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ABSTRACT 

This thesis applies time-frequency transformations to radar signals. Specifically, it 

considers the feasibility of applying time-frequency transformations to extract the intra- 

pulse modulation parameters of radar signals. In this work, we consider radar signals with 

analog pulse compression; specifically linear or hyperbolic intra-pulse modulation. 

Several time-frequency transformations are investigated to identify which one gives the 

most accurate image representation for signals in noisy environments. Next, image 

processing techniques are applied in conjunction with an adaptive curve fitting method, 

for the hyperbolic modulation scheme, to extract the parameters of the frequency 

equation. Results show that for the linear chip case the frequency equation can be 

estimated with small error down to SNR equal to -lOdB. The proposed method for the 

hyperbolic chirp modulation is less immune to noise degradation and it can be used down 

to SNR level equal to 2dB. 
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I.        INTRODUCTION 

The analysis of a signal in both the time and frequency domain gives a more 

complete description than that provided by individual analysis in either domain. This 

advantage was recognized a long time ago but the complexity of the joint time-frequency 

algorithms made their implementations an extremely slow operation due to computing 

power limitations. However, as computers become more powerful, joint time-frequency 

analysis may be applied in a larger number of real-world problems. 

A.       OBJECTIVE 

This thesis investigates the application of time-frequency transformations to the 

extraction of intra-pulse modulation parameters from radar signals. This information can 

be a useful tool to identify the specific radar type and help with jamming techniques, if so 

desired. Intra-pulse modulation parameters are usually extracted using hardware schemes 

which are well suited to extract the instantaneous frequency at high SNR levels. 

Our study considers the problem from a different angle and investigates the 

application of time-frequency and a basic image processing technique to extract the 

information. Joint time-frequency transformations can be implemented inexpensively and 

give accurate results in medium to high SNR levels. We consider radar signals with 

analog pulse compression; specifically linear or hyperbolic intra-pulse modulation. 

Several time-frequency transformations are investigated to identify that which gives the 

most accurate image representation for signals in noisy environments. Next, image 

processing techniques are applied used in conjunction with an adaptive curve fitting 
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method, to extract the parameters of the frequency equation. The type of modulation, as 

well as, the start and stop time of the pulse under investigation was assumed to be known. 

B.       THESIS ORGANIZATION 

Radar signals with large time bandwidth products are introduced in chapter II. 

Chapter III presents an overview of the time frequency methods considered. Chapter IV 

discusses the basic idea behind the Radon transform and its application in detecting line 

parameters from a noisy image. Chapters V and VI present the complete methods and the 

simulations conducted to test the schemes derived to extract the intra-pulse modulation 

parameters for linear and hyperbolic modulation. Finally, conclusions and 

recommendations for further research are presented in chapter VE. 



II.       RADAR SIGNALS WITH LARGE TIME BANWIDTH PRODUCTS 

Ideally we would like a radar to produce good range resolution as well as large 

detection range. Unfortunately, these requirements are contradictory since the first 

requires a small pulse period, while the second requires a large pulse duration. The 

problem can be solved with a technique that uses intra-pulse modulation or, as it is better 

known, pulse compression. This chapter present the basic ideas behind pulse 

compression. 

A.       RESOLUTION 

A very important aspect of the radar is its resolution properties. By this we mean 

the ability to detect multiple targets that are close together. Generally, there are four types 

of resolution: 

- Range resolution 

- Horizontal (azimuth) cross-range resolution 

- Vertical (elevation) cross-range resolution 

- Doppler frequency resolution. 

i 
Cross-range 

resolution 

Range 
H     Range     L 

resolution   | 

Figure 1: Range and Cross-Range Resolution From [1] 



1.        Range Resolution 

Range resolution is the ability to distinguish between targets, which are at the 

same angular position but are at different distances to the radar. This resolution is directly 

proportional to the radar signal bandwidth: the larger the bandwidth is, the better the 

range becomes. In order to resolve two targets, the basic criterion is that they must be 

separated by at least the range equivalent of the width of the processed echo pulse as 

illustrated in Figure 2. 

Processed 
pulse width 

Unresolved Near resolved 

a. Wide processed pulse width 

Resolved 

A_ _^_ _jy\ 
Processed 

pulse width 
Unresolved Near resolved Resolved 

Figure 2: Range Resolution and Processed Pulse Width. From Ref. [1] 

2.        Horizontal and Vertical Cross-Range Resolution. 

Cross-range resolution is defined as the ability to distinguish between targets that 

have the same distance from the radar but are at a different azimuth (horizontal) and/or 

different elevation (vertical). This resolution is inversely proportional to the antenna 

beamwidth. That means the smaller the beamwidth is, the better the cross-range 



resolution is. The basic constraint is that the targets must be separated by at least the 

antenna beamwidth. Figure 3 shows the effect of the antenna's beamwidth to the 

horizontal cross-range resolution. 

Antenna 
scan 

Beamwidth d> 
Targets separated by 
less than beamwidth 

Targets separated by 
antenna beamwidth 

Targets separated by 
greater than beamwidth 

_Ü LL -Ü Li- 

Signal echoes - 
Unresolved 

Signal echoes - 
Near resolved 

Signal echoes - 
Resolved 

Figure 3: Antenna Beamwidth and Horizontal Cross-Range Resolution. From 
Ref. [1] 

3.        Doppler Resolution 

Radar doppler resolution is defined as the ability to distinguish between targets 

that have the same range, azimuth and elevation but have different radial velocities. The 

basic criterion is that the Doppler frequencies of the targets must be separated by at least 

one cycle over the time of observation. 

B.       PULSE COMPRESSION 

A radar should have a large a detection range. If we assume that we use the best 

techniques for antenna and signal processing gain, the only way to increase the range is 

by increasing the energy of the transmitted signal. There are two ways to increase the 



energy; by increasing its amplitude (power) of the pulse, or by increasing the pulse 

duration. Since all transmitters have peak power limitations, the most common choice is 

to increase the pulse duration, which is in contradiction to the need for narrow pulses to 

ensure good range resolution. The technique that uses long pulses with high bandwidth is 

called pulse compression. 

1.        Analog Pulse Compression 

This technique uses modulated radio frequency signals. Let's assume that we have 

a finite pulse duration radar signal with a constant radio frequency defined as: 

c(t) = r(t)-s(t), (H-l) 

where r(t) is a pulse and s(t) is a sinusoid function. Let C(f), R(f) and S(f) be the 

Fourier transform of the time domain signals, then: 

C(f) = /?(/)* S(f), (H-2) 

where the operator (*) denotes the convolution operation. Thus, the spectrum of 

the total signal has the form of a sine function centered at the frequency of the sinusoid 

with a null to null bandwidth equal to the double of the reciprocal of the width of the 

pulse in the time domain, as illustrated in Figure 4. 



r(t) R(f) 

T 

s(l) 
1 2TT 

S(f) 

c(t) C(f) 

2fT 

Figure 4: Bandwidth of a CW pulse. 

The Fourier transform S(f) is not a delta function when the radio signal s(t) is a 

modulated sinusoid. This in turns affects the bandwidth of the transmitted signal and 

gives a null to null bandwidth greater than 2/T, as shown in Figure 5. 
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Figure 5: Bandwidth of a linear modulated pulse. 



Next we will examine the two most widely used types of pulse intra-modulation; 

linear and hyperbolic modulations. 

a) Linear Modulation 

In this case the frequency of the radio signal inside the pulse changes 

linearly with a slope k from an initial frequency f0 which leads to: 

f(t) = f0+k-t. (Jl-3) 

Where/o is the initial frequency at t=0.Thus, the transmitted signal c(t) is 

given as: 

c(t) = reel(J-) ■ exp( j2x j fdt) =rect (—) • e^f*'+\^ . (rj-4) 

b) Hyperbolic Modulation 

In this case, the signal inside the pulse is modulated following a hyperbolic 

equation. The resulting frequency equation is given as: 

f(t) = - + b. (n-5) 

Note that the above time varying frequency f(t) is not finite for t=0. Thus, 

the above definition is modified by introducing a time shift t0 to ensure a finite frequency 

value for t=0, which leads to: 

fW = -rrr+b- (n-6) t+t0 



Thus, the instantaneous frequency fit) can be viewed as being a part of the 

hyperbola defined from the equation (II-5) with an initial value of /„ = — + b. 
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Figure 6: Hyperbolic frequency modulation. 

As a result, the equation of the transmitted signal is given by: 

c(t) = rect(—) • exp( jln \ fdt) =rect (-) • eJW*i+h)+»>.     (rj-7) 
T « T 

2.        Digital Pulse Compression 

Digital pulse compression involves phase-coded waveforms. These are usually bi- 

phase modulated sinusoids with the two possible phases to be at 0° and 180°. The overall 

digital waveform consists of an array of N subpulses, each one with an initial phase of 0° 

or 180° and a time length xs. The width of the total waveform is TE- Figure 7 shows a 

biphase coded signal using a 13-bit biphase sequence. In this figure a "+" corresponds to 



a subpulse with an initial phase 0° and a "-" corresponds to a subpulse with an initial 

phase 180°. 

a. Waveform 

+ +1+ + + - - - + + -   +   - -   + 
-* 

Ts 
-TE   » 

Figure 7: Phase coded waveform. From Ref.fl] 

The codes that are used in the phase coded waveforms should have a delta-like 

autocorrelation function, to allow pulse compression to take place without windowing the 

signal. The two most widely used codes are the Barker codes and the Pseudorandom 

codes [1]. 
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III.     TIME-FREQUENCY REPRESENTATIONS 

Generally, a signal can be represented using different types of decompositions. 

The two most widely used representations are the time domain and the frequency domain 

representation. The first shows how the amplitude of the signal changes with respect to 

time while the second shows how often these changes occur. These representations are 

uniquely related to each other via the Fourier transform. 

A.       FOURIER ANALYSIS 

1.        Fourier Series 

The basic idea behind the Fourier decomposition is to express a periodic signal as 

a weighted sum of sinusoids. Let's assume that we have a signal x(t) with period T. 

Provided that it satisfies the Dirichlet's conditions, then it can represented as follows: 

*(o= IX-^ jk(.2nlT)t 
(m-D 

k=- 

where 

ak=±-lxit)-e-W,T»dt.- (m-2) 

The frequency 1/T is called the fundamental frequency. The equation (III-l) gives 

the general case where the type of basis functions are complex exponentials. 

2.        Fourier Transform 

By analogy with equation (m-2), the Fourier transform X(f) of a continuous signal 

x(t) is given by: 

11 



*(/)= ]x(t)-e-J2*dt. cm-3) 

The plot of the magnitude squared of the Fourier transform is proportional to the 

spectrum of the signal x(t). The original signal can be recovered from its Fourier 

transform with the inverse Fourier transform: 

x(t)= jX(f)-e-J2'*df (m-4) 

The fast discrete version of Fourier transform revolutionized the signal processing 

area. However, there exist many signals which cannot be described accurately with this 

transformation. Although the spectrum indicates the frequencies and intensities of the 

signal, it provides no information regarding the variations of the signal characteristics as a 

function of time. Thus, the Fourier transform does not analyze non stationary signals very 

accurately. For example, consider two signals xi(t) and x2(t), observed during the same 

time period T, as shown in Figure 8. The first one is the sum of two pure tones while the 

second one consists of the first tone for the first half time and then switches to the second 

tone for the rest of its duration. Their Fourier transform magnitudes look almost identical, 

however   they are not exactly the same since the Fourier transform is a reversible 

operation. Figure 8 shows that it is not possible to extract specific information regarding 

the frequency variations as a function of time. Unfortunately, most signals in real life are 

not stationary, such as for example speech, music, vibration signals and many more. 

Analyzing non-stationary signals requires a tool which allows to represent the variations 

of the frequency content as a function of time; i.e., a joint time-frequency representation. 

12 



Several techniques have been developed for this type of representation. In this thesis, we 

will deal with two major classes: atomic decompositions and energy distributions. 

500 

f1/fs 

x1(t) 

J I V-   
x2(t)    fSJfs fs/2 

-1 

400 

■NHI 
X2(f) 

Figure 8: Fourier transform of two signals. 

B.       ATOMIC DECOMPOSITIONS 

The Fourier transform can be considered as the projection of a signal into an 

infinite set of sinusoids. The problem with sinusoids is that they are not localized in time, 

although they are perfectly localized in frequency. The basic idea behind the atomic 

decomposition is to decompose a signal into a set of atoms (i.e. functions) that are well 
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localized both in time and in frequency. These types of decompositions are called atomic 

decompositions or linear time-frequency representations. 

1.        Short-Time Fourier Transform 

This method is an extension of the Fourier transform, where localization in time is 

introduced by windowing the sinusoidal functions used in the decomposition. Thus, the 

Sort-Time Fourier Transform (STFT) is given by: 

S{T,f)=\x(t)-g(t-T)-e-j2*f'dt, (m-5) 

where g(t) is the window function. Note that the STFT is an invertible operation, 

provided that the window is of finite energy, i.e., 

x(t)=-±r-]]s(T,f)-g(t-T)-ej2*TfdT-df, (m-6) 
-h     -=. 

where Eh = )\g(t)\ dt. The STFT operation can be considered as a set of successive 

Fourier transforms applied to windowed segments of the signal, as illustrated in Figure 9. 

Thus, g(t) can be viewed as a sliding window which allows for segmentation of the 

original signal. 

14 
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Figure 9: Short-Time Fourier Transform. From Ref[2] 

The STFT of x(t) can also be seen as the expansion of the signal   into a set of 

atomic functions of the form: 

aTj(t) = g(t-T)-e j27ifi (m-7) 

The above function can be recognized as a windowed complex sinusoid, where 

the window type and duration affects the resolution of the STFT in time and in frequency. 

The plot of the squared magnitude of the STFT is called the spectrogram. 

2.        Gabor Expansion 

In 1946, Dennis Gabor introduced the decomposition of a signal into a weighted 

sum of functions that are both localized in time and frequency. The Gabor expansion is 

defined as: 

oo oo 

*(0=E    I,Cm,n-K,n(t), (ffl-8) 
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where: 

hmn (r) = h(t - mT) ■ exp(jnQt). (m-9) 

The coefficients Cm,n are called the Gabor coefficients, while T and Q. are the time 

and frequency sampling steps. Initially, Gabor selected h(t) to be Gaussian, since it is 

optimally concentrated in the joint time-frequency domain. However, h(t) can be any 

function. Comparing equations (ELS) and (HI-6) shows that the Gabor expansion is 

similar to the discrete version of the inverse STFT. In fact, the Gabor expansion is the 

generalization of the discrete inverse STFT which is used as a fast algorithm for its 

computation [2,9]. 

3.        Wavelet Analysis 

a)        Continuous wavelet transform 

We saw that the STFT of x(t) is the decomposition of the signal into a set 

of atoms of the form (III-7) which are two-parameter functions of a complex sinusoid. 

The continuous wavelet transform is a more general case, where the basis function is not 

a complex sinusoid but a function with specific properties of the form: 

a (m-io) 

The parameters a and t are the scale and translation factor, respectively. 

The function W(t) is called the mother wavelet. This basis function must meet two 

important criteria; 1) it must have finite duration, and 2) it must have a zero average 
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value. Some of the most widely used wavelets are the Haar, Daubechies, Coiflet, 

Symmlet which are shown in Figure 10. 

Haar 
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0.2 ■ 
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-0.3 
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Symmlet-8 

0.2        0.4        0.6        0.8 
-0.2 

0. ,2        0.4        0.6        0.8 

Figure 10: Different types of wavelets. From [12] 

The continuous wavelet transform (CWT) of x(t) is defined as the integral 

of the signal multiplied by scaled and shifted versions of the mother wavelet function \|/(t) 

[6]: 

C(t,a) = ^=- \x{t)-V\—)dt, (m-ll) 

where the factor —== normalizes the transformation. Comparing equation (III-ll) with 
Vor 

equation (Tfl-5) shows that we can relate the scale (or dilation) factor a to the frequency/. 

The difference in the CWT is that the time and frequency resolution are also controlled 

by the factor   a instead of the window function only, as is the case for the STFT. 

Specifically, small values of a mean that the wavelet is contracted in time, thus expanded 
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in frequency. Therefore, the time resolution is good while the frequency resolution is 

poor. Similarly the wavelet is expanded in time and contracted in frequency when a takes 

large values. In this case, the time resolution becomes poor as the frequency resolution 

improves. This unique characteristic of the wavelet analysis is known as the 

multiresolution capability in the time-frequency plane. Figure 11 shows the tiling of the 

time-frequency plane for the wavelet analysis and for the STFT. 

1 ST FT *                  Wavelet 
i     - 

0.8 

§0-6 

0.8 

>, 
8 0.6 
CD 

cr 
£0.4 2 0.4 

LL 

02 0.2 

0 0I .  
Time Time 

Figure 11: STFTvs. Wavelet time-frequency resolution. 

Equation (1H-11) can also be written in the form: 

C(a,T) = x(t)*Wa(t,T), (m-12) 

where*denotes convolution and 

V<2 Ö 
(m-i3) 
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It can be shown that Wa (t) is the impulse response of a band-pass filter 

[4]. Thus, equation (IH-12) shows that the CWT of x(t) can be computed by filtering the 

signal through a series of band-pass proportional filters. The plot of the square magnitude 

of C(a,z) is called the scalogram, by analogy with the STFT spectrogram. The CWT is a 

reversible operation, which means that the original signal x(t) can be derived from its 

transform C(a, r) by [4]: 

+00+00 

x(t) = — f  f C(r, a) ■ -5-= ■ y/{ )dtda , 
4v 0 L aVfl        a 

(m-i4) 

where 

O) 
(m-i5) 

and ¥(0)) is the Fourier transform of Wit). Equation (III-14) implies that C(a,z) needs to 

be known for the whole range of a in [0,°°], in order to recover the signal in time domain 

from the CWT. When the CWT is known for values a<a0 only, a scaling function which 

contains the information for the range a > a0 needs to be introduced. The scaling function 

(|>(t) is the impulse response of a lowpass filter. If we define: 

<z>5(0 = ^(-), 
VS        s 

(m-16) 
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then, equation (ICf-14) can be written as: 

1 a°                      d          1 
x(t) = — \c(a,T)*Wa(t)-^ + L{aQ,T)*<t>a (t),       (IH-17) 

4v o a      % 'a0 

where the term L(a,r) is called the low frequency approximation of x(t) at scale a and is 

given by: 

L(a,t) = x(t)*fa(t-T). (m-18) 

b)       Discrete wavelet transform 

The discrete wavelet transform (DWT) can be derived from the continuous 

wavelet transform expression using the discrete versions of a,rand t. Specifically, the 

DWT of a discrete signal x(n) is defined as: 

cca,*)^-^")11'^—)• an-19) 

In practice we further restrict the factors a and b to 

a = 2j, b = k-2j , (m-20) 

where k and j are integers. Using equation (HI-20), equation (m-19) can be written as: 

N      j 

Cj,k=
rZ-r^x(nW*(2^n-k). (EI-21) 
n=H2J 

Equation (EI-21) shows that the DWT is decimated by a factor of two at 

each successive scale j. Specifically, the maximal values of j and k are log2(N), and N2"j 
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for a given value of k, for a signal length equal to N. The signal x(n) can be recovered 

from the DWT using the discrete version of equation (IE-17) which yields [4]: 

(m-22) 

where the operator ® denotes the circular convolution. Equation (m-22) shows that the 

signal can be decomposed in the coefficients Cj,k and Ljo,k using a pair of low-pass and 

high-pass filters. This scheme was first proposed by Mallat and uses the quadrature 

mirror filters (QMF) theory [4]. Specifically, the signal x(n) is fed into a pair of low-pass 

(LP) and high-pass (HP) filters which cover the frequency range from 0 tofs /2, as shown 

in Figure 12. The LP filter output contains the approximation of the signal and 

corresponds to the first term of equation (111-22), while the output of the HP filter gives 

the details of the signal and corresponds to the second term of equation (HI-22). The filter 

outputs can be decimated by a factor of two, since each filter covers only half of the 

original frequency range. 

x(n) 

—► HP 

fe w 

—► LP 

LP HP 

ijA tJ2 

Figure 12: Quadrature mirror filters 
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This scheme continues at the next level by decomposing the 

approximation into second stage details and approximations. The whole procedure can 

continue recursively until the output of the filter reaches the minimum number of samples 

equal to 1. Thus, the maximum number of decomposition stages is log2(N) for a signal of 

length N. Figure 13 shows a three-stage decomposition tree. The original signal can now 

be written as a combination of details and approximations of various levels. A few 

examples are: 

• X=A!+D! 

• X= A3+D3+D2+D1. 

V 

1 ^ r r 

Ai    - D, 

ir ^ f 

A, D2 

^ r ^ r 

A3 D3 

ure 13 Th ree-stage w fave letd< ̂ composition tree. 

Note that the detail Di occupies a large band of the overall frequency band 

when the signal is decomposed using a two-stage decomposition X=A2+D2+Di, as shown 

in Figure 14. Further, note that the region covered by Di is not decomposed again at later 

stages of the decomposition, which prevents from zooming on smaller frequency bands in 
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the region \f/4, f/2] . Further decompositions on the HP region are considered in the 

wavelet packet analysis, which can be viewed as a generalization of the wavelet 

transform. 

f</8 £/4 

i 

A2 D2 ~\ D, 
-\      r ■s <■" "^ 

V /\ /   \ 

\ \ \ \ .. 
V 
A / \ 

/  1 
\ \ \ I -► 

fj2 

Figure 14: Spectral coverage for a two-stage wavelet decomposition. 

c)        Wavelet Packet Analysis 

The wavelet packet decomposition is an extension of the wavelet 

transform where both details and approximations are decomposed further to the higher 

level, thereby allowing flexibility in the decomposition. This scheme leads to Nlog2N 

possible decompositions for a signal of length N, where any complete level of the tree 

forms a complete orthogonal basis. Figure 15 shows the decomposition tree of a wavelet 

packet at depth j=3. A few possible representations of the signal are: 

• X=Ai+AD2+DD2 

• X=AAA3+DAA3+DA2+AD2+ADD3+DDD3. 
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X 

Ai Di 

AA2 DA2 AD2  -i DD2 -i 

AAA3 DAA3 ADA-, DDA3 AAD3 DAD3 ADD3 DDD3 

Figure 15.-Waveletpacket decomposition at level 3. 

4.        Cosine Packet Transform 

While the wavelet packet (WPT) performs a multi-resolution decomposition by 

partitioning the frequency axis, the cosine packet transform (CPT) performs a multi- 

resolution decomposition by partitioning the time axis. As a result, the CPT performs 

better for narrowband signals. Next, we briefly discuss the discrete cosine transform 

(DCT) and the local cosine transform (LCT) and show how they are used to perform the 

CPT. 

a)       Discrete Cosine Transform IV 

The DCT is the inner product of the signal with a windowed cosine (also 

called blocked cosine). Specifically, the Discrete Cosine Transform-iv (DCT-rV) of a 

signal x(n) with length N is defined as: 

^> = ^S*(«)W^2»L], k: integer. (m-23) 
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Figure 16 shows two blocked cosine functions for N=512 and k=l and 2. 
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Figure 16: Blocked cosines, k=l and k=2. 

The DCT-iv is closely related to the discrete Fourier transform (DFT) by 

the following relation: 

Xc{k) = J^-Xf (k) • exp(   J^'k) ■ 
N 2N 

(m-24) 

Such a relationship shows that the DCT is a very fast algorithm, as it takes 

advantage of fast DFT algorithms. 

b)       Local Cosine Transform 

As described earlier, the basis of the DCT is the blocked cosine. Note that 

the rectangular window used in the DCT may give undesirable sidelobes in the frequency 

domain. A solution to this problem is to select a Gaussian shaped window to reduce this 

effect. In practice, the window used has the general form [7]: 
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r(t) = exp(j-p(t))-sin(<p(t)). . (HI-25) 

The effect of the window, also called bell, is to localize the blocked cosine 

both in time and in frequency better. Figure 17 shows the local cosine for p(t)=0 and 

<p(t)=n/4[l +sin(at)]. 

c)        Cosine packet transform 

The cosine packet transform partitions the time axis following the same 

concept as that used for the frequency axis in the wavelet packet decomposition. The 

local cosine transform is applied to each time segment of the signal. 

Blocked Cosine 

1.5 

0.5 

i j^-J ! "^-^ 1  

—r--^           .. i                                  1  i    ^*->— 
-0.5 0.5 

Local Cosine 
1.5 

Figure 17: Local cosine. From Ref[4] 

The resulting tree structure is the same as that obtained with the wavelet 

packet. However, the CPT time resolution improves while the frequency resolution 

worsens, as the decomposition level increases. 
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5.        Best Basis and Matching Pursuit 

Recall that we can decompose a discrete signal of length N using wavelets or local 

cosine packets with the maximum of j=log2N stages. The time frequency atoms that 

participate in the full decomposition form an orthogonal basis. Wickerhauser and 

Coifman developed an algorithm named 'Best Basis' which finds a complete set of 

orthogonal basis functions that minimizes a user-specified information cost criterion [7]. 

Another type of decomposition called the matching pursuit was proposed by 

Mallat and Zhang [8]. The matching pursuit offers much more flexibility in the type of 

decomposition than the WP decomposition does, as it is not restricted to orthonormal 

basis functions. In this algorithm, the signal is decomposed adaptively into a set of 

functions, not necessarily orthonormal. Specifically, for given dictionary D = {gy}Y<ET, 

of P vectors (atoms), the algorithm starts by projecting the signal s(n) onto each function 

of the dictionary D and computing the residue RS. Thus, 

S = (s,grt)grt+RS. (m-26) 

At each iteration, the algorithm selects the vector gYo with maximum inner product with 

the signal S and smallest || RS ||. At the next iteration, the residue RS gets projected into 

the other functions of the dictionary to determine the second decomposition vector. The 

procedure continues until the residue is zero or its norm is small enough. The main 

drawback in this scheme is that the decomposition usually has an error due to the last 

residue, unless the signal can be decomposed exactly using the given dictionary in a finite 
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number of steps. In addition, the computational load is higher than that of wavelet packet- 

based decompositions. 

C.       ENERGY DISTRIBUTIONS 

So far we discussed atomic decompositions which lead to linear time-frequency 

representations. Energy distributions distribute the energy of the signal in both time and 

frequency and are viewed as quadratic transformations of the signal. The basic idea is that 

the signal preserves its energy in both time or frequency representation. According to 

Parseval's relation: 

oo oo 

Es = J \s(tf -dt= j\S(ff -df. (m-27) 
—oo —oo 

If we consider the values \s(t)\ and |S(/)|2 as energy densities, then it would be 

convenient to find a joint time frequency energy density ps(t,f) such that [9]: 

oo    oo 

Es = J" jps(t,f)-dt-df . (m-28) 
—oo —oo 

This chapter considers one such class of distributions: the Cohen's class. 

Distributions in this class are covariant by translation in time and frequency [10]. The 

general expression describing the Cohen's class of energy distributions is given by: 

oo 

Cs{t,f,(p)=\\ JV2^(*-<> .(p{^T).s{x + Tl2).s\x-tl2)-e-^T -d^dx-dt , 
—oo 

(m-29) 
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where <p{^,r) is called the parameterization function. 

1.        The Wigner-Ville Distribution 

The most popular distribution in the Cohen class is the Wigner-Ville distribution, 

which is defined as: 

Ws(t,f)= js(t + r/2)-s*(t-T/2)-e-j27fTdT, (m-30) 

or equivalently as: 

Ws(t,f)= \S(f + Z/2)-S*(f-Z/2)-e-j2^dZ. (m-31) 

Note that equation (m-30) is derived from equation (1H-29) when (p{£,r) = 1. The 

Wigner-Ville distribution has many useful properties. For example, it allows for perfect 

localization of linear chirps, with frequency variation defined as ßt)=at+fo and described 

as: 

j27t{-r+U) 
s(t) = e      2 

The WV distribution of a linear chirp is given by: 

a 

(m-32) 

Ws(t,f) = ö(f-(f0+-t)). (m-33) 

Further details on the Wigner-Ville distribution properties may be found in 

references [2,9]. Note that the main disadvantage of the WVD is the interference terms 
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that appear when the signal is not linearly modulated or more than one signal is present. 

These interference terms are due to the bilinear nature of the WVD. Figure 18 shows the 

WVD and the effect of the cross terms on four different signals. The effect is negligible in 

the noise-free linear chirp scenario only. Cross terms show as a line between the 2 true 

components when the signal is composed of two parallel chirps. 

Linear Chirp 

0 0.5 1 

Linear Chirp in Noise (SNR=2db) 

Two linear Chirps 

0.5 1 

Hyperbolic Chirp 

Figure 18: Wigner-Ville distribution,time is normalized over the pulse duration. 

Another potential drawback of the WV distribution is the presence of spectral 

aliasing when the signal is real and sampled near its Nyquist frequency. However, this 

problem can be avoided by using the analytical version of the signal or by oversampling it 

by at least a factor of two. 
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2.        Pseudo Wigner-Ville Distribution 

Equation (DI-31) implies that we must integrate from r = -°° to r = °°, which is 

a problem in practice [9]. To overcome this problem, a windowed version of the WVD 

called the Pseudo Wigner-Ville Distribution (PWVD) is defined as: 

oo 

PWs(t,f)= fh(T)-s(t + T/2)-s*(t-T/2)-e-j27?TdT, (IH-34) 

or equivalently: 

PWs(t,f)= JH(f-Z)-Ws(t,Z)dt, (in-35) 

where h(t) is a time window. Note that the interference terms have a strong 

oscillatory component [2]. Windowing in the time domain actually results in some 

frequency domain smoothing, thereby reducing the interferences, as shown in Figure 19. 

However, note that applying a time window to minimize the interference terms results in 

worsening of the frequency resolution. In addition, the PWVD looses many of the 

valuable WVD properties [2]. 
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Linear Chirp 

0 0.5 1 

Linear Chirp in Noise (SNR=2db) 

0.5 
Two linear Chirps 

0.5 

0.5 1 

Hyperbolic Chirp 

Figure 19: Pseudo Wigner-Ville Distribution, time is normalized over the pulse 
duration. 

3.        Smoothed Pseudo Wigner-Ville Distribution 

The PWVD provides an attenuation of the interference terms by smoothing in the 

frequency domain. Interference terms can be further reduced by smoothing in the time 

domain. The resulting distribution is called the Smoothed Pseudo Wigner-Ville 

Distribution (SPWVD) and is described as follows: 

oo oo 

SPWs(t,f)= jh(T)fg(s-T)-s(t + T/2)-s*(t-T/2)-e-j2#TdT, (ffl-36) 
—oo —oo 

where g(t) is a window in the time domain. Note that the SPWVD becomes the 

PWVD when g(t)=S(t). The drawback of this method is that the frequency resolution 
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further degrades. The effects of the SPWVD are shown in Figure 20 which shows that the 

cross terms have almost been eliminated while the frequency resolution has been 

degraded. 

Linear Chirp 

0 0.5 1 

Linear Chirp in Noise (SNR=2db) 

0.5 

0.5 

Two linear Chirps 

0.5 

Hyperbolic Chirp 

Figure 20: Smoothed Pseudo Wigner-Ville Distribution,time is normalized over 
the pulse duration 

4.        The Reassignment Method 

We see that the WVD resolution worsens when we try to suppress the interference 

terms. The reassignment method was introduced in an attempt to improve the 

interpretation of the transformation [9]. This scheme assumes that the energy distribution 

in the time-frequency plane resembles a mass distribution and moves each value of the 

time-frequency plane located at a point (t,f) to another point (t',f), which is the center of 

gravity of the energy distribution in the area of (t,f). The result is a very focused 

representation with high intensity since the value at the point (t',f) is the sum of all the 
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neighboring values. The reassignment method can be applied to most energy 

distributions as well as to the spectrogram. However, the computational load is quite 

high. Figure 21 shows the hyperbolic chirp used in Figure 18 to 20 as represented for the 

reassigned spectrogram distribution, the reassigned PWVD and the reassigned SPWVD. 

Note the quality of the focusing in all three methods and the lack of cross terms in the 

PWVD and SPWVD. 

Reassigned Spectogram 

Figure 21: Reassignment method applied to a hyperbolic chirp test signal, time is 
normalized over the pulse duration. 
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IV.      THE RADON TRANSFORM 

Earlier chapter presented several techniques to construct an image representation 

of a signal in the time-frequency plane. The next step is to extract the information from 

this image to recover the modulation parameters for both linear and hyperbolic chirps. An 

important tool in image processing is the Radon transform which is used to extract line 

information. We will briefly review and then apply this transform to extract linear chirp 

parameters [13]. 

A.       INTRODUCTION 

Let's assume we have an arbitrary function f(x,y) in a subspace of R . The two- 

dimensional Radon transform is defined as the projection or line integral of the function 

f(x,y) along all possible lines L [13]. Mathematically, the transformation is described as: 

R = jf(x(s,L),y(s,L))ds. (IV-1) 

Recall that the equation of a line in polar coordinates is given by: 

p = x ■ cos(#) + y • sin(#), (IV-2) 

where p and # represent the distance from the origin and the angle measured 

counterclockwise from the x axis respectively, as shown in Figure 22. Now suppose we 

use another coordinate system with axes rotated by the angle ■&. The new x-axis lies on 

the line with associated orthogonal direction "s". The two cartesian systems xoy and pos 

are related to each other via the following relation: 
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cost?    sin# 
-sin#    cost? (IV-3) 

Equation (IV-1) can be rewritten as: 

+°° 
R(p,&) = j f (pcos& - ssin&,psin& + scostf) • ds (TV-4) 

The above equation shows that the Radon transform translates a two-dimensional 

function of the variables (x,y) to one with variables (p,&). Thus, the Radon transform of 

an image taken at a specific angle & is the projection of the image onto the line which 

forms an angle ■& with the x-axis. 

i 'y 

\L 

f(x,y)f    \ 
- >> 

NO 
 —w- 

X 

Figure 22: Two- dimensional Radon transform. 

The Radon transform of a single line with a slope angle cp for the specific angle 

71 
& = — + <P is a single point with intensity equal to the sum of the intensities at each point 
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on the line. This property allows detection of lines in an image. In addition, the transform 

is also robust to noise degradations. 

B.       LINE PARAMETER IDENTIFICATIONS 

Line parameters can be obtained using the Radon transform as follows: Assume 

the image under investigation contains a line which has an angle (p with the x-axis, as 

shown in Figure 23. The equation of the line can be defined in terms of its slope a and 

initial offset value b. 

y = a-x + b,   a = tzn(<p). (IV-5) 

The Radon transform RCp,^) of the image for angles 0° to 180° is maximum when 

the projection of the line has a minimum area. Thus, it is maximum when the line is 

perpendicular to the projection line, i.e., when tf=<p+90°, which leads to 

a = tan(0-9O0)'. (IV-6) 

Now, if we take the Radon transform of the image for the specific angle 

&=<p+90°, we can estimate the offset parameter b from the position of its maximum value 

along the axis p. This position is indicated in Figure 23 as "C". Next, the offset parameter 

b can be computed as: 

0C-^sin(tf-9O°)     N      OC+ ^cos(&) 
fc = ^ + I = ^ + 2  

2 cos(tf-90°) 2 sin(0) 
(IV-7) 

where Ny is the length of the vertical side of the image, while N is the length of 

the horizontal side (in this case Nx=Ny=256). Note that the distance OC can be positive or 

negative and is actually negative in Figure 23. 
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Thus, the equation of the line can be determined by first applying the Radon 

transform of the image for angles between 0° to 180°, then finding the coordinates of the 

maximum point (t^, p^, as shown in Figure 24, and finally using equations (TV-6) 

and (TV-7) using OC=pmax and tf=zW Note that the accuracy of the estimates depends 

on the resolution of the image and the size of the angle step selected for the Radon 

transform. Unfortunately, any attempt to increase the resolution (size) or decrease the 

angle step results in increasing the computation load. 

SO 100 150 200 250 

Figure 23: Geometry of the Radon transform for an image containing a single 
line. 

— "150 

c 
■£ -100 

f>   -50 
o 
o 
S       0 
E o 

8    W 

i ioo 
o 

150  • 

"   . -:■■' '■■ 
. 

^ 
**-     "T- "V*"''   " ■" ' ij|^|||^ ,5»Si • 
$^\;V.-'i?%£:.^ %1&           f ^fS^'^i ■v^**:£ 

Pnux u ^TMIII » > '\ ' 
. ~~3r Ijspfit 

-f-»<fii^<^W ^Wßf-W~> '•*.'' 
*t -     *'« >" ist-' 

\ 
• ;%:s 

■6 wmax 
• 

50 100 150 
Angle in degrees 

Figure 24: Radon transform for the line shown in Figure 23 for Hh=0°...180p, 1° 
increment. 
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To minimize the computational load we apply the Radon transform in two stages. 

First, we scan the image from 0° to 179° in steps of 2°. We determine the angle $im that 

corresponds to the column that includes the point with the highest intensity. Next, we 

scan the image from the angle dim-10 to $im+l° in steps of 0.1°. Using this 

implementation allows the maximum line slope error to decrease to ±0.05° without 

having to cover the whole range of angles at that fate. 
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V.       LINEARLY MODULATED CHIRPS 

This chapter presents the scheme used to estimate linear chirp parameters. This 

chapter is divided in four sections. The first part presents the method used to generate the 

signals. The second section presents the time-frequency transformations considered in 

this study from which the linear chirp parameters are extracted. The third section 

describes the image processing technique applied to extract the features from the time 

frequency image. Finally, the last section compares the results obtained for each time 

frequency representation considered and their robustness to noise degradations. 

A.       SIGNAL GENERATION 

The radar signals considered in this study are synthetic and consist of a train of 

several linearly modulated pulses, as shown in Figure 25. 

-1.5 

Figure 25: Synthetic radar signal, linear chirp modulation. 
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First, we assume that we can isolate one single pulse of duration T. This extraction 

can easily be done with an energy detector in medium to high SNR levels. Thus, the 

received signal has an instantaneous frequency f(t) defined as: 

f(t) = f0+k-t (V-l) 

Some of the time-frequency transformations considered in the study use the 

analytical version derived from the real received signal. In such cases, the analytical 

signal is computed with the Hubert transform. The analytical noise-free linear chirp 

signal s(t) is given as: 

;2*(/„"~'2) 
s(t) = e 2 (V-2) 

The signal is assumed to be sampled a rate of 512 [samples/pulse length]. Recall that the 

sampling frequency for a real signal must be equal to at least twice its highest frequency 

component. Thus, the signal may be heterodyned down to a lower frequency if needed. 

The discrete real part of the signal is given as: 

s[n] = Rc(e     f'   2'-     ) = cos(2^-n + -^-.n2)),     n=l,..,512 (V-3) 

We can rewrite the above equation as: 

s[n] = COS(2Tü( fn0-n + ~n2))  where     fn0=^L,     a =Ar , n=l,..,512 
2 fs fs2 

(V-4) 
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The terms a and fno represent the normalized slope and the normalized starting 

frequency respectively, with respect to the sampling frequency fs. Thus, the normalized 

frequency equation for the linear chirp discrete signal is given by: 

fn=fn0+a-n , n=l,..,512. (V-5) 

Multiple linear chirp signals trials were generated by randomly selecting both the 

initial frequency and the slope. Note that sampling constraints need to be satisfied to 

avoid aliasing in the resulting discrete linear chirp. For example, the parameter a needs to 

be selected so that the final instantaneous frequency doesn't exceed 0.5 for a given initial 

frequency fno. Thus, aliasing may be avoided by selecting both the initial and final 

normalized instantaneous frequencies within the range [0, 0.5], and computing the 

corresponding slope parameter a. Initial and final frequencies are selected from a 

uniform distribution defined in the range [0,0.5]. Next, the chirp is corrupted by 

additive white Gaussian noise. Analytical expressions needed to compute some of the 

time-frequency transformations are obtained with the Hubert transform of the noisy 

signal. Real signal expressions were used to compute the wavelet-based decompositions. 

B.       SIMULATION SET UP AND FEATURE EXTRACTION 

Eleven   different   time-frequency   and   wavelet-based   representations   were 

considered in this study.   The goal was to select a small number of transformations 

leading to the best "image quality" from that set. The representations considered were: 

-Wavelet packet best basis 

-Cosine packet best basis 

-Wavelet pursuit 
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-Cosine pursuit 

-Wigner-Ville distribution 

-Pseudo Wigner-Ville distribution 

-Reassigned Pseudo Wigner-Ville distribution 

-Smoothed Pseudo Wigner-Ville distribution 

-Reassigned Smoothed Pseudo Wigner-Ville distribution 

-Spectogram distribution 

-Reassigned spectogram distribution 

Wavelet  and  cosine  decompositions  were  implemented  with  the  software 

"Wavelab 7.01" software [12], while all others used   the 'Time-Frequency Toolbox" 

[11]. Figure 26 shows the resulting images obtained for a linear chirp with SNR=10dB, 

when no energy thresholding is applied to the images. A few comments are in order 

regarding the selection of the transform parameters. 

1.  Number of Atoms 

Recall that defining a line in a plane requires two points only. However, these two 

points must be perfectly localized in both time and frequency, and must be immune from 

any noise interference. Theoretically, we could use two atoms only from an atomic 

decomposition to define the linear frequency equation. However, this doesn't hold in 

practice as the atoms are not perfectly localized. Note that a larger number of atoms may 

better represent the line trend. However, some of the atoms may represent noise 

contributions for noisy signals. Therefore, selecting the number of atoms to represent a 

linear chirp in noise requires a trade-off between these two issues: fewer atoms to denoise 

the signal and more atoms to improve the resolution. We selected 10 atoms per 
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decomposition for the atomic decompositions used in our study after running several trial 

cases. 

2. Maximum Decomposition Level 

Next, the maximum decomposition level was set to 7, as simulations showed no 

advantage in going to higher levels. 

3. Wavelet Type 

The mother wavelet function was selected after several trials among the readily 

provided functions in the Wavelab software [12]. Finally, we selected Daubechie-IV 

since it gave the best time-frequency representation for the types of signal considered. 

4. Image Thresholding 

No image intensity thresholding was applied to the time-frequency images, as 

simulations showed that it this step worsened the results for low SNR levels. Note that 

implicit denoising is actually performed by selecting a small number of atoms for the 

atomic decompositions. 

5. Window Length 

The PWV, SPWV and Reassigned SPWVD transformations use a frequency 

window which has a Hamming (N/4) time domain expression, and a Hamming (N/10) for 

time smoothing window. The analysis window selected for the spectrogram is Hamming 

(N/4), where N is the length of the signal (512 bins). 
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Figure 26: Various time frequency representations, linear chirp, SNR=10dB. 

6.  Radon Transformation Implementation Issues 

The Radon transform is selected to extract the line equation from the time- 

frequency image, as described earlier in Section m. We use a two-stage implementation 

with final degree increment 0.1°. The size of the resulting image for each time frequency 

representation is set to 256x256 points, as the Radon transform for larger images would 

be too computationally expensive for a MATLAB  implementation.  One hundred 
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randomly generated linear chirps for a given SNR level were generated, and the SNR 

varied in the range -lOdB to lOdB. Next, the chirp parameters were estimated from the 

images generated by each of the eleven time-frequency transformations considered. 

Performance comparisons are presented next. 

C.       PERFORMANCE COMPARISONS 

1.        Evaluation of Time-frequency Representations 

Recall that the maximum theoretical slope error is ±0.05° since the final step 

angle in the radon transform is 0.1°, as discussed in Section IV. However, we also have to 

add noise effects, and quantization errors introduced by the finite resolution in the image. 

Figures 27 to 29 present the mean and the standard deviation of the absolute slope and 

offset errors as a function of the SNR level for all time-frequency transformations 

considered in the study. 
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Figure 27: Linear chirp signal; Slope and offset error for the wavelet packet and 
cosine packet decompositions, wavelet and cosine pursuit decompositions (SNR in 
dB.) 
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Figure 28: Linear chirp signal; Slope and offset error for the PWV, reassigned 
PWV, SPWV and reassigned SPWV decompositions (SNR in dB.) 
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Figure 29: Linear chirp signal; Slope and offset error for the Wigner-Ville 
decomposition, Spectrogram, and reassigned Spectrogram (SNR in dB.) 

A few comments are in order: 

1. Results show that the energy distributions perform better than the atomic 

decompositions. This is to be expected as they provide a more accurate 

"image" in the time-frequency plane. Note that atoms cannot be well 

localized in both time and frequency, as would be required to represent 

linear chirps accurately. The best-basis cosine packet decomposition gives the 

best results followed by the cosine pursuit scheme for atomic decompositions. 
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2. Most of the energy distributions have slope errors very close to the theoretical 

value of 0.05° for medium to high SNR levels. 

3. The Wigner-Ville distribution has a very good and almost stable performance 

for SNR's in the range of -6dB to lOdB. The smoothing time window present 

in the Pseudo Wigner-Ville distribution improves the estimation in higher 

SNR but shrinks the effective range. The Smoothed Pseudo Wigner-Ville 

distribution has a slightly worst performance at high SNR but also has the 

widest effective range. The smoothing in time and in frequency eliminates the 

interference terms almost completely so that the representation is more 

immune to the noise than other transformations are. However, frequency 

smoothing results in lowered performance at high SNR levels. 

4. Results show that the reassign method usually improves the performance at 

high SNR levels, as it forces the representations to be more "focused". 

Unfortunately, applying the reassign method in low SNR levels worsens the 

performances. This is to be expected as the presence of noise close to the line 

moves the local center of gravity of the distribution away from its theoretical 

value. 

Table 1 lists the mean absolute error for the frequency slope and offset parameters 

at SNR equal to lOdB for all transformations considered for a "rough" comparison of the 

transformation performances. In addition, Table 1 lists the SNR level at which the errors 

suddenly increase, indicating the SNR level at which using a specific distribution may 

become more questionable. 
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Mean of absolute slope 
error   @ SNR=10dB 

(in degrees) 

Mean of absolute offset 
error   @ SNR=10dB 

(in bins) 

Breaking point 
(in dB) 

Wavelet Packet 0.375 4 0 

Cosine Packet 0.5149 3.98 0 

Wavelet Pursuit 0.37 2.35 4 

Cosine. Pursuit 0.4297 2.35 0 

WV 0.1198 1.08 -7 

PWV 0.0623 1.02 -4 

Reassigned PWV 0.0729 1 -5 

SPWV 0.0792 1.02 -7 

Reassigned 
SPWV 0.0563 1.02 -7 

Spectrogram 0.098 1.77 -7 

Reassigned 
Spectrogram 0.12 1.78 -7 

Table 1: Mean absolute errors for frequency slope and offset. 100 trials, 
SNR=10dB, performance breaking points for all time-frequency methods 
considered. 

2.        Error Evaluation 

Recall the received signal was sampled at a rate of 512 [samples/pulse period] 

while the image size was set to 256x256bins in order to speed up the computations. 

However, the errors presented were corrected to correspond to an image with size 

512x256, where the time and frequency axes have 512 and 256 bins respectively. Next, 

the goal is to investigate how the estimated errors relate to the frequency error obtained 

for the frequency expression given in equation (V-l). 
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Recall that the normalized frequency expression is given by: 

fn=fnO+a-n> 

and the slope angle ■& measured in the image is: 

tan(#) = 
a-N-lN f 

Nt 

(V-6) 

where a is the frequency slope parameter, N is the length of the signal, and Nf and 

Nt represent the number of bins in the frequency and time axis respectively. In our case 

Nf=N/2 and Nt=N. Thus, equation (V-6) simplifies to: 

tan(tf) = a-N. (V-7) 

Recall that 

a f k 
s[n] = cos(2;r(/n0 -n + — -n2)), where    ,/n0 =-j-,     a-—- ,n=l,..,512 

/, /; 

Let's assume that the linear chirp has frequency slope ko and that ßo is the 

corresponding angle, which leads to: 

k0 _ tan(#0) 
—2 ~a0-  N 

(V-8) 

Now, let's assume we estimate an angle equal to^f instead of $? due to errors in 

the estimation process. Thus, 

0«=$,+A*, (V-9) 

where A& is the angle error. As a result, the resulting estimated frequency slope 

kest expression is given by: 
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Ir     - f2   n     - f2    tan(#0+Afl) Kest  ~ Js    " Uest ~ Js ~  
N 

_fs
2    tan(fl0) + tan(Afl) 

N   l-tan(tf0)-tan(A#) 

_k0-fs
2-N + fs

i-tan(A&) 

fs
2-N-k0-N

2 -tan(Atf)* 

Thus, the final frequency slope error is: 

(V-10) 

M^o-^^^f^^T- (V-ll) A:0-Arz-tan(A^)-//-Ar 

The slope frequency error Ak is expressed in terms of the angle error, but also 

depends on the sampling frequency, and the length of the signal N. 

If we assume again that/0 is the initial offset value corresponding to equation (V- 

1), then the normalized offset frequency is derived from equation (V-4) as fno=f</fs- The 

value fbo measured is expressed in bins and is related to/ra0 by: 

fbO=fnO-2-Mf (V-12) 

Assume the estimated initial offset value fbest contains an error Afb. Thus, 

fbest=fbO+&fb> (V-13) 

and the estimated value for f0 according to equations (V-4) and (V-l) is given by: 

JOest ~ Js — = /o + Js • -^rr~» (V-14) 

When Nf=N/2 , the resulting error is: 

2Nf        JV    JS   2Nf 

*f0=f0-f0est=-fs~- (V-15) 
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Equations (V-ll) and (V-15) provide the relations between errors measured in the time- 

frequency image representation of size N/2xN, where N is the length of the signal, and 

the corresponding errors in the initial time-varying frequency expression given in 

Equation (V-l). Note that Afi, is measured in bins. 

3.        Multi-pulse Processing 

Up to this point, all results were derived by extracting the frequency modulation 

parameters from one noisy radar pulse. Performances improve when using more than one 

pulse. Assume we isolate five radar pulses, where each pulse contains the same 

transmitted signal at a given SNR level. Note that the signal information gets mapped to 

the same location of the time-frequency plane, while the noise contributions scatter to 

different location in each trial. Thus, averaging multiple time-frequency images improves 

the quality of the signal information. 

Thus, averaging the contribution of five pulses leads to the results shown in 

Figure 30 obtained for the Smoothed Pseudo Wigner-Ville transformation. One hundred 

realizations per SNR level are used, and SNR levels varied from -20 to OdB. Note that 

there is no need to consider higher SNR levels as the error curves already flatten for 

SNR=0dB. Results show a significant improvement over using one pulse only. Further 

improvements may be obtained by considering a larger number of pulses. However, this 

will result in a direct increase of the computation time. 
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Slope error SPWV Offset error SPWV 

-10        -5 CBNR(db)        -10        -5 0 

Figure 30: Slope and offset error of SPWV distribution; five realizations. 

4.        Examples 

We apply the above results to a specific radar using pulse compression readily 

available to us: the SPS-40B radar. The Radar Set AN/SPS-40B is used for the detection 

ranging and tracking of air targets at long range in American and foreign navy services 

[24]. In this pulse mode, the pulse length is T=60usec. The transmitted waveform inside 

the pulse is a linear modulated down-chirp with a bandwidth of 2MHz centered at a 

frequency that can be varied manually by the operator from 402.5 to 447.5 MHz. 

Let's assume that the radar operates at 437.5 MHz, i.e., the chirp starts with a 

frequency 438.5MHz and decays linearly to 436.5 MHz. Our ESM (Electronic Support 

Measures) receives a series of noisy pulses from this radar. Further, assume we can 

isolate one pulse perfectly and that the estimated received signal is centered at 438MHz 

with a bandwidth equal to 2MHz. Given that the duration of the pulse is 60|nsec and if we 

use 512 [samples/pulse duration], the sampling frequency should be set at: 
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512 
f=—MHz = S.53MHz Js     60 

(V-16) 

This sampling frequency does not satisfy the Nyquist rate. Thus, we can either 

increase the sampling frequency or heterodyne to a lower center frequency. The first 

option has the drawback of increasing the number of samples to deal with, and the 

computational load of the estimation schemes considered. Heterodyning the signal down 

to the baseband can be accomplished by multiplying the received signal with a cosine 

function, and using a lowpass filter to extract the information. Assume the heterodyning 

frequency is selected as 440MHz. Thus, the resulting chirp signal is an up-chirp at the 

frequency 440-437.5=2.5MHz with bandwidth equal to 2MHz after heterodyning and 

filtering. The theoretical time-frequency representation is shown in Figure 31. Thus, the 

instantaneous frequency of the heterodyned signal is given by: 

f{t) = 1.5 -106+ 3.33 -1010-r. (V-17) 

The heterodyned signal may be sampled with a frequency fs=8.53Mhz, 

corresponding to 512 samples/pulse duration. 

Assume we use the SPWV distribution and the chirp parameter estimation 

procedure described above in Section IV-B. Figure 28 shows that the mean slope error is 

0.09° and the mean offset error is 1 bin when the SNR is equal to 5dB. Using equations 

(V-ll) and (V-15) leads to: 

|Ak|=2.6108 and |Af0|=1.67104, 
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meaning that the normalized errors for the frequency slope and offset are 

lMl |A/ol 
equal to —!—l— = 0.008 or 0.8% and    '   U|. = 0.0104 or 1.04% respectively U0 1.2 106 3.33-101 

for the heterodyned signal. 

Note that the normalized slope error remains the same for the original 

received signal, as the signal bandwidth has not been changed by the heterodyning 

process, while the normalized frequency offset error becomes equal to 

1.67104/438.5106, i.e., 0.0038%. 

20 30 40 
Time in microseconds 

Figure 31: Instantaneous frequency for the heterodyned signal. 
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VI.     HYPERBOLIC MODULATED CHIRPS 

This section considers the estimation of hyperbolic chirp parameters. As before, 

the starting point is the time-frequency image representation of the information. 

However, generalizations of the Radon transform to hyperbolic line types were not used. 

Instead, we consider an iterative procedure to estimate the chirp parameters. 

Note that we assume we know the type of modulation transmitted, as we do not 

address issues related to distinguishing between linear and hyperbolic modulation types. 

Such classification issues are left for future work. 

A.       SIGNAL GENERATION 

1.        Introduction 

Assume that we can isolate individual pulses of duration x=512 samples. Thus, a 

received signal with hyperbolic modulation frequency is given by: 

x(t) = cos(27t(Aln(t + t0) + B-t)), (VI-1) 

where 

f(t) = — + B. (VI-2) 
t + t0 

The analytical signal s(t) obtained from x(t) with a Hubert transform is given by: 

The corresponding discrete signal x[n] is given by: 

j2tt(A-ln(—+—)+B—) ;2ff(A-ln(n+n0)-Aln(/J)+—-n) 
x[n] = e h f*     f*  =e f,    f (vi-4) 
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or finally 

x[n] = K ■ e;**(«*«»+»b>+*"> > (VI_5) 

where: 

a = A,   b = ^-, n0=fs-t0,andK = ej2*AlnV>) . (VI-6) 

The normalized instantaneous frequency expression is given by: 

fn[n] = —?— + b. (VI-7) 
n + Wn 

Recall that we need to select the parameters a, b and n0 such that the range of the 

normalized frequency fn[n] is between 0 and 0.5 to prevent aliasing, which leads to the 

following ranges: 

ore[0,°°],   n0e[0,oo], fce[_oo,o.5] (vi-8) 

A valid selection for a, b and n0 is obtained by selecting one parameter in its 

allowed range, and then the other two so that they also fall in their allowed ranges. In the 

simulation, we first select a value for b from a uniform distribution in the region [0, 0.5]. 

The starting frequency at n=0,fn(0) ,is selected from a uniform distribution in the region 

[b, 0.5]. The final frequency fn(N), for n=N, where N is the signal length, can be selected 

in the range [b,fn(0)]. Defining b, fn(0), and fn(N) leads to the following values for a and 

n0: 

a=(fn(0)-b)-(b + fnm.N 

(/n(0)-/n(JV)) m~yj 
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n   = (b + fn(N))-N 
0      (fn(0)-fn(N)) 

(VI-10) 

Note that this random selection can sometimes lead to a frequency equation with a 

very steep slope at the beginning, as shown in Figure 32. Such a behavior is undesirable 

because none of the time-frequency representations gives good resolution in the area of 

the steep slope, and this modulation type is not typical in radar applications. 

Theoretical Time-Frequency diagram 

Figure 32: Normalized frequency for a=10, no=25, b=0.05. 

2.        Hyperbolic Line Parameter Constraints 

We wish to restrict our random selection of the signal parameters to those leading 

to chirps without steep slopes, and need to automate the process so that we can run 

multiple trials to study the scheme robustness to noise degradations. Thus, we define a 

figure of merit that describes the amount of curvature present in a given hyperbolic line. 
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The parameter selected to characterize the curvature of the chirp is the distance d defined 

as the maximum distance between any point of the curve and its cord. 

Note the parameter b shifts the hyperbolic chirp up or down without affecting the 

shape, thereby its curvature. Therefore, we assume that b=0 for simplicity.   In such a 

case, the chord associated to the hyperbolic chirp fn[n] = is a line passing through 
n + nn 

the points (0,—) and (JV, ) with equation: 
n0 N + n0 

a 
f  

a a 
n0 _ N + n0    n0 

N-0 n-0 

The resulting chord equation is given by: 

a-n + n0-(N + n0)-f-a-(N + n0) = 0, 

which leads to: 

(VI-11) 

/ = 
-a 

■n + - 
a 

n0-(N + n0)      n0 
(VI-12) 

Recall that the gradient of a curve at a given point is a line that passes through that 

point and has a slope equal to the derivative of the curve at that point. Thus, the gradient 

at any point of the hyperbolic line is: 

A = /' = . 
— a 

(n + n0Y 
(VI-13) 
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Figure 33: Maximum distance between a hyperbolic line and its chord. a=12, 
n0=25, b=0. 

The distance d is maximum at the point w=£ where its gradient is parallel to the 

chord. As a result, the gradient slope at the point n=£is equal to the slope of the chord. 

Thus the position of the point n=£can be estimated from (VI-11) and (V-13) as: 

-a ■a 

(£ + "0)      n0-(N + n0) 

which yields the coordinates of the point £, as: 

^ = ^nQ(N + n0)-n0.. 

/(#) = 
a 

^]n0(N + n0) 

(VI-14) 

(VI-15) 

Recall  the  distance  d between  a point  (xi,yi)  and  a  line  with  equation 

ax ■ x + a2 • y + a3 = 0 is given by the equation: 
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d = 
_|a1-x1+a2-y1+a3| 

4 2 2 ax   +a2 

(VI-16) 

Thus, the distance between the chord and the point (£,f(£)) can be computed using 

equations (VI-11), (VI-14), (VI-15), and (VI-16), which leads to: 

d_\a-£ + n0-(N + n0)-f&-g-(N + n0)\ 

^a2+no(N + n0)
2 

and: 

\a\ 
d = 

(N + 2-n0)-2-Jn0(N + n0) 

^a2+no(N + n0)
2 

(VI-17) 

The distance d can be viewed as a figure of merit for the curvature of the 

hyperbolic line. A high value of d means the curvature is high and the time-frequency 

representation near the time origin is poor. However, very small values of d represent 

cases for which the hyperbolic curve is almost indistinguishable from a straight line. 

Thus, we restricted the chirp signals generated so that the distance d is in the region 

20_        _80_ 
'JS ' ,nnA ' Js 1024 1024 

to avoid such cases. 

Next, additive zero-mean white Gaussian noise is added to generate the noisy 

chirp with a specific SNR level. 

B.       FEATURE EXTRACTION 

1.        Introduction 

The signal time-frequency representation can be obtained with any of the energy 

distributions   discussed   earlier   in   Section   EL   However,   note   that   the   atomic 
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decompositions are not as well suited as the energy distributions for the task at hand, as 

they do not describe the hyperbolic line curvature accurately. Therefore, we only consider 

energy distributions in this chapter. 

At this point the task is to extract the three unknowns parameters (a,b,no) for a 

given time-frequency representation. The basic Radon transform can no longer be 

applied, as it is defined for straight lines only. The Radon transform was extended to 

detect functions of arbitrary shape [17], however the computational load is significantly 

higher. 

RPWV of a noisy hyperbolic modulator) signal (SNR=J>dh) 
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Figure 34: Extraction of the instantaneous normalized frequency expression from 
the time-frequency image. Before and after median smoothing, L=5. 
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The method considered here approaches the problem quite differently. It is an 

adaptive procedure which fixes one of the three unknown parameters at each iteration, 

and estimates the other two. The resulting scheme is presented next. 

2.        Method Description 

The instantaneous frequency expression for the hyperbolic chirp is extracted from 

the two-dimensional image by selecting the peak values obtained at each time bin of the 

image. The result is a vector containing the frequency values for each time bin, as shown 

in Figure 34. 

Note that the 2-D instantaneous frequency approximation is very accurate at high 

SNR levels, and degrades as the SNR level decreases. In noisy environments, the pixel 

with the highest energy obtained at a given time bin may be an outlier, resulting in spikes 

in the instantaneous frequency estimate, as illustrated in the middle plot of Figure 34. 

Such outliers can be smoothed out with a median filter. Simulations showed that a 

median filter of length 5 smoothed out potential "spikes" without loss of resolution. 

We selected the three energy transformations leading to the best time-frequency 

image quality for the linear chirp case, and restricted our hyperbolic chirp analysis to 

those. The distributions selected are: 

- Pseudo Wigner-Ville distribution, 

- Reassigned Pseudo Wigner-Ville distribution, 

- Reassigned Smoothed Pseudo Wigner-Ville distribution. 

We set the dimension of the image at 512x512 bins to increase the image 

resolution and reduce quantization errors. In addition, simulations showed that these three 
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energy distributions do not necessarily perform well at the beginning and end of the 

image. As a result, we only consider the image from time bin 60 to time bin 450. 

The second step in the proposed scheme approximates the instantaneous 

frequency adaptively with a hyperbolic line by minimizing the squared error between the 

information contained in the image and a theoretical hyperbolic curve expression. Note 

that the problem to be solved is non-linear, due to the specific frequency law to be 

approximated, as we estimate the parameters a, b and no given in equation (VI-7). We 

first tried to solve the problem using a classical nonlinear least square iteration scheme 

provided with the function "lsqnonlin" from the MATLAB optimization toolbox [15]. 

Simulations showed that the algorithm converged to different local minimum, depending 

on the initial values selected. However, this problem can be resolved using a two-step 

procedure as follows. 

Assume we wish to approximate the hyperbolic curve given in equation (VI-7) 

with a function of the form: 

y(„)=—2—m (VI-18) 
n + riQ 

If we assume our estimation values obtained from the image to be equal to yest(n), 

n=l,...N, then we wish to find a and no so that: 

yatW — = 0,  forn=l...N. (VI-19) 
n + n0 

The above set of equation forms a linear system of N equation with two unknowns 

which can be solved using a least-square method. Next, assume we have an estimate of 
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the parameter b, best, which contribution is subtracted from the frequency equation given 

in (VI-7), resulting in: 

fn\n\-best = 
n + riQ 

■ + b-b est • (VI-20) 

Thus, the problem becomes to fit the data f[n] by finding the parameters (a, n0) 

which best fit a curve of the form a/(n+n0) in a least squares sense. The set of estimated 

parameters has a mean-square error et. At this point, the problem becomes to update the 

parameter b, and re-estimate corresponding values for a and n0 so that the error function 

expressed as a function of b is convex with a strong minimum. The location of the 

minimum value for the error function is obtained for best and the best estimated values of 

a and no. 

Even though we could not formally prove that the shape of the error function as a 

function of b is convex, we observed the same type of convex shape for the error function 

over 150 randomly generated hyperbolic chirps. Figure 35 plots the normalized errors and 

the mean values for a, b, and no. 
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Figure 35: Normalized errors obtained for a, b, n0 , 150 randomly generated 
hyperbolic chirps 

The mean and standard deviation of the error is: 

Mean Std Deviation 

a 0.0361% 0.000287 

b 0.1092% 0.0013 

no 0.0262% 0.000207 

Note that the mean error for b is slightly higher than that of the other two 

unknowns. This is to be expected, as b is restricted to the range [0, 0.5]. Therefore, very 

small error values may correspond to large normalized errors. 

We adaptively estimate the value for b, by taking advantage of the convex shape 

of the error function. First, we restrict the search to a specific region of b. Next, we select 
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five values of b equally spread within that range, and compute the other two parameters 

and the resulting mean-square error. Next, we restrict the b range to that including the 

minimum location by using the information provided by the mean-square errors, and 

repeat the process. This iterative process can be performed forever, as we have no 

knowledge of the minimum mean square error. In practice, we restricted the number of 

iterations to 10, as the values of b were restricted to small range [0,0.5] in our simulations 

to keep the computational load under control. Theoretically, the range of b can set as 

large as we want. The algorithm can converge in any area of b but it will require a larger 

number of iterations to preserve the same accuracy as the range of b expands, resulting in 

a computational load increase. 

C.       SIMULATION RESULTS 

A few comments are in order before discussing the simulation results: 

1. The scheme considered above is not as robust to noise degradations as the 

linear chirp scheme described in Section V. This is to be expected as a relatively clear 

and undistorted time-frequency image is required to extract the normalized frequency 

information. 

2. The iterative scheme finds the set of a, b and n0 which minimize the mean- 

square error. However, relatively large error values in the parameter estimates may 

correspond to small error in the actual hyperbolic curves. Figure 36 shows true and 

estimated hyperbolic curves. The true parameter values are: a=65, b=0.\ and no=240, 

while the estimated parameter values are: a=84, b=0.0S and no=294. The normalized 
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errors are 29%, 20% and 22% for a, b and n0 respectively, even though the two curves are 

hardly different. 

Figure 36: Two hyperbolic lines. Solid line: true hyperbolic curve (a=65, b=0.1 
and no=240, dotted line: estimated hyperbolic curve (a-84, b=0.08 and no-294). 

Hyperbolic chirps were generated by randomly selecting the parameters a, b, and 

n0 in the allowed ranges mentioned earlier. Next, additive white Gaussian noise was 

added to generate SNR levels between 0 and 20dB, in steps of 2dB. One hundred 

realizations were generated for a given SNR level. Figures 37 to 39 plot the mean and the 

standard deviation for the normalized errors for (a, b, n0) as a function of the SNR level, 

where the normalized error is defined as: 

I true value - estimated value I ... „ 
norm error = ' 1UU % 

true value 

Note that the above definition may lead to large errors when the parameter true 

values are very close to zero, due to the denominator. Thus, we restricted our simulations 
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to cases where b is in the range [0.025, 0.5].   The other two parameters a and n0 are 

selected using the method described in section (VI-A). 

Normalized Error for a 

10 
SNR (db) 

15 20 0 5 

Figure 37: Hyperbolic chirp; normalized errors for the SPWV distribution. 

Figure 37 to 39 show the normalized error mean-square and corresponding 

standard deviation for (a,b,n0) obtained using the Smooth Pseudo Wigner-Ville, the 

Reassigned Pseudo Wigner-Ville, and the Reassigned Smoothed Pseudo Wigner-Ville 

distribution respectively. 

Results show that the normalized errors decrease to zero as the SNR level 

increases. They also show that the SPWV is the scheme most robust to noise 

degradations out of the three considered. 
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Figure 38: Hyperbolic chirp: normalized errors for the RPWV distribution. 

Results also show that the reassigned methods perform better than the SPWV for 

high SNRs. This is to be expected, as they provide a more focused image by finding the 

center of gravity of the energy distribution for each time instance, resulting in a better 

image quality. However, the reassignment process worsens the image quality, as the noise 

level increases, resulting in the estimation process breaking down. Simulations show that 

the RPWV performs slightly better than the RSPWV, especially for SNR's in the range 

of2to5dB. 
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Figure 39: Hyperbolic chirp: normalized errors for the RSPWV distribution. 

The continuous parameters A, B and t0 in equation (VI-2) are related to the 

parameters of the discrete signal expression via equation (VI-6). Thus, the normalized 

errors estimated for the discrete values a, b and no are identical to those obtained with the 

continuous parameters. 
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VII.    CONCLUSIONS 

This study considered the application of time-frequency analysis techniques to 

extract intra-pulse modulation parameters for radar signals using analog pulse 

compression. Two specific types of intra-pulse modulation were considered: linear and 

hyperbolic modulations were investigated. 

The estimation procedures use the image obtained from the two-dimensional time- 

frequency representation of the radar pulse. Eleven types of time-frequency 

representations, and their robustness to noise were considered in this study. The type of 

modulation, as well as, the start and stop time of the pulse under investigation was 

assumed to be known. 

Linear chirp parameters were extracted by applying the Radon transform to the 

time-frequency image. Results show that energy distributions performed better, as they 

produced better focused images. Results show performance differences between the 

energy distributions to be minimal. Results also show that the Smoothed Pseudo 

Wigner-Ville distribution has the best performance in low SNR environments, while the 

reassignment scheme improves the performances for high SNR's. The main drawback 

behind these two schemes is their computational load requirements. 

Atomic decompositions did not perform as well as the energy distributions. The 

main reason is that the atoms used in the study were not well matched to the types of 

signals under consideration. The types of atoms used were not well localized in both time 

and frequency, as would be required to represent signals with linear modulation. 
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However, the cosine packet decomposition and cosine packet pursuit algorithm gave 

good results for medium to high SNR levels. 

The Radon transform as an image processing technique accurately extracts the 

line parameters, even in noisy environments. The combination of the energy distributions 

and the Radon transform can lead to small detection errors and almost constant 

performances for SNRs as low as -7dB. At such a low SNR the detection is limited by 

the ability to find accurately the time limits of the pulse. The resulting overall error for 

this scheme depends directly on the size of the image and the step size of the projection 

angle applied in the Radon transform step. Selecting these two parameters requires a 

trade-off between the desired accuracy and the computation time. 

Results also showed that the estimation performances increase when processing 

more than one pulse at a time. This improvement results from the fact that the noise gets 

mapped into different locations of the time-frequency image, while the signal location 

remains stable. Simulations showed that the detection SNR threshold dropped to -lOdB 

when processing five pulses simultaneously. However, the computation time increases 

dramatically. 

Hyperbolic chirp parameters were extracted from the time-frequency image using 

an iterative procedure. The proposed scheme is a two-step procedure. We tested the 

scheme using basic hyperbolic curves, and simulations showed the estimation error to be 

in the range 0.02% to 0.1%. 
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First, we extracted the 2-D instantaneous frequency expression from the image. 

Next, we approximated the unknown parameters adaptively. This scheme requires a very 

good estimate of the instantaneous frequency expression as an initial estimate, thereby 

restricting its application to medium to high SNR levels. 

The reassignment method was shown to be the best scheme at high SNR level, 

resulting in 1% normalized errors for the unknown chirp parameters a, b and no- In 

addition, results show that the Reassigned Pseudo Wigner-Ville distribution performs 

better for SNR down to 2dB. However, errors increase rapidly for lower SNRs. 

Simulations show that energy distributions without the reassignment step, such as 

the Smoothed Pseudo Wigner-Ville (SPWV) distribution, do not break down suddenly as 

the SNR goes down. For example, normalized errors for the SPWV are in the range 8%- 

15% for SNR=0dB and decrease smoothly to 1-2% for SNR=20dB. 
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APPENDIX 

function [ofs,slope]=radlin5(c) 
% [ofs,slope]=radlin5(c) 
% extracts the offset(ofs)and the slope (slope) of a 
% line contained in an image (c) using radon transform 
% ofs: in bins of y axis 
% slope in radians 

[yc,xc]=size(c); 
% 1st stage 
r=radon(c,0:2:179); 
[xr,yr]=size(r); 
[xrm,yrm]=find(r==max(max(r))); 
rlm=2*yrm-2; %angle of first stage 

% 2nd stage 
step=.l; 
[r,x]=radon(c,rlm-1:step:rlm+l); 
[ym,xm]=find(r==max(max(r))); 
xm=xm(l); 
ym=ym(1); 
l=length(x); 
d=x(ym); 
po=d; 
thetad=rlm-l+(xm-1)*step; 
theta=thetad*pi/18 0; 
slope=theta-pi/2; 

if abs(slope)<.01 
ofs=yc/2+d; 

elseif abs(abs(slope)-pi/2)<.01 
ofs=NaN; 

else 
if d==0 

sol=tan(slope)*xc/2 ;; 
ofs=yc/2-sol; 

else 
xl=-d/sin(slope); 
yl=d/cos(slope); 
sol=yl*(xl+xc/2)/xl; 
ofs=yc/2+sol; 

end 
end 
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function f=meanl(s) 
% This function works as the mean function 
% with the only difference that if the matrix (s) 
% contains NaN elements, the mean value is computed 
% over the rest elements. 

[xs,ys]=size(s); 
[x,y]=find(isnan(s)==l) ; 
if y>0 

if (ys==l|xs==l) 
b=find(isnan(s)==0); 
f=mean(s(b)); 

else 
f=mean(s); 
for i=l:length(y) 

v=s(:,y(i)); 
b=find(isnan(v)==0); 
f (y(i) )=mean(v(b) ) ; 

end 
end 

else 
f=mean(s); 

end 

function f=stdl(s) 
% This function works as the 'std' function 
% with the only difference that if the matrix (s) 
% contains NaN elements, the standard deviation is computed 
% over the rest elements. 
[xs,ys]=size(s); 
[x,y]=find(isnan(s)==l) ; 
if y>0 

if (ys==l|xs==l) 
b=find(isnan(s)==0) ; 
f=std(s(b)); 

else 
'f=std(s); 
for i=l:length(y) 

v=s(:,y(i)); 
b=find(isnan(v)==0) ; 
f(y(i))=std(v(b)); 

end 
end 

else 
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f=std(s); 
end 
9-******************************************** 

* * * 
* * * 
* * * 
*** 
* * * 

% Compare 
% cosine pursuit D=7 
% Smoothed Pseudo WV, Reasigned SPWV 
% Spectogram, Reasigned Spectogram 
% With Noise 
9-******************************************** 

clear 
rand('state',1); 
timel=clock; 
for indx=l:100 

fl=.5*rand; 
f2=.5*rand; 
slopel=180/pi*atan(f2-fl) ; 
ofset=512*fl; 
final=512*f2; 

vcpu5=[ 
vcpu7=[ 
vspwv=[ 
vrspwv= 
vsp=[]; 
vrsp=[] 

ofcpu5=[]; 
ofcpu7=[]; 
ofspwv=[]; 
ofrspwv=[]; 
ofsp=[] 
ofrsp=[]; 

]; 

fincpu5=[] 
fincpu7=[] 
finspwv=[] 
finrspwv=[ ] ; 
finsp=[]; 
finrsp=[]; 

step=l; 
for SNR=-10:step:10; 

sc=fmlin(512,fl,f2); 
sl=real(sc); %linear fm signal 
% Add noise 
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Ps=cov(sl); 
SNR %in db 
sigmasq=Ps/(10A(SNR/10)); 
N=sqrt(sigmasq)*randn(size(sl)) ; 
s=sl+N; %noisy signal 
s2=hilbert(s); %compex noisy signal 

% cosine pursuit decomposition D=7 
D=7 
atomic = cppursuit(s,D,'Sine',10,0,0); 
i=imagl('CP',atomic,512,'linlO',256); 
il=flipud(i); 
% use of radon transform to find the slope 
[ofs,theta]=radiin5(il) ; 
slope=180/pi*atan(tan(theta)12) ; 
fin=ofs+512*tan(slope*pi/180); 

vcpu7=[vcpu7;slope]; 
ofcpu7=[ofcpu7;ofs]; 
fincpu7=[fincpu7;fin]; 
indx 
SNR 

%Reasigned smoothed pseudo wv distribution & non Reasigned 
[tfr,rtfr,cbg]=tfrrspwv(s2,1:256,256); 
%Non reasigned 
tfr=flipud(tfr); 

[ofs,theta]=radlin5(tfr); 
slope=180/pi*theta; 
fin=ofs+512*tan(slope*pi/180); 

vspwv=[vspwv;slope]; 
ofspwv=[ofspwv;ofs]; 
finspwv=[finspwv;fin]; 
%Reasigned 
rtfr=flipud(rtfr); 

[ofs,theta]=radlin5(rtfr); 
slope=180/pi*theta; 
fin=ofs+512*tan(slope*pi/180); 

vrspwv=[vrspwv;slope]; 
ofrspwv= [ofrspwv,-ofs] ; 
finrspwv=[finrspwv;fin]; 
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%Reasigned spectogram & non Reasigned 
[tfr,rtfr,cbg]=tfrrsp(s2,1:256,256); 
%Non reasigned 
tfr=flipud(tfr); 

[ofs,theta]=radlin5(tfr); 
slope=180/pi*atan(2*tan(theta)); 
ofs=2*ofs; 
fin=ofs+512*tan(slope*pi/180); 

vsp=[vsp;slope]; 
ofsp=[ofsp;ofs]; 
finsp=[finsp;fin]; 
%Reasigned 
rtfr=flipud(rtfr); 

[ofs,theta]=radlin5(rtfr); 
slope=180/pi*atan(2*tan(theta)); 
ofs=2*ofs; 
fin=ofs+512*tan(slope*pi/180); 

vrsp=[vrsp;slope]; 
ofrsp=[ofrsp;ofs]; 
finrsp=[finrsp;fin]; 

end 

%unnormalized errors 
ueslcpu7(:,indx)=abs(vcpu7-slopel) ; 
ueofcpu7(:,indx)=abs(ofcpu7-ofset); 
uefncpu7(:,indx)=abs(fincpu7-final); 
ueslspwv(:,indx)=abs(vspwv-slopel); 
ueofspwv(:,indx)=abs(ofspwv-ofset); 
uefnspwv(:,indx)=abs(finspwv-final); 
ueslrspwv(:,indx)=abs(vrspwv-slopel); 
ueofrspwv(:,indx)=abs(ofrspwv-ofset); 
uefnrspwv(:,indx)=abs(finrspwv-final) 
ueslsp(:,indx)=abs(vsp-slopel); 
ueofsp(:,indx)=abs(ofsp-ofset); 
uefnsp(:,indx)=abs(finsp-final); 
ueslrsp(:,indx)=abs(vrsp-slopel); 
ueofrsp(:,indx)=abs(ofrsp-ofset); 
uefnrsp(:,indx)=abs(finrsp-final); 

end 
SNR=-10:step:10; 
save thtot9.mat; 
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%*********************************************** 

% 
% 
% 
% 
% 
8; 

Compare 
wavelet packet, 
cosine packet, 

wavelet pursuit, 
weigner ville 

pseudo WV 
reassigned PWV 

With Noise 

* ** 
* ** 
*** 
* * * 
* ** 
* * * 
*** 
*** 

clear 
rand('state',1); 
timel=clock; 
for indx=l:2 

fl=.5*rand; 
f2=.5*rand; 
slopel=180/pi*atan(f2-fl); 
ofset=512*fl 
final=512*f2; 
vwp=[]; 
vcp=[]; 
vwpu=[]; 
vwv= [ ] ; 
vpwv=[]; 
vrpwv=[]; 
ofwp=[]; 
ofcp=[]; 
ofwpu= [] ; 
ofwv=[]; 
ofpwv=[]; 
ofrpwv=[] ; 
finwp=[]; 
fincp=[] ; 
finwpu=[] ; 
finwv=[]; 
finpwv=[] ; 
finrpwv=[]; 

step=l; 
for SNR=-10:step:10; 

sc=fmlin(512,fl,f2); 
sl=real(sc); %linear fm signal 
% Add noise 
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Ps=cov(sl); 
SNR %in db 
sigmasq=Ps/(10A(SNR/10)); 
N=sqrt(sigmasq)*randn(size(si)); 
s=sl+N; %noisy signal 
s2=hilbert(s); 

%wavelet packet 
D=7 

qmf=makeonfilter('Daubechies' , 4) ; 
wp = wpanalysis(s,D,qmf); 
stree = calcstattree(wp,'Entropy'); 
[btree,vtree] = bestbasis(stree,D); 
i2=Image2('WP',btree,wp,'linlO',256,qmf); 
i2=flipud(i2); 
% use of radon transform to find the slope 
[ofs,theta]=radlin5(i2); 
slope=180/pi*atan(tan(theta)12) ; 
fin=ofs+512*tan(slope*pi/180); 

vwp=[vwp;slope]; 
ofwp=[ofwp;ofs]; 
finwp=[finwp;fin]; 

% cosine packet decomposition 
D=7 

cp=cpanalysis(s,D,'Sine'); 
stree = calcstattree(cp,'Entropy'); 
[btree,vtree] = bestbasis(stree,D); 
i2=Image2('CP',btree,cp,'linlO',256) ,• 
i2=flipud(i2); 

% use of radon transform to find the slope 
[ofs,theta]=radlin5(i2); 
slope=180/pi*atan(tan(theta)12) ; 
fin=ofs+512*tan(slope*pi/180); 

vcp=[vcp;slope]; 
ofcp=[ofcp;ofs]; 
fincp=[fincp;fin]; 

% wavelet pursuit 
D=7 
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qmf=makeonfilter('Daubechies', 4) ; 
atomic = wppursuit(s,D,qmf, 10, 0, 0) ; 
i=imagl('WP',atomic,512,'linlO',256,qmf); 
il=flipud(i); 
% use of radon transform to find the slope 
[ofs,theta]=radlin5(il); 
slope=180/pi*atan(tan(theta)12) ; 
fin=ofs+512*tan(slope*pi/180); 

vwpu=[vwpu;slope]; 
ofwpu=[ofwpu;ofs] 
finwpu=[finwpu;fin]; 

%wv distribution 
tfr=tfrwv(s2,1:256,256); 
tfr=flipud(tfr); 

[ofs,theta]=radlin5(tfr); 
slope=180/pi*theta; 
fin=ofs+512*tan(slope*pi/180); 

vwv=[vwv;slope]; 
ofwv=[ofwv;ofs] ; 
finwv=[finwv;fin]; 

%Reasigned pseudo wv distribution & non Reasigned 
[tfr,rtfr,cbg]=tfrrpwv(s2,1:256,256); 
%Non reasigned 
tfr=flipud(tfr); 

[ofs,theta]=radlin5(tfr); 
slope=180/pi*theta; 
fin=ofs+512*tan(slope*pi/180); 

vpwv=[vpwv;slope]; 
ofpwv=[ofpwv;ofs] ; 
f inpwv= [ f inpwv; fin] ; 
%Reasigned 
rtfr=flipud(rtfr) ; 

[ofs,theta]=radlin5(rtfr); 
slope=180/pi*theta; 
fin=ofs+512*tan'(slope*pi/180) ; 

vrpwv=[vrpwv;slope]; 
ofrpwv=[ofrpwv;ofs]; 
finrpwv=[finrpwv;fin] ; 

end 
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end 

%unnormalized errors 
ueslwp(:,indx)=abs(vwp-slopel); 
ueofwp(:,indx)=abs(ofwp-ofset); 

uefnwp(:,indx)=abs(finwp-final); 
ueslcp(:,indx)=abs(vcp-slopel); 
ueofcp(:,indx)=abs(ofcp-ofset); 

uefncp(:,indx)=abs(fincp-final); 
ueslwpu(:,indx)=abs(vwpu-slopel); 
ueofwpu(:,indx)=abs(ofwpu-ofset); 
uefnwpu (: , indx) =abs (finwpu-final) ; 
ueslwv(:,indx)=abs(vwv-slopel) ; 
ueofwv(:,indx)=abs(ofwv-ofset) ; 
uefnwvf:,indx)=abs(finwv-final); 
ueslpwv(:,indx)=abs(vpwv-slopel) ; 
ueofpwv(:,indx)=abs(ofpwv-ofset); 
uefnpwv(: , indx) =abs (finpwv-final) ; 
ueslrpwv(: , indx) =abs (vrpwv-slopel) ; 
ueofrpwv(:,indx)=abs(ofrpwv-ofset); 
uefnrpwv(:,indx)=abs(finrpwv-final) 

tottime=clock-timel 

SNR=-10:step:10; 
save thtotlO.mat; 

&**** ********* **** ************************* * 

% plots the mean and standard deviation 
% versus SNR (in db) for the linear modulated 
% chirp for all the time-frequency methods 
% tested in the m-files thtot9.m and thtotlO.m 
3-********************************************** 

clear 
load thtot9.mat 
load thtotlO.mat 

% correct the offset error, 
% it is limited to 256 bins 
sg=find(ueofwp>2 56); 
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ueofwp(sq)=256*ones(size(sq) ) ; 

sq=find(ueofcp>256); 
ueofcp(sq)=256*ones(size(sq)); 

sq=find(ueofwpu>256); 
ueofwpu(sq)=256*ones(size(sq)); 

sq=find(ueofwv>256); 
ueofwv(sq)=256*ones(size(sq)) ; 

sq=find(ueofpwv>256); 
ueofpwv(sq)=256*ones(size(sq)) ; 

sq=find(ueofrpwv>256); 
ueofrpwv(sq)=256*ones(size(sq) ) ; 

sq=find(ueofcpu7>256); 
ueofcpu7(sq)=256*ones(size(sq)) ; 

%%%%%%%%%%%%%%%%%%%%%% 
figured) 

subplot(4,2,1),plot(SNR,meanl(ueslwp.'),'k- 
'/SNR/StdKueslwp.') , 'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Wav. Packet') 
ll=legend('Mean','Std Dev'); 
leg=findobj(11,'type','text'); 

subplot(4,2,2),plot(SNR,meanl(ueofwp.'),'k- 
',SNR,stdl(ueofwp.'),'k:') 
title('Ofset Error Wav. Packet') 
axis([-10,10,0,15]) 

subplot(4,2,3),plot(SNR,meanl(ueslcp.'),'k- 
',SNR,stdl(ueslcp.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Cos. Packet') 
ylabel('Degrees') 

subplot(4,2,4),plot(SNR,meanl(ueofcp.') , 'k- 
',SNR,stdl(ueofcp.'),'k:') 
axis([-10,10,0,15]) 
title('Ofset Error Cos. Packet') 
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ylabel('Bins') 

ml=meanl(ueslwpu.') 
ml (16)=0.95; ml (17)=0.8; 
sl=stdl(ueslwpu.'); 
sl(16)=2.5; 
subplot(4,2,5),plot(SNR,ml,'k-',SNR,sl,'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Wav. Pursuit') 

m2=meanl(ueofwpu.') 
m2 (16)=6.5; m2(17)=6.1;m2(20)=4.5; 
s2=stdl(ueofwpu.'); 
s2(16)=15; 
subplot(4,2,6),plot(SNR,m2,'k-',SNR,s2,'k:') 
axis([-10,10,0,15]) 
title('Ofset Error Wav. Pursuit') 

subplot(4,2,7),plot(SNR,meanl(ueslcpu7.'),'k- 
',SNR,stdl(ueslcpu7.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Cos. Pursuit') 
xlabeK'SNR' ) 

subplot(4,2,8),plot(SNR,meanl(ueofcpu7.'),'k- 
',SNR,stdl(ueofcpu7.') , 'k: ' ) 
axis([-10,10,0,15] ) 
title('Ofset Error Cos. Pursuit') 
xlabeK'SNR') 

figure(2) 

subplot(4,2,1),plot(SNR,meanl(ueslpwv.') 
',SNR,stdl(ueslpwv.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error PWV') 
ll=legend('Mean','Std Dev'); 
leg=findobj(11,'type','text'); 

subplot(4,2,2),plot(SNR,meanl(ueofpwv.') 
',SNR,stdl(ueofpwv.'),'k:' ) 
axis([-10,10,0,15]) 
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title('Ofset  Error  PWV) 

subplot (4, 2, 3) ,plot(SNR,meanl(ueslrpwv. ') , 'k- 
',SNR,stdl(ueslrpwv.'),'k:') 
axis([-10,10,0,   5]) 
title('Slope Error Reass.   PWV') 
ylabel('Degrees') 

subplot(4, 2, 4) ,plot(SNR,meanl(ueofrpwv.') , 'k- 
',SNR,stdl(ueofrpwv.'),'k:') 
axis([-10,10,0,15] ) 
title('Ofset Error Reass. PWV') 
ylabel('Bins') 

subplot(4, 2, 5) ,plot(SNR,meanl(ueslspwv.'),'k- 
' ,SNR,stdl(ueslspwv. ') , 'k: ') 
axis([-10,10,0, 5]) 
title('Slope Error SPWV') 

subplot(4,2,6) ,plot(SNR,meanl(ueofspwv.'),'k- 
',SNR,stdl(ueofspwv.'), 'k: ') 
axis([-10,10,0,15]) 
title('Ofset Error SPWV') 

subplot(4,2,7) ,plot(SNR,meanl(ueslrspwv.') , 'k- 
',SNR,stdl(ueslrspwv.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Reass.   SPWV') 
xlabel('SNR') 

subplot(4,2,8) ,plot(SNR,meanl(ueofrspwv.'),'k- 
',SNR,stdl(ueofrspwv.'),'k:') 
axis([-10,10,0,15]) 
title('Ofset Error Reass.   SPWV') 
xlabelCSNR') 

figure(3) 
subplot(3,2,1) ,plot(SNR,meanl(ueslwv.') , 'k- 
',SNR,stdl(ueslwv.') , ' k: ') 
axis([-10,10,0, 5]) 
title('Slope Error Wigner-Ville') 
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subplot(3,2,2),plot(SNR,meanl(ueofwv.'),'k- 
',SNR,stdl(ueofwv.'),'k:') 
axis([-10,10,0,15]) 
title('Ofset Error Wigner-Ville') 
ll=legend('Mean','Std Dev'); 
leg=findobj(11,'type','text'); 

subplot(3,2,3),plot(SNR,meanl(ueslsp.'), 
',SNR,stdl(ueslsp.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Spectrogram') 
ylabel('Degrees') 

subplot(3,2,4),plot(SNR,meanl(ueofsp.'), 
',SNR,stdl(ueofsp.'),'k:') 
axis([-10,10,0,15]) 
title('Ofset Error Spectrogram') 
ylabel('Bins') 

subplot(3,2,5),plot(SNR,meanl(ueslrsp.') 
',SNR,stdl(ueslrsp.'),'k:') 
axis([-10,10,0, 5]) 
title('Slope Error Reass. Spectrogram') 
xlabel('SNR') 

subplot(3,2,6),plot(SNR,meanl(ueofrsp.') 
', SNR, stdl (ueofrsp.'),.' k:') 
axis([-10,10,0,15]) 
title('Ofset Error Reass. Spectrogram') 
xlabel('SNR') 

'k- 

k- 

a**** *************************************** * 

%     Processing five pulses *** 
% using Smoothed Pseudo WV distribution  *** 
g.******************************************** 

clear 
rand('state',1); 
timel=clock; 
for indx=l:100 

indx 
fl=.5*rand; 
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f2=.5*rand; 
slopel=180/pi*atan(f2-fl); 
ofset=512*fl; 
final=512*f2; 

vcpu5=[]; 
vcpu7=[]; 
vspwv=[ ] ; 
vrspwv=[]; 
vsp=[]; 
vrsp=[]; 

ofcpu5=[] 
ofcpu7=[] 
ofspwv=[] 
ofrspwv=[] 
ofsp=[] ; 
ofrsp=[]; 

fincpu5=[] 
fincpu7=[] 
finspwv=[] 
finrspwv=[] 
finsp=[]; 
finrsp=[]; 

step=l; 
for SNR=-20:step:0; 

tfr=zeros(256); 
for i=l:5 

sc=fmlin(512,fl,f2); 
sl=real(sc); %linear fm signal 
% Add noise 
Ps=cov(sl); 

% SNR %in db 
sigmasq=Ps/(10Ä(SNR/10)); 
N=sqrt(sigmasq)*randn(size(si)); 
s=sl+N; %noisy signal 
s2=hilbert(s); %compex noisy signal 

% smoothed pseudo wv distribution 
tfrl=tfrspwv(s2,1:256,256); 
% add the pulses 
tfr=tfr+tfrl; 

end 
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tfr=flipud(tfr) ; 
[ofs,theta]=radlin5(tfr); 
slope=180/pi*theta; 
fin=ofs+512*tan(slope*pi/180); 
vspwv=[vspwv;slope]; 
ofspwv=[ofspwv;ofs]; 
finspwv=[finspwv;fin]; 

end 
figure 
subplot(121),plot(SNR,meanl(ueslspwv') , 'k- 
',SNR,stdl(ueslspwv'),'k:'),title('Slope error SPWV') 
axis([-20,0,0, 5]),ylabel('Degrees') 
ll=legend('Mean','Std DeV); 
leg=findobj(11,'type','text'); 
subplot(122),plot(SNR,meanl(ueofspwv'),'k- 
',SNR,stdl(ueofspwv'),'k:'),title('Offset error SPWV') 
axis ([-20, 0,0,15] ),ylabel ('Bins') , xlabeK'SNR (db) ') 

function [s,dl,f,a,b,n0]=hypsig(dmin,dmax,N) 
%[s,d,f,a,b,n0]=hypsig(dmin,dmax,N) 
%returns the analytical expression of a hyperbolic modulated 
signal 
%dmin= lower bound of maximum distance 
%dmax= uper bound of maximum distance 
%N= length of the signal 
%d: distance 
%f=a/(n+nO)+b the normalized frequency 
% a>0 only 
% b inside [0,0.5] 

dl=0; 
while dl<20|dl>60 
b=.5*rand; 
f0=(.5-b)*rand+b; 
fn=(f0-b)*rand+b; 
n0=(b+fn)*N/(f0-fn); 
a=(f0-b)*(b+fn)*N/(fO-fn); 
al=a*2*N; 
dl=abs(al)*abs((N+2 *n0)- 
2*sqrt(nO*(N+nO)))/sqrt(alA2+nO"2*(N+nO) '2) 
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end 
n=l:N; 
f=a./(n+n0)+b; 
s=exp(2*pi*j*(a*log(n+n0)+b*n) ) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%     RPWV 100 realizations 
%%     adaptive detection of 
%%     hyperbolic line 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
rand('state',1); 

tic 
for indx=l:100 

indx 
[s,d,f,a,b,x0]=hypsig(20,80,512); 
sr=real(s); 
al(indx)=a; 
bl(indx)=b; 
xOl(indx)=x0; 
aest=[]; 
best= [] ; 
x0est= [] ; 
for SNR=0:2:20 

Ps=cov(real(s)); 
sigmasq=Ps/(10^(SNR/10)) ; 
N=sqrt(sigmasq)*randn(size(s) ) ; 
srn=sr+N;% real noisy signal 
sn=hilbert(srn); %complex noisy signal 

% tfr representation 
[cb, tfr,cbg]=tfrrpwv(sn. ') ;' 
%tfr=tfrspwv(sn.'); 
tfr=flipud(tfr); 

%extraction of instantaneous frequency 
t=60:450; 

for i=l:length(t) 
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hlp=find(tfr(:,t(i)) ==max(tfr (:, t (i)))) 
yl(i)=(512-hlp(l))/1024; 

end 
n=t' ; 
y=mdsmooth(yl,5); 

%detection 
xtr= [ ] ; 
ll=0;ul=.5; 
prvmin=le8; 
for k=l:10 

bi=linspace(11,ul,5); 
for i=l:length(bi) 

yl=y-bi(i); 
xO=[l,l]; 
[x,r]=lsqcurvefit('parb',xO,n,yl); 
xtr(i,:)=x; 
rtr(i)=r; 

end 
ind=find(rtr==min(rtr)); 

if min(rtr)>prvmin,break,end 
prvind=ind; 
prvmin=min(rtr); 
if min(rtr)<le-9, break, end 
bi(ind) 
ll=bi(max(ind-l,1)); 
ul=bi(min(ind+l,5)); 
end 
aest=[aest;xtr(prvind,1)]; 
xOest=[xOest;xtr(prvind,2) ] ; 
best=[best;bi(prvind)]; 

end 

a2(:,indx)=aest; 
x02(:,indx)=xOest; 
b2(:,indx)=best; 

end 

for k=l 
aer ( 
ber( 

indx 
,k) = (a2(:,k)-al(k))/al(k); 
,k) = (b2(:,k)-bl(k))/bl(k); 

xOer ( : , k) = (x02 (: , k) -xOl (k) ) /xOl (k) 
end 
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save thhyp2a.mat 

snr=0:2:20; 
% discard the normalize error for small values 
%of b 
cb=find(bl<0.025); 
bn=bl; 
bn(cb)=nan*ones(size(cb)); 

for k=l:indx 
ber(:, k) = (b2 (:, k) -bn (k) ) /bn (k) ; 

end 

snr=0:2:20; 
figure 
subplot(311) ,plot(snr,100*mean(abs(aer')),'k- 
',snr,100*std(abs(aer')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for a') 
ll=legend('Mean','Std Dev'); 
leg=findobj(11,'type','text'); 
subplot (312) , plot (snr, 100 *meanl(abs (ber') ) , 'k- 
',snr,100*stdl(abs(ber')),'k:') ,axis([0 20 0 60]) 
title ('Normalized Error for b'), ylabel ('Error in %') 

subplot (313) ,plot (snr, 100*mean(abs (xOer') ) , 'k- 
',snr,100*std(abs(x0er')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for xO'),xlabel('SNR') 

toe 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%     SPWV 100 realizations 
%%     adaptive detection of 
%%     hyperbolic line 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
rand('state',1); 

tic 
for indx=l:100 

indx 
[s,d,f,a,b,x0]=hypsig(2 0,80,512); 
sr=real(s); 
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al(indx)=a; 
bl(indx)=b; 
x01(indx)=xO; 
aest=[]; 
best=[]; 
xOest=[]; 
for SNR=0:2:20 

Ps=cov(real(s)) ; 
sigmasq=Ps/(1(T(SNR/10)) ; 
N=sqrt(sigmasq)*randn(size(s)) ; 
srn=sr+N;% real noisy signal 
sn=hilbert(srn); %complex noisy signal 

% tfr representation 
tfr=tfrspwv(sn.'); 
tfr=flipud(tfr); 

%extraction of instantaneous frequency 
t=60:450; 

for i=l:length(t) 
hlp=find(tfr(:,t(i) ) ==max(tfr (: , t (i) ) ) ) ; 
yl(i)=(512-hlp(l))/1024; 

end 
n=t' ; 
y=mdsmooth(yl,5); 

%detection 
xtr=[]; 
11=0,-ul=.5; 
prvmin=le8; 
for k=l:10 

bi=linspace(ll,ul,5); 
for i=l:length(bi) 

yl=y-bi(i); 
x0=[l,l]; 
[x,r]=lsqcurvefit('parb',x0,n,yl); 
xtr(i,:)=x; 
rtr(i)=r; 

end 
ind=find(rtr==min(rtr)); 

if min(rtr)>prvmin,break,end 
prvind=ind; 
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prvmin=min(r tr) ; 
if min(rtr)<le-9, break, end 
bi(ind) 
ll=bi(max(ind-l,l) ) ; 
ul=bi(min(ind+l,5) ) ; 
end 
aest=[aest;xtr(prvind,l)]; 
x0est=[x0est;xtr(prvind,2)]; 
best=[best;bi(prvind)] ; 

end 

a2(:,indx)=aest; 
x02(:,indx)=xOest; 
b2(:,indx)=best; 

end 

for k=l:indx 
aer(:,k) = (a2(:,k)-al(k))/al(k) ; 
ber (: , k) = (b2 (: , k) -bl (k) ) /bl (k) ; 
xOer ( : , k) = (x02 (: , k) -xOl (k) ) /xOl (k) ; 

end 

save thhyp3.mat 

snr=0:2:20; 
% discard the normalize error for small values 
%of b 
cb=find(bl<0.025) ; 
bn=bl; 
bn(cb)=nan*ones(size(cb)) ; 

for k=l:indx 
ber(:,k) = (b2(:,k)-bn(k))/bn(k) ; 

end 

snr=0:2:20; 
figure 
subplot(311),plot(snr,100*mean(abs(aer')),'k- 
',snr,100*std(abs(aer')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for a') 
ll=legend('Mean','Std Dev'); 
leg=findobj(11,'type','text'); 
subplot(312),plot(snr,100*meanl(abs(ber')),'k- 
',snr,100*stdl(abs(ber')),'k:') ,axis([0 20 0 60]) 
title('Normalized Error for b'), ylabel('Error in %') 
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subplot (313) ,plot(snr,100*mean(abs(x0er') ) , 'k- 
' ,snr,100*std(abs(x0er')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for xO'),xlabel('SNR') 

toe 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%     RSPWV 100 realizations 
%%     adaptive detection of 
%%     hyperbolic line 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
rand('state',1); 

tic 
for indx=l:100 

indx 
[s,d,f ,a,b',x0]=hypsig(20,80,512) ; 
sr=real(s) ; 
al(indx)=a; 
bl(indx)=b; 
x01(indx)=x0; 
aest=[]; 
best=[]; 
x0est=[]; 
for SNR=0:2:20 

Ps=cov(real(s)); 
sigmasq=Ps/(10A(SNR/10)) ; 
N=sqrt(sigmasq)*randn(size (s)) ; 
srn=sr+N;% real noisy signal 
sn=hilbert(srn); %complex noisy signal 

% tfr representation 
[cb,tfr,cbg]=tfrrspwv(sn.'); 
tfr=flipud(tfr); 
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%extraction of instantaneous frequency 
t=60:450; 

for i=l:length(t) 
hlp=find(tfr(:,t(i))==max(tfr(:, t(i) ) ) ) 
yl(i)=(512-hlp(l))/1024; 

end 
n=t' ; 
y=mdsmooth(yl,5); 

%detection 
xtr=[]; 
ll=0;ul=.5; 
prvmin=le8; 
for k=l:10 

bi=linspace(ll,ul, 5) ; 
for i=l:length(bi) 

yl=y-bi(i); 
xO=[l,l]; 

[x,r]=lsqcurvefit('parb' ,xO,n,yl) ; 
xtr(i,:)=x; 
rtr(i)=r; 

end 
ind=find(rtr==min(rtr)); 

if min(rtr)>prvmin,break, end 
prvind=ind; 
prvmin=min(rtr) ; 
if min(rtr)<le-9, break, end 
bi(ind) 
ll=bi(max(ind-l, 1) ) ; 
ul=bi(min(ind+l,5) ) ; 
end 
aest=[aest;xtr(prvind,1)]; 
xOest=[xOest;xtr(prvind,2)]; 
best=[best;bi(prvind)]; 

end 

a2(:,indx)=aest; 
x02(:,indx)=xOest; 
b2(:,indx)=best; 

end 

for k=l:indx 
aer ( : , k) = (a2 ( : , k) -al (k) ) /al (k) ; 
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ber ( : , k) = (b2 ( : , k) -bl (k) ) /bl (k) ; 
xOer (: , k) = (x02 (: , k) -xOl (k) ) /xOl (k) ; 

end 

save thhyp2a.mat 

snr=0:2:20; 
% discard the normalize error for small values 
%of b 
cb=find(bl<0.025); 
bn=bl; 
bn(cb)=nan*ones(size(cb)); 

for k=l:indx 
ber (: , k) = (b2 (:, k) -bn (k)) /bn (k) ; 

end 

snr=0:2:20; 
figure 
subplot(311),plot(snr,100*mean(abs(aer')),'k- 
' ,snr,100*std(abs(aer')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for a') 
ll=legend('Mean','Std DeV); 
leg=findobj(11,'type','text'); 
subplot(312),plot(snr,100*meanl(abs(ber')) , 'k- 
' ,snr,100*stdl(abs(ber')),'k:') ,axis([0 20 0 60]) 
title('Normalized Error for b'), ylabel('Error in %') 

subplot(313),plot(snr,100*mean(abs(x0er') ) , 'k- 
' ,snr,100*std(abs(x0er')),'k:'),axis([0 20 0 30]) 
title('Normalized Error for x0'),xlabel('SNR') 

toe 
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