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Abstract 

High-Frequency Acoustic Volume Scattering from 

Biologically Active Marine Sediments 

by Christopher D. Jones 

Chair of Supervisory Committee 

Professor Darrell R. Jackson 
Electrical Engineering 

A thesis on high-frequency acoustic volume scattering from marine sediments 

with application to remote sensing of benthic biological activity is presented. Small 

perturbation theory is used to describe bistatic volume scattering in a sediment 

half-space. The sediment is modeled as an acoustic fluid with random fluctuations 

in density and compressibility. Insight into determining whether single or multiple 

scattering is significant in the medium is gained by using the bilocal approximation 

to Dyson's equation. An alternative analysis of volume scattering is made using 

exact numerical simulations, and a numerical method for two-dimensional volume 

scattering using the method of moments is presented. Both periodic and nonperiodic 

random media are considered. Scattering theory is compared with numerical Monte- 

Carlo simulations, and the validity of the small perturbation method is discussed. 

The effects of the half-space scattering geometry on the coherent field within the 

sediment and on the bistatic scattering cross-section are investigated. 

Benthic biological activity creates temporal and spatial variations in the sedi- 

ment physical properties that result in temporal and spatial variations in sediment 



volume scattering. This acoustic variability is used as a remote sensing tool to infer 

parameters of biological activity, or bioturbation. To develop a forward model that 

relates bioturbation to density fluctuations in the sediment and, therefore, to acous- 

tic scattering, a new stochastic model of bioturbation is presented that describes 

biological mixing as an inhomogeneous (two scale) biodiffusion process. Nonlocal 

mixing (due to macrofauna) is described as a filtered Poisson process, and local mix- 

ing (due to meiofauna) is described as diffusive. Modeling issues such as the spatial 

stationarity of bioturbation are discussed. 

The bioturbation and acoustic scattering models are then combined to produce 

a model for the decorrelation in time of acoustic backscatter. Model predictions 

are compared with experimental data collected over a two month period during 

the Orcas Island experiment. The observed decorrelation of acoustic backscattering 

from the sediment at the Orcas site is compared to model predictions of temporal 

decorrelation, and the feasibility of using acoustic remote sensing to detect and study 

benthic biological activity is discussed. 
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GLOSSARY 

BENTHIC: Pertaining to the bottom of the sea or lake. 

EPIFAUNA: Benthic organisms that live on the surface of the sediment-water 

interface. 

INFAUNA: Benthic organisms that live within the sediment. 

MACROFAUNA: Benthic organisms that fall with the size category of approxi- 

mately 1 cm and larger. 

MEIOFAUNA: Benthic organisms that fall within the size category of approxi- 

mately 0.00001 to 0.001 meters. 

DIAGENESIS: The sum total of processes that bring about change in a sediment 

or sedimentary rock subsequent to deposition in water. 

BIOTURBATION: The mixing of sediment by the activities of benthic organisms. 

EGESTION: To discharge or excrete from the body. 

SURFICIAL: On the surface of the sediment 

PLANKTON: Plant and animal organisms, generally microscopic, that float or 

drift in great numbers in salt and fresh water. 

ix 



NEKTON: The total population of marine animal organisms that swim indepen- 

dently of currents ranging in size from microscopic to large. 

STRATIGRAPHY: The study of rock or sediment strata 
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Chapter 1 

INTRODUCTION 

Acoustic wave propagation and scattering have been widely used to study pro- 

cesses and detect objects in the ocean. The principal reasons are the desire to 

monitor and collect environmental data over a large area and the limited usefulness 

of optical and electromagnetic wave propagation underwater. For a wide range of 

scientific and engineering problems dealing with the ocean environment, acoustic 

wave propagation and scattering is the only remote sensing technology available. 

The ocean, however, is a highly stochastic environment. For many practical 

applications of underwater acoustics, there is inadequate oceanographic information 

about the spatial and temporal variability in the medium to adequately model acous- 

tic propagation and scattering. In some cases, even the mechanisms by which sound 

is scattered are not well understood and must be highly idealized. The problem is 

further complicated by the low frequency and phase velocity of acoustic waves (rela- 

tive to electromagnetic waves). In many cases, the ocean environment fluctuates on 

spatial scales comparable to the acoustic wavelength, especially at higher frequen- 

cies. Consequently, the modeling of underwater acoustics for high-frequency remote 

sensing in the ocean is inherently linked to stochastic modeling of ocean processes 

that affect propagation and scattering. 

In general, there are two very different reasons for studying acoustic interaction 

with the ocean environment. One reason is to remove the negative effects of the 

random environment on acoustic systems, such as underwater communication de- 



vices and object detection sonars. The goal of understanding the environment is 

to provide better forward models of propagation and scattering that can be used to 

improve the systems' performance. The other reason is to facilitate the use of acous- 

tics as a remote sensing tool for studying the ocean environment. A comprehensive 

understanding of the physics of scattering in the ocean will lead to improved inverse 

models of scattering and propagation. With reliable acoustic models, over a range 

of frequencies, underwater acoustics can be used to study the ocean on spatial and 

temporal scales that are unattainable using other technologies. 

Some aspects of the ocean acoustics problem have been investigated for many 

years, especially low frequency propagation in the deep water environment. In re- 

cent years, considerable attention has focused on coastal environments and shallow 

water processes, and the use of high frequency acoustics in the 10-500 kHz range. 

Propagation and scattering at these frequencies are sensitive to small-scale ocean 

processes including: air-sea interactions that create bubbles and surface roughness; 

internal wave structures and turbulence that create index of refraction fluctuations 

in the water column; and biological and hydrodynamic processes in the water and 

sediment. Seafioor processes, such as bioturbation and sediment transport, create 

sediment-water interface roughness and sediment volume heterogeneity. 

The topic of this thesis is the use of high-frequency acoustic volume scattering in 

marine sediments as a remote sensing tool. Two issues in seafioor scattering will be 

addressed in detail: 1) the more general issue of modeling volume scattering from 

the seafioor; and 2) the specific application of acoustic remote sensing of biological 

processes in the seafioor - in particular, the biological processes that create spatial 

and temporal variability in the volume of the sediment. The second chapter of 

this thesis will address the problem of modeling acoustic volume scattering from 

a fluid half-space random medium. Half-space refers to the geometry created by 

the discrete interface between the sediment and the overlaying water. The small 

perturbation method will be used to formulate analytic expressions for the first and 



second moments of the scattered field due to a time-harmonic (CW) excitation. 

In chapter three, a numerical method for volume scattering from a fluid half-space 

will be presented. The numerical solutions are exact in that they attempt to solve 

the complete integral equation formulation of the problem, including attenuation in 

the medium, multiple scattering, and half-space effects. Approximations to the wave 

solution are only numerical. With increased computational resources, the numerical 

solution will improve and approach the exact solution. 

Statistical parameters such as the scattering cross section and field correlation 

are found by generating random realizations of sediment heterogeneity and perform- 

ing Monte-Carlo simulations of the scattered field. Only the time harmonic (CW) 

solution is considered. Numerical results will be presented, and the computational 

problems and convergence issues associated with performing exact two-dimensional 

calculations of volume scattering will be discussed. 

In chapter four, the validity of the small perturbation method for scattering from 

typical sediments will be discussed. Multiple scattering theory, in the context of the 

bilocal approximation to Dyson's equation, will be used to investigate scattering 

due to density and compressibility fluctuation. Numerical simulations (guided by 

the multiple scattering theory) will also be used to investigate multiple scattering 

and half-space effects. Numerical results will be compared with the perturbation 

solution, and inferences will be drawn as to when the approximations are valid. 

The last two chapters (five and six) comprise the second issue of this thesis: an 

application of sediment volume scattering to the remote sensing of benthic biolog- 

ical activity. In chapter five, a new stochastic model of bioturbation is presented 

in which the spatial and temporal fluctuations of sediment physical properties are 

related to biological activity. Existing models of sediment diagenesis are reviewed 

and the mechanisms by which biological activity creates sediment heterogeneity are 

discussed. Then, in chapter six, a model of acoustic scattering due to bioturbation is 

discussed. By coupling the sediment bioturbation model with the scattering model, 



a model for the decorrelation in time of the scattered field due to biological activity 

is developed. This model is then compared with acoustic field data and sediment 

physical data obtained in a biologically active shallow-water environment. 

2.1     Volume Scattering in Sediment 

An acoustic field incident upon a random medium will interact with heterogeneities 

within the volume to create a scattered field. The solution for the volume scat- 

tered field begins by examining the scales and interrelationships between various 

parameters of the problem at hand. The most essential of these parameters are: 

1) the magnitude of the random physical properties of the medium that give rise 

to scattering; 2) the characteristic length scales of the randomness in the medium 

relative to the wavelength of the incident field; and 3) the absorption in the medium 

which defines the characteristic distance over which scattering occurs. Typically, 

some type of analytic or heuristic criterion is applied to these parameters, and a 

solution strategy is chosen. 

There are two general approaches to the solution of wave scattering in a random 

medium: analytic theory and radiative transport theory. Analytic wave scattering 

theories are solution methodologies applied directly to the wave equation for the 

field quantity of interest. They can be broadly categorized as either single or mul- 

tiple scattering theories. Radiative transport theory is based On phenomenological 

observations of the transport characteristics of the wave field intensity [17, 30]. The 

relationship between transport theory and multiple scattering theory has been well 

established [80, 30]. However, this thesis will focus mainly on analytical approaches 

to random medium scattering, and attention will be given to the criteria for de- 

termining which type of analytic solution methodology is applicable to sediment 

volume scattering. 

A single (or weak) scattering medium is one in which the total perturbations 



experienced by the incident field are small, and single scattering dominates the scat- 

tered field. Weak scattering methods can provide analytical solutions to problems 

where general solutions are not attainable. They can also provide intuition into 

the scattering phenomena. First-order perturbation methods, such as the Born and 

Rytov approximations, are classical examples of weak scattering methods. 

Multiple scattering occurs if the perturbation of the incident field by the medium 

is comparable to the incident field itself and there is scattering between the differ- 

ential elements of the volume. Higher-order perturbation methods can be used to 

provide insight into multiple scattering. In general, however, they are complicated 

and are difficult to extend to higher moment solutions of the scattered field. Effec- 

tive medium theories can be used to define renormalized parameters of the medium 

that account for multiple scattering. For example, Dyson's equation describes the 

coherent (mean) field within a scattering medium. It can be used to define a com- 

plex effective wavenumber, where the wave speed and attenuation include the effects 

of multiple scattering [10, 75]. However, effective medium methods are also difficult 

to extent to higher moments and in general do not provide analytic solutions for 

interesting problems. 

Single scattering approximations are used in many ocean acoustics applications. 

For volume scattering from marine sediments, the Born approximation is widely 

assumed [34, 26, 88]. However, the validity of the weak scattering assumption for 

typical marine sediments is not well established. Typically, sediment core sampling 

[13, 34] or in situ analyses [74, 87] are used to estimate density and sound speed 

fluctuations in the sediment. The measured sediment fluctuations are then used to 

estimate backscatter strength using single scattering models. 

Experimentally measured backscatter strengths have been compared with the 

predictions of first-order perturbation models for volume scattering [34]. Some data 

show reasonable agreement with models, within the confidence limits of the esti- 

mated sediment parameters used as inputs to the models. However, the results are 
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inconclusive. No attempt is made to investigate half-space effects or higher-order 

scattering effects. The disagreements in model-data comparisons are attributed to 

errors and resolution problems associated with the core analysis and the spectral es- 

timation of the sediment fluctuations. Comprehensive ground-truth measurements 

of sediment volume heterogeneity in a wide variety of environments are not yet 

available. 

In contrast, scattering from the sediment-water and air-water interface in the 

ocean has been studied in detail and the parameter space of validity determined 

[76, 77]. It is well established that small perturbation methods for sediment interface 

roughness scattering are not always applicable for the range of acoustic frequencies, 

grazing angles, and interface statistics encountered in the ocean. In general, a variety 

of surface scattering models (e.g., perturbation, tangent-plane, small-slope methods) 

are applied depending on the particular merits of the method and the characteristics 

of the surface roughness [37, 15]. Much of this evaluation was done in comparison 

with exact numerical solutions, the most common calculation being the computation 

of the scattering integral equation of an idealized one-dimensional rough surface by 

quadrature methods [76, 77]. More recently, efficient numerical techniques have been 

extended to the solution of the full three-dimensional surface problem, [78] and [22] 

for example. 

This thesis will address the validity of small perturbation methods for volume 

scattering in marine sediments (where the magnitudes of the medium fluctuations 

are the small parameters). Insight into determining whether single or multiple scat- 

tering is significant in the sediment will be gained by using classical multiple scat- 

tering theory. Effective medium theory using the bilocal approximation to Dyson's 

equation will be extended to include density fluctuation (analogous with including 

permeability fluctuation in the EM case). An alternative analysis (guided by the 

results of the multiple scattering theory) will be made using "exact" numerical sim- 

ulations of the scattered field. By comparing solutions of the perturbation method 



with the numerical solutions, the range of validity of the perturbation methods for 

typical sediments can be inferred. Parameters of the sediment are limited to those of 

typical marine sands and muds modeled as acoustic fluid half-spaces with Gaussian 

random fluctuations in density and compressibility. 

Numerical simulations will be limited to the solution of the volume integral 

equation in two dimensions and for a single frequency using the method of mo- 

ments [24]. Moment methods are commonly applied to electromagnetic scattering 

problems (see [18] and [57] for an overview). Other solution techniques such as 

finite-volume methods, finite-difference and finite element methods are also applied 

to wave propagation and scattering (also see [57] for an overview of these and other 

methods). The numerical integral equation formulation provides one obvious ad- 

vantage: it is the most direct and analogous solution methodology for comparison 

with the perturbation results. By treating the scattering integral as a matrix equa- 

tion, the convergence properties of the perturbation expansion can be studied by 

examining the convergence properties of the solution of the matrix equation. 

1.2    Benthic Biological Activity 

Biologically active sediments are continually modified by epifauna and infauna. Epi- 

fauna are organisms that live on the sediment surface, and infauna are organisms 

living within the sediment. The collective mixing effect of these organisms is termed 

bioturbation. Interests in bioturbation range from applications in marine engineering 

to biological oceanography including the time evolution of acoustic and structural 

properties of seafloor sediments, and the monitoring of the effects of pollutants or 

other disturbances on benthic ecology. Biological interests include diagenesis in ma- 

rine sediments, the study of sediment disturbance processes, deposit-feeding levels, 

and population dynamics, for example. 

Observations of the influence of benthic biology on sediment heterogeneity are 



Figure 1.1: Examples of benthic epifauna and infauna that create bioturbation in 
marine sediments (from Berner 1980) 

numerous. An overview of this topic can be found in texts on the subject [4, 40, 46] 

and in review articles with extensive bibliographies [56], for example. Figure 1.1 

illustrates typical organisms of interest in this development. Sediment x-ray cores 

reveal the structure of density fluctuations (through x-ray absorption) within the 

volume of the sediment. Figure 1.2 shows several examples of typical X-radiographs 

taken in biologically active sediments. The imagery shows typical burrows and 

inclusions due to biological activity. These illustrations and images also clarify the 

spatial scales of scattering that are of primary interest in this thesis. The acoustic 

wavelength for frequencies of interest (10-500 kHz @@ 1500 m/s) is comparable to 

the scale of the heterogeneity created by biological processes. 

Acoustic observations of benthic biological activity are also numerous, although 



16 cm 

Figure 1.2: Examples of sediment X-radiographs of cores that show volume hetero- 
geneity created by benthic organisms (from R. Wheatcroft) 
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the observations are not generally investigated for the purpose of understanding 

the biota. Of particular interest are recent experiments in which observations of 

sediment backscatter were made over a period of months in a variety of shallow- 

water environments and sediment types [20, 36, 41, 86]. The spatial and temporal 

evolution of scattering from the seafloor (at 40 and 300 kHz) has been attributed to 

biological reworking of sediment microtopography, sediment volume heterogeneity, 

and near-bottom volume reverberation. The correlation in time of the backscattered 

field shows characteristic decay that is most likely a function of the type and rate 

of biological activity associated with the different environments (see Figure 1.3). 

During the Orcas experiment, changes in the acoustic signatures of buried objects 

over time were observed [86]. Biological activity around the buried objects decreased 

the object's total scattering strength in time. During the same time period, the 

temporal correlation of backscatter from the area of the object showed increased 

decorrelation - most likely due to increased biological activity around the object. 

On micro- and macroscopic scales, bioturbation affects the physical and chemical 

properties of the sediment. The intensity of bioturbation affects the distribution of 

marine chemicals which, in turn, influence the microbial activity, in the sediment 

and the ultimate fate of marine pollutants [1, 4, 40, 83]. Epifaunal activity creates 

microtopography that may decrease the critical velocity necessary to erode surface 

layers [84]. Infaunal activity, such as tube building, is responsible for vertical and 

horizontal redistribution of solid material within the sediment, creating spatial and 

temporal heterogeneity in sediment porosity [6, 7] which leads to heterogeneity in 

the sediment bulk density and compressibility. Often, the traces of these mixing 

activities provide the only evidence of the existence of fauna in an area and may 

provide a measure of benthic biomass [84]. 

Bioturbation is pervasive and shows similar spatial characteristics across a wide 

variety of marine environments. The effective biological mixing depth (based on a 

variety of measurement methods) has a worldwide mean of approximately 10 cm 
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1.1 

Eckernfoerde Bay 

STRESS Mid Shelf 
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25 

Figure 1.3:   Decorrelation of the backscattered field due to biological activity at 
various shallow water locations. 
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Figure 1.4:   Spectrum of the equivalent spherical diameter body size of benthic 
organisms in marine sediments (from Jumars 1993). 

[40]. In addition, the body size spectra of benthic organisms show characteristic 

tri-modal structure, rather than a flat spectrum observed for organisms in the ocean 

water column [40]. Figure 1.4 shows the typical size-abundance relationship for 

organisms in marine sediments. In both shallow water and deep sea sediments, 

there are minima in the body size spectra at about 10 /J,m and 1 mm. In general, 

meiofauna collectively outweigh macrofauna, with animal and bacterial abundance 

declining exponentially as a function of depth into the sediment [40]. 

This brief introduction is given mainly to motivate interest in bioturbation from 

a remote sensing point of view, not as a comprehensive review of the topic. The 

subject of bioturbation in marine sediments is far beyond the scope and intent of 

this thesis. However, because one of the objects for this thesis is to address the 

remote sensing problem, a forward model of bioturbational mixing must be devel- 

oped. The forward model in this case is a quantitative description of mixing that 

can relate biological parameters to acoustically detectable changes in the physical 

properties of the sediment. A certain level of detailed description of the biological 

processes is necessary, therefore, to justify the proposed modeling methodology. Fur- 

thermore, since the mixing model is used as the critical link between the observation 
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of sound scattered from the sediment and the estimation of parameters that describe 

the sediment biology, it should incorporate established variables and concepts used 

by benthic biologists. In addition, the mixing model should provide the physical 

reasoning that relates these parameters to the modeling of sound scattering. 
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Chapter 2 

SEDIMENT VOLUME SCATTERING 

In general, acoustic scattering from the seafloor is a function of the roughness 

at the sediment-water interface, roughness of interstitial sediment layers, the distri- 

bution of discrete particles or bubbles within the sediment, and fluctuations in the 

sediment volume density and sound speed. The sediment itself can be modeled as 

a fluid [32, 34], an elastic [35] or poro-elastic medium [72, 19], or as a system of 

densely packed sediment grain particles. The variety in model idealizations is due in 

part to the wide variety of sediment types and seafloor compositions encountered in 

the ocean environment and the wide range of acoustic frequencies used to interact 

with the seafloor. 

In any particular scenario of sound interaction with the seafloor, one or more 

of the above mentioned scattering mechanisms or model idealizations may be ap- 

plicable. Typically, one scattering mechanism is assumed to be dominant. Surface 

roughness scattering is likely the dominant scattering mechanism for many hard 

sand and rock sediments. Volume scattering is dominant in sediments composed 

of soft silts and mud [33]. In the case of competing scattering mechanisms, where 

two or more types of scattering are present and of comparable effect, single scatter- 

ing is typically assumed and each scattering mechanism treated independently. This 

chapter will address the issues of modeling volume scattering from marine sediments. 

The appropriate medium idealization to apply at a particular frequency (inde- 

pendent of the scattering mechanism) is still a matter of some debate. In this thesis, 

it will be assumed that sediment can be modeled as an effective fluid medium. No 

statement is made about the sediment particle-wave interaction at the frequencies 
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Figure 2.1: Geometry for volume scattering from a half-space random medium. 

of interest, only that the net result is an effective continuum whose acoustic proper- 

ties are modeled as a fluid. Scattering from larger particles such as shells and drop 

stones will not be considered. It is further assumed that the compressional wave 

attenuation of the sediment is high and acoustic penetration is limited to the region 

of sediment near the sediment-water interface. For highly consolidated sediments, 

shear properties may be significant and the medium would be modeled as an elastic 

solid. However, in soft sand or mud (near the sediment-water interface) the acoustic 

shear properties of the medium are weak, and the sediment will be treated as an 

acoustic fluid [35]. 

Figure 2.1 illustrates the fluid-fluid half-space interface and geometry for volume 

scattering. The grazing and scattering angles are defined relative to the plane of 

the interface. The upper half-space (UHS) contains the positions of the source and 

receiver and is assumed to be acoustically homogeneous. The lower half-space (LHS) 

is a continuous random medium of infinite extent in depth and in the horizontal 

dimension. 
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Figure 2.2: Composition of marine sediment near sediment-water interface. 

2.1    Sediment Physical Properties 

The sediment is assumed to be unconsolidated and composed of a mixture of solid 

sedimentary particles (or grains) and sea water Figure 2.2 illustrates a typical sed- 

iment composition near the sediment-water interface. Sediment grains may consist 

of a mixture of silicate sand (quartz), shell fragments (CaCOs), clay particles, and 

organic matter, for example. The sediment is assumed to possess no rigid frame (the 

shear modulus of the medium is zero) and is treated as a fluid half-space continuum. 

The acoustic phase velocity (c) is defined in terms of the sediment bulk density (p) 

and compressibility (K): 

^ (2-1) 

Randomness in the sediment is characterized by fluctuations in the sediment 
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porosity, which lead to fluctuations in the sediment density and compressibility. 

Normalized fluctuations in the sediment density and compressibility are defined as 

7« = («-*)/*, (22) 

1P = (P- 9)19 i 

where p and R are the mean values. In general, the sediment density is a real quan- 

tity, and the compressibility is complex representing dissipation of acoustic energy. 

They combine to create a complex compressional phase speed in the sediment. The 

fluctuations in the compressibility are assumed to have the same relative loss as the 

mean, or 

Im 
K 

Kl 
= 0 ; (2.3) 

therefore jK is always real. The fluctuation in sediment sound speed is defined as 

7c = (c-c)/c, (2.4) 

where 

c=Jk. (2-5) 
V 9K 

The sound speed fluctuations can be written in terms of the density and compress- 

ibility fluctuations: 

WM-1- (2-6) 
In the water, p0 and K0 are real. The mean values of density or compressibility in 

both the UHS and LHS are assumed to be constant in space and time (no gradients). 

In general, the real and imaginary components of the wavenumber may take any 

functional form that satisfies causality (i.e., they obey the Kramers-Kronig relation- 

ship). For convenience, however, the components are taken to be proportional, such 

that the wavenumber in the LHS is defined as 

k = Re[uj/c](l + iS) , (2.7) 
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where UJ is the acoustic frequency. The compressional loss factor S is the ratio of 

the imaginary to real components of the LHS wavenumber. It is assumed to be 

independent of frequency. This assumption violates causality in the strict sense. 

However, over the frequency range of interest the resulting dispersion errors are 

small and can be neglected [47]. 

If 8 is independent of frequency, and dispersion in the medium is negligible, the 

attenuation will scale as the first power of frequency. Extensive experimental evi- 

dence suggests the first power frequency dependence [23, 60], although the frequency 

dependence of attenuation in unconsolidated marine sediment is still a matter of de- 

bate. Intergranular friction and hysteresis, for example, have been proposed as a loss 

mechanism in which linear scaling with frequency and weak logarithmic dispersion 

can be explained [16]. Porous medium (Biot) models with added dissipation terms 

have also been proposed to explain approximately linear frequency relations [72, 19]. 

The attenuation coefficient in the sediment due to intrinsic absorption, with units 

of decibels per unit wavelength (dB/A), is defined as 

407T 
«A -5 . (2.8) 

ln(10) 

Another attenuation coefficient that is of practical use has units of decibels per meter 

per kHz (dB/m/kHz), and is defined as 

1000 .    , 
a; = —— o-\ ■ \LS) 

c 

A constitutive relationship between density and compressibility is not available 

for marine sediments composed of particles. However, a linear relation is assumed 

based on measured density-sound speed relationships [13, 45, 88, 32]: 

7« = WP » (2-10) 

where \x is a constant, at least within the confidence intervals of the available data. 

Fluctuations in sediment sound speed are generally weak compared to fluctuations 
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in density and compressibility, indicating a negative correlation between density and 

compressibility. A negative fx also corresponds to a physical picture of sediments 

where porosity dictates the density and compressibility. As porosity increases, the 

bulk density of the sediment decreases (assuming the sediment grains are more dense 

than water). As the volume of water increases relative to the volume of grains, the 

compressibility increases (assuming that water is more compressible than the grains). 

As density increases, compressibility decreases. Therefore, fx is generally assumed 

to be negative. 

2.1.1    Correlation and Scale of the Medium Fluctuations 

Scattering of sound from the sediment volume depends on the spatial correlation of 

the density and compressibility fluctuations. The auto- and cross-correlations of the 

fluctuations are defined as 

CK«(ri,r2) = (7K(ri)7«(r2)) , 

C7fV(r1,r2) = <7l,(r1)7p(r2)> , (2.11) 

Cw(r1,r2) = (7p(r1)7/)(r2)) . 

For a wide-sense stationary process, the correlation is defined in terms of the differ- 

ence coordinate r^ = ri — r2: 

CKK(vd) = {lK(r + rd)7K(r)) . (2.12) 

Similarly for the other correlation functions. If it is assumed that the medium 

compressibility is proportional to the density using (2.10), then 

CKp(rd) = CpK(rd) = fiCpp(vd) , (2.13) 

and 

CKK(rd) = fi2Cpp(rd) . (2.14) 
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Various functional forms of the correlation function can be assumed depending 

on the spatial scales of interest. For the acoustic frequencies of interest and the 

corresponding scales of the randomness in the sediment that interact with the high 

frequency acoustic waves (correlation scales of approximately 0.01-1.0 meters), the 

von Karman or the exponential correlation functions are often used [30, 2, 69]. On 

scales much smaller than the wavelength, the sediment is better described as a dense 

distribution of grain particles, and a description in terms of a continuous correlation 

function is not applicable. On the other end of the scale, acoustic interaction with 

geological features (very large spatial frequencies) can be considered deterministic 

and handled in the mean sediment properties. For example, large-scale sediment 

stratigraphy is observed on the scale of meters in deep cores. However, a high- 

frequency acoustic field will only penetrate a short distance into the sediment due 

to attenuation, and it will only interact with a single layer. 

For an isotropic medium, the von Karman correlation function is defined in terms 

of the variance of the density fluctuations (a2
p) and the correlation length scale of 

the fluctuations (/c) as 

CPP(rä) = ^^Kq(r/lc), (2.15) 

where r = |r<i|, and Kq is the modified Bessel function of the second kind of order q. 

The exponential correlation function is a special case of the von Karman correlation 

function with q = 2: 

Cpp{vd) = a2
pe~r^ . (2.16) 

The exponential correlation function is a commonly assumed form for sediment core 

analysis [34, 13]. The main reason for applying the exponential assumption is more 

a function of necessity when processing the sparsely sampled cores rather than a 

statement of an underlying physical process in the sediment. 

The power spectral density (PSD) function of a stationary process is defined as 
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the Fourier transform of the correlation: 

SPP^) = ^-3jcpp(r)e-i^dr. (2.17) 

The corresponding power law PSD function for the exponential correlation function 

is 

S„(k) 
°i/(«2lc) 

(1//2 + &)*   ' 

For a two dimensional process, the power law PSD function is 

/(2TT/C) 

(2.18) 

Spp(k)        ^ + p^/2  • (2.19) 

2.2    Volume Scattering Integral Equation 

A pressure wave, incident upon the LHS, will interact with heterogeneity in the 

volume to create a scattered field. In the absence of fluctuations in the medium, the 

time-harmonic wave equation valid in the UHS is 

V2p(r) + k2
oP(v) = 0 , (2.20) 

and valid in the LHS is 

/>(r)V 
1 

.P(r) 
Vp(r) + k2p(r) = 0 . (2.21) 

The boundary conditions at the interface between the two fluids (at z = 0) are the 

combined Dirichlet and Neumman conditions for a penetrable medium, 

and 

P(x,y,z = 0+) =p(x,y,z = 0 ) 

1 dp(x,y,z = 0+)      ldp(x,y,z = 0 ) 
dz p dz 

(2.22) 

Po 
(2.23) 
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In the presence of heterogeneity in the LHS, the coefficients of the wave equation 

are random variables, 

1 
p(r)V :Vp(r) + *2(r)p(r) = 0, (2.24) 

where k2(r) = a;2/j(r)/c(r) is the random LHS wavenumber. A single wave equation, 

valid in the LHS (with or without heterogeneities), can be defined by rearranging 

(2.24) and grouping the random terms on the right side: 

V2p(r) + Pp(r) = -/(r) . (2.25) 

The right side represents an induced source term, /, which combines scattering due 

to fluctuations in the medium's compressibility and density: 

/(r) = PjK(r)p(r) - V • hP(r)Vp(v)} . (2.26) 

The left side of (2.25) is the unperturbed Helmholtz operator. Equation (2.25) 

is still homogeneous in the unknown quantity p. No new energy is added into the 

system by the source term. The sources act to redistribute the incident wave through 

interactions with the heterogeneity in the medium. 

The Green's function for the unperturbed system is the solution of the wave 

equations 

V%(r) + P<fo(r) = -*(r - r') (2.27) 

in the LHS, and 

V2flb(r) + k2
0g0(r) = -*(r - r') (2.28) 

in the UHS, that satisfies the appropriate boundary conditions along the sediment- 

water interface (see Appendix A). With no gradients in the mean density, the 

spectral representation of the half-space Green's function for transmission from r' 

in the LHS to r across the interface into the UHS is 
oo 

go(r,r') = -i_  / ^T\kx,ky)e
ißoZ-ißz'eik^-^+ik^v-y'Ukxdky , (2.29) 

—oo 
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where 

ß=y/k*-k*-k* (2.30) 

and 

ßo = ^Jkl-kl-kl (2.31) 

are positive to represent a physical field. The coefficient T' is the plane-wave pressure 

transmission coefficient from the LHS to the UHS: 

r =     2/°P      . (2.32) 
poß + pßo K       } 

For r and r' both in the LHS, the half-space Green's function including reflection is 
oo 

9oM = g^ / ^ [R(kx,kyy
ßlz+Z'] + eiß]z~Z']} eik^-x'^ik^y-^dkxdky ,   (2.33) 

—oo 

where R is the plane-wave pressure reflection coefficient: 

poß-pßo- 

poß + pßo V       ' 

The volume scattering integral equation is obtained by applying the Kirchhoff- 

Helmholtz integral relationship with the source term (2.26): 

0 ds' 
(2.35) 

+ [ f(r')g0(r,T')dv'. 
Jv 

The first integral in (2.35) is a surface integral over a bounding sphere at infinity, 

and simply reduces to the incident field. The second integral is the superposition 

and propagation of the induced sources with the unperturbed Green's function. The 

volume integral can be simplified by integrating by parts and applying the divergence 

theorem such that 

f V ■ [7p(r')V'p(r')] flb(r, v')dv' = jf 7P(r')^-go(r, r')ds' 

i 
(2.36) 

lp(r')V'g0(r,r')-Vp(T')dr'^ 
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By applying the radiation condition at infinity, the surface integral in (2.36) vanishes. 

The final integral equation for the total field can be written as the sum of the 

unperturbed field (p0) and the scattered field (ps): 

p(v) = po(r) + Ps(r) . (2.37) 

The scattered field is the sum of all the fields due to the differential sources within 

the volume: 

P.{T) = / [P7*(r0<7o(r, r>(r') + lP(r')Vg0(v,r') • Vp(v')} dv' .   '      (2.38) 
Jv 

Equation (2.38) is similar to the well-known integral equation [54] which uses 

the free-space Green's function. However, now the half-space boundary conditions 

are included by the use of the half-space Green's functions. The first term in the 

volume integral represents monopole scattering due to compressibility fluctuations 

at a point in the volume. The second term represents dipole scattering due to the 

dot product of gradients in the field and Green's function at a point in the volume. 

The integration is over the volume of the LHS medium. With significant attenuation 

in the lower medium, the scattered field will penetrate only a limited distance into 

the medium so that the acoustic energy from the incident field will be confined to a 

layer near the surface of the LHS. Therefore, the depth dimension of the volume is 

finite and for many practical problems will be relatively small. 

If the medium is fluctuating in time, the scattered field will fluctuate in time, 

as well as in space. If the medium is fluctuating slowly compared to the frequency 

of the acoustic wave, the time dependence of the medium carries through into the 

scattering integral equation: 

p,(r,t) =  f [P7«(r',t)g0(v, r>(r', t) + 
Jv (2.39) 

lp(r',t)V'go(r,r')-V'p(r',t)]dv'. 

Here, the time dependence is a function of the medium only. The pressure field is 

still assumed to be time-harmonic, and this time dependence is suppressed. 
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If the medium density and compressibility are known, the scattered field inside 

and outside the scattering medium can be found uniquely using the appropriate 

Green's function. However, analytic solutions to (2.38) and (2.39) for a random 

medium are generally not available. 

2.3    Small Perturbation Method 

If the fluctuations in the medium are small, the solution for the perturbed system 

will be similar to the solution of the unperturbed system. Therefore, assume that 

the unknown scattered field can be expanded as a perturbation series in powers of 

some small and dimensionless quantity e, such that 

p(r) = 0o + e&(r) + t%(r) + • • • , (2.40) 

where e is of the order of magnitude of the medium fluctuations: 

0(e) = 0{lK) = 0(7,) . (2.41) 

The perturbation series is defined as an asymptotic series with respect to the se- 

quence 1, e, e2, • • • and the basis functions 4>n having the property 

N 

p-Y,zn<l>n = 0{tN)  ase-40. (2.42) 
n=0 

This property does not guarantee that the series will converge. Therefore, increasing 

the number of terms in (2.40) does not necessarily improve the solution. Even if the 

series does seem to converge, it may not necessarily converge towards the correct 

result. The reason for this is that the asymptotic expansion only makes a statement 

about the series in the limit as e -> 0, not as N -¥ oo. Therefore, as the small 

parameter e increases (as the medium fluctuations grow larger), the perturbation 

solution is unpredictable. However, if the parameter e is "small", the higher-order 

terms in the series will often decay rapidly [42]. Therefore, a relatively small number 



26 

of terms can be used to accurately represent the behavior of the solution. Each 

higher-order term in the series then corresponds to a higher-order correction to the 

true field. 

The consecutive terms of the perturbation series are obtained by substituting 

(2.40) into the integral equation (2.37) and balancing terms by powers of e: 

p = <f)0 + e<£i + e2(/>2 + • • • 

= p0 + L[<f>o] + L[t<h] + L[e2<j>2] + ■■■ . 

The operator L is the linear integral operator of (2.38) or (2.39). Since only single 

powers of jK or <yp are present in the operator, L is first-order in e. The zeroth-order 

term (corresponding to no randomness in the medium) is found to be 

4>o = Po. (2-44) 

This is the known solution to the unperturbed problem, and for a unit point source is 

simply the Green's function (2.29) or (2.33). The first-order term in the perturbation 

series is found, by substituting in the zeroth-order solution, to be 

ak = L[<h] = L\po]. (2-45) 

The second-order term is similarly found to be 

e2cf>2 = L[ecß1} = L2\po}: (2.46) 

Continuing in this manner, the perturbation series for the total field is 

p = po + L\po] + L2\p0] + L3\p0] + •■■ . (2.47) 

Redefining the scattered field as a series of higher-order correction terms, 

p,==p<i>+J,W+p(3> + ... , (2.48) 
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where p^ is of order e, p^ is of order e2, and so on, it follows that each higher-order 

correction can be found uniquely in terms of the preceding order correction: 

p<B+1>=£[p<B>]. (2.49) 

Using equation (2.39), the perturbation terms for the volume scattering integral 

representation are found to be 

p(n+1Hr,t)=  I [P*fK(r',t)go(r,r')pW(v',t) + 
Jv (2.50) 

.    7P(r',t)Vgo(r,r')-VpW(r',t)]dr' 

for n = 0,1,2, • • •. If the fluctuations are within the range of validity of the pertur- 

bation solution, a low-order approximation will sufficiently represent the scattered 

field. 

The equivalent perturbation result can also be found by direct iteration of the 

integral equation [67]. It can also be found by substituting the perturbation series 

directly into the wave equation for the LHS and satisfying boundary conditions along 

the interface [42]. The methods are equivalent and need not be repeated. 

2.3.1    First-Order Perturbation Method 

For a source and receiver positioned in the UHS and in the far-field of the interface 

(see Figure 2.1), the first-order scattered field can be found in terms of a convenient 

Fourier integral over the scattering volume. Using the method of stationary phase 

to evaluate the Green's function (2.29) in the far field (see Appendix B), the half- 

space Green's function for transmission from the lower to the upper medium is 

approximated as 

^(r, r') = P2.IMeikore-*,r> > (2>51) 
p   4irr 

Similarly, the incident field at r' in the LHS due to a source at ro is 

Po(r') = <7o(r', r0) = P^\*'r' . (2.52) 
47rro 
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The position vectors r and r0 lie in the water, and r' lies in the sediment. The wave 

vectors k2 and ks are oriented in the incident and scattering directions in the LHS, 

respectively. They are defined as 

Kj = Kxix ~T KyiV ~ Piz 5 . . 
(2.53) 

Ks = KXSX T KySy -f- psZ , 

with ßi and ßs defined analogously to (2.30). The horizontal components of the 

incident and scattered field wavevectors are defined as kxi = k0x0/r0, kxs = k0x/r, 

kyi = hyo/ro, and kys = k0y/r. The coefficient T is the pressure transmission 

coefficient for a plane wave incident upon the interface from the water at the incident 

and scattering angles, 0; and 9S respectively: 

PoPi + PPo (2 54) 

T(ß , -      2PP° 
[s)      Poßs + Pßo' 

Using (2.50), (2.51) and (2.52), the first-order bistatic field at position r is found 

to be 

pM(r,*) = r(r) / dv'[P7K(r',*) + 7p(r', t)(k{ ■ k.)] J<*-W , (2.55) 
Jv 

where 

T(r) = PoT(^)r(^)c»fco(ro+r) _ (2.56) 
p   (47r)2r0r 

Figure 2.3a illustrates the first-order result graphically. The incident field is refracted 

into the lower medium and interacts with the inhomogeneities. The scattered field is 

an integral over all the monopole (7«) and dipole (7,) sources in the volume shifted 

in phase by the factor related to the incident and scattered directions. The integral 

results in a Fourier transform of the medium fluctuations over the volume of the 

medium. Since the volume of the scattering medium is the half-space, the Fourier 

integral must be windowed in the depth direction. 
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The equivalent result for a two-dimensional medium is found using the two- 

dimensional far-field Green's functions 

Po(r, r') = _t-^_^Le«-*ore-&.T'e-,v/4 (2>57) 

p \/8irk0r 

and incident field 

^(r') = _,•    TW)     pikoropiki.r>p-i*/4 ^ (2.58) 
V8irk0rQ 

where r = (x,z) (see Appendix A). The two-dimensional integral equation for the 

scattered field is the same as (2.55) except the geometric factor is redefined as 

r(r) = PoT(0i)T(6s) eiko{ro+r) ^ (2>59) 

p 8irk0y/rär 

and the integration is over the two-dimensional medium. 

2.3.2   Higher-Order Perturbation Fields 

The scattered fields represented by higher-order terms in the perturbation series can 

be interpreted physically by examining the recursive nature of (2.50). The second- 

order perturbation result, which contains a double integral operation, is found by 

substituting the first-order result into (2.50): 

p(2)(r) = k4 / / 7K(r2)7K(r1)£fo(r, r2)g0(r2, ri)flto(ri, r0)<fridr3 

+ & // 7K(r2)7/>(ri)fl,o(r,r2)ViSfo(r2,r-1) • V1g0(ri,ro)dr1dr2 

+ & / / 7p(r2)7«(ri)V2c?o(r, r2) • V2sr0(r2, ri)fif0(ri, ro)drK/r3 

+ I   lp{^)lP(ri)V2go(r,r2) ■ [V3ViSb(r2,ri)] • Visb(ri,r0)</ridr2 • 

(2.60) 

The operator Vx is the gradient with respect to ri; V2 is the gradient with respect to 

r2; and V2Vi is a dyad operator. The time variable t is suppressed for convenience. 
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Figure 2.3: Small perturbation method for volume scattering from a random half- 
space: (a) first-order scattering; (b) second-order scattering. 
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Consider the double integrals in the second-order expression. The presence of the 

Green's function gofa, 1*1) represents the interaction between the elemental volumes 

efri and dr2. Therefore, the second-order term in the perturbation series represents 

the field due to second-order scattering in the medium, that is, scattering due to the 

interaction of two elemental volumes. The first integral is double scattering due to 

compressibility fluctuations. The second and third integrals are double scattering 

between compressibility and density fluctuations. The fourth integral is double scat- 

tering due to density fluctuations. The dot products of the gradients of the Green's 

functions can be thought of as creating a dipole directivity of the scattered field. In 

the far-field, the gradient in the Green's function creates dipole patterns oriented in 

the direction of propagation. Figure 2.3b illustrates the second-order interactions 

due to scattering by density and compressibility fluctuations. The third-order per- 

turbation term includes third-order scattering. Similarly, higher-order terms of the 

perturbation series represent higher-order scattering in the medium. The scattered 

field (for each higher order) will be composed of all the possible compressibility and 

density interactions. 

Scattering diagrams (due to Feynman) are a useful method of expressing the 

higher-order terms [68, 80]. Let #0(1*1, r0) be represented by a straight line segment: 

flb(r2,ri) ~    . (2.61) 
r2 ri 

The vertices of the line segment represent the integration variables. Several new 

symbols are defined to represent the medium and derivatives of the Green's func- 

tion. A filled vertex represents a compressibility fluctuation, and a hollow vertex 

represents a density fluctuation: 

fc27«(r)  ~   • , 
V ; (2.62) 

7/>(r)  ~   ° • 

An arrow on the line segment represents the gradient of the Green's function with 
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respect to the integration variable the arrow is pointing towards: 

Vi5b(r2,ri) 
T2 

V2#o(r2,ri)  ~  -«- 
(2.63) 

T2 ri 

The second-order perturbation term can now be expressed in diagrams as 

p(2)(r) = • • 1 •—>-OH h 
r        T2 ri       ro        r        ?2       ri      ro 

—MM—• 1 y-o <   > OH  . 
r      T2        ri       ro      r      ?2 ri      ro 

(2.64) 

The diagrams can be simplified by dropping the coordinates of the inner vertices. 

Noting also that the hollow vertices are always bracketed by arrows representing the 

gradient operation, the arrows will be dropped and the derivatives implied. The 

third-order perturbation result is represented as follows: 

p(3)(r) = • ■ • 1 • • o h 
r ro 

r ro 

r ro 

—0   0  —•— 

ro 

+  0 •— • h 
r ro 

_| o • 0 1- 
r r0 

+ 

(2.65) 

ro        r ro 

2.4    Temporal and Spatial Correlation of the Scattered Field 

As the sediment fluctuates randomly in space and time, the scattered field will 

fluctuate. Thus, the scattered field is a random process, which can be characterized 

by the cross-correlation of ps at two different locations and times: 

C„ = {pa(r1,t1)P:(r2,t2)) . (2.66) 

Using the perturbation result (2.55) and considering only the case where ri = r2, 

the correlation of the first-order bistatic scattered field can be found. Assuming 

the randomness in the medium is stationary in space and time and making the 
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*- z2 

w(zd,zc) 

Figure 2.4: Half-space windowing in the difference coordinates. 

change of integration variables to the difference and center coordinates, defined as 

r^ = r^ —r2, and r'c = (r^ + r2)/2, respectively, and the difference in time r = t\ —12, 

the correlation function is found to be 

CPP(T) = A\r(r)\2 f dz'c I dv'd C{TMe-**«*'t 
J—oo J hs 

-2az' (2.67) 

The difference between the incident and scattered wave vectors is the Bragg wave 

vector, kd = Re[k; — ka]. The area of the scattering region is A, and a is the 

imaginary part of the vertical component of the difference between the incident and 

scattered wave vectors: 

a = Im[(ki - k.) • z] = -Im[ft + ßs) . (2.68) 

The integral on the difference coordinate is over the windowed half-space volume 

(see Figure 2.4) defined as 

/  dv'd = /    dx'd /    dy'd /       dz'd . (2.69) 
Jhs J—oo J—oo J"izc 

The combined sediment correlation function is 

C(rd,r) =\k\4 CKK(rd,r) + 2Re[k2{ki-ks)] CKp{rd,r) + 

\ki-ks\
2 CpP(rd,T) . 

(2.70) 
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The functions CKK, CKp, and Cpp are the auto- and cross-correlations of the zero-mean 

functions defined in Section 2.1.1. 

If it is assumed that the medium compressibility is proportional to the density 

using (2.14), then the correlation function is simplified to 

C(rd,r) = \/iP + (k,- • ks)|
2 Cpp(rd,r) . (2.71) 

The effect of the half-space geometry on the correlation function (2.67) is to 

create a sliding windowing in the zd direction, as defined in Figure 2.4. The half- 

space windowing function is a depth-dependent rectangular window, 

, 1     if \zd\ < 2zc, t      x 
w(zd,zc)={ _ (2.72) 

0     otherwise  , 

having the Fourier transform 

W(kz,zc) = sin(2*zZc). (2.73) 

Applying the Wiener-Khintchin theorem and the Fourier windowing theorem, 

the correlation function (2.67) can be expressed in terms of the time-domain spatial- 

spectrum of density fluctuations: 

CPP(T) = 8n3A |r(r)|2 \fik2 + (k,- ■ ks)|
2 Spp(kd, r) . (2.74) 

The density spectrum, Spp, is not the true spectrum but rather the convolution 

of the true density spectrum and the Fourier transform of the half-space window, 

defined as 
/0 /-oo 

<fec /    dk'dz Spp(kdx, kdy, k'dz, r)W(k'dz - kdz,zc)e-iaz* .    (2.75) 
oo J—oo 

The convolution integration of (2.75) is only over the ^-component of the Bragg 

wavenumber.  Using (2.73), the integration over zc in (2.75) can be performed to 

find the modified spectrum: 

q   (u, r\ _ 2   f°°   Sppjkdx, kdy,kdz,T)      , .       , 
*,p(k* r) - v J^ 2iT{a2 + {Kz _ kdzf] dkdz . (2.76) 
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The modified spectrum can also be shown to be the Fourier transform of the true 

density correlation function windowed in depth by the medium attenuation: 

-a\zd\ i r° r        < e -ikd-rd dvd . (2.77) 
2a 

Therefore, the half-space effectively modifies the correlation structure of the medium 

in the depth direction. If attenuation in the medium is low, the half-space effects 

will be minimized. The incident field will penetrate a significant depth into the 

medium, relative to the correlation length of the fluctuations, and scattering from 

the half-space medium can be modeled using the true spectrum. If the attenuation 

is high, the field will be limited to a layer near the interface. If the penetration 

depth is smaller or comparable in dimension to the correlation scale of the medium, 

the half-space effects will be significant. 

2.5    Scattering Cross-Section 

The scattering cross-section is defined in terms of the incoherent intensity of the 

scattered far-field. If the penetration distance into the sediment is small compared 

to the distance traveled in water, it is typical to describe volume scattering in terms 

of an equivalent surface scattering strength. For a pressure wave incident on the 

surface of area A, the bistatic surface scattering cross-section (per unit area per unit 

solid angle) is defined as 

Is{r)r2 

IiA    ' 

where r is the distance to the receiver in the far-field (Figure 2.1), and 

(2.78) 

is the incident intensity immediately above the interface. For convenience, crs will 

simply be referred to as the cross-section. The scattering strength is defined as 

10 log10(crs) in units of dB. 
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The incoherent scattered intensity is denned in terms of the zero-lag covariance 

of the scattered field as 

Is(r) = -!^[(ps(r)p*s(r))-\(ps(r))\*}. (2.80) 
JLpOLO 

The scattered field covariance can be found using the perturbation expansion for 

the scattered field (2.48). By consistently grouping terms in the resulting covariance 

expansion by powers of the small parameter, the scattering cross-section is found as 

the perturbation series 

as = ,W + a« + (7?) + oJ4> + • • • ■ (2.81) 

Each higher-order term in the cross-section series corresponds to the complete group- 

ing of like orders from the scattered field covariance. The first-order cross-section is 

zero. The second-order cross-section is found to be 

■^ = Ij^t<i',,1,|2> ""«"I' (2-82) 

which is second-order in the scattered field, and 

tf° = l<P(1)>|2'. (2-83) 

The third-order cross-section is 

^3) = IRF [(p(V(2)+p(V(1)>" ^' (2-84) 

where 

# = (P{1))(P*{2)) + (P{2WW) ■ (2-85) 

The fourth-order cross-section is 
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where 

r)i4) = \(P{2))\2 + (P{1))(P*{3)) + (P(3))(P*{1)) • (2-87) 

Note that (p^) = 0, and for a Gaussian process all odd-order cross-sections are also 

zero. 

Using (2.55) for the first-order scattered field, and using (2.52) to find the inci- 

dent intensity, the second-order surface scattering cross-section as a function of the 

incident and scattering angles is found to be 

*i2)(M.) = V\ lT^)l2 lT^)l2 l^p + <ki * M24>(M • (2-88) L p 

Defining a depth-dependent volume cross-section as 

0S= <rv(zc) dzc , (2.89) 
J—oo 

and using (2.75), the second-order volume cross-section is found as 

*l%c) = ^\nk2 + (ki-ks)\2   /    Spp(k'd)W(k'z-kz,zc)dk'z. (2.90) 

This expression for cross-section is similar to those derived by [32, 34, 26], except 

half-space effects are included. 

The total scattering cross-section of the volume is defined as 

crtv = /   &v du> , (2.91) 
J4ir 

where du is the differential solid angle. The total surface scattering cross-section is 

defined as 

vts =  /   cra doj , (2.92) 
J2-K 

where duj is the differential solid angle over the UHS hemisphere. 

In two dimensions, the second-order, bistatic, surface-scattering cross-section is 

defined as 

as(eiA)=I~j^, (2-93) 
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where L is the length of the horizontal scattering region. The two-dimensional first- 

order scattering cross-section, using (2.57) and (2.58), is found to be 

*ia)(M.) = 1-2 T lr^)l2 lr^)l2 l<"p + <ki'k^2 §^kd^ '      <2-94) L p     KQ 

where Spp is now the two-dimensional half-space spectrum. 

2.6    Scattering of a Narrow Band Pulse 

In many practical applications of scattering from a random medium, it is necessary 

to use a finite duration pulse as the incident field and consider the time-domain scat- 

tered field. The scattered field is typically time-gated to correspond to scattering 

from an isolated and finite region of the scattering medium. This is especially true 

for scattering from the seafloor where multipath propagation can create complicated 

interactions of different scattering mechanisms. It is necessary, therefore, to relate 

the time-independent scattering of a continuous wave field to the time-dependent 

scattering of a pulsed field. In this section, the classical narrow-band approxima- 

tion for a time-varying medium [30] is applied to the half-space volume scattering 

problem. 

Consider the scattered field ps(t) at a point in space due to a pulsed input field 

Pi(t), suppressing the spatial dependence of the field for a moment. The fields are 

defined as the real component of the complex envelope functions modulating the 

carrier at frequency too'- 

p.(t) = Re [u.COc-***]  , 
(z.95) 

Pi(t) = Re [Ui{t)e-iwot]   . 

The envelope functions can be expressed in terms of a time-varying amplitude and 

phase: 

ue(t) = A.{t)ei+-M, t      s 
(2.96) 

Ui(t) = Mt)eiMt) ■ 
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For a narrow band input signal, A{(t) and (f>i(t) are slowly varying functions of time 

relative to the carrier frequency. 

Since the scattering medium is linear, the scattered output field can be related 

to the input field by the integral 

p.(0= /   Pi(t')h{t,t')dt' , (2.97) 
J—oo 

where h(t, t') is the response of the medium at time t due to an impulse input at f. 

Equivalently, the output envelope function can be expressed in terms of the Fourier 

transform of the input envelope function and the system frequency response: 

/oo 

Ui{uj)H{u}0+uj,t)e-iwtdu} (2.98) 
oo 

where 

1     f°° 
Wo») = 7T /    <i'Vwt'dt' , (2.99) 

^ J-oo 

and 

1     f°° 
H(u,t) = — /    h(t,t- t')eiwt'dt' . (2.100) 

2TT J0 

The function H(UJ, t) is the time-varying transfer function of the medium (see [30] 

Chapter 6). By definition, it is the scattered output field when the input field is a 

time-harmonic function. Therefore, H(u,t) is simply the CW solution (found using 

perturbation or exact methods, for example). Using the first-order perturbation 

result from Section 2.3.1, the response of the volume scattering medium is 

H(u>, t) = T(r) / [P7*(r', t) + 7p(r', t)(k« • k.)] e'^-^V . (2.101) 
Jv 

If the medium is time-invariant, H(u,t) is time-invariant. For the cases of interest in 

this thesis, the medium is varying in time much slower than the acoustic frequency, 

and H(u),t) can be considered a constant in time over the duration of the pulse 

scattering. 
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As the input pulse propagates through the scattering medium and interacts with 

spatial inhomogeneities, the scattered output field becomes a random function of 

time. Temporal statistics of the output field reflect the temporal and spatial statis- 

tics of the medium and the characteristics of the input pulse. The pulse character- 

istics include the receiver and transmitter beam patterns, the pulse duration and 

bandwidth. For backscattering at any instant in time, the region enveloped by half 

(round trip) the spatial extent of the pulse becomes the effective scattering volume 

that contributes to the scattered field at that instant in time. This region is called 

the "ensonified volume." 

A fundamental statistical descriptor that shows the influence of the ensonified 

volume is the correlation of the complex envelope of the scattered field: 

Cw(tut2) = MtiKfo)) . (2-102) 

In this case, the scattered field is the response of the medium to a single pulse, 

and the times tt and t2 both occur during the scattering from the same input pulse. 

Between the correlation times t\ and t2, the medium is assumed to be time-invariant. 

Using equation (2.98) with the time-dependence of the medium removed, the output 

correlation is 

/oo /«oo 

dux /     <L>2 UiMU*(u;2)CHH^u^2)e-iwih+iuJ2t2 ,   (2.103) 
•oo J—oo 

where CHH is the two-frequency correlation function of the medium, defined as 

CW(ü>I,W2) = <#(wb + wi)#*(wb + wa)> . (2.104) 

For volume scattering, using (2.101), and applying the narrow bandwidth approxi- 

mation for the input pulse, such that 

(uio + u)2*^, (2.105) 
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the two-frequency correlation function can be approximated as 

CW(<"i,<*2) =47r2A|r(r)|V^1-"2><r°-r>/co /    dzc f drd x 
J-oo      Jhs (2.106) 

C(TA e~2aZc e~iRe^'Vd e~
ikdl'^c+rd^2^ e_ikd2'^rc+rd/'2^ 

where rc is the location of the center of a patch of area A. Note that A is a small 

area (defined by performing the xc and yc integrations in (2.106)), not the entire 

ensonified area of the seafloor as the pulse travels in time [47]. As in section 2.4, 

the function C(r<i) is the correlation function of the stationary random fluctuations 

in the medium. The wave vector k^ is defined in terms of the carrier frequency u>0. 

The wave vectors k^i and k<*2 are defined in terms of uj\ and u;2, respectively. 

The correlation of the output signal is then found using (2.103) and (2.106) and 

performing the integrations with respect to ui and u;2: 

Cuu{h,t2) =47rM|r(r)|2 /    dzc f drdx 
J-oo      Jhs (2.107) 

«,■(<! - t')u*{t2 - t") C{rd) e-2-ce-iRe[kd].rd _ 

The time delays t' and t" are functions of the distance traveled through the UHS 

and into the LHS medium, 

t' = (i - s) • (rc + rrf/2)/e - t0 

t" = (\-s)-(rc-rd/2)/c-t0, 

where 

t0 = (r0 - r)/co . (2.109) 

A 

The delay times are complex due to attenuation in the LHS. The unit vectors i and 

s define the incident and scattering directions in the medium, such that 

<s-ä' = ^i- (2-no) 
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Incident Field 

Scattering 
Volume 

Figure 2.5: Scattering of a pulse of duration T0 from a random half-space. 

The translated and distorted pulse replica Ui(t - t') in (2.107) is defined using an 

inverse Fourier transform with a complex time delay: 

/oo 

■oo 

>d LO (2.111) 

In general, equation (2.107) can be considered a convolution of the ensonified 

volume and the medium correlation function over the volume of the scattering region. 

The pulse volume can be complicated due to refraction across the interface and 

attenuation in the lower medium. However, if the pulse envelope is a simple square 

wave, the ensonified volume can be defined approximately in terms of its pulse 

duration T0 (see Figure 2.5). If the ensonified volume in the sediment is large 

compared to the correlation scale of the medium, 

cTo 
»/c, (2.112) 

the convolution can be ignored. The correlation function for the time-domain scat- 

tered field can then be approximated using the single frequency correlation result of 

(2.67). 
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2.7    Volume Scattering from a Periodic Random Medium 

It is sometimes convenient to assume a plane incident wave, as opposed to a spher- 

ical wave originating at a point source such as (2.52). This will become especially 

apparent in Chapter 4 when numerical methods for volume scattering will be dis- 

cussed. However, by assuming an incident plane wave, the horizontal extent of the 

scattering volume must be extended to infinity. A simple method of handling the 

infinite horizontal dimension is to assume periodicity of the random medium in the 

horizontal. This is fundamentally a different problem than volume scattering from 

the seafloor, since the seafloor is not periodic. However, by assuming the period is 

much larger than the correlation length of the medium, a single period will contain 

a sufficient statistical description of the medium. Then, the scattered field from the 

periodic medium can be assumed to be representative of a nonperiodic medium with 

the same statistics. This is only true at particular scattering angles (corresponding 

to the Floquet modes), as will be discussed. 

Therefore, consider a plane wave incident on an infinite two-dimensional half- 

space. If the lower half-space is periodic in the x-direction with period L, such that 

the random fluctuations in the medium satisfy the conditions 

7li(x,z) = 7K(x + L,z) , 

1P{X,Z) = 1P{X + L,Z) , 

and lc <C L, then using Floquet's theorem [29, 80] the scattered field can be written 

as 

p(x,z)=p(x,z)eik"x , (2.114) 

where p(x, z) = p(x + L, z) and k{x = k0 cos 0,-. The integral equation for scattering 
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from the periodic volume, similar to (2.38), is 

°° fL/2+mL °° fL/2+mL />0 

ps(x,z) =   Y] dxi     dz'\p^K,(x',z')gQ{x,z;x',z')p(x\z') 
■ J-L/2+mL J-oo (2.115) m=—oo 

+ 7,(x', z'W'goix, z; x', z') ■ V'p{x', z')\ . 

With the change of variables x" = x' — mL and z" = z\ and applying the periodic 

boundary conditions, the integral can be rewritten as 

dx" /    dz"[PlK(x",z")g0(x,z;x",z")p(x",z") 
L/2 J-oo (2.116) 

+ lp(x", z")V"g0(x, z; x", z") ■ V'p(x", z")] , 

where go is the periodic Green's function defined as 

oo 

g0(x,z;x",z")=   £  g0{x,z;x" + mL,z")eik>*mL . (2.117) 
m=—oo 

Using the definition of the half-space Green's function in two dimensions, similar to 

(2.33), and applying the Possion sum formula, 

J2 e^*-hx)mL = 2^ Y^ S(kx - kix - 27rm/L) , (2.118) 
m m 

the periodic half-space Green's function for the LHS is found to be 

oo        -.. 

g0(x,z-x",z") = -J--   J2   4-[ß(^m)e^l^"l + e^lz-"l]e**»<«-*"),   (2.119) 
v      / m=—oo 

where 

kxm = kix + 2nm/L (2.120) 

and 

ßm = ^ - klm (2.121) 

correspond to the Floquet modes of the periodic medium. 
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The periodic Green's function for transmission from the lower to the upper 

medium, similar to (2.29), is found to be 

~g0(x,z;x",z") = J-  T   Tli^Aeißo^-ißm,''eikxm(,-,'') ? (2122) 
(2L)   *-^       pm 

where ß0m = \Ao ~ klm- 

2.7.1    Scattering Cross-Section of a Periodic Random Medium 

In the strict sense of the definition, the scattering strength does not exist for an 

infinite periodic medium because the far field of an infinite scattering region does 

not exist. However, in a practical sense, defining a scattering strength is still useful, 

especially for comparisons with non-periodic scattering. Therefore, assume the pe- 

riodic medium is of some finite and large extent. The total field scattered from the 

finite periodic half-space can then be approximated as the sum of all the propagating 

Floquet modes of an infinite medium, 

N2 

p.(x,z) = £ Psmeik*mX+ißomZ , (2.123) 
m=Ni 

where Ni and JV2 define the range of modes for which ß0m is real. The scattered 

field for each mode p3m is defined using (2.116) and the Green's function (2.122) as 

rL/2 ,0 

Psm= dx' I     dz' [k2jK(x',z')gm(x',z')p(x',z') 
J-L/2 J-oo (2.124) 

+ lp(x',z')Vgm(x',z')-Vp(x',z')], 

with 

Ux\z') = iz^^e-i^'-ik^' . (2.125) 

The differential scattering cross-section as a function of scattering angle is found 

by relating the total scattered field (2.123) to the total scattering cross-section. 
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The total equivalent surface scattering cross-section for the region is defined as the 

integral of the differential cross-section over the scattering directions, 

o-ts =  /   (Ts(6s)d9s 

Jo (2.126) 

■/ 

k°   as{K) dk 
_ko k0 sin 0S 

with kx = ko cos 9S. For the periodic medium, the integral is replaced by a summation 

over the propagating modes, 

7—~a r ' (A-^'J 
Ar fc0smt'sm L 

m=N\ 

with dfcic = 27r/Z/, and with 6sm being the scattering angles in the far-field associated 

with the propagating modes. 

Equivalently, the total scattering cross-section can be defined in terms of the 

incident and scattered power flux density [29] as 

f„ I, • da 
CTU = JSo

IiL       , (2.128) 

where the area ^o is an arbitrary surface enclosing the UHS, and e?a is the differential 

area vector normal to the surface. The area integral will be rewritten as an integral 

of the normal component of the power flux over a line just above the interface, 

f00 Is • z dx , 
cru = ^^ , (2.129) 

where 

1 T       An*  1 
(2.130) Is • z = Im 

2p0uj 
I    dP*\ 

Using the plane wave intensity of the incident field, 

h = ^— , (2-131) 
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and exploiting the orthogonality of the Floquet modes in (2.123) to perform the 

integration over x, the total scattering cross-section is found in terms of a summation 

over propagating modes: 

N2 

°ts=  XI {\Psm\2)sm6sm . (2.132) 
m=Ni 

Equating expressions (2.132) and (2.127), it is evident that the discrete differen- 

tial cross-section for a periodic medium can be found as a function of the discrete 

scattering directions associated with each Floquet mode: 

CTS = 7r-fcosin20sm(\Psm\2) • (2.133) 
Z7T 
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Chapter 3 

NUMERICAL METHODS FOR VOLUME SCATTERING 

The basic solution strategy of most numerical methods is to reduce the equa- 

tions governing a particular problem into a matrix equation, and then solve for the 

unknowns using efficient matrix inversion techniques. Such methods are widely ap- 

plied to wave propagation and scattering problems: finite difference, finite element, 

finite volume, etc. Each method begins by formulating the wave solution as either a 

partial differential equation with specified boundary and initial conditions or by for- 

mulating an integral equation solution. In this chapter, the discussion of numerical 

solutions to the volume scattering problem will be limited to the single frequency 

integral equation solution using the method of moments. Overviews of this and other 

numerical methods for wave scattering can be found in texts on the subject [24, 57] 

and in review articles with extensive bibliographies [18, 81], for example. For an 

application of a finite-difference time-domain solution to surface scattering, see [25], 

and for finite-volume methods for volume scattering see [44]. 

The selection of a particular numerical method should follow from the geometry 

and boundary conditions of the problem at hand and the type of solution desired 

(time or frequency domain, far-field, etc.). Without presenting a review of merits and 

weaknesses of other common numerical methods, the method of moments (MoM) is 

chosen for several reasons. For one, sediment volume scattering is generally confined 

to a layer near the sediment-water interface (due to loss in the medium). There- 

fore, the size of the scattering volume and the resulting number of unknowns in the 

numerical solution is limited. This allows a MoM solution of the volume scattering 

integral equation to be used. In general, a numerical solution using an integral equa- 
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tion formulation would not be well-suited for volume scattering problems because of 

the size of the solution domain. 

Since it can be used, the MoM solution benefits from the integral equation for- 

mulation of the problem. The integral operator contains the Green's function and 

therefore the complete boundary conditions of the problem. There is no need to 

approximate the discontinuity and boundary conditions at the half-space interface 

by discretization. The half-space Green's function is calculated separately to any 

desired accuracy using standard numerical wavenumber integration techniques. This 

eliminates the problems of grid dispersion suffered by FD and FEM methods [57]. 

The use of the Green's function in the CW integral equation also properly accounts 

for absorption in the medium. Absorption is more difficult to model in the time 

domain. Finally, the integral equation MoM solution only requires the discretiza- 

tion of the scattering volume rather than the entire volume enclosing the scattering 

medium. 

Perhaps the most important benefit, for purposes of this thesis, is that the MoM 

solution of scattering using the IE formulation is easily compared with the small 

perturbation solution. The small perturbation method for volume scattering is also 

formulated as an integral equation (see Chapter 2), which can then be handled 

numerically using the MoM strategy. The resulting matrix operator is identical to 

the matrix operator of the exact solution. The perturbation solution is found to 

various orders by iteration, while the exact solution is found by inversion.  Thus, 
r 

the MoM solution is ideal for studying the accuracy and validity of the perturbation 

method. 
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3.1    Method of Moments 

To formulate a numerical solution for volume scattering, the integral equation (2.37) 

is rewritten in operator notation, 

p(r)=p0(r) + Lp(r), (3.1) 

where L is the linear integro-differential operator of equation (2.38). The operator 

L has a weakly singular kernel due to the Green's function. The unknown is the 

field variable p(r). Assume that a solution exists and is given by 

p(r) = (I - Ly'poir) . (3.2) 

The basic solution strategy is to reduce the linear system into a matrix equation, 

and then solve for the unknowns using efficient matrix inversion techniques. When 

the field position r on both sides of the equality is inside the scattering volume, 

(3.1) represents an inhomogeneous Fredholm integral equation of the second kind. 

In general, solution techniques are stable and the resulting matrix equations well- 

conditioned. In addition, the kernel of the integral operator containing the Green's 

function (2.33) is a smooth function that decays with distance due to attenuation 

in the medium. These properties provide a solution matrix which in general will be 

diagonally dominant and potentially sparse. Efficient numerical methods for matrix 

operations and storage can then be exploited. After solving for the unknown field 

inside the volume, the field outside is found by evaluating the integral equation 

directly using quadrature methods, for example. 

The numerical solution begins by expanding the unknown field.in a series of 

suitably chosen basis functions /„: 

oo 

p(r) = J>/n(r) . '(3-3) 
n=l 
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The function set {/„} forms a true basis if the inner product space forms an orthog- 

onal set, 

(fm,rn) = 0,    n^m, (3.4) 

where () is the inner product integral, and if the basis set satisfies completeness. 

Completeness in this context means that any well-behaved function can be repre- 

sented by the series to any degree of accuracy [24], or 

oo 

lb(r)-£/vfn(r)|| = 0. (3.5) 
n=l 

Approximate representations of the field are found by choosing a finite-dimensional 

subspace of the basis functions, 

N 

/>(r) = ]T>n/n(r) , (3.6) 
71=1 

and solving for the unknown coefficients (pn) by minimizing the residual 

N 

R(r) = p0(r) - ][>[/n(r) - Lfn(v)} . (3.7) 
n=l 

Using the method of weighted residuals and choosing a set of weighting or testing 

functions u;m, the unknown coefficients can be found by forcing the residuals to be 

orthogonal to the testing functions with the inner product integral [57, 24], 

/ wm(r)R{r)dr = 0,    m = l,2,---M. (3.8) 
Jv 

The testing functions do not necessarily take the same form as the basis functions. 

The problem now reduces to the solution of a system of linear equations, and 

(3.8) can be rewritten as the matrix equation 

[A-Z]p = po. (3.9) 
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The matrices Z = [Zmn] and A = [\mn] are of size M x N with elements 

Zmn = / wm(r)Lfn(r)dr , 
^ (3.10) 

Amn = / ti;m(r)/„(r)rfr . 
Jv 

The vector p0 = [po,m] has elements 

Po,m = / wm(r)p0(r)dr . (3.11) 

The solution vector p = \pn\ is comprised of the unknown coefficients of the basis 

function expansion. The matrix Z will be referred to as the scattering matrix. The 

major complexity in finding the solution now lies in the calculation of these so called 

moment integrals (hence the name of the solution method) and the inversion of the 

resulting matrix A- Z. The complexity involved is a direct consequence of the choice 

of basis and testing functions. 

3.1.1    Perturbation Solution 

The small perturbation solution of Section 2.3 can also be written in terms of a ma- 

trix equation. Rewrite the perturbation integral equation (2.50) in operator notation 

as 

/+1)(r) = LpW(r) , (3.12) 

where L is the same operator as above. Each lower-order term in the perturbation 

series is then expanded as a series of basis functions: 

V*V) * X>!?/»00 ■ (3.13) 
n=l 

The solution for each higher-order term in the perturbation series involves the mul- 

tiplication of the scattering matrix and the unknown coefficients of the preceding 

order: 

p(*'+1) = Z • pW . (3.14) 
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The solution vector p(i+1) = [pm+1)] has elements 

Pl+l) = / wm(r)p(i+1)(r)dr . (3.15) 
Jv 

The scattered field for the perturbation solution can then be found by iteration, 

where 

ps = P(1) + P(2) + • • • • (3.16) 

Using (3.14) with M = AT, the total scattered field field is found in terms of the 

scattering matrix: 

oo 

p = £ Z» • po • (3-17) 
n=0 

For a weakly fluctuating medium, the series will converge rapidly and can be trun- 

cated to approximate the complete solution found from (3.9). 

3.2    Discretization and Selection of Basis/Testing Functions 

The discretization of the volume scattering integral operator into a finite-dimensional 

subspace of basis functions requires approximations that compromise the solution 

accuracy for the purpose of computational efficiency. The choice of basis functions is 

the principal issue in implementing the MoM solution, as discussed in [57] and [24]. 

The selection influences the accuracy of the approximate solution, the complexity of 

the computation of the matrix elements, and the size of the scattering matrix. While 

the solution with the best accuracy is always desired, computational limitations 

may motivate a less optimal formulation. In some cases, computational resources 

(memory) put an upper limit on the matrix size. In other cases, the time required 

to perform computations that create the scattering matrix limits the problem. 

The choice of basis and testing functions is, in general, a function of the geom- 

etry and boundary conditions of the problem, the expected form of the solution, 
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and resources at hand. Formally, the basis functions should satisfy conditions of 

orthogonality and completeness, as discussed previously. However, approximate so- 

lutions can still be found regardless of whether wn and fn form true basis sets. In 

practice, the functions are often not orthogonal. This creates difficulties in deriv- 

ing analytic statements about the numerical convergence of the approximation [57]. 

Convergence is usually shown numerically by comparing the approximate solution 

with exact solutions as N -> oo . 

Many types of basis functions are applied in the current literature: Dirac delta 

functions, rectangular pulse functions, triangle or roof-top functions, quadratic splines, 

and Lagrangian polynomials, for example. Some of these form orthogonal bases and 

others do not. In general, lower interpolation error is achieved with higher-order 

basis functions (e.g., high polynomial order). However, in practice a trade-off must 

be made between accuracy, computational efficiency, and general applicability of the 

solution method to a range of problem geometries. For volume scattering, this trade- 

off is especially noticeable. The number of unknowns required to provide sufficient 

accuracy can become very large (compared to similar numerical methods used to 

solve surface scattering problems). Alternatively, reducing the number of unknowns 

by selecting higher-order or full-domain basis functions can create numerical com- 

plexities that give rise to excessive computation time. 

Consider the calculation of (3.10) for volume scattering using (2.38) in two di- 

mensions where r = (x, z): 

-II- Jv Jv 
wm(r) P7K(r%(r,r')/„(r') + 

dr dr' 
(3.18) 

7p(r')V'so(r,r')-V%(r') 

One characteristic of (3.18) that can be exploited is the translational invariance of 

the half-space Green's function g0 in the x-direction. This will be used to reduce the 

number of times g0 must be calculated. It would also be desirable to simplify the 

integration in (3.18) such that the integration of the Green's function over the volume 
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is decoupled from the medium. This would allow the computation for the Green's 

function (for a specific geometry) to be performed once and then used repeatedly 

for different realizations of a random medium. These techniques will be apparent in 

the details of the derivations to follow. 

In this section, two types of basis and testing functions will be used to approx- 

imate volume scattering. First, subsectional basis functions that approximate the 

field and medium as piecewise-constant over a grid of rectangular cells will be used. 

Then Fourier basis and testing functions will be used as an example of the use of 

full-domain functions. The subsectional basis functions are non-zero only over a 

subsection of the domain of L, and usually provide analytically simpler solutions 

than full-domain functions. Alternatively, full-domain basis functions exist over the 

entire domain of the operator. 

With knowledge of the solution of a particular problem, the choice of full-domain 

basis functions can provide solutions that have fewer unknowns and are computation- 

ally more efficient. The trade-off is usually the generality of the numerical method. 

In this chapter, the subsectional basis functions will provide the most useful method 

of solving the half-space volume scattering problem at hand. All numerical results 

shown will be found using this method. The full-domain solution will be presented 

only as an example of other alternative and interesting choices that can reduce the 

complexity of the problem for specific geometries. 

3.2.1    Point Matching and Pulse Basis Functions 

The most direct solution using MoM is found by choosing testing and basis functions 

that provide the simplest evaluation of the scattering matrix elements. One choice 

of testing functions is to require that the solution be satisfied at discrete points in 

the region of interest. This is accomplished by using Dirac delta functions, 

w, l(x,z) = 5(x-xm)S(z-zm), (3.19) 
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where xm and zm are the discrete points of interest. In doing so, one integral required 

to evaluate the matrix element is eliminated. This method is referred to as point 

matching. 

The simplest choice of basis functions (that also satisfy orthogonality) is the 

pulse basis function, 

fn{x,z) 
1    if la; — xn\ < Axil and \z — zn\ < Az/2 , 

(3.20) 
0   otherwise , 

which exists only over a small rectangle with sides Aa; and Az centered at the nth 

discretized point. This is equivalent to dividing the scattering volume into small 

cells over which the field and the medium fluctuations are assumed to be constant: 

oo 

P(xiz) = ^2p(Xn,Zn)fn(x,z)  , 
n=l 

oo 
jK(x,z) = ^2iK(xn,zn)fn(x:z) , (3.21) 

n=l 
oo 

1p\xjz) = /  j lp\xni zn)Jn\xi z) • 
n=\ 

The coefficient pn in (3.6) is simply the value of the unknown field over the nth. cell, 

Pn = P\%m Zn)- 

To ensure a meaningful numerical solution, it is necessary to employ a combi- 

nation of basis and testing functions that have finite and well-defined coefficients 

throughout the domain of the solution [57]. This heuristic constraint imposes a dif- 

ferentiability requirement on the chosen set of functions - the polynomial degree of a 

subsectional basis function must increase in proportion to the number of derivatives 

in the operator. Because the volume scattering operator contains a first derivative, 

the basis and testing functions must have continuous first derivatives. 

To satisfy this requirement and still be able to apply point matching/pulse basis 

functions, a weak form of the volume scattering operator must be used.  The first 
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derivative of the field in (3.18) cannot be eliminated, but can be approximated with 

finite-difference operators 

and 

Ä-P(&n,*n) = 7TX~(S* ~ Sx
l)p{Xn,Zn) 

OX ZL\X 

= 1^ [P(xn+1, Z) ~ P{Xn-l, Z)] 

-^p(Xn,Zn) = 2/^(S* ~ Sz ^Pfan, *n) 

(3.22) 

1 
= 777— [p(x,Zn+l)-p(x,Zn-l)\   , 

(3.23) 

2Az 

where sx and sz and their inverses are shift operators.   The matrix elements can 

then be expressed as 

Zmn =        dx'dz'l k2~/K{x', z')g0{xm, zm; x', z') + 

cell 

7P(x',z') ^MX^Zrn-,x',Zf)——{sx-Sx
1)+ (3'24) 

dx'^ m' m'    '   '2 As 

ö^go{xm, zm; x\ ^T^i8* ~ 5* *) } 

and 

^mn — 0mn  , (3.25) 

where 8mn is the Kronecker delta function. The vector p0 contains the unperturbed 

field points, and the solution vector p contains the unknown field points: p0 = 

\po(xm,zm)] and p = \p(xm,zm)]. The integral in Zmn is now evaluated over a cell 

centered at the points of the discretized field. 

The elements of the Z matrix represent the interaction between cells of the 

discretized field. For cells far apart from each other (off-diagonal elements, m ^ n) 

it is expected that the interaction will be weak due to spreading loss and attenuation 

in the medium.  Elements closer to the matrix diagonal represent the interaction 
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between neighboring points and are expected to be larger in magnitude than the 

off-diagonal elements. 

Rearranging the order of the finite difference operators and redefining the Green's 

function, the matrix elements take the form 

^mn = ">  lK\xnj zn)gO\xmi zm'i xni zn) 

1 _x 

2Az 
1 

[sz     sz  )n 

1p\xnizn)pi      90\xmi zm'i xni zn) 

Kp\xni zn)~Z     90\xmi zm'i xni zn) 
ozn 

(3.26) 

2A.Z 

The modified Green's function (g0) is the integration of the half-space Green's func- 

tion over the aperture of the cell: 

go(xm, zm; xn, zn) =  / / go(xm,zm;x',z') dx'dz' 
ce"      A A . (3.27) 

.».    _i_ Ax       ._      .  AJ \ ' 

= / g0(xm,zm;x',z') dx'dz' . 
/ Ax       I Az 

J %m 2~ m 2~ 

The finite difference operators in (3.26) operate on the index n of the quantities in 

the square brackets only. 

The integration over each cell in the modified Green's function (3.27) can be 

performed analytically or numerically. For matrix elements "far from" the diagonal 

elements, the Green's function in the integrand will vary slowly over each small cell, 

and the integrand can be assumed to be approximately constant. For matrix ele- 

ments "near to" the diagonal or on the diagonal, the integrand of (3.27) cannot be 

assumed to be constant. In this thesis, a simple trapezoid rule numerical integra- 

tion was found to be sufficiently accurate to approximate the cell integration. The 

definition of "near to" and "far from" the diagonal is a function of the behavior of 

the half-space Green's function and the cell size. In general, this must be defined 

for the specific geometry and medium properties of the problem at hand. 

For diagonal elements (m = n), the Green's function is singular at the center 

of the cell.   A useful approximation to solve the cell integration is found by first 
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dividing the Green's function into the direct path and reflected path components, 

g0(r, r') = -±S&l\k(r - r')) + gr(r, r') , (3.28) 

where H^ is the zeroth-order Hankel function of the first kind. The reflected path 

Green's function is 

f°° i 
<7r(r, r') = -i- /    ±R(kx)eWz+zVk*(x-*'Ukx . (3.29)' 

The singularity only exists in the direct path. A simple analytic approximation for 

the direct path is to replace the integral of the direct path Green's function over the 

rectangular cell with an integral over an equivalent circular cell [29]. The equivalent 

circular cell will have radius a = y/AxAz/ir. Then, using the identities 

/ 
rH^\kr)dr = ^H^kr) (3.30) 

and 

H^ikr) 
irkr 

(3.31) 

as r ->• 0, where H^ is the Hankel function of the first kind and first order, the 

diagonal matrix elements can be approximated as 

^mm — 
ITT 

2k 

2A; 

aH{y\ka) + 

"\sz ~ sz   )m 

j2_ 
kn 

TK^TO) Zm) T S «< ^Ky^mi zm)gr{zm) 

Tp \pm i Zm Jr.      9r [^m 5 ^m ) 
OZm }■ 

(3.32) 

where 

gr{xm,zm)-  II gr(xm,zm;x',z') dx'dz' . 

cell 

(3.33) 

The integral over the cell of the «-derivative of the reflected path and the x- and z- 

derivatives of the direct path Green's functions are zero due to symmetry. Again, the 

cell integration in the reflected path Green's function can be performed numerically 
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or analytically. However, now the integration over the singularity in the direct path 

is performed analytically. 

For a periodic random medium, the matrix equations and the calculation of the 

matrix elements remain the same, except for the Green's function. The wavenumber 

integration in the half-space Green's function for the non-periodic case is replaced 

by a summation over Floquet modes. The cell integration is performed in the same 

manner, and equations (3.26) and (3.32) are unchanged. However, equation (3.27) 

is now defined in terms of the periodic Green's function 

go(xm,zm;xn,zn) =  / g0(xm,zm;x',z') dx'dz' . (3.34) 

cell 

Also, equation (3.33) is replaced by 

gr(xm,zm)=        gr(xm,zm;x',z') dx'dz' , (3.35) 

cell 

where (3.29) is replaced by 

oo     .. 

gr(xm, zm; x', Z') = J-Y1 jrRiK^^-^eW*^ . (3.36) 
2L ^ ßj 

3.2.2   Fourier Testing and Basis Functions 

When using the point matching method to evaluate realistic volume scattering prob- 

lems the number of unknowns can become very large. An alternative choice of testing 

and basis functions is one that reduces the size of the problem, the general strat- 

egy being to sacrifice the simplicity of evaluating the matrix elements in return for 

reducing the dimension of the matrix equation. One way this can be accomplished 

is by using full-domain basis functions. If the basis functions are chosen such that 

the unknown field is well defined by a smaller set of unknowns (compared to point 

matching), then the dimension of the problem can be greatly reduced. 
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A convenient choice, at least in the case of a periodic random medium, is to use 

Fourier basis and testing functions, 

Nk/2-l 

i=-Nk/2 (3.37) 

wm(x,z) = Wi(z)e-ik^ , 

where A^ is the number of terms in the Fourier series. The field is expanded in the 

«-direction only where kxi = 2nl/L + kix, and Pi is the depth-dependent Fourier 

coefficient. The testing function wm is also an «-direction Fourier component with 

depth dependence. The indexing is defined over two dimensions such that m = (i,j). 

In addition to expanding the unknown field, the medium is also expanded as a Fourier 

series: 
Nk/2-l y 

v=~Nk/2 (3.38) 

lp{x,z)=    Y,    Bv(z)e^L. 
v=-Nk/2 

For a periodic medium with continuous fluctuation and no sharp discontinuities, the 

series can be limited to a finite number of terms (Nk) to sufficiently represent the 

unknown field. 

Using the above expansions in the periodic integral equation (2.116), and ex- 

ploiting the orthogonality of the Fourier components, the inner product integration 

of the method of moments reduces to the form 

0     iVfc/2-l 

/ wm(r)Lp(r)dr = L2 /     Wi(z)dz /       £ 
JV J—oo J—oo ,_    »r 

-5y_/)(z') (kxikxjPi(z')gj(z, z') 

PA^WPtiz'Mz^') 
(3.39) l=-Nk/2 

dftWdgiW 
dz'        dz' 

where 

dz' , 

*(z'z>)=wz [R^yßAz+z^+eißAz~z']] •        (3-4°) 
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In general, Wi,Pi,Av, and Bv are arbitrary functions of the depth coordinate z. The 

simplest form they can take, since the medium is not periodic in depth, is to require 

point matching, 

Wi(z) = S(z-Zi), (3.41) 

and pulse basis functions in the ^-direction, 

fc=l 

Nz 

Av(z) = Y/auvfu(z), (3.42) 

Nz 

Bv(Z) = y^2Kvfu(z) , 
u=l 

where 

{1    if \z - zn\ < Az/2 , 
(3.43) 

0    otherwise. 

This is equivalent to slicing the medium at each value of z and performing a Fourier 

transform in the rc-direction on each slice. 

The unknown field and the random medium are now expressed as a two-dimensional 

grid of coefficients. To write the system as a matrix equation, it is necessary to ar- 

range the unknowns as a vector. This is done by numbering the two-dimensional 

grid of coefficients with a single one-dimensional index defined as m = i + jNz and 

n = k + INZ. Using the above testing and basis functions and the vector indexing 

of the coefficients, the elements of the K matrix are found to be 

Zmn = L2Az k2ak(j-i)gj(zi,zk) - kxikxjbkQ-i)gj(zi, zk) 

1   fo       c-i\ fh        d9Aziizk)\ 
-^ziSz-s^k{kU-')~~d^~)\- 

Again, the derivatives in the z-direction have been approximated using the finite dif- 

ference operator, and the integration over each cell in the z-direction approximated 

as in Section 3.2.1. 
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3.3    Monte-Carlo Simulations 

Monte-Carlo simulations of volume scattering from a two dimensional random medium 

are performed to develop first and second moment statistics of the scattered field. 

The translational invariance of the Green's function in the horizontal direction can 

be exploited to reduce computation and memory usage. Only a subset of the en- 

tire set of Green's function calculations is performed. Since the field points do not 

change position from realization to realization, the Green's function calculations are 

only performed once for a set of realizations. This greatly simplifies the numerical 

solution. In addition, since the unknown field points are discretized on a uniform 

grid, the wavenumber integration of the half-space Green's function (2.33) can be 

performed efficiently using an FFT (see Appendix D). 

3.3.1    Incident Field 

To avoid the interaction of volume elements at the side boundaries of a non-periodic 

scattering volume, a Gaussian tapered incident field is used. The incident field is 

defined at the interface of the half-space as a Gaussian aperture function: 

p0(x,z = 0) = e-
x2^2eikoxcosei . (3.45) 

The field below the interface is found by taking the inverse Fourier transform of 

the spectral representation of the aperture function and propagating the field in the 

negative z-direction: 

p0{x,z<0) = -2— I    T(kx) e-(fc*-*°cos<W/4 ^h,x-iß,dkai m (346) 
20T J_00 

The incident power, 5,-, is found by integrating the normal component of the 

energy flux over the interface: 

dp*0(x,z = o+y roo 

St = ^— I     Im 
-oo 2po^ y_c 

po(x,z = 0+)- 
dz 

dx . (3.47) 
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Due to the orthogonality of Fourier components, the integral over x is eliminated and 

the incident power is found to be a function of a single integral over the propagating 

wavenumbers in the upper medium: 

Si = -$— [ ° ß0e-^-koCOse^92/2dkx . (3.48) 
4upoJ-ko 

For a periodic random medium, the incident field will be taken to be a simple 

unit amplitude plane wave. The plane wave field is incident to the interface at the 

angle 0,-, and it will refract into the volume such that 

Po{x, z<0) = T{kix) eiki*x~ßiZ , (3.49) 

where kix = k0 cos 0,-, /?,• = y/kfi — kfx, and T is the plane wave transmission coeffi- 

cient. The incident intensity immediately above the interface is 

Ii = ^—. (3.50) 

Figures 3.1a and 3.2a illustrate typical geometries and incident fields used for the 

numerical simulations. 

3.3.2   Realization of a Random Medium 

Realizations of a two-dimensional Gaussian random medium are generated by Fourier 

synthesis (see Appendix E). The assumption of Gaussian statistics is made only for 

convenience. The medium has an exponential correlation function and power-law 

spectrum, as described in Section 2.1.1. The correlation function is 

C(r) = (72e-r/,e , (3.51) 

where lc is the correlation length and a2 is the variance of the media fluctuations 

(either density or compressibility fluctuations). The corresponding two-dimensional 

power law spectrum is 
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Typical realizations of density fluctuation using a power law spectrum are shown in 

Figures 3.1b and 3.2b. The size of the volume is constrained by the incident field 

and statistical convergence of the numerical solution. 

3.3.3   Statistical Convergence and Accuracy 

Statistical convergence with respect to the random parameters of the model must 

be demonstrated for the Monte-Carlo simulations. For volume scattering simula- 

tions, convergence must be shown with respect to the size of the volume (in number 

of wavelengths), the resolution of the volume discretization (number of points per 

wavelength), and the number of realizations used to form ensemble averages. The 

minimum size of the volume and the minimum number of discretized points is a 

function of the correlation length of the medium. A smaller correlation length may 

permit a smaller volume to adequately represent the statistics of the medium; how- 

ever, it may require more discretized points per wavelength. Convergence with 

respect to these parameters must also be shown for a range of correlation lengths. 

Three convergence tests are performed using two values of correlation lengths 

(lc/X = 0.5 and lc/\ — 1.0), chosen to represent typical correlation lengths of ma- 

rine sediments for high-frequency scattering. Figure 3.3 shows convergence of the 

numerically calculated total scattering strength as a function of the number of points 

per wavelength and the number of wavelengths in the scattering volume. The to- 

tal scattering cross-section is found using a two-dimensional version of (2.92). The 

numerical simulations converge for the medium discretized with at least 10 points 

per wavelength and greater. With respect to the size of the volume (Lx/X), the 

numerical estimates show good convergence even with small volumes: All of the 

horizontal dimensions tested (4 < Lx/\ < 25) show good convergence. Figure 3.4 

shows convergence with respect to the number of realizations. A minimum of 50 

realizations is necessary to form ensemble averages for the types of media used in 

this test (Nx\/Lx = 10 and Lx/\ = 6.4). 
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Figure 3.1: Simulation of volume scattering in a non-periodic medium: (a) The 
tapered incident field \p0(x,z)\; (b) a realization of a Gaussian random medium 
7P(x, z); and (c) the solution for the total scattered field \p(x, z)\. The incident field 
is above critical at 0; = 35°, lc = 0.5A, ap = 0.10, p = -1.1, p/po = 2.0, C/CQ = 1.1, 
8 = 0.02, with 10 points per wavelength. All coordinates are normalized by the 
wavelength. 
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Figure 3.2: Simulation of volume scattering in a periodic medium: (a) The plane 
incident field \po(x, z)\; (b) a realization of a Gaussian random medium Jp(x, z); and 
(c) the solution for the total scattered field |p(a?,2)|. The incident field is subcritical 
at 8i = 20°, lc = 1.0A, ap = 0.10, ft = -2.0, p/p0 = 2.0, c/co = 1.1, S = 0.02, with 
10 points per wavelength. All coordinates are normalized by the wavelength. 
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The accuracy of the simulation method can be evaluated by comparing the nu- 

merical results with the solution of problems that can be solved analytically. The 

comparison will test applicability of the choice of basis functions, the accuracy of the 

numerical evaluation of the half-space Green's function, and the accuracy of the cell 

integration methods. Simulating the phase matching conditions required to model 

perfect reflection and transmission in a non-random medium will provide an upper 

bound on the numerical errors of the random medium simulations. 

Consider the transmission of an incident plane wave into an infinite half-space 

with a linear profile (in depth) of the square of the index of refraction (jK = az) and 

constant density profile (7,, = b). The wave equation for this case can be written as 

1 + az 
V2$(x,z) + k 

where 

1-6 
$(x,*) = 0, (3.53) 

*(*,*)= £^. (3-54) 
VPo 

The solution for the field in the LHS is well known [11, 49], and is expressed as an 

Airy function 

<!>(x,z) = W{kx)Ai[t(z)]eik*x , ' (3.55) 

where 

W(kx) 

t(z)=t0-z/H, 

H = (a*2)-1'3, 

to = H*[kl - ¥} 

2ipß0H 

(3.56) 

p0Ai'(t0) + ipß0M{to)H ' 

Figure 3.5 shows the numerical results of the test case for a non-periodic medium 

with a normally incident tapered field. The analytic solution for the tapered field is 

found by performing a plane wave decomposition and applying (3.55) to each Fourier 
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component of the field. Figure 3.6 shows the results of the test case for a periodic 

medium with a plane incident wave. The sound speed gradient in both cases is 

defined with C/CQ = 1.2, p/p0 = 2.0, a = -0.05 and b = 0.1. The piecewise constant 

curves (stepped curves) are the numerical MoM solutions. The solid curves are the 

analytic results, and the dashed curves are the incident fields. A discretization of 

10 points per wavelength was used in the simulations. The MoM solution compares 

well with the analytic results for both cases. 

3.3.4    Matrix Inversion 

In this thesis, an iterative conjugate gradient method was used to perform the ma- 

trix inversion [58]. No approximations were used to reduce the size of the matrix. 

For the problems considered, this standard method was sufficiently accurate and 

computationally efficient. A scattering matrix for sediment volume scattering is 

typically 8192 x 8192 matrix elements in size (corresponding to a volume of length 

12.8A and depth 6.4A discretized with 10 points per wavelength). For larger prob- 

lems, sparse matrix methods or other numerical approximations that exploit the 

loss in the medium in order to reduce the size of the scattering matrix could be 

considered [18, 78]. However, the effort required to improve the numerical efficiency 

of a particular solution must be weighed against the ever-increasing computational 

resources that are becoming available each year at decreasing costs. 

An alternative to matrix inversion techniques is to use the numerical small per- 

turbation method of Section 3.1.1. Some problems that lie outside the range of 

validity of first-order perturbation theory can still be solved with sufficient accuracy 

using higher-order perturbation approximations. The perturbation solution can be 

found to any higher order by efficient matrix multiplications using (3.14). An ex- 

ample is shown in Figure 3.7. The scattering strength (as defined in Section 2.5) is 

found using both the numerical perturbation method and by matrix inversion (using 

the conjugate gradient method). Each higher-order perturbation solution (plotted as 
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Figure 3.3: Monte-Carlo convergence with respect to: (a) the number of points per 
wavelength; and (b) the size of the medium. The symbol * represents lc = 0.2A, the 
o represents lc = 0.5A, and the x represents lc = 1.0A. A total of 50 realizations 
was used to estimate the ensemble average. 
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(a) 

-2 0 2-2 0 

lp(x,z)l Re[p(x=0,z)] lm[p(x=0,z)] 

Figure 3.5: Fields within a half-space medium with a linear wavenumber profile 
(c/c0 = 1.2, p/po = 2.0, a = —0.05, b = 0.1) for a tapered incident field: (a) 
Contour plot of magnitude of the tapered field MoM solution; (b) Real component of 
the MoM solution (stepped curve) compared with the analytic solution (solid curve) 
and the incident field (dashed curve); (c) Imaginary components of the solutions. 



73 

o 1 
Re[p(x=0,z)] 
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Figure 3.6: Fields within a half-space medium with a linear wavenumber profile 
(c/co = 1.2, p/po = 2.0, a = -0.05, b = 0.1) for a periodic medium and plane wave 
incident field: (a) Real components of the MoM solution (stepped curve) compared 
with the analytic solution (solid curve) and the incident field (dashed curve); (b) 
Imaginary components of the solutions. 
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the solid dots) is compared with the exact solution (plotted as the circles). Note that 

since the random medium is Gaussian the odd-order contributions to the scattering 

strength are zero. The perturbation series must be taken to fourth-order to model 

the scattering strength accurately. An ensemble of 200 realizations of the periodic 

random medium was used to find the scattering strength. If a problem lies outside 

the range of validity of the perturbation method altogether, the perturbation series 

may not converge towards the correct solution. Higher-order perturbation methods 

must be used with caution. 

3.4    Summary and Conclusions 

Two-dimensional acoustic volume scattering from a random medium can be simu- 

lated numerically using the Method of Moments. Compressional wave attenuation 

in the medium limits the size of the scattering volume. Therefore, the solution do- 

main is limited in size, and numerical solutions can be performed without the use 

of excessive computational resources and time. 

Two MoM solution methods are presented, in which the medium is modeled 

as both periodic and non-periodic. A tapered incident field is used with the non- 

periodic medium in order to limit the interaction of the incident field with the 

edges of the volume. A plane-wave incident field is used with the periodic medium. 

Periodicity is assumed only in the horizontal direction. In both cases, the vertical 

extent (depth) of the volume is defined by the distance the incident field penetrates 

into the lossy medium. 

Point matching and pulse basis functions are demonstrated for use with both 

the periodic and non-periodic volumes. Full-domain Fourier basis and testing func- 

tions can be used with a periodic medium. In both cases, the scattering matrix 

is diagonally dominant and potentially sparse. Convergence and accuracy tests for 

Monte-Carlo simulations show that the medium should be minimally discretized at 
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Figure 3.7: Comparisons of MoM solutions for the volume scattering strength found 
using the iterative SPM method and the exact matrix inversion method. The circles 
(o) are the exact solutions, and the solid dots (•) are the SPM solutions including 
terms up the specified order: (a) second-order SPM using (2.82); (b) third-order 
SPM using (2.84); (c) fourth-order SPM using (2.86); and (4) fifth-order SPM. The 
incident field is subcritical at 0; = 10°, lc = 1.0A, ap = 0.10, fi = -2.0, p/p0 = 2.0, 
c/c0 = 1.1, 8 = 0.02, with 10 points per wavelength. 
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10 points per wavelength in order to model scattering due to the medium fluctua- 

tions. The minimal size of the scattering volume required for convergence is smaller 

than expected. Monte-Carlo convergence was demonstrated for a horizontal dimen- 

sion as small as Lx/\ = 4. Random realizations of the medium are generated by 

Fourier transforms assuming Gaussian statistics. The number of realizations re- 

quired to estimate the ensemble average of the scattered field should be > 50 to 

assure statistical convergence. 
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Chapter 4 

VALIDITY OF THE SMALL PERTURBATION METHOD 

Insight into determining whether single or multiple scattering is significant in a 

continuous random medium can be gained by examining the scales and interrelations 

of various parameters of the problem. The most essential of these parameters are 

the wavelength of the incident field, the variance of the fluctuations in the medium, 

the correlation length of the fluctuations, and the characteristic length scale over 

which scattering occurs in the volume (due to attenuation in the medium). 

In general, it is desirable to have analytic relations and criteria for predicting the 

occurrence of multiple scattering. For the general acoustic fluid half-space problem, 

however, this is difficult and not at present available. Criteria would have to prop- 

erly account for the interface and reflection back into the medium of the scattered 

field. The effects of correlation of the medium compressibility and density fluctua- 

tions must also be considered. An alternative analysis can be made using numerical 

simulations. By comparing solutions of a weak scattering method, such as per- 

turbation theory, with exact numerical methods that do not make weak scattering 

assumptions, the range of validity of the perturbation method can be inferred. 

In this chapter, both multiple scattering theory and numerical methods (as in 

Chapter 3.1) will be used to investigate the applicability of perturbation methods for 

volume scattering from a fluid sediment half-space. Parameters of the random media 

are limited to those of marine sand and soft-mud sediments modeled as fluids. The 

physical parameters of the sediment (e.g., mean density, sound speed, and statistical 

properties of the medium) are selected from current publications of studies made of 

sediment core samples and in situ measurements [60, 23, 13]. 
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4.1    Multiple Scattering Theory 

Classical multiple scattering theory involves using diagram techniques to sum the 

perturbative series for the mean field (Dyson's equations) and the intensity or covari- 

ance of the field (Bethe-Salpeter equation) in the scattering medium. The Bethe- 

Salpeter equation is directly related to the radiative transfer equation where attenu- 

ation in the medium is a function of the intrinsic absorption of the medium and the 

scattering attenuation [80]. Scattering attenuation is due to incident energy diverted 

from the incident direction by multiple scattering. 

Radiative transfer theory provides an analytic method of solving for the effects 

of multiple scattering on the field intensity, where, in general, there is no solution to 

the Bethe-Salpeter equation. Radiative transfer, on the other hand, is a phenomeno- 

logical approach that does not provide insight into the scattering processes and the 

parametric relationships of the medium and the incident wave that dictate the oc- 

currence of multiple scattering. To gain physical insight into multiple scattering it 

is more useful to study Dyson's equation. To proceed analytically, assumptions are 

typically made, the most basic of which is the bilocal approximation. 

A great deal of literature is available on multiple scattering theory. The bulk of 

this work focuses on scattering due to the index of refraction (created by permit- 

tivity fluctuations) in an unbounded medium. The sediment problem differs in that 

the medium is a lossy half-space. This constrains the incident and scattered fields 

to a region near the interface. The sediment problem also differs in that density 

fluctuations, as well as compressibility fluctuations, must be considered. In general, 

bistatic scattering into the UHS is of greater interest than forward scattering into 

the LHS. Therefore, the correlation properties of the density and compressibility 

may have a significant role in suppressing or enhancing multiple scattering effects. 

Effective medium parameters for an unbounded, statistically homogeneous fluid 

with strong density and compressibility fluctuations have been discussed by Zhuck 
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[89, 90] in the low-frequency limit (k -> 0). This work extends the weak scattering 

criterion developed in previous multiple scattering theories, which states 

|fco L <TK\
2
 < 1 , (4-1) 

to include density fluctuations that obey the same relation, 

|*b lP <TP\
2
 « 1 • (4.2) 

The length scales lK and lp are the correlation lengths of the compressibility and 

density fluctuations, respectively. The cross-correlation of density and compressibil- 

ity fluctuations is not considered. In addition, larger correlation scales (comparable 

to the acoustic wavelength) and loss due to intrinsic attenuation are not considered. 

The role of half-space effects in multiple scattering has been investigated using 

Dyson's equation to find a renormalized effective wavenumber of the mean field 

[43, 63]. The principal conclusion was that the mean field in the bounded medium 

cannot be modeled by defining a single effective wavenumber, as with the unbounded 

medium. Instead, a transition layer near the boundary must be defined in which the 

incoherent wave reflected from the interface affects the coherent wave to the same 

order as an incoherent wave generated without the interface. 

In this section, the bilocal approximation will be applied to the acoustic scat- 

tering case where compressibility and density fluctuations are present and of com- 

parable magnitude. The general acoustic scattering problem, including half-space 

effects, will not be considered. Compressional wave attenuation will be included as 

well as the effects of density and compressibility correlation. This differs from devel- 

opments in the literature where only compressibility (or permittivity) fluctuations 

are considered. In general, the problem of scattering due to density (or permeability) 

fluctuations has not been widely studied. In electromagnetics, strong permeability 

fluctuations are rarely encountered. In ocean acoustics, multiple scattering is usu- 

ally only considered in the forward direction where sound speed fluctuations are the 

dominant scattering mechanism and density fluctuations need not be considered. 
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4-1.1    Dyson's Equation 

Consider the small perturbation solution for the acoustic field from Section 2.3 

rewritten as 
oo 

p(r) = g{r, r0) = g0(r, r0) + ^gn{r, r0) , (4.3) 
n=l 

where # is the field at r due to a source at r0, and 

0n+1(r,ro)= /  [k2lK(r',t)g0{r,r,)gn{r',r0) + 
Jv (4.4) 

7p(r')VVo(r,r')-V'firn(r',r0)]c/r'. 

Assume (for convenience only, since measurements neither support nor challenge this 

assumption) that the fluctuations in the medium are zero-mean Gaussian random 

variables such that the even moments are given by 

(7«(ri)' •' 7«(r2n)> = Y C*«(Ti> ri)''- c**(rkir') » 
pairs 

(7*(ri) ■ • * 7P(r2n)) = Y, C*f>(r*> r^ ''' C«P(
V

*> 
r<) > (4.5) 

pairs 

<7p(ri) • •'• 7p(r2n)) = Y CPP^ 
V

^> '' * CPP(
T
^ 

r0 » 
pairs 

and the odd moments are zero. For example, 

(lK(rihP(r2h«(r3)~(p(u)) =CK/,(r1; r2)C«„(r3, r4) + CHK(ru r3)Cpp(r2, r4) 
(4.6) 

+ CKp(ri,r4)apK(r2,r3) . 

The renormalized perturbation series for the mean field (g) is formed by performing 

an ensemble average over realizations of the medium: 

g(r,r0) = (g(r,r0)) 
oo 

= <fo(r,r0) + X>n(r,ro)) (4.7) 
71=1 

= $b(r,ro) + (&(r,ro)) + (04(r,ro)) + --; . 
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Odd-order terms are zero due to the Gaussian assumption. 

Solving this system of equations by successive iterations, Dyson's equation for a 

random medium with both density and compressibility fluctuations is found to be 

g(r,r0) =g0(r,r0) + k4 // go(r,r1)mKK(r1,r2)g(r2,ro)dr1dr2 

+ k2 // flb(r,ri)mKp(ri,r2) • V2£(r2,ro)dri«fr2 

+ k2 / / Vi$b(r,ri) • mpK(ri,r2)5(r2,ro)(/rio?r2 

/ / Vi^)(r,ri) • mPp(ri,r2) • V2<?(r2, r0)cMr2 . 

(4.8) 

+ 

The operator Vi is the gradient with respect to r^ V2 is the gradient with respect 

to r2; and V2Vi is a dyad operator. This form of Dyson's equation is similar to the 

standard Dyson's equation found in [75, 68], except the mass operator m(ri,r2) now 

has four components that represent the interactions of scattering from density and 

compressibility fluctuations. Also, note that the integration limits in (4.8) are over 

the half-space volume. For now, the effects of the interface will be ignored and the 

limits of integration will be extended over infinity. Consequently, the unperturbed 

free-space Green's function can be used for go instead of (2.33). 

The mass operators are best described using the diagram method introduced in 

Section 2.3.2 with the addition of several new symbols. Represent the correlations 

between density and compressibility fluctuation with a dashed line: 

te (^KK(rj,rjj ~   * • 
5 

k2CKp(ri,rj)  ~  o 
j i 

5 

(4.9) 
k CpK(Ti,Yj)   ~     O  -• 

r. 

CppfaTj)   ~     O O 
r; 

Represent the mean Green's function for the inhomogeneous medium with a double 
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line: 

g(v,v0)  ~   ===  . (4.10) 
r ro 

The mass operators are represented as double dashed line segments: 

mKK(ruri)    - , 
ri r2 

mKp(ri,r2) ~   »===o , 
ri r2 

mpK(ri,r2) ~   o===» , 
ri T2 

mpp(ri,r2) ~  °===° • 

(4.11) 

Following the procedure of separating weak and strong scattering interactions [68], 

Dyson's equation for an acoustic fluid can then be written in diagram representation 

as 

 + —  • •  + —  • Ü  

+ —  0 •  — + —  0 o  

(4.12) 

where the mass operators are defined as follows: 

•===• =  4- ^ + ♦ •■ » •  + • • « • + 

•===o =   4- b  + » 6 • ö   + • o * o + 

o===» =   6- *  + o • ö •   + o * 6-- • + 

/       \       V        /    N       N /      /       v       ^ 3===o =  o o  + o o——o -o   + o o o o 

Consider a statistically homogeneous medium where the correlation functions, 

the Green's functions, and the mass operators are all functions of difference coordi- 
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nates only. Dyson's equation is then rewritten as a double convolution integral: 

g(r - r0) =flb(r - r0) + k4 / / g0(r - rijm«^ - r2)g(r2 - r0)dridr2 

+ k2       go{r - ri)m«p(ri - r2) • V2g(r2 - r0)dridr2 

_ 7, (4-13) 
+ k   / / Vlfif°(r ~ ri^' m"«(ri ~ r2)#(r2 - ro)c?r!(/r2 

+ / / Vi#0(r - n) • mpp(ri - r2) • V2<?(r2 - r0)dr1dr2 . 

The unperturbed free-space Green's function in three dimensions is 

*w = £ • <414» 
Solving for the mean Green's function using Fourier transforms with the transform 

of the unperturbed Green's functions, 

G°(k> - M*bp) • (415) 

and the transform of the mass operators, 

Maß(k) = Jm(n - r2)aße-*rdv , (4.16) 

an expression for g can be found explicitly as 

1       f etk-(r-r0) 

^-"^^/t.-p-^k^-        (417) 

The function M is found in terms of the Fourier transforms of each component, 

M(k) = k4MKK(k)-2iPk-MKp(k)-k-Mpp(k)-k, (4.18) 

with MKp = MpK. The function MKK is a scalar, MKp is a vector pointing in the k 

direction, and M.pp is a dyad whose orientation is defined by kk. 

Equation (4.17) is the mean Green's function for the coherent field. In this form, 

(4.17) is exact. The expression for the mass operator, however, is an infinite expan- 

sion and is generally not obtainable in closed form. Dyson's equation is therefore 

only useful in that it allows approximations to be made of the mass operator that 

lead to insight into the behavior of g. 
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4-1.2   Bilocal Approximation 

The simplest approximation to Dyson's equation is the bilocal approximation which 

involves keeping only the first terms in the mass operators [10], such that 

mKK(rx,ri) « k4CKK(rur2)g0(r1,r2) , 

mKp{rur2) « k2CKp(ri,r2)V2g0(ri,r2) , 

mpK(ri,r2) « k2CpK(ri,r2)V1g0(r1,r2) , 

mPp(ri,r2) « CpP(ri,r2)ViV2£ro(ri,r2) . 

The bilocal approximation is represented in diagram notation as 

(4.19) 

-c£ ^     +    cC \ 

(4.20) 

Applying this approximation to (4.8), the mean field is 

g{r,r0) =g0{r,r0) + k4 // CKK{r1,r2)g0(r,ri)g0(ri,r2)g(r2,r0)dr1dr2 

+ P / / C«p(r1,r2)5'o(r,r1)V25ro(ri,r2) • V2g(r2,r0)dr1dr2 

+ k2 / / CpK(r1,r2)Vi£fo(r,ri) • Vi#o(ri,r2)#(r2,ro)oMr2 

+ // Cpp(ri,r2)Vifiro(r,ri)-V1V25'o(ri,r2)-V2^(r2,ro)c?r1c?r2 . 

Again, consider a statistically homogeneous medium where the density and com- 

pressibility fluctuations are proportional using (2.13) and (2.14). Using the bilocal 

approximation, the individual mass operators that comprise (4.18) can be written 

as 

MKK(k) *fx2j Cpp{v)gQ{v)e-^dv , 

MK„(k) « ii J Cpp(r)Vg0(r)e-ik-rdr , (4.21) 

Mpp (k) «  f Cpp(r)VVgo(r)e-ik-rdr . 
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Using the free space Green's function in three dimensions with an isotropic and 

exponential correlation function, 

C„{r) = oje""1"' , 

each term in the mass operator can be derived analytically as 

(4.22) 

(4.23) 

k.MK„(k) = H^- ikL I c — 
2ab 

cl"     z2-62 (26 - ac) 

and 

k-MUk).k=^ 
fc2 

263 Ifölr (26 - ac) - (a - 62)   c - 
2ab 

a2-b2 

+ (26 - ac)(a - 62) 

where 

a = 1 — ifc/c , 

6 = ?'A;/C , 

c = ln[(a + b)/(a - 6)] 

(4.24) 

(4.25) 

(4.26) 

Since equations (4.23), (4.24), and (4.25) are not found in previous literature, the 

details of performing the integrations are outlined in Appendix F. 

For an isotropic medium, (4.17) can be rewritten in spherical coordinates with 

vector k pointing in the ^-direction. Performing the integration over the angle 

variables, a single integral results: 

j r eikR 
§{R) = Ä J k*-k*-M(k)kdk ' (4.27) 
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with R = \r-r0\. Taking residues of the integrand with respect to k at the dominant 

pole, the mean Green's function for the medium can be found approximately as 

„ikeR 

m « ^ ■ (4-28) 

It is expected that a single pole (ke « k) in the upper half of the complex k plane 

will dominate the total solution of (4.27). The other wave solutions - corresponding 

to the other poles - are expected to decay rapidly and can be ignored. This has 

been shown for the case of index of refraction fluctuation only [68], and is assumed 

to be true for the current case if the medium fluctuations are not too strong and 

|M(Ar)| « k. 

The wavenumber ke is the effective wavenumber of the renormalized medium. 

The real component of ke yields the effective phase speed of the medium. As the 

mean path of the wave through the medium is increased by multiple scattering, 

the real part of ke increases, thus causing an effective decrease in the phase speed. 

The imaginary part of ke corresponds to the total coherent field attenuation in the 

effective medium. Multiple scatter will act to increase the total attenuation due to 

scattering loss out of the incident direction. 

The onset of multiple scattering can be examined by studying the behavior of 

the dominant pole ke as the parameters of the medium are varied. The poles of 

(4.27) are the roots of the denominator of the integrand: 

k2-k2- M{k) = 0 . (4.29) 

In the weak scattering limit, the position of ke should approach that of k in the 

complex plane. Therefore, rather than solving for the root exactly, using (4.23), 

(4.24) and (4.25), the position of the dominant pole ke can be found approximately 

by taking a2 to be small and using perturbation analysis. In the zeroth-order solution 

for the pole, where there is no multiple scattering, M(k) = 0 and ke = k. The first- 

order solution is then found by substituting the zeroth-order result into (4.29), such 
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that 

k\ - P - M{k) » 0 . (4.30) 

With M(k) small, the effective wavenumber for the the bilocal approximation is 

fc^ + Ä. (4.31) 

Multiple scattering can be examined by plotting the changes in the real and 

imaginary components of fce, defined respectively as 

= Retfee 7 fc] (4.32) 
7e Re[k] K      J 

and 

Im[fce - fc] 
7e Im[fc] V       } 

Figures 4.1 and 4.2 show contours of 7^ and 7" as functions of lc and // for several 

values of the attenuation coefficient a\. All plots are made with cr2p = 0.01. The 

dashed contours in Figure 4.2 are values of 7" found by solving for the roots of 

(4.29) numerically using a complex simplex method. The solid contours are values 

of 7" found using ke estimated with (4.31). The perturbation method for finding the 

effective wavenumber shows reasonable correspondence with the numerical method 

for small lc/X and fx near —1. When using the perturbation method, 7^ and 7" are 

(to first order) proportional to the variance of the medium. Therefore, it is only 

necessary to plot contours for a single value of a*. Contours for other values of <r^ 

will scale proportionally. 

The range of parameters shown in Figures 4.1 and 4.2 reflects typical values 

observed in marine sediment over a variety of environments and sediment types. 

The plot for a\ = 0.1 (which corresponds to typical mud and silt sediment) shows 

higher scattering attenuation of the mean field. As the intrinsic attenuation in the 
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medium (Im[Ä;]) increases, multiple scattering decreases and the scattering atten- 

uation (Im[A;e — k]) decreases. A value of a.\ = 1.0 corresponds to a typical sand 

sediment. 

Relative to the homogeneous wavenumber, changes in the real part of the effective 

wavenumber are small as expected (7^ <C 7"). Changes in the imaginary part of the 

effective wavenumber are a minimum for values of \i f« —1. This can be attributed 

to the minimum in the sound speed fluctuations when density and compressibility 

fluctuations are negatively correlated. 

4.1.3   First-order Multiple Scattering 

For weak scattering - but not necessarily single scattering - the imaginary component 

of ke that is due to scattering attenuation should approach the total scattering 

cross-section derived from the first-order perturbation approximation. The effective 

wavenumber found using (4.31) can then be compared to the first-order perturbation 

result of Section 2.2. In other words, the power attenuation of the mean field should 

obey the relation 

2Im[A;e - k] = <rtv =  /   av <ko , (4.34) 
JAir 

where av is the differential volume scattering cross-section and du> = sin 9d9d(f>. This 

approach is often referred to as first-order multiple scattering [30]. 

From Section 2.3, using (2.90) and neglecting half-space effects, the first-order 

differential cross-section is 

<7tf = ||fc|V + cosö)25p/,(M, (4-35) 

where 0 is the angle between the incidence and scattering directions, and kj, = 

2Re[k] sin(0/2) is the Bragg wavenumber. Using the correlation function (4.22), the 
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calculated with a2

p = 0.01 using (4.31). 
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total volume scattering cross-section is 

2/j2        2\i ( 2ab 
<rtv = <lzc\k\ + -hr\c 

a2-b2      b2 V       a2-b2, 

+ — I 26 - 2ac + 

(4.36) 

b3\ a2-b2
j 

where now a, 6, and c are redefined as 

a = 1 + 2(Re[k]lcf , 

b=-2(Re[k}lc)\ (4.37) 

Figure 4.3 shows contour plots of the ratio 7" using ke found from (4.36) and (4.34) 

for various sediment types (solid contours). Also plotted in Figures 4.3 (as the 

nearly hidden dashed contours) is 7" found using (4.31). A small difference in the 

two methods of calculating ke can be seen at lc/X <C 1 near (i = — 1. 

4.2    A Comparison with Numerical Methods 

Multiple scattering theory provides an analytic method of studying higher-order 

scattering in an unbounded medium. For a random half-space, however, analytic 

results are not easily obtained. The half-space geometry prohibits a solution by 

Fourier transforms because the medium and the Green's function are no longer 

translationally invariant in the ^-direction. The integration over the medium is no 

longer an integration over an infinite continuum, but rather over the half-space. 

Analytical results cannot be found unless further approximations are made. 

Numerical methods will be employed to analyze half-space effects and their effect 

on multiple scattering. Two potential effects will be investigated: 1) the existence 

of a transition layer near the interface as predicted by [43, 63] and its effect on 

the definition of an effective wavenumber in the sediment; and 2) the effect of the 

half-space and multiple scattering on the volume scattering cross-section. 
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Simulations are performed in two dimensions, and the multiple scattering theory 

is for three dimensions. Therefore, the comparison of the results of numerical simula- 

tions with the results of multiple scattering theory is limited to relative magnitudes. 

The exact magnitudes of the effective wavenumbers found using both methods can 

not be compared directly. Multiple scattering theory could be derived for two- 

dimensional scattering. However, the derivation of the mass operator is much more 

difficult with the two-dimensional Green's function (a Hankel function), and it is 

not done in this thesis. 

4-2.1    Half-Space Effects on the Mean Field 

Consider first the scattered field within the sediment. As in the previous section 

where Dyson's equation was used, multiple scattering can be observed by examining 

the mean field. The mean field is generated by performing Monte-Carlo simulations 

and averaging the total field over a sufficient number of realizations to remove the 

incoherent field. A periodic medium is used to allow for plane wave propagation, and 

the incident field is normal to the interface. Six cases are examined using parameters 

of the medium that correspond to typical sand sediments. The cases are defined in 

Figure 4.4 over a range of \i and correlation scales, lc/X. Multiple scattering theory 

predicts that in these cases the effective wavenumber will be influenced by at least 

first-order multiple scattering. Figure 4.5 illustrates the geometry, the incident field, 

and mean fields within the scattering volume of the numerical simulations. The 

incident field (Figure 4.5a) is normal to the interface at z = 0. The mean field 

(Figure 4.5b) is an average over 50 realizations. 

The bilocal approximation for an unbounded medium predicts an effective wavenum- 

ber at which the mean field propagates in the scattering medium.  However, near 

the interface the definition of an effective medium is obscured.   Figure 4.6 shows 

numerically estimated values of 7" as a function of depth into the half-space, found 

using the estimated effective wave number of the mean field. The estimates of the 
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effective wavenumber are found by solving for the ^-component of the exponent of 

the wave field at each point in the depth direction: 

—IZ 

The estimate of the mean field (p) is found by averaging Monte-Carlo simulations, 

and p0 is the incident field. Within a transition layer near the interface, the scattering 

attenuation increases from approximately zero at the interface to a constant value. 

The depth at which the effective wavenumber becomes constant is the depth of 

the transition layer. In all cases, the depth of the transition layer is larger than 

the correlation length of the medium, with larger correlation lengths showing larger 

transition layers. 

As mentioned previously, no direct comparison can be made between the numer- 

ically estimated effective wavenumber and the three-dimensional bilocal approxima- 

tion. However, the relative magnitudes of the test cases agree with the theoretical 

predictions. 

4-2.2   Bistatic Scattering Strength 

Next, consider the scattered far-field in the UHS by estimating the equivalent surface 

scattering strength for the medium. Again, a periodic medium is assumed. The 

scattering strength is found by estimating the variance of the scattered far-field for 

a large number of realizations. Because a periodic medium is used, the scattering 

angles are limited by the Floquet modes, and the scattering cross-section is defined 

using (2.133). Figure 4.7 shows the bistatic scattering strength for different incident 

angles for case B of Figure 4.4. A critical angle exists at 24.6° 

The bistatic scattering strengths for various incident angles above and below the 

critical angle show good agreement with first-order perturbation results. The solid 

and dashed lines are the formally averaged perturbation theory with and without 

half-space effects. The dots are the numerically calculated scattering strength. Half- 
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space effects are significant in the specular direction. Although multiple scattering 

is observed in the scattering medium (as shown by the mean field), the scattering 

strength is modeled well by first-order perturbation methods. 

4.2.3   Assessment of Multiple Scattering in Marine Sediments 

Figure 4.8 shows four different contour plots of 7" for four different marine sites. 

The sediment physical properties at each site were estimated from cores samples 

[34, 14]. The measured sediment parameters [i and lc/X are plotted as points (*) on 

the contour plots. For the estimated sediment parameters and the frequencies used, 

multiple scattering theory predicts that no significant multiple scattering of the field 

within the sediment will occur at three of the sites (7" < 5%). The Panama City 

site shows fairly strong scattering within the sediment (7" « 10%). The sediments 

at the Eckernfoerde and Orcas sites are primarily silt and mud. The Key West and 

Panama City sites are primarily sand. 

A primary indicator of multiple scattering in marine sediments (at least at these 

four sites) is the amplitude of the cross-correlation between the compressibility and 

density. In general, compressibility and density are negatively correlated and of 

comparable magnitude. This leads to fi « -1, and multiple scattering is minimal. 

For values of fj. away from negative unity, compressibility and density act to en- 

hance multiple scattering. The Panama City site in Figure 4.8 shows non-negligible 

multiple scattering due to the relatively high estimate of /J, PS —2.5. 

4.3    Summary and Conclusions 

The bilocal,approximation to Dyson's equation for the coherent field is extended to 

include density, as well as compressibility, fluctuations in volume scattering from a 

continuous Gaussian random medium. The Gaussian medium assumption is only 

used to develop a bilocal approximation for sediment volume scattering that can be 
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used to study the applicability of the small perturbation method. It is not intended 

as a realistic model of sediment fluctuations. 

The effective wavenumber in the scattering medium is found using the bilocal 

approximation. Alternatively, the effective wavenumber is found using a first-order 

multiple scattering method. The two expressions for the effective wavenumber agree 

well for typical values of sediment physical properties. However, they differ slightly 

at lc/\ <C 1 near \i = — 1 (as shown numerically). 

The effective wavenumber within the sediment half-space is found by numerical 

Monte-Carlo simulations using the method of moments (for several test cases). The 

numerical simulations show the existence of a transition layer near the sediment- 

water interface, as predicted by one-dimensional theory [63, 43]. The UHS scattering 

strength for a typical marine sediment is also calculated using numerical simulations. 

The bilocal approximation for the effective wavenumber in the sediment predicts 

that multiple scattering is present in some cases. However, numerical simulations 

of the scattering strength in the UHS still show good agreement with the first-order 

perturbation model (2.88) when half-space effects are included. 

One conclusion that can be drawn from this analysis is that good estimates of 

the physical properties of sediment are critical for making predictions of scattering. 

Good estimates of fi are especially important. The current measurements of fj, 

indicate that first-order multiple scattering within the sediment is significant for the 

Panama City site, for example. However, the core analysis used in this case may 

not have provided adequately accurate estimates of JJ, to make reliable predictions. 

A final judgment as to the applicability of the weak scattering assumption in 

marine sediments cannot be made. Further research is needed to address the pro- 

portionality of sediment density and compressibility fluctuations. If the assumption 

of proportionality can be verified, the range of values of // for typical sediments 

must be established. If a constitutive relation between density and compressibility 

cannot be established, the effects of uncorrelated scattering between density and 
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compressibility fluctuations must be addressed. 

For far-field scattering from the sediment into the UHS, an important conclusion 

can be made. In general, it is observed from numerical simulations that even when 

multiple scattering is present in the medium, first-order estimates for the scattering 

strength are good approximations to the true scattering strength. This is assumed 

to be the case in typical marine sediments, and it is assumed to be true for the cases 

shown in Figure 4.8. 

An explanation for this is most likely found in the transition layer near the 

sediment-water interface. As observed through numerical simulations, multiple scat- 

tering diminishes near the interface. This is shown in the estimates of the depth- 

dependent effective wavenumber in the scattering medium (Figure 4.6). The scat- 

tered field in the UHS, however, is more strongly influenced by scattering from the 

sediment near the interface - because attenuation limits the depth to which the 

incident field will penetrate. Therefore, if multiple scattering is diminished in the 

volume of the sediment near the interface (which most influences the scattered far- 

field), it is expected that weak scattering methods will model the scattered far-field 

adequately. In other words, half-space effects that create a transition layer in the 

upper sediment diminish the effects of multiple scattering on the far-field scattering 

strength. 
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Chapter 5 

BIOLOGICAL SOURCES OF HETEROGENEITY IN 

SEDIMENTS 

Identifying the specific mechanisms by which benthic organisms mix sediment 

is critical in the development of a mathematical model of bioturbation. However, 

generalization to an arbitrary level of description seems exceedingly difficult due to 

the variety, complexity and irregularity of bioturbational processes. Exceptions to 

the general behavior of organisms will always require unique treatment in a model. 

For example, communities of organisms may affect actions of individuals in ways 

that may be unique to a particular environment [4]. It seems realistic, however, to 

model the cumulative effects of bioturbation and the subsequent effects on sediment 

properties in a statistical sense - that is, to develop models that describe the stochas- 

tic properties of the mixing process without attempting to model the behavior of 

individual organisms. 

This chapter will begin with a brief review of the activities of benthic organisms 

that cause sediment mixing and heterogeneity (at least the activities that affect the 

physical properties of sediments). Then, a review of current mathematical models 

of bioturbation is presented, keeping in mind that these models were developed for 

other purposes (and other parameterizations) than for acoustic remote sensing. Fi- 

nally, a new model is presented that closely follows the existing models, but which is 

extended to include higher-order statistical measures of fluctuations in the sediment 

bulk properties. The fluctuation statistics can then be used to relate the parameters 

of the mixing model to the statistics of the scattered sound field. 
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5.1    Mixing of Sediments by Benthic Organisms 

The activities of organisms (meiofauna and macrofauna) that live and feed in marine 

sediments rework the sediment and cause mixing. These activities are characterized 

as deposit feeding, locomotion, and home building [83] which in turn are characterized 

as either causing local or nonlocal displacement of sediment particles and pore water 

[1,9]. Local displacement is a continuum of small random movements that transport 

sediment short distances. Nonlocal displacements are large (relative to animal body 

size) and discrete movements of sediment. In either case, displacements can take 

place in the horizontal and vertical directions with time and distance scales that 

may vary with direction and depth into the sediment. The precise meaning and 

scale of local and nonlocal will be defined later. 

Deposit feeding is the bulk ingestion and subsequent egestion of particles within 

or upon the sediment. It is the dominant type of feeding activity that displaces 

sediment particles. In general, most deposit feeders must ingest large amounts of 

sediment material - several times their body weight per day. They often move 

the sediment distances comparable to, or greater than, the length of the animal. 

Depending on the body size of the animal in question and the mixing length scales of 

interest, deposit feeding may produce either local or nonlocal mixing. Some deposit 

feeders restrict their activities to either horizontal or vertical mixing, potentially 

creating anisotropic mixing. Conveyer belt or tunnel feeders, which make up the 

majority of deposit feeders, tend to move sediment from some depth in the sediment 

to the surface. Other animals transport sediment in nearly equal distances in both 

directions. 

Locomotion is the movement of an animal from one location to another within 

the volume or on the surface of the sediment which results in the sediment being 

displaced in some manner. Movements may be due to feeding or predator-prey 

interactions, for example. Since a large amount of energy must be expended during 
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movements within the volume of the sediment, infaunal mixing of this nature will 

have relatively small particle displacements (local mixing) and be less intensive than 

mixing by deposit feeding. Epifaunal locomotion, on the other hand, is less difficult, 

and mobile epifauna are generally more abundant. This potentially creates higher 

localized horizontal mixing rates at the sediment interface. It may also influence 

vertical mixing by the "piping" of surface sediments into open tubes and burrows 

that extend vertically into the sediment. 

Home building is the creation of tubes and burrows for dwellings in the sediment. 

The size and structure of tubes and burrows reflect the size of the animals inhabiting 

them and the environment in which they are built. Large volumes of sediment can 

be displaced and moved nonlocally by home building - comparable to mixing caused 

by deposit feeding. Mixing is further intensified as uninhabited homes collapse or 

become filled as sediment falls into them. 

Other factors that affect mixing (that cannot be simply classified as one of the 

above) are lumped into a general category of mixing termed incidental movements. 

These include mixing that cannot be directly associated with an animal activity but 

which occurs as an indirect result of the above activities. For example, through a 

siphoning action a surface deposit-feeder will frequently dislodge sediment particles 

which it does not ingest [83]. 

5.2    Classical Diagenetic Models 

Diagenesis refers to the processes that bring about changes in time and space of a 

sediment or sedimentary rock after deposition. Bioturbation is an important aspect 

of this process in marine sediments and has received a significant amount of attention 

and modeling. The current models typically describe the net effects of bioturbation 

as localized diffusion or biodiffusion. This section is a brief overview of the most 

widely published model [4, 9, 83] and provides a starting point for the development 
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of a more general mixing model. 

Quantitative analysis of diagenesis requires the use of mathematical models that 

describe the mixing process. Classical diagenetic models describe the steady-state 

vertical mixing of the mean concentration of a sediment tracer (usually a chemical 

or radioisotope tracer) as an idealized mass balance between adjacent layers of sedi- 

ment. Using the sediment-water interface as the origin, the rate of change of a solid 

or liquid tracer at a fixed depth is expressed as 

where C is the bulk concentration of a biodiffusing tracer (to be identified). The 

units of C are mass per unit volume of sediment. The function F is the flux of C 

in the vertical direction, with dimensions of mass per unit area per unit time. The 

R term is the rate of diagenetic reaction affecting the concentration or the rate of 

removal or addition of tracer from outside the control volume. 

For loose marine sediments, this type of rate equation is used to describe the 

conservation of fluid and/or solid trace species. The tracer may refer to the concen- 

tration of a dissolved solute in the sediment pore water, such that 

C = cßCj , (5.2) 

where C/ is mass of solute per unit volume of pore water, and <j> is the sediment 

porosity. The concentration may also describe a solid species, in which case 

C = (1 - cf>)Cs , (5.3) 

where Cs is the mass of tracer per unit volume of solid. Solids are typically discrete 

sediment grains immersed in the pore water. The trace quantity may also refer 

to the total fluid mass, in which case Cj - <f>p/, or total solid mass such that 

Cs = (1 — <f)ps, where pj and ps are the fluid and solid mass densities, respectively. 

The trace quantity may also be the total combined sediment mass, such that 

C = (ßpf + (l-(f>)ps. (5.4) 
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The flux F is the result of diffusion and/or advection. The advection of a tracer 

relative to the sediment-water interface is primarily due to depositional burying, 

compaction, and, depending on the environment, externally impressed hydrological 

flow. Deposition results in a net flux downward into the sediment relative to the 

sediment-water interface. Compaction of sediment due to gravity results in a vertical 

flow of pore water. On the time scales of interest in this thesis, deposition and 

compaction will be neglected. In principle, nonlocal mixing can also cause advection. 

For example, deposit feeding may result in a net upward or downward advection of 

sediment due to "conveyer-belt" feeding. 

Local diffusional flux is in general due to bioturbation and molecular diffusion. 

Considering only bioturbational diffusion, and ignoring molecular diffusion, the to- 

tal localized flux within the sediment is proportional to the gradient of the tracer 

concentration. The net effect of bioturbation is lumped into a single parameter, the 

biodiffusion coefficient Db, such that 

F = -Db^. (5.5) 
Oz 

The diffusive nature of bioturbation is not the result of the activities of a single type 

of organism, but it is rather the net effect of a collection of infauna having a wide 

range of mixing lengths that are small compared to the length scales of the volume 

of sediment being considered. 

The resulting vertical biodiffusion equation is 

A typical model assumes a zone of biodiffusional mixing near the sediment-water 

interface (0 > z > —L) over which Db is constant and below which animal activities 

are negligible with Db = 0. The depth at which bioturbational mixing stops is 

referred to as the rework depth L. Below the rework depth, other flux mechanisms 

are dominant, such as molecular diffusion. To model anise-tropic and inhomogeneous 
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biodiffusion, the diffusion equation can be generalized into three dimensions, 

?-C(r,t)-V-[Db(r,t)VC(r,t)} = R(r,t) , (5.7) 

where the biodiffusion coefficient in now a dyad. 

5.2.1    Nonlocal Mixing 

Nonlocal mixing is defined as any mixing that cannot be described as diffusive. To 

complete this definition it is necessary to define what is meant by diffusive in the 

context of sediment mixing. To start, consider conservation of a trace quantity c,- 

at layer i in a one-dimensional sediment comprised of thin layers [9, 8]. The rate of 

change of c; due to the instantaneous exchange of sediment from all others layers is 

, N N 

^ = J2 Ki^Az - E K^Az ■ <5-8) 
The constant K{j specifies the rate at which sediment is exchanged from layer j 

to layer i (with units of inverse time and distance). Figure 5.1 illustrates exchange 

between a finite number of layers. Deposition at the sediment-water interface creates 

advection downward relative the the interface-centered coordinate system. Local 

exchange is illustrated as exchange between adjacent layers, and nonlocal exchange 

is between non-adjacent layers. Generalizing to a continuum in three dimensions, 

(5.8) is rewritten as an integro-differential equation in terms of a general exchange 

function K that describes all scales of mixing: 

^c(r,t)=J K(r,r';t)c(r',t)dr' 

-c{r,t) [ K(r',r;t)dr' . 
Jv 

(5.9) 

Conservation of the trace quantity follows from (5.9) by integrating over the control 

volume: 

slc<-v-t)d' 0 . (5.10) 
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In general, sediment is composed of a collection of complex and heterogeneous 

sediment grains. In describing a continuous trace quantity (concentration, density, 

etc.) it is necessary to consider a sample volume over which the point function (e.g 

mass of particular substance) is spatially averaged. This is accomplished by defining 

the sample filtering function s(r), such that 

C(r,t)= [ c(r',t)s(r-r')dr', (5.11) 
Jv 

where 

' s(r)dr = 1 . (5.12) I IV 

The sampling filter must have a characteristic dimension (width) large enough to 

define the specific quantity of interest but small enough to provide adequate spatial 

resolution. Usually, the scale of the required spatial resolution dictates the sample 

filtering scale. For example, acoustic waves interact with fluctuations in the sediment 

bulk properties at length scales comparable to the acoustic wavelength. Therefore, 

an appropriate sample filter for measuring sediment acoustic properties (density, 

sound speed) should have a length scale much greater than the grain size but smaller 

than the acoustic wavelength. 

To gain insight into the effects of sample filtering on the mixing equation, the 

operator (5.11) is applied to the mixing equation (5.9) to yield 

^C(r, t) = jf K(r", r'; *)c(r', t)s(r - v")dv'dv" 

V      . (5.13) 
K(r', r"; t)c(r", t)s(r - v")dr'dr" 

v 

A comparison of the spatial scales of the exchange function and the filtering func- 

tion will give definition to the terms local and nonlocal mixing [Jackson-personal 

communication]. 

Local mixing is defined as exchange on scales smaller than the scale of the filtering 

function - that is, when K(r", r'; t) restricts mixing to length scales that are much 

-// 
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smaller than the width of s(r — r"). If this is assumed, the filtering function can be 

expanded in a Taylor series in (r" — r'): 

s(r - r") =s(r - r') + (r' - r") • Vs(r - r') 
1 (5-14) 

+ ^[(r'-r")-V]2
5(r-r') + --- . 

Using the first three terms in the Taylor series, and assuming K(r", r') restricts 

|r' — r"| to scales much smaller than the width of 5, then s(r.— r') ~ s(r — r") within 

the mixing integrals. The mixing equation (5.13) can now be rewritten as 

d_ 
dt (5.15) 

-C(r, t)=J u(r', t) • V [c(r', t)s(r - r')] dv' + 

V • / D(r', t) ■ V [c(r', t)s(r - r')] dv' , 
Jv 

where the new mixing parameters are defined as 

u(r', t) =  f K(r", r'; t)(r" - v')dv" (5.16) 
Jv 

and 

D(r',*) = \ I K(r",r';t)(r" - r'fdr" . (5.17) 
2 Jv 

The function D is the dyadic diffusion coefficient, and u is a vector function that de- 

scribes advection in the local mixing process due to asymmetry in the local exchange 

function about the point r. If u and D are constants in space, or slowly varying func- 

tions compared to the filtering function, then (5.15) reduces to a diffusion equation 

in terms of the filtered quantity: 

^C(v,t) = u(r,t)-VC(r,t) + D(r,t)V2C(r,t) . (5.18) 

If the exchange function is an even function of space, such that 

K(T) = K(-r) , (5.19) 
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then the coefficient u will vanish, and there will be no advection. Assuming isotropy 

in the exchange function, the familiar diffusion equation results: 

^C(v,t) = D(r,t)V2C(r,t). .(5.20) 

Therefore, local mixing is defined as sediment exchange on scales smaller than the 

sample filter length scale. Local exchange is characterized by diffusive mixing. 

Nonlocal mixing is defined as exchange of sediment on scales much larger than 

the sample filter length scale. Nonlocal mixing is non-diffusive. In this regime 

of mixing, the filter function s(r) is a narrow function in space compared to the 

exchange function K(r). The mixing equation (5.13) can then be rewritten in terms 

of the averaged quantity C, and the nonlocal mixing equation results: 

d_ 
dt 

C(r,t)= [ K(r,r';i)C(r',t)dr' 
Jv (5.21) 
-C(r,t) [ K(r',r;t)dr' . 

Jv 

5.3    Inhotnogeneous Biodiffusion of Sediment Bulk Properties 

The mixing of a sediment tracer (for example, a radioisotope with a relatively long 

half-life) is modeled remarkedly well by the homogeneous and steady-state solution 

of the biodiffusion equation. This has been shown by comparison of theoretical 

results with measured vertical profiles of tracer concentration taken from sediment 

cores. Typically, many cores are taken in a particular area to develop a statistical 

ensemble. Each core profile represents a single realization of the random mixing 

process. Any particular core may include disturbances associated with sediment 

microenvironments such as strong gradients in porosity around burrows or corpses 

of larger organisms [4, 9]. The ensemble of core profiles is then averaged to find the 

mean concentration of the tracer of interest as a function of depth. The average 

profile is then compared with the theoretical profile for a biodiffusive process and a 

biodiffusion coefficient is inferred. 
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In the context of acoustic scattering, however, the fluctuations in the cores from 

realization to realization are of primary interest. Acoustic scattering provides a 

measure of the correlation structure of the sediment density fluctuations. Therefore, 

to use acoustic scattering as a means of measuring bioturbational mixing, it is nec- 

essary to investigate the transient and heterogeneous nature of the mixing process 

and develop a model that can be used to describe higher-order statistics - at least 

the correlation of the medium fluctuations. 

A starting point to develop such a model is the mixing equation (5.21). Since 

this model is intended for acoustic remote sensing, the trace species of interest will 

be the sediment bulk density. Therefore, using (5.4), with 

C = p = #/ + (l-^s, (5.22) 

and using the mixing equation (5.21), the rate of change of total mass (fluid and 

solid) is described as 

8_ 
dt 

■p(p, t)=  f K(r', r; t)p(r', t)dv' - ,(r, 0 f K{r, r'; t)dr' . (5.23) 
Jv Jv 

By using the bulk density as the trace quantity, it is assumed that the solid and 

fluid mass of the sediment grains and pore water are mixed as a single quantity. 

Alternatively, the porosity could be considered constant, and only the sediment 

grains (without pore water) would be subject to biodiffusional mixing [4]. This 

macroscopic view of mixing ignores the particular mechanism by which an organism 

transports sediment. The proper trace quantity to use for a particular sediment 

type and environment has yet to be established. Only bulk density will used in this 

thesis; however, the modeling methodology is general. 

To start, several assumptions about the mixing process are made. First, owing 

to the modal characteristic of the size spectrum of organisms, it is assumed that 

mixing takes place on two scales: 1) local biodiffusional mixing that represents 

the continuous diffusive activity of smaller organisms (meiofauna) or the collapsing 
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and filling of borrows created by larger organisms; and 2) nonlocal mixing that 

represents the activities of larger organisms (macrofauna). On the time scales of 

interest, the movement of sediment is not necessarily restricted to localized mixing 

between adjacent horizontal layers. Rather, larger organisms may transfer sediment 

between non-adjacent layers creating nonlocal (non-diffusive) mixing that gives rise 

to spatial heterogeneity. Furthermore, over "short time periods, it cannot be assumed 

that a large collection of organisms with a broad spectrum of sizes has reworked 

the sediment. Nonlocal mixing may be dominated by a single or several types of 

organisms with characteristic length scales. Therefore, the second assumption is 

that the activities of the larger macrofaunal organisms are discrete in both space 

and time, and the activity of meiofauna is assumed to be continuous in space and 

time. 

The exchange function K describes the spatial and temporal characteristics of. 

mixing. In the simplest form (as a continuous function or a constant), it describes 

total mixing within.the sediment volume..In this case, every point in the volume ex- 

changes sediment with every other point in the volume; mixing occurs on all scales. 

To describe a two-scale mixing process (as motivated above) K is divided in two 

components - local and nonlocal exchange - that have a finite (but not overlap- 

ping) spatial extent. The components are assumed to be independent of each other; 

therefore, they can be superimposed to describe the total exchange as 

K(r', r; t) = Kt(r', r; t) + Kni(r', r; t) . (5.24) 

The function K\ represents the continuous and random local exchange of sediment 

by meiofauna (diffusive mixing). The function Knl represents the discrete (in time 

and space) nonlocal mixing due to larger animals. 

The random and discrete nature of the nonlocal mixing is described by modeling 

Kni as a series of source and sink functions that are distributed randomly in space 

and time. To start, consider only two such events - a source and sink event related 
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z'=0 

KNL (z',z:t) 

z'=-L 

Figure 5.2: Discrete nonlocal mixing between two layered regions of sediment. Sed- 
iment is removed from a volume defined by the sink function h and deposited in a 
volume defined by the source function g. 

to the removal and deposition of sediment by a single animal due to a single action 

(a single feeding motion, for example). Suppose that a random mass of sediment q 

is removed (nonlocally) at time ( from a location described by the function h(r — a). 

The position vector a is at the center of the volume, and h describes the shape of the 

volume of sediment where the mass was removed. The sediment is then deposited 

at some later time, £, in a location defined by the function g(r — b), where b is the 

central location and g describes the shape of the volume of sediment where the mass 

is deposited. While the sediment is being transferred, assume that it is temporarily 

removed from the system and no mass is lost during transport. The mass removed 

and deposited is described by the random variable q. Figure (5.2) illustrates nonlocal 

mixing in an idealized one-dimensional system of layers. 

It is further assumed that a nonlocal mixing event causes the removal and de- 

position of a fixed amount of mass - as opposed to a fixed mass per unit volume. 
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With this assumption, the amount of mass transferred (for nonlocal mixing only) is 

not a function of the density at the location of removal. The exchange function for 

nonlocal mixing will be factorized as 

p(r')Knl(r', r; t) = qh(r' - %(r - b)V(t - £) (5.25) 

and 

p(v)Knl(r, r'; *) = qg{v' - b)h(r - a)i/(t - C) • (5-26) 

The shape functions are defined such that 

h(r' - a)dr' = 1 , 
,v (5.27) 

g{r'-h)dv' = l; 
Iv 

therefore, they have units of inverse volume. 

The function r\ defines the time dependence of the source and sink events. If the 

duration of each event is small and there are many events occurring within the time 

period of interest, the time dependence can be modeled as impulsive: 

V(t~ () = S(t-0- (5-28) 

In general, £ and ( are not independent. For example, the time of the sink event 

must come before the time of the source event, and the spacing between events is 

likely small compared to the time intervals of interest in here (days to weeks). 

Using (5.25), (5.26) in (5.23), and grouping all the nonlocal terms into a single 

forcing term on the right hand side of the equation, the rate of change of mass at 

position r in the sediment is 

§-tP(r,t)-J Ipir'^K^^r^ + pir^K^r'^dr' = f(r,t) , (5.29) 

where 

/(r, t) = q f [%' - %(r - b)*(* - 0 " A(r - %(r' - b)8(t - 0] dv' .    (5.30) 
Jv 
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The left hand side of (5.29) has been shown in Section 5.2.1 to reduce to the biodif- 

fusion equation if K\ is symmetric and local. Two-scale mixing can then be modeled 

as a biodiffusional process where nonlocal mixing acts as a forcing function: 

j^(r, t) - V • [Dt(r, t)Vp(r, *)] = /(r, t) . (5.31) 

Using (5.27), the nonlocal forcing function (5.30) is rewritten as 

/(r, t) = q [g(r - b)8(t - fl - h(r - *)6(t - Q] • (5.32) 

This form of the diffusive mixing equation is inhomogeneous in />; that is, the forcing 

function is not dependent on the value of p. 

Generalizing (5.25) and (5.26) as a series of source/sink pair functions occurring 

randomly in space and time, the exchange function becomes 

p(r'; t)Kni(r', r; t) = J^ qnhn(r' - an)gn(r - bn)S(t - £„) (5.33) 
n 

and 

p(r\ t)Kni(r, r'; <) = J^ qnhn(r - an)gn(r' - bn)8(t - (n) . (5.34) 
n 

The nonlocal forcing function is then described as 

/(r,t) = Y^qn[gn(r - bn)5(t - fB) - hn(r - an)8(t - £,)] . (5.35) 
n 

The source and sink functions gn and hn are random functions associated with the 

nth event. They describe a random shape of the sediment volume moved nonlocally 

by each event. 

In general, the excitation may be anisotropic and a function of position in the 

sediment volume. For example, the shape of an event may be asymmetric in the 

horizontal and vertical directions, and biological activity may decrease with depth 

into the sediment. Figure 5.3 shows examples of shape function that represent: (a) 

head-down deposit feeding; (b) burrow hole infilling; and (c) arbitrary movements of 
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Sediment-Water 
Interface  \ 

Figure 5.3: Examples of cylindrical and spheroidal source/sink shape functions that 
represent idealized nonlocal mixing of macrofauna: (a) head-down deposit feeding; 
(b) burrow hole infilling; and (c) arbitrary movements of sediment. 

sediment. Figure 5.4 shows a hypothetical depth-dependent distribution of spherical 

shape functions. Activity is concentrated near the sediment-water interface and 

decreases with depth into the sediment, but it is uniform in the horizontal plane. 

The source and sink functions may also be location dependent. Head-down deposit 

feeders will deposit sediment only on the surface of the sediment, for example. 

The solution to the inhomogeneous biodiffusion equation can be expressed as a 

convolution integral using the appropriate Green's function for the diffusive system: 

p(r, t)=  f   f gd(r, r', * - r)/(r', r)drdv' 
Jo Jv 

(5.36) 

The Green's function (gd) is the solution to the diffusion equation with an impulse 
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Figure 5.4: Spherical shape functions that are homogeneously distributed in the 
horizontal (a) and nonhomogeneously distributed in depth (b). The Poisson point 
density in space and time decreases with depth, concentrating activity near the 
sediment-water interface. 

excitation: 

a ̂(r, t; r0, *o) - V • [D(r, t)Vgd(v, t; r0, to)] = 8{r - r0)S(t - t0) . (5.37) 

The prescribed initial and boundary conditions are 

p(x, y,z,t = t0) = po(x, y, z) , 

d_ 
dz 

p(x,y,z = 0 ,*) = 0 
(5.38) 

Assuming D is independent of r and t, the half-space Green's function for diffusion 

is found, by introducing an image source across the z axis [42], to be 

e-R
2/[4(t-t0)D] + e-Ry[4(t-t0)D] 

gd(r,t;r0,to) = (5.39) 

(5.40) 

[4ir(t-t0)D]3/* 

where 

R2 = (x - x0)2.+ (y - y0)
2 + (z- zof 

R2 = {x- x0f + (y - yof + (z + z0f . 

If half-space effects are neglected (as will be done in later sections), the image source 

is removed from the solution, and 
e-R

2/[4(t-t0)D] 

gd(r,t;r0,t0) 
[4ir(t-to)D]W 

(5.41) 
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5.3.1    Perturbation Method 

Equations (5.31) and (5.35) describe nonlocal mixing in terms of an excitation func- 

tion that is independent of the sediment density. This formulation follows directly 

from the assumption that an organism moves a fixed amount of mass during non- 

local transport, independent of the density at the location of the event. The same 

result can be derived using time-dependent perturbation theory. 

Start by redefining the nonlocal exchange functions as 

Knl(r',r;t) = J2vnhn(r'-3in)gn(r-bn)s(t-Cn) (5.42) 
n 

and 

ffn,(r, r'; t) = J] vngn(r' - bn)h(r - an)s(* - Cn) , (5.43) 
n 

where vn are the exchange function magnitudes that specify the fraction of the total 

mass present in a location that is removed or deposited. Mass rate of change is still 

described by (5.23), but the excitation has the form 

/(r, 0 = X/ M*K(r " b» W* ~ £«) - «>»(r, t)hn(r - a„)*(t - C»)] ,       (5.44) 
n 

where the shape function magnitudes are now defined as 

«n(*)=  / vnp(r',t)hn(r'- a)dr' , 
Jv (5.45) 

w„(r,f) = vnp(r,t) / gn{v' - b)dr' . 
Jv 

The forced mixing equation is no longer inhomogeneous in p; the forcing function is 

dependent on the value of p. 

Now, assume that the fraction of sediment mass per unit volume moved by each 

source/sink event is small compared to initial density at that location such that 

\hnvd\ < 1    and    \gnvd\ < 1 . (5.46) 
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The density can then be represented in a perturbation series as 

P = Po + Pi + --- , (5-47) 

where p0 is the solution of the biodiffusion equation without nonlocal mixing. An 

equation for each order of density correction can be found by substituting (5.47) 

into (5.31) with the new definition of the pulse amplitudes and grouping the terms 

by orders of magnitude. The first-order biodiffusion equation is then found to be an 

inhomogeneous diffusion process: 

§-tPi(r,t) - V • [D(r>*)Vpi(r,*)] = /M) • (5-48) 

The excitation function is a series of random pulse functions with random ampli- 

tudes, as in (5.44). However, the event amplitude functions are now defined as 

«n(<) = / vnpo(r',t)hn(r' - an)dr' , 
Jv 

wn(r,t) = vnp0(r,t) / gn(r' - bn)dr' , 
Jv 

(5.49) 

which are independent of the first-order fluctuation in density. Using (5.49) and 

comparing (5.44) with (5.35), the fixed mass assumption can be interpreted in terms 

of the perturbation result. In doing so, the mass moved by each event is defined as 

qn = vnpo . (5-50) 

Either approach can be used to derive the inhomogeneous biodiffusion equation. 

5.3.2   Poisson Pulse Process 

Consider the excitation of the inhomogeneous biodiffusion process. If the correlation 

of the excitation function can be found, the correlation and corresponding spectrum 

of the sediment density fluctuations can be found. By assuming the sequence of exci- 

tation pulse functions is a Poisson process in time, the problem is greatly simplified. 
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To cast the problem as a Poisson process, two assumptions are made about the 

stochastic properties of the random time variables: 1) the random variables £n and 

(n are statistically independent and identically distributed; and 2) the series con- 

sists of N pulses that are homogeneously distributed over a time interval of length 

T with N -»> oo and T -» oo. The probability density functions (pdfs) of all the 

random time variables (fr, • • • , &v,Ci, • • • , 6v) are then described as the product of 

the individual pdfs: 

täub,- ,6v,Ctf) = n^(&><(C») • <5-51) 
n 

The independence assumption essentially amounts to randomizing the source/sink 

pair functions in time. The sink that is related to a particular source can occur 

at any time before or after the source event. This violates causality in the mixing 

process. However, if a large number of events occur between observation times and 

initial condition effects are ignored, the cumulative effects of the events will be the 

same as if their order was preserved. 

Similar assumptions are also made about the random position variables. Up 

to this point, the statistical properties of the random variables an and b„ have 

been general. Now, it is assumed that each event is independent and identically 

distribution, such that 

p(ai,bi,--- ,ajv,btf) = JJpa&(a„,bn) . (5.52) 
n 

The random positions an and bn for a single event n, however, are not independent. 

In general, the position an may be conditional on the position bn for the same n. 

This may be the case for specific types of nonlocal deposit feeding, such as head down 

feeding where the position of the deposition is most likely above the position of the 

removal of sediment, for example. It is further assumed that the random position 

variables are independent of any other random variables that may be defined to 

describe the shape functions g and h. 
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The correlation of the random process / in space and time is defined as 

RS}{rur2,tut2) = (/OMO/fa,*,)) . (5.53) 

Using (5.35) and assuming stationarity in time only (with r = t\—t2), the correlation 

of the excitation can be expressed as a double summation with iV2 terms: 

N     N 

Rff(ru r2, T)=Y1Y1 [(<lngnqTngmS(t - (n)8(t - r - fTO)) 
tn      n 

(5.54) 
- 2(qngnqmhm5(t - £n)8(t - r - Cm)) 

+ (qnhnqmhm5(t - (n)6(t - r - Cm))] ■ 

The angle brackets are the ensemble averages over the random variables an, bn, £n, 

£n, and any other random parameters that define the shape functions (yet to be 

defined).  The arguments to the shape functions gn and hn have been dropped to 

save space. 

Using the Poisson pulse assumption, the random time variables with m ^ n are 

assumed to be independent. The double summation can then be divided into two 

parts: 
N 

RIf(ri,r2,T) = ]T[{qngnqngn){8(t - £n)S(t -T- £„)) 
n 

- 2(qngnqnhn){8(t - (n)6(t - r - £,)) 

+ (qnhnqnhn)(S(t - Cn)8(t - T - Cn))] 
N (5-55) 

+ Yl [i<ln9n){qmgm)(8(t - Q)(8{t - T - fm)) 
mjtn 

- 2{qngn){qmhm)(5(t - £n))(S(t -r- Cm)) 

+ (qnhn)(qmhm){S(t - &)}(*(* -r- Cm))] ■ 

The function (qngn) is the first moment of the source function (to be discussed later), 

defined as 

(qngn) = (qngn{r - bB)). (5.56) 
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The function {q„hn) is the first moment of the sink. The function {qngnqngn) is the 

second moment of the source function, defined as 

(qngnqngn) = (<£gn(ri - bn)gn(r2 - bn)) . (5.57) 

Similarly for (qngnqnhn) and (qnhnqnhn)- 

Since the random time functions are impulsive and homogeneously distributed 

over time T, the ensemble averaging over time can be performed, resulting in 

(S(t-Cn)) = L , N T    , (5-58) 
(S(t - (n)6(t - r - C„)> = f6(r) . 

In addition, since the random variables are independent and identically distributed, 

the summations can be eliminated. The first summation contains N identical terms, 

and the second summation contains N(N — 1) identical terms. Equation (5.55) is 

then rewritten as 

Rffir^r) =^[(q2gg) + (q2hh)]5{r) - -=ztfgh) 
T     , (5-59) 

The angle brackets now represent the ensemble average over the random variables 

a, b and the other random parameters that define g and h. As iV and T become 

large, the Possion point density in time is defined as 

M 
Xt = j. (5.60) 

The second term in (5.59) will then vanish in the limit, and the excitation correlation 

can be rewritten as 

R,f(TltTa,T) = Xt[(q2gg) + (q2hh)]5(r) + A?[(qg) - (qh)]2 (5.61) 

In general, Af can be a function of time. This is known as an inhomogeneous Poisson 

point process in time. 
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To solve for the correlation of the excitation function, the correlations of the 

shape functions must be found. Before any assumptions are made, it is useful 

to describe the random shape functions as deterministic three-dimensional pulse 

functions that are functions of a finite number of random parameters: 

h(r — a) = ^(c,r — a) , 
■ (5.62) 

g(r-b) = g{d,r-a) . 

The randomness in the source and sink functions (g and h) is now represented by 

the random variables c and d. In general, c and d can be random vectors of a 

finite number of random variables each. The deterministic functions g and h now 

represent the nonrandom characteristic shape of the source and sink events. 

In general, the magnitudes of the shape functions are not independent of the 

parameters that define the randomness in the shape function. For example, the 

variable c may represent the random radius of the sink function h. The magnitude 

of the sink event (q) could also be a function of the random radius - a larger volume 

of sediment affected will result in a larger amount of mass that is transported. If 

this is the case, the joint probability density function for q and c must be specified 

to find the correlation of the sink event. 

However, if the magnitudes of the source/sink events are assumed to be inde- 

pendent of the shape functions, the correlations can be simplified as 

(qg) = (q)(9(d,r-b)), 
(5.63) 

(q299) = {q2)(g(d,r1-b)g(d,r2-b)). 

The correlation function can then be described in terms of the correlations of the 

shape functions only: 

Rfj(rur2,T) = \ta
2

q[Rag{vuv2) + Rhh(vur2)}S(r) + \2r,2[(g) - (h)\2 ,      (5.64) 

where o2 is the variance of the event magnitudes and rjq is the mean.  The shape 
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function correlations are defined as 

Rgg{ri, r2) = (g(d, r! - b)g(d, r2 - b)> , 
(5.65) 

Rhh(ri, r2) = (h{c, ri - a)Ä(c, r2 - a)) . 

The covariance of the excitation function is defined as 

C„(rura) = £//(!•!,r2) - </(r,*))2 . (5.66) 

It can be easily shown that the second term in (5.64) is the equal to the second term 

in (5.66). Therefore, the covariance of the excitation is 

Cn(rur2,T) = Xta
2

q[Rgg(ri,v2) + Rhh{rur2)]S{T) . (5.67) 

5.3.3   Stationarity in Space 

Up to this point, the only assumptions made about the statistics of the shape func- 

tions in space are that the source/sink events are independent and identically dis- 

tributed. The pdfs of the random variables that define the shape functions are still 

general. The correlations of the shape functions could have arbitrary structure that 

models the nonstationary behavior of complicated systems of organisms. Variability 

in the horizontal dimension due to the clustering of organisms could be modeled as a 

random process with stationary increments, for example. The depth dependence of 

bioturbation could be modeled by distributing the depth of the source/sink events 

nonuniformly, concentrating activity near the sediment-water interface. The pdf of 

the random position variables a and b may also be joint and/or conditional upon 

each other. In general, some form of non-stationarity in the depth direction is ex- 

pected, unless the distribution of source/sink events is uniform in depth. Uniformity 

in depth is unlikely and is a very restrictive assumption. 

This inherent non-stationarity presents an apparent paradox in relating a model 

for bioturbation to the acoustic model of Chapter 2. Somehow, the spectrum of 

the bioturbational process must be found, and a spectrum is only defined in terms 
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of a stationary process. Alternatively, the acoustic correlation could be found by 

integrating the sediment correlation directly. However, this complicates the inverse 

process of inferring biological parameters and forfeits the physical insight that can 

be gained by working with spectra. 

This apparent paradox in modeling can be resolved by introducing a locally 

stationary process. This leads to the concept of a local spectrum that can vary in 

space. The simplest form of a local spectrum is found by assuming the positions 

of the source/sink events are independent and uniformly distributed with a Poisson 

density that is a function of position in space. The shape function correlations can 

then be defined in terms of the difference coordinate r<f = ri — r2, such that 

Rhh(rd)=        Xa(3L)h(c,r-a)h(c,r-rd-a.)pc(c) de da. 
JJ, (5.68) 

Aa(r — a)h(c, a)h(c, a — rd)pc{c) dc da. , 
// 

where pc(
c) is the pdf of the random variable c, r = ri, and the change of variable 

a = r — a is made. The parameter Aa is the nonhomogeneous Poisson density in 

space. If A0 varies slowly over the integral on a, compared to the shape function h, 

the Poisson parameter can be moved outside of the integral: 

Rkh{rd) = A0(r) / / A(c, a)h(c, a - rd)pc(c) dc da . (5.69) 

Similarly for the correlation function Rgg: 

Rgg(rd) = Xb(r)ffg(d,a)g(d,a-rd)pd{d)ddda. (5.70) 

The excitation correlation is now simplified as a position-dependent, locally station- 

ary process, 

Cff(rd,r,r) = <r2q[\b(r)Rgg(rd) + Xa(r)Rhh(rd)]5(r) , (5.71) 

where 

4*N = JJg{d,a)g(d,a- rd)pd(d) dd da (5.72) 
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and 

Rhh(rd) =        He, a)h(c, a - rd)pc(c) de da . (5.73) 

The Poisson parameter in time has been absorbed into Att and A&, which are redefined 

as the number of source events (Nb) or the number of sink events (Na) per unit time 

and unit volume: 

Aa = ^    and    h = ^- (5.74) 

5.4    Spectrum of a Biodiffusional Process 

Equation (5.31) is a deterministic differential equation with a random excitation / 

due to the nonlocal exchange of sediment. The solution p can be interpreted as the 

output of a linear system with a stochastic input: 

p(r,t) = Ld[f(r,t)} . (5.75) 

The operator Ld is the integral equation (5.36) containing the diffusion Green's 

function. If the half-space effects are neglected, and the" diffusion process is linear 

and space- and time-invariant, p can be expressed as a space-time convolution with 

the system impulse response, 

p(r,t) = gd{r,t)®f(r,t), (5.76) 

where 

gd(r,t) = Ld[S(r)8(t)] . (5.77) 

It follows from the linearity of the expected value that the correlation of the output 

is found in terms of the correlation of the input process: 

RpP(rd, T) = Rff(rd, T) ® gd(rd, r) ® gd(-rd, -r) . (5.78) 
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Thus, the mixing process can be characterized as a linear filtering process where 

the spectrum of the output process (Spp) is defined completely in terms of the spec- 

trum of the input (5"//) and the frequency response of the diffusive system (Gd): 

Spp(k,u) = \Gd(k,u)\2Sff(k,u) . (5.79) 

The function Gd is the space-time Fourier transform of gd. The spectrum of the 

input is found by taking the Fourier transform of the locally stationary covariance 

function (5.71) with respect to vi and r, 

2 

.S>,(k,r) = g;[A6(r)5OT(k) + A0(r)^(k)] , (5.80) 

where 

Shh(k) = (27r)
3(|^(k)|2) (5.81) 

and 

S3g(k) = (2nf(\G(k)\2) (5.82) 

are the spectra of the shape functions, and G and H are the Fourier transforms of 

the shape functions, g and h. The angle brackets in (5.81) and (5.82) are now the 

expected value operators with respect to the random variables c and d only. Note 

that the spectrum is independent of temporal frequency, u, because of the assumed 

impulsive nature of the source and sink events. 

For the case of a depth-independent and isotropic diffusion coefficient and ne- 

glecting the half-space, the diffusion Green's function is 

G^"> = mhz • <5-83> 
where k2 = k^ + k^ + k\. The spectrum Spp is then expressed as 
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Performing an inverse Fourier transform in time, the temporal and spatial spectrum 

of density fluctuations in the sediment can be modeled as 

Sw(k,»,r)=^^«-»'M. (5.85) 

5.5    Inhomogeneous Bio diffusion of Sediment Microtop ography 

Epifaunal and infaunal activity create time varying roughness at the sediment-water 

interface on spatial and temporal scales that are of interest in acoustic scattering. 

Mega- and macrofaunal locomotion along the interface create surficial traces. To- 

pographical trace concentration has been considered as an indicator of abundance 

of epifauna [84]. Infauna, such as deposit feeders, also create and destroy microto- 

pography as sediment is transported to and from the sediment interface, creating 

mounds and depressions on the surface. 

While larger organisms create roughness, other processes act to erase their effects. 

Physical processes, such as gravity and fluid flow due to wave action or currents, will 

transport surface sediment particles and erase traces of larger animals. Meifaunal 

activity (analogous to the activity on similar scales within the sediment) creates 

random and continuous local exchange at the surface acting to erase or smooth 

larger-scale roughness features. 

Analogous to the two-scale mixing of sediment volume inhomogeneities, as de- 

tailed in Section 5.3, the temporal and spatial properties of surface roughness, due to 

reworking by benthic organisms, can also be modeled as a forced diffusion process. 

The methods used to describe the correlation and spectral properties in terms of 

animal activity and spatial characteristics are applied directly to the surface rough- 

ness. The diffusive quantity is now the rough surface height (zs), and local mixing by 

meiofauna (and other physical mechanisms) is described with a horizontal diffusion 

coefficient for roughness (Ds). 

Equation (5.31) for two-scale mixing of sediment density inhomogeneities is then 
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rewritten to describe the temporal and spatial evolution of surface relief: 

JUs(r, t) - V • [Ds(r, t)Vzs(r, t)] = /.(r, t) . (5.86) 

The position vectors and derivatives are now in two dimensions r = (x,y). The 

nonlocal forcing function is described as 

/s(r, t) = £ qnhn(r - an)5(t - £„) . (5.87) 
n 

The magnitude of each event is defined by the zero-mean quantity qn in units of 

height. The shape function hn is a dimensionless random function associated with 

the nth event that describes a random shape of a trace left behind by an animal 

or other surface relief event. The diffusion coefficient Ds describes the localized 

mixing in the horizontal direction at the surface of the sediment. In some cases, it 

may be the same as the horizontal component of the biodiffusion coefficient Db used 

in Section 5.3. However, it may also may include processes that only exist on the 

sediment-water interface, such as mixing due to bottom currents. 

The correlation of the excitation function is found in the same manner as it was 

found in Section 5.3.2. However, now it is the the covariance of /s that is defined 

in terms of the correlation of the shape functions, the variance of the magnitudes of 

the events, and the the Poisson density: 

C,f(TUT2,T) = Xs<T2
sRhh(vur2)8(r) . (5.88) 

The variance of the event magnitudes qn is a\. The Poisson density \s is the number 

of surficial traces per unit time. 

The problems associated with stationarity in the depth direction, as in the volume 

problem, do not exist in the two-dimensional surface roughness problem. Stationar- 

ity in the horizontal directions is more easily justified (on spatial scales comparable 

with the sizes of the traces left by mega- and macrofauna, at least). Therefore, 

with Xs defined as a slowly varying function of space compared with the trace shape 
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functions, the covariance of the excitation function can be modeled using Section 

5.3.3, and the spectrum of the excitation modeled using Section 5.4, such that 

Sff(k,r) = ^Xs(v)Shh(k). (5.89) 

The Poisson density As is now the number of animal trace events per unit time 

per unit surface area, and Shh is the spectrum of the trace shape functions defined 

analogously to (5.81). The surface roughness spectrum of a biodiffusive process at 

the sediment-water interface is then 

s»^ = S0TJ- (5'90) 

The temporal and spatial spectrum of surface roughness due to biological mixing is 

^(k'r'T) = We"D>"Tl' (5-91) 

5.6    Summary and Conclusions 

The above expressions are general in the sense that they attempt to model biotur- 

bation in nonspecific terms (e.g., diffusion and point density) while still accounting 

for the two-scale nature of the mixing process (meiofauna and macrofauna) and 

non-stationarity. The shape functions and their expected values should reflect the 

size and shape of the macrofauna that move sediment nonlocally. Anisotropy can be 

modeled, for example, by using a shape function that represents directional feeding, 

such as vertical burrows made by conveyer-belt feeders [40, 7]. Spatial dependence 

of the source/sink events is modeled as a nonhomogeneous Poisson process in space 

and time. The preference of a deposit feeder to remove sediment from a specific 

depth, for example, could be modeled by specifying a non-uniform Poisson density 

function that increases the probability of an event occurring at the favored depth. 

The Poisson point density in time should reflect the amount and rate of macro- 

faunal activity, which in general can be time dependent.  The diffusion coefficient 
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should reflect the length and time scales of the meiofaunal activity, which can also 

be modeled as depth dependent. Of course, in some circumstances the Poisson as- 

sumption (homogeneous or nonhomogeneous) cannot be justified. This may occur 

if the gradient in the Poisson parameter cannot be assumed constant over the ge- 

ometric extent of the shape function. For example, deposit feeders with long body 

lengths can extend deep into the sediment. In this case, equation (5.67) must be 

solved directly, as opposed to using (5.71). The possibility of describing mixing as 

a stationarity process may be abandoned altogether. This would bring in question 

the use of spectral analysis for describing sediment physical properties. Correlation 

descriptions would still be valid, however, using (5.67). 
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Chapter 6 

REMOTE SENSING OF BENTHIC ACTIVITY 

Remote sensing of benthic biology by acoustic wave scattering is potentially an 

important tool for studying biological processes on spatial and temporal scales larger 

than can be achieved by current point sampling methods. Inferences about the ef- 

fect of benthic biota on sediment structure are typically made by examining sparsely 

sampled sediment cores and optical imagery. Coring can provide detailed informa- 

tion on the vertical structure of the sediment at an instant in time and for a single 

horizontal location. However, large gaps are generally left in horizontal and temporal 

sampling. High resolution X-radiographs [28], X-ray tomography [52], microelectric 

conductivity methods [74], and box coring provide better horizontal resolution, but 

they are usually limited to very small spatial scales (less than a meter). They 

are also destructive, providing only a single measurement in time. Nondestructive 

in situ methods, such as acoustic tomography in the sediment [74, 87] and very 

high-frequency acoustic (ultra-sound) imaging [51], can provide increased temporal 

resolution with minimal impact on the sediment. However, they are also limited 

to small spatial scales due to high acoustic attenuation in the medium. Optical 

methods, such as stereo photography [64, 70], only provide information about the 

sediment interface, and are again limited in their larger-scale spatial resolution. 

This chapter will discuss a stochastic model-based technique for monitoring bi- 

ological activity on large spatial and temporal scales using high-frequency acoustic 

backscatter. The method is stochastic because it relies on the random nature of 

biological mixing to create the scattering medium. In this sense it is similar to pre- 

vious statistical methods of monitoring benthic activity using backscatter [41]. The 
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method differs in its reliance on physical models of scattering and sediment mixing. 

The chapter will begin with the development of a forward model of scattering due 

to bioturbation using the results of chapters 2 and 5. Then the inverse problem will 

be investigated where an estimate of the temporal correlation of backscatter is used 

to infer parameters of biological mixing in the sediment. Finally, the models will 

be applied to experimental data as a preliminary test of the modeling methodology. 

The experiment was performed in the West Sound of Orcas Island in Puget Sound. 

Backscatter data was recorded in an area with observed biological activity. Ground 

truth estimates of biological activity are compared with the acoustically inferred 

activity. 

6.1    Forward Model of Scattering 

A model for the effects of bioturbation on volume scattering is developed by relating 

the decorrelation in time of the backscattered field with changes in the sediment 

physical properties due to biological mixing. The perturbation method of Section 

2.4 is used to describe scattering as a function of the statistical properties of the 

sediment. The sediment bioturbation model of Chapter 5 is used as the spectral 

model of sediment mixing. They are combined to form a forward stochastic model 

of scattering due to benthic biological activity. 

Consider backscatter of an acoustic field due to volume scattering in sediment. 

For backscatter at grazing angle 0, equations (2.74) and (2.56) are rewritten as 

CPP{6,T) = 87r3|r(0)|2 |fc|V + l)2 S„(ki,T) , (6.1) 

where 

T(9) = ^^^ , (6.2) 

and kj, = (Re[fc]/2)sin0 is the Bragg wavenumber. Recall that Spp(kd,r) is the 

time-dependent, half-space spectrum of density fluctuation in the sediment defined 
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using (2.75) as 

Spp(kd,r) = [ dvc r dk'dz Spp(kdx,kdy,kdz,rc,r)W(kdz - kdz,zc)e-
2az< ,    (6.3) 

J hs J—oo 

where 

W(k.,x.)-i&^. (6-4) irkz 

The function Spp(kd,rc,T) is the time and space dependent spectrum of density 

fluctuations in the sediment evaluated at the Bragg wavenumber. The normalized 

correlation coefficient for scattering is defined as 

/ ^     Cpp(0, r)      Spp(kd,T) .     , 
C/pp(C/,U)      Spp{kd,0) 

In Section 5.4 a model for the spectrum of density fluctuations due to biological 

mixing was presented, see equations (5.85) and (5.80). Mixing is modeled as a locally 

stationary and time-dependent diffusion process having the spectrum 

S,(H,,r) = ^.-"M, (6.6) 

where the spectrum of the random biological forcing is 

%(k,r) = 47rVg
2[A6(r)(|G'(k)|2) + Aa(r)(|iy(k)|2)]  . (6.7) 

Equations (6.1-6.7) form the basis of the forward and inverse models of scattering 

due to biological activity. The model parameters include: the biodiffusion coefficient 

D; the spectra of the macrofaunal shape functions h and g; and the nonhomogeneous 

Poisson point density functions Aa and A&. The observable is the estimate of the 

correlation function (6.1). 

Using (6.1), the correlation of the scattered field is a function of lag time and 

grazing angle. As the lag time increases, the correlation is expected to decrease 

exponentially with a time constant that is predicted by the time-dependent biodif- 

fusive spectrum of density fluctuations using (6.6). Therefore, the time dependence 

of the field correlation is due to the time dependence of the diffusion process. 
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The grazing angle dependence of the backscatter correlation is due to the scat- 

tering geometry. At low grazing angles, the incident field will penetrate a short 

distance into the sediment. Therefore, the scattered field at low grazing angles will 

be influenced primarily by the sediment near the sediment-water interface. At higher 

grazing angles, the incident field will penetrate deeper into the sediment, and the 

scattered field will be affected by deeper sediment, as well as the interface sediment. 

If the sediment mixing processes are depth dependent, the grazing angle depen- 

dence of the scattered field correlation should reveal this structure. A concentration 

of biological activity near the sediment-water interface (decreasing with depth) will 

cause the scattered field at lower grazing angles to decorrelate faster than at higher 

grazing angles. 

6.2    Inverse Model of Scattering 

Using the forward model of (6.1) through (6.7), predictions of backscatter corre- 

lation can be made using information about the parameters that define biological 

mixing. If the stochastic geometry, behavior, and rate of activity of an organism 

are well understood, its effect on the scattered field over time can be modeled. In 

contrast, the remote sensing problem is the estimation of these stochastic biological 

parameters from the observation of the decorrelation of acoustic backscatter. 

6.2.1    Estimation of Backscatter Correlation 

To use the backscattered field as a tool for observing changes in the sediment, the 

inverse problem must begin by estimating the temporal correlation function (6.1) 

using acoustic data. One means of doing this is to use the time-domain scattered 

field to form an estimate of the ensemble average. To start, a finite duration pulse 

is transmitted at time t0, and the time-domain scattered field is digitized and time- 

gated to correspond to scattering from an isolated and finite region of the seafloor. 
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An estimate of the backscatter correlation can be found by correlating the time- 

domain scattered field from a volume of sediment the size of the ensonfied volume. 

If the ensonified volume is large compared to the correlation length of the medium, 

the time-domain correlation will be an estimate of the correlation function (2.74) 

(see Section 2.6). 

A pulse is transmitted, and the received signal ps(t) is digitized as 

Ps(tn) = Re [us{tn)e-^tn] , (6.8) 

with 

«.(*„) = Muy**^ . (6.9) 

The discretized variable tn is the time after transmission of the pulse for a single 

scan. The backscattered signal from each range bin is then cross-correlated with the 

signal from the same range bin, but from a scan at some later time r: 

M+N-l 

CPP(r)=    Yl   u*(tnK(tn + r).    . (6.10) 
n=M 

The signal us{tn) is from the scan chosen as a reference, and us(in + r) is from a 

scan at time r later. The limits of the summation (M and JV) are the start and end 

sample numbers for the range bin of interest. 

The correlation estimate is a measure of the total change in the scattered field 

between scans, including changes in the propagation path between the transducer 

and the seafloor. To be assured that any decorrelation observed in the scattered 

field is due to changes in the seafloor only, propagation effects must be removed. 

The most likely source of decorrelation introduced by the propagation path is sound 

speed changes in the water. Uncorrelated ambient noise and volume reverberation 

from the water due to suspended matter and organisms [41], for example, are other 

sources of signal decorrelation. 
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The speed of sound in the ocean water will fluctuate with changes in the wa- 

ter temperature. Neglecting the scattering from temperature microstructure in the 

water, changes in the average water temperature between scans of the seafloor will 

introduce a phase and amplitude shift into the scattered field, as compared with 

the reference field [20]. Before cross-correlating the scattered fields from different 

scans, the sound speed fluctuations due to water temperature changes (8c) must be 

removed. The temperature compensated cross-correlation between scans, derived 

previously in [20], can be written as 

M+N-l 

CPP(T)= £ «,(t,K('. + ^'- (6-n) 
n=M 

This approximation compensates for the shift in the carrier (at frequency UQ), but 

neglects the changes in the complex envelope of the scattered field. 

6.2.2   Models of Biological Activity 

The mixing model of (6.6) is very general. With no a priori information about the 

statistical description of the organisms in a sediment to constrain the spatial and 

temporal parameters of the bioturbation model, the remote sensing problem may be 

ill-posed. It is likely that the spectrum of the shape functions will provide the most 

ambiguity in the model inversion, as the types of shape functions (that reflect the 

types of organisms) and their spatial distributions provide the most unconstrained 

degrees of freedom in the model. It is unrealistic to expect a unique inversion without 

some prior knowledge of their form. In general, some knowledge of the biology must 

be applied to the inverse problem. 

A formal analysis of the stability of the inversion will not be performed. However, 

several assumptions about the sediment source/sink functions are made to simplify 

the sediment mixing model, and to improve the uniqueness of the inversion. First, 

the biodiffusion coefficient is assumed to be uniform in the horizontal directions and 



140 

exponentially decaying in depth: 

D(z) = D0e-W
L . (6.12) 

This form assumes that diffusive activity decreases with depth at a rate defined 

by the meiofauna rework depth L, with meiofaunal activity concentrated near the 

surface. It also seems reasonable to assume the same form for the spatial point 

density (the Poisson parameters Aa and A&): 

Aa(r) = A0e-
|z|/LA . (6.13) 

The activity is assumed to decrease with depth at a rate defined by the macrofauna 

rework depth L\. For simplicity, it is assumed that the macrofaunal and meiofaunal 

rework depths are equal (L\ = L), and the rate parameters for the positions of the 

source/sink functions are assumed to be identical (Aa = Aj). 

The diffusion coefficient and the distribution of source/sink events are assumed 

to be uniform in the horizontal directions. In general, this assumption does not seem 

realistic. However, it may be reasonable if enough horizontal averaging is performed 

in the measurements. 

The shape functions to be used will be random spherical source and sink func- 

tions, having the Fourier transform 

H(k) = G(k) = ^r^(sm ak - ak cos ak) . (6.14) 

The radius a is assumed to be a Gaussian random variable with normal distribution 

N(r]a;cra). Using equations (6.12-6.14) and the above assumptions, the spectrum of 

the locally stationary and time-dependent biodiffusion process (6.6) is rewritten as 

SPP(K r, r) = 4^MSQe-^>fc2M . (6.i5) 

The expected value integral in (6.15) must be performed numerically. Figure 6.1 

illustrates an exponentially decreasing distribution of spherical source/sink functions 

with random radii. 
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Figure 6.1: Spherical shape functions that are: (a) homogeneously distributed in 
the horizontal; and (b) nonhomogeneously distributed in depth. The Poisson point 
density in space and time decreases exponentially with depth with a scale denned 
by the rework depth L, concentrating activity near the sediment-water interface. 

The model now consists of the normalized correlation coefficient (6.5) as the 

observable and the biodiffusive spectrum (6.15) as the forward model. The object 

is to minimize the difference between the model predicted backscatter correlation 

and the data as a function of grazing angle and lag time. By using the normalized 

correlation, the magnitude of (6.15) is removed from the model as an unknown. The 

inverse problem is reduced to the solution of four unknowns: 1) the mean radius r\a 

of the spherical source/sink shape functions; 2) the variance a\ of the radius; 3) the 

biodiffusion coefficient D0; and 4) the rework depth L. 

6.3    Orcas Island Experiment 

Model predictions are compared with data collected during an acoustic experiment 

performed in a shallow water bay of Orcas Island in Puget Sound in Washington 

state. Acoustic backscatter was recorded over an area of seafloor by a bottom 

mounted transducer configured as illustrated in Figure 6.2. The acoustic system has 

been described in detail elsewhere [20, 41], and only a brief description is given here. 
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A calibrated 40 kHz monostatic transducer with a fan-shaped beam pattern was 

used to scan a circular site approximately 50 meters in radius at azimuthal incre- 

ments of 5°. A single pulse of duration T0 = 2 ms was transmitted for each azimuthal 

direction, and backscatter was recorded to produce a single radial scan. The pulse 

has a rectangular envelope, and it was frequency modulated to cover a bandwidth 

of 2 kHz. The transducer was then rotated to the next azimuthal increment and 

another pulse transmitted. The transmission and recording of backscatter is re- 

peated to complete a circular scan in approximately 7 minutes. A complete scan 

was recorded at 2.4 hour intervals through the duration of the experiment. The 

instrument remained at a fixed location for approximately 60 days. 

A total of 585 circular scans was recorded to provide a series of backscatter images 

that reveal temporal and spatial variability in scattering from the sediment. Figure 

6.3 illustrates the spatial variability of backscatter. The circular images show the 

mean and variance of backscatter estimated from 50 complete scans (over 5 days). 

The mean shows large spatial variation in backscatter strength (> 3 dB). The small 

patches of high backscatter in the fourth quadrant of the circle are due to targets and 

manipulations made during the experiment. The second and third quadrants were 

undisturbed. The small scale spatial variations in backscatter (~l-2 meter scale) 

are likely due to the expected statistical variations in the signal (of ~5 dB). The low 

variance of the backscatter strength (~ -80 dB) suggests that the variability in the 

mean backscatter strength is due to the sediment properties, rather than caused by 

transients such as reverberation from organisms in the water or uncorrelated noise. 

For both plots in Figure 6.3, the Lambert law angular dependence of backscattering 

(sin02) is removed. Both the mean and the variance of the scattering strength were 

calculated by forming the ensemble average of the scattering cross-section and then 

converting to dB using 10 log10. 

The sediment in the area is a silty-clay with moderate biologically activity. No 

bubbles were observed in the sediment, and an extensive set of sediment physi- 
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(b) Top View 

Figure 6.2: Scattering geometry of Orcas experiment. The shaded area is a radial 
scan for a single pulse transmission. 
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Figure 6.3: Spatial variability in (a) the mean backscatter strength, and (b) the 
variance of the backscatter strength at the Orcas site. Data estimated from 50 
consecutive scans using 40 kHz backscatter, and plotted on a uniform grid with 1.5 
meter spacing. 
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cal properties was measured at the site by investigators of the US Naval Research 

Laboratory (NRL). This work included core and in-situ measurement of geoacous- 

tic parameters, X-radiography of sediment inhomogeneity, and stereo-photographic 

measurement of sea floor roughness. The biodiffusion of natural radio-isotope trac- 

ers was also analyzed, and an estimate of the vertical biodiffusion coefficient was 

obtained in the same location as the acoustic data [82]. 

6.3.1 Sediment Physical Properties 

The spectra of core density fluctuations were estimated using a first-order auto- 

regressive (AR) model (see Appendix C). This model assumes that the auto- 

correlation of the normalized fluctuations can be expressed as 

Cpp{v) = <rje-lna|*l/fa , (6.16) 

where a is the first-order AR coefficient estimated from the core data using the 

Levinson-Durbin algorithm [59]. Since 7P is a zero-mean process, the zero-lag auto- 

correlation is its variance, a2
p. The isotropic power law PSD function for density fluc- 

tuations is found from (6.16) where the correlation length is defined as lc — —8,zj In a, 

and 5z is the core sampling interval. The spectral parameters for the Orcas cores 

are listed in Table 6.1 along with other geoacoustic parameters supplied by NRL. A 

core sampling interval of 2 cm was used providing marginal resolution compared to 

the acoustic wavelength. The core data are also one-dimensional, which necessitated 

an assumption of isotropy in the spectral estimates. 

6.3.2 Sediment Volume Scattering 

Backscatter strength per unit area of sea floor was measured as a function of graz- 

ing angle for the Orcas site. Owing to the similarity of the magnitude and angular 

dependence of the measured values compared to those of other sites having a range 

of different sediment types [33, 34, 48], the dominant scattering mechanism cannot 
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Density Ratio P/Po 1.406 

Sound Velocity Ratio c/co 0.977 

Proportionality Constant V -0.934 

Compressional Loss 5 0.0019 

Density Variance -I 0.002 

Correlation Length la 3.198 (cm) 

Table 6.1: Sediment parameters estimated from cores and model-data comparison 
for the Orcas site [14]. 

be inferred from the backscatter alone. However, by using the sediment core mea- 

surements as inputs to scattering models, the model results can be compared with 

observed backscatter data, and the dominant scattering mechanism inferred. 

Two scattering models are considered: scattering from volume heterogeneity and 

scattering from a rough sediment-water interface. Surface roughness scattering is 

treated using a first-order perturbation approximation [34] with roughness charac- 

terized by the two-dimensional, isotropic, power-law spectrum estimated from sites 

with similar sediments [33, 34]. As Figure 6.4 shows, the predicted interface scatter- 

ing was sufficiently below the measured values that interface scattering effects can 

be neglected. 

Figure 6.4 shows the predicted backscatter strengths found using the first-order 

volume model with and without half-space effects. In this case, a first-order approx- 

imation models the data reasonably well, and half-space effects are negligible over 

the angular range of the data. The difference between model predictions and data 

is most likely due to errors in the estimated heterogeneity spectra. 

No significant oceanographic processes or sediment transport events were ob- 

served during the experiment. For the Orcas site, sound speed fluctuations were 

recorded for the duration of the experiment by conductivity, temperature, and depth 
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Figure 6.5: Sound speed fluctuations in the water during the Orcas experiment. 

(CTD) measurements (see Figure 6.5). Given the nature of the sediment and the 

expected low level of roughness scattering, it is expected that acoustic penetration 

into the sediment and the effects of biological mixing are the dominant mechanisms 

for decorrelation. 

6.3.3   Model-Data Comparison 

The model for the temporal correlation of seafloor backscattering due to biodiffu- 

sive sediment mixing was compared with backscatter correlation estimated from the 

Orcas experiment. Figure 6.6 shows a comparison of the observed and predicted 

correlations as functions of lag time. The model was fitted to the data (plotted as 

points) by trial and error while constraining the parameters of the sediment model 

to realistic values. The offset of the observed correlation profile from the predicted 

profile is due to uncorrelated noise in the data. Reverberation in the water column 

that is uncorrelated from scan to scan is a likely source of noise. 

Table 6.2 outlines the parameters estimated from the model-data comparison. 

The estimated biological parameters are typical for the type of sediment and envi- 

ronment encountered at the Orcas site. An estimate of the biodiffusion coefficient 

for naturally occurring radioisotopes (Dj) was measured from cores in the same 
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Diffusion Coefficient D0 2.4 (cm2/year) 

Macrofauna Rework Depth Lx 3.8 (cm) 

Meiofauna Rework Depth L 3.8 (cm) 

Mean Radius »7a 0.4 (cm) 

Radius Standard Deviation Oa 0.14 (cm) 

Table 6.2: Sediment parameters estimated from cores and model-data comparison 
for the Orcas site. 

area as the acoustic experiment. The core analysis produced an estimate of Db « 8 

cm2/year [82]. This value is higher than the acoustically inferred value of D0 « 2.4 

cm2/year. One explanation is that the value estimated from the cores is a different 

type of diffusion coefficient than the coefficient estimated using (6.12). The D found 

using the bioturbation model developed in this thesis is the meiofaunal diffusion 

coefficient. The Db estimated from cores uses the classical diagenesis model of dif- 

fusive mixing, and therefore it includes both mieofaunal and macrofaunal mixing. 

In general, it would be expected that the meiofaunal diffusion coefficient is smaller 

than the total diffusion coefficient. 

6.4    Summary and Conclusions 

A biodiffusion model using random excitation to describe the time evolution of 

sediment inhomogeneities is combined with the first-order perturbation treatment 

of sediment volume backscatter. The first-order perturbation model for volume 

backscatter is validated for use at the Orcas site by data-model comparison. Half- 

space effects are shown to be unimportant at the low grazing angles used in the Orcas 

experiment. Sediment physical properties and inhomogeneity spectra were estimated 

using measured core data. Higher resolution two- or three-dimensional core analyses 

(e.g., X-radiographs, CT) are recommended for future work to improve the sediment 
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ground truth estimates. 

Backscatter measured at the Orcas site was used to estimate the temporal cor- 

relation of the scattered field. The correlation estimate was then used to estimate 

benthic biological activity by comparison with the biodiffusive mixing model. Us- 

ing the correlation data for the Orcas site, the proposed model of sediment mixing 

predicts sediment biodiffusion parameters that are realistic. Verifying the acousti- 

cally inferred biodiffusive parameters is problematic because there is no analogous 

sampling method that provides similar spatial and temporal resolution. This is the 

main reason acoustic remote sensing methods are interesting. Further model-data 

comparisons and better ground truth estimates of sediment physical and biological 

properties are needed to verify the methodology. However, this initial and simple 

application of the model to data provides encouraging results. 
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Appendix A 

HALF-SPACE GREEN'S FUNCTION 

Consider a two-dimensional medium with a source at position r' = (x', z') and 

a receiver at position r = (x, z) both in the LHS of two homogeneous half-spaces. 

The Green's function is the solution of the wave equation, 

[V2 + P]^o(r,r') = -5(r-r'), (A.lj 

that satisfies reciprocity and the appropriate boundary conditions along the interface 

(at z = 0). The solution is found by first taking the Fourier transform in x to obtain 

the spectral representation of (A.l), 

d |2 

dz* + 0 ^-—e-i^Siz-z1), (A.2) 
90 27T 

where 

ß=y/k*-k>. (A.3) 

The solution for (A.2) in the region z < 0 and z > z' is 

g0 = A[R{kx)e-
if" + Jf*] , 

and in the region z < 0 and z < z' is 

~g0 = Be~ißz . 

The coefficient R is the reflection coefficient between the two regions: 

R=P_sßzM. (A.4) 
poß + pßo 
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The unknown coefficients A and B are found by matching the solutions and imposing 

the discontinuity in the normal derivative at z = z' required by (A.2), such that 

A \R(kx)e-
ißz' + eißz') = Be~ißz' 

and 

iß A \-R{kx)e-ißz' + eißz'} + ißBe~ißz' = -— 
"2Te 

—ikxx' 

Solving for A and B, 

and 

A —     %   c~ikxx'c-jßz' 

Airß 

B —    iiföx *" 

4wß 
R(kx), -ißz' j_ Jßz' + e^ 

the combined solution for the entire region z < 0 is 

9o  _,£)*~''1™X3' 

4irß 
R{kx)e-

ißW> + e^-*'i 

The final solution is found by taking an inverse Fourier transform in x: 

i    P* *(r;r') = sl ß 
f_  ikx(x—x') R(kx)e

iß^+Z,y> + eiß\z~z'\ 

The Green's function for a receiver in the UHS (z > 0) and a source in the LHS 

[z! < 0) is found in a similar manner. The solution for (A.2) in the region z > 0 is 

where 

9o = Ceiß°z , 

ßo = y]kl-kl. (A.5) 

Again, solve for the unknown coefficients C by matching the solutions and their 

derivatives at z = 0, such that 

C = A(R+1) = AT', 
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and 

ißlcJÄAil-R). 
Po P 

The coefficient T" is the transmission coefficient from the LHS to the UHS: 

T' =     2/°P     . (A.6) 
Poß + Pßo V      ' 

Using the derivation of A from the reflection Green's function above, the solution 

for the spectral component of the transmission Green's function is 

~    _      %    >T>l(j   \   ikxx'   ißoz-ißz' 
90 ~ 4<irß    { x} 

The final solution is found by performing an inverse Fourier transform is 

47T J_00   kz 
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Appendix B 

FAR-FIELD HALF-SPACE GREEN'S FUNCTION 

The half-space Green's function is evaluated in the far-field of the interface using 

the method of stationary phase or saddle-point method [29]. Begin with the two- 

dimensional Green's function for transmission 
oo 

flb(r, r') = i- f nMe^^'e''^»')^ , (B.l) 

where 

ß = y/P - hi , 

ßo = y/k2
0 - kl , 

and 

(B.2) 

paß + pßo 

Change integration variable in (B.l) to cylindrical coordinates with kx = k0 cos 9 and 

ßo = k0sin0, and define the the position r = (x,z) as x = rcos9s and z = rs'm0s. 

Then using the identity 

cos(0 - 6,) = cos(9) cos(0s) + sin(0) s'm(9s) , (B.4) 

the integral (B.l) can be rewritten as 

go(r,r>) = ±.j F{9)eW>d9. (B.5) 

The complex contour C is defined in Figure B.l. The function F(9) is defined as 



Im[6] 

-Till 

n/2 
Re[9] 

Figure B.l: Complex contour in the 6 plane. 
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and the exponent function f(0) is defined as 

f(6) = ik0cos(6-6s) . 

It can be shown that the integrand vanishes at both ends of the contour [29]. 

The stationary phase point is given by 

df(9) 

(B.7) 

ae = — ikosm(e — 6S) = 0, (B.8) 

or 6 = 9S. The function f{ß) is then expanded about 6S as 

(B.9) 

where the double primes denote the second derivative with respect to 9. The in- 

tegrand can then be approximated as a Gaussian curve, which for large r can be 

evaluated. Evaluating the integral gives an approximate expression for the far-field, 

T    9      11/2 

^=4^/(,",+MFWFJ  • (B10) 

where 7 = — TT/4 is chosen to properly orient the path of integration in the complex 

plane. 
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The far-field Green's function is then written as 

flb(r,r') = _*!^-^c*rc-*.vc-W4 , (B.ll) 
p      y/mkQr 

or equivalently as 

Sb(r, r') = -a-  f^  eikore-ik°-r'e-^4 , (B.12) 
/> V87rA;or 

where 

r=   y^V . (B.i3) 

The same procedure is performed to find the three-dimensional far-field Green's 

function: 

go{Tj r') = P°TMjkore-ik.*> m (ai4) 
p   Anr 
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Appendix C 

AUTO-REGRESSIVE SPECTRAL ESTIMATION 

Auto-regressive spectral estimation is based on modeling the digital data se- 

quence, y(n), as the output of a linear system, 

y(n) = h(n) * x(n) , 

characterized by the rational system function 

1 

(C.l) 

H(z) 
A(z) 1 + E akz -k 

k=\ 

(C.2) 

If the input and output of the system are stationary random processes, the auto- 

correlation of the data sequence is defined in terms of the input auto-correlation and 

the discrete step response of the system: 

Ryy(m) = Rxx(m) * h(m) * h*(—m) . (C.3) 

Using an estimate of Ryy(m) taken from the data and assuming the input is a zero- 

mean white noise process with auto-correlation Rxx(m) = qS(m), determining the 

spectrum of the output process becomes a problem of estimating the coefficients a*,. 

The constant q is the variance of the input process. Several well known techniques 

such as the Yule-Walker method and the Levinson-Durbin algorithm can be used 

to estimate these parameters [59] [55]. With an estimate of the system function (or 

system filter coefficients), the spectrum of the output process is found by evaluating 

equation (C.2) on the unit circle, 

Sw(k) = q\H(z)f (C.4) 
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where z = eik and k is the spatial frequency. 

A first-order AR process is characterized by a system function with a single pole 

H(z) = VA—I. (C5) 
1 — az 1 

For a < 1 the impulse response function of this system is 

h(n) = anu{n) . (C.6) 

The auto-correlation of this process is found using equations (C.3) and (C.6) to be 

Rvvim) = Yh?^- (C7) 

The normalized auto-correlation function is 

r» = ö|m| = e-lmlnä|. (C.8) 

In general, we want to consider the correlation function of a continuous process in 

3-D space. Thus, if we generalize equation (C.7) to represent an isotropic process 

in which m = r = y/x2 + y2 + z2 and apply the Wiener-Khinchin theorem [30], the 

spatial spectrum of a first-order AR process is found to be 

where a = -lnä/5m, ß = q/(l - a2), and 8m is the sampling interval. 

How does this relate to power law spectrum of normalized sediment density 

fluctuations derived from an exponential correlation function (as in Section 2.1.1)? 

By the definition of (C.8), a = l//c. The variance of the normalized sediment 

density fluctuations is simply the variance of the input process, a2 = q/(l - a2). 

Thus, equation (C.9) can be written as 

S»« = TO?W (&10) 
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Appendix D 

FFT EVALUATION OF THE HALF-SPACE GREEN'S 

FUNCTION 

Since the unknown field points are discretized on a uniform grid, the wavenumber 

integration of the half-space Green's function (2.33) can be performed efficiently 

using an FFT [38]. First, use the discretization of the ^-coordinate, 

xn = xmin + nAx , for n = 1,2,... ,N , (D.l) 

to define the corresponding discretized wavenumber in the «-direction, 

L = kx,min + mAkx , for m = 1,2,... , M , (D.2) 

where 

AxAkx = ^ . ' (D.3) 

Substituting xn and kxm into the definition of the half-space Green's function for 

reflection and approximating the wavenumber integration as a summation, 

[dkx^Y^Ak^ (D-4) 

the Green's function is rewritten as 

g0(xn, zn; x', z') = ^-T ^[#(^)et7M*"+2'l + 
47r^o A» (D.5) 

gijSm \zn -z' 11 e im Akx {xmin -X1) gilt *$■ 

With attenuation in the medium, the term in square brackets will vanish at high 

wavenumbers and the summation can be truncated. The summation now takes the 
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form of an inverse FFT, 

9o{Xn, Zn] x', z) = —FFT"1 ——\R(k    )e
iMz"+z'\ M e

iMZn~z'\]eimAkx^Xmin~x'^ 

(D.6) 

where 

FFT"1 [F(xn, zn)] = ±J2 F^ z»y^ ■ (D-7) 

m=0 

The computation of the Green's function is greatly improved. A single FFT 

computation is required to find a row of values. The discretization spacing in the 

«-direction must be chosen to provide adequate spacing in the spectral domain to 

fully represent the spatial frequency characteristics of the integrand. If Ax or M is 

too small, aliasing may corrupt the FFT. Owing to the assumed periodicity of the 

FFT, the range over which the function F is evaluated must be sufficiently large so 

that F approximately vanishes outside the interval. 



173 

Appendix E 

GENERATING GAUSSIAN RANDOM MEDIA 

Realizations of a two-dimensional Gaussian random medium are generated by 

discrete inverse Fourier transforms. Consider the random variable f(x,z) and the 

discrete Fourier transform 

(27T)2 

f(x,z)=Ki^-Yjyjbmneik^eik^ , (E.l) 
m      n 

where kzm = 2irm/Lz and kxn = 2irn/Lx. The correlation of f(x,z) is defined as 

Rf/(xi - x2, z\ - z2) = (f(xuz1)f*(x2, z2)) . (E.2) 

If /(x, z) is a Gaussian random variable, then the coefficients bmn are independent 

and uncorrelated, and they can be defined as the Gaussian random variable 

bmn = ^| [N(0,1) + «W(0,1)] , (E.3) 

where Amn is the amplitude. The function N(0,1) is a uncorrelated Gaussian random 

number with zero mean and unit variance, such as a numerical random number 

generator. Using (E.l) the correlation of f(x,z) can be rewritten as 

ikxn(xi-x2) (E.4) (27T)4 

Rff(Xl - x2, Zl - z2) = ±-±- ]T £ Bmneik^zi-^eik 

^ '      m      n 

where 

Bmn = (\bmn\2)  • (E.5) 

The correlation of f(x, z) is alternatively expressed as the discrete Fourier trans- 

form of the spectrum of the process that generated f{x, z): 

R}}(Xl - x2,zi-z2) = ^-TTSff(kxn,kzm)eik^-^eik*^-^ .    (E.6) 
LixLz *-^* ^-—/ 

m      n 
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Equating (E.6) and (E.4), the random Fourier coefficients of the correlation function 

are related to the spectrum as 

Bmn = /~ ^0Sff(kxn,kzm) . (k-'J 
(27rr 

Now, using (E.3) and (E.5) in (E.7), the amplitudes of the random Fourier coeffi- 

cients of f(x, z) are found to be 

Amn = j—ryJLxLzSff(kxn,kzm). (E.8) 

Using a desired spectrum for S//, such as the power-law spectrum (2.18), and gen- 

erating the Fourier coefficients using (E.3) and (E.8), a random realization of f(x, z) 

can be generated by performing the inverse Fourier transform. A discrete random 

realization, f(xi,Zj), is found by discretizing the finite region (Lx, Lz) as a uniform 

grid and performing the inverse transform at the grid locations: 

/(*,-, ZJ) = Ö?£ £ J2 bmneik^eik^ . (E.9) 
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Appendix F 

MASS OPERATOR FOR THE BILOCAL 

APPROXIMATION 

The mass operator for Dyson's equation using the bilocal approximation (4.17) 

is defined in the wavenumber domain as 

M(k) = k4MKK(k) - 2ik2k • MÄP(k) - k • Mw(k) • k , (F.l) 

where 

MKK(k) = ix2 J Cpp(r)9o(r)e-ik-rdr , (F.2) 

MKp(k) = nj Cpp(v)Vg0(v)e-ik-'dr , (F.3) 

and 

Mppy ,(k) = J Cpp(r)VV^o(r)e-
ik-rrfr . (F.4) 

Using the free space Green's function 

elr 

Mr) - ^ (F.5) 

with an isotropic and exponential correlation function 

CPP(r) = ^2e-|r|//c , (F.6) 

each mass operator can be derived analytically. 

The integrals of (F.2-F.4) are solved by changing integration variables to spherical 

coordinates and orienting k in the z-direction, so that k • r = kru and u = cos 9. 
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Since there is only one wave vector k in (F.l), and it is pointed in the ^-direction, 

only the ^-component of the vector MKp and the zz-component of the dyad Mpp are 

considered. Therefore, equations (F.2) and (F.3) are rewritten as 

MKK(k) = !L5L /   e-W'<-ik+iku)rrdrdu 
2    Jo   J-i 

and 

k-MKp(k) = 

using 

^ f°° f1 [ikr-l]e-^-fk+ikuKdudr 

dz     dz dr       dr 

(F.7) 

(F.8) 

(F.9) 

Through integration by parts, the dyadic mass operator (F.4) is rewritten as 

k2Cpp(r)e-ik-r^go(r) 

r» a (R10) 

-k2Jj-z[Cpp(r)e-^}ggo(r)dr, 

which after applying the radiation condition and spherical coordinates, is rewritten 

as 

w (k). k = —^ /     /    [ihr - 1] [u + ikle] e-Wl<-ik+iku>ududr .      (F.ll) 
2/c  Jo    J-i 

The integration on r and u in all three integrals can now be performed to obtain 

(F.12) MKK(k)=^^ 

and 

k • MKp(k) = fi- 

k-Mw(k)-k=^- 

crpdc 
262 ikL [ c 

2ab 
a2-b2 - (26 - ac) (F.13) 

IKlr (2b-ac)-(a-b2)[c- 
2ab   ' 

a2 - 62. 

+ (26 - ac)(a - 62) 

(F.14) 
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where 

a = 1 — iklc , 

b = iklc , (F.15) 

c = ln[(a + b)/(a - b)] . 
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