
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB NO. 0704-0188 

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maimaini ng the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection 
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188.) Washington, DC 20S03. 

1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 
November 1999 

3. REPORT TYPE AND DATES COVERED 
Final Report 

4. TITLE AND SUBTITLE 
A Comparative Theoreticala Study of Quasi-Static and Impact Response of 
Laminated and Textile Composite Structures 

5. FUNDING NUMBERS 

DAAH04-96-1-0057 

6. AUTHOR(S) 
Christopher M. Pastore 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Philadelpia College of Textiles and Science 
Philadelphia, PA 19144 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U. S. Army Research Office 
P.O.Box 12211 
Research Triangle Park, NC 27709-2211 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

Alto   3s'Hi* {-ee- 
ii. SUPPLEMENTARY NOTES 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision, unless so designated by other documentation. 

12 a.  DISTRIBUTION / AVAILABILITY STATEMENT 

Approved lor public release; distribution unlimited. 

12 b.  DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The report presents the details of the computational algorithm for a novel three-dimensional variational dynamic analysis approach 
developed in computational algorithm of impact contact problem based on variational mosaic model and numerical examples. The 
analysis approach is aimed at solving a variety of stress analysis problems of composite structural parts under the effect of impulsive 
and impact loads. Some specific applications of the developed analysis are shown on the examples of transverse dynamic bending of 
simply supported laminated plate and 3D contact analysis for a multi-brick structure under longitudinal and transverse longitudinal rigid 
body impact. 

Numerical results clearly show dynamic effects in response of simply supported laminated plate at high rate of transverse dynamic 
bending. As the rate of transverse dynamic bending decreases the response of simply supported laminated plate reduces to the 
corresponding benchmark static solution tensile response of 3D woven fabrics. This example shows the capability of the developed 
computer code to solve 3D dynamic problems for a wide range of dynamic loading rate. 

(continued on next page) 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
ON THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 

19991215 037 

Standard Form 298 (Rev.2-89) 
Prescribed by ANSI Std. 239-18 

298-102 



REPORT DOCUMENTATION PAGE (SF298) 
(Continuation Sheet) 

Numerical results for the 3D impact contact problem illustrate time variations of the target displacements strains and stresses as 

Considered numerical examples validate applicability and Verify accuracy of the developed computational algorithm and computer 
code 

Enclosure 2 



FINAL REPORT 

A Comparative Theoretical Study of Quasi-Static and 
Impact Response of Laminated and Textile Composite 

Structures 

Army Research Office Grant DAAH04-96-1-0057 

Christopher M. Pastore 

School of Textiles and Materials Technology 

wt 
PHILADELPHIA 

UNIVERSITY 

Alexander E. Bogdanovich 

3Tex, Inc. 

1999 



TABLE OF CONTENTS 

0. SUMMARY • ■ 1 

1. COMPUTATIONAL ALGORITHM OF IMPACT CONTACT PROBLEM BASED 

ON VARIATIONAL MOSAIC MODEL . ..  2 

1.1. LAGRANGIAN FUNCTION OF DYNAMIC IMPACT CONTACT PROBLEM 2 

1.2. COMPUTATIONAL ALGORITHM FOR DYNAMIC CONTACT ANALYSIS. 4 

2. NUMERICAL EXAMPLES ••. 8 

2.1. Transverse dynamic bending of [0°/90°/0°] simply supported plate 8 

2.2. LONGITUDINAL 3D Impact Contact Analysis of multi-brick structures 17 

2.3. Transverse Impact Contact Analysis with Assumed Contact Zone 25 

2.4. Impact Contact Analysis of Textile and Laminated Composite Plates 31 

3. Tensile Response of 3D woven fabrics • •—- 41 

3.1. Geometrical Modelling........ 41 

3.2. Peirce's Geometrical Model  44 

3.3. Kawabata's Uniaxial Deformation Theory - 46 

3.4. Modeling a Novel 3-D Fabric... 55 

3.5. The Characteristics of the Geometrical Model 55 

3.6. The Tensile Characteristics of the Model .: 61 

3.7. The System of Equations for the Model 64 

0.1.1.      Geometrical equations .' 65 

0.1.2.      Mechanical Equations • 65 

3.8. Application of 3D Woven Model 66 

4. REFERENCES 72 

■ih;!.: 



0. SUMMARY 
The report presents the details of the computational algorithm for a novel three- 

dimensional variational dynamic analysis approach developed in [1, 2]. The analysis 

approach is aimed at solving a variety of stress analysis problems of composite 

structural parts under the effect of impulsive and impacts loads. Some specific 

applications of the developed analysis are shown on the examples of transverse 

dynamic bending of simply supported laminated plate and 3D contact analysis for a 

multi-brick structure under longitudinal and transverse longitudinal rigid body impact. 

Numerical results clearly show dynamic effects in response of simply supported 

laminated plate at high rate of transverse dynamic bending. As the rate of transverse 

dynamic bending decreases the response of simply supported laminated plate reduces 

to the corresponding benchmark static solution [3]. This example shows the capability 

of the developed computer code to solve 3D dynamic problems for a wide range of 
dynamic loading rate. 

Numerical results for the 3D impact contact problem illustrate time variations of 

the target displacements, strains and stresses as well as the time variations of the 

projectile displacement and velocity and impact contact pressure obtained from 

solution of the coupled problem for mechanical system "projectile-target". 

Considered numerical examples validate applicability and verify accuracy of the 

developed computational algorithm and computer code. 
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1. COMPUTATIONAL ALGORITHM OF IMPACT CONTACT PROBLEM 

BASED ON VARIATIONAL MOSAIC MODEL 

The methodology of impact contact interaction modeling based on the variational 

Mosaic Model has been described in Chapter 2 of the 1998 Interim Report [2]. Relations 

(2.24), (2.25) and (2.30) of [2] describe governing equations of the impact contact 

problem. The details of the algorithm for numerical solution of these governing 

equations are given below. 

1.1. LAGRANGIAN FUNCTION OF DYNAMIC IMPACT CONTACT PROBLEM 

The three-dimensional variational analysis approach presented here for mechanical 

system "mosaic composite body-rigid projectile" is based on Hamilton's variational 

principle 

6^L(t)dt = 0 (1.1) 
t, 

where L(t) is the Lagrangian function written for the interacting composite target and 

rigid projectile. This function is defined as following 

s 

L(t) = Kp(t) + ZI K(s)(t) - P(s\t) + W,s,(t)j + VPT(t) (1.2) 
s=l 

where 

Kp(t)=|Mplüp(t)/ (1.3) 

is the kinetic energy of the projectile, Up(t) = —-£—, Mp is the projectile mass, and Up is 

the unknown projectile velocity; 
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K(s)(t) = jMp(up(t)) 21VipWPi (1-3) 

(s)        . 

is the kinetic energy of the sth brick, U (t) = —^-^ , and   U(s)(t) is the vector of the 

undetermined displacement approximation coefficients of the s* brick; 

P(s)(t)=|u(s)r(t)A(s)U(s)(t) 

is strain energy of the sth brick; 

W(s)(t) = U(s)r(t) Q(s)(t) 

is work of external forces acting on the surfaces of the sth brick; 

(1.4) 

(1.4) 

-2[(* VrT(t) = ^L [R{y) Lw(t)/uw(t)-(Lw(t))   Fw-Up(t)S
w Lw(t). (1-5) 

is the "projectile-target interactive term", the index y denotes those bricks of the target 

which are in contact with projectile, and U(Y)(t) is the vector of unknown approximation 

coefficients corresponding to the normal displacements of the upper surfaces of those 

bricks which are exposed to the contact pressure. L(Y)(t) is the unknown vector whose 

components are the approximation coefficients of the Lagrange multiplier functions 

(these depend on time and in-plane coordinates x and y). 

Explicit forms of vectors U(s), Q<s) and matrices A(s), M(s) are given by equations (1.12) of 

Report [2]. Explicit forms of the vectors Uw, Lw, Fw, Sw, and the matrix R'1" are given by 

equations (2.21) of Report [2]. Let us introduce the following vectors and matrices: 

'u(i)" Q<D" 
• 

. u(S)- 
LQ = ' 

k Q<5' 
V  A = 

^(1)  0   . .   0 M(1)   0   . ..   0 
0 A(2). .   0 

,M = 
0'M(2). .   0 

0    0   . . A(S,J u  0    0   . .M( r(S)J 

(1.6) 
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uc = 

r U(7l) 

L U(Yr)- 
,L = 

I L(Yr)- 
,F = 

I I#r)J 
\^ 

S(Y1) 

I S(Yr)> 
,R = 

RW   0   ...   0 

0 R(72)...   0 

L 0    0   ... R(Yr)J 

(1.7) 

It should be emphasized that all components of the vector Uc(t) are already present in 

the full set of displacement approximation coefficients of the vector U(t). Using the 

notations of (1.6) and (1.7), the Lagrangian function (1.2) can be written as 

L=|upMpÜp + |urMU-|urAU + UTQ + LTRTUc-LTF-UpS
TL (1-8) 

The Lagrangian function (1.8) will be used in the next section for derivation of the 

equations of motion of the target and projectile. 

1.2. COMPUTATIONAL ALGORITHM FOR DYNAMIC CONTACT ANALYSIS 

The full set of unknown functions is represented by vector of undetermined 

displacement approximation coefficients of the target, U(t), vector of undetermined 

coefficients of the Lagrangian multipliers L(t), and projectile velocity Up(t). The full set 

of the displacement approximation coefficients of the target includes the subvector, 

Uc(t), which contains coefficients corresponding to those external surfaces of the mosaic 

body which are in contact with the projectile, and the subvector, Uf(t), which contains 

coefficients not related to the external surfaces of the mosaic body which are in contact 

with the projectile. Accordingly, 

U(t) = Uc(t) u Uf(t) (1-9) 

Due to the projectile-target non-penetration condition (see equation (2.24) of Report [2]), 

the components of subvector Uc(t) are not independent unknown functions. Therefore, 

the coefficients Uc(t) can be excluded from the resulting system of equations of motion. 

For this purpose, the vector U and the corresponding matrices M, A, and the loading 

vector Q are substructured as follows: 
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u-iUfi M-rM*M* u-lucI'
M-LMcfMcc. ,A = 

Aff Afc 

L Acf Acc- .«■iS 
Using (1.10), the Lagrangian function (1.8) can be rewritten as 

1 <l 
2 

uc 
L 

If Me Mfc 0   0 
Mcf Mcc 0   0 

0     0   0   0 
L   0     0   0 M J 

tJf 
uc 
L 

Further, by introducing notations 

ALc =-R, APL = 2S, QL =-F 

the Lagrangian function (1.11) takes the form 

TTM„ Mfc0   0 
Mcf Mcc 0   0 

0   0   0 
0   0 Mp

J 
LJ-2 

uf TfQf] 
< Qc 

-F 
^ 0 

After applying the Lagrange equations 

d_ 
dt 

dL 
dV 

dL 

fj 
dV 

■=.o. 
/ 

d_ 
dt 

d_ 
dt 

d_L 

9L dL dt 

' BL 

dL 
dü pj 

dL 
'd\Jc 

dL 
dUn 

= 0 

= 0 

A«   Afc   0   0 
Acf Acc   0   0 { U- 
0   -2R   0   0 L 
0     0   2S 0J luP

J 

Aff  Afc    0 0 
Acf Acc   0 0 
0   ALc   0 0 

■-0     0   AFL 0-1 

uc 
L 

Up 

+ 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

to the Lagrange function (1.13) the following equations of the motion are derived: 

M 
d2V 

~dF 
d2V 

-+M/<^+A#u/ + A/cU/=Q/ dt (1.15) 
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M'f^+M'c^+A^u/+A"'u'+^A,'L=Q' 

A/x.Ut+^,A;v,=2Q, 

-. d U,,    1 .    _   ._ 

(1.16) 

(1.17) 

(1.18) 

Equation (1.17) can be solved for Uc: 

U, =-AtAnUP +2A--Q, =TPUp + Tj0) 
(1.19) 

where T[
1}
 = -A^. ArL and if) = 2 A^ QL . It can be shown that if) = 1 and TJ.0) = 0 

for the particular case of flat projectile. Substitution (1.19) into (1.15) and (1.16) yields: 

M d U/ -M   T0)A    d2Up +A   U   +A  T(,)f/   =0   -A  T(0) 

M„ 
</2U 

^/2 
UM T0) ^+ AC,U, + Att.T<-*/,, + iA,.L = Q, - A„.T<«> 

at 2. 

(1.20) 

(1.21) 

Equation (1.21) can be further solved for L: 

L = 2 P«>^ + p('>^ + P">U,+P<»lIp + pW 
rff2       c     df2       c/ 

(1.22) 

where 

P,?' = -A;X,.      Py = -A7X, 
P'^-A-M^0,   P<» = -A7>ffT<",   Pf^A^-A-A,^" 

Finally, substituting (1.22) into (1.18) yields: 

(M, + A„P? >£% AÄP«^-+ AÄP«U, + A,AP<>*/, + A„P»> = 0 

(1.23) 

rfr <//' (1.24) 

The resulting system of equations (1.20) and (1.24) can be written in a compact matrix 

form as following 

Paili: (> 



M ff M^y U / 
tf„ 

xff 
A   P(,)    A   P(1) APLPf   (M,+Aalf) 

The following initial conditions are added 

dU 

A T(1) rM-/Q/-A^or 

UPj-\  -AÄlf>-J (1.25) 

Ü, 
;=0 dt 

0 
(=0 

^L=o. 
dU,, 

dt 
= -Vn 

1=0 

(1.26) 

(1.27) 

Here, V0 is initial velocity of the projectile. 

Once the system of linear ordinary differential equations (1.25) is solved, the rest of 

unknown displacement approximation coefficients Uc is evaluated using relation (1.19) 

and the coefficients L of the Lagrange multiplier functions are evaluated using relation 

(1.22). 

Several numerical examples illustrating application of the developed analysis approach 

are presented in the next sections. 
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2. NUMERICAL EXAMPLES 

2.1.   Transverse dynamic bending of [0°/90°/0°] simply supported plate 

In order to verify accuracy of the developed computational algorithm and computer 

code, consider first the problem of dynamic transverse bending of a simply supported 

3-layer [0°/90°/0°] rectangular plate having length a, width b and thickness h, as 

ilustrated in Figure 2.1. The external surface load, q(x,y,t), is assumed to be distributed 

as a double-sine function over the top surface of the plate: 

q(x,y,t) = q0(t) sin 
(   \ nx 
\a ) sin 

7iy 

The following kinematic boundary conditions are imposed: 

(uy)x=0 = (uy)x=a = (uz)x=0 = (uE)x=a = 0 

(ux)y=0 = (ux)y=b = (uz)v=0 = (uz)y=b = 0 

q(x,y,t) 

(2.1) 

(2.2) 

(2.3) 

Figure 2.1. Schematic of transverse dynamic bending of simply supported laminated plate. 

The initial conditions are of the form 

KU=KLo=(^U=^l=o= du. = o (2.4) 
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The loading condition 

"(ff.-W=0(w) (2.5) 

is not imposed, but is expected to be satisfied as a "natural" boundary condition at any 

time instant during the loading history. Components of the external force vector Q<s,(t) 

entering in expression (1.4) for the work of external forces acting on the surfaces of the 

sth brick are obtained as following 

o°r(t)= 

ab 

q0{t)\\Bl{x)B)(y)sin—sin%lxdy for a = 3, s = 3, i = 1,...7, j = l,...J,k = K 
ijk     \lJ~  1 0 0 

0   else 

where B;(x) and B-(x) are Bernstein basis functions. 

The normalized time variable 

(2.6) 

T = t/to (2.7) 

is used in all forthcoming plots. The parameter t0 is the time required for the transverse 

stress wave to travel through the thickness of the plate. This time is defined as 

tn - h -\ /        EL (1-VTT)    
! 

t0"h V    p(l-VTT-2vTLvLT) (2-8) 
i   ■ -. 

The applied surface load isj a linear function on time: 

q0(t) = a T/T0 (2.9) 

whefe a is a constant and parameter x0 defines the loading rate. The dynamic solution 

should approach the corresponding quasi-static solution as x0 increases. 

Material properties and the displacement and stress normalization factors are taken as 

in [3]: 

öS   '.-.".,■. "     a 



.*'   ahS3^x   >J
t (2.10) 

_     100£7. 

The example considered here corresponds to a=b, S=4. 

In this analysis, just one brick is taken within each layer of the plate. Hence, total 

number of bricks is 3, and L=l, M=l, N=3. Sixth degree Bernstein basis functions are 

used in all coordinate directions, I=J=K=6. 

Variations in time of the normal displacement and stresses at various loading rates are 

presented in Figs. 2.2-2.6. Fig. 2.2 shows that the normal stress o\ at the top surface of 

the plate is equal to the applied load at any time instant during loading history. Thus, 

loading condition (2.5) is satisfied with high accuracy. Fig. 2.6 shows that dynamic 

displacements and stresses oscillate about the corresponding quasi-static values (shown 

by dotted line). At a comparatively low loading rates (x0 > 5), dynamic displacements 

and stresses reach the corresponding static values at time instant x = x0, when the 

dynamic load reaches static load level a. However, at a comparatively high loading 

rates (x0 < 2) dynamic displacements and stresses at x = x0 are lower than the 

corresponding static values. This effect manifests the well-known effect that a delay in 

dynamic structural response is increasing at higher loading rates. 

Additional comparisons are presented in Table 2.1. Here, the benchmark of Pagano's 

static solution results [3] are presented together with numerical results of our 3-D static 

solution (see, Report [4] for details), and present dynamic solution. In the latter one, the 

stresses are evaluated at x = x0 for various loading rates. It is seen from this Table that 

the dynamic stresses approach their respective static values as loading rate decreases. 

However, there is still small difference (about 0.3% for x0 = 0) between the computed 

dynamic stresses and the corresponding static stresses for the lowest loading rate under 

consideration. This difference may be explained by the oscillatory character of the 

dynamic solution. According to Fig. 2.6, the amplitude of the stress oscillation is 0.35%, 

which is larger than the difference between the obtained dynamic solutions at the 

lowest loading rate and the corresponding quasi-static solution. 
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Distributions of the stresses and displacement through the thickness of the plate are 

sown in Figs. 2.7-2.10. It is seen that the shapes of dynamical stress distributions are 

exactly the same as the shapes of the corresponding static stress distributions. 

The considered numerical example validates the computational algorithm and 

computer code for the dynamic analysis of laminated composite plates. 

10 

Figure 2.2. Variation in time of the normal stress a2 at x=a/2, y=b/2, z=h for various 

loading rates. 



Figure 2.3. Variation in time of the normal displacement u, at x=a/2, y=b/2, z=h for 

various loading rates. The dashed line corresponds to the static solution. 

a. 

Figure 2.4. Variation in time of the normal stress ax at x=a/2, y=b/2, z=h for various 

loading rates. Dashed line corresponds to the static solution. 



0.28 

0.24 

_    0.16 

0.12 

0.08 : 

0.04 

Figure 2.5. Variation in time of the shear stress rx: at x=0, y=b'/2, z=h/2 for various 

loading rates. Dashed line corresponds to the static solution. 
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Figure 2.6. Variation in time of the normal stress cx at x=a/2, y=b/2, z=h for loading 

rates x0=5 (a), 10 (b), and 20 (c). Red lines correspond to quasi-static solution. 
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Table 2.1. Comparison between present dynamic and static results and the static results 

from [3] for the case of [079070°] square plate with a/h=4. 

Reference £B <H-)Mf) <H-f) *M 4H) v(H 
Static [3] 0.801 -0.755 0.534 -0.556 -0.0511 0.256 0.2172 

Static present 0.8005 -0.7545 0.5339 -0.5560 -0.0511 0.2559 0.2172 

Dynamic, t0=0.5 0.7377 -0.6942 0.4899 -0.5114 -0.04687 0.2352 0.2004 

Dynamic, x0=l 0.7489 -0.7031 0.4959 -0.5185 -0.04758 0.2387 0.2034 

Dynamic, x0=2 0.7794 -0.7340 0.5184 -0.5406 -0.04962 0.2491 0.2117 

Dynamic, x0=5 0.8060 -0.7601 0.5381 -0.5612 -0.05146 0.2578 0.2186 

Dynamic, x0=10 0.8053 -0.7593 0.5375 -0.5596 -0.05140 0.2575 0.2185 

Dynamic, x0=20 0.8029 -0.7569 

1     | 1 , : r- 

0.5357 . -0.5578 -0.05124 0.2567 0.2178 

z/h 

0,8   i- 

06   - 

r r 
0.2   j- 

z. 

•Dynamic 
-Staue 

0.5 

Figure 2.7. Normal stress'distribution at x=a/2, y=b/2. Dynamic solution corresponds 

to loading rate T0= 1. 

1'age.iD 



z/h 

0 6 

06 

0.4   u 

0.2   i- 

Dynamic 
-— -State 

I     < 

■ 

kk 
i  

0 0.05 0.1 0 15 0.2 0.25 03 

Figure 2.8. Transverse shear stress distribution at x=0, y=b/2. Dynamic solution 

corresponds to loading rate T0 = 1. 
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Figure 2.9. In-plane shear stress distribution at x=0, y=0. Dynamic solution corresponds 

to loading rate x0=l. 
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Figure 2.10. The in-plane displacement distribution at x=0, y=b/2. Dynamic solution 

corresponds to loading rate T0=1. 

2.2. LONGITUDINAL 3D Impact Contact Analysis of multi-brick structures 

3-D impact contact analysis of prismatic bar fully clamped at its bottom end and 

exposed to a rigid mass longitudinal impact at the upper end was considered in the 

previous interim Report [2]. Schematic of the problem is shown in Fig. 2.11a. This 

analysis case will be further referred as Case I. In order to validate the developed 

computational algorithm and computer code for the case of a multi-brick structure in 

the x-y plane, next illustrative example will consider impact contact analysis of a 

prismatic aluminum bar surrounded by solid bricks of a "soft" material, as shown in 

Fig. 2.11b. This analysis case is further referenced as Case II. 

The purpose of this illustrative example is twofold. First, it is necessary to validate that 

the developed algorithm is capable of solving the impact contact problem for a mosaic 

body composed from very distinct material bricks. Second, the analysis results for the 

Cases I and II should be, ideally, indistinguishable, if the elastic modulus of the soft 

material, E", is negligible compared to the elastic modulus of aluminum, EA1. The other 

extreme case is if E" is equal to EA1. Then we have the problem of transverse impact on a 

homogeneous plate by a flat rectangular rigid projectile. Thus, the problem illustrated 

Paus- 



in Fig. 2.11b for aluminum bar surrounded by bricks of soft material can be considered 

as the test case aimed at verification of the developed algorithm and computer code for 

the class of impact contact problems. 

(a) 
M 

/   / 
) > 

f 

Al     L c 

-   /*&«>. 

Figure 2.11. Impact contact analysis of aluminum bar (a) and aluminum bar surrounded by bricks 

of a "soft'* material (b). 

Due to the symmetry of the problem, we can analyze 1/4 of the full mosaic body, as 

shown in Fig. 2.12a. The regions considered are defined as following for Cases I and II: 

0 < x < a, 0<x<a 

Case I: 0<y<bx       Case II: 0<y<b 
0<z<c 0<z<c 

External kinematic boundary conditions are taken as follows 
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ua(x,y,z,t)\2=Q=0,   a = 1,2,3 (2.11) 

i I 

*A1 Soft 

i 
z 

■1 r 
X 

r*7-* a 

(a) 

i 

b 

k 

L y 

Soft 

b, Al 
X 

-*— * : a-   ■* 

^N 

: i 
• 

Zt 

I X      | 
1   -     1 

*■! 

*(.[•••    X LI          •**        x 

(b) 

'M 

• ^! 

yM] 

>'i 

-i—"--t—i 

VL1 

Figure 2.12. Geometry of 1/4* part of aluminum bar surrounded by soft material (a) 

and schematic of the brick mesh (b). 

and are complemented by the following symmetry conditions 

w,(x,>',r,^r=0=0 

u2(x,y,z,t)iv=o=0 (2.12) 

The initial conditions are formulated as 

Mw,oL=Ä^ 
ft 

= 0,   a = 1,2,3 
1=0 

U(t) = 0, dU{t) 
dt 

= -V0, where Vü >0 
/=0 

(2.13) 

(2.14) 
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The following material properties of Al bar are used: 

EAl= 73 GPa,   v„,=0.3,   pM = 2.7 ?103  kg I w3 (2.15) 

The geometric parameters are: 

a. =b, =0.1 w,   c = 0.2 m *i -t/i 

a = 2a,    6 = 26, 
(2.16) 

Mass and velocity of the projectile are 

M = 90 kg,   F0=12.5m/sec (2.17) 

The following normalized time variable will be used: 

r = t/t0 (2.18) 

Here, parameter t0 is defined as 

^0 — C/l/ P/,0 + vyl/)(l-2vyU) 
= 32 /isec 

(2.19) 

Numerical simulation results for the Cases I and II are presented in Figs. 2.13-2.15. 

Young's modulus of the soft material is taken four orders of magnitude lower than that 

of aluminum bar: E" = EA, /104 • 

Numerical results have been obtained with third degree Bernstein basis functions used 

for the three coordinate directions. Case I was simulated using a single brick in the x- 

and y-directions, and two bricks in the z-direction. In Case II three bricks were taken in 

the x-direction, three bricks in the y-direction, and two bricks in the z-direction. Using 

the notations introduced in Fig.2.12b, parameters of the brick mesh for Case II are: 

x,, = a,,   x, = a;        L\ = 2,   L = 4 

y,n =6|,   yM=b;      Ml =2,   M = A (2.20) 

zK =c;N = 3 

Variation of the transverse displacement at the center point of the bar on its top surface 

(x = y = 0,  z = c) is shown in Fig. 2.13a. The displacement monotonically increases up 

VäZv/b) 



to T u8, when the projectile moves downward. Then, the displacement monotonically 

decreases, following movement of the projectile upward to the time moment when the 

bar and projectile separate. 

Distribution of the transverse displacement in the x-direction at y=0 z=c and time 

instant x=5 is presented in Fig. 2.13b. It is seen that the displacement is uniformly 

distributed along the contact area, what is consistent with the assumption that the 

projectile is a flat rigid body. This figure also shows that the displacement continuity 

condition at the interface between the bar and soft material is satisfied exactly. At some 

distance away from the projectile, the displacement in a soft material tends to zero. 

Variation of the projectile velocity on time is shown in Fig. 2.14. The velocity decreases 

from its initial value to zero (at % « 8), then increases and almost reaches its initial value. 

Results presented in Figs. 2.13 and 2.14 indicate that there is no visible difference 

between results obtained for the Cases I and II when predicting variations of the 

transverse displacement and velocity of the projectile. 

Time variations of the transverse normal strain in a bar and contact pressure are shown 

in Figs. 2.15 and 2.16. It is seen that the normal strains and contact pressure predicted 

for the Cases I and II are almost identical during the initial stage of impact. A minor 

discrepancy between these results is seen at the advanced stage of contact interaction; 

this can be explained by the effect of multiple stress wave reflections and from the 

external surfaces of the soft material in Case II. 
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Fig. 2.13. Variations of the transverse displacement, «3, in time (a) at x=y=0 and z=c, 

and its variation along the x-coordinate at y=0, z=c, x=5 (b). 
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Fig. 2.14. Variation of the projectile velocity in time. 

The dependence of the contact pressure on time shown in Fig. 2.16 indicates that the 

loss of contact between the bar and projectile occurs at T = 16. At this time instant 

velocity of the projectile approaches its initial value (the projectile moves upward, see 

Fig. 2.14). The observed short-period oscillations of the contact pressure are related to 

the stress waves reflections from external surfaces of the aluminum bar. 

The above numerical examples verify that the developed algorithm and computer code 

provide accurate results for the considered 3-D impact contact problem with multiple 

bricks in the cross-section of the longitudinally impacted body. Next numerical study is 

carried out for the transverse impact contact analysis of thick aluminum plate. 

Pace 23 



i   I   I   i   I   I   I   i   i   I   I   I   i   I   I   i   '   '   I   '   '   '   I   '   '   '   I   !^' 

-0.002 

-0.004 

-0.006 h 

-0.008 

-0.010 

-0.012 

0      I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     '     I; 

~^~- Case I 
-*- Case II 

t \       X ' 
A \   A:- 

4 A 
A     A 

t n   /H, ß 
1%J 

I     I     I     I     I     ,!     I     I     I     I     I     I     I     I 

(b) 

0      2       4       6       8      10     12      11     16 
T 
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Fig.2.16. Variation of the contact pressure in time at x=0 (a), and at x=a/2 (b); y=0, z=c. 

2.3. Transverse Impact Contact Analysis with Assumed Contact Zone 

Consider another impact contact problem for a thick aluminum plate with dimensions 

axbxc, as shown in Fig. 2.16. Dimensions of the projectile are ajXbj. Numerical values of 

the geometric parameters are defined by (2.16). Mass and velocity of the projectile are 
specified by (2.17). 
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Fig.2.16. Schematic of the transverse impact loading with assumed contact zone. 
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Fig.2.17. Schematic of the brick mesh covering 1 /4th of the contact zone. 

The symmetry properties of the problem are utilized again. Origin of the coordinate 

system is placed in the center of the bottom surface, so the analyzed plate region is 

reduced to 1/4 of its full size and is defined as 

0 < x < a, o < y < b, 0 < z £ c 

A nonuniform brick mesh is taken within the contact zone; the mesh is specified as 

following (see Fig. 2.16): 

\+i 
= 0.3 for^l,...,!^-!, L=L,+1 (2.21) 
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y.,+> = 0.3 for j = l,...,Mrl,  M=M!+1 
Vi 

Calculations were carried out for Lj = 3,4, 5 and Ma=3. A single brick in the z-direction 

was used in this example. Results of the numerical simulation are presented in Figures 

2.18-2.21. 

Distributions of the transverse displacement and strain along the x-coordinate are 

shown in Fig. 2.18. Over the contact area, the longitudinal displacement is uniform and 

is equal to the projectile displacement, while distribution of the strain is highly 

nonuniform. The maximum compressive strain is reached at the end of the contact 

zone. The minimum value of the compressive strain is observed at the center of the 

contact zone. Time variations of the transverse strain at the points x=0 and x=at are 

shown in Fig. 2.18. When comparing results presented in Figs. 2.18 and 2.19 for different 

meshes (those corresponding to L+ = 3, 4, 5) within the contact zone, one can conclude 

that the converged solution has been obtained for the displacement and strains. The 

solution convergence for the contact pressure is illustrated for two locations inside the 

contact zone in Figs. 2.20 a,b. At the same time, as seen from results presented in Fig. 

2.20c, magnitude of the contact pressure near the end of the contact zone is highly 

sensitive to the mesh refinement. Also, it is seen that the contact pressure exactly at the 

end of the contact zone is about three orders of magnitude higher than that inside the 

contact zone but at small distance from the end of the contact zone. It is anticipated that 

with further mesh refinement this value will further grow. This means that the stresses 

at the end of the contact zone may be singular. Further results shown in Fig. 2.21 

illustrate that the mesh refinement near the end of the contact zone results in significant 

increase of the contact pressure. The anticipated singularity of contact pressure at the 

end of the contact zone is, certainly, related to the assumed prismatic shape of the 

projectile. 
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Fig.2.18. Distributions of the transverse displacement (a) and strain (b) along the x- 

coordinate at time instant x=4; y-0, z=c. 
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Fig.2.21. Distributions of the contact pressure in the x-direction at y=0, x=4 for various numbers 

: of bricks within the contact zone. 

2.4. Impact Contact Analysis of Textile and Laminated Composite Plates 

Transverse impact loading problem with assumed contact zone, as described in the 

Section 2.3 and schematically shown in Fig. 2.15, is further studied here for textile and 

laminated composite plates. 

The textile material is 3D woven composite with orthogonal reinforcement architecture 
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[5] as shown in Fig. 2.22. Specifications of the 3D orthogonal woven composite material 

are given in Table 2.2. Elastic constants of the 3D orthogonal woven composite are: 

Ex=53.7GPa, Ey=65AGPa, E2 =16.6GPa 

Gy: = 4.09GPa, G^ = 3.90GPa, Gxy = 4J4GPa 

Vv= 0.056 ^=0.32,^ =0.31 

Density of the composite is 1500kg/m* 

Zyarn 

Empty pocket i 
(Resin pocket in composite! 

(2.22) 

Warp yarn 

Weft yarn 

Figure 2.22. The structure of 3D orthogonal woven fabric. 
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Table 2.2. Specifications of the 3D Orthogonal Woven Material 

Material of the fabric: Celion* G30-500 carbon fibers; 
Size of yarns: warp yarn: 12K, 5 layers; 

filling yarn: 2<-6K, 6 layers; 
Z yarn: 3K; 

Reed density = 5.51 dents I cm (l4dents I in.) 

Pick density = 5.51 picks/cm (i4pickslin.) 
Preform thickness = 5.4 mm 

Matrix: Tactix 123 epoxy resin   

The laminated composite plate of [0/90/0] lay-up is made from plies of unidirectional 

Graphite /Epoxy tape AS4/3501-6. Thickness of the 90° ply is twice of the thickness of 

0° plies. The following elastic characteristics have been adopted in the analysis: 

EL = \33GPa, Er = 1O.lGPa, G, = 7.03GPa, GT = 4.07GPa , vlT = 0.30 (2.23) 

The density of the laminated composite is 15$0kgIm". 

Simulations were carried out for rectangular plates made from the above 3D woven and 

laminated composites. Dimensions of the plate and size of the contact zone are 

prescribed as a=b=70mm, a!=b]=5 mm, c=5.4mm (see Fig. 2.15 for notations). Numerical 

results have been obtained for the third degree Bernstein basis functions used for the 

three coordinate directions. Number of bricks used to simulate contact problem for the 

woven composite plate was taken 3x3x2, and for laminated composite plate 3x3x3. The 

brick mesh parameters are defined as follows 

L, = 2, L=3, M,=2, M=3, N=2 

A-, lx2 = 5, x2 = a,, x, = a; j, / v, = 5, y2 = bx, y. = b ; z] Iz2 = 10, z, = c (2.24) 

for the woven composite plate and 

11 = 2/ L = l; M\ = 2,M = 3; N = 3; 

V*2 =5/ X2=allXi=a',yxly2=5, y1=buyi=b;zx =c/4 , z2 =3cl4 , Zy =c     (2.25) 

for the [0/90/0] composite plate. 

Simulation results for the projectile mass M = 64.4g and projectile velocity V0 = 1.41m/.v 

are shown in Figs. 2.23 - 2.26. Figs. 2.23 and 2.24 show variations of the projectile 
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displacement and velocity in time for the 3D woven and laminated plates. It is seen that 

displacement of the projectile increases monotonically from zero to its maximum value, 

and at the some time instant, velocity of the projectile decreases to zero. At the upward 

phase of the projectile movement, the displacement of the projectile decreases while 

velocity of the projectile increases to almost its initial value. Then, at certain time 

instant, the contact between the projectile and plate is lost. 

Variations in time of the contact pressure, the transverse normal stress o>,, and 

longitudinal normal stress ou at the center of the plate top surface (x=y=0, z=c) are 

shown in Figs. 2.25 and 2.26. The stress component o\, shown in Fig. 2.26 is re-plotted 

with opposite sign and shown in Fig. 2.25 by dotted line. It is seen that the difference 

between the computed contact pressure and the stress value (-a33) is barely visible. 

Therefore, the imposed non-penetration condition (see, equation (2.1) of [2]) is satisfied 

with high accuracy in the obtained solution. This remarkable result is, certainly, 

nontrivial, since the contact pressure is calculated directly by the use of Lagrangian 

multiplier functions, while the normal stress at the surface of the plate are are calculated 

from totally different equations (namely, from the stress-strain relations of 3D 
elasticity). 

Figs. 2.23 - 2.26 allow one to compare impact response of 3D woven and laminated 

plates. First observation following from Fig. 2.23a and Fig. 2.23b is that maximum 

displacement of the projectile is higher in the case of laminated composite plate. This 

result is explained by the fact that stiffness in the z-direction of the laminated plate is 

lower than that of the woven plate. The same higher z-direction stiffness of the woven 

target also results in a higher peak contact pressure compared to the peak contact 

pressure for the laminated plate, as seen in Figs. 2.25a and 2.26b. 

Another interesting observation, following from Figs. 2.24 and 2.25, is that the contact 

time is lower for the woven composite plate. This is related to the shorter time required 

for the transverse stress wave to propagate through the thickness of the woven plate. 

This time is t* =\.51JJS, as compared to t*2 = 1.97ßs for the laminated plate. 

Finally, the higher stiffness in the ^-direction for the laminated plate results in a higher 

peak value of <7„ for the laminated plate as compared to the peak value of ou for the 
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woven plate, as seen in Fig. 2.26. 

Figs. 2.27 and 2.28 show variations of the contact pressure for the 3D woven and 

laminated composite plates. Simulations were carried out at three different 

combinations of the projectile velocity and mass. The projectile kinetic energy is kept 

the same for all three cases. It is seen that the shape of the contact pressure distribution 

changes when the projectile velocity increases. Also, two important conclusions can be 

drawn from Figs. 2.27 and 2.28. First, the contact time decreases as the projectile 

velocity increases. Second, the peak of contact pressure increases as the projectile 

velocity increases. Both these conclusions are consistent with the available experimental 

observations. 
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Figure 2.23. Variations of the projectile displacement in time for impact loading of 3D 

woven (a) and [0°/90°/0°] laminated (b) composite plates. 
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Figure 2.24. Variations of the projectile velocity in time for impact loading of 3D woven 

(a) and [0/90/0] laminated (b) composite plates. 
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Figure 2.25. Variations of the contact pressure (solid lines) in time for impact loading of 

3D woven (a) and [0/90/0] laminated (b) composite plates. Dashed lines show variation 

of the stress component (- cr33) in the plate calculated atx = y = 0,z = c . 
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Figure 2.26. Variations of the stress components <x„, a22, and <7„ in time for 3D woven 

(a) and [0/90/0] laminated (b) composite plates. Stresses are calculated at x=y=0, z=c. 
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Figure 2.27. Variations of contact pressure in time for the 3D woven composite plate; 

V0 =1.41w/s,M=64.4g(a); V0 = 14.1m/s, M=0.644g (b); V0 = 70.5m/s , M=0.2576g (c). 
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Figure 2.28. Variations of contact pressure in time for the laminated composite plate; 

F0 = \A\m/s, M=64.4g (a); V0 =U.lm/s, M=0.644g (b); V0 = 10.5mls , M=0.2576g (c). 
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3. Tensile Response of 3D woven fabrics 
The tensile mechanical response of woven fabrics has been studied by a number of 

investigators. Most researchers point to the classical work of Peirce (1937) and the 

modifications by Love (1954), Kemp (1958), and Abbot et al. (1973) as the critical 

starting point in this field. Whereas Peirce approached the modelling of woven fabric 

tensile response from a geometry-force approach, there have been a variety of methods 

applied since. The published models used to analyze and predict the tensile properties 

of woven fabrics include geometrical, mechanistic, energy and statistical models. 

Most of the research on the tensile properties of woven fabrics has studied plain 

weaves. Work has been performed in this area by many researchers including Kilby 

(1963), Olofsson (1964), Grosberg and Kedia (1966), Kawabata et al. (1973,1973a), Postle 

and De Jong (1977), Sharkas and Leaf (1987), Anandjiwala and Leaf (1991, 1991a) and 

Sun et al. (1997). Some work specific to twill weaves has been performed by researchers 

such as Kawabata and Niwa (1979) and Williams (1990). 

Only recently have generalizations accounting for more than one type of warp and 

filling yarns and varying weave tightness been considered. Predictive models of the 

load-extension properties of these complex weaves have been published by Reumann 

(1990), and Realff et al. (1993,1997) amongst others. 

3.1. Geometrical Modelling 
The pioneering geometrical approach by Peirce (1937) remains one of the most complete 

works on plain weave structure and its properties. Peirce's work was more concerned 

with the shape and position of the yarns in the fabric structure rather than with the 

mechanical behavior of the fabric subjected to an applied tensile load. However, 

several workers have used both his rigid and his flexible thread models as starting point 

in their later studies. For example, Shanahan and Hearle calculated the biaxial 

extension of plain woven fabrics with an energy method, using Peirce's flexible thread 

model (Error! Reference source not found.) with the assumption of circular cross- 

section and zero bending resistance of yarns. Subsequently they developed their own 

'lenticular geometry' model considering that the shape of the yarn was similar to that of 

a lens or a football, and can be represented by two intersecting arcs as shown in Figure 
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3.2. 

Figure 3.1 Peirce's flexible thread model. 

Figure 3.2 Shanahan and Hearle's   lenticular geometry. 

Other researchers developed different geometries that seemed to be more suitable to 

represent the real shape of the yarn cross-section in a cloth. Peirce himself observed 

that his assumption of a circular cross-section of thread was invalid in practice, due to 

the thread flattening which usually occurs during the weaving process, thus he 

modified this assumption considering a more realistic elliptic cross-section. He 

concluded, however, that the formal treatment of the elliptic section would lead to 

complex formulae (including the solution of elliptic integrals), whose application in the 
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study of actual cloths would be considerably more laborious and probably no more 

effective than the approximate treatment of flattened threads. In his approximate 

treatment he used the geometrical equations that he had derived for circular threads/ 

merely replacing the diameter of the circular thread section by the minor axis of the 

elliptic section. To assist in the practical determination of the cloth geometry, Peirce 

produced also a set of curves and tables connecting the various geometrical parameters 

experimentally determined. 

Kemp (1958) modified Peirce's model by suggesting a 'race-track' section (a rectangle 

joined with semi-circles on left and right) as the shape for the yarn cross-section in the 

fabric. In addition to being closer to the actual shape of the yanr section than the 

circular section, the race-track section had an advantage over the ellipse because the 

formulae developed from it were similar to those given by Peirce for the circular 

section. 

Olofsson (1964) used a 'twin-arc' model assuming that the path of the yarn consists of 

two arcs, one above and one below the central plane of the fabric. 

Kawabata (1973) produced the so-called triangle-wave model which represents the 

simplest geometry for the plain weave fabric. Many recent works on the tensile 

behavior of woven fabrics (Realff et al (1997), Reumann (1990), Sun et al. (1997) for 

example) refer to Kawabata's straight lines and either the uniaxial or biaxial 

deformation theories. 

The present work refers to Kawabata's approach (1973a) to estimate the uniaxial load- 

extension characteristics of a 3-D woven fabric. When considering a three 

dimensionally woven fabric, the geometrical model of the internal structure is different 

from the 'saw-tooth' model due to the multiple layers. The presented model refers also 

to Peirce's flexible thread model and to the jammed conditions defined by Peirce 

because of their better approximation of the yarn conditions in the 3-D woven fabric. 



3.2. Peirce's Geometrical Model 

Peirce [12] showed that, if it is assumed that the bending resistance of the yarns is 

negligible and that the yarn is circular in cross-section, a purely geometrical model 

which involves no consideration of internal forces can be set up for the determination of 

the various parameters of interest in a woven structure. In other words, he assumed 

that the geometry was not the result of the balance of various internal forces since no 

forces were needed to produce the geometry postulated. Since the yarn bending 

resistance is negligible, the yarn can be considered straight at all points except where it 

is wrapped around the crossing threads, when it is circular in shape as shown in Fig. 

3.3. 

Using the following symbols to designate the geometrical parameters of the fabric 

P:        Thread spacing; the distance between two planes, normal to the fabric, containing 

two successive cross yarns 

!'.'■■■ 

■ ■ . /:        Modular lengtfi; length of thread axis between planes containing the axes 

of consecutive cross threads 

c:       Yarn crimp, defined as the fractional excess of the yarn length over the 

length it covers in the cloth, (l-p)/p 

d:       Yarn diamete^ 

h:       Modular height; maximum displacement of the thread axis, normal to the 

plane of the cloth 

0:       Weave angle; the maximum angle of the thread axis with the fabric central 
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plane. 

D:      Scale factor; sum of warp and weft diameters 

and considering the subscript '1' for referring to the warp parameters, and '2' for the 

weft parameters, Peirce's geometry leads to the following relationships between the 

observable quantities of the cloth structure: 

p2 = (/1-DÖ1)cosÖ, + Dsin01 (3.1) 

hy = (k - D0,)sin0, + D(l - cos6,) (3.2) 

c, = —-1 (3.3) 

hl + h2 = d1 + d2 = D (3.4) 

Another set of equations corresponding to equations (3.1), (3.2) and (3.3) can be derived 

for the weft direction, so that at the end a total of seven equations connecting the eleven 

geometrical parameters is available, and therefore if any four of these parameters are 

known, such as thread spacings and crimps, the others can be calculated. 

As already mentioned, because of the difficulties involved in solving these simultaneous equations for 

any set of unknowns, Peirce and more recently Love have produced a set of curves and nomographs to 

help in the calculation. Moreover, for practical uses, Peirce derived some simple approximate 

relationships, the most important of which is: 

4 «—      ' 
/j]=gP2VCl (3.5) 

Pa: 



that reproduces the rigorous values well enough for many purposes; only in extreme 

structures Peirce showed that the error amounted to 5%. 

In considering jamming conditions, Peirce simplified the previous rigorous equations 

(3.1) and (3.2) noting that for the closest weave condition — = Q1 and thus 

PZ .     l\ .      (1 + Cl)»2 
— = sin- = sin ^— C3 6) 
D D D K    ' 

and 

Ä1        - — = 1 - cos— (37) 
D D K     ' 

3.3. Kawabata's Uniaxial Deformation Theory 

Kawabata's 'saw-tooth' geometry [5,6] is the simplest structural model of a plain weave 

fabric; it assumes in fact that the warp and weft yarns are straight lines which bend at 

the crossing points (see Figure 3.3).  With this simplification, the structural constants 

necessary for the deformation theory derive from the four original structural constants: 

nj = warp yarn density in the undeforined state (ends/cm) 

n2 = weft yarn density in the undeformed state (picks/cm) 

S] = warp yarn crimp caused by weaving which is defined by (/01 - ym)/ym, 



where /0i is the length of the warp yarn in the unit structure and y01 is the filling thread 

spacing in the undeformed state 

S2 = weft yarn crimp caused by weaving which is defined by (/02 - y02) /y02, 

where Z01 is the length of the weft yarn in the unit structure and y02 is the warp thread 

spacing in the undeformed state 

x2 

Figure 3.3 Kawabata's unit cell geometry of a plain weave fabric. 

The structural constants derived from the above are as follows: 
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^01= — 
722 

1 

»01 
_  y°x 

sinö 01 

Ami-  — COS0O, 
2 

(i), 

sin0Oi = —^— (iii), 
Si + 1 

(v), 

(vii), 

^02 = — 
m (ii) 

sinöo2= - 
1 

(iv) 
52 + 1 

'02 "" 
_■ y°2 

sinö 02 

/02 

(vi) 

Am2= —- cos002 (viii) 
2 

where y - thread spacing 

8 = the angle between the yarn axis and the X3- axis in the structural model 

/ = the yarn length in the unit structure 

A = the deflection of the point at which the yarn axis intersects the X?- axis. The 

deflection is caused by the stretch ratios A, and A2 of the fabric; that is, ht is the 

movement of point/?, and h2 that of p2 in Fig. 11. 

hm = the distance between the neutral line and the yarn axis along the X3- axis in the 

undeformed state; this is also equal to the maximum value ofh 

Kawabata uses the structural model presented above to solve the problem of uniaxial 

deformation. For the direction in which the stress is applied, he assumes the yarns to be 

perfectly flexible and introduces the effect of bending on the transverse yarn, which was instead 

neglected in the case of biaxial deformation. 
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When a tensile force is applied in warp direction, the yarns along the same direction tend to 

straighten while the yarns in the transverse direction, the filling yarns, bend because no tension is 

applied along their direction. Thus the force Fc caused by the tension on the warp yarns is equal 

to the force required to bend the filling yarns. 

For the equilibrium of the forces acting in the deformed state along the X3-axis (forming a 

rectangular co-ordinate system with the axis along the neutral lines in warp and weft directions) 

the following relation is derived: 

FI = 2FT1cos01 (3.8) 

where Fc = compressive force acting along the X3-axis at the point of contact of the warp 

and the weft threads, FT1 = tension on warp yarn 

Considering the relation obtained from the structural model in the deformed state 

2(hm\-h\) 
cose, =   i , , (3.9) 

4(/jmi-/u) +(Aiyoi) 

and representing the tensile properties of the warp yarns with a function of their stretch ratio A,, 

obtainable from a stress-strain test, 

fT1=gi(^,) (3.10) 

1   llfcl.    -T 



the equilibrium relation becomes 

r     o„/2 \ 2(hm}-hi) 

Considering a first approximation for the compressive force Fc caused by the tension FT1 

in the warp yarn and acting at the point of contact of warp and weft yarns along the 

normal axis X3/ 

FC = CC + C,/z, = 2FT1cos0: (3.12) 

and considering the following geometrical relations, deduced from Fig. 3.3, respectively 

for the deflection of the warp yarns and the stretch ratio of the fabric 

/oi        ■        /oiAi 
— COS0O]  
2 2 

«i = —cos0O] cosö, (3.13) 

.     /oiAii 

the angle between the warp thread and the X3- axis is determined as follows: 

cosfl = 2Co + Ci/oi-cosgoi (3.15) 
' 4FVi + G/oiAvi 
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and subsequently the tensile force on the fabric F, = Fr^inSj and the stretch ratio of the 

fabric are obtained from the following equations: 

JWAO Ji- 
r2Co + Cdo\ cos 0oi^ 

4gl(Ayl) + Cl/oiAj/l 
(3.16) 

A, = —Jl 
2Co + CiZoicos0oi 

ya\   1'     ^4§"i(A«/i) + CiZoi Avi ^ 
(3.17) 

The constants C0 and C, are the characteristic parameters of the fabric. They are 

calculated in Kawabata's work with considerations on yarn compression and bending 

behavior: 

Co = -3>ma>C, (3.18) 

where <£m,v is the average decrease in thickness of warp and weft threads and 

C,= 
a 

\ + 2K 
(3.19) 

The constants C„ and K are determined considering the bending of the yarn lying along 

the axis perpendicular to the direction of the applied tension as accompanied by fiber 

bending and local shear deformation and they are respectively defined as: 

C, = IN 
\92ErIf 

(3.20) 

P,)On Z. 



where Ef = Young's modulus of a fiber, If = geometrical moment of inertia of a fiber, N = 

mean number of fibers in the yarn cross-section, and 

where  ß = coefficient of friction along the fiber 

D = yarn diameter 

A recent work by M. L. Realff, M. C. Boyce and S. Backer modifies Kawabata's approach 

considering the bending of the yarn in substitution of that of the fiber, thus formula (20) 

is modified as 

■zWf (3-22) 

where El = bending rigidity of the yarn obtained from a four points bending test. 

One reason for choosing the yarn bending response instead of the fiber bending is that 

the zero slopes at the walls and at the center of the beam match those of the yarn at the 

crossover points in the fabric, as shown in Fig. 3.4. The Kawabata's fabric geometry 

does not include any yarn curvature, while Realff and colleagues' beam model 

incorporates the yarn curvature into the bending portion of the yarn behavior. 

Moreover, they affirm that Kawabata's model fails in predicting the response of the 

fabric at low strains because it overestimates the bending resistance of the yarn. This is 

in fact considered as the sum of the bending responses of the fibers in the yarn, parallel 

to each other and deflected by the same amount that the yarn deflects. But this is not 
true for a real yarn. 

'5pC 



Figure 3.4 Beam theory model for the deflection of the cross yarns during fabric 

deformation: (a) fabric, and (b) model. 

A further development introduces the concept of yarn consolidation and the tendency 

towards a circular cross-section due to the axial loading. The extension of the loaded 

yarns within the fabric is said to cause a radius reduction which leads to an increased 

local cross yarn curvature and to increased normal forces at the crossover points, and as 

ultimate consequence it causes further flattening of the cross yarn. The increase in the 

normal force is given by: 

F„, Nc- 

AE1 

hi 

( 1 1 
Dh\    Do 

(3.23) 

where DA„, is the yarn diameter given by the consolidation experiment and DP is the 

initial diameter of the yarn. 

While Realff's model is proved to predict reasonably well the fabric behavior in the low 

and moderate strain region, deviations from the actual fabrics response are found at 

higher strains. This is addressed by the researcher to the presence of strain 

concentrations caused by the unbending of the yarns in the loaded direction. The fibers 

in the higher strain regions fail first causing a small decrease in the load carrying ability 

of the yarns, resulting in the gradual decrease in slope of the fabric stress-strain curve. 

In their work, Realff and colleagues consider only plain weaves, although with different 

degree of tightnes and different yarn structure, R. D. Reumann, instead, uses 
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Kawabata's equations for developing a basic computerized system for predicting the 

fabric deformation characteristics as a function of fabric weave structure, thus he 

considers different type of weaves. 

Reumann represents a woven structure Using a grid coordinate system in which the 

interlacing point distribution is shown as a weave pattern by the distribution of the 

scanning points with warp thread lifts. The calculation of the stress-strain behavior of 

the woven fabric is then derived from the behavior of the individual scanning points. 

In the case of a scanning point representing an interlacing point, Kawabata's equations 

for the determination of the tensile force and the stretch ratio of the fabric can be used; if 

a float is present, instead, Reumann considers the stress-strain behavior of the scanning 

point as that of the thread being used. At the site of transfer from an interlacing point 

to a float, fractions of both are present and a suitable account of them is taken in the 

Calculations. 

In the most recent paper by F. Sun, A. M. Seyam and B. S. Gupta, a more general model 

is presented, which takes in account both different weaves, as in Reumann's model, and 

also the variation of thread spacing with fabric tightness and different structures 

containing more than one kind of warp and filling yarn, as in Realff and collegues' 
work. 

In this paper, they introduce some geometrical parameters referring to the weave 
structure 

a  ~ —  = ratio of the yarn spacing under the floats y, and the yarn spacing at 

intersection}/, 

N = number of threads in the weave repeat 

I = number of intersections in the weave repeat 

M = — = weave factor 
I 

and they relate all the other geometrical constants to these parameters. 

The equations used to calculate the tensile force and the stretch ratio are the same as the 

ones introduced by Kawabata  (equations (11)  and  (12)), but with Reumann's 



modification of deriving the total load-extension behavior of the fabric from the 

combination of the basic unit structures in the weave. 

3.4. Modeling a Novel 3-D Fabric 
The mathematical model which is proposed in this thesis for predicting the tensile 

behavior of a 3-D fabric derives from Kawabata's uniaxial deformation theory for plain 

weaves. 

The theoretical work of creating the prediction model consisted into two parts. In the 

first part, the structure of the baseline nylon 6 fabric in three dimensions was examined 

and the geometrical parameters were measured. On the basis of the geometrical 

analysis of the original fabric and referring to the saw-tooth geometry of Kawabata's 

model, a new geometrical model was created. 

The second part of the theoretical work was concerned with relating the fabric and the 

yarn mechanical properties under tensile load using mathematical functions. 

Kawabata's uniaxial deformation theory for a plain weave was then modified for 

considering the presence of stuffer yarns sandwiched between the two plain weave 

layers. 

3.5. The Characteristics of the Geometrical Model 
The geometrical model considered in the present research is derived, as already 

mentioned, from Kawabata's unit structure for a plain weave. Both warp and weft 

yarns are assumed to be perfectly flexible and compressible and they are assumed as 

straight lines as in Kawabata's model. 

Two different models are considered for the grounds and the binders, both of them 

comprising the stuffer ends between two layers of fabric. 

Fig. 15 and Fig. 16 represent schematic diagrams of the sections in warp (X-axis) and 

weft (X2-axis) direction of the weaves used for grounds and binders during the first 

approach to the problem of determining the geometrical structure that better 

approximated the real structure of the 3-D fabric. It can be seen that in the sections in 
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warp direction different filling yams are considered centered on the same neutral line. 

Similarly from the sections in filling direction, two consecutive warps or binders in the 

same layer are considered centered on the same neutral line. Referring to the symbols 

used in the figures and to the same notation used in Kawabata's geometrical model, the 

following geometrical relationships can be deduced: 

Grounds Model 

Warp direction 

tan 0O1   = 
d( + der 

Filling direction 

(24) 

tan fl iC.cr ' 
yoi 

df + der 
(25) 

or 

tan 6cp...= 
yoi 

d( + der/2 + dbi/2 
(26) 

Binders Model 

Warp direction 

tan 0olibi = J'Ol 

2df + Dsxf + <A, 

Filling direction 

(27) 

tane02bi = V02 

dr + der/2 + dbi/2 
(28) 

where yM = average thread space in warp direction in the undeformed state 

i/x = average thread space in filling direction in the undeformed state 



df = diameter of filling yarn 

dfr = diameter of ground yarn 

dbi = diameter of binder yarn 

Ds„ = height of the unit cell occupied by the stuffer yarns, approximated with a 

rectangle in both warp and weft direction 

In the ground model, in the filling direction, two different equations are used. The 

repeat unit in the original fabric was supposed to consist of a sequence of two grounds 

followed by a binder thread; the filling yarn therefore forms two different angles when 

interlacing with a ground or with a binder. This fact should be considered when the 

ground and binder ends are of different sizes and subsequently two different tensile 

models considering the two different angles formed by the filling yarn should be 

considered and a mean tensile response should be calculated. In the initial steps in the 

validation process of the tensile model, where the fabric was considered being made 

entirely of nylon 6 yarns, only equation 3.25 was considered in the filling direction for 

both the ground and the binder models and this simplified the calculations. 

A more detailed analysis of the original 3-D fabric showed that the repeat unit 

consisting of two grounds followed by a binder thread was really only the sequence on 

the outer layers of the fabric and not the unit structure of an entire ground layer. The 

geometrical model was then modified considering the unit structure in one ground 

layer as formed by four grounds followed by one binder and considering the presence 

of a filling float due to the presence of two consecutive ends (one ground and one 

binder) on the same side of the filling yarn (Fig. 3.5). For the tensile response of the 

grounds in this new configuration an average should be calculated considering three 

times the force calculated for repeat 1 in the scheme and once the average force due to 

configuration 2 and 3. Similarly, in the binder model, the tensile response should be 

calculated as the average of repeats 2 and 3. 

Also this second geometrical model was not completely satisfying. The jamming 

condition of the ground and binder ends on the outer layers of the nylon 6 fabric, the 

fact that no filling yarns appeared on the fabric surface, and the analysis of the 

encapsulated sample from which the filling yarns appeared to be almost straight, 

brought to the development of a third geometry. In this last geometry the structure in 



warp direction was still the one in the previous models with the fillings on the same 

layer centered on the same line. The section in filling direction was instead modified 

considering no crimp of the filling yarns. This final geometrical configuration, beside 

being more close to the real structure of the original fabric, permitted to avoid the 

contradictory assumption of two adjacent warps centered on the same neutral line 

simultaneously with two filling yarns centered on the same neutral line.    That 

assumption was very practical giving simple relationships defining the angles at the 

interlacing points, with no need of considering the actual crimp of the yarns as in 

Kawabata's model or the modular length h, defined by Peirce as the amplitude of the 

crimp wave, which are both difficult to measure.   But it was unrealistic because 

assuming two adjacent yarns centered on the same neutral line is like assuming that 

they are straight, they has no crimp, and it is not possible to interlace two sets of yarns 

keeping them simultaneously straight in both warp and weft directions. They should 

have some crimp in both directions or as a limit they can be straight only in one 

direction at a time, as assumed in the last geometrical model that can be considered an 

application of Kawabata's model with the assumption of zero filling yarn crimp. 

This third geometrical model was chosen for predicting the tensile response of the novel 

3-D structures because no crimp of the filling yarn was considered also in the new 

designs and because the results obtained using one or the other model were the same 

for all the structures considered in the research. 

It was concluded that the approximation of the various structures with a geometry that 

considers zero crimp simultaneously in one or the other direction is valid and useful in 

predicting the final tensile response of fabrics when no assumption of yarn crimp or 
waviness can be made. 



Figure 3.5 Nylon 6 baseline fabric in filling direction. 
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Figure 3.6 Schematic view of the baseline structure in warp direction, grounds model 
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Figure 3.7 Schematic view of the baseline structure in warp direction, binders model. 
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Figure 3.8 geometrical model: schematic view of the baseline structure in filling direction 

3.6. The Tensile Characteristics of the Model 
The tensile response of the 3-D fabric subjected to extension by an applied load along its 

length, warp direction, is estimated with the value of the sum of the single tensile forces 

acting on the ground weave, on the stuffers and on the binder yarns: 

F, = npFg, + nbiFbi + n^f ,tf (3.29) 

where ngr = total number of ground ends 

i\, = total number of binders 



nstf = total number of stuffers 

Fgr = tensile force acting on a single ground end 

Fbi = tensile force acting on a single binder end 

Fstf= tensile force acting on a single stuffer end 

For calculating the forces on each single ground or binder, the equation of the tensile 

force from Kawabata's uniaxial deformation theory is used, while the load-extension 

behavior of the stuffers is assumed to be the same as that of the threads used, thus in 
the above formula: 

F8r = gft,)Jl- 
' 2Co + G/oicos0o]V 

4g(Avi) + Ci/oiAv ]J 

F,r=g(^) 

' 2Co + Ci/oicosöoi 

4^(Avi) + Ci/oiAvi 

Kawabata's uniaxial deformation theory is used also for calculating the stretch ratio on 

the fabric, thus using equation (3.12), 

k = 
/OIAH ^2Co + Ci/oicds0oiA 

)*"i   "\i 
1- 

4^(A.vO + Ci/|)iAv 

As explained in above/if the geometrical model considers zero crimp for the filling 

yarn, the calculations are simplified and the total force on the ground ends is given by 

the total number of ground ends multiplied the force acting on the single end as in 

equation (3.29). In this case, all the geometrical parameters needed to solve the 

equation of the tensile force are easily derived from the number of ends and picks per 

unit length and the diameters of the different yarns. If no assumptions are made on the 



yarns crimp, the final total force on the grounds is an average of the total forces 

calculated using different geometrical model implying different angles at the interlacing 

points due to the presence of a binder thread adjacent to the ground end or to the 

presence of a float underneath. 

For the calculation of the tensile response of the binder threads, similar considerations 

are made. The angles at the interlacing points are calculated using the proper formulas 

already given above for the binder threads. But double the number of picks per 

centimeter is considered in this case to get the average warp spacing, because the 

binders interlace with the fillings of both the top and the bottom layers of the 3-D fabric. 

Moreover, due to the sequence and mechanism of filling insertion, the filling yarns of 

the two layers are not aligned on the same vertical axis, and indeed the yarns of one 

layer are placed between the fillings of the other. 

Other clarifications have to be made about Kawabata's equation used in our model for 

calculating the tensile force on a single ground or binder and about the equation giving 

the stretch ratio of the fabric. 

The tensile properties of the ground or binder yarns are expressed in Kawabata's 

equations with a function of the yarn stretch ratio g(Ay]) starting from a value of Ay!<l 

which corresponds to a stretch ratio A, on the fabric equal to unity. This could appear 

impossible since by definition the stretch ratio must be a number greater than unity. 

The explanation was found in the fact that when the fabric (identified with the stuffers) 

starts to stretch, the ground and the binder yarns first straighten as much as possible 

and then stretch. Thus, at the beginning only the stuffers respond to the external 

loading with a tensile response given by g(A]). The real response of the ground and 

binder ends starts after a while when Ayi=l; before that point the negative force 

computed using Kawabata's equation is not really taken into account in the calculation 

of the total force acting on the 3-D fabric. Although the negative values of g(Ayl) for 

AV]<1 have no physical meaning, they are in any case necessary for calculating the fabric 

stretch ratio Aj from its initial value equal to unity. 

In the application of Kawabata's uniaxial deformation theory to the 3-D structure 

another modification was done, that is to consider the geometrical momentum of inertia 

of the filling fibers bending as referred to the central axis of the entire fabric in filling 



direction. Thus, considering the parallel axis theorem, the geometrical momentum of 

inertia of a fiber is computed as: 

I, = I0, + A„(As)2 (3.30) 

where Iof = geometrical momentum about the principal axis of inertia of one external 

ground layer in the 3-D structure 

Afl = cross sectional area of a filling fiber 

As = mean distance of a filling fiber from the principal axis of inertia of the 3-D structure 

The final tensile model that was used for predicting the tensile response of the new 

developed structures, besides considering the geometrical model with zero filling yarn 

crimp, was further more modified and simplified because no tensile force was 

considered to act on the binders. The effect of the tensile force on the binders was in 

fact evaluated to be only the 0.1% of the total force on the 3-D fabric and thus it was 
neglected. 

3.7. TheSystem of Equations for the Model 
The complete system of equations of the 3-D fabric model consists of some equations 

derived from the geometrical characteristics of the model and other equations that come 

from the mechanical characteristics of the model. 

We report the system of equations that was used in the research for predicting the 

tensile force of the 3-D fabric with different type of fibers for grounds, binders, stuffers 

and filling yarns. The system of equations is derived from the geometrical model with 

zero filling yarn crimp, and from the tensile model with no binders contribution to the 

final tensile force of the fabric. 



0.1.1. Geometrical equations 

1                    l        *     a             y°] ■   a l 

ym = -777, 2/02 = 777 / tan0ol,gr = —, smd02 = 
ppc epc d( + dp Si + 1 

_yoi V02       «  _ /oiAvi 1 2C0 + C1/01COSÖ01 

sinöoi sinöo2 yoi ^4g(Avi) + Ci/oiAv J 

A,c= n«f A„f. Dstf= , t = max (D5tf+ 2(df + dfr)) 
Wuc 

As =--</« , I,„ = —, If= Iorf AfAs- 
2 64 

0.1.2. Mechanical Equations 

(2/02) /02 

1 + 2A 

F,=ga!n)n ' 2C0 + CI/01COSÖ01 

"\'     ^4g(A/i) + Ci/oiA./i 

F„=ga-y 

By knowing the fibers', yarns' and fabric's geometrical parameters and the yarns' 

mechanical parameters, it was possible to solve the above system of non-linear 

equations. 

With the use of the computer was possible to insert other variables in the program to 

get the final tensile response of different parts of the fabric designed to have different 

types of fibers playing the role of grounds, binders or stuffer yarns. Thus, for example, 

using the variables kA and kB as the percentage of stuffers of fiber type A and the 



percentage of stuffers of fiber B, the above formulas were modified as: 

■f" 1  = ^gr^gr + Wstf(/CAi-stfA + /CBi"stfB) 

and the model directly predict the tensile response of different parts of the fabric with 

different elastic modulus. 

3.8. Application of 3D Woven Model 
The woven fabric Considered in the present paper is a tubular double-cloth structure 

consisting of two plain weave ground layers joint together by means of binder threads 

every two repeats. In each unit cell, delimited by the two plain weave layers and the 

binder threads, a certain number of stuffer yarns is inserted to reinforce the fabric in 

warp direction. 

The 3-D weave is modeled with the purpose of creating a functionally graded structure, 

which has heterogeneous tensile characteristics down its length. The fabric is therefore 

considered as formed by two parts having the same weave but with different types of 

yarns, with different tensile characteristics, playing the role of grounds, binders or 

stuffers. (Fig.l). The design of the low modulus part of the fabric considers PEN 

grounds and binders, nylon 6 stuffers and polyester filling yarns. The design of the 

high modulus part is derived from the previous one making some or all the PEN 

grounds and binders change their role with a correspondent number of nylon 6 stuffers. 

In the manufacture of the fabric, this is achieved changing the pattern chain of the loom, 

with no need of adding or removing yarns, or of binding different types of stuffer yarns 

with different tensile properties by means of a splicer. 
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Figure 3.8 Schematic cross-section of the 3-D fabric in warp direction, showing the 

transition between the low modulus part and the high modulus part. 

Tensile tests were conducted on prototypes of the novel structure (detailed in Table 3.1) 

in which the low modulus part had 100% nylon 6 stuffers while the high modulus part 

contained 95% nylon 6 and 5% PEN stuffers, and are summarized in Table 3.2. 
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Table 3.1. Fabric, Yarns and Fibers Parameters 

Fabric Parameters 
Epc 10.75 
Ppc 3 

Unit cell width wuc (cm) 0.4 
Filling yarn crimp S2 0 

Fibers and Yarns Parameters • 
Fiber Nylon 6 PEN Polyester 

Yarn denier Lv 5040 7000 5040 
filaments per varn A' 612 980 420 
Fiber diameter (cm) 3.2 x 10" 2.7 xlO" 3.5 x 10"' 
Yarn diameter (cm) 0.103 0.108 0.093 

Fiber area (cm2) 8.17x10'" 5.67x10-" 9.66 x 10-" 
Yarn area (cm2) 83.33 xlO-4 

92.6 xlO"4 
67.63 x 10'4 

Coefficient of friction fi 0.11 0.13 0.11 

Max. decrease in 
thickness (cm) Smax 

0.0397 0.0336 0.0335 

Fiber Young's modulus 
(kg/cm2) 

5.3 xlO4 
19.7 xlO4 

8.5 x 104 

Table 3.2. Theoretical and experimental results 

Sample Theoretical 
Breaking Load 

(kg) 

Experimental 
Breaking Load 

(kg) 

Theoretical 
Thickness (cm) 

Experimental 
Thickness (cm) 

Baseline 62,260 j        69,605 
i 

0.910 0.870 

Low 
Modulus 62.490 77,310 0.903 0.960 

High 
Modulus 60,525 72,705 0.905 0.922 

. .1 

These data are graphically illustrated in Figures 3.9 and 3.10. 
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Figure 3.9   Comparison of Experimental and Theoretical Breaking Loads for three 

different 3D woven fabrics. 
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Figure 3.10   Comparison of Experimental and Theoretical Fabric Thicknesses for 

three different 3D woven fabrics. 

Theoretical predictions of a family of fabrics with varying blend ratios of stuffer yarns is 

shown in Figure 3.11. 

I\u>- 
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Figure 3.11 Comparison of theoretical predictions of 3D woven fabrics with different 

blend ratios for the stuff er (0°) yarns. 
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CONCLUSIONS 

A novel 3-D impact contact variational analysis approach presented in this report 

enables to solve a variety of impact deformation and failure problems of composite 

structures having rectangular configurations. Composite structures characterized by a 

step-wise material property variation in one, two or three coordinate directions can be 

analyzed. The mathematical problem formulation takes full consideration of the 3-D 

transient nature of the deformation processes in a structure exposed to impact loading 

and, specifically, allows one to analytically study complex stress wave propagation in 

all three coordinate directions. 

The adopted impact contact model assumes that only the mass, initial velocity and 

shape of the projectile are known. The contact pressure distribution is obtained directly 

from the solution. The developed analysis approach is capable of solving both thin and 

thick structural elements made from conventional laminates, from 3D textile reinforced 

composites, and hybrids of thereof. 

Considered numerical examples verify accuracy of the developed computational 

algorithm and computer code. A number of characteristic 3-D impact effects are 

revealed and interpreted. A comparison presented for 3D woven and traditional 

laminated composite plates provides a useful information for designing impact- 

resistant composite structures. 

An extension of Kawabata's uniaxial deformation theory for plain weaves have been 

proposed for predicting the tensile response of a novel 3-D woven structure. 

A good agreement was found between the theoretical and the experimental results for 

both the final breaking load values and the thickness values of the manufactured 

prototypes of the 3-D novel fabric. 
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