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Labs. 

Progress and Accomplishments 

The last interim report covered the final experimental work, which effectively ceased during the extension period in 
January 1999. The experimental details of the work are published as listed above. This final report will therefore address 
the overall accomplishments and what we now see to be the opportunities for further development and application. 

Over the last few years, freeform fabrication methods have become a standard part of the design process. The main 
methods are stereolithography, a laser polymerization of liquid monomer, selective laser sintering of polymer powders and 
fused deposition modeling using a thermoplastic filament. Each method has drawbacks in terms of speed, precision and 
mechanical strength of the final product but there is every reason to expect continued improvements. Our own work on 
freeforming of composite materials has shown how excellent mechanical properties can be obtained from a variant of 
fused deposition modeling. Under development are methods for ceramics and metals which could have significant 
impacts respectively on the applicability of ceramics in engine parts and on mold making. 

Separate from these issues of freeforming current materials is the question of whether materials can be freeformed that 
cannot be made in other ways. Functional gradient materials are one obvious example. Another example is materials with 
embedded sensors and electrical connections. Sandia National Lab. has a strong interest in metal-ceramic parts, for 
instance.   We are currently exploring methods to build fine-scale electrical components in to freeformed parts. 

Bone-like composites 
The current work included a study of the freeforming of hydrogels followed by their mineralization with apatite or carbonate 
in analogy with bone and shell formation. The goal was to shed light on the biomineralization process and thereby to 
develop a route to highly reinforced synthetic composite materials. The chief insight was that very high levels of inorganic 
material could be produced if a gel were formed containing 95% water, the mineral phase grown in by a diffusion process 
and then the whole part allowed to dry out. In this way, mineral contents were produced up to 80 vol% and could be taken 
higher. The resulting materials were tough, strong (up to 90 MPa) and stiff (up to 6 GPa). This is in contrast to 
conventional short glass-fiber/polymer composite or clay/polymer composite where volume fractions above 40 vol% lead to 
a crumbly product. Quite why the mineralization approach works so well, is less clear. Blending fibers into gel and then 
drying it, does not work and we have had no success with formation of silica-polymer hybrids in a swollen state, followed 
by deswelling. We believe that diffusion-controlled particle growth in polymer is essential to produce a regular spacing of 
particles that will then allow shrinkage of the intervening gel to make a hard part. These studies of mineralization do shed 
light on mineralization of synthetic materials in vivo, which is a serious problem, and on newer biomimetic approaches to 
implant coatings. 
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What would the material be good for? A biocompatible implant material is an obvious target. The gelling polymer would 
need to be biocompatible. The agarose that we have used so far would probably not be suitable. Collagen gels could be 
used but would be very expensive in the bulk needed for this process. A suitable gelling protein could almost certainly be 
designed. The aim would be for an implant that was as strong as the woven bone which first forms at a fracture site. If 
this could be inserted with strong bonding and a good match of properties, the material would be subject to remodeling by 
osteoclasts and osteoblasts in the normal way that occurs in natural woven bone. The limitation on this application is that 
many possible bone implants are under development, at this point a novel approach would have to be really compelling to 
justify the massive investment in animal tests and certification. 

Hard composites, with properties intermediate between polymer and glass could be made in this way. So far, we have 
demonstrated high strength and a high mineral content but the modulus is not as high as we would expect. The material 
would need to be formed in an inorganic oxide and a synthetic polymer, we now know enough to realize that this will 
require careful design since simple combinations of acrylates and silica or titania do not work. To build precision parts, a 
cycle of build, mineralize and deswell would lead to unacceptable distortion during shrinkage. An approach based on 
building plates which are then machined would be viable. Hard coats for polymers are of great interest. Transparent coats 
are needed to permit the development of plastic windshields and other plastic optics would currently benefit from better 
hardcoats. Our materials are not transparent and would need to be nanoscaled to become so. On the other hand, hard 
coats for plastic gears and other wear parts are also desirable. Some form of dipping process would be necessary. 

Muscles 
A second aspect of this project was the development of a multilayer gel system which acts like an artificial muscle. Anionic 
gels will expand in base and shrink in acid. When a field is applied, by electrodes attached to the gel, it bends. The 
source of the effect is complex but probably results from acid release at the positive electrode and base at the negative 
electrode. Artificial muscles can be made in this way but a bending action is hard to use with a robotic arm. A simple, 
electrically driven, contraction of expansion would be more desirable. We showed that this can be achieved by combining 
two gels. The swollen anionic gel at the positive electrode contracts and the soft neutral gel at the negative electrode 
responds by taking up the water expelled from the positive side. The combination of stiff anionic gel and soft neutral gel 
results in an overall expansion in the thickness direction and contraction in the lateral directions. Hence the system will 
rise and fall under electrical stimulation. This shows that an artificial electrical muscle will be based on a combination of 
polymers designed to give the desired response, it is a system not a material. The current system is slow because the 
layers are thick, about 1 cm total when swollen. It is also soft and will not develop much force in this current format. The 
big advantage over other actuators is that the expansion is large, 10% or more. Compared to other gel approaches, it has 
the advantage of depending on internal water displacement 

How could this material be applied? For speed of response, the scale should be finer and this requires a different 
chemical system for our deposition approach. The acrylate polymerizations are very air-sensitive and so cannot be done 
well in thin layers except under nitrogen. We envisage a plate with, for instance alternating stripes of neutral and acid- 
sensitive gel. The stripes would have individual electrodes. By applying field, the acid stripes would shrink and the neutral 
stripes swell, generating a series of ridges that would raise the upper surface. Many other geometries are possible. The 
force will be increased by increasing the density of the gel. Swelling and deswelling may be driven by exchanges of 
divalent ions rather than by pH. The system in fact has many of the aspects of a battery so that any detailed analysis of 
the response to applied field must take into account the electrochemical reactions, the ion diffusion processes, binding to 
the polymer and the establishment of concentration gradients through the system. 

The key facts about artificial muscles at the moment are that they are badly needed for robotics and that no suitable 
system exists. A fine scale combination of at least two polymers and electrodes will be needed to achieve something truly 
muscle-like. 

Technology Transfer 
Our extrusion freeforming method is being actively pursued by Advanced Ceramics Research Corp. of Tucson (ACR). We 
have two joint patents. They have sold a number of extrusion heads as an upgrade to customer's existing Fused 
Deposition Modelers. They are also offering a service for making ceramic, thermoplastic and composite parts from 3D 
CAD designs. The method originated from a series of joint projects between the University and ACR and this collaboration 
continues. The collaboration with Sandia National Labs, continues. Their "Robocasting" variant on our method is being 
used to make metal-ceramic graded structures. 


