
SMC-TR-99-27 AEROSPACE REPORT NO.
TR-2000(8550)-1

Software Acquisition and Software Engineering
Best Practices

A White Paper Addressing the Concerns of
Senate Armed Services Committee Report 106-50
On Software Management Improvements

15 November 1999

Prepared by

S. ESLINGER
Software Engineering Subdivision
Computer Systems Division

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

THE AEROSPACE
„CORPORATION
Segundo, California

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

DTIC QUALITY INSPECTED 2
19991217 103

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Con-
tract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd.,
Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corpora-
tion by R. Sudakow, Principal Director, Software Engineering Subdivision. Michael Zambrana was
the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) program.
Col. Adrian Gomez was the Space-Based Infrared System (SBIRS) High Program Manager.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report
does not constitute Air Force approval of the report's findings or conclusions. It is published only for
the exchange and stimulation of ideas.

Michael Zambrana
SMC/AXE

X2o\. Adrian Gojuez //
/ SMC/MTS

Acknowledgements

The author wishes to thank the SBIRS High Program Office, especially James E. Slattery
(SBIRS High Program Principal Director) and Milo E. Whitson (SBIRS High Ground Sys-
tems Director), for the opportunity to prepare this white paper. The preparation of this paper
was funded by the SBIRS High Program Office and the Software Acquisition Mission-
Oriented Investigative Experimentation (MOIE) task.

The author also wishes to thank the following members of the Computer Systems Division
(CSD) and the Space-Based Surveillance Division (SBSD) for their contributions to this
paper:

Richard J. Adams, Senior Engineering Specialist, CSD

Rita C. Creel, Section Manager, CSD

Roberta F. Gleiter, Project Engineer, SBSD

Sharon K. Hoting, Director, CSD

James E. Slattery, Principal Director, SBSD

Mary J. Trafton, Sr. Project Engineer, SBSD

Bonnie R. Troup, Engineering Specialist, CSD

ill

Executive Summary

1. Introduction

1.1 Purpose and Scope
The purpose of this white paper is to address the issues raised in the recently published Senate Armed
Services Committee Report 106-501 concerning Software Management Improvements for the
Department of Defense (DoD). The text, titled "Software Management Improvements," extracted
from Title VIII (Acquisition Policy, Acquisition Management, and Related Issues) of Senate Report
106-50, is given for reference in Table 1-1 of the body of this report.

This paper recommends a set of software acquisition and software engineering best practices that
addresses the issues raised in the Senate Report. These recommendations are based upon the experi-
ence of The Aerospace Corporation in supporting the United States Air Force (USAF) and the
National Reconnaissance Office (NRO) in the acquisition of DoD space systems. The domain of
application of the recommended best practices, therefore, is the acquisition and development of large
software-intensive, mission-critical systems, such as space systems, which are for the most part
unprecedented.

"Best practices" are defined to be practices that have been identified through experience as signifi-
cant contributors to the success of a software development effort. Thus, a best practice is not one that
has been proven to be "best" in any analytical sense. Rather, it is a practice that has been used effec-
tively on numerous successful software development projects and has been demonstrated to "help
bring order, predictability, and higher levels of productivity and quality" to the software project.

This paper addresses both software acquisition and software engineering best practices. Here, "soft-
ware acquisition" is defined to be the set of processes (i.e., the methods, tools, techniques, proce-
dures, etc.) used by the Government to acquire software. "Software engineering" is defined to be the
set of processes used by the developers to build software.

Clearly, one of the principal components of a successful software development project is the software
engineering processes used. This statement is based on the well-established fact that the quality of a
software product is highly dependent upon the quality of the processes used to develop and maintain

This report accompanies Senate Bill S. 1059 and is titled "NATIONAL DEFENSE AUTHORIZATION ACT FOR
FISCAL YEAR 2000 REPORT [TO ACCOMPANY S. 1059] ON AUTHORIZING APPROPRIATIONS FOR FISCAL
YEAR 2000 FOR MILITARY ACTIVITIES OF THE DEPARTMENT OF DEFENSE, FOR MILITARY
CONSTRUCTION, AND FOR DEFENSE ACTIVITIES OF THE DEPARTMENT OF ENERGY, TO PRESCRIBE
PERSONNEL STRENGTHS FOR SUCH FISCAL YEAR FOR THE ARMED FORCES, AND FOR OTHER
PURPOSES TOGETHER WITH ADDITIONAL VIEWS".
DoD Software Program Manager's Network, The Program Manager's Guide to Software Acquisition Best Practices,
Version 2.2, June 1998, p. iv.

that product. However, software acquisition processes are also very influential in achieving a suc-
cessful software development project. The software acquisition processes used can positively
encourage, or adversely constrain, the developers in their application of high-quality software engi-
neering processes to a software development effort.

The software acquisition and software engineering best practices recommended in this paper are lim-
ited to those that address the issues raised by the Senate Armed Services Committee in the above-
cited report. The paper does not attempt to describe a complete set of recommended software acqui-
sition and software engineering best practices. In addition, the recommended best practices are lim-
ited to those that directly address software. Systems engineering best practices, therefore, will not be
addressed, although it is recognized that the quality of the developer's systems engineering processes
affects the quality of the software products and the overall success of the software development
effort.

1.2 Background and Definitions
Since one of the principal concerns of the Senate Report is the issue of "rework to correct product
defects," this paper will emphasize software acquisition and software engineering best practices that,
when applied effectively, have been demonstrated to reduce rework. "Rework" can be defined to be
the amount of work expended to fix defects in any software product. Here, software products
include all products produced throughout the software development life cycle, including software
development plans, requirements, architectures, designs, code, test plans and procedures, and user and
maintainer documentation, not just the final operational software itself.

It is beyond the current state of the art to develop defect-free software products, especially in large,
complex, software-intensive systems. Moreover, it is a well-documented fact that the later defects are
identified, the more effort must be expended to correct the defect. Therefore, software acquisition
and engineering processes must emphasize finding and fixing defects as early as possible in the soft-
ware life cycle.

By its nature, engineering is an iterative activity, producing successive refinements in requirements,
architectures, and designs until acceptable solutions are reached. This is true of software engineering
as well as other engineering disciplines. The effort to produce the iterations and refinements that
occur during the engineering process are not considered part of rework. There is also additional effort
that is considered part of the normal engineering process and is, therefore, not considered rework.
This includes the effort to understand requirements, technologies, Commercial Off-the-Shelf (COTS)
hardware and software, and reuse software. It also includes the effort to bring prototype software or
other reuse software up to the required quality to be incorporated into the operational system.

The question, therefore, arises as to the point at which modifications to software products cease being
part of the normal engineering process and become rework to fix defects. The accepted boundary
between normal engineering effort and rework is the quality gate for the completion of the product.
A well-defined process for the development of any intermediate or final product has certain charac-

Paraphrased from DoD's Practical Software Measurement: A Foundation for Objective Project Management, Version
3.1, April 1998.

VI

teristics. These characteristics include entrance criteria, tasks to be performed to accomplish the
development, quality checks (e.g., peer reviews, quality assurance reviews, independent product
reviews, management reviews) to determine that the tasks have been properly accomplished, and exit
criteria. The exit criteria for the completion of the software products include the completion of the
required quality checks and the correction of any defects identified by those quality checks.

Rework is generally defined to begin after the product has passed its exit criteria quality gates. Thus,
the effort to perform the quality checks that are part of the product's exit criteria is not part of rework.
Also, the effort to correct any defects identified by those quality checks is considered part of the nor-
mal engineering process for developing that product and is not part of rework. However, all effort to
correct any defects identified in the product after this point in time is considered rework. Rework,
therefore, consists of the effort to fix defects in products found during a successor activity that uses
the product after the product has passed its exit criteria quality gates.

Effort to modify software products due to changes in requirements imposed upon the software may or
may not be considered rework, depending upon the source of the change. The effort to make changes
due to new or modified requirements allocated to software imposed by the Government is not consid-
ered part of rework. These changes have their source external to the development effort and do not
involve the correction of defects inserted into the products during their development. However, the
effort to modify software products due to changes in the requirements allocated to software imposed
by the systems engineering process is considered rework when those changes result from corrections
to fix defects in the systems engineering products (e.g., system/segment/element requirements and
requirements allocations to hardware and software items).

2. Recommended Best Practices
This section contains the recommended software engineering and software acquisition best practices
that address the issues raised in the Senate Report. These recommendations are based upon the expe-
rience of The Aerospace Corporation in supporting the USAF and the NRO in the acquisition of DoD
space systems. The best practices, the rationale for their inclusion, and essential elements for their
effective application are described in Section 2 of the body of this report.

2.1 Software Engineering Best Practices
The set of recommended software engineering best practices, with a brief description of each, is
shown in Table 1. These twenty best practices are listed in this table in alphabetical order so as not to
imply an order of importance. It should be noted that the recommended best practices are not
independent of each other; in fact, effective use of a particular best practice may require concurrent
use of other best practices. The recommended software engineering best practices are described in
more detail in Section 2.1 of the body of this report.

vii

Table 1. Recommended Software Engineering Best Practices

Software Engineering
Best Practice Description

Binary quality gates Using objective quality gates that must be passed by each software develop-
ment task before the task can be considered complete

Configuration and
change management

Rigorously enforcing configuration control and change management on all soft-
ware products

Customer/user
involvement

Maintaining close involvement of the customer and/or user throughout the soft-
ware development life cycle

Defect root cause
analysis

Analyzing data collected on software product defects to identify the root cause
of the defect and to determine how to avoid similar defects from occurring

Formal inspections Conducting formal inspections (a specific type of peer review) as mandatory
quality gates for all software products

Iterative life cycle
models

Developing the software iteratively in a series of builds, each fully
implementing a subset of the functionality

Prototyping Rapidly implementing specific subsets of software functionality to solve
problems and reduce risks

Quantitative cost and
schedule management

Using earned value management as part of managing the software
development project's cost and schedule

Realistic cost and
schedule estimation

Performing realistic estimation of software cost and schedule based on valid
historical data and appropriate use of software cost models

Requirements
traceability

Developing and maintaining accurate bi-directional traceability between levels
of requirements, requirements and design, requirements and code, and
requirements and test cases/procedures/results

Software architecture
definition

Defining the software architecture early in the system life cycle

Software engineering
process improvement

Analyzing current software engineering processes for deficiencies and imple-
menting new/modified processes to correct those deficiencies

Software interface
management

Rigorously defining and controlling all internal and external software interfaces

Software metrics Using metrics as an integral part of the developer's software project manage-
ment throughout the system life cycle

Software process
standards

Using a robust software process standard for defining the software engineering
processes

Software reliability
engineering

Using a full life cycle approach to ensuring that the operational software meets
its required reliability

Software requirements
definition

Using a software requirements definition methodology to define and specify
the software requirements for each software item

Software risk
management

Using a continuous process of software risk identification, assessment, prioriti-
zation, mitigation, and control throughout the system life cycle

Software systems
engineering

Including software as an integral part of the systems engineering processes

Test coverage exit
criteria

Using objective and rigorous test coverage exit criteria for software
development testing and software qualification testing

Vlll

2.2 Software Acquisition Best Practices
The set of recommended software acquisition best practices, with a brief description of each, is shown
in Table 2. These ten best practices are listed in this table in alphabetical order so as not to imply an
order of importance. It should be noted that the recommended software acquisition best practices are
not independent of each other; in fact, effective use of a particular software acquisition best practice
may require concurrent use of other software acquisition best practices. In addition, the effective
applications of the software acquisition best practices are related to the effective applications of the
software engineering best practices. This is because the Government's software acquisition processes
can positively encourage, or adversely constrain, the developer's use of software engineering best
practices. The recommended software acquisition best practices are described in more detail in Sec-
tion 2.2 of the body of this report.

Table 2. Recommended Software Acquisition Best Practices

Software Acquisition

Best Practices Description

Contractor capability evaluation Performing a formal evaluation of the contractor's software
development capability as part of source selection

Contractual software process
commitment

Obtaining a contractual commitment that the contractor will
follow mature, well-disciplined software engineering processes

Independent technical reviews Performing independent technical reviews of the contractor's
software products and processes throughout the development
life cycle

Realistic cost and schedule
constraints

Imposing realistic software cost and schedule constraints based
on valid historical data and appropriate use of software cost
models

Software acquisition metrics Using metrics as an integral part of the Government's software
acquisition processes

Software acquisition process
improvement

Analyzing current software acquisition processes for deficiencies
and implementing new/modified processes to correct those
deficiencies

Software acquisition risk
management

Using a continuous process of software acquisition risk
identification, assessment, prioritization, mitigation, and control
throughout the system life cycle

Software quality incentives Using award fees and other incentives to positively motivate the
contractor to use software engineering best practices

Software system acquisition Including software as an integral part of the systems acquisition
processes

Software-inclusive performance
requirements

Including software in the specification of system performance
requirements

IX

3. Managing the Risk in Using COTS and Reuse Software
The principal expected benefits of using COTS and reuse software are cost and schedule savings due
to a reduction in the amount of software to be developed. In addition, higher reliability and maintain-
ability benefits are also expected due to the use of software that, in some sense, has already been
proven. The expected extent of these benefits, however, is rarely met due to the current state of the
practice in COTS and reuse software.

The reality of using COTS and reuse software is frequently very different from the promised benefits
of its use. There is generally less COTS and reuse software that can be used than expected. This is
due to such factors as the requirements for the new system not being met, the algorithms not being
appropriate for the new system, the design not being compatible with the new architecture, and the
reuse software not being designed for reuse. This results in additional newly developed software
being required. There is also frequently more new software to be developed than expected due to
large amounts of "glue" code being needed in order to integrate the newly developed code, the reuse
code, and multiple COTS software packages.

In addition, the COTS or reuse software is frequently unreliable due to latent defects in the code or
due to unexpected side effects of unnecessary code that cannot easily be removed or disabled. Reuse
software is often difficult to modify and maintain due to poor design and implementation, out-of-date
or non-existent documentation, and the presence of obsolete technologies. When COTS software is
incorporated into a software-intensive system, there are frequently impacts to the software develop-
ment effort when new versions of (or patches to) COTS packages are released by the vendors. There
are often networks of interdependencies among COTS packages, where one package cannot be
updated until one or more other packages are updated. Often these updates are being performed by
different vendors on schedules incompatible with project needs.

The bottom line is that the incorporation of COTS and reuse software into software-intensive systems
will almost always require additional cost and schedule over that originally estimated to complete the
development effort. This is exacerbated by the demands of the competitive procurement process that
cause the amounts of COTS and reuse software bid by the developers to be significantly overesti-
mated, and the amounts of integration effort and "glue" code to be significantly underestimated.

In spite of the problems involved, affordability constraints are causing increasing reliance on COTS
and reuse software. Software-intensive systems are now too large, complex, and costly to be built
completely from scratch. COTS and reuse software, however, must be considered as significant risk
areas that must be mitigated and managed throughout the system life cycle. Furthermore, the soft-
ware acquisition and software engineering best practices described in Section 2 need to be applied to
the full software development effort, including any COTS and reuse software, as well as the newly
developed software.

One of the significant problems in the use of COTS and reuse software is the lack of a thorough
evaluation before the decision is made to incorporate the COTS and reuse software into the system
under development. Such an evaluation should be the basis of any decision to use, or not use,
particular COTS software packages or reuse software, and will assist in determining risk mitigation

efforts that should be carried out. Essential criteria recommended by The Aerospace Corporation for
evaluating COTS and reuse software are shown in Table 3-1 of the body of this report.

4. Conclusion
This paper recommends a set of software acquisition and software engineering best practices that
address the issues raised in the Senate Report. These recommendations are based upon the experi-
ence of The Aerospace Corporation in supporting the USAF and the NRO in the acquisition of DoD
software-intensive space systems. These software acquisition and software engineering best practices
are strongly focused on reducing rework to correct defects in software products since rework is one of
the principal concerns of the Senate Report. The Senate Report also encourages the DoD to maxi-
mize the use of COTS and reuse software. To address this issue, the paper discusses the risks inher-
ent in such use and presents criteria for the evaluation of COTS and reuse software to assist in identi-
fying and mitigating these risks. Appendix A to this paper provides a cross-reference mapping
between the recommendations presented in Sections 2 and 3 of this paper and the Senate Report
excerpt to show the coverage of the Senate Report issues by this paper.

Unfortunately, the knowledge of software acquisition and software engineering best practices is ahead
of their implementation, both by the Government and by its development contractors. The DoD's
acquisition reform initiatives have focused upon acquisition streamlining to reduce the projected pro-
gram cost and schedule. There has been very little emphasis on the resulting quality of the systems
being acquired and on the cost of rework. This is especially the case in the area of software, even
though improving software product quality and reducing rework will result in considerable cost and
schedule savings over the life of the program. A "contracting for quality" initiative is needed as part
of the DoD's acquisition reform efforts to provide a more balanced approach to acquisition reform.
This initiative should define acquisition strategies, performance requirements, incentives, and contract
provisions designed to ensure that the contractors rigorously apply software engineering best prac-
tices in the development of the DoD's software-intensive systems.

The DoD also needs to take the lead in defining and transitioning software acquisition best practices
to its acquisition organizations. A "software acquisition improvement" initiative is needed to stimu-
late software acquisition process improvement in the DoD acquisition organizations. The Software
Acquisition Capability Maturity Model® (SA-CMM®) is recommended for use to provide a formal-
ized framework for software acquisition process improvement.

Capability Maturity Model and CMM are registered trademarks of the Software Engineering Institute.

XI

Contents

Introduction 1

1.1 Purpose 1

1.2 Scope 1

1.3 Background and Definitions 3

1.4 Contents of this Paper 4

Recommended Best Practices 5

2.1 Software Engineering Best Practices 5

2.1.1 Binary Quality Gates 6

2.1.2 Configuration and Change Management 6

2.1.3 Customer/User Involvement 7

2.1.4 Defect Root Cause Analysis 7

2.1.5 Formal Inspections 8

2.1.6 Iterative Life Cycle Models 8

2.1.7 Prototyping 9

2.1.8 Quantitative Cost and Schedule Management 10

2.1.9 Realistic Cost and Schedule Estimation 10

2.1.10 Requirements Traceability 11

2.1.11 Software Architecture Definition 12

2.1.12 Software Engineering Process Improvement 12

2.1.13 Software Interface Management 13

2.1.14 Software Metrics 13

2.1.15 Software Process Standards 15

2.1.16 Software Reliability Engineering 15

2.1.17 Software Requirements Definition 16

2.1.18 Software Risk Management 16

Xll

2.1.19 Software Systems Engineering 17

2.1.20 Test Coverage Exit Criteria 18

2.2 Software Acquisition Best Practices 19

2.2.1 Contractor Capability Evaluation 19

2.2.2 Contractual Software Process Commitment 20

2.2.3 Independent Technical Reviews 20

2.2.4 Realistic Cost and Schedule Constraints 21

2.2.5 Software Acquisition Metrics 22

2.2.6 Software Acquisition Process Improvement 23

2.2.7 Software Acquisition Risk Management 23

2.2.8 Software Quality Incentives 24

2.2.9 Software Systems Acquisition 25

2.2.10 Software-Inclusive Performance Requirements 25

3. Managing the Risk in Using COTS and Reuse Software 27

4. Conclusion 31

References 33

Appendix A—Mapping Between This Paper and the Senate Report Excerpt A-l

Appendix B—Acronym and Abbreviation List B-l

Xlll

Tables

1-1. Extract from Senate Armed Services Committee Report 106-50, Title VIII,
Acquisition Policy, Acquisition Management, and Related Issues 2

2-1. Recommended Software Engineering Best Practices 5

2-2. Recommended Software/System Attributes to Measure 14

2-3. Recommended Software Acquisition Best Practices 19

3-1. Recommended Criteria for Evaluating COTS and Reuse Software 28

A-l. Mapping Between This Paper and the Senate Report Excerpt A-2

xiv

1. Introduction

1.1 Purpose
The purpose of this white paper is to address the issues raised in the recently published Senate Armed
Services Committee Report 106-505 concerning Software Management Improvements for the Department
of Defense (DoD). The text, titled "Software Management Improvements," extracted from Title VIII
(Acquisition Policy, Acquisition Management, and Related Issues) of Senate Report 106-50, is given for
reference in Table 1 -1.

1.2 Scope
This paper recommends a set of software acquisition and software engineering best practices that address
the issues raised in the Senate Report. These recommendations are based upon the experience of The
Aerospace Corporation in supporting the United States Air Force (USAF) and the National Reconnais-
sance Office (NRO) in the acquisition of DoD space systems. The domain of application of the recom-
mended best practices, therefore, is the acquisition and development of large software-intensive, mission-
critical systems, such as space systems, which are for the most part unprecedented. Other domains
relevant to the DoD, such as the acquisition and development of management information systems, may
have different or additional best practices and are not addressed.

"Best practices" are defined to be practices that have been identified through experience as significant
contributors to the success of a software development effort. Thus, a best practice is not one that has been
proven to be "best" in any analytical sense. Rather, it is a practice that has been used effectively on
numerous successful software development projects and has been demonstrated to "help bring order, pre-
dictability, and higher levels of productivity and quality" to the software project.

This paper addresses both software acquisition and software engineering best practices. Here, "software
acquisition" is defined to be the set of processes (i.e., the methods, tools, techniques, procedures, etc.)
used by the Government to acquire software. "Software engineering" is defined to be the set of processes
used by the developers to build software.

5 This report accompanies Senate Bill S. 1059 and is titled "NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL
YEAR 2000 REPORT [TO ACCOMPANY S. 1059] ON AUTHORIZING APPROPRIATIONS FOR FISCAL YEAR 2000
FOR MILITARY ACTIVITIES OF THE DEPARTMENT OF DEFENSE, FOR MILITARY CONSTRUCTION, AND FOR
DEFENSE ACTIVITIES OF THE DEPARTMENT OF ENERGY, TO PRESCRIBE PERSONNEL STRENGTHS FOR
SUCH FISCAL YEAR FOR THE ARMED FORCES, AND FOR OTHER PURPOSES TOGETHER WITH ADDITIONAL
VIEWS".

6 DoD Software Program Manager's Network, The Program Manager's Guide to Software Acquisition Best Practices, Version

2.2, June 1998, p. iv.

Table 1 -1 Extract from Senate Armed Services Committee Report 106-50, Title VIII, Acquisition
Policy, Acquisition Management, and Related Issues

"Software management improvements

The Department of Defense has a history of costly and long-standing software development
and acquisition problems. These problems are documented in many General Accounting Office (GAO),
Inspector General, and Department studies. The committee is concerned that, although these problems
have been well documented, not enough has been done to adopt management best practices to the
acquisition, development, and maintenance of software defense-wide.

Industry and academic studies show that 35 to 50 percent of the development and
maintenance work on software is rework to correct product defects. As result, these studies identify
rework as the single largest cost driver of the $11.0 billion the Department invests annually in
information technology to support business operations and the tens of billions more spent annually on
information technology that supports weapon systems.

The committee requests the Department report to Congress by February 1, 2000 on its efforts
to identify and adopt best practices in software development. Included in the report, the Department
should address:

(1) how risk management is used in a project or program's software development process;

(2) the process used to control and manage requirements changes during the software development
process;

(3) metrics required to serve as an early warning of evolving problems, measure the quality of the
software product, and measure the effectiveness of the software development or acquisition process;

(4) measures used to determine successful fielding of a software product;

(5) how the Department ensures that duplication of ongoing software development efforts are
minimized, and commercial software and previously developed software solutions are used to the
maximum extent practicable; and

(6) the portion of defense software expenditures (including software developed for national security
systems, as defined by section 5142 of the National Defense Authorization for Fiscal Year 1996) used
for rework.

The committee also directs the GAO review and comment on the Department's report on
software best practices by April 1, 2000."

Clearly, one of the principal components of a successful software development project is the software
engineering processes used. This statement is based on the well-established fact that the quality of a
software product is highly dependent upon the quality of the processes used to develop and maintain that
product. However, software acquisition processes are also very influential in achieving a successful soft-
ware development project. The software acquisition processes used can positively encourage, or
adversely constrain, the developers in their application of high-quality software engineering processes to a
software development effort.

The software acquisition and software engineering best practices recommended in this paper are limited
to those that address the issues raised by the Senate Armed Services Committee in the above-cited report.
The paper does not attempt to describe a complete set of recommended software acquisition and software

engineering best practices. In addition, the recommended best practices are limited to those that directly
address software. Systems engineering best practices, therefore, will not be addressed, although it is rec-
ognized that the quality of the developer's systems engineering processes affects the quality of the soft-
ware products and the overall success of the software development effort.

1.3 Background and Definitions
Since one of the principal concerns of the Senate Report is the issue of "rework to correct product
defects," this paper will emphasize software acquisition and software engineering best practices that,
when applied effectively, have been demonstrated to reduce rework. "Rework" can be defined to be the
amount of work expended to fix defects in any software product. Here, software products include all
products produced throughout the software development life cycle, including software development
plans, requirements, architectures, designs, code, test plans and procedures, and user and maintainer
documentation, not just the final operational software itself.

It is beyond the current state of the art to develop defect-free software products, especially in large, com-
plex, software-intensive systems. Moreover, it is a well-documented fact that the later defects are identi-
fied, the more effort must be expended to correct the defect. Research has repeatedly shown that the
effort to correct a defect increases by a factor of 2 to 10 for each life cycle phase after the defect was
inserted into the software. Therefore, software acquisition and engineering processes must emphasize
finding and fixing defects as early as possible in the software life cycle.

By its nature, engineering is an iterative activity, producing successive refinements in requirements,
architectures, and designs until acceptable solutions are reached. This is true of software engineering as
well as other engineering disciplines. The effort to produce the iterations and refinements that occur
during the engineering process is not considered part of rework. There is also additional effort that is
considered part of the normal engineering process and is, therefore, not considered rework. This includes
the effort to understand requirements, technologies, Commercial Off-the-Shelf (COTS) hardware and
software, and reuse software. It also includes the effort to bring prototype software or other reuse soft-
ware up to the required quality to be incorporated into the operational system.

The question, therefore, arises as to the point at which modifications to software products cease being part
of the normal engineering process and become rework to fix defects. The accepted boundary between
normal engineering effort and rework is the quality gate for the completion of the product. A well-
defined process for the development of any intermediate or final product has certain characteristics.
These characteristics include entrance criteria, tasks to be performed to accomplish the development,
quality checks (e.g., peer reviews, quality assurance reviews, independent product reviews, management
reviews) to determine that the tasks have been properly accomplished, and exit criteria. The exit criteria
for the completion of the software products include the completion of the required quality checks and the
correction of any defects identified by those quality checks.

Rework is generally defined to begin after the product has passed its exit criteria quality gates. Thus, the
effort to perform the quality checks that are part of the product's exit criteria is not part of rework. Also,
the effort to correct any defects identified by those quality checks is considered part of the normal engi-
neering process for developing that product and is not part of rework. However, all effort to correct any

7Paraphrased from DoD's Practical Software Measurement: A Foundation for Objective Project Management, Version 3.1,
April 1998.

defects identified in the product after this point in time is considered rework. Rework, therefore, consists
of the effort to fix defects in products found during a successor activity that uses the product after the
product has passed its exit criteria quality gates.

Effort to modify software products due to changes in requirements imposed upon the software may or
may not be considered rework, depending upon the source of the changes. The effort to make changes
due to new or modified requirements allocated to software imposed by the Government is not considered
part of rework. These changes have their source external to the development effort and do not involve the
correction of defects inserted into the products during their development. However, the effort to modify
software products due to changes in the requirements allocated to software imposed by the systems engi-
neering process is considered rework when those changes result from corrections to fix defects in the
systems engineering products (e.g., system/segment/element requirements and requirements allocations to
hardware and software items).

1.4 Contents of This Paper
Section 2 of this paper contains the software engineering and software acquisition best practices recom-
mended by The Aerospace Corporation to address the issues in the Senate Report. The recommended
software acquisition and software engineering best practices are strongly focused on reducing rework to
correct defects in software products since rework is one of the principal concerns of the Senate Report.
The Senate Report also encourages the DoD to maximize the use of COTS and reuse software. To
address this issue. Section 3 of this paper discusses the risks inherent in such use and presents criteria for
the evaluation of COTS and reuse software to assist in identifying and mitigating these risks. Section 4
presents the conclusion to the white paper. Appendix A provides a cross-reference mapping between the
white paper recommendations given in Sections 2 and 3 and the Senate Report excerpt to show the
coverage of the Senate Report issues by this paper.

2. Recommended Best Practices

This section contains the recommended software engineering and software acquisition best practices that
address the issues raised in the Senate Report. These recommendations are based upon the experience of
The Aerospace Corporation in supporting the USAF and NRO in the acquisition of DoD space systems.
This paper is not intended to be a tutorial in the application of these best practices. Rather, it briefly
describes the best practices, the rationale for their inclusion, and essential elements for their effective
application. Software engineering best practices are presented first, followed by the software acquisition
best practices. In general, the software acquisition best practices require a basic understanding of the
software engineering best practices.

2.1 Software Engineering Best Practices
The set of recommended software engineering best practices is shown in Table 2-1. These twenty best
practices are discussed below in alphabetical order so as not to imply an order of importance. It should be
noted that the recommended best practices are not independent of each other; in fact, effective use of a
particular best practice may require concurrent use of other best practices.

Table 2-1. Recommended Software Engineering Best Practices

Binary quality gates

Configuration and change management

Customer/user involvement

Defect root cause analysis

Formal inspections

Iterative life cycle models

Prototyping

Quantitative cost and schedule management

Realistic cost and schedule estimation

Requirements traceability

Software architecture definition

Software engineering process improvement

Software interface management

Software metrics

Software process standards

Software reliability engineering

Software requirements definition

Software risk management

Software systems engineering

Test coverage exit criteria

The terms "project" and "organization" are used with specific meanings in this paragraph and its subpara-
graphs. A project is responsible for a single software development effort (e.g., the software development
for a particular program that is developing a software-intensive system). A project has one or more soft-
ware development teams performing the software development effort. An organization, on the other
hand, is responsible for multiple software development projects (e.g., for multiple programs).

2.1.1 Binary Quality Gates
The use of quality gates as exit criteria for software development activities and products was discussed in
Section 1.3 above. The use of binary quality gates means that each lowest-level software development
task has an objective quality gate that must be passed for that task to be considered complete. Passing of
a quality gate includes fixing any defects identified by the quality checks involved. Products of a task
may not be used in subsequent tasks until they have passed their quality gate.

This best practice has two important benefits. First, the use of a binary quality gate for completion of a
software development task, when rigorously applied, provides a mechanism for the earliest identification
and removal of product defects. Second, this practice, when rigorously applied and used with an earned
value measurement system, enables one to obtain an exact status of the software development project cost
and schedule at any point in time.

Effective use of this best practice requires rigorous enforcement of the quality gate, even under the sever-
est schedule pressure. Spending time up front in finding and removing defects has been demonstrated to
reduce cost and schedule in the long run since correcting defects late in the life cycle or after fielding is
much more expensive and time consuming. Effective use of this best practice also requires the software
development project to be planned to the level of "inch-stones." The lowest-level tasks should be no
larger than that which one person can accomplish in one to two weeks.

2.1.2 Configuration and Change Management
The configuration and change management best practice involves the rigorous enforcement of configura-
tion control on all software products. Products are placed under configuration control after passing their
quality gates, and all changes after that point are controlled by a process that includes review by all prod-
uct stakeholders. In general, there is a hierarchical structure to the configuration management of the
software products. Some products are controlled by the development team, some by the Software Con-
figuration Management group and the Software Configuration Control Board (SCCB), and some by the
Program Configuration Management group and the Program Configuration Control Board (CCB). Soft-
ware development products that must be placed under configuration control include, as a minimum, soft-
ware development plans, both qualitative (e.g., processes) and quantitative (e.g., schedule, effort); soft-
ware standards and procedures (e.g., work instructions); software requirements, architectures, and
designs, including interface requirements and designs; code; unit, integration, and qualification test plans,
procedures, data, tools/drivers, and results; and operator and maintainer documentation.

The essential benefit of this best practice is defect prevention. Tight control of product configuration
ensures that all members of the development team are working from the same version of the software
products and thus prevents defects caused by use of multiple conflicting versions. This is especially
important for interface requirements and designs. In addition, review of product changes by all product
stakeholders ensures that all viewpoints have been considered before changes are made. This protects
against making changes that adversely affect some product stakeholders.

Effective use of this best practice requires rigorous enforcement of change control. It requires clear
communication of and access to the latest approved versions of all products by development team mem-
bers. It also requires maintenance of uniquely identified and consistent product sets (i.e., sets of products
that are uniquely identifiable and consistent with each other and with respect to a particular requirements
baseline). In addition, effective use of this best practice requires all levels of configuration management
to employ an equally rigorous configuration and change management process. Software products should
be controlled at a level appropriate to their impact. Thus, internal software design may be controlled by
the development team, while software requirements should be controlled by the SCCB. Higher-level
requirements, along with their allocations to software and hardware, should be controlled by the Program
CCB. The use of this best practice is optimal when the same configuration management tools are used at
all levels.

2.1.3 Customer/User Involvement
This best practice requires the close involvement of the customer and/or user (if different from the cus-
tomer) in the software development project throughout the life cycle. This involvement includes the cus-
tomer's/user's technical support contractors, such as Federally Funded Research and Development Center
(FFRDC) and Systems Engineering and Technical Assistance (SETA) personnel. The customer/user
should be involved, for instance, in the software development planning; the software requirements, archi-
tecture, and design (including the human-computer interface design, algorithm design, and critical inter-
face design, as well as the software design); qualification testing of the software to verify requirements;
software process definition, enforcement, and improvement; and quantitative software project manage-
ment (e.g., software metrics interpretation and use, and software cost and schedule management).

Close involvement of the customer/user throughout the software development life cycle will reduce
rework due to misinterpretations by the developers of customer/user requirements and needs. In addition,
participation by qualified customer/user personnel and their technical support contractors in software
product quality checks can assist the developers in identifying and correcting product defects early in the
life cycle. Close involvement of the customer/user in software qualification testing can also assist the
developers in defect identification, and can provide an early assessment of the suitability of the software
products for meeting operational needs.

The effective application of this best practice requires consistent and continuous participation of qualified
customer/user personnel and a good working relationship between the customer/user and the developers.

2.1.4 Defect Root Cause Analysis
Defect root cause analysis involves analyzing data collected on software product defects to identify the
root cause for the occurrence of the defect. The root cause analysis includes identifying the activity dur-
ing which the defect was inserted, how the defect came about, and why the defect was not detected during
quality checks. The results of the analysis are then used to improve the processes so that future defects of
a similar type will either not occur or will be detected by the product's quality gates. The data for defect
root cause analysis must be collected for all software products after they have passed their initial quality
gates, whether the products are controlled by the development team, the SCCB, or the Program CCB.
The defect root cause data are collected as part of the project's closed-loop corrective action process.

Defect root cause analysis, with effective process improvement based on the results, clearly will result in
the overall reduction of future similar defects. This technique has been demonstrated to be extremely
effective in improving software quality and reducing rework.

Defect root cause analysis is usually applied by a Software Engineering Process Group (SEPG) at the
organizational level. This results in the improvement of the organizational processes and is a necessary
application of the technique. However, the most effective application of defect root cause analysis occurs
when it is applied both at the individual project level and at the organizational level. Application within a
project can result in highly effective, immediate improvements to the processes being used on the project
and in reducing rework due to defects. Application at the organizational level results in the overall
improvement of organizational processes, which is of principal benefit to future projects.

2.1.5 Formal Inspections
This best practice involves conducting formal inspections as one of the mandatory quality gates for all
software products. Formal inspections are a particular type of peer review. A peer review is a technical
review of a software product by co-workers without management presence. There are various types of
peer reviews used in the software development industry, with wide variation in their formality. Research
into peer reviews has shown that the effectiveness of peer reviews in identifying defects increases with
the level of formality of the peer review, with the most effective form of peer review being the formal
inspection. For this best practice, the software products that are to undergo formal inspections include
software development plans; software standards and procedures; software requirements, architectures, and
designs; code; unit, integration, and qualification test plans, procedures, and results; and operator and
maintainer documentation.

Formal inspections have been demonstrated to be effective at identifying defects in the software products
under review and, therefore, at reducing rework due to defects not identified until later in the life cycle.
While the time and effort required to hold a peer review increases with the level of formality, the formal
inspection has proven to be extremely cost effective. This is due to the larger number of defects found by
this technique when compared to peer reviews of less formality.

In order to be effective, sufficient time must be allocated to all participants to prepare for the formal
inspections. In addition, the quantity of material to be reviewed must be organized into meaningful (and
sufficiently small) packages to enable review of the material to the required depth within a reasonable
inspection meeting duration. Data are available that give guidance in these areas, based on experience
with formal inspections on numerous past projects. In addition, for formal inspections to be effective,
participation in formal inspections must be a recognized part of each developer's workload. This means
that the developers' deadlines for accomplishing their own development work must take into account their
participation in formal inspections for other developers' products. This participation includes both the
time to prepare for the formal inspections and the time to participate in the inspection meetings.

2.1.6 Iterative Life Cycle Models
The use of iterative life cycle models for the development of large, complex software-intensive systems
has been demonstrated to reduce software development risk. In an iterative life cycle model, the software
is developed in a series of builds where each build implements a subset of the full software functionality.
Each build adds capabilities to the previous builds until the software is completely developed. There are
multiple types of iterative life cycle models with the most popular being the incremental, evolutionary,

and spiral. In the incremental life cycle model, all software requirements are developed first, before
beginning the builds that design, implement, and test subsets of the software. In the evolutionary life
cycle model, each build includes defining the software requirements for that build as well as performing
the design, implementation, and test of the software that implements those requirements. In the spiral
model, each spiral (which may consist of one or more builds) is focused on specific risk reduction goals.

The use of iterative life cycle models can reduce risk and rework in software development since it pro-
vides for early integration of the software components. The use of iterative life cycle models can also
reduce risk by enabling difficult or high-risk areas of the software to be prototyped in early builds/spirals.
The evolutionary life cycle model is particularly effective when the software requirements are not clearly
understood at the beginning of the development effort. Defining the software requirements within each
build as the requirements are better understood can reduce software requirements rework due to incom-
plete understanding of the requirements at the beginning of the project. Furthermore, the use of iterative
life cycle models facilitates obtaining early customer/user feedback on the software by enabling each
build to be demonstrated as it is completed. More robust customer/user feedback can be obtained by pro-
viding the opportunity for hands-on execution of the builds by the customer/user. Such iterative cus-
tomer/user feedback can reduce rework caused by misunderstanding of customer/user needs.

Effective application of iterative life cycle models requires that the complete software architecture be
defined before the builds are initiated. Without a well-defined architecture for the full software product,
use of iterative life cycle models can actually result in extensive rework when attempting to add the capa-
bilities in later builds. In addition, effective application of iterative life cycle models requires the imple-
mentation of the software infrastructure (i.e., the architectural foundation) in the early builds. This
ensures that the infrastructure is available for use by the application software being developed in those
and subsequent builds.

2.1.7 Prototyping
Prototyping involves rapid implementation of specific subsets of software functionality in order to reduce
risk in the later implementation of that functionality. Examples of areas where prototyping has been
proven to be of benefit include algorithms; critical interfaces, especially for non-standard interfaces; the
human-computer interface (e.g., user screens); and integration of COTS packages (e.g., to determine
whether the COTS packages will satisfy the requirements and to determine the amount of "glue" code
required to integrate the COTS with the developed software).

Prototyping reduces rework in the operational software by enabling technical problems, issues, and areas
of high risk to be resolved with minimal effort early in the life cycle. The design of the operational soft-
ware can then be based upon known solutions.

To be effective, prototyping must be performed using rapid development techniques that enable explora-
tion of various solutions. Using such techniques, the resulting prototype software must not be expected to
conform to the required quality and robustness of the operational "industrial strength" software. Effective
use of prototyping requires that it be developed with the expectation that it will be discarded after resolu-
tion of the problems, issues, and risks for which it was built. Before attempting to reuse prototype soft-
ware in the operational system, a comprehensive cost-benefit analysis must be performed. This analysis
must evaluate whether or not it is cost effective to add any additional required functionality and to re-
engineer the prototype software to conform to the required quality and architecture of the operational
software. Frequently, it is more expensive to add functionality and re-engineer the prototype software

than to develop new software to perform the operational functionality. Prototype software is almost never
suitable for incorporation into the operational software without significant re-engineering.

2.1.8 Quantitative Cost and Schedule Management
This best practice involves the use of earned value management in order to manage the software devel-
opment project's cost and schedule. To use earned value techniques, a detailed work breakdown structure
for the software development project is developed, work packages are identified and divided into small
tasks with objective entry and exit criteria, and activity networks for the tasks are created. An explicit
verification process is used to determine whether a task has met its exit criteria and thereby "earned" its
value. The best practice of earned value management uses only binary credit for earned value. This
means that the earned value for a task is zero until its exit criteria have been verified as met, and at that
point the task earns 100% of its value.

The most effective application of earned value management occurs when binary quality gates are used as
part of the exit criteria for each software development task. The verification process used as part of the
earned value technique, when rigorously enforced, then ensures that the required quality checks have been
performed on the software products and the identified defects corrected before the value is earned. This
will result in the reduction of defects found in subsequent tasks or after fielding. In addition, quantita-
tively managing the software cost and schedule by earned value enables an exact status of the project to
be obtained at any point in time. Deviations from the plan can then be identified as they occur and cor-
rected immediately.

Effective use of this best practice requires the software development project to be planned to the level of
"inch-stones." The lowest level tasks should be no larger than that which one person can accomplish in
one to two weeks. The definition of these tasks must match the detailed software engineering processes
in use on the program. Top-level planning of the entire software development effort (including the work
breakdown structure, work packages, and activity network at the work package level) is performed at the
beginning of the project. However, most of the detailed task planning requires more information about
the structure of the software than is known at the beginning of the project. Therefore, the detailed plan-
ning at the individual task level is performed for rolling increments of the schedule throughout the devel-
opment life cycle.

2.1.9 Realistic Cost and Schedule Estimation
This best practice involves making realistic software cost and schedule estimates based upon valid his-
torical data and appropriate use of software cost models. Initial software cost and schedule estimates are
based upon experience with similar past programs, while updates to software cost and schedule estimates
add more accurate data from the current project (e.g., actual effort data, more accurate software size
estimates).

Realistic software cost and schedule estimation not only increases the predictability of the cost and
schedule and, therefore, decreases the probability of overruns, it also contributes to improved quality of
the software product. Sufficient time and effort to develop the software products, including performing
the quality checks and correcting any identified defects, is essential to reducing rework. Experience has
demonstrated that one of the largest contributors to poor software quality is schedule pressure. When
large amounts of overtime (paid or unpaid) are required to meet the software cost and schedule con-
straints, software product quality suffers. In addition, research has repeatedly shown that a software

10

schedule compression of more than 25% off nominal is impossible to meet. Thus, with more than 25%
schedule compression, the software product will not meet the schedule, and in addition, the resulting
schedule pressure will cause poor software product quality due to shortcuts being taken in the software
development processes.

For realistic software cost and schedule estimation to be effective, accurate historical software cost and
schedule data from current and past projects are necessary. Many development organizations do not
account for unpaid overtime in their historical data. This results in the calculation of large productivity
values that are erroneous. Estimates of future efforts using these productivity values are then based upon
the assumption of large amounts of unpaid overtime by the software development personnel. This situa-
tion will result in poor software quality and increased rework. Realistic cost and schedule estimation also
requires proper use of the software cost models. This includes appropriate decomposition of the software
for costing, appropriate values for parameter settings, addition of effort and time for activities not covered
by the software cost models, and validation of the software cost model results against historical data.
Furthermore, realistic software size estimation is necessary for realistic software cost and schedule esti-
mation. Software size is notoriously underestimated at the beginning of a project. This includes unreal-
istically optimistic estimates for amounts of COTS and reuse software that can be used and unrealistically
small estimates for amounts of new code to be developed.

2.1.10 Requirements Traceability
The best practice of requirements traceability involves the development and maintenance of accurate bi-
directional traceability between all levels of requirements, from system requirements through individual
software and hardware item requirements; between software requirements and software architecture com-
ponents; between software requirements and software detailed design units; between software require-
ments and code; and between software requirements and software test cases, test procedures, and test
results.

Bi-directional requirements traceability is a tool for determining whether the system requirements allo-
cated to software are fully implemented by the software requirements. It is also a tool for determining
whether all software requirements are being met by the evolving software products (e.g., architecture,
detailed design, and code) as development proceeds. Furthermore, it is a tool for determining whether all
software requirements have been fully verified by the software qualification testing. By using the bi-
directional requirements traceability as part of software product quality checks, defects due to improper
requirements implementation can be avoided. Bi-directional traceability is also essential to the accurate
analysis of impacts due to changes in higher-level requirements, software requirements, or other software
products.

The most effective application of bi-directional traceability requires ensuring the consistency, complete-
ness, and correctness of the traceability information. Development, maintenance, and quality checking of
the traceability information is most efficiently and effectively performed if the requirements traceability is
implemented in an automated tool that provides automated checking and flexible selection and viewing
capabilities. To be effective, the traceability must also be readily available to the technical and manage-
ment personnel that need the information.

II

2.1.11 Software Architecture Definition
This best practice involves the early life cycle definition of the architecture of the software portion of the
software-intensive system. A complete description of the software architecture consists of multiple
architectural views that describe various aspects of the software (e.g., the logical view, describing the
functional behavior; the process view, describing the dynamic execution behavior; the physical view,
describing the allocation of software to hardware; the development view, describing the static structure of
the software; the user view, describing the operational behavior from the user's viewpoint). DoD mis-
sion-critical, software-intensive systems are generally operational for long periods of time, sometimes
decades. During this time, changes will occur to system requirements and interfaces, to the available base
of commercial hardware and software, and to various computer systems technologies. The software
architectures for such systems need to be appropriately designed so that the systems can readily adapt to
change and can evolve as the system environment and requirements evolve.

A complete definition of the software architecture early in the life cycle will help reduce rework later in
the life cycle by providing the framework for the design and implementation of the operational software.
This is especially true when using iterative life cycle models since the early definition of the software
architecture provides the framework for all subsequent builds. Without a complete architectural defini-
tion, functionality being implemented in later builds can require major rework to the contents of previous
builds. The essential benefit of designing software architectures so that they readily support change and
evolution is the reduction in the cost of necessary environmental and requirements changes. This benefit
applies both during development and after fielding. While the effort to accommodate such changes is not
considered rework, this effort is a large component of the total system development and maintenance cost.

The most effective application of software architecture definition requires the use of a Computer-Aided
Software Engineering (CASE) tool that supports the techniques being used for describing the architectural
views. The techniques used for describing the architectural views must be compatible with the method-
ologies in use for software requirements definition and software design. In addition, there are a number
of accepted principles for structuring software architectures that readily support change and evolution.
These principles include the use of layered architectures and open systems standards (e.g., those man-
dated by the DoD's Joint Technical Architecture initiative). Software architectures are currently a topic
of major interest in computer science research.

2.1.12 Software Engineering Process Improvement
Software engineering process improvement involves analyzing the current software processes for defi-
ciencies and putting new and/or modified processes in place to correct those deficiencies. Process
improvement can be done informally or with the use of a formal model for process improvement, such as
the Software Engineering Institute's (SEI's) Capability Maturity Model® for Software (SW-CMM®).8

The SW-CMM has become widely accepted worldwide and is now the industry standard for software
process improvement efforts.

Data collected by organizations that have instituted software process improvement efforts have shown
process improvement to be extremely cost effective due to fewer product defects being identified down-
stream and due to greater predictability of software cost and schedule.

g
Capability Maturity Model and CMM are registered trademarks of the Software Engineering Institute.

12

Software engineering process improvement is usually applied by an SEPG at the organizational level.
This results in the improvement of the organizational processes, and is a necessary application of the
technique. However, process improvement is most effective when it is applied both at the individual
project level and at the organizational level. Application within a project can result in highly effective
immediate improvements to the processes being used on the project and in reducing rework due to
defects. Application at the organizational level results in the overall improvement of organizational proc-
esses, which is of principal benefit to future projects. In addition, software engineering process improve-
ment will not be effective unless the improved processes are used and rigorously enforced on each
project.

2.1.13 Software Interface Management
Software interface management requires the early definition and rigorous configuration control of all
software interfaces, both external and internal. Software interface requirements and detailed designs must
be documented and agreed to by all stakeholders, and conformance to these interface specifications (both
requirements and detailed design) must be rigorously enforced. This best practice applies to all levels of
software interfaces: interfaces with external systems, interfaces between segments, interfaces between
software items within segments, and interfaces between software units within each software item.

One of the most prevalent problems found during software and system integration is incorrectly specified
and/or mismatched software interfaces. The early definition and configuration control of software inter-
faces will help prevent this type of defect from occurring. Checks for interface specification conformance
during software product quality checks (e.g., formal inspections) will aid in detecting this type of defect
prior to software and system integration, where such defects are more expensive to correct.

The effective application of this best practice requires all software interfaces to be defined and docu-
mented early in the life cycle before implementation of the software on either side of the interface. It also
requires rigorous enforcement of change control. Furthermore, it requires clear communication of and
access to the latest approved versions of all interface specifications by development team members. Most
software projects define, document, and control external software interfaces and interfaces between soft-
ware items both within and between segments. However, for maximum defect prevention in this area, it
is equally important to define, document, and control the internal software item interfaces between soft-
ware units, especially where these interfaces must be shared among multiple software developers. Soft-
ware interfaces should be controlled at a level appropriate to their impact. Thus, internal software item
interfaces may be controlled by the development team, while interfaces between software items within
and between segments should be controlled by the SCCB or Program CCB. External software interfaces
should always be controlled by the Program CCB.

2.1.14 Software Metrics
This best practice involves the use of metrics as an integral part of software project management to assist
in managing the software products, processes, and resources. The software/system development project
attributes recommended for measurement by The Aerospace Corporation for software-intensive systems
are shown in Table 2-2. For a software metrics program to be effective, the work performed on the
lowest-level tasks must be made measurable, and the metrics must be consistent with and integrated into
the project's software engineering processes. This best practice requires project management to establish
an environment that fosters the use of metrics and assures project personnel that the collected data will
never be used against individuals. It also requires project management to ensure that metrics are used as a

13

Table 2-2. Recommended Software/System Attributes to Measure

PRODUCT-PROCESS
• Quality and Performance Attributes

- Volatility
Traceability
Problem Reports/Action Items/Issues
Defect Density/Inspection Effectiveness
Fault Density/Test Effectiveness

- Size
- Structure (Complexity, Coupling, Cohesion, etc.)
- Target Resource Utilization

• Progress Attributes
Completeness
Integrated Progress

PROJECT RESOURCES
• Capability and Capacity Attributes

- Staffing Levels/Skills
Turnover Rates
Engineering Environment Resource Availability/Utilization

 Test Environment Resource Availability/Utilization

management tool, not an end in themselves, and that adherence to well-disciplined software engineering
processes is not subverted in order to make the metrics appear "good."

An effective software measurement program provides high-level visibility into the health and status of the
evolving software product and lower-level data for timely problem detection, isolation, and impact
assessment. High-quality, accurate metrics reduce information overload; enable software process evalua-
tion and improvement; provide assessment of product quality and project progress; and facilitate early
detection, understanding, and resolution of software problems. When accurate, well-defined data are
collected from multiple software projects by an organization, this historical data can be analyzed to
determine expected ranges of values for the various metrics. These expected ranges enable a project to
easily identify areas where corrective action is needed.

An effective software metrics program requires comprehensive metrics planning. This includes selecting
an appropriate set of metrics to be collected throughout the life cycle. In addition, to ensure a clear
understanding of the metrics and metrics data, the following detailed information must be defined for
each selected metric: benefits/costs (e.g., effort, resources); general definition; raw data items to be col-
lected; computations to be performed; data collection methods, frequency, and responsibility; data
reporting frequency, responsibility, and users; analysis, interpretation, and feedback guidelines; and rela-
tionship to other metrics. Techniques are available to assist in selecting an appropriate set of metrics for
an individual program, based upon program goals and risks. Care must be taken to ensure that the
selected metrics cover the entire software and system life cycle and all software development processes,
products, and resources. Once selected, the metrics must be defined to be consistent across the entire
program (i.e., the same definition for all development teams, for any type of teaming arrangements); con-
sistent across all levels of the program (i.e., the same definition for all levels of the specification tree); and
integrated with other disciplines (e.g., reliability; cost and schedule management). The most efficient
application of a software metrics program utilizes automated collection, computation, and reporting of the
metrics data to the maximum extent possible.

14

2.1.15 Software Process Standards
Using a robust software process standard as the basis for defining software engineering processes pro-
vides an ensured level of completeness, stability, and quality for project and organizational processes.
The current best software process standard for software-intensive systems is IEEE/EIA J-STD-016-1995,
which is the commercial version of MIL-STD-498.

A robust software process standard, such as IEEE/EIA J-STD-016-1995, defines the software develop-
ment activities that must be performed and the tasks that must be accomplished for each of those activi-
ties. A robust software process standard also provides detailed instructions for the content of the various
software development products. Rigorous adherence to such a standard will reduce defects since it will
guarantee that all necessary software engineering tasks will be accomplished and all necessary engineer-
ing work will be performed for each software product.

Effective application of a robust software standard requires careful translation of the requirements of the
standard into the project and organizational software engineering processes and rigorous enforcement of
the resulting processes. Extreme caution must be used in tailoring out (i.e., deleting) features of the stan-
dard since this usually reduces the quality of the software engineering processes and their resulting prod-
ucts. This is especially true with respect to a standard's required contents of software products. The
document contents specified in IEEE/EIA J-STD-016-1995 provide checklists for the engineering work
that needs to be performed, independent of the form that the results of the engineering work will take.
Thus, tailoring out document contents can result in the definition and use of processes that do not require
the engineering work necessary to produce quality software products.

2.1.16 Software Reliability Engineering
Software reliability engineering is a full life cycle program whose goal is to ensure that the operational
software will meet its required reliability (generally measured in terms of Mean Time Between Failures).
Actual system failures experienced during operations will be caused by both hardware failures and soft-
ware faults. Thus, the operationally experienced system reliability will always be less than a system reli-
ability estimation based upon hardware alone. Operational system reliability that includes both hardware
and software is an excellent measure of the successful fielding of the software product.

The first step in software reliability engineering is the allocation of system reliability requirements to both
hardware and software components based upon the system design. Data on software failures experienced
during integration and qualification testing are collected, and a software reliability model is used to
estimate the software reliability. Testing can then be continued until the software meets its reliability
requirement. Effective use of a software reliability program will, therefore, result in fewer defects in the
software when transitioned to operations.

Effective use of software reliability engineering requires the implementation of a full life cycle set of
software engineering processes geared toward reducing software product defects. Examples of such
processes are those that implement the software engineering best practices described in this section. In

9 ISO/IEC 12207, the international standard for software life cycle processes, is a high level standard that covers acquisition,
supply (the prime contractor role), development, operations, and maintenance. The U.S. implementation of ISO/IEC 12207
(IEEE/EIA 12207.0-1996, 12207.1 -1997 and 12207.2-1997) is not recommended for use in a stand-alone mode since it is not
sufficiently robust in the areas of software development and maintenance processes. However, since IEEE/EIA J-STD-016-
1995 is compliant with ISO/IEC 12207 for software development and maintenance, using IEEE/EIA J-STD-016-1995 in
conjunction with the U.S. implementation of ISO/IEC 12207 is recommended.

15

addition, a reliability demonstration of the software should be performed using a realistic operational pro-
file of software features under realistic operational workload conditions.

2.1.17 Software Requirements Definition
This best practice involves using a software requirements methodology for the definition and specifica-
tion of the software requirements for each software item in the system. Software requirements method-
ologies provide an organized, disciplined technique for understanding the system requirements allocated
to software and for defining the detailed requirements that the software must satisfy. The most popular
software requirements methodologies currently in use are the structured and object-oriented methods.
Both of these methodologies result in a model of the software requirements that is used for understanding
and specifying the individual requirements.

One of the largest sources of defects in software products is the software requirements. Improper under-
standing, incompleteness, incorrectness, inconsistency, and improper level of detail (either too high to
understand what the software must do or so low that the design is over-constrained) are common prob-
lems in software requirements in large, complex, software-intensive systems. Use of a software require-
ments methodology helps to avoid these problems and thus reduces the incidence of defects due to soft-
ware requirements errors. Ensuring the completeness of the software requirements is especially important
in order to eliminate problems later in the life cycle.

The effective application of software requirements methodologies requires rigorous adherence to the rules
and standards of the methodology. These methodologies are most efficiently applied by using a CASE
tool that supports the methodology. In addition, effective use of a software requirements methodology
requires at least some of the software requirements definition personnel to be experienced in using that
methodology. All software requirements personnel need to be trained both in the methodology itself and
in the particular CASE tool being used.

2.1.18 Software Risk Management
Software risk management is an effective mechanism for reducing the impact of potential problems on the
software project. Software risk management involves a continuous process of risk identification, assess-
ment, prioritization, mitigation, and control throughout the life cycle of the project.

The use of software risk management enables a software project to understand its risks (i.e., future prob-
lems that might occur) and, where possible, to mitigate the risks that are assessed to have the largest
potential impact on the software development effort. All software development projects have risks, and
the cost to the project of resolving a problem (i.e., an actualized software risk) later in the life cycle is
often significantly larger than mitigating that same risk early in the life cycle. Thus, effective software
risk management can result in reducing the cost and schedule impact of problems by having alternative
technical solutions or workarounds identified before problems occur.

To be effective, the software risk management process must be practiced by all development personnel
and at all levels of the software development project. An environment that rewards the identification of
risks must be fostered by the developer's program management so that technical personnel are encour-
aged to identify risks and devise appropriate mitigation strategies. Large programs frequently have a risk
management process at the program level with the top program risks being closely monitored by devel-
oper and Government upper management. However, on large, complex DoD programs with major hard-

16

ware and software development, individual software risks are seldom considered to have a large enough
potential cost impact to reach the program risk list until those software risks have become significant pro-
gram problems. Frequently, the only risk management process practiced on such a program is the pro-
gram level process. An effective software risk management process must be practiced at every level of
the software development project, including the lowest-level software development teams. Each software
development team should use the software risk management process to identify its risks, mitigate and
control those risks that are within its scope of control, and elevate those risks with sufficiently high
impact to higher-level development teams.

2.1.19 Software Systems Engineering
This best practice involves the inclusion of software as an integral part of the systems engineering proc-
esses in the development of software-intensive systems. Software systems engineers (i.e., personnel with
computer systems knowledge and experience, both hardware and software) must be members of the teams
responsible for the definition of the system and other higher-level requirements for all levels of the speci-
fication tree. Software systems engineers must also be members of the system architecture and design
team(s) and must be key participants in the allocation of higher-level requirements to computer subsys-
tems and to individual software and hardware items. Similarly, software systems engineers must also be
members of the system integration and verification teams. These teams are responsible for the integration
of all system components, both hardware and software, and the verification of all higher-level require-
ments for all levels of the specification tree above the individual software and hardware items. Further-
more, software specialty engineers must be key participants in the system specialty engineering disci-
plines that involve both hardware and software elements, including reliability/maintainability/availability
(RMA), supportability (including testability and integrated system diagnostics), safety, security, and
human factors.

The inclusion of software as an integral part of the system requirements, architecture, and design defini-
tion helps to reduce rework to correct defects caused by inappropriate or infeasible higher-level require-
ments allocated to computer hardware and software. It also helps to reduce rework to correct the inap-
propriate or incorrect inclusion of computer hardware and software in the system architecture and design.
Inclusion of software as an integral part of system integration and verification helps to ensure the thor-
ough verification of higher-level requirements implemented in software. This will result in reducing the
number of latent software defects remaining after all system requirements verification is completed. In
addition, without consideration of software in system specialty engineering, rework can be caused by the
final system (composed of both hardware and software components) not meeting its specialty engineering
requirements. Finally, the inclusion of software along with hardware in the integrated system diagnostics
will improve software maintenance by enhancing the capability to detect and isolate software faults.

The effective incorporation of software as an integral part of the systems engineering processes requires
the developer's program management to establish an environment where software is a highly respected
part of the program, equivalent in importance to hardware. In addition, the program must be structured to
provide effective lines of communication, responsibility, and authority among the software development
teams and the other program teams involved in the systems engineering processes. Finally, the software
engineering processes and systems engineering processes must be defined so that they are consistent and
integrated with each other.

17

2.1.20 Test Coverage Exit Criteria
This best practice involves the use of objective and robust test coverage exit criteria for all levels of soft-
ware development testing (including software unit testing, unit integration testing, and hardware/software
integration testing) and for software qualification testing. Robust test coverage exit criteria for software
unit testing should include unit test cases covering, as a minimum, the correct execution of all statements
and branches; all error and exception handling; all unit interfaces, including limits and boundary condi-
tions; start-up, termination, and restart (when applicable); and all algorithms. Robust test coverage exit
criteria for unit integration testing should include integration test cases covering, as a minimum, the cor-
rect execution of all interfaces between units, including limit and boundary conditions; integrated error
and exception handling across the units under test; all end-to-end functional capabilities through the units
under test; all software requirements allocated to the units under test; performance testing, including
operational input and output data rates and timing and accuracy requirements; stress testing, including
worst-case scenario(s); start-up, termination, and restart (when applicable); fault detection, isolation, and
recovery handling (e.g., fault tolerance, failover, data capture and reporting); and resource utilization
measurement (e.g., CPU, memory, storage, bandwidth). Robust test coverage exit criteria for hard-
ware/software integration testing are similar to the criteria for unit integration testing. Robust test cover-
age exit criteria for software qualification testing should include, as a minimum, verification of all soft-
ware requirements under conditions that are as close as possible to those that the software will encounter
in the operational environment (e.g., operational databases, operational input and output data rates, target
hardware configurations); verification of all software interface requirements, using the actual interfaces
wherever possible or high-fidelity simulation of the interfaces where not possible; verification of all soft-
ware specialty engineering requirements (i.e., reliability/maintainability/availability, supportability, test-
ability, safety, security, human factors, as applicable), including in particular verification of software reli-
ability requirements and fault detection, isolation, and recovery requirements; stress testing, including
worst-case scenario(s); and resource utilization measurement (e.g., CPU, memory, storage, bandwidth).
Unit integration, hardware/software integration, and software qualification testing should always be per-
formed on target hardware configured to be as close as possible to the operational hardware configuration.

Software development testing and software qualification testing are the last opportunities for identifying
and correcting software defects before the system is integration tested, qualification tested, and fielded.
The rigorous enforcement of objective and robust test coverage exit criteria for all levels of software
testing will ensure a thorough test program that maximizes defect identification.

Effective application of this best practice requires the software to be tested under conditions as similar as
possible to those that will be encountered during operations. This requires early planning of the entire
software test effort so that sufficient time and funding are allocated for the development of high-fidelity
simulators and other necessary test tools and for the procurement and/or development of high-fidelity
ground testbeds. Effective application of this best practice also requires the inclusion of COTS and reuse
software in the robust exit criteria for all levels of testing. Reuse software, as a minimum, should be sub-
jected to the same exit criteria as newly developed software for unit testing, unit integration testing, and
hardware/software integration testing for all modified units, for all units where the track record indicates
potential problems (even if the units have not been modified), and for all critical units (even if the units
have not been modified). Unmodified reuse software and all COTS software, as a minimum, should be
subjected to the same exit criteria as newly developed software for unit integration testing and hard-
ware/software integration testing. Finally, all software requirements must be verified during software
qualification testing, whether they are satisfied by COTS, reuse (modified or unmodified), or newly
developed software.

18

2.2 Software Acquisition Best Practices

The set of recommended software acquisition best practices is shown in Table 2-3. These ten best prac-
tices are discussed below in alphabetical order so as not to imply an order of importance. It should be
noted that the recommended software acquisition best practices are not independent of each other; in fact,
effective use of a particular software acquisition best practice may require concurrent use of other soft-
ware acquisition best practices. In addition, the effective applications of the software acquisition best
practices are related to the effective applications of the software engineering best practices. This is
because the Government's software acquisition processes can positively encourage, or adversely con-
strain, the developer's use of software engineering best practices.

The phrases "software acquisition project" and "acquisition organization" are used with specific meanings
in this paragraph and its subparagraphs. A software acquisition project is responsible for the acquisition
management of a single software development effort (e.g., the software development for a particular pro-
gram that is developing a software-intensive system). A software acquisition project has one or more
software acquisition teams performing the software acquisition management effort. An acquisition orga-
nization, on the other hand, is responsible for the acquisition management of multiple software develop-
ment efforts (e.g., for multiple programs).

Table 2-3. Recommended Software Acquisition Best Practices

• Contractor capability evaluation

• Contractual software process commitment

• Independent technical reviews

• Realistic cost and schedule constraints

• Software acquisition metrics

• Software acquisition process improvement

• Software acquisition risk management

• Software quality incentives

• Software system acquisition

• Software-inclusive performance requirements

2.2.1 Contractor Capability Evaluation
This best practice consists of performing a formal evaluation of the contractor's software development
capability as part of the source-selection process for software-intensive systems. There are currently two
principal methods in use for performing such a formal evaluation: the SEI's Software Capability Evalua-
tion (SCESM) and the USAF's Software Development Capability Evaluation (SDCE).10 Both methods
are effective tools for obtaining insight into the offerers' software development processes, and both meth-
ods provide strengths, weaknesses, and risks for use in the source-selection evaluation.

The primary purpose for performing a contractor capability evaluation is to increase the likelihood of
selecting a contractor capable of developing the required software within the program constraints. It is
well established that risk in software development is reduced by selecting a contractor with mature soft-
ware engineering processes since the quality of a software system is largely governed by the quality of the
processes used to develop and maintain it. A secondary purpose for performing a contractor capability

10 SCE is a registered service mark of the Software Engineering Institute.

19

evaluation is to identify risks associated with the selected contractor to facilitate managing these risks
beginning at contract award. Another secondary purpose is to obtain a contractual commitment from the
selected contractor to adopt processes that instill and support effective software engineering discipline.

For a contractor capability evaluation to be effective and to achieve its goals, the contractor capability
evaluation must occupy a position of sufficient importance in the source-selection evaluation criteria to
affect the results of the source selection. It is strongly recommended that the contractor capability
evaluation be an entire subfactor of the Mission Capability factor.

2.2.2 Contractual Software Process Commitment
This best practice involves obtaining a contractual commitment that the contractor will follow specific,
well-disciplined software engineering processes. This commitment may be made by contractually
requiring adherence to a robust commercial standard for software development, such as IEEE/EIA J-STD-
016-1995. Alternatively, the commitment may be made by contractually requiring adherence to the
developer's Software Development Plan (SDP). In some acquisition environments, this contractual
requirement may be specified by the Government in the contract (e.g., by making IEEE/EIA J-STD-016-
1995 or the contractor's SDP be compliance documents). In other acquisition environments, the contrac-
tor may be required to specify their own compliance documents as part of their contractually compliant
Integrated Master Plan.

Since the quality of the software products is highly dependent upon the quality of the processes used to
develop them, adherence to mature, well-disciplined software engineering processes is essential to deliv-
ery of a high-quality software-intensive system. Contractual commitment helps to ensure that the devel-
oper will adhere to the required software engineering processes.

The most effective application of this best practice occurs when the developer's adherence to the con-
tractually compliant software development processes is evaluated as part of the award and/or incentive
fees. The use of award and/or incentive fees will provide significant motivation to the developer for
process compliance. Care must be taken to ensure that the contractually compliant software processes are
of sufficiently high quality to support the software development necessary for the software-intensive sys-
tem under contract. If IEEE/EIA J-STD-016-1995 is used, the Government should have approval over
any tailoring used in order to ensure that essential aspects of the standard's required software engineering
processes have not been deleted. If the developer's SDP is used, the Government should have approval of
the initial version of the SDP and any modifications to it before any version becomes contractually com-
pliant. This will help ensure that the SDP defines sufficiently high-quality software engineering proc-
esses to support development of the required software.

2.2.3 Independent Technical Reviews
This best practice consists of independent technical reviews of the developer's software products and
processes throughout the development life cycle. These independent technical reviews are performed by
the Government software acquisition team, which includes Government software acquisition personnel
and their software technical support contractors (such as FFRDCs, SETA contractors, and/or Independent
Verification and Validation contractors).

The objective of independent technical reviews of the developer's software products is to assist the devel-
oper in identifying defects in the software products. Independent technical reviews of software products

20

by the Government software acquisition team generally identify defects not found by the developer's
quality checks (e.g., defects due to misinterpretations of requirements, defects due to incorrect use of new
technologies). This is due to the difference in perspective of the independent reviewers compared to the
development personnel. The objective of independent technical reviews of the developer's software
processes is to assist the developer in improving their software development processes and their process
compliance. These independent process reviews focus on determining whether the developer's docu-
mented software development processes are effective and whether the developers are, in fact, following
their documented processes. Independent process reviews by the Government software acquisition team
may be informal or formal. One formal method for software process review is the SEI's SCE , which
can be applied for contract monitoring as well as source selection. Other types of independent technical
reviews, called independent assessments, focus on identifying problems and risks in the software devel-
opment project, assessing actual software status and performance, and developing solutions to critical
problems.

A good working relationship and good communication between the Government software acquisition
team and the developer's software development team will enhance the effectiveness of the independent
technical reviews. The most effective application of independent technical reviews occurs when the
results of the Government software acquisition team's reviews are used by the development contractor to
correct and improve their products and processes. Highly effective application of independent technical
reviews also occurs when the results of the Government team's independent technical reviews are used as
input to the award and/or incentive fee determination process.

2.2.4 Realistic Cost and Schedule Constraints
This best practice involves the Government making realistic software cost and schedule estimates based
upon valid historical data and the appropriate use of software cost models. The contractual cost and
schedule constraints imposed upon the developer must then be based upon these realistic software cost
and schedule estimates. Early life cycle software cost and schedule estimates should be based upon his-
torical data collected by the acquisition organization on similar past programs. Later in the life cycle,
updates to the Government's software cost and schedule estimates should include more accurate data
collected on the current software acquisition project.

Realistic software cost and schedule estimation not only increases the predictability of the cost and
schedule, and, therefore, decreases the probability of overruns, it also contributes to improved quality of
the software product. Sufficient time and effort to develop the software products, including performing
the quality checks and correcting any identified defects, is essential to reducing rework. Experience has
demonstrated that one of the largest contributors to poor software quality is schedule pressure. Research
has repeatedly shown that a software schedule compression of more than 25% off nominal is impossible
to meet. Thus, the Government should never impose contractual schedule requirements that would con-
strain the software schedule to be greater than, or even to approach, 25%. When such extreme schedule
constraints are imposed upon the developer, the schedule will not be met. In addition, the resulting
schedule pressure will result in poor software product quality since the contractual schedule constraints
will force the developer to take shortcuts in the software development processes.

For this best practice to be effective, the acquisition organization must develop and maintain an accurate
historical database of software size, cost, and schedule data from past and current software development
projects. In order to use this data for statistical analysis, the data must be uniformly defined and consis-
tently collected across projects. Another important part of this best practice is that the Government's
software cost and schedule estimates should be independent; that is, the Government should perform its

21

software cost and schedule estimates should be independent; that is, the Government should perform its
own software cost and schedule estimation and not rely solely upon the developer's estimates. The data
collected from the developer should provide important input into the Government's estimation process.
However, the independence of the Government's estimates is necessary to eliminate the biases present in
the developer's estimates (e.g., underestimation of amount of new code to be developed, overestimation
of amount of COTS and reuse code, overly optimistic parameters used in the software cost models, overly
optimistic productivity data).

2.2.5 Software Acquisition Metrics
This best practice involves the use of metrics as an integral part of the Government's software acquisition
processes. A software acquisition metrics program includes measurement of both the development and
the acquisition processes. This means that the Government software acquisition team needs metrics data
from the developer to assess the software development products, processes, and progress. Table 2-2
shows the software/system attributes recommended for measurement by the development project. In
addition, measurement of similar attributes of the work performed by the Government software acquisi-
tion team itself are needed for effective management of its own work. This best practice also requires the
acquisition organization to collect, maintain, and analyze historical software engineering and software
acquisition metrics data across multiple programs to enhance understanding and predictability of future
efforts.

An effective software acquisition measurement program provides high-level visibility into the health and
status of the software engineering and software acquisition products and lower-level data for timely
problem detection, isolation, and impact assessment. High-quality, accurate metrics reduce information
overload; enable software engineering and acquisition process evaluation and improvement; provide
assessment of product quality and project progress; and facilitate early detection, understanding, and
resolution of problems. When accurate, well-defined software acquisition and software development data
are collected from multiple projects by an acquisition organization, this historical data can be analyzed to
determine expected ranges of values for the various metrics. These expected ranges enable a software
acquisition project to easily identify areas where corrective action is needed.

An effective software acquisition metrics program requires comprehensive metrics planning, to include
selecting an appropriate set of software engineering and software acquisition metrics to be collected
throughout the life cycle and defining each selected metric in detail. The selected metrics should be based
upon an analysis of the goals of the acquisition organization and of the questions that the metrics are
intended to address. For example, to answer the Senate Report's question about the amount of expendi-
tures spent on software development rework, the proper data must have been collected on all defense
software development projects. In order for the historical software acquisition data to have maximum
utilization across an acquisition organization, it is important that the data be defined and collected in the
same way across all software development projects managed by that acquisition organization. This is
necessary in order to perform any kind of valid statistical analysis on the collected data. As an example,
consider the question of determining an expected value of software productivity (in source lines of code
per person-month) for newly developed code. In order to compute this value correctly from historical
data, each software development project would need to count lines of code in exactly the same way. To
accomplish this type of data collection, the acquisition organization needs to place a uniform set of con-
tractual requirements for data collection and reporting on each of its development contractors. Similarly,
the acquisition organization would need to define a uniform set of requirements for acquisition data col-
lecting and reporting by each of its acquisition projects.

22

2.2.6 Software Acquisition Process Improvement
Software acquisition process improvement involves analyzing the current software acquisition processes
for deficiencies and putting new and/or modified processes in place to correct those deficiencies. Process
improvement can be done informally or with the use of a formal model. The SEI has recently developed
a formal model for software acquisition process improvement, the Software Acquisition Capability
Maturity Model® (SA-CMM®).

Data collected in other domains (e.g., software engineering, manufacturing) have shown process
improvement efforts to be very cost effective. While data on software acquisition process improvement
do not yet exist, similar benefits are expected to apply to this domain. For example, improvements may
result in fewer overruns due to greater predictability in software cost and schedule and reduced life cycle
costs due to higher-quality software products being delivered. Furthermore, high-quality software acqui-
sition processes have a beneficial effect on the developer's adherence to well-disciplined software engi-
neering processes.

Software acquisition process improvement should be applied by an acquisition organization. This results
in the improvement of the acquisition-level organizational processes and is a necessary application of the
technique. However, acquisition process improvement is most effective when it is applied both at the
individual acquisition project level and at the acquisition organizational level. Application within an
acquisition project can result in highly effective, immediate improvements to the processes being used on
the project. Application at the acquisition organizational level results in the overall improvement of orga-
nizational acquisition processes, which is of principal benefit to future acquisition projects. In addition,
acquisition process improvement will not be effective unless the improved acquisition processes are rig-
orously adhered to by the acquisition projects.

2.2.7 Software Acquisition Risk Management
The best practice of risk management applies to software acquisition as well as to software engineering.
Software acquisition risk management is an effective mechanism for reducing the impact of potential
problems on the acquisition of a software-intensive system. Software acquisition risk management
involves a continuous process of risk identification, assessment, prioritization, mitigation, and control
throughout the life cycle of the software acquisition project, from mission needs identification through
retirement.

The use of software acquisition risk management enables a software acquisition project to understand its
risks (i.e., future problems that might occur) and, where possible, to mitigate the risks that are assessed to
have the largest potential impact on the software acquisition effort. Effective software acquisition risk
management can result in reducing the cost and schedule impact of problems by having alternative solu-
tions or workarounds identified before problems occur. Software acquisition risk management by the
Government's software acquisition team is necessary in addition to software engineering risk manage-
ment by the developer's software engineering team. The developer's software engineering risks are
almost always software acquisition risks. However, the program acquiring the software-intensive system
generally has additional risks as well (e.g., risks related to reduction in staffing of the Government pro-
gram office and their technical support contractors, risks related to program milestones). Furthermore,
the Government's software acquisition team frequently will identify additional software development
risks and will assess the importance of the developer-identified software development risks differently
than the developer. Independent risk assessment of the software development risks by the Government's

23

software acquisition team is an effective technique for identifying and assessing risks in the software
development project.

To be effective, the software acquisition risk management process must be practiced by all software
acquisition personnel and at all levels of the software acquisition project. Large programs frequently have
a Government risk management process at the program level with the top program risks being closely
monitored by Government program management. Just as frequently, however, the only risk management
process practiced on large, complex software-intensive programs is the program level process. An effec-
tive software acquisition risk management process must be practiced at every level of the software acqui-
sition project, including the lowest-level software acquisition team. Each software acquisition team
should use the software acquisition risk management process to identify its risks, mitigate and control
those risks that are within its scope of control, and elevate those risks with sufficiently high impact to
higher-level Government program management.

2.2.8 Software Quality Incentives
The use of award fees and other incentives can positively motivate the development contractor to use
software engineering best practices. Award fee is generally given at predetermined time intervals
throughout the contract duration. To apply this best practice, the award fee criteria contained in the award
fee plan need to include the quality of the software products produced during each award fee period. The
award fee criteria also need to include an evaluation of the degree of compliance with documented soft-
ware engineering processes during the award fee period and of the effectiveness of those processes.
Incentive fees based on performance of the delivered software product in its operational environment can
also be used to positively motivate the use of software engineering best practices during development.
Incentive fees post-delivery can be based upon system performance measures such as system reliability
and availability that include both hardware and software. They can also be based upon defect removal
effectiveness measures such as the ratio of defects found during development to the defects found during
operations.

Frequently, programs incentivize meeting target cost and target schedule without also incentivizing qual-
ity. The more constrained the contractual target cost and schedule, the more likely there are to be large
incentives dependent upon meeting those constraints. Incentivizing target cost and schedule without also
incentivizing product quality sends the message to the developer that product quality is not important to
the Government. The developer will then be motivated to take shortcuts in their software engineering
processes to earn the associated incentives, such as by eliminating the quality checks and reducing the
robustness of the test program. The Government should be especially concerned about cost and schedule
incentives that result in infeasible cost and schedule constraints for the software development effort.

Effective application of this best practice requires commitment from the Government in their execution of
the software quality incentives. The Government must be willing to allocate sufficient amounts of funds
to the software quality portion of the award fees and incentives so that the contractors are significantly
rewarded for use of software engineering best practices. In addition, they should also ensure that the
contractors are significantly penalized for process non-compliance and poor quality software products.
Independent technical reviews of software products and processes by the Government software acquisi-
tion team are effective mechanisms for providing input on software product and process quality to the
award fee process.

24

2.2.9 Software Systems Acquisition
For software-intensive systems, this best practice involves the inclusion of software acquisition as an
integral part of the systems acquisition processes. Software acquisition personnel must be knowledgeable
and must participate in the systems acquisition processes throughout the entire life cycle, from mission
needs identification through retirement. In addition, software acquisition processes must be consistent
and integrated with the systems acquisition processes.

It is very important for software acquisition to be an integral part of the system acquisition's pre-contract
award activities, especially in defining the system acquisition and support strategies and in preparing the
system performance requirements and request for proposal. Without effective participation of software
acquisition knowledgeable personnel in the pre-contract award activities, the selected contractor may not
be capable of performing the software development effort, the system performance requirements may not
include necessary software-related requirements, and the contract resulting from the procurement may not
be structured to encourage the developer to follow well-disciplined software engineering processes and
produce high-quality software products. Post-contract award, software acquisition must be an integral
part of the system acquisition contract management activities, especially for award and incentive fee
determination, to encourage the best software development performance from the developer.

The effective incorporation of software acquisition as an integral part of the systems acquisition processes
requires positive action by the Government program management. Government program management
must establish an environment where the software acquisition is a highly respected part of the program,
equivalent in importance to the hardware acquisition. In addition, the Government program must be
structured to provide effective lines of communication, responsibility, and authority among the software
acquisition teams and the other program teams involved in the systems acquisition processes.

2.2.10 Software-inclusive Performance Requirements
This best practice involves the inclusion of software in the specification of the system performance
requirements for the software-intensive system to be developed. Examples of performance requirements
that should have both hardware and software components specified are reliability, maintainability, and
availability; supportability, including testability and integrated system diagnostics; safety; security; mis-
sion performance timelines; computer resource reserves; and interoperability, including open systems
interface requirements.

Since the system performance requirements become the contractual requirements for the system under
development, it is very important that they have a complete system perspective, including both hardware
and software. The system performance requirements should not be specified so as to only reflect the
hardware contribution. For example, including software in the system RMA requirements will help
ensure that the RMA actually experienced during operations will meet the specified requirements. When
RMA requirements include only hardware, the operationally experienced RMA will be significantly less
than specified in the requirements due to failures caused by software faults. This can result in the soft-
ware-intensive system not being suitable for operations.

The most effective application of this best practice requires the participation of software acquisition per-
sonnel knowledgeable in specifying software-inclusive system performance requirements in the system
performance requirements definition process.

25

3. Managing the Risk in Using COTS and Reuse Software

For the purposes of this paper, the term "COTS software" refers specifically to a software package
offered for sale, lease, or license to the general public by a vendor. The term "reuse software," on the
other hand, refers to any previously developed (non-COTS) software being incorporated into the software
under development. Reuse software includes software previously developed by the development con-
tractor, software furnished by the Government (e.g., from another Government program), and software in
reuse libraries. Reuse software may be used with or without modification. It should be emphasized that
software that is still under development should not be considered reusable until its development is
complete.

The principal expected benefits of using COTS and reuse software are cost and schedule savings due to a
reduction in the amount of software to be developed. In addition, higher reliability and maintainability
benefits are also expected due to the use of software that, in some sense, has already been proven. The
expected extent of these benefits, however, is rarely met due to the current state of the practice in COTS
and reuse software.

The reality of using COTS and reuse software is frequently very different from the promised benefits of
its use. There is generally less COTS and reuse software that can be used than expected. This is due to
such factors as the requirements for the new system not being met, the algorithms not being appropriate
for the new system, the design not being compatible with the new architecture, and the reuse software not
being designed for reuse. This results in additional newly developed software being required. There is
also frequently more new software to be developed than expected due to large amounts of "glue" code
being needed in order to integrate the newly developed code, the reuse code, and multiple COTS software
packages.

In addition, the COTS or reuse software is frequently unreliable due to latent defects in the code or due to
unexpected side effects of unnecessary code that cannot easily be removed or disabled. Reuse software is
often difficult to modify and maintain due to poor design and implementation, out-of-date or non-existent
documentation, and the presence of obsolete technologies. When COTS software is incorporated into a
software-intensive system, there are frequently impacts to the software development effort when new ver-
sions of (or patches to) COTS packages are released by the vendors. There are often networks of interde-
pendencies among COTS packages, where one package cannot be updated until one or more other pack-
ages are updated. Often these updates are being performed by different vendors on schedules incompati-
ble with project needs.

The bottom line is that the incorporation of COTS and reuse software into software-intensive systems will
almost always require more cost and schedule than originally estimated to complete the development
effort. This is exacerbated by the demands of the competitive procurement process that cause the
amounts of COTS and reuse software bid by the developers to be significantly overestimated and the
amounts of integration effort and "glue" code to be significantly underestimated.

In spite of the problems involved, affordability constraints are causing increasing reliance on COTS and
reuse software. Software-intensive systems are now too large, complex, and costly to be built completely

27

from scratch. COTS and reuse software, however, must be considered as significant risk areas that must
be mitigated and managed throughout the system life cycle. Furthermore, the software acquisition and
software engineering best practices described in Section 2 of this paper need to be applied to the full
software development effort, including any COTS and reuse software as well as the newly developed
software.

One of the significant problems in the use of COTS and reuse software is the lack of a thorough evalua-
tion before the decision is made to incorporate the COTS and reuse software into the system under devel-
opment. Such an evaluation should be the basis of any decision to use, or not use, particular COTS soft-
ware packages or reuse software. If, after the evaluation, the decision is made to use the COTS or reuse
software, the results of the evaluation will identify specific risks in incorporating that COTS or reuse
software into the deliverable software product. Thus, the evaluation will assist in determining risk miti-
gation efforts that should be carried out. In addition, after the decision is made to use the COTS or reuse
software, that software must be the subject of continuous risk management throughout the development
life cycle. This includes frequent re-evaluation of the COTS and reuse software as the system and soft-
ware development progresses. Essential criteria recommended by The Aerospace Corporation for evalu-
ating COTS and reuse software are shown in Table 3-1.

Table 3-1. Recommended Criteria for Evaluating COTS and Reuse Software

Ability to provide required capability and meet required constraints
- Ability to satisfy requirements
- Ability to achieve necessary performance, especially with realistic operational workloads
- Appropriateness of algorithms in the COTS/reuse software for use in the new system
- Need for and ability to perform characterization/stress testing to determine actual

capabilities and performance
Ability to provide required protection
 - Safety, security, and privacy
Reliability/maturity

- As evidenced by an established track record
Testability
 - As evidenced by the ability to identify and isolate faults
Interoperability with other system and system-external elements

- Compatibility with system interfaces
 - Adherence to standards (e.g., open systems interface standards)
Suitability for incorporation into the new system architecture

- Compatible software architecture and design features
- Absence of obsolete technologies

Need for re-engineering and/or additional code development (e.g., wraps, "glue" code)
Compatibility among the set of COTS software packages
Need for prototyping

- To determine compatibility, wraps, "glue" code
Ability to remove or disable features/capabilities not required in the new system
 - Impact if those features cannot be removed/disabled or are not removed/disabled
Availability of personnel knowledgeable about the COTS/reuse product

- Training required
 - Hiring required
Availability and quality of documentation and source files

- Completeness
 - Accuracy

28

Acceptability of software product licensing and data rights
- Restrictions on copying/distributing the software or documentation
- License or other fees applicable to each copy
- Acquirer's usage and ownership rights, especially to the source code

- Ability to place source code in escrow against the possibility of the vendor/developer
going out of business

- Warranties available
Maintainability, including:

- Likelihood the software product will need to be changed
- Feasibility/difficulty of accomplishing that change if changes are to be made by the

program reusing the software product
- Quality of design and code
- Need for re-engineering and/or restructuring

- Feasibility/difficulty of accomplishing that change, if changes are to be made by the vendor
or product developer (e.g., for COTS or proprietary software)

- Priority of changes required by this program versus other changes being made
- Likelihood that the current version will continue to be maintained by the

vendor/developer
- Impact on the system if the current version is not maintained by the
 vendor/developer

Potential for multiple baselines of the COTS or reuse software product
- Likelihood of modifications being made by the vendor/developer (e.g., a new version being

released) after a particular version has been incorporated into the new system
- Feasibility/difficulty of incorporating the new version of the COTS/reuse product into the

new system
- Impact if the new version is not incorporated
 - Ability of the new architecture to support the evolution of COTS/reuse software products
Compatibility of planned upgrades of COTS or reuse software with software development plans and
schedules

- Compatibility of planned upgrades with build content and schedules
- Impact on development cost and schedule to incorporate upgrades
- Dependencies among COTS software packages

- Potential for an incompatible set of COTS packages
 - Potential for schedule delays until all dependent COTS products are upgraded
Criticality of the functionality provided by the COTS or reuse software
Short- and long-term cost impacts of using the COTS/reuse software

- Amount of management reserve needed in case less COTS/reuse software is usable and
more newly developed software is required

Technical, cost, and schedule risks and tradeoffs in using the COTS/reuse software

29

4. Conclusion

This paper recommends a set of software acquisition and software engineering best practices that address
the issues raised in the Senate Report. These recommendations are based upon the experience of The
Aerospace Corporation in supporting the USAF and the NRO in the acquisition of DoD software-
intensive space systems. These software acquisition and software engineering best practices are strongly
focused on reducing rework to correct defects in software products since rework is one of the principal
concerns of the Senate Report. The Senate Report also encourages the DoD to maximize the use of
COTS and reuse software. To address this issue, the paper discusses the risks inherent in such use and
presents criteria for the evaluation of COTS and reuse software to assist in identifying and mitigating
these risks.

The Department of Defense is the world leader in sponsoring efforts to define and transition software
engineering best practices to the DoD developers. Examples of DoD-sponsored organizations are the
SEI, an FFRDC whose focus is to improve the state of software practice throughout the defense
community; the DoD Software Program Manager's Network, whose focus is to bring about
improvements in productivity, quality, timeliness, and user satisfaction by implementing best practices as
a foundation for DoD software management; and the DoD Practical Software Measurement organization,
whose focus is to provide program managers with the objective information needed to successfully meet
cost, schedule, and technical objectives on software intensive programs. Individual services also have
similar efforts, for example, the Air Force's Software Technology Support Center, which provides
services and support to organizations responsible for software development and/or maintenance, including
Government acquisition organizations, Government development/maintenance organizations, and
contractors. In addition, the DoD has been the principal force behind the development of the existing
commercial software product standards (e.g., open systems interface standards) and process standards
(e.g., IEEE/EIA J-STD-016-1995).

Unfortunately, the knowledge of software acquisition and software engineering best practices is ahead of
their implementation, both by the Government and by its development contractors. The DoD's acquisi-
tion reform initiatives have focused upon acquisition streamlining to reduce the projected program cost
and schedule. There has been very little emphasis on the resulting quality of the systems being acquired
and on the cost of rework. This is especially the case in the area of software, even though improving
software product quality and reducing rework will result in considerable cost and schedule savings over
the life of the program. A "contracting for quality" initiative is needed as part of the DoD's acquisition
reform efforts to provide a more balanced approach to acquisition reform. This initiative should define
acquisition strategies, performance requirements, incentives, and contract provisions designed to ensure
that the contractors rigorously apply software engineering best practices in the development of the DoD's
software-intensive systems.

The DoD also needs to take the lead in defining and transitioning software acquisition best practices to its
acquisition organizations. A "software acquisition improvement" initiative is needed to stimulate soft-
ware acquisition process improvement in the DoD acquisition organizations. The SA-CMM is recom-
mended for use to provide a formalized framework for software acquisition process improvement.

31

References

Air Force Materiel Command, Software Development Capability Evaluation, Volumes 1 and 2, AFMCP
63-103,15 June 1994.

Air Force Software Technology Support Center, Guidelines for Successful Acquisition and Management
of Software Intensive Systems, Version 2.0, June 1996.

Paul Byrnes and Mike Phillips, Software Capability Evaluation (SCESM) Version 3.0 Method Description,
Software Engineering Institute, Carnegie-Mellon University, No. CMU/SEI-96-TR-2, April 1996.

DoD Software Program Manager's Network, The Program Manager's Guide to Software Acquisition
Best Practices, Version 2.2, June 1998.

DoD Software Program Manager's Network, The Guidebook of Software Acquisition Questions, Version
1.0, July 1999.

Dorofee, A.; Walker, J.; Alberts, C; Higuera, R.; Murphy, R.; & Williams, R. Continuous Risk Manage-
ment Guidebook, Software Engineering Institute, Carnegie Mellon University, 1996.

Jack Ferguson, Jack Cooper, Michael Falat, Mathew Fisher, Anthony Guido, John Marciniak, Jordan
Matejceck, and Robert Webster, Software Acquisition Capability Maturity Model® (SA-CMM®),
Version 1.01, Software Engineering Institute, Carnegie-Mellon University, No. CMU/SEI-96-TR-
020, December 1996.

Brian P. Gallagher, Christopher J. Alberts, and Richard E. Barbour, Software Acquisition Risk Manage-
ment Key Process Area (KPA) - A Guidebook, Version 1.0, Software Engineering Institute, Carne-
gie Mellon University, CMU/SEI-97-HB-002, August 1997.

S. K. Hoting and R. J. Costello, Computer Systems Division Software System Metrics Approach, Revi-
sion 1, Aerospace Report No. TR-96(8617)-1, September 1996.

IEEE/EIA 12207.0 - 1996, Information Technology - Software Life Cycle Processes.

IEEE/EIA 12207.1 - 1997, Guide for Information Technology - Software Life Cycle Processes - Life
Cycle Data.

IEEE/EIA 12207.2 - 1997, Guide for Information Technology - Software Life Cycle Processes -
Implementation Consideration.

IEEE/EIA Interim Standard J-STD-016-1995, Standard for Information Technology, Software Life Cycle
Processes, Software Development Acquirer-Supplier Agreement, 30 September 1995.

ISO/IEC 12207, Information Technology ~ Software Life Cycle Processes, 1 August 1995.

Joint Logistics Commanders Joint Group on Systems Engineering, Practical Software Measurement: A
guide to objective program insight, Version 3.1a, April 17, 1998.

33

Mark C. Paulk, Bill Curtis, Marybeth Chassis, and Charles V. Weber, Capability Maturity Model® for
Software, Version 1.1, Software Engineering Institute, Carnegie-Mellon University No CMU/SEI-
93-TR-24, February 1993.

The Aerospace Institute, Introduction to Software Acquisition, Course Materials, January 1999.

34

Appendix A—Mapping Between This Paper and the Senate Report Excerpt

Table A-l provides a mapping between the recommended software acquisition and software engineering
best practices discussed in Section 2 of this paper and the topics addressed in the Senate Report excerpt
on "Software Management Improvements" (see Table 1-1 of the body of this report). Also included in
Table A-l is a mapping between the COTS and reuse software information discussed in Section 3 of this
paper and the topics addressed in the Senate Report excerpt.

The numbers in the column headings of Table A-l refer to the item numbers in the Senate Report excerpt
(see Table 1-1 in the body of this report). These items are the topics to be discussed by the DoD in the
report required by the Senate. A summary of these topics is as follows:

(1) Software risk management

(2) Requirements control and change management

(3) Metrics for product quality, process effectiveness, and problem identification

(4) Metrics for successful fielding

(5) Maximizing use of COTS and reuse software

(6) Portion of expenditures spent on rework

A-l

Table A-l. Mapping Between This Paper and the Senate Report Excerpt

White Paper Paragraph

Senate Report Topic

&.
o
0)

OC
O)
c
Ö
3
•o
0)

OC (1
)S

W
R

is
k

M

an
ag

em
en

t

(2
)

R
eq

s.
 C

on
tr

ol
 a

nd

M
an

ag
em

en
t

(3
)

M
et

ri
cs

 f
o

r
D

ev
el

o
p

m
en

t

(4
)

M
et

ri
cs

 f
o

r
Fi

el
di

ng

(5
)

M
ax

im
iz

in
g
 C

O
T

S

an
d

R
eu

se

(6
)

R
ew

or
k

E
xp

en
d

it
u

re
s

2.1.1 Binary Quality Gates X
2.1.2 Configuration & Change Management X X
2.1.3 Customer/User Involvement X X
2.1.4 Defect Root Cause Analysis X X
2.1.5 Formal Inspections X
2.1.6 Iterative Life Cycle Models X
2.1.7 Prototyping X
2.1.8 Quantitative Cost & Schedule Mgmt. X X X
2.1.9 Realistic Cost & Schedule Estimation X X X
2.1.10 Requirements Traceability X X
2.1.11 Software Architecture Definition X X
2.1.12 Software Eng. Process Improvement X
2.1.13 Software Interface Management X X
2.1.14 Software Metrics X X X X
2.1.15 Software Process Standards X
2.1.16 Software Reliability Engineering X X X
2.1.17 Software Requirements Definition X X
2.1.18 Software Risk Management X X
2.1.19 Software Systems Engineering X X
2.1.20 Test Coverage Exit Criteria X X
2.2.1 Contractor Capability Evaluation X X
2.2.2 Contractual SW Process Commitment X X
2.2.3 Independent Technical Reviews X X
2.2.4 Realistic Cost & Schedule Constraints X X X X
2.2.5 Software Acquisition Metrics X X X X X
2.2.6 Software Acq. Process Improvement X X
2.2.7 Software Acq. Risk Management X X
2.2.8 Software Quality Incentives X X X
2.2.9 Software Systems Acquisition X X X
2.2.10 Software-Inclusive Performance Reqs. X X X
3. Managing Risk in Using COTS and

Reuse Software
X X X

A-2

Appendix B—Acronym and Abbreviation List

® Registered Trademark
Acq. Acquisition
AFMCP Air Force Materiel Command Pamphlet
CASE Computer-Aided Software Engineering
CCB Configuration Control Board
CMM® Capability Maturity Model®
CMU Carnegie-Mellon University
COTS Commercial Off-the-Shelf
CSD Computer Systems Division
DoD Department of Defense
EIA Electronics Industries Association
Eng. Engineering
FFRDC Federally Funded Research and Development Center
GAO Government Accounting Office
HB Handbook
IEC International Electrotechnical Commission
IEEE Institute for Electrical and Electronics Engineers, Inc.
ISO International Organization for Standardization
J Joint
KPA Key Process Area
Mgmt. Management
MIL Military
MOIE Mission-Oriented Investigative Experimentation
NRO National Reconnaissance Office
Reqs. Requirements
SA-CMM® Software Acquisition Capability Maturity Model®
SBIRS Space-Based Infrared System
SBSD Space-Based Surveillance Division
SCCB Software Configuration Control Board
SCESM Software Capability Evaluation
SDCE Software Development Capability Evaluation
SDP Software Development Plan
SEI Software Engineering Institute
SEPG Software Engineering Process Group
SETA Systems Engineering and Technical Assistance
SM Service Mark
STD Standard
SW Software
SW-CMM® Capability Maturity Model® for Software
TR Technical Report
U.S. United States
USAF United States Air Force

B-l

