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0. SUMMARY

The report presents the deta1ls of the computatlonal algonthm for a novel three-
dimensional Vvariational dynamlc analy51s approach developed in {1, 2]. The analys1s
approach is aimed at solving a vanety of stress analysis problems of composite
structural parts under the effect of impulsive and impacts loads. Some specific
applications of the developed analysxs are shown on the examples of transverse
dynamic bendmg of simply supported laminated plate and 3D contact analysis fora

multi-brick structure under longitudinal and transverse longltudmal r1g1d body impact.

Nomerical results clearly show clynam_ic effects iin response of simply supported
laminated plate at hig‘hi rate of transverse dyhamic bending. As the rate of transverse
dynamlc bending decreases the response of simply supported lammated plate reduces
' to the correspondmg benchmark static solution [3]. This example shows the capability
' of the developed computer code to solve 3D dynam1c problems for a wide range of

dynamic loadmg rate.

-Numerical results for the 3D impact contact problem illustrate time variations of -
the target displacements, strains and stresses as well as the time variations of the
projectile displacement and velocity and impact contact pressure obtained from

solution of the coupled problem for mechanical system pro]ectlle target".

_ Cons1dered numerical examples validate appl1cab1hty and verify accuracy of the

developed computational algorithm and computer code.
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1. COMPUTATIONAL ALGORITHM OF IMPACT CONTACT PROBLEM _,
BASED ON VARIATIONAL MOSAIC MODEL

The methodology of impact contact interaction modeling based on the vériational
Mosaic Model has been described in Chapter 2 of the 1998 Interim Report, [2]. Relations
(2.24), (2.25) and (2.30) of [2] describe governing equations of the impact contact
problem. The details of the algorithm for numerical solution of these governing

equations are given below.

1.1. LAGRANGIAN FUNCTION OF DYNAMIC IMPACT CONTACT PROBLEM

‘The three-dimensional variational analysis approach presented here for mechanical
system “mosaic composite body-rigid projectile” is based on Hamilton’s variational

" principle

t » _ : : '
S f L(t)dt=0 ' . (1.1)
t; : .

where L(t) is the Lagrangian function written for the interacting composite target and

rigid projectile. This function is defined as following

N

L(t) = K.(t) + [ K®(t) - P‘Sv’(t) + WF‘S’(t)] + Vp(t) | | (1.2)
’ s=1

where

o=2m G0 | . a3

is thevkinetic energy of the projectile, I'Jp(t) = g%‘;(—t) , M, is the projectile mass, and U, is

the unknown projectile velocity;




KO(t) = ( (t))2 - | N N - o 3)

. - ) . (s) .
« . . - th 1..: s dU (t) o $)/e) 3 )
is the kinetic energy of the s™ brick, U (t) = T and U™(t) is the vector of the

undétermined displacement approximation coefficients of the s™ brick;
P(S)(t), = ';'U(s)r(t) A(s) U(S)(t) L - ‘ . .(1_ 4)
is strain energy of the sth brick; .

L WO) ;U(s)f(t) Q¥)(t) ) | ' - | : (1.4)

" is work of external forces acting on the surfaces of the sth brick;

vm<t>=z[ (R‘*’ L(*)(t)}U‘”(t)-(Lm(t))TF‘”-Up(t) siuv) (15)

r=1

s the"’_projectilé-target interactive term”, the index y denotes those bricks of the tafget
which are in contact with projectile, and U®(t) is the vector of unknown approximation
coefficients corresponding to the normal displacements of the upper surfaces of those
bricks which are eXpdsed to the contact pressure. LY(t) is the unkhown vector whose
components are the approximation coefficients of the Lagrange multiplier functions |

- (these depend on time and in- plane coordinates x and y)

Explicit forms of vectors U(s , Q¥ and matrices A*, M® are given by equations (1.12) of
Report [2]. Explicit formj of the vectors U™, L, F, 7, and the matrix R™ are given by

equations (2.21) of Report [2]. Let us introduce the following vectors and matrices:

AY 0 ... 0 MY 0 ... 0

. U(l) Q(l) .»\ 0 A(Z).“ O . »0'M(2)“_ O '

U= Q=] -, A= M= | (e
Q(S) cee see sse ses | eee aee ees vee

e {,
U(S)
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| Y L(n) F) S

,L (,F= ,8=] « [,R= (1.7
S(Yr) so e .'.T ..... A .
0

Us=) -
yor ‘ Lo Fom
It should be.emphasized that all components of the vector U(t) are already present in
the full set of displacement approximation coefficients of the vector U(t). Using the

notations of (1.6) and (1.7), the Lagrangian function (1.2) can be written as

Lz%ﬁpM‘pﬁp +%ijrmfj-%UrAU+UTQ+L?RTUC-LTF-UPSTL - a8

The Lagrahgian function (1.8) will be used in the next section for derivation of the

equations of motion of the target and projectile.

1.2. COMPUTA TIONAL ALGORITHM FOR DYNAMIC CONTACT ANALYSIS

The full set of unknown functions is represented by vector of undetermined

displacement approximation coefficients of the target, U(t), vector of undetermined

coefficients of the Lagrangian multipliers L(t), and projectile velocity [.Jp(t). The full set
of the displacement approximation coefficients of the target includes the subvector,
U.(t), which contains coefficients corresponding to those external surfaces of the mosaic
body which are in contact with the projectile, and the subvectof,_ U((t), which contains
coefficients not related to the external surfaces of the mosaic body which are in contact

with the projectile. Accordingly, »
U(t) = Udt) v U((t) | - (19)

Due to the projectile-target non-penetration condition (see equation (2.24) of Report [2]),
the componenfs of subvector U_(t) are not independent unknown functions. Therefore,
the coefficients U,(t) can be excluded from the resulting system of equations of motion.
For this purpose, the vector U and the corresponding matrices M, A, and the loading

vector Q are substructured as follows:
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S R D g T |- P
U"{Uc M=l M M A=A AL Q= o o (1.10)

Using ( 1_¢10), the Lagrangian function (1.8) can be rewritten as

U | T M M0 0 ][ U | T A A 00U,
L _l Uc Mcf 'Mcc 00 Uc _1_ Uc Aci Acc 00 Uc
=2 | L 0 000 L|2|L 0 2ROO]||L|"T
' U, 0 0 0M, [$A U, 0 0 280 U,
1 | F[ o T S oam
U, 0 ’ ' ’
Further, by introducing nofations
A =-R, Ay =25,Q, =-F o L (1.12)
the Lagrangian function (1.11) takes the form |
U | i My M0 0 |0 | U | T A Ac 0 01,
L = _1_ Uc . 'Mcf Mcc 00 Uc _1_ Uc Acf Acc 0 0 Uc
T2 | L 0 0 00 L 2|L 0 A, 00 Lt
g, 000 0M- U’ ‘U 0 0 An 0~ “U,
U | T o | |
U ; 4 v :
+] 1°[ % R e
U, 0 '

After applying the Lagrange equations
dfob) oL . dfaL) oL .
at\ou, ) oU, " at\aU, ) JuU,
'iaL_o”L_O df ol aL_O
at\oL) oL~ dtleU,) JuU,

to the Lagrange function (1.13) the following equations of the motion are derived:

(1.14)

du, d*U, | | | o
M ~+M, " +A__,,U.,+A‘,L,_Uc =Q, - | - (115)

rl

i dr 2




d*U d*U 1

M, L+M < +A, U, +A U, +2A, L= | ) 1.16
of df2 cc dz ¢f 2 Le Q . ( )
AU +UA, =2Q, A (1.17)
o d'U, 1 | | |

MI’_;’—ZI_"'EAPLL:O v | : (118)

Equation (1.17) can be solved for U

U, =-A}'A,U, +2A7'Q, =T'U, + TV S 19)

where Tgl) = -ALlc Ap and TEO) =2 Ailc Q, . It can be shown that T?) =1 and TE.O) =0
for the particular case of flat projectile. Substitution (1.19) into (1.15) and (1.16) yields:

d*u, 2

M, —~ —M,(TL(')A,,dU +A, U, +A,TU,=Q,-A,T" |

T dre dr’ : (1.20)
d*u, N

M, +M, T(')dU +A,U, +A TVU, +]A L=Q, - A T - |
dr’ dr’ 2 o (1.21)

Equation (1.21) can be further solved for L:

L=2 P‘,”d LI +P‘f')U,+P“’uP+P‘°’j
¢ 3 2 g ; ¢ ¢
where
PO ATM,,  PV=-ATA,,
Pe = A“M“TJ", P! = A:LAqu", PY=A7Q -A/A, T o (1.23)
Finally, substituting (1.22) into (1.18) yields:
(M +Ap P(z))—‘— +Ap PP “+ A, PS)Uf +A,PYU, +A, P =0 (1 .2>4‘)

The resulting system of equations (1.20) and (1.24) can be written in a compact matrix

form as following
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" M WU A ATR U] Q -AT ©(125)
APLchfz) (MP + APLPl:(Z)) u, APLPff” A, PV UP ._APLP(O) o

The following initial conditions are added

_du, v _
Uf I,_o - 7 - ' o ’ . _ o ‘ ‘
. ' =0 ' —_ — . - (1.26)
U/’l—o =0, .dUl, ="‘V0 | ‘
= : dt - . : . -
=0 | | o “ )

Here, V, is initial velocity of the prbjeetile;

Once the system of linear ordinary differential equations (1.25) is solved, the rest of
unknown dlsplacement approx1mat10n coefficients U, is evaluated using relation (1.19)
‘and the coefficients L of the Lagrange multiplier functions are evaluated usmg relation
(1.22).

~ Several numerlcal examples illustrating apphcatlon of the developed analysis approach

are presented n the next sections.
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2. NUMERICAL EXAMPLES
2.1. Transverse dynamic bending of [0°/90°/0°] simply supported plate

In order to verify accuracy of the developed computational algorithm and computer

code, consider first the problem of dynamic transverse bending of a simply supported

3-layer [0°/90°/0°] rectangular plate having length a, width b and thickness h, as

ilustrated in Figure 2.1. The external surface load, q(x,y,t), is assumed to be distributed

as a double-sine function over the top surface of the plate:

q(x,y,t) = qo(t) sin(%) sin (Eg) | . ‘ (2.1)

The following kinematic boundary conditions are imposed:

(Uy)aeo = () = (W)eo = (Ur)yen = 0 o - @Y

o= W= (o= Wha=0 23
| a(xy.t)

Figure 2.1. Schematic of transverse dynamic behding of simply supported laminated plate.

The initial conditions are of the form

We=()u=0a=(%) (5] -(3).0 ' 24
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The loading condition
©.). =qleyt) o (2.5)
is not imposed, but is expected to be satisfied as a “natural” boundary condition at any
time instant during the loading history. Components of the external force vector Q(t)

entering in expression (1.4) for the work of external forces acting on the surfaces of the -

sth brick are obtained as following -

ab | C B . » ' .
qo(t)”B{(x)B}(y)sinEsin—b%xdy fora=3,s=3i=1..1 j=1..J. k=K
a ’
00 .

Qi (t)=
: 0 else
(2.6)
where Bg(x') and B,-J (x) are Bernstein ba‘sié functions.
- The norrﬁaliz_éd time variaBle
STt/ | R | o | e

is used in all forthcoming plots. The parameter t, is the time required for the transverse

stress wave to travel through the thickness of the plate. This time is defined as

_h E (1-vr) . | ,
'_:O =h \/ p (1-vrr - 2vpvyy) ; . 28)
. ‘ ; .

The applied surface load is} a linear function on time:
Qt)=01/1, ] | : : (2.9)

where ¢ is a constant and parameter T, defines the loading rate. The dynamic solution

should approach the corresponding quasi-static solution as 1, increases.

Material properties and the displacement and stress normalization factors are taken as
- in [3): ‘

{
(O.x ® o-_\' ’ Txy O—:: =

’

1
oS’

' (O..\"O-.I"Tx_\' = (—)_-:—

(‘Fx: ’f\’: )= -o}—-(rx: ’T,lr
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(2.10)

T Tomst S=alh
The example considered here corresponds to a=b, 5=4.

In this analysis, just one brick is taken within each layer of the plate. Hence, total
number of bricks is 3, and L=1, M=1, N=3. Sixth degree Bernstein basis functions are

used in all coordinate directions, I=J=K=6.

Variations in time of the normal displacement and stresses at various loading rates are
presented in Figs. 2.2-2.6. Fig. 2.2 shows that the normal stress G, at the top surface of
the plate is equal to the applied load at any time instant during loading history. Thus, .
loading condition (2.5) is satisfied with high accuracy. Fig. 2.6 shows that dynamic
displacements and stresses oscillate about the corresponding quasi-static values (shown
| by dotted line). At a comparatively low loading rates (1, 2 5), dynamic displa‘cements
and stresses reach the corresponding static values at time instant 1 = T, when the
dynamic load reaches static load level 6. However, at a comparatively high loading
- rates (T, < 2) dynamic displacements and stresses at T = T, are lower than the _'
corresponding static values. This effect manifests the well-known effect that a delay in

dynamic structural response is increasing at higher loading rates.

Additional comparisons are presented in Table 2.1. Here, the benchmark of Pagano’s
static solution results [3] are presented together with numerical results of our 3-D static
solution (see, Report [4] for details), and present dynamic solution. In the latter one, the
stresses are evaluated at T = 1, for various loading rates. It is seen from this Table that
the dynamic stresses approach their respective static values as loading rate decreases.
However, there is still small difference (about 0.3% for 7, = 0) between the cdmputed
dynamic stresses and the corresponding static stresses for the lowest loading rate under
consideration. This difference may be explained by the oscillatory character of the
dynamic solution. According to Fig. 2.6, the amplitude of the stress oscillation is 0.35%,
which is larger than the difference between the obtained dynamic solutions at the

lowest loading rate and the corresponding quasi-static solution.
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Distributions of the stresses and displacement through the thickness of the plate are
sown in Figs. 2.7-2.10. It is seen that the shapes of dynamical stress dlstnbutlons are

exactly the same as the shapes of the correspondmg static stress distributions.

The con51dered numencal example ‘validates the computat10na1 algorlthm and

computer code for the dynarruc analys1s of lammated composite plates.

1

08

IR S S S T

. _l J QU [

Q2

U S SV | l -d

Figure 2.2. Variation in time of the normal stress &, at x=a/2, y=b/2, z=h for various

loading rates.
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Figure 2.3. Variation in time of the normal displacement i, at x=a/2, y=b /2, z=h for

various loading rates. The dashed line corresponds to the static solution.

T

Figure 2.4. Variation in time of the normal stress G, at x=a/2, y=b/2, z=h for various

loading rates. Dashed line corresponds to the static solution.
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Figure 2.6. Variation in time of the normal stress &, at x=a/2, y=b/2, z=h for loading

‘rates 1,=5 (a), 10 (b), and 20 (c). Red lines correspond to quasi—sta'tic‘solution.
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Table 2.1. Comparison between present dynamic and static results and the static results
from [3] for the case of [0°/90°/0°] square' plate with a/h=4.

, '__(a bvh) a‘(abo) a(abZh) ,E(abzh) (OOh) ( ) ) (noh\
. . .| —.—, -, . _——— s - - T, —.0.—
Referer}ce.bv 227 ) 2727 ) 223 Y\272"3 ’-, 22/ ¥ 2 2y

ETTAC _0.801‘ 0755 053 0556 00511 0756 02172
Static present  0.8005  -0.7545 ,»0.5339j 05560 00511 02559 02172
Dynamic, =05 07377 06942 04899  -0.5114  -0.04687 02352 02004 |
Dynami¢;xo=1 07489 07031 04959 05185 004758 02387  0.2034
Dynamic, ;=2 07794 -0.7340 05184  -0.5406 -0.04962 02491 02117
Dynamic, 1,=5 0.8060  -0.7601 0.5381 05612 -005146 02578 02186
Dynamic, t,=10 0.8053 07593 05375  -0559 -005140 02575 02185
Dynamic, 7,=20 . 08029 07569 05357 05578 -0.05124 02567 02178

1 —=r
P ' - -
zh os - -
Pk
PA -
02 +~ e D ynamic =
----- Statc
0 .rﬁ‘v./\ PR
-1 05 0 .05 1
c
X

Figure 2. 7. Normal stress: dlStI‘lbuthl’l at x=a/2, y=b/2. Dynamlc solution corresponds

to loading rate 1,= 1.
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Figure 2.8. Transverse shear stress distribution at x=0, y=b/2. Dynamic solution"
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Figure 2.9. In-plane shear stress distribution at x=0, y=0. Dynamic solution corresponds

to loading rate 1,=1.
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Figure 2. 10 The m-plane d1splacement dlstnbutlon at x=0, y=b/2. Dynamic solution

corresponds to loading rate T=1.

2.2.LONGITUDINAL 3D Impact Contact Analysis of mUlti-briék structures

3-D impact contact analysis of prismatic bar fully clamped at its bottom end and
exposed to a rigid mass longitudinal irhpact at the upper end was considered in the
previous interim Report [2]. Schematic of the problem is shown in Fig. 2.1 la. This
analysis case will be further referred as Case I In order to validate the developed
computatlonal algonthm and computer code for the case of a multi- brick structure in
the x-y plane, next illustrative example will consider impact contact analysis of a
prismatic aluminum bar surrounded by solid bricks of a “soft” material, as shown in

Fig. 2. 11b. This analy31s case is further referenced as Case II.

The purpose of this illu_strative example is twofold. First, it is necessary to validate that ‘ |
the developéd algorithm is capable of sdlving‘the impact contact problem for a mosaic
body composed from very distinct material bricks. Second, the analysis results for the
Cases I and II should be, ideally, indistinguishable, if the elastic modulus of the soft
material, E", is negligible compared to the elastic modulus of aluminum, E,. The other
extreme case is if E” is equal to E,,. Then we have the problem of transverse impact on a

homogeneous plate by a flat rectangular rigid projectile. Thus, the problem illustrated
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in Fig. 2.11b for aluminum bar surrounded by bricks of soft material can be considered
as the test case aimed at verification of the developed algorithm and computer code for

the class of impact contact problems.

||| M I||

®) ®

y A A4
/S S a /S

Soft Soft Soft

2a,

/€

A 4

2a

Figure 2.11. Impact contact analysis of aluminum bar (a) and aluminum bar surrounded by bricks

of a “soft” material (b).

Due to the symmetry of the problem, we can analyze 1/4 of the full mosaic body, as

shown in Fig. 2.12a. The regions considered are defined as followihg for Cases I and II:

0<x<aq 0<x<a
Casel: 0<y<b, Casell: 0<y<b
0<z<c 0<z<c

External kinematic boundary conditions are taken as follows
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Figure 2.12. Geometry of 1/4™ part of aluminum bar surrounded by soft material (a)

and schematlc of the brick mesh (b)

and are complemented by the following symmetry conditions

2] =0 o
(5, 0,21), . = (2.12)

U, (A y,é q -0 =0
The initial conditions are formﬁlated as
uggg4%ﬂ=ﬂi@ﬁéﬂ =0, a;@ﬁ | T D)
. ft =0 : -
L«g:@ dUY) ==-V, ,where V, >0 ’ . . ,,QJ@
=0 ‘ o -




The following material properties of Al bar are used:
E,=73 GPa, v, =03, p,=27M0 kg/m’ : : (2.15)
The geometric parameters are:

a=b=01m c=02m V(216)

a=2a, b=2b

Mass and velocity of the projectile are

M =90 kg, V,=12.5 m/sec | . | (2;17)

Tﬁe following‘ normalized time variable will be used: | |

r=tlt, | @is)

‘Here, parameter t, is defined as

t, =CA,[ EA'(I_VA') J—m =32 Usec _ : a |
pall+va)i-2vy)) | O (19)

Numerical simulation results for the Cases I and II are presented in Figs. 2.13-2.15.

Young’s modulus of the soft material is taken four orders of magnitude lower than that

of aluminum bar: £* = E,,, /10" .

Numerical results have been obtained with third degree Bernstein basis functions used
for the three coordinate directions. Case I was simulated using a single brick in the x-
and y-directions, and two bricks in the z-direction. In Case II three bricks were taken in
the x-direction, three bricks in the y-direction, and two bricks in the z-direction. Using

the notations introduced in Fig.2.12b, parameters of the brick mesh for Case Il are:

x,=a, x, =a; Li=2, L=4
Y =b, Yy =b; M1=2, M=4 E v _ (2.20)
zy=c; N=3

Variation of the transverse displacement at the center point of the bar on its top surface

(x=y=0. z=c) is shown in Fig. 2.13a. The displacement monotonically increases up

Poge 0




tot U8 , when the projectile moves downward. Then the dlsplacernent monotonically
decreases, followmg movement of the pro]ectlle upward to the time moment when the

bar and pro]ectlle separate.

Drstrlbutlon of the transverse dlsplacement in the x-direction at y=0 z= =c and time _
instant t=5 is presented in Flg 2.13b. It is seen that the .displacement is umformly |
distributed along the contact area, what is consistent with the assumption that the
projectile is a flat rigid body. This flgure also shows that the displacement continuity
condition at the interface between the bar and soft material is satisfied exactly. At some

dlstance away from the pro]ectlle ‘the d1splacement ina soft material tends to zero.

Variation of the pro;ectlle veloc1ty on time is shown in Fig. 2.14. The Veloc1ty decreases

~ from its initial value to zero (at 7=8), then increases and almost reaches its initial value

Results presented in Flgs 2.13 and 2.14 indicate that there is no visible difference
- between results obtained for the Cases I and II when predicting variations of the -

transverse displacement and veloc1ty of the pro]ectlle

Time variations of the transverse normal strain in a bar and conitact pressure are shown
in Figs. 2.15 and 2.16. It is seen that the normal strains and contact pressure predicted
for the Cases I and II are almost identical during the initial stage of impact. A minor
discrepancy between these results is seen at the advanced stage of contact interaction;

this can be explained by the effect of multiple stress wave reflections and from the

external surfaces of the soft mater1a1 in Case 1L
i
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Fig. 2.13. Variations of the transverse displacement, u, , in time (a) at x=y=0 and z=c,

and its variation along the x-coordinate at y=0, z=c, 1=5 (b).
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' Fig. 2.14. Variation of the projectile velocity in time.

The dependence of the contact pressure on time shown in Fig. 2.16 indicates that the
loss of contact between the bar and projectile occurs at 7=~ 16. At this time instant
veldcity of the projectile approaches its initial Value‘(the ?rojectilé moves upward, see
Fig. 2.14). The observed short-period oscillations of the contact pressure are brelat_ed to

the stress waves reflections from external surfaces of the aluminum bar.

The above numerical examples verify that the developed algbrithm and computer code
provide accurate results for the considered 3-D impact contact problem with multlple
bricks in the cross-section of the longltudmal]y impacted body. Next numerical studv is

carried out for the transverse impact contact analysis of thick aluminum plate.

Page 23




- CaseIl

-0.002 \ -—e-— Casel P\\*_

-0.004

-0.006

-0.008

-0.010

-0.012 Lt
0

0002 . ~e- Casel JV A
-0.004F I

-0.006}

-0.008

-0.010} Ty
[ %’}‘ (b)

&
P LATUNT R SES BTSN S W S W 2

0.01200 i1 L1
¢ 2 4 6 10 12 14 16

T

Fig. 2.15. Variation of the transverse strain €, in time at x=0 (a), and at x = al/2 (b);
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Fig.2.16. Variation of the contact pressure in time at x=0 (a), and at x=a/2 (b); y=0, z=c.

- 2.3. Transverse Impact Contact Analysis with Assumed Contact Zone

Consider another impact contact problem for a thick aluminum platé.with dimensions
axbxc, as shdwn_ in Fig. 2.16. Dimensions of the projectile are a,xb;. Numerical values of
the geometric parameters are defined by (2.16). Mass and velocity of the projectile are
) specified by (2.17). | - |
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2a

Fig.2.17. Schematic of the brick mesh covering 1/4™ of the contact zone.

The symmetry properties of the problem are utilized again. Origin of the coordinate
system is placed in the center of the bottom surface, so the analyzed plate region is

reduced to 1/4 of its full size and is defined as
OSxSa,os‘ysb, »OSz“Sc

A nonuniform brick mesh is taken within the contact zone; the mesh is specified as

following (see Fig. 2.16):

X

’

x/+] __03 f _ ' - . ‘ |
=03 forl=1,...L-1, L=L,+1 : (2.21)




yj-«-i

=03 for j=1,...M-1, M=M;+1
Y; ,

Calculations were carried out for L, =3, 4,5 and M;=3. A single brick in the z-direction
was used in this example. Results of the numerical simulation are presented in Figures
2.18-2.21.

Distributions of the transverse displacement and strain along the x-coordinate are
shown in Fig. 2.18. Over the contact area, the longitudinal displacement is uniform and
is equal to the projectile displacement, while distribution of the strain is highly
nonuniform. The maximum compressive strain is reached at the end of the contact
zone. The minimum value of the compressive strain is observed at the center of the
contact zone. Time variations of the transverse strain at the points x=0 and x=a, are
shown in Fig. 2.18. When comparing results presented in Figs. 2.18 and 2.19 for different
* meshes (those corresponding to L+ = 3, 4, 5) within the contact zone, one can conclude
that the converged solution has been obtained for the displacement and strains. The
solution convergence for the contact pressure is illustrated for two 10cét_ions inside the
contact zone in Figs.. 2.20 a,b. At the same time, as seen from results presented in Fig.-
2.20c, magnitude of the contact pressure near the end of the contact zone is highly
sensitive to the mesh refinement. Also, it is seen that the contact pressure exactly‘at the
end of the contact zone is about three orders of magnitude higher than that inside the
contact zone but at small distance from the end of the contact zone. It is anticipated that
with further mesh refinement this value will further grow. This means that the stresses
at the end of the contact zone may be singular. Further results shown in Fig. 2.21
illustrate that the mesh refinement near the end of the contaét zone results in significant
increase of the contact pressure. The anticipated singularity of contact pressure at the
end of the contact zone is, certainly, related to the assumed prismatic shape of the

projectile.
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Fig.2.18. Distributions of the transverse displacement (a) and strain (b) along the x- (

coordinate at time instant 1=4; y-0, z=c.

Page 2R




0 T T T T T T T T T T T T T I/QAN

-0.002 '/ -
/ 1

-0.004 / ’
Va¥% ]
-0.006 -1
€3 ]
| o= 1=3 ]

008

00 co-fe--L1=4 4
—v¥—L1=5 b
-0.01 (a) -
-0.012 { 1 | t 1 i | I 1 ! -l

’ 0 2 4 6 10

' T
9 \ i ! i i i ’ '_,.v"_{ ‘

,\' 4
-0.002 _j~ s ’/ -
. seasfpere| 424 P A
5 \ﬂ\ ~—y—L1=5 ] -
-0.004 - ————————— }
| N .
0006 \ -
€3 I i
-0.008 - ‘-\ — -

i \ E

- \ 4

001 - N ®) -
-0.012 ] . .

0 2 4 6 8 10

Fig.2.19. Time variations of the longitudinal strain €, at x=0 (a) and at x=a/2 (b); y=0. z=c.

Page 29




mo_..;,]x.;---;..‘..,. T

. 5 doy | )
S E £ . E

Contact **f | &7 e

Pressure wof . j WY \.. B

kgmm?) b ST

=1

. ; — |
LAY TE
£ | e | 125 \ ‘
:’ ———
100 [ . { -
i . \ r.".
. L : ; AW
[ 2 4 6 8 10
) T
700 T v‘ T T 3
600 /'fk\\ (b} .
" '
500 F v & Fiae ) -
Contact . o VWA
Pressure ,, ¢ 4 A ;
. r . \
(kg/mm?2) ¢ s \
; 300 | A Y 5
o EA p— \
200 F St -
’ :'l | 125 'yl _
100 £ M 4
;’ B \I =
° - L : | L
[} 2 4 6 8 10
) T
710% ;: T T /". T T
P JARA .
610° E O 3 1 \ () 4
et N
s10° E‘ LE=s :’ |\--/.. Y ‘1
Contact , |- / \ i
Pressure | 7 A 4
. L Ped 4
~ (kg/mm2) 2 b V- !
. -7 .- . 3
H 2 ’ A i
110° 4 g e 5, ‘\ =
i * G <., Ve
bl , O T

o
~N
-~
> | -
o
2

, , T .
Fig.2.20. Time variations of the contact pressure at x=0 (a), x=a;/2 (b) and at x=a (c); y=0, z=c.

Page 50




8105 —_ LR ' LA '( T F T T T ‘. T __
| @ I
6105 |- f_-a-TI : ]
Contact S B ]
-~ Pressure ,qs |- : o]
(kg/mm?2) f ]
2108 |- , .
<]
0 =
1 | - i I
0 02 04 06 08 1
~ x/a

8105 _' T L T T T N | ‘ T ]
I - -
610¢ I b= 11=3 7

+ el 124

. r —¥— L1=5 )
Contact . .1 1
Pressure » .
(kg/mm2)
210% | ' 5 -
ot - _Js..ﬁaﬂj\ -a—
1 s
045 0.46 047 048 049 05 0.51
x/a

Fig.2.21. Distributions of the contact pressure in the x-direction at y=0, =4 for various numbers

. of bricks within the contact zone.

2.4.Impact Contact Analysis of Textile and Laminated Composite Plates

1

Transverse impact loading problem with assumed contact zone, as described in the
Section 2.3 and schematically shown in Fig. 2.15, is further studied here for textile and

~ laminated composite plates.

The textile material is 3D woven composite with orthogonal reinforcement architecture
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[5] as shown in Fig. 2.22. Specifications of the 3D 'orthogohal woven composite material
are given in Table 2.2. Elastic constants of the 3D drthogonal woven composite are: o

E, =53.7GPa, E, = 65.1GPa, E, =16.6GPa
G, =4.09GPa, G, =390GPa, G, =474GPa | e
v, =0.056,v, =032,v, =031

Density of the composite is 1500kg /m* .

Warp yarn

: " : Weft yarn.
.Empty pocket- T s
~ (Resin pocket in composite?

h

Figure 2.221 The structure of 3D orthogonal woven fabric.

{
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Table 2.2. Speéiﬁcations of the 3D Orthogonal Woven Material

Material of the fabric: Celion® G30-500 carbon fibers;

Size of yarns: warp yarn: 12K, 5 layers;
filling yarn: 26K, 6 layers;

: Z yarn: 3K; -
Reed density = 5.51 dents/cm (14dents/in)
Pick density = 5.51 picks/cm (4 picks/in.)
Preform thickness = 5.4 mm

Matrix: Tactix 123 epoxy resin

The laminated composite plate of [0/90/0] lay-up is made from plies of unidirectional
Graphite/Epoxy tape AS4/3501-6. Thickness of the 90° ply is twice of the thickness of
0° plies. The following elastic characteristics have been adopted in the analysis:

E, =133GPa, E, =10.7GPa, G, = 7.03GPa, G, = 4.07GPa ,v,, = 0.30 (2.23)
The density of the laminated composite is 1580kg /" .

Simulations were carried out for rectangular plates made from the above 3D woven and
laminated composites. Dimensions of the plate and size of the contact zone are
prescribed as a=b=70mm, a,=b,=5 mm, ¢=5.4mm (see Fig. 2.15 for notations). Numerical
results have been obtained for the third degree Bernstein basis functions used for the
three coordinate directions. Number of bricks used to simulate contact problem for the
woven composite plate was taken 3x3x2, and for laminated composite plate 3x3x3. The

brick mesh parameters are defined as follows

L, =2,L=3,M,=2, M=3, N=2

X /x,=5,x,=a,x,=a; /'y, =5, y,=b,y,=b;z/z,=10, z, =c¢ (2.24)
for the woven composite plate and

L=2,L=3; M1=2,M=3; N=3;

X /x,=5,x%,=a,x;=a; »/y,=5,5,=b,y,=b;1 =cl4,z,=3c/4, zo=c (225

for the [0/90/0] composite plate.

Simulation results for the projectile mass A/ = 64.4g and projectile velocity I, =1.41m/s

are shown in Figs. 2.23 - 2.26. Figs. 2.23 and 2.24 show variations of the projectile
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displacement and velocity in time for the 3D woven and laminated plates. It is seen that
displacement of the projectile increases monotonically from zero to its maximum value,
- and at the some time instant, velocity of the projectile decreases to zero. At the upward
phase of the projectile movement, the displacement of the projectile decreases while
velocity of the projectile increases to almost its initial value. Then, at certain tlme ‘

instant, the contact between the pro]ectlle and plate is lost.

Variations in time of the contact pressure, the transverse normal stress o,,, and
longltudmal normal stress o, at the center of the plate top surface (x_y—O z-c) are

shown in Flgs 2.25 and 2.26. The stress component 0, shown in Fig. 2.26 is re-plotted -
with opposite sign and shown in Fig. 2.25 by dotted line. It is seen that the difference
~ between the computed contact pressure and the stress value (-¢,;) is barely visible.

Therefore, the imposed non-penetration condltlon (see, equation (2.1) of [2]) is satisfied
“with high accuracy in the obtained solution. This remarkable result is, certainly,
nontrivial, since the contact pressure is calculated directly by the use of Lagrang1an‘
multiplier functions, while the normal stress at the surface of the plate are are calculated
from totally dlfferent equations (namely, from the stress-strain relations of 3D

elasticity). -

_Flgs 2.23 - 2.26 allow one to compare impact response of 3D woven and laminated
plates. First observation following from Fig. 2.23a and Fig. 2.23b is that maximum
displacement of the.projectile is higher in the case of laminated composite plate. This
result is explained by the fact that stiffness in the z-direction of the laminated plate is
lower than that of the woven plate. The same higher z-direction stiffness of the woven
target also results in a higher peak contact pressure compared to the peak contact

pressure for the laminated plate, as seen in Figs. 2.25a and 2.26b.

Another 1nterest1ng observation, following from Figs. 2.24 and 2.25, is that the contact
- time is lower for the woven composite plate. This is related to the shorter time required

for the transverse stress wave to propagate through the thickness of the woven plate.

Thls time is 7, —1 57/.1s as compared to 7, =1.97us for the laminated plate

Finally, the hlgher stlffness in the x- -direction for the lammated plate results in a h1gher

| peak value of 0}, for the laminated plate as compared to the peak value of 0, for the
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woven plate, as seen in Fig. 2.26.

Figs. 2.27 and 2.28 show variations of the contact pressure for the 3D woven and
laminated composite plates. Simulations were carried out at three different
combinations of the projectile velocity and mass. The projectile kinetic energy is kept
the same for all three cases. It is seen that the shape of the contact pressure distribution
changes when the projectile velocity increases. Also, two important conclusions can be
drawn from Figs. 2.27 and 2.28. First, the contact time decreases as the projectile
velocity increases. Second, the peak of contact pressure increases as the pfojectile |
velocity increases. Both these conclusions are consistent with the available experimental

observations.

002
Projectile r
Displacement
(mm)

0 10 20 30 40 50 60
Time (us)

Figure 2.23. Variations of the projectile dispiacement in time for impact loading of 3D

woven (a) and [0°/90°/0°] laminated (b) composite plates.

Page 535




B o o o e e Hama

(b)

Projectile ' | . A e

Velocity 1
(mi/s) [
0.5_— . 5
ol v oo JMUNC Ly
o 10 20 30 40 50 60

Time (us)

Figure 2.24. Variations of the pro]ectlle veloc1ty in time for impact loadmg of 3D woven

(a) and [0/90/0] laminated (b) comp051te plates
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3D _wOven (a) and [0/90/0] laminated (b) composite plates. Dashed lines show variation

~ of the stress component (- 05, ) in the plate calculated at x=y=0,z=c .

) —— =
EM E
L
-20 ':' %li :_'
Stress _, 3
(MPa) . b
<0 J
50 F .
60 - 3
J0pL @ E
80 &
0 10 20 30 40 50 60

Page 37




0
-10
-20
‘ 30 * -
Stress - . i
(MPa) 4 |-
50 i -
. : [§] .
0 ’t— o _
t ) ’ : . 2 -
70 : o1 -
80 & v ;
0 10 S 20 30 40 50 60

Time, us

- Figure 2.26. Variations of the stress components 0,,, 5, and 0., in time for 3D woven

(a) and [0/90/0] laminated (b) composite plates. Stresses are calculated at x=y=0, z=c.
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Figure 2.27. Variations of contact pressure in time for the 3D woven composite plate;

V, =1.41m/s, M=64.4g (a); ¥, =14.1m/ s, M=0.644g (b); V, = 70.5m /s , M=0.2576g (c).
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'Figure 2.28. Variations of contact pressure in time for the laminated composite plate;

V, =1.41m/s, M=64.4g (a); ¥, =14.1m/ s, M=0.644g (b); V, = 70.5m /s , M=0.2576g (c).
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3. Tensile‘Response of 3D woven fabrics

The tensile mechanical response of woven fabrics has been studied by a number of
investigators. Most researchers point to the classical work of Peirce (1937) and the
modifications by Love (1954), Kemp' (1958), and Abbot et al. (1973) as the critical
starting point in this field. Whereas Peirce approached the modelling of woven fabric
tensile response from a geometry-force approach, there have been a variety of methods
applied since. The published models used to analyze and predlct the tensile properties

- of woven fabrics include geometrical, mechamstlc, energy and statistical models.

Most of the research on the tensile properties of woven fabrics has studied plain
weaves. Work has been performed in this area by many researchers including Kilby
(1963), Olofsson (1964), Grosberg and Kedia (1966), Kawabata et al. (1973, 1973a), Postle
and De Jong (1977), Sharkas and Leaf (1987), Anandjiwalé and Leaf (1991, 1991a) and
Suﬁ et al. (1997). Some work specific to twill weaves has been performed by researchers
such as Kawabata and Niwa (1979) and Williams (1990).

Only recently have generalizations accounting for more than one type of warp and
filling yarns and Varying weave tightness been considered. Predictive models of the
load-extension properties of these complex weaves have been publishéd by Reumann
(1990), and Realff et al. (1993, 1997) amongst others.

3.1. Geometrical Modelling
‘The pioneering geometrical approach by Peirce (1937) remains one of the most complete

works on plain weave structure and its properties. Peirce’s work was more concerned
with the shape and position of the yarns in the fabric structure rather than with the
mechanical behavior of the fabric subjected to an applied tensile load. However,
several workers have used both his rigid and his flexible thread models as starting pbint
in their later studies. For example, Shanahan and Hearle calculated the biaxial
extension of plain woven fabrics with an energy method, using Peirce’s flexible thread
model (Error! Reference source not found.) with the assumption of circular cross-
section and zero bending resistance of yarns. Subsequently they developed their own
‘lenticular geometry’ model considering that the shape of the yarn was similar to that of

a lens or a football, and can be represented by two intersecting arcs as shown in Figure
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3.2.

Figure 3.1 Peirce’s flexible thread model.

Figure 3.2 Shanahan and Hearle’s lenticular geometry.

- Other reseérchers developed different geometries that seemed to be more suitable ’to‘
represent the real shape of the yarn cross-section in a cloth. Peirce himself observed
that his asSufnption of a circular cross-section of thread was invalid in practice, due to
the thread flattening which usually occurs during tﬁe ‘weaving process,bthus‘ he
modified this assﬁmption considering a more realistic elliptic cross-section. He
concluded, however, that the formal treatment of the elliptic section would lead to

complex formulae (including the solution of elliptic integrals), whose application in the
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study of actual cloths would be ’considerably more laborious and probably.no more
effective than the approximate treatment of flattened threads. In his approximate
treatment he used the geometrical equations that he had derived for circular threads,
merely replacing the diameter of the circular thread section by the minor axis of the
elliptic section. To assist in the practical determination of the cloth geometry, Peirce
produced also a set of curves and tables connecting the various geometrical parameters

experimentally determined.

Kemp (1958) modified Peirce’s model by suggesting a ‘race-track’ section (a rectangle
joined with semi-circles on left and right) as the shape for the yarn cross-section in the
fabric. In addition to being closer to the actual shapé of the yanr secfion than the
circular section, the race-track section had an advantage over the ellipsebecause the
formulae developed from it were similar to those given by Peirce for the circular

section.

Olofsson (1964) used a ‘twin-arc’ model assuming that the path of the yarn consists of

two arcs, one above and one below the central plane of the fabric.

Kawabata (1973) produced the so-called triangle-wave model which represents the -
simplest geometry for the fplain weave fabric. Many recent works on the tensile
behavior of woven fabrics (i{ealff et al (1997), Reumann (1990), Sun et al. (1997) for
‘example) refer to Kawabéta’s sfraight lines and either the uniaxial or biaxial

"deformation theories.

Thevpresent work refers to Kawabata’s approach (1973a) to estimate thé uniaxial load-
extension characteristics of a 3-D woven fabric. When considering a three
dimensionally woven fabric, the geometrical model of the internal structure is differelﬁt
from the ‘saw-tooth” model due to the multiple layers. The presented model refers also
to Peirce’s flexible thread model and to the jammed conditions defined by Peirce
because of their better approximation of the yarn conditions in the 3-D woven fabric.
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3.2. Peirce’s Geometrical Model

' " Peirce [12] showed that, if it is assumed that the bendmg re31stance of the yarns is
negligible and that the yarn is circular in cross-section, a purely geometrrcal model
which involves no consideration of mternal forces can be set up for the determination of |
the various parameters of interest in a woven structure. In other words, he assumed
‘that the geometry was not the result of the balance of various internal forces since no
forces were needed to produce the geometry postulated. Since the yarn bendmg
resrstance is negligible, the yarn can be considered straight at all points except where it
is Wrapped around the crossing threads when it is circular in shape as shown in Frg

3.3.

Using the following sym‘bolsvto designate the geometrical parameters of the fabric

P: Thread spacing; the distance between two planes, normal to the fabric, containing

tWo successive cross yarns
o o :
l: Modular Iengtt\ length of thread axis between planes contalnmg the axes -

of consecutlve Cross tﬂ-nreads

c:  Yamn crlmp, deﬁned as the fractional excess of the yarn length over the

length it covers in the cloth, (I-p)/p

d:  Yarndiameter
h: Modular height; maximum displacernent of the thread axis, normal to the
plane of the cloth | |

0: Weave angle; the maximum angle of the thread axis with the fabric central
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plane.
D:  Scale factor; sum of warp and weft diameters

and considering the subscript ‘1’ for referring to the warp parameters, and ‘2’ for the
weft parameters, Peirce’s geometry leads to the following relationships between the

observable quantities of the cloth structure:

~ p2=(,~ D6,)cosb, + Dsin6, | @Y
By = (I, - D8)sing, + D(1 - cos6) | - (32)
Q=£~1 | :»' '@@
hy+hy=d,+d,=D - - (3.4)

Another set of equations corresponding to equations (3.1), (3.2) and (3.3) can be derived
for the weft direction, so that at the end a total of seven equations connecting the eleven
geometrical parameters is available, and therefore if any four of these parameters are

known, such as thread spacings and crimps, the others can be calculated.

As already mentioned, because of the difficulties involved in solving these simultaneous equations for
any set of unknowns, Peirce and more recently Love have produced a set of curves and nomographs to
help in the calculation. Moreover, for practical uses, Peirce derived some simple approximate

relationships, the most important of which is:

4 .
h, =—3'P2\/-C_l ‘ : (3.5)




that reproduces the rigorous values well enough for many purposes; only in extreme

structures Peirce showed that the error amounted to 5%

- In considering jamming conditions, Peirce simplified the previous rigorous equations

(3.1)_and (3.2) noting that for the closest weave condition % = 6, and thus

P sin—l— (l+c1)p7 | v . : | | (3.6)
D D S o

and

g cosh ' ' (3.7)
D D - o , - L :

3.3. Kawabata’s Uniaxial Deformation Theory
Kawabata’s ‘saw-tooth’ geornetry [5, 6] is the simplest structural model of a plain weave
fabric; it assumes in fact that the warp and weft yarns‘a‘re straight liries which bend at
the crossing points (see Figure 3.3). 'With this simplification, the structurai constants

- necessary for the deformation theory derive from the four original structural constants:

n, = warp yarn dens1ty in the undeformed state (ends / cm)

ny= weft yarn density in the undeformed state (picks/ cm)

S, = warp yarn crimp caused by Weaving which is defined by (o, = Yo/ Yon,




where l,; is the length of the warp yarn in the unit structure and y,, is the filling thread

spacing in the undeformed state
S, = weft yarn crimp caused by weaving which is defined by (I, — ¥0,) /Yoo,

where [, is the length of the weft yarn in the unit structure and yy, is the warp thread

spacing in the undeformed state

Figure 3.3 Kawabata’s unit cell geometry of a plain weave fabric.

The structural constants derived from the above are as follows:
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1 1

CYu = — ), Yoo = — o (i1)
n2 E S mo o
sinf) N S (iii) - Sinfp = —) (v)
S+l s ' ., " 2+1
Ly ydl ‘ » ey )
L= , ) [ =
" sinfo ) ‘ * sinfo (_VI)
lo - . lor : Ceeen
hml = _2“00590']‘ (Vll), hm2= ‘_2‘fC05902 : (Vlll) o

where y = thread spacing
6= the angle between the yarn axis and the X,- axis in the structural model _
[ = the yarn length in the unit structure

h = the deflection of the point at which the yarn axis intersects the X.- axis. The

deflection is caused by the stretch ratios Ay and A, of the fabric; that is, %, is the

‘movement of point p, and 4, that of p, in Fig. 11.

h. = the distance between the neutral lirie and the yarn axis alohg the X;- axis in the

undeformed state; this is also equal to the maximum value of /

Kawabata uses the structural model presented above to solve the problem’ of uniaxial
deformation. For the direction in which the stress is applied, he assumes the yarns to be
perfectly flexible and introduces the effect of bending on the transverse yém, which was instead

neglected in the case of biaxial deformation.




When a tensile force is applied in warp direction, the yarns along the same direction tend to
straighten while the yarns in the transverse direction, the filling yarns, bend because no tension is
applied along their direction. Thus the force F, caused by the tension on the warp yarns is equal

to the force required to bend the filling yarns.

For the equilibrium of the forces acting in the deformed state along the X.-axis (forming a
rectangular co-ordinate system with the axis along the neutral lines in warp and weft directions)

the following relation is derived:
F. = 2F;,cos6, (3.8)

where F. = compressive force acting along the X;-axis at the point of contact of the,war‘p

and the weft threads, FT1 = tension on warp yarn

Considering the relation obtained from the structural model in the deformed state

2(]’1ml - hl)

cosB, = '
] \/4(111111 - 111)2 + (/'llym)2

and representing the tensile properties of the warp yarns with a function of their stretch ratio A

obtainable from a stress-strain test,

Fr = g(4,) | | (3.10)
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the equilibrium relation becomes

A o Z(hmi'—hl) ‘.
'Fc = 2 1 1 v
8 ) -J4(hnﬁ ~n) +Aiya)

(3.11)

Considering a first approximation for the compressive force F. caused by the tension Fr,
in the warp yarn and acting at the point of contact of warp and weft yarns along the

normal axis X,,
F.=C,+Ch, = 2Fycos6, | S | (3.12)

and considering the followmg geometrlcal relatlons deduced from Fig. 3.3, respectlvely

for the deﬂectlon of the warp yarns and the stretch ratio of the fabric

101 lo1 A i

h = 2 0s6,, - cosé, e ’ . (313)
|
‘ i
lo1 A :
A= —sine, L - | : (3.14)
yoi : o

the angle between the Warp thread and the X;- axis is determined as follows:

.

C0561=2C0+C1101065001 : . R _ _ o © (315

4Fn+ CiloiAn
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and subsequently the tensile force on the fabric F, = Fy,sin8, and the stretch ratio of the

fabric are obtained from the following equations:

. : . |
_ _ 2Co+ Ciloi1cos 8o , |
F, = g(4) Jl | [4gl(lg1)fC1lmﬂy1) A ‘(3.16)

A= loiAn /1_ 2Co+ CiloicosBor ’
\

3.17
yol 4¢1(A1) + Cilor A ( :)

The constants C, and C, are the characteristic parameters of the fabric. They are

calculated in Kawabata’s work with considerations on yarn compression and’bendirig

behavior:
CO = -¢maxC] o (3-18)
where @,,,, is the average decrease in thickness of warp and weft threads and
C»
= 3.19
T 142K (3.19)

The constants C, and K are determined considering the bending of the yarn lying along
the axis perpendicular to the direction of the applied tension as accompénied by fiber

bending and local shear deformation and they are respectively defined as:

192 Eddy




where E, = Young s modulus of a fiber, I, = geometrlcal moment of mertla of a fiber, N =
mean number of fibers in the yarn cross-sectlon and '
2uD

l 0

K= | (3.21)

where y = coefficient of friction alOng the fiber
D =yarn d'iameter “

A recent work by M. L. Realff, M. C. Boyée and S. Backer modifies Kawabata’s approach
considering the bendmg of the yarn in substltutlon of that of the fiber, thus formula (20)

is modified as

- _192E] : ' .

- where E] = behding rigidity of the yarn obtained from a four points bending test.

| One reason for choosing the yarn bvending responée instead of the fiber bending is that
the zero slopes at the walls and at the center of the beam match those of the yarn at the -
crossover points in the fabric, as shown in Fig. 3.4. The Kawabata’s fabric geometry
~does not include any yarn curvature, while Realff and colleagues’ beam model

incorporates the yarn curvature into the bending portion of the yarn behavior.

Moreover,’ they affirm that Kawabata’s model fails in predicting the response of the
fabric at low strains because it overestimates the bending resistance of the y‘arn. This is
in fact considered as the sum of the bending responses of the fibers in the yarn; parallel
to each other and deflected by the same amount that the yarn deflects. But this is not

true for a real yarn.




(@)

Figure 3.4 Beam theory model for the deflection of the cross yarns during fabric

deformation: (a) fabric, and (b) model.

A further development introduces the concept of yarn consolidation and the tendency
towards a circular cross-section due to the axial loading. The extension of the loaded
yarns within the fabric is said to cause a radius reduction which leads to an increased
local cross yarn curvature and to increased normal forces at the crossover points, and as
ultimate consequence‘ it causes further flattening of the cross yarn. The increase in the - |

normal force is given by:

4EI (1 1
F. = —_— S 3.23
Y e (D@x Do) - | | (3:23)

where D,,, is the yarn diameter giveh‘ by the consolidation experiment and D, is the |

initial diameter of the yarn.

While Realff’s model is proved to predict reasonably well the fabric behavior in the low
and moderate strain region, deviations from the actual fabrics response are found at
higher strains. This is addressed by the researcher to the presence of strain
concentrations caused by the unbending of the yarns in the loaded direction. The fibers
in the higher strain regions fail first causing a small decrease in the load carrying ability '

of the yarns, resulting in the gradual decrease in slope of the fabric stress-strain curve.

In their work, Realff and colleagues consider only plain weaves, although with different

degree of tightnes and different yarn structure, R. D. Reumann, instead, uses
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Kawabata’s equatlons for developmg a ba51c computerlzed system for predlctmg the
~fabric deformation characterlstlcs as a function of fabric weave structure, thus he

con51ders different type of weaves.

- Reumann represents a woven structure using a grid coordlnate system in Wthh the
41nter1ac1ng point distribution is shown as a weave pattern by the distribution of the
scanning points with warp thread lifts. The calculation of the stress—stram behavior of
the woven fabric is then derived from the behavior of the individual scanning points.
In the case of a scanning point representing an mterlacmg point, Kawabata’s equations
for the determination of the tensile force and the stretch ratio of the fabric can be used; if

- a float is present, instead, Reumann considers the stress-strain behavior of the scanning

point as that of the thread being used. At the site of transfer from an 1nter1ac1ng point

to a float, fractions of both are present and a sultable account of them is taken in the

calculatlons

In the most recent paper by F. Sun, A. M. Seyam and B S. Gupta, a more general model
~ is presented, which takes in account both different weaves, as in Reumann s model, and
also the variation of thread spacing with fabrlc tightness and different structures
containing more than one kind of warp and filling yarn, as in Realff and collegues’

work.

In this paper, they introduce some geometrical parameters referring to the weave

structure . '

a = % = ratio of the yarn spacing under the floats ¥, and the yarn spacing at

intersection v,
N = number of threads in the weave repeat

I= number of intersections in the weave repeat
N .
M= 7= weave factor

and they relate all the other geometrical constants to these parameters.

The equations used to calculate the tensile force and the stretch ratio are the same as the

ones introduced by Kawabata (equations (11) and (12)), but with R'euman_n’s
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modification of deriving the total load-extension behavior of the fabric from the

combination of the basic unit structures in the weave.

3.4. Modeling a Novel 3-D Fabric
The mathematical model which is proposed in this thesis for predicting the tensile

behavior of a 3-D fabric derives from Kawabata’s uniaxial deformation theory for plain

weaves.

The theoretical work of éreating the prediction model consisted into two parts. In the
first part, the structure of the baseline nylon 6 fabric in three dimensions was examined
and the geometrical parameters were measured. On the basis of the geometrical
analysis of the original fabric and referring to the saw-tooth geometry of Kawabata’s

model, a new geometrical model was created.

The second part of the theoretical work was concerned with relating the fabric and the
yarn mechanical properties under tensile load using mathematical functions.
Kawabata’s uniaxial deformation theory for a plain weave was then modified for
considering the presence of stuffer yarns sandwiched between the two plain weave

layers.

3.5. The Characteristics of the Geometrical Mode!
The geometrical model considered in the present research is derived, as already

mentioned, from Kawabata’s unit structure for a plain Weave;_ Both warp and weft
yarns are assumed to be perfectly flexible and compressible and they are assumed as

straight lines as in Kawabata’s model.

Two different models are considered for the grounds and the binders, both of them

comprising the stuffer ends between two layers of fabric.

Fig. 15 and Fig. 16 represent schematic diagrams of the sections in warp (X;-axis) and
weft (X,-axis) direction of the weaves used for grounds and binders during the first
approach to the problem of determining the geometrical structure that better

approximated the real structure of the 3-D fabric. It can be seen that in the sections in
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Warp direction different filling yarns are considered centered on the same neutral line.
Slmllarly from the sections in fllhng direction, two consecut1ve warps or binders in the
same layer are con51dered centered on the same neutral line. Referrmg to the symbols
used in the figures and to the same notatlon used in Kawabata’s geometncal model, the

following geometncal relat1onsh1ps can be deduced

B Grounds Model

Warp directionI o

mn%w=df; o o -
f ar ‘ ) . . o

Filling direction

tan 6, = —2= | S - | (25)
df'l‘dgr ' - ; . ‘
or
tan 902';"= oy o . 26)

di+de /2 +dbvil 2

Binders Model

Warp direction 1

tan 901,bi = L o (27)
4 2dr + Dat + dbi ' ‘ ' ,

- Filling direction P

tan O, = Yo : , o ' (28)
di+dp/2+dsi/2 | L : _ o

where ym = average thread space in warp direction in the undeformed state

Yoo = averége thread space in filling direction in the undeformed state




W

\

dy = diameter of filling yarn

o« = diameter of ground yarn

‘dhi = diameter of binder yarn

D,, = height of the unit cell occupied by the stuffer yarns, approximated with a

rectangle in both warp and weft direction

In the ground mode], in the filling direction, two different equations are used. The
repeat unit in the original fabric was supposed to consist of a sequence of two grounds
followed by a binder thread; the filling yafn therefore forms two different angles when
interlacing with a ground or with a binder. This fact should be considered when fhe
ground and binder ends are of different sizes and subsequently fwo different tensile .
models considering the two different angles formed by the filling yarn should be
considered and a mean tensile response should be calculated. In the initial steps in the
validation process of the tensile model, where the fabric was considered being made

entirely of nylon 6 yarns, only equation 3.25 was considered in the filling direction for

‘both the ground and the binder models and this simplified the calculations.

A more detailed ahalysis of the original 3-D fabric showed that the repeat unit
consisting of two grounds followed by a binder thread was really only the sequence on
the outer layers of the fabric and not the unit structure of an entire ground laver. The
geometrical model was then modified considering the unit structure in one ground
layer as formed by four grounds followed by one binder and considering the presence
of a filling float due to the presence of two consecutive ends (one ground and one
binder) on the same side of the filling yarn (Fig. 3.5). For the tensile response of the
grounds in this new configuration an average should be calculated considering three
times the force calculated for repeat 1 in the scheme and once the average force due to
configuration 2 and 3. Similarly, in the binder model, the tensile response should be

calculated as the average of repeats 2 and 3.

Also this second geometrical model was not completely satiéfying. The jamming
condition of the ground and binder ends on the outer layers of the nvlon 6 fabric, the
fact that no filling yarns appeared on the fabric surface, and the analysis of the

encapsulated sample from which the filling yarns appeared to be almost straight,

- brought to the development of a third geometry. In this last geometry the structure in



warp direction was still the one in the previons models with the fillings on the same
layer centered on the same line. The section in filling direction was instead modified
conSIderlng no crimp of the f1111ng yarns. This final geometrical conﬁguratmn beside

- being more close to the real structure of the orlglnal fabric, permitted to avoid the |
contradlctory assumptlon of two ad]acent warps centered on the same neutral line
51multaneously with two filling yarns centered on the same neutral line. That
assumption was very practical giving simple relatlonshlps def1n1ng the angles at the
interlacing points, with no need of considering the actual crlmp of the yarns as in
~ Kawabata's model or the modular length h, defined by Peirce as the amplitude of the
crimp wave, which are both difficult to measure. - But it was unrealistic’ because .
assuming two adjacent yarns centered on the same neutral line is like assuming that
they are straight, they has no crimp, and it is not possible to 1nterlace two sets of yarns
keeping them simultaneously straight in both warp and weft directions. They should
have some crimp in both directions or as a limit they can be straight only in one
direction at a time, as assumed in the last geometrical model that can be considered an

application of Kawabéta’s' model with the assumption of zero filling yarn crimp.’

This third geometrical model was chosen for pred1ct1ng the tensile response of the novel o
3-D structures because no crimp of the filling yarn was considered also in the new
de51gns and because the results obtained using one or the other model were the same

for all the structures considered i in the research.

It was concluded that the approximation of the various structures with a geometry that
' considers zero crimp simultaneously in one or the other direction is valid and useful in

predicting the final tensile response of fabrics when no assumption of yarn crimp or

waviness can be made.




Figure 3.5 Nylon 6 baseline fabric in filling direction.
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Figure 3.6 Schematic view of the baseline structure in warp direction, grounds model
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Figure‘ 3.7 Schematic view of the baseline structure in warp direction, binders modél.
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Figure 3.8 geometrical model: schematic view of the baseline structure in filling direction

'3.6. The Tensile Character/st/cs of the Model
The tensile response of the 3-D fabric subjected to extension by an applied load alonr7 its

length, warp direction, is estimated with the value of the sum of the single tensile forces

acting on the ground weave, on the stuffers and on the binder yarns:

F, = n,F, + nF, + n,F, - | (3.29)

where n,, = total number of ground ends

n,, = total number of binders




n, = total number of stufferé
F,, = tensile force acting on a single ground end
F,, = tensile force acting on a single binder end

~ F,= tensile force acting on a single stuffer end

“ For calculating the forces on each single ground or binder, the equation of the tensile
force from Kawabata’s uniaxial deformation theory is used, while the load-extension
behavior of the stuffers i 1s assurned to be the same as that of the threads used, thus in

the above formula:

(2Co+ Cilorcosfor \'
Fo =g, [1-| == |
o= 8 -1’\/ (.4g<1‘-u>+cllonﬂx-')

2Co+ Ciloicos 8o
F i = 7\1\.] /1 -
" g( A )V (4g(ly1)+ CiloiAn ]

Fo=gh)
Kawabata s uniaxial deformation theory is used also for calculating the stretch ratio on

the fabric, thus usmg equation (3.12),
!
i
, |
= . 2
lo1An /1_ 2Co+ CiloicgsBor )
Yo \( 4g(2,_\'1)‘r'Cl[$ll\‘l »

A =

As explained in above, if the geometncal model consuflers zero crimp for the filling
~ yarn, the Calculatlons are 51mp11f1ed and the total force on the ground ends is given by
the total number of ground ends multxphed the force acting on the single end as in
equation (3.29). In this case, all the geometrical parameters needed to solve the

equation of the tensile force are easily derived from the number of ends and picks per

unit length and the drameters of the different yarns. If no assumptions are made on the




yarns crimp, the final total force on the grounds is an average of the total forces
calculated using different geometrical model implying different angles at the interlacing -
points due to the pfesence of a binder thread adjacent to the ground end or to the

presence of a float underneath.

For the calculation of the tensile response of the binder threads, similar considerations
are made. The angles at the interlacing points are calculated using the proper formulas
already given above for the binder threads. But double the number of picks per
centimeter is considered in this case to get the average warp spacing, because the
binders interlace with the fillings of both the top and the bottom layers of the 3-D fabric.
Moreover, due to the sequence and mechanism of filling insertion, the filling yar‘ns'of
the two layérs are not aligned on the same vertical axis, and indeed the yarns of one

layer are placed between the fillings of the other.

Other clarifications have to be made about Kawabata’s equation used in our model for
calculating the tensile force on a single ground or binder and about the equation giving

the stretch ratio of the fabric.

The tensile properties of the ground or binder yarns are expressed in Kawabata's
equations with a function of the yarn stretch ratio g(%,,) starting from a value of i,,<1
which cofresponds to a stretch ratio A,on the fabric equal to unity. This could appear
impossible since by definition the stretch ratio must be a number greater than unity.
The explanation was found in the fact that when the fabric (identified with the stuffers)
starts to stretch, the ground and the binder yarns first straighten .as much as possible
and then stretch. Thus, at the beginning only the stuffers respond to the external .
- loading with a tensile response given by g(A,). The real response of the ground and
binder ends starts after a while when A,,=1; before that point the negative force
computed using Kawabata’s equation is not really taken into account in the calculation
of the total force acting on the 3-D fabric. Although the negative values of g(A,,) for
;<1 have no physical meaning, they are in any case necessary for calculating the fabric

stretch ratio A, from its initial value equal to unity.

In the application of Kawabata’s uniaxial deformation theory to the 3-D structure
another modification was done, that is to consider the geometrical momentum of inertia

of the filling fibers bending as referred to the central axis of the entire fabric in filling




direction. Thus, considering the parallel axis theorem the geometrlcal momentum of

inertia of a fiber is computed as:
L=l +Adasy S . (330)

where I, = geometrical momentum about the principal axis of inertia of one e external

ground layer in the 3-D structure
Ay = cross sec_tional areaof a filling fiber -
As = mean distance of a filling fiber from the princ‘ipal axis of inertia of the 3-D structure

The final tensile model that was used for predicting the tensile response of the new
developed structures, besides considering the geometric'al model with zero filling yarn
crimp, was further more modified ‘and simplified because no tensile force was
considered to act on the binders. The effect of the tensile force on the binders was in
fact evaluated to be only the 0. 1% of the total force on the 3-D fabrlc and thus it was

neglected.

3.7. The System of Equations for the Mode! | v v
- The complete system of equations of the 3-D fabric model consists of some equations

derived from the geometrical characteristics of the model and other equations that come

from the fnechanical characteristics of the model.

We report the system of equations that was used in the research for predicting the
tensile force of the 3-D fabric with different type of fibers for grounds, binders, stuffers
and filling yarns. The system of equations is derived from the geometrical model with

zero filling yarn crimp, and from the tensile model with no binders contribution to the

final tensile force of the fabric.




0.1.1. Geometrical equations |

1 1 yoi .
Yy = —, Y= —, tanf,,, = ——, sinf,, =
Yor ppc Ior epc M Gt de T Si+]
you o yo o 2Co+ Cilorcosfor )’
lmz'._—"";loz— " y A= 1-
sinBoi sin@o2 yoi 4g(An)+ CiloAn
' Astf‘ '
i Aut= My Astf, Dsrf= —, t = max (Dstf+ Z(df + dgr))
Wue : )
wdn®
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As= ——du , I,= —, L= I,4 AAS
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0.1.2. Mechanical Equations

192Ed _2uD

C.=2N K= ’

| (2103) loo

1= Ch ’ C(‘ = -¢nnx.\‘cl

1+2K :
| (2Co+ Ciloicosfur )

F.=¢(A,) |[1- o+ Ciloicosfo
: o8 )\( (48(/1,1”)'*'(:1101)._”1
Fm‘ = g(l‘) _

F] = ”nggr + nsn'an

By knowing the fibers’, yarns’ and fabric’s geometrical parameters and the yarns’
mechanical parameters, it was possible to solve the above system of non-linear

equations.

With the use of the computer was possible to insert other variables in the program to -
get the final tensile vresponse of different parts of the fabric designed to have different
types of fibers playing the role of grounds, binders or stuffer yarns. Thus, for example,

using the variables k, and k; as the percentage of stuffers of fiber type A and the




percentage of stuffers of fiber B, the above fofmf_ilas were modified as:

A_u:_= nsg((kAAsth + kBAsth)
A= n rPgr + nstf(k Psth + k Fsth)

~and the model d1rectly predlct the tensile response of d1fferent parts of the fabnc with

different elastic modulus

3.8. App//cat/on of 3D Woven Model :
The woven fabric considered in the present paper is a tubular double—cloth structure '

consisting of two plam weave ground layers joint together by means of binder threads
~ every two repeats. In each unit cell, delimited by the two plain weave layers and the
binder threads, a certain number of stuffer yarns is inserted to reinforce the fabric in

warp direction.

- The 3-D weave is modeled with the purpose of creating a functionally graded structure,‘
which has heterogeneous tensile characteristics down its length. The fabric is therefore’
considered as formed by two parts ha\}ing the same weave but with different types of
yarns, with different tensile characteristics, playing the role of grounds, binders or
stuffers. (Fig 1). The design of the low modulus part of the fabric considers PEN
grounds and binders,  nylon 6 stuffers and polyester fllhng yarns. The design of the |
- high modulus part is derived from the previous one making some or all the PEN
grounds and binders change their role with a correspondent number of nylon 6 stuffers.
 In the manufacture of the fabric, this is achieved changing the pattern chain of the loom, |

with no need of adding or removing yarns, or of binding different types of stuffer yarns

with different tensile properties by means of a splicer.
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Figure 3.8 Schematic cross-section of the 3-D fabric in warp direction, showing the

i

transition between the low modulus part and the high modulus part.

Tensile tests were conducted on prototypes of the novel structure (detailed in Table 3.1)
in which the low modulus part had 100% nylon 6 stuffers while the high modulus part’

contained 95% nylon 6 and 5% PEN stuffers, and are summarized in Table 3.2.

1




Table 3.1. Fabric, Yarns and Fiber§ Parameters

- Fabric Parameters _
Epc o v 10.75
Ppc ) o . 3
Unit cell width w,; (cm) S - 0.4
Filling yarn crimp S, - ' ' 0
, _ Fibers and Yarns Parameters - _
~ Fiber - ' ‘Nylon 6 PEN " Polyester
Yarn denier L. 5040 . 7000 5040
filaments per yarn N - 612 980 _ 420
Fiber diameter (cm) 3.2x 107 I 2.7x107 3.5x107
“ Yarn diameter (cm) , 0.103 0.108 .0.093
Fiber area (cm?) ~ 817x10° '5.67x10° : 9.66 x 10
Yarn area (cm?) - 83.33x10" 926x 10 - 67.63x10°
Coefficient of friction y o1 | 03 0.11
Max. decrease in 0.0397 0.0336 0.0335
thickness (cm) &, . R
Fiber Young’s modulus 53x10° 19.7x10* 8.5x 10°
(kg/cm?) - ' -
Table 3.2. Theoreti¢al and experimental results
Sample |  Theoretical Experimental Theoretical Experimental
: Breaking Load | Breaking Load | Thickness (em) | Thickness (cm)
(kg) o (kg) B - L
.Baseline 62,260 - i 69.605 , 0.910 0.870
Low o v o
Modulus 62.490 77,310 0.903 0.960
High : o :
Modulus 60,525 a 72,705 - 0.905 0.922

‘These data are graphically illustrated in Figures 3.9 and 3.10.
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Figure 3.9 Comparison of Experimental and Theoretical Breaking Loads for three

different 3D woven fabrics.
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Figure 3.10 Comparison of Experimental and Theoretical Fabric Thicknesses for

three different 3D woven fabrics.

Theoretical predictions of a family of fabrics with varying blend ratios of stuffer yarns is

shown in Figure 3.11.
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- Figure 3.11 Comparison of theoretical predictions of 3D woven fabrics with different

blend ratios for the stuffer (0°) yarns.




CONCLUSIONS

A novel 3-D impact contact variational analysis approach presented in this report
enables to solve a variety of impact deformation and failure problems of composite
~ structures having rectangular configurations. Composite structures characterized by a
* step-wise material property variation in one, two or three coordinate directions can be
analyzed. The mathematical problem formulation takes full consideration of the 3-D
transient nature of the deformation processés in a structure exposed to impact loading
and, specifically, allows one to analytically study complex stress wave propagation in

all three coordinate directions.

The adopted impact contact model assumes that only the masé, initial velocity and
shape of the projectile are known. The contact pressure distribution is obtained directly
from the solution. The developed analysis approach is capable of solving'both thin and
thick structural elements made from conventional laminates, from 3D textile reinforced

composites, and hybrids of thereof.

Considered numerical examples verify accuracy of the developed 'computationa“l
algorithm and computer code. A number of characteristic 3-D impact effects are
revealed and interpreted. A comparison presented for 3D woven and traditional
laminated composite plates provides a useful information for designing impact-

resistant composite structures.

An extension of Kawabata’s uniaxial deformation theory for plain weaves have been

proposed for predicting the tensile response of a novel 3-D woven structure.

A good agreement was found between the theoretical and the experimental results for
both the final breaking load values and the thickness values of the manufactured

prototypes of the 3-D novel fabric.
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