i), outImage ->channel(i), constant);

}// end someFunction

11

Table 3 below summarizes the PIP framework classes:

12

/.| Compares the pixels of two coincident roi’s and
| outputs the largest one to the output roi.
| Determines the largest pixel value in a ro1
Applies a median filter.” : S
| Determines the smallest pixel value in aroi.
| Multiplies a constant times each pixel in a r01
| Suppresses. non local maximum pixels. i
.| Computes the norm between two comcrdent roi’s.
Rotates a roi by 90 degrees in the antr—clockw1se '_
direction. e SO ERN RN N R
Zooms in or out ofarol. . i
Extracts an8 b1t dynarmc range from each p1xel in
a.rOI i-;;-;;‘: S 5 Ei
Sets pixels in'a roi to a value
Computes statsonaroi. i i
Subtracts comcrdent r01 s from two 1mages to forrn‘_
a third. SESEEERLE AR L
Computes the sum and sum of squares for prxels m} :

Table 4 below summarizes the parallelized template functions of the PIP Framework.

':Functlonallty v e
-Computes the absolute’ value of plxels in-a roi;
Accumulates prxels values from two mputs :

‘Adds bit error. R ;
Adds a constant
'Adds gaussian 'noise ;
_Adds impulsive noise. R :
| Adds two images to form a th1rd e it
ﬂ Adds umform norse e

3 'plxels in an 1mage ' ,
|- Applies an image map to prxels in an 1mage

| Applies the alpha trimmed square mean ﬁlter
| Clrps plxels m an 1mage between two values

| kernel has been apphed :
Spatral convolut1on of a kernel w1th an 1mage
Copy an. unage S

Crops the. mput image.
Cross. gradient filter. ==~ -
Appliés the cross median ﬁlter

13

Differentiates the spectrum of each pixel (i,j) in a multi-
channel image. = . . = E

Flips the image horizontally.

Flips the image vertically.

Counts the number of pixels i

3.4 IF Framework

The IF framework is a cooperative set of classes that are used to encode and decode image,
video, and multi/hyperspectral file formats. The interface for encoding and decoding is found in
the abstract base class, ImageFormat. ImageFormat contains two methods, read() and write(),
that must be overwritten by derived classes. The read() method contains the decoding
instructions and the write() method contains the encoding instructions. ‘

The MIPS Mainwindow and Constructor interfaces interact with the IF framework classes by
extracting the proper format, based on a list of registered file extensions, from a metaclass pool.

14

This means, that on the gui side, there are no case or if statements to update or change when
installing a new file format. File formats can be added or changed without changing any code
outside of the IF framework. ImageFormat is the root class of the pool and all other formats are
members of the pool. Several statements must be included in each derived format class so that
they may be included in the format metaclass pool. In addition, a special constructor and a static
method, extensions() must also be included in a new format class.

Table 5 below summarizes the IF framework classes.

‘Class Description

AVIRTS Browse format (4bands)
'AVIRIS format (allbands) = =

(singleton)
| Contains descriptions of the legal extensions -
for all the format types. (singleton) ==~ =

Contains the file filter descriptions. = -

Abstract base class for format types =

Contains metaclass typedefs for the -
“ImageFormat pool. S

Encodes and decodes JPEG format
‘Encodes and decodes MPEG format
“Encodes and decodes NITF format

‘Bncodes and decodes a simple binary PPM

format = i

“Encodes and decodes TIFF format
Metaclass templates instantiated for .

| TmageFormat =~~~

3.5 VIE Framework

Classes in the VIE framework are displayed and manipulated by the MIPS Constructor and
Mainwindow. Parallel video, 2-dimensional, and multi/hyperspectral image processing
algorithms are performed by classes in the VIE framework. Image input and output is controlled
by classes in this framework as well as image display and plotting. These classes represent the
high level of functionality in the MIPS software suite. Of primary concern to the developer are
the methods for creating new VIE level classes and how to interact with the execution model that
controls data processing.

15

Most VIE classes can be characterized by their input and output references. Generally, a class
will have an input image reference and no output reference, an input image reference and an
output image reference, an input image reference and an output plottable reference, or an input
plottable reference and no output reference. Base classes exist for each of these cases to simplify
development of new VIE classes. Table 6 below summarizes the set of VIE base classes.

Programming new VIE level classes usually involves inheriting from one of the aforementioned
base classes (to inherit the bulk of the required interface) and selectively overriding base class
methods. Inheriting from one of the standard, supplied base classes will assure that the new class
will be visible to the Constructor and Mainwindow gui. Taking advantage of the base classes
through inheritance also means that the new classes will not have to “re-invent the wheel” with
respect to references, attributes, metaclass and execution model related interface and functional
requirements...most of the work has been done by the base classes. Overriding selective
baseclass methods gives the new VIE class its individual behavior. The run method has not been
implemented for any of the base classes, therefore any new derived VIE classes that processes
data in some fashion during MIPS execution must override the run method. To create inputs
unique to the newly created VIE class the getAttributes method must also be overridden. If new
or different references are required then the getReferences method must be overridden. Other
methods such as update or upkeep are occasionally overridden to define unique execution model
behavior. VieAdd and VieSubtract override update due to special execution model requirements.
Each must wait on two image objects to receive image data before these algorithm objects can

proceed with their processing duties.

Table 7 below summarizes the VIE framework classes:

16

| Count the number of pixels below a threshold

Apply the Canny edge filter

Center the mean of the image -

Combine N images 1nto an N channel 1mage
Adjust the contrast. - e

Convolve a kernel with the i 1mage

‘Make a copy of the 1mage T St

Crop the image = '

‘Apply the cross median ﬁlter o

‘Differentiate the spectra at a wavelength

Flip about the vertical axis

Flip about the horizontal axis ‘-H

Apply the Frei Edge filter

Apply a gaussian smoothmg ﬁlter 5
Equahze the hlstogram LA

_The image cube =

Compute the histogram'

Compute the max pixel value

_Base class for V1eImageMax and V1eImageM1n

Compute the min pixel value

-Basé class

Compute:the moments of an 1mage

‘Read an 1mage from d1sc g

- Write an’ 1mage to dlSC

Base class...

Integrate: the. spectrum of an 1mage between two E
wavelengths : Ty

Apply an mtens1ty map to an 1mage

Invert the image

_Apply the Kirsch edge ﬁlter & o

Mainwindow: helper class }

- Moments base class

“Encode frames to an MPEG ﬁle

‘Multiply a constant trmes an 1rnage N
Base class..: iR e ;

" Base class...

"Plot the contents ofa plottable

Data object that contams plottable data
Base class... " e

“Apply the PrewrttvEdge ﬁlter

Apply the Roberts-edge filter o

Rotate the image by 90 degrees

17

Zoom in or out .

1:Select.an'8 b1t chunk of the dynamlc range

v/‘Base class

4 Constructor

The Constructor is used to create algorithms in the form of processing chains. These chains are
composed of interacting objects, represented by icons, that cooperate to read, write, process and
display image data. In order to understand how to create complex algorithms, one must
understand how to assemble processing chains by placing objects on the object canvas,
connecting the objects together and setting their parameters.

4.1 The Work Area: Object Canvas

The object canvas is the working space or “bread board” for connecting objects and setting their
parameters. The user may change the position of object icons by selecting the icon and dragging
it with the mouse. Any connections will “follow” the icon. Figure 7 illustrates the object canvas
filled with objects and subsystems. '

Hesda Inputlmege

Figure 7. The object canvas containing a processing chain. Note the horizontal and vertical sliders used for viewing chains that
are larger than the viewable size of the canvas.

4.2 Creating Objects: The Object Palette

The object palette, as shown in figure 2, has two components or views — the system view and the
class view. Select a tab to show the corresponding view. The system view shows all the objects
currently on the canvas. The class view shows all the /O, data, processing, and display classes

19

that are available in the Constructor. The class view is also used to drag and drop objects,
instances of classes, to the canvas.

4.2.1 System View

The system view shows all the objects in the current system. The tree of objects is organized
with respect to containment in either the top level system or subsystems. A subsystem is denoted
as a folder. If the folder is closed, (9, the subsystem is not currently selected. An open folder,
23, denotes a selected subsystem. Objects, represented as &3, are shown indented below their
containing subsystem. Items on the same level are not indented with respect to each other. The
top level system is a subsystem that contains all other subsystems and objects within a given
system. The system view is illustrated in figure 8.

=} Subsystem
&3 AddBitError

&; Interimg?

&3 CannyEdge
&3 Outputimage
&3 Writer
& Viewerl
& Viewer2

Subsystem and
constituent
objects

Figure 8. The system view of the object palefte.

4,22 Class View

The class view contains the class tree. The class tree is 2 graphical depiction of the classes
available in the Constructor. It is also the contro] from which objects are placed on the canvas.
This is done by selecting a class in the class tree and “dragging and dropping” an object from the

20

tree to the canvas. The hierarchy of the tree is expressed in terms of inheritance, in the object-
oriented sense. Descendent or derived classes are shown indented with respect to their ancestor
or base classes. Some base classes are displayed to organize the class tree. Objects of these
classes will not function in a processing chain. These display only classes are: Vielnitiator,
VieOperator, VielmageMetric, VielmageOp, VieMoments, ViePlottableOp and VieThreshold.
Clicking on the plus sign, &, will display nested classes. Clicking on the minus sign, B, will
collapse the branch showing only the base class. Figure 9 shows the class view of the object
palette.

=: VieSubsystem
Vielmage
Vielnitistor
VieCombiner
1 VieOperator
VieAverage
VieColotViewer
| £t VielmageMetric
M VielmageOp
Vié|nigWrifef -

|
;
3
|
E

o --—IZX!ZEIP':‘:I;?SO‘ _ The base class,
H] 22 Vieriotiabletp VieOperator, shown
< VieStatSummary

with its immediate

: VieThreshold
(= LSSt descendents.

dieViawe
VieWindowMean
= VieWindowStdDev
& ViePlot

& VieSplitter

=: ViePlottable
VieVideoViewer

{I

Figure 9. The class view of the object palette. Display only base classes are highlighted in red.

4.3 Object to Object Connections: References

A reference represents a connection between objects. A reference enables direct object-to-object
communication and is represented, visually on the object canvas, by a red line segment
connecting one object to another. The reference resolver is the tool that is used to graphically
connect objects. Connecting objects via the reference resolver requires 5 steps.

21

Step 1. Select the object whose reference must be resolved. A connection is made from the object with the reference
to the object that satisfies the reference.

Step 2. Press either the 'sI: 1 button on the tool bar or invoke the Edit::References menu item. The reference resolver
dialog will be displayed.

Step 3. Select the reference to resolve by selecting the appropriate row under Reference Status in the lower portion
of the dialog. The row will be highlighted and a list of objects that can legally satisfy that particular
reference will be listed under Potential Resolvers in the top portion of the dialog.

Step 4. From the list shown in the Potential Resolvers portion of the dialog, select the desired object with which to
connect and press the Connect button. The name of the connected object will then appear under the Value
column in the Reference Status portion of the dialog box.

Step 5. Press the Ok button to close the dialog box after all references have been resolved. Red lines will then appear
between the connected objects. :

" To disconnect two objects follow the steps outlined above but instead of pressing Connect in step
4 press the Disconnnect button. At this point, the user may re-connect the disconnected reference
to any object that appears in the Potential Resolver list. Figures 10 through 12 illustrate the use
of the reference resolver.

Figure 10. After invoking the reference resolver (steps 1 & 2) for the Reader object, the reference resolver dialog appears.
Reader will be connected to Image. Note the red border signifying that the reader has at least one unsatisfied or unconnected
reference.

22

Reader

Figure 11. Appearance of the reference resolver after selecting the Image object from the list of potential resolvers and pressing
the Connect button. Note the Image object is listed as the "Value" of the reference.

VieSubsystem

Vielnitiator

JigimgPeads

Figure 12. Once the Ok button is pressed the reference resolver dialog closes. The red line between Reader and Image appears
after the dialog closes, signifying a reference connection from the reader object to the image object. Note the green border
around Reader signifying that all required references have been resolved.

23

4.4 Object Parameters: The Object Inspector

In addition to references, Constructor objects also have parameters that control their behavior.
Parameters are modified via a dialog called the Object Inspector. Parameters can be booleans,
strings, filenames, integers, real numbers, and collections of any of these types. Modifying
parameters involves 4 steps:

Step 1. Invoke the Object Inspector by double clicking on the icon representing the object whose parameters will be
modified. In the case of subsystem objects the subsystem must be selected (a single click on the icon) and
the Edit::Properties menu item invoked.

Step 2. In the object inspector, select the parameter to modify by placing the cursor on the appropriate row and click.

Step 3. If the parameter is not a collection but a single Boolean, string, filename, intéger or real number an Edit box
will appear. Place the cursor in the Value portion of the Edit box and enter the value. Press OK to close the
Edit box.

If the parameter is a collection, another object inspector will appear. Choose the appropriate parameter in the
collection (this may be another collection). Repeat, if necessary, until a single boolean, string, filename,
integer or real number is encountered. At this point an edit box will appear and the user may enter the
desired value. Edit the values in the collection, as required.

Step 4. Continue setting all the parameters as shown in steps 3 and 4 until all parameters have been set, then click
OK in the original object inspector to exit the inspector and save the edited values.

Figures 13 — 16 illustrate the use of the object inspector.

& VieSubsystem
& Vielmage
& Vielnitiator

= VieMpegEncoder
= VieCombiner e

Figure 13. lllustrated above is the object inspector for the Reader object. Several types of parameters are available, each with
: their own editor.

24

S Type
Beginning Frame unsigned int
Ending Frame * |unsigned int
Image File ..~ |cpath. ~ N el [testindmg
Label-. - . |csting ... N oo]Reader’
Load Every Frame| bool i " &
Read the Image?: |baol -

Figure 14. Select the parameter "image File" to modify by placing the cursor on the appropriate row, clicking once with the left
mouse button.

%:|Begirning Frame |unalgncdlnt
{2 {Ending Frame ;- . junsigned int

Figure 15. After selecting the "mage File" parameter, a file open dialog is presented. Find the desired file on disc and press
Open.

Beginning Frame Junsigried-int. . .
Endingmee ~ - Jinsigned.int- - [N : IBERE
Tlepat oA C'\FchMIPS\mIpsguI\tracy pg
- cs'mng* ' ::.IN:A : .- |Reader ©

elbool . .- <L |NgAC
b‘o:,ol’ S INIA R

Figure 16. Result of the action described in figure 15.

25

Figures 17 through 20 illustrate the Boolean and Collection parameter editors.

Figure 18. The parameter “Channels" is a collection. "Number of channels" is the parameter that controls the size of the -
collection. All collection input parameters have an accompanying size parameter. Operator objects automatically size collections
that are used as output parameters.

R

¥ VieAddConstant
& VieAddGouss
& VieAddimpulsive
& VieAddNFrames
& VieAddUniform
& VieCannyEdge
TR

Chianniels[2]
£ KU Rl s s

Figure 19. After setting the number of channels to 3, select the “Channel" parameter to display the collection. In this case the
collection is a vector of channel or band numbers. Each of these can be edited independently.

26

imege
Channels]

Error perce!
Label .

VieAddBiE

unsigned-int
unsigned int
" Junsigned Int®

0.0,
21

o

v-“ VieAddimpulsive
& VieAddNFrames
& VieAddUniform

& VieCannyEdge

Figure20 Shown above is the appearance of the inspector while editing the value of the 20 channel. Note channels are
numbered from 0 to N-1, where N is the number of channels.

27

5 The Mainwindow

The Mainwindow, shown below in figure 21, is tightly integrated with the Constructor. It is
remotely upgradeable by incorporating, at program initialization, Constructor produced
processing chains, that have been archived into system files. It reads system files from a special
directory and loads the algorithms from these system files into the Macro menu. A unique feature
of the Mainwindow is that the macros are not interpreted or translated but run at the speed of
native compiled code. Also the Mainwindow macro based algorithms retain all their parallel

processing abilities.

The special macro directory is installed as ../Program/macros by the MIPS installer but can be
changed to another directory by editing the file, mainwin.prf, and changing the parameter
“MACRO_DIRECTORY=./Somedir/anydir/”. Note that the path must end with a slash. Standard
directory navigation symbols apply such as “.” and “.” .

Double clicking on the mainwin.exe icon launches the mainwindow. An open image must be
present for the algorithms to take effect. The selected algorithm will be applied to the image
window with focus. A single undo buffer allows for a one level undo. Algorithms can be
repeatedly applied to the open image but the undo only reverts to the previously displayed image.

Figure 21. Mainwindow organization and appearance. Note that the system file EdgeFilters.sys contains VieMacros labeled
Sobel, Canny, Kirsch, and Prewitt.

28

To apply an algorithm to an image, select the algorithm category then the specific algorithm. The
inspector for the appropriate macro will be displayed, the user has the flexibility to change
parameters at this point. After the Ok button has been pushed the algorithm will be applied to the
image and the result will be displayed. The following figures illustrate this process.

Figure 23. The result of the application of the Sobel Filter is displayed. Undo will restore the image to its previous state.

29

The basic method for creating a set of related algorithms for inclusion into the main window is to
create a new system file, add the number of desired VieMacro objects to the top level, re-label
the macro subsystems, then navigate into each macro subsystem and create the desired

algorithm. Note, that if a new set of algorithms is created the main window must be restarted to
load the new algorithms. The following figures outline creation of macros for inclusion in the

main window.

Sobel {Zanng K iracl Prewitt

Qutptlmage

fratiztor

Figure 25. The Sobel filter macro contents.

The following is an example of a macro containing a more complicated algorithm.

30

f Inpullmage

Owiputimags

Irstiztor ;
sty cistogran VigFlushsble

Figure 26. Complex macro algorithm. First gaussian noise is added to the image, then the contrast is stretched using histogram
equalization, and finally the result is smoothed using a gaussian smoothing filter. Note the use of Flushable intermediate images.

31

6 Conclusion

In the context of today’s fast paced electronic battlefield, improved information flow to the
warfighter is a requirement. Fast, portable, and upgradeable image exploitation tools contribute
to improving the flow of information. In response to this requirement NRC has developed the
MIPS suite of products. The MIPS suite responds to the needs of software developers, image
analysts, and warfighters. The MIPS frameworks allow for easy extension of basic processing
capability. The MIPS Constructor provides a framework for visual programming that gives the
analyst unique capability to visually program new algorithms without writing any source code.
The MIPS Mainwindow provides, to the warfighter, a simple menu based image exploitation
tool, which quickly processes image data from a variety of sources - 2D, video, and
multi/hyperspectral images. The tight integration of the Constructor with the Mainwindow means
that algorithms can be developed in a lab and quickly sent to fielded systems, where upgrades are
installed without any modification to the fielded systems. The Mainwindow can be instantly

upgraded by transmitting a file by any means necessary — email or removable storage media.

During the execution of the MIPS program NRC has:

» ___demonstrated the advantages of a multiprocessor workstation to exploit imagery,

» ...constructed a prototype workstation using cost effective commercial off-the-shelf
components, integrating image and video analysis routines developed for the IE 2000,

= ...demonstrated the software reuse advantages of an object-oriented software development

environment,
= .and demonstrated an innovative, cost effective upgrade path for existing Air Force assets.

To execute the development of the MIPS software suite, NRC developed innovative solutions to
the problems of platform/operating system portability, all source image exploitation, and real-
time field upgradeable software.

The MIPS program has been successfully completed. NRC developed the MIPS frameworks and
the MIPS applications — the Constructor and Mainwindow. The MIPS software (frameworks and
applications) and the hardware platform were delivered to the AFRL/IFEC Image Exploitation

2000 (IE 2000) facility.

32

7 Recommendation for Future Activities

NRC’s successful completion of the MIPS program has created the foundation for an end-to-end
image exploitation system. The following recommendations are proposed.

Implementation of a broader selection of algorithms to include material classification, scene
segmentation, and frame-to-frame video processing.

Enhance the existing user interface.
Develop “hot swappable” domain object sets.
Implement a hardware MPEG solution.

Develop communication and network connectivity.

33

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communicétion, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.

